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Abstract

This thesis provides a discussion on some analytical and empirical models of online
auctions. The objective is to provide an alternative framework for analyzing online auc-
tions, and to characterize the distribution of intermediate prices. Chapter 1 provides a
mathematical formulation of the eBay auction format and background to the data used in
the empirical analysis. Chapter 2 analyzes policies for optimally disposing inventory using
online auctions. It is assumed a seller has a fixed number of items to sell using a sequence
of, possibly overlapping, single-item auctions. The decision the seller must make is when
to start each auction. The decision involves a trade-off between a holding cost for each
period an item remains unsold, and a cannibalization effect among competing auctions.
Consequently the seller must trade-off the expected marginal gain for the ongoing auctions
with the expected marginal cost of the unreleased items by further deferring their release.
The problem is formulated as a discrete time Markov Decision Problem. Conditions are
derived to ensure that the optimal release policy is a control limit policy in the current
price of the ongoing auctions. Chapter 2 focuses on the two item case which has sufficient
complexity to raise challenging questions. An underlying assumption in Chapter 2 is that
the auction dynamics can be captured by a set of transition probabilities. Chapter 3 shows
with two fixed bidding strategies how the transition probabilities can be derived for a given
auction format and bidder arrival process. The two specific bidding strategies analyzed are
when bidders bid: 1) a minimal increment, and 2) their true valuation. Chapters 4 and
5 provides empirical analyzes of 4,000 eBay auctions conducted by Dell. Chapter 4 pro-

vides a statistical model where over discrete time periods, prices of online auctions follow a



zero-inflated gamma distribution. Chapter 5 provides an analysis of the 44,000 bids placed
in the auctions, based on bids following a gamma distribution. Both models presented in
Chapters 4 and 5 are based on conditional probabilities given the price and elapsed time
of an auction, and certain parameters of the competing auctions. Chapter 6 concludes the

thesis with a discussion of the main results and possible extensions.
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Notation

Time, decision epoch, and period

Length of planning horizon

Duration of an auction

Starting price of an auction and bidders’ lower bound on the valuation of item
Maximum price of an auction and bidders’ upper bound on the valuation of the item
Bidders’ valuation of the item

Index of auction or item

Current price of auction ¢

High-bid of auction i

Elapsed discrete time of auction ¢ (used in Chapters 2 and 4)

Elapsed continuous time of auction 7 (used in Chapters 3 and 5)

Current price of auction i after Y periods (X;; in Chapters 3 and 5)

Number of ongoing auctions

Cost per period of holding one unit of inventory

Indicator function; equals 1 if statement in brackets is true, 0 otherwise
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CHAPTER 1

Introduction

1. Research Objective and Overview of Thesis

Auctions provide an important and integral part of commerce. One of the main appeals
with auctions is that they can help solve the challenging pricing decision. If a seller sets the
price too high he runs the risk of not selling the product, while if he sets it too low he might
forfeit revenue. Similarly, though of a different nature, deciding how much to be willing to
pay for a product is a difficult decision. Reasonably, there does not exist a price that is too
low for a buyer, while clearly paying too much is either not feasible or not worthwhile. In
order for a transaction to occur, the two parties’ problems must be resolved to a mutual
agreement. The trade mechanism of auctions provides a relatively easy to implement and
often efficient solution. Generally speaking, an auction allocates a product to the buyer who
values it the most, while generating the best possible revenue for the seller. This thesis aims
to further our understanding of how auctions work, and provide a framework for sellers,

buyers, and auctioneers to make better decisions.

The main objective is to provide a framework for analyzing the dynamic and stochastic
nature of online auctions. There are two main departures from the traditional auction the-
ory framework. First, online auctions are modeled as stochastic processes characterized by
various parameters. In other words, the analysis does not follow the standard auction/game
theory framework and derive properties of a bid strategy (Bayesian Nash) equilibrium. Sec-
ond, rather than focusing on the distribution of the final price, the thesis centers on the

distribution of intermediate prices of ongoing auctions. Specifically, the analysis mainly



considers, the conditional intermediate price-transition probabilities, given certain parame-
ters. It should be clear that the analysis of intermediate prices enables the analysis of the

final price, but not necessarily vice versa.

An important managerial decision and the main research question addressed is: how
should a seller release items for auction if he wishes to maximize his profit? That is, given
an inventory of N items, and restricted to sell each item using a single-item auction, what
is the optimal release policy? Should he release the N items for auctions 1) simultaneously,
2) as a series of N non-overlapping sequentially started auctions, or 3) according to a policy

that depends on the ongoing auctions?

The objective of Chapter 2 is to address this issue. The problem is modeled as a discrete
time Markov Decision Process (MDP), where each period auctions evolve according to a
stochastic process. As a non-trivial constraint, a trade-off between a holding (or depreci-
ation) cost and a ‘cannibalization’ effect among competing auctions is imposed. Though
Chapter 2 only focus on the two item case (N = 2), the framework, analysis, and results give
insight to the general N-item case. One of the main results is that given certain structural
properties of the price-transition probabilities, the optimal release policy is of a threshold
type. Specifically, for the two item case, in each period there exists a price such that if the
first auction is above this price, then it is optimal to release the second item for auction.
However, if the first auction is below the price threshold, then it is optimal to defer the
release at least one more period. The insights and extensions for the general N item case

are discussed in Chapter 6.

An underlying assumption of Chapter 2 is that the auction dynamics can be summa-

rized by a set of conditional price-transition probabilities. Chapter 3 illustrates, with two



examples, how these can be derived for a given auction format, bidder arrival process, and
fixed bidding strategy. Although the two bidding strategies discussed, under certain condi-
tions, result in a Bayesian Nash equilibrium, it is not argued that this is the case for the
setting discussed in Chapter 2. In fact, in the implicit setting of Chapter 2 or eBay the two
bidding strategies would not result in an equilibrium outcome. The objective of Chapter 3
is only to illustrate how the conditional price-transition probabilities can be derived from a

given bidding behavior.

Since the framework for analyzing auctions presented in Chapter 2 is new, two empirical
analyses for model validation are included in Chapter 4 and 5. The data for both empirical
analyses come from the eBay auctions of Dell Financial Services, and consist of more than
4,000 auctions and 44,000 bids. More details regarding the data are presented in Section 4
below. The objective of the first empirical analysis is threefold. First, to present a statistical
model that can characterize the stochastic process by which auctions evolve over discrete
time periods. In other words, to provide a data driven or statistical methodology to char-
acterize the stochastic process, and estimate the conditional intermediate price-transition
probabilities. Second, to provide structural properties on the statistical model such that
the main results from Chapter 2 hold. Third, to illustrate and validate the empirical model

by fitting it to eBay auction data.

The second empirical analysis focuses on the individual bids. The objective is to pro-
pose and test a model regarding bidders’ underlying bid strategies. Specifically, Chapter 5
provides a statistical analysis of bidders’ bid-increments, i.e. the amount above the current
price of an auction. Both Chapter 4 and 5 focus on the conditional probabilities given

various auction parameters, and are based on Generalized Linear Models (GLM).



Chapter 6 concludes the thesis with an overall discussion and extensions for future work.
The remainder of Chapter 1 provides a brief background to auctions and online auctions, a
mathematical description of eBay’s auction mechanism, and a description of the data used

for the empirical analysis.

Comments Regarding Notation. For ease of discussion, sellers and bidders/buyers
will be referred to as he, with no gender bias intended. The word ‘seller’ is used rather
than ‘bid-taker’ (which is more common in the auction literature). Furthermore, the terms
‘bidders’ and ‘buyers’ are used interchangeably. The term ‘auction’ will be used instead
of ‘online auction’. Mathematical functions that are non-decreasing (non-increasing), are
referred to as increasing (decreasing). Non-overlapping sequentially released auctions, are
referred to as simply sequentially released auctions. Finally, throughout the thesis the pro-

noun ‘we’ is used.

2. Brief Background on Auctions and Online Auctions

Auctions as a formal commercial mechanism date back to antiquity [29, p.5],[14, p.1],
and are today used for a wide variety of commodities, products, and services. Two of the
more familiar products auctioned, or at least two that receive much attention in the news,
are expensive art objects and radio (wireless) spectrum. Some interesting anecdotal sto-
ries, regarding extreme failures and successes of radio spectrum auctions, are provided in
Tim Harford’s The Undercover Economist (2005). Another type of auction that has re-
ceived much attention over the last decade is the Internet auction. Despite their relatively
short history, Internet based auctions, or online auctions, have quickly become an integral
part of modern eCommerce. From having been mainly regarded as Internet based flea-

markets for the Consumer-to-Consumer (C2C) markets, their importance and presence in
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the Business-to-Consumer (B2C) markets has and continues to grow rapidly. Today many
well-established firms operate online auctions, not only as alternative sales channels, but
also as strategic tools in pricing and product introduction decisions. Examples of large cor-
porations using eBay include Sears, IBM, Fujitsu, and Dell.! Companies and organizations
that host their own auctions include Dell, Major League Baseball, shopNBC, and Comet.?
One common use of online auctions is as alternative salvage channels. For example, both
Dell and Fujitsu use their online auction channel to sell refurbished products from returned
and remaining inventory. Another important application of online auctions include the
Business-to-Business (B2B) markets, such as online exchanges based on principles of com-

binatorial auctions (cf. [14, Ch.16]).

Though many web-sites that hosted online auctions no longer exist, including
auctions.yahoo.com and auctions.amazon.com, there are still many online auction sites
remaining, e.g. ubid.com, bidz.com, and ebid.net. However, the most dominant online
auction ‘house’ was and still is ebay.com. Consequently, one of the most common yardsticks
for measuring the importance and growth of online auctions are the annual figures of active
users and sales volume on eBay. eBay defines active users to be those that at least once
either placed a bid, bought, or listed something during the year. The sales volume is the
value of all successfully closed listings and reported by eBay as Gross Merchandise Volume
(GMV). Note that not all listings that make up the GMV figures are auctions. Over the
last four years, the number of active users were: 83M (2007), 82M (2006), 72M (2005),
56M (2004). The sales volume over the same years were: $56B (2007), $52B (2006), $44B

(2005), $34B (2004).% To put those figures in perspective, the US Census Bureau estimated

1h‘t:tp: //stores.ebay.com/Sears; http://stores.ebay.com/IbmFactoryOutlet;
http://stores.ebay.com/Fujitsu-Scanner-0utlet;
http://cgi3.ebay.com/ws/eBayISAPI.d117ViewUserPage&userid=dell_financial_services

*http://www.dellauction.com; http://auction.mlb.com/; http://auctions.shopnbc.com/;
http://www.clearance-comet.co.uk/

3eBay Annual Report 2007, 2006, 2005, 2004. Available at www.ebay. com.
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the 2007 eCommerce segment of US retail sales to account for close to $127B (about 3.1%
of total US retail sales). Another comparison that may give additional perspective on
eBay’s sales volume, is with the annual revenue of the largest US retail stores. In 2006,
the 6" largest retail company Sears Holdings reported annual revenue of $53B, followed by

Walgreen with annual revenue of $47B.°

Despite the fact that auctions have been used for centuries, it was not until the late
1950s that formal analysis of auctions started. Most people attribute the first auction theory
paper with the 1961 seminal and Nobel Prize winning work of William Vickrey [14, p.ix].%
However, Michael Rothkopf refers to Lawrence Friedman’s paper ‘A Competitive Bidding
Strategy’ from 1956 (Operations Research, vol.4), as the earliest formal analysis on auction
and bidding theory [26, p.369]. In fact, according to Rothkopf, the first PhD in Operations
Research was Lawrence Friedman’s dissertation on competitive bidding from Case Institute
of Technology in 1957 [25, p.1]. Since then, auction theory has flourished and resulted in
an enormous body of literature. Two papers that deserve special attention, are the inde-
pendent work from 1981 of Myerson (Optimal Auction Design, Mathematics of Operations
Research, vol.6), and Riley and Samuelson (Optimal Auctions, American Economic Review,
vol.71). Both of these papers generalize some of the ideas presented in Vickrey’s original
work from 1961. In particular, they prove the so-called revenue equivalence principle [14,
p.36]. In addition, Myerson’s paper includes the celebrated revelation principle [14, p.81].7
For a formal and comprehensive account of auction theory, including the revenue equiva-

lence and revelation principles, see V. Krishna’s Auction Theory (2002). For a summary

4US Census Bureau News CB08-72

Shttp://www.stores.org/pdf/07TOP100Chart.pdf

6William S. Vickrey, born June 21, 1914, in Victoria, BC (Canada), was together with James A. Mirrlees
awarded the Nobel prize on October 8, 1996. He passed away three days later on October 11, 1996.

7Roger B. Myerson, together with Leonid Hurwicz and Eric S. Maskin, received the 2007 Nobel prize.

6



and critique of some of the main auction theory results, see Rothkopf and Harstad (1994).

In the last ten years there has been an almost equally large proliferation of literature re-
garding online auctions. Despite some fundamental differences between traditional auctions
and online auctions, most notably the context and time dimension, most researchers choose
to analyze online auctions using the standard auction or game theoretical framework. As
pointed out by Rothkopf this may or may not be the most useful or appropriate approach
[25, p.8-9]. An advantage with online auctions is that they provide a great source of data
for empirical analysis. This probably explains the huge proliferation of studies and PhD
dissertations on online auctions, as predicted by Steven E. Landsburg in 1999.8 Online
auctions have also resulted in many experimental studies. Researchers can use the Internet
as a laboratory, and run experiments and field tests to investigate various issues. Though
a bit premature, given the infancy of online auctions at the time, the two early survey
papers Pinker, Seidmann and Vakrat (2003), and Bajari and Hortacsu (2004), provide a

good overview of some important issues regarding online auctions.

3. The eBay Single-Item Auction Format

In the western world, the term ‘eBay’ has become a household name. Most people are
familiar with eBay, and know, for instance, that it is an online auction web-site. However,
not everyone is aware of the exact price mechanism behind eBay auctions. In particular,
there tends to be some confusion regarding the auction rules dictating the final price. At
first it may seem that eBay auctions are first-price auctions, meaning that the bidder with

highest bid wins and pays the amount he bid. This is not the case. In fact, eBay auctions

8uww.slate.com/id/22998



are in effect more like second-price auctions, and almost seem to have been inspired by the

following quote from the seminal 1961 auction paper by Vickrey,

”An even more rapid procedure could be developed, with relatively little
increase in the apparatus required, if each bidder were provided with a set
of dials or switches which could be set to any desired bid, with the electronic
or relay apparatus arranged to search out the two top bids and indicate the

person making the top bid and the amount of the second bid.” [32, p.23]

Note that Vickrey’s paper precedes eBay by 35 years. Part of the confusion is that eBay does
not provide a clear explanation for the auctions rules and what happens in certain specific
situations. The objective of this section is to explicitly characterize the price mechanism of
eBay’s single-item auctions. The rules for multi-item auctions, auctions with multiple iden-
tical items, are a bit different. For a discussion on the differences and similarities between
eBay and Vickrey auctions, see Chapter 2 of Stieglitz’s Snipers, Shills, & Sharks (2007). A

screen-shot of a typical eBay auction is displayed in Figure 1.1.

An eBay auction is characterized by five pieces of information:

(1) Item - Each auction includes a description of the item being auctioned and often
pictures. Shown in Figure 1.1 is an auction for a ‘DUAL SIM CNET IPhone
Touch Screen PDA Mobile Phone.’

(2) Seller - The items are not sold by eBay but by a private seller. Information
about each seller includes a user-id (proxy for the seller’s name), their geographical
location, a feedback rating score, and comments he has accumulated from previous
transactions. The seller of the auction in Figure 1.1 is ‘menzies1978,’who is located
in the United Kingdom, and has a ‘99.9% Positive’ feedback rating.

(3) Time - Each auction lasts for a pre-specified length of time. When a potential

bidder visits the site he can see when the auction started, when it will end, and

8



2 eBay: DUAL SIM CECT IPhone * Touch Screen PDA Mobile Phone {item 130133762539 end tima Jul-17-07 03:31:14 PDT) - Mozilla Firefox
File  Edit  Miew History Bookmarks Tools  Help

& - - @ ﬁj‘ ieb\' http:,ffcgi.ebay.com,fDUAL—SIM—cECT—IPhona—Touch—Scraen—PDA—Mobwle—Phone_WUQQitemz130133762539(;!v! [;hj @-' gl

’ Getting Started LL.,‘. Latest Headlines

, ¥ A | [[5=arch 2:::C"hCEd Buy Sell MyeBay Community Help | =
& | Sign in or register Site Map |
Categories Motors | Express  Stores ayg"  |FoveRenEr
“ ! ’ II'E:HLNDLDE\I) @‘.‘JEUL_
(4! Back to list of items Listed in catagory: Mobilas & Phones > Mobile Phanes > Other

DUAL SIM CECT IPhone * Touch Screen PDA Mobile Phone
Unlocked to all Metworks - WMP3 MP4 Movie Player

ltem number: 130133762538

Bidder or seller of this item? Sign in for your status Watch this item in My eBay

Meet the seller

Current bid: AU $102.00 Seller; menzies! 978 (1423 < )
[Approximately US §87.88) Feedback: 99.9% Positive
Member:  since Feb-07-05 in United Kingdaom
End time: Jul-1707 03:31:14 PDT (¢ days 11 hours) R fegrinankipdmments
Shipping costs: To United States -- AU $20.00 &k seller a question
Other Int] Shipping (see description) Add to Favorite Sellers
Service to United States View seller’s other items
{rriore services
Ships to: Warldwide Buy safely
[terr location: Gloucester, West Midlands, United Kingdom 1. Check the seller's reputation
; Histary: 7 bids Score: 1423 | 89.9% Positive
View larger picture Read feedback comments
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FIGURE 1.1. Screen-shot of an eBay auction.

how much time is remaining. The auction in Figure 1.1 ended on July 17, 2007, at
03:31:14 Pacific Daylight Time. At the time the screen-shot was taken there were
4 days and 11 hours remaining for the auction.

(4) Price - Each auction consists of a starting bid, current bid, and a minimal bid
increment. In addition, some auctions also have a hidden reserve price and/or
a Buy-it-Now price. The auction in Figure 1.1 has a current bid of AU$102.00
(approximately US$87.86).

(5) Bid List - Each auction also displays how many bids have been submitted, and a
list of the corresponding time-stamps and the amount of each bid. The only ex-
ception is the highest bid placed, which is only shown as the minimum increment

above the second highest bid. Prior to 2007, the list also included the user-id of
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each bidder. However, in 2007 this changed and now only the seller is able to
see the user-ids of the bidders. The bids are listed in ascending order. In case
of a tie, the earlier bid take precedence. In Figure 1.1, the current high-bidder is

‘richnju.’By clicking on the link ‘7 bids,’the history of bids is shown.

The information about the item and seller is fairly straight forward and requires no fur-
ther discussion. A brief comment, however, is that many people not familiar with eBay are
surprised that people would feel comfortable buying something that they cannot physically
inspect, or is from someone that they have little information about. Today eBay supports
auctions of almost everything and anything. This includes cars, baseball cards, jewelry,
consumer electronics and real estate, to mention a few categories. Though fraud does exist
on eBay, the overall sales volume and statistics speak for themselves. People have adapted
to web-based shopping, and are not hesitant to buying something solely based on the de-
scription and picture a ‘stranger’ provides on a web-site. One method that eBay employs
for building trust between sellers and buyers, is through their feedback rating system. After
an auction has ended and the item and payment transactions have been made, the seller
and buyer can report a feedback score and comment about each other. An early paper
regarding how the feedback rating affects the final price is Lucking-Reiley et al. (2007). For
a discussion on bidders’ trust regarding a seller, see Chwelos et al. (2005) and Chwelos and

Dhar (2005) .

Next we discuss the information regarding the listed bidders as it applied prior to Janu-
ary, 2007. Currently eBay handles the information regarding bidders differently as explained
below. During an auction, the time-stamp and amount for all non-winning bids are dis-
closed. For the high-bidder only the time-stamp is displayed. In other words, the actual

amount of the high-bidder’s bid is not revealed (until of course he is out-bid). Information
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from expired auctions are available on eBay for a few weeks. This includes the amount of
all non-winning bids, and prior to 2007, the user-id of the bidders. However, for privacy
and anti-fraud purposes, in 2007, eBay changed the format and once an auction reached
$200 the user-id was represented by a generic ‘Bidder #’. Currently eBay uses a different
disguise which takes in effect from the start of an auction. The data collected for this thesis
is therefore unique, in that it tracks all individual bidders for almost all auctions offered
by Dell Financial Services from December, 2005, until February, 2007. Section 4.2 provides

more details.

The main difference with traditional auctions and online auctions, is that the latter
lasts for a pre-determined length of time. When a seller starts an auction he must choose
the auction length. The current options on eBay are 1, 3, 5, 7 or 10 days. We define the
length of an auction as 7. There are three time-stamps provided by eBay. One for when
the auction starts, one for when the auction ends, and one for the remaining time of the
auction (which is continuously updated). Due to the speed of internet technology and a
bidding strategy called sniping, the time-stamps are defined down to the second (Figure
1.1). Bids can only be submitted while the auction is ongoing. In particular, eBay auctions
close firmly at the announced ending time regardless of any bidding activity. Other auctions
sites, for instance, the former auctions.amazon.com, and dellauction.com, offer a going,
going, and gone ending rule. There the auction end-time is extended by 10 minutes for
every bid in the final 10 minutes. For an analysis on the impact of the two different ending

rules, see Roth and Ockenfels (2002).

In this thesis, rather than focusing on the remaining time of an auction, we focus on the
elapsed time of an auction. We define the elapsed auction time by ¢, and ¢ as the instan-
taneous moment after a bid has been placed. In other words, a potential bidder arrives at
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an auction after ¢ time units have elapsed. If he decides to submit a bid then the moment

immediately following his submission is denoted by ¢T.

There are five different price variables in eBay auctions: starting bid, current bid, bid
increment, reserve price, and high bid. In addition there are of course, the bids as well. We
define the bid submitted at time ¢ by B; and refer to it as the bid at time t. It can be noted
that eBay auctions are standard [14, p.15], [26, p.366], meaning the highest bid submitted

wins the auction, and given the reserve price was met, is guaranteed the item.

Starting bid, defined by pmin, is the minimum allowable first bid as decided by the seller.
An auction is initially priced at zero, and the first bidder must bid at or above p,,;,. With
slight abuse of notation, Byst > Ppmsn. This is not the same as reserve price, but rather the
initial price the auction will jump to once a bid greater that it has been submitted. To
illustrate, suppose ppin = $20, and the first bidder bids Byst = $30, then the current bid of

the auction will jump to $20.

The second price variable is the current bid, which we define by X;. This is the amount
that the high bidder would have to pay, if the auction were to end immediately. That is, if
no more bids are submitted, then the high bidder only has to pay X;. Though X, is indexed
by t, to indicate the price at time ¢, it is not a function of time but strictly a function of

submitted bids. The dynamics of X; will be discussed shortly.

The third price variable is the bid increment which we define by kx. This is the minimum

amount that a potential bidder must be willing to bid above X;. In other words, if a potential
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bidder arrives at time ¢, and decides to place a bid B, then,

(11) By > X: + kx Vit € [0, T)

Though kx is a function of the current price, which on eBay varies according to Table 1.1,

we suppress the subscript X and simply write k.

Current Price - X; ($) | Bid Increment - kx ($)
0.01 - 0.99 0.05
1.00 - 4.99 0.25
5.00 - 24.99 0.50
25.00 - 99.99 1.00
100.00 - 249.99 2.50
250.00 - 499.99 5.00
500.00 - 999.99 10.00
1000.00 - 2499.99 25.00
2500.00 - 4999.99 50.00
5000.00 < 100.00

TABLE 1.1. Minimum bid increments on eBay (June 2008)

The reserve price, defined by v,, is the minimum price for which the seller will award
the item. Note that v, > ppn. In other words if the auction ends below v,., then the seller
is not obligated to award the item. The seller chooses the reserve price. In auctions with
no reserve price, the bidder who bids the most is guaranteed to be awarded the item. On
eBay, the actual amount of v, is not disclosed, instead there is a message stating whether

the reserve price has been met or not.

Finally there is the high bid, defined by H;, which is the amount of the highest bid placed
aftert time units has elapsed. Unlike p;n and Xy, the highest bid is never displayed as long
as it remains the highest bid. That is, up to the time when a bid B; > H, is submitted.
Then H,; is revealed and the new high bid H;+ = B;, remains hidden. Naturally the bidder
who submitted the high bid knows the actual amount. However, potential bidders do have
some information regarding H;, since clearly H; > X;. In fact, due to the dynamics of

the pricing mechanism, potential bidders have even more information about H;, namely, if
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Hy > X; + k.

Next we discuss the price dynamics of eBay auctions. The most straightforward dynamic
regards the high bid. When a bid, By, is submitted the new high bid, H;+, is simply the

maximum of B; and Hy, for ¢t € [0, 1),

(12) HtJr = max{Bt,Ht}

In case of a tie, the current high-bidder will remain as high-bidder. The above relationship
also holds true when the bidder is the current high-bidder, i.e. when the high-bidder revises
his current high-bid. However, if a high-bidder revises his bid then nothing happens to the

current bid, i.e. X+ = X;.

The following discussion applies to cases when a bidder who is currently not the high-
bidder arrives and places a bid. The dynamics for the current bid are also straightforward

when X; = 0 and the first bid arrives. For X; = 0, By > pmin, t € [0,7),

(13) Xt"" = pminl{pmin§3t<’l)r} + UT]‘{BtZU'r}

where 14 is the indicator function which equals 1 if the argument in the bracket is true,
and 0 otherwise. Equation (1.3) states that if the first bid is less than the reserve price,
then the current bid will jump to the minimum price (the bid has to, of course, be above
the starting bid). If the bid is above the reserve price, then the current bid will jump to
the reserve price. Note that equation (1.3) is well-defined even when v, = pp,. When

Xt > Dmin, the dynamics are a bit more complicated. Therefore, we first consider the case
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with no reserve price (v, = pmin). For Xy > ppin, Bt > X¢ + k, t € [0,7),

Xi+k H <X +k

Xt+ = .
min {Bt + k, Ht} Bt S Ht

Hy > X+ k

min {Ht + k, Bt} B, > H;

\

which we write as, for X; > pmin, t € [0,7),
(14) Xt+ = (Xt + k)l{Ht<Xt+k} + (max {Inll’l {Bt + k?, Ht}, min {Ht + k?, Bt}}) l{HtZXt"rk}

We now consider the situation when a seller has included a reserve price v, > Pmin.
As mentioned above, the actual amount of v, is not disclosed, and only a message stating
whether v, has been met is displayed. That is, if v, has not been met, then H; < v,, i.e.
H; < v, if and only if X; < v,. Note that the dynamics for H; are not affected by v, > pmin

and still follow (1.2). For X; > pmin, Bt > Xy + k, t € [0,7),

.

X+ k H: < X;+ k
min{B, + k, H;} Hy > X;+k, B, < H, Ht<vr, By <vror H >y

XtJr = min{Ht + k, Bt} H; > X+ k, By > Hy

maX{Xt + k,’UT} H <X, +k
Hy <wvp,By > vy

max{Ht + k,’l)r} H, > X+ k
\

which we write as, for X; > ppin, by > X+ k, t € [0,7),

(1.5)

X+ :(1 - l{Ht<vr§Bt})[1{Ht<Xt+k} (Xt + k) + 1{HtZXt+k} maX{min{Bt +k, Ht}’ min{Htv Bt}}]
+ L <o <y L < x, 16y max{ Xy + K, v} + Lipg, > x, 44y max{Hy + k, v, }]

Note that, if v = pmin, then (1.5) simplifies to (1.4), since Hy > pmin, and 1¢g, <. <p,} = 0.
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We summarize the main mechanisms of eBay as follows,

(1) An auction starts with a fixed time horizon 7, starting price ppin, and possibly a
hidden reserve price v,.
(2) The first bidder must bid at or above pin.
(3) When a bidder arrives to the auction site he observes,”
(i) How much time ¢ has elapsed, t € [0, 7].
(ii) If he is the high-bidder.
(iii) The current price Xj.
(iv) The list of previous bids, i.e. all non-winning bids.
(v) If the reserve price v, has been met or not, i.e. is X; > v,.
(4) If he decides to bid, then B; > X; + k (if the bidder is the high-bidder, then
B, > Hy).
(5) After a bid is submitted, H; and X; are updated accordingly.
(6) When the auction expires at ¢ = 7, the person with the high-bid, H,, pays X, and

receives the item, provided H, > v,. However, if H, < v,, then the seller is not

obligated to award the item.

Though the format of an eBay auction seems to resemble a mix of a first-price sealed-bid
and open English (ascending) auction, since all non-winning bids are displayed and X is
continuously updated. In effect, it is a second-price auction. Or more appropriately one
could define eBay auctions as second-price+k censored-English auctions. We say ‘second-
price+k’ since the highest bid wins, but only has to pay the second highest bid plus the
minimum increment k. We say ‘censored English’ since although all non-winning bids are
disclosed, the high-bid is never displayed. Another reason we say eBay auctions are second-

price auctions is seen in the case of k = 0 for all X;. If we ignore reserve price (v, = pmin),

9There are of course many other variables a prospective bidder might consider in his decision whether
to bid and/or the amount, but here we only point out the main time and price variables.
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we notice that with k& = 0, the following dynamics apply, for Xy > ppin, By > X3, t € [0,7),

Xt+ = min {Bt, Ht}

The above equation is exactly the price dynamic of a strictly second-price auction. Similarly

if Ur 2 Pmin and k = 07 for Xt 2 Pmin, Bt > Xtv te [077-)7

Xy =(1- 1{Ht<’U'rSBt}) min{ By, H;} + Lim, <v,<B}Ur

3.1. Buy-it-now auctions. There is one additional feature we have not included in the
discussion above, namely the Buy It Now price, which we define by py,,. As the name
suggests, ppyy is a pre-set price at which the seller is willing to end the auction and award
the item immediately. In other words, if someone bids py,,, then the auction terminates.
Naturally pyy,y is shown and not hidden as v.. However, py,, is only available as long as
Xy < vp. That is, if 1) ppin = v, Xy = 0, and By < Ppuy, OF 2) Pmin < X < vp, and
vy < By < ppuy, then the Buy It Now option is removed at tT. Note that DPbuy > vr and
therefore py,, can be regarded as a maximum price or ‘list price’ of the item. However,
this list price is only available until the first bid arrives, or until By > v, arrives. The
requirement B; < pyyy in the second case above is a bit redundant, since if B; = py,y, then
tT indicates the end of the auction and Dbuy 18 also ‘removed’. As a consequence of the
Buy It Now feature the dynamics of the auction change slightly. Let us again consider the

dynamics described earlier.

Case 1) vy = Dmin

For t € [0,7), the auction length is defined as follows,

Thin = min{7,inf{t | Xy =0, B; = pyuy}}
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and the dynamics of the high bid and current bid are given by,

Ht+ = min{Bt, Ht}

(

Pmin Bt < Pouy
Xy

Il
o

Xt+ - Pouy By = Pouy

1{Ht<Xt+k}(Xt + k‘) + 1{HzZXt+k} max{min{Bt -+ ki, Ht}, min{Ht + k, Bt}} Xt 2 Pmin

Case 2) vy > Pmin (recall that Hy < v, if and only if X; < v,.)

For t € [0,7), the auction length is,

Toin = min{7,inf{t | Xy < v, b = ppuy}}

and the dynamics of the high bid and current bid are,

HtJr = min{Bt, Ht}

;

Pmin Bt < Up
Xt - 0
Uy v, < By < Pouy
\
max{min{B; + k, H;}, min{H; + k, B;}} B < v,
Xt+ —
maX{Xt +k, 'Ur} v < By < Pouy Xy <y
Pbuy Bt = Pbuy

\

max{min{B; + k, H;}, min{H; + k, B; } } v < Xy

Therefore, for X; = 0,

X+ = 1B, <v,}Pmin + Lo, <Bi<pyu, }Ur + 1{B,=ppu, } Pouy
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and for Xy > pmin,

XtJr :l{Xt<vaBt:pbuy}pbuy + (1 - 1{Xt<vrth:pbuy})[
(1 - 1{Ht<vr§Bt})[1{Ht<Xt+k}(Xt + k) + 1{HtZXt+k} maX{min{Bt + k, Ht}7 min{Ht + k, Bt}}]

+ Lim, <o <B) (L < x40y Max{ Xy + K, v} + g, > x, 10y max{H; + k, v, }]

Next we discuss the background for the data used in the empirical analysis of Chapter

4 and 5.

4. The Data and Dell Financial Services

The data we analyze in this thesis comes from the eBay listings of Dell Financial Ser-
vices L.P. (DFS). DFS is a joint venture between Dell Inc. and CIT Group Inc. (CIT), that
provides financing of Dell products to various customer groups, including home, education,
small, medium, and large businesses. Dell, which was founded in 1984, is one of the largest
computer system manufacturers and sellers in the world. CIT, which was founded in 1908,
provides financial solutions for both commercial and consumer clients. For more informa-
tion regarding Dell and CIT, visit dell.com and cit.com. Since founded in 1997, DFS has

”originated more than $18 billion in finance transactions.”!°

After products return from leasing programs, DFS selects the highest quality products,
refurbishes them and sells them via their private online channels, df sdirectsales.com and
dellauction.com, as well as on ebay. com. In other words, the three online channels provide
DFS with alternative salvage channels. How long DFS has been using these channels or how
DFS allocates the products to the different channels is not specified. However, from their

eBay profile we know that DFS has been an eBay member since April 2001 (eBay user-id:

1Owww .dfsdirectsales.com
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dell financial services). There are a few comments to make. First, DF'S only sells to the US
market. A customer must have a US based credit card and a US delivery address. Second,
DFS does not operate an eBay store, but lists items on eBay as an individual member.
Third, for unknown reasons, since February 26, 2007, DFS has ceased to list products on
eBay. They still, however, use their own online channels. Finally, Dell, and not DFS, also
employs an online channel called Dell Outlet for selling returned and refurbished products

at fixed but discounted prices.!!

From the perspective of the customers, the three channels provide opportunities to pur-
chase used and refurbished Dell products at a discount. Issues like taxes, shipping and
handling, warranties, and return policies vary for each product sold. In general, the prod-
ucts are covered under Dell’s general warranty. However, since products are returned after
various lease durations, the extent of the remaining warranty differs from product to prod-
uct. The specifics of the remaining warranty is available online for a potential buyer to
verify before having to commit to a purchase or bid. Moreover, DFS also provides a return
policy of 30 days, for a credit of the purchase price (excluding shipping and handling). It
should be noted, that unlike Dell’s direct business model where customers tailor the product
configuration according to their needs or budget, the configurations of items listed by DFS

are fixed and DFS does not provide any upgrade or modification services.

The three channels each have different pricing mechanisms. At dfsdirectsales.com
products are sold at a fixed list price. How DFS determines the list-price of each product
or configuration is not specified. As a rough estimate, the list-price seems to be about half
of the price of a new product, as sold on dell.com. At dellauction.com and eBay.com,
products are predominantly sold using the online auction version of a second-price auction.

11h'c‘cp ://www.dell.com/content/segmenter.aspx?c=us\&l=en\&s=dfo
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The main difference between the two auction channels is that, unlike the hard auction end
on ebay.com, at dellauction.com, DFS employs a going, going, ...., gone end. Similar
to the former ending rule at auctions.amazon.com, dellauction.com auctions are auto-
matically extended by 10 minutes for each arriving bid in the last 10 minutes.'? This is

presumably to provide less of an incentive for the strategy of sniping [24].

A common attribute among the three channels is that the picture and description of
each product listing are standardized. For all listings, DF'S uses a generic picture of the
product that is being sold or auctioned. In other words, DFS does not provide digital images
of the individual item that is sold or auctioned. In addition, DFS uses a standardized tem-
plate to describe the product. The information provided includes a description of the main
features, but does not give detailed description regarding, for instance, cosmetic appear-
ance. It would seem reasonable to assume that by using generic pictures and standardized
templates, DF'S reduces the administrative cost of using online channels. The effect this has
on the final price is not immediate. Some related research topics include how to allocate
products to the different channels, and how the allocation affects the overall revenue and
profit. A third research area is investigating how the fixed list-prices and auction prices
affect each other, and the impact on overall revenue and profit. One paper that address the

latter issue is Caldentey and Vulcano (2008).

4.1. Reasons for Selecting DFS. Besides eBay’s huge commercial success and user
popularity, eBay has also become one of the most popular sources of data for auction re-
search. With millions of listings and data from completed auctions made public for a few
weeks, eBay provides an unparalleled rich source for empirical investigations. However,
though the data is available, it is not a trivial task to extract large data sets. Automating a

120 “Auto Bid Extend’, Glossary at www.dellauction.com
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data extraction process requires Internet and eBay experience, a computer code or software
technology, and an understanding of how to use the code or software. In the next section

we give a brief explanation of how our data were extracted.

Most researchers tend to focus on a specific item, and then simply download as much
auction data as possible for that particular item. We decided to take a different approach
and only focus on a particular seller, namely DFS, and then download all auctions they
listed on eBay over a given time-period. The main reason for this, was that we wanted to
control for the effect of the seller’s reputation, trustworthiness, and feedback rating. Studies
have indicated that the trustworthiness and feedback rating may effect the final price of
an auction [16]. Therefore, to control for this issue, we decided to only consider a specific
seller, and to take a well-established company whose reputation and trustworthiness would

in general not be considered suspect.

Another reason we chose DFS was that we wanted to maximize the chance that there
would be an abundance of auctions over an extended period of time. In addition, we wanted
to maximize the chance of having many auctions of identical or near identical products. An
unforeseen benefit of the DFS auction data, was that the description and picture provided
was standardized, thereby providing control for the effect wording, description and pictures
may have on the auction dynamics. It should, however, be noted that over time DFS did

make some changes to the template used.

4.2. Data Extraction and Handling. Extracting and analyzing the data involved
both manual and automated steps. We will not provide a detailed account of each step, but

instead give an overview regarding the main components. All data extraction, handling and
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analysis was executed on a standard PC with Internet connectivity. The first three steps of

data extraction only needed to be done every three weeks.

(1)

The first step was to log on to eBay and perform a manual search of all com-
pleted listing for Dell_Financial_Services. This step required an eBay user-id and
password, and knowledge of how to use their search function.

The next step was to save the entire list as a html-file using the ‘Save As’ function
provided by the web-browser.

The third step was to run a Perl script that automatically scanned the saved
list and downloaded into flat files (text files) all the relevant information for each
individual auction. This step produced eight files: two auction data files and one
bid data file per PC category (laptop and desktop), one file with non-PC and
recalled auction listings (monitors, docking stations, and test listing), and one
file for any error messages. In the auction data files, each row corresponded to
an individual auction and each column corresponded to a different variable. See
Table 1.3 for the list of variables. In the bid data file each row corresponded to an
individual bid for a specific auction.

The script worked as follows. First, it searched through the saved list and picked
out the individual listing ID for all new auctions since previous data extraction.
It then queried ebay.com regarding each auction and collected the pre-specified
information. Section 4.3 lists the specific information collected. Perl is a general
purpose programming language, and to run the script requires a compiler. We
used ‘ActivePerl’ available at no cost at www.activestate.com. The script was
written by UBC student Andrew Gray and consists of 540 lines.

After data had been extracted into flat files, it was populated into an Excel spread-

sheet by a Visual Basic (VBA) macro. The same VBA macro was also used to
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perform data cleaning, data selection as well as numerous computations. The script
was also written by Andrew Gray and each user function was executed inside Excel.
(5) After a subset was selected and the variables of interest had been computed, the
resulting Excel sheet was exported to a tab-delimited text-file.
(6) The resulting text-files was then imported into the statistical software ‘R’
[22], for various statistical and graphical analysis. ‘R’ is available at no charge at

www.r-project.org, and is an extension to the statistical software ‘S’.

4.3. The Data. Data were collected from mid December, 2005, until the end of Feb-
ruary, 2007. More specifically we obtained complete information regarding 6,683 auctions,
with start and end date between December 12, 2005, and February 26, 2007. As mentioned
above, DFS has since ceased their activity on eBay. Only auction listings for PC desktops
and PC laptops at Dell_Financial_Services eBay-site were collected. In Table 1.2 some ag-
gregated statistics are summarized. There were 3,802 desktop auctions and 2,881 laptop
auctions, which combined for a total sales of $1,979,240. The average final price, average
number of bids, and average number of bidders for the desktop auctions were $205, 13.54,
and 7.89, respectively. For laptop auctions the corresponding values were $416, 17.09, and
9.37. In other words, on average a laptop PC sold for about twice that of desktop PC, and

attracted about three more bids and one more bidder.

We also note the great variation in final price, bids and number of bidders. In particular,
the standard deviation in final price for desktop and laptop auctions is quite large, at $66.81
and $86.24 respectively. This illustrates the huge uncertainty in final price a seller is faced
with in selling via online auctions. It would not seem reasonable to assume that the variation
is strictly a result of the variation in bidders’ valuation. In Section 4.4 and Chapter 5 we
analyze this issue further. The variation in bids and number of bidders is also interesting

to note. Often in the auction theory literature it is assumed the number of bidders is fixed.
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From Table 1.2 it is clear this is not the case here. Furthermore, this would intuitively seem
to indicate at least one source of variation regarding the final price. Chapter 3 discusses a

model for the distribution of final price that incorporates the variability in the number of

bidders.

Total Mean (s.d.)
Dell Product | Auctions  Bids Sales Final Price Bids Bidders
Desktop 3,802 51,495  $780,114 | 205.20 (66.81) 13.54 (5.53) 7.97 (2.32)
Laptop 2,881 49,242 $1,119,126 | 416.20 (86.24) 17.09 (6.79) 9.37 (2.68)
All 6,683 100,747 $1,979,240

TABLE 1.2. Descriptive statistics for the all auctions.

Figure 1.2 provides a time series of the final price for all auctions coded by PC cat-
egory Desktop and Laptop. The horizontal axis is time, and the vertical axis represents
the final price of the auction. Each circle represents an individual auction, where black
circles are laptop auctions, and grey circles are desktop auctions. There are at least three
rather apparent features. First, the desktop auctions’ final prices are about half those of
laptop auctions, as noted above. Second, laptop auctions appear to have been sold at two
levels. There is a clear divide of laptop final prices before and after July, 2006. During
July, 2006, there is a clear decline in final prices, after which they seem to stabilize again.
Desktop final prices seem to remain steady throughout the observation period. Third, as
already noted, there is a considerable fluctuation in final prices for both laptops and desk-
tops. Some of these fluctuations might be due to the difference in product configurations.
In Section 4.4 below we briefly analyze this issue. However, the fluctuations also reflect

the stochastic nature of the online auction revenue stream. The main motivation for this
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FIGURE 1.2. Final price of each auction for the entire data set (6,683). The
horizontal axis represents time. The vertical axis represents the final price of an
individual auction. Black circles represents laptop auctions (2,881), and grey circles
desktop auctions (3,802).

thesis, is to provide insight for making better decisions given such a stochastic environment.

Table 1.3 below displays the auction and product information recorded for each product.
The first ten variables are standard to all eBay auctions and provide information regarding
the auction state and bidding history. Variables 8, 9, and 10, are recorded for each success-

ful bid (registered bid) in the bid history. The last 11 variables are information that DFS
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decided to include in their listing. They provide the specifications of the product being
auctioned. As mentioned above, DFS or bidders do not choose the specific product configu-
ration. In other words, though DF'S does have the option of not listing a particular product
with a specific configuration, the last 11 variables are not decision variables. Therefore,
the only decision variables are ‘Description’, ‘Start time’, ‘End time’, and ‘Starting bid’.
The ‘Start time’ is the time-stamp when DFS lists the auction, and therefore reflects the
decision if and when to release an item for auction. The ‘End time’ is the time-stamp when

an auction will end, and reflects the decision how long an auction should last.

In addition to the information listed in Table 1.3, DFS also includes a generic picture
of a new product, some additional information regarding what is included (AC adapter,
pointing device/mouse, keyboard, etc.), instructions how to verify any remaining warranty,
and various shipping options. Shipping cost range from $20 to $80 depending on service

requested by the auction winner. A few comments follow.

(1) The standardized template that DFS uses to list the last 11 variables was modified
over time.

(2) It seemed that DFS was not consistent in always including the information re-
garding all 11 variables. More specifically the only variables consistently reported
were: Category, Brand, Processor Type, Processor Model, Processor Speed, Mem-
ory (RAM), and Hard Drive Capacity. Therefore in the ensuing statistical analysis
we only focus on these variables and ignore the others.

(3) Unlike the PC laptops, which naturally came with a screen, none of the PC desk-
tops included a monitor.

(4) Though DFS also auctions items such as monitors and docking stations, we exclu-

sively restricted our data extraction and analysis for PC desktops and laptops.
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(5) All auctions that ended with the Buy-It-Now option were excluded. The reason for
this is that once a bid arrives or the reserve price is met, the Buy-It-Now option
disappears. Since the information, if an auction was initially listed with a Buy-
It-Now price, is not recorded, we decided to ignore all Buy-It-Now transactions.
It can, however, be noted that the number of Buy-It-Now transactions was less
than one percent of all auction listings. With regard to the previous comment, it
can also be noted that all auctions were listed without a reserve price, and almost
exclusively had a starting bid of $.99. Though this might appear to be rather risky,
both anecdotal and research evidence supports this use. The listing fees are less
for auctions without a reserve price and a low starting bid. In addition, and more
importantly, low reserve price and starting bid tends to lead to higher expected
revenue [4].

(6) DF'S only sells and ships to US based customers.

(7) Though data were extracted every 2-3 weeks, some auctions may have been missed.
In other words, some completed auctions may have been removed by eBay before
we had a chance to download the information. Therefore, the data set does not
exclusively cover all DFS eBay desktop and laptop auctions. However, there is no
reason to believe that the excluded auctions had special features or exhibited any

unusual auction dynamics.

We now describe the data more in depth.

4.3.1. Desktop Data. In total there were 3,802 successful desktop auctions with a to-
tal value of $780,114. The mean final price over the entire study period was $205.20. As
mentioned above, since not all variables listed in Table 1.3 were consistently reported, we
chose to focus on the main characteristics that were reported: Category, Brand, Processor

Type, Processor Model, Processor Speed, Memory (RAM), and Hard Drive Capacity. All
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Name Description Example
1. | Item ID eBay listing ID number 6831091024
2. | Description Brief description of item

DELL WINXP Latitude D600 1.6 GHz 1024MB CDRW DVD NR

3. | Winning bid Amount of final price 576.87
4. | Start time Time stamp of auction start 12-Dec-05 10:07:39
5. | End time Time stamp of auction end 15-Dec-05 10:07:39
6. | Starting bid Amount first bid has to exceed 0.99
7. | Number of bids Total number of bids that arrived in auction 19
8. | User ID eBay User ID of bidder frittikanada
9. | Bid Amount Amount of bid 127.32
10. | Date of Bid Time stamp of bid 11-Feb-06 16:46:23
11. | Category Type of PC product (desktop or laptop) Laptop
12. | Brand Brand of PC product (all Dell) Dell
13. | Processor Type Brand of processor (all Intel) Intel
14. | Processor Model Model specification of processor Pentium M
15. | Processor Speed Speed specification of processor 1.6GHz
16. | Bundled Items Included software (operating system) WINXP
17. | Memory (RAM) Specification of internal memory 1024MB
18. | Hard Drive Capacity Specification of hard drive capacity 60GB
19. | Operating System Description if/what operating system is included Yes
20. | Primary Drive Description of CD or DVD drive CD-RW
21. | Condition One word describing condition Refurbished

TABLE 1.3. The auction and product variables collected.

auctions consisted of Dell PC with an Intel processor. In Table 1.4 the distribution of the
other variables are listed. Out of the five processor models, the Intel Pentium 4 (IP4) was
the most common, accounting for 87% of all listings. There were 18 different processor
speeds, ranging from .866 to 3.2GHz. The most common was 2.0GHz which accounted for
32% of all listings, and the five most common, 1.8, 2.0, 2.2, 2.3, and 2.4GHz, accounted for
83% of all listings. There were eight different memory (RAM) sizes, where 256 and 512MB
were the most common covering respectively 46% and 27% of all listings. There were 13
different hard drive capacities, ranging from 6 to 200GB. The two most common were 40

and 20GB, which accounted for 57% and 34% of sales each.

The last variable in Table 1.4 is the auction duration measured in days. Though DFS
seemed to experiment with a few 1 day auctions, specifically 459 or 12% of all listings, they

predominantly used an auction duration of 3 days, accounting for 88% of all listings. The
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eight auctions that do not have one of the standard eBay auction durations, i.e. the ones
with the decimal extensions, are auctions that DFS for unknown reasons simply chose to
end early and award to the high bidder at that time. It should be noted that these are not
Buy-It-Now auctions, as these have been removed. They are also not auctions that were at
a particular high price, such that it might seem unnecessary to let them proceed the full
auction duration with little probability of seeing more bids. In fact almost the opposite, all
eight auctions were at rather low prices. No further explanation as to why they were ended

is provided. In the ensuing analysis these auctions will therefore be removed.

Processor P4 3,309 IP4 Xeon 2 IPM 34 IPLi 2 Celeron 455
Model
Processor | 0.866GHz 2 1.3GHz 1 2.0GHz 1,231 2.6GHz 54 3.1GHz 2
Speed 1.4GHz 6 2.2GHz 238 2.7GHz 102 3.2GHz 1
1.5GHz 27 2.3GHz 308 2.8GHz 136
1.6GHz 15 2.4GHz 973 2.9GHz 18
1.7GHz 144 2.5GHz 142
1.8GHz 402
Memory 128MB 144 256MB 1,760 512MB 1,021 1024MB 278
224MB 11 320MB 541 768MB 25
1000MB 22
Hard Drive 6GB 1 20GB 1,279 40GB 2,179  120GB 9
10GB 15 30GB 64 60GB 78 160GB 2
18GB 4 33GB 2 80GB 162 200GB 1
36GB 6
Duration 0.51699d 1 1.68313d 1 1d 459
(days) 0.82015d 1 1.72839d 1 3d 3,334
1.00861d 1 1.91704d 1 5d 1
1.12295d 1 2.03098d 1

TABLE 1.4. Counts of product configurations and auction duration for the 3,802
Dell PC desktop auctions.

4.3.2. Laptop Data. In total there were 2,881 successful laptop auctions for a total value
of $1,119,126. The mean final price over the entire study period was $416.20. Similar to
the desktop auctions we will only focus on the main characteristics that were consistently
reported. All auctions were for a Dell PC with an Intel processor. In Table 1.5 the distribu-
tion of the laptop configurations are listed. The two most common processor models were

Intel Pentium 4 (IP4) and Intel Pentium M (IPM), which accounted for 49% and 46% of all
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listings respectively. There were 22 different processor speeds, ranging from .866 to 3.2GHz.
The five most common, which accounted for 87% of all listings, were: 1.4 (22%), 1.6 (15%),
1.7 (7%), 1.8 (18%), and 2.0GHz (25%). Out of the eight different memory (RAM) sizes the
most common were 256, 512 and 1024MB, covering 18%, 57% and 20% respectively. There
were 13 different hard drive capacities, ranging from 5 to 80 GB. The three most common

were 20, 30, and 40GB, which accounted for 18%, 42% and 33% respectively.

Similar to the desktop auctions the most common auction duration was 3 days, which
accounted for 91% of all listings. Furthermore, as with the desktop auctions, there are a
few listings that have non-standard auction duration and are not Buy-It-Now auctions. The
two special listings with an auction length of 2.95833 days, are auctions that were ended
exactly one hour prior to the auction ‘End time’, and were released on the same date (but
not at the same time). The reason and mechanism to do this is not known, but perhaps
there was a glitch with the data extraction or error with the eBay listing. In total there
were ten auctions released that day, and only two that did not elapse the full 3 days. In

the ensuing analysis the four auctions with non-standard duration have been removed.

4.4. Data Selection and Some Descriptive Analysis. In order to control for the
effect of product configuration on the analysis in Chapter 4 and 5, only six subsets are
used. These are chosen by selecting the main categories of processor model, processor speed,
memory, hard drive capacity, and auction length. More specifically, only the six product
configurations listed in Table 1.6 were analyzed in Chapter 4 and 5. The products were
chosen to limit the analysis to the cases with the most data. The aggregated ‘products’ D1
and L1 were selected by choosing the attributes listed in Table 1.4 and 1.5 with the most
cases. The remaining products were chosen by looking at cross-tabulation counts from

subsets D1 and L1. That is, D3 and D4 are subsets of D1, and L4 and L5 are subsets of L1.

31



Processor P4 1,422 IPM 1,327 IPTii 104 Celeron 28
Model
Processor 0.866GHz 3 1.0GHz 34 1.5GHz 76 2.0GHz 708 2.5GHz 5
Speed 0.9GHz 2 1.1GHz 2 1.6GHz 427 2.2GHz 42 2.6GHz 18
1.2GHz 78 1.7GHz 203 2.3GHz 3 2.8GHz 8
1.3GHz 58 1.8GHz 507 24GHz 75 29GHz 3
1.4GHz 624 1.9GHz 3 3.0GHz 1
3.2GHz 1
Memory 128MB 63 256MB 506 512MB 1,652 1024MB 563
224MB 10 320MB 14 768MB 18
1000MB 55
Hard Drive 5GB 1 20GB 517 60GB 150
10GB 9 30GB 1,212 80GB 28
12GB 2 40GB 962
Duration .73461d 1 1d 251
(days) 2.32205d 1 3d 2,626
2.95833d 2

TABLE 1.5. Counts of product configurations and auction duration by category
for the 2,881 Dell PC laptop auctions.

Category Subset | Processor Processor Memory Hard Drive Duration | Count
Name Model Speed (GHz) (MB) (GB) (Days)
Desktop D1 1P 4 1.7-2.8 256, 512, 1024 20, 40 3 2,072
D3 1P 4 2.4 256 40 3 274
D4 1P 4 2.0 512 40 3 167
Laptop L1 IP 4, IP M 1.4-2.0 256, 512, 1024 20, 30, 40 3 2,046
L4 1P 4 1.8 512 30 3 172
L5 IPM 1.4 512 40 3 163

TABLE 1.6. Product configuration for the subsets analyzed.

See Table 1.8 and 1.9 below. The last column in Table 1.6 includes only those listings with

a ‘Starting bid’ of $.99. For Laptop auctions there was one listing that started at $501 and

received one bid. For Desktop auctions there were four auctions that had a ‘Starting bid’ of

$227, $304, $374, and $382 respectively, and where each received one bid. Note that these

are not Buy-It-Now auctions. A notational comment is that throughout the thesis we refer

to D1, D3, D4, L1, L4, and L5 as ‘products’, even though D1 and L1 span several product

configurations.

Table 1.7 lists some descriptive statistics regarding the final price of each product. We

note that the mean and median final price for product D3, is slightly below the mean and

median for the aggregated subset D1, while for product D4 the reverse is true. This is most
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D1 D3 D4 L1 L4 L5
Mean | 20820 193.65 23059 | 412.20 427.98 409.59
(s.d.) | (55.74) (36.90) (36.78) | (74.33) (68.45) (73.63)
Median | 200.00 190.71 230 | 405.00 424.44 405.00

Min 93.92 127.50 129.20 | 10.50 266.00  280.99

Max 501.00 338.50 348.26 | 700.00 613.00 596.99

Count | 2,072 274 167 2,046 172 163
TABLE 1.7. Mean (st.dev), Median, Minimum, and Maximum Final Price for
selected subsets.

likely because D4 has twice the memory (RAM) than D3 (though D3 has a faster processor).
Similarly, we note that the mean and median for the product L5, is slightly less than for
the aggregated subset L1, while L4 has values above L1. The only difference between L4
and L5, is with regard to the processor. L4 has a 1.8GHz Intel Pentium 4 processor, while
L5 has an 1.4GHz Intel Pentium M. Another interesting observation is that the variance
is less for the specific products D3, D4, L4, and L5, than the aggregated products D1 and
L1. However, there is still considerable variation in final price for the four specific products.
Figure 1.3 provides histogram of the final price for D1 and L1. Though both are skewed to
the left, the distribution for L1 is more symmetrical than for D1. In the following sections

the variation for the various product configurations are analyzed further.

A final comment, is that consecutive bids in a short time period by the same bidder were
removed. Where ‘short time’ was defined as 10 minutes, meaning that if a bidder places
another bid within 10 minutes of his previous bid, then the first bid is removed. In other
words, only the last bid a bidder placed in one ‘session’ is considered. If a bidder waits
more than 10 minutes to place another bid then this is defined as a second ‘session’ and

two bids are recorded. The result was that 14,202 out of 100,747 bids were removed.

We conclude this chapter with a brief statistical analysis regarding the price variation

for D1 and L1. Chapter 4 and 5 provides further analysis regarding the variation of final
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FIGURE 1.3. Distribution of the Final Price for subset D1 (Desktop) and subset L1 (Laptop).

price.

In each box-plot the lower and upper edge of the box represents the 25th and 75th
percentiles. The line inside the box represents the median final price. The dashed lines, or
‘whiskers’, from each box, are drawn to the observation furthest away, but within a factor of
1.5 x IQR, from the edge of the box. The IQR is the inner quartile range. Circles outside
the whiskers are observations that would be classified as extreme and potentially outliers.
The notches inside the box indicates a range around the median. An informal statistical

test if the median from two box-plots are different, is if the notches overlap.

Desktop - D1. For D1 the mean and standard deviation of the final price is $208.20
and $55.74, and the median, minimum, and maximum were $200.00, $93.92, and $501.00 re-
spectively. Table 1.8 displays the cross-tabulation counts for the selected categories. There

is a clear cluster of products with a processor speed ranging from 1.8 to 2.4GHz, memory
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size of 256 or 512MB, and hard drive capacity of 20 or 40GB. Figure 1.4 shows the distri-
butions of the final price by hard drive capacity, memory, and processor speed. There are
two noteworthy observations. First, within each product specification there is considerable
variation. For example, the median final price of D1, with hard drive capacity 40GB, is
about $200, with the 25" and 75" percentiles at about $180 and $250 respectively. Second,
the median price is increasing in the product specification. This is most visible for hard
drive capacity and memory, where the median price is clearly increasing in the respective
specification. An informal test for a significant change in median price, is if the notches
of two box-plots overlap. For memory, there clearly is no overlap in the notches, thus in-
dicating a significant increase in median final price. For hard drive capacity the notches
also do not overlap, though not by a great margin. For processor speed, overall the median

final price seems to increase. However, the increase is not monotonic in the processor speed.

Intel Pentium 4
256 512 1024

20 40 | 20 40 |20 40
1.7 | 40 1 3 1 0 0
1.8 110 52 | 33 50 | 3 9
2.0 | 165 225|107 167 | 4 51
221 0 37 0 11|10 1
231143 4 42 48 | 3 8
241 91 274 44 102| 6 55
25 9 26 4 22 |2 1
26| 0 20 2 5 0o 3
2.7 3 6 0 9 0 6
2.8 2 20 3 21 | 2 16

TABLE 1.8. Cross-Tabulation of selected Desktop product configurations.

Laptop - L1. For L1 the mean and standard deviation of the final price is $412.20
and $74.33, and the median, minimum, and maximum were $405.00, $10.50, and $700.00
respectively. The minimum value of $10.50 is the clear outlier as seen in both Figure 1.3
above and Figure 1.5 below. The outlier a ‘DELL WINXP Latitude C640 1.8 GHz 1024MB

CDRW DVD'’ listed between 25-Oct-06 21:29:47 and 28-Oct-06 21:29:47, and received three

35



500
I

400
I

g
e

Final Price
300
I

200
I

-+nm@ @ 000

=

T
20

T
40

Hard Drive Capacity (GB)

Final Price

500

400

300

200

100

i
E

T
256

T
512

Memory (MB)

Final Price

500

400

300

200

100

°
°
1
- Jomm @0
1
1

17 18 2 22 23 24 25 26 27 28

Processor Speed (GHz)

Hard Drive (GB) Memory (MB) Processor Speed (GHz)

FIGURE 1.4. Distribution of the Final Price for D1 auctions by the three main categories.

bids from two bidders (eBay listing number: 160044957851). Removing the outlier only
marginally changes the mean, median, and standard deviation, but drastically increases the

minimum to $233.50.

Table 1.9 displays the cross-tabulation counts for the selected categories. There are two
clear clusters. One for Intel Pentium 4, 1.8-2.0GHz, 512MB, and 20, 30, or 40GB. And one
for Intel Pentium M, 1.4-1.6GHz, 512MB, 20, 30, or 40GB. Figure 1.5 shows the distribution
of the final price by processor model, processor speed, hard drive capacity, and memory.
Similar to D1 we see that within each product specification there is considerable variation.
For instance, the median final price of L1, with hard drive capacity of 40GB, is about $400,
with the 25" and 75" percentiles at about $380 and $450 respectively. However, unlike D1,
the median final price does not increase as drastic in the product specification. In fact, for
hard drive capacity and processor model, the median final price seems to be the same across
the possible values. For memory, we see that auctions for L.1 with 256 M B, the median price
is ‘significantly’ less than for L1 with 512 or 1024MB. However, between the two higher
memory sizes, there does not seem to be any difference. For processor speed, the median

final price, though fluctuating, is not monotonic. An interesting topic for further empirical
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Intel Pentium 4 Intel Pentium M
256 512 1024 256 512 1024

20 30 4020 30 40 |20 30 40|20 30 40|20 30 40 [20 30 40
1412 0 010 2 2 0 0 01]23 8 34|49 166 163| 2 5 31
1.5/0 2 011 0 2 0O 0 o1 0 12| 2 7 7 0o 0 32
16/ 2 2 0|1 2 4 0O 0 0|14 10 3 |36 105 125| 1 27 18
1.7/5 3 1|2 2 2 o o0 0|3 2 2|0 32 18]0 0 3
1.8144 25 7 (38 172 44 |2 &8 8|0 0 010 1 3 0o 0 O
1910 1 010 1 0 0O 0 0|0 O O01}O 0 0 0O 0 O
20162 52 27140 169 106 9 93 33| 0 0 01O 0 0 0O 0 O

TABLE 1.9. Cross-Tabulation of selected Laptop product configurations.
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FIGURE 1.5. Distribution of the Final Price for L1 auctions by the four main
specification categories.

research would be a hedonistic pricing analysis of the various product specifications. This

will not be pursued in this thesis.
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CHAPTER 2
Optimal Release of Inventory Using Online Auctions: The

Two Item Case

1. Introduction

The objective of this chapter is to provide a model for selling a fixed inventory using a
sequence of single item auctions, and to derive structural properties regarding the optimal
release policy. More specifically, how should a seller, given N identical items, optimally
release each individual item for auction in order to maximize total profit. We assume all
auction parameters, such as auction duration, starting price, bid increment, etc., have been
fixed and that the only decision to make is regarding the timing to release each item for
auction. The problem is modeled as a discrete time Markov Decision Problem (MDP) with
focus on sufficient conditions to ensure optimal monotone policies. The imposed trade-off
to make the problem interesting is that, on the one hand, the seller incurs a holding cost for
each period an item remains unsold, while on the other hand, the more ongoing auctions
the seller has, the lower the expected final price in each of those auctions. In other words,
we assume competing auctions ‘cannibalize’ on each other. The holding cost represents, in
addition to the usual components, such as cost of capital, insurance, and space, the value
depreciation of an item, and can therefore also be regarded as a depreciation factor. An
illustration of the depreciation is provided in Figure 2.1, which depicts the final price for the
D3 desktop (bottom circles) and L4 laptop (top solid circles) auctions. The vertical axis is
the final price, and the solid and dashed line represents the least square linear regression for

L4 and D3 respectively. We see that for the L4 laptops the average selling price decreased
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FIGURE 2.1. Final price as a function of the ending date, for the D3 (bottom
circles) and L4 (top solid circles) auctions at the eBay site of Dell_Financial_Services.
All auctions lasted for three days and took place between 15th of December, 2005,
and 30th of June, 2006. The solid and dashed line represents the least square linear
regression for L4 and D3 respectively.

more than $200 over 2006. The decrease for D3 was not as drastic. More detail empiri-

cal analysis, including a validation of the cannibalization assumption, appears in Chapter 4.

The optimal release policy will mainly be driven by the effect from the holding cost and
the cannibalization effect. If the holding cost is ‘very low’ then it will never be optimal to

have more than one auction underway at any time. The reason for this is because the fewer
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the number of ongoing auctions the higher the expected final price for each of the auctions,
due to the assumed cannibalization. That is, the optimal release policy is to wait until the
current auction is completed before releasing the next item, i.e. to hold N non-overlapping
sequential auctions. On the other hand, if the holding cost is ‘very high’ then it will never
be optimal to delay the release of an item and instead all items should be released immedi-
ately. The reason for this is that the additional holding cost from deferring will exceed the
gain in expected final price by having fewer ongoing auctions. The optimal release policy
is to hold N simultaneous auctions (all overlapping and note that this is different from one
N-item auction). Our main interest are situations where the holding cost has some strategic
implication and the optimal policy is not one of the extreme policies. Furthermore, we will
show that the optimal release policy is a state dependent or closed loop policy, in contrast
to a state independent or open loop policy. More details regarding the definitions of open
and closed loop policy will be given in Section 3.1. Note that the two extreme open loop
policies are the sequential and simultaneous release policies, and that open loop policies are

special cases of closed loop policies.

A numerical example illustrating the above discussion is provided in Figure 2.2. The
figure depicts, for two items (N = 2) and auction length of three periods, the expected
total profit (value) as a function of the per period per item holding cost. See Section 3.4
for details regarding formulation and computation of the example. The four dashed lines
labeled A through D, represent the value for the four open loop policies; non-overlapping
sequentially released (A), released with two day overlap (B), released with one day overlap
(C), and simultaneously released (D). The solid line that lays above them represents the
total expected profit for the optimal policy, a closed loop policy, which we describe how
to compute below. We see that for ‘low’ holding cost the optimal policy is to release the
auctions sequentially, while if the holding cost is ‘high’ the optimal policy is to release the

40



Expected Total Profit

N
40 ! ! ! ! ! ! ! !
2 2.5 3 35 4 4.5 5 5.5 6 6.5

Holding Cost

FIGURE 2.2. Two item, three period numerical example of expected total profit
as a function of the per item per period holding cost. The four dashed lines repre-
sent the following open loop policies: (A) non-overlapping sequentially release, (B)
release with two day overlap, (C) release with one day overlap, and (D) simulta-
neously release. The solid line that lays above them represents the total expected
profit for the optimal policy, which is closed loop. See Section 3.4 for details re-
garding formulation and computation.

auctions simultaneously. For cases in between, the optimal closed loop policy is adaptive

and depends on the current auction price.

Though it may appear to be an oversimplification, this chapter will only consider the
case when N = 2. The reader will see that the two item case provides sufficient complexity
to be both interesting and give rise to some surprising results. Furthermore, this will en-
able the discussion to focus on the governing trade-off, between releasing and deferring the
release, and not become convoluted by the combinatorial complexity and curse of dimen-
sionality of the N item case. It should also be noted that this problem has not yet been

addressed in neither the existing auction theory or inventory literature. Previous research
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has mainly focused on the analysis of an isolated single auction, either single-item or multi-
item auctions, and in the multiple auctions case only considered non-overlapping sequential
auctions. In addition, most research has dealt with the (optimal) specification of various
auction parameters, e.g. reserve price, bid increment, auction length, lot size, etc. The
novelty of this chapter is that it provides a framework for analyzing the issue of strategic
timing of auctions when auctions compete or cannibalize on each other. This problem falls
into the third category of open research areas as outlined by Pinker, Seidmann and Vakrat
(2003). Namely how could (or should) a firm integrate online auctions into their business
model. Bajari and Hortacsu (2004) stated that more research needs to be done regarding
"the analysis of markets with multiple simultaneous auctions.” The ambition is that the

ensuing discussion provides a structural framework, insights and results regarding this issue.

1.1. Literature Review. In recent years auction theory has come to play an impor-
tant role in the management science and revenue management field, resulting in a wide
spectrum of applications. However, given the voluminous literature on inventory man-
agement and dynamic pricing, relatively little has been written with regards to inventory
management using online auctions. Two papers that consider the impact auctions have on
the inventory re-ordering policy are Vulcano and van Ryzin (2004), and Huh and Janaki-
raman (2008). Vulcano and van Ryzin focus on how a seller should optimally choose the
auction format and how this decision will affect the optimal inventory re-ordering policy.
They formulate the problem as an infinite horizon dynamic program and show the optimal
joint auction-format and replenishment policy. Huh and Janakiraman show that using auc-
tions as a sales channel, conditions to ensure that (s, S) policies are optimal are satisfied.
Vulcano, van Ryzin, and Maglaras (2002) have previously analyzed a problem that is similar
to the one we address. There they consider a seller, who given a fixed inventory and fixed

time-horizon, has to optimally ‘auction’ off the goods. The underlying ‘auction” mechanism
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they consider is in the spirit of www.priceline.com where people place ‘bids’ and sellers
can choose to accept or reject the offers. They model each multi-item ‘auction’ as a separate
period and perform the symmetric equilibrium analysis for each period (auction). One of
the main results is that the seller should not employ a standard auction format. An auction
is standard if the highest bidder is guaranteed to be awarded the item [14, p.29]. Another
related paper is by Pinker, Seidmann, and Vakrat (2001), who analyze the problem of dis-
posing a given inventory using a sequence of non-overlapping multi-item online auctions.
Based on the symmetric equilibrium analysis and uniform valuations, their objective is to
categorize the optimal number of multi-item auctions and the optimal unit to release in
each auction. In contrast to these papers, we permit the auctions to overlap and analyze

the auction dynamics as a Markov chain.

The above papers all use a game theoretic approach. A paper which uses a different
analysis methodology is Bertsimas, Hawkins and Perakis (2003). The problem they address
is how a seller should optimally set the auction control parameters starting price, reserve
price and auction length, in order to maximize revenue. They model the problem as a MDP
and based on over 17,000 eBay auctions determine the optimal parameters. Bapna, Goes,
and Gupta (2003) also address the issue of optimal auction control parameters in a revenue
management context. The main focus of their analysis is to highlight the importance and
structural implication of the bid increment in a first-price multi-item auction. Using data
from 90 online auctions they empirically validate their findings. The two common elements
of the above literature is that they focus on the optimal setting of auction parameters and
analyze each auction in isolation. In contrast, we model the optimal release or timing of auc-

tions given fixed auction parameters and a dynamic interaction between competing auctions.
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A paper that analyzes the dynamics between competing auctions is Peters and Severi-
nov (2006). They consider the case when all auctions are simultaneously released. They
present a model with M bidders and N single-item auctions, where both M and N are
fixed, and derive the Bayesian-Nash equilibrium for the final price of the N auctions. In
particular they show that the final price will be the same for all auctions, namely one incre-
ment above the M — N highest valuation. Meaning that, if there are 10 bidders and 5 items,
the price in all 5 auctions will be one increment above the 6! highest valuation. Though
they are implicitly assuming an online setting, there is nothing explicit in their model that
incorporates the special dynamics of online auctions, such as the arrival rate of bidders or

fixed auction dead-line.

In contrast to the above papers, our framework is more in line with the model presented
by Segev, Beam and Shantikumar (2001), where online auctions are modeled as Markov
chains. The main focus of their paper is to characterize the distribution of the final price

given a specific arrival rate and bidding strategy.

Overview of Chapter 2. The remainder of this chapter is organized as follows. In
section 2 we formulate the problem and general model. In section 3 we discuss the case
when the auctions are guaranteed to be successful, and hence the seller only has to list an
item once. While in section 4 we discuss the case when there is a positive probability an
auction receives zero bids and the seller has to re-list items from unsuccessful auctions. In

section 5 we summarize our conclusions and provide ideas for future research.
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2. Problem Formulation

We are considering a seller who, over a planning horizon 7', intends to sell two identical
items using a pair of single-item auctions. Each auction is assumed to have the same fixed
and finite time-length 7. We divide 7 into a sequence of discrete periods such that each
auction period coincide with the length of the discrete time period that constitute 1. The
seller decides at the start of each period whether or not to release an item for auction. It is
important to emphasize that an ongoing auction does not have to be completed before the
next auction is started; auctions may overlap each other. We model the seller’s problem as
a discrete time Markov Decision Problem (MDP) with the objective of maximizing expected
total profit. Two cases regarding the time-horizon will be considered. In the first case we
assume the auctions are guaranteed to be successful and hence the seller only has to list
an item once. Since the seller only has two items, the seller is faced with a finite planning
horizon 27. In the second case, we assume there is a positive probability that an auction is
unsuccessful, meaning that no bids arrived, and that the seller has to re-list unsold items.
Consequently the seller is faced with an infinite planning horizon. The reason for separat-
ing the two cases is that they require different models and analysis. An important aspect
to keep in mind is that we do not model the individual bidders or their bidding strategy.
Each auction is modeled as a Markov chain, where the state of an auction evolves accord-
ing to certain dynamics. Chapter 3 illustrates, with two fixed bidding strategies, how the
Markov chain transition probabilities can be derived from the individual bidding behavior.
In Chapter 4 we discuss an empirical model for how a seller can capture the Markov chain

transition probabilities from real auction data.

We will throughout the chapter assume two fundamental aspects regarding the seller.
The first is that the seller would only be interested in selling via auctions if the accumulated

holding cost over the duration of an auction is compensated by the expected final price.
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We summarize this in the following lemma and refer to it as the positive expected profit

assumption.

Lemma If the expected revenue from an auction does not exceed the holding cost accumu-

lated over the auction duration, then it is optimal to immediately dispose of the items.

The second assumption is that the seller is vigilant in keeping track of how many items
he has released for auction and how many that are remaining, and that there will not be
any reason to speculatively hold inventory. This is summarized as follows and referred to

as the vigilant seller assumption.

Lemma If the price dynamics of an auction are independent of time and the holding cost
is positive, then it will always be optimal to have at least one auction underway while there

still is remaining inventory.

In other words, if there are no auctions underway but the seller still has items remaining
he should always start at least one auction. Thus at the start of the planning horizon, he
should always start at least one auction. This lemma is equivalent to Lemma 1 in Pinker,

Seidmann and Vakrat (2001), where a proof is provided.

2.1. Markov Decision Problem Formulation. To formulate the seller’s problem

as an MDP, we require the following elements.

Decision Epochs, t=0,1,...,T
We assume discrete time periods of equal length and that decisions are made at the begin-

ning of each period. We are implicitly thinking of 7" as a fixed number of days and that
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decisions are made on a daily basis. However, for a general framework where, for instance,
decisions are made more frequently, T could be increased to reflect the appropriate planning
horizon. We will consider two cases: T' < oo and 1" = co. The finite planning horizon case
arises if the seller only lists an item once, while an infinite planning horizon formulation
is required when there is a positive probability an item does not sell and the seller has to

re-list it.

State Space

At each decision epoch t, the system state, S = ([X1,Y1; X2, Y2], Z), consists of the state
of each auction, [X;,Y;];=12, and the number of ongoing auctions Z. Each auction i,
i = 1,2, is defined by the pair of random variables current price (bid), X;, and elapsed
auction time, Y;. We will consider both discrete and continuous prices. For the discrete
case X; € {0,p,p+ k,p+ 2k,..., P}, where p,k and P are positive, finite integers. While
for the continuous case X; € {0} U [p, P|, where [p, P] C R4+. In both cases, p is the
starting price of the auction, P the upper limit of what any bidder would be willing to
bid, and for discrete prices, k is the price-increment. We assume Y; is discrete and finite,
Y; € {0,1,...,7} U {0}, where 7 < co. The symbol 4 is used to indicate that the auc-
tion is completed and the item awarded. We will interchangeably use the notation X;y;
and (X;,Y;) to denote the state of auction 4, i = 1,2. For instance, X, ; is the final price

of auction 7. The notation Xy is used to represent an auction that has elapsed for Y periods.

At the start of an auction Y; = 0 and X; = 0. For each additional period an auction is

underway Y; increases by one. When an auction has successfully been completed, that is

Xir > p, the item is awarded and payment received. In this case, the state of the auction
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FIGURE 2.3. Time-line for two auctions. At ¢ = 0 the first auction is started
automatically, and the non-trivial decision is to decide whether to start auction 2.
If auction 2 is started at t = 0, then at t = 1, z1,20 > 0, y1 = yo = 1, z = 2
(assuming 7 > 1), and there is no decision to make. If auction 2 is not started at
t=0,thenatt =121 >0, y1 =1, xz20 =0, y2 = 0, 2 = 1, and the non-trivial
decision is whether or not to start auction 2.

evolves as follows, for p < z; < x,

= (v, T 1) = (2, 7) = A = A = ...

where A; = (X;,0). We let A denote the absorbing state when both items have been sold,
A = ([A1;A2],0). If an auction is unsuccessful, that is X; ; = 0, the auction returns to the

initial state (0,0), that is the transitions follow,

(¢, 7) w. prob. Pr{X;, =¢q | X;,—1 =0}
o= 0,7-1) =

(0,7) =(0,0) w. prob. Pr{X; ;=0 X;,_1 =0}
Though it may appear redundant we include a counter Z of the number of ongoing
auctions. The number of ongoing auctions at time ¢ will be defined by Z;. In order to
avoid issues with Z; in decision epochs where an auction will be started by the vigilant
seller assumption, we define Z; to be the number of ongoing auctions in the instantaneous
moment before decision epoch ¢, before any price jumps have occurred and before the seller
has made a non-trivial or relevant decision. For instance, at the start of the planning horizon

Zo = 1. See Figure 2.3 for an illustration of the time-line.

The reader familiar with auctions or auction theory, may notice that we have not in-
cluded a reserve price. Section 3.6 discusses the implication of including a reserve price and
shows that it imposes no change to the results. As a minor notational convention, we will

avoid double parenthesis for functions where the state space is the only argument, that is
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we write f([X7,Y7; Xo, Ys], Z) instead of the strictly correct f(([X1,Y71;Xo,Ys],2)).

Actions

The only non-trivial decision facing the seller is to decide when to release an item provided
that the current auction has not yet been successfully completed. In other words, non-
trivial decision only pertain to states where ¥; < 7 and Y; = 0, ¢ # j. Under all other
conditions, the seller either does not have any decision to make or will release an item due
to the vigilant seller assumption. At each decision epoch, the actions a = 1 corresponds to
releasing the remaining item, and a = 0 not to release it. Furthermore, because the items
are identical, one can without loss of generality, define the remaining item to be item 2. For
the finite time-horizon this should be fairly obvious. However, for the infinite time-horizon,
due to that when an auction is not successful and has to be re-listed, this may not be

as obvious. We will revisit this issue in Section 4. Consequently the action space is, for

s = ([z1,y15 22, ¥2], 2),

{0,1} y1<7andy2 =0

{0} yp=T7,0 or yo >0

In Figure 2.4 a simple example, with X; = 0,1 and 7 = 2, illustrates how the sys-
tem state may evolve.States enclosed in a box indicate situations with non-trivial deci-
sions. Transitions due to the non-trivial decision of releasing the second item are rep-
resented by the dashed lines. Transitions due to not releasing or releasing due to the
vigilant seller assumption are represented by the solid lines. Note that there are four pos-
sible loops: ([0,0;0,0],1) = ([0,1;0,1},2), ([0,0;0,0],1) = ([0,1;0,0],1), ([0,1;0,0],1) =
([0,1;0,0],1), and ([1,6;0,0],1) = ([1,6;0,1],1). And that there is one absorbing state

A = ([1,01;1,92],0), which is represented by the bold dashed line.
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FIGURE 2.4. Example of system state transitions when X; = 0,1 and 7 = 2.
States enclosed in a box indicate situations with non-trivial decisions. Solid lines
represents transitions due to not releasing or release by vigilant seller assumption;
dashed lines represents transitions due to non-trivial release decisions; bold dashed
line represent absorbing cycle.

Rewards

For each period in which an item has not been sold, the seller incurs a positive holding cost
h. When an auction is successfully completed the seller receives the payment and awards
the item. After an item has been sold and the state (X;,Y;) = A;, i = 1,2, the seller will in
perpetuity neither incur any cost nor receive any payment for that item. Let r4(s) denote

the reward in period ¢ given a state s € S. It is given by,

re([71, Y1522, 92], 2) = T11gy =y — Mgy <ry + T2lgy—r) — Pl cn

Transition Probabilities

Each period in which an auction is underway the price transitions follow the dynamics of
an exogenously given stochastic process. In other words, we assume that there is some un-
derlying bidder arrival process and bidding behavior, which can be completely summarized

by a probability distribution regarding the one period price transitions. For discrete prices,
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these are represented by the following transition probability matrices,

To,011  To,p|1 To,P|1 To,012  To,p|2 To,P|2
0 Tp,p|1 Tp,P|1 0 Tp,p|2 Tp,P|2

II; = I, =
0 0 Tp.p|1 0 0 TpP|2

II,, z = 1,2, is the one-period transition probability matrix for an individual auction

when there are z auctions underway, for y < 7, r < ¢, and z =1, 2,

(21) Pr{X’i,y+1 =4q ‘ Xi,y = .Z',Z = z} = Trx,q‘z 7 = 1,2

In the case of continuous prices, we assume the price transition dynamics can be represented

by a conditional cumulative distribution function, for y < 7, z < 2/, and 2 = 1, 2,

2
(22) Pr{Xi’y_;'_l S x’ ‘ Xi,y =2, 7 = Z} = F)Z(y+1‘Xy ([]j/|x) = /;E f§(y+1|Xy (q’f]f)dq

where ff(yﬂ‘ X, (+|z) is the one-period conditional transition probability density function for

an auction which after y periods is at a price x, and there are z auctions underway.

Using the Chapman-Kolmogorov equations (cf. [23, Ch.4.2]), the n-period transition
probabilities for a single auction can be derived. To illustrate, assume prices are discrete
and we are interested in the two- and three-period transition probabilities, and that there
are z1, z9, and z3 auctions underway in the ensuing three periods respectively, for y < 7—3,

q
Pr{Xyjo=0q| Xy =22 = 21,2141 = 22} = Zﬂm,jlzﬂrmlzz
Jj=z
9 g

PriXyis=q| Xy =22 =2,Z11="22,Z12= 23} = D 3 T i|o T hlzaThiglzs
i=x k=
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Consequently, to derive the probability distribution of the final price we simply multiply the
transition probability matrices accordingly. For instance, suppose 7 = 3 then the top row in
I, 11,11, = I1,,..,.., provides the unconditional probability distribution of the final price
for an item with 21, 29, and 23 auctions in the first, second, and third period respectively.

For continuous prices and y < 7 — 3,

z/
21292 / _ 29 / zZ1
X, 12, (T2) = /x IR ixym @I x, (ulz)du

y+3|Xy+2 y+2‘Xy+1

)Zflyi23|z)§y(x’|x):/x /mf)z? (') [ (v!u)f§y+1|xy(u|x)dudv

In order to simplify the notation we occasionally omit the subscript ‘X,41|X,’ and write

F#(-|) and f?(:|-), i = 1,2, with the implicit assumption that y < 7.

2.2. Assumptions Regarding the Transition Probabilities. We will next provide
some additional assumptions regarding the transition probabilities. These assumptions,
which can be seen as a reflection of the bidding behavior, will ensure that certain structural
results will follow. The assumptions should not be regarded as categorical statements about
all bidders, but rather as a statistical reflection of what the bidding behavior is like in the
majority of auctions. In Chapter 4 a statistical model to derive the transition probabilities
and validate the assumptions is provided. The validation is based on eBay auctions from
Dell_Financial_Services (DFS) that ran between December 2005 to February 2007. More

information regarding DFS and the data was discussed in Chapter 1.

When two auctions are underway we assume that the auction prices evolve indepen-

dently. That is, the price in one auction does not affect the transition dynamics of the
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other auction. In other words, for discrete prices and y; < 7,1 =1, 2,

Pr{Xi,yrH =q| Xy =1, Xoy, = 22,2 = 2} = Pr{Xi,yrH =q | Xiy, =i Z = 2}

= Tziq)2

While for continuous prices and y; < 7,1 = 1,2,

Pr{Xi,yz‘-i-l <z | Xy =01, Xoy, = 22,2 = 2} = Pr{Xi»yi-&-l < | Xiy, =i, Z = 2}

= F(a|z;)

Implicitly this assumes that bidders choose a bid-amount only based on the current price and
elapsed auction time of the auction they are placing a bid in. Chapter 6 provides a discussion
regarding extensions to correlated price-transitions, i.e. where the price-transitions also
depend on the price of the competing auction. Consequently, with two auctions underway,
the transition probability for the system state is the product of the individual transition

probabilities. For discrete prices and y1,y2 < T,

Pr{St+l = ([Q7y1 + 1’ Y2 + 1]5 Z/) | St = ([:Elayl; z2, yQL 2)} = (Tra?l,q|2)(7r$2,7‘|2)

Since the main interest pertains to the states s € S such that A; = {0, 1}, we can explicitly
state the system state transition probabilities. In the discrete case we define 7(s'|s, a) to be
the one period system state transition probability, for s = ([x1,91;0,0],1) and y; < T,

1,911 a=0
7(s']s,a) =

(ﬂ-xl,q|2)(ﬂ-0,r|2) a=1
where for a = 0, s = ([¢,y1 + 1;0,0],1), and for a = 1, s’ = ([¢,y1 + 1;7,1],2) with
z = 1,2. The extension to the continuous case is straight forward, though we need to define

the notation a bit more carefully. We define F(s|s,a) to be the one period system state
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transition distribution function. That is, for s = ([z1, y1;®2,y2], 2), 8" = ([2}, 11+ 1; 25, y2 +

1], 2'),
F(s'|s,a) = Pr{X1y, 41 < 27, Xoyo41 < ah, Zpy1 = 2' | Sy = s}

Similar to the discrete case we are mainly interested in states s € S such that A, = {0, 1},

for s = ([x1,¥1;0,0],1) and y; < T,

Fl(q|zy) a=0
F(s|s,a) =

F?(zy|21)F?(250) a=1
where for a = 0, s’ = ([2},y1 + 1;0,0],1), and for a = 1, s’ = ([2},y1 + 1;2%,1],2) with

z=1,2.

We assume bids are non-retractable, which for the case of discrete prices implies that
II,, z = 1,2, are upper-triangular (7rq7xi|z = 0 for ¢ < x;). While for continuous prices,
we require that F?(z'|x) = 0, for 2’ < z, 2 = 1,2. Consequently, the current price of an
auction is increasing. Though strictly speaking on, for instance, eBay, bidders may retract

a bid, it is very rare.

Transition probabilities are assumed to be stationary with respect to both: 1) calender
time ¢, and 2) elapsed auction time Y;, ¢ = 1,2. The former assumption, which was included
in the vigilant seller assumption, is mainly for ease of notation and to ensure the model
is tractable. In reality, the dynamics of X; may depend on calender time. For instance,
at night, weekends or certain weekdays there might be less bidding activity. We will for
simplicity ignore this and strictly consider stationary transition probabilities with regard to
calender time. Likewise we will ignore non-stationary transitions with regard to the elapsed
auction time. A well-established phenomena of online auctions, is that the price dynamics

or bidding behavior is dramatically different toward the end of auctions. One reason for
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this, is because some bidders try to place their bids as close as possible to the end of the
auction, thereby leaving no time for others to counter-bid. This is referred to as sniping.
Roth and Ockenfels (2002), and Shmueli, Russo, and Wolfgang (2004) analyze different
aspects regarding non-stationary bidding activity. In Section 3.7 we will discuss how the
change in auction dynamics over time can be incorporated. The next set of assumptions
play a more crucial role in the ensuing analysis. Each is stated for discrete and continuous

prices, and make use of Leibnitz Rule,

o B B af (z,y) P ) P
8y/a<y) f(x,y)dm/a(y) oy W fBW.y)5 ) - flalw)y)5 al)

ASSUMPTION 2.1. The probability of making a jump to the higher prices is increasing
i the current price.

Discrete prices: forx < P, z=1,2,

P P
(2.3) > Tagls D Taorigls <P
q=r q=r

Continuous prices: fory <7, x <2’ <P, and z = 1,2,
x/

(2.4) F*(2|z) = / fA(ulz)du  is decreasing in x
€T

Equivalently,

8—FZ / “(u|lz)du — f*(z|x) <0

Assumption 2.1 reflects that bids are increasing in the current price. In other words, the
likelihood of placing a ‘high’ bid is increasing in the current price. This holds for example
if bid increments were independent of the current price. In reality, however, bid increments
tend to be decreasing in the current price, and it is therefore not immediate that Assumption

2.1 holds. Empirical evidence supporting Assumption 2.1 and showing that bid increments
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are decreasing in the current price, can be seen in Figure 2.5 below. They depict the price-
jumps at 12 hour intervals for the L4 auctions. Each dot represents an individual auction.
Auctions along the 45 degree line are auctions in which the price remained unchanged 12
hours later (no price-transition took place). Note that in the final period all auctions had
strictly positive price-increments. The feature supporting our assumption is that in all
figures the price-jumps form an upward sloping ‘band’. A counter indication to our claim
would be if there was a large number of auctions that at low prices (= $0 — 150) made

jumps to the high prices (=~ $500 — 600). More details are provided in Chapter 4

ASSUMPTION 2.2. The probability of making a jump to higher prices decreases when
there are two ongoing auctions.

Discrete prices: for x < P,

P P
(2.5) > Tag2 < Togn  Vr<P
q=r q=r

Continuous prices: fory <t and x < P,
(2.6) Fia'|z) < F*(2'|lz) V2’ <P

This assumption formalizes how we model the cannibalization effect. In other words,
with two ongoing auctions, each auction will experience more ‘modest’ price-transitions.

For empirical support see Chapter 4.

An alternative to Assumption 2.2 is, for discrete prices, if Z(I;:T Trgl < Z(I;:T Taq|2s fOT
all z,» < P. That is, with two auctions you are more likely to see higher price jumps in each
individual auction than when only one auction is underway. However, then the problem of
releasing the second item becomes trivial. Since if it is better to have two auctions underway

and the holding cost is positive, then it will always be optimal to release the second item
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FIGURE 2.5. Price transitions at 12 hour intervals for the L4 laptop auctions. The
horizontal axis represents the price at various 12 hour intervals, while the vertical
axis represents the price 12 hours later. Each circle represents the price-transition
for an auction. Observations on the 45 degree line represents auctions that received
no bids for that period. Note that in the final period all auctions received bids.

immediately.

ASSUMPTION 2.3. The difference, in probability of making jumps to the higher prices,
between having one versus two ongoing auctions, is decreasing in the current price.

Discrete prices: for x < P,

P P
(2.7) Z(Wx,qll — Maql2) = Z(Wzﬂ,qll — Mot1g2) VPSP

q=r q=r
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Continuous prices: fory <t and x < P,
(2.8) F%(2!|z) — FY(2'|z) is decreasing in x

Equivalently,

0 20,0 0 10,7
_ <
S (@l]e) < 5o (@)

This states that the cannibalization effect is diminishing in the current price. In other
words the closer the current price is to the upper bound P the less of a difference there will be
between having one or two auctions underway. Qualitatively, we see in the graphs of Figure
2.5, that the closer the price is to P =~ 600 the less ‘room’ there is for the price-transitions,
and hence the less cannibalization there can be. Again, a more rigorous empirical analysis

is provided in Chapter 4.

2.3. Examples. At this point it may be natural to inquire about the existence of tran-
sition probability matrices and conditional cumulative distribution functions, that satisfy
the above assumptions. We next provide conditions under which of some common prob-
ability distributions satisfy them. Namely, Uniform - discrete and continuous, Bernoulli,
and Exponential. In addition, we later illustrate the assumptions and implications with

numerical examples.

Discrete Uniform Distribution

Without loss of generality let p = k = 1. Suppose that in periods when there is only one
auction underway there is an equal probability of jumping to any of the remaining prices,
for p; < P, mp, g1 = mp, = 1/(P+1—p;) for all ¢ € [p;, P]. Furthermore, suppose when two
auctions are underway the probability of remaining at the same price increase with x and
that the probability of jumping to P decrease with x, as shown in the transition probability

matrices below.
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1 1 1 1 1 1 1 1
Pr1 Py1 T PH1 P+l =T o S e S
1 1 1 1 1 1
0 5 7P 0 PR P pK
U _ U _
Hl_ HZ_
1 1 1 1
0 0 0 1 0 0 0 1

The next results summarizes that the above transition probability matrices support
Assumptions 2.1, 2.2, and 2.3.

PROPOSITION 2.4. If0 <k < P%rl then HlU and HQU satisfies Assumptions 2.1, 2.2 and

2.5.

Proof Proposition 2./ - See Appendix A.

A modification to IIY is to have x be dependent on the price. In which case for As-
sumption 2.3 to hold we require %H > K> K> ... Kp_1.
Continuous Uniform Distribution
An example with continuous prices and uniform distributed price-transitions, can be con-
structed as follows. Assume the starting price p = 0, and the maximum price P = 1, i.e.
X; €]0,1]. Assume that when there is only one ongoing auction that the price-transition is
uniformly distributed between the current price and the upper limit 1. Furthermore, assume

the ‘cannibalization’ effect is such that with two ongoing auctions, the price-transition is
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triangularly distributed between the current price and the upper limit. Specifically, let,

(2.9)

(2.10)

s r<q¢<1
) =

0 o/w

2-2q <g<1

1—=z2 *>4
Fglx) =

0 o/w

PROPOSITION 2.5. If prices are continuous and price transitions are distributed accord-

ing to (2.9) and (2.10) then Assumptions 2.1, 2.2, and 2.3 holds.

Proof Proposition 2.5 - See Appendix A.

Bernoulli Distribution

Suppose that for each period and every price level there are only two possible transitions -

remain at same price or jump up by one increment. This bidding process is the core of the

auction dynamics analyzed by Segev, Beam, and Shantikumar (2001). In this scenario the

maximum price P = 7, and consequently the size of the transition probability matrices are

(14 1) x (7 +1). Let II; and Iy be defined as follows,

Be __
II7° =

].77'('0

o

0 0 L—=po  po
0 0 0 1—p
mee =
l—m 1 71 0 0
0 1 0 0
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In other words, Pr{X,y1 = ¢+ 1|Xy, = ¢,Z = 1} = 7y, and Pr{X,1; = ¢+ 1|X, =
¢, Z = 2} = pg. Due to the special structure of Bernoulli price transitions an adjust-
ment to Assumption 2.3 is required: we assume, for # < P — 1, (T, 5411 — Toppr1)2) =
(Mot 124201 = Tat12+22)- Without this modification Assumption 2.3 would not hold, since
Zf::chQ(ﬂ-x,q\l - Wz,q|2) =0< 25:m+2(77x+1,q\1 - 7rm+1,q|2)7 while Z(I;:erl(ﬂ-x,q\l - Wm,q|2) =
Zfzmﬂ(ﬂxﬂgu — Typq1,42) = 0. The adjustment to the condition will not alter any of the
structural properties for the Bernoulli distributed price transition. In order for H]f’e and

HQBe to satisfy Assumptions 2.1, 2.2, and 2.3(mod.), we require,
(2.11) To—pPo =T —pP1=> .. 2T 1 —pPr—1 = 0

Inequalities (2.11) reflects the diminishing ‘cannibalization’ effect, and ensures that As-

sumptions 2.2 and 2.3(mod.) holds. We summarize the result in the following proposition.

PROPOSITION 2.6. If price transitions are distributed according to HlBe and HQBe, and

(2.11) holds, then Assumptions 2.1, 2.2, and 2.3(mod.) are satisfied.

Proof Proposition 2.6 - See Appendix A.

Below a numerical example for the Bernoulli distributed price transitions is provided.

It can be verified that (2.11), and hence that Assumptions 2.1, 2.2 and 2.3(mod.) holds.

4 6 0 O 5 5 0 0

0 5 5 0 0 6 4 0
HlBe _ H]23e _

0o o0 .7 3 0 0 8 .2

0 0 0 1 0 0 0 1

A special case of I15¢, z = 1,2, is when the transition probabilities are independent of the

current price, that is, when 7, = 7 and p; = p for all ¢ = 0,1,...,7 — 1. This special case
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has some interesting consequences which are discussed in Section 3.3.1.

Exponential Distribution

The following example will focus on the price-increment and not on the price-transitions.
Assume prices are positive and unbounded, X; € Ry, and that the conditional within period
price-increment C, given X; = z, is exponentially distributed with rate A*(z), z = 1,2. That
is, forc=a' —z, z,2' e Ry, Pr{Xj 11 <Xy =2,Z =2} =Pr{C < (| X,y =2,Z =

z} =

(2.12) G2 (clz) =

The rate \*(+) is a function both of the current price and the number of ongoing auctions.
The expected price increment is 1/A*(z), which it would seem natural to assume, is decreas-
ing in the current price. Therefore, we require A*(z) to be increasing in z. In other words,
the higher the current price the smaller the expected price-increment. Though technical
conditions on A*(x) could be imposed, such that the three assumptions hold, they would
make the problem both less intuitive and less informative. The main problem is due to the
shape of the exponential distribution which, for instance, prevents Assumption 2.1 to hold.
Therefore, we impose conditions to ensure that the expected price-transition has certain

properties. Specifically, we assume, for z € R,

(2.13) 1/X*(x) is decreasing in =,z = 1,2
(2.14) x+ 1/X*(x) is increasing in z,z = 1,2
(2.15) 1/2%(z) < 1/2Y (=)

(2.16) /AN () — 1/02(x) is decreasing in x
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With these conditions the ensuing structural results in Section 3.3 holds. An example of a

rate function A\?(x) for which the above conditions hold includes,

1/X*(x) = exp (Bo — 1z — Baly.—0))

where By, 81,82 > 0, and S is such that,

B1 exp (ﬂo — frx — ﬂzl{zzz}) <1 Vi, z

In Chapter 4 a more general version with gamma distributed price-increments is discussed

and fitted to the eBay auction data from DFS.

3. Guaranteed Successful Auctions - Single Listing

The first case we consider is when the auctions are guaranteed to be successful, and
hence the seller only has to list an item once. This could occur when the items are such
that it is certain a positive bid will arrive (e.g. oo, = 0, z = 1,2), or when the seller
decides in advance to immediately salvage items remaining from unsuccessful auctions. An
illustration of the former includes the 6,000 laptop and desktop eBay auctions of DFS. Out
of all auctions with a starting price of $.99, not a single auction was unsuccessful. Due to
the additional assumption that auctions are guaranteed to be successful, we can simplify

the MDP model.

Decision Epochs As a consequence of the vigilant seller assumption there is no reason to
consider a planning horizon beyond two sequential auctions, hence T' = 27. Furthermore,
provided the second item has not been released, non-trivial decisions can only be made in
periodst =0,1,2,...,7—1. At t = 7 the vigilant seller assumption requires that the second

item is released immediately, if it has not already been released.
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State Space Since we assume the items will at least sell for p, we omit the 0 state. Thus

for the discrete case X; € {p,p+1,..., P} while for the continuous case X; € [p, P].

Rewards In order to facilitate the ‘accounting’, and since we are not assuming discounting,
we assume the seller receives the payment at t = T'. Therefore, the reward r(s) for a given
s € S and period t is as follows,

—hlpy<ry = hlgy,ery t=0,1,...,T =1
re([z1,y1; T2, y2], 2) =

T1 + T2 t=T

Transition Probabilities

Since we assume X; > p > 0 and the items are guaranteed to be awarded, we define the
transition probability to start at p instead of 0, e.g. the entries in the top row of II, is
Tpqlz for ¢ € {p,p+1,..., P}, z = 1,2. It should, however, be noted that from a behavioral
point of view the bidding process may be different if the starting price or even current price
is 0 rather than p. For instance, suppose we have two auctions, a and b, which both have
elapsed for y; periods and both with current price of $p, but where auction b started at $p
and still has not received any bids while auction a has reached $p after some bid activity.
Then there is anecdotal ‘evidence’ to suggest that the bidding dynamics for the two auctions
will be different. Auction a is more likely to receive more bids. To read accounts from eBay
sellers on this issue, search the terms ‘low starting price’ at the eBay discussion boards for

sellers,! and newcomers.? We will ignore such behavioral considerations.

3.1. Auction Release Policies. A Markov deterministic policy is a sequence of deci-
sion rules which determine what action to take in each decision epoch, possibly contingent

on the state of the system but not on the past. Let +;(s) be the decision rule in period ¢

1http ://forums.ebay.com/db2/forum. jspa?forumID=143
“http://forums.ebay.com/db1/forum. jspa?forumID=120
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given a state s € S. As a consequence of the vigilant seller assumption, we only need to

consider decision rules for t = 0,1,...,7, and hence, a policy -y is defined as follows,

v = (v0(8),71(8), .-, 7r(5)) v(s) €{0,1},Vs € S;t=0,1,...,7

If all the decision rules, v¢(s), are independent of the price components of state s we refer
to the policy v as an open loop policy, while if the decision rules depend on both the price
and time components of state s the resulting policy is referred to as a closed loop policy.
Note that there are only 7+ 1 open loop policies of interest. We write Vj(;) to denote the
total expected profit of releasing the second item j periods after the first, j =0,1,2,..., 7.
In Table 2.1 the four open loop policies and their respective total expected profit for discrete
prices and 7 = 3 are provided. In the table we see that although we incur an additional unit
of h for each additional period we hold the second item, the expected final price for both
items increase since there is an additional period when both auctions evolve according to II;
instead of IIs. The decision whether to release the second item or hold it one more period
will depend on whether the increase in expected final price for both items will compensate

the additional holding cost.

j ¥ Total expected profit - Vo ;)

0 (1,0,0,0) | =6h+23 7 S S0 W(Tpqg2) (Tari2) (7rgy2)
1| (0,1,00) | —7h+ X0 S S U 11) (Tgri2) (Tria) + Sy Sk S Uy g12) (T rj2) (Tt
2| (0,0,1,0) | —8h+ 3 S S 1) (Tgrn) (Triz) + Sy Sy S Wpgi2) (gt (Tt

P l l
3 (0,0,0,1) —9h+ 2Zl:p Zq:p Zr:ql(ﬂ-p,q\l)(ﬂ—q,r\l)(ﬂ—r,”l)

TABLE 2.1. Total expected profit for the four open loop policies of releasing item
2 j periods after item 1, for discrete prices and 7 = 3.
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3.2. Optimality Equations. Before we discuss the optimality equations we introduce
some notation. When both items have been released we define E[X; -|S;] to be the condi-
tional expected final price of auction i, ¢ = 1,2, in period ¢,

Discrete prices:
(2.17)

P
E[Xi,T‘St - ([*Tlvyl; 5527?42], Z)] = Z qPr{Xiﬂ' = QIXi,yi = Ty, Zt =z, Zt+1 = Zl? sy Zt+(‘rfy¢) = Z”}

q=Tq

Continuous prices:

(2.18) E[X:,

P
5= (o yriaan) 2)) = [ afifi aledg

Where Pr{X; . = q|Xiy, = v, Zt = 2, 2111 = 2, .., Zy 4 (r—y,) = 2"} and ff(f[Xj:l(qmz)
are derived using the Chapman-Kolmogorov equations discussed in Section 2.1. The main
issue regarding the expected final price is that it only depends on the current price of an
auction, and how many auctions will be underway for the duration of the auction. Once both
auctions have been released we know how many auctions there will be for the remainder
of each individual auction. As a consequence of the assumptions that auctions progress
independently and Assumption 2.1, E[X, 7|5 is increasing in x; and independent of x;, for

i # j. We summarize this in the following result.

COROLLARY 2.7. If auctions progress independently of price in other auctions and As-
sumption 2.1 holds, then the conditional expected final price, E[X; -|Sy = ([x1, y1; x2, y2), 2)],

is increasing in x; and independent of x;, 1 = 1,2, ¢ # j.

Proof Corollary 2.7 - The result regarding independence of the price in the other auction
is immediate by the assumption that price transitions do not depend on the price in the
other auction. Proof by induction on the number of remaining periods n = 7 — ;. Without
loss of generality, consider auction 1. For n = 0, E[X;,|S; = ([z1,7;22,y2],2)] = «1,

which is increasing in z;. Assume the result holds for n = 0,1,...,1 — 1, i.e. for y; =
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77— 1,...,7—(l—1). Let n=10theny =71 —1,

P
E[X1,|S = ([51,7 — g, y2), 2)] = D E[X1718011 = ([g, 7 — (1= 1); 2, 95, 2)]70, 12

q=x1

P
S Z E[Xl,T’St-‘rl = ([Q7T - (l - 1);x/27y/2]72/)]7rm1+1,q|z = E[Xl,T‘St = ([1?1 + ]-77- - 1;372,?}2]72’)]
q=z1+1

where inequality holds due to Lemma 4.7.2 in Puterman (1994), the induction assumption
and Assumption 2.1. The proof for continuous prices is basically the same but with the
summation replaced by an integration. Although Lemma 4.7.2 in Puterman (1994) is with
respect to discrete variables and infinite sequences, it can be adapted to continuous vari-
ables and/or finite sequences. Alternatively the results from Lemma 9.1.1 and Proposition

9.1.2 in Ross (1996) can be applied. O

Furthermore, when both items have been released, we define R(S;) to represent the

total expected profit over the remainder of the planning horizon in period t,

(2.19)

R(S; = ([#1,y1: 72, 92], 2))

= —h(21 —y1 —y2) + E[X1 7St = ([z1,y15 22, y2], 2)] + E[ X2 St = ([21, y15 22, y2], 2)]

There is a slight misuse of notation when y; = §, ¢ = 1,2. In this case we implicitly define
7 —09 = 0, since no holding cost will be incurred. Note that R(.S;) is not necessarily increas-
ing or decreasing in the elapsed time of the auctions. Though the incurred holding cost
will decrease, the expected final price of the auctions will also decrease. It is this trade-off
that is the crux of the problem regarding when to start the second auction. However, as

summarized in the next result, R(S;) is increasing in z; and xs.
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COROLLARY 2.8. If Assumption 2.1 holds then R(S}) is increasing in x1 and x2, for all

Y1, Yo, and z = 0,1, 2.

Proof of Corollary 2.8 - Each auction progress independently of the price in the other auc-

tion, the result is therefore immediate by Corollary 2.7. ]

Lastly, we define g2(.S;) to be the gain in the expected final price of auction 2 by having

delayed the release of item 2 for one period,

(2.20) 92(St = ([w1, y1; 2, y2], 2))

= E[X2,T’St+1 = ([37/173/1 + 1;962,y2}72/)] - E[XZ,T\St = ([x1,y1;x2,yz],z)]

where 2,2’ = 0,1,2 and by definition if y; = 7,6 then y; + 1 = 6. Due to Assumption 2.2
and that auctions progress independently, g2(S;) > 0 and independent of ;. In other words
the fewer periods remaining for the 1% auction, and regardless of the price in auction 1,
the higher the expected final price for the 27¢ auction. We summarize this in the following

corollary.

COROLLARY 2.9. If auctions progress independently of price in other auctions and As-

sumption 2.2 holds then g2(S;) > 0 and independent of 1 and x.

Proof of Corollary 2.9 - See Appendix A.

Next we present the optimality equations. Let V;(s) denote the expected total future

reward (expected total profit) given the system is in state s € S in period ¢. For discrete
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prices V(s), satisfies the following optimality equations,

r¢(s) + max Z Vip1(sHmw(s'|s,a) t=0,1,...,T -1
(2.21) Vi(s) = s'€s

rr(s) t=T

For continuous prices V(s) satisfies,

r¢(s) + max / Vi1 () f(s']s,a)ds’ t=0,1,...,T—1
(2.22) Vi(s) = aeAls) Js

rr(s) t=T
Due to the vigilant seller assumption, the structure of the transition probabilities, and
that auctions are guaranteed to be successful, the value function (2.21) and (2.22) can be
summarized and explicitly evaluated according to the three cases listed in the following

lemma.

LEMMA 2.10. If we assume a vigilant seller and that auctions are guaranteed to be

successful, then the value functions of interest for discrete prices are as follows,

Vi(lz1,y1; 2, y2],0) = 21 + 22 t=T

Vi(le1, y1;5 02, 92], 2) = R([71, 91572, 42], 2) t=r1

P
‘/t([xlvyl;x27y2]7 1) = maX{—Qh + Z ‘/t—i-l([Q7yl + ]_ap) 0]7 1)7Tx1,q|1 7R([$lay1;p7 0]72)} t<T

q=x1

If prices are continuous the only change is the final equation which becomes,

P
Vi([1, 13 22, 92], 1) = max{—2h +/ Vit1([g. 1 + 1;p,0,1) fH(g|21)dg , R([x1,913p,00,2)} t<T

1

Proof of Lemma 2.10 - See Appendix A.

The above value functions can be computed using backward induction. In Table 2.2 the

optimality equations for discrete prices and 7 = 3 are listed.
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%([.%’1,3;.@2,3],0) =21+ X2
%<[$1,3;p,0],1) :R([l‘l,?);p,()],l)
Va([21,2;p,0],1) = max{-2h+ > Vi([g, 3 p,0], )7y, g1, R([z1,25p,0],2) }

q=x1

Vi1, 1;p,0,1) = max{-2h+ >0 Va([g,2p,0], )7y, g1, R([z1, 15, 0],2) }

q=x1

Vo([p,0;p,0],1) = max{—2h+ 1" Vi([g,1;p,0], )m, g1, R([p, 0;p, 0], 2) }
TABLE 2.2. Optimality equations for discrete prices and 7 = 3.

3.3. Structural Results. Given the above MDP and the assumption that auctions
are guaranteed to be successful, we derive three monotonicity properties: the optimal value
function is increasing in the current price of the two auctions, the optimal policy is a
threshold policy, and the threshold is decreasing in the holding cost. Note that though the

proofs are for the case of discrete prices, the results hold for continuous prices as well.

PROPOSITION 2.11. If Assumption 2.1 holds and auctions are guaranteed to be success-
ful, then the optimal value function, V*([x1,y1;x2,y2], 2), is increasing in x1 and xa, for

t=0,1,...,T.

Proof of Proposition 2.11 - By Lemma 2.10 there are only three cases to consider.

Case 1) If t = T, then by Lemma 2.10, V;*([x1,y1; 22, y2],2) = =1 + x2, and the result is
immediate.

Case 2) If t <7 and z = 2, or 7 <t < T, then by Lemma 2.10, V*([z1, y1; 2, y2],2) =
R([z1,y1; 72, y2], 2), and the result follows from Corollary 2.8.

Case 3) For t < 7 and z = 1, by Lemma 2.10,

P
Vi ([, 915 w2, y2), 2) = max{=2h + > V([0 91 + 15,0, )70, g1 » R([21,915p,0],2)}

q=x1

We establish the result using backward induction on ¢. Let { = 7 — 1 and hence y; +
1 = 7, then by Lemma 4.7.2 in Puterman (1994), Case 2) above and Assumption 2.1,

Z(I;:xl Vii1(lg, 73p,0],1)m,, g is increasing in z1, and by Corollary 2.8, R([x1,y1;p,0],2)
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is increasing in zp. Since V*([z1,y1;%2,92],2) is the maximum of two increasing func-
tions it is also increasing in x; and the result holds. Assume Proposition 2.11 holds
fort =7—-(0—-1),...,7—2,7—1. Let t = 7 —1[ and hence y; +1 = 7 — (I — 1),
and again by Lemma 4.7.2 in Puterman (1994), the induction assumption and Assump-
tion 2.1, 25:331 V(g y1 + 1;p,0],2)7,, g s increasing in z31, and by Corollary 2.8,
R([x1,y1;p,0],2) is increasing in x7. Since V*([z1,y1; %2, y2], 2) is the maximum of two
increasing functions it is also increasing in z; and the result holds. Similar to the proof
of Corollary 2.7 the results from Lemma 9.1.1 and Proposition 9.1.2 in Ross (1996) can be
applied. The proof for the continuous case is identical but with the summation replaced by

an integration. (]

In other words an increase in the current price of either item 1 or item 2 will increase
the optimal expected total reward. Though this might seem natural and ‘obvious’ it is a
result of the assumptions made, most notably that at a higher price-level the auction is
more likely to advance to the higher prices than at a low price-level. And as discussed if
bid-increments are decreasing in price then it is not immediate that this assumption holds.
Chapter 4 contains examples from DFS’ eBay auctions where this result does not hold, as

well as examples for which the result holds.

THEOREM 2.12. If Assumptions 2.1, 2.2, and 2.3 hold and auctions are guaranteed to be
successful, then there exist optimal decision rules, v ([z1,y1;p,0],1), which are increasing

inxy, fort=0,1,...,7 — 1. Consequently, the optimal policy is a threshold policy in x.

Proof of Theorem 2.12 - Let prices be discrete. Sufficient to show that V;*([z1,y1;p,0],1) —
R([z1,y1;p,0],2) is decreasing in x1, for all t < 7. By Corollary 2.8 and Proposition 2.11,

R([z1,y1;p,0],2) and V*([z1,y1;p,0],1) are increasing in 1. We make use of the following
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relationship,

P
(2.23)  R([z1,y1;%2,92),2) = —h + Z R([q,y1 + 1522, y2], 2) 74, g2 — 92([71, Y15 22, 32])

q=x1

Proof by backward induction on t. Let t =7 — 1, then y; = 7 — 1 and by Lemma 2.10 and

(2.23),
Vi ([z1,y15p,0], 1) — R([21,91;p,0],2)

P
= max{—h + Z R([Q7T;p7 0]7 1)(7rm1,q|1 - 7Tz1,q|2) + 92([1.177- - 17p7 0]) 70}

q=x1

P
= maX{_h —ht + Z Q(ﬂ-m,lﬂl - 7Ta:1,Q|2) + E[X2,7-|([331, 7, D, 0]> 1)} + 92([1‘1?7— - 1;p’ O])