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Abstract

This thesis provides a discussion on some analytical and empirical models of online

auctions. The objective is to provide an alternative framework for analyzing online auc-

tions, and to characterize the distribution of intermediate prices. Chapter 1 provides a

mathematical formulation of the eBay auction format and background to the data used in

the empirical analysis. Chapter 2 analyzes policies for optimally disposing inventory using

online auctions. It is assumed a seller has a fixed number of items to sell using a sequence

of, possibly overlapping, single-item auctions. The decision the seller must make is when

to start each auction. The decision involves a trade-off between a holding cost for each

period an item remains unsold, and a cannibalization effect among competing auctions.

Consequently the seller must trade-off the expected marginal gain for the ongoing auctions

with the expected marginal cost of the unreleased items by further deferring their release.

The problem is formulated as a discrete time Markov Decision Problem. Conditions are

derived to ensure that the optimal release policy is a control limit policy in the current

price of the ongoing auctions. Chapter 2 focuses on the two item case which has sufficient

complexity to raise challenging questions. An underlying assumption in Chapter 2 is that

the auction dynamics can be captured by a set of transition probabilities. Chapter 3 shows

with two fixed bidding strategies how the transition probabilities can be derived for a given

auction format and bidder arrival process. The two specific bidding strategies analyzed are

when bidders bid: 1) a minimal increment, and 2) their true valuation. Chapters 4 and

5 provides empirical analyzes of 4,000 eBay auctions conducted by Dell. Chapter 4 pro-

vides a statistical model where over discrete time periods, prices of online auctions follow a

ii



zero-inflated gamma distribution. Chapter 5 provides an analysis of the 44,000 bids placed

in the auctions, based on bids following a gamma distribution. Both models presented in

Chapters 4 and 5 are based on conditional probabilities given the price and elapsed time

of an auction, and certain parameters of the competing auctions. Chapter 6 concludes the

thesis with a discussion of the main results and possible extensions.
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Notation

Time, decision epoch, and period t

Length of planning horizon T

Duration of an auction τ

Starting price of an auction and bidders’ lower bound on the valuation of item p

Maximum price of an auction and bidders’ upper bound on the valuation of the item P

Bidders’ valuation of the item V

Index of auction or item i

Current price of auction i Xi

High-bid of auction i Hi

Elapsed discrete time of auction i (used in Chapters 2 and 4) Yi

Elapsed continuous time of auction i (used in Chapters 3 and 5) ti

Current price of auction i after Y periods (Xi,t in Chapters 3 and 5) (Xi, Yi) or Xi,Y

Number of ongoing auctions Z

Cost per period of holding one unit of inventory h

Indicator function; equals 1 if statement in brackets is true, 0 otherwise 1{·}
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CHAPTER 1

Introduction

1. Research Objective and Overview of Thesis

Auctions provide an important and integral part of commerce. One of the main appeals

with auctions is that they can help solve the challenging pricing decision. If a seller sets the

price too high he runs the risk of not selling the product, while if he sets it too low he might

forfeit revenue. Similarly, though of a different nature, deciding how much to be willing to

pay for a product is a difficult decision. Reasonably, there does not exist a price that is too

low for a buyer, while clearly paying too much is either not feasible or not worthwhile. In

order for a transaction to occur, the two parties’ problems must be resolved to a mutual

agreement. The trade mechanism of auctions provides a relatively easy to implement and

often efficient solution. Generally speaking, an auction allocates a product to the buyer who

values it the most, while generating the best possible revenue for the seller. This thesis aims

to further our understanding of how auctions work, and provide a framework for sellers,

buyers, and auctioneers to make better decisions.

The main objective is to provide a framework for analyzing the dynamic and stochastic

nature of online auctions. There are two main departures from the traditional auction the-

ory framework. First, online auctions are modeled as stochastic processes characterized by

various parameters. In other words, the analysis does not follow the standard auction/game

theory framework and derive properties of a bid strategy (Bayesian Nash) equilibrium. Sec-

ond, rather than focusing on the distribution of the final price, the thesis centers on the

distribution of intermediate prices of ongoing auctions. Specifically, the analysis mainly

1



considers, the conditional intermediate price-transition probabilities, given certain parame-

ters. It should be clear that the analysis of intermediate prices enables the analysis of the

final price, but not necessarily vice versa.

An important managerial decision and the main research question addressed is: how

should a seller release items for auction if he wishes to maximize his profit? That is, given

an inventory of N items, and restricted to sell each item using a single-item auction, what

is the optimal release policy? Should he release the N items for auctions 1) simultaneously,

2) as a series of N non-overlapping sequentially started auctions, or 3) according to a policy

that depends on the ongoing auctions?

The objective of Chapter 2 is to address this issue. The problem is modeled as a discrete

time Markov Decision Process (MDP), where each period auctions evolve according to a

stochastic process. As a non-trivial constraint, a trade-off between a holding (or depreci-

ation) cost and a ‘cannibalization’ effect among competing auctions is imposed. Though

Chapter 2 only focus on the two item case (N = 2), the framework, analysis, and results give

insight to the general N -item case. One of the main results is that given certain structural

properties of the price-transition probabilities, the optimal release policy is of a threshold

type. Specifically, for the two item case, in each period there exists a price such that if the

first auction is above this price, then it is optimal to release the second item for auction.

However, if the first auction is below the price threshold, then it is optimal to defer the

release at least one more period. The insights and extensions for the general N item case

are discussed in Chapter 6.

An underlying assumption of Chapter 2 is that the auction dynamics can be summa-

rized by a set of conditional price-transition probabilities. Chapter 3 illustrates, with two

2



examples, how these can be derived for a given auction format, bidder arrival process, and

fixed bidding strategy. Although the two bidding strategies discussed, under certain condi-

tions, result in a Bayesian Nash equilibrium, it is not argued that this is the case for the

setting discussed in Chapter 2. In fact, in the implicit setting of Chapter 2 or eBay the two

bidding strategies would not result in an equilibrium outcome. The objective of Chapter 3

is only to illustrate how the conditional price-transition probabilities can be derived from a

given bidding behavior.

Since the framework for analyzing auctions presented in Chapter 2 is new, two empirical

analyses for model validation are included in Chapter 4 and 5. The data for both empirical

analyses come from the eBay auctions of Dell Financial Services, and consist of more than

4,000 auctions and 44,000 bids. More details regarding the data are presented in Section 4

below. The objective of the first empirical analysis is threefold. First, to present a statistical

model that can characterize the stochastic process by which auctions evolve over discrete

time periods. In other words, to provide a data driven or statistical methodology to char-

acterize the stochastic process, and estimate the conditional intermediate price-transition

probabilities. Second, to provide structural properties on the statistical model such that

the main results from Chapter 2 hold. Third, to illustrate and validate the empirical model

by fitting it to eBay auction data.

The second empirical analysis focuses on the individual bids. The objective is to pro-

pose and test a model regarding bidders’ underlying bid strategies. Specifically, Chapter 5

provides a statistical analysis of bidders’ bid-increments, i.e. the amount above the current

price of an auction. Both Chapter 4 and 5 focus on the conditional probabilities given

various auction parameters, and are based on Generalized Linear Models (GLM).

3



Chapter 6 concludes the thesis with an overall discussion and extensions for future work.

The remainder of Chapter 1 provides a brief background to auctions and online auctions, a

mathematical description of eBay’s auction mechanism, and a description of the data used

for the empirical analysis.

Comments Regarding Notation. For ease of discussion, sellers and bidders/buyers

will be referred to as he, with no gender bias intended. The word ‘seller’ is used rather

than ‘bid-taker’ (which is more common in the auction literature). Furthermore, the terms

‘bidders’ and ‘buyers’ are used interchangeably. The term ‘auction’ will be used instead

of ‘online auction’. Mathematical functions that are non-decreasing (non-increasing), are

referred to as increasing (decreasing). Non-overlapping sequentially released auctions, are

referred to as simply sequentially released auctions. Finally, throughout the thesis the pro-

noun ‘we’ is used.

2. Brief Background on Auctions and Online Auctions

Auctions as a formal commercial mechanism date back to antiquity [29, p.5],[14, p.1],

and are today used for a wide variety of commodities, products, and services. Two of the

more familiar products auctioned, or at least two that receive much attention in the news,

are expensive art objects and radio (wireless) spectrum. Some interesting anecdotal sto-

ries, regarding extreme failures and successes of radio spectrum auctions, are provided in

Tim Harford’s The Undercover Economist (2005). Another type of auction that has re-

ceived much attention over the last decade is the Internet auction. Despite their relatively

short history, Internet based auctions, or online auctions, have quickly become an integral

part of modern eCommerce. From having been mainly regarded as Internet based flea-

markets for the Consumer-to-Consumer (C2C) markets, their importance and presence in

4



the Business-to-Consumer (B2C) markets has and continues to grow rapidly. Today many

well-established firms operate online auctions, not only as alternative sales channels, but

also as strategic tools in pricing and product introduction decisions. Examples of large cor-

porations using eBay include Sears, IBM, Fujitsu, and Dell.1 Companies and organizations

that host their own auctions include Dell, Major League Baseball, shopNBC, and Comet.2

One common use of online auctions is as alternative salvage channels. For example, both

Dell and Fujitsu use their online auction channel to sell refurbished products from returned

and remaining inventory. Another important application of online auctions include the

Business-to-Business (B2B) markets, such as online exchanges based on principles of com-

binatorial auctions (cf. [14, Ch.16]).

Though many web-sites that hosted online auctions no longer exist, including

auctions.yahoo.com and auctions.amazon.com, there are still many online auction sites

remaining, e.g. ubid.com, bidz.com, and ebid.net. However, the most dominant online

auction ‘house’ was and still is ebay.com. Consequently, one of the most common yardsticks

for measuring the importance and growth of online auctions are the annual figures of active

users and sales volume on eBay. eBay defines active users to be those that at least once

either placed a bid, bought, or listed something during the year. The sales volume is the

value of all successfully closed listings and reported by eBay as Gross Merchandise Volume

(GMV). Note that not all listings that make up the GMV figures are auctions. Over the

last four years, the number of active users were: 83M (2007), 82M (2006), 72M (2005),

56M (2004). The sales volume over the same years were: $56B (2007), $52B (2006), $44B

(2005), $34B (2004).3 To put those figures in perspective, the US Census Bureau estimated

1http://stores.ebay.com/Sears; http://stores.ebay.com/IbmFactoryOutlet;
http://stores.ebay.com/Fujitsu-Scanner-Outlet;
http://cgi3.ebay.com/ws/eBayISAPI.dll?ViewUserPage&userid=dell_financial_services

2http://www.dellauction.com; http://auction.mlb.com/; http://auctions.shopnbc.com/;
http://www.clearance-comet.co.uk/

3eBay Annual Report 2007, 2006, 2005, 2004. Available at www.ebay.com.
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the 2007 eCommerce segment of US retail sales to account for close to $127B (about 3.1%

of total US retail sales).4 Another comparison that may give additional perspective on

eBay’s sales volume, is with the annual revenue of the largest US retail stores. In 2006,

the 6th largest retail company Sears Holdings reported annual revenue of $53B, followed by

Walgreen with annual revenue of $47B.5

Despite the fact that auctions have been used for centuries, it was not until the late

1950s that formal analysis of auctions started. Most people attribute the first auction theory

paper with the 1961 seminal and Nobel Prize winning work of William Vickrey [14, p.ix].6

However, Michael Rothkopf refers to Lawrence Friedman’s paper ‘A Competitive Bidding

Strategy’ from 1956 (Operations Research, vol.4), as the earliest formal analysis on auction

and bidding theory [26, p.369]. In fact, according to Rothkopf, the first PhD in Operations

Research was Lawrence Friedman’s dissertation on competitive bidding from Case Institute

of Technology in 1957 [25, p.1]. Since then, auction theory has flourished and resulted in

an enormous body of literature. Two papers that deserve special attention, are the inde-

pendent work from 1981 of Myerson (Optimal Auction Design, Mathematics of Operations

Research, vol.6), and Riley and Samuelson (Optimal Auctions, American Economic Review,

vol.71). Both of these papers generalize some of the ideas presented in Vickrey’s original

work from 1961. In particular, they prove the so-called revenue equivalence principle [14,

p.36]. In addition, Myerson’s paper includes the celebrated revelation principle [14, p.81].7

For a formal and comprehensive account of auction theory, including the revenue equiva-

lence and revelation principles, see V. Krishna’s Auction Theory (2002). For a summary

4US Census Bureau News CB08-72
5http://www.stores.org/pdf/07TOP100Chart.pdf
6William S. Vickrey, born June 21, 1914, in Victoria, BC (Canada), was together with James A. Mirrlees

awarded the Nobel prize on October 8, 1996. He passed away three days later on October 11, 1996.
7Roger B. Myerson, together with Leonid Hurwicz and Eric S. Maskin, received the 2007 Nobel prize.
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and critique of some of the main auction theory results, see Rothkopf and Harstad (1994).

In the last ten years there has been an almost equally large proliferation of literature re-

garding online auctions. Despite some fundamental differences between traditional auctions

and online auctions, most notably the context and time dimension, most researchers choose

to analyze online auctions using the standard auction or game theoretical framework. As

pointed out by Rothkopf this may or may not be the most useful or appropriate approach

[25, p.8-9]. An advantage with online auctions is that they provide a great source of data

for empirical analysis. This probably explains the huge proliferation of studies and PhD

dissertations on online auctions, as predicted by Steven E. Landsburg in 1999.8 Online

auctions have also resulted in many experimental studies. Researchers can use the Internet

as a laboratory, and run experiments and field tests to investigate various issues. Though

a bit premature, given the infancy of online auctions at the time, the two early survey

papers Pinker, Seidmann and Vakrat (2003), and Bajari and Hortacsu (2004), provide a

good overview of some important issues regarding online auctions.

3. The eBay Single-Item Auction Format

In the western world, the term ‘eBay’ has become a household name. Most people are

familiar with eBay, and know, for instance, that it is an online auction web-site. However,

not everyone is aware of the exact price mechanism behind eBay auctions. In particular,

there tends to be some confusion regarding the auction rules dictating the final price. At

first it may seem that eBay auctions are first-price auctions, meaning that the bidder with

highest bid wins and pays the amount he bid. This is not the case. In fact, eBay auctions

8www.slate.com/id/22998
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are in effect more like second-price auctions, and almost seem to have been inspired by the

following quote from the seminal 1961 auction paper by Vickrey,

”An even more rapid procedure could be developed, with relatively little

increase in the apparatus required, if each bidder were provided with a set

of dials or switches which could be set to any desired bid, with the electronic

or relay apparatus arranged to search out the two top bids and indicate the

person making the top bid and the amount of the second bid.” [32, p.23]

Note that Vickrey’s paper precedes eBay by 35 years. Part of the confusion is that eBay does

not provide a clear explanation for the auctions rules and what happens in certain specific

situations. The objective of this section is to explicitly characterize the price mechanism of

eBay’s single-item auctions. The rules for multi-item auctions, auctions with multiple iden-

tical items, are a bit different. For a discussion on the differences and similarities between

eBay and Vickrey auctions, see Chapter 2 of Stieglitz’s Snipers, Shills, & Sharks (2007). A

screen-shot of a typical eBay auction is displayed in Figure 1.1.

An eBay auction is characterized by five pieces of information:

(1) Item - Each auction includes a description of the item being auctioned and often

pictures. Shown in Figure 1.1 is an auction for a ‘DUAL SIM CNET IPhone

Touch Screen PDA Mobile Phone.’

(2) Seller - The items are not sold by eBay but by a private seller. Information

about each seller includes a user-id (proxy for the seller’s name), their geographical

location, a feedback rating score, and comments he has accumulated from previous

transactions. The seller of the auction in Figure 1.1 is ‘menzies1978,’who is located

in the United Kingdom, and has a ‘99.9% Positive’ feedback rating.

(3) Time - Each auction lasts for a pre-specified length of time. When a potential

bidder visits the site he can see when the auction started, when it will end, and
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Figure 1.1. Screen-shot of an eBay auction.

how much time is remaining. The auction in Figure 1.1 ended on July 17, 2007, at

03:31:14 Pacific Daylight Time. At the time the screen-shot was taken there were

4 days and 11 hours remaining for the auction.

(4) Price - Each auction consists of a starting bid, current bid, and a minimal bid

increment. In addition, some auctions also have a hidden reserve price and/or

a Buy-it-Now price. The auction in Figure 1.1 has a current bid of AU$102.00

(approximately US$87.86).

(5) Bid List - Each auction also displays how many bids have been submitted, and a

list of the corresponding time-stamps and the amount of each bid. The only ex-

ception is the highest bid placed, which is only shown as the minimum increment

above the second highest bid. Prior to 2007, the list also included the user-id of
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each bidder. However, in 2007 this changed and now only the seller is able to

see the user-ids of the bidders. The bids are listed in ascending order. In case

of a tie, the earlier bid take precedence. In Figure 1.1, the current high-bidder is

‘richnju.’By clicking on the link ‘7 bids,’the history of bids is shown.

The information about the item and seller is fairly straight forward and requires no fur-

ther discussion. A brief comment, however, is that many people not familiar with eBay are

surprised that people would feel comfortable buying something that they cannot physically

inspect, or is from someone that they have little information about. Today eBay supports

auctions of almost everything and anything. This includes cars, baseball cards, jewelry,

consumer electronics and real estate, to mention a few categories. Though fraud does exist

on eBay, the overall sales volume and statistics speak for themselves. People have adapted

to web-based shopping, and are not hesitant to buying something solely based on the de-

scription and picture a ‘stranger’ provides on a web-site. One method that eBay employs

for building trust between sellers and buyers, is through their feedback rating system. After

an auction has ended and the item and payment transactions have been made, the seller

and buyer can report a feedback score and comment about each other. An early paper

regarding how the feedback rating affects the final price is Lucking-Reiley et al. (2007). For

a discussion on bidders’ trust regarding a seller, see Chwelos et al. (2005) and Chwelos and

Dhar (2005) .

Next we discuss the information regarding the listed bidders as it applied prior to Janu-

ary, 2007. Currently eBay handles the information regarding bidders differently as explained

below. During an auction, the time-stamp and amount for all non-winning bids are dis-

closed. For the high-bidder only the time-stamp is displayed. In other words, the actual

amount of the high-bidder’s bid is not revealed (until of course he is out-bid). Information
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from expired auctions are available on eBay for a few weeks. This includes the amount of

all non-winning bids, and prior to 2007, the user-id of the bidders. However, for privacy

and anti-fraud purposes, in 2007, eBay changed the format and once an auction reached

$200 the user-id was represented by a generic ‘Bidder #’. Currently eBay uses a different

disguise which takes in effect from the start of an auction. The data collected for this thesis

is therefore unique, in that it tracks all individual bidders for almost all auctions offered

by Dell Financial Services from December, 2005, until February, 2007. Section 4.2 provides

more details.

The main difference with traditional auctions and online auctions, is that the latter

lasts for a pre-determined length of time. When a seller starts an auction he must choose

the auction length. The current options on eBay are 1, 3, 5, 7 or 10 days. We define the

length of an auction as τ . There are three time-stamps provided by eBay. One for when

the auction starts, one for when the auction ends, and one for the remaining time of the

auction (which is continuously updated). Due to the speed of internet technology and a

bidding strategy called sniping, the time-stamps are defined down to the second (Figure

1.1). Bids can only be submitted while the auction is ongoing. In particular, eBay auctions

close firmly at the announced ending time regardless of any bidding activity. Other auctions

sites, for instance, the former auctions.amazon.com, and dellauction.com, offer a going,

going, and gone ending rule. There the auction end-time is extended by 10 minutes for

every bid in the final 10 minutes. For an analysis on the impact of the two different ending

rules, see Roth and Ockenfels (2002).

In this thesis, rather than focusing on the remaining time of an auction, we focus on the

elapsed time of an auction. We define the elapsed auction time by t, and t+ as the instan-

taneous moment after a bid has been placed. In other words, a potential bidder arrives at
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an auction after t time units have elapsed. If he decides to submit a bid then the moment

immediately following his submission is denoted by t+.

There are five different price variables in eBay auctions: starting bid, current bid, bid

increment, reserve price, and high bid. In addition there are of course, the bids as well. We

define the bid submitted at time t by Bt and refer to it as the bid at time t. It can be noted

that eBay auctions are standard [14, p.15], [26, p.366], meaning the highest bid submitted

wins the auction, and given the reserve price was met, is guaranteed the item.

Starting bid, defined by pmin, is the minimum allowable first bid as decided by the seller.

An auction is initially priced at zero, and the first bidder must bid at or above pmin. With

slight abuse of notation, B1st ≥ pmin. This is not the same as reserve price, but rather the

initial price the auction will jump to once a bid greater that it has been submitted. To

illustrate, suppose pmin = $20, and the first bidder bids B1st = $30, then the current bid of

the auction will jump to $20.

The second price variable is the current bid, which we define by Xt. This is the amount

that the high bidder would have to pay, if the auction were to end immediately. That is, if

no more bids are submitted, then the high bidder only has to pay Xt. Though Xt is indexed

by t, to indicate the price at time t, it is not a function of time but strictly a function of

submitted bids. The dynamics of Xt will be discussed shortly.

The third price variable is the bid increment which we define by kX . This is the minimum

amount that a potential bidder must be willing to bid above Xt. In other words, if a potential
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bidder arrives at time t, and decides to place a bid Bt then,

(1.1) Bt ≥ Xt + kX ∀t ∈ [0, τ)

Though kX is a function of the current price, which on eBay varies according to Table 1.1,

we suppress the subscript X and simply write k.

Current Price - Xt ($) Bid Increment - kX ($)
0.01 - 0.99 0.05
1.00 - 4.99 0.25
5.00 - 24.99 0.50
25.00 - 99.99 1.00
100.00 - 249.99 2.50
250.00 - 499.99 5.00
500.00 - 999.99 10.00
1000.00 - 2499.99 25.00
2500.00 - 4999.99 50.00
5000.00 ≤ 100.00

Table 1.1. Minimum bid increments on eBay (June 2008)

The reserve price, defined by vr, is the minimum price for which the seller will award

the item. Note that vr ≥ pmin. In other words if the auction ends below vr, then the seller

is not obligated to award the item. The seller chooses the reserve price. In auctions with

no reserve price, the bidder who bids the most is guaranteed to be awarded the item. On

eBay, the actual amount of vr is not disclosed, instead there is a message stating whether

the reserve price has been met or not.

Finally there is the high bid, defined by Ht, which is the amount of the highest bid placed

after t time units has elapsed. Unlike pmin and Xt, the highest bid is never displayed as long

as it remains the highest bid. That is, up to the time when a bid Bt > Ht, is submitted.

Then Ht is revealed and the new high bid Ht+ = Bt, remains hidden. Naturally the bidder

who submitted the high bid knows the actual amount. However, potential bidders do have

some information regarding Ht, since clearly Ht ≥ Xt. In fact, due to the dynamics of

the pricing mechanism, potential bidders have even more information about Ht, namely, if
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Ht ≥ Xt + k.

Next we discuss the price dynamics of eBay auctions. The most straightforward dynamic

regards the high bid. When a bid, Bt, is submitted the new high bid, Ht+ , is simply the

maximum of Bt and Ht, for t ∈ [0, τ),

(1.2) Ht+ = max {Bt,Ht}

In case of a tie, the current high-bidder will remain as high-bidder. The above relationship

also holds true when the bidder is the current high-bidder, i.e. when the high-bidder revises

his current high-bid. However, if a high-bidder revises his bid then nothing happens to the

current bid, i.e. Xt+ = Xt.

The following discussion applies to cases when a bidder who is currently not the high-

bidder arrives and places a bid. The dynamics for the current bid are also straightforward

when Xt = 0 and the first bid arrives. For Xt = 0, Bt ≥ pmin, t ∈ [0, τ),

(1.3) Xt+ = pmin1{pmin≤Bt<vr} + vr1{Bt≥vr}

where 1{·} is the indicator function which equals 1 if the argument in the bracket is true,

and 0 otherwise. Equation (1.3) states that if the first bid is less than the reserve price,

then the current bid will jump to the minimum price (the bid has to, of course, be above

the starting bid). If the bid is above the reserve price, then the current bid will jump to

the reserve price. Note that equation (1.3) is well-defined even when vr = pmin. When

Xt ≥ pmin, the dynamics are a bit more complicated. Therefore, we first consider the case
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with no reserve price (vr = pmin). For Xt ≥ pmin, Bt ≥ Xt + k, t ∈ [0, τ),

Xt+ =





Xt + k Ht < Xt + k





min {Bt + k, Ht} Bt ≤ Ht

min {Ht + k,Bt} Bt > Ht

Ht ≥ Xt + k

which we write as, for Xt ≥ pmin, t ∈ [0, τ),

(1.4) Xt+ = (Xt +k)1{Ht<Xt+k}+(max {min {Bt + k,Ht}, min {Ht + k, Bt}})1{Ht≥Xt+k}

We now consider the situation when a seller has included a reserve price vr > pmin.

As mentioned above, the actual amount of vr is not disclosed, and only a message stating

whether vr has been met is displayed. That is, if vr has not been met, then Ht < vr, i.e.

Ht < vr if and only if Xt < vr. Note that the dynamics for Ht are not affected by vr > pmin

and still follow (1.2). For Xt ≥ pmin, Bt ≥ Xt + k, t ∈ [0, τ),

Xt+ =









Xt + k Ht < Xt + k

min{Bt + k, Ht} Ht ≥ Xt + k,Bt ≤ Ht

min{Ht + k,Bt} Ht ≥ Xt + k,Bt > Ht

Ht < vr, Bt < vr or Ht ≥ vr





max{Xt + k, vr} Ht < Xt + k

max{Ht + k, vr} Ht ≥ Xt + k

Ht < vr, Bt ≥ vr

which we write as, for Xt ≥ pmin, bt ≥ Xt + k, t ∈ [0, τ),

Xt+ =(1− 1{Ht<vr≤Bt})[1{Ht<Xt+k}(Xt + k) + 1{Ht≥Xt+k}max{min{Bt + k, Ht}, min{Ht, Bt}}]

(1.5)

+ 1{Ht<vr≤Bt}[1{Ht<Xt+k}max{Xt + k, vr}+ 1{Ht≥Xt+k}max{Ht + k, vr}]

Note that, if vr = pmin, then (1.5) simplifies to (1.4), since Ht ≥ pmin, and 1{Ht<vr≤Bt} = 0.
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We summarize the main mechanisms of eBay as follows,

(1) An auction starts with a fixed time horizon τ , starting price pmin, and possibly a

hidden reserve price vr.

(2) The first bidder must bid at or above pmin.

(3) When a bidder arrives to the auction site he observes,9

(i) How much time t has elapsed, t ∈ [0, τ ].

(ii) If he is the high-bidder.

(iii) The current price Xt.

(iv) The list of previous bids, i.e. all non-winning bids.

(v) If the reserve price vr has been met or not, i.e. is Xt ≥ vr.

(4) If he decides to bid, then Bt ≥ Xt + k (if the bidder is the high-bidder, then

Bt ≥ Ht).

(5) After a bid is submitted, Ht and Xt are updated accordingly.

(6) When the auction expires at t = τ , the person with the high-bid, Hτ , pays Xτ and

receives the item, provided Hτ ≥ vr. However, if Hτ < vr, then the seller is not

obligated to award the item.

Though the format of an eBay auction seems to resemble a mix of a first-price sealed-bid

and open English (ascending) auction, since all non-winning bids are displayed and Xt is

continuously updated. In effect, it is a second-price auction. Or more appropriately one

could define eBay auctions as second-price+k censored-English auctions. We say ‘second-

price+k’ since the highest bid wins, but only has to pay the second highest bid plus the

minimum increment k. We say ‘censored English’ since although all non-winning bids are

disclosed, the high-bid is never displayed. Another reason we say eBay auctions are second-

price auctions is seen in the case of k = 0 for all Xt. If we ignore reserve price (vr = pmin),

9There are of course many other variables a prospective bidder might consider in his decision whether
to bid and/or the amount, but here we only point out the main time and price variables.
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we notice that with k = 0, the following dynamics apply, for Xt ≥ pmin, Bt ≥ Xt, t ∈ [0, τ),

Xt+ = min {Bt,Ht}

The above equation is exactly the price dynamic of a strictly second-price auction. Similarly

if vr ≥ pmin and k = 0, for Xt ≥ pmin, Bt ≥ Xt, t ∈ [0, τ),

Xt+ = (1− 1{Ht<vr≤Bt})min{Bt,Ht}+ 1{Ht<vr≤Bt}vr

3.1. Buy-it-now auctions. There is one additional feature we have not included in the

discussion above, namely the Buy It Now price, which we define by pbuy. As the name

suggests, pbuy is a pre-set price at which the seller is willing to end the auction and award

the item immediately. In other words, if someone bids pbuy, then the auction terminates.

Naturally pbuy is shown and not hidden as vr. However, pbuy is only available as long as

Xt < vr. That is, if 1) pmin = vr, Xt = 0, and Bt < pbuy, or 2) pmin < Xt < vr, and

vr ≤ Bt < pbuy, then the Buy It Now option is removed at t+. Note that pbuy > vr and

therefore pbuy can be regarded as a maximum price or ‘list price’ of the item. However,

this list price is only available until the first bid arrives, or until Bt ≥ vr arrives. The

requirement Bt < pbuy in the second case above is a bit redundant, since if Bt = pbuy, then

t+ indicates the end of the auction and pbuy is also ‘removed’. As a consequence of the

Buy It Now feature the dynamics of the auction change slightly. Let us again consider the

dynamics described earlier.

Case 1) vr = pmin

For t ∈ [0, τ), the auction length is defined as follows,

τbin = min{τ, inf{t | Xt = 0, Bt = pbuy}}
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and the dynamics of the high bid and current bid are given by,

Ht+ =min{Bt,Ht}

Xt+ =









pmin Bt < pbuy

pbuy Bt = pbuy

Xt = 0

1{Ht<Xt+k}(Xt + k) + 1{Ht≥Xt+k}max{min{Bt + k, Ht}, min{Ht + k, Bt}} Xt ≥ pmin

Case 2) vr > pmin (recall that Ht < vr if and only if Xt < vr.)

For t ∈ [0, τ), the auction length is,

τbin = min{τ, inf{t | Xt < vr, bt = pbuy}}

and the dynamics of the high bid and current bid are,

Ht+ =min{Bt,Ht}

Xt+ =









pmin Bt < vr

vr vr ≤ Bt < pbuy

Xt = 0





max{min{Bt + k, Ht}, min{Ht + k, Bt}} Bt < vr

max{Xt + k, vr} vr ≤ Bt < pbuy

pbuy Bt = pbuy

Xt < vr

max{min{Bt + k,Ht},min{Ht + k, Bt}} vr ≤ Xt

Therefore, for Xt = 0,

Xt+ = 1{Bt<vr}pmin + 1{vr<Bt<pbuy}vr + 1{Bt=pbuy}pbuy
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and for Xt > pmin,

Xt+ =1{Xt<vr,Bt=pbuy}pbuy + (1− 1{Xt<vr,Bt=pbuy})[

(1− 1{Ht<vr≤Bt})[1{Ht<Xt+k}(Xt + k) + 1{Ht≥Xt+k}max{min{Bt + k, Ht}, min{Ht + k, Bt}}]

+ 1{Ht<vr≤Bt}(1{Ht<Xt+k}max{Xt + k, vr}+ 1{Ht≥Xt+k}max{Ht + k, vr}]

Next we discuss the background for the data used in the empirical analysis of Chapter

4 and 5.

4. The Data and Dell Financial Services

The data we analyze in this thesis comes from the eBay listings of Dell Financial Ser-

vices L.P. (DFS). DFS is a joint venture between Dell Inc. and CIT Group Inc. (CIT), that

provides financing of Dell products to various customer groups, including home, education,

small, medium, and large businesses. Dell, which was founded in 1984, is one of the largest

computer system manufacturers and sellers in the world. CIT, which was founded in 1908,

provides financial solutions for both commercial and consumer clients. For more informa-

tion regarding Dell and CIT, visit dell.com and cit.com. Since founded in 1997, DFS has

”originated more than $18 billion in finance transactions.”10

After products return from leasing programs, DFS selects the highest quality products,

refurbishes them and sells them via their private online channels, dfsdirectsales.com and

dellauction.com, as well as on ebay.com. In other words, the three online channels provide

DFS with alternative salvage channels. How long DFS has been using these channels or how

DFS allocates the products to the different channels is not specified. However, from their

eBay profile we know that DFS has been an eBay member since April 2001 (eBay user-id:

10www.dfsdirectsales.com
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dell financial services). There are a few comments to make. First, DFS only sells to the US

market. A customer must have a US based credit card and a US delivery address. Second,

DFS does not operate an eBay store, but lists items on eBay as an individual member.

Third, for unknown reasons, since February 26, 2007, DFS has ceased to list products on

eBay. They still, however, use their own online channels. Finally, Dell, and not DFS, also

employs an online channel called Dell Outlet for selling returned and refurbished products

at fixed but discounted prices.11

From the perspective of the customers, the three channels provide opportunities to pur-

chase used and refurbished Dell products at a discount. Issues like taxes, shipping and

handling, warranties, and return policies vary for each product sold. In general, the prod-

ucts are covered under Dell’s general warranty. However, since products are returned after

various lease durations, the extent of the remaining warranty differs from product to prod-

uct. The specifics of the remaining warranty is available online for a potential buyer to

verify before having to commit to a purchase or bid. Moreover, DFS also provides a return

policy of 30 days, for a credit of the purchase price (excluding shipping and handling). It

should be noted, that unlike Dell’s direct business model where customers tailor the product

configuration according to their needs or budget, the configurations of items listed by DFS

are fixed and DFS does not provide any upgrade or modification services.

The three channels each have different pricing mechanisms. At dfsdirectsales.com

products are sold at a fixed list price. How DFS determines the list-price of each product

or configuration is not specified. As a rough estimate, the list-price seems to be about half

of the price of a new product, as sold on dell.com. At dellauction.com and eBay.com,

products are predominantly sold using the online auction version of a second-price auction.

11http://www.dell.com/content/segmenter.aspx?c=us\&l=en\&s=dfo
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The main difference between the two auction channels is that, unlike the hard auction end

on ebay.com, at dellauction.com, DFS employs a going, going, ...., gone end. Similar

to the former ending rule at auctions.amazon.com, dellauction.com auctions are auto-

matically extended by 10 minutes for each arriving bid in the last 10 minutes.12 This is

presumably to provide less of an incentive for the strategy of sniping [24].

A common attribute among the three channels is that the picture and description of

each product listing are standardized. For all listings, DFS uses a generic picture of the

product that is being sold or auctioned. In other words, DFS does not provide digital images

of the individual item that is sold or auctioned. In addition, DFS uses a standardized tem-

plate to describe the product. The information provided includes a description of the main

features, but does not give detailed description regarding, for instance, cosmetic appear-

ance. It would seem reasonable to assume that by using generic pictures and standardized

templates, DFS reduces the administrative cost of using online channels. The effect this has

on the final price is not immediate. Some related research topics include how to allocate

products to the different channels, and how the allocation affects the overall revenue and

profit. A third research area is investigating how the fixed list-prices and auction prices

affect each other, and the impact on overall revenue and profit. One paper that address the

latter issue is Caldentey and Vulcano (2008).

4.1. Reasons for Selecting DFS. Besides eBay’s huge commercial success and user

popularity, eBay has also become one of the most popular sources of data for auction re-

search. With millions of listings and data from completed auctions made public for a few

weeks, eBay provides an unparalleled rich source for empirical investigations. However,

though the data is available, it is not a trivial task to extract large data sets. Automating a

12cf. ‘Auto Bid Extend’, Glossary at www.dellauction.com
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data extraction process requires Internet and eBay experience, a computer code or software

technology, and an understanding of how to use the code or software. In the next section

we give a brief explanation of how our data were extracted.

Most researchers tend to focus on a specific item, and then simply download as much

auction data as possible for that particular item. We decided to take a different approach

and only focus on a particular seller, namely DFS, and then download all auctions they

listed on eBay over a given time-period. The main reason for this, was that we wanted to

control for the effect of the seller’s reputation, trustworthiness, and feedback rating. Studies

have indicated that the trustworthiness and feedback rating may effect the final price of

an auction [16]. Therefore, to control for this issue, we decided to only consider a specific

seller, and to take a well-established company whose reputation and trustworthiness would

in general not be considered suspect.

Another reason we chose DFS was that we wanted to maximize the chance that there

would be an abundance of auctions over an extended period of time. In addition, we wanted

to maximize the chance of having many auctions of identical or near identical products. An

unforeseen benefit of the DFS auction data, was that the description and picture provided

was standardized, thereby providing control for the effect wording, description and pictures

may have on the auction dynamics. It should, however, be noted that over time DFS did

make some changes to the template used.

4.2. Data Extraction and Handling. Extracting and analyzing the data involved

both manual and automated steps. We will not provide a detailed account of each step, but

instead give an overview regarding the main components. All data extraction, handling and
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analysis was executed on a standard PC with Internet connectivity. The first three steps of

data extraction only needed to be done every three weeks.

(1) The first step was to log on to eBay and perform a manual search of all com-

pleted listing for Dell Financial Services. This step required an eBay user-id and

password, and knowledge of how to use their search function.

(2) The next step was to save the entire list as a html-file using the ‘Save As’ function

provided by the web-browser.

(3) The third step was to run a Perl script that automatically scanned the saved

list and downloaded into flat files (text files) all the relevant information for each

individual auction. This step produced eight files: two auction data files and one

bid data file per PC category (laptop and desktop), one file with non-PC and

recalled auction listings (monitors, docking stations, and test listing), and one

file for any error messages. In the auction data files, each row corresponded to

an individual auction and each column corresponded to a different variable. See

Table 1.3 for the list of variables. In the bid data file each row corresponded to an

individual bid for a specific auction.

The script worked as follows. First, it searched through the saved list and picked

out the individual listing ID for all new auctions since previous data extraction.

It then queried ebay.com regarding each auction and collected the pre-specified

information. Section 4.3 lists the specific information collected. Perl is a general

purpose programming language, and to run the script requires a compiler. We

used ‘ActivePerl’ available at no cost at www.activestate.com. The script was

written by UBC student Andrew Gray and consists of 540 lines.

(4) After data had been extracted into flat files, it was populated into an Excel spread-

sheet by a Visual Basic (VBA) macro. The same VBA macro was also used to
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perform data cleaning, data selection as well as numerous computations. The script

was also written by Andrew Gray and each user function was executed inside Excel.

(5) After a subset was selected and the variables of interest had been computed, the

resulting Excel sheet was exported to a tab-delimited text-file.

(6) The resulting text-files was then imported into the statistical software ‘R’

[22], for various statistical and graphical analysis. ‘R’ is available at no charge at

www.r-project.org, and is an extension to the statistical software ‘S’.

4.3. The Data. Data were collected from mid December, 2005, until the end of Feb-

ruary, 2007. More specifically we obtained complete information regarding 6,683 auctions,

with start and end date between December 12, 2005, and February 26, 2007. As mentioned

above, DFS has since ceased their activity on eBay. Only auction listings for PC desktops

and PC laptops at Dell Financial Services eBay-site were collected. In Table 1.2 some ag-

gregated statistics are summarized. There were 3,802 desktop auctions and 2,881 laptop

auctions, which combined for a total sales of $1,979,240. The average final price, average

number of bids, and average number of bidders for the desktop auctions were $205, 13.54,

and 7.89, respectively. For laptop auctions the corresponding values were $416, 17.09, and

9.37. In other words, on average a laptop PC sold for about twice that of desktop PC, and

attracted about three more bids and one more bidder.

We also note the great variation in final price, bids and number of bidders. In particular,

the standard deviation in final price for desktop and laptop auctions is quite large, at $66.81

and $86.24 respectively. This illustrates the huge uncertainty in final price a seller is faced

with in selling via online auctions. It would not seem reasonable to assume that the variation

is strictly a result of the variation in bidders’ valuation. In Section 4.4 and Chapter 5 we

analyze this issue further. The variation in bids and number of bidders is also interesting

to note. Often in the auction theory literature it is assumed the number of bidders is fixed.
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From Table 1.2 it is clear this is not the case here. Furthermore, this would intuitively seem

to indicate at least one source of variation regarding the final price. Chapter 3 discusses a

model for the distribution of final price that incorporates the variability in the number of

bidders.

Total Mean (s.d.)

Dell Product Auctions Bids Sales Final Price Bids Bidders

Desktop 3,802 51,495 $780,114 205.20 (66.81) 13.54 (5.53) 7.97 (2.32)

Laptop 2,881 49,242 $1,119,126 416.20 (86.24) 17.09 (6.79) 9.37 (2.68)

All 6,683 100,747 $1,979,240

Table 1.2. Descriptive statistics for the all auctions.

Figure 1.2 provides a time series of the final price for all auctions coded by PC cat-

egory Desktop and Laptop. The horizontal axis is time, and the vertical axis represents

the final price of the auction. Each circle represents an individual auction, where black

circles are laptop auctions, and grey circles are desktop auctions. There are at least three

rather apparent features. First, the desktop auctions’ final prices are about half those of

laptop auctions, as noted above. Second, laptop auctions appear to have been sold at two

levels. There is a clear divide of laptop final prices before and after July, 2006. During

July, 2006, there is a clear decline in final prices, after which they seem to stabilize again.

Desktop final prices seem to remain steady throughout the observation period. Third, as

already noted, there is a considerable fluctuation in final prices for both laptops and desk-

tops. Some of these fluctuations might be due to the difference in product configurations.

In Section 4.4 below we briefly analyze this issue. However, the fluctuations also reflect

the stochastic nature of the online auction revenue stream. The main motivation for this
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Figure 1.2. Final price of each auction for the entire data set (6,683). The
horizontal axis represents time. The vertical axis represents the final price of an
individual auction. Black circles represents laptop auctions (2,881), and grey circles
desktop auctions (3,802).

thesis, is to provide insight for making better decisions given such a stochastic environment.

Table 1.3 below displays the auction and product information recorded for each product.

The first ten variables are standard to all eBay auctions and provide information regarding

the auction state and bidding history. Variables 8, 9, and 10, are recorded for each success-

ful bid (registered bid) in the bid history. The last 11 variables are information that DFS
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decided to include in their listing. They provide the specifications of the product being

auctioned. As mentioned above, DFS or bidders do not choose the specific product configu-

ration. In other words, though DFS does have the option of not listing a particular product

with a specific configuration, the last 11 variables are not decision variables. Therefore,

the only decision variables are ‘Description’, ‘Start time’, ‘End time’, and ‘Starting bid’.

The ‘Start time’ is the time-stamp when DFS lists the auction, and therefore reflects the

decision if and when to release an item for auction. The ‘End time’ is the time-stamp when

an auction will end, and reflects the decision how long an auction should last.

In addition to the information listed in Table 1.3, DFS also includes a generic picture

of a new product, some additional information regarding what is included (AC adapter,

pointing device/mouse, keyboard, etc.), instructions how to verify any remaining warranty,

and various shipping options. Shipping cost range from $20 to $80 depending on service

requested by the auction winner. A few comments follow.

(1) The standardized template that DFS uses to list the last 11 variables was modified

over time.

(2) It seemed that DFS was not consistent in always including the information re-

garding all 11 variables. More specifically the only variables consistently reported

were: Category, Brand, Processor Type, Processor Model, Processor Speed, Mem-

ory (RAM), and Hard Drive Capacity. Therefore in the ensuing statistical analysis

we only focus on these variables and ignore the others.

(3) Unlike the PC laptops, which naturally came with a screen, none of the PC desk-

tops included a monitor.

(4) Though DFS also auctions items such as monitors and docking stations, we exclu-

sively restricted our data extraction and analysis for PC desktops and laptops.
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(5) All auctions that ended with the Buy-It-Now option were excluded. The reason for

this is that once a bid arrives or the reserve price is met, the Buy-It-Now option

disappears. Since the information, if an auction was initially listed with a Buy-

It-Now price, is not recorded, we decided to ignore all Buy-It-Now transactions.

It can, however, be noted that the number of Buy-It-Now transactions was less

than one percent of all auction listings. With regard to the previous comment, it

can also be noted that all auctions were listed without a reserve price, and almost

exclusively had a starting bid of $.99. Though this might appear to be rather risky,

both anecdotal and research evidence supports this use. The listing fees are less

for auctions without a reserve price and a low starting bid. In addition, and more

importantly, low reserve price and starting bid tends to lead to higher expected

revenue [4].

(6) DFS only sells and ships to US based customers.

(7) Though data were extracted every 2-3 weeks, some auctions may have been missed.

In other words, some completed auctions may have been removed by eBay before

we had a chance to download the information. Therefore, the data set does not

exclusively cover all DFS eBay desktop and laptop auctions. However, there is no

reason to believe that the excluded auctions had special features or exhibited any

unusual auction dynamics.

We now describe the data more in depth.

4.3.1. Desktop Data. In total there were 3,802 successful desktop auctions with a to-

tal value of $780,114. The mean final price over the entire study period was $205.20. As

mentioned above, since not all variables listed in Table 1.3 were consistently reported, we

chose to focus on the main characteristics that were reported: Category, Brand, Processor

Type, Processor Model, Processor Speed, Memory (RAM), and Hard Drive Capacity. All
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Name Description Example
1. Item ID eBay listing ID number 6831091024
2. Description Brief description of item

DELL WINXP Latitude D600 1.6 GHz 1024MB CDRW DVD NR
3. Winning bid Amount of final price 576.87
4. Start time Time stamp of auction start 12-Dec-05 10:07:39
5. End time Time stamp of auction end 15-Dec-05 10:07:39
6. Starting bid Amount first bid has to exceed 0.99
7. Number of bids Total number of bids that arrived in auction 19

8. User ID eBay User ID of bidder frittikanada
9. Bid Amount Amount of bid 127.32
10. Date of Bid Time stamp of bid 11-Feb-06 16:46:23

11. Category Type of PC product (desktop or laptop) Laptop
12. Brand Brand of PC product (all Dell) Dell
13. Processor Type Brand of processor (all Intel) Intel
14. Processor Model Model specification of processor Pentium M
15. Processor Speed Speed specification of processor 1.6GHz
16. Bundled Items Included software (operating system) WINXP
17. Memory (RAM) Specification of internal memory 1024MB
18. Hard Drive Capacity Specification of hard drive capacity 60GB
19. Operating System Description if/what operating system is included Yes
20. Primary Drive Description of CD or DVD drive CD-RW
21. Condition One word describing condition Refurbished

Table 1.3. The auction and product variables collected.

auctions consisted of Dell PC with an Intel processor. In Table 1.4 the distribution of the

other variables are listed. Out of the five processor models, the Intel Pentium 4 (IP4) was

the most common, accounting for 87% of all listings. There were 18 different processor

speeds, ranging from .866 to 3.2GHz. The most common was 2.0GHz which accounted for

32% of all listings, and the five most common, 1.8, 2.0, 2.2, 2.3, and 2.4GHz, accounted for

83% of all listings. There were eight different memory (RAM) sizes, where 256 and 512MB

were the most common covering respectively 46% and 27% of all listings. There were 13

different hard drive capacities, ranging from 6 to 200GB. The two most common were 40

and 20GB, which accounted for 57% and 34% of sales each.

The last variable in Table 1.4 is the auction duration measured in days. Though DFS

seemed to experiment with a few 1 day auctions, specifically 459 or 12% of all listings, they

predominantly used an auction duration of 3 days, accounting for 88% of all listings. The
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eight auctions that do not have one of the standard eBay auction durations, i.e. the ones

with the decimal extensions, are auctions that DFS for unknown reasons simply chose to

end early and award to the high bidder at that time. It should be noted that these are not

Buy-It-Now auctions, as these have been removed. They are also not auctions that were at

a particular high price, such that it might seem unnecessary to let them proceed the full

auction duration with little probability of seeing more bids. In fact almost the opposite, all

eight auctions were at rather low prices. No further explanation as to why they were ended

is provided. In the ensuing analysis these auctions will therefore be removed.

Processor IP4 3,309 IP4 Xeon 2 IPM 34 IPIii 2 Celeron 455
Model
Processor 0.866GHz 2 1.3GHz 1 2.0GHz 1,231 2.6GHz 54 3.1GHz 2
Speed 1.4GHz 6 2.2GHz 238 2.7GHz 102 3.2GHz 1

1.5GHz 27 2.3GHz 308 2.8GHz 136
1.6GHz 15 2.4GHz 973 2.9GHz 18
1.7GHz 144 2.5GHz 142
1.8GHz 402

Memory 128MB 144 256MB 1,760 512MB 1,021 1024MB 278
224MB 11 320MB 541 768MB 25

1000MB 22
Hard Drive 6GB 1 20GB 1,279 40GB 2,179 120GB 9

10GB 15 30GB 64 60GB 78 160GB 2
18GB 4 33GB 2 80GB 162 200GB 1

36GB 6
Duration 0.51699d 1 1.68313d 1 1d 459
(days) 0.82015d 1 1.72839d 1 3d 3,334

1.00861d 1 1.91704d 1 5d 1
1.12295d 1 2.03098d 1

Table 1.4. Counts of product configurations and auction duration for the 3,802
Dell PC desktop auctions.

4.3.2. Laptop Data. In total there were 2,881 successful laptop auctions for a total value

of $1,119,126. The mean final price over the entire study period was $416.20. Similar to

the desktop auctions we will only focus on the main characteristics that were consistently

reported. All auctions were for a Dell PC with an Intel processor. In Table 1.5 the distribu-

tion of the laptop configurations are listed. The two most common processor models were

Intel Pentium 4 (IP4) and Intel Pentium M (IPM), which accounted for 49% and 46% of all
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listings respectively. There were 22 different processor speeds, ranging from .866 to 3.2GHz.

The five most common, which accounted for 87% of all listings, were: 1.4 (22%), 1.6 (15%),

1.7 (7%), 1.8 (18%), and 2.0GHz (25%). Out of the eight different memory (RAM) sizes the

most common were 256, 512 and 1024MB, covering 18%, 57% and 20% respectively. There

were 13 different hard drive capacities, ranging from 5 to 80 GB. The three most common

were 20, 30, and 40GB, which accounted for 18%, 42% and 33% respectively.

Similar to the desktop auctions the most common auction duration was 3 days, which

accounted for 91% of all listings. Furthermore, as with the desktop auctions, there are a

few listings that have non-standard auction duration and are not Buy-It-Now auctions. The

two special listings with an auction length of 2.95833 days, are auctions that were ended

exactly one hour prior to the auction ‘End time’, and were released on the same date (but

not at the same time). The reason and mechanism to do this is not known, but perhaps

there was a glitch with the data extraction or error with the eBay listing. In total there

were ten auctions released that day, and only two that did not elapse the full 3 days. In

the ensuing analysis the four auctions with non-standard duration have been removed.

4.4. Data Selection and Some Descriptive Analysis. In order to control for the

effect of product configuration on the analysis in Chapter 4 and 5, only six subsets are

used. These are chosen by selecting the main categories of processor model, processor speed,

memory, hard drive capacity, and auction length. More specifically, only the six product

configurations listed in Table 1.6 were analyzed in Chapter 4 and 5. The products were

chosen to limit the analysis to the cases with the most data. The aggregated ‘products’ D1

and L1 were selected by choosing the attributes listed in Table 1.4 and 1.5 with the most

cases. The remaining products were chosen by looking at cross-tabulation counts from

subsets D1 and L1. That is, D3 and D4 are subsets of D1, and L4 and L5 are subsets of L1.
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Processor IP4 1,422 IPM 1,327 IPIii 104 Celeron 28
Model
Processor 0.866GHz 3 1.0GHz 34 1.5GHz 76 2.0GHz 708 2.5GHz 5
Speed 0.9GHz 2 1.1GHz 2 1.6GHz 427 2.2GHz 42 2.6GHz 18

1.2GHz 78 1.7GHz 203 2.3GHz 3 2.8GHz 8
1.3GHz 58 1.8GHz 507 2.4GHz 75 2.9GHz 3
1.4GHz 624 1.9GHz 3 3.0GHz 1

3.2GHz 1
Memory 128MB 63 256MB 506 512MB 1,652 1024MB 563

224MB 10 320MB 14 768MB 18
1000MB 55

Hard Drive 5GB 1 20GB 517 60GB 150
10GB 9 30GB 1,212 80GB 28
12GB 2 40GB 962

Duration .73461d 1 1d 251
(days) 2.32205d 1 3d 2,626

2.95833d 2
Table 1.5. Counts of product configurations and auction duration by category
for the 2,881 Dell PC laptop auctions.

Category Subset Processor Processor Memory Hard Drive Duration Count
Name Model Speed (GHz) (MB) (GB) (Days)

Desktop D1 IP 4 1.7-2.8 256, 512, 1024 20, 40 3 2,072
D3 IP 4 2.4 256 40 3 274
D4 IP 4 2.0 512 40 3 167

Laptop L1 IP 4, IP M 1.4-2.0 256, 512, 1024 20, 30, 40 3 2,046
L4 IP 4 1.8 512 30 3 172
L5 IP M 1.4 512 40 3 163

Table 1.6. Product configuration for the subsets analyzed.

See Table 1.8 and 1.9 below. The last column in Table 1.6 includes only those listings with

a ‘Starting bid’ of $.99. For Laptop auctions there was one listing that started at $501 and

received one bid. For Desktop auctions there were four auctions that had a ‘Starting bid’ of

$227, $304, $374, and $382 respectively, and where each received one bid. Note that these

are not Buy-It-Now auctions. A notational comment is that throughout the thesis we refer

to D1, D3, D4, L1, L4, and L5 as ‘products’, even though D1 and L1 span several product

configurations.

Table 1.7 lists some descriptive statistics regarding the final price of each product. We

note that the mean and median final price for product D3, is slightly below the mean and

median for the aggregated subset D1, while for product D4 the reverse is true. This is most
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D1 D3 D4 L1 L4 L5
Mean 208.20 193.65 230.59 412.20 427.98 409.59
(s.d.) (55.74) (36.90) (36.78) (74.33) (68.45) (73.63)
Median 200.00 190.71 230 405.00 424.44 405.00

Min 93.92 127.50 129.20 10.50 266.00 280.99
Max 501.00 338.50 348.26 700.00 613.00 596.99
Count 2,072 274 167 2,046 172 163

Table 1.7. Mean (st.dev), Median, Minimum, and Maximum Final Price for
selected subsets.

likely because D4 has twice the memory (RAM) than D3 (though D3 has a faster processor).

Similarly, we note that the mean and median for the product L5, is slightly less than for

the aggregated subset L1, while L4 has values above L1. The only difference between L4

and L5, is with regard to the processor. L4 has a 1.8GHz Intel Pentium 4 processor, while

L5 has an 1.4GHz Intel Pentium M. Another interesting observation is that the variance

is less for the specific products D3, D4, L4, and L5, than the aggregated products D1 and

L1. However, there is still considerable variation in final price for the four specific products.

Figure 1.3 provides histogram of the final price for D1 and L1. Though both are skewed to

the left, the distribution for L1 is more symmetrical than for D1. In the following sections

the variation for the various product configurations are analyzed further.

A final comment, is that consecutive bids in a short time period by the same bidder were

removed. Where ‘short time’ was defined as 10 minutes, meaning that if a bidder places

another bid within 10 minutes of his previous bid, then the first bid is removed. In other

words, only the last bid a bidder placed in one ‘session’ is considered. If a bidder waits

more than 10 minutes to place another bid then this is defined as a second ‘session’ and

two bids are recorded. The result was that 14,202 out of 100,747 bids were removed.

We conclude this chapter with a brief statistical analysis regarding the price variation

for D1 and L1. Chapter 4 and 5 provides further analysis regarding the variation of final
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Figure 1.3. Distribution of the Final Price for subset D1 (Desktop) and subset L1 (Laptop).

price.

In each box-plot the lower and upper edge of the box represents the 25th and 75th

percentiles. The line inside the box represents the median final price. The dashed lines, or

‘whiskers’, from each box, are drawn to the observation furthest away, but within a factor of

1.5× IQR, from the edge of the box. The IQR is the inner quartile range. Circles outside

the whiskers are observations that would be classified as extreme and potentially outliers.

The notches inside the box indicates a range around the median. An informal statistical

test if the median from two box-plots are different, is if the notches overlap.

Desktop - D1. For D1 the mean and standard deviation of the final price is $208.20

and $55.74, and the median, minimum, and maximum were $200.00, $93.92, and $501.00 re-

spectively. Table 1.8 displays the cross-tabulation counts for the selected categories. There

is a clear cluster of products with a processor speed ranging from 1.8 to 2.4GHz, memory
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size of 256 or 512MB, and hard drive capacity of 20 or 40GB. Figure 1.4 shows the distri-

butions of the final price by hard drive capacity, memory, and processor speed. There are

two noteworthy observations. First, within each product specification there is considerable

variation. For example, the median final price of D1, with hard drive capacity 40GB, is

about $200, with the 25th and 75th percentiles at about $180 and $250 respectively. Second,

the median price is increasing in the product specification. This is most visible for hard

drive capacity and memory, where the median price is clearly increasing in the respective

specification. An informal test for a significant change in median price, is if the notches

of two box-plots overlap. For memory, there clearly is no overlap in the notches, thus in-

dicating a significant increase in median final price. For hard drive capacity the notches

also do not overlap, though not by a great margin. For processor speed, overall the median

final price seems to increase. However, the increase is not monotonic in the processor speed.

Intel Pentium 4
256 512 1024

20 40 20 40 20 40
1.7 40 1 3 1 0 0
1.8 110 52 33 50 3 9
2.0 165 225 107 167 4 51
2.2 0 37 0 11 0 1
2.3 143 4 42 48 3 8
2.4 91 274 44 102 6 55
2.5 9 26 4 22 2 1
2.6 0 20 2 5 0 3
2.7 3 6 0 9 0 6
2.8 2 20 3 21 2 16

Table 1.8. Cross-Tabulation of selected Desktop product configurations.

Laptop - L1. For L1 the mean and standard deviation of the final price is $412.20

and $74.33, and the median, minimum, and maximum were $405.00, $10.50, and $700.00

respectively. The minimum value of $10.50 is the clear outlier as seen in both Figure 1.3

above and Figure 1.5 below. The outlier a ‘DELL WINXP Latitude C640 1.8 GHz 1024MB

CDRW DVD’ listed between 25-Oct-06 21:29:47 and 28-Oct-06 21:29:47, and received three

35



20 40

10
0

20
0

30
0

40
0

50
0

Hard Drive Capacity (GB)

F
in

al
 P

ric
e

256 512 1024

10
0

20
0

30
0

40
0

50
0

Memory (MB)

F
in

al
 P

ric
e

1.7 1.8 2 2.2 2.3 2.4 2.5 2.6 2.7 2.8

10
0

20
0

30
0

40
0

50
0

Processor Speed (GHz)

F
in

al
 P

ric
e

Hard Drive (GB) Memory (MB) Processor Speed (GHz)

Figure 1.4. Distribution of the Final Price for D1 auctions by the three main categories.

bids from two bidders (eBay listing number: 160044957851). Removing the outlier only

marginally changes the mean, median, and standard deviation, but drastically increases the

minimum to $233.50.

Table 1.9 displays the cross-tabulation counts for the selected categories. There are two

clear clusters. One for Intel Pentium 4, 1.8-2.0GHz, 512MB, and 20, 30, or 40GB. And one

for Intel Pentium M, 1.4-1.6GHz, 512MB, 20, 30, or 40GB. Figure 1.5 shows the distribution

of the final price by processor model, processor speed, hard drive capacity, and memory.

Similar to D1 we see that within each product specification there is considerable variation.

For instance, the median final price of L1, with hard drive capacity of 40GB, is about $400,

with the 25th and 75th percentiles at about $380 and $450 respectively. However, unlike D1,

the median final price does not increase as drastic in the product specification. In fact, for

hard drive capacity and processor model, the median final price seems to be the same across

the possible values. For memory, we see that auctions for L1 with 256MB, the median price

is ‘significantly’ less than for L1 with 512 or 1024MB. However, between the two higher

memory sizes, there does not seem to be any difference. For processor speed, the median

final price, though fluctuating, is not monotonic. An interesting topic for further empirical
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Intel Pentium 4 Intel Pentium M
256 512 1024 256 512 1024

20 30 40 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40
1.4 2 0 0 0 2 2 0 0 0 23 8 34 49 166 163 2 5 31
1.5 0 2 0 1 0 2 0 0 0 1 0 12 2 7 7 0 0 32
1.6 2 2 0 1 2 4 0 0 0 14 10 3 36 105 125 1 27 18
1.7 5 3 1 2 2 2 0 0 0 3 2 2 0 32 18 0 0 3
1.8 44 25 7 38 172 44 2 83 8 0 0 0 0 1 3 0 0 0
1.9 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2.0 62 52 27 40 169 106 9 93 33 0 0 0 0 0 0 0 0 0

Table 1.9. Cross-Tabulation of selected Laptop product configurations.
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Figure 1.5. Distribution of the Final Price for L1 auctions by the four main
specification categories.

research would be a hedonistic pricing analysis of the various product specifications. This

will not be pursued in this thesis.

37



CHAPTER 2

Optimal Release of Inventory Using Online Auctions: The

Two Item Case

1. Introduction

The objective of this chapter is to provide a model for selling a fixed inventory using a

sequence of single item auctions, and to derive structural properties regarding the optimal

release policy. More specifically, how should a seller, given N identical items, optimally

release each individual item for auction in order to maximize total profit. We assume all

auction parameters, such as auction duration, starting price, bid increment, etc., have been

fixed and that the only decision to make is regarding the timing to release each item for

auction. The problem is modeled as a discrete time Markov Decision Problem (MDP) with

focus on sufficient conditions to ensure optimal monotone policies. The imposed trade-off

to make the problem interesting is that, on the one hand, the seller incurs a holding cost for

each period an item remains unsold, while on the other hand, the more ongoing auctions

the seller has, the lower the expected final price in each of those auctions. In other words,

we assume competing auctions ‘cannibalize’ on each other. The holding cost represents, in

addition to the usual components, such as cost of capital, insurance, and space, the value

depreciation of an item, and can therefore also be regarded as a depreciation factor. An

illustration of the depreciation is provided in Figure 2.1, which depicts the final price for the

D3 desktop (bottom circles) and L4 laptop (top solid circles) auctions. The vertical axis is

the final price, and the solid and dashed line represents the least square linear regression for

L4 and D3 respectively. We see that for the L4 laptops the average selling price decreased
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Figure 2.1. Final price as a function of the ending date, for the D3 (bottom
circles) and L4 (top solid circles) auctions at the eBay site of Dell Financial Services.
All auctions lasted for three days and took place between 15th of December, 2005,
and 30th of June, 2006. The solid and dashed line represents the least square linear
regression for L4 and D3 respectively.

more than $200 over 2006. The decrease for D3 was not as drastic. More detail empiri-

cal analysis, including a validation of the cannibalization assumption, appears in Chapter 4.

The optimal release policy will mainly be driven by the effect from the holding cost and

the cannibalization effect. If the holding cost is ‘very low’ then it will never be optimal to

have more than one auction underway at any time. The reason for this is because the fewer
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the number of ongoing auctions the higher the expected final price for each of the auctions,

due to the assumed cannibalization. That is, the optimal release policy is to wait until the

current auction is completed before releasing the next item, i.e. to hold N non-overlapping

sequential auctions. On the other hand, if the holding cost is ‘very high’ then it will never

be optimal to delay the release of an item and instead all items should be released immedi-

ately. The reason for this is that the additional holding cost from deferring will exceed the

gain in expected final price by having fewer ongoing auctions. The optimal release policy

is to hold Nsimultaneous auctions (all overlapping and note that this is different from one

N -item auction). Our main interest are situations where the holding cost has some strategic

implication and the optimal policy is not one of the extreme policies. Furthermore, we will

show that the optimal release policy is a state dependent or closed loop policy, in contrast

to a state independent or open loop policy. More details regarding the definitions of open

and closed loop policy will be given in Section 3.1. Note that the two extreme open loop

policies are the sequential and simultaneous release policies, and that open loop policies are

special cases of closed loop policies.

A numerical example illustrating the above discussion is provided in Figure 2.2. The

figure depicts, for two items (N = 2) and auction length of three periods, the expected

total profit (value) as a function of the per period per item holding cost. See Section 3.4

for details regarding formulation and computation of the example. The four dashed lines

labeled A through D, represent the value for the four open loop policies; non-overlapping

sequentially released (A), released with two day overlap (B), released with one day overlap

(C), and simultaneously released (D). The solid line that lays above them represents the

total expected profit for the optimal policy, a closed loop policy, which we describe how

to compute below. We see that for ‘low’ holding cost the optimal policy is to release the

auctions sequentially, while if the holding cost is ‘high’ the optimal policy is to release the
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Figure 2.2. Two item, three period numerical example of expected total profit
as a function of the per item per period holding cost. The four dashed lines repre-
sent the following open loop policies: (A) non-overlapping sequentially release, (B)
release with two day overlap, (C) release with one day overlap, and (D) simulta-
neously release. The solid line that lays above them represents the total expected
profit for the optimal policy, which is closed loop. See Section 3.4 for details re-
garding formulation and computation.

auctions simultaneously. For cases in between, the optimal closed loop policy is adaptive

and depends on the current auction price.

Though it may appear to be an oversimplification, this chapter will only consider the

case when N = 2. The reader will see that the two item case provides sufficient complexity

to be both interesting and give rise to some surprising results. Furthermore, this will en-

able the discussion to focus on the governing trade-off, between releasing and deferring the

release, and not become convoluted by the combinatorial complexity and curse of dimen-

sionality of the N item case. It should also be noted that this problem has not yet been

addressed in neither the existing auction theory or inventory literature. Previous research
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has mainly focused on the analysis of an isolated single auction, either single-item or multi-

item auctions, and in the multiple auctions case only considered non-overlapping sequential

auctions. In addition, most research has dealt with the (optimal) specification of various

auction parameters, e.g. reserve price, bid increment, auction length, lot size, etc. The

novelty of this chapter is that it provides a framework for analyzing the issue of strategic

timing of auctions when auctions compete or cannibalize on each other. This problem falls

into the third category of open research areas as outlined by Pinker, Seidmann and Vakrat

(2003). Namely how could (or should) a firm integrate online auctions into their business

model. Bajari and Hortacsu (2004) stated that more research needs to be done regarding

”the analysis of markets with multiple simultaneous auctions.” The ambition is that the

ensuing discussion provides a structural framework, insights and results regarding this issue.

1.1. Literature Review. In recent years auction theory has come to play an impor-

tant role in the management science and revenue management field, resulting in a wide

spectrum of applications. However, given the voluminous literature on inventory man-

agement and dynamic pricing, relatively little has been written with regards to inventory

management using online auctions. Two papers that consider the impact auctions have on

the inventory re-ordering policy are Vulcano and van Ryzin (2004), and Huh and Janaki-

raman (2008). Vulcano and van Ryzin focus on how a seller should optimally choose the

auction format and how this decision will affect the optimal inventory re-ordering policy.

They formulate the problem as an infinite horizon dynamic program and show the optimal

joint auction-format and replenishment policy. Huh and Janakiraman show that using auc-

tions as a sales channel, conditions to ensure that (s, S) policies are optimal are satisfied.

Vulcano, van Ryzin, and Maglaras (2002) have previously analyzed a problem that is similar

to the one we address. There they consider a seller, who given a fixed inventory and fixed

time-horizon, has to optimally ‘auction’ off the goods. The underlying ‘auction’ mechanism
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they consider is in the spirit of www.priceline.com where people place ‘bids’ and sellers

can choose to accept or reject the offers. They model each multi-item ‘auction’ as a separate

period and perform the symmetric equilibrium analysis for each period (auction). One of

the main results is that the seller should not employ a standard auction format. An auction

is standard if the highest bidder is guaranteed to be awarded the item [14, p.29]. Another

related paper is by Pinker, Seidmann, and Vakrat (2001), who analyze the problem of dis-

posing a given inventory using a sequence of non-overlapping multi-item online auctions.

Based on the symmetric equilibrium analysis and uniform valuations, their objective is to

categorize the optimal number of multi-item auctions and the optimal unit to release in

each auction. In contrast to these papers, we permit the auctions to overlap and analyze

the auction dynamics as a Markov chain.

The above papers all use a game theoretic approach. A paper which uses a different

analysis methodology is Bertsimas, Hawkins and Perakis (2003). The problem they address

is how a seller should optimally set the auction control parameters starting price, reserve

price and auction length, in order to maximize revenue. They model the problem as a MDP

and based on over 17,000 eBay auctions determine the optimal parameters. Bapna, Goes,

and Gupta (2003) also address the issue of optimal auction control parameters in a revenue

management context. The main focus of their analysis is to highlight the importance and

structural implication of the bid increment in a first-price multi-item auction. Using data

from 90 online auctions they empirically validate their findings. The two common elements

of the above literature is that they focus on the optimal setting of auction parameters and

analyze each auction in isolation. In contrast, we model the optimal release or timing of auc-

tions given fixed auction parameters and a dynamic interaction between competing auctions.
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A paper that analyzes the dynamics between competing auctions is Peters and Severi-

nov (2006). They consider the case when all auctions are simultaneously released. They

present a model with M bidders and N single-item auctions, where both M and N are

fixed, and derive the Bayesian-Nash equilibrium for the final price of the N auctions. In

particular they show that the final price will be the same for all auctions, namely one incre-

ment above the M−N highest valuation. Meaning that, if there are 10 bidders and 5 items,

the price in all 5 auctions will be one increment above the 6th highest valuation. Though

they are implicitly assuming an online setting, there is nothing explicit in their model that

incorporates the special dynamics of online auctions, such as the arrival rate of bidders or

fixed auction dead-line.

In contrast to the above papers, our framework is more in line with the model presented

by Segev, Beam and Shantikumar (2001), where online auctions are modeled as Markov

chains. The main focus of their paper is to characterize the distribution of the final price

given a specific arrival rate and bidding strategy.

Overview of Chapter 2. The remainder of this chapter is organized as follows. In

section 2 we formulate the problem and general model. In section 3 we discuss the case

when the auctions are guaranteed to be successful, and hence the seller only has to list an

item once. While in section 4 we discuss the case when there is a positive probability an

auction receives zero bids and the seller has to re-list items from unsuccessful auctions. In

section 5 we summarize our conclusions and provide ideas for future research.
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2. Problem Formulation

We are considering a seller who, over a planning horizon T , intends to sell two identical

items using a pair of single-item auctions. Each auction is assumed to have the same fixed

and finite time-length τ . We divide τ into a sequence of discrete periods such that each

auction period coincide with the length of the discrete time period that constitute T . The

seller decides at the start of each period whether or not to release an item for auction. It is

important to emphasize that an ongoing auction does not have to be completed before the

next auction is started; auctions may overlap each other. We model the seller’s problem as

a discrete time Markov Decision Problem (MDP) with the objective of maximizing expected

total profit. Two cases regarding the time-horizon will be considered. In the first case we

assume the auctions are guaranteed to be successful and hence the seller only has to list

an item once. Since the seller only has two items, the seller is faced with a finite planning

horizon 2τ . In the second case, we assume there is a positive probability that an auction is

unsuccessful, meaning that no bids arrived, and that the seller has to re-list unsold items.

Consequently the seller is faced with an infinite planning horizon. The reason for separat-

ing the two cases is that they require different models and analysis. An important aspect

to keep in mind is that we do not model the individual bidders or their bidding strategy.

Each auction is modeled as a Markov chain, where the state of an auction evolves accord-

ing to certain dynamics. Chapter 3 illustrates, with two fixed bidding strategies, how the

Markov chain transition probabilities can be derived from the individual bidding behavior.

In Chapter 4 we discuss an empirical model for how a seller can capture the Markov chain

transition probabilities from real auction data.

We will throughout the chapter assume two fundamental aspects regarding the seller.

The first is that the seller would only be interested in selling via auctions if the accumulated

holding cost over the duration of an auction is compensated by the expected final price.
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We summarize this in the following lemma and refer to it as the positive expected profit

assumption.

Lemma If the expected revenue from an auction does not exceed the holding cost accumu-

lated over the auction duration, then it is optimal to immediately dispose of the items.

The second assumption is that the seller is vigilant in keeping track of how many items

he has released for auction and how many that are remaining, and that there will not be

any reason to speculatively hold inventory. This is summarized as follows and referred to

as the vigilant seller assumption.

Lemma If the price dynamics of an auction are independent of time and the holding cost

is positive, then it will always be optimal to have at least one auction underway while there

still is remaining inventory.

In other words, if there are no auctions underway but the seller still has items remaining

he should always start at least one auction. Thus at the start of the planning horizon, he

should always start at least one auction. This lemma is equivalent to Lemma 1 in Pinker,

Seidmann and Vakrat (2001), where a proof is provided.

2.1. Markov Decision Problem Formulation. To formulate the seller’s problem

as an MDP, we require the following elements.

Decision Epochs, t = 0, 1, . . . , T

We assume discrete time periods of equal length and that decisions are made at the begin-

ning of each period. We are implicitly thinking of T as a fixed number of days and that
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decisions are made on a daily basis. However, for a general framework where, for instance,

decisions are made more frequently, T could be increased to reflect the appropriate planning

horizon. We will consider two cases: T < ∞ and T = ∞. The finite planning horizon case

arises if the seller only lists an item once, while an infinite planning horizon formulation

is required when there is a positive probability an item does not sell and the seller has to

re-list it.

State Space

At each decision epoch t, the system state, S = ([X1, Y1; X2, Y2], Z), consists of the state

of each auction, [Xi, Yi]i=1,2, and the number of ongoing auctions Z. Each auction i,

i = 1, 2, is defined by the pair of random variables current price (bid), Xi, and elapsed

auction time, Yi. We will consider both discrete and continuous prices. For the discrete

case Xi ∈ {0, p, p + k, p + 2k, . . . , P}, where p, k and P are positive, finite integers. While

for the continuous case Xi ∈ {0} ∪ [p, P ], where [p, P ] ⊂ <+. In both cases, p is the

starting price of the auction, P the upper limit of what any bidder would be willing to

bid, and for discrete prices, k is the price-increment. We assume Yi is discrete and finite,

Yi ∈ {0, 1, . . . , τ} ∪ {δ}, where τ < ∞. The symbol δ is used to indicate that the auc-

tion is completed and the item awarded. We will interchangeably use the notation Xi,Yi

and (Xi, Yi) to denote the state of auction i, i = 1, 2. For instance, Xi,τ is the final price

of auction i. The notation XY is used to represent an auction that has elapsed for Y periods.

At the start of an auction Yi = 0 and Xi = 0. For each additional period an auction is

underway Yi increases by one. When an auction has successfully been completed, that is

Xi,τ ≥ p, the item is awarded and payment received. In this case, the state of the auction
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Figure 2.3. Time-line for two auctions. At t = 0 the first auction is started
automatically, and the non-trivial decision is to decide whether to start auction 2.
If auction 2 is started at t = 0, then at t = 1, x1, x2 ≥ 0, y1 = y2 = 1, z = 2
(assuming τ > 1), and there is no decision to make. If auction 2 is not started at
t = 0, then at t = 1, x1 ≥ 0, y1 = 1, x2 = 0, y2 = 0, z = 1, and the non-trivial
decision is whether or not to start auction 2.

evolves as follows, for p ≤ xi ≤ x′i,

. . . =⇒ (xi, τ − 1) =⇒ (x′i, τ) =⇒ ∆i =⇒ ∆i =⇒ . . .

where ∆i = (Xi, δ). We let ∆ denote the absorbing state when both items have been sold,

∆ = ([∆1; ∆2], 0). If an auction is unsuccessful, that is Xi,τ = 0, the auction returns to the

initial state (0, 0), that is the transitions follow,

. . . =⇒ (0, τ − 1) =⇒





(q, τ) w. prob. Pr{Xi,τ = q | Xi,τ−1 = 0}

(0, τ) ≡ (0, 0) w. prob. Pr{Xi,τ = 0 | Xi,τ−1 = 0}

Though it may appear redundant we include a counter Z of the number of ongoing

auctions. The number of ongoing auctions at time t will be defined by Zt. In order to

avoid issues with Zt in decision epochs where an auction will be started by the vigilant

seller assumption, we define Zt to be the number of ongoing auctions in the instantaneous

moment before decision epoch t, before any price jumps have occurred and before the seller

has made a non-trivial or relevant decision. For instance, at the start of the planning horizon

Z0 = 1. See Figure 2.3 for an illustration of the time-line.

The reader familiar with auctions or auction theory, may notice that we have not in-

cluded a reserve price. Section 3.6 discusses the implication of including a reserve price and

shows that it imposes no change to the results. As a minor notational convention, we will

avoid double parenthesis for functions where the state space is the only argument, that is
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we write f([X1, Y1; X2, Y2], Z) instead of the strictly correct f(([X1, Y1; X2, Y2], Z)).

Actions

The only non-trivial decision facing the seller is to decide when to release an item provided

that the current auction has not yet been successfully completed. In other words, non-

trivial decision only pertain to states where Yi < τ and Yj = 0, i 6= j. Under all other

conditions, the seller either does not have any decision to make or will release an item due

to the vigilant seller assumption. At each decision epoch, the actions a = 1 corresponds to

releasing the remaining item, and a = 0 not to release it. Furthermore, because the items

are identical, one can without loss of generality, define the remaining item to be item 2. For

the finite time-horizon this should be fairly obvious. However, for the infinite time-horizon,

due to that when an auction is not successful and has to be re-listed, this may not be

as obvious. We will revisit this issue in Section 4. Consequently the action space is, for

s = ([x1, y1; x2, y2], z),

As =





{0, 1} y1 < τ and y2 = 0

{0} y1 = τ, δ or y2 > 0

In Figure 2.4 a simple example, with Xi = 0, 1 and τ = 2, illustrates how the sys-

tem state may evolve.States enclosed in a box indicate situations with non-trivial deci-

sions. Transitions due to the non-trivial decision of releasing the second item are rep-

resented by the dashed lines. Transitions due to not releasing or releasing due to the

vigilant seller assumption are represented by the solid lines. Note that there are four pos-

sible loops: ([0, 0; 0, 0], 1) ­ ([0, 1; 0, 1], 2), ([0, 0; 0, 0], 1) ­ ([0, 1; 0, 0], 1), ([0, 1; 0, 0], 1) ­

([0, 1; 0, 0], 1), and ([1, δ; 0, 0], 1) ­ ([1, δ; 0, 1], 1). And that there is one absorbing state

∆ = ([1, δ1; 1, δ2], 0), which is represented by the bold dashed line.
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Figure 2.4. Example of system state transitions when Xi = 0, 1 and τ = 2.
States enclosed in a box indicate situations with non-trivial decisions. Solid lines
represents transitions due to not releasing or release by vigilant seller assumption;
dashed lines represents transitions due to non-trivial release decisions; bold dashed
line represent absorbing cycle.

Rewards

For each period in which an item has not been sold, the seller incurs a positive holding cost

h. When an auction is successfully completed the seller receives the payment and awards

the item. After an item has been sold and the state (Xi, Yi) = ∆i, i = 1, 2, the seller will in

perpetuity neither incur any cost nor receive any payment for that item. Let rt(s) denote

the reward in period t given a state s ∈ S. It is given by,

rt([x1, y1; x2, y2], z) = x11{y1=τ} − h1{y1<τ} + x21{y2=τ} − h1{y2<τ}

Transition Probabilities

Each period in which an auction is underway the price transitions follow the dynamics of

an exogenously given stochastic process. In other words, we assume that there is some un-

derlying bidder arrival process and bidding behavior, which can be completely summarized

by a probability distribution regarding the one period price transitions. For discrete prices,
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these are represented by the following transition probability matrices,

Π1 =




π0,0|1 π0,p|1 · · · π0,P |1

0 πp,p|1 · · · πp,P |1

...
...

. . .
...

0 0 · · · πP,P |1




Π2 =




π0,0|2 π0,p|2 · · · π0,P |2

0 πp,p|2 · · · πp,P |2

...
...

. . .
...

0 0 · · · πP,P |2




Πz, z = 1, 2, is the one-period transition probability matrix for an individual auction

when there are z auctions underway, for y < τ , x ≤ q, and z = 1, 2,

(2.1) Pr{Xi,y+1 = q | Xi,y = x,Z = z} = πx,q|z i = 1, 2

In the case of continuous prices, we assume the price transition dynamics can be represented

by a conditional cumulative distribution function, for y < τ , x ≤ x′, and z = 1, 2,

(2.2) Pr{Xi,y+1 ≤ x′ | Xi,y = x,Z = z} = F z
Xy+1|Xy

(x′|x) =
∫ x′

x
fz

Xy+1|Xy
(q|x)dq

where fz
Xy+1|Xy

(·|x) is the one-period conditional transition probability density function for

an auction which after y periods is at a price x, and there are z auctions underway.

Using the Chapman-Kolmogorov equations (cf. [23, Ch.4.2]), the n-period transition

probabilities for a single auction can be derived. To illustrate, assume prices are discrete

and we are interested in the two- and three-period transition probabilities, and that there

are z1, z2, and z3 auctions underway in the ensuing three periods respectively, for y ≤ τ−3,

Pr{Xy+2 = q | Xy = x, Zt = z1, Zt+1 = z2} =
q∑

j=x

πx,j|z1
πj,q|z2

Pr{Xy+3 = q | Xy = x,Zt = z1, Zt+1 = z2, Zt+2 = z3} =
q∑

j=x

q∑

k=j

πx,j|z1
πj,k|z2

πk,q|z3
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Consequently, to derive the probability distribution of the final price we simply multiply the

transition probability matrices accordingly. For instance, suppose τ = 3 then the top row in

Πz1Πz2Πz3 ≡ Πz1·z2·z3 provides the unconditional probability distribution of the final price

for an item with z1, z2, and z3 auctions in the first, second, and third period respectively.

For continuous prices and y ≤ τ − 3,

fz1·z2

Xy+2|Xy
(x′|x) =

∫ x′

x
fz2

Xy+2|Xy+1
(x′|u)fz1

Xy+1|Xy
(u|x)du

fz1·z2·z3

Xy+3|Xy
(x′|x) =

∫ x′

x

∫ v

x
fz3

Xy+3|Xy+2
(x′|v)fz2

Xy+2|Xy+1
(v|u)fz1

Xy+1|Xy
(u|x)dudv

In order to simplify the notation we occasionally omit the subscript ‘Xy+1|Xy’ and write

F z(·|·) and fz(·|·), i = 1, 2, with the implicit assumption that y < τ .

2.2. Assumptions Regarding the Transition Probabilities. We will next provide

some additional assumptions regarding the transition probabilities. These assumptions,

which can be seen as a reflection of the bidding behavior, will ensure that certain structural

results will follow. The assumptions should not be regarded as categorical statements about

all bidders, but rather as a statistical reflection of what the bidding behavior is like in the

majority of auctions. In Chapter 4 a statistical model to derive the transition probabilities

and validate the assumptions is provided. The validation is based on eBay auctions from

Dell Financial Services (DFS) that ran between December 2005 to February 2007. More

information regarding DFS and the data was discussed in Chapter 1.

When two auctions are underway we assume that the auction prices evolve indepen-

dently. That is, the price in one auction does not affect the transition dynamics of the
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other auction. In other words, for discrete prices and yi < τ , i = 1, 2,

Pr{Xi,yi+1 = q | X1,y1 = x1, X2,y2 = x2, Z = 2} = Pr{Xi,yi+1 = q | Xi,yi = xi, Z = 2}

= πxi,q|2

While for continuous prices and yi < τ , i = 1, 2,

Pr{Xi,yi+1 ≤ x′ | X1,y1 = x1, X2,y2 = x2, Z = 2} = Pr{Xi,yi+1 ≤ x′ | Xi,yi = xi, Z = 2}

= F 2(x′|xi)

Implicitly this assumes that bidders choose a bid-amount only based on the current price and

elapsed auction time of the auction they are placing a bid in. Chapter 6 provides a discussion

regarding extensions to correlated price-transitions, i.e. where the price-transitions also

depend on the price of the competing auction. Consequently, with two auctions underway,

the transition probability for the system state is the product of the individual transition

probabilities. For discrete prices and y1, y2 < τ ,

Pr{St+1 = ([q, y1 + 1; r, y2 + 1], z′) | St = ([x1, y1; x2, y2], 2)} = (πx1,q|2)(πx2,r|2)

Since the main interest pertains to the states s ∈ S such that As = {0, 1}, we can explicitly

state the system state transition probabilities. In the discrete case we define π(s′|s, a) to be

the one period system state transition probability, for s = ([x1, y1; 0, 0], 1) and y1 < τ ,

π(s′|s, a) =





πx1,q|1 a = 0

(πx1,q|2)(π0,r|2) a = 1

where for a = 0, s′ = ([q, y1 + 1; 0, 0], 1), and for a = 1, s′ = ([q, y1 + 1; r, 1], z) with

z = 1, 2. The extension to the continuous case is straight forward, though we need to define

the notation a bit more carefully. We define F (s′|s, a) to be the one period system state
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transition distribution function. That is, for s = ([x1, y1; x2, y2], z), s′ = ([x′1, y1 +1; x′2, y2 +

1], z′),

F (s′|s, a) ≡ Pr{X1,y1+1 ≤ x′1, X2,y2+1 ≤ x′2, Zt+1 = z′ | St = s}

Similar to the discrete case we are mainly interested in states s ∈ S such that As = {0, 1},

for s = ([x1, y1; 0, 0], 1) and y1 < τ ,

F (s′|s, a) =





F 1(q|x1) a = 0

F 2(x′1|x1)F 2(x′2|0) a = 1

where for a = 0, s′ = ([x′1, y1 + 1; 0, 0], 1), and for a = 1, s′ = ([x′1, y1 + 1;x′2, 1], z) with

z = 1, 2.

We assume bids are non-retractable, which for the case of discrete prices implies that

Πz, z = 1, 2, are upper-triangular (πq,xi|z = 0 for q < xi). While for continuous prices,

we require that F z(x′|x) = 0, for x′ < x, z = 1, 2. Consequently, the current price of an

auction is increasing. Though strictly speaking on, for instance, eBay, bidders may retract

a bid, it is very rare.

Transition probabilities are assumed to be stationary with respect to both: 1) calender

time t, and 2) elapsed auction time Yi, i = 1, 2. The former assumption, which was included

in the vigilant seller assumption, is mainly for ease of notation and to ensure the model

is tractable. In reality, the dynamics of Xi may depend on calender time. For instance,

at night, weekends or certain weekdays there might be less bidding activity. We will for

simplicity ignore this and strictly consider stationary transition probabilities with regard to

calender time. Likewise we will ignore non-stationary transitions with regard to the elapsed

auction time. A well-established phenomena of online auctions, is that the price dynamics

or bidding behavior is dramatically different toward the end of auctions. One reason for
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this, is because some bidders try to place their bids as close as possible to the end of the

auction, thereby leaving no time for others to counter-bid. This is referred to as sniping.

Roth and Ockenfels (2002), and Shmueli, Russo, and Wolfgang (2004) analyze different

aspects regarding non-stationary bidding activity. In Section 3.7 we will discuss how the

change in auction dynamics over time can be incorporated. The next set of assumptions

play a more crucial role in the ensuing analysis. Each is stated for discrete and continuous

prices, and make use of Leibnitz Rule,

∂

∂y

∫ β(y)

α(y)
f(x, y)dx =

∫ β(y)

α(y)

∂f(x, y)
∂y

dx + f(β(y), y)
∂

∂y
β(y)− f(α(y), y)

∂

∂y
α(y)

Assumption 2.1. The probability of making a jump to the higher prices is increasing

in the current price.

Discrete prices: for x < P , z = 1, 2,

(2.3)
P∑

q=r

πx,q|z ≤
P∑

q=r

πx+1,q|z ∀r ≤ P

Continuous prices: for y < τ , x ≤ x′ ≤ P , and z = 1, 2,

(2.4) F z(x′|x) =
∫ x′

x
fz(u|x)du is decreasing in x

Equivalently,

∂

∂x
F z(x′|x) =

∫ x′

x

∂

∂x
fz(u|x)du− fz(x|x) ≤ 0

Assumption 2.1 reflects that bids are increasing in the current price. In other words, the

likelihood of placing a ‘high’ bid is increasing in the current price. This holds for example

if bid increments were independent of the current price. In reality, however, bid increments

tend to be decreasing in the current price, and it is therefore not immediate that Assumption

2.1 holds. Empirical evidence supporting Assumption 2.1 and showing that bid increments
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are decreasing in the current price, can be seen in Figure 2.5 below. They depict the price-

jumps at 12 hour intervals for the L4 auctions. Each dot represents an individual auction.

Auctions along the 45 degree line are auctions in which the price remained unchanged 12

hours later (no price-transition took place). Note that in the final period all auctions had

strictly positive price-increments. The feature supporting our assumption is that in all

figures the price-jumps form an upward sloping ‘band’. A counter indication to our claim

would be if there was a large number of auctions that at low prices (≈ $0 − 150) made

jumps to the high prices (≈ $500− 600). More details are provided in Chapter 4

Assumption 2.2. The probability of making a jump to higher prices decreases when

there are two ongoing auctions.

Discrete prices: for x ≤ P ,

(2.5)
P∑

q=r

πx,q|2 ≤
P∑

q=r

πx,q|1 ∀r ≤ P

Continuous prices: for y < τ and x ≤ P ,

(2.6) F 1(x′|x) ≤ F 2(x′|x) ∀x′ ≤ P

This assumption formalizes how we model the cannibalization effect. In other words,

with two ongoing auctions, each auction will experience more ‘modest’ price-transitions.

For empirical support see Chapter 4.

An alternative to Assumption 2.2 is, for discrete prices, if
∑P

q=r πx,q|1 ≤
∑P

q=r πx,q|2, for

all x, r ≤ P . That is, with two auctions you are more likely to see higher price jumps in each

individual auction than when only one auction is underway. However, then the problem of

releasing the second item becomes trivial. Since if it is better to have two auctions underway

and the holding cost is positive, then it will always be optimal to release the second item
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Figure 2.5. Price transitions at 12 hour intervals for the L4 laptop auctions. The
horizontal axis represents the price at various 12 hour intervals, while the vertical
axis represents the price 12 hours later. Each circle represents the price-transition
for an auction. Observations on the 45 degree line represents auctions that received
no bids for that period. Note that in the final period all auctions received bids.

immediately.

Assumption 2.3. The difference, in probability of making jumps to the higher prices,

between having one versus two ongoing auctions, is decreasing in the current price.

Discrete prices: for x < P ,

(2.7)
P∑

q=r

(πx,q|1 − πx,q|2) ≥
P∑

q=r

(πx+1,q|1 − πx+1,q|2) ∀r ≤ P
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Continuous prices: for y < τ and x ≤ P ,

(2.8) F 2(x′|x)− F 1(x′|x) is decreasing in x

Equivalently,

∂

∂x
F 2(x′|x) ≤ ∂

∂x
F 1(x′|x)

This states that the cannibalization effect is diminishing in the current price. In other

words the closer the current price is to the upper bound P the less of a difference there will be

between having one or two auctions underway. Qualitatively, we see in the graphs of Figure

2.5, that the closer the price is to P ≈ 600 the less ‘room’ there is for the price-transitions,

and hence the less cannibalization there can be. Again, a more rigorous empirical analysis

is provided in Chapter 4.

2.3. Examples. At this point it may be natural to inquire about the existence of tran-

sition probability matrices and conditional cumulative distribution functions, that satisfy

the above assumptions. We next provide conditions under which of some common prob-

ability distributions satisfy them. Namely, Uniform - discrete and continuous, Bernoulli,

and Exponential. In addition, we later illustrate the assumptions and implications with

numerical examples.

Discrete Uniform Distribution

Without loss of generality let p = k = 1. Suppose that in periods when there is only one

auction underway there is an equal probability of jumping to any of the remaining prices,

for pi ≤ P , πpi,q|1 = πpi = 1/(P +1− pi) for all q ∈ [pi, P ]. Furthermore, suppose when two

auctions are underway the probability of remaining at the same price increase with κ and

that the probability of jumping to P decrease with κ, as shown in the transition probability

matrices below.
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ΠU
1 =




1
P+1

1
P+1 · · · 1

P+1
1

P+1

0 1
P · · · 1

P
1
P

...
...

. . .
...

...

0 0 · · · 1
2

1
2

0 0 · · · 0 1




ΠU
2 =




1
P+1 + κ 1

P+1 · · · 1
P+1

1
P+1 − κ

0 1
P + κ · · · 1

P
1
P − κ

...
...

. . .
...

...

0 0 · · · 1
2 + κ 1

2 − κ

0 0 · · · 0 1




The next results summarizes that the above transition probability matrices support

Assumptions 2.1, 2.2, and 2.3.

Proposition 2.4. If 0 ≤ κ ≤ 1
P+1 then ΠU

1 and ΠU
2 satisfies Assumptions 2.1, 2.2 and

2.3.

Proof Proposition 2.4 - See Appendix A.

A modification to ΠU
2 is to have κ be dependent on the price. In which case for As-

sumption 2.3 to hold we require 1
P+1 ≥ κ0 ≥ κ1 ≥ . . . ≥ κP−1.

Continuous Uniform Distribution

An example with continuous prices and uniform distributed price-transitions, can be con-

structed as follows. Assume the starting price p = 0, and the maximum price P = 1, i.e.

Xi ∈ [0, 1]. Assume that when there is only one ongoing auction that the price-transition is

uniformly distributed between the current price and the upper limit 1. Furthermore, assume

the ‘cannibalization’ effect is such that with two ongoing auctions, the price-transition is
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triangularly distributed between the current price and the upper limit. Specifically, let,

f1(q|x) =





1
1−x x ≤ q ≤ 1

0 o/w

(2.9)

f2(q|x) =





2−2q
(1−x)2

x ≤ q ≤ 1

0 o/w

(2.10)

Proposition 2.5. If prices are continuous and price transitions are distributed accord-

ing to (2.9) and (2.10) then Assumptions 2.1, 2.2, and 2.3 holds.

Proof Proposition 2.5 - See Appendix A.

Bernoulli Distribution

Suppose that for each period and every price level there are only two possible transitions -

remain at same price or jump up by one increment. This bidding process is the core of the

auction dynamics analyzed by Segev, Beam, and Shantikumar (2001). In this scenario the

maximum price P ≡ τ , and consequently the size of the transition probability matrices are

(τ + 1)× (τ + 1). Let Π1 and Π2 be defined as follows,

ΠBe
1 =




1− π0 π0 · · · 0 0

0 1− π1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1− πτ−1 πτ−1

0 0 · · · 0 1




ΠBe
2 =




1− ρ0 ρ0 · · · 0 0

0 1− ρ1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1− ρτ−1 ρτ−1

0 0 · · · 0 1



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In other words, Pr{Xy+1 = q + 1|Xy = q, Z = 1} = πq, and Pr{Xy+1 = q + 1|Xy =

q, Z = 2} = ρq. Due to the special structure of Bernoulli price transitions an adjust-

ment to Assumption 2.3 is required: we assume, for x < P − 1, (πx,x+1|1 − πx,x+1|2) ≥

(πx+1,x+2|1 − πx+1,x+2|2). Without this modification Assumption 2.3 would not hold, since

∑P
q=x+2(πx,q|1 − πx,q|2) = 0 ≤ ∑P

q=x+2(πx+1,q|1 − πx+1,q|2), while
∑P

q=x+1(πx,q|1 − πx,q|2) ≥
∑P

q=x+1(πx+1,q|1 − πx+1,q|2) = 0. The adjustment to the condition will not alter any of the

structural properties for the Bernoulli distributed price transition. In order for ΠBe
1 and

ΠBe
2 to satisfy Assumptions 2.1, 2.2, and 2.3(mod.), we require,

π0 − ρ0 ≥ π1 − ρ1 ≥ . . . ≥ πτ−1 − ρτ−1 ≥ 0(2.11)

Inequalities (2.11) reflects the diminishing ‘cannibalization’ effect, and ensures that As-

sumptions 2.2 and 2.3(mod.) holds. We summarize the result in the following proposition.

Proposition 2.6. If price transitions are distributed according to ΠBe
1 and ΠBe

2 , and

(2.11) holds, then Assumptions 2.1, 2.2, and 2.3(mod.) are satisfied.

Proof Proposition 2.6 - See Appendix A.

Below a numerical example for the Bernoulli distributed price transitions is provided.

It can be verified that (2.11), and hence that Assumptions 2.1, 2.2 and 2.3(mod.) holds.

ΠBe
1 =




.4 .6 0 0

0 .5 .5 0

0 0 .7 .3

0 0 0 1




ΠBe
2 =




.5 .5 0 0

0 .6 .4 0

0 0 .8 .2

0 0 0 1




A special case of ΠBe
z , z = 1, 2, is when the transition probabilities are independent of the

current price, that is, when πq = π and ρq = ρ for all q = 0, 1, . . . , τ − 1. This special case

61



has some interesting consequences which are discussed in Section 3.3.1.

Exponential Distribution

The following example will focus on the price-increment and not on the price-transitions.

Assume prices are positive and unbounded, Xi ∈ <+, and that the conditional within period

price-increment C, given Xi = x, is exponentially distributed with rate λz(x), z = 1, 2. That

is, for c = x′ − x, x, x′ ∈ <+, Pr{Xi,y+1 ≤ x′|Xi,y = x,Z = z} = Pr{C ≤ c|Xi,y = x, Z =

z} =

(2.12) Gz
C(c|x) =





1− exp(−λz(x)c) c ≥ 0

0 o/w

The rate λz(·) is a function both of the current price and the number of ongoing auctions.

The expected price increment is 1/λz(x), which it would seem natural to assume, is decreas-

ing in the current price. Therefore, we require λz(x) to be increasing in x. In other words,

the higher the current price the smaller the expected price-increment. Though technical

conditions on λz(x) could be imposed, such that the three assumptions hold, they would

make the problem both less intuitive and less informative. The main problem is due to the

shape of the exponential distribution which, for instance, prevents Assumption 2.1 to hold.

Therefore, we impose conditions to ensure that the expected price-transition has certain

properties. Specifically, we assume, for x ∈ <+,

1/λz(x) is decreasing in x, z = 1, 2(2.13)

x + 1/λz(x) is increasing in x, z = 1, 2(2.14)

1/λ2(x) ≤ 1/λ1(x)(2.15)

1/λ1(x)− 1/λ2(x) is decreasing in x(2.16)
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With these conditions the ensuing structural results in Section 3.3 holds. An example of a

rate function λz(x) for which the above conditions hold includes,

1/λz(x) = exp
(
β0 − β1x− β21{z=2}

)

where β0, β1, β2 ≥ 0, and β1 is such that,

β1 exp
(
β0 − β1x− β21{z=2}

) ≤ 1 ∀x, z

In Chapter 4 a more general version with gamma distributed price-increments is discussed

and fitted to the eBay auction data from DFS.

3. Guaranteed Successful Auctions - Single Listing

The first case we consider is when the auctions are guaranteed to be successful, and

hence the seller only has to list an item once. This could occur when the items are such

that it is certain a positive bid will arrive (e.g. π0,0|z = 0, z = 1, 2), or when the seller

decides in advance to immediately salvage items remaining from unsuccessful auctions. An

illustration of the former includes the 6,000 laptop and desktop eBay auctions of DFS. Out

of all auctions with a starting price of $.99, not a single auction was unsuccessful. Due to

the additional assumption that auctions are guaranteed to be successful, we can simplify

the MDP model.

Decision Epochs As a consequence of the vigilant seller assumption there is no reason to

consider a planning horizon beyond two sequential auctions, hence T = 2τ . Furthermore,

provided the second item has not been released, non-trivial decisions can only be made in

periods t = 0, 1, 2, . . . , τ−1. At t = τ the vigilant seller assumption requires that the second

item is released immediately, if it has not already been released.
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State Space Since we assume the items will at least sell for p, we omit the 0 state. Thus

for the discrete case Xi ∈ {p, p + 1, . . . , P} while for the continuous case Xi ∈ [p, P ].

Rewards In order to facilitate the ‘accounting’, and since we are not assuming discounting,

we assume the seller receives the payment at t = T . Therefore, the reward rt(s) for a given

s ∈ S and period t is as follows,

rt([x1, y1; x2, y2], z) =





−h1{y1<τ} − h1{y2<τ} t = 0, 1, . . . , T − 1

x1 + x2 t = T

Transition Probabilities

Since we assume Xi ≥ p > 0 and the items are guaranteed to be awarded, we define the

transition probability to start at p instead of 0, e.g. the entries in the top row of Πz is

πp,q|z for q ∈ {p, p+1, . . . , P}, z = 1, 2. It should, however, be noted that from a behavioral

point of view the bidding process may be different if the starting price or even current price

is 0 rather than p. For instance, suppose we have two auctions, a and b, which both have

elapsed for yi periods and both with current price of $p, but where auction b started at $p

and still has not received any bids while auction a has reached $p after some bid activity.

Then there is anecdotal ‘evidence’ to suggest that the bidding dynamics for the two auctions

will be different. Auction a is more likely to receive more bids. To read accounts from eBay

sellers on this issue, search the terms ‘low starting price’ at the eBay discussion boards for

sellers,1 and newcomers.2 We will ignore such behavioral considerations.

3.1. Auction Release Policies. A Markov deterministic policy is a sequence of deci-

sion rules which determine what action to take in each decision epoch, possibly contingent

on the state of the system but not on the past. Let γt(s) be the decision rule in period t

1http://forums.ebay.com/db2/forum.jspa?forumID=143
2http://forums.ebay.com/db1/forum.jspa?forumID=120
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given a state s ∈ S. As a consequence of the vigilant seller assumption, we only need to

consider decision rules for t = 0, 1, . . . , τ , and hence, a policy γ is defined as follows,

γ = (γ0(s), γ1(s), . . . , γτ (s)) γt(s) ∈ {0, 1}, ∀s ∈ S, t = 0, 1, . . . , τ

If all the decision rules, γt(s), are independent of the price components of state s we refer

to the policy γ as an open loop policy, while if the decision rules depend on both the price

and time components of state s the resulting policy is referred to as a closed loop policy.

Note that there are only τ + 1 open loop policies of interest. We write VO(j) to denote the

total expected profit of releasing the second item j periods after the first, j = 0, 1, 2, . . . , τ .

In Table 2.1 the four open loop policies and their respective total expected profit for discrete

prices and τ = 3 are provided. In the table we see that although we incur an additional unit

of h for each additional period we hold the second item, the expected final price for both

items increase since there is an additional period when both auctions evolve according to Π1

instead of Π2. The decision whether to release the second item or hold it one more period

will depend on whether the increase in expected final price for both items will compensate

the additional holding cost.

j γ Total expected profit - VO(j)

0 (1,0,0,0) −6h + 2
∑P

l=p

∑l
q=p

∑l
r=q l(πp,q|2)(πq,r|2)(πr,l|2)

1 (0,1,0,0) −7h +
∑P

l=p

∑l
q=p

∑l
r=q l(πp,q|1)(πq,r|2)(πr,l|2) +

∑P
l=p

∑l
q=p

∑l
r=q l(πp,q|2)(πq,r|2)(πr,l|1)

2 (0,0,1,0) −8h +
∑P

l=p

∑l
q=p

∑l
r=q l(πp,q|1)(πq,r|1)(πr,l|2) +

∑P
l=p

∑l
q=p

∑l
r=q l(πp,q|2)(πq,r|1)(πr,l|1)

3 (0,0,0,1) −9h + 2
∑P

l=p

∑l
q=p

∑l
r=q l(πp,q|1)(πq,r|1)(πr,l|1)

Table 2.1. Total expected profit for the four open loop policies of releasing item
2 j periods after item 1, for discrete prices and τ = 3.
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3.2. Optimality Equations. Before we discuss the optimality equations we introduce

some notation. When both items have been released we define E[Xi,τ |St] to be the condi-

tional expected final price of auction i, i = 1, 2, in period t,

Discrete prices:

(2.17)

E[Xi,τ |St = ([x1, y1; x2, y2], z)] =
P∑

q=xi

q Pr{Xi,τ = q|Xi,yi = xi, Zt = z, Zt+1 = z′, . . . , Zt+(τ−yi) = z′′}

Continuous prices:

(2.18) E[Xi,τ |St = ([x1, y1; x2, y2], z)] =
∫ P

xi

qfz·z′···z′′
Xτ |Xyi

(q|xi)dq

Where Pr{Xi,τ = q|Xi,yi = xi, Zt = z, Zt+1 = z′, . . . , Zt+(τ−yi) = z′′} and fz·z′···z′′
Xτ |Xyi

(q|xi)

are derived using the Chapman-Kolmogorov equations discussed in Section 2.1. The main

issue regarding the expected final price is that it only depends on the current price of an

auction, and how many auctions will be underway for the duration of the auction. Once both

auctions have been released we know how many auctions there will be for the remainder

of each individual auction. As a consequence of the assumptions that auctions progress

independently and Assumption 2.1, E[Xi,τ |St] is increasing in xi and independent of xj , for

i 6= j. We summarize this in the following result.

Corollary 2.7. If auctions progress independently of price in other auctions and As-

sumption 2.1 holds, then the conditional expected final price, E[Xi,τ |St = ([x1, y1;x2, y2], z)],

is increasing in xi and independent of xj, i = 1, 2, i 6= j.

Proof Corollary 2.7 - The result regarding independence of the price in the other auction

is immediate by the assumption that price transitions do not depend on the price in the

other auction. Proof by induction on the number of remaining periods n = τ − yi. Without

loss of generality, consider auction 1. For n = 0, E[X1,τ |St = ([x1, τ ; x2, y2], z)] = x1,

which is increasing in x1. Assume the result holds for n = 0, 1, . . . , l − 1, i.e. for y1 =
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τ, τ − 1, . . . , τ − (l − 1). Let n = l then y = τ − l,

E[X1,τ |St = ([x1, τ − l; x2, y2], z)] =
P∑

q=x1

E[X1,τ |St+1 = ([q, τ − (l − 1);x′2, y
′
2], z

′)]πx1,q|z

≤
P∑

q=x1+1

E[X1,τ |St+1 = ([q, τ − (l − 1);x′2, y
′
2], z

′)]πx1+1,q|z = E[X1,τ |St = ([x1 + 1, τ − l; x2, y2], z)]

where inequality holds due to Lemma 4.7.2 in Puterman (1994), the induction assumption

and Assumption 2.1. The proof for continuous prices is basically the same but with the

summation replaced by an integration. Although Lemma 4.7.2 in Puterman (1994) is with

respect to discrete variables and infinite sequences, it can be adapted to continuous vari-

ables and/or finite sequences. Alternatively the results from Lemma 9.1.1 and Proposition

9.1.2 in Ross (1996) can be applied. ¤

Furthermore, when both items have been released, we define R(St) to represent the

total expected profit over the remainder of the planning horizon in period t,

R(St = ([x1, y1; x2, y2], z))

(2.19)

= −h(2τ − y1 − y2) + E[X1,τ |St = ([x1, y1; x2, y2], z)] + E[X2,τ |St = ([x1, y1; x2, y2], z)]

There is a slight misuse of notation when yi = δ, i = 1, 2. In this case we implicitly define

τ − δ = 0, since no holding cost will be incurred. Note that R(St) is not necessarily increas-

ing or decreasing in the elapsed time of the auctions. Though the incurred holding cost

will decrease, the expected final price of the auctions will also decrease. It is this trade-off

that is the crux of the problem regarding when to start the second auction. However, as

summarized in the next result, R(St) is increasing in x1 and x2.
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Corollary 2.8. If Assumption 2.1 holds then R(St) is increasing in x1 and x2, for all

y1, y2, and z = 0, 1, 2.

Proof of Corollary 2.8 - Each auction progress independently of the price in the other auc-

tion, the result is therefore immediate by Corollary 2.7. ¤

Lastly, we define g2(St) to be the gain in the expected final price of auction 2 by having

delayed the release of item 2 for one period,

g2(St = ([x1, y1; x2, y2], z))(2.20)

= E[X2,τ |St+1 = ([x′1, y1 + 1; x2, y2], z′)]−E[X2,τ |St = ([x1, y1; x2, y2], z)]

where z, z′ = 0, 1, 2 and by definition if y1 = τ, δ then y1 + 1 = δ. Due to Assumption 2.2

and that auctions progress independently, g2(St) ≥ 0 and independent of x1. In other words

the fewer periods remaining for the 1st auction, and regardless of the price in auction 1,

the higher the expected final price for the 2nd auction. We summarize this in the following

corollary.

Corollary 2.9. If auctions progress independently of price in other auctions and As-

sumption 2.2 holds then g2(St) ≥ 0 and independent of x1 and x′1.

Proof of Corollary 2.9 - See Appendix A.

Next we present the optimality equations. Let Vt(s) denote the expected total future

reward (expected total profit) given the system is in state s ∈ S in period t. For discrete
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prices Vt(s), satisfies the following optimality equations,

(2.21) Vt(s) =





rt(s) + max
a∈A(s)

∑

s′∈S

Vt+1(s′)π(s′|s, a) t = 0, 1, . . . , T − 1

rT (s) t = T

For continuous prices Vt(s) satisfies,

(2.22) Vt(s) =





rt(s) + max
a∈A(s)

∫

S
Vt+1(s′)f(s′|s, a)ds′ t = 0, 1, . . . , T − 1

rT (s) t = T

Due to the vigilant seller assumption, the structure of the transition probabilities, and

that auctions are guaranteed to be successful, the value function (2.21) and (2.22) can be

summarized and explicitly evaluated according to the three cases listed in the following

lemma.

Lemma 2.10. If we assume a vigilant seller and that auctions are guaranteed to be

successful, then the value functions of interest for discrete prices are as follows,

Vt([x1, y1; x2, y2], 0) = x1 + x2 t = T

Vt([x1, y1; x2, y2], z) = R([x1, y1; x2, y2], z) t = τ

Vt([x1, y1; x2, y2], 1) = max{−2h +
P∑

q=x1

Vt+1([q, y1 + 1; p, 0], 1)πx1,q|1 , R([x1, y1; p, 0], 2)} t < τ

If prices are continuous the only change is the final equation which becomes,

Vt([x1, y1; x2, y2], 1) = max{−2h +
∫ P

x1

Vt+1([q, y1 + 1; p, 0], 1)f1(q|x1)dq , R([x1, y1; p, 0], 2)} t < τ

Proof of Lemma 2.10 - See Appendix A.

The above value functions can be computed using backward induction. In Table 2.2 the

optimality equations for discrete prices and τ = 3 are listed.
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V6([x1, 3;x2, 3], 0) = x1 + x2

V3([x1, 3; p, 0], 1) = R([x1, 3; p, 0], 1)

V2([x1, 2; p, 0], 1) = max{−2h +
∑P

q=x1
V3([q, 3; p, 0], 1)πx1,q|1, R([x1, 2; p, 0], 2) }

V1([x1, 1; p, 0], 1) = max{−2h +
∑P

q=x1
V2([q, 2; p, 0], 1)πx1,q|1, R([x1, 1; p, 0], 2) }

V0([p, 0; p, 0], 1) = max{−2h +
∑P

q=p V1([q, 1; p, 0], 1)πp,q|1, R([p, 0; p, 0], 2) }
Table 2.2. Optimality equations for discrete prices and τ = 3.

3.3. Structural Results. Given the above MDP and the assumption that auctions

are guaranteed to be successful, we derive three monotonicity properties: the optimal value

function is increasing in the current price of the two auctions, the optimal policy is a

threshold policy, and the threshold is decreasing in the holding cost. Note that though the

proofs are for the case of discrete prices, the results hold for continuous prices as well.

Proposition 2.11. If Assumption 2.1 holds and auctions are guaranteed to be success-

ful, then the optimal value function, V ?
t ([x1, y1; x2, y2], z), is increasing in x1 and x2, for

t = 0, 1, . . . , T .

Proof of Proposition 2.11 - By Lemma 2.10 there are only three cases to consider.

Case 1) If t = T , then by Lemma 2.10, V ?
t ([x1, y1;x2, y2], z) = x1 + x2, and the result is

immediate.

Case 2) If t < τ and z = 2, or τ ≤ t < T , then by Lemma 2.10, V ?
t ([x1, y1;x2, y2], z) =

R([x1, y1; x2, y2], z), and the result follows from Corollary 2.8.

Case 3) For t < τ and z = 1, by Lemma 2.10,

V ?
t ([x1, y1; x2, y2], z) = max{−2h +

P∑
q=x1

V ?
t+1([q, y1 + 1; p, 0], z)πx1,q|1 , R([x1, y1; p, 0], 2)}

We establish the result using backward induction on t. Let t = τ − 1 and hence y1 +

1 = τ , then by Lemma 4.7.2 in Puterman (1994), Case 2) above and Assumption 2.1,

∑P
q=x1

V ?
t+1([q, τ ; p, 0], 1)πx1,q|1 is increasing in x1, and by Corollary 2.8, R([x1, y1; p, 0], 2)
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is increasing in x1. Since V ?
t ([x1, y1; x2, y2], z) is the maximum of two increasing func-

tions it is also increasing in x1 and the result holds. Assume Proposition 2.11 holds

for t = τ − (l − 1), . . . , τ − 2, τ − 1. Let t = τ − l and hence y1 + 1 = τ − (l − 1),

and again by Lemma 4.7.2 in Puterman (1994), the induction assumption and Assump-

tion 2.1,
∑P

q=x1
V ?

t+1([q, y1 + 1; p, 0], 2)πx1,q|1 is increasing in x1, and by Corollary 2.8,

R([x1, y1; p, 0], 2) is increasing in x1. Since V ?
t ([x1, y1; x2, y2], z) is the maximum of two

increasing functions it is also increasing in x1 and the result holds. Similar to the proof

of Corollary 2.7 the results from Lemma 9.1.1 and Proposition 9.1.2 in Ross (1996) can be

applied. The proof for the continuous case is identical but with the summation replaced by

an integration. ¤

In other words an increase in the current price of either item 1 or item 2 will increase

the optimal expected total reward. Though this might seem natural and ‘obvious’ it is a

result of the assumptions made, most notably that at a higher price-level the auction is

more likely to advance to the higher prices than at a low price-level. And as discussed if

bid-increments are decreasing in price then it is not immediate that this assumption holds.

Chapter 4 contains examples from DFS’ eBay auctions where this result does not hold, as

well as examples for which the result holds.

Theorem 2.12. If Assumptions 2.1, 2.2, and 2.3 hold and auctions are guaranteed to be

successful, then there exist optimal decision rules, γ?
t ([x1, y1; p, 0], 1), which are increasing

in x1, for t = 0, 1, . . . , τ − 1. Consequently, the optimal policy is a threshold policy in x1.

Proof of Theorem 2.12 - Let prices be discrete. Sufficient to show that V ?
t ([x1, y1; p, 0], 1)−

R([x1, y1; p, 0], 2) is decreasing in x1, for all t < τ . By Corollary 2.8 and Proposition 2.11,

R([x1, y1; p, 0], 2) and V ?
t ([x1, y1; p, 0], 1) are increasing in x1. We make use of the following
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relationship,

(2.23) R([x1, y1; x2, y2], 2) = −h +
P∑

q=x1

R([q, y1 + 1; x2, y2], z)πx1,q|2 − g2([x1, y1;x2, y2])

Proof by backward induction on t. Let t = τ − 1, then y1 = τ − 1 and by Lemma 2.10 and

(2.23),

V ?
t ([x1, y1; p, 0], 1)−R([x1, y1; p, 0], 2)

= max{−h +
P∑

q=x1

R([q, τ ; p, 0], 1)(πx1,q|1 − πx1,q|2) + g2([x1, τ − 1; p, 0]) , 0}

= max{−h− hτ +
P∑

q=x1

q(πx1,q|1 − πx1,q|2) + E[X2,τ |([x1, τ, p, 0], 1)] + g2([x1, τ − 1; p, 0]) , 0}

by Corollary 2.7 and 2.9, E[X2,τ |([x1, τ, p, 0], 1)] respectively g2([x1, τ−1; p, 0]) are indepen-

dent of x1, and since,

P∑
q=x1

q(πx1,q|1 − πx1,q|2)

= x1

P∑
q=x1

(πx1,q|1 − πx1,q|2)

︸ ︷︷ ︸
=0

+
P∑

q=x1+1

(πx1,q|1 − πx1,q|2)

︸ ︷︷ ︸
↓ in x1by Ass.2.3

+
P∑

q=x1+2

(πx1,q|1 − πx1,q|2)

︸ ︷︷ ︸
↓ in x1 by Ass.2.3

+ . . . +
P∑

q=P

(πx1,q|1 − πx1,q|2)

︸ ︷︷ ︸
↓ in x1 by Ass.2.3

the result holds for t = τ−1. Assume the result holds for t = τ−(l−1), τ−(l−2), . . . , τ−1,

and define Λ?
t (x) = V ?

t ([x, y; p, 0], 1)−R([x, y; p, 0], 2). Let t = τ − l. Then by Lemma 2.10

and (2.23),

V ?
t ([x1, y1; p, 0], 1)−R([x1, y1; p, 0], 2) =

= max{−h +
P∑

q=x1

V ?
t+1([q, y1 + 1; p, 0], 1)πx1,q|1 −R([q, y1 + 1; p, 0], 2)πx1,q|2 + g2([x1, y1; p, 0]) , 0}

= max{−h +
P∑

q=x1

Λ?
t+1(q)πx1,q|1 +

P∑
q=x1

R([q, y1 + 1; p, 0], 2)(πx1,q|1 − πx1,q|2) + g2([x1, y1; p, 0]) , 0}

First show that
∑P

q=x1
R([q, y1+1; p, 0], 2)(πx1,q|1−πx1,q|2) is decreasing in x1. By Corollary

2.8, R([x, y; p, 0], 2) is increasing in x. Define α(x+1) = R([x+1, y; p, 0], 2)−R([x, y; p, 0], 2).

72



Therefore,

P∑
q=x1

R([q, y1 + 1; p, 0], 2)(πx1,q|1 − πx1,q|2)

= R([x1, y1 + 1; p, 0], 2)
P∑

q=x1

(πx1,q|1 − πx1,q|2)

︸ ︷︷ ︸
=0

+α(x1 + 1)
P∑

q=x1+1

(πx1,q|1 − πx1,q|2)

+ α(x1 + 2)
P∑

q=x1+2

(πx1,q|1 − πx1,q|2) + . . . + α(P )
P∑

q=P

(πx1,q|1 − πx1,q|2)

≥ +α(x1 + 1)
P∑

q=x1+1

(πx1+1,q|1 − πx1+1,q|2)

︸ ︷︷ ︸
=0

+α(x1 + 2)
P∑

q=x1+2

(πx1+1,q|1 − πx1+1,q|2)

+ . . . + α(P )
P∑

q=P

(πx1+1,q|1 − πx1+1,q|2)

=
P∑

q=x1+1

R([q, y1 + 1; p, 0], 2)(πx1+1,q|1 − πx1+1,q|2)

where the inequality holds by Assumption 2.3. Therefore,
∑P

q=x1
R([q, y1+1; p, 0], 2)(πx1,q|1−

πx1,q|2) is decreasing in x1. Next show that
∑P

q=x1
Λ?

t+1(q)πx1,q|1 is decreasing in x1.

By the induction assumption Λ?
t+1(x) is decreasing in x, therefore define β(x + 1) =

Λ?
t+1(x)− Λ?

t+1(x + 1), then,

P∑
q=x1

Λ?
t+1(q)πx1,q|1

= Λ?
t+1(x1)

P∑
q=x1

πx1,q|1

︸ ︷︷ ︸
=1

−β(x + 1)
P∑

q=x1+1

πx1,q|1 − β(x + 2)
P∑

q=x1+2

πx1,q|1 − . . .− β(P )
P∑

q=P

πx1,q|1

≥ Λ?
t+1(x1)

P∑
q=x1

πx1+1,q|1

︸ ︷︷ ︸
=1

−β(x + 1)
P∑

q=x1+1

πx1+1,q|1

︸ ︷︷ ︸
=1

−β(x + 2)
P∑

q=x1+2

πx1+1,q|1 − . . .− β(P )
P∑

q=P

πx1+1,q|1

=
P∑

q=x1+1

Λ?
t+1(q)πx1+1,q|1

where the inequality holds due to Assumption 2.1. Therefore
∑P

q=x1
Λ?

t+1(q)πx1,q|1 is de-

creasing in x1. Since g2([x1, t; p, 0]) is independent of x1, the result holds for all t < τ .
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The proof for continuous prices follows the same logic but with slightly different arguments.

¤

Theorem 2.12 implies that, for each t there exists a p?
t such that if X1 ≥ p?

t then it is

optimal to release the second item for auction, while if X1 < p?
t it is optimal to hold the

second item at least one more period. The reason we are only considering t = 0, 1, . . . , τ −1

is because we are only interested in those periods where non-trivial decision can be made.

For t = τ the decision to release is immediate by the vigilant seller assumption. Also note

that if Y2 > 0 the second item has already been released and no further decision needs

to be made. The main assumption driving the result of Theorem 2.12 is the diminishing

cannibalization effect of Assumption 2.3. Our next result summarizes the effect the holding

cost has on p?
t .

Corollary 2.13. For each t < τ , the control limit in Theorem 2.12, p?
t , is decreasing

in the holding cost h.

Proof of Corollary 2.13 - For a given decision epoch t we know that for X1 ≥ p?
t any ad-

ditional holding cost by deferring the release is not compensated by the gain in expected

final price for the two items. Therefore, if h increases and since the expected final prices

remains the same, then any additional holding cost will still not be compensated (in fact it

is even less compensated), and the result follows. ¤

Given these three properties it may be natural to ask if the threshold price, p?
t , is mono-

tone in t or Y1. With only the three assumptions stated above the answer is no. And it

turns out that monotonicity over time will also depend on the holding cost h. In other

words, depending on the holding cost p?
t ≤ p?

t+1 or p?
t ≥ p?

t+1. See the numerical example in
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Section 3.4 for an illustration. In Section 3.5 some bounds on the holding cost are discussed.

3.3.1. Examples. In Section 2.3 we provided four common probability distributions and

conditions on their parameters that support Assumptions 2.1, 2.2, and 2.3. Consequently,

we have the following results.

Corollary 2.14. If price increments are distributed as discrete or continuous Uniform

random variables, as specified in Section 2.3, then Proposition 2.11 and Theorem 2.12 holds.

Corollary 2.15. If price increments are distributed as Bernoulli random variables as

specified in Section 2.3 and (2.11) holds, then Proposition 2.11 and Theorem 2.12 holds.

Proof of Corollary 2.14 and 2.15 - For each of the cases we have that Assumptions 2.1, 2.2,

and 2.3 holds, it therefore follows that Proposition 2.11 and Theorem 2.12 holds. ¤

In the Bernoulli case with price-independent transition probabilities, πq = π and ρq = ρ

for all q = 0, 1, . . . , τ − 1, the optimal policies simplify further. First note that due to the

special structure of the transition probability matrices the n-period transition matrices are

symmetric in the following sense, for τ = 3, Π1·2·2 = Π2·2·1 and Π1·1·2 = Π2·1·1. As a result

the expected value for the open loop policy of releasing the second item j periods after the

first item has been released is given by,

(2.24) VO(j) = −(2τ + j)h + 2(p + jπ + (τ − j)ρ) j = 0, 1, 2, . . . , τ

Furthermore, the total marginal gain by deferring the release one period, 2(π − ρ), is

independent of X1 and as a result closed loop policies are not required.

Proposition 2.16. In the case of price-independent Bernoulli increments, the optimal

policy is to release both items simultaneously if and only if h ≥ 2(π − ρ). If h < 2(π − ρ)

then releasing the two auctions sequentially is the optimal policy.
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Proof of Proposition 2.16 - See Appendix A.

The two policies described in Proposition 2.16 are the only optimal policies - open and

closed loop policies included. The interpretation of the condition h ≥ 2(π − ρ), is that if

the holding cost exceeds the expected one-period gain for both auctions, by deferring the

release it will never be optimal to defer the release of item 2.

3.4. Numerical Examples. Example 1 - τ = 2

The purpose of this example is illustrate that a closed loop policy may be optimal, that the

optimal threshold for releasing an item need not be monotone in t or Y1, and that in order

to determine the optimal policy, the seller must solve the dynamic program by backward

induction. Consider a two period auction, τ = 2, for an item valued at $10, $20 and $30,

with the following transition probability matrices.

Π1 =




10 20 30

10 .6 .3 .1

20 0 .6 .4

30 0 0 1




Π2 =




10 20 30

10 .7 .3 0

20 0 .65 .35

30 0 0 1




Note that Assumptions 2.1, 2.2, and 2.3 hold. At decision epoch t = 2, the 1st auction

has ended and the decision to release the 2nd item is immediate irrespective of X1 by the

vigilant seller assumption. At time t = 1 the 1st auction has one period remaining and the

seller can choose to either release the 2nd item or defer the release one period. If X1 = $10
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then the seller’s total expected profit is the following:

V ?
1 ([10, 1; 10, 0], 1) = max





−4h + 15 + 19.2 a = 0 (defer release)

−3h + 13 + 17.7 a = 1 (release)

We see that the marginal cost of deferring the release is h while the expected marginal gain

is 3.5. If h > 3.5 it is optimal to release the 2nd auction while if h < 3.5 it is optimal to

defer the release. If X1 = $20 then the seller has the following total expected profit:

V ?
1 ([20, 1; 10, 0], 1) = max





−4h + 24 + 19.2 a = 0 (defer release)

−3h + 23.5 + 17.7 a = 1 (release)

In this case, the marginal cost is still h and the expected marginal gain is now only 2, i.e.

if h > 2 then the optimal decision is to release else it is optimal to defer the release. If

X1 = $30 then the seller has the following total expected profit:

V ?
1 ([30, 1; 10, 0], 1) = max





−4h + 30 + 19.2 a = 0 (defer release)

−3h + 30 + 17.7 a = 1 (release)

While the marginal cost is still h, the expected marginal gain is now only 1.5, i.e. if h > 1.5

then the optimal decision is to release else it is optimal to defer the release. Therefore when

we roll back one period and analyze the optimal decision at t = 0, we have four cases to

consider: 1) h ≥ 3.5, 2) 3.5 > h ≥ 2, 3) 2 > h ≥ 1.5, and 4) 1.5 > h. Let t = 0 and

X1 = $10, the seller’s expected profit is the following:

V ?
0 ([10, 0; 10, 0], 1)

= max





−2h + .6V ?
1 ([10, 1; 10, 0], 1) + .3V ?

1 ([20, 1; 10, 0], 1) + .1V ?
1 ([30, 1; 10, 0], 1) a = 0

−4h + 2(16.15) a = 1
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Which for the four cases results in the following.

Case 1) h ≥ 3.5:

V ?
0 ([10, 0; 10, 0], 1) = max





−5h + .6(30.7) + .3(41.2) + .1(47.7) a = 0

−4h + 32.3 a = 1

=max





−5h + 35.55 a = 0

−4h + 32.3 a = 1

Case 2) 3.5 > h ≥ 2:

V ?
0 ([10, 0; 10, 0], 1) =max





−2h− .6(4h)− .4(3h) + .6(34.2) + .3(41.2) + .1(47.7) a = 0

−4h + 32.3 a = 1

=max





−5.6h + 37.65 a = 0

−4h + 32.3 a = 1

Case 3) 2 > h ≥ 1.5:

V ?
0 ([10, 0; 10, 0], 1) =max





−2h− .9(4h)− .1(3h) + .6(34.2) + .3(43.2) + .1(47.7) a = 0

−4h + 32.3 a = 1

=max





−5.9h + 38.25 a = 0

−4h + 32.3 a = 1
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Case 4) 1.5 > h:

V ?
0 ([10, 0; 10, 0], 1) = max





−6h + .6(34.2) + .3(43.2) + .1(49.2) a = 0

−4h + 32.3 a = 1

=max





−6h + 38.4 a = 0

−4h + 32.3 a = 1

In the three cases we can compare the expected marginal cost with the expected marginal

gain for deferring the release. For case 1) the expected marginal cost is h while the expected

marginal gain is 3.25. Since h ≥ 3.5 the optimal decision is to release the 2nd item imme-

diately. For case 2) the expected marginal cost is 1.6h while the expected marginal gain is

5.35. Therefore we have two further sub-cases to consider: 2a)If 3.5 > h ≥ 3.34 then the

expected marginal cost outweighs the expected marginal gain and it is optimal to release

the 2nd item immediately, 2b) If 3.34 > h ≥ 2 then the expected marginal gain by deferring

the release compensates for the expected marginal cost, and therefore it is optimal to defer

the release. For case 3) the expected marginal cost is 1.9h while the expected marginal gain

is 5.95, therefore it is optimal to defer the release. And similarly for case 4) the expected

marginal cost is 2h while the expected marginal gain is 6.1, and since 1.5 > h it is optimal

to defer the release.

In Table 2.3 we summarize the above results. For instance, we see that if h = $3 and

t = 0 or 1 and X1 = 10 it is optimal to defer the release. If, however, at t = 1 the price has

jumped to either $20 or $30 then it is optimal to release the 2nd item. The main point of

this example is to illustrate that a closed loop policy may be optimal, and that for a given

h and X1 it may be optimal to release item 2 in one period though the optimal decision in

a later period, at the same price, is to defer the release. Note, however, that for the cases

when h ≥ 3.34 a seller that follows an optimal policy would not have to make a decision
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t = 0 t = 1
X1 = 10 X1 = 10 X1 = 20 X1 = 30

h ≥ 3.5 Release Release Release Release
3.5 > h ≥ 3.34 Release Defer Release Release
3.34 > h ≥ 2 Defer Defer Release Release
2 > h ≥ 1.5 Defer Defer Defer Release
1.5 > h Defer Defer Defer Defer

Table 2.3. Example 1 - Optimal decision as a function of the holding cost h (τ = 2)

in period t = 1, but in order to derive the optimal policy, the optimal decision for period

t = 1 has to be evaluated.

Example 2 - τ = 3

Our next example illustrates the potential gain by using an adaptive closed loop policy

versus an non-adaptive open loop policy. It also shows that depending on the holding cost

the price threshold may be increasing or decreasing over time. Assume the auction length

is three periods, τ = 3, the start price p = $10, the upper bound P = $60, the price

increments are $10, and the transition probabilities are as follows.

Π1 =




10 20 30 40 50 60

10 .25 .25 .2 .1 .1 .1

20 0 .25 .3 .25 .1 .1

30 0 0 .25 .4 .25 .1

40 0 0 0 .4 .45 .15

50 0 0 0 0 .6 .4

60 0 0 0 0 0 1




Π2 =




10 20 30 40 50 60

10 .3 .3 .25 .1 .05 0

20 0 .35 .35 .2 .1 0

30 0 0 .4 .35 .2 .05

40 0 0 0 .5 .4 .1

50 0 0 0 0 .65 .35

60 0 0 0 0 0 1



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It can be verified that the matrices satisfy Assumptions 2.1, 2.2, and 2.3. The expected

profit for the four open loop policies can explicitly be computed,

VO(0) = −6h + 2× 40.76

VO(1) = −7h + 43.69 + 43.40

VO(2) = −8h + 46.09 + 45.82

VO(3) = −9h + 2× 47.93

While for the closed loop policy we use backward induction to find the action that max-

imizes the value equations. In Table 2.4 below the value of each policy with respect to

various holding costs are shown. The last two columns displays the difference between the

closed loop policy and the best and worst open loop policy for a given h. As one can see

if the holding cost is ‘low’ then it is better to release the two auctions sequentially, while

if the holding cost is ‘high’ then it will never be worth holding the 2nd item an additional

period so that the optimal policy is to release both immediately. The interesting cases are

in between where we see that the closed loop policy performs better than any of the open

loop policies.

Though the gain at a given h for the optimal closed loop policy versus the best open loop

policy is perhaps not that drastic, the gain versus the other open loop policy can be quite

large. For instance, if h = $2.30 then the difference between using the optimal closed loop

policy and open loop policy of simultaneous release is more than $7 (11% improvement).

In Table 2.5 the critical price thresholds p?
t for various holding costs are summarized (in

the table ‘n/a’ indicates that p?
t > P ). In the table we see that if, for instance, h = 4.00

and t = 1 then if X1 < 40 then it is optimal to defer the release of item 2, while if X1 ≥ 40
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h OP0 OP1 OP2 OP3 Optimal Policy Max Gain(%) Min Gain(%)
.10 80.93 86.39 91.10 94.97 94.97 17.9 0
1.00 75.53 80.09 83.90 86.87 86.87 15.0 0
2.00 69.53 73.09 75.90 77.87 77.87 12.0 0
2.30 67.73 70.99 73.50 75.17 75.21 11.0 .1
4.00 57.53 59.09 59.90 59.87 60.99 6.0 1.8
5.00 51.53 52.09 51.90 50.87 53.01 4.2 1.8
5.80 46.73 46.49 45.50 43.67 46.85 7.3 .3
6.00 45.53 45.09 43.90 41.87 45.53 8.7 0
9.00 27.53 24.09 19.90 14.87 27.53 85.1 0
10.00 21.53 17.09 11.90 5.87 21.53 266.8 0
15.00 −8.47 −17.91 −28.10 −39.14 −8.47 - -

Table 2.4. Expected profit vs holding cost comparison for the Open and Closed
Loop Policies

it is optimal to start the 2nd auction. Note that when h is ‘low’ then p?
t > P and hence

it is always optimal to wait one more period before releasing the 2nd auction . Similarly,

if h is ‘high’ then it is never optimal to defer the release. Another thing to note is that

depending on the holding cost, the price threshold could be either increasing or decreas-

ing. To illustrate, consider the case when h = 2.75, then p?
0 = $60, while p?

1 = p?
2 = $50.

On the other hand, if, for instance, h = 5.50 then p?
0 = $20, while p?

1 = p?
2 = $30. The

managerial consequence is that depending on the holding cost, the manager may become

more or less ‘sensitive’ as to when release the second item as the first auction evolves.

For instance, when h is relatively low, such that p?
t is decreasing in t, then the manager

will lower his release threshold for each period and hence be less sensitive to the current

price. On the other hand, when h is relatively high, such that p?
t is increasing in t, then the

manager becomes more sensitive to the current price and requires a higher release threshold.

We conclude by illustrating the optimal policy for two realizations. Let h = 4.00, at

t = 0, since auction 1 starts at x1 = $10, which is less than the release threshold p∗0 = $40,

it is optimal to defer the release. Suppose that after one period, auction 1 has jumped to

x1 = $30, since this is less than the release threshold p∗1 = $40, it is optimal to yet again de-

fer the start of auction 2. Suppose that after two periods, auction 1 has jumped to x1 = $40,
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h t = 0 t = 1 t = 2
1.00 n/a n/a n/a
2.50 n/a 60 60
2.75 60 50 50
4.00 40 40 40
5.00 30 30 40
5.50 20 30 30
6.00 10 20 30
8.00 10 10 10

Table 2.5. Threshold price level p?
t for various holding cost h

since this is equal to the release threshold p∗2 = $40, it is now optimal to start the second

auction. In other words, given the price-transitions of auction 1, it was optimal to wait

until the start of the third period, or when auction 1 had elapsed 2 periods, before start-

ing auction 2. Suppose instead that after one period, auction 1 had jumped to x1 = $40,

then it would have been optimal to start auction 2 already at the start of the second period.

3.5. Holding Cost. As we have seen if the holding cost is ‘too low’ then it will never

be optimal to release the 2nd item until the 1st item has been sold. And consequently, the

optimal closed loop policy is same as the open loop policy of sequentially releasing the two

auctions. A necessary and sufficient condition for this to hold, is if the holding cost is so

low that the additional gain for the 2nd item by deferring the release alone compensates for

the additional holding cost.

Proposition 2.17. The optimal policy is to release the 2nd item for auction after the

1st auction is completed if and only if

(2.25) h ≤ min
y1<τ

{g2([x1, y1; p, 0])}

Proof of Proposition 2.17 - (⇐) If (2.25) holds then the additional gain in expected final

price for item 2, by deferring the release one period, alone compensates for the additional

holding cost. Since that gain holds for all periods that the 1st auction is still ongoing and

independently of x1, it is always optimal to release the 2nd auction after the 1st is finished.
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(⇒) If (2.25) does not hold then there exist a period for which the gain in expected final

price for item 2 does not compensate the additional holding cost. Consequently, in order

for it to be optimal to defer the release in that period, there must be some gain in expected

final price of item 1. However, this gain is dependent on x1 and hence the optimal policy

is not independent of x1. Therefore, the optimal policy might not be to release the items

sequentially. ¤

Similarly, if h is ‘too high’ then there will be no incentive to hold the 2nd item any

further since the expected total gain will not compensate for the additional holding cost.

Consequently the optimal closed loop policy will be the same as the open loop policy of

simultaneous release. However, the condition for h to be ‘too high’ is more complicated

than the condition for ‘too low’. For instance, it is not sufficient that h is such that the

best open loop policy is to release them simultaneously to ensure that this is the optimal

closed loop policy (see Example 2 above). Also recall that though it may be optimal to

release the two items simultaneously, it does not necessarily mean that in every period it

is always optimal to release the 2nd item. It is possible that for t = 0 and X1 = p it is

optimal to release the 2nd auction while for t = 1 and X1 = p it would be optimal to defer

the release given that it has not been released (see Example 1 above). A ‘bound’ for h to

be ‘too high ’ and consequently the optimal policy can never be to release the two auctions

simultaneously is if,

VO(1) − VO(0) ≥ 0

The implication on the holding cost h in the above inequality is better illustrated as follows,

(VO(1) + (2τ + 1)h)− (VO(0) + 2τh) ≥ h
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In other words, if the expected gain in revenue by deferring the release one period is greater

than h, then the optimal closed loop policy can never be to release the 2nd auction im-

mediately. Therefore in order for h to be ‘too high’ it has to be large enough that the

open loop policy of simultaneous release is better than the open loop policy of deferring

the release by one period. Note though that this is only a necessary condition, it could be

optimal to defer the release despite that the above inequality does not hold. To determine

the threshold on the holding cost for which the optimal closed loop policy is to release the

two items simultaneously one has to solve the dynamic program given that h is such that

the above inequality holds.

Example 2 (continued) - τ = 3

In the numerical example above we see that if

h ≤ min
y1<τ

{g2([x1, y1; p, 0])} = 47.93− 45.81 = 2.12

then the optimal closed loop policy is to release the 2nd auction after the 1st auction is

over, i.e. if h ≤ 2.12 then p?
t > P for all t < τ . To find the upper limit of h for which the

optimal closed loop policy is to release the two auctions simultaneously we solve for h by

backward induction given that h ≥ (43.69 + 43.40)− (2× 40.76) = 5.57, this results in that

if h ≥ 5.88 then the optimal closed loop policy is to release the 2nd item immediately, i.e. if

h ≥ 5.88 then p?
0 = p = 10. Note too that if, for instance, h = 6.00 then p?

1 = 20 and p?
2 = 30.

3.6. Reserve Price. In most online auctions the seller has the option of imposing a

reserve price vr. If the final price Xi,τ < vr then the seller is not obligated to award the

item. In eBay auctions the value of vr is not disclosed and the only information bidders

have is if Xi,Yi ≥ vr and hence if the item is guaranteed to be awarded. A natural comment

might be why not simply set the starting bid at the reserve price, i.e. set p = vr. Anecdotal
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evidence suggest that the bidding behavior is different for auctions with low starting prices.

The reasoning seems to be that most bidders prefer to participate in ‘active’ auctions, where

the price has reached a level due to bidding activity, rather than auctions where no bidding

has taken place though the price is exactly the same. In order for the seller to protect

himself against the possibility of selling below his reservation value he can impose a reserve

price. However, it is also anecdotally known that having a ‘too high’ reserve price deters

bidding activity. Here the argument is that auctions that are guaranteed to be awarded,

i.e. the reserve price has been met, attracts more bidding competition due to the guarantee

that the highest bidder will win. Bertsimas, Hawkins and Perakis (2003) analyze some of

these issues and determine the optimal start price and reserve price.

In the following discussion we still assume the seller will at most list an item once, but

now with an alternative salvage channel with a guarantee of vr (and not p as before). We

will use the same MDP formulation as before but assume the value of an auction that ends

at or below the reserve price is vr. In other words, the expected final price of an item is

defined as follows, for i = 1, 2,

Discrete prices:

E[Xi,τ |St = ([x1, y1, x2, y2]z)] =

(2.26)

vr

vr∑
q=xi

Pr{Xi,τ = q|Xi,yi = xi, Zt = z, Zt+1 = z′, . . . , Zt+(τ−yi) = z′′}

+
P∑

q=vr+1

Pr{Xi,τ = q|Xi,yi = xi, Zt = z, Zt+1 = z′, . . . , Zt+(τ−yi) = z′′}

Continuous prices:

(2.27) E[Xi,τ |St = ([x1, y1, x2, y2]z)] = vr

∫ vr

xi

fz·z′···z′′
Xτ |Xyi

(q|xi)dq +
∫ P

vr

qfz·z′···z′′
Xτ |Xyi

(q|xi)dq
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Note that the behavior issue regarding increased bidding activity or higher price jumps

due to the reserve price having been met is consistent in the current MDP framework.

The main monotonicity assumption for each transition probability matrix Πz, z = 1, 2, is

Assumption 2.1. This assumption does not exclude experiencing higher price jumps once

the current price has passed a given threshold vr ∈ [p, P ]. As the reader may notice,

introducing a reserve price does not effect the main structural results.

Proposition 2.18. If the auctions are guaranteed to be successful and the seller has

imposed a reserve price vr, and the value of an auction is defined according to (2.26) or

(2.27), then Proposition 2.11, Theorem 2.12, and Corollary 2.13 holds.

Proof of Proposition 2.18 - see Appendix A.

3.7. Dynamic Price Transition Probabilities. We have assumed that the price

dynamics, i.e. transition probabilities, are stationary with respect to calender time t and

elapsed auction time Y . There is, however, anecdotal and statistical evidence to suggest the

opposite. For example, anecdotal evidence suggest that eBay auction activity for certain

products vary between the weekdays, as well as between weekdays and weekends. Similarly

it is well established that the bidding activity is much higher toward the end of an auction.

This phenomena includes the well known bidding strategy sniping. Papers that analyze the

phenomena of dynamic bid arrivals with respect to Y , and its implication include Roth and

Ockenfels (2002) and Shmueli, Russo and Wolfgang (2004).

For ease of tractability and we ignore the issue of non-stationarity with respect to

calender time t. Instead we focus on the implication of having non-stationary transition

probabilities with respect to the elapsed auction time. That is when Πz or F z changes as

the auction progresses. Let Πz,y be the transition probability matrix and let F z,y be the
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transition distribution function, for an individual item when there are z auctions underway

and the auction has elapsed for y periods. For instance, suppose prices are discrete and the

price dynamics are the same for all periods except the last one, i.e. Πz,0 = Πz,1 = . . . =

Πz,τ−2 6= Πz,τ−1. Even with dynamic transition probabilities, for the guaranteed successful

auction case, the main structural results still hold which we summarize in the following

proposition.

Proposition 2.19. For the single listing case, if for y = 0, 1, . . . , τ − 1 and z = 1, 2,

Πz,y and F z,y supports Assumption 2.1, and the relation between Π1,y and Π2,y, and between

F 1,y and F 2,y supports Assumption 2.2 and 2.3, then Propositions 2.11, Theorem 2.12, and

Corollary 2.13 still hold.

Proof of Proposition 2.19 - None of the proofs involve arguments across different elapsed

auction periods. Each argument is always with respect to a given elapsed auction period.

Therefore including a subscript to indicate the elapsed auction period, on the transition

probabilities or transition distribution functions does not impact the validity of any of the

arguments in any of the proofs. Since the three assumptions are still valid for each elapsed

auction period transition probability, there are no changes to the above results. ¤

4. Possibly Unsuccessful Auction - Multiple Re-Listing

We now consider the case when there is a positive probability an auction is unsuccess-

ful, meaning that there is some chance an auction receives no bids, and that the seller does

not have any alternative salvage channel. For discrete prices this means that π0,0|z > 0,

z = 1, 2, while for continuous prices there is some point mass for having a zero price

transition. An example of a distribution for continuous prices with this property is the

‘zero-inflated gamma’ distribution that will be discussed in Chapter 4. Reasons why an

auction may not receive any bids are that the seller perhaps posted a too high starting
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price or that the items simply do not generate enough interest. For instance, a quick search

on the completed listing of the eBay stores Pokerstores (poker chips), The Sharper Image

(consumer electronics), uptempoair (Nike sportswear), GlobalGolfUSA (used golf clubs) re-

veal that a large quantity of their listings do not attract a single bid. In contrast, to the

6,000 auctions from Dell Financial Services’s eBay store we have data on, where not a sin-

gle auction with a starting price of $.99 was unsuccessful. Bertsimas, Hawkins and Perakis

(2003) discuss and provide empirical evidence regarding optimal control of starting price

and reserve price. For our purposes, even if the sample of companies listed above are doing

something wrong in their administration of auction control parameters, we include this sec-

tion for mathematical completeness. And it turns out that the managerial consequence is

both important and interesting, since unlike the single listing case the optimal policy need

not be a control limit policy.

By the positive expected profit assumption, even though the seller at the end of an

unsuccessful auction has incurred a total cost of τh, it is still optimal to try to auction

the item once again. Therefore the seller has to decide when to re-list items that remain

from previous unsuccessful auctions. Since the items are identical we can classify the item

that is waiting to be released as item 2, and the item which is currently up for auction as

item 1. That is, the ongoing auction will be labeled as auction 1, and the auction that we

are deciding whether to start or not as auction 2. This means that if both auctions are

underway, auction 2 was started after auction 1, and auction 1 is unsuccessful, then auction

2 immediately becomes auction 1. Therefore Y1 ≥ Y2 and the system state transitions may

form loops. Specifically it may loop back to the initial starting state. See Figure 2.4 in

Section 2.1. Consequently the time when an auction is successfully completed is not known.

To address this issue, we formulate the problem as an expected total-reward MDP [21, Ch.7].

However, the problem involves some subtleties such that neither the properties of positive or
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negative dynamic programs directly apply. In particular, there need not be unique solutions

to the optimality equations, and policy or value iteration need not converge without further

assumptions [21, Ch.7], [3]. Our model has the following relevant structural properties,

(1) The state space and actions are finite.

(2) The expected one-period reward in each state is bounded above and below.

(3) There is a single absorbing state ∆ under all policies.

The third property holds due to the vigilant seller assumption, without which there would

be an additional absorbing state, ([0, 0; 0, 0], 0), with total reward of negative infinity, re-

sulting from the policy of never releasing an item for auction. Given these three properties,

the problem can be converted to a negative dynamic problem with the following transfor-

mation. In each transient state subtract 2P from the one-period reward. As a consequence

all rewards in the transformed problem are less than or equal to zero [21, Proof of Theo-

rem 8.10.1.]. Therefore, optimal solutions exists, and value iteration and policy iteration

converges (though a modification to policy iteration may be required [21, Ch.10.4.2]). Al-

ternatively Assumption 1 and 2 of Bertsekas and Tsitsiklis (1991) holds (even without the

vigilant seller assumption).

For simplicity of notation in the remaining of this section we only consider the case of

discrete prices. All results presented will hold for continuous prices as well.

4.1. Auction Release Policy. For the multiple re-listing (infinite horizon) case a

Markov deterministic policy γ is defined by,

γ = (γ0(s), γ1(s), γ2(s), . . .) γt(s) ∈ {0, 1},∀s ∈ S, t ≥ 0

If γt(s) = γt′(s), for all t 6= t′, and for a given s ∈ S, the policy is referred to as stationary.

In the multiple re-listing case, we only need to consider stationary policies and therefore
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use the notation γ(s), and interchangeable refer to it as both the decision rule and policy

[21, Theorem 7.3.6.], [3, Proposition 2]. In the multiple re-listing case, open loop policies

do not apply. Instead we define two types of closed loop policies. We refer to a policy

that only depends on Y1 as time-based closed loop, and policies that depends on (X1, Y1)

as price-based closed loop. The reason we need this distinction is because, unlike the single

listing case, it is necessary to consider decisions even after the first decision to release item

2 has been made. The reason for this is that auctions may get out of ‘sync’ with each other.

We illustrate with an example, suppose τ = 5 and the seller decides to start the second

auction 2 periods after the first. And suppose further that the first auction is unsuccessful,

which means that the seller must now decide whether, after the second auction has elapsed

three periods, to re-list item 1, and if the decision is not to release what to do when the

second auction has elapsed four periods. This reasoning generalizes for any τ , and any

policy which specify not to release if Y1 < yr and release if Y1 = yr, where yr < τ/2, must

also specify what to do when Y1 ≥ τ − yr. For policies defined such that the first release

should occur when Y1 = yr > τ/2, the issue of what decision to make if the first auction is

unsuccessful has already been addressed. In other words, though there are 2τ+1 time-based

closed loop policies, many are infeasible. For example, if τ = 5 then the policy to only

release item 2 after auction 1 has elapsed 1 or 3 periods, is basically the same as the policy

to only release item 2 after auction 1 has elapsed 1 period, i.e. if auction 2 is to be released

when auction 1 has elapsed for 1 period, then there will never be an opportunity to release

item 2 after auction 1 has elapsed 3 periods.

4.2. Optimality Equation. Before analyzing the optimality equations for two items

we begin by only considering one item. Let the pair of random variables (X, Y ) denote

the state of an auction, where X ∈ {0, p, p + k, . . . , P} and Y ∈ {0, 1, . . . , τ} or δ, and

E[Xτ |Xy = x] denotes the expected final price given X = x and Y = y. Let v(x, y) denote
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the value (total expected future reward) given the system is in state (x, y). By the positive

expected profit and vigilant seller assumptions, the item should be immediately re-listed

following an unsuccessful auction. Therefore the value of an item in state (x, y) is,

v(x, y) =





−h(τ − y) + E[Xτ |Xy = x] + (πx,0|1)(π0,0|1)(τ−(y+1))v(0, 0) y 6= δ

0 y = δ

Note that πx,0|1 = 0 for all x > 0, and that we are not considering discounting. Consequently

the expected value of an item continuously re-listed until the auction is successful is,

(2.28) v(0, 0) =
−hτ + E[Xτ |X0 = 0]

1− (π0,0|1)τ

We now return to the two item case. In total there are 19 different cases for which the

optimality equation needs to be evaluated. These appear in Table 2.6 below. Note that

there are only non-trivial decisions in those periods for which y1 < τ and y2 = 0, namely

cases 16, 17, and 19. Furthermore, note that under cases 13, 15 and 17 there is a positive

probability of looping back to the initial state ([0, 0; 0, 0], 1). However, due to the positive

expected profit assumption, we have that π0,0|z < 1, z = 1, 2, and therefore with probability

one the system state will eventually reach the recurrent state ∆ = ([∆1, ∆2], 0). Recall that

∆i = (Xi, δ) is the state of item i, i = 1, 2, when it has been awarded and hence will not

incur any additional cost or generate any further revenue. From the discussion above, we

note that any solution satisfying the optimality equations in Table 2.6 is an optimal solution

[21, Proposition 7.3.4], [3, Proposition 2]. Though the optimal policy need in general not be

a control limit policy (see the example below), under some of the cases the optimal policy

is a control limit.

4.3. Structural Results. Similarly to the single listing case the optimality equations

can be simplified and explicitly evaluated for some of the cases.
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Case Item 1 Item 2
y1 y2 z V ([x1, y1; x2, y2], z)

1) δ δ 0 = 0

2) δ τ 0 = x2 + V (∆)

δ τ − 1 1
3) x2 > 0 = −h +

∑P
r=x2

V ([x1, δ; r, τ ], 0)πx2,r|1
4) x2 = 0 = −h +

∑P
r=p V ([x1, δ; r, τ ], 0)π0,r|1 + V ([x1, δ; 0, 0], 1)π0,0|1

5) δ < τ − 1 1 = −h +
∑P

r=x2
V ([x1, δ; r, y2 + 1], 1)πx2,r|1

6) τ τ 0 = x1 + x2 + V (∆)

τ τ − 1 1
7) x2 > 0 = x1 − h +

∑P
r=x2

V ([x1, δ; r, τ ], 0)πx2,r|1
8) x2 = 0 = x1 − h +

∑P
r=p V ([x1, δ; r, τ ], 0)π0,r|1 + V ([x1, δ; 0, 0], 1)π0,0|1

9) τ < τ − 1 1 = x1 − h +
∑P

r=x2
V ([x1, δ; r, y2 + 1], 1)πx2,r|1

τ − 1 τ − 1 2
10) x1 > 0 x2 > 0 = −2h +

∑P
q=x1

∑P
r=x2

V ([q, τ ; r, τ ], 0)πx1,q|2πx2,r|2
11) x1 > 0 x2 = 0 = −2h +

∑P
q=x1

(
∑P

r=p V ([q, τ ; r, τ ], 0)π0,r|2 + π0,0|2V ([q, τ ; 0, 0], 1))πx1,q|2
12) x1 = 0 x2 > 0 = −2h +

∑P
r=x2

(
∑P

q=p V ([q, τ ; r, τ ], 0)π0,q|2 + π0,0|2V ([r, τ ; 0, 0], 1))πx2,r|2
13) x1 = 0 x2 = 0 = −2h +

∑P
q=p

∑P
r=p V ([q, τ ; r, τ ], 0)π0,q|2π0,r|2 + π0,0|2π0,0|2V ([0, 0; 0, 0], 1)

+
∑P

q=p V ([q, τ ; 0, 0], 1)π0,q|2π0,0|2 +
∑P

r=p V ([r, τ ; 0, 0], 1)π0,0|2π0,r|2

τ − 1 < τ − 1 2
14) x1 > 0 = −2h +

∑P
q=x1

∑P
r=x2

V ([q, τ ; r, y2 + 1], 1)πx1,q|2πx2,r|2
15) x1 = 0 = −2h +

∑P
r=x2

(
∑P

q=p V ([q, τ ; r, y2 + 1], 1)π0,q|2 + π0,0|2V ([r, y2 + 1; 0, 0], 1))πx2,r|2

τ − 1 0 1
16) x1 > 0 = −2h + max{∑P

q=x1
V ([q, τ ; 0, 0], 1)πx1,q|1 ,

∑P
q=x1

∑P
r=0 V ([q, τ ; r, 1], 1)πx1,q|2π0,r|2}

17) x1 = 0 = −2h + max{∑P
q=p V ([q, τ ; 0, 0], 1)π0,q|1 + π0,0|1V ([0, 0; 0, 0], 1) ,∑P

r=0(
∑P

q=p V ([q, τ ; r, 1], 1)πp,q|2 + π0,0|2V ([r, 1; 0, 0], 1))π0,r|2}

18) < τ − 1 < τ − 1 2 = −2h +
∑P

q=x1

∑P
r=x2

V ([q, y1 + 1; r, y2 + 1], 2)πx1,q|2πx2,r|2

19) < τ − 1 0 1 = −2h + max{∑P
q=x1

V ([q, y1 + 1; 0, 0], 1)πx1,q|1 ,∑P
q=x1

∑P
r=0 V ([q, y1 + 1; r, 1], 2)πx1,q|2π0,r|2}

Table 2.6. Optimality equations for multiple re-listing case (infinte plan-
ning horizon)

Lemma 2.20. If we assume a vigilant seller and that the first auction has received a bid,

then the value functions for those states can be evaluated as follows,
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(1) If x1 > 0, y1 = τ, δ and z = 0, 1, or x1 > 0, y1, y2 < τ and z = 2, then

V ([x1, y1;x2, y2], z) = R1([x1, y1; x2, y2], z)

(2) If x1 > 0, y1 < τ, y2 = 0, z = 1 then

V ([x1, y1;x2, y2], z) = max{−2h +
P∑

q=x1

V ([q, y1 + 1; 0, 0], 1)πx1,q|1 , R1([x1, y1; 0, 0], 2)}

where R1(·) represents the value of having both items released and a positive price in the

first auction, for x1 > 0, and z = 0, 1, 2,

R1(S = ([x1, y1;x2, y2], z)) =− h(2τ − y1 − y2) + E[X1,τ |S = ([x1, y1; x2, y2], z)]

+ E[X2,τ |S = ([x1, y1;x2, y2], z)] + (πx2,0|z)(π0,0|z)τ−y1−1(π0,0|1)y1−y2v(0, 0)

where E[Xi,τ |S = ([x1, y1; x2, y2], z)] is defined by (2.17) and v(0, 0) is defined by (2.28).

Proof of Lemma 2.20 - see Appendix A.

The implication of Lemma 2.20 is that once a bid arrives in the first auction, there are

no loops back to the initial state. Therefore, the number of auctions in each of the periods

an auction is underway and the expected final price of each auction can be determined.

Hence the problem is reduced to the case of guaranteed successful auctions. Consequently

the optimal decision when X1 > 0 and Y2 = 0 follows a control limit policy. This result

also holds when both auctions are underway but the second auction has received a bid as

summarized in the following result.

Lemma 2.21. If we assume a vigilant seller and that both auctions are underway but

only the second auction has received a bid, then the value functions can be evaluated as

follows, for y1, y2 < τ, x1 = 0, x2 > 0, z = 2,

V ([x1, y1; x2, y2], z) = R2([x1, y1; x2, y2], 2)
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where R2(·) represents the value of having both auctions underway and a positive current

price in the second auction, for y1, y2 < τ , x1 = 0, x2 > 0, and z = 2,

R2(S = ([x1, y1;x2, y2], z)) =− 2h(τ − y1) + E[X1,τ |S = ([x1, y1; x2, y2], z)]

+ (1− (πx1,0|z)τ−y1)(−h(y1 − y2) + E[X2,τ |S = ([x1, y1; x2, y2], z)])

+ (πx1,0|z)τ−y1E[V (S′)|S = ([x1, y1;x2, y2], z)]

where S′ = ([X2, y2 + τ − y1; 0, 0], 1), X2 > 0, V (S′) is calculated according to the second

case of Lemma 2.20 and the conditional expectation is with respect to X2, and E[Xi,τ |S = s]

is defined by (2.17).

Proof of Lemma 2.21 - see Appendix A.

The implication of Lemma 2.21 is that the possible decision to re-list item 1, which

happens with probability (π0,0|2)τ−t1 , follows a control limit policy. For all other cases, in

order to determine the optimal solution and policy, one has to solve the optimality equations

either using value iteration or policy iteration. Below the resulting 8 cases of the optimality

equation are summarized. The value function for those states where a positive bid has

arrived have been separated from the states where neither auction has received a bid. The

issue with the multiple re-listing case is exactly when no bid has arrived and the potential

for looping back to the starting state exist.

(1) y1 = τ, δ, z = 0, 1, or y1, y2 < τ, x1 > 0, z = 2

V ([x1, y1; x2, y2], z) =R1([x1, y1; x2, y2], z)

(2) y1 < τ, y2 = 0, x1 > 0, z = 1,

V ([x1, y1;x2, y2], z) = max{−2h +
P∑

q=x1

V ([q, y1 + 1; 0, 0], 1)πx1,q|1 , R1([x1, y1; 0, 0], 2)}
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(3) y1, y2 < τ, x1 = 0, x2 > 0, z = 2

V ([x1, y1; x2, y2], z) = R2([0, y1; x2, y2], 2)

(4) y1, y2 = τ − 1, x1, x2 = 0, z = 2,

V ([x1, y1; x2, y2], z) =− 2h +
P∑

q=p

P∑
r=p

R1([q, τ ; r, τ ], 0)π0,q|2π0,r|2 +
P∑

q=p

R1([q, τ ; 0, 0], 1)π0,q|2π0,0|2

+
P∑

r=p

R1([r, τ ; 0, 0], 1)π0,0|2π0,r|2 + (π0,0|2)2V ([0, 0; 0, 0], 1)

(5) y1 = τ − 1, y2 < τ − 1, x1 = x2 = 0, z = 2,

V ([x1, y1; x2, y2], z) =− 2h +
P∑

q=p

P∑

r=0

R1([q, τ ; r, y2 + 1], 1)π0,q|2π0,r|2 +
P∑

r=p

V ([r, y2 + 1; 0, 0], 1)π0,0|2π0,r|2

+ (π0,0|2)2V ([0, y2 + 1; 0, 0], 1)

(6) y1 = τ − 1, y2 = 0, x1 = 0, z = 1,

V ([x1, y1;x2, y2], z) =− 2h + max{
P∑

q=p

V ([q, τ ; 0, 0], 1)π0,q|1 + π0,0|1V ([0, 0; 0, 0], 1) ,

P∑
q=p

P∑

r=0

R1([q, τ ; r, 1], 1)πp,q|2π0,r|2 +
P∑

r=p

V ([r, 1; 0, 0], 1)π0,0|2π0,r|2

+ (π0,0|2)2V ([0, 1; 0, 0], 1) }

(7) y1 < τ − 1, y2 < τ − 1, x1 = x2 = 0, z = 2,

V ([x1, y1; x2, y2], z) =− 2h +
P∑

q=p

P∑

r=0

R1([q, y1 + 1; r, y2 + 1], 2)π0,q|2π0,r|2

+
P∑

r=p

R2([0, y1 + 1; r, y2 + 1], 2)π0,0|2π0,r|2 + V ([0, y1 + 1; 0, y2 + 1], 2)π0,0|2π0,0|2
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(8) y1 < τ − 1, y2 = 0, x1 = 0, z = 1,

V ([x1, y1; x2, y2], z) =− 2h + max{
P∑

q=p

V ([q, y1 + 1; 0, 0], 1)πx1,q|1 + V ([0, y1 + 1; 0, 0], 1)π0,0|1 ,

P∑
q=p

P∑

r=0

R1([q, y1 + 1; r, 1], 2)π0,q|2π0,r|2 +
P∑

r=p

R2([0, y1 + 1; r, 1], 1)π0,0|2π0,r|2

+ π0,0|2π0,0|2V ([0, y1 + 1; 0, 1], 2) }

4.4. Numerical Example. Next we illustrate this with a numerical example. This

example shows that the optimal policy in the multiple re-listing case might not be a thresh-

old policy. Let prices be discrete, τ = 2, p = k = 10, P = 30 and the transition probability

matrices be defined as follows,

Π1 =




0 10 20 30

0 .5 .2 .2 .1

10 0 .6 .3 .1

20 0 0 .6 .4

30 0 0 0 1




Π2 =




0 10 20 30

0 .6 .2 .2 0

10 0 .7 .3 0

20 0 0 .65 .35

30 0 0 0 1




In Table 2.7 below the optimal policy, derived using policy iteration with V (∆) = 0,

for various holding costs is shown. Note in particular that there are instances when it may

be optimal to release the second item when X1 = 0 yet defer if X1 > 0. For example, if

h = 2.75 and the first auction elapsed one period, Y1 = 1, then we see that it is optimal to

release the item 2 if X1 = 0 (or X1 ≥ $20), but optimal to defer the release if X1 = $10.

Note that this scenario can occur since at the start of the first auction it is optimal to

defer the release of the item 2 and π0,0|1 > 0, but that this can not occur if, for instance,

h = 3, since then the optimal decision at the start of the first auction is to release item

2, and hence there is no decision to be made when Y1 = 1. If, however, both auctions are
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unsuccessful, which happens with probability (.6)2∗2 = .1296 then the problem is back to

its original state at which it was optimal to release both items.

Y1 = 0 Y1 = 1
X1 = 0 X1 = 0 X1 = 10 X1 = 20 X1 = 30

3.6 ≤ h Release Release Release Release Release
2.9 ≤ h ≤ 3.5 Release Release Defer Release Release
2.7 ≤ h ≤ 2.8 Defer Release Defer Release Release
1.9 ≤ h ≤ 2.6 Defer Defer Defer Release Release
1.3 ≤ h ≤ 1.8 Defer Defer Defer Defer Release

h ≤ 1.2 Defer Defer Defer Defer Defer
Table 2.7. Optimal decision as a function of various holding costs for nu-
merical example.

5. Discussion

This chapter has analyzed the problem of strategically releasing items for auction in

order to maximize profit. The objective has been to provide a framework for modeling the

dynamics of competing auctions and derive structural properties on the optimal auction

release policy. The two main underlying assumptions that formed the basis for our analysis

were: 1) each period an item remains unsold a holding cost is incurred, and 2) competing

auctions ‘cannibalize’ each other and decrease the expected final price of each auction. Two

scenarios were analyzed - guaranteed successful auctions and possibly unsuccessful auctions.

For the first case the problem reduces to a finite horizon MDP, while the second case results

in an infinite horizon negative dynamic program. Given certain structural assumptions on

the transition probabilities, we were able to show that in the first case the optimal release

policy is a control limit policy in the current price of the ongoing auction. Furthermore, we

showed that the control limit is decreasing in the holding cost. However, for the case when

there is a positive probability that an auction may be unsuccessful, the optimal policy does

not have to be a control limit policy. The problem that arises is that the optimal decision

when the ongoing auction has not received any bids may or may not be consistent with a
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control limit policy.

The main managerial insight and contribution of this chapter is that there is a significant

value of understanding the special dynamics of online auctions, and that by using a price

adaptive or closed loop policy a seller can improve his expected total profit. Because online

auctions are rather inexpensive to conduct and administer, they are becoming more and

more popular as alternative salvage channels. In industries where the value of ‘old’ items

depreciates quickly, such as consumer electronics or fashion goods, being able to optimally

sell excess inventory quickly can be of great importance. In addition, even though the gain

on each individual item may be small, the overall impact can be quite substantial as the

size of the inventory grows.

In the concluding Chapter 6, an overview and some insights regarding the two most

obvious and perhaps important extension are provided. Namely the general N -item case

and the case when price-transitions also depend on the price of the competing auction.

Other extensions, that will not be covered in this thesis, include continuous time decision

making and incorporating the decision regarding other auction parameters. In particular,

the decision regarding how long an auction should last. That is, when should an auction

be started and for how long should it last.
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CHAPTER 3

Fixed Bidding Strategies: The Two Auctions Case

1. Objective

In the previous chapter the analysis focused on the within period price-transitions of

auctions. We assumed auctions evolve according to a specified stochastic process, and that

within a period, transitions of price follow a given probability distribution. Furthermore,

structural properties on the distribution function were provided such that the optimal re-

lease policy is of a threshold type. In the succeeding Chapter 4, we describe a statistical

model for analyzing the within period price-transitions based on the Dell auction data. The

model there is based on that within a period, price-increments follow a zero-inflated gamma

distribution. Chapter 4 also includes an empirical validation of the structural results of

Chapter 2, based on data from 4,000 eBay auctions of Dell Financial Services (DFS). Nei-

ther Chapter 2 or 4 includes any specifics regarding what or how individual bidders behave.

Since this approach is different from the traditional auction theory framework, the reader

may be interested to know what underlying individual bidding behavior would result in

stochastic processes such as the ones discussed. In particular, what game theoretic model

might apply, and what would the within period price-transition probability distribution look

like at a bid strategy equilibrium. In other words, does there exists a bid strategy (Bayesian

Nash) equilibrium for a given set of auction rules and bidder attributes? And what is the

resulting within period price-transition distribution function?

To the disappointment of some, this chapter will not address these questions. Instead we

analyze two fixed bidding strategies and derive the cumulative distribution function (CDF)
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of the within period price-transitions. That is, the objective is not to provide an equilib-

rium analysis on the individual bidding strategies, but to discuss the resulting within period

price-transitions from two specific bidding strategies: 1) bid the minimum increment above

the lowest priced auction, 2) bid truthfully your valuation in the lowest priced auction. The

former is the bid strategy proposed in Peters and Severinov (2006), while the latter is an

extension of the bid strategy proposed in Vickrey (1961). The truthful bidding strategy is

also what eBay promotes bidders to do.1 More details and discussion follow. In other words,

the objective is to illustrate how the CDF for the within period price-transitions can be

derived from the individual bidding behavior. Depending on the auction rules, assumptions

of how bidders arrive and their possible strategies, the transition probabilities might be very

difficult to derive. For simple bidding strategies and/or simple properties due to certain

assumptions, closed form solutions to the CDF may exist. The first strategy we analyze

provides an example of this. For more complicated situations, such as the second strategy

analyzed, upper and lower bounds on the CDF can be given. For even more complicated

situations, one may have to revert to simulation in order to estimate the CDF.

One reason why the CDF of the within period price-transitions is of interest, is that

it enables us to model how auctions progress, and consequently to make better informed

decisions during an auction. For instance, a seller might be interested to know whether or

not to start another auction, while a bidder might be interested to know if he should place

a bid, and if so how much to bid. By understanding how auctions evolve both sellers and

bidders are able to make better decisions. A second reason why we are interested in the

CDF of the within period price-transitions, is that it provides a mechanism for analyzing the

variation in final price of online auctions. In Figure 3.1 the distribution of the final price for

six products auctioned by DFS on eBay from February 2005 to January 2007 are shown. In

1http://pages.ebay.com/help/buy/buying-ov.html
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Figure 3.1. Distribution of final price for the six products analyzed. D1 and L1
represent a product line, while D3, D4, L4, and L5 represent a specific product.
More information and descriptive statistics is provided in Chapter 1 and 5

each box-plot the lower and upper edge of the box represents the 25th and 75th percentiles.

The line inside the box represents the median final price. The dashed lines (‘whiskers’) from

each box, are drawn to the observation furthest away but within a factor of 1.5×IQR, from

the edge of the box. The IQR is the inner quartile range. Circles outside the whiskers are

observations, which could be classified as extreme and potentially outliers. The notches

inside the box indicates a range around the median. An informal statistical test if the

median from two box-plots are different, is if the notches overlap. We note that for all six

products the final price exhibits great variation. A natural question is: what drives this ap-

parent variation? Furthermore, is it possible to characterize the conditional distribution of

the final price given that an auction has elapsed for some time and is currently at some price.
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The traditional auction theory answer is that the variation in final price is a direct re-

sult of the variation in bidders’ valuation. For instance, in a single sealed-bid second-price

auction, where bidders follow the Nash equilibrium strategy of bidding truthfully, the dis-

tribution of the final price follows the order statistics of the bidder with the second highest

valuation [14, p.15]. In the online auction setting, there would seem to be at least one more

source of variation. Namely, the number of bidders. A key difference between traditional

auctions and online auctions, is that in the former the number of bidders is fixed, while

in the latter the number of bidders varies between auctions and over time. This chapter

describes a method for incorporating the stochastic number of bidders into the CDF of the

within period price-transition as well as final price.

Though there are many papers that analyze the distribution regarding the final price of

auctions, there are few that focus on the progression of prices or how auctions evolve. One

paper that explicitly model the progression is Segev, Beam and Shantikumar (2001). They

consider a single auction and model price as a Markov chain where the ‘active’ bidders form

a queue. Their model is based on a first-price auction format, bidders arriving according to

a Poisson process, and a bidding strategy identical to the minimal bid increment strategy.

This chapter differs from their paper in that we consider a second-price auction format, and

analyze the progression of price in two ongoing auctions.

Overview of Chapter 3. The chapter is organized as follows. In Section 2 an overview

of the auction rules, bidders’ valuation and arrival process is provided. Section 3 and 4 dis-

cuss the two bidding strategies. Section 5 summarizes the findings.
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1.1. Notation. The notation in this chapter will be slightly different than the one

used in the previous chapter. In Chapter 2, elapsed auction time was modeled as a discrete

random variable and represented by Y . In contrast, we now define elapsed auction time as

continuous and denote it by t. Suppose two auctions are underway simultaneously, then

we index auctions by i, and define Xi,ti as the current price of auction i that has elapsed

ti time units, i = 1, 2. The objective of the chapter is to derive the conditional cumulative

distribution function of the price in auction i at the end of a time interval [t, t + ∆t],

(3.1) F z
Xi,ti+∆t|Xi,ti

(q|xi) = Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, Z[t,t+∆t] = z} i, z = 1, 2

where ∆t is the length of the interval and Z[t,t+∆t] is the number of ongoing auctions during

the time interval (including the one under consideration). Similar to Chapter 2, this chapter

only considers the case of at most two ongoing auctions. Though the results for the first

bidding strategy extends to the general N auction case, the notation becomes more convo-

luted with no substantial gain. For the second bidding strategy the extension to general N

auctions becomes a lot more complicated. In order to simplify notation we write F z
i (q|xi)

instead of F z
Xi,ti+∆t|Xi,ti+∆t

(q|xi), and Z∆t instead of Z[t,t+∆t].

2. Auction Rules and Bidder Attributes

We consider a simplified version of the eBay auction format, namely a second-price

auction format. That is, the highest bidder wins but only has to pay the amount of the

second highest bid, or in the case of only one bidder the starting price p. We do not include

a reserve price, and although a minimum bid increment could be included, omitting it

simplifies the notation. Therefore, suppose an auction has elapsed for t time units, then the

price of the auction, Xt, is either: 1) the second highest bid placed so far given that two or

more bids have been placed, 2) the starting price p given that only one bid has been placed

so far, or 3) 0 if no bids have arrived. Let B be the bid amount placed by a bidder, and

104



B
(j)
t be the jth highest bid amount so far, e.g. B

(2)
t is the second highest bid placed in an

auction that has elapsed t time units. The price of an auction that has elapsed t time units

is,

(3.2) Xt =





0 no bid has been placed

p one bid has been placed

B
(2)
t at least two bids have been placed

If two bidders bid the same amount then the bidder that placed his bid first becomes the

high bidder. We define Xi,ti as the price of auction i after it has elapsed for ti time units,

and Hi,ti as the hidden or censored value of the highest bid, i = 1, 2. Both bidders and

the seller can only observe Xi,ti , i = 1, 2. The state of the two auctions is defined by

[X1,t1 ,H1,t1 , t1; X2,t2 ,H2,t2 , t2]. For example, suppose elapsed auction time is measured in

hours, then [15, 31.01, 36; 5, 7, 12] denotes the system state where auction 1 has elapsed for

36 hours, is currently priced at $15 (the second highest bid placed so far in that auction),

and has a current high-bid of $31.01, and auction 2 has elapsed for 12 hours, current price

of $5, and a current high-bid of $7.

We assume the seller does not keep track of who is currently the high-bidder or who

the bidders have been. The information regarding who the high-bidder is, or rather if

there has been a change of the high-bidder, does provide additional information that can

be used to further derive information regarding the size of the high-bid in the two auctions.

The derivations in Section 3 and 4 are strictly with respect to the current price of an auction.

Bidders have unit demand and private valuation, V , which is independent and identically

distributed across bidders and over time, with support on the interval [p, P ]. In other words,

p is both the starting price of each auction and the lower bound of the valuation. We define
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GV (v) as the distribution function of the valuation, for v ∈ <,

(3.3) GV (v) = Pr{V ≤ v}

Given that a bidder’s valuation exceeds a threshold r, we define the conditional cumu-

lative distribution function of a bidder’s valuation by GV (v|r), for v ∈ <,

(3.4) GV (v|r) = Pr{V ≤ v|V ≥ r} =
GV (v)−GV (r)

1−GV (r)

The conditional CDF provides information regarding the amount of the censored high-

bid, and is required to characterize the probability distribution of the price-transitions. The

density function associated with each distribution function is symbolized by a lower case

letter,

gV (v) =
∂

∂v
GV (v)

gV (v|r) =
∂

∂v
GV (v|r) =

∂

∂v

GV (v)−GV (r)
1−GV (r)

=
gV (v)

1−GV (r)

For simplicity of notation we omit the subscript V and write G(v) (g(v)) and G(v|r)

(g(v|r)) instead of GV (v) (gV (v)) respectively GV (v|r) (gV (v|r)). We define V(j) to be the

jth order statistic of the valuation of bidders that have arrived so far. For instance, the

random variable V(3) denotes the third highest valuation of the bidders that have arrived.

Next we describe the sequence of events depicted in Figure 3.2.

The sequence of events are as follows. Suppose at time t two auctions are underway,

the system state is ([x1, h1, t1; x2, h2, t2], 2), and a bidder with valuation V = v arrives.

The bidder can only observe the price and elapsed time of the two auctions, i.e. he only

observes x1, t1, x2, t2. If the lowest priced auction is above his valuation then he leaves and

never returns, i.e. if v ≤ min{x1, x2}. If, on the other hand, his valuation is not below

the lowest priced auction then he will bid in a given auction; the bid is prescribed by the
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time

Auction 1

start end

Auction 2

start end

t

t1

t2

t′

t′1

t′2

t + ∆t

t1 + ∆t

t2 + ∆t

Figure 3.2. Time-line for the sequence of bidding events. At time t a bidder
with valuation V = v arrives and observes x1, t1, x2, t2. If v ≤ min{x1, x2}, then
the bidder leaves, while if v > min{x1, x2}, then he will place a bid according to a
fixed bidding strategy. The bidder will remain at the auction site and keep bidding
until he either wins an auction or the price in both auctions exceed his valuation v.
At time t′ another bidder, with valuation V = v′, arrives and observes x′1, t

′
1, x

′
2, t

′
2.

He too will follow the same fixed bid strategy, and remain at the auction site until
either he wins an auction or both auctions exceed his valuation v′. The objective
of this chapter is to characterize the prices at time t + ∆t when the system state is
([X1, U1, t1 + ∆t; X2, U2, t2 + ∆t], 2), given an initial state ([x1, U1, t1; x2, U2, t2], 2)
at time t.

specific bidding strategy. A bid strategy is a function that specifies the auction and amount

a bidder should bid upon arriving at the auction site. We define Bi as the amount a bidder

bids in auction i, i = 1, 2, and B = (B1, B2) as the pair of bid amounts for the two auctions.

If a bidder chooses not to place a bid in auction i then Bi = 0, i = 1, 2. We assume no

bidder will place a positive bid amount above P or below p, i.e. Bi ∈ {0} ∪ [p, P ], i = 1, 2.

Given that bidders have unit demand, bidders will not place positive bids in both auctions

at the same time. The two bidding strategies discussed in this chapter only depend on how

many auctions are underway, the price of the auctions, and the valuation of the bidder,

(3.5) B : {1, 2}︸ ︷︷ ︸
Z

×({0} ∪ [p, P ]︸ ︷︷ ︸
X1

, {0} ∪ [p, P ]︸ ︷︷ ︸
X2

)× [p, P ]︸ ︷︷ ︸
V

−→ ({0} ∪ [p, P ]︸ ︷︷ ︸
B1

, {0} ∪ [p, P ]︸ ︷︷ ︸
B2

)

Additional factors that make the bidding strategy more realistic include the elapsed time

of the auctions, risk aversion, and bid history. In Chapter 5 an empirical analysis of 44,000

individual bids placed in 4,000 desktop and laptop auctions of DFS is provided. The ob-

jective there is to characterize the bid-increment and explore the relationship to various

factors. For instance, how does the price of an auction and/or the price of a competing
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auction affect the mean bid-increment.

The bidder will remain at the auction site and keep bidding until he either wins an auc-

tion or the lowest priced auction exceeds his valuation v. That is, suppose the bidder placed

a bid in auction 1, but that the amount he bid did not make him the current high-bidder,

then he will again observe the prices of both auctions and follow the same logic once more,

i.e. if the lowest priced auction exceeds v then he leaves, else he bids according to the given

bid strategy. If a bidder does become the high-bidder then he remains at the auction site and

observes the progression of the auctions. If at some point he is outbid, then he observes the

prices in both auctions, and by the same logic as before, will leave if v is less than the lowest

priced auction, and else bid according to the fixed bidding strategy. That a bidder ‘remains

at the auction site’ does not necessarily mean that he is continuously observing the auction

site. For instance, he could go about his affairs and when another bidder places a bid he

receives notification. On eBay, for instance, you receive an email that you have been outbid.

To illustrate, label the bidder arriving at time t with valuation v as Bidder 1. Sup-

pose that at time t, Bidder 1 become the high-bidder in auction 1, and that the former

high-bidder (the bidder that Bidder 1 replaced) decided to leave. Furthermore, suppose

that at time t′ a second bidder (Bidder 2) with valuation V = v′ arrives. Bidder 2 ob-

serves x′1, t
′
1, x

′
2, t

′
2, and by the same logic, if v′ ≤ min{x′1, x′2}, then he will leave, and if

v′ > min{x′1, x′2}, then he will place a bid according to the fixed bid strategy. Suppose

Bidder 2 bids in auction 1, and replaces Bidder 1 as the high-bidder. Bidder 1 will now

observe the prices in both auctions, and follow the same procedure as before, i.e. if v is less

than the lowest priced auction then he leaves, else he bids according to the given bid strategy.
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We assume that when placing a bid no time elapses. This implies that no time elapses

between when a bidder arrives and he is the high-bidder in an auction or the price in both

auctions exceeds his valuation. And consequently, since a bidder will remain at the auction

site until he either wins an auction or the price in both auctions exceeds his valuation, at

any given time there will be at most one bidder per auction present. Namely the high bidder

of each auction. The assumption that no time elapses in placing a bid is clearly unrealistic

and purely for modeling purposes.

In addition, we assume that bidders do not speculate regarding how many auctions will

be released in the future. More specifically, we assume bidders do not consider the possi-

bility that additional auctions may start at a later time. That is, a bidder with valuation

above the lowest priced auction, would never choose not to place a bid, and instead re-visit

at a later time in hope for a lower priced auction. If the lowest priced auction is below

a bidder’s valuation then he bids, otherwise he leaves and never returns. Furthermore, if

only one auction is underway and a bidder is outbid he leaves and never returns to see if a

second auction has started. Next we discuss the arrival process of bidders.

We assume bidders arrive according to an exogenously given stochastic process that

only depends on time. Let M[t,t+∆t] be the number of bidders that arrive in a time interval

[t, t + ∆t], and,

(3.6) ρM (m|[t, t + ∆t]) = Pr{M[t,t+∆t] = m} m = 0, 1, 2, . . .

For simplicity of notation we write M∆t and ρM (m|∆t), instead of M[t,t+∆t] and

ρM (m|[t, t + ∆t]). Other variables that might affect the the arrival rate to the auction site

include the price and elapsed time of the auctions, and the number of ongoing auctions.

As an example of an arrival process, bidders may arrive according to a non-homogeneous
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Poisson process with rate λt. The distribution of the number of bidders arriving in the

interval [t, t + ∆t] is then given by,

ρM (m|∆t) =
e−γ(t)(γ(t))m

m!
m = 0, 1, 2, . . .

where

γ(t) =
∫ t+∆t

t
λudu

Next we show how the CDF of the within period price-transitions can be evaluated

given the above auctions rules and two specific bidding strategies.

3. Minimum Bid Increment Strategy

The first strategy we consider is when each bidder bids a minimal increment above the

lowest priced auction. A bidder will stop bidding once he is the high-bidder in an auction

or the price is above his valuation. If he is the high-bidder but subsequently is out-bid then

he evaluates all auctions and follows the same bid strategy as before. In other words, the

process is as follows,

(1) A bidder with valuation V = v arrives to the auction site.

(2) He observes the price in all ongoing auctions.

(3) If the price in the lowest priced auction is below his valuation (v > min{X1, X2}),

then he bids in the lowest priced auction an amount that is the lesser of a minimal

increment k above the price or his valuation (B = min{X1 + k,X2 + k, v). If the

auctions are priced equally, then with probability .5 he chooses either one.

(a) If he is successful and becomes the high-bidder, then he continuously observe

how the auction progress and if he is ever outbid returns to step (2).

(b) If he is not successful and his bid does not make him the high-bidder, then he

returns to step (2).
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(4) If the lowest priced auction is above his valuation (v ≤ min{X1, X2}), then he

leaves the auction site and never returns.

Note that this implies that the amount of the high-bid in either auction at any given

time is the minimal increment above the current price, i.e. Hi = Xi + k. However, the

high-bidder will remain at the auction site until the auctions exceed his valuation or he

wins an auction. We illustrate with a numerical example which is depicted in Figure 3.3.

Suppose at time t, the system state is ([10, 11, 2; 8, 9, 1], 2), Bidder 1 with valuation

V = 15 is the high-bidder in auction 1, Bidder 2 with valuation V = 17 is the high-bidder

in auction 2, and that Bidder 3 with valuation V = 10 arrives to the auction site. Bidder

3 observes the prices in both auctions and places a bid in auction 2 for $9. This raises the

price in auction 2 to $9, but does not make Bidder 3 the high-bidder, since Bidder 2 placed

his bid first. Bidder 3 then observes the prices again, and places a bid for $10 in auction

2. Bidder 3 replaces Bidder 2 as the high-bidder, while the price in auction 2 remains $9.

Bidder 2 now observes the two auctions, and places a bid for $10 in auction 2. The price

in auction 2 jumps to $10 but due to that Bidder 3 placed his bid first, he remains as the

high-bidder. Bidder 2 observes that the price in both auctions is $10, chooses one with

probability .5, and places a bid of $11. Suppose that Bidder 2 chose auction 2 and replaced

Bidder 3 as the high-bidder. Bidder 3 now observes that the price in both auctions is at

$10, which is his valuation, and therefore decides to leave the auction site. We assume that

no time elapsed from that Bidder 3 arrived at the auction site until he left the auction site.

At time t′ the next bidder arrives or auction 1 has ended.

This bidding strategy is discussed by Peters and Severinov (2006), who show that for

M bidders and N simultaneously released auctions, this strategy leads to a Bayesian-Nash

equilibrium. An implicit assumption in their model is that there is no ‘friction’ or ‘cost’ for
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t

([10, 11, 2; 8, 9, 1], 2)

A1: Bid.1 (V = 15)
A2: Bid.2 (V = 17)

Bid.3 (V = 10) arrives
and bids $9 in A2

([10, 11, 2; 9, 9, 1], 2)

A1: Bid.1 (V = 15)
A2: Bid.2 (V = 17)

Bid.3 (V = 10)
bids $10 in A2

([10, 11, 2; 9, 10, 1], 2)

A1: Bid.1 (V = 15)
A2: Bid.3 (V = 10)

Bid.2 (V = 17)
bids $10 in A2

([10, 11, 2; 10, 10, 1], 2)

A1: Bid.1 (V = 15)
A2: Bid.3 (V = 10)

Bid.2 (V = 17)
bids $11 in A2

t

([10, 11, 2; 10, 11, 1], 2)

A1: Bid.1 (V = 15)
A2: Bid.2 (V = 17)

Bid.3 (V = 17) leaves

t′

Figure 3.3. Illustration of the sequence of bidding events for the minimal bid
increment strategy. It is assumed that no time elapses from Bidder 3 arrives until
he leaves.

placing bids [18, p.223]. In other words, no time elapses when placing a bid. For instance, if

placing a bid takes time and there is a positive probability that a bid will not get registered

in the final moments (e.g. eBay auctions), then the above strategy would not result in an

equilibrium. That is, a potential bidder who doubts that his valuation is or will be among

the N highest, would be better off by not allowing the price of the auctions to raise to his

valuation. Contrariwise, it could be more beneficial for such bidders to wait until the final

moments of the auction and place one single bid.

Regardless whether the strategy results in an equilibrium, we assume all bidders follow

this strategy. Similar to Peters and Severinov (2006) we assume placing a bid takes no time,

i.e. the system is ‘frictionless’. This results in that the current price follows the order statis-

tics of the N +1 highest valuation of the bidders [18, p.229]. In other words, if there is only

one auction underway then the price at any given time is V(2), i.e. the second highest valua-

tion of the bidders that has visited so far. While if two auctions are underway, then the price

of both auctions is V(3), i.e. the third highest valuation of the bidders that has visited so far.

An assumption that should be made explicit is that bidders are not time-sensitive. That

is, a bidder’s decision is strictly based on price and not on how much time is remaining. A

major difference between the setting analyzed in this thesis and, for instance, Peters and

Severinov (2006) is that we include the possibility that one auction will end before the other.
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As a result it may seem more reasonable that the bidders would include the time aspect in

their decision making. And this may further question whether this strategy results in an

equilibrium.

To derive the distribution function for the within period price-transitions we consider

the case of one and two ongoing auctions separately.

3.1. One Ongoing Auction. We start by considering the case when there is only one

ongoing auction, which without loss of generality we index as auction 1. Since there is only

one ongoing auction and bidders are non-speculative regarding the possibility that a second

auction will start, the CDF of the within period price-transition follows the distribution of

the second highest valuation that arrives in the time-interval [t, t + ∆t]. Therefore, we can

condition upon how many bidders arrive and determine the order statistics of the valuation

of bidders. However, if there is a current high-bidder then he has a valuation above the cur-

rent price and we first condition upon his valuation. Therefore, there are two possible start-

ing states ([0, 0, t1; 0, 0, 0], 1) and ([x, x + k; 0, 0], 1). Recall that the system state is defined

by the price, high-bid, and elapsed auction time of each auction, ([X1,H1, t1; X2,H2, t2], Z),

and implicitly it is assumed the second auction has not started and no information regard-

ing it is available to potential bidders. The results for the two possible initial states are

summarized in the following lemmas.

Lemma 3.1. If no bids have been placed and the system state is ([0, 0, t1; 0, 0, 0], 1), and

auction 2 will not be released during time-interval [t, t + ∆t], then the CDF of the within

period price-transition of auction 1 is,

F 1
1 (q|0) =

∞∑

m=0

Pr{X1,t+∆t ≤ q|X1,t = 0, Z∆t = 1,M∆t = m}ρM (m|∆t)
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where Pr{X1,t+∆t ≤ q|X1,t = 0, Z∆t = 1,M∆t = m}

=





0 q < 0

1 0 ≤ q

m = 0

=





0 q < p

(G(q))m + m(G(q))m−1(1−G(q)) p ≤ q

m ≥ 1

Proof Lemma 3.1 - See Appendix B.

Lemma 3.2. If at least one bid has been placed and the system state is ([x, x+k, t1; 0, 0, 0], 1),

and auction 2 will not be released during time-interval [t, t+∆t], then the CDF of the within

period price-transition of auction 1 is,

F 1
1 (q|x) =

∫ P

x
Pr{Xt+∆t ≤ q|Xt = x, V(1) = v, Z∆t = 1}g(v|x)dv

=
∫ P

x

∞∑

m=0

Pr{Xt+∆t ≤ q|Xt = x, V(1) = v, Z∆t = 1,M∆t = m}ρM (m)g(v|x)dv
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where Pr{Xt+∆t ≤ q|Xt = x, V(1) = v, Z∆t = 1,M∆t = m}

=





0 q < x

1 x ≤ q

m = 0

=





0 q < x

G(q) x ≤ q < v

1 v ≤ q

m = 1

=





0 q < x

(G(q))m x ≤ q < v

(G(q))m + m(G(q))m−1(1−G(q)) v ≤ q

m ≥ 2

Proof Lemma 3.2 - See Appendix B.

Note that if x = p in Lemma 3.2, then g(v|x) = g(v).

3.2. Two Ongoing Auctions. Next we consider when two auctions are underway.

Using the same approach as the one auction case, we condition upon the number of arriving

bidders and the current high-bidders’ valuations. There are a two cases regarding when the

two auctions were released.

Case 1: Auctions Released Simultaneously

If the auctions are released simultaneously then if at least two bidders arrive the price will be

the same in both auctions [18, p.229]. This is a consequence that a bidder will bid up to his

valuation and not leave the auction site until both auctions exceed his valuation. If on the
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other hand only one bidder arrives then the price in one auction will be p while in the other

it will be zero. And if no bidder has arrived, then the price is of course zero in both. That

is there are only three possible states at time t: ([0, 0, t1; 0, 0, t2], 2), ([p, p+ k, t1; 0, 0, t2], 2),

([x, x + k, t1; x, x + k, t2], 2). Below the CDF of the within period price-transition for each

auction and each possible starting state is provided.

Lemma 3.3. If no bids have been placed and the system state is ([0, 0, t1; 0, 0, t2], 2), and

neither auction will expire during the time-interval [t, t + ∆t], then the CDF of the within

period price-transition of auction i is, for i = 1, 2,

F 2
i (q|0) =

∞∑

m=0

Pr{Xi,ti+∆t ≤ q|Xi,ti = 0, Z∆t = 2,M∆t = m}ρM (m|∆t)

where Pr{Xi,ti+∆t ≤ q|Xi,ti = 0, Z∆t = 2,M∆t = m}

=





0 q < 0

1 0 ≤ q

m = 0

=





0 q < 0

.5 0 ≤ q < p

1 p ≤ q

m = 1

=





0 q < p

(G(q))m + m(G(q))m−1(1−G(q)) +
(
m
2

)
(G(q))m−2(1−G(q))2 p ≤ q

m ≥ 2

Proof Lemma 3.3 - See Appendix B.

Lemma 3.4. If only one bid has been placed and the system state is ([p, p+k, t1; 0, 0, t2], 2)

(or ([0, 0, t1; p, p + k, t2], 2)), and neither auction will expire during the time-interval [t, t +
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∆t], then the CDF of the within period price-transition of auction i is, for i = 1, 2,

F 2
i (q|xi) =

∫ P

p
Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, Z∆t = 2}g(v1)dv1

=
∫ P

p

∞∑

m=0

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, Z∆t = 2,M∆t = m}ρM (m|∆t)g(v1)dv1

where Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, Z∆t = 2,M∆t = m}

=





0 q < xi

1 xi ≤ q

m = 0

=





0 q < p

1 p ≤ q

m = 1

=





0 q < p

(G(q))m + m(G(q))m−1(1− (G(q))) p ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2

Proof Lemma 3.4 - See Appendix B.

Lemma 3.5. If at least one bid in each auction has been placed and the system state is

([x, x+k, t1; x, x+k, t2], 2), and neither auction will expire during the time-interval [t, t+∆t],

then the CDF of the within period price-transition of auction i is, for i = 1, 2,

F 2
i (q|xi)

=
∫ P

x

∫ v1

x

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, V(2) = v2, Z∆t = 2}φ(v2|x, v1)g(v1|x)dv2dv1

=
∫ P

x

∫ v1

x

∞∑
m=0

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, V(2) = v2, Z∆t = 2,M∆t = m}ρM (m|∆t)φ(v2|x, v1)g(v1|x)dv2dv1
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where g(v1|x) is the conditional density of the V(1) given that V(1) ≥ x, and φ(v2|x, v1) is

the conditional density of V(2), given that x ≤ V(2) ≤ v1,

φ(v2|x, v1) =
∂

∂v2

G(v2)−G(x)
(1−G(x))− (1−G(v1))

=
∂

∂v2

G(v2)−G(x)
G(v1)−G(x)

and Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, V(2) = v2, Z∆t = 2,M∆t = m}

=





0 q < x

1 x ≤ q

m = 0

=





0 q < x

G(q) x ≤ q < v2

1 v2 ≤ q < v1

1 v1 ≤ q

m = 1

=





0 q < x

(G(q))m x ≤ q < v2

(G(q))m + m(G(q))m−1(1− (G(q))) v2 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2

Proof Lemma 3.5 - See Appendix B.
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Case 2: Auction 2 Started After Auction 1

If the auctions were not started simultaneously then there are two additional possible states.

Namely the states where the price in auction 1 is higher than the price of auction 2. Since

auction 1 started before auction 2, it could have reached a price x > p by the time auction

2 started. In this case there are two possible starting points for auction 2 to consider.

Recall that bidders are not time sensitive and strictly focus on the price in an auction.

Furthermore, bidders who have been outbid in auction 1 do not return to see if another

auction has started. Below the distribution functions for the possible starting states are

given.

Lemma 3.6. If the system state is either ([0, 0, t1; 0, 0, t2], 2), ([p, p + k, t1; 0, 0, t2], 2)

(([0, 0, t1; p, p+k, t2], 2)), or ([x, x+k, t1; x, x+k, t2], 2), where t2 < t1, and neither auction

will expire in the time-interval [t, t+∆t], then the CDF of the within period price-transitions

are identical to the respective CDF when the auctions were released simultaneously.

Proof Lemma 3.6 - See Appendix B.

Lemma 3.7. If the system state is ([x, x + k, t1; 0, 0, t2], 2), where x > p and t2 < t1,

and if neither auction will expire in the time-interval [t, t+∆t], then the CDF of the within

period price-transition of auction i, i = 1, 2, is given by the following equations.

For auction 1,

F 2
1 (q|x)

=
∫ P

x
Pr{X1,t1+∆t ≤ q|X1,t1 = x, V(1) = v1, Z∆t = 2}g(v1|x)dv1

=
∫ P

x

∞∑

m=0

Pr{X1,t1+∆t ≤ q|X1,t1 = x, V(1) = v1, Z∆t = 2,M∆t = m}ρM (m|∆t)g(v1|x)dv1
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where Pr{X1,t1+∆t ≤ q|X1,t1 = x, V(1) = v1, Z∆t = 2,M∆t = m}

=





0 q < x

1 x ≤ q

m = 0, 1

=





0 q < x

(G(q))m + m(G(q))m−1(1− (G(q))) x ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2

For auction 2,

F 2
2 (q|0)

=





∑∞
m=0 Pr{X2,t2+∆t ≤ q|X2,t2 = 0, Z∆t = 2,M∆t = m}ρM (m|∆t) q < x

∫ P

x
Pr{X2,t2+∆t ≤ q|X2,t2 = 0, V(1) = v1, Z∆t = 2}g(v1|x)dv1 x ≤ q

=





∑∞
m=0 Pr{X2,t2+∆t ≤ q|X2,t2 = 0, Z∆t = 2,M∆t = m}ρM (m|∆t) q < x

∫ P

x

∑∞
m=0 Pr{X2,t2+∆t ≤ q|X2,t2 = 0, X1,t1 = x, V(1) = v1, Z∆t = 2,M∆t = m}ρM (m|∆t)g(v1|x)dv1 x ≤ q

where Pr{X2,t2+∆t ≤ q|X2,t2 = 0, Z∆t = 2,M∆t = m}

=





0 q < 0

1 0 ≤ q < x

m = 0

=





0 q < p

(G(q))m + m(G(q))m−1(1− (G(q))) p ≤ q < x

m ≥ 1
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and Pr{X2,t2+∆t ≤ q|X2,t2 = 0, V(1) = v1, Z∆t = 2,M∆t = m}

=





0 q < x

1 x ≤ q

m = 0, 1

=





(G(q))m + m(G(q))m−1(1− (G(q))) x ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2

Proof Lemma 3.7 - See Appendix B

Lemma 3.8. If the system state is ([x1, x1 + k, t1;x2, x2 + k, t2], 2), where p ≤ x2 < x1

and t2 < t1, and if neither auction will expire in the time-interval [t, t + ∆t], then the CDF

of the within period price-transition of auction i, i = 1, 2, is given by,

F 2
i (q|xi) = Pr{V(2) < x1}F 2

i

(
q|xi, V(2) < x1

)
+ Pr{V(2) ≥ x1}F 2

i

(
q|xi, V(2) ≥ x1

)

=
G(x1)−G(x2)

1−G(x2)
F 2

i

(
q|xi, V(2) < x1

)
+

1−G(x1)
1−G(x2)

F 2
i

(
q|xi, V(2) ≥ x1

)

where,

1) For V(2) < x1,

F 2
1

(
q|x1, V(2) < x1

)

=
∫ P

x1

Pr{X1,t1+∆t ≤ q|X1,t1 = x1, V(1) = v1, V(2) < x1, Z∆t = 2}g(v1|x1)dv1

=
∫ P

x1

∞∑

m=0

Pr{X1,t1+∆t ≤ q|X1,t1 = x1, V(1) = v1, V(2) < x1, Z∆t = 2,M∆t = m}ρM (m|∆t)g(v1|x1)dv1

where
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Pr{X1,t1+∆t ≤ q|X1,t1 = x1, V(1) = v1, V(2) < x1, Z∆t = 2,M∆t = m}

=





0 q < x1

1 x1 ≤ q

m = 0, 1

=





0 q < x1

(G(q))m + m(G(q))m−1(1− (G(q))) x1 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2

and

F 2
2

(
q|x2, V(2) < x1

)

=

∫ P

x1

∫ x1

x2

Pr{X2,y2+∆t ≤ q|X2,y2 = x2, V(1) = v1, V(2) = v2 < x2, Z∆t = 2}φ(v2|x2, x1)g(v1|x1)dv2dv1

=

∫ P

x1

∫ x1

x2

∞∑

m=0

Pr{X2,y2+∆t ≤ q|X2,y2 = x2, V(1) = v1, V(2) = v2 < x1, Z∆t = 2, M∆t = m}ρM (m|∆t)φ(v2|x2, x1)g(v1|x1)dv2dv1

where
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Pr{X2,t2+∆t ≤ q|X2,t2 = x2, V(1) = v1, V(2) = v2 < x1, Z∆t = 2,M∆t = m}

=





0 q < x2

1 x2 ≤ q

m = 0

=





0 q < x2

G(q) x2 ≤ q < v2

1 v2 ≤ q

m = 1

=





0 q < x2

(G(q))m x2 ≤ q < v2

(G(q))m + m(G(q))m−1(1− (G(q))) v2 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2

and
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2) For V(2) ≥ x1, and i = 1, 2

F 2
i

(
q|xi, V(2) ≥ x1

)

=

∫ P

x1

∫ v1

x1

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, V(2) = v2 ≥ x2, Z∆t = 2}φ(v2|x1, v1)g(v1|x1)dv2dv1

=

∫ P

x1

∫ v1

x1

∞∑

m=0

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, V(2) = v2 ≥ x1, Z∆t = 2, M∆t = m}ρM (m|∆t)φ(v2|x1, v1)g(v1|x1)dv2dv1

where

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, V(2) = v2 ≥ x1, Z∆t = 2, M∆t = m}

=





0 q < xi

1 xi ≤ q

m = 0

=





0 q < xi

G(q) xi ≤ q < v2

1 v2 ≤ q

m = 1

=





0 q < xi

(G(q))m xi ≤ q < v2

(G(q))m + m(G(q))m−1(1− (G(q))) v2 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2

Proof Lemma 3.8 - See Appendix B
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3.3. Numerical Example. We illustrate the above calculations with a numerical ex-

ample. Let bidders valuations be uniformly distributed on [.01, 1], and the number of

arriving bidders in the interval [t, t + ∆t], be uniform distributed over 0, 1, 2, 3, and 4,

i.e. ρM (m|∆t) = .2, for m = 0, 1, 2, 3, 4, and ρM (m|∆t) = 0, for m ≥ 5. The minimal

bid-increment is assumed to be very small (< .00001), and does not affect the derivations.

Similarly, the value of ∆t is irrelevant, but can be thought of as, for instance, 24 hours.

The resulting within period price-transition CDF for different starting states are shown in

Figure 3.4.

The upper left graph shows the CDF when only one auction (defined as auction 1), is

underway with current price X1,t1 = 0, .01, .2, .4, .6, .8, as labeled in the graph. For instance,

we see that if X1,t1 = $0 (the top line), then the probability that X1,t1+∆t ≤ $.4, is slightly

greater than .6. Whereas if X1,t1 = $.2 (the third line from the top), then the probability

that X1,t1+∆t ≤ $.4, has decreased to slightly below .4.

The upper right graph shows the CDF for two simultaneously released auctions when

the price in the auctions (X1, X2) = (0,0), (.1,0), (.1,.1), (.2,.2), (.4,.4), (.6,.6), (.8,.8),

as labeled. The second case when (X1, X2) = (.1, 0), is slightly different from the others

and therefore represented by a dotted line. The difference is that F 2
1 (q|.01) = 0, while

F 2
2 (q|0) > 0, for q ≤ $.01. However, for q > $.01, F 2

1 (q|.01) = F 2
2 (q|0). We see that if the

price in both auctions is $0 (the top line), then the probability that Xi,ti+∆t ≤ $.4, is about

.85, i = 1, 2. While if both auctions are priced at $.2, the probability that Xi,ti+∆t ≤ $.4,

is slightly less than .6, i = 1, 2.

The two graphs in the bottom represent the CDF when the two auctions were started

sequentially such that t2 < t1. The bottom left graph shows the CDF for auction 1 and
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2 when the prices at time t, (X1, X2) = (.2,0), (.4,0), (.6,0), (.8,0). The CDF for auction

1 is represented by the dashed line, and is of course 0 for X1,t1+∆t < $x1. The CDF for

auction 2 is represented by the dotted line for X2,t1+∆t < $x1, and coincide with auction

1’s dashed line for X2,t1+∆t ≥ $x1. That is, the CDF for both auctions are identical for

Xi,ti+∆t > $x1, but differ for Xi,ti+∆t < $x1, i = 1, 2. For instance, if (X1, X2) = (.2, 0),

then the probability that either auction is priced ≤ $.4, at time t + ∆t is about .7. While

the probability that Xi,ti+∆t ≤ $.1, is 0 for auction 1, and slightly above .4 for auction 2.

The bottom right graph shows the CDF for auction 1 and 2 when (X1, X2) = (.2,.1),

(.4,.3), (.6,.5), (.8,.7). The features are similar to the previous case in that for q ≥ x1, the

CDF for both auctions are identical, F 2
1 (q|x1) = F 2

2 (q|x2). While for x2 ≤ q < x1, the CDF

for auction 1 is 0 while the CDF for auction 2 is positive. For q < x2 both auctions’ CDF

is of course 0. For instance, if (X1, X2) = (.2, .1), then the probability that Xi,ti+∆t ≤ $.4

is about .55, i = 1, 2, and the probability that Xi,ti+∆t ≤ $.15, is 0 for auction 1 (i = 1)

and about .25 for auction 2 (i = 2).

From the graphs we can visually assess and confirm that Assumptions 2.1, 2.2, and

2.3 from Chapter 2 holds. Assumption 2.1 was that the CDF of the within period price-

transitions is decreasing in price. That is, at a higher current price the CDF decreases for

a given threshold. This can immediately be confirmed since in each of the four graphs the

CDF for higher initial prices are always beneath the CDF for the lower initial prices. For

instance, in the top two graphs, the top line represents when current price is $0, and the

bottom most line when current price is $.8.

Assumption 2.2 stated that the CDF of the within period price-transitions increases

when there are two rather than one ongoing auctions. In order to confirm this assumption,
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Figure 3.4. The conditional CDF of the within period price-transitions when
bidders valuation is uniform on [.01, 1], the number of arriving bidders is uniform
between 0 and 4, and each bidder follows the minimal bid increment strategy. The
top left graph is when there is only one auction, the top right when there are two
simultaneously started auctions, and the bottom when there are two overlapping
auctions. In each graph the lines represent the distribution function given the initial
prices (X1, X2) as labeled.

for a given current price Xi,ti = xi and future price Xi,ti+∆t, i = 1, 2, we compare the graphs

when there are two auctions with the graph when there is only one auction. For instance, let

Xi = $.4, and suppose we are interested to evaluate the probability that Xi,ti+∆t ≤ $.5. In

the top left graph we see that when there is only one ongoing auction then the probability

is slightly above .4. If there are two simultaneously released auctions (top right graph),
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then the probability has increased to about .6. While if the two auctions were started

sequentially, we see that if (X1, X2) = (.4, 0) (bottom left) or (X1, X2) = (.4, .2) (bottom

right), then the probability is about .75 and about .6 respectively. Since the probability

increased for all cases when there were two ongoing auctions, this ‘confirms’ that there is a

cannibalization effect and that the CDF is increasing in number of ongoing auctions.

The final Assumption 2.3, which states that the cannibalization effect is diminishing

in price, is a bit more difficult to visually confirm. Again we compare, for a given initial

price Xi,ti = xi and future price Xi,ti+∆t, i = 1, 2, the value of the CDF in the top left

graph with the corresponding value in one of the other three graphs. For instance, suppose

we are interested to compare the cannibalization effect when Xi,ti = $.2 and Xi,ti = $.4.

If there is only one auction then the probability that Xi,ti+∆t ≤ $.6, is about .62 and .59

when Xi,ti = $.2 and $.4 respectively. When there are two simultaneously released auctions

the probabilities have increased to about .82 and .74 for Xi,ti = $.2 and $.4 respectively.

We note that the difference in CDF at Xi,ti = $.4, about .15 (=.74-.59), is less than the

difference in CDF at Xi,ti = $.2, about .2 (=.82-.62). A similar comparison can be made

with the bottom graphs to the top left graph as well. This indicates that the cannibalization

effect is diminishing in price, and provides support for Assumption 2.3

Next we discuss the bidding strategy when bidders bid truthfully in the lowest priced

auction.
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4. Truthful Bidding Strategy

A potential implication of the previous bidding strategy is that each bidder may end

up placing several small bids and eventually still be outbid. Though we do not consider

the effort or time it may take to submit a bid, in reality this might be a very tiresome and

frustrating strategy. As an alternative to the previous strategy we consider when bidders

simply bid their valuation in the lowest priced auction, i.e. truthfully bid their valuation.

That is, the bidding behavior is as follows,

(1) A bidder with valuation V = v arrives.

(2) He observes the price in all ongoing auctions.

(3) If the lowest priced auction is below his valuation (v > min{X1, X2}), then he

bids in the lowest priced auction his valuation (B = v). If the auctions are priced

equally, then with probability .5 he chooses one.

(a) If he is successful and becomes the high-bidder, then he continuously observe

how the auction progress and if he is ever outbid returns to step (2).

(b) If he is not successful and his bid does not make him the high-bidder, then he

returns to step (2).

(4) If the lowest priced auction is above his valuation (v ≤ min{X1, X2}), then he

leaves the auction site and never returns.

Similar to Section 3 we assume placing a bid takes no time. That is, no time elapses

from a bidder arriving until he either is registered as a high-bidder or leaves the auction

site. When there is only one ongoing auction, and no speculation regarding additional

auctions released, this leads to an equilibrium outcome as originally shown by Vickrey

(1961). Furthermore, this bidding strategy is consistent with what eBay promotes bidders

to do, as seen in the following quote,
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”When you place a bid, we suggest that you enter the maximum amount that

you’re willing to pay for the item. (You won’t necessarily pay the amount

of your maximum bid.) eBay compares your bid to those of other bidders

and increases your bid on your behalf using only as much of your bid as is

necessary to maintain your high bid position.”2

However, it is fairly clear why this is not an optimal bidding strategy if there are more than

two auctions underway. The issue that can arise, as described below and unlike the previous

bidding strategy, is that the bidders with the two highest valuations bid against each other.

This results in that the bidder with the highest valuation has to pay a price equal to the

second highest valuation, while the bidder with the second highest valuation only has to

pay a price equal to the third highest valuation. Therefore, a bidder with a high valuation,

who considers the chance that he has the highest valuation to be sufficient, will have an

incentive not to bid truthfully. Instead, he should attempt to keep at par with the bidder

with the second highest valuation, and make sure he does not end up in a bidding war with

him. That is, he would be better of by following the minimal bid-increment strategy.

Numerical examples will illustrate possible sequence of events. Suppose that at time

t, two auctions are underway, the system state is [.25, .5, 2; .1, .25, 1], and a bidder with

valuation V = v arrives. Recall that the high-bids are censored and that the bidder will

always participate in the lowest priced auction. There are then three possible transitions

depending on the value of v.

[.25, .5, 2; .1, .25, 1] =⇒





[.25, .5, 2; .1, .25, 1] v ≤ .1

[.25, .5, 2; v, .25, 1] .1 < v ≤ .25

[.25, .5, 2; .25, v, 1] .25 ≤ v

2http://pages.ebay.com/help/buy/buying-ov.html
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In the first case, when v ≤ .1, the bidder simply leaves the auctions and the state of the

auctions remain the same. In the second case, when .1 < v ≤ .25, the bidder places a bid v

in auction 2 and is immediately outbid and leaves the auction site. And in the third case,

when .25 < v, the bidder places a bid v in auction 2 and becomes the high-bidder, while

the previous high-bidder whose previous bid was .25 leaves the auctions.

Suppose instead the system state is [.1, .5, 2; .1, .25, 1], and again a bidder with valuation

V = v arrives. There are now six possible transitions depending on v.

[.1, .5, 2; .1, .25, 2] =⇒





[.1, .5, 2; .1, .25, 1] v ≤ .1

[v, .5, 2; v, .25, 1] .1 ≤ v ≤ .25




[v, .5, 2; .25, v, 1] w. Pr. = .5

[.25, .5, 2; .25, v, 1] w. Pr. = .5

.25 ≤ v ≤ .5





[.5, v, 2; .25, .5, 1] w. Pr. = .5

[.25, .5, 2; .25, v, 1] w. Pr. = .5

.5 ≤ v

In the first case the bidder simply leaves the auction and the state of the auctions re-

main the same. In the second case the bidder places a bid v first in one auction, and upon

being outbid tries the other auction and then leaves (the order in which he bids in the

auctions does not matter). In the third and fourth case, when .25 ≤ v ≤ .5, the bidder

will with probability .5 choose one auction. If he chooses auction 1 first then he is immedi-

ately outbid and places a bid in auction 2 where he becomes the high-bidder. If he chooses

auction 2 then he outbids the current high-bidder, who then tries to place a bid in auction

1. And in the fifth and sixth case, when .5 ≤ v, the same logic applies. The bidder will

choose one auction with equal probability and therefore either end up as the high-bidder
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in auction 1 or auction 2, and the high-bidder he replaces will try to bid in the other auction.

In order to derive the CDF of Xi,ti+∆t, i = 1, 2, at the end of the time interval [t, t+∆t],

the same approach as in the previous bid strategy is employed. That is, first we condition

on the valuation of the high-bidder in each auction, and then on the number of bidders that

arrive in [t, t + ∆t]. Based on this conditional information we derive the probability that

Xi,ti+∆t ≤ q, for a given threshold q, i = 1, 2. However, due to that it is possible the bidder

with the second highest valuation bids against the bidder with the highest valuation, there

are situations in which the price is different in the two auctions. Therefore the calculations

of the CDF are a bit more complicated. In Appendix C we outline how upper and lower

bounds on the CDF can be derived for the case when there is one respectively two simul-

taneously released auctions. The case for sequentially released auctions further complicate

the price-transitions as described in Appendix C. The underlying idea with the calcula-

tions in Appendix C is that given an initial state [X1,H1, t1; X2, H2, t2], by conditioning

on the value of H1, H2, and number of arriving bidders, for a given threshold q, upper

and lower bounds on the probability that Xi,ti+∆t ≤ q can be given. We illustrate the re-

sulting CDF for the one and two simultaneously started auctions with a numerical example.

4.1. Numerical example. Similar to the numerical example in Section 3.3, let bid-

ders valuation be uniformly distributed on [.01, 1], and the number of arriving bidders in

the interval [t, t + ∆t], be uniform distributed over 0, 1, 2, 3, and 4, i.e. ρM (m|∆t) = .2 for

m = 0, 1, 2, 3, 4, and ρM (m|∆t) = 0 for m ≥ 5. The value of ∆t is irrelevant, but can be

thought of as, for instance, 24 hours. The resulting within period price-transition CDF, for

different starting states of one respectively two simultaneously started auctions, are shown

in Figure 3.5. The upper left graph shows the CDF when there is only one ongoing auction

and is identical to the graph for the minimum bid-increment strategy. See Section 3.3 for
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more comments.

The upper right graph shows the CDF when the auctions were started simultaneously,

and the prices are identical as labeled, i.e. when t1 = t2 and (X1, X2) = (.01,.01), (.2,.2),

(.4,.4), (.6,.6), (.8,.8). The upper solid line represents the upper bound, and the lower

dashed line represents the lower bounds. For instance, if (X1, X2)=(.2,.2), then the proba-

bility that Xi,ti+∆t ≤ $.4, has an upper bound of about .55, and lower bound of about .48.

A property with the auctions when they are simultaneously released and priced equally, is

that the price-transitions are Markovian. Specifically, no additional information regarding

which auction (auction 1 or 2) has the high-bid corresponding to the highest valuation V(1),

is gained by keeping track of the auctions for each arriving bidder. This is summarized in

Lemma C.1 of Appendix C.

The two bottom graphs are the CDF for each individual auction when the auctions were

started simultaneously but X2 < X1. The bottom left graph is for the CDF of auction 1,

F 2
1 (q|x1), when X1,t = 0, .01, .2, .4, .6, .8. Note that the bounds do not depend on the

price of auction 2, only that it is priced below auction 1. For instance, suppose X1,t1 = .2,

then the probability that Xi,ti+∆t ≤ $.4, is minimum .45 (lower bound), and maximum .65.

A distinctive feature of the graphs is that for X1,t1 > .1, the lower and upper bounds start

apart. This is to be expected, and can be confirmed by the calculations shown in Appendix

C.

The bottom right graph is for the CDF of auction 2, F 2
1 (q|x2), when (X1, X2) = (0,0),

(.1,0), (.2,.3), (.5,.4), (.7,.6), (.9,.8). Note that in this case the price of auction 1 does effect

the CDF, and that the lower and upper bounds for the probability that X2,t2+∆t ≤ x1,

coincide. Another interesting feature is that, unlike the case of auction 1, the bounds for
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X2,t2+∆t ≥ x1, are much closer. That is, there is less difference between the upper and lower

bounds for the CDF of auction 2, than there is for the CDF of auction 1. The reason for

this is that the only difference in between the upper and lower bounds are for probabilities

of X2,t2+∆t ≥ H1,t1 . Which can be seen in the calculations shown in Appendix C. To

illustrate, suppose (X1, X2)=(.3,.2), then the upper and lower bound for the probability

that X2,t2+∆t ≤ .4, is about .64 and .59 respectively.

Although the figures only display the bounds, similar to Figure 3.4, Assumptions 2.1,

2.2, and 2.3 from Chapter 2 can be visually assessed. For instance, we see that in all graphs

and for a given bound, the CDF associated with a higher initial price is always beneath

the CDF for a lower initial price. The assumption regarding the cannibalization also seem

to hold. For instance, suppose X1,t1 = .2, and we are interested in the probability that

X1,t1+∆ ≤ .4. When there is only one ongoing auction (top left), the probability is about

.4. If the two auctions were started simultaneously and are priced equally (top right), then

the upper bound is about .55, and lower bound about .48. While if the two auctions were

started simultaneously but auction 2 is priced below auction 1 (bottom left), then the up-

per and lower bounds are about .65 and .45 respectively. Though this does not formally

establish Assumption 2.2, it does provide some support that it would hold.

The final Assumption 2.3 is visually assessed same as with the previous bidding strategy.

Suppose we are interested in comparing the cannibalization effect between X1,t1 = $.2 and

$.4. If there is only one ongoing auction, then the probability that X1,t1+∆t ≤ $.6, is about

.62 and .59, for X1,t1 = $.2 and $.4 respectively. If the two auctions were started simultane-

ously and are priced equally, then the probability that X1,t1+∆t ≤ $.6, has an upper/lower

bound of about .79/.69 and .74/.64 for X1,t1 = $.2 respectively $.4. In other words, the

upper/lower difference between having one or two ongoing auctions is about .17/.07 when
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Figure 3.5. The conditional CDF of the within period price-transitions when
bidders valuation is uniform on [.01, 1], the number of arriving bidders is uniform
between 0 and 4, and each bidder follows the truthful bidding strategy. The top left
graph is when there is only one auction (Z∆t = 1), and the top right when there
are two simultaneously started auctions and the prices are the same. The bottom
graphs are for auction 1 (left) and auction 2 (right), when the auctions were started
simultaneously but the prices are different. In each of the graph when there are two
ongoing auctions, the solid lines indicates the upper bounds and the dashed lines
the lower bounds.

X1,t1 = $.2, and about .15/.05 when X1,t1 = $.4. That is, the cannibalization seems to be

diminishing in the price of an auction.
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5. Discussion

This chapter has provided a discussion on how the conditional distribution function for

the within period price-transitions can be computed. Although the focus has been with

regard to two specific bidding strategies, the same methodology could be applied to other

bidding strategies. Depending on the complexity of the auction rules, bidder attributes,

and other assumptions, the within period price transitions might be challenging to evalu-

ate. In some instance, like the minimal bid increment strategy, closed form solutions can

be derived. In other cases, like the truthful bidding strategy, bounds can be evaluated. If

the price transitions are much more complicated then a possible solutions is to estimate the

conditional distribution function using simulation.

A comment regarding the truthful bidding strategy, is that it would have been possible

to derive the exact CDF, by for instance evaluating the possible sample paths. That is,

given an initial starting price Xi,ti , number of bidders that arrive m, and threshold q, one

could generate the paths for which Xi,ti+∆t ends above or below q. From this one could

first calculate the probability of each path, and then determine the conditional distribu-

tion function given all possible paths. Though this might be a time consuming procedure

(since it is exponentially growing in m), it is feasible and provides the exact conditional

distribution function. The reason we did not show this was to illustrate how bounds can

be evaluated.

The main objective of this chapter has been to show how the conditional distribution

function for the within period price transitions can be derived based on the individual bid-

ding behavior. The benefit with this is that it provides a mean for a seller to derive the

CDF, based on particular bidding behavior, and verify if the assumptions from Chapter 2

holds. In other words, a seller that, rather than assume a particular distribution function
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of the within period price-transitions, prefers to assume certain aspects of the individual

bidding behavior, can still verify if a threshold type policy is optimal based on the frame-

work discussed in this chapter.

In addition, a seller can use the methodology presented to derive the distribution func-

tion of the final price. That is, if the length of the time-interval ∆t coincides with the

remaining time, then the conditional CDF of the final price is derived. Therefore, the chap-

ter has also provided a method for deriving the conditional distribution function of the final

price for an auction that has elapsed for some time t and is currently at a price level Xt.

This information can then be used by a seller or buyer to make a better informed decision.

Although the two bidding strategies may, under certain conditions, result in an equi-

librium outcome, the purpose has not been to analyze the equilibrium outcome. The bid

strategic equilibrium analysis for auctions that are not started simultaneously is, to the

best of our knowledge, still an open research topic and source for possible extensions to this

chapter. In Chapter 5 we conduct an empirical analysis on how bidders actually behave.
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CHAPTER 4

Empirical Analysis of Within Period Price-Increments

1. Introduction

In Chapter 2 a model for analyzing the optimal release of inventory for online auctions

was discussed. The problem was formulated as a discrete time Markov Decision Process,

where each period the seller has to decide whether or not to start a new auction. The

framework of the analysis was that auctions evolve according to a stochastic process, and

given certain properties the optimal release policy is of a threshold type. It might be natu-

ral to ask how a seller could go about and determine the process by which auctions evolve,

and how to determine if the conditions in Chapter 2 holds. The objective of this chapter is

three-fold. First, to present a statistical model that describes how auction prices progress.

Second, to provide some structural properties on the statistical model such that the results

of Chapter 2 hold. And thirdly, to empirically test and validate the proposed model based

on the auction data from Dell Financial Services (DFS).

Overview of Chapter 4. This chapter is organized as follows. In Section 2 a sta-

tistical model for the within period price-increments is discussed. Section 3 provides some

sufficient conditions under which the structural results of Chapter 2 hold. Section 4 gives

an overview of Generalized Linear Models. Section 5 and 6 discuss the specific model for-

mulation and the results of the empirical analysis pertaining to the DFS data. Section 7

concludes the chapter with an overall discussion.
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2. Zero-Inflated Gamma Distributed Price-Increments

Let XY define the price of an auction that has elapsed Y periods, where XY is assumed

continuous and non-negative and Y discrete and finite; XY ≥ 0, Y = {0, 1, . . . , τ}. That is,

each auction is divided into τ periods of equal length, and at the end of each period the price

of the auction is observed. Note that there is a direct relationship between Y , the number

of elapsed periods, and the period number. The period between Y and Y + 1 is defined as

period Y , i.e. the first period is defined as period 0, the second period as period 1, and so

on. Unlike the previous chapter, were we kept track of both items waiting to be released for

auctions as well as ongoing auctions, we now only keep track of ongoing auctions. Which

means that Y = 0 implies the auction in question has been released. Define ZY to be the

discrete number of ongoing auctions after Y periods, ZY = {0, 1, 2, . . . }. More specifically,

an auction that has elapsed Y < τ periods will ‘compete’ with ZY − 1 additional auctions

in the upcoming period Y . Since an auction is over after τ periods, and hence the number

of ongoing auctions irrelevant, we define Zτ ≡ 0. The state of an auction is defined by the

three variables, S ≡ (X, Y, Z). A time-line for a three-period auction is provided in Figure

4.1.

We define CY as the price-increment in period Y , CY = XY +1 −XY , which we assume

follows a ‘zero-inflated gamma distribution’. That is, the within period price-increments

X0, Z0 X1, Z1 X2, Z2 X3, Z3C0 C1 C2

Y = 0 Y = 1 Y = 2 Y = 3period 0 period 1 period 2

Figure 4.1. Time-line for an auction with 3 periods. The auction starts at Y = 0
and ends three periods later at Y = 3.
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have the following density function,

(4.1) fCY |S(c|s) =





1− πs c = 0

πs
1

Γ(νs)

(
νs
µs

)νs

cνs−1e
−

(
cνs
µs

)
c > 0

The above density indicates that with probability 1 − πs, the within period price-

increment is zero, i.e. no bids arrived and the price did not change. While if a positive

price-transition occurs, then the price-increment is gamma distributed with mean µs and

shape parameter νs. Note that the gamma distribution is a member of the exponential fam-

ily, and that πs, µs, and νs are functions of the auction state. More specifically we assume

that transformations of πs and µs are linear functions of the auction state as follows, for

s = (x, y, z),

ln
(

πs

1− πs

)
=





βb0 + βb2z y = 0

βm0 + βm1x + βm2z + βm3x× z + βm41{y=2} + · · ·+ βmτ+11{y=τ−2} y 6= 0, τ − 1

βe0 + βe1x + βe2z + βe3x× z y = τ − 1

(4.2)

ln(µs) =





γb0 + γb2z y = 0

γm0 + γm1x + γm2z + γm3x× z + γm41{y=2} + · · ·+ γmτ+11{y=τ−2} y 6= 0, τ − 1

γe0 + γe1x + γe2z + γe3x× z s = τ − 1

(4.3)

The symbol 1{·} represents the indicator function, and is 1 if the argument in the brackets

is true and 0 otherwise. The gamma shape parameter νs is assumed to only depend on the

period of the auction as follows,

(4.4) νs = νb1{y=0} + νm1{y 6=0,τ−1} + νe1{y=τ−1}
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The three cases and subscripts on the coefficients refer to the beginning (Y = 0), middle

(Y = 1, 2, . . . , τ − 2), and end (Y = τ − 1) of an auction. The logit function (4.2) indicates

that the log-odds of observing a positive price-increment is linear with respect to XY , ZY ,

and the interaction between XY and ZY . For the middle periods we also assume there

is an additive effect depending on the period Y . Similarly, equation (4.3) means that the

log of the average positive price-increment is linear with respect to the listed covariates.

The reason we have separated three cases for each function is that we anticipate different

dynamics for the three stages. For the first period this should be evident as all auctions

start with X0 = 0. That the final period might be different is due to the well-established

observations that there is dramatically more bidding activity toward the end of an auction

than during [24, 28].

2.1. Some Comments Regarding The Model. An immediate question one may

have is why use the density function (4.1), and why base the parameters on the functions

(4.2) and (4.3). The main attribute of the within period price-increments that we seek

to model is that there is a ‘high’ chance of observing a ‘low’ price-increment, including

a positive probability of a zero price-increment, and a ‘low’ chance of observing a high

price-increment. This would seem a plausible assumption and supported by data shown in

Figure 4.7, 4.8, and 4.9. In the graphs, with perhaps an exception for the final periods, most

increments tend to be ‘small’ but there are also some observations with ‘large ’increments.

Therefore, the general characteristics of (4.1) seem to be supported by the data. However,

the formal statistical analysis will reveal if (4.1) indeed is appropriate. Note that, if ν=1

then the positive price-increments are exponentially distributed and the model simplifies

considerably.
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The second part of the model regarding the linear functions, called link functions, de-

fines how the parameters relate to the covariates of interest. The logit function for πs and

log of µs are standard choices in Generalized Linear Models (GLM) and are readily avail-

able in most statistics packages. The main benefits of using the two functions, are ease of

interpretation and the restriction of the range of πs and µs to the interval [0, 1], respectively

the non-negative real numbers. Some more details including a general overview of GLMs

are discussed in Section 4.

The conditional expected within period price-increment, for s = (x, y, z), is given by,

(4.5) E[CY |S = s] = πsµs

From equations (4.2) and (4.3), we can solve for πs and µs. To simplify the notation,

we assume a given elapsed auction time Y = y, and write βj (γj) instead of βbj , βmj , or βej

(γbj , γmj , γej), j > 0. In addition, we ignore the indicator functions 1{y=2}, . . . ,1{y=τ−2},

and define β0 (γ0) as a generic intercept, e.g. β0 = βm0 + βm4. Consequently, πs and µs

can be written as follows, for s = (x, y, z),

πs =
eβ0+β1x+β2z+β3x×z

1 + eβ0+β1x+β2z+β3x×z
=

eβx

1 + eβx
(4.6)

µs = eγ0+γ1x+γ2z+γ3x×z = eγx(4.7)

Note that for y = 0, β1, β3, γ1, γ3 = 0.

Stern and Coe, 1984, fit a similar model to the analysis of daily rainfall. In their model

they divide the analysis into two parts. In the first part they model the likelihood of a day

having rain as a Bernoulli variable, i.e. a day is either wet or dry. While in the second part

they model the amount of rainfall on wet days as being gamma distributed. Though their

linear predictors are based on a harmonic series depending on previous days’ rainfall the
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general link functions are the same. They use the logit function for the probability of ob-

serving rain/no-rain, and the log of the expected rainfall for the rate of rainfall. The paper

includes a numerical illustration based on daily rainfall data from Morogoro, Tanzania. A

summary of the paper appears in Section 8.4 of McCullagh and Nelder, 1989.

2.2. Maximum Likelihood Estimation. We use maximum likelihood to estimate

the coefficients of the two link functions (4.2) and (4.3). The likelihood of (4.1) given n

independent price-transitions, ordered such that the first k had a positive price-increment

(c > 0), and the remaining n− k had a zero price-increment (c = 0) is,

L =
k∏

i=1

πsi

1
Γ(νsi)

(
νsi

µsi

)νsi

c
νsi−1
i e

−
(

ciνsi
µsi

)
n∏

j=k+1

(1− πsj )

The log-likelihood is then,

ln(L) =
k∑

i=1

ln(πsi) +
n∑

j=k+1

ln(1− πsj ) +
k∑

i=1

ln

(
1

Γ(νsi)

(
νsi

µsi

)νsi

c
νsi−1
i e

−
(

ciνsi
µsi

))
(4.8)

=
k∑

i=1

ln(πsi) +
n∑

j=k+1

ln(1− πsj ) +
k∑

i=1

− ln(Γ(νsi)) + νsi ln
(

νsi

µsi

)
+ (νsi − 1) ln(ci)− ciνsi

µsi

Note that maximizing (4.8) is identical to separately maximizing a likelihood corre-

sponding to n independent Bernoulli distributed random variables with Pr{success} = πsi

and Pr{failure} = 1 − πsi , with k ‘success’ (n − k ‘failure’), and k independent gamma

distributed random variables with mean µ and shape parameter ν. We formally summarize

this in the next lemma.

Lemma 4.1. The maximization of the log-likelihood function (4.8) is identical to sepa-

rately maximizing the log-likelihood of n independent Bernoulli distributed random variables

with Pr{success} = πsi, with k ‘success’ and n − k ‘failure’, and k independent gamma

distributed random variables with parameters µsi and νsi.
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Proof Lemma 4.1 - The likelihood of n independent Bernoulli distributed random vari-

ables, Oi = 0, 1, i = 1, . . . , n, with Pr{success} = πsi , ordered such that the first k ob-

servations were ‘success’ and the remaining n − k observations were ‘failure’, is given by,

LB =
∏k

i=1 πsi

∏n
j=k+1(1 − πsj ). The log-likelihood is therefore, ln(LB) =

∑k
i=1 ln(πsi) +

∑n
j=k+1 ln(1− πsj ).

The likelihood of k independent gamma distributed random variables, Ci > 0, i = 1, . . . , k,

with mean µsi and shape parameter νsi is given by, LE =

∏k
i=1(1/Γ(νsi)(νsi/µsi)

νsi c
νsi−1
i exp(−ciνsi/µsi). The log-likelihood is therefore ln(LE) =

∑k
i=1 ln(1/Γ(νsi)) + νsi ln(νsi/µsi) + (νsi − 1) ln(ci)− ciνsi/µsi . ¤

If all n observations were taken during the same stage, i.e. beginning, middle, or

end, then the same instance of (4.2), (4.3), and gamma shape parameter νs applies to

all observations, and (4.8) becomes,

ln(L)

=
k∑

i=1

ln(πsi) +
n∑

j=k+1

ln(1− πsj ) + k(ν ln(ν)− ln(Γ(ν)))− ν

k∑

i=1

ln(µsi)−
ν − 1

ν
ln(ci) + ci/µsi

=
k∑

i=1

ln
(

eβxi

1 + eβxi

)
−

n∑

j=k+1

ln(1 + eβxj ) + k(ν ln(ν)− ln(Γ(ν)))− ν
k∑

i=1

γxi −
ν − 1

ν
ln(ci) + cie

−γxi

=
k∑

i=1

βxi −
n∑

j=1

ln(1 + eβxj ) + k(ν ln(ν)− ln(Γ(ν)))− ν

k∑

i=1

βxi −
ν − 1

ν
ln(ci) + cie

−βxi

where βxi and γxi are the linear predictors of observation i’s vector of covariates. The

objective therefore becomes to find the β and γ coefficients that maximizes the above

expression. As a consequence of Lemma 4.1, we can estimate the β and γ coefficients using

the framework of GLM in two steps. In the first step we create a new random variable as
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follows,

Oi =





0 ci = 0

1 ci > 0

i = 1, 2, . . . , n

and then use a standard GLM algorithm to fit the β coefficients such that

(4.9) Pr{O = o|S = s} =





1− πs o = 0

πs o = 1

and (4.2) holds. In the second step we limit the analysis to the auctions for which a pos-

itive price-increment occurred. In other words, we only consider the k auctions for which

a positive price-increment occurred and use a GLM algorithm to fit the γ coefficients to

the density function gC|S(c|s) = (1/Γ(νs))(νs/µs)νscνs−1 exp(−cνs/µs) such that (4.3) holds.

Section 4 provides a discussion and references for the most common algorithm to esti-

mate β and γ. Note that, due to Lemma 4.1, the proposed model with zero-inflated gamma

distributed within period price-increments, is almost identical to the rainfall model pro-

posed by Stern and Coe, 1984. Next we discuss what properties on the β and γ coefficients

will support the main results from the Chapter 2.

3. Structural Properties For Optimal Auction Release Policy

In Chapter 2 we presented a model for the optimal release of inventory for online auc-

tions. The main results, that the value function is increasing and that a threshold-type

release policy is optimal, relied on three assumptions regarding the cumulative distribution

function of the within period price-transitions. The assumptions were: 1) ‘Monotonicity in

price ’, meaning that the probability of observing jumps to high prices is increasing in the

current price of an auction, 2) ‘Cannibalization effect’, defined to be that for a specific auc-

tion, the more ongoing auctions there are, the less likely you are to observe price-transitions
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to high prices, and 3) ‘Diminishing cannibalization’, meaning that the gain for a specific

auction, of having fewer ongoing auctions, is decreasing in the current price of the auction.

The objective of this section is to provide structural properties on the β and γ coefficients

under which the assumptions and consequently the results of Chapter 2 holds.

If the within period price-increment follow (4.1), then the cumulative distribution func-

tion of the within period price-transition is given by, for s = (x, z, y), c ≥ 0,

FXY +1|S(x + c|s) = 1− πs + πs

∫ c

0

1
Γ(ν)

(
ν

µs

)ν

uν−1e−(uν/µs)du(4.10)

= 1− πs

(
1− 1

Γ(ν)

∫ cν/µs

0
uν−1e−udu

)

= 1− πs(1−GC|S(c|s))

where,

ln
(

πs

1− πs

)
= β0 + β1x + β2z + β3x× z

ln(µs) = γ0 + γ1x + γ2z + γ3x× z

and GC|S(c|s) is the cumulative distribution of positive price-increments. The integral term

in the second equality of (4.10) is the lower incomplete gamma function.1 For simplicity of

notation, the above equations are, similar to (4.6) and (4.7) in Section 2.1, based on a given

period Y = y, and written with respect to generic βj and γj coefficients. Furthermore, the

gamma shape parameter ν in (4.10), has for simplicity of notation, been written without a

subscript s. Implicitly, however, we assume that ν depends on the state of the auction s

according to (4.4).

1cf. http://mathworld.wolfram.com/IncompleteGammaFunction.html
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Though the assumptions in Chapter 2 were stated with respect to the distribution

function of the within period price-transitions, in this section we focus on the conditional

expected within period price-transition E[XY +1|S], and provide structural conditions on the

β and γ coefficients to ensure various monotone properties. The reason for this is two

fold. First, it provides a more intuitive discussion by focusing on the effect on the expected

or average price-transition, rather than the effect of the distribution function. Second, it

simplifies the analysis, as might be evident by (4.10). The conditional expected within

period price-transition is given by, for s = (x, y, z),

(4.11) E[XY +1|S = s] = x + πsµs = x +
eβx

1 + eβx
eγx

where,

ln
(

πs

1− πs

)
= β0 + β1x + β2z + β3x× z

ln(µs) = γ0 + γ1x + γ2z + γ3x× z

To summarize, the objective with this section is to provide sufficient conditions such that

(4.11) is increasing in x and decreasing in z. Next we discuss each of the three main as-

sumptions in detail.

3.1. Monotonicity in price. The first assumption was that the probability of ob-

serving price-transitions to the ‘high’ prices is increasing in the current price. That is, we

assumed, for s = (x, y, z) and c ≥ 0, Pr{XY +1 ≤ c + x|S = s} is decreasing in x. An

implication of this assumption is that, for s = (x, y, z), E[XY +1|S = s] is increasing in

x. As mentioned earlier, rather than providing structural properties such that (4.10) is

decreasing in x, we focus on the latter consequence and provide sufficient conditions such

that E[XY +1|S = s] is increasing in x. One approach to characterize the conditions under
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which this holds, is to analyze the derivative of (4.11) with respect to x. A sufficient con-

dition for E[XY +1|S = s] to be increasing in x, is ∂
∂xE[XY +1|S = s] ≥ 0. The derivative of

E[XY +1|S = s] with respect to x is given by,

∂

∂x
E[XY +1|S = s] =

∂

∂x
x +

(
∂

∂x
πs

)
µs + πs

(
∂

∂x
µs

)
(4.12)

= 1 +
(β1 + β3z)eβx(1 + eβx − eβx)

(1 + eβx)2
µs + πs(γ1 + γ3z)eγx

= 1 + (β1 + β3z)πs(1− πs)µs + (γ1 + γ3z)πsµs

where the last equality holds because 1− πs = 1/(1 + eβx). Since µs, πs, (1− πs) ≥ 0, it is

clear that if either β1 or γ1 are negative then (4.12) is not necessarily non-negative. Note

that β1 < 0 implies at higher price you are less likely to see positive price-transition, and

that γ1 < 0 implies that the expected price-increment is smaller the higher the current price.

Since it is reasonable to assume that β1 and γ1 are negative, some structural properties to

ensure that (4.12) remains non-negative will be provided. This is sufficient for the value

function in Chapter 2 to be increasing in x, and consequently for Proposition 2.11 to hold.

Note that β1, γ1 < 0 or convexity in x is neither sufficient nor necessary for E[XY +1|S]

to be increasing in x as illustrated in the left graph of Figure 4.2. In Figure 4.2, the left

graph provides four examples of E[XY +1|S] as a function of x for various combinations

of negative β1 and γ1. The solid lines ‘A’ and ‘B’ are examples for which E[XY +1|S] is

increasing in x. The dashed lines ‘C’ and ‘D’ are examples for which E[XY +1|S] is not

monotone in x. All four examples are based on β and γ parameter settings which are close

to the values observed in the empirical analysis later on. Specifically we used,

πs =
e2+β1x−.01z

1 + e2+β1x−.01z
µs = e5+γ1x−.01z
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Figure 4.2. The graph to the left illustrates E[XY +1|S = s] as a function of x.
Each example is based on β0 = 2, β2 = −.01, β3 = 0, γ0 = 5, γ2 = −.01, γ3 = 0,
and z = 1, but different β1, γ1 as follows: (A) β1 = −.025, γ1 = −.001, (B) β1 =
−.01, γ1 = −.006, (C) β1 = −.05, γ1 = −.001, (D) β1 = −.05, γ1 = −.02. The solid
lines A and B are increasing in x, while the dashed lines C and D are not monotone
in x. Lines B and D are convex in x, while A and C are neither convex nor concave.
The graph to the right displays the coordinates of (β1, γ1) for the four examples. The
triangular region, enclosed by the dashed lines, represents the sufficient conditions
for E[XY +1|S = s] to be increasing in x, as specified by the second set of conditions
in Lemma 4.2 and the values of β0, β2, γ0, γ2. The coordinates for A and B are
slightly outside the region, which shows that the conditions are not necessary. The
coordinates for C and D are, however, too far from the bounded region.

with z = 1, and β1 and γ1 as follows,

A B C D

β1 -.025 -.01 -.05 -.05

γ1 -.001 -.006 -.001 -.02

The following lemma gives some sufficient conditions for which ∂
∂xE[XY +1|S] ≥ 0, and

consequently E[XY +1|S] is increasing in x.
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Lemma 4.2. Define π0 ≡ exp(β0 + β2)/(1 + exp(β0 + β2)) and µ0 ≡ exp(γ0 + γ2).

For s = (x, y, z), sufficient conditions for E[XY +1|S] given by (4.11) to be increasing in x

include,

(1) β1, β3, γ1, γ3 ≥ 0

(2) (a) β2, γ2 ≤ 0

(b) β3, γ3 ≥ 0

(c) − 4
µ0
− β3z ≤ β1 < 0

(d) − 1
π0µ0

− β1+β3z
4π0

− γ3z ≤ γ1 < 0

(e) z ≤ min{−β1

β3
, −γ1

γ3
}

(3) (a) β2, γ2 ≤ 0

(b) β3, γ3 < 0

(c) − 4
µ0
− β3z ≤ β1 < 0

(d) − 1
π0µ0

− β1+β3z
4π0

− γ3z ≤ γ1 < 0

(e) z ≤ min{β1

β3
, γ1

γ3
}

Proof Lemma 4.2 - Since πs, µs ≥ 0, if β1, β3, γ1, γ3 ≥ 0, then β1 +β3z ≥ 0 and γ1 +γ3z ≥ 0,

and consequently, 1+(β1 +β3z)πs(1−πs)µs +(γ1 +γ3z)πsµs > 0. Therefore, if the first set

of conditions holds then ∂
∂xE[XY +1|S] ≥ 0, where the derivative us given by (4.12), holds.

The second set of conditions is the case when β1, γ1 < 0 and β3, γ3 ≥ 0. Condition (a) en-

sures that πs and µs are decreasing in z. Condition (e) ensures that β1 + β3z, γ1 + γ3z ≤ 0,

and hence πs and µs are decreasing in x. Note that if 1+(β1+β3z).25µ0+(γ1+γ3z)π0µ0 ≥ 0,

then ∂
∂xE[XY +1|S = s] ≥ 0 for all s. By substituting the lower bounds for β1 and γ1,

1 + (β1 + β3z).25µ0 + (γ1 + γ3z)π0µ0 = 0, and ∂
∂xE[XY +1|S] ≥ 0 holds. Note that if

β3, γ3 = 0 then the bounds on β1 and γ1 simplify and condition (e) holds vacuously (define

min{−β1/0,−γ1/0} ≡ ∞).

The third set of conditions is the case when β1, β3, γ1, γ3 < 0. The last condition (e) ensures
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that β1 + β3z ≥ 2β1 and γ1 + γ3z ≥ 2γ1. In other words, the effect of an increase in x is

at most two times β1 for πs and two times γ1 for µ2. No changes to the previous proof is

necessary, since the bound on β1 and γ1 adjusts according to β3 and γ3. ¤

A few comments follow.

• The first condition in Lemma 4.2 does not have much intuitive appeal, since it

implies auction price-increments are increasing in x, i.e. the higher the price, the

more likely to see a larger positive price-increment.

• The lower bound on γ1 in the last two set of conditions states that, for given values

of β0, β2, β3, γ0, γ2, γ3, the space defined by γ1 and β1 defines a ‘sufficient’ region

such that E[XY +1|S] is increasing in x. See the right graph of Figure 4.2. Recall

that the stated conditions are only sufficient, and hence outside the defined area,

E[XY +1|S] may or may not be increasing in x. Furthermore, the bounds on γ1 are

conservative, as it guarantees ∂
∂xE[XY +1|S] ≥ 0 in the worst case scenario when

πs(1− πs)µs = .25µ0 and πsµs = π0µ0 (which only happens if π0 = .5).

• Alternatively the lower bound on β1 can be stated in terms of γ1, for β3 ≥ 0,

β1 ≥ − 1
.25µ0

− γ1π0

.25
− β3z

• The intuition behind the bound of γ1 is as follows. A $1 increase in x cannot result

in a decrease of µs by more than the maximum average price-increment π0µ0. That

is, if γ1 is ‘small’ (and γ3 = 0) then exp(γ1x) ≈ 1 + γ1x and,

E[XY +1|S = s] = x + πsµs = x + πse
γ0+γ2zeγ1x ≈ x + πse

γ0+γ2z(1 + γ1x)

≤ x + π0µ0(1 + γ1x) = x + π0µ0 + π0µ0γ1x

Therefore, since γ1 < 0, unless γ1 > −1/π0µ0 an increase in x will result in a

decrease of E[XY +1|S]. The lower bound on γ1 is then adjusted up by a factor of
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.25/π0 given β1. A similar though more convoluted argument leads to the lower

bound of β1, where .25 represents the maximum variance, πs(1− πs), of a positive

price-increment.

• If πs = 1 the condition on γ1 simplifies to the following, for γ3 ≥ 0,

γ1 ≥ − 1
µ0

• The upper bound on z in the second condition ensures that πs and µs are decreasing

in x. While the upper bound on z in the third condition limits the negative effect

an increase in x has on πs and µs.

• The condition β2, γ2 ≤ 0 ensures that πs and µs are decreasing in z, but are not

crucial for establishing lower bounds on β1 and γ1. However, if β2, γ2 > 0 then it

would not seem reasonable that β3, γ3 > 0, since it would imply that πs and µs

are increasing in z. See Section 3.2. Therefore, if β2, γ2 > 0 then β3, γ3 ≤ 0, and a

simple amendment is to replace π0, µ0 with π?
0, µ

?
0, where π?

0 ≡ exp(β0 +β2z
?)/(1+

exp(β0 + β2z
?)), µ?

0 ≡ exp(γ0 + γ2z
?), and z? = min{β1/β3, γ1/γ3}

• Since each coefficient can be positive, negative or zero, there are in total 81 pos-

sible combinations of β1, β3, γ1, γ3 to consider. However, the main combinations

of interest are covered in the three cases listed in Lemma 4.2. In addition, most

combinations are not of interest or acceptable, e.g. cases where β1, γ1 = 0 and

β3, γ3 6= 0.

• The conditions stated in Lemma 4.2 can be directly verified by data. See Section

5.

3.2. Cannibalization Effect. The second assumption imposed in Chapter 2 was that,

for a given price, the seller is less likely to see transitions to the higher prices the more

auctions are underway. That is, for s = (x, y, z) and c ≥ 0, Pr{XY +1 ≤ c + x|S = s}

is increasing in z. This would imply that, for s = (x, y, z), E[XY +1|S] is decreasing in z.
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Similar to the discussion with regard to price, rather than analyzing (4.10), we focus on

the conditional expected price-transition E[XY +1|S] given by (4.11). Since z is discrete

the equivalent to analyzing the derivative is to look at differences due to increments in

z. The difference in E[XY +1|S] due to an unit increase in z is given by, for s = (x, y, z),

s+ = (x, y, z + 1),

E[XY +1|S = (x, y, z)]−E[XY +1|S = (x, y, z + 1)] = (x + πsµs)− (x + πs+µs+)(4.13)

= πsµs − πs+µs+

where πs, πs+ are given by (4.6), and µs, µs+ are given by (4.7). Sufficient conditions for

(4.13) to be positive, and hence E[XY +1|S] decreasing in z, is β2, γ2 < 0. In other words,

the more ongoing auctions there are, the less likely a positive price-increment occurs and

the lower the average positive price-increment. This is formally summarized in the next

lemma.

Lemma 4.3. Sufficient conditions for

E[XY +1|S = (x, y, z)]−E[XY +1|S = (x, y, z + 1)] ≥ 0

to hold include,

(1) β2, γ2 < 0, β3, γ3 ≤ 0

(2) β2, γ2 < 0, β3, γ3 > 0, and x ≤ min{−β2/β3,−γ2/γ3}

Proof Lemma 4.3 - E[XY +1|S = (x, y, z)]− E[XY +1|S = (x, y, z + 1)] = πsµs − πs+µs+ =

µs(πs − πs+eγ2+γ3x) = µs

(
1

1 + e−βx
− eγ2+γ3x

1 + e−βxe−β2−β3x

)

where exp(−βx) = exp(−(β0 + β1x + β2z + β3x × z)). Therefore, if β2, γ2 < 0, β3, γ3 ≤ 0

then µs ≥ 0, eγ2+γ3x < 1, and e−βxe−β2−β3x > e−βx. Consequently, E[XY +1|S = (x, y, z)]−

E[XY +1|S = (x, y, z + 1)] ≥ 0.
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For the second set of conditions, the upper bound on x ensures that eγ2+γ3x < 1, and

e−βxe−β2−β3x > e−βx, and the same proof as in the previous case holds. ¤

An alternative to the ‘strict’ cannibalization effect, would be that the cannibalization

effect effects the auctions at ‘high prices’. That is E[XY +1|S] is increasing in z for auctions

below some price-level, and decreasing for auctions above the price-level. The following

lemma summarizes this result.

Lemma 4.4. If β2, γ2 > 0, β3, γ3 ≤ 0 and x ≤ min{−β2/β3,−γ2/γ3}, then E[XY +1|S]

is increasing in z, and if x ≥ max{−β2/β3,−γ2/γ3} then E[XY +1|S] is decreasing in z.

Proof Lemma 4.4 - The proof is based on the same logic as in the previous proof. If x is

below the lower bound then eγ2+γ3x > 1, and e−βxe−β2−β3x < e−βx. And consequently,

E[XY +1|S = s]−E[XY +1|S = s+] ≤ 0. While if x is above the upper bound then the same

conditions as in the proof of Lemma 4.3 holds. ¤

A few comments follow.

• The result in Lemma 4.4 can be extended to the following. There exists a price-

threshold pc ∈ [min{−β2/β3,−γ2/γ3}, max{−β2/β3,−γ2/γ3}], such that if β2, γ2 <

0, β3, γ3 > 0, and x ≤ pc, then E[XY +1|S] is increasing in z, while for x > pc,

E[XY +1|S] is decreasing in z.

• If β2, γ2, β3, γ3 < 0, then it implies that the effect of cannibalization is increasing in

both the number of auctions as well as the current price, i.e. having more auctions

underway is much worse at a higher current price than at a lower current price.

• Though there are other possible combinations of β2, β3, γ2, γ3, the three listed are

the ones of most interest. Note that scenarios where β2, γ2 = 0 (non-significant)

and β3, γ3 6= 0 (significant) will not be considered in the ensuing data analysis.
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• Recall that Z is the discrete number of ongoing auctions. However, in the ensuing

data analysis we define Z as the average number of ongoing auctions. Which

implies that Z is continuous. Consequently we may analyze the partial derivative

with respect to z,

∂

∂z
E[XY +1|S = (x, y, z)] = (β2 + β3x)πs(1− πs)µs + (γ2 + γ3x)πsµs

Note that Lemma 4.3 and 4.4 holds for z continuous.

3.3. Diminishing Cannibalization Effect in the Current Price. The third as-

sumption in Chapter 2, which lead to the threshold policy of Theorem 2.12, is that the canni-

balization effect is diminishing in the current price. That is the higher the current price, the

less impact of cannibalization. This holds under the second set of conditions listed in Lemma

4.2 and the second set of conditions of Lemma 4.3. Note, that these conditions impose an

upper bound on the current price. If, for instance, prices are not restricted, then there exist a

price-level pu such that, if x < pu then E[XY +1|S = (x, y, z)]−E[XY +1|S = (x, y, z+1)] ≥ 0

and decreasing in x, while if x > pu then E[XY +1|S = (x, y, z)]−E[XY +1|S = (x, y, z+1)] <

0 and decreasing in x. That is higher priced auctions are better off with more ongoing auc-

tions. Though this might seem a bit strange and counterintuitive, due to the decaying

exponential shape of (4.6) and (4.7), this does not imply that high priced auctions are likely

to see high price-increments. Contrariwise, the expected price-increments are still decreas-

ing in price. See Figure 4.6 in Section ?? for examples.

Another interesting scenario is the third set of conditions of Lemma 4.2 and the first set

of conditions in Lemma 4.3, where β2, β3, γ2, γ3 < 0. In this scenario the cannibalization

effect is increasing. That is the exponential decline is steeper the more ongoing auctions

there are. However, due to the shape of a negative exponential curve this cannot hold

forever. And at some point the exponential curve flattens out and the cannibalization effect
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becomes diminishing. In other words, the cannibalization effect is increasing in x up to a

price-level pn, after which the cannibalization effect is decreasing in x. See Figure 4.6 on

page 188 for an example.

Another possible scenario is when the interaction terms are countering the main effects,

i.e. the conditions specified in Lemma 4.4. This scenario does have intuitive appeal as it

displays that the ‘cannibalization effect’ is working against the ‘high’ priced auctions and

for the ‘low’ priced auctions. In other words, rather than a cannibalization effect, there is a

price competition effect favoring the low priced auctions. However, this would presumably

reflect that the lower priced auctions benefit from competition only in the presence of higher

priced auctions. And not categorically from the fact that there are more auctions underway.

In other words, a low price auction would presumably not benefit from having more ongoing

auctions if they also were at low prices. In this scenario the cannibalization effect would be

negative for x < pi, and positive for x > pi, i.e. the expected price-increments are higher

(lower) with more auctions underway if x < pi (x > pi). In addition, there would exist a

price-level pii > pi such that for x < pii (x > pii) the cannibalization effect is increasing

(diminishing) in x.

In Section 6 illustrations of the different cannibalization effects are provided in Figure

4.6. Next we provide an overview of generalized linear models (GLM).

4. Generalized Linear Models

The statistical models for analyzing the within period price-transitions of online auc-

tions, is based on the theory of Generalized Linear Models (GLM). As the name implies

GLM is a generalization of the normal (Gaussian) linear regression models. Linear models,

156



which date back to the works by Gauss and Legendre, has been extensively developed over

the last century, including the individual work by, for instance, Tukey, Fisher, and Cox

[17, Ch.1],[9, p.56]. The term ‘generalized linear model’ was first introduced by Nelder and

Wedderburn in 1972, who provided a unified theory and a general algorithm for computing

the maximum likelihood estimates for a class of generalized linear models [17, p.19], [9,

p.56]. A multivariate extension to GLM, labeled Exponential Dispersion Models (EDM),

is proposed and discussed in Jørgensen (1987). Some of the underlying ideas of GLM and

EDM, can be found in Tweedie (1947) [13, p.128, 145, 148].

One aspect of the ‘generalization’ is that instead of assuming a response variable Y

to be normally distributed, we may assume it simply belongs to a distribution from the

exponential family. That is, Y is derived from a distribution with a density that can be

written as,

fY (y|θ, φ) = exp
(

yθ − b(θ)
a(φ)

+ c(y, φ)
)

The parameter θ is known as the canonical parameter and represents location, while φ is

called the dispersion parameter and represents the shape. The functions a(·), b(·) and c(·)

are specific to the distribution in question. Illustrations based on the binomial and gamma

distributions are provided in Section 4.2 and 4.3 below. The exponential family distributions

have mean µ = E[Y ] = ∂
∂θ b(θ) = b′(θ), and variance var(Y ) = a(φ) ∂2

∂θ2 b(θ) = a(φ)b′′(θ).

It is interesting to note that the exponential family includes both continuous as well as

discrete distributions. The most common are the normal, Poisson, binomial, gamma, and

inverse Gaussian distribution.

In addition to specifying the distribution of the response variable, GLM requires a link

function, g(µ), that describes how the mean response variable, µ, relates to the vector of
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known explanatory variables (covariates), x, through a linear predictor,

η = β0 + β1x1 + · · ·+ βpxp = βx

The most common algorithm to fit the β coefficients for a GLM is based on the Newton-

Raphson method with Fisher scoring. This numerical iterative optimization method is

equivalent to iteratively weighted least squares [17, p.42], [30, p.185], [9, p.64], [8, p.117],

[15, p.200]. The reason why a numerical approach is used is that in general there is no exact

analytical expression that maximizes the log-likelihood for the members of the exponential

family. One member that does have an exact solution is the Gaussian [8, p.117]. We omit

the details but note that the estimated variance of the β coefficients estimates are given by,

(4.14) v̂ar(β̂) = a(φ̂)
(
XTWβ̂X

)−1

where X is the matrix of explanatory variables (covariates), Wβ̂ is a diagonal matrix with

the weights used in the final iteration, and φ̂ is the estimate of the dispersion parameter

φ. The standard errors of β̂, se(β̂), are the square-roots of the diagonal entries of v̂ar(β̂).

To evaluate the statistical significance of a particular β̂ coefficient, we compare the ratio

β̂/se(β̂) to the standard normal distribution (N(0, 1)) or use a likelihood ratio test.

More details regarding the algorithm can be found in McCullagh and Nelder (1991,

p.40), Firth (1991, p.62), Venables and Ripley (2002a, p.185), and Faraway (2006, p.117).

Note that other methods of fitting a GLM are available. For instance, Venables and Ripley

(2002a, p.445) provide a method for direct maximization of the likelihood for a binomial

logistic regression. For the case of binary response variables see also McCullagh and Nelder

(1991, p.115).
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A second aspect of the ‘generalization’ is that the variance of Y , var(Y ) = a(φ)b′′(θ),

may vary with respect to the covariates. For instance, var(Y ) might be increasing in

the mean µ. How the variance relates to the mean is captured by the variance func-

tion V (µ) ≡ b′′(θ). Recall from above that µ = b′(θ). Examples of the variance function

include: V (µ) = 1 (normal), V (µ) = µ (Poisson), V (µ) = µ2 (gamma), and V (µ) = µ(1−µ)

(binomial). Note that var(Y ) is also affected by the dispersion parameter φ through a(φ).

Therefore in order to fully characterize the variance, φ either has to be given (fixed) or

estimated. Examples for which φ = 1 include the binomial, Poisson, and exponential dis-

tribution. Next follows a discussion how to estimate φ, two GLM examples based on the

binomial and gamma distributions, and a discussion regarding model validation and resid-

ual analysis.

4.1. Estimation of Dispersion Parameter. The two most common estimates of φ

are the maximum likelihood estimate (MLE) and the moment estimator. For distributions

with a constant coefficient of variation,2 such as the gamma distribution, McCullagh and

Nelder (1991) argue for the use of the moment estimator. The two arguments they provide

are: 1) the maximum likelihood estimate is very sensitive to rounding errors in observations

with values close to zero, and 2) if the assumption regarding the distribution is false then

the estimate does not consistently estimate the coefficient of variation [17, p.295]. Though

the first comment most likely does not apply to our data set, we will nevertheless follow

their recommendation and base our estimate on the moment estimator,

φ̂ =
X2

n− p

where X2 is the square-sum of Pearson residuals, n the number of observations, and p the

number of fitted parameters. For the gamma distribution, X2 =
∑n

i=1((yi − µ̂i)/µ̂i)2 [17,

2Coefficient of variation = standard deviation/mean
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p.296]. Note that φ̂ is derived for a given set of β̂ coefficients, whose estimates are not based

on φ or φ̂. In other words, the maximum likelihood estimate and GLM fitting algorithm

of the β coefficients do not depend on φ or φ̂. However, as a consequence of (4.14) the

inference regarding β̂ does depend on φ̂. Therefore, even small changes in φ̂ may lead to

different implications regarding the significance of the β̂ coefficients.

The other method of estimating φ is to solve for the maximum log-likelihood function of

the distribution. That is, for given β coefficients, φ̂ is determined by computing the MLE of

φ. Note that the two estimates may result in different values and therefore reach different

conclusions regarding the significance of the β̂ coefficients. For more details regarding φ̂

refer to McCullagh and Nelder (1991, p.295), Firth (1991, p.64), and Venables and Ripley

(2002a, p.186; 2002b, p.9). Firth (1991, p.65) also alludes to a third possible estimator.

Though the moment estimator of φ is the default from the output summary in ‘R’, both

estimates are available. For all estimates of φ in this chapter, the MLE estimates were

always larger than the moment estimates.

4.2. Binomial Distribution as a GLM. To transform a binomial distribution, with

Pr[success] = π, to a member of the exponential family, let θ = ln( π
1−π ), b(θ) = n ln(1 +

eθ) = −n ln(1 − π), and c(y, φ) = ln
(
n
y

)
. Note that for the binomial distribution the

dispersion parameter φ = 1 and a(φ) = 1, and hence the issue of which estimator of φ to

use does not apply. Though there are many options for the link function, the most common

and the one we use, is the logit function,

(4.15) g(π) = ln
(

π

1− π

)
= β0 + β1x1 + · · ·+ βpxp = βx

The main benefit of using the logit function is that it ensures the range of π to be within the

interval [0, 1]. Another benefit is the direct interpretation of the β coefficients. Namely, an
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unit increase in a covariate, while keeping the other variables fixed, results in a β increase

of the log-odds. Alternatively, a unit increase in a covariate results in exp(β) increase of

the odds.

4.3. Gamma Distribution as a GLM. The gamma distribution, G(λ, ν), has two

parameters, a scale parameter λ and a shape parameter ν. The general density is,

f(y) =
1

Γ(ν)
λνyν−1e−λy y > 0

where Γ(·) is the gamma function.3 The gamma distribution has mean ν/λ, and variance

ν/λ2. Note that the exponential distribution is the special case of the gamma distribution

for which ν = 1, and that the gamma distribution with ν < 1 is steeper than an exponential.

While a gamma distribution with ν > 1 has the shape of a right skewed bell-shaped curve,

where the skew becomes less dramatic the larger the value of ν. See Figure 4.3.

In order to write the gamma density as a member of the exponential family, reparametrize

by defining µ = ν/λ and re-write the gamma density as follows,

f(y) =
1

Γ(ν)

(
ν

µ

)ν

yν−1e
−

(
yν
µ

)
y > 0

Let the canonical parameter θ = −1/µ, the dispersion parameter φ = 1/ν, b(θ) = − ln(−θ) =

− ln(1/µ), a(φ) = φ = 1/ν, and c(φ, y) = φ−1 ln(φ−1) + (φ−1 − 1) ln(y) + ln(1/Γ(φ−1)) =

ν ln(ν) + (ν − 1) ln(y) + ln(1/Γ(ν)). Similar to the binomial distribution there are many

possible link functions. However, in order to ensure the range of λ, the main parameter of

interest, is positive we use the log-link function,

(4.16) g(µ) = ln(µ) = γ0 + γ1x1 + · · ·+ γpxp = γx

3For a complex number z with a positive real part Γ(z) =
∫∞
0

tz−1e−tdt. If z is a positive integer then

Γ(z) = (z − 1)!.
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Figure 4.3. Illustration of the gamma distribution G(1, ν) for various values of ν.
The solid line represents ν = 1, the dashed line represents ν = 1/2, and the dotted
line represents ν = 2. Note that the solid line depicts the exponential distribution
with λ = 1.

Since exp(γx) > 0, this ensures the range of µ, and hence λ, is positive. As mentioned

above, the GLM estimation algorithm of the γ coefficients is independent of the dispersion

parameter and its estimate. In other words, estimating the γ coefficients for a G(λ, 1) or

G(λ, 2) results in exactly the same γ̂. However, the standard errors, and resulting p-values,

will be different depending on the estimated value of φ. Since a(φ) = φ, we see from (4.14)

that the standard errors are increasing in φ. Therefore, if φ̂ < 1 then, compared to an

exponential distribution, the standard errors and associate p-values will be smaller. Con-

sequently, by fitting an exponential distribution with fixed φ = 1, a γ̂ coefficient might be

statistically insignificant, while by fitting the gamma distribution and deriving an estimate

φ̂ < 1 the γ̂ coefficient might be significant.
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4.4. Model Validation and Residual Analysis. With a statistical or probabilistic

model, the question arises whether the model accurately reflects reality as represented by

the data. That is, does the data support the proposed model. The test of model validation

is referred to as goodness-of-fit test, and tests how probable it would be to observe the data

given that the model is correct. A model ‘fails’ the test when the probability of observing

the given data is very low. While a ‘pass’ implies that there is not enough evidence to refute

the model, i.e. the probability of observing the data, as predicted by the model, is ‘good’ or

‘large’. The advantage, or curse, of data validation is one aspect that separates statistical

models from, for instance, normative economics or management science models.

The most common bases for GLM goodness-of-fit test are the scaled deviance, D(y; µ̂)/φ,

and the generalized Pearson statistics, X2. Both measures give a value of how close a model

M fits the data, and are functions of the vector of observed values y, and the vector of

estimated means µ̂. The scaled deviance is defined as twice the difference in maximum

log-likelihood between the saturated model and the model in question. Let S denote the

saturated model, which has one parameter per observation and thus fits the data perfectly.

Let lS(y, φ|y) and lM (µ̂, φ|y) represent the maximum log-likelihoods for the two models

respectively, then D(y; µ̂)/a(φ) = 2[lS(y, φ|y) − lM (µ̂, φ|y)], which for GLM can be re-

written as, for a(φ) = φ,

D(y; µ̂)/φ = 2
n∑

i=1

[yi(θ̃S,i − θ̃M,i)− b(θ̃S,i) + b(θ̃M,i)]/φ

where θ̃S,i and θ̃M,i are the estimate of θi under S and M respectively. The generalized

Pearson statistics is defined as,

X2 =
n∑

i=1

(yi − µ̂i)2

V (µ̂i)
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If model M has p parameters and n observations, then under the normal-theory linear

models D(y; µ̂) and X2 are χ2
n−p distributed. For other distributions, though some asymp-

totic results are available, this is often not even approximately correct (even for large n).

And it seems the following comment from McCullagh and Nelder (1991) still applies,

”Further work on the asymptotic distribution of D(Y; µ̂) remains to be

done.” [17, p.36]

The main asymptotic results available seem to pertain to distributions that, in the limit of

certain parameters, resemble the normal distribution. Examples of these include Poisson

with ‘large’ means (µi), binomial with ‘large’ number of trials (mi), and gamma with a

‘large’ shape parameter ν or alternatively a ‘small’ dispersion parameter φ. These results

are referred to as small-dispersion asymptotics, and imply that the scaled deviance can be

approximated by a χ2
n−p distribution. Though there are no general asymptotic results for

the deviance or Pearson X2, there are results for the analysis of nested models. Similar

to the normal-theory linear models, the difference in scaled deviance between nested GLM

models is approximately χ2 distributed. That is, if model 1 and model 2 have p1 and p2 pa-

rameters respectively, and the models are nested with p2 < p1, then (D2(y; µ̂)−D1(y; µ̂))/φ

is approximately χ2
p1−p2

distributed. It should be noted that the difference in Pearson X2

between nested models is not monotone and need not have a χ2 distribution. For more

details regarding goodness-of-fit and comparison of nested models refer to McCullagh and

Nelder (1991, p.33), Firth (1991, p.68), Venables and Ripley (2002a, p.186), Faraway (2006,

p.120), and Jørgensen (1987, p.134).

In addition to the goodness-of-fit test another form of model validation is residual anal-

ysis. Residual analysis can be used both to detect individual or clusters of observations

that do not fit the overall pattern of the data, as well as the overall validation of model

assumptions. The latter part, which will be the main focus of our analysis, can further be
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divided into the aspects that validate the structural part, and the stochastic part of the

model. For example, for the positive price-increments the validation is with regards to that

the log-link should be linear (structural part) and that the price-increments are gamma

distributed (stochastic part). Though there are many different types of residuals, the most

common include deviance residuals, rd, and Pearson residuals, rP . Deviance residuals are

defined such that
∑

r2
d = D(y; µ̂), and Pearson residuals such that

∑
r2
P = X2. However,

due to that the Pearson residuals tend to be skewed for non-normal distributions we limit

our analysis to the deviance residuals [17, p.38], [8, p.123]. In addition, we will analyze

the response residuals y − µ̂. Both the deviance residuals and response residuals will be

depicted against the fitted linear predictor η̂.

Two comments regarding the residual analysis follow. First, we will not investigate the

residual plots for the Bernoulli distributed price-increments, as their residual plot are bound

to be rather uninformative. The reason for this is that binary data will only generate two

bands, one for y = 0 and one for y = 1. Second, when analyzing the residuals, note that

we are assuming the positive price-increments are gamma distributed with a non-constant

variance function. Specifically, we are assuming the variance is decreasing in the mean, e.g.

the higher the current price, and thus smaller expected price-increments, the smaller the

variance for the price-increments. As a result, the residual plots will look different than, for

instance, the residual plots from a normal linear regression model. The patterns we should

expect are as follows. For the deviance residuals, due to that the variance function has

been scaled out, if the model is correct then there should not be any pattern in the data.

That is we should expect to have the deviance residuals randomly distributed around zero

with a constant range. If a pattern is observed it could indicate that an inappropriate link

function and/or set of covariates was chosen. For the residual plot, on the other hand, due

to that the variance is non-constant, we would expect to see a pattern. In particularly, we
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would expect the response residuals to be more spread for values of η̂ for which the variance

is larger. For more details, see Chapter 12.6 in McCullagh and Nelder (1991), and Chapter

6.4 in Faraway (2006).

4.4.1. Goodness-of-fit for Bernoulli distributed observations. In the case of Bernoulli

distribution, a special case of the binomial, the goodness-of-fit test regarding the distribu-

tional assumption of the observed values becomes degenerate and vacuous. With only two

possible outcomes and independent observations, there are no other plausible alternative

distributions. Consider, for instance, a data set with n observations, out of which k were

‘success’ (1) and n− k ‘failure’ (0). Since µ̂i = π̂ = k/n and V (µ̂i) = π̂(1− π̂),

X2 =
n∑

i=1

(yi − µ̂i)2

V (µ̂i)
= k

(1− π̂)2

π̂(1− π̂)
+ (n− k)

π̂2

π̂(1− π̂)
= k

1− π̂

π̂
+ (n− k)

π̂

1− π̂

= k
(n− k)/n

k/n
+ (n− k)

k/n

(n− k)/n
= (n− k) + k = n

For the binomial distribution the deviance can be written as follows,

D(y; µ̂) = 2
n∑

i=1

yi ln(yi/µ̂i) + (mi − yi) ln((mi − yi)/(mi − µ̂i))

Therefore, for the special case of Bernoulli distribution, where mi = 1 and again assume

there were k ‘success’and n− k ‘failure’, we have,

D(y; µ̂) = 2
n∑

i=1

yi ln(yi/µ̂i) + (1− yi) ln((1− yi)/(1− µ̂i))

= 2k ln(1/π̂) + (n− k) ln(1/(1− π̂))

= 2n[−π̂ ln(π̂)− (1− π̂) ln(1− π̂)]

which does not depend on the observed vector y and therefore useless as a measure of

goodness-of-fit [17, p.119], [9, p.69], [8, p.121]. Though the issue of testing the Bernoulli

distribution might not be of concern, the choice of link function may be. In our analysis we
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use the logit or log-odds function, mainly due to ease of interpretation and wide use of ap-

plicability. Consequently for the Bernoulli distribution we only use D(y; µ̂) for comparison

of nested models.

4.4.2. Goodness-of-fit for gamma distributed observations. The deviance for the gamma

distribution can be written as follows,

D(y; µ̂) = 2
n∑

i=1

− ln(yi/µ̂i) + (yi − µ̂i)/µ̂i

Despite that the goodness-of-fit analysis based on the deviance also has certain limita-

tions, there are some asymptotic results. As mentioned above, though there are no general

asymptotic results, there are asymptotic results pertaining to the case when the dispersion

parameter φ is small [13, p.134], [9, p.69]. In these instances, labeled small-dispersion

asymptotics, D(y; µ̂)/φ has approximately a χ2
n−p distribution. However, a working def-

inition of what defines a ‘small’ φ does not seem documented, which makes it hard to

judge when the approximation might be good or OK. It appears that the small-dispersion

asymptotics apply to when the shape of the gamma distributions resembles the normal

distribution. Therefore, it seems a reasonable working definition would be that at a mini-

mum φ < .5, i.e. ν > 2. See also discussion in Section 8.3.6 of McCullagh and Nelder (1991).

5. Model Formulation and Selection for DFS Data

Statistical analysis is based on the six data subsets described in Chapter 1, and for

convenience summarized in Table 4.1 below. All auctions lasted for three days (τ = 72

hours), and for the purpose of analysis divided into 12 hour intervals. Therefore, there are

in total seven observations per auction, and six periods for the three stages for which we

estimate πs and λs. To provide a more intuitive index of the elapsed time we count elapsed

167



Product PC Model Processor Model Processor Speed Memory Hard Drive Count
(GHz) (MB) (GB)

D1 Desktop Intel Pentium 4 1.7-2.8 256, 512, 1024 20, 40 2,072
L1 Laptop Intel Pentium 4, M 1.8-2.4 256, 512 20, 30, 40 2,046
D3 Desktop Intel Pentium 4 2.4 256 40 274
D4 Desktop Intel Pentium 4 2.0 512 40 167
L4 Laptop Intel Pentium 4 1.8 512 30 172
L5 Laptop Intel Pentium M 1.4 512 40 163

Table 4.1. Characteristics of the six products analyzed.

periods in increments of 12, Y = 0, 12, 24, 36, 48, 60, 72.

In Figure 4.4 and Table 4.2 below, boxplots of price and descriptive statistics, for the 12

hour intervals are shown. Note that the information regards the distribution of price at the

specific intervals, and not the distribution of the price-increments. The leftmost columns

in Table 4.2 represents descriptive statistics for the average number of ongoing auctions in

each 12 hour period. In other words, in each period an auction is underway the average

number of ongoing auctions is recorded. For instance, for product D1 in the first period

(0h), the smallest and largest average number of ongoing auctions observed were 1.00 and

83.88 respectively. More details are given below. An immediate observation for the boxplots

in Figure 4.4, is the steady increase of the median price over time (the line inside each box).

Informal statistical support to the observation that the median price is increasing, is that

the notches of the boxes do not overlap. In Table 4.2 we see that for each product line,

the median price-increments are almost identical for the first four periods, while in the

final period the increase is almost twice as large as the previous periods’ price-increments.

For desktops, the median increase for the first period is almost zero, while in the next four

periods the price increases between $25-30 per period. And in the last period the increase is

about $75-80. For laptops, the median increase for the first five periods is about $50, while

for the last period the increase is over $100. For the mean number of ongoing auctions,

since there is no reason the numbers should fluctuate systematically between time-periods,
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Figure 4.4. Distribution of the current price at the 12hour periods. The upper
and lower edge of each box represents the 75th respectively 25th percentile of the
observations. The line inside each box represents the median. Non-overlapping
notches indicate significant difference in median.

the consistency of the values is to be expected.

Besides the observation that the price-increment in the last period is larger than the

previous period, there is an additional interesting aspect to the dynamics in the last period.

Namely that, almost all auctions have a positive price-increment. See Table 4.3 below.

With the exception of a handful of auctions for the two aggregated categories D1 and L1,

all auctions have a positive price-increment in the final 12 hours. Therefore, we assume

πe = 1 and that price-increments in the final 12 hours are strictly gamma distributed. The
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Product Time Period Price, X Average # of Auctions, Z
Min Median Mean Max Min Median Mean Max

D1 0h 1.00 20.73 24.14 83.88
12h 0.99 1.04 29.70 255.60 1.00 20.97 24.69 83.88
24h 0.99 50.00 59.20 455.00 1.00 21.23 25.07 83.88
36h 0.99 75.00 83.46 455.00 1.00 21.36 25.07 83.88
48h 0.99 100.00 104.60 455.00 1.00 21.04 24.69 83.82
60h 0.99 129.00 136.10 455.00 1.00 20.95 24.14 83.82

72h (τ) 93.92 200.00 208.20 501.00
D3 0h 1.00 5.000 5.933 14.700

12h 0.99 0.99 16.18 187.40 1.00 5.051 6.009 14.590
24h 0.99 25.62 42.10 187.40 1.00 5.240 6.041 14.700
36h 0.99 66.60 68.85 210.00 1.00 5.154 6.041 14.510
48h 0.99 97.00 92.72 210.00 1.00 5.033 6.009 14.700
60h 38.00 125.00 123.20 226.00 1.00 5.018 5.933 14.700

72h (τ) 127.50 190.70 193.60 338.50
D4 0h 1.00 4.157 5.764 19.150

12h 0.99 28.00 41.05 150.00 1.00 4.249 6.220 19.510
24h 0.99 60.10 75.77 202.00 1.00 4.660 6.505 19.270
36h 0.99 90.05 100.50 251.00 1.00 4.666 6.505 19.520
48h 0.99 120.00 122.00 256.10 1.00 4.389 6.220 19.540
60h 55.00 150.00 154.50 256.10 1.00 4.071 5.764 19.560

72h (τ) 129.20 230.00 230.60 348.30
L1 0h 1.00 19.09 19.17 53.91

12h 0.99 58.76 94.51 600.00 1.027 19.57 19.52 53.91
24h 0.99 125.00 154.40 643.00 1.00 19.55 19.77 53.90
36h 0.99 186.50 200.60 643.00 1.00 19.57 19.77 53.90
48h 0.99 207.00 236.40 675.00 1.00 19.39 19.52 53.91
60h 10.00 288.90 289.80 675.00 1.00 19.16 19.17 53.91

72h (τ) 10.50 405.00 412.20 700.00
L4 0h 1.00 4.279 5.549 17.650

12h 0.99 50.01 84.51 510.00 1.00 4.002 5.632 17.570
24h 0.99 100.00 144.10 550.00 1.00 4.183 5.742 17.580
36h 0.99 165.00 187.50 550.00 1.00 4.350 5.742 17.610
48h 23.00 200.00 219.00 550.00 1.00 4.232 5.632 17.620
60h 61.44 255.00 276.50 550.00 1.00 4.236 5.549 17.650

72h (τ) 266.00 424.40 428.00 613.00
L5 0h 1.00 3.00 3.148 8.000

12h 0.99 59.00 100.10 481.00 1.00 3.00 3.239 7.884
24h 0.99 150.00 163.40 481.00 1.00 3.00 3.268 8.000
36h 0.99 185.00 208.30 481.00 1.00 3.00 3.268 7.871
48h 0.99 222.00 241.70 490.00 1.00 3.00 3.239 8.000
60h 68.30 301.00 302.50 490.00 1.00 3.00 3.148 8.000

72h (τ) 281.00 405.00 409.60 597.00
Table 4.2. Descriptive statistics for price X and mean number of ongoing auc-
tions Z.

proposed model is therefore modified as follows, for s = (x, y, z) and y = 0, 12, 24, 36, 48,

fCY |S(c|s) =





1− πs c = 0

πs
1

Γ(νs)

(
νs
µs

)νs

cνs−1e
−

(
cνs
µs

)
c > 0
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D1 D3 D4 L1 L4 L5
Time Period Zero Pos. Zero Pos. Zero Pos. Zero Pos. Zero Pos. Zero Pos.
0h → 12h 330 1,742 63 211 8 159 93 1,953 6 166 4 159
12h → 24h 887 1,185 120 154 54 113 685 1,361 62 110 62 100
24h → 36h 939 1,133 117 157 78 89 832 1,214 72 100 80 83
36h → 48h 1,022 1,050 125 149 82 85 948 1,098 80 92 89 74
48h → 60h 689 1,383 95 179 59 108 670 1,376 46 126 55 108
60h → 72h 1 2,071 0 274 0 167 6 2,040 0 172 0 163

Table 4.3. Number of zero vs positive price-increment transitions.

and for y = 60,

fCY |S(c|s) =
1

Γ(νs)

(
νs

µs

)νs

cνs−1e
−

(
cνs
µs

)
c > 0

where

ln
(

πs

1− πs

)
=





β0 + β2z y = 0

β0 + β1x + β2z + β3x× z + β41{y=24} + β51{y=36} + β61{y=48} y = 12, 24, 36, 48

n.a. y = 60

ln(µs) =





γ0 + γ2z y = 0

γ0 + γ1x + γ2z + γ3x× z + γ41{y=24} + γ51{y=36} + γ61{y=48} y = 12, 24, 36, 48

γ0 + γ1x + γ2z + γ3x× z y = 60

The above models are referred to as the unabridged models, to reflect that all parameters

are incorporated into the analysis. The final models are then derived by iteratively elimi-

nating non-significant parameters as follows. First the β (γ) coefficients for the unabridged

models are estimated by maximum likelihood. The parameter with the most non-significant

β (γ) coefficient, i.e. largest p-value, is then removed and the coefficients for the reduced

model are re-estimated. The process of iteratively eliminating one parameter is repeated

until all coefficients are found to be significant. However, if the coefficient for X or Z is

found non-significant but the coefficient for the interaction X × Z is significant, then the

interaction term is also removed. For instance, if β2 is non-significant while β3 is significant,
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then in the next iteration both Z and X × Z are removed. Note that, due to Lemma 4.1

the β and γ coefficients are estimated independently, which implies that a parameter might,

for instance, be found non-significant with respect to πs and significant with respect to λs.

The term unabridged is to contrast with the general statistics terminology of the null

and full (or saturated) models. The null model refers to the model with intercept only, i.e.

no dependence on the covariates. And the full model usually refers to the model with one

parameter per observation, i.e. by fitting a function that perfectly matches all observations.

The model that remains after all non-significant coefficients have been eliminated is referred

to as the final model. The analysis was run using the ‘glm’ function in the statistical soft-

ware R [22].

Though the data for estimating the β and γ coefficients came from the same products,

there was one difference between the two estimation procedures. In estimating the γ coef-

ficients only the observations with positive price-increments were used. That is, for each

product, when estimating the γ coefficients for λb, λm, and λe, all zero price-increments

were filtered out. To illustrate, suppose a product consists of 100 auctions, which means

that for each of the six periods (0 → 12h, 12 → 24h, 24 → 36h, 36 → 48h, 48 → 60h,

60 → 72h,) there are 100 observations. Suppose further that for each of the periods there

were 50, 60, 70, 80, 90, and 100 auctions with positive price-increments, i.e. out of the

100 auctions, 50 observed a positive price-increment in the first period, 60 in the second

period, and so on. Note that it is not necessarily the same set of auctions with positive

price-increments in each period. Then when estimating the γb coefficients in the first period

only the 50 observations were used, when estimating γm for the four middle periods only the

300 (=60+70+80+90) observations were used, and when estimating γe for the final period

the 100 observations were used. In contrast, for estimating πb and πm all the within period
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observations were used. Recall that we assume πe = 1. This means that when estimating

the βb coefficients for the first period all 100 observations were used, and when estimating

βm for the four middle periods 400 (= 100× 4) observations were used.

The implicit assumption behind the above set-up is that auctions’ within period price-

transitions are independent, both with respect to competing auctions as well as with respect

to the previous price-transitions. In other words, besides the cannibalization effect, auctions

are assumed to be independent of each other, and the price-transitions are memoryless or

Markovian.

Since the data was not collected using a designed study, the number of ongoing auctions

in each 12-hour interval varies. That is, the auctions analyzed were not released in synchro-

nized 12-hour intervals, but instead with various time overlap. Consequently, for almost all

auctions the number of ongoing auctions in a given 12-hour period fluctuates. Therefore,

the arithmetic mean number of ongoing auctions in a time-period is used as a proxy for Z.

There are of course other possible variables that could have been included. In partic-

ularly, for the aggregated products D1 and L1, information regarding the product specifi-

cations such as processor speed, hard drive memory, and RAM, could have been included

as covariates. We will leave these and other variables for possible future extensions to the

above model. Before discussing the results we examine the individual products a bit closer.

5.1. Hypothesis Testing of β and γ Coefficients. In Figures 4.7, 4.8 and 4.9 at

the end of this chapter, the within period price-increments for the six products are dis-

played. Each individual graph has price at the beginning of a period on the x-axis, and

the 12 hour within period price-increment on the y-axis. Each observation represents an
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individual auction. Observations along the y-axis are auctions that did not change price

during the period, i.e. received no bids in the 12 hour period. The line in each graph repre-

sents the fitted values of the conditional expected price-increment for the final model, and

is discussed in Section 6. For the products and periods where z or x× z are significant, the

median value of z was used in evaluating the fitted values. Note the following distinction.

Z is the average number of ongoing auctions in a period. In the figures, the median of the

observed values of Z was used to fit the line. in A few comments follow.

First, there is clear variability in the price-increments. For a given price, or a small

interval around a given price, the 12 hour within period price-increment varies. Most auc-

tions tend to have ‘small’ price-increments and a few auctions have ‘large’ price-increments.

The main motivation of the proposed model is to model this feature. Second, one can see

that the price-increments are decreasing in the price. In other words, as the price increases

the within period price-increments tend to decrease. Though this would seem intuitive,

the objective of the analysis is to capture the rate at which the mean within period price-

increment decreases with respect to price, and assess if the structural properties discussed

in Section 3.1 hold. We summarize our observations regarding price in the following testable

hypothesis.

Hypothesis 4.5. The within period log-odds of observing a positive price-increment are

on average decreasing in price.

Hypothesis 4.6. The within period log-mean of the positive price-increments are on

average decreasing in price.

A third comment is, it seems that the middle four 12 hour periods, i.e. 12 → 24h,

24 → 36h, 36 → 48h, and 48 → 60h, all exhibit similar though distinct dynamics. As
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noted earlier, the last period is different in that almost all auctions exhibit a positive price-

increment. Furthermore, though price-increments are still clearly decreasing in price, for

auctions at ‘low’ prices there are no ‘small’ price-increments. That is, there are no obser-

vations in the lower left quadrant of the graphs for the final period. The main take-away is

that elapsed time seems to have an effect on the auctions dynamics, which we do not state

in terms of formal hypotheses.

However, an important implication regarding the price-dynamics in the final period, is

that the price-transitions for the first five periods might not affect the final price. In other

words, if the expected price-increment in the final period decreases linearly at a rate of $1

per unit increase in price, then the expected final price would be constant. And consequently

the previous periods’ dynamics may be irrelevant. Note that the proposed model with (4.3),

is not based on the mean price-increment being linearly related to price. It assumes that the

log mean price-increment is linearly related to price. If a normal linear regression relation-

ship was used there would be a price, beyond which, all within period price-increments are

negative, which would seem as a rather restrictive implication. A benefit of (4.3) is that it

ensures price-increments remain positive. However, since running an additional regression

analysis does not entail much effort, in Appendix E a normal linear regression model for

the last period will be discussed. The results of which, can be used to support or refute

that the mean price-increment is decreasing at a rate of $1, and consequently the previous

periods dynamics irrelevant.

In Figure 4.10, 4.11 and 4.12 at the end of this chapter, the six within period price-

increments as a function of the average number of ongoing auctions is displayed. On the

x-axis is the average number of ongoing auctions for a particular period, and on the y-axis

is the within period price-increment. Each observation represents an individual auction.
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Similar to the previous set of graphs the price-increments again display variability with

regard to the average number of ongoing auctions. However, unlike the previous graphs

there does not seem to be any clear or obvious trend. Intuitively, it would seem reasonable

that the within period price-increments are negatively correlated with the number of ongoing

auctions. The formal statistical analysis and hypothesis testing will reveal if this is the case.

Hypothesis 4.7. The within period log-odds of observing a positive price-increment are

on average decreasing in the number of ongoing auctions.

Hypothesis 4.8. The within period log-mean of the positive price-increments are on

average decreasing in the number of ongoing auctions.

The final hypothesis testing is with regard to the interaction term ‘x × z’. From the

discussion in Section 3 we would expect to see the interaction term counter the main effects.

That is, for the structural properties to hold we expect β3 and γ3 to be positive. Therefore,

the final set of hypothesis are as follows.

Hypothesis 4.9. The expected decrease of the within period log-odds of observing a

positive price-increment due to an increase in the number of ongoing auctions, is diminishing

in price.

Hypothesis 4.10. The expected decrease of the within period log-mean of the positive

price-increments due to an increase in the number of ongoing auctions, is diminishing in

price.

A few comments follow.

• The stated hypothesis are meant to represent the interpretation of the actual hy-

pothesis testing. That is, the actual null hypothesis is, of course, βk = 0 or γk = 0,
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and the alternative hypothesis is βk 6= 0 or γk 6= 0, k = 1, 2, . . . , 6. In order to

provide a more interesting and intuitive discussion the hypothesis have been stated

to be consistent with our observations.

• Though our goal is to derive general conclusions regarding the various variables,

the hypothesis testing will be conducted for each product individually. The reason

for this is that the final model for each product is likely to differ, and therefore we

will not conduct a simultaneous hypothesis testing for all products. Recall that the

model selection is such that non-significant variables are sequentially removed for

each product. However, based on the individual products’ test results we attempt

to derive some general conclusions. A different statistical approach would have

been to conduct a simultaneous hypothesis test for all products.

• Finally, we report the exact p-value (a posteriori probability) as the significance

level of the hypothesis test. All p-values less than .0001 will be reported as

‘< .0001’. Note that the reported p-values from the hypothesis tests that β = 0

and γ = 0 are used for the stated hypotheses.

6. Results for DFS Data

To assess the proposed model we first look at the fitted means and qualitatively evaluate

the fit. In Figures 4.7, 4.8 and 4.9 at the end of this chapter, the line in each graph rep-

resents the fitted values for the conditional expected price-increments for the final model.

Note that the line is the conditional expected price-increment as specified by (4.5), and

not the conditional expected price-increment for the positive price-increments, i.e. the line

represents πsµs and not µs. For products and periods where either z or x× z were found to

be significant, the median value of z was used to determine the fitted values. Recall that in

the last period πs = 1. For the first period the fitted value of the expected price-increment
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is displayed by the dashed line and is of course independent of price. Overall the lines fit the

data and are in accord with the trends exhibited by the graphs. In particular, for the final

period, with perhaps the exception of D1, we see that the line follows the trends very well

and seems to represent the mean price-increments perfectly. A possible problem with D1 in

the final period might be the outlier observed around $450. For the middle four periods the

fit is also good and seems to follow the overall trends very well. This is perhaps best seen in

the four product specific products D3, D4, L4, and L5, for which the fitted values provide

a very good fit. For the first period it is hard to comment, even qualitatively, regarding the

proposed model.

Table 4.4 shows the resulting equations for the fitted means. The first, second and

third line for each equation represents the first, middle and last periods respectively. A

‘n.s.’ entry represents not significant, meaning that none of the variables were found to

be significant, while ‘n.a.’ represents not applicable. Detail ‘R’ output for each product is

provided in Appendix D. Next we discuss the quantitative results and formal measures of

goodness-of-fit.

6.1. Effect of Price. The first thing to note is that price, x, is always significant and

always represented by a negative coefficient. In other words, the higher the price, the less

likely it is for a positive price-transition to occur. And if there is a positive price-transition

then the expected price-increment is smaller. Though this might be expected, and con-

sistent with the trends observed in Figures 4.7, 4.8 and 4.9, the issue arises if the β1 and

γ1 coefficients are ‘too negative’. That is, are the decreasing rates such that E[XY +1|S]

for each product is not monotone in the current price. Before we discuss more details we

summarize the formal hypotheses results.
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(D1) ln
(

πs

1−πs

)
=





n.s.

.841− .010x− .009z − .00005x× z + (.228)1{y=24} + (.327)1{y=36} + (1.307)1{y=48}
n.a.

ln(µs) =





4.100− .004z

4.029− .002x− (.131)1{y=24} − (.149)1{y=36}
4.699− .004x + .003z

(D3) ln
(

πs

1−πs

)
=





.759− .180z

.931− .021x− .059z + (.603)1{y=24} + (1.056)1{y=36} + (2.116)1{y=48}
n.a.

ln(µs) =





3.824− .064z

4.000− .007x + (.305)1{y=48}
4.681− .005x + .108z − .0008x× z

(D4) ln
(

πs

1−πs

)
=





n.s.

1.375− .012x− .027z + (.948)1{y=48}
n.a.

ln(µs) =





n.s.

4.241− .005x− .023z + (.294)1{y=48}
5.442− .008x

(L1) ln
(

πs

1−πs

)
=





2.198− .044z

1.867− .006x− .020z − .00008x× z + (.144)1{y=24} + (.250)1{y=36} + (1.197)1{y=48}
n.a.

ln(µs) =





5.183− .023z

4.838− .002x− .011z − (.057)1{y=24} − (.119)1{y=36} + (.107)1{y=48}
6.000− .004x

(L4) ln
(

πs

1−πs

)
=





1.481− .090z

1.331− .007x + (1.320)1{y=48}
n.a.

ln(µs) =





5.057− .065z

4.620− .001x− (.170)1{y=24} − (.328)1{y=36}
5.736− .003x + .079z − .0002x× z

(L5) ln
(

πs

1−πs

)
=





2.421− .295z

1.671− .007x− .140z + (1.299)1{y=48}
n.a.

ln(µs) =





n.s.

5.155− .003x− .123z + .0004x× z − (.186)1{y=36}
5.959− .005x

Table 4.4. The resulting equations for the final model. In each set of equations,
the first corresponds to the first period, the second to the middle four periods, and
the third to the final period. All coefficients shown are significant, ‘n.a.’ represents
not-applicable, and ‘n.s.’ represents cases with all covariates non-significant.
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Test of Hypothesis 4.5 - For all products during the middle periods we reject the hypothesis

that β1 ≥ 0 (p < .0001 for all products), and conclude that the within period log-odds of

observing a positive price-increment are on average decreasing in price.

Test of Hypothesis 4.6 - For all products during the middle and final periods we reject the

hypothesis that γ1 ≥ 0 (p < .005 for all products), and conclude that the within period

price-increments are on average decreasing in price.

In Lemma 4.2 of Section 3.1 sufficient conditions to ensure that E[XY +1|S] is increasing

were provided. The illustration of these conditions are provided in Figure 4.5. The top

six graphs of Figure 4.5 represents the coordinates for β1 (x-axis) and γ1 (y-axis) for each

product. The first row are for D1, D3 and D4, while the second row are for L1, L4 and L5

(from left to right). The triangular area enclosed by the dashed lines, display the region

for which the sufficient conditions of Lemma 4.2 hold for the four middle periods. The

‘x’ in each graph is the coordinate for the point estimate of (β1, γ1). For all six products

we see that the ‘x’ falls inside the ‘sufficient’ region and hence support that E[XY +1|S]

is increasing in the current price. For the final 12 hour period, since πs = 1, there is no

estimate for β1. Consequently the condition on γ1 simplifies and results in a lower bound.

See the discussion at the end of Section 3.1. The line on the y-axis labeled ‘60h’ indicates

the lower bound. The circle on the y-axis is the point estimate for γ1 for the final period.

We see that, with the exception of product D1, the circle is below the line. This does not,

however, necessarily mean that E[XY +1|S] is non-monotone in price as the conditions are

only sufficient. Therefore to further assess if E[XY +1|S] is increasing in the final period,

the graph of E[XY +1|S] for the final period is analyzed.

The bottom six graphs of Figure 4.5 display the conditional expected price transition

for the final period. On the x-axis is X60, and on the y-axis is the final price Xτ . The
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first row of graphs are for D1, D3 and D4, while the second row are for L1, L4 and L5

(left to right). The 45 degree line represents the line at which auctions remain unchanged

in the final 12 hours. The bold curve represents E[Xτ |S] = x + µs. The main feature of

interest is if this curve is monotone. We see that for the desktop products E[Xτ |S] is indeed

increasing, although for D3 and D4 there seems to be a slight downward trend at the lower

prices. However, for the laptop products the curve is clearly non-monotone. The implica-

tion is that, for laptop products, there exist a price p? such that E[Xτ |S] is decreasing in

price for x < p? and increasing in price for x > p?. Which in turn implies that the result

of Proposition 2.11 of Chapter 2 does not hold. In other words, it is not necessarily true

that the seller is always better off the higher the price. However, since for all the previous

periods, the expected price transitions are increasing in price, overall the seller is better

off the higher the price. Meaning that, though at the start of the final period, there exist

a ‘low’ price which has the same expected final price as a ‘high’ price, the seller would be

even better off above the ‘high’ price. And at the extreme end, the seller would want to

be above the ‘high’ price that has an equivalent expected final price as the ‘lowest’ priced

auction. Therefore, we conclude that, in general, the seller is always better of the higher

the price of an auction.

6.2. Effect of Number of Ongoing Auctions and Interaction Term. The second

and perhaps more interesting results regards the cannibalization effect. In the equations

in Table 4.4 this is represented by the coefficients for z and x × z. We observe that the

probability of observing a positive price-transition is decreasing in the average number of

ongoing auctions, z. This is seen by observing that the coefficients for z in the equations

pertaining to ln(πs/1 − πs) are either negative or non-significant. A third observation is

that, though the interaction term x× z is rarely significant, it does exhibit some influence.

This means that, with the exception of D4, the dynamics between price and number of
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Figure 4.5. The top six graphs display the feasible region for which the sufficient conditions
of Lemma 4.2 holds (first row: D1, D3, D4, second row: L1, L4, L5; left to right). Each graph has
β1 on the x-axis and γ1 on the y-axis. The triangular area enclosed by the dashed lines provides
the region such that Lemma 4.2 holds for the middle four periods. The ‘x’ represents the point
estimate of (β1, γ1). The line labeled ‘60h’ on the y-axis is the lower bound for γ1, and the circle
represents the point estimate of γ1 for the final period. If the ‘x’ or circle is outside the region
respectively lower bound it implies Lemma 4.2 does not hold.
The bottom six graphs show the conditional expected price transitions for the final period (first
row: D1, D3, D4, second row: L1, L4, L5; left to right). The x-axis represents price after 60
hours, and the y-axis represent the final price. The 45 degree line indicates auctions that received
no bids. The bold curve line shows E[Xτ |S] = x + µs. The main feature of interest is to see if
E[Xτ |S] is increasing.
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ongoing auctions will at some point during an auction come into effect. More details follow

but first we summarize the formal hypothesis results regarding the number of competing

auctions and the interaction term.

Test of Hypothesis 4.7 - For D3, L1, L4, L5 in the first period we reject the hypothesis that

β2 ≥ 0 (p < .02 for all products), while for D1 and D4 in the first period we fail to reject

the hypothesis that β2 ≤ 0 (p > .42 for D1 and p > .75 for D4).

For D1, D3, D4, L1, L5 during the middle periods we reject the hypothesis that β2 ≥ 0

(p < .005 for D1, D3, L1, L5, and p < .091 for D4), while for L4 we fail to reject the

hypothesis that β2 ≤ 0 (p > .66). We therefore conclude that the within period log-odds of

observing a positive price-increment are on average decreasing in the number of competing

auctions.

Test of Hypothesis 4.8 - For D1, D3, L1, L4 in the first period we reject the hypothesis that

γ2 ≥ 0 (p < .04 for all products), while for D4 and L5 we fail to reject the hypothesis that

γ2 ≤ 0 (p > .18 for D4 and p > .33 for L5).

For D4, L1, L5 during the middle periods we reject the hypothesis that γ2 ≥ 0 (p < .002

for all products), while for D1, D3, L4 we fail to reject the hypothesis that γ2 ≤ 0 (p > .53

for D1, p > .22 for D3, and p > .83 for L4).

For D1, D3, L4 in the final period we reject the hypothesis that γ2 ≤ 0 (p < .002 for all

products), while for D4, L1, L5 we fail to reject the hypothesis that γ2 ≥ 0 (p > .17 for D4,

p > .98 for L1, p > .78 for L5).

Therefore, for the first and middle periods we conclude that the within period price-

increments are on average decreasing in the number of competing auctions, while for the

final periods we conclude that the within period price-increments are on average not de-

creasing in the number of competing auctions. In other words, Hypothesis 4.8 only holds
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for the first and middle periods, and not for the final period.

Test of Hypothesis 4.9 - For D1 and L1 during the middle periods we reject the hypothesis

that β3 ≥ 0 (p < .075 for both), while for D3, D4, L4, L5 we fail to reject the hypothesis

that β3 = 0 (p > .77 for D3, p > .94 for D4, p > .66 for L4, and p > .18 for L5). We there-

fore conclude that the decreasing rate of the within period log-odds of observing a positive

price-increment due to an increase in the number of ongoing auctions, is not diminishing in

price. That is, Hypothesis 4.9 does not hold.

Test of Hypothesis 4.10 - For L5 during the middle periods we reject γ3 ≤ 0 (p < .03), while

for D1, D3, D4, L1, L4 we fail to reject γ3 = 0 (p > .64 for D1, p > .22 for D3, p > .27 for

D4, p > .50 for L1, and p > .83 for L4).

For D3 and L4 during the final period we reject γ3 ≥ 0 (p < .004 for both products), while

for D1, D4, L1, L5 we fail to reject γ3 = 0 (p > .39 for D1, p > .43 for D4, p > .36 for

L1, and p > .51 for L5). We therefore conclude that during both the middle and final

periods the expected decrease of the within period price-increments due to an increase in

the number of ongoing auctions, is diminishing in price. In other words, Hypothesis 4.10

holds.

A comment regarding the test of Hypothesis 4.10 is that although the sign of the γ3

coefficient for the final period is different than during the middle periods, it is also different

from the sign of the γ2 coefficient for the final period. In other words, we note that for

both the middle and final periods, the main effect of the number of ongoing auctions is

‘diminished’ by the interaction effect from price.
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Similar to the effect of price, there seems to be a different dynamics between the first

five periods and the final period. In the first five periods, though z is not always significant

and x× z hardly ever is, the coefficients are always such that Lemma 4.3 holds. For exam-

ple, for D4 we see that an unit increase of z, decreases the log-odds of observing a positive

price-increment with .027, and decreases the log-mean of the positive price-increment with

.023. Note, however, that for the middle periods of L5, there is a slight violation regarding

the condition on price, as −γ2/γ3 = .123/.0004 = 308, and there are several L5 auctions

during the middle periods at prices higher than $308. Consequently, we conclude that

during the first five periods, the more ongoing auctions the lower the conditional expected

price-increment E[CY +1|S]. Though this might not clearly be visible in Figures 4.10, 4.11,

and 4.12, it has intuitive appeal and should not be too surprising.

In the final period, for the three instances where z is significant, namely D1, D3, and

L4, γ2 is positive. This would imply that the main effect of having more ongoing auctions,

is that it increases the conditional expected price-increment. Though this might seem a bit

counter-intuitive and paradoxical, it ignores the interaction effect x × z. For both D3 and

L4, since γ3 is negative the conditions for Lemma 4.4 are satisfied. Specifically, the price-

level pi = −γ2/γ3, is the point such that if x > pi (x < pi) then the conditional expected

price-increment decreases (increases) the more ongoing auctions there are. As mentioned in

Section 3.2, the ‘cannibalization effect’, or rather price competition effect, benefits the lower

priced auctions and works against the higher priced auctions. With the interpretation that

this only happens in the presence of both low and high priced auctions, this has intuitive

appeal and seem natural to expect. The specific price levels pi are as follows. For D3,

pi = $135, which is slightly above the median of X60 and about $50 below the median Xτ .

And for L4, pi = $395, which though it is almost $100 above the median of X60, is just

slightly below the median of Xτ . Therefore, the loose interpretation would be that auctions
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for D3 or L4 products, which are priced below the median of Xτ and only has 12 hours

remaining, are considered ‘good deals’, and consequently will either attract more bidders

and/or higher bids. In the bottom two graphs of Figure 4.6 the ‘cannibalization effect’ in the

last period for D3 and L4 is shown. On the x-axis is the price after five periods (X60) and

on the y-axis is the conditional expected within period price-increment. The solid, dashed

and dotted lines, represents the scenario with 1, 5 and 10 ongoing auctions. We see that

for D3 and L4, if prices are below $135 respectively $395, then the more ongoing auctions,

the expected within period price-increment increases. And for prices above the thresholds

the expected price-increment decreases. The only anomaly regarding a positive γ2 is the

aggregated product D1. There is no intuitive reason why this should be the case, and the

graph in Figure 4.10 does not indicate any strong positive trend. One possibility might be

that, since the expected price transitions are decreasing in the number of ongoing auctions

for the first five periods, in the final period there is some compensation. Regardless, we

conclude that, in general, each auction will experience a lower price transition the more

ongoing auctions there are.

The third result of interest is regarding the diminishing cannibalization effect, which

would imply that a threshold type policy is optimal. For the middle four periods only

β3 for D1 and L1, and γ3 for L5 were found to be significant. In the former cases, β3 is

negative, which implies that the cannibalization effect is increasing in price. That is, the

higher the price and the more ongoing auctions the less likely there will be a positive within

period price-increment. While in the latter case, γ3 is positive, which implies that the can-

nibalization effect is diminishing in price. Illustration of the two different cannibalization

effects are shown in the top three graphs of Figure 4.6. Each graph has the expected within

period price-increment for the second period (12 → 24h) on the y-axis, and price after 12

hours on the x-axis. Each line represents the expected within period price-increments for
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a given number of ongoing auctions as labeled. For L5 we see that as price increases the

lines get closer to each other, i.e. the cannibalization effect is diminishing in price. While

for D1 and L1 we see that if there are more ongoing auctions then the exponential curve

becomes steeper, and hence the cannibalization effect is increasing in price. However, we

also see that, as discussed in Section 3.3, due to the shape of the negative exponential

curve, there is a price-level at which the difference between the lines is maximized and after

which the difference diminishes. That is, the cannibalization effect is first increasing and

then decreasing in price. For D1 and L1 the cannibalization effect seems to be increasing

up to about $125 respectively $250, and thereafter decreasing or diminishing. The other

noteworthy observation to point out is the difference between D1 and L1 regarding the

cannibalization effect. For D1 there is a much smaller shift in going from 1 to 20, or from

20 to 40, ongoing auctions, as compared with L1. In other words, the laptop auctions are

much more sensitive to an increase in the number of ongoing auctions. One explanation for

this might be that laptops are approximately twice as expensive, and hence there is more

room for price variability (in particularly downward). While for desktops the prices might

in general already be so low that there is not much room for them to decrease to.

For the final period, as mentioned above and illustrated in Figure 4.6, only D3 and

L4 have significant interaction terms. Although, as discussed in Section 3.3, there exist a

price-level pii, such that if x > pii (x < pii) then the cannibalization effect is decreasing

(increasing) in price, it is hard to see if this price-level is within range of values displayed.

The graphs in Figure 4.6 are limited to the range of values displayed by the data. Conse-

quently, we conclude that the cannibalization effect is not diminishing but rather increasing

in price (note that at first the cannibalization effect is negative). The implication on the

optimal release policy for all six products will be discussed in Section 7.
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Figure 4.6. Each graph shows the expected within period price-increment (y-
axis) as a function of price (x-axis). The top three graphs are for D1, L1 and L5
in the second period (12 to 24h), while the bottom two graphs are for D3 and L4
in the final period (60 to 72h). Each line represents the conditional expected price-
increment given the number of ongoing auctions as labeled. The solid line is the
base case when there is only one ongoing auction.
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6.3. Effect of Elapsed Auction Time. Another observation to note is that the in-

dividual periods exhibit different dynamics. Clearly there is a difference between the first,

middle and final periods, since they all have different coefficient values. In addition, for the

middle periods we note that, for all products, at least one of the elapsed period, y, indi-

cator functions is significant. This is true both with regard to ln(πs/1−πs) as well as ln(µs).

6.4. Estimation of Gamma Shape Parameter. The other result of interest con-

cerns the shape parameter of the gamma distribution for the positive price-increments. Re-

call from Figure 4.3 in Section 4.3, that depending on the shape parameter ν, the gamma

distribution will look and behave differently. If ν > 1 then the gamma distribution resembles

a right skewed unimodal curve, and if ν < 1 then it resembles a steeper exponential curve.

In the last two columns of Tables 4.5, 4.6, and 4.7 below, the resulting estimates of φ and

ν for the different periods of the auctions are shown (recall φ = 1/ν). First thing to note is

that all products have very similar parameters and hence similar shapes. The only striking

exception is for the first period of D3, where the distribution resembles a steeper exponential

distribution due to that ν̂ < 1. In all other instances, the distribution behaves like a heavily

skewed unimodal curve. That is, there is a long tail to the right (large price-increments)

and almost no tail to the left (small price-increments). This is expected and natural since

price-increments cannot be negative. Moreover, we see that as the auctions progress the

unimodal curve shifts more and more to the right, i.e. to higher price-increments. In par-

ticular, in the final period ν̂ is approximately twice as large as during the middle periods.

This further reflects the difference in auction dynamics in the final period, where the low

priced auctions do not exhibit small price-increments. In other words, the ‘large’ values of

ν̂ in the final period, reflects the change in pattern as displayed in Figures 4.7, 4.8 and 4.9,

and discussed in Section 5.1. This further attest to the applicability and appropriateness

of the proposed model. Not only does it adjust the mean rate according to changes in the
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ln(πs/1− πs) ln(µs)
D df D df φ̂ ν̂

D1 n.a. n.a. 1915 1080 .805 1.242
D3 347 272 278 117 1.243 .804
D4 n.a. n.a. n.a. n.a. n.a. n.a.
L1 2058 2044 1879 1607 .747 1.339
L4 198 170 141 122 .702 1.425
L5 154 161 n.a. n.a. n.a. n.a.

Table 4.5. Summary of residual deviance D, df , φ̂ and ν̂ for the final models in
the first period.

ln(πs/1− πs) ln(µs)
D df ∆D ∆df D df ∆D ∆df φ̂ ν̂

D1 10430 8281 - - 5075 4747 2.094 3 .700 1.428
D3 1311 1090 .083 1 619 636 7.744 4 .582 1.719
D4 833 664 1.034 3 334 391 .940 3 .555 1.801
L1 9638 8177 - - 4580 5043 .294 1 .659 1.516
L4 806 685 7.265 4 373 424 1.030 3 .584 1.712
L5 777 648 1.880 3 287 360 1.923 2 .603 1.660

Table 4.6. Summary of residual deviance D, df , φ̂ and ν̂ for the final models
during the middle periods. The columns ∆D and ∆df represents the increase in D
respectively df in the final models versus the unabridged models.

ln(µs)
D df ∆D ∆df φ̂ ν̂

D1 1048 2068 .302 1 .350 2.85
D3 124 270 - - .325 3.078
D4 56 165 .557 2 .232 4.312
L1 828 2038 1.603 2 .279 3.589
L4 44 168 - - .161 6.220
L5 76 161 .434 1 .342 2.924

Table 4.7. Summary of residual deviance D, df , φ̂ and ν̂ for the final models in the
final periods. The columns ∆D and ∆df represents the increase in D respectively
df in the final models versus the unabridged models.

covariates, but it can also adjust the shape of the price-increment distribution to shifts over

time.

6.5. Goodness-of-Fit and Residual Analysis. As mentioned earlier, formal sta-

tistical model validation is a bit problematic. There are no general asymptotic results

regarding the deviance D or the Pearson X2. Nevertheless some comments regarding the

‘goodness-of-fit’ based on the deviance for the two components of the proposed model can
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be made. In Table 4.5, 4.6 and 4.7, a summary of D and degrees of freedom (df) for the

final models are provided. Table 4.6 and 4.7 also includes the difference in D and df be-

tween the unabridged models and the final models. In the first period the final model is

either the unabridged model or simply the null model. Cases where the final model is the

null model are represented by n.a. Cases where the unabridged model is the final model

has no entry for ∆D and ∆df . Detail ‘R’ output for each product is provided in Appendix D.

The deviance and degrees of freedom for the first component, the probability of a posi-

tive price-increment, is summarized in the first set of columns of Table 4.5 and 4.6. The first

observation to make, is that D is fairly close to the df for almost all cases. Ordinarily, this

would have been ideal and indicated a good fit. However, for Bernoulli distributed obser-

vations, as shown in Section 4.4.1, this should not come as a surprise. In fact, the resulting

values of D illustrates the arguments of Section 4.4.1. For X2 the evidence is even stronger

(see output in Appendix D). Therefore, we make no statistical claims regarding the fit and

simply leave it for the reader to judge whether the Bernoulli model with a logit-function

is appropriate or not. On the other hand, since the difference in D of nested models does

follow a χ2 distribution, some formal assessment of the final model for the middle periods

is possible. An informal assessment is to see if the gain in df compensates the increase of

D (the final model has a larger D but also more df). With perhaps the exception of L4,

we see that the gain in df more than compensates for the loss in D. And the formal test

statistics, with the appropriate χ2 distribution, does in fact indicate that the increase in D

is not significant. Hence we conclude that the final models are more appropriate than the

unabridged models.

The second set of columns of Table 4.5 and 4.6, and Table 4.7 summarizes the results

for the second component, the positive price-increments. The first thing to note is that the
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deviance D (unscaled) measures are close to the degrees of freedom (with exception of D1

in the first period). Recall though, that the ‘proper’ comparison is to analyze the scaled

deviance D/φ. We see that D/φ̂ is almost consistently a factor of 1.5 times greater than df .

Although this is perhaps not excessive it would indicate a ‘poor’ fit. However, bare in mind

that the available asymptotic results only apply when φ is small. If we define φ < .5 as

small, then only for the values in the final period would the χ2 approximation hold. Formal

statistical test, in the final period, of D/φ̂ compared with χ2 with the appropriate df are

as follows: D1) p < .0001, D3) p < .0001, D4) p = .0001, L1) p < .0001, L4) p < .0001, L5)

p = .001.Therefore, rather than using any formal statistical significance test based on the

deviance, we base the ‘goodness-of-fit’ on the ensuing analysis of difference in deviance of

the nested models and residuals plots.

Similar to the earlier case, formal statistical assessment can be made with regard to

the nested models. Here the ‘proper’ assessment is with regard to the scaled ∆D.4 In all

cases, with one exception, the increase in ∆D is not significant. That is, for all products in

the last five periods, ∆D/φ̂ as compared to a χ2 distribution with ∆df degrees of freedom,

has ‘large’ p-values. The only exception is for D3 during the middle periods. The associ-

ated p-values for each of the periods are (middle/final): D1) .393/.353, D3) .01/n.a, D4)

.638/.301, L1) .504/.057, L4) .623/n.a., L5) .203/.260. We therefore conclude that the final

models fit the data better than the unabridged models, but note that for D3 the excluded

variables might be influential.

In Figures D.1, D.2, and D.3 of Appendix D, two sets of residuals for each product and

every period are shown. The top row for each product shows the deviance residual rd, while

the bottom row shows the response residuals y − µ̂. Each residual type is depicted against

4More correct would be to have the difference in scaled deviance tested (Dfin/φ̂fin −Dunabr./φ̂unabr.),

and not the scaled difference in deviance ((Dfin −Dunabr.)/φ̂fin).
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the fitted linear predictor η̂. In each row, the first, second, and third graph represents the

first, middle, and final periods respectively. It is important to remember that the linear

predictor is, for instance, decreasing in price. Consequently the larger values of η̂ corre-

spond to the lower prices. For all products, the deviance residuals, for the first and middle

periods, appear to be randomly distributed without any obvious trend. Thus indicating a

good model fit. However, in the final period, for all products, the deviance residuals display

a clear funnel shaped pattern. This would for a normal linear regression model, potentially

indicate that additional covariates or a transformation of one of the covariates be included.

Though various combinations of quadratic and log transforms of X and Z were tested, none

resulted in a drastic change of the deviance residual plot. Furthermore, recall that in the

final period the dynamics appeared to be a bit different, as lower priced auctions do not

have ‘small’ price-increments (see Figures 4.7, 4.8 and 4.9). This might be further reflected

by the apparent funnel shape of the deviance. Nevertheless, we do not conclude a poor

model fit.

In the bottom row for each product, the response residuals versus the fitted linear pre-

dictor are shown. For products L1, D3 and L4, in the first period, one might argue that

a funnel shape pattern exist. Since γ2 is significant and negative, it would imply that the

variance of the price-increments is decreasing in Z. Similarly, for all products, in the middle

periods, there is a clear funnel shaped pattern. In these instances, since γ1 is significant

and negative, the variance of the price-increments is decreasing in X. In both situations,

the funnel shape does not indicate a poor model fit. Contrariwise, since the variance of the

gamma distribution is νµ2, and the mean is decreasing in Z and X for the first respectively

middle periods, the response residuals indicates a good model fit. In the final period, for

all products, the response residuals appear to be evenly and randomly distributed, thus
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indicating a constant variance. The graph for L1 is clearly distorted due to the outlier.

7. Discussion

This chapter has provided a statistical framework for analyzing the progression of online

auctions. The objective was to provide a model that characterizes the expected within pe-

riod price-increments conditional upon certain variables. Although the general framework

would allow for almost any information, the variables that were the focus of this chapter

included, price and elapsed time of an auction, and the number of ongoing or competing

auctions. The main reason for analyzing these variables, was to determine if the struc-

tural properties and implications of Chapter 2 can be empirically justified in a real setting.

Sufficient conditions on the parameters of the proposed model to support the structural

properties in Chapter 2 were derived and discussed. Finally, the model was applied to six

data-sets for Dell desktop and laptop auctions. There were two main results. First, the

proposed model fit the data well, and auctions’ within period price-increments appear to

follow a zero-inflated gamma distribution. Second, though some exceptions exist, the main

results of Chapter 2 hold.

The main trade-off considered in Chapter 2 was if the additional incurred holding cost

would be compensated by the gain in expected price-increment by deferring the release one

period. To illustrate consider Tables 4.8 and 4.9 below. The columns represents the price

at the start of a period, while the rows represents the increase in number of ongoing auc-

tions. Each entry is the decrease in the expected within period price-increment as a result

of having more auctions underway as specified. The values are computed by substituting

the values for x and z as specified, into the equations for the final model as listed in Table

4.4. Positive entries represents a loss while negative entries represents a gain. For instance,
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for the aggregated desktop data set D1, if an auction is priced at $0 at the start of the

second period, then the seller would lose $.96 in expected within period price-increment if

there were 10 rather than only 1 ongoing auction. Note that all values are positive in Table

4.8, which means that the seller will always be worse of with more ongoing auctions. While

in Table 4.9 some of the values are negative, which indicates that the seller would benefit

by having more ongoing auctions. In addition, note that the remaining middle periods will

be similar but not identical to the values shown in Table 4.8, due to the indicator functions

for the elapsed period y effecting the intercept term.

Two interesting and illustrative examples are products D3 and L5. We see that, for

the second period, an auction for a D3 product currently priced at $0, will lose $2.80 in

expected price-increment by having 5 rather than 1 ongoing auction, lose $3.79 by having 10

rather than 5 ongoing auctions, and lose $3.98 by having 15 instead of 10 ongoing auctions

underway. In contrast, an auction for a L5 product currently priced at $0, will lose $32.93

by having 3 rather than 1 ongoing auction, lose $35.52 by having 6 rather than 3 ongoing

auctions, and lose $23.27 by having 9 rather than 6 ongoing auctions. Furthermore, we

see that the gain by having fewer ongoing auctions diminishes the higher the price. For

instance, if a D3 auction is priced at $200 at the start of the second period, then the de-

crease in expected within period price-increment by having 5 rather than 1 ongoing auction

is $.10, the decrease is $.10 if there are 10 rather than 5 ongoing auctions, and the decrease

is $.07 if there are 15 rather than 10 ongoing auctions. While for a L5 auction currently

priced at $200, the decrease in expected price-increment is $10.03 if there are 3 rather than

1 ongoing auction, the decrease is $12.24 if there are 6 rather than 3 ongoing auctions, and

the decrease is $9.02 if there are 9 rather than 6 ongoing auctions. In the final period, we

see that for L5 there is neither a gain or loss in having more auctions underway, while for

D3 we have the situation where ‘low’ priced auctions gain from having more auctions and
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‘high’ priced auctions are worse of. More specifically, we see that a D3 auction currently

priced at $50 at the start of the final period, will gain $28.41 in expected price-increment

if there are 5 ongoing auctions rather than 1, gain $48.15 if there are 10 rather than 5

ongoing auctions, and gain $67.38 if there are 15 instead of 10 ongoing auctions. While

if a D3 auction priced at $200 at the start of the final period, will lose $8.07 in expected

price-increment when there are 5 rather than 1 ongoing auction, lose $7.92 if there are 10

instead of 15 ongoing auctions, and lose $6.04 if there are 15 instead of 10 ongoing auctions.

However, as discussed earlier, this presumably only holds given that there are both ‘low’ and

‘high’ priced auctions. In other words, if a D3 auction is priced at $0-100 and only has 12

hours remaining, then it would presumably not gain the amounts indicated by starting the

additional four or five D3 auctions. The main point is that if the additional incurred holding

cost is not compensated by the gain in expected within period price-increment then it is

optimal to release more items for auction.

(D1) X12 (D3) X12 (D4) X12

Z12 $0 $50 $100 $200 Z12 $0 $50 $100 $200 Z12 $0 $50 $100 $200
1 → 10 .96 1.23 1.32 .96 1 → 5 2.80 2.25 1.08 .10 1 → 5 5.81 4.33 3.00 1.05

10 → 20 1.09 1.38 1.44 .97 5 → 10 3.79 2.66 1.14 .10 5 → 10 6.51 4.80 3.26 1.10
20 → 40 2.28 2.77 2.74 1.62 10 → 15 3.98 2.41 0.93 .07 10 → 15 5.75 4.18 2.79 .89

(L1) X12 (L4) X12 (L5) X12

Z12 $0 $50 $100 $200 Z12 $0 $50 $100 $200 Z12 $0 $50 $100 $200
1 → 10 12.62 12.20 11.90 11.12 1 → 5 0 0 0 0 1 → 3 32.93 25.27 19.04 10.03

10 → 20 12.73 12.35 12.01 10.72 5 → 10 0 0 0 0 3 → 6 35.52 28.34 22.09 12.24
20 → 40 21.81 21.05 20.00 15.79 10 → 15 0 0 0 0 6 → 9 23.27 19.30 15.53 9.02

Table 4.8. Illustration of cannibalization effect in the second period for four
different prices. The columns represents X at the start of the second period, while
the rows represents the decrease in Z for the second period. Each entry is the loss
in expected price-increment. For example, a D1 auction priced at $0 will loose $.96
in expected price-increment if Z increases from 1 to 10.
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(D1) X60 (D3) X60 (D4) X60

Z60 $0 $50 $100 $200 Z60 $50 $100 $200 Z60 $50 $100 $200
1 → 10 -3.02 -2.49 -2.06 -1.40 1 → 5 -28.41 -7.99 8.07 1 → 5 0 0 0

10 → 20 -3.45 -2.85 -2.35 -1.60 5 → 10 -48.15 -11.27 7.92 5 → 10 0 0 0
20 → 40 -7.23 -5.96 -4.92 -3.35 10 → 15 -67.38 -12.89 6.04 10 → 15 0 0 0

(L1) X60 (L4) X60 (L5) X60

Z60 $0 $50 $100 $200 Z60 $50 $100 $200 Z60 $50 $100 $200
1 → 10 0 0 0 0 1 → 5 -86.79 -58.63 -22.40 1 → 3 0 0 0

10 → 20 0 0 0 0 5 → 10 -146.86 -93.95 -32.19 3 → 6 0 0 0
20 → 40 0 0 0 0 10 → 15 -205.23 -123.65 -37.58 6 → 9 0 0 0

Table 4.9. Illustration of cannibalization effect in the final period for four dif-
ferent prices. The columns represents X at the start of the final period, while the
rows represents the decrease in Z for the final period. Each entry is the difference
in expected price-increment. Positive values represents a loss and negative values
represents a gain. For example, a D1 auction priced at $0 will gain $3.02 in expected
price-increment if Z increases from 1 to 10.
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Figure 4.7. Within period price-increments for products D1 (top) and L1 (bottom)
as a function of price. The line in each graph represents the conditional expected price-
increment for the 0G model with z set at the median value (D1 z = 20, L1 z = 20).
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Figure 4.8. Within period price-increments for products D3 (top) and D4 (bottom)
as a function of price. The line in each graph represents the conditional expected price-
increment for the 0G model with z set at the median value (D3 z = 5, D4 z = 5).
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Figure 4.9. Within period price-increments for product L4 (top) and L5 (bottom)
as a function of price. The line in each graph represents the conditional expected price-
increment for the 0G model with z set at the median value (L4 z = 5, L5 z = 3).
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Figure 4.10. Within period price-increments for products D1 (top) and L1 (bottom)
as a function of the average number of ongoing auctions.
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Figure 4.11. Within period price-increments for products D3 (top) and D4 (bottom)
as a function of the average number of ongoing auctions.
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Figure 4.12. Within period price-increments for product L4 and L5 as a function of
the average number of ongoing auctions.
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CHAPTER 5

Empirical Analysis of Online Bidding Behavior

1. Introduction

In Chapter 3 we discussed how the within period price-transition probabilities can be

derived given an underlying bidding strategy. Specifically we discussed the bidding strate-

gies when bidders bid: 1) a minimum increment in the lowest priced auction, and 2) their

true valuation in the lowest priced auction. The objective was not to establish that those

are optimal strategies, or that in an eBay type setting they would lead to an (Bayesian

Nash) equilibrium. Instead the objective was to show how the conditional price-transitions

of an auction can be characterized given a specific bidding strategy. In contrast to Chapter

4, were the empirical analysis focused on the within period price-transition probabilities,

this chapter will focus on the individual bidders and their actual bidding behavior. The

objective is to propose and fit a statistical model for analyzing the underlying bid strat-

egy. Similar to Chapter 3 we define bid strategy to be the amount a bidder decides to

bid. In other words, the bidding strategy does not include the decision of when to place a

bid. Therefore, the inter-arrival time of bids and the bid amount will be analyzed separately.

In Figure 5.1 histograms of the bids and bid-increments for the six products analyzed

in Chapter 4 are shown. The top graphs depict the distribution of the bids, that is the

amount of the bids, while the bottom graphs shows the distribution of the bid-increments,

that is the amount above the current price that a bidder bid. To illustrate, suppose the

current price of an auction is $100, and that a bidder bids $150. In this case, (the amount

of) the bid is $150, and the bid-increment is $50. Though the histograms of bids do not
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seem to follow any of the common distributions, there is one striking feature. We see that

bids in even $100 amounts are much more frequent that other amounts, i.e. there are clear

spikes around $0, $100, $200, $300, and so on. In other words, bidders seem to prefer bids

in $100 amounts. In addition, there are slightly shorter spikes around the $50 amounts, i.e.

around $50, $150, $250, and so on. And after that the spikes are around the $25 amounts,

i.e. around $25, $75, $125, $175, and so on. Note that it is not possible to register a bid

for $0, and that the left most spike represents bids less than $5.

The histograms of the bid-increments seem to tell a slightly different story. First of all,

there is a clear pattern which resembles the exponential distribution. Or more specifically,

with the exception of product D1, since the left most bar is shorter than the subsequent

bars the distribution resembles a gamma distribution with shape parameter slightly above

one. Recall from Section 4.3 of Chapter 4, that a gamma distribution with shape param-

eter greater than one, resembles a heavily skewed uni-modal curve. In other words, there

seems to be a ‘high’ probability of observing ‘small’ increments, and a ‘low’ probability

of observing ‘large’ increments. Furthermore, there is a similar feature as observed in the

histograms of the bids. Namely, spikes around the $50 increments, i.e. there are spikes

around $50, $100, $150, $200, and so on. Given the spikes observed in the bid histograms,

this should not come as a surprise. Clearly the spike features in one histogram would imply

spike features in the other. However, it does beg the question: How do bidders decide on

their bid? Do they decide on a given bid amount, or do they decide on a given bid-increment?

It is of course possible, and probably likely, that there are some bidders who choose

a bid amount and others who choose a bid-increment. And the data shown in Figure 5.1

reflects bids from both types. The objective of this chapter is not to analyze the issue of how

bidders decide, but rather to statistically characterize the bids. In particular, the objective
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is to propose a model that characterizes the bid-increments. Furthermore, the analysis will

focus on the conditional bid-increment given various variables. Important information that

is lacking in Figure 5.1 includes, for instance, the price of the auction when the bids were

placed. How the distribution of the bid-increments depend on, for instance, price is the

main motivation behind this chapter.

Overview of Chapter 5. The remaining chapter is organized as follows. In Section

2 we provide some descriptive statistics of the data analyzed. Section 3 proposes a model

where bid-increments follow a gamma distribution, and Section 4 discusses the results of

fitting the model to the data. Section 5 provides a brief analysis of the inter-arrival time of

bids. Finally, Section 5 concludes the chapter with a discussion on the findings.

An important issue to bare in mind is that this chapter only considers bids that are

strictly greater than the current price of an auction. In other words, potential bidders

who show up but choose not to bid will not be registered, and therefore not included in

the analysis. This implies that there is no information regarding which auctions a bidder

contemplated between. The only available information is that a bidder placed a bid in a

given auction.

2. Descriptive Statistics of Bids

The data for which the ensuing analysis is based on comes from the bid history of the

products analyzed in Chapter 4. For each auction complete information on all non-winning

bids is available. This includes the user-id of the bidder, and the time and amount of the

bid. For the winning bid, however, the bid amount is censored and is only shown as the
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Figure 5.1. Histogram of the bids (top) and bid-increments (bottom). The top
row of each set of histograms is D1, D3, and D4 (left to right), while the bottom
row is L1, L4, and L5 (left to right),
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minimum increment above the second highest bid. The minimum increments, which de-

pend on the current price, are listed in Chapter 1. Despite the fact that the winning bid is

censored, since a bidder does not with certainty know his bid will be the highest, there is

no reason to suspect that the winning bids are the result from a different bidding strategy

than the non-winning bids.

Table 5.1 provides some descriptive statistics for the bids and bidders of each product.

The second and third column lists the total number of auctions and bids respectively. The

seventh column lists the percentage of bids that are placed in the final hour. Column 11

and 12 lists the percentage of winning bids that arrive in the final hour and as the last bid

respectively. On average about 17% of all bids and about 60% of the winning bids arrive

in the final hour of an auction. Furthermore, about 60% of the winning bids are the last

bid of each auction. Note that the last bid may or may not fall within the final hour of an

auction. The mean, standard deviation, median, min and max for the number of bids and

bidders per auction are also listed. On average there are about 10 bids and 8 bidders per

auction. In other words, a bidder most likely places only one bid per auction.

An important note regarding the bid history and reported statistics, is that we treated

consecutive bids within 10 minutes from an individual bidder as a single bid. That is,

there were instances where a bidder would immediately place another bid upon not being

registered as the high-bidder. For instance, a bidder might arrive, bid $1 above the current

price and see that this is insufficient to become the high-bidder. Immediately following

this, he may try a second time and bid $1 above the new current price. This process might

continue until either the bidder gives up or becomes the high-bidder. If the time between

an individual bidder’s bids were less than 10 minutes, then only the last bid counted as

the bid from the bidder. If on the other hand, another bidder placed a bid in between,
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Product # of # of # of Bids/Auction % Bids # of Bidders/Auction % Winners % Winners
Auctions Bids Average Med. Min. Final Hr. Average Med. Min. Final Hr. Last Bid

(St.Dev.) /Max. (St.Dev.) /Max.

D1 2,075 20,479 9.86 (3.08) 10.0 1/25 17.2 8.1 (2.3) 8.0 1/17 59.0 61.0
L1 2,047 23,842 11.64 (3.54) 11.0 1/29 17.4 9.4 (2.6) 9.0 1/19 64.4 61.8

D3 274 2,669 9.73 (2.97) 9.0 4/21 16.5 7.9 (2.3) 8.0 3/15 55.1 58.4
D4 167 1,773 10.61 (3.27) 10.0 4/25 16.5 8.6 (2.2) 9.0 4/16 58.7 59.3
L4 172 2,274 13.21 (3.60) 13.0 4/23 19.0 10.7 (2.8) 10.5 4/19 69.2 55.8
L5 163 1,680 10.30 (3.37) 10.0 4/19 15.5 8.5 (2.5) 8.0 3/16 62.0 66.3

Table 5.1. Descriptive statistics of the bids and bidders per auction.

then both bids from the first bidder were included in the analysis. The reason 10 minutes

was chosen was arbitrary, and only meant to give the bidder enough time to judiciously

decide the amount to bid. With the 10 minute threshold there still were instances where an

individual bidder accounted for two consecutive bids. An empirical analysis on how bidders

react and bid based on the timing of the counter-bid can be found in Haubl and Popkowski

Leszczyc (2003), who define the reaction and mental state to counter-bids as bidding frenzy.

Here, however, all statistics reported are based on that consecutive bids within 10 minutes

from an individual bidder are truncated to a single bid.

It should also be noted that prior to January 4, 2007, eBay included the user-id of all

bidders in the bid history of each auction. After January 4, 2007, eBay started concealing

the bidders’ user-id with a generic ‘Bidder #’, once the price of an auction reaches $200.1

In other words, for the auctions that started prior to January 4, 2007, the user-id of each

individual bidder is available. Consequently, information regarding the number of auctions

a particular bidder participated in and how many bids he placed is available, while after

January 4, 2007, only the bid amount or amounts for the bidders in a given auction is

available. In Table 5.2 descriptive statistics regarding the bidders from the auctions with

known bid history is provided. The second column is the number of auctions for which

the user-id of the bidders are known. The third and fourth column lists how many bidders

and winners there were for each of the products. These are counted based on the user-id.

1Currently eBay uses a different method to disguise the bidders’ user-id.
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Product # of # of # of # of Single Most Auctions Won
Auctions Bidders Winners Unit Winners by Single Bidder

Total 3,726 9,424 1,942 1,496 75
D1 2,051 4,933 1,154 868 41
L1 1,675 5,334 882 719 75
D3 269 1,032 201 163 7
D4 167 766 139 123 5
L4 167 984 112 95 15
L5 125 654 90 75 10

Table 5.2. Aggregate descriptive statistics for auctions with complete bid history.
The fifth column is the number of winners that only won one auction. The sixth
column is the maximum number of auctions won by a single bidder.

In other words, the third column is the number of unique user-id that placed bids in each

of the products. It is possible that an individual bidder has more than one user-id. The

fifth column lists the number of bidders who won only a single auction, e.g. 163 out of the

201 D3 winners won only one auction. The final column lists the most number of auctions

won by a single bidder, e.g. there was one bidder who won 75 L1 auctions (out of 1,675

auctions). We see that only about half of all auctions are won by bidders who only win

one auction. In other words, about half the auctions are awarded to bidders with more

than unit demand. In the auction theory literature, it is often assumed that bidders have

unit demand. This provides further support to the points raised by Rothkopf and Harstad

(1994), regarding the gap between bidding theory and bidding phenomena. More specifi-

cally, when developing normative models for analyzing multiple auctions, whether released

with or without overlap, it may be noteworthy to address how the results would change if

bidders have more than unit demand.

2.1. Variables. For a given product, there are several variables that can, either di-

rectly or indirectly, be derived from the bid history of the auctions. Below we list the

main variables that are recorded for each bid in each auction (with respect to the product

analyzed).
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• Bidder ID

For auctions that started before January 4, 2007, or auctions below $200 the user-id

of each bidder is listed.

• Auction ID

Each auction is represented by a unique registration number.

• Date of Bid

A time stamp that indicates the date and time when the bid was placed.

• Bid Number

The order of the bid in the auction, i.e a counter for how many bids have been

placed in the auction.

• B - Bid Amount

For all bids the dollar amount of the bid. If the bid is the winning bid, i.e. highest

bid placed, then this amount is censored and only shows as the minimum increment

above the second highest bid.

• X - Current Price

Since eBay auctions are second-price auctions, the price of an auction when each

bid was placed can be derived. Namely, at any given point in time the price is the

second highest bid placed so far. Strictly speaking, this is not exactly correct since

eBay enforces minimum increments. In other words, the real ‘current price’ of an

auction at any given point in time, is the second highest bid plus the minimum

increment. See Chapter 1 for more details. As a result X is slightly underestimated,

which in turn slightly overestimates the bid-increment.

• C - Bid-Increment

This variable is calculated as the amount above the current price that the bidder

bid, C ≡ B −X. As noted above it ignores the minimum increments imposed by

eBay and therefore slightly overestimates the real bid-increment.
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• Current High Bid

Similar to X once the bid history is revealed the highest bid at any given point

in time can be calculated. Note, however, that this information is not available

for the bidder at the time he placed his bid. Furthermore, the information for the

final high bidder remains censored.

• t - Elapsed Auction Time

The elapsed auction time in minutes. Note that we use the notation from Chapter

3, and define t as the elapsed time, instead of the notation in Chapter 2 and 4

where elapsed auction time was defined by Y . The reason for this is to distinguish

elapsed auction time as a continuous random variable, rather than discrete as in

Chapter 2 and 4.

• Tint - Inter-Arrival Time

The time, in minutes, since the previous bid in the auction was placed, i.e. the

inter-arrival time in minutes.

• Study Time

The time, in days, since the first auction in the product was started.

• Z - Number Auctions

This is the number of ongoing auctions for the product at the time of the bid.

• Plow - Low Price

The price in the lowest priced competing auction at the time of the bid.

• Phigh - High Price

The price in the highest priced competing auction at the time of the bid.

• Tlow - Time Low Price

The time remaining in the auction with price Plow.

• Thigh - Time High Price

The time remaining in the auction with price Phigh.
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• Bbid - Bidder Bids

A counter for the total number of bids the bidder has placed (including the bid

under consideration). For all auctions prior to January 4, 2007, each individual

bidder can be tracked and the number of bids he has placed for a given product

counted. This variable is different from Bnum, which counts how many bids have

been placed in the auction. Bbid counts the number of bids the bidder has placed

so far (with respect to the product under consideration).

• Bauc - Bidder Auctions

A counter for the total number of auctions the bidder has placed bids in (including

the auction under consideration).

• Bfb - First Bid

This is a dummy variable to indicate if this is the bidder’s first bid in the auction.

It is 1 if it is the first bid in the auction for the bidder, and 0 otherwise.

There are of course additional variables that might be of interest, such as the number of

auctions previously won and at the price at which they were won. From Table 5.2 we saw

that approximately half the auctions are won by previous winners. Other possible variables

could also include time of day when bid was placed, and for the aggregated products D1

and L1, the various configuration attributes, e.g. memory, hard disc, processor speed, etc.

However, we leave those variables for future analyzes. The above list captures the main as-

pects of interest both regarding the auction itself, the competing auctions, and some bidder

attributes.

A comment regarding notation is that capitalized (upper case) letters denote variables,

while lower case represent their manifestation. For instance, X is the variable representing

current price, while x refers to a realization of the current price. The only exception is

elapsed auction time, where the variable is represented by t, and a realized value of elapsed
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auction time is represented by t′.

3. Analysis of Bid-Increments

There are conceivably many factors that might influence the bid-increment, both with

respect to the auction itself, the competing auctions, as well as the bidder. The main

variables of interest from the perspective of this thesis, however, are the current price and

elapsed time of an auction, and the number of competing auctions, i.e. X, t, Z. These three

variables provided the basis for the optimal release policy of Chapter 2.

Intuitively, it would seem reasonable to expect that the higher the price, the lower the

bid-increment. Figure 5.2 shows the bid-increments as a function of current price. On the

horizontal axis is the current price, and on the vertical axis is the bid-increment. Each

observation represents a bid. The lines represents the fitted values and will be discussed in

Section 4. The graphs have been divided into two sets. The top row for each product line

is for the first 71 hours of the auction (out of 72), while the bottom row displays the bid-

increments for the final hour. Note that the vertical scale is different for two sets of graphs.

The motivation to separate the final hour is because almost 20% of the bids and 60% of

the winning bids arrive in the final hour. In addition, it is well established that the bidding

activity toward the end of an auction is different [24, 28]. Therefore, a separate analysis for

the final hour will be conducted to see if there is a difference in underlying bidding strategy.

The reason for choosing one hour as the final time frame was arbitrary, but such that a

‘sufficient’ number of bids are available for analysis. For the first 71 hours, there is a clear

trend displaying bid-increments as decreasing in the current price. This should not come

as a surprise and is consistent with the observations made in Chapter 4. It should be noted

that excluding the observations from the final hour does not alter or amplify this trend.
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Interestingly, the trend does not seem to hold for the final hour. With the possible exception

of product L1 and D3, it seems that in the final hour bid-increments are evenly distributed

across the current price. In other words, both ‘high‘ and ‘low’ priced auctions are equally

likely to see ‘large’/‘small’ bid-increments. To see this from a different perspective, Figure

5.3 shows the distribution of the bid-increments in the final hour for ‘low’, ‘medium’, and

‘high’ price-ranges. For the desktop products the price-ranges are defined as follows, low:

X ≤ $150, medium: $150 < X ≤ $250, high: $250 < X, while for the laptop products the

price-ranges are defined to be, low: X ≤ $300, medium: $300 < X ≤ $450, high: $450 < X.

An informal statistical test for the median bid-increment (the line inside each box) to be

‘significantly’ different, is if the notches of the boxes do not overlap.2 Overall it seems that

there is no difference in median price due to that the notches of each box seem to overlap.

The only exception would be for product D1, where it seems that the median bid-increment

in the final hour for bids placed when X > $250 is ‘significantly’ larger than for the two

other price-ranges. Therefore, we hypothesize that price does not significantly affect the

bid-increments in the final hour. We formally state the two findings in the following testable

hypotheses.

Hypothesis 5.1. During the first 71 hours of an auction (out of 72), bid-increments

are on average decreasing in the current price of an auction.

Hypothesis 5.2. In the final hour of an auction, bid-increments are independent of the

current price of an auction.

Section 3.2 provides definitions and details regarding the testing procedure of the hy-

potheses.

2The reason the boxplot for D3 and ‘high’ prices appears disorted, is that the definition of the notches
are based on a fixed interval around the median. A possibility, as evident with D3, is that the 25th or 75th

percentile falls within the range of the notches.
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Figure 5.2. Bid-increments versus current price for D1, D3, D4 (top, left to right)
and L1, L4, L5 (bottom, left to right). The first row of each product line is for the
first 71 hours of the auction (out of 72), while the second row of each product line
is for bids placed in the final hour. The horizontal axis in each graph represents the
current price, and the vertical axis is the bid-increment. Each point represents a
single bid. The lines represent the fitted values of the final model and are discussed
in Section 4.
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Figure 5.3. Distribution of bid-increments in the final hour. Each product shows
the distribution in the final hour for three price ranges - ‘low’, ‘medium’, ‘high’. For
the desktop products, low: X ≤ $150, medium: $150 < X ≤ $250, high: $250 < X.
For the laptop products, low: X ≤ $300, medium: $300 < X ≤ $450, high: $450 <

X.

For elapsed auction time, the correlation with the bid-increments could presumably be

argued both ways. In other words, the more time that has elapsed, or the less time that

is remaining, bidders could become more or less ‘aggressive’ in their bidding, i.e. make

smaller or larger bid-increments. However, in the final hour of an auction it would seem

more reasonable to expect a positive trend between elapsed time and bid-increment. The

reason for this would be that the more time that has elapsed (less time remaining), there is

less opportunity to submit a counter-bid if needed. This could arguably lead to that bidders

place bids based on larger increments. A problematic issue with analyzing the effect elapsed

auction time has on bid-increments is the positive correlation between the current price and
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the elapsed auction time.

Figure F.1 in Appendix F shows the current price versus the elapsed auction time. On

the horizontal axis is elapsed auction time, and on the vertical axis is the current price.

Each observation represents a bid, and hence Figure F.1 shows the price at the time of

each bid. In other words, Figure F.1 shows the aggregated evolution of all auctions, or

the realized sample paths for each product. Similar to Figure 5.2 the final hour is shown

in a separate graph, i.e. the top row for each product line represents time up to the fi-

nal hour, while the bottom row represents the final hour. Note that the horizontal axis is

scaled differently for the two sets of graphs. The purpose of these graphs is to illustrate

the positive correlation between the current price and elapsed auction time. Needless to

say as an auction progresses and bids arrive, the price of an auction increases. Which is

clearly visible for the graphs depicting the first 71 hours of each product. However, this

does not seem to hold for a given hour, and in particular not for the final hour. In other

words, zooming in on a ‘short’ time interval for the graphs in the top rows, such as one

hour, the positive trend is not present. In the graphs for the final hour this is more visible.

The reason why this is important is that if current price and elapsed auction time are both

included as independent variables, then it might be difficult to de-couple the main effect of

each one in the presence of the other, i.e. there might be an issue with multi-collinearity.

This is another reason for analyzing the final period separately.

In Figure 5.4 the bid-increment as a function of the elapsed time for the final hour is

shown. On the horizontal axis is elapsed auction time in minutes, and on the vertical axis is

the bid-increment. Each observation represents a bid. The lines represents the fitted values

and will be discussed in Section 4. There are two main observable features. The first is

that predominantly most bids arrive in the last minutes of the auction. Which is consistent
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with the analysis of, for instance, Roth and Ockenfels (2002), and Shmueli et al (2004), as

well as the bid strategy of sniping. The objective of sniping is to place a bid as close to the

end of an auction as possible, thereby not leaving any time for others to counter-bid. Recall

that about 60% of the wining bids come in as the last bid. This may suggest that sniping

is not as dominating or advantageous as it might seem. The second feature is that most

bid-increments are rather small, particularly for the bids in the final minutes. This might

mean that with sniping, bidders also try to bid as small an increment as possible. Though

there does not seem to be a strong negative trend, due to the concentration of small bid-

increments in the final minutes, a significant negative relation between bid-increment and

elapsed time might be found. This would seem a bit counter-intuitive and not supportive

of the informal reasoning above. We formally summarize our observations and reasoning in

the following two hypotheses.

Hypothesis 5.3. During the first 71 hours of an auction (out of 72), bid-increments

are independent of the elapsed auction time.

Hypothesis 5.4. In the final hour of an auction, bid-increments are on average in-

creasing in the elapsed auction time.

For the number of competing auctions Z, it would seem intuitive that the more ongoing

auctions there are, the smaller the bid-increment. The reason for this would be that if there

are more ongoing auctions, then there are more auctions available to participate in and

hence less reason for a bidder to commit to a higher price. That is, there is no reason to

place a high bid-increment, since if a bidder is outbid, then there might be other lower priced

auctions available. Other competing variables of interest include the price of the competing

auctions. Rather than focusing on price of all competing auctions, only the highest and

lowest price of the competing auctions have been included, i.e. Plow, Phigh. Though it may

be argued that the higher these prices are, the larger the bid-increment, it does not seem
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Figure 5.4. Bid-increments versus elapsed time in the final hour for desktop
(top) and laptop (bottom) auctions. The horizontal axis in each graph represents
the elapsed time in minutes, and the vertical axis is the bid-increment. Each point
represents a single bid. The lines represent the fitted values of the final model and
are discussed in Section 4.

overwhelmingly intuitive that there would be any relation between the bid-increment and

the prices of the competing auctions. For instance, one reason why people buy things from

auctions is to be able to buy something at a ‘good’ price. Therefore, just because there is

someone who currently has committed to an auction at a ‘high’ price does not provide an

incentive for a bidder to place a increase his bid-increment. We will nevertheless initially

analyze how the prices of the competing auctions, and the time of those auctions, i.e.

Tlow and Thigh, affect the bid-increment. The only formal hypothesis test we will conduct

regarding the competing variables is the following.

Hypothesis 5.5. Bid-increments are on average decreasing in the number of ongoing

auctions.

220



The final set of variables included in the analysis, pertain to the individual bidder and

are the number of bids he has bid, the number of auctions he has participated in, and a

dummy variable indicating whether the bid is his first for the auction, i.e. Bbid, Bauc, Bfb.

For these it is not certain how they might affect the bid-increment. It would seem equally

intuitive to expect an increase or decrease in the bid-increment as a result of an increase in

each of the three variables. Therefore, no formal hypotheses testing will be conducted with

regard to the bidder variables.

Although there are many possible interaction terms, we only include the interaction

between current price and elapsed auction time. The reason we include this interaction

term is to gain further insight if current price or elapsed time is more influential on the bid-

increments. To summarize, the objective is to analyze the bid-increments as a function of the

the state of the auction and the bidder, SB ≡ (X, t, Tint, Z, Plow, Tlow, Phigh, Thigh, Bbid, Bauc, Bfb).

Specifically the following relation will be evaluated,

C ∼ X + Y + X × t + Tint︸ ︷︷ ︸
auction variables

+Z + Plow + Phigh + Tlow + Thigh︸ ︷︷ ︸
competing variables

+Bbid + Bauc + Bfb︸ ︷︷ ︸
bidder variables

3.1. Gamma Distributed Bid-Increments. The formal analysis will be based on

the Generalized Linear Model (GLM) concept discussed in Chapter 4. Motivated by the

histograms in Figure 5.1, we assume that the bid-increments, given a state s ∈ SB, follow

a gamma distribution with mean µs and shape parameter ν,

(5.1) fC|SB
(c|s) =

1
Γ(ν)

(
ν

µs

)ν

cν−1e
−

(
cν
µs

)
c > 0
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where,

ln(µs) = γ0 + γ1x + γ2t
′+γ3tint + γ4z + γ5plow + γ6phigh + γ7tlow + γ8thigh(5.2)

+ γ9bbid + γ10bauc + γ111{bfb=1} + γ12x× t′

In other words, it is assumed that the log of the average bid-increment is a linear func-

tion of the variables. The symbol 1{·} represents the indicator function, which equals 1 if

the argument inside the brackets is true and 0 otherwise. Some comments about the model

follows. First, since consecutive bids within 10 minutes are excluded, and most bidders only

bid once per auction, it would seem reasonable to assume that the bids are independent.

Parameter estimation of (5.2) uses maximum likelihood assuming independent observations.

Second, as mentioned earlier, the basis for assuming gamma distributed bid-increments is

due to the shape displayed in the histograms of Figure 5.1. However, since the gamma

distribution is of course a smooth curve, equation (5.1) will not re-create the spike features

that are displayed in Figure 5.1. In order to accommodate for the spikes, a model that

allocates point mass to the ‘even’ bid-increments is needed. One possibility might be to in-

clude Poisson distributed bid-increments together with gamma distributed bid-increments.

We leave this as a potential future extension. Third, similar to the model in Chapter 4,

the log of the mean was chosen as the link function. The main reasons for choosing the

log-link were due to the ease of interpretation and that it ensures the bid-increments are

strictly positive. Finally, the relationship represented by equation (5.1) is the starting point

of the analysis. In order to derive a final model, terms which are found to be non-significant

will be removed. Rather than eliminating for each individual product the non-significant

variables, a given set of variables will be selected for all products. This will facilitate the

comparison of results across the products, as well as provide more support for the findings.

We will refer to the model based on (5.1) and (5.2) as the base model, and the resulting
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model with the non-significant terms removed as the final model.

3.2. Hypothesis Testing. In Section 3 we stated five hypotheses regarding the re-

lationship between the bid-increments and three of the covariates, namely current price,

elapsed auction time, and number of ongoing auctions. The objective of these hypotheses

is to establish general insights to the main factors determining the bid-increment. Related

to the discussion at the end of the previous section, the purpose is not to draw specific con-

clusions about each of the products, but more to draw general inferences of the individual

bidding behavior. We note that though Hypothesis 5.1-5.5 clearly relate to the coefficients

in (5.2), they do not represent formal statistical hypotheses. The formal hypothesis testing

will be as follows. For each product, and for each time-period (first 71 hours and final hour),

the main null and alternative hypotheses of interest are,

H0 : γ1 = 0 vs. Ha : γ1 6= 0 (Current Price)

H0 : γ2 = 0 vs. Ha : γ2 6= 0 (Elapsed Auction Time)

H0 : γ4 = 0 vs. Ha : γ4 6= 0 (Number of Ongoing Auctions)

That is, when deriving estimates for the γ coefficients of (5.2) for each product, the associ-

ated p-values for each coefficient, represents the test of H0 : γ = 0 vs. Ha : γ 6= 0. If the

p-value is ‘small’ then we reject H0, and if it is ‘large’ then we fail to reject H0, for each

product and each of the time-periods analyzed. The reported significance level is based

on the resulting p-value (a posteriori probability). A p-value less than .0001, is reported

as p < .0001. Based on the tests, we conclude if Hypothesis 5.1-5.5 hold by considering

the overall outcome of each of the formal hypothesis test regarding the gamma coefficients.

If the outcome for a specific γ coefficient is consistent across all products and given time-

period, then it would seem reasonable to draw a general inference regarding the variable in
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question. If the outcome is inconsistent then some more discussion might be required.

An alternative approach would have been to conduct a simultaneous test across all

products. This could have been achieved by, for instance, implementing only one regression

analysis for all products. In order to derive the product specific regression coefficients, we

could introduce dummy variables for each product and each variable. We leave this as a po-

tential for future extension and consistency check of the conclusions reached in this chapter.

3.3. Variable Selection. Table F.1 and F.2 in Appendix F shows the ‘R’ output [22],

and resulting parameter estimates for the base model. The set of columns to the left are

for the analysis of the first 71 hours, while the set of columns to the right are for the

final hour. The columns labeled ‘Estimates’ represent the estimates of the gamma param-

eters of equation (5.2), and the columns labeled ‘Pr(> |t|)’ are the associated p-values for

each estimate. We see that for most products, many of the regression parameter estimates

are non-significant, thus implying that the variable might not influence the bid-increment.

Though few of the variables are consistently significant/non-significant across all six prod-

ucts, there are some important general findings. We discuss the findings related to the first

71 hours and final hour separately.

3.3.1. Variable Selection - First 71 Hours. Table 5.3 summarizes the information of

interest of Table F.1 and F.2 in Appendix F. It shows the associated p-values of each vari-

able for the base model. We first discuss the main auction variables. It is rather straight

forward to exclude the inter-arrival time, since with the exception of one instance, it is

always non-significant. For current price and elapsed time, the results are not as consis-

tent. For products D1 and L1, we see that both terms as well as the interaction is highly

significant. On the other hand, for the other products, only one of the main effects and
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Variable L1 L4 L5 D1 D3 D4
Current Price γ1 1.35e-05 .073522 .00196 1.23e-07 .83467 .16075
Elapsed Auction Time γ2 2.76e-055 .733728 .54060 1.34e-07 .03245 .00223
Inter-Arrival Time γ3 .7950 .411824 .62884 .0262 .18381 .96687
Number of Auctions γ4 5.18e-08 .009513 .00329 .5899 .17807 1.28e-05
Low Price γ5 .0135 .714115 .96119 .3997 .35542 .04518
High Price γ6 <2e-16 .249867 .18341 1.24e-1 .02534 .02521
Time Low Price γ7 .7898 .629439 .62001 .7221 .42682 .54395
Time High Price γ8 4.54e-07 .719061 .91662 .5680 .81052 .41907
Bidder Bids γ9 .8716 .863089 .42080 3.52e-13 .00671 .03115
Bidder Auctions γ10 2.92e-07 .285790 .60536 2.74e-06 2.76e-05 .42748
First Bid γ11 <2e-16 <2e-16 3.85e-09 <2e-16 <2e-16 8.17e-14
Curr Price× Elap Auc Time γ12 <2e-16 .000852 9.24e-08 <2e-16 .00256 .00666

Table 5.3. The resulting p-values associated with variables in base model for
bid-increments in the first 71 hours.

interaction are significant. For the laptop products, the current price is significant, while for

the desktop products, the elapsed time is significant. As previously discussed this is most

likely due to the issue of multi-collinearity. Since it makes more sense that price affects

the bid-increment, rather than elapsed auction time, we chose to include current price, and

exclude both elapsed auction time as well as the interaction term. Consequently we fail to

reject that γ3 = 0, and accept Hypothesis 5.3. We formally summarize this.

Test of Hypothesis 5.3 - During the first 71 hours of an auction, in the presence of current

price, for D3, L4, L5 we fail to reject that γ3 = 0 (p = .03), while for D1, D4, L1 we

reject that γ3 = 0 (p = .01). Overall due to likely effect regarding multi-colinerarity, we

conclude that bid-increments are independent of the elapsed auction time and fail to reject

Hypothesis 5.3.

Next we consider the variables related to the competing auctions. The two variables

that, with one exception, are not significant are Tlow and Thigh. These are therefore ex-

cluded. Regarding Plow and Phigh, we see that for all cases these are predominantly not

significant. Therefore, since there does not seem to be any overwhelmingly support for the

significance of the competing prices these will also be removed. The remaining competing
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variable is the number of competing auctions. Here we also see some mixed results. For

the laptop products Z is significant, while for the desktop products it is only significant for

product D4. However, since Z was one of the main variables in Chapter 2 and 4, and we

wish to include at least one variable regarding the competing auctions we will include it for

the final model.

The final variables pertain to the bidders. The variable that, with two exceptions, is

always significant is the dummy variable Bfb. Since it is intuitive that a bidder might

behave differently on his first bid, and since the analysis warrants keeping it, we will con-

tinue to include it. For Bbid and Bauc the results are a bit mixed. This might not come as

a complete surprise considering the strong positive correlation between the two variables.

This can be seen in Figure F.4 in Appendix F, which has Bbid on the vertical axis and Bauc

on the horizontal axis. Each observation represents a bid, and thus show how many bids

the bidder has placed as a function of the number of auction he has participated in. The

solid 45 degree line represents bids from bidders who have placed only one bid per auction.

Note that there are no observations below this line. In the figure we see the almost perfect

positive correlation between the two variables. Since consecutive bids in 10 minutes were

excluded and as discussed earlier, bidders tend to bid only once per auction. Therefore,

Bbid and Bauc are basically capturing the same essence of bidding or auction experience.

Though it can presumably be argued which of the two variables is the most important, we

will exclude Bbid and keep Bauc. The main reason for choosing Bauc is that it has a bit

more intuitive interpretation with regard to capturing a bidder’s auction experience.

Based on these findings, the following model for the first 71 hours will be tested, and

referred to as the final model. For s = (x, z, bauc, bfb), bid-increments are still assumed to

follow a gamma distribution with mean µs and shape parameter ν as specified by equation
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Variable L1 L4 L5 D1 D3 D4
Current Price γ1 .27862 .09798 .2514 .3795 .0785 .3699
Elapsed Auction Time γ2 .00221 .03584 .1662 .2361 .0593 .7622
Inter-Arrival Time γ3 .02241 .31747 .3717 2.90e-12 .9582 .0218
Number of Auctions γ4 .28972 .88026 .0789 .0486 .0292 .8953
Low Price γ5 .30122 .57388 .8854 .2400 .0559 .3914
High Price γ6 1.50e-07 .14562 .2807 .0895 .9991 .4528
Time Low Price γ7 .35010 .06325 .1343 .0465 .4424 .2698
Time High Price γ8 .79726 .46328 .9179 .3091 .7978 .3375
Bidder Bids γ9 .46805 .90244 .5653 .0295 .8389 .2193
Bidder Auctions γ10 .24396 .84775 .3538 .1493 .3925 .0499
First Bid γ11 <2e-16 .00632 .2332 1.40e-15 .7110 .0251
Curr Price× Elap Auc Time γ12 .28840 .09867 .2547 .3882 .0793 .3691
Table 5.4. The resulting p-values associated with variables in base model for
bid-increments in the final hour.

(5.1). However, the log-link function of µs is now defined by,

(5.3) ln(µs) = γ0 + γ1x + γ4z + γ10bauc + γ111{bfb=1}

3.3.2. Variable Selection - Final Hour. Table 5.4 shows the associated p-values of the

variables in the final hour. For more details see Table F.1 and F.2 in Appendix F. Although

the inter-arrival time has a few more instances where it is significant, similar to the case for

the first 71 hours, we exclude it from the final model. For current price and elapsed auction

time, the findings are more inconsistent than for the first 71 hours. For D1 and D4, there

is neither a main nor interaction effect from X and t. And for D3 the main and interaction

effect, is only significant at the .1 level. For the laptop products, the only significant term is

the main effect of elapsed time for L1 and L4. One reason for these results, may be the issue

of multi-collinearity between X and t as discussed above. Therefore, one of the variables as

well as the interaction term will be excluded. Since the graphs in Figure 5.2 do not indicate

any strong correlation between X and the bid-increments, and that it would seem a bit

more intuitive that elapsed time (or rather remaining time) would effect the bid-increment,

we exclude the current price and interaction term from the analysis of the final hour. We
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formally summarize our findings as follows.

Test of Hypothesis 5.2 - In the final hour, in the presence of elapsed auction time, for all

products we fail to reject that γ2 = 0 (p = .07), and therefore conclude that bid-increments

are independent of the current price.

Next we consider the variables related to the competing auctions. The results are

similar to the case for the first 71 hours. The variables Plow, Phigh, Tlow, and Thigh, are

pre-dominantly not significant and will be excluded. For the number of competing auctions,

the results are again mixed. For the laptop products, only L5 is significant. While for the

desktop products, only D4 is not significant. However, for the same reason as above, since

Z was one of the main variables analyzed in Chapter 2 and 4, and we wish to include at

least one variable regarding the competing auctions we include it.

The final set of variables pertain to the bidders. The findings here are also similar to

the previous case. The dummy variable regarding if the bid is the bidder’s first for the

auction, is with two exceptions, significant. Therefore we continue to include it. The other

variables are predominantly not significant. However, in order to have the model for the

final hour more consistent with the model for the first 71 hours, we will continue to include

the Bauc. This is despite that it is only significant for D4 at the .05 level.

Based on these findings, the following model for the final hour will be tested, and referred

to as the final model. For s = (x, t′, bauc, bbf ), bid-increments are still assumed to follow a

gamma distribution with mean µs and shape parameter ν as specified by equation (5.1).
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However, the log-link function of µs is now defined by,

(5.4) ln(µs) = γ0 + γ2t
′ + γ4z + γ10bauc + γ111{bfb=1}

4. Results

4.1. Results - First 71 Hours. We first discuss the results for the first 71 hours.

The resulting equations for the first 71 hours are given below, with partial output from

‘R’ displayed in Table 5.5. In the equations below, the gamma parameter estimates that

are non-significant at .1 have been italicized. Recall that x represents a realization of the

current price of an auction, and z is a realized value for the number of ongoing auctions.

The ‘R’ output in Table 5.5 has been limited to the gamma parameter estimates and their

associated p-values, the estimated gamma dispersion parameter, as well as the null and

residual deviance. In Figures 5.2 and 5.4 the lines represents the fitted means from the

final models. The value for the number of ongoing auctions, was in each graph set to the

median: D1) z = 20, D3) z = 5, D4) z = 5, L1) z = 20, L4) z = 4, L5) z = 4.3 The bidder

parameters were set such that the lines represent the first bid of the first auction a bidder

participates in, i.e. bauc = 1 and bfb = 1.

3The median for D4 and L5 were actually 4 and 3 respectively. The reason the median from D3 and L4
were used, is to make comparison across products easier.
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D1 ln(µs) = 3.4567− .00186x + .00015z + .00249bauc + (.50627)1{bfb=1}

D3 ln(µs) = 3.3696− .00267x− .00102z + .01555bauc + (.56103)1{bfb=1}

D4 ln(µs) = 3.6146− .00235x− .00865z + .01753bauc + (.45623)1{bfb=1}

L1 ln(µs) = 4.0940− .00117x− .00756z + .00597bauc + (.55880)1{bfb=1}

L4 ln(µs) = 4.0489− .00098x− .01599z + .01645bauc + (.49573)1{bfb=1}

L5 ln(µs) = 4.1596− .00123x− .04474z + .04871bauc + (.50935)1{bfb=1}

With the exception of one instance, z for D1, we see that the variables for the final

model are significant. Specifically, we see that current price is highly significant and nega-

tively related with the bid-increment. In other words, the higher the price, the smaller the

bid-increment. This is of course to be expected and in accordance with the trends observed

in Figure 5.2. It is interesting to note that the decrease in expected value is not as strong

as one might have expected. Recall that according to (5.3) with γ1 < 0, we assume the

expected bid-increment to be exponentially decreasing in price. Furthermore, we notice

that the gamma estimates for the laptops is about half that of the desktops. That is, the

expected bid-increment for the desktops decreases almost twice as fast as for laptops. With

different scale for the vertical axis, this is a bit difficult to see when comparing the graphs

of Figure 5.2. Nonetheless, in addition to that the expected bid-increment for laptops are

larger, due to a larger intercept term, it also remains higher for higher prices. This should

not be too surprising since laptop auctions on average end at about twice the price of desk-

top auctions. We formally conclude the discussion regarding price by testing Hypothesis 5.1.
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Up To Final Hour D1 D3 D4
Estimate Pr(> |t|) Estimate Pr(> |t|) Estimate Pr(> |t|)

(Intercept) 3.4566588 < 2e-16 3.3696290 <2e-16 3.6145544 <2e-16
Current Price -.0018634 < 2e-16 -.0026689 6.78e-10 -.0023547 3.41e-14
Number Auctions .0001528 .721 -.0010201 .000496 -.0086465 .0432
Bidder Auctions .0024892 < 2e-16 .0155531 7.41e-05 .0175289 3.45e-09
First Bid .5062723 < 2e-16 .5610335 <2e-16 .4562285 8.28e-14

Dispersion para. .7633826 .7081784 .659622
Null Dev. 18551 on 16358 d.f. 2499.6 on 2113 d.f. 1558.0 on 1455 d.f.
Residual Dev. 17429 on 16354 d.f. 2315.5 on 2109 d.f. 1432.4 on 1451 d.f.

L1 L4 L5
Estimate Pr(> |t|) Estimate Pr(> |t|) Estimate Pr(> |t|)

(Intercept) 4.094 < 2e-16 4.0489336 <2e-16 4.1595911 <2e-16
Current Price -.001171 < 2e-16 -.0009847 4.44e-10 -.0012296 2.25e-09
Number Auctions -.007560 < 2e-16 -.0159946 .000647 -.0447418 .00394
Bidder Auctions .005971 < 2e-16 .0164525 .000217 .0487058 <2e-16
First Bid .5588 < 2e-16 .4957287 <2e-16 .5093492 2.86e-11

Dispersion para. .7580986 .7155694 .7482342
Null Dev. 17275 on 15891 d.f. 1726.1 on 1741 d.f. 1222.4 on 1082 d.f.
Residual Dev. 15432 on 15887 d.f. 1622.6 on 1737 d.f. 1074.1 on 1078 d.f.

Table 5.5. The gamma parameter estimates of equation (5.4) with associated
p-values for the six products.

Test of Hypothesis 5.1 - For all products we reject that γ2 ≥ 0 (p < .0001). We conclude

that bid-increments are on average decreasing in the current price of an auction.

The results for the number of ongoing auctions also support our initial reasoning. In

particular, we see that in all cases where γ̂4 is significant it is also negative, and the only

instance when γ̂4 > 0 (D1) the estimate is non-significant. We therefore conclude that

the number of ongoing auctions either either negatively effects the bid-increment or has no

impact, i.e. bid-increments are decreasing in the number of ongoing auctions. Regarding

the difference between the laptops and desktops, we see that there is a clear difference in

the magnitude of the gamma parameter estimate. The estimates for the laptops is much

larger than the estimates for the desktops. That is, the expected bid-increment decreases

much faster for laptop auctions than for desktop auctions as Z increases. In other words,

laptop auctions are much more sensitive to competition than desktop auctions. We note
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in particular that for L5 there is almost a 4.5% decrease per extra auction. We formally

summarize our finding regarding the number of ongoing auctions in the first 71 hours by

testing Hypothesis 5.5.

Test of Hypothesis 5.5 - During the first 71 hours, for D3, D4, L1, L4, L5 we reject that

γ4 ≥ 0 (p = .05), while for D1 we fail to reject γ4 = 0 (p = .721). Therefore, we conclude

that bid-increments are on average decreasing in the number of ongoing auctions.

For the bidder attributes Bbid and Bfb, it is interesting to note that they are always

highly significant and positively related with the bid-increment. Which means that the more

auctions a bidder has participated in the more likely he is to place a larger bid-increment.

That is, it appears bidders start out conservative in their bidding, and as they participate in

more and more auctions, become more and more ‘aggresive’. In other words, it seems that

bidders start by ‘testing the waters’ and want to ensure they do not end up with winner’s

curse [14, p.85]. The magnitude of the effect for the two variables are about the same for

the laptop and desktop auctions.

Table 5.5 also gives the estimates of the GLM dispersion parameter φ. Recall from

Section 4.3 of Chapter 4 that the GLM dispersion parameter for the gamma distribution

is 1/ν. Furthermore, depending on if ν is greater than or less than one, the gamma distri-

bution will have a different shape. If ν < 1 then the gamma distribution resembles a steep

exponential distribution, while if ν > 1 then the gamma distribution resembles a skewed

uni-modal distribution (for ν = 1 the gamma distribution is the exponential distribution).

We see that for the first 71 hours the estimated dispersion parameter is about .7, and thus

ν̂ is about 1.4 (≈ 1/.7). That is the shape of the gamma distribution bid-increments for the
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first 71 hours is a right skewed uni-modal curve, which is consistent with the histograms of

Figure 5.1.

4.2. Results - Final Hour. Next we discuss the results for the final hour. The

resulting equations for the final hour are given below, with partial output from ‘R’ displayed

in Table 5.6. Similar to above, in the equations below, the γ̂ that are non-significant at .1

are italicized. Recall that t′ represents a realization of the elapsed time of an auction. In

Figures 5.2 and 5.4 the lines represents the fitted means from the final models. The value

for the other variables were set as above, i.e. z = 20 (D1), 5 (D3), 5 (D4), 20 (L1), 4 (L4),

4 (L5), and bauc = 1 and bfb = 1. In Figure 5.2, the fitted values for the bid-increments are

represented by dashed lines to indicate that they do not depend on the current price. In

each of the graphs the upper and lower dashed lines represents the expected bid-increment

at the start (t′ = 4260) and end (t′ = 4320) of the final hour respectively.

D1 ln(µs) = 28.9892− .00606t′ − .00176z − .00303bauc + (.31234)1{bfb=1}

D3 ln(µs) = 18.8979− .00371 t′ + .02030z − .02495bauc + (.06694 )1{bfb=1}

D4 ln(µs) = 47.2088− .01037t′ + .00590z + .04827bauc + (.47429)1{bfb=1}

L1 ln(µs) = 40.5986− .00867t′ − .00165z − .00075bauc + (.32270)1{bfb=1}

L4 ln(µs) = 35.5540− .00752t′ − .00278z − .00234 bauc + (.30507)1{bfb=1}

L5 ln(µs) = 28.4080− .00584t′ + .02873z − .01984 bauc + (.16656 )1{bfb=1}

For the final hour, with the exception of D3, we see that elapsed time is significant

and negatively related to the bid-increment. For product D3 the relation is also negative

but only significant at the .13 level. Overall this implies that the longer an auction has

elapsed, or the closer an auction is to the end, the smaller the expected bid-increment,
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Final Hour D1 D3 D4
Estimate Pr(> |t|) Estimate Pr(> |t|) Estimate Pr(> |t|)

(Intercept) 28.9891502 5.12e-13 18.897922 .072171 47.208838 .000562
Elapsed Time -.0060593 7.50e-11 -.003714 .127808 -.010371 .001071
Number Auctions -.0017608 .05353 .020296 .026358 .005882 .529945
Bidder Auctions -.0030266 .00744 -.024952 .000774 .048271 .033290
First Bid .3123438 < 2e-16 .066940 .490226 .474289 5.97e-06

Dispersion parameter .71784 .5995077 .5728611
Null Deviance 2062.4 on 3330 d.f. 239.49 on 411 d.f. 169.20 on 281 d.f.
Residual Deviance 1973.7 on 3326 d.f. 229.93 on 407 d.f. 148.36 on 277 d.f.

L1 L4 L5
Estimate Pr(> |t|) Estimate Pr(> |t|) Estimate Pr(> |t|)

(Intercept) 40.5986431 < 2e-16 35.554000 .000451 28.407963 .0466
Elapsed Time -.0086718 < 2e-16 -.007520 .001374 -.005835 .0775
Number Auctions -.0016538 .2002 -.002781 .719325 .028729 .2693
Bidder Auctions -.0007487 .0825 -.002342 .580631 -.019838 .1387
First Bid .3226979 < 2e-16 .305066 .000719 .166555 .1343

Dispersion parameter 0.5188403 0.4612364 0.4235749
Null Deviance 1620.6 on 3241 d.f. 171.54 on 392 d.f. 84.181 on 195 d.f.
Residual Deviance 1514.7 on 3237 d.f. 162.60 on 388 d.f. 80.457 on 191 d.f.

Table 5.6. The gamma parameter estimates of equation (5.4) with associated
p-values for the six products.

meaning that bidders are more conservative towards the end of the auction. However, we

note that price has been included and therefore it may be that the effect of elapsed time

is due to the price of an auction. On the other hand, in Figure F.1 of Appendix F, there

was little evidence for a positive relationship between the current price and elapsed time

of an auction in the final hour. Furthermore, in Figure 5.2 we did not detect a strong

trend between bid-increments and current price for the final hour. Consequently, we con-

clude that as the auction end is getting closer, bidders tend to make smaller bid-increments.

Similar to the case with current price in the first 71 hours, the decrease due to elapsed

time is not too steep. Again, note that according to (5.4) with γ2 < 0, the expected bid-

increment is assumed to be exponentially decreasing in elapsed time. However, as seen in

Figure 5.4, and discussed in Section 3, the relation between bid-increments and elapsed time

does not seem to be strong. Therefore, unlike the previous discussion regarding the effect
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of price, it is not too surprising that the fitted mean in Figure 5.4 is only slightly decreasing

in elapsed time. Unlike the gamma estimates for current price, there does not seem to

be a clear separation between the desktops and laptops. The magnitude of γ̂2 for the D1

and L1 are about the same, and for the specific products there is no categorical difference.

Consequently, it does not appear that laptop auctions are more or less ‘sensitive’ to the

elapsed time compared with desktop auctions.

In the graphs for the final hour of Figure 5.2, the upper and lower dashed lines rep-

resent the expected bid-increment at the start respectively end of the final hour, i.e. at

t′ = 4260 and t′ = 4320. The fitted values are constant due to that current price is not

included as a covariate. For this reason they are represented by dashed lines rather than

solid lines. As already mentioned there does not seem to be any strong relationship between

the bid-increments and current price in the final hour. Overall the fitted means for the final

model in the final hour seems to correspond well with the observations. We conclude the

discussion regarding elapsed auction time by formally testing Hypothesis 5.4

Test of Hypothesis 5.4 - For D1, D4, L1, L4, L5 we reject that γ3 ≥ 0 (p = .08), and

for D3 we fail to reject that γ3 = 0 (p = .1). We therefore conclude that bid-increments

are on average decreasing in the elapsed auction time and that Hypothesis 5.4 does not hold.

The results for the number of ongoing auctions is a bit more mixed than in the previous

case. First, note that for D1, L1, and L4, the gamma estimates are negative, while for D3,

D4, and L5, the gamma estimates are positive. Second, it is only the gamma estimates

for D1 and D3 that are significant at a reasonable level. Third, there does not appear to

be any clear difference between the laptop and desktop auctions. That is, the magnitude

of the gamma estimate are fairly similar for the two types of computers. Based on this
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we conclude that the number of ongoing auctions in the final hour does not effect the bid-

increment. That is, in the final hour, bidders are less sensitive to the competing variables,

in particular the number of ongoing auctions. One explanation for this, might be due to

that eBay auctions are by default listed in descending order of remaining time. In other

words, auctions that are about to expire are listed first, and auctions that just started

are listed last. Consequently, it may be that the bidders who arrive to the auction site

simply joins the auction that is about to expire, and do not have time or interest to fur-

ther investigate what other auctions may be underway. We formally summarize our findings.

Test of Hypothesis 5.5 - In the final hour, for all products we fail to reject that γ4 = 0

(p = .02). We therefore conclude that bid-increments are independent of the number of

ongoing auctions.

For the bidder attributes Bauc and Bfb, there is one main difference between the final

hour and the first 71 hours of the auction. Namely that in the final hour γ̂ for Bauc is

predominantly negative. This would imply that in the final hour, bidders with more auc-

tion experience, tend to make smaller bid-increment. It is hard to think of an intuitive

explanation why bidders with experience would reverse their behavior in the final hour. For

Bfb the findings are in line with what was observed earlier. Namely that the first bid from

a bidder tends to be larger.

Table 5.6 also shows the estimates of the GLM dispersion parameter φ. For the final

hour the dispersion parameter estimate is about .5, which is lower than for the first 71 hours

and results in a ν̂ around 2. In other words, the curve for bid-increments in the final hour

is more variable.
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4.3. Goodness-of-fit and Residual Analysis. In Chapter 4 we discussed the limi-

tations of formal goodness-of-fit test when fitting the gamma distribution in a GLM frame-

work. Recall that the only asymptotic results regarding the residual deviance D were the

small-dispersion asymptotics [17, 9, 8, 13]. In Chapter 4 we informally defined a ‘small’ dis-

persion parameter to mean less than .5. The other measure of goodness-of-fit discussed in

Chapter 4 was the Pearson X2, which also does not have any asymptotic properties in the

setting analyzed. On the other hand, the difference in D of nested models can formally be

evaluated using a χ2 distribution with the appropriate degrees of freedom. Due to these

circumstances the goodness-of-fit analysis will follow the one in Chapter 4. That is, for

the final models based on (5.3) and (5.4), we informally compare the scaled residual de-

viance D/φ̂ with the degrees of freedom df , and formally test the scaled difference of residual

deviance of the nested models with the χ2 distribution with appropriate degrees of freedom.

In Table 5.7 the deviance and gamma shape parameter estimate for the final model

appear. The columns labeled D and df represents the residual deviance and degrees of free-

dom respectively. The columns labeled ∆D lists the difference in residual deviance between

the final model based on (5.3) or (5.4), and the original model based on (5.2). Recall that

the original model with eight more variables has a smaller deviance but also fewer degrees

of freedom. Specifically eight fewer degrees of freedom as stated in parenthesis below ∆D.

The final two columns labeled φ̂ and ν̂ are the estimated dispersion and shape parameters

respectively. The set of columns to the left are for the analysis up to the final hour, while

the set of columns to the right are for the analysis pertaining to the final hour.

For bids up to the final hour the goodness-of-fit results are similar to the goodness-

of-fit for the zero-inflated gamma distributed within period price-transitions of Chapter 4.

Namely, while the residual deviance values are close to the values for the degrees of freedom,
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Up To Final Hour Final Hour

product D d.f. ∆D φ̂ ν̂ D d.f. ∆D φ̂ ν̂
(∆df = 8) (∆df = 8)

D1 17429.05 16354 241.6715 .763 1.310 1973.73 3326 65.462 .718 1.393
D3 2315.46 2109 24.76920 .708 1.412 229.93 407 8.382 .600 1.668
D4 1432.39 1451 20.32077 .660 1.516 148.36 277 7.681 .573 1.746
L1 15431.67 15887 382.0654 .758 1.319 1514.69 3237 26.202 .519 1.927
L4 1622.63 1737 25.20366 .716 1.397 162.60 388 4.610 .461 2.168
L5 1074.06 1078 34.17948 .748 1.336 80.46 191 5.118 .424 2.361

Table 5.7. Deviance and shape parameter estimates for the six products.

the scaled residual deviance values are much larger than the degrees of freedom. Recall from

Chapter 4 that scaled deviance = D/φ̂. In other words, while the residual deviance values

would indicate a ‘decent’ goodness-of-fit, the scaled residual deviance values indicate a poor

fit. For the difference in residual deviance between the final model and original model, we

see that even without the scaling factor the increase is far larger than the gain of 8 degrees

of freedom. The associated p-values for ∆D/∆df are as follows: D1) < .0001, D3) .0017,

D4) .0092, L1) < .0001, L4) .0014, L5) < .0001. This implies that the increase in deviance

is not compensated by the gain in degrees of freedom.

The goodness-of-fit results for the bids in the final hour are a bit more consistent and

promising. The first thing to observe is that the scaled residual deviance values are close to

the values of the degrees of freedom, and thus indicating a good fit. Second, we see that in

general, the difference in residual deviance are in fact compensated by the gain in degrees

of freedom. Specifically, we see that for products D3, D4, L4 and L5, that the ∆D/φ̂ values

are close to the 8 degrees of freedom gained. The associated p-values for ∆D/∆df are as

follows: D1) < .0001, D3) .3971, D4) .4653, L1) .0010, L4) .7984, L5) .7449. In other words,

with the exception of the D1 and L1, the increase in deviance is compensated by the gain

in degrees of freedom. Therefore, the proposed model does seem to fit the data well, and

we can with fair confidence accept the model.
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Figure F.2 and F.3 in Appendix F depicts the deviance residual and response residual

plots. The top row for each product line represents the deviance residuals rd, while the

bottom row shows the response residuals y − µ̂. Both residuals are plotted as a function of

the linear predictor η̂. Note that for the first 71 hours, the linear predictor is decreasing

in price and consequently the larger values of η̂ correspond to the lower prices. Similarly

for the final hour, the linear predictor is decreasing in time and thus the larger values of

η̂ corresponds to the start of the final hour. Overall the deviance residuals, for both the

first 71 hours and final hour, appear to be randomly distributed without any obvious trend.

The only noticeable issue is with D1 for the final hour, were there seems to be three outliers.

For the response residuals there is a clear difference between the two models. For the

model of fitting bids up to the final hour, each product clearly depicts a funnel shaped

pattern. Recall that the smaller value of η̂ corresponds to the bids placed at higher prices.

In other words, we see that the difference between the observed bid-increment c and the es-

timated mean µ̂, is smaller at the larger prices. This should not come as a surprise given our

observation of bid-increments in Figure 5.2. For the analysis of the final hour the residual

plots seem to tell a different story. We note that there is no clear pattern in the plot, and in

particular, no distinctive funnel shape pattern. Instead the residuals seem to be randomly

and evenly scattered. The only striking feature is with regard to product D1, where three

outliers are clearly present. These three observations clearly distort the residual plot all the

other observations become highly concentrated.

Based on the analysis of the goodness-of-fit, and deviance and response residuals, we

conclude that the data supports our models. That is, bid-increments appears to follow the

gamma distribution according to (5.1), with the mean linearly dependent on the covariates

according to (5.3) for the first 71 hours, and (5.3) for the final hour. We make a reservation
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though, that for the first 71 hours, there are some mixed results regarding the goodness-

of-fit. However, since there are no formally established goodness-of-fit test for GLM with

gamma distributed observations, we leave it to the reader to decide whether the proposed

model is supported by the data. Next we briefly discuss the inter-arrival time of bids.

5. Analysis of Timing of Bids

The top six graphs of Figure 5.5 show the histogram of the timing of bids for each

product. The horizontal axis represents the elapsed auction time, and each bar represents

the fraction of bids placed in given 50 minute time interval. The only exception is for the

right most bar, which depicts the number of bids placed in the final 20 minutes. For all

six products the distribution of when the bids arrive is the same. In the first few hundred

minutes, or first few hours, the auctions attract a number of bids, after which the fraction

of arriving bids drops and remains constant until about there is six hours remaining. In the

remaining six hours we see that the fraction of bids dramatically increases, and that in the

final 20 minutes there is an order of magnitude more bids placed. That most bids arrive

towards the end is a well-known and well-studied phenomena [24, 28, 35].

The bottom six graphs of Figure 5.5 show the histogram of the inter-arrival time of bids

for each product. The horizontal axis represents the time between bids, i.e. inter-arrival

time, and each bar represents the fraction of bids with an inter-arrival time given by each

50 minute interval. In other words, the left most bar depicts the fraction of bids that arrive

within 50 minutes from the previous bid. We see that most bids come ‘shortly’ after a

previous bid has been placed, and the general shape seems to imply that the inter-arrival

time is exponentially distributed. This is again nothing new and previous papers have

modeled the arrival of bids as a Poisson process [28, 27]. The choice of choosing 50 minute
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intervals was arbitrary, but changing it does not change the shape of the histograms. With

shorter intervals the general pattern is the same.

In the top six graphs of Figure F.5 in Appendix F, the inter-arrival time as a function

of the elapsed time is shown. On the horizontal axis is the elapsed time, and on the vertical

axis is the time since the previous bid. Each observations represents a bid. Note that the

graph is ‘lower-triangular’ since it is not possible that the time until the next bid exceeds the

length of time since the auction started. For D1 and L1, it is hard to detect any clear trend.

For the specific products, it seems as though there is a higher concentration of bids with

‘short’ inter-arrival time for the bids arriving in the beginning and the end of the auction.

However, this interpretation of the conditional distribution given the elapsed auction time

is a little distorted. First, recall that there is a larger, respectively much larger, number of

bids arriving in the beginning and end of an auction. Second, due to the physical limitations

of time, those bids can only have a ‘short’ inter-arrival time. The graphs are therefore what

to expect.

In the bottom six graphs of Figure F.5 in Appendix F, the inter-arrival time as a function

of the elapsed time is shown. On the horizontal axis is the current price when a bid arrived,

and on the vertical axis is the time since the previous bid. Each observation represents a

bid. The main purpose of these graphs is to see if the price of an auction has an effect

on the inter-arrival time. From the graphs it does not seem to be any strong relationship

between the two variables. Both ‘low’ and ‘high’ priced auctions seem to exhibit a similar

distribution regarding the inter-arrival time. In other words, the proportion of bids with

‘short’ and ‘long’ inter-arrival time, appears to be fairly even distributed among the current

price.
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Figure 5.5. Histogram of the timing of bids (top) and inter-arrival time of bids
(bottom) for the six products. For the top graphs the horizontal axis represents the
elapsed time of an auction, while for the bottom the horizontal axis represents the
inter-arrival time of a bid. In all graphs the vertical axis is the density (fraction) of
bids placed in each interval. The first row for each set of histograms is D1, D3, and
D4, while the second row is L1, L4, and L5 (left to right).
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6. Discussion

This chapter has analyzed the individual bidding behavior for the six products D1, D3,

D4, L1, L4, and L5. The main objective has been to propose and fit a model for the un-

derlying bidding strategy. Specifically we discussed a model where bid-increments follow

a gamma distribution, where the mean bid-increment is exponentially related to various

covariates. The model and analysis was further divided into two time-periods. One for

the bids in the first 71 hours (out of 72), and one for the bids in the final hour. The set

of covariates for the first set included the current price of an auction, number of ongoing

auctions, the number of auctions the bidder has participated in, and a dummy variable

if the bid is the first bid the bidder placed in the auction. For the analysis of bids in

the final hour, the only difference was that current price was exchanged with the elapsed

auction time. Overall the proposed models fitted well with the data, and evidence suggest

that bidders bid an increment above the current price which depends on the variables listed.

In particular, we statistically confirmed that in the first 71 hours, the current price of an

auction and the number of ongoing auctions, are significantly and negatively correlated with

the expected bid-increment. Furthermore, in the first 71 hours, the elapsed auction time, in

the presence of current price, does not significantly affect the expected bid-increment. For

the final hour, the statistical findings were as follows. The elapsed auction time was found

to be statistically significant, while current price and number of ongoing auctions are not

statistically significant.

Another interesting observation, was that the prices in the lowest and highest priced

competing auctions, do not affect the expected bid-increment. In other words, bidders do

not seem to base their bid-increment on the prices in the competing auctions. One reason

why this might be the case, is that bidders do not have the ability, time or interest to
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compare auctions. On eBay, auctions are by default listed in descending order of remaining

auction time. Therefore, bidders may simply choose to participate in the first auction they

observe, and base their bid-increment on the available information in each auction.

The insight from the proposed model and statistical analysis is of great relevance to

both bidders and sellers. By understanding the underlying bidding behavior both parties

are able to make better decisions. For instance, a bidder may use it to further his chances of

winning an auction. To illustrate, suppose a bidder is the high-bidder with only 10 minutes

remaining, and that his bid is only $10 above the current price. Then he may wish to

revise and increase his current bid (which is the high-bid), such that if a bidder or bidders

arrive and bid, in expectation he is still likely to win the auction. Similarly, a bidder that

arrives may wish to estimate the distribution of the final price, and decide whether it is

worthwhile to participate. He can do that by estimating the expected bid-increment and

apply the methodology discussed in Chapter 3. The same applies for a seller. This chapter

has provided an alternative approach to analyze the auction dynamics, which can be used

to decide on when to release another item for auction. That is, based on the analysis pre-

sented in this chapter, together with the methodology presented in Chapter 3, a seller can

determine if the conditions presented in Chapter 2 holds, and if the optimal release policy

is of a threshold type.
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CHAPTER 6

Conclusion

Auctions have been used for centuries and most likely will continue to be used for many

years to come. Over the last 50 years the theory of auctions has become an important

and integral part of Economics, Management Science/Operations Research, and Computer

Science. In the past, auction research mainly focused on normative studies regarding bid

strategic equilibrium analysis. In recent years, partly due to the introduction of online auc-

tions, additional streams of auction theory have emerged. The two most prevalent streams

are empirical and experimental auction research. Online auctions provide a wealth of data

and a great source for empirical analysis. Furthermore, the Internet and computer labs have

enabled researchers to investigate various behavioral aspects of auctions. The objective with

this thesis have been to contribute to auction research in two ways. First, to provide an

alternative framework for researchers and practitioners to analyze online auctions. Second,

to enable the analysis of intermediate prices of ongoing auctions and not just the final prices.

The main motivation has been to provide an analysis of ongoing auctions, such that sellers,

buyers, and auctioneers can make better decisions. Time will have to judge its success. We

conclude with the main take-away and possible extensions from each chapter.

1. Chapter 2 Conclusions

The main research question of Chapter 2 was to investigate how should a seller, with

a fixed inventory, release each item for auction if he wishes to maximize his profit. The

problem was formulated as a discrete time Markov Decision Process, where auctions evolved

according to a stochastic process. In order to make the problem interesting and non-trivial,
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two conflicting constraints were imposed. On the one hand, items incurred a holding or

depreciation cost over time. This provides an incentive for the seller to release all items

for auction immediately. On the other hand, ongoing auctions ‘cannibalized’ each other.

This provides an incentive for the seller to release the items in a series of non-overlapping

sequential auctions. One of the main results shown in Chapter 2 was that, given certain

assumptions on the price-transition probabilities, the optimal release policy is of a threshold

type. That is, a seller with two items should release an item for auction and observe its

progression. If the ongoing auction is above a certain price-threshold, then it is optimal to

release the second item. And if the ongoing auction is below the price-threshold, then it is

optimal to defer the release. The threshold in each period is not necessarily constant over

time. In fact, it may not even be monotone over time. Furthermore, the threshold policy is

guaranteed to be optimal as long as there is no chance an auction is unsuccessful. If there

is a positive probability that an auction will receive no bids, then the analysis is a bit more

complicated and does not necessarily imply the optimal policy is of a threshold type.

N Item Case. The most obvious extension is the general N item case. To ensure

Proposition 2.11 holds requires only a minor adjustment of Assumption 2.1, and is straight-

forward to prove. That is, ensuring the seller is always better off the higher an auction is

priced, simply requires the CDF be decreasing in price for any number of ongoing auctions

z, z = 1, 2, . . . , N . However, to solve the release problem and establish a version of Theorem

2.12, we must define higher orders of cannibalization and diminishing cannibalization. A

natural assumption would be that the cannibalization effect is consistent and diminishing

in the number of ongoing auctions z. By consistent we mean, for x′i ≤ P , i = 1, 2, . . . , N ,

F z
Xi,ti+1|X(x′i|x) ≤ F z+1

Xi,ti+1|X(x′i|x) z = 1, 2, . . . , N − 1

where X = (X1,t1 , X2,t2 , . . . , XN,tN ) is the vector of prices in each auction, and x is the

vector of realized values. In other words, the probability that auction i will be priced less
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than x′i is increasing in z. By diminishing in z, we mean, for xi ≤ x′i ≤ P , i = 1, 2, . . . , N ,

z = 1, 2, . . . , N − 1,

F z+1
Xi,ti+1|X(x′i|x)− F z

Xi,ti+1|X(x′i|x)

is decreasing in z, where X and x are defined as above. That is, the more ongoing auc-

tions, the smaller the effect of starting an additional auction. In particular, it would seem

intuitive that at some point the cannibalization effect would vanish. For instance, the same

transition probabilities might apply if there are 30, 40, or 50 ongoing auctions.

In addition, we must define the release policy of interest, and in particular what we

mean by a monotone release policy. Note that with N items, there could be several on-

going auctions and several items waiting to be released. Therefore, calculating the value

function is increasingly challenging for increasing values of N , because of the curse of di-

mensionality. The objective would therefore be to simplify the problem and the resulting

possible policies. One possibility that intuitively seem promising, is to focus on ‘release-an-

additional-item’ policies. That is, the seller observes the system state of the current ongoing

auctions, and then decides on whether to release one more item for auction. To illustrate,

suppose in time period t the seller has five ongoing auctions and two items waiting to be

released. He evaluates if it is worthwhile to release an additional item and have six ongoing

auctions. If the decision is yes, then he evaluates if it is worthwhile to release an additional

item and have seven ongoing auctions (given that he now has six). If the decision is no,

then he defers the release at least one more period. The other, more complicated issue is

to define the space over which the decision should be made. That is, which variables of

the ongoing auctions to measure and how to define a policy over them. Note that there

could be up to N − 1 possible auctions underway. One policy to consider is to vary the

price of one auction while keeping the prices of the other ongoing auctions fixed. In other

words, suppose in period t there are z, z = 1, 2, . . . , N − 1, ongoing auctions, then we could
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investigate the effect of increasing the price in one auction, while keeping the prices in the

remaining z − 1 auctions fixed. Intuitively, it seems relatively straightforward to establish

a threshold policy in this context. However, it is also not very interesting.

Another possibility is to sum up the expected final price of all ongoing auctions, given

that no more auctions will be released, and define a ‘release-an-additional-item’ threshold,

based on the number of ongoing auctions and the total expected final price. That is, to

sequentially apply the methodology from the two-item case. To illustrate, suppose in time

period t there are five auctions underway. The seller calculates the sum of the five expected

final prices, given that no more auctions will be released, and if the sum is above a certain

threshold, then he releases an additional item. If the sum is below the threshold then he

defers the release at least one period. The main problem is that in order for this to be

optimal, additional structural properties are required. The issue is that it is possible two

vectors with different realized prices result in the same total expected final price, but the

optimal ‘release-an-additional-item’ decisions are different. Other potential policies include

a threshold policy in the maximum or minimum price of the ongoing auctions. Some pre-

liminary work has been done, and the author continues the endeavor regarding N items.

Correlated Price-Transition Probabilities. The other extension to consider is when

price-transitions are not independent of the price in the competing auction. An assump-

tion that facilitated the analysis of Chapter 2 was that price-transition probabilities only

depended on the price of an auction and the number of auctions underway. It might seem

more appropriate that price-transitions of two auctions are correlated. In addition, that

the correlation is such that the conditional price-transition probability to ‘high’ prices is

increasing in the price of the competing auction. The first task is to define the correlation.

There are at least two different ways this can be done. First, the marginal conditional

248



distribution function of an auction could be defined. That is, to define for x1, x2, x
′
i ≤ P ,

i = 1, 2,

F 2
Xi,ti+1|X(x′i|x1, x2) = Pr[Xi,ti+1 ≤ x′i|(X1, X2) = (x1, x2)]

where X = (X1,t1 , X2,t2) is the vector of prices for the two auctions. Second, the bivariate

conditional distribution function of the two auctions could be defined. That is, to define

for x1, x2, x
′
1, x

′
2 ≤ P ,

F 2
(X1,t1+1,X2,t2+1)|X(x′1, x

′
2|x1, x2) = Pr[X1,t1+1 ≤ x′1, X2,t2+1 ≤ x′2|(X1, X2) = (x1, x2)]

Note that a bivariate distribution function can always be constructed from any marginal

distribution function. See, for instance, Gumbel (1960) for a discussion of the bivariate

exponential distribution. However, the conceptual framework of the distribution function

is of course different for the two approaches.

The second task is to impose structural properties on the distribution function, such

that a threshold policy is still optimal. The crux in Chapter 2 was that the cannibaliza-

tion on the expected final price of the ongoing auction was diminishing in the price of the

auction. With correlated prices, in particular if the lowest-priced auction benefits, then the

‘cannibalization’ effect is not monotone. Therefore, the price-transitions to ‘high’ prices are

more complicated. However, a reasonable assumption is to assume that the main effect of

an auction dominates the cross effect of the competing auction. To illustrate, a $1 increase

in auction 1 is much better for auction 1, than a $1 increase in auction 2. Recall that the

higher the price in auction 2, the more likely auction 1 is to make a transition to ‘high’ prices.

This assumption is standard in the Economics literature, and with the proper attributes

might ensure that Theorem 2.12 holds. The author has done some preliminary work and is

confident that an optimal threshold policy can be derived. However, a final comment is that
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from the empirical analysis there is little evidence that the competing auction prices mat-

ter. Although some further empirical analysis can be done, in Chapter 5 it was shown that

the prices of the highest- and lowest-priced auction did not seem to effect the bid-increment.

Additional Application. In addition to the direct application of selling products us-

ing online auctions, the model and results could be extended to other settings. One setting

that seems particular suitable is selling real estate. Suppose a real estate agent has N prop-

erties to sell, and wants to know how he should release the listings. That is, is it optimal

to release all N properties immediately? Or would he and his clients be better off by not

having all N properties compete with each other? Considering the interest and principal of

a property, the ‘holding’ cost is considerable. Furthermore, in the wake of the current sub-

prime mortgage crisis in the US, the depreciation cost of a property might be even greater.

On the other hand, it would also seem intuitive that by flooding the real estate market with

listings, the average selling price of a property would decrease. Since potential buyers place

‘bids’ (offers) on properties, the analysis and results presented in Chapter 2 might provide

real estate buyers, sellers, and agents with better insights.

2. Chapter 3 Conclusions

The framework presented in Chapter 2 assumed that the dynamics of online auctions

could be captured by a set of conditional price-transition probabilities. Two natural ques-

tions that might arise are: 1) What underlying bidding behavior would give rise to such

transition probabilities? 2) How would you derive or estimate them? Chapters 3 and 4

provided some answers to these questions. Specifically, Chapter 3 illustrated with two fixed

bidding strategies, how the conditional within period price-transition probabilities can be

derived. The first bidding strategy is when bidders bid a minimal bid-increment, while
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the second bidding strategy is when bidders bid their true valuation. The objective was

to show how the price-transition probabilities could be derived based on a given auction

format, bidder arrival process, and fixed bidding strategy.

The most natural and definitely most challenging extension would be to develop a more

‘realistic’ auction/game theory model of eBay, and use the model to derive a bid strategy

Bayesian Nash equilibrium. Two factors that makes this challenging, which would need to

be resolved, are that auctions overlap and that towards the end of an auction there is a

positive probability a bid does not get registered. Therefore, any bid strategy would need to

address the issue that a potential bidder chooses when to bid and in which auction to bid,

based on auction prices and remaining time of the ongoing auctions. To motivate further

complexity, we note that from the empirical bid analysis of Chapter 5 many auctions were

won by previous winners. That is, many bidders have more than unit demand.

3. Chapters 4 and 5 Conclusions

Chapter 4 presented a statistical model for estimating the price-transition probabilities

based on real data. More specifically, it was proposed that within a period, price-increments

follow a zero-inflated gamma distribution. That is, each period there is a positive proba-

bility that an auction will make a positive price-transition, and condition on that it does

the price-increment is gamma distributed. The objective of Chapter 4 was threefold. First,

to propose a statistical model for price changes over discrete periods. Second, to provide

conditions of model parameters such that the results from Chapter 2 holds. Third, to fit

the model to real auction data and estimate the conditional within period price-transition

probabilities. From the empirical analysis in Chapter 4 we concluded that over discrete time

periods, online auctions appear to follow a zero-inflated gamma distribution. And that the
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probability of a positive price-transition and price-increment are decreasing in the price of

an auction, and decreasing in the number of competing auctions. Furthermore, overall the

fitted price-transition probabilities exhibit properties such that the results from Chapter 2

holds.

Chapter 5 consisted of an empirical analysis of the actual bids. In other words, while

Chapter 4 focused on an auction’s price-transition over discrete time periods, Chapter 5 fo-

cused on the individual bidding behavior. More specifically, Chapter 5 proposed that bids

follow a gamma distribution. For both Chapter 4 and 5 the proposed distribution function

were conditional on certain auction parameters. Most notably the price and elapsed time

of an auction, and number of competing auctions.

Extensions to enrich both empirical models are plentiful. One example is to include the

information regarding the competing auctions differently. For the model in Chapter 4 only

the average number of ongoing auctions was included, while in Chapter 5 only the price

and time of the highest and lowest priced competing auction was included. Ideally, both

models should incorporate the competing auctions more consistently. This might require

the need for a controlled study. A second example is to include the product configuration

as parameters. In other words, to combine a hedonistic pricing model with the price- and

bid-increment models. A third example, which was briefly discussed in Chapter 5, is to

accommodate for the fact that ‘even’ bid-increments are over represented. Recall that in

Figure 5.1 on page 207, we observed spikes at ‘even’ bids and bid-increments. As we dis-

cussed, one possibility includes modeling bid-increments as a mix of a Poisson and gamma

distribution.
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Another stream of extension would be to analyze how the aggregation of the bids from

Chapter 5 result in the model proposed in Chapter 4. In other words, what resulting proper-

ties does a random sum of gamma distributed variables have. In particular, what structural

properties on the γ coefficients in Chapter 5 are needed, such that the structural proper-

ties of Chapter 4 and results of Chapter 2 holds. A final and much more general extension

is to pursue the issue of goodness-of-fit and model validation for Generalized Linear Models.
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APPENDIX A

Proofs for Results in Chapter 2

Proof Proposition 2.4 - First validate that ΠU
1 and ΠU

2 are well-defined transition proba-

bility matrices. At any given price level xi ∈ [0, P ] there are P − xi + 1 levels the price

can jump to. Under ΠU
1 each jump has an equal probability of 1/(P + 1 − xi), therefore

1) each transition probability is well-defined, 0 ≤ πq,j|1 ≤ 1, and 2) the total probability

of making a jump is
∑P

q=xi
1/(P + 1 − xi) = (P + 1 − xi) ∗ 1/(P + 1 − xi) = 1. Since

under ΠU
2 the only change is that the probability of jumping to P decreases with κ while

the probability of remaining at xi increases with κ, the total probability of making a jump

remains constant. Furthermore, since κ ≤ 1
P+1 ≤ 1/(P + 1− xi) for all xi ∈ [0, P ], we still

have 0 ≤ πxi,q|2 ≤ 1, and hence each transition probability is well-defined. Therefore, ΠU
1

and ΠU
2 are a well-defined transition probability matrices.

Next we validate that (2.3) holds. Let xi < P , then, for xi < r ≤ P ,
∑P

q=r πxi,q|1 =

∑P
q=r 1/(P +1−xi) = (P−r+1)∗1/(P +1−xi) < (P−r+1)∗1/(P−xi) =

∑P
q=r 1/(P−xi) =

∑P
q=r πxi+1,q|1, while for r ≤ xi,

∑P
q=r πxi,q|1 = 1 =

∑P
q=r πxi+1,q|1. And, for xi < r ≤ P ,

∑P
q=r πxi,q|2 = (P +1−r)∗1/(P +1−xi)−κ < (P +1−r)∗(1/(P−xi)−κ =

∑P
q=r πxi+1,q|2,

while for r ≤ xi,
∑P

q=r πxi,q|2 = 1 =
∑P

q=r πxi+1,q|2. Therefore ΠU
1 and ΠU

2 satisfies (2.3).

To validate (2.5), let xi < r ≤ P then
∑P

q=r πxi,q|2 = (P +1−r)∗1/(P +1−xi)−κ < (P +1−

r)∗1/(P +1−xi) =
∑P

q=r πxi+1,q|1, while for r ≤ xi ≤ P ,
∑P

q=r πxi,q|2 = 1 =
∑P

q=r πxi+1,q|1.

Therefore ΠU
1 and ΠU

2 satisfies (2.5).

To validate (2.7), let xi < r ≤ P and note that
∑P

q=r πxi+1,q|1 − πxi,q|2 = κ, which is inde-

pendent of xi. And for r ≤ xi ≤ P ,
∑P

q=r πxi+1,q|1 − πxi,q|2 = 0, which also is independent
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of xi. Therefore ΠU
1 and ΠU

2 satisfies (2.7). ¤

Proof Proposition 2.5 - First validate that f1(q|x) and f2(q|x) are well-defined probability

density functions. We note that
∫ 1
x f1(q|x)dq =

∫ 1
x

1
1−xdq = 1, and, for all x ≤ x′ ≤ 1,

∫ x′
x

1
1−xdq = x′−x

1−x ≤ 1 and increasing in x′. Similarly,
∫ 1
x f2(q|x)dq =

∫ 1
x

2−2q
(1−x)2

dq = 1, and,

for all x ≤ x′ ≤ 1,
∫ x′
x

2−2q
1−x dq = 2x′−(x′)2−2x+x2

(1−x)2
≤ 1 and increasing in x′.

Next we validate that Assumption 2.1 holds. We note that, for x ≤ x′ ≤ 1, ∂
∂xF 1(x′|x) =

x′−1
(1−x)2

≤ 0. And, for x ≤ x′ ≤ 1, ∂
∂xF 2(x′|x) = ∂

∂x
2x′−(x′)2−2x+x2

(1−x)2
= −2(1−x′)2

(1−x)3
≤ 0.

To validate Assumption 2.2, for x ≤ x′ ≤ 1, F 1(x′|x) = x′−x
1−x ≤ x′(2−x′)−x(2−x)

(1−x)2
= F 2(x′|x).

Finally, to validate Assumption 2.3, for x ≤ x′ ≤ 1, ∂
∂xF 2(x′|x) = −2(1−x′)2

(1−x)3
≤ x′−1

(1−x)2
=

∂
∂xF 1(x′|x). ¤

Proof Proposition 2.6 - In order for ΠBe
1 and ΠBe

2 to be well-defined transition probability

matrices we assume that 0 ≤ πx ≤ 1 and 0 ≤ ρx ≤ 1, for all x < P .

To validate Assumption 2.1, let x < P , then, (I) for x + 1 < r ≤ P ,
∑P

q=r πx,q|1 = 0 ≤
∑P

q=r πx+1,q|1 ≤ πx+1, (II) for x + 1 = r,
∑P

q=r πx,q|1 = πx ≤ 1 =
∑P

q=r πx+1,q|1, and (III)

for r ≤ x < P ,
∑P

q=r πx,q|1 =
∑P

q=r πx+1,q|1 = 1. And similarly if we exchange πx with ρx,

and therefore Assumption 2.1 holds.

To validate Assumption 2.2, let x ≤ P , then (I) for x + 1 < r ≤ P ,
∑P

q=r πx,q|2 = 0 =

∑P
q=r πx,q|1, (II) for x + 1 = r,

∑P
q=r πx,q|2 = ρx ≤ πx =

∑P
q=r πx,q|1, where the inequality

follows from (2.11), and (III) for r ≤ x < P ,
∑P

q=r πx,q|2 =
∑P

q=r πx,q|1 = 1. Therefore

Assumption 2.2 holds.

Assumption 2.3(mod.) follows immediately from (2.11). ¤

Proof of Corollary 2.9 - Since by assumption each auction progress independently of the price

in the other auction, the independence of x1 is immediate. If y1 = τ, δ, then y1 +1 = δ, and
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E[X2,τ |St+1 = s′] = E[X2,τ |St = s], since auctions dynamics are independent of calender

time. Therefore assume y1 < τ . Proof by induction on y1. If y1 = τ − 1,

E[X2,τ |St = ([x1, τ − 1;x2, y2], 2)] =
P∑

q=x2

E[X2,τ |St+1 = ([x′1, τ ; q, y2 + 1], z)]πx2,q|2

≤
P∑

q=x2

E[X2,τ |St+1 = ([x′1, τ ; q, y2 + 1], z)]πx2,q|1 = E[X2,τ |St = ([x′1, τ ; x2, y2], 1)]

= E[X2,τ |St+1 = ([x′1, τ ; x2, y2], 1)]

where the inequality holds due to Lemma 4.7.2 in Puterman (1994), Corollary 2.7 and

Assumption 2.2, and the last equality holds due to the assumption that price transitions

are independent of calender time. Assume the result holds for y1 = τ − 1, τ − 2, . . . , τ − l.

Let y1 = τ − (l + 1),

E[X2,τ |St = ([x1, τ − (l + 1);x2, y2], 2)] =
P∑

q=x2

E[X2,τ |St+1 = ([x′1, τ − l; q, y2 + 1], 2)]πx2,q|2

≤
P∑

q=x2

E[X2,τ |St+1 = ([x′1, τ − (l − 1); q, y2 + 1], 2)]πx2,q|2 = E[X2,τ |St = ([x′1, τ − l; x2, y2], 2)]

= E[X2,τ |St+1 = ([x′1, τ − l; x2, y2], 2)]

where the inequality holds due to Lemma 4.7.2 in Puterman (1994), Corollary 2.7 and the

induction assumption, and the last equality holds due to the assumption that price tran-

sitions are independent of calender time and the price of the other auction. Similar to

Corollary 2.7 the extension to continuous prices is immediate, and the results from Lemma

9.1.1 and Proposition 9.1.2 in Ross (1996) could have been applied. ¤

Proof of Lemma 2.10 - Due to the vigilant seller assumption and that we are considering

the case when auctions are guaranteed to be successful we can explicitly write out the value

function (2.21) according to Table A.1. Note that there are only non-trivial decisions to

be made for t < τ and z = 1. Consequently once the second auction has started, we can

evaluate the expected total future reward (= total remaining cost - expected final price
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for both items). The implication of this is summarized in following two lemmas which will

facilitate the ‘book keeping’ and establish Lemma 2.10.

Period Condition Vt([x1, y1; x2, y2], z)

t = T z = 0 = x1 + x2

τ ≤ t < T z = 0 = Vt+1([x1, y1; x2, y2], z)

z = 1 = −h +
∑P

q=x2
Vt+1([x1, y1; q, y2 + 1], z′)πx2,q|z

t < τ z = 2 = −2h +
∑P

q=x1

∑P
r=x2

Vt+1([q, x1 + 1; r, t2 + 1], z′)πx1,q|2πx2,r|2

z = 1 = −2h + max{ ∑P
q=x1

Vt+1([q, y1 + 1;x2, y2], z)πx1,q|1 ,

∑P
q=x1

∑P
r=p Vt+1([q, y1 + 1; r, y2 + 1], z′)πx1,q|2πx2,r|2 }

Table A.1. Optimality equations for the single listing case.
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Lemma A.1. If we assume a vigilant seller and each auction is guaranteed to be suc-

cessful, then once item 2 has been released we can explicitly evaluate the value function, for

1) τ ≤ t ≤ T, z = 0, 1, or 2) t < τ, z = 2,

(A.1) Vt([x1, y1; x2, y2], z) = R([x1, y1;x2, y2], z)

Proof of Lemma A.1 - There are three cases to consider.

1) For τ ≤ t ≤ T and z = 0, proof by backward induction on t. Let t = T then y1 = δ

and y2 = τ or δ, and therefore Vt([x1, y1; x2, y2], z) = −h0 + x1 + x2 = −h(2τ − δ − δ) +

E[X1,τ |([x1, δ; x2, δ], 0)] + E[X2,τ |([x1, δ;x2, δ], 0)], and the result holds. Assume the result

holds for t = l+1, l+2, . . . , T . Let τ ≤ t = l, then y1 = τ or δ and y2 = τ or δ, and therefore

Vt([x1, y1; x2, y2], z) = Vt+1([x1, δ; x2, δ], 0) = −h(2τ − δ − δ) + E[X1,τ |([x1, δ; x2, δ], 0)] +

E[X2,τ |([x1, δ; x2, δ], 0)], where the second equality holds due to the induction hypothesis.

Therefore the result holds for all τ ≤ t ≤ T and z = 0. As noted earlier there is a slight

abuse of notation when yi = δ, i = 1, 2, where we define τ − δ = 0.

2) For τ ≤ t ≤ T and z = 1, proof by backward induction on t. Let t = T − 1 and z = 1,

then t1 = δ and t2 = τ − 1, therefore Vt([x1, y1; x2, y2], z) =

= −h +
P∑

q=x2

VT ([x1, δ; q, τ ], 0)πx2,q|1 = −h +
P∑

q=x2

x1πx2,q|1 +
P∑

q=x2

qπx2,q|1

= −h + x1 +
P∑

q=x2

qπx2,q|1

= −h(2τ − δ − (τ − 1)) + E[X1,τ |([x1, δ;x2, τ − 1], 1)] + E[X2,τ |([x1, δ;x2, τ − 1], 1)]

And the result holds (note that if t = T then due to the vigilant seller assumption all

auctions are completed and z 6= 1). Assume the result holds for t = l + 1, l + 2, . . . , T . Let
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τ ≤ t = l and z = 1, then t1 = τ or δ, therefore Vt([x1, y1;x2, y2], z) =

= −h +
P∑

q=x2

Vt+1([x1, δ; q, y2 + 1], z′)πx2,q|1

= −h− h(2τ − δ − (y2 + 1)) +
P∑

q=x2

E[X1,τ |([x1, δ; q, y2 + 1], z′)]πx2,q|1 +
P∑

q=x2

E[X2,τ |([x1, δ; q, y2 + 1], z′)]

= −h(2τ − δ − y2) + E[X1,τ |([x1, δ; x2, y2], 1)] + E[X2,τ |([x1, δ; x2, y2], 1)]

Where the second equality holds due to the induction hypothesis when z′ = 1, or case 1)

above when z′ = 0. Therefore the result holds for all τ ≤ t ≤ T and z = 1.
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3) For t < τ and z = 2, proof by backward induction on t. Let t = τ − 1 and z = 2,

then y1 = τ − 1, therefore Vt([x1, y1; x2, y2], z) =

= −2h +
P∑

q=x1

P∑
r=x2

Vt+1([q, τ ; r, y2 + 1], z′)πx1,q|2πx2,r|2

= −2h− h(2τ − τ − (y2 + 1)) +
P∑

q=x1

P∑
r=x2

E[X1,τ |([q, τ ; r, y2 + 1], z′)]πx1,q|2πx2,r|2

+
P∑

q=x1

P∑
r=x2

E[X2,τ |([q, τ ; r, y2 + 1], z′)]πx1,q|2πx2,r|2

= −h(2τ − (τ − 1)− y2) +
P∑

q=x1

E[X1,τ |([q, τ ; x2, y2 + 1], z′)]πx1,q|2 +
P∑

r=x2

E[X2,τ |([x1, τ ; r, y2 + 1], z′)]πx2,r|2

= −h(2τ − (τ − 1)− y2) + E[X1,τ |([x1, τ − 1;x2, y2], 2)] + E[X2,τ |([x1, τ − 1;x2, y2], 2)]

Where the second equality follows from case 1) above when z′ = 0, or case 2) above when

z′ = 1, while the third equality follows from that we assume each auction progress inde-

pendently of the price of the other auction. Therefore the result holds for t = τ − 1 and

z = 2.
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Assume the result holds for t = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let t = τ − l and

z = 2, then y1 = τ − l and Vt([x1, y1;x2, y2], z) =

= −2h +
P∑

q=x1

P∑
r=x2

Vt+1([q, τ − (l − 1); r, y2 + 1], z′)πx1,q|2πx2,r|2

= −2h− h(2τ − (τ − (l − 1))− (y2 + 1))

+
P∑

q=x1

P∑
r=x2

E[X1,τ |([q, τ − (l − 1); r, y2 + 1], z′)]πx1,q|2πx2,r|2

+
P∑

q=x1

P∑
r=x2

E[X2,τ |([q, τ − (l − 1); r, y2 + 1], z′)]πx1,q|2πx2,r|2

= −h(2τ − (τ − l)− t2) +
P∑

q=x1

E[X1,τ |([q, τ − (l − 1);x2, y2 + 1], z′)]πx1,q|2

+
P∑

r=x2

E[X2,τ |([x1, τ − (l − 1); r, y2 + 1], z′)]πx2,r|2

= −h(2τ − (τ − l)− y2) + E[X1,τ |([x1, τ − l; x2, y2], 2)] + E[X2,τ |([x1, τ − l; x2, y2], 2)]

Where the second equality follows from the induction hypothesis when z′ = 2, case 1) above

when z′ = 0, or case 2) above when z′ = 1, and the third equality holds due to the assump-

tion that each auction progress independently of the price in the other auction. Therefore

the result holds for all t < τ and z = 2. ¤
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Lemma A.2. If we assume a vigilant seller and each auction is guaranteed to be suc-

cessful then for t < τ and z = 1,

(A.2)

Vt([x1, y1;x2, y2], z) = max{−2h +
P∑

q=x1

Vt+1([q, y1 + 1; p, 0], 1)πx1,q|1 , R([x1, y1; p, 0], 2)}

Proof of Lemma A.2 - Let t < τ and z = 1, then y1 = t and,

− 2h +
P∑

q=x1

P∑
r=p

Vt+1([q, t + 1; r, 1], z)πx1,q|2πx2,r|2

= −2h +
P∑

q=x1

P∑
r=p

(−h(2τ − (t + 1)− 1) + E[X1,τ |([q, t + 1; r, 1], z)] + E[X2,τ |([q, t + 1; r, 1], z)])πx1,q|2πx2,r|2

= −h(2τ − t− 0) +
P∑

q=x1

E[X1,τ |([q, t + 1; p, 1], z)]πx1,q|2 +
P∑

r=p

E[X2,τ |([x1, t + 1; r, 1], z)]πx2,r|2

= −h(2τ − t− 0) + E[X1,τ |([x1, t; p, 0], 2)] + E[X2,τ |([x1, t; p, 0], 2)]

= R([x1, t; p, 0], 2)

where the first equality holds due to Lemma A.1 with z = 1 (if t + 1 = τ) or with z = 2 (if

t + 1 < τ), and the second equality holds due to that each auction progress independently

of the price in the other auction. ¤

Due to Lemma A.1 and A.2, and that we mainly are interested in states s ∈ S such

that A(s) = {0, 1}, we have the value functions listed in Lemma 2.10. The proof for the

continuous case is identical but with an integral sign instead of summation ¤

Proof of Proposition 2.16 - From equation (2.24) we can compare various open loop policies

and determine when each one dominates another. Let OPj and OP(j + m) be the open

loop policies of releasing the second auction j and (j + m) periods respectively after the

first auction. We then have, VO(j) ≥ VO(j+m) ⇔ −(2τ + j)h + 2(p + jπ + (τ − j)ρ) ≥

−(2τ + j + m)h + 2(p + (j + m)π + (τ − j −m)ρ) ⇔ h ≥ 2(π − ρ).
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Since this condition is independent of j and j + m the result is that simultaneous release

is optimal iff h ≥ 2(π− ρ). By symmetry (non-overlapping) sequential release is optimal iff

h < 2(π − ρ) and there are no other optimal Open Loop policies. ¤

Proof of Proposition 2.18 - The proof of Proposition 2.11 is based on Assumption 2.1,

Lemma 2.10, and Corollary 2.8, but not on any additional arguments involving the value of

completed auctions. Therefore to show that introducing a reserve price impose no changes

to Proposition 2.11, need to show that no changes to the listed assumption, lemmas and

corollary occur. Assumption 2.1 does not depend on the value of a completed auction and

so remains intact. Lemma 2.10, which is based on Lemmas A.1 and A.2, is only for book-

keeping and does not depend on the actual value of completed auctions (same with Lemmas

A.1 and A.2). Corollary 2.8 is a direct application of Corollary 2.7, therefore need to show

that Corollary 2.7 holds.

Proof that Corollary 2.7 holds despite introducing vr. By induction on the number of

remaining periods n. For n = 1, E[X1,τ |St = ([x1, τ − 1;x2, y2], z)] = vr
∑vr

q=x1
πx1,q|z +

∑P
q=vr+1 qπx1,q|z = vr

∑P
q=x1

πx1,q|z+
∑P

q=vr+1 πx1,q|z+
∑P

q=vr+2 πx1,q|z+. . .+
∑P

q=P πx1,q|z ≤

vr
∑P

q=x1
πx1+1,q|z+

∑P
q=vr+1 πx1+1,q|z+

∑P
q=vr+2 πx1+1,q|z+. . .+

∑P
q=P πx1+1,q|z = E[Xi,τ |St =

([x1 +1, τ−1;x2, y2], z)], where the inequality holds due Assumption 2.1. Assume the result

holds for n = 1, 2, . . . , l − 1 (with the introduction of vr). For n = l, y1 + 1 = τ − (l − 1),

E[X1,τ |St = ([x1, τ − n; x2, y2], z)] =
∑P

q=x1
E[X1,τ |St = ([x1, τ − n;x2, y2], z)]πx1,q|z ≤

∑P
q=x1+1 E[X1,τ |St = ([x1+1, τ−n; x2, y2], z)]πx1+1,q|z = E[X1,τ |St = ([x1+1, τ−n;x2, y2], z)],

where the inequality holds due to Lemma 4.7.2 of Puterman (1994), the induction assump-

tion and Assumption 2.1. Therefore the expected final price is increasing in xi, and Corollary

2.7 holds with the introduction of vr.

Therefore Proposition 2.11 still holds when a reserve price has been imposed.

The proof of Theorem 2.12 is based on Assumptions 2.1, 2.2, 2.3, Lemma 2.10, equation
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(2.23), Corollaries 2.8 and 2.9. As above all these results remain intact with the introduc-

tion of a reserve price. In addition the induction step in the proof involves the expected

final value. Based on the same proof as above the induction step still holds even with a

reserve price. The remaining part of the proof is not based on the actual value of an auction.

Therefore Theorem 2.12 still holds when a reserve price has been imposed.

The proof of Corollary 2.13 does not involve the actual value of completed auctions, and

therefore holds true when a reserve price has been imposed. ¤

Proof of Lemma 2.20

Comment: Recall that R1([x1, y1;x2, y2], z) = −h(2τ−y1−y2)+E[X1,τ |([x1, y1; x2, y2], z)]+

E[X2,τ |([x1, y1; x2, y2], z)] + (πx2,0|z)(π0,0|z)τ−y1−1(π0,0|1)y1−y2v(0, 0), and note that there is

a slight abuse of notation for the cases when ti = δ. In these cases we implicitly assume

that τ − ti = 0 and E[Xi,τ |([x1, y1; x2, y2], z)] = 0, i = 1, 2.

1) x1 > 0, y1 = τ, δ and z = 0, 1, or x1 > 0, y1, y2 < τ , and z = 2.

1a) For x1 > 0, y1 = δ and z = 0, 1, R1([x1, δ; x2, y2], z) = −h(τ−y2)+E[X2,τ |([x1, δ; x2, y2], z)]

+(πx2,0|z)(π0,0|z)τ−y1−1(π0,0|1)y1−y2v(0, 0).

Let x1 > 0, y1 = δ, and z = 0. If y2 = δ then V ([x1, y1; x2, y1], z) = 0 = R1([x1, δ;x2, δ], 0).

If y2 = τ then z = 0 and V ([x1, y1; x2, y1], z) = x2+V (∆) = −h(τ−τ)+E[X2,τ |([x1, δ; x2, τ ], 0)] =

R1([x1, δ; x2, τ ], 0).

Let x1 > 0, y1 = δ, and z = 1, that is y2 < τ . Proof by backward induction on y2. Let

y2 = τ − 1 and x2 > 0 then V ([x1, y1; x2, y1], z) =

= −h +
P∑

q=x2

V ([x1, δ; q, τ ], 0)πx2,q|1 = −h +
P∑

q=x2

R1([x1, δ; q, τ ], 0)πx2,q|1

= −h +
P∑

q=x2

(−h(τ − τ) + E[X2,τ |([x1, δ; q, τ ], 0)])πx2,q|1

= −h(τ − (τ − 1)) + E[X2,τ |([x1, δ;x2, τ − 1], 1)]) = R1([x1, δ;x2, τ − 1], 1)
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Where the second equality holds due to the case above with y1 = δ, z = 0.

Let y2 = τ − 1 and x2 = 0 then V ([x1, y1; x2, y1], z) =

= −h +
P∑

q=p

V ([x1, δ; q, τ ], 0)π0,q|1 + V ([x1, δ; 0, 0], 1)π0,0|1

= −h +
P∑

q=x2

R1([x1, δ; q, τ ], 0)πx2,q|1 + v(0, 0)π0,0|1

= −h +
P∑

q=x2

(−h(τ − τ) + E[X2,τ |([x1, δ; q, τ ], 0)])πx2,q|1 + v(0, 0)π0,0|1

= −h(τ − (τ − 1)) + E[X2,τ |([x1, δ; x2, τ − 1], 1)]) + v(0, 0)π0,0|1

= R1([x1, δ; 0, τ − 1], 1)

Where the second equality holds due to the case above with y1 = δ and z = 0, and that

V ([x1, δ; 0, 0], 1) = v(0, 0), since the first item has been awarded and by the vigilant seller

assumption the second item will be continuously re-listed until the auction is successful.

Assume the result holds for y2 = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let y2 = τ − l then

V ([x1, y1; x2, y1], z) =

= −h +
P∑

q=x2

V ([x1, δ; q, τ − (l − 1)], 1)πx2,q|1 = −h +
P∑

q=x2

R1([x1, δ; q, τ − (l − 1)], 1)πx2,q|1

= −h +
P∑

q=x2

(−h(τ − (τ − (l − 1))) + E[X2,τ |([x1, δ; q, τ − (l − 1)], 1)])πx2,q|1

= −h(τ − (τ − l)) + E[X2,τ |([x1, δ; x2, τ − l], 1)]) = R1([x1, δ;x2, τ − l], 1)

Where the second equality holds due to induction hypothesis.

Therefore Lemma 2.20 holds for the case 1a) x1 > 0, y1 = δ and z = 0, 1.

1b) For x1 > 0, y1 = τ and z = 0, 1,

R1([x1, τ ; x2, y2], z) =− h(2τ − τ − y2) + E[X1,τ |([x1, τ ;x2, y2], z)] + E[X2,τ |([x1, τ ; x2, y2], z)]

+ (πx2,0|z)(π0,0|z)τ−y1−1(π0,0|1)y1−y2v(0, 0)
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Let x1 > 0, y1 = τ , and z = 0, that is y2 = τ . Therefore V ([x1, y1;x2, y1], z) = x1 + x2 +

V (∆) = R1([x1, τ ; x2, τ ], 0).

Let x1 > 0, y1 = τ , and z = 1, that is y2 < τ . Proof by backward induction on y2. Let

y2 = τ − 1 and x2 > 0 then V ([x1, y1; x2, y1], z)

= −h + x1 +
P∑

q=x2

V ([x1, δ; q, τ ], 0)πx2,q|1 = −h + x1 +
P∑

q=x2

R1([x1, δ; q, τ ], 0)πx2,q|1

= −h + E[X1,τ |([x1, τ ; q, τ − 1], 1) +
P∑

q=x2

(−h(τ − τ) + E[X2,τ |([x1, δ; q, τ ], 0)])πx2,q|1

= −h(2τ − τ − (τ − 1)) + E[X1,τ |([x1, τ ;x2, τ − 1], 1)]) + E[X2,τ |([x1, τ ; x2, τ − 1], 1)])

= R1([x1, τ ; x2, τ − 1], 1)

Where the second equality holds due to case 1a) above.

Let y2 = τ − 1 and x2 = 0 then V ([x1, y1; x2, y1], z) =

= −h + x1 +
P∑

q=p

V ([x1, δ; q, τ ], 0)π0,q|1 + V ([x1, δ; 0, 0], 1)π0,0|1

= −h + x1 +
P∑

q=x2

R1([x1, δ; q, τ ], 0)πx2,q|1 + v(0, 0)π0,0|1

= −h + E[X1,τ |([x1, τ ; q, τ − 1], 1)]) +
P∑

q=x2

(−h(τ − τ) + E[X2,τ |([x1, δ; q, τ ], 0)])πx2,q|1 + v(0, 0)π0,0|1

= −h(2τ − τ − (τ − 1)) + E[X1,τ |([x1, τ ;x2, τ − 1], 1)]) + E[X2,τ |([x1, τ ; x2, τ − 1], 1)]) + v(0, 0)π0,0|1

= R1([x1, τ ; 0, τ − 1], 1)

Where the second equality holds due to case 1a) above and that V ([x1, δ; 0, 0], 1) = v(0, 0),

which holds since the first item has been awarded and by the vigilant seller assumption the

second item will be continuously re-listed until the auction is successful.

Assume the result holds for y2 = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let y2 = τ − l then
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V ([x1, y1; x2, y1], z) =

= −h + x1 +
P∑

q=x2

V ([x1, δ; q, τ − (l − 1)], 1)πx2,q|1

= −h + x1 +
P∑

q=x2

R([x1, δ; q, τ − (l − 1)], 1)πx2,q|1

= −h + E[X1,τ |([x1, τ ; q, τ − (l − 1)], 1)]

+
P∑

q=x2

(−h(τ − (τ − (l − 1))) + E[X2,τ |([x1, δ; q, τ − (l − 1)], 1)])πx2,q|1

= −h(2τ − τ − (τ − l)) + E[X1,τ |([x1, τ ; x2, τ − l], 1)]) + E[X2,τ |([x1, τ ;x2, τ − l], 1)])

= R1([x1, τ ; x2, τ − l], 1)

Where the second equality holds due to case 1a) above. Therefore Lemma 2.20 holds for

the case 1b) x1 > 0, y1 = τ and z = 0, 1.

Note that for x1 > 0, y1, y2 < τ and z = 2, R1([x1, y1;x2, y2], z) = −h(2τ − y1 − y2) +

E[X1,τ |([x1, y1; x2, y2], 2)]+E[X2,τ |([x1, y2; x2, y2], 2)]+(πx2,0|z)(π0,0|z)τ−y1−1(π0,0|1)y1−y2v(0, 0).

1c) Let y1 = τ − 1. Proof by backward induction on y2. Let y2 = τ − 1 and x2 > 0, then

V ([x1, y1; x2, y1], z) =

= −2h +
P∑

q=x1

P∑
r=x2

V ([q, τ ; r, τ ], 0)πx1,q|2πx2,r|2

= −2h +
P∑

q=x1

P∑
r=x2

R1([q, τ ; r, τ ], 0)πx1,q|2πx2,r|2

= −2h +
P∑

q=x1

E[X1,τ |([q, τ ; x2, τ ], 2)]πx1,q|2 +
P∑

q=x2

E[X2,τ |([x1, τ ; q, τ ], 2)]πx1,q|2

= −h(2τ − (τ − 1)− (τ − 1)) + E[X1,τ |([x1, τ − 1;x2, τ − 1], 2)] + E[X2,τ |([x1, τ − 1; q, τ − 1], 2)]

= R1([x1, τ − 1;x2, τ − 1], 2)

Where the second equality holds due to case 1b) above, and the third equality holds due to

that each auction progress independently of the price in the other auction.
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Let y2 = τ − 1 and x2 = 0, then V ([x1, y1; x2, y1], z) =

= −2h +
P∑

q=x1

P∑
r=p

V ([q, τ ; r, τ ], 0)πx1,q|2πx2,r|2 +
P∑

q=x1

V ([q, τ ; 0, 0], 1)πx1,q|2π0,0|2

= −2h +
P∑

q=x1

πx1,q|2(
P∑

r=p

R1([q, τ ; r, τ ], 0)π0,r|2 + R1([q, τ ; 0, 0], 1)π0,0|2)

= −2h +
P∑

q=x1

πx1,q|2(
P∑

r=p

(E[X1,τ |([q, τ ; r, τ ], 0)] + E[X2,τ |([q, τ ; r, τ ], 0)])π0,r|2

+ (−h(2τ − τ − 0) + E[X1,τ |([q, τ ; 0, 0], 1)] + E[X2,τ |([q, τ ; 0, 0], 1)] + (π0,0|1)τv(0, 0))π0,0|2)

= −h(2τ − (τ − 1)− (τ − 1)) +
P∑

q=x1

E[X1,τ |([q, τ ; x2, τ ], 0)]πx1,q|2 +
P∑

r=p

E[X2,τ |([x1, τ ; r, τ ], 0)])π0,r|2

+ ((1− (π0,0|1)τ )v(0, 0) + (π0,0|1)τv(0, 0))π0,0|2

= −h(2τ − (τ − 1)− (τ − 1)) + E[X1,τ |([x1, τ − 1;x2, τ − 1], 2)] + E[X2,τ |([x1, τ − 1; 0, τ − 1], 2)]

+ v(0, 0)π0,0|2

= R1([x1, τ − 1; 0, τ − 1], 2)

Where the second equality holds due to case 1b) above, and the fourth equality holds due

to (2.28).
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Assume the result holds for y2 = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let y2 = τ − l then

V ([x1, y1; x2, y1], z) =

= −2h +
P∑

q=x1

P∑
r=x2

V ([q, τ ; r, τ − (l − 1)], 1)πx1,q|2πx2,r|2

= −2h +
P∑

q=x1

P∑
r=x2

R1([q, τ ; r, τ − (l − 1)], 1)πx1,q|1πx2,r|2

= −2h +
P∑

q=x1

P∑
r=x2

(−h(2τ − τ − (τ − (l − 1))) + E[X1,τ |([q, τ ; r, τ − (l − 1)], 1)]

+ E[X2,τ |([q, τ ; r, τ − (l − 1)], 1)] + (πr,0|1)(π0,0|1)τ−(τ−(l−1))−1v(0, 0))πx1,q|2πx2,r|2

= −h(2τ − (τ − 1)− (τ − l)) +
P∑

q=x1

E[X1,τ |([q, τ ;x2, τ − (l − 1)], 1)]πx1,q|2

+
P∑

r=x2

E[X2,τ |([x1, τ ; r, τ − (l − 1)], 1)]πx2,r|2 + (πx2,0|1)(π0,0|1)τ−(τ−(l−1))v(0, 0)

= −h(2τ − (τ − 1)− (τ − 1)) + E[X1,τ |([x1, τ − 1;x2, τ − l], 2)] + E[X2,τ |([x1, τ − 1; q, τ − l], 2)]

+ (πx2,0|1)(π0,0|1)τ−(τ−(l−1))v(0, 0)

= R1([x1, τ − 1;x2, τ − l], 2)

Where the second equality holds due to the case above with y1 = τ , and the third equality

holds due to that each auction progress independently of the price in the other auction and

that πx2,r|z = 0 for r < x2.

Therefore Lemma 2.20 holds for the case 1c) x1 > 0, y1 = τ − 1, y2 < τ , and z = 2.
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1d) Let y1 < τ − 1. Proof by backward induction on y1. Let x1 > 0, y1 = τ − 2, and z = 2,

then V ([x1, y1; x2, y2], 2) =

= −2h +
P∑

q=x1

P∑
r=x2

V ([q, τ − 1; r, y2 + 1], 2)πx1,q|2πx2,r|2

= −2h +
P∑

q=x1

P∑
r=x2

R1([q, τ − 1; r, y2 + 1], 2)πx1,q|2πx2,r|2

= −2h +
P∑

q=x1

P∑
r=x2

(−h(2τ − (τ − 1)− (y2 + 1)) + E[X1,τ |([q, τ − 1; r, y2 + 1], 2)]

+ E[X2,τ |([q, τ − 1; r, y2 + 1], 2)] + (πr,0|2)(π0,0|1)τ−1−y2+1v(0, 0) )πx1,q|2πx2,r|2

= −h(2τ − (τ − 2)− y2) +
P∑

q=x1

E[X1,τ |([q, τ − 1;x2, y2 + 1], 2)]πx1,q|2

+
P∑

r=x2

E[X2,τ |([x1, τ − 1; r, y2 + 1], 2)]πx2,r|2 + (πx2,0|2)(π0,0|2)(π0,0|1)τ−1−y2+1v(0, 0)

= −h(2τ − (τ − 2)− y2) + E[X1,τ |([x1, τ − 2;x2, y2], 2)] + E[X2,τ |([x1, τ − 2;x2, y2], 2)]

+ (πx2,0|2)(π0,0|2)(π0,0|1)τ−1−y2+1v(0, 0)

= R1([x1, τ − 2;x2, y2], 2)

Where the second equality holds from case 1c) above, and the third equality holds due

to that each auction progress independently of the price in the other auction and that

πx2,r|z = 0 for r < x2.
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Assume the result holds for y1 = τ − (l−1), τ − (l−2), . . . , τ −2. Let y1 = τ − l, x1 > 0,

and z = 2, then V ([x1, y1; x2, y2], 2) =

= −2h +
P∑

q=x1

P∑
r=x2

V ([q, τ − (l − 1); r, y2 + 1], 2)πx1,q|2πx2,r|2

= −2h +
P∑

q=x1

P∑
r=x2

R1([q, τ − (l − 1); r, y2 + 1], 2)πx1,q|2πx2,r|2

= −2h +
P∑

q=x1

P∑
r=x2

(−h(2τ − (τ − (l − 1))− (y2 + 1)) + E[X1,τ |([q, τ − (l − 1); r, y2 + 1], 2)]

+ E[X2,τ |([q, τ − (l − 1); r, y2 + 1], 2)] + (πr,0|2)(π0,0|1)τ−(l−1)−y2+1v(0, 0) )πx1,q|2πx2,r|2

= −h(2τ − (τ − l)− y2) +
P∑

q=x1

E[X1,τ |([q, τ − (l − 1);x2, y2 + 1], 2)]πx1,q|2

+
P∑

r=x2

E[X2,τ |([x1, τ − (l − 1); r, y2 + 1], 2)]πx2,r|2 + (πx2,0|2)(π0,0|2)(π0,0|1)τ−(l−1)−y2+1v(0, 0)

= −h(2τ − (τ − l)− y2) + E[X1,τ |([x1, τ − l;x2, y2], 2)] + E[X2,τ |([x1, τ − l; x2, y2], 2)]

+ (πx2,0|2)(π0,0|2)(π0,0|1)τ−l−y2+1v(0, 0)

= R1([x1, τ − l; x2, y2], 2)

where the second equality holds from the induction hypothesis, and the third equality holds

due to that each auction progress independently of the price in the other auction and that

πx2,r|z = 0 for r < x2.

Therefore Lemma 2.20 holds for the case 1d) x1 > 0, y1 < τ − 1, y2 < τ , and z = 2.

And consequently Lemma 2.20 holds for 1) x1 > 0, y1 = τ, δ and z = 0, 1, or x1 > 0, y1, y2 <

τ and z = 2.
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It remains to show that Lemma 2.20 also holds for 2) x1 > 0, y1 < τ, y2 = 0, z = 1.

Proof by backward induction on y1. Let y1 = τ − 1 and z = 1, then

−2h +
∑P

q=x1

∑P
r=0 V ([q, τ ; r, 1], 1)πx1,q|2π0,r|2 =

=− 2h +
P∑

q=x1

P∑
r=0

R1([q, τ ; r, 1], 1)πx1,q|2π0,r|2

=− 2h +
P∑

q=x1

P∑
r=0

{−h(2τ − τ − 1) + E[X1,τ |([q, τ ; r, 1], 1)] + E[X2,τ |([q, τ ; r, 1], 1)] + (πr,0|1)τ−1v(0, 0)}πx1,q|2π0,r|2

=− h(2τ − (τ − 1)− 0) +
P∑

q=x1

E[X1,τ |([q, τ ; 0, 1], 1)]πx1,q|2 +
P∑

r=0

(E[X2,τ |([x1, τ ; r, 1], 1)] + (πr,0|1)τ−1v(0, 0))π0,r|2

=− h(2τ − (τ − 1)− 0) + E[X1,τ |([x1, τ − 1; 0, 0], 2)] + E[X2,τ |([x1, τ − 1; 0, 0], 2)] + (π0,0|2)(π0,0|1)τ−1v(0, 0)

=R([x1, τ − 1; 0, 0], 2)

where the first equality holds due to case 1) above, and the second equality holds due to

that each auction progress independently of the price in the other auction. Assume the

result holds for y1 = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let y1 = τ − l and z = 1, then

−2h +
∑P

q=x1

∑P
r=0 Vt+1([q, τ − (l − 1); r, 1], 2)πx1,q|2π0,r|2 =

=− 2h +
P∑

q=x1

P∑
r=0

R1([q, τ − (l − 1); r, 1], 2)πx1,q|2π0,r|2

=− 2h +
P∑

q=x1

P∑
r=0

{−h(2τ − (τ − (l − 1))− 1) + E[X1,τ |([q, τ − (l − 1); r, 1], 2)]

+ E[X2,τ |([q, τ − (l − 1); r, 1], 2)] + π2(0|[q, τ − (l − 1); r, 1], 2)v(0, 0) }πx1,q|2π0,r|2

=− h(2τ − (τ − l)− 0) +
P∑

q=x1

E[X1,τ |([q, τ − (l − 1); 0, 1], 2)]πx1,q|2

+
P∑

r=0

E[X2,τ |([x1, τ − (l − 1); r, 1], 2)]π0,r|2 + (π0,0|2)l−1(π0,0|1)τ−(l−1)v(0, 0)

=− h(2τ − (τ − l)− 0) + E[X1,τ |([x1, τ − l; 0, 0], 2)] + E[X2,τ |([x1, τ − l; 0, 0], 2)] + (π0,0|2)l−1(π0,0|1)τ−(l−1)v(0, 0)

=R([x1, τ − l; 0, 0], 2)

where the first equality holds due to case 1) above, and the second equality holds due

to that each auction progress independently of the price in the other auction. Therefore
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Lemma 2.20 holds for the case 2) x1 > 0, y1 < τ, y2 = 0 and z = 1. ¤

Proof of Lemma 2.21 -

Comment: Recall that

R2([x1, y1; x2, y2], z) =− h(τ − y1) + E[X1,τ |([x1, y1;x2, y2], z)]

+ (1− (πx1,0|2)τ−y1)(−h(y1 − y2) + E[X2,τ |([x1, y1;x2, y2], z)])

+ (πx1,0|2)τ−y1E[V ([X2, y2 + τ − y1; 0, 0], 1)|([x1, y1; x2, y2], 2)]

Let y1 = τ − 1, x1 = 0, x2 > 0 and z = 2. Proof by backward induction on y2. Let

y2 = τ − 1, then V ([x1, y1; x2, y2], z) =

=− 2h +
P∑

r=x2

(
P∑

q=p

V ([q, τ ; r, τ ], 0)π0,q|2 + π0,0|2V ([r, τ ; 0, 0], 1))πx2,r|2

=− 2h +
P∑

r=x2

P∑
q=p

R1([q, τ ; r, τ ], 0)π0,q|2πx2,r|2 + π0,0|2
P∑

r=x2

V ([r, τ ; 0, 0], 1)πx2,r|2

=− 2h +
P∑

r=x2

P∑
q=p

(E[X1,τ |([q, τ ; r, τ ], 0)]) + E[X2,τ |([q, τ ; r, τ ], 0)]))π0,q|2πx2,r|2

+ π0,0|2E[V ([X2, τ ; 0, 0], 1)|([0, τ − 1;x2, τ − 1], 2)]

=− 2h +
P∑

r=x2

P∑
q=p

qπ0,q|2πx2,r|2 +
P∑

r=x2

P∑
q=p

rπ0,q|2πx2,r|2 + π0,0|2E[V ([X2, τ ; 0, 0], 1)|([0, τ − 1;x2, τ − 1], 2)]

=− 2h +
P∑

q=p

qπ0,q|2 +
P∑

q=p

π0,q|2
P∑

r=x2

rπx2,r|2 + π0,0|2E[V ([X2, τ ; 0, 0], 1)|([0, τ − 1;x2, τ − 1], 2)]

=− 2h + E[X1,τ |([0, τ − 1;x2, τ − 1], 2)] + (1− π0,0|2)E[X1,τ |([x1, τ − 1;x2, τ − 1], 2)]

+ π0,0|2E[V ([X2, τ ; 0, 0], 1)|([0, τ − 1;x2, τ − 1], 2)]

=R2([0, τ − 1;x2, τ − 1], 2)

Where the second equality holds due to Lemma 2.20 above, the fifth equality holds because

∑P
r=x2

πx2,r|2 = 1, and the sixth equality holds because
∑P

q=p π0,q|2 = 1− π0,0|2.
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Assume the result holds for y2 = τ − (l− 1), τ − (l− 2), . . . , τ − 1. Let y2 = τ − l, then

V ([x1, y1; x2, y2], z) =

=− 2h +
P∑

r=x2

(
P∑

q=p

V ([q, τ ; r, y2 + 1], 1)π0,q|2 + π0,0|2V ([r, y2 + 1; 0, 0], 1))πx2,r|2

=− 2h +
P∑

r=x2

P∑
q=p

R1([q, τ ; r, y2 + 1], 1)π0,q|2πx2,r|2 + π0,0|2
P∑

r=x2

V ([r, y2 + 1; 0, 0], 1)πx2,r|2

=− 2h

+
P∑

r=x2

P∑
q=p

{−h(2τ − τ − (y2 + 1) + E[X1,τ |([q, τ ; r, y2 + 1], 1)]) + E[X2,τ |([q, τ ; r, y2 + 1], 0)])}π0,q|2πx2,r|2

+ π0,0|2E[V ([X2, y2 + 1; 0, 0], 1)|([0, τ − 1;x2, y2], 2)]

=− 2h + E[X1,τ |([0, τ − 1;x2, y2], 2)]) +
P∑

q=p

{−h(2τ − τ − (y2 + 1) + E[X2,τ |([0, τ − 1;x2, y2], 2)])}π0,q|2

+ π0,0|2E[V ([X2, y2 + 1; 0, 0], 1)|([0, τ − 1;x2, y2], 2)]

=− 2h(τ − (τ − 1)) + E[X1,τ |([0, τ − 1;x2, y2], 2)]) + (1− π0,0|2)(−h(τ − 1− y2)

+ E[X2,τ |([0, τ − 1;x2, y2], 2)]) + π0,0|2E[V ([X2, y2 + 1; 0, 0], 1)|([0, τ − 1;x2, y2], 2)]

=R2([0, τ − 1;x2, y2], 2)

Where the second equality holds due to Lemma 2.20 above, the fourth equality holds because

∑P
r=x2

πx2,r|2 = 1, and the fifth equality holds because
∑P

q=p π0,q|2 = 1 − π0,0|2. Therefore

Lemma 2.21 holds for y1 = τ − 1, x1 = 0, x2 > 0, and z = 2.

277



For y1 < τ−1, x1 = 0, x2 > 0, z = 2, proof by backward induction on y1. Let y1 = τ−2,

then V ([x1, y1; x2, y2], z) =

=− 2h +
P∑

q=0

P∑
r=x2

V ([q, τ − 1; r, y2 + 1], 2)π0,q|2πx2,r|2

=− 2h +
P∑

q=0

P∑
r=x2

R2([q, τ − 1; r, y2 + 1], 2)π0,q|2πx2,r|2

=− 2h +
P∑

q=0

P∑
r=x2

{−2h(τ − (τ − 1)) + E[X1,τ |([q, τ − 1; r, y2 + 1], 2)]

+ (1− (πq,0|2)τ−(τ−1))(−h(τ − 1− (y2 + 1)) + E[X2,τ |([q, τ − 1; r, y2 + 1], 2)])

+ (πq,0|2)τ−(τ−1)(E[V ([X2, y2 + 1 + τ − (τ − 1); 0, 0], 1)|([q, τ − 1; r, y2 + 1], 2)]) }π0,q|2πx2,r|2

=− 2h(τ − (τ − 2))) + E[X1,τ |([0, τ − 2;x2, y2], 2)]

+
P∑

q=0

P∑
r=x2

{(1− (πq,0|2)τ−(τ−1))(−h(τ − 1− (y2 + 1)) + E[X2,τ |([q, τ − 1; r, y2 + 1], 2)]) }π0,q|2πx2,r|2

+ π0,0|2(π0,0|2)τ−(τ−1)
P∑

r=x2

E[V ([X2, y2 + 1 + τ − (τ − 1); 0, 0], 1)|([0, τ − 1; r, y2 + 1], 2)]πx2,r|2

=− 2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2;x2, y2], 2)]

+
P∑

q=p

P∑
r=x2

{−h(τ − 1− (y2 + 1)) + E[X2,τ |([q, τ − 1; r, y2 + 1], 2)])}π0,q|2πx2,r|2

+
P∑

r=x2

{(1− (π0,0|2)τ−(τ−1))(−h(τ − 1− (y2 + 1)) + E[X2,τ |([0, τ − 1; r, y2 + 1], 2)])}π0,0|2πx2,r|2

+ (πq,0|2)τ−(τ−2)E[V ([X2, y2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2;x2, y2], 2)]

=− 2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2;x2, y2], 2)]

+ (1− π0,0|2)(−h(τ − 1− (y2 + 1)) + E[X2,τ |([0, τ − 2;x2, y2], 2)])

+ π0,0|2(1− (π0,0|2)τ−(τ−1))(−h(τ − 1− (y2 + 1)) + E[X2,τ |([0, τ − 2;x2, y2], 2)])

+ (πq,0|2)τ−(τ−2)E[V ([X2, y2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2;x2, y2], 2)]
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=− 2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2;x2, y2], 2)]

+ (1− π0,0|2)(−h(τ − 2− y2) + E[X2,τ |([0, τ − 2;x2, y2], 2)])

+ π0,0|2(1− π0,0|2)(−h(τ − 2− y2) + E[X2,τ |([0, τ − 2;x2, y2], 2)])

+ (πq,0|2)τ−(τ−2)E[V ([X2, y2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2;x2, y2], 2)]

=− 2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2;x2, y2], 2)]

+ (1 + π0,0|2)(1− π0,0|2)(−h(τ − 2− y2) + E[X2,τ |([0, τ − 2;x2, y2], 2)])

+ (πq,0|2)τ−(τ−2)(E[V ([X2, y2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2;x2, y2], 2)])

=− 2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2;x2, y2], 2)]

(1− π0,0|2)τ−(τ−2))(−h(τ − 2− y2) + E[X2,τ |([0, τ − 2;x2, y2], 2)])

+ (πq,0|2)τ−(τ−2)E[V ([X2, y2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2;x2, y2], 2)]

=R2([0, τ − 2;x2, y2], 2)

Where the second equality holds due to the case above with y1 = τ − 1, the fourth equality

holds because the expected final price of the first auction is independent of the price in the

second auction and that πq,0|2 = 0 for q > 0, the fifth equality holds because πq,0|2 = 0 for

q > 0 and the second auction progress independently of the price in the first auction, and

the sixth equality holds due to that
∑P

q=p π0,q|2 = 1 − π0,0|2 and that the second auction

progress independently of the price in the first auction.
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Assume the result holds for y1 = τ − (l− 1), τ − (l− 2), . . . , τ − 2. Let y1 = τ − l, then

V ([x1, y1; x2, y2], z) =

= −2h +
P∑

q=0

P∑
r=x2

V ([q, τ − (l − 1); r, y2 + 1], 2)π0,q|2πx2,r|2

= −2h +
P∑

q=0

P∑
r=x2

R2([q, τ − (l − 1); r, y2 + 1], 2)π0,q|2πx2,r|2

= −2h +
P∑

q=0

P∑
r=x2

{−2h(τ − (τ − (l − 1))) + E[X1,τ |([q, τ − (l − 1); r, y2 + 1], 2)]

+ (1− (πq,0|2)τ−(τ−(l−1)))(−h(τ − (l − 1)− (y2 + 1)) + E[X2,τ |([q, τ − (l − 1); r, y2 + 1], 2)])

+ (πq,0|2)τ−(τ−(l−1))(E[V ([X2, y2 + 1 + τ − (τ − (l − 1)); 0, 0], 1)|([q, τ − (l − 1); r, y2 + 1], 2)])}π0,q|2πx2,r|2

= −2h(τ − (τ − l)) + E[X1,τ |([0, τ − l;x2, y2], 2)]

+
P∑

q=0

P∑
r=x2

{(1− (πq,0|2)τ−(τ−(l−1)))(−h(τ − (l − 1)− (y2 + 1)) + E[X2,τ |([q, τ − (l − 1); r, y2 + 1], 2)])}π0,q|2πx2,r|2

+ π0,0|2(π0,0|2)τ−(τ−(l−1))
P∑

r=x2

{E[V ([X2, y2 + 1 + τ − (τ − (l − 1)); 0, 0], 1)|([0, τ − (l − 1); r, y2 + 1], 2)]}πx2,r|2

= −2h(τ − (τ − (l − 1))) + E[X1,τ |([0, τ − (l − 1); x2, y2], 2)]

+
P∑

q=p

P∑
r=x2

(−h(τ − (l − 1)− (y2 + 1)) + E[X2,τ |([q, τ − (l − 1); r, y2 + 1], 2)])π0,q|2πx2,r|2

+
P∑

r=x2

{(1− (π0,0|2)τ−(τ−(l−1)))(−h(τ − (l − 1)− (y2 + 1)) + E[X2,τ |([0, τ − (l − 1); r, y2 + 1], 2)])}π0,0|2πx2,r|2

+ (πq,0|2)τ−(τ−l)E[V ([X2, y2 + τ − (τ − l); 0, 0], 1)|([0, τ − l;x2, y2], 2)]

= −2h(τ − (τ − l)) + E[X1,τ |([0, τ − l;x2, y2], 2)] + (1− π0,0|2)(−h(τ − (l − 1)− (y2 + 1))

+ E[X2,τ |([0, τ − l; x2, y2], 2)]) + π0,0|2(1− (π0,0|2)τ−(τ−(l−1)))(−h(τ − (l − 1)− (y2 + 1))

+ E[X2,τ |([0, τ − l; x2, y2], 2)]) + (πq,0|2)τ−(τ−l)E[V ([X2, y2 + τ − (τ − l); 0, 0], 1)|([0, τ − l; x2, y2], 2)]

= −2h(τ − (τ − l))) + E[X1,τ |([0, τ − l; x2, y2], 2)] + (1− π0,0|2)(−h(τ − l − y2)

+ E[X2,τ |([0, τ − l; x2, y2], 2)]) + π0,0|2(1− π0,0|2)(−h(τ − l − y2)

+ E[X2,τ |([0, τ − l; x2, y2], 2)]) + (πq,0|2)τ−(τ−l)E[V ([X2, y2 + τ − (τ − l); 0, 0], 1)|([0, τ − l; x2, y2], 2)]
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= −2h(τ − (τ − l)) + E[X1,τ |([0, τ − l;x2, y2], 2)]

+ (1 + π0,0|2)(1− π0,0|2)(−h(τ − l − y2) + E[X2,τ |([0, τ − l; x2, y2], 2)])

+ (πq,0|2)τ−(τ−l)E[V ([X2, y2 + τ − (τ − l); 0, 0], 1)|([0, τ − l;x2, y2], 2)]

= −2h(τ − (τ − l)) + E[X1,τ |([0, τ − l;x2, y2], 2)]

(1− π0,0|2)τ−(τ−l))(−h(τ − l − y2) + E[X2,τ |([0, τ − l;x2, y2], 2)])

+ (πq,0|2)τ−(τ−l)E[V ([X2, y2 + τ − (τ − l); 0, 0], 1)|([0, τ − l;x2, y2], 2)]

= R2([0, τ − l;x2, y2], 2)

Where the second equality holds due to the induction hypothesis, and the other equalities

due to the same reasoning as above. Therefore Lemma 2.21 holds for y1 < τ − 1, x1 =

0, x2 > 0, and z = 2. ¤
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APPENDIX B

Proofs for Results to Minimal Bid-Increment Strategy in

Chapter 3

Proof Lemma 3.1 - Due to the law of total probability F 1
1 (q|0) =

∑∞
m=0 Pr{X1,t+∆t ≤

q|X1,t = 0, Z∆t = 1,M∆t = m}ρM (m|∆t), holds. Next we prove the various cases regard-

ing Pr{X1,t+∆t ≤ q|X1,t = 0, Z∆t = 1, M∆t = m}. If no bidders arrive, m = 0, then the

result holds trivially. If more than one bidder arrives, m ≥ 1, then since for each bidder

V ≥ p, it is impossible that X1,t1+∆t < p. For q ≥ p, the only possibility that X1,t1+∆t ≤ q

is false is if more than two bidders bid above q. Since, a bidder will only stop bidding

once the auction exceeds his valuation, this means that if two or more bidders with val-

uation above the threshold q ≥ p arrive, then X1,t1+∆t > q. The probability that all m

bidders have V ≤ q is given by (G(q))m, and the probability that exactly one bidder has

V > q and the remaining m−1 bidders have V ≤ q, is given by m(G(q))m−1(1−G(q)). ¤

Proof Lemma 3.2 - The proof is based on the same principles as in the proof of Lemma

3.1. However, since there is a high-bidder present, who will continue to counter-bid any

bidder that arrives in the interval [t, t + ∆t], until the price in the auction exceeds his val-

uation, we condition on a the high-bidder’s valuation V and derive the CDF of X1,t1+∆t

given that V = v. That is, we derive the CDF for X1,t1+∆t given the valuation v, number of

arriving bidders m, and the threshold q. If there no bidders arrive, m = 0, then the result

for Pr{X1,t1+∆t ≤ q|X1,t1 = x, V(1) = v, Z∆t = 1,M∆t = m} holds trivially. If only one

bidder arrives, m = 1, and x < q ≤ v, then the only possibility that X1,t1+∆t ≤ q, is if the

arriving bidder’s valuation is ≤ q. This holds since the present high-bidder will continue to
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bid to his valuation which is above x. The probability of this event is G(q). If m = 1 and

v ≤ q, then no matter what the arriving bidder’s valuation is, the price cannot exceed q,

since it will at most end at v (the amount high-bidder will stop bidding at). If more than

one bidder arrives, m ≥ 2, then based on the same logic as before, if x ≤ q < v, then in order

for X1,t1+∆t ≤ q, all the arriving bidders must bid less than q. Therefore, since each bidder

will bid up to his valuation before leaving, the probability that no one bids above q is given

by (G(q))m. On the other hand, for v ≤ q, the only possibility that Xt+∆t ≤ q, is if either all

bidders have valuation ≤ q, or at most one bidder has a valuation above q and the remaining

m−1 are below q. The probability of this event is (G(q))m+m(G(q))m−1(1−G(q)). ¤

Proof Lemma 3.3 - The proof is based on the same reasoning as in the Proof of Lemma

3.1. If no bidders arrive, m = 0, then the result holds trivially. If one bidder arrives, m = 1,

then he chooses an auction with equal probability, and hence the result holds. If two or more

bidders arrive, m ≥ 2, then since the bidder with the third highest valuation will continue

to raise the price until both auctions exceed this price, this will leave the two bidders with

the highest valuation as high-bidder in each of the auctions. Therefore, for q ≥ p, the only

possibility that Xi,ti+∆t ≥ q, is if at least three bidders with V ≥ arrive. The probability

that, for q ≥ p, at most two bidders with V ≥ q arrive, is if either all arriving bidders have

V ≤ q, or at most one bidder has V > q and the remaining m− 1 have V ≤ q, or at most

two bidders have V ≥ q and the remaining m − 2 bidders have V ≤ q. The probability of

this is given by the expression written. ¤

Proof Lemma 3.4 - The proof is based on the same reasoning as in the previous proofs.

The only difference with the case given in Lemma 3.3, is that we first condition on the

possible valuation that the present high-bidder may have. Therefore, in the case of two

or more arriving bidders, m ≥ 2, there are three cases with respect to the threshold q.
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For a given valuation v of the present high-bidder, if q ≤ v, then there can at most be

one arriving bidders which has valuation ≥ v. Because if two ore more bidders arrive with

V ≥ q, then the price in both auctions would exceed the threshold. However, similar to the

previous case if the threshold q ≥ v, i.e. above the valuation of the current high-bidder,

then Xi,ti+∆t ≥ q, as long as at most two of the arriving bidders’ valuation is ≤ q. ¤

Proof Lemma 3.5 - The final case we consider, with the two auctions released simulta-

neously, is when there are two high-bidders present (one for each auction). By extending

the logic for the one high-bidder case, we condition on the valuation of both bidders. The

reasoning is identical to the previous proofs, and we condition on the two high-bidders’

valuation v1 and v2, the number of arriving bidders m, and the threshold q. If no bidders

arrive, m = 0, the result holds trivially. If only one bidder arrives, m = 1, and the threshold

is less than the high-bidder with the lowest valuation, q ≤ v2, then the only possibility that

Xi,ti+∆t ≤ q, is if the arriving bidder’s valuation ≤ q. The probability of this event is G(q).

On the other hand if q ≥ v2, then regardless of the arriving bidder’s valuation, the price in

both auctions will at most reach v2. If more than one bidder arrives, m ≥ 2, then depending

on the threshold q with respect to the valuations of the two high-bidders, v1 and v2, either

all arriving bidders’ valuation has to be ≤ q, or at most one of the arriving bidders can have

valuation > q while the remaining m−1 arriving bidders have valuation ≤ q, or at most two

of the arriving bidders can have valuation ≥ q while the remaining m− 2 arriving bidders

have valuation ≤ q. The probability of each of the cases for q is given by the expressions

stated. ¤

Proof Lemma 3.6 - Since bidders are assumed not to be time-sensitive and bid in an

auction based on the elapsed auction time, and since it is assumed that auction 1 will not

end before the end of the time-interval [t, t + ∆t], the bidding dynamics is identical to the
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case when auctions were released simultaneously. ¤

Proof Lemma 3.7 - In this case when auction 1 has elapsed for some time and reached a

price x > p, the dynamics for the two auctions are different while the price in auction 2 is

< x. Recall that we assume all arriving bidders will always bid in the lowest priced auction.

Consequently, as long as auction 2 is priced < x, all bidding will take place in auction 2.

Note too, that the present high-bidder in auction 1, has committed to a bid of x + k in

auction 1, and can only observe auction 2 but not retract his own bid and place a lower bid

in auction 2. As a result, to calculate the CDF for auction 1, we condition on the valuation

of the present high-bidder and as with the previous cases, derive the conditional CDF de-

pending on the number of arriving bidders m and threshold q. For m ≥ 2 and x ≤ q ≤ v1,

if at most one of the arriving bidders has valuation ≥ q, then X1,t1+∆t ≤ q. In this case,

the present high-bidder and the arriving bidder with the highest valuation, each become

the high-bidder in the two auctions, at the price in the two auctions will equal the second

highest valuation among the arriving bidders. If v1 < q, then in order for X1,t1+∆t ≤ q, at

most two of the arriving bidders valuation can exceed q.

For auction 2, the CDF is different depending on the threshold q. If we are interested to

know the probability that, for q < x, X2,t2+∆t ≤ q, then there is no need to condition

on the valuation of the present high-bidder in auction 1. The calculations for the CDF

is identical to the case when there is only one ongoing auction priced at 0. For threshold

q > x, the same reasoning as with auction 1 apply. We first condition on the valuation of

the high-bidder in auction 1, and then derive the conditional CDF given the valuation v1,

number of arriving bidders m, and threshold q. ¤

Proof Lemma 3.8 - The last possible case is if auction 2 was started after auction 1,

and has received bids but has not yet reached the same price as auction 1. Note that once
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auction 2 reaches the price in auction 1, x1, then thereafter the auctions will be priced

equally after each arriving bidder. This holds since each bidder will remain until the price

in both auctions exceed his valuation. In order to derive the conditional CDF for each auc-

tion, F 2
i (q|xi), i = 1, 2, we first condition on the two possibilities regarding the valuation of

the high-bidder with the second highest valuation. Note that we do not know which of the

high-bidder that has the highest valuation. It is not necessarily the high-bidder in auction 1

that has the highest valuation (though it is of course more likely, since the price is higher in

auction 1). However, given that the present high-bidder in auction 2 has a valuation ≤ x1

(since if V(2) < x1, then it can only be the high-bidder in auction 2), then the calculations

for the CDF of X1,t1+∆t follows the same arguments as before. And similarly the calcula-

tions for the CDF of X2,t2+∆t follows the procedure as described in the proof of Lemma 3.5.

If on the other hand, V(2) > x1 then based on the same argument as in the previous proofs,

we condition on the valuations of the two present high-bidders v1 and v2, the number of

arriving bidders m, and the threshold q that is of interest. For the various scenarios, ei-

ther none, at most one, or at most two of the arriving bidders may have valuation≥ q. ¤
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APPENDIX C

Supplement to Truthful Bidding Strategy in Chapter 3

This appendix will summarize the conditional distribution function of the within period

price-transitions given than bidders follow the truthful bidding strategy. The derivations

are based on the same approach as with the previous bidding strategy. Namely we condition

upon the possible high-bid in each auction and on the number of bidders that arrive in the

time-interval [t, t+∆t]. Similar to the previous bidding strategy we consider the transitions

when there is one and two ongoing auctions separately.

One Ongoing Auction

When there is only one ongoing auction the within period price transactions are identical

to the previous bidding strategy. Namely after each bidder arrives to the auction site, the

price in the auction is the second highest valuation of all bidders that has visited so far.

Therefore, see Section 3.1 in Chapter 3 for the resulting distribution function.

Two Ongoing Auctions

When there are two ongoing auctions, due to that there are cases when the two bidders

with the highest valuation end up bidding against each other, there are some additional

possible states that were not possible with the previous bidding strategy. This results in

that the transitions are a bit more complicated, and instead of closed form solution to the

conditional CDF, lower and upper bounds are provided. Similar to the previous discussion

there are two cases regarding when the two auctions were started.
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Case 1: Auctions Started Simultaneously

Since the auctions are released simultaneously we, for simplicity of notation, omit the

elapsed time of each auction, and write [X1,H1; X2,H2] instead of [X1,H1, t1; X2,H2, t2].

Recall that Hi is censored, i = 1, 2. We define Bj as the amount of the jth bid, j = 1, 2, . . ..

If both auctions are started at the same time then the following transitions are possible,

[0, 0; 0, 0] bidder1−→





[p, V(1); 0, 0]

[0, 0; p, V(1)]

[p, V(1); 0, 0] ([0, 0; p, V(1)])
bidder2−→





[p, V(1); p, V(2)] {B2 ≤ B1} ({B1 < B2})

[p, V(2); p, V(1)] {B1 < B2} ({B2 ≤ B1})

[p, V(1); p, V(2)]
bidder3−→





[V(3), V(1); V(3), V(2)] {B3 ≤ B2} or .5{B2 < B3 ≤ B1}

[V(2), V(1); V(3), V(2)] .5{B2 < B3 ≤ B1} or .5{B1 < B3}

[V(3), V(2); V(3), V(1)] .5{B1 < B3}

[p, V(2); p, V(1)]
bidder3−→





[V(3), V(2); V(3), V(1)] {B3 ≤ B2} or .5{B2 < B3 ≤ B1}

[V(3), V(2); V(2), V(1)] .5{B2 < B3 ≤ B1} or .5{B1 < B3}

[V(3), V(1); V(3), V(2)] .5{B1 < B3}
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[V(3), V(1);V(3), V(2)]
bidder4−→





[V(3), V(1); V(3), V(2)] {B4 ≤ V(2)} or .5{V(2) < B4 ≤ V(1)}

[V(2), V(1); V(3), V(2)] .5{V(2) < B4 ≤ V(1)} or .5{V(1) < B4}

[V(3), V(2); V(3), V(1)] .5{V(1) < B4}

[V(2), V(1);V(3), V(2)]
bidder4−→





[V(2), V(1); V(3), V(2)] {B4 ≤ V(2)}

[V(3), V(1); V(3), V(2)] {V(2) < B4 ≤ V(1)}

[V(3), V(2); V(3), V(1)] {V(1) < B4}

[V(3), V(2);V(2), V(1)]
bidder4−→





[V(3), V(2); V(2), V(1)] {B4 ≤ V(2)}

[V(3), V(2); V(3), V(1)] {V(2) < B4 ≤ V(1)}

[V(3), V(1); V(3), V(2)] {V(1) < B4}

[V(3), V(2);V(3), V(1)]
bidder4−→





[V(3), V(2); V(3), V(1)] {B4 ≤ V(2)} or .5{V(2) < B4 ≤ V(1)}

[V(3), V(2); V(2), V(1)] .5{V(2) < B4 ≤ V(1)} or .5{V(1) < B4}

[V(3), V(1); V(3), V(2)] .5{V(1) < B4}

After four bidders the state of the auctions repeat, and the above dynamics generalizes

to the nth arriving bidder, n > 2. Therefore, if both auctions are started simultaneously

and more than three bidders has arrived, then there are only four possible states,

(1) [V(3), V(1); V(3), V(2)]

(2) [V(2), V(1); V(3), V(2)]

(3) [V(3), V(2); V(2), V(1)]

(4) [V(3), V(2); V(3), V(1)]
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The objective is to determine the conditional distribution function of the within period

price-transitions, i.e. the CDF for Xi,ti+∆t, i = 1, 2, and therefore given a threshold q there

are four cases in each of the four states above, which we label as a, b, c, and d,

(1) (2) (3) (4)
[V(3), V(1);V(3), V(2)] [V(2), V(1); V(3), V(2)] [V(3), V(2); V(2), V(1)] [V(3), V(2); V(3), V(1)]

(a) q ≤ V(3) ≤ V(2) ≤ V(1) q ≤ V(3) ≤ V(2) ≤ V(1) q ≤ V(3) ≤ V(2) ≤ V(1) q ≤ V(3) ≤ V(2) ≤ V(1)

(b) V(3) < q ≤ V(2) ≤ V(1) V(3) < q ≤ V(2) ≤ V(1) V(3) < q ≤ V(2) ≤ V(1) V(3) < q ≤ V(2) ≤ V(1)

(c) V(3) ≤ V(2) < q ≤ V(1) V(3) ≤ V(2) < q ≤ V(1) V(3) ≤ V(2) < q ≤ V(1) V(3) ≤ V(2) < q ≤ V(1)

(d) V(3) ≤ V(2) ≤ V(1) < q V(3) ≤ V(2) ≤ V(1) < q V(3) ≤ V(2) ≤ V(1) < q V(3) ≤ V(2) ≤ V(1) < q

Case (a) is when the three bidders with the highest valuations exceed the threshold q

of interest. Case (b) is when only the two bidders with the highest place bids exceeding the

threshold q. Case (c) is when only the bidder with the highest valuation ends up exceeding

the threshold. And finally, case (d) is when none of the arriving bidders’ valuation, and

hence bids, exceed the threshold of interest. In the ensuing analysis upper (U) and lower

(L) bounds on the CDF, F 2
i (q|xi), i = 1, 2, are provided. The lower bound will consist of

those events where either all bidders are below the given threshold q, or at most the highest

bidder exceeded the given threshold q, i.e. states 1c-4c and 1d-4d. The upper bound will

be all events except when the three highest bidders exceeded the given threshold q, i.e.

states 1b-4b, 1c-4c, and 1d-4d. The reason this is an upper bound is due to that there are

instances when the two highest bidders end up bidding against each other, namely states

2b and 3b. Therefore, the true value of F 2
1 (q|xi), would only capture the probability of

ending up in states 1b,3b,4b, 1c-4c, and 1d-4d, while for F 2
2 (q|xi), to only consider the

probability of ending up in states 1b,2b,4b, 1c-4c, and 1d-4d. That is,to derive the CDF of

Xi,ti+∆t we, given an initial state [X1,H1, t1; X2,H2, t2] and given threshold q, derive the

lower and upper bounds on the probability that Xi,ti+∆t ≤ q. The lower bound consist

of those cases when only the bidder with the highest valuation may exceed the threshold
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q. While the upper bound also includes the cases when the two bidders with the highest

valuation exceeds the threshold q.

Note that due to the specific bidding dynamics, the lower bound is overly conservative

and that the true value is closer to the upper bound. In fact, a less conservative lower bound

would be half the distance between the upper and lower bound discussed above. Similar

to the previous bidding strategy we provide the distribution function given various starting

states.

In all cases below we assume that the numbers of ongoing auctions remains fixed for

the duration of the time-interval [t, t + ∆t].
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State of Auctions: [0, 0; 0, 0]

If no bids have been placed so far then the CDF is, for i = 1, 2,

F 2
i (q|0) =

∞∑

m=0

Pr{Xi,ti+∆t ≤ q|Xi,ti = 0, Z∆t = 2,M∆t = m}ρM (m|∆t)

where

Pr{Xi,ti+∆t ≤ q|Xi,ti = 0, Z∆t = 2,M∆t = m}

=





0 q < 0

1 0 ≤ q

m = 0

=





0 q < 0

.5 0 ≤ q < p

1 p ≤ q

m = 1

=





0 q < p

1 p ≤ q

m = 2

=





0 q < p

(G(q))m + m(G(q))m−1(1− (G(q))) p ≤ q

m ≥ 3 (L)

=





0 q < p

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 p ≤ q

m ≥ 3 (U)
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State of Auctions: [p, V(1); 0, 0] ([0, 0; p, V(1)])

If only one bid has been placed so far then the CDF is, for [p, V(1); 0, 0], and i = 1, 2,

F 2
i (q|xi) =

∫ P

p
Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, Z∆t = 2}g(v1)dv1

=
∫ P

p

∞∑

m=0

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, Z∆t = 2,M∆t = m}ρM (m|∆t)g(v1)dv1

where

Pr{X1,y+∆t ≤ q|X1,y = x1, V(1) = v1, Z∆t = 2,M∆t = m}

=





0 q < p

1 p ≤ q

m = 0, 1

=





0 q < p

(G(q))2 + 2(G(q))(1− (G(q))) p ≤ q < v1

1 v1 ≤ q

m = 2

=





0 q < p

(G(q))m p ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) v1 ≤ q

m ≥ 3 (L)

=





0 q < p

(G(q))m + m(G(q))m−1(1− (G(q))) p ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 3 (U)

and
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Pr{X2,t+∆t ≤ q|X2,t = x2, V(1) = v1, Z∆t = 2,M∆t = m}

=





0 q < 0

1 0 ≤ q

m = 0

=





0 q < p

1 p ≤ q

m = 1

=





0 q < p

(G(q))2 + 2(G(q))(1− (G(q))) p ≤ q

m = 2

=





0 q < p

(G(q))m p ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) v1 ≤ q

m ≥ 3 (L)

=





0 q < p

(G(q))m + m(G(q))m−1(1− (G(q))) p ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 3 (U)

By symmetry if the state is [0, 0; p, V(1)] then the transition probabilities are reversed.
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State of Auctions: [V(2), V(1);V(3), V(2)] ([V(3), V(2); V(2), V(1)])

If the prices are different in the two auctions, then we know what the value of the highest

bid is in the lower priced auction. And the distribution function is, for [V(2), V(1);V(3), V(2)],

and i = 1, 2,

F 2
i (q|xi) =

∫ P

x1

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, Z∆t = 2}g(v1|x1)dv1

=
∫ P

x1

∞∑

m=0

Pr{Xi,ti+∆t ≤ q|Xi,ti = xi, V(1) = v1, Z∆t = 2,M∆t = m}ρM (m|∆t)g(v1|x1)dv1

where

Pr{X1,y+∆t ≤ q|X1,y = x1, V(1) = v1, Z∆t = 2,M∆t = m}

=





0 q < x1

1 x1 ≤ q

m = 0, 1

=





0 q < x1

(G(q))m x1 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) v1 ≤ q

m ≥ 2 (L)

=





0 q < x1

(G(q))m + m(G(q))m−1(1− (G(q))) x1 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2 (U)

and
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Pr{X2,t+∆t ≤ q|X2,t = x2, V(1) = v1, Z∆t = 2,M∆t = m}

=





0 q < x2

1 x2 ≤ q

m = 0

=





0 q < x2

G(q) x2 ≤ q < x1

1 x1 ≤ q

m = 1

=





0 q < x2

(G(q))m x2 ≤ q < x1

(G(q))m + m(G(q))m−1(1− (G(q))) x1 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) v1 ≤ q

m ≥ 2 (L)

=





0 q < x2

(G(q))m x2 ≤ q < x1

(G(q))m + m(G(q))m−1(1− (G(q))) x1 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2 (U)

By symmetry if [V(3), V(2); V(2), V(1)] then the functions for auction 1 and auction 2 are sim-

ply reversed.
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State of Auctions: [p, V(1); p, V(2)], [V(3), V(1); V(3), V(2)], [p, V(2); p, V(1)], [V(3), V(2); V(3), V(1)]

Unlike the previous cases the seller has the added uncertainty which state he is in. The

seller does not know if the state is [V(3), V(1); V(3), V(2)] or [V(3), V(2); V(3), V(1)]. However,

given the bidding dynamics (that a bidder will with probability .5 choose an auction

when they are equally priced), by symmetry, with probability .5 a seller is either in state

[V(3), V(1);V(3), V(2)] or in state [V(3), V(2);V(3), V(1)]. We summarize this result in the follow-

ing proposition.

Lemma C.1. If the auctions were started simultaneously and X1,t1 = X2,t2, then Pr{H1,t1 >

H2,t2} = .5. In other words, within period price transitions are Markovian.

Proof Lemma C.1 - Since bidders valuation are independent and identically distributed, it

is equally likely that the second bid is greater than the first bid or less than the first bid.

After this it follows by symmetry, that as long as after each arriving bidder the two auctions

are equally priced, then it is equally likely that {H2,t2 ≤ H1,t1} and {H2,t2 > H1,t1}.

Therefore, assume there is a time when the auctions are priced differently. Let t + δt be

the time when a bidder with valuation V[bid] arrives, and X2,t2+δt = x2 < x1 = X1,t1+δt, i.e.

the state at time t + δt is [x1, V(1); x2, x1]. And that after the bidder has placed his bid(s)

the two auctions are priced equally. Since V(1) > x1, V[bid] ≥ x1 (since the arriving bidder

leveled the auctions) and bidders’ valuation is iid,
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Pr{V[bid] > V(1)|x1 ≤ V[bid]} =
Pr{V[bid] > V(1)}
Pr{x1 ≤ V[bid]}

=
∫ P

x1

1−G(x)
1−G(x1)

g(x|x1)dx

=
∫ P

x1

1−G(x)
1−G(x1)

∂

∂x

G(x)−G(x1)
1−G(x1)

dx

=
1

(1−G(x1))2

∫ P

x1

∂

∂x
G(x)dx− 1

(1−G(x1))2

∫ P

x1

G(x)
∂

∂x
G(x)dx

=
1−G(x1)

(1−G(x1))2
− 1

(1−G(x1))2

∫ P

x1

G(x)
∂

∂x
G(x)dx

=
1

1−G(x1)
− (1− (G(x1))2)

2(1−G(x1))2

=
2(1−G(x1))− (1− (G(x1))2)

2(1−G(x1))2

=
1− 2G(x1) + (G(x1))2

2(1−G(x1))2
=

(1−G(x1))2

2(1−G(x1))2
=

1
2

where the sixth equality holds due to that,

∫ P

x1

G(x)
∂

∂x
G(x)dx = (G(x))2|Px1

−
∫ P

x1

G(x)
∂

∂x
G(x)dx

= (1− (G(x1))2)−
∫ P

x1

G(x)
∂

∂x
G(x)dx

=
(1− (G(x1))2)

2

Therefore Pr{V[bid] ≤ V(1)|V[bid] ≥ x1} = Pr{V[bid] > V(1)|V[bid] ≥ x1}, and the seller is

equally likely to be in either of the equally priced states. ¤

Therefore, for i = 1, 2,

F 2
i (q|x)

= Pr{Xi,ti+∆t ≤ q|Xi,ti = x,Z∆t = 2,H1,t1 > H2,t2}Pr{H1,t1 > H2,t2}

+ Pr{Xi,ti+∆t ≤ q|Xi,ti = x,Z∆t = 2,H1,t1 ≤ H2,t2}Pr{H1,t1 ≤ H2,t2}

= .5Pr{Xi,ti+∆t ≤ q|Xi,ti = x,Z∆t = 2,H1,t1 > H2,t2}+ .5 Pr{Xi,ti+∆t ≤ q|Xi,ti = x,Z∆t = 2,H1,t1 ≤ H2,t2}
298



By symmetry,

Pr{X1,t1+∆t ≤ q|X1,t1 = x,Z∆t = 2,H1,t1 ≤ H2,t2} = Pr{X2,t2+∆t ≤ q|X2,t2 = x,Z∆t = 2,H1,t1+∆t > H2,t2}

Therefore sufficient to derive Pr{Xi,ti+∆t ≤ q|Xi,ti = x,Z∆t = 2,H1,t1 > H2,t2}

=
∫ P

x

∫ v1

x
Pr{Xi,ti+∆t ≤ q|Xi,ti = x,Z∆t = 2,H1,t1 > H2,t2}φ(v2|x, v1)g(v1|x)dv2dv1

=
∫ P

x

∫ v1

x

∞∑

m=0

Pr{Xi,t+1 ≤ q|Xi,ti = x,Z∆t = 2,H1,t1 > H2,t2 , M∆t = m}ρM (m|∆t)φ(v2|x, v1)g(v1|x)dv2dv1

where g(v1|x) and φ(v2|x, v1) = ∂
∂v2

G(v2)−G(x)
(1−G(x))−(1−G(v1)) = ∂

∂v2

G(v2)−G(x)
G(v1)−G(x) , are the conditional

density function for the highest and second highest valuation respectively,

and

Pr{Xi,ti+∆t ≤ q|X1,t1 = x,Z∆t = 2,H1,t1 > H2,t2 ,M∆t = m}

=





0 q < x

1 x ≤ q

m = 0

=





0 q < x

(G(q))m x ≤ q < v2

.5(G(q))m + .5 v2 ≤ q < v1

1 v1 ≤ q

m ≥ 1

=





0 q < x

(G(q))m x ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) v1 ≤ q

m ≥ 2 (L)
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=





0 q < x

(G(q))m x ≤ q < v2

(G(q))m + m(G(q))m−1(1− (G(q))) v2 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2 (U)

and Pr{X2,t2+∆t ≤ q|X2,t2 = x,Z∆t = 2,H1,t1 > H2,t2 ,M∆t = m} =

=





0 q < x

1 x ≤ q

m = 0

=





0 q < x

G(q) x ≤ q < v2

1 v2 ≤ q

m = 1

=





0 q < x

(G(q))m x ≤ q < v2

(G(q))m + m(G(q))m−1(1− (G(q))) v2 ≤ q

m ≥ 2 (L)

=





0 q < x

(G(q))m x ≤ q < v2

(G(q))m + m(G(q))m−1(1− (G(q))) v2 ≤ q < v1

(G(q))m + m(G(q))m−1(1− (G(q))) +
(
m
2

)
(G(q))m−2(1− (G(q)))2 v1 ≤ q

m ≥ 2 (U)

300



Case 2: Auction 2 Started After Auction 1

If auction 2 is started after auction 1 then the transitions become a bit more complicated.

Suppose auction 1 has elapsed for some time t1 and X1 = x1. Note that the bidder with

valuation and bid x1 has left the auction site and does not know a second auction has

started. Furthermore, recall bidders choose which auction to participate in strictly based

on the prices of the auctions, and not price and time until an auction is completed. We

re-start the counting of the valuations and bids, and indicate values that are below x1 with

an underline. For simplicity of notation, we continue to omit the elapsed auction time

and define the system state as [X1, U1; X2, U2]. Furthermore, it will be assumed that the

number of ongoing auctions in the time-interval [t, t + ∆t] remains fixed. The following are

the possible transitions,

[x1, V(1); 0, 0] bidder1−→





[x1, V(1); p, V(2)] {B1 ≤ x1}

[x1, V(1); p, V(2)] {x1 < B1 ≤ V(1)}

[x1, V(2); p, V(1)] {V(1) < B1}
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[x1, V(1); p, V(2)]
bidder2−→





[x1, V(1); V(3), V(2)] {B2 ≤ x1}

[x1, V(1); V(3), V(2)] {x1 < B2 ≤ V(1)}

[x1, V(2); V(3), V(1)] {V(1) < B2}

[x1, V(1); p, V(2)]
bidder2−→





[x1, V(1); V(3), V(2)] {B2 ≤ x1}

[V(3), V(1);V(3), V(2)] {x1 < B2 ≤ V(1)}

[V(3), V(2);V(3), V(1)] {V(1) < B2}

[x1, V(2); p, V(1)]
bidder2−→





[x1, V(2); V(3), V(1)] {B2 ≤ x1}

[V(3), V(2);V(3), V(1)] {x1 < B2 ≤ V(2)}

[V(3), V(2);V(2), V(1)] {V(2) < B2}

[x1, V(1); V(3), V(2)]
bidder3−→





[x1, V(1); V(3), V(2)] {B3 ≤ x1}

[x1, V(1); V(3), V(2)] {x1 < B3 ≤ V(1)}

[x1, V(2); V(3), V(1)] {V(1) < B3}

[x1, V(1); V(3), V(2)]
bidder3−→





[x1, V(1); V(3), V(2)] {B3 ≤ x1}

[V(3), V(1);V(3), V(2)] {x1 < B3 ≤ V(1)}

[V(3), V(2);V(3), V(1)] {V(1) < B3}

[x1, V(2); V(3), V(1)]
bidder3−→





[x1, V(2); V(3), V(1)] {B3 ≤ x1}

[V(3), V(2);V(3), V(1)] {x1 < B3 ≤ V(2)}

[V(3), V(2);V(2), V(1)] {V(2) < B3}
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The state of the auctions now either repeat or are the same as in the case when the

auctions were released simultaneously. Therefore, the above dynamics generalizes to the

nth arriving bidder, n > 2. Consequently, if auction 2 is started after auction 1 and more

than two bidders arrives, then there are only seven possible states of the auctions,

(0I) [x1, V(1); V(3), V(2)]

(0II) [x1, V(1); V(3), V(2)]

(0III) [x1, V(2); V(3), V(1)]

(1) [V(3), V(1);V(3), V(2)]

(2) [V(2), V(1);V(3), V(2)]

(3) [V(3), V(2);V(2), V(1)]

(4) [V(3), V(2);V(3), V(1)]

As before, our interest is to determine the conditional distribution of the within period

price-transitions. Given a threshold q that is of interest there are the same four cases for

states 1, 2, 3, and 4, as listed above, and five cases for the three new states 0I , 0II , and

0III , which we categorize as a, b, c, d, and e,

(0I) (0II) (0III)

[x1, V(1); V(3), V(2)] [x1, V(1); V(3), V(2)] [x1, V(2); V(3), V(1)]

(a) q ≤ V(3) ≤ V(2) ≤ x1 ≤ V(1) q ≤ V(3) ≤ x1 ≤ V(2) ≤ V(1) q ≤ V(3) ≤ x1 ≤ V(2) ≤ V(1)

(b) V(3) < q ≤ V(2) ≤ x1 ≤ V(1) V(3) < q ≤ x1 ≤ V(2) ≤ V(1) V(3) < q ≤ x1 ≤ V(2) ≤ V(1)

(c) V(3) ≤ V(2) < q ≤ x1 ≤ V(1) V(3) ≤ x1 < q ≤ V(2) ≤ V(1) V(3) ≤ x1 < q ≤ V(2) ≤ V(1)

(d) V(3) ≤ V(2) ≤ x1 < q ≤ V(1) V(3) ≤ x1 ≤ V(2) < q ≤ V(1) V(3) ≤ x1 ≤ V(2) < q ≤ V(1)

(e) V(3) ≤ V(2) ≤ x1 ≤ V(1) < q V(3) ≤ x1 ≤ V(2) ≤ V(1) < q V(3) ≤ x1 ≤ V(2) ≤ V(1) < q
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Using the same logic as when the auctions were started simultaneously, upper and lower

bounds on ending up in the various states can be derived. However, due to the specifics

of the truthful bidding strategy there are some states that become a bit more complicated.

Next we provide an overview of the conditional distribution functions from the seven pos-

sible starting states. The explicit bounds will not be listed. An implicit assumption in

the following scenarios is that the seller remembers the price of auction 1 when auction 2

started, and knows if the prices in both auctions are below or above that price.

State of Auctions: [0, 0; 0, 0], [V(3), V(2); V(2), V(1)], or [V(2), V(1); V(3), V(2)]

Under these three scenarios the same bounds as above apply.

State of Auctions: [x1, V(1); 0, 0]

If the second auction has been underway but no bidder has yet arrived, then similar to above,

we condition upon the high-bidder’s valuation and derive the upper and lower bounds ac-

cordingly.

State of Auctions: [x1, V(1); V(3), V(2)], [x1, V(1);V(3), V(2)], or [x1, V(2);V(3), V(1)]

In these scenarios the seller does not know which state he is in. The only information he has

is that X2 < X1, and that X1 has not changed since auction 2 was started. Consequently

we first condition on the probability of being in each of the possible states. The conditional

probability of being in a specific state, given that he is in one of three, is straight forward

to derive. Based on each specific state the lower and upper bounds can be derived. And

with this information the lower and upper bounds of the distribution function can then be

evaluated.
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State of Auctions: [V(3), V(1);V(3), V(2)] or [V(3), V(2); V(3), V(1)]

The final scenario is when x1 < X2 = X1. Similar to the previous case the seller does not

know which of the two states he is in. However, unlike the case when the auctions were

released simultaneously, the transitions are not Markovian and it is not equally likely to be

in each of the two states. Instead there is additional information to be gained knowing the

path the auctions took to arrive at this state. If it is known that at some point during the

previous period that prices were different but still above the starting price of auction 1, i.e.

that there was a time when x1 < X2, X1 and X2 6= X1, then it is equally likely to be state

[V(3), V(1);V(3), V(2)] or state [V(3), V(2); V(3), V(1)].

If, on the other hand, during the previous period the transitions always ended such that

the two prices were the same, i.e. X2 = X1, then it is more likely the seller is in state

[V(3), V(1);V(3), V(1)]. Therefore, to derive the conditional distribution function the seller

must first determine the conditional probability of being in each of the two states given

that the prices have always been the same (which is straight forward).

This scenario shows that the seller can gain additional information knowing the exact tran-

sitions and maintain information how the auctions are progressing. The conditional dis-

tribution function for the within period price-transitions are, however, derived using the

same logic as before. Namely, first condition on the possible state, then condition on the

valuation of the high bidders, and finally condition on the number of arriving bidders.
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APPENDIX D

GLM Output and Residual Plots for the Models in Chapter 4

D1 - Binomial Analysis D1 - Gamma Analysis
Coefficients Estimate Std. Error z value Pr(> |z|) Coefficients Estimate Std. Error z value Pr(> |z|)

β0 .140926 .079054 1.783 .0746 γ0 4.099977 .047331 86.623 <2e-16
#AUC -.002156 .002719 -.793 .4278 #AUC -.003983 .001620 -2.458 .0141

Null deviance: 2868.3 on 2071 df Null deviance: 1919.6 on 1081 df
Residual dev.: 2867.7 on 2070 df Residual dev.: 1915.1 on 1080 df
Pearson X2: 2071.99 Pearson X2: 869.9023

Dispersion parameter: .805463

β0 .8411 .07184 11.708 < 2e-16 γ0 4.0288680 .0207884 193.804 < 2e-16
Price -.01007 .0007278 -13.842 < 2e-16 Price -.0024607 .0002173 -11.326 < 2e-16

#AUC -.008813 .002147 -4.104 4.07e− 05 #AUC n.s.
Price×#AUC -.00004713 .00002647 -1.781 .074947 Price×#AUC n.s.

1y=24 .2288 .06646 3.444 .000574 1y=24 -.1312671 .0300084 -4.3740 1.24e-05
1y=36 .3265 .06911 4.724 2.31e− 06 1y=36 -.1490882 .0307015 -4.856 1.24e-06
1y=48 1.307 .07727 16.913 < 2e-16

Null deviance: 11311 on 8287 df Null deviance: 5182.2 on 4750 df
Residual dev.: 10430 on 8281 df Residual dev.: 5074.7 on 4747 df
Pearson X2: 8269.699 Pearson X2: 3325.072

Dispersion parameter: .7004573

γ0 4.6989211 .0394284 119.176 < 2e-16
Price -.0038386 .0002232 -17.199 < 2e-16

#AUC .0030054 .0008106 3.708 .000215
Null deviance: 1172.5 on 2070 df
Residual dev.: 1047.5 on 2068 df
Pearson X2: 724.7486
Dispersion parameter: .3504665

Table D.1. GLM Final Models - Desktop D1

306



D3 - Binomial Analysis D3 - Gamma Analysis
Coefficients Estimate Std. Error z value Pr(> |z|) Coefficients Estimate Std. Error z value Pr(> |z|)

β0 .7588 .2351 3.228 .00125 γ0 3.82447 .17328 22.072 <2e-16
#AUC -.1800 .0366 -4.919 8.72e-07 #AUC -.06371 .03066 -2.078 .0399

Null deviance: 375.10 on 273 df Null deviance: 283.18 on 118 df
Residual dev.: 347.23 on 272 df Residual dev.: 278.18 on 117 df
Pearson X2: 277.4396 Pearson X2: 145.4840

Dispersion parameter: 1.243185

β0 .930908 .170490 5.460 4.76e-08 γ0 4.0006267 .0426792 93.737 < 2e-16
Price -.020951 .001815 -11.546 < 2e-16 Price -.0067343 .0007897 -8.527 < 2e-16

#AUC -.058955 .017426 -3.383 .000717 1y=48 .3050728 .0765937 3.983 7.59e-05
1y=24 .603141 .190326 3.169 .001530
1y=36 1.0559417 .210022 5.028 4.96e-07
1y=48 2.115657 .246791 8.5730 < 2e-16

Null deviance: 1489.0 on 1095 df Null deviance: 655.93 on 638 df
Residual dev.: 1310.5 on 1090 df Residual dev.: 618.90 on 636 df
Pearson X2: 1087.464 Pearson X2: 370.0578

Dispersion parameter: .5818503

γ0 4.6807511 .2145286 21.819 < 2e-16
Price -.0045027 .0015865 -2.838 .00488

#AUC .1076435 .0331477 3.247 .00131
Price×#AUC -.0008084 .0002566 -3.151 .00181
Null deviance: 159.15 on 273 df
Residual dev.: 123.59 on 270 df
Pearson X2: 87.73738
Dispersion parameter: .3249284

Table D.2. GLM Final Models - Desktop D3

D4 - Binomial Analysis D4 - Gamma Analysis
Coefficients Estimate Std. Error z value Pr(> |z|) Coefficients Estimate Std. Error z value Pr(> |z|)

β0 .94465 .26933 3.507 .000452 γ0 4.14498 .10818 38.317 <2e-16
#AUC -.01131 .03561 -.318 .750736 #AUC -.01943 .01466 -1.326 .188

Null deviance: 202.13 on 166 df Null deviance: 139.35 on 117 df
Residual dev.: 202.03 on 165 df Residual dev.: 138.58 on 116 df
Pearson X2: 166.9976 Pearson X2: 64.99357

Dispersion parameter: .5602768

β0 1.375155 .198706 6.921 4.50e-12 γ0 4.241299 .080579 52.635 < 2e-16
Price -.012220 .001577 -7.747 9.38e-15 Price -.004727 .000747 -6.327 6.84e-10

#AUC -.027210 .016086 -1.692 0.0907 #AUC -.022634 .007164 -3.159 .00170
1y=48 .948437 .213150 4.450 8.60e-06 1y=48 .293589 .091471 3.210 .00144

Null deviance: 903.64 on 667 df Null deviance: 357.12 on 394 df
Residual dev.: 833.15 on 664 df Residual dev.: 333.51 on 391 df
Pearson X2: 665.3135 Pearson X2: 217.0827

Dispersion parameter: .5551945

γ0 5.4422324 .1207055 45.09 < 2e-16
Price -.0076826 .0007432 -10.34 < 2e-16

Null deviance: 81.782 on 166 df
Residual dev.: 56.143 on 165 df
Pearson X2: 38.26583
Dispersion parameter: 0.2319067

Table D.3. GLM Final Models - Desktop D4
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L1 - Binomial Analysis L1 - Gamma Analysis
Coefficients Estimate Std. Error z value Pr(> |z|) Coefficients Estimate Std. Error z value Pr(> |z|)

β0 2.198050 .128609 17.091 < 2e-16 γ0 5.182720 .048540 106.771 <2e-16
#AUC -.044271 .005509 -8.037 9.24e-16 #AUC -.0234323 .00238 -9.842 <2e-16

Null deviance: 2122.4 on 2045 df Null deviance: 1955.6 on 1608 df
Residual dev.: 2057.6 on 2044 df Residual dev.: 1878.8 on 1607 df
Pearson X2: 2017.104 Pearson X2: 1200.379

Dispersion parameter: .7469764

β0 1.867 .1056 17.679 < 2e-16 γ0 4.8381624 .036487 132.597 < 2e-16
Price -.006390 4.278e-04 -14.938 < 2e-16 Price -.0018918 .0001221 -15.488 < 2e-16

#AUC -.02037 .004252 -4.790 1.67e-06 #AUC -.0108160 .0013100 -8.256 < 2e-16
Price×#AUC -7.932e-05 2.138e-05 -3.710 .000207 Price×#AUC n.s.

1y=24 .1436 .07132 2.013 .044144 1y=24 -.0567224 .0326789 -1.736 .082669
1y=36 .2504 .07355 3.405 .000663 1y=36 -.1187386 .0351421 -3.379 .000734
1y=48 1.197 .08158 14.671 < 2e-16 1y=48 .1068323 .035291 3.027 .002481

Null deviance: 10893.6 on 8183 df Null deviance: 4785.0 on 5048 df
Residual dev.: 9638.3 on 8177 df Residual dev.: 4579.6 on 5043 df
Pearson X2: 8126.968 Pearson X2: 3325.579

Dispersion parameter: .6594416

γ0 6.0006166 .0347937 172.46 < 2e-16
Price -.0044562 .0001132 -39.37 < 2e-16

Null deviance: 1233.67 on 2039 df
Residual dev.: 827.98 on 2038 df
Pearson X2: 567.8304
Dispersion parameter: .2786254

Table D.4. GLM Final Models - Laptop L1

L4 - Binomial Analysis L4 - Gamma Analysis
Coefficients Estimate Std. Error z value Pr(> |z|) Coefficients Estimate Std. Error z value Pr(> |z|)

β0 1.48097 .29501 5.020 5.17e-07 γ0 5.05686 .12259 41.249 <2e-16
#AUC -.09040 .03867 -2.338 .0194 #AUC -.06518 .01911 -3.411 .000878

Null deviance: 203.67 on 171 df Null deviance: 147.73 on 123 df
Residual dev.: 198.21 on 170 df Residual dev.: 141.38 on 122 df
Pearson X2: 172.3741 Pearson X2: 85.61325

Dispersion parameter: .7017345

β0 1.3313782 .1458051 9.131 < 2e-16 γ0 4.6201571 .0671803 68.772 < 2e-16
Price -.0069890 .0007865 -8.887 < 2e-16 Price -.0014305 .0003517 -4.067 5.68e-05
1y=48 1.3201964 .2240970 5.891 3.83e-09 1y=24 -.1698937 .0914717 -1.857 .063956

1y=36 -.3283783 .0943592 -3.480 .000553
Null deviance: 912.33 on 687 df Null deviance: 390.36 on 427 df
Residual dev.: 805.77 on 685 df Residual dev.: 372.83 on 424 df
Pearson X2: 677.0064 Pearson X2: 247.6141

Dispersion parameter: .5839949

γ0 5.736e+00 1.421e-01 40.365 < 2e-16
Price -3.159e-03 4.737e-04 -6.668 3.58e-10

#AUC 7.891e-02 2.239e-022 3.524 .000548
Price×#AUC -2.397e-04 8.056e-05 -2.976 .003355

Null deviance: 70.250 on 171 df
Residual dev.: 44.088 on 168 df
Pearson X2: 27.01011
Dispersion parameter: .1607744

Table D.5. GLM Final Models - Laptop L4
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L5 - Binomial Analysis L5 - Gamma Analysis
Coefficients Estimate Std. Error z value Pr(> |z|) Coefficients Estimate Std. Error z value Pr(> |z|)

β0 2.4214 .4397 5.507 3.66e-08 γ0 4.95651 .17048 29.074 < 2e-16
#AUC -.2947 .1056 -2.792 .00524 #AUC -.04956 .05079 -.976 .331

Null deviance: 161.45 on 162 df Null deviance: 204.92 on 130 df
Residual dev.: 153.53 on 161 df Residual dev.: 203.90 on 129 df
Pearson X2: 169.1283 Pearson X2: 113.2176

Dispersion parameter: .8776013

β0 1.6710325 .2415296 6.919 4.56e-12 γ0 5.1553123 .13232029 38.961 < 2e-16
Price -.0071794 .0007637 -9.401 < 2e-16 Price -.0029357 .0006981 -4.205 3.29e-05

#AUC -.1407179 .0492062 -2.860 .00424 #AUC -.1234271 .0326537 -3.780 .000184
1y=48 1.2992085 .2242116 5.795 6.85e-09 Price×#AUC .0003948 .0001843 2.142 .032828

1y=36 -.1862469 .1023950 2.142 .032828
Null deviance: 894.51 on 651 df Null deviance: 307.50 on 364 df
Residual dev.: 776.65 on 648 df Residual dev.: 286.52 on 360 df
Pearson X2: 647.6267 Pearson X2: 216.9356

Dispersion parameter: .602584

γ0 5.9592695 .1369126 43.53 < 2e-16
Price -.0046622 .0004266 -10.93 < 2e-16

Null deviance: 116.477 on 162 df
Residual dev.: 75.783 on 161 df
Pearson X2: 55.06233
Dispersion parameter: .3419806

Table D.6. GLM Final Models - Laptop L5
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Figure D.1. Residual plots for D1 (top) and L1 (bottom). Each row is for the first,
middle, and final periods (left to right). The first row are the deviance residuals, and the
second row are the response residuals.
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Figure D.2. Residual plots for D3 (top) and D4 (bottom). Each row is for the first,
middle, and final periods (left to right). The first row are the deviance residuals, and the
second row are the response residuals.
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Figure D.3. Residual plots for L4 (top) and L5 (bottom). Each row is for the first,
middle, and final periods (left to right). The first row are the deviance residuals, and the
second row are the response residuals.
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APPENDIX E

Linear Regression Model of Price-Increments in Final

12hours of an Auction

From Figures 4.7, 4.8 and 4.9 it might seem that a normal linear regression model could

apply. Furthermore if the fitted regression line has a slope of 1 for the price variable, then

it would imply that the expected final price conditional on price is constant and hence

independent of the previous periods transitions. Therefore a multiple linear regression was

fitted for the final period. Detail summary output from ‘R’ is provided in Table E.1 below.

Below the resulting equations are listed, for s = (x, 60, z),

(D1) E[C60|S60 = s] =102.00− .257x + .476z − .0019x× z

(D3) E[C60|S60 = s] =103.42− .315x + 8.390z − .0618x× z

(D4) E[C60|S60 = s] =151.80− .526x + 2.442z − .0099x× z

(L1) E[C60|S60 = s] =249.23− .411x + 1.126z − .0056x× z

(L4) E[C60|S60 = s] =231.75− .350x + 12.294z − .0340x× z

(L5) E[C60|S60 = s] =219.05− .370x + 10.858z − .0381x× z

The first thing to note is that x, z, and the interaction x × z are always significant (ex-

cept for D4 where both z and x × z are non-significant). Second we see that the slope

coefficient for x is substantially smaller than 1. This would imply that a $1 increase in

price will decrease the expected price-increment, and hence final price, by less than $1.

Consequently the seller is always better off the higher the price. And more importantly

the previous periods transitions do matter and the expected final price is not constant.
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However, the interaction term also has a negative slope and therefore there exist a zs such

that a unit increase in x will result in a decrease in expected price-increment of exactly $1.

Consequently for Z = zs the expected final price is independent of price and the previous

periods. The specific values for zs are as follows: D1) 391, D3) 11, D4) 48, L1) 105, L4)

19, and L5) 17. In other words, for each subset, if x takes on the listed values then $1

increase in price will result in $1 decrease in expected price-increment and the expected

final price conditional upon price is constant. Comparing these values with the maximum

z observed for each of the data sets (D1) 84, D3) 15, D4) 20, L1) 54, L4) 18, L5) 8; see

Table 4.2), we see that, with one exception, zs is far beyond these values. The exception

is D3 for which we see that the largest average number of auctions observed was 15 while

zs = 11. Meaning that if the seller has 11 auctions underway in the final period, then the

expected final price will be constant. On the other hand if he has more than 11 then the

expected final price is decreasing in price. Therefore, we conclude that the effect of price

is such that the expected final price does depend on the price at the start of the final period.
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D1: Linear Regression L1: Linear Regression
Coefficients Estimate Std. Error t value Pr(> |z|) Coefficients Estimate Std. Error t value Pr(> |z|)

Intercept 102.0 3.902e+00 26.132 < 2e-16 Intercept 249.230326 7.551410 33.00 < 2e-16
Price -.2571 2.597e-02 -9.898 < 2e-16 Price -.410907 .023015 -17.85 < 2e-16

#AUC .4755 1.371e-01 3.469 .000533 #AUC 1.125848 .338060 3.33 .000883
Price×#AUC -.001947 9.439e-04 -2.062 0.039293 Price×#AUC -.005572 .001156 -4.82 1.54e-06

Res std err: 38.08 on 2067 df Res std err: 52.53 on 2036 df
Mtpl R-Sq: .1874, Adj R-sq: .1863 Mtpl R-Sq: .4901, Adj R-sq: .4894
F-stat: 158.9 on 3 and 2067 df , p-value: < 2.2e-16 F -stat: 652.4 on 3 and 2036 df , p-value: < 2.2e-16

D3: Linear Regression D4: Linear Regression
Coefficients Estimate Std. Error t value Pr(> |z|) Coefficients Estimate Std. Error t value Pr(> |z|)

Intercept 103.41637 12.49513 8.277 5.89e-15 Intercept 151.795464 12.264153 12.377 < 2e-16
Price -.31525 .09241 -3.412 .000745 Price -.525925 .076618 -6.864 1.33e-10

#AUC 8.38895 1.93068 4.345 1.97e-05 #AUC 2.442041 1.477201 1.653 .100
Price×#AUC -0.06175 .01494 -4.132 4.80e-05 Price×#AUC -.009932 .009957 -0.998 .320

Res std err: 33.2 on 270 df Res std err: 30.55 on 163 df
Mtpl R-Sq: .3868, Adj R-sq: .38 Mtpl R-Sq: .5063, Adj R-sq: .4972
F -stat: 56.78 on 3 and 270 df , p-value: < 2.2e-16 F -stat: 55.71 on 3 and 163 df , p-value: < 2.2e-16

L4: Linear Regression L5: Linear Regression
Coefficients Estimate Std. Error t value Pr(> |z|) Coefficients Estimate Std. Error t value Pr(> |z|)

Intercept 231.75170 16.65124 13.918 < 2e-16 Intercept 219.05116 25.82991 8.481 1.46e-14
Price -.34987 .05551 -6.303 2.48e-09 Price -.36970 .07638 -4.840 3.05e-06

#AUC 12.29419 2.62409 4.685 5.75e-06 #AUC 10.85792 6.20063 1.751 .0819
Price×#AUC -.03487 .00944 -3.694 .000298 Price×#AUC -.03808 .01954 -1.949 .0531

Res std err: 46.99 on 168 df Res std err: 49.79 on 159 df
Mtpl R-Sq: .5681, Adj R-sq: .5604 Mtpl R-Sq: 0.5462, Adj R-sq: 0.5377
F -stat: 73.65 on 3 and 168 df , p-value: < 2.2e-16 F -stat: 63.8 on 3 and 159 df , p-value: < 2.2e-16

Table E.1. Normal linear regression models for the final period
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APPENDIX F

Supplementary Material for Empirical Analysis in Chapter 5
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Figure F.1. Current price versus elapsed auction time for D1, D3, D4 (top, left
to right) and L1, L4, L5 (bottom, left to right). The first row of each product line
is for the first 71 hours of the auction, while the second row of each product line is
for bids placed in the final hour. The horizontal axis in each graph represents the
elapsed time of the auction, and the vertical axis is the current price when each bid
was placed. Each point represents a single bid.
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Figure F.2. Residual plot for D1, D3, D4 (top, left to right) and L1, L4, L5
(bottom, left to right). The first row shows the deviance residual plots and the
second row shows the response residual plots for the analysis of bids up to the final
hour.
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Figure F.3. Residual plot for D1, D3, D4 (top, left to right) and L1, L4, L5
(bottom, left to right). The first row shows the deviance residual plots and the
second row shows the response residual plots for the analysis of bids in the final
hour.
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Figure F.4. The number of bids a bidder has placed versus the number of auc-
tions a bidder has participated in. Each observation represents a bid. The solid line
represents bids for which bidders have placed exactly one bid per auction.
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L1 ≤ 4260 minutes > 4260 minutes
Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)

(Intercept) 3.467e+00 5.755e-02 60.235 <2e-16 5.264e+01 1.610e+01 3.269 0.00109
Current Price 6.089e-04 1.399e-04 4.354 1.35e-05 -4.935e-02 4.554e-02 -1.084 0.27862
Elapsed Time 4.143e-05 9.880e-06 4.193 2.76e-05 -1.145e-02 3.737e-03 -3.063 0.00221
Inter-Arrival Time -3.613e-06 1.391e-05 -0.260 0.7950 7.509e-05 3.287e-05 2.285 0.02241
Number Auctions -4.555e-03 8.362e-04 -5.448 5.18e-08 -1.505e-03 1.421e-03 -1.059 0.28972
Low Price 3.216e-04 1.301e-04 2.471 0.0135 2.660e-04 2.573e-04 1.034 0.30122
High Price 1.098e-03 8.439e-05 13.015 <2e-16 8.671e-04 1.647e-04 5.264 1.50e-07
Time Low Price 1.816e-04 6.813e-04 0.267 0.7898 -1.078e-03 1.154e-03 -0.935 0.35010
Time High Price 2.312e-03 4.581e-04 5.047 4.54e-07 -2.244e-04 8.733e-04 -0.257 0.79726
Bidder Bids -1.559e-04 9.644e-04 -0.162 0.8716 1.197e-03 1.650e-03 0.726 0.46805
Bidder Auctions 6.258e-03 1.220e-03 5.131 2.92e-07 -2.228e-03 1.912e-03 -1.165 0.24396
First Bid 5.519e-01 1.889e-02 29.223 <2e-16 3.020e-01 3.117e-02 9.691 < 2e-16
Cur. Price× Elaps.Time -6.274e-07 4.430e-08 -14.161 <2e-16 1.122e-05 1.057e-05 1.062 0.28840
Dispersion Para. 0.7266593 0.5033141
Null Deviance 17275 on 15891 d.f. 1620.6 on 3241 d.f.
Residual Deviance 15050 on 15879 d.f. 1488.5 on 3229 d.f.

L4 ≤ 4260 minutes > 4260 minutes
Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)

(Intercept) 3.901e+00 8.426e-02 46.298 <2e-16 1.126e+02 5.187e+01 2.170 0.03062
Current Price 8.223e-04 4.592e-04 1.791 0.073522 -2.300e-01 1.386e-01 -1.659 0.09798
Elapsed Time -1.021e-05 3.001e-05 -0.340 0.733728 -2.536e-02 1.204e-02 -2.106 0.03584
Inter-Arrival Time -3.378e-05 4.115e-05 -0.821 0.411824 1.675e-04 1.673e-04 1.001 0.31747
Number Auctions -1.928e-02 7.428e-03 -2.596 0.009513 -2.026e-03 1.344e-02 -0.151 0.88026
Low Price 1.174e-04 3.203e-04 0.366 0.714115 -3.531e-04 6.273e-04 -0.563 0.57388
High Price 3.206e-04 2.785e-04 1.151 0.249867 8.601e-04 5.899e-04 1.458 0.14562
Time Low Price 7.797e-04 1.616e-03 0.483 0.629439 -4.971e-03 2.668e-03 -1.863 0.06325
Time High Price 6.139e-04 1.706e-03 0.360 0.719061 2.085e-03 2.840e-03 0.734 0.46328
Bidder Bids 1.709e-03 9.907e-03 0.172 0.863089 1.907e-03 1.555e-02 0.123 0.90244
Bidder Auctions 1.485e-02 1.391e-02 1.068 0.285790 -3.310e-03 1.723e-02 -0.192 0.84775
First Bid 5.090e-01 5.998e-02 8.486 <2e-16 2.753e-01 1.002e-01 2.746 0.00632
Cur. Price× Elaps.Time -4.601e-07 1.377e-07 -3.341 0.000852 5.326e-05 3.217e-05 1.655 0.09867
Dispersion Para. 0.6995354 0.4668382
Null Deviance 1726.1 on 1741 d.f. 171.54 on 392 d.f.
Residual Deviance 1597.4 on 1729 d.f. 157.99 on 380 d.f.

L5 ≤ 4260 minutes > 4260 minutes
Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)

(Intercept) 4.010e+00 1.107e-01 36.233 < 2e-16 8.407e+01 5.779e+01 1.455 0.1474
Current Price 1.707e-03 5.500e-04 3.103 0.00196 -2.100e-01 1.826e-01 -1.151 0.2514
Elapsed Time 2.156e-05 3.522e-05 0.612 0.54060 -1.863e-02 1.340e-02 -1.390 0.1662
Inter-Arrival Time 2.426e-05 5.018e-05 0.484 0.62884 6.299e-05 7.034e-05 0.895 0.3717
Number Auctions -7.790e-02 2.644e-02 -2.946 0.00329 -7.692e-02 4.353e-02 -1.767 0.0789
Low Price -1.876e-05 3.854e-04 -0.049 0.96119 1.004e-04 6.952e-04 0.144 0.8854
High Price 4.937e-04 3.709e-04 1.331 0.18341 6.932e-04 6.407e-04 1.082 0.2807
Time Low Price 1.077e-03 2.171e-03 0.496 0.62001 6.034e-03 4.012e-03 1.504 0.1343
Time High Price -2.256e-04 2.154e-03 -0.105 0.91662 -4.122e-04 3.991e-03 -0.103 0.9179
Bidder Bids 2.459e-02 3.053e-02 0.805 0.42080 2.184e-02 3.791e-02 0.576 0.5653
Bidder Auctions 1.798e-02 3.479e-02 0.517 0.60536 -4.261e-02 4.584e-02 -0.930 0.3538
First Bid 5.327e-01 8.968e-02 5.940 3.85e-09 1.658e-01 1.386e-01 1.196 0.2332
Cur. Price× Elaps.Time -8.870e-07 1.649e-07 -5.378 9.24e-08 4.836e-05 4.233e-05 1.143 0.2547
Dispersion Para. 0.7228855 0.3994007
Null Deviance 1222.4 on 1082 d.f. 84.181 on 195 d.f.
Residual Deviance 1039.9 on 1070 d.f. 75.339 on 183 d.f.

Table F.1. Results for the base model of L1, L4, L5.
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D1 ≤ 4260 minutes > 4260 minutes
Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)

(Intercept) 3.279e+00 4.857e-02 67.498 <2e-16 1.862e+01 1.346e+01 1.383 0.1668
Current Price 1.661e-03 3.139e-04 5.291 1.23e-07 6.731e-02 7.658e-02 0.879 0.3795
Elapsed Time -4.427e-05 8.390e-06 -5.276 1.34e-07 -3.700e-03 3.122e-03 -1.185 0.2361
Inter-Arrival Time 2.731e-05 1.228e-05 2.223 0.0262 2.692e-04 3.842e-05 7.009 2.90e-12
Number Auctions -2.478e-04 4.598e-04 -0.539 0.5899 -1.852e-03 9.389e-04 -1.973 0.0486
Low Price -3.066e-04 3.641e-04 -0.842 0.3997 -6.894e-04 5.866e-04 -1.175 0.2400
High Price 8.987e-04 1.211e-04 7.419 1.24e-13 4.208e-04 2.477e-04 1.699 0.0895
Time Low Price -2.069e-04 5.816e-04 -0.356 0.7221 -2.235e-03 1.122e-03 -1.992 0.0465
Time High Price 2.558e-04 4.480e-04 0.571 0.5680 -9.459e-04 9.299e-04 -1.017 0.3091
Bidder Bids 5.280e-03 7.254e-04 7.279 3.52e-13 -5.632e-03 2.586e-03 -2.178 0.0295
Bidder Auctions -4.297e-03 9.161e-04 -4.691 2.74e-06 5.276e-03 3.658e-03 1.442 0.1493
First Bid 5.291e-01 2.031e-02 26.051 <2e-16 2.832e-01 3.529e-02 8.024 1.40e-15
Cur. Price× Elaps.Time -8.026e-07 9.352e-08 -8.582 <2e-16 -1.533e-05 1.776e-05 -0.863 0.3882
Dispersion Para. 0.6401172 0.6401172
Null Deviance 2062.4 on 3330 d.f. 2062.4 on 3330 d.f.
Residual Deviance 1908.3 on 3318 d.f. 1908.3 on 3318 d.f.

D3 ≤ 4260 minutes > 4260 minutes
Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)

(Intercept) 3.250e+00 8.531e-02 38.093 <2e-16 9.811e+01 5.023e+01 1.953 0.0515
Current Price 2.507e-04 1.201e-03 0.209 0.83467 -5.275e-01 2.990e-01 -1.764 0.0785
Elapsed Time 5.513e-05 2.576e-05 2.140 0.03245 -2.205e-02 1.166e-02 -1.892 0.0593
Inter-Arrival Time 4.764e-05 3.583e-05 1.330 0.18381 -4.665e-06 8.891e-05 -0.052 0.9582
Number Auctions -1.002e-02 7.441e-03 -1.347 0.17807 3.634e-02 1.660e-02 2.189 0.0292
Low Price -6.036e-04 6.530e-04 -0.924 0.35542 2.675e-03 1.395e-03 1.918 0.0559
High Price 1.115e-03 4.983e-04 2.238 0.02534 1.329e-06 1.196e-03 0.001 0.9991
Time Low Price -1.129e-03 1.421e-03 -0.795 0.42682 -2.012e-03 2.617e-03 -0.769 0.4424
Time High Price -3.604e-04 1.503e-03 -0.240 0.81052 -7.469e-04 2.914e-03 -0.256 0.7978
Bidder Bids -1.433e-02 5.281e-03 -2.714 0.00671 -2.634e-03 1.295e-02 -0.203 0.8389
Bidder Auctions 3.978e-02 9.468e-03 4.202 2.76e-05 -2.152e-02 2.514e-02 -0.856 0.3925
First Bid 5.280e-01 5.633e-02 9.372 <2e-16 3.801e-02 1.025e-01 0.371 0.7110
Cur. Price× Elaps.Time -9.983e-07 3.306e-07 -3.020 0.00256 1.221e-04 6.939e-05 1.759 0.0793
Dispersion Para. 0.7151947 0.5756648
Null Deviance 2499.6 on 2113 d.f. 239.49 on 411 d.f.
Residual Deviance 2290.7 on 2101 d.f. 221.55 on 399 d.f.

D4 ≤ 4260 minutes > 4260 minutes
Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)

(Intercept) 3.472e+00 8.976e-02 38.684 <2e-16 -2.030e+01 7.628e+01 -0.266 0.7903
Current Price -1.265e-03 9.016e-04 -1.403 0.16075 3.608e-01 4.018e-01 0.898 0.3699
Elapsed Time 9.858e-05 3.217e-05 3.064 0.00223 5.362e-03 1.770e-02 0.303 0.7622
Inter-Arrival Time -1.722e-06 4.144e-05 -0.042 0.96687 3.392e-04 1.470e-04 2.308 0.0218
Number Auctions -2.760e-02 6.303e-03 -4.378 1.28e-05 1.895e-03 1.439e-02 0.132 0.8953
Low Price -1.206e-03 6.018e-04 -2.005 0.04518 -1.108e-03 1.291e-03 -0.859 0.3914
High Price 1.215e-03 5.421e-04 2.241 0.02521 -9.641e-04 1.282e-03 -0.752 0.4528
Time Low Price 1.024e-03 1.688e-03 0.607 0.54395 4.356e-03 3.939e-03 1.106 0.2698
Time High Price -1.415e-03 1.750e-03 -0.808 0.41907 -4.099e-03 4.266e-03 -0.961 0.3375
Bidder Bids 1.844e-02 8.550e-03 2.157 0.03115 -5.425e-02 4.406e-02 -1.231 0.2193
Bidder Auctions -1.038e-02 1.308e-02 -0.794 0.42748 1.104e-01 5.604e-02 1.970 0.0499
First Bid 4.830e-01 6.404e-02 7.542 8.17e-14 3.138e-01 1.393e-01 2.253 0.0251
Cur. Price× Elaps.Time -7.452e-07 2.742e-07 -2.717 0.00666 -8.384e-05 9.320e-05 -0.900 0.3691
Dispersion Para. 0.6618309 0.5483629)
Null Deviance 1558.0 on 1455 d.f. 169.20 on 281 d.f.
Residual Deviance 1412.1 on 1443 d.f. 140.68 on 269 d.f.

Table F.2. Results for the base model of D1, D3, D4.
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Figure F.5. The inter-arrival time of bids versus the elapsed auction time (top),
and the inter-arrival time of bids versus the current price (bottom). Each observa-
tion represents a bid. The first row is D1, D3, D4, and the second row is L1, L4,
L5 (left to right).
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