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Abstract 

To be effective, applications such as streaming multimedia require both a more stable and 

more reliable service than the default best effort service from the underlying computer 

network.  To guarantee steady data transmission despite the unpredictability of the 

network, a single reserved path for each traffic flow is used.  However, a single dedicated 

path suffers from single link failures.  To allow for continuous service inexpensively, 

unreserved backup paths are used in this thesis.  While there are no wasted resources 

using unreserved backup paths, recovery from a failure may not be perfect.  Thus, a goal 

for this approach is to design algorithms that compute backup paths to mask the failure 

for all traffic, and failing that, to maximize the number of flows that can be unaffected by 

the failure.  Although algorithms are carefully designed with the goal to provide perfect 

recovery, when using only unreserved backup paths, re-routing of all affected flows, at 

the same service quality as before the failure, may not be possible under some conditions, 

particularly when the network was already fully loaded prior to the failure.  Alternate 

strategies that trade off service quality for continuous traffic flow to minimize the effects 

of the failure on traffic should be considered.  In addition, the actual backup path 

calculation can be problematic because finding backup paths that can provide good 

service often requires a large amount of information regarding the traffic present in the 
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network, so much that the overhead can be prohibitive.  Thus, algorithms are developed 

with trade-offs between good performance and communication overhead.  In this thesis, a 

family of algorithms is designed such that as a whole, inexpensive, scalable, and effective 

performance can be obtained after a failure.  Simulations are done to study the trade-offs 

between performance and scalability and between soft and hard service guarantees.  

Simulation results show that some algorithms in this thesis yield competitive or better 

performance even at lower overhead.  The more reliable service provided by unreserved 

backup paths allows for better performance by current applications inexpensively, and 

provides the groundwork to expand the computer network for future services and 

applications. 
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1 Introduction 

1.1 Problem overview 

The Internet was originally designed to interconnect different kinds of networks to allow 

machines on various networks to share information and resources [21].  A protocol to 

provide service for the lowest common denominator was designed.  The end result is 

what is in place for the past decade: popularity of the Internet soared because of its 

accessibility and computer networks completely changed our ways of life.  However, 

because of the decision to design a common layer to connect different computer networks 

rather than redesigning a new unified system, irregular performances from the network 

are expected, and this service characteristic is too unpredictable for newer applications. 

The growth of the computer network has created many new applications requiring 

higher quality-of-service (QoS).  Not only do data need to arrive at a destination, but they 

also need to arrive in a timely fashion.  For critical streaming multimedia applications 

such as tele-medicine or sending continuous critical messages, it is imperative that a more 

reliable and more stable service is provided.  The solution to guarantee steady data 

transmission rate despite the unpredictability of traffic conditions in the network is often 

provided by using dedicated resources [13] [14] [91].  A pre-determined amount of 

resources that can sustain a certain level of service quality are reserved on the nodes and 
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links of a specific path, and data are forwarded only along this path.  However, when 

service can only be provided through a specific path with reserved resources, it is natural 

that a single point of failure in this particular path will be hard to recover from without 

planning [9] [11] [64].  When a link failure occurs, the simplest solution that randomly 

chooses a disjoint path fails to consider that a link failure can cause several flows to fail 

at the same time.  Consequently, without some coordination among these flows, there 

may be contention for the same resources which can drastically decrease service 

qualities.  Even if the remaining network has enough resources to re-route all the affected 

traffic, it is still undesirable if it takes several tries to fit all the flows onto acceptable 

paths when delivery guarantees are needed in the first place.  Thus, to improve QoS in the 

event of a single link failure, alternate backup paths need to be chosen such that they are 

coordinated and do not compete for the same resources. 

1.2 Solutions 

There are three major categories of solutions that are designed to specifically provide 

more reliable QoS.  The first one involves the naïve solution that uses redundancy, which 

consumes a large amount of bandwidth.  The second category involves choosing very 

specific backup paths to reserve so that they can be used in the event of a failure.  These 

reserved backup paths are planned at the same time the primary paths are planned, to 

provide 100% guaranteed re-routing.  Alternatively, an unreserved but well-chosen 

backup path can be planned in advance to improve the re-routing success rate.  Sections 

1.2.1, 1.2.2, and 1.2.3 briefly describe these three categories, and Table 1 summarizes the 

main differences.  Further discussion of the research related to QoS is provided in 

Chapter 2. 
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1.2.1 Redundancy 

A simple way to ensure that a message arrives at the destination despite a link failure is to 

send duplicates of the message out on different paths.  This is extremely costly because it 

actively consumes network resources at all times.  The challenge with this approach is to 

reduce the amount of redundancy, thereby reducing the bandwidth it consumes.  Special 

message encoding analogous to RAID [67] can be used to reduce redundancy while 

retaining fault tolerance.  The approach of dispersity routing [57], which is further 

discussed in Chapter 2, uses the redundancy idea but further breaks each message into 

several smaller messages to provide more reliable QoS while limiting the resource 

overhead [10] [34]. 

1.2.2 Two reserved paths 

One alternative to the redundancy approach is to prepare a second reserved path disjoint 

from the first path (primary path) to provide backup in the event that the primary path 

fails.  Unlike Section 1.2.1, before a failure occurs, messages are sent out only on the 

primary path.  Although the resources on the backup path are reserved, regular best-effort 

traffic can still use these resources before the failure.  However, the resources reserved on 

the backup paths cannot be used by traffic that requires high QoS, i.e., traffic that 

requires reserved primary paths, and thus the network’s capacity to host high QoS traffic 

is reduced.  Because backup paths are idle in most cases, not only because failures are 

chance happenings, but also because a failure does not affect all flows, the goal in this 

case is to minimize resources reserved purely for backup paths [32] [33] [51].  While the 

details of the designs and the techniques are provided in Chapter 2, an overview is 

provided here for comparison.  The key to minimizing reserved backup path resources is 
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analogous to overloading backup paths.  One unit of reserved backup path resource is 

used by different backup paths at different times.  One difficulty in minimizing resources 

reserved for backup paths is the amount of knowledge of the entire network that is 

required.  The more information a router has regarding how the network and its resources 

are being used, the more the router is able to overload backup paths so that a smaller 

amount of backup path resources are reserved.  Because communicating routing 

information among routers also consumes resources in the network, minimizing reserved 

backup resources should be carefully balanced with limiting communication overhead to 

a more reasonable size.  In addition to wasting resources, another issue with the use of 

two reserved paths is that the optimal solutions often couple primary and backup paths 

tightly together during computation, resulting in a very specific set of paths that are 

effective only for a particular combination of flows [2] [46].  An additional flow in the 

network may require complete re-computation of paths to minimize the resources 

reserved for backups. 

1.2.3 One reserved primary path and one pre-planned , unreserved 

backup path 

Another approach to provide reliable QoS uses pre-planned but unreserved backup paths 

[48] [49].  Because the backup paths are unreserved, there is no wasted resources or 

decreased network utilization.  The resources available on the planned but unreserved 

backup paths can be used to route best-effort traffic or reserved for high QoS traffic.  

However, also because the backup paths are unreserved, recovery from failure may not 

be perfect.  Thus, the goal in this category is to maximize the number of flows that can be 

unaffected by the failure and to minimize the effects of the failure on the actual traffic.  A 
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perfect algorithm would compute backup paths for flows such that, even without 

reserving resources in advance, all the flows with a failed primary path can be re-routed 

over the pre-planned backup paths and experience the same service quality as before.  

One problem when unreserved backup paths are used is that this perfect recovery for all 

flows may not be possible under some conditions, particularly when the network was 

already fully loaded prior to the failure.  In contrast to Section 1.2.2, an alternative to 

limit the degradation of service experienced by the flows after a failure is needed.  In 

addition, the same challenge of balancing communication overhead with performance 

that is described in Section 1.2.2 also applies to this approach.  Finding backup paths that 

can provide good service after a failure requires a lot of information regarding the flows 

present in the network, but the overhead involved with communicating such information 

should not be so large that it consumes a significant amount of network resources.  Thus, 

similar to the approach of reserving two paths, trade-offs also need to be made between 

good performance and communication overhead.  Table 1 provides a summary of the 

three major categories discussed. 
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Table 1. A summary of the three categories of solutions, their weaknesses and the issues different algorithms within each category try to address. 
Solution category Main weakness Issues that different algorithms try to address 
Redundancy (Section 1.2.1) Consumes available resources at all times. • Reduction of redundancy. 

Two reserved paths (Section 1.2.2) 
Consumes resources that can be used by other QoS 
traffic. 

• Reduction of the amount of reserved resources on backup 
paths. 
• Reduction of communication overhead. 
• Improvement of computation complexity. 

One reserved primary path and 
one pre-planned, unreserved backup path 
(Section 1.2.3) 

Less than 100% guaranteed recovery from failure. 

• Improvement of recovery performance. 
• Reduction of communication overhead. 
• Provision of different techniques for different network 
conditions. 
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1.3 Objectives and approach 

To minimize the cost of providing reliable, high service qualities, the approach taken in 

this thesis is that of one reserved primary path paired with a carefully chosen pre-planned 

but unreserved backup path, as described in Section 1.2.3.  Because the backup paths are 

intended to be unreserved prior to the failure, they are not expected to provide complete 

recovery from all kinds of failures under all conditions.  A family of techniques are 

developed so that as a whole, the use of unreserved backup paths can provide competitive 

and acceptable performance with low overhead and cost to the users and the service 

providers.  Various algorithms are developed to calculate these unreserved backup paths.  

The first algorithm, AvoidPBO, is designed with the aim of yielding good performance 

after the failure regardless of the amount of overhead incurred.  It also sets up a basic 

structure that has the potential to be improved to reduce overhead.  The next algorithms, 

TP and TPmax, are designed to improve on the overhead required by AvoidPBO so that 

only constant overhead in a fixed network is incurred.  Different techniques are also 

developed to make the best use of these unreserved backup paths after a failure.  The 

traditional strict recovery sacrifices connections for service quality after a failure, 

whereas the relaxed recovery trades off service quality to maintain connection for all 

traffic even after failure.  Due to the complexity of the system, the evaluation of these 

methods is done using simulation modeling.  Because the variance and behavior of the 

different methods compared in this thesis are of great interest, simulations are used to 

obtain data at the desired granularity.  Experiments are performed on generalized graphs 

to gain understanding of the capability of unreserved backup paths and their general 

behaviors and performance limitations. 
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1.4 Thesis outline 

Chapter 2 discusses in more detail the major categories of solutions to provide reliable 

QoS and how such a service can be provided in practice.  Research studies on QoS in the 

past and in the current trend are also discussed.  Chapter 3 describes the basic framework 

of the solution to provide QoS with added reliability.  Discussions regarding the network 

environment for which this work is intended and the design and principles of the backup 

path computation algorithms are provided.  The first backup path computation algorithm, 

AvoidPBO, is discussed, along with the rationale and design decisions that continue to be 

used in later algorithms.  Based on the same principles employed by AvoidPBO, Chapter 

4 discusses techniques to reduce the overhead requirement and presents the designs of 

two other algorithms that incur considerably less overhead while retaining the same high 

level of performance.  Chapter 5 discusses additional methods that can be paired with 

unreserved backup paths to improve the performance of the unreserved backup paths.  

Chapter 6 provides simulation results of the methods designed in Chapters 3, 4, and 5, 

and comparisons to existing methods are also provided.  Finally, Chapter 7 provides the 

concluding thoughts and suggestions for future work. 
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2 Related Work 

2.1 Chapter outline 

There are four parts to this chapter.  An important part of choosing a path is in the 

techniques and algorithms used to decide to choose a certain link over other links.  Thus, 

the first part of this chapter, Sections 2.2 and 2.3, describes the fundamental techniques 

used to grade and represent the desirability of a link.  The second part examines 

traditional QoS routing (Section 2.4), and Sections 2.5, 2.6, 2.7, and 2.8 describe the 

different types of solutions that can be used to tolerate single component failures in 

addition to the traditional QoS routing.  Section 2.9 provides a comparison of different 

solutions and an outline of the approach taken in this thesis.  The third part of the chapter, 

Section 2.10, describes real-life network protocols that can support or be modified to 

support a reliable QoS system.  Finally, Section 2.11 discusses some research trends in 

QoS routing.  Section 2.12 provides a summary of this chapter. 

2.2 The importance of link weights 

Open shortest path first (OSPF) [59] is a fundamental and popular link state routing 

protocol [58] used within an autonomous system (AS).  With OSPF, network topology 

(link states) is known to all routers in the network.  In its basic version, each link is 
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statically assigned a weight, which indicates the cost of using the link.  By adding up the 

weight of links in a path, shortest paths to all destinations are computed at each router 

separately.  A routing table is constructed by storing pairs of destination and 

corresponding next hop information extracted from the shortest paths.  When a packet 

arrives at a router, the router looks up its routing table for the next hop based on the 

destination of the packet; the packet is then placed on the interface to the next hop for 

forwarding.  Because the lengths of the shortest paths correlate to the link weights, the 

next hop or the path over which a data packet traverses is dependent not only on how the 

links are connected, but also on the link weights assigned to those links.  Thus, link 

weights can be seen as a representation of the desirability of the links in the network as 

well as be used to control routing.  A change in the link weights could cause a change of 

forwarding path and a shift of the dynamics of the traffic being routed over a network.  

This observation that link weight can be optimizated to adjust network performance is 

discussed in Section 2.3. 

2.3 Link weight optimization 

In OSPF, the default link weights are pre-selected, often set to unit weight or to weight 

proportional to the inverse of link capacity.  If the link weights stay fixed, some cheaper 

links may be heavily used, causing congestion on those links, while links on other 

feasible paths are sitting idle, resulting in lower overall network performance.  To adapt 

to different traffic loads and dynamic traffic conditions in the network, link weights 

should be changed based on link loads to move some of the traffic off heavily loaded 

links [47].  Link weights can also be specifically designed for known traffic demands to 

minimize delay [17] and to minimize the maximum utilization on links [27] [28], which 
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in turn minimizes delay.  Link weights can further be manipulated to improve the 

throughput, delay, and load-balancing efforts of the network [31]. 

While more sophisticated link weights can provide good results, the destination-

based hop-by-hop routing approach taken by OSPF still prevents traffic from being 

forwarded on all available paths, using all available resources, because traffic to a 

destination is routed only along the shortest paths.  Because a small change in link weight 

can shift more traffic than is intended, congestion at one location may be resolved at the 

expense of new congestion occurring at a new spot.  Thus, destination-based hop-by-hop 

routing like OSPF does not take full advantage of link weight optimization.  In addition, 

while optimizing link weights can improve average network performance, it is still not 

enough for newer applications, such as real-time traffic, that require stricter QoS 

requirements. 

2.4 Quality-of-Service (QoS) 

Newer applications, such as real-time applications, generally require strict service 

guarantees from the network for specific traffic flows.  Using destination-based hop-by-

hop routing, a general solution to provide QoS is to find, for each destination, a path with 

the highest performance, such as highest bandwidth and shortest delay, in the hope that it 

can satisfy most, if not all, requests [86].  This can be done with only a few minor 

changes during route computation in OSPF.  However, to provide more specific 

guarantees while using destination-based hop-by-hop routing, the routing table stored in 

each router needs to expand to include a next hop for each QoS level, for each destination 

[5].  Another modification that can be made in conjunction with link weight optimization 

is to service higher priority packets first [53], instead of servicing packets on a first come 
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first served basis.  However, because each hop in the path from source to destination has 

its own traffic load and conditions, simply regulating packets at each node may not result 

in stable transmission at the end hosts.  Thus, while destination-based hop-by-hop routing 

can be extended to provide general QoS or improve average service quality without too 

many modifications, it is still not ideal for more stringent or finer-grained QoS 

requirements.  

To achieve the desired end-to-end QoS, every node in the path from the source to 

destination needs to cooperate and offer a certain level of service [13] [14] [20] [41] [60] 

[61] [90] [91] [92].  When a request for connection is made, before the start of a traffic 

flow, the path from source to destination is determined, and the resources needed to 

achieve an end-to-end guarantee are reserved on each component in the path.  If such a 

path cannot be found, the request for connection at this particular service level is rejected.  

Depending on the configuration, either another connection request with reduced service 

level is submitted or the traffic flow does not get sent over the network. 

Using reserved paths to route high QoS traffic as described above is a large 

research area [8].  Some variations of this framework include the routers’ ability to 

dynamically manage the level of resource reservation to increase the call acceptance rate 

and network utilization [66] [77].  Because reserving resources is a big task and 

commitment by the network, one of the major concerns involves resource management to 

improve network utilization.  As network conditions change, switching to a different path 

during the connection may improve the call admission rate [29] [43] or may lower delay 

[24] because resources elsewhere have become available and more suitable for certain 
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traffic demands over time.  Switching between multiple paths based on network 

conditions can also achieve better load balancing [25] [54] [81]. 

More recently, due to the movement of applications from more traditional 

networks, such as the telephone network, to the computer network, concern for reliability 

has become of interest.  In addition to becoming less desirable over time due to changes 

in the network, resources on a dedicated path may simply fail, making the original path 

useless and forcing a switch of paths [40] [79].  In a centralized network like the 

telephone network, the system can be designed for a specific QoS with certain call 

acceptance rates and fault tolerance [2] [46] [52] [94].  This is not the case with computer 

networks.  Without advance planning for fault tolerance, recovery at the time of path 

failure may be unsuccessful or may take too much time [9].  Below, Sections 2.5, 2.6, 

2.7, and 2.8 describe different solutions that deliver reliability to improve QoS routing.  

Table 2 summarizes the different types of solutions and Section 2.9 provides the 

justification for the approach taken in this thesis. 

2.5 Using two reserved paths 

In addition to reserving a primary path for packet forwarding prior to a failure, a second, 

backup path can also be reserved prior to a failure to provide more reliable QoS.  

Sections 2.5.1 and 2.5.2 describe two types of algorithms to compute these backup paths 

that are intended to be reserved. 

2.5.1 End-to-end protection 

One of the simplest solutions to protect a path against a single component failure is to 

have a backup path (Figure 1).  When a request for connection is made, two link-and-
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node disjoint paths are computed, and the necessary resources are reserved on both paths.  

Traffic is initially sent over the primary path.  If a failure occurs in the primary path, the 

source switches over to use the backup path [40] [79].  A problem with this approach is 

the inability to find two node-and-link disjoint feasible paths.  In this case, solutions with 

maximally disjoint paths are proposed [23] [54].  Another problem concerns the trade-off 

between algorithm efficiency and solution optimality.  For instance, it is difficult to 

efficiently calculate the absolute shortest pairs of paths, which are expected to be the least 

costly to reserve [63].  In general, the biggest weakness of this approach is that using two 

reserved paths requires large amounts of resources to be reserved for one single 

connection.  Thus, a large portion of the research is on how to reduce the amount of 

resources reserved, particularly how to reduce the amount of resources reserved on the 

backup paths. 

To reduce the resources reserved for backup paths, backup resource multiplexing 

is used.  If a link l(i, j) is used to back up both primary paths P1 and P2 for connections C1 

and C2 respectively, and if P1 and P2 share some of their links or nodes, then resources 

for both C1 and C2 need to be reserved on l(i, j).  On the other hand, if P1 and P2 do not 

share any components, then the two connections can share resources on their backup 

links when only one link is expected to fail [50] [55] [49].  Further refinement can be 

made so that users can choose the level of multiplexing they want, and hence the actual 

level of fault tolerance [36] [38] [39] [80].  Another approach to reduce resources 

reserved for backup paths is to consider an area of the network.  It is unlikely that a 

component of every primary path in that area will fail.  Thus, although a link l(i, j) may 

be used to backup n connections, the resources reserved on l(i, j) can be less than the 
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resources needed for all n connections, because realistically, from the perspective of the 

network as a whole, or even just a portion of the network, not all of those primary paths 

are expected to fail [69]. 

 

 

Figure 1. End-to-end primary and backup paths. 

 

 

Figure 2. Local protection. 

 

2.5.2 Local protection 

Instead of using a disjoint path to protect the primary path, another approach is to protect 

each component or each segment of the primary path [48] [51] [69] [93].  Figure 2 

depicts a primary path from source S to destination T in solid lines, and links used to 

protect the primary path in dashed lines.  If link l(C, T) fails and node C detects it, then 

node C can immediately switch to the backup links used to protect l(C, T), links l(C, E), 

l(E, F), and l(F, T).  Compared to the approach in Section 2.5.2, the computation of this 

approach is much more complex, because the primary path and the “bridges” are not 
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independent of each other.  Because it may not always be possible to find bridges to 

protect each element in the primary path, different algorithms propose that the bridges be 

computed in segments [12] [32] [33] [74].  Instead of having one backup path, or bridge, 

to backup each link/node, each bridge is used to backup a segment of the path.  Figure 3 

shows an example of how backup paths, represented by the dashed lines, are set up to 

protect different segments in the primary path, which is depicted in solid lines. 

 

 

Figure 3. Local protection in segments. 

 

2.5.3 Advantages and disadvantages 

Regardless of the type of protection, the main advantage of reserving resources on the 

backup paths is that perfect recovery is guaranteed.  A traffic flow with a failed primary 

path experiences the same service quality before and after the failure.  However, there are 

two major disadvantages.  The obvious one is the amount of resources that could be 

wasted when there is no failure.  While the resources reserved on the backup paths can 

still be used to route best-effort traffic, they can not be used to support QoS traffic.  The 

other somewhat hidden disadvantage is the amount of routing information required to 

compute the backup paths.  Algorithms that compute backup paths with the goal of 

minimizing the amount of resources reserved on backup paths often require detailed 

information regarding how traffic in the network is routed, which actively consumes 
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network bandwidth.  Thus, using two reserved paths, perfect recovery can be achieved, 

but it comes at the expense of substantial decrease in network utilization. 

2.6 One reserved primary path and one pre-planned unreserved 

backup path 

Similar to Section 2.5, this approach also computes backup paths to overcome the failure 

of the corresponding primary paths.  Unlike Section 2.5, the backup paths are not 

reserved prior to the failure when their corresponding primary paths are alive, and 

resource reservation to provide strict QoS is attempted on the backup paths only when 

they are needed.  To improve success rate, backup paths are chosen so that they have the 

highest chance of successfully reserving enough resources to provide strict QoS when 

they are needed [48] [49].  Because backup paths are unreserved when their primary 

paths are active and alive, there are no wasted resources.  However, also because the 

backup paths are unreserved initially, there is a chance that resources may not be 

available for reservation at the time of failure.  Thus, the goal in this category is to 

maximize the number backup paths that can successfully reserve the required resources to 

provide strict QoS at the time of failure.  Similar to the previous approach, improving the 

success rate of backup path reservation requires a lot of information on the flows present 

in the network.  Thus, algorithms in this approach also need to carefully manage the 

balance between high backup path success rate and communication overhead. 

2.7 On-demand path computation 

Another approach similar to Section 2.6 is to calculate backup paths, for the first time, at 

the time a failure is detected [9] [11] [64] [85].  Re-routing of traffic is attempted on 
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those backup paths [56] [65].  Like the approach in Section 2.6, this also maintains high 

network utilization because only the primary paths are reserved and no extra resources 

are reserved.  However, because there is no advance planning to coordinate all the traffic 

flows like the approach described in Section 2.6, the coordination of traffic flows is done 

after the failure.  One way to prevent traffic with failed primary paths from contending 

for the same resources is by sequentially re-routing traffic, which may take too much 

time for the re-routed traffic to be useful.  Additionally, some traffic may require several 

re-routing attempts before a successful path is found, and this is expected to consume 

network bandwidth.  Thus, with this approach, it has similar disadvantages as the 

approach in Section 2.6, but is not expected to perform as well.  While this approach 

could be the default solution when the approach in Section 2.6 fails, it should not be the 

primary solution to improve QoS. 

2.8 Dispersity routing 

The idea of dispersity routing [57] is to break a message into N sub-messages, and to 

send each sub-message along a different path.  Thus, only 
N

1
 of the total resource 

required by the connection needs to be reserved on each path, and one failed path does 

not impact the other paths.  If occasional loss of packets can be tolerated, as is the case in 

most streaming multimedia, this approach offers fault tolerance without the need to 

reserve backup resources.  There are many variations of dispersity routing, from different 

ways to break up a message [34] to incorporating redundant information into the multiple 

segments of each message [10].  To incorporate redundant information, the same number 

of N paths is computed.  In this case, a message is broken up into K sub-messages, where 
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K<N.  Among the N paths, K of them are used to send actual data messages, and the 

remaining N-K paths are used for error correction code.  Lost data can then be recovered 

using the redundant information [35].  The price to pay for this added fault tolerance is 

the complexity at end hosts for coding and decoding data, and 
K

N
 times more resource 

needs to be reserved.  To avoid coding and decoding, a straightforward solution is to send 

multiple copies of each complete message over disjoint paths [73].  However, this means 

that if N copies were sent, then N times the resources would be needed.  By combining 

dispersity routing with backup paths [71], more failure models, such as double link 

failures, can be tolerated.  The disadvantages of such combinations are the complexity, 

the feasibility of deployment, and the lower network utilization.  Multiple disjoint paths 

may not always be found and extra resources are needed to route extra packets. 

2.9 Comparison and the chosen approach 

Table 2 summarizes the different levels of services as well as the advantages and 

disadvantages of the different approaches.  As mentioned in Chapter 1, the approach 

taken in this thesis is to pre-plan unreserved backup paths.  This approach is chosen 

because it is relatively inexpensive, compared to the use of two reserved paths or 

dispersity routing.  Compared to on-demand routing, which does not pre-reserve or pre-

plan backup paths, simply pre-planning backup paths eliminates the weakness of long 

disconnection.  In the following chapters, several algorithms and techniques are 

developed to overcome the other weaknesses involved with the use of pre-planned but 

unreserved backup paths.  Different techniques are designed and employed to improve 
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the service experienced by traffic flows after a failure as well as to reduce the amount of 

routing information communicated over the network. 

2.10 Network protocols 

The algorithms in Sections 2.4, 2.5, 2.6, 2.7, and 2.8 require some support in the 

underlying system to provide additional network metrics that allow better paths to be 

computed.  Many algorithms also require an extra step to establish a connection to use a 

specific, dedicated path.  Sections 2.10.1 and 2.10.2 describe two protocols, OSPF [59] 

and Multiprotocol Label Switching (MPSL) [76], and their extensions, that are widely 

available and can be structured and modified to support some of the algorithms above.  

Section 2.10.3 describes how the algorithms designed in this thesis can be deployed using 

existing network protocols. 

 



 

 21 

Table 2. Comparison of various levels of QoS and different approaches. 
Level of QoS Approach Pros Cons 
Best-effort Current default Internet service 

(Best-effort service) 
Reliable 
(Recovers from component failures.) 

Unpredictable delivery. 

Timely delivery One reserved path Stable and predictable delivery when 
designated components are alive. 

1. Potential waste of resources. 
2. Suffers from single component failures. 
3. Suffers from difficult deployment 
because it requires upgrades on all (or most) 
nodes in the network. 
4. Suffers from scalability problems 
because of the computational complexity at 
core nodes. 

Two reserved paths 
(Section 2.5) 

Not only stable and predictable service, 
but also reliable delivery. 

5. Wasted resources on the backup paths 
are always expected. 
6. Some algorithms suffer from high 
computational complexity. 
7. Requires large amounts of routing and 
network information. 
• Suffers from 3 and 4 above. 

One reserved primary path and 
one pre-planned unreserved backup path 
(Section 2.6) 

No extra wasted resources on backup path. • Suffers from 3 and 4 above. 
• Some traffic suffers from 2 above. 
• Potentially suffers from 7 above. 

On-demand backup path computation 
(Section 2.7) 

No extra wasted resources on backup path. • Suffers from 3 and 4 above. 
• Some traffic suffers from 2 above. 
• Potentially suffers from 7 above. 
• Suffers from potentially long 
disconnection even for successfully re-
routed traffic. 

Timely and reliable 
delivery 

Dispersity routing 
(Section 2.8) 

• No extra computation at core nodes. 
• Can recover from losses and delays, 
and also potentially recover from 
transmission errors. 

• Suffers from 3 above. 
• Extra computation at end nodes. 
• Some waste of resources. 
• Need disjoint paths, which is not always 
possible. 
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2.10.1 OSPF 

In OSPF, when a router is initiated, it discovers its neighbors and their capabilities 

regarding extensions [22].  At the end of this stage, bidirectional communication is 

established between neighbors, and neighbors will know when to declare a failed link and 

whether particular routing information is to be exchanged.  This stage is followed by 

synchronization of their views of the network, the link state databases.  At the end of this 

procedure, all routers construct one common view of the network topology.  Using 

Dijkstra’s shortest path algorithm, this results in identical routing tables in all routers, 

even though they are constructed by different routers. 

While OSPF is traditionally used in best-effort routing, it has many extensions 

that can be used to provide QoS.  In the original OSPF specification, each link advertised 

in a link state advertisement (LSA) has a link cost statically assigned by network 

operators.  As mentioned in Section 2.3, by monitoring link usage, routers can convey 

link conditions by dynamically assigning link costs based on available bandwidth, and 

encoding these costs in LSAs without changing the LSA format.  If routers agree that link 

cost is a function of unallocated bandwidth, the amount of available bandwidth can be re-

constructed at destination routers, and paths satisfying different bandwidth requirements 

can be easily computed [5].  Given a set of known demands, link weights can also be 

calculated so that simple Dijkstra’s shortest path algorithm used in OSPF can construct 

routing tables to balance loads and accept more connections, compared to some 

commonly suggested link weight schemes such as unit weight or inverse capacity as 

weight [27].  Furthermore, instead of exchanging LSAs at a fixed interval, LSA updates 

can be configured to be triggered only when there are significant changes to the network, 
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where significant change is a pre-determined threshold or a certain percentage of 

difference [4] [93]. 

Alternatively, opaque-LSA [22] provides a generalized mechanism to 

communicate extra information to routers.  It has a regular LSA header and is flooded 

reliably, similar to other LSAs.  The body of an opaque-LSA can contain any information 

to be used by routers, or even applications.  For example, opaque-LSAs can be used to 

distribute extra link information, such as maximum bandwidth and unreserved bandwidth 

on a link, to facilitate QoS routing [45]. 

2.10.2 Multiprotocol Label Switching (MPLS) 

Traffic engineering and QoS requirements are instrumental in the creation of MPLS to 

forward packets along very specific paths.  MPLS places an extra mapping layer, the 

label, between destination IPs and the next hops.  A label is a short, fixed length identifier 

that is associated with a forwarding equivalence class (FEC) between a pair of 

downstream/upstream routers.  All packets in an FEC travel on the same path once they 

traverse a common router.  In destination-based hop-by-hop routing, a destination prefix 

could be seen as being a unique FEC.  Assuming that destination IP prefix x is the FEC f.  

The downstream router, Rd, binds label l  to FEC f, which is associated with a destination 

IP prefix, x, that has a next hop IP address of nh.  This binding is reliably communicated, 

requiring acknowledgement, from the downstream router Rd to the upstream router Ru, 

either periodically or by request.  When Ru wants a packet forwarded to the destination IP 

prefix x, Ru assigns the packet label l, as is told by Rd.  Ru then sends it to the next hop 

router, Rd.  When Rd receives this packet, it looks up the FEC based on the label l  in the 
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packet header.  It finds that label l  identifies FEC f, which translates to destination IP 

prefix x, which in turn has the next hop nh.  This lookup also returns the label that the 

next router, the one that is downstream from Rd, has communicated to Rd for forwarding 

packets in the FEC.  Rd replaces the old label with this new one and places the packet 

onto the outgoing interface for nh. 

Using a label to map to next hops provides the flexibility required for explicit path 

routing, which is used extensively in QoS routing.  With MPLS, next hops are no longer 

exclusively associated with destination IP prefixes.  A particular path can be set up by 

assigning that path to its own FEC and relaying this information to all the hops along the 

path using a signaling protocol, such as RSVP with additional objects to express explicit 

routes [7] [91] or the label distribution protocol (LDP) designed specifically for MPLS 

[3] [42].  Each router along the path associates a label with the next hop in the path and 

stores this entry in its routing table.  Once the label switched path is set up, packets can 

be sent along this path simply by labeling them with the specific label chosen earlier.  

There is no need to list the entire path in every packet header, as is done in IP source 

routing. 

2.10.3 Combining OSPF and MPLS 

MPLS is often used as the underlying switching technology in QoS routing because of its 

flexibility and control in setting up explicit paths and different service levels used to 

satisfy certain constraints [8] [25] [30] [83] [88].  Combining the ability to forward 

packets on explicit paths using MPLS and the ability to reliably and efficiently collect 

link traffic conditions as well as network topology using OSPF, servers have been 

designed to provide QoS guarantees [6] [70]. 
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2.11 Trends 

More recently, the research trend is in pushing QoS service over multiple domains, for 

both traditional QoS constrained services and reliable QoS constrained services.  The 

current network architecture has difficulties providing such services because topology 

and routing information is limited across domains for scalability and security issues.  

However, topology and routing information is vital for QoS routing.  Consequently, there 

is renewed interest in the topic of topology aggregation [84], to provide useful and 

scalable topological information for QoS routing across multiple domains.  Additional 

network components [26] are also proposed to handle inter-domain QoS routing [75] 

[89].  Finally, a few efficient algorithms are proposed to provide reliable QoS routing 

across multiple domains [82].  These algorithms currently compute the traditional two 

reserved paths as described in Section 2.5, where the backup paths are intended to be 

reserved for the duration of the connections and perfect recovery is provided in the event 

of a link failure. 

2.12 Chapter summary 

There are many techniques that are used to improve QoS in computer networks, which 

were first designed for best-effort service.  These techniques range from link weight 

management for average improvement to reserving resources for strict service 

agreements.  Existing protocols have been used to construct systems for QoS routing 

based on these techniques.  The following chapters specifically look at modifications that 

can be made to improve QoS, such that recovery from a single link failure is both 

possible and satisfactory.  As mentioned in Section 2.9, the central idea is to pre-plan 
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backup paths prior to the failure so that the backup paths do not contend for the same 

resources when they need to be activated.  Chapters 3, 4, and 5 discuss the algorithms 

used to plan these backup paths as well as different ways to use these backup paths to 

provide good service to the end users. 
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3 Basic System and Design 

3.1 Chapter outline 

This chapter describes the basic framework and principles used in this thesis to provide 

added reliability to QoS.  Sections 3.2 and 3.3 describe the network environment and 

assumptions in which the proposed algorithms are deployed.  Section 3.4 provides the 

rationale and design decisions of the first backup path computation algorithm, AvoidPBO 

(Avoid Conflicting Primary and Backup Paths with Order Consensus).  It shows the 

strategy employed by AvoidPBO to compute effective backup paths, which has rules to 

avoid conflicts during calculation and ultimately results in backup paths that do not 

contend for the same resources if possible.  Sections 3.5, 3.6, 3.7, 3.8, and 3.9 provide the 

details of AvoidPBO, including the information required to compute effective backup 

paths and steps taken to compute the backup paths.  A simple test in Section 3.10 is 

provided to show that, compared to disjoint paths, AvoidPBO spreads out the use of links 

so that its backup paths can potentially provide better service than disjoint paths in the 

event of a single link failure.  Finally, Section 3.11 provides a summary of this chapter. 
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3.2 Assumptions 

In this thesis, it is assumed that a solution to provide more reliability requires at least one 

reserved primary path.  Because a second reserved path is too costly, the proposed 

solution uses an unreserved path as backup.  Thus, each flow has a reserved primary path 

which it uses if there is no failure in the network, and it also has an unreserved backup 

path for the duration of its connection.  The goal is to find a backup path to tolerate a 

single link failure as much as possible, either by fully recovering from a single link 

failure so that users do not detect any difference, or if such perfect recovery is not 

possible, by downgrading the service quality as little as possible. 

Traffic in the network is assumed to change over time.  It is assumed that more 

accurate information regarding the forwarding paths taken by such traffic will produce 

better pre-planned backup paths.  The only way to capture the state of the traffic in a 

volatile network is to perform periodic information updates.  Because traffic in the 

network changes constantly, information regarding the location or placement of traffic 

also changes constantly.  Since information regarding these changes takes time to 

propagate through the network, previously selected backup paths may not remain the best 

option over time and should be updated periodically.  Thus, even though there is always 

an unreserved backup path associated with a flow, the backup path may change due to 

updated information. 

Overall, similar to OSPF and Internet best-effort routing, routing information is 

circulated throughout the network periodically.  This additional routing information 

changes as the traffic conditions in the network change.  The algorithms proposed below 
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compute the backup paths based on this routing information.  This entire process is 

repeated periodically. 

3.3 Network environment 

While the emphasis in the following sections and chapters is on the backup path 

computation methods and how they differ from each other, these algorithms can be 

deployed in a network setup similar to those described in Section 2.10.3.  The algorithms 

should be deployed within an autonomous system (AS) that does not maliciously use the 

advertised path information.  The AS likely uses a link-state routing algorithm [58] such 

as OSPF [59] that can perform the necessary authentication as well as extensions [22] to 

broadcast extra path information.  Because data is now forwarded on very specific paths, 

the paths will have to be set up beforehand using a signaling protocol such as RSVP [91].  

The actual forwarding of data packets along a specific path can be supported by 

technology such as MPLS [76].  OSPF is widely supported, and MPLS is gradually being 

accepted and built into routers, particularly for routers providing high QoS. 

3.4 Avoid conflicting primary and backup paths with order 

consensus (AvoidPBO) 

AvoidPBO [16] [17] is a heuristic to calculate a second path that remains unreserved but 

can still provide good service in the event that the corresponding reserved primary path 

has failed due to a single link failure.  In this setup, the primary path of a flow is assumed 

to be reserved and does not change for the duration of the connection.  In contrast, the 

backup path is unreserved to conserve resources in the network.  Because the backup path 

is unreserved, it needs to be carefully chosen so that it can be useful and still offer good 
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service when it is activated.  Without careful planning, a single link failure that causes 

multiple flows to fail might result in the failed flows all trying to use the same links to re-

route their traffic.  For example, in Figure 4, it is likely that when link(a, b) fails, the 

flows that used link(a, b) to forward traffic previously all choose to use link(a, c) and 

link(c, b) to re-route traffic.  This is acceptable if there are unlimited resources on those 

links.  However, when free resources are limited or even scarce before the link failure, 

some planning and coordination among the re-routed flows is required to allow all of 

those flows to receive acceptable service after the failure. 

 

 

Figure 4. An example of a single link failure. 

 

The basic technique is to first collect various routing information regarding the 

traffic in the network.  Using the additional routing information, an effective backup path 

can be computed by first determining the links that are undesirable and then adding extra 

weight to those links to discourage the use of those links.  AvoidPBO separates 

undesirable links into two categories, the links used by conflicting primary paths and 

those used by conflicting backup paths.  In the end, when appropriate link weights are 

assigned, AvoidPBO invokes Dijkstra’s single source shortest path algorithm (Dijkstra’s 

algorithm) to compute the actual backup path. 
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In Section 3.5, the additional routing information collected and required by 

AvoidPBO is described.  Section 3.6 describes the two types of conflicts in AvoidPBO 

and the steps taken to compute a backup path using those conflicts.  Section 3.7 further 

discusses the difference between avoiding conflicting primary paths and avoiding 

conflicting backup paths that is briefly mentioned in Section 3.6.  Section 3.8 describes 

the actual formulae used to calculate extra link weights that are employed in the 

experiments in Section 3.10 and Chapter 6.  Section 3.9 discusses further adjustments that 

can be made to the basic AvoidPBO design to accommodate different bandwidth 

requirements.  While more comprehensive evaluation is provided in Chapter 6, Section 

3.10 provides a simple test to compare the effectiveness of AvoidPBO in terms of 

choosing different links as backup paths. 

3.5 Additional information 

Because the goal is to use unreserved backups to tolerate a failure in the network, backup 

paths should be carefully chosen.  Logically, a backup that is most likely to be 

successfully activated when the time comes should be maximally disjoint from its 

corresponding primary path.  To fully utilize all the available resources, the backup 

should share as few links as possible with other paths that might be active at the same 

time.  With AvoidPBO, to determine the paths that might be active at the same time, each 

source node periodically sends out the primary and backup path information of the flows 

it initiates and maintains.  This primary-backup path information is sent to all other 

source nodes in the network.  Section 3.6 describes how a source node uses such 

information to help compute backup paths for its flows. 
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Like other algorithms that also require per-flow information to be communicated 

over the network, AvoidPBO is also extremely expensive.  The overhead required by 

AvoidPBO is ultimately bounded by the number of flows or the amount of traffic in the 

network, which can increase indefinitely.  However, by pushing computation to source 

nodes, AvoidPBO sets up a structure that is conducive to other algorithm designs that do 

not require the distribution of per-flow routing information.  A method to condense the 

routing information and thereby reduce this communication overhead is provided in 

Chapter 4. 

3.6 Avoiding conflicts 

As mentioned in Section 3.2, the desired solution to improve QoS is to have a reserved 

primary path working in cooperation with an unreserved backup path for each flow.  

However, without reserving resources on the backup paths, a backup path may not be 

adequate to provide reliable and high quality backup when the primary path fails.  Even 

though a backup path that is disjoint from the primary path does not fail when a single 

link failure causes the primary to fail, this failure can cause several primary paths to fail.  

This in turn causes their corresponding backup paths to be activated simultaneously, 

which can result in contention of resources among the activated backups.  Figure 5 

illustrates an example in which two flows can fail simultaneously when link(e, c) fails.  

When link(e, c) fails, the primary paths of flow 2 and flow 3 will fail, causing the backup 

paths of flow 2 and flow 3 to be activated simultaneously.  Because flow 2 and flow 3’s 

backup paths may be activated simultaneously, these backup paths may conflict with 

each other and take resources away from each other.  Thus, the two backups should be 
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coordinated in such a way that increases both their chances of successful resource 

reservation. 

In addition to avoiding conflicting backup paths, conflicting primary paths should 

also be avoided.  For example, for flow 4, in the event of a single link failure at link(i, j), 

causing flow 4 to fail but leaving flow 2 and flow 3 to continue to use their respective 

primary paths, the backup path of flow 4 may conflict with the primary paths of flow 2 

and flow 3.  In fact, there is no point in re-routing flow 4 on link(e, c) if all the resources 

on link(e, c) are reserved for flow 2 and flow 3’s primary paths.  So, avoiding conflicting 

primary paths is particularly important when the network is heavily loaded, because even 

after a single link failure in the network, the majority of the traffic is likely to remain on 

their original, reserved primary paths.  If links are full with primary path traffic, then 

there will be no free resources left for the backup paths. 

 

 

Figure 5. Examples to illustrate reasons to avoid links. 
 

Altogether, the steps to calculate a backup path are as follows.  For a flow fx with 

primary path Px, to compute the corresponding backup path, Bx, the source node goes 

through each primary-backup path pair it has stored.  For each flow fi with primary-
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backup pair Pi -Bi , the source node first calculates the number of shared links between Px 

and Pi .  The source node then uses the steps in Sections 3.6.1, 3.6.2, and 3.6.3 to 

determine the amount of link weight to add.  In general, undesirable links end up with 

heavier link weights, and vice versa.  The actual backup path is computed using 

Dijkstra’s algorithm.  The pseudo code is provided in Figure 6. 

3.6.1 Step 1 

If there are no shared links between Px and Pi , extra weight can be added to links on Pi  

to prevent the eventual Bx from conflicting with Pi .  This is needed because if Px and Pi  

do not share any links, Px may fail while Pi  does not, when there is a single link failure.  

Consequently, Bx and Pi  may be active at the same time.  Thus, for Bx to be successful, it 

should avoid links used by Pi , especially if all those links are already full.  To avoid links 

on Pi , these links should be weighted and their new link weights can be calculated by 

adding extra weight proportional to the path length of Pi . 

3.6.2 Step 2 

If Px and Pi  share at least one link, then Bx may potentially conflict with Bi  when one of 

the shared links fails.  Thus, either Bx should avoid Bi  or vice versa.  One solution is to 

give the flow with the earlier starting time priority, and let the lower priority flow avoid 

the links used by the higher priority flow.  Thus, if the ordering of flows is based on 

starting time and if the starting time of flow fx is later than that of flow fi, then the link 

weight for links used by Bi  should be updated to reflect their undesirable status.  The 

new link weights can be calculated by adding an extra weight proportional to the number 

of shared links. 
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3.6.3 Step 3 

Finally, enough extra weight also needs to be added to the links on Px to prevent Bx from 

using the same links as Px.  The amount of extra weight added in this case should be 

more than the total amount added in the first two cases because having a backup disjoint 

from the primary path is still the most important element in recovering from a failed 

primary path. 

Finally, based on the adjusted link weights, Dijkstra’s shortest path algorithm is 

used to compute the backup path Px. 

 

computeBackupAvoidPBO (flow fx) { 
 W: weight matrix. 
 Wk: weight on link lk. 

 fi: flow i. 
 P i : primary path of fi. 
 B i : corresponding backup path of P i . 
 P x: primary path of fx. 
 src: source of fx.  
 dest: destination of fx. 
  

for i = 1 .. number of primary-backup path pairs 
stored 
if P x and P i  do not share any link then 
 add extra weight to links on P i  in W 
if P x and P i  share at least a link and fi has higher 

priority over fx then 
 add extra weight to links on B i  in W 

      end  
add weight w primary , where w primary  >> Wk, to each link lm in P x 

 use Dijkstra’s algorithm and the new weight matrix  W 
  to compute a shortest path between src and dest. 
}   

Figure 6. The pseudo code for AvoidPBO. 
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3.7 Ordering of flows 

3.7.1 Ordering backup paths 

As mentioned in Section 3.6.2, there is an ordering issue between backup paths that 

should avoid each other.  At the start of designing for AvoidPBO, two side effects of 

adding weight to links before invoking Dijkstra’s algorithm were observed.  One side 

effect is that adding too much weight to links often results in avoiding and discounting 

too many links and options, which has a detrimental effect on the overall result.  The 

second side effect is that when two backup paths actively try to avoid each other, a 

common third alternative is often chosen for both backup paths.  To avoid this problem 

and to limit the weight added to links, AvoidPBO requires only one backup path to 

actively avoid the other backup path.  The backup path that should actively avoid another 

backup adds extra weight to links used by the other backup path.  To achieve consistency, 

there should be a consensus on which backup path should avoid the other one.  As 

mentioned in Section 3.6.2, a simple way to establish this consensus is to use the starting 

time of each flow and assume that a flow with an earlier starting time has priority over a 

flow with a later starting time.  Assume flow fu and flow fv have starting times of tu and 

tv, where tu < tv.  When the backup path of flow fu, Bu, is computed, if it is determined 

that Bu and Bv should avoid each other according to Section 3.6.2, then because tu < tv, 

Bu does not have to actively avoid Bv, and no extra weight is added to the links used by 

Bv when computing Bu.  When computing Bv, based on the ordering rule, Bv needs to 

actively avoid Bu, and so extra weight is added to the links used by Bu.  This is the 

scheme used in Section 3.10 and Chapter 6. 
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3.7.2 Not ordering primary paths 

When it comes to avoiding conflicting primary paths, AvoidPBO does not use the 

ordering of flows to determine the path to avoid, because conflicting primary paths 

should always be avoided.  The assumption is that resources reserved and occupied by 

primary paths will always belong to the primary paths unless they fail.  Since a 

conflicting primary path means the primary path has not failed at the time a backup path 

is activated, those resources reserved by that particular primary path are assumed to be 

unavailable to the backup path. 

3.8 Weights in experiments 

This section describes the weight formulae implemented in the experiments in Section 

3.10 and Chapter 6.  The notations used in Sections 3.8.1, 3.8.2, and 3.8.3 are defined and 

described in Table 3.  A summary of the conditions under which a link is considered a 

conflicting link is shown in Table 4.  The actual extra weights calculated by Sections 

3.6.1, 3.6.2, and 3.6.3 are determined by the formulae described in Sections 3.8.1, 3.8.2, 

and 3.8.3 respectively.  These formulae, which are implemented for the experiments in 

Section 3.10 and Chapter 6, are summarized in Section 3.8.4 and Table 5. 

3.8.1 Extra weight on a conflicting primary path 

Following the example described in Section 3.6.1, when computing the backup path Bx, 

AvoidPBO first determines whether the primary path, Pi , of another flow can fail at the 

same time as Px.  This is determined by calculating the number of shared links, 

)P,P( xiaredLinksnumberOfSh  in Table 3, between Pi  and Px.  If 

0)P,P( =xiaredLinksnumberOfSh , then Pi  and Px will not fail simultaneously.  
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Consequently, when Px fails and Bx is activated, Pi  is still active.  In other words, Bx 

conflicts with Pi , and extra weight should be added to links used by Pi , as shown in 

Table 4.  In the tests in Section 3.10 and Chapter 6, the actual weight added to each link 

in Pi  is proportional to the path length of Pi , )P( ipathLen .  This weight is the result of 

)P( ipathLen  factored by the value, factor, which is pre-defined for the duration of each 

simulation run.  For example, assume that path Pi  consists of links l1, l2, and l3.  Then, the 

path length of Pi  is 3, and the weight added to each of l1, l2, and l3 is factor*3 .  When 

1=factor , the weight added to each of l1, l2, and l3 is 3, for this particular case of 

conflict.  By including the path length of the conflicting primary path (Pi ) when 

computing weight, alternate paths, even though they are longer than Pi  are encouraged.  

To sum up, when computing Bx, if it is decided that extra weight needs to be added to the 

links on Pi , then the added weight is factorffnflictsnumberOfCo *)  , ( xi , where 

)P()  , ( ipathLenffnflictsnumberOfCo =xi .  During debugging, there was generally no 

noticeable difference in the performance and quality of backup paths using different 

values for factor.  Thus, 5=factor  is used for the experiments in Sections 3.10 and 4.8.2 

and Chapter 6.  Further sensitivity tests are left for future work (Section 7.3). 

3.8.2 Extra weight on a conflicting higher priority  backup path 

In the case described in Section 3.6.2, the number of shared links between Pi  and Px is 

not zero: 0)P,P( >xiaredLinksnumberOfSh  in Table 4.  If Bi  has higher priority than Bx, 

then extra weight is added to each link of Bi , and the extra weight added is 

factorffnflictsnumberOfCo *)  , ( xi , where 
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)P,P()  , ( xiaredLinksnumberOfShffnflictsnumberOfCo =xi .  The rationale for this is 

that the more shared links Pi  and Px have, the more likely it is for Pi  and Px to fail 

simultaneously due to a single link failure.  In other words, the larger 

),( xi PParedLinksnumberOfSh  is, the more likely that Bi  and Bx will be activated 

simultaneously.  So, it is reasonable that backup paths and their corresponding links that 

are more likely to be conflicted should have heavier extra weights added. 

In general, the extra weight added to the links on conflicting backup paths is 

smaller than the extra weight added to the links on conflicting primary paths because 

)P()}P(,)P(min{)P,P( ixixi pathLenpathLenpathLenaredLinksnumberOfSh ≤≤ .  Because 

primary path resources are never available unless the primary path has failed, conflicts 

with primary paths is more severe, and thus the need to avoid them is higher. 

3.8.3 Extra weight on the corresponding primary pat h Px 

Finally, in the following simulations, the weight added for each link described in Section 

3.6.3 is at least the total weight added to a link in Sections 3.6.1 and 3.6.2.  Any extra 

weight added to a link described in Sections 3.8.1 and 3.8.2 is also added to the links 

used by the primary path, Px.  This is because a link used by Px should be the least 

desirable link, and thus should carry the maximum weight that can possibly be added to 

other links in Sections 3.8.1 and 3.8.2.  Additionally, factor*NNNN  is also added to each 

link used by Px, where NNNN is the set of nodes in the network, as defined in Table 3.  The 

additional weight, factor*NNNN , is added to encourage the use of another path, or group of 

links, in place of any link in Px, even if that path consists of all the nodes in the network, 

as shown in Figure 7. 
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3.8.4 Summary of AvoidPBO implemented in experiment s 

To compute the backup path Bx of the flow fx, which has an existing, reserved primary 

path of Px, the source node compares Px to the routing information of all known flows fi.  

Link weights are modified using the formulae described in Sections 3.8.1, 3.8.2, and 

3.8.3, which are summarized in Table 5.  Dijkstra’s algorithm is then invoked on the 

graph with the modified link weights.  The shortest path computed by Dijkstra’s 

algorithm is the designated backup path Bx. 

 

 

Figure 7. Extra weight added to links used by the primary path. 
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Table 3. Definitions of variables. 
Variable Definition 
NNNN    The set of nodes in the network. 

LLLL    The set of links in the network. 

Pv The primary path of the flow fv, which is defined as a set of links {la, lb, … , ln), where each link LLLL∈il . 

Bv The backup path of the flow fv, which is defined as a set of links {la, lb, … , ln), where each link LLLL∈il . 

factor A pre-defined value selected by the source node. 
numberOfSharedLinks(Pi , Pj ) The number of common links between two paths, Pi  and Pj . 

numberOfConflicts(fi, fj) 
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Table 4. Conflicting links based on comparison between Px and Pi of fx and fi respectively. 

Conflicting link Condition 
Conflicting primary path link lk If 0),( =xi PParedLinksnumberOfSh  and iP∈kl . 

Conflicting backup path link lk If 0),( >xi PParedLinksnumberOfSh , iB∈kl , and priority of fi is higher than fx. 
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Table 5. Extra weight added in the steps described in Sections 3.8.1, 3.8.2, and 3.8.3. 
Step Action taken Link weight modification 
Formula 1 
(Section 3.8.1) 
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(Section 3.8.3) 
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3.9 Bandwidth variation of flows 

In Section 3.6, the emphasis is on showing the different types of links that should be 

avoided when choosing a backup path.  While AvoidPBO assumes that each flow 

requires the same bandwidth to satisfy their QoS requirements, it can also be extended for 

the case where each flow in a network has a different bandwidth requirement.  In this 

case, the additional information communicated out into the network, as described in 

Section 3.5, will have to include the information regarding bandwidth requirements.  

Furthermore, the extra weight added to a conflicting link also has to be weighted based 

on the bandwidth requirement.  For example, assume that an extra weight of w is added to 

link l  to avoid this link, which is used by the flow f1 with b units of bandwidth 

requirement.  If link l  is also used by another flow f2 with k*b units of bandwidth 

requirement, then an extra weight of k*w should be added to link l  to avoid this particular 

link.  This extension is left for future work (Section 7.3). 

3.10 Test for ability to not reuse links 

As mentioned in Section 3.4, without coordinating backup path computation, it is 

possible that all the flows affected by a single link failure will choose the same links to 

use to re-route their traffic (Figure 4).  This tends to reduce the service quality, especially 

when the network was already full of traffic prior to the failure.  Thus, when computing a 

backup path using AvoidPBO, links that might be in use after a failure are avoided if 

possible, in the hope that the end result is a backup path with free resources available at 

the time it is needed.  The test in this section calculates the average number of backup 

paths supported by a link when there is a link failure in the network.  In this experiment, 
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the ideal case is that, when a backup path is needed, each link in the backup path only re-

routes traffic for this single backup path and no other backup path.  While this is not 

always possible in many network and traffic configurations, carefully choosing backup 

paths, as is done with AvoidPBO, is expected to reduce the number of flows that use the 

same link.  For this test, a randomly generated graph of 20 nodes, each with a 

connectivity of four, as represented by the adjacency matrix in Appendix A, is used.  

Each link is assumed to have 20 units of resources, with the ability to carry 20 flows.  A 

total of 600 flows are tested in this network.  Each flow is assumed to require or consume 

one unit of resource on each link of its forwarding path.  These flows and the primary 

paths of these flows are not randomly chosen.  Instead, 100 distinct source-destination 

pairs are first generated: {<src1, dest1>, <src2, dest2>, …, <src100, dest100>}.  The 

primary paths are mapped out for these flows and they are computed using Dijkstra’s 

algorithm with uniform link weight of one.  Thus, a group of flows, {f1, f2, …, f100}, with 

{<src1, dest1>, <src2, dest2>, …, <src100, dest100>} are created, and each flow has a 

corresponding primary path, {P1, P2, …, P100}.  Then, the rest of the 500 flows are 

randomly chosen from this pool of sources and destinations, and they reuse the same pool 

of primary paths.  For example, the 101st flow, f101, could be a flow from srci to desti, 

where },,,,,,{, ><><><∈>< 1001002211ii destsrcdestsrcdestsrcdestsrc L , and its 

primary path is Pi , where }P,,P,P{P 10021i L∈ .  The only rule is that each link in the 

network carries at most 20 flows, due to the resource limit set for this network.  This 

traffic setup is designed to create and increase conflicts among flows to force AvoidPBO 

to actually work and circumvent congestion and other traffic.  If none of the flows has a 

primary path that conflicts with other primary paths, as depicted in Figure 8, then it is 
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likely very simple to choose backup paths that do not conflict with each other and still 

result in a low average backup path per link.  By forcing some flows to conflict with each 

other, the selection and conflict avoiding ability of AvoidPBO can be examined.  While 

all flows are assumed to start at the beginning of the simulation, the actual starting time 

of each flow, t1, t2, …, t600, is assumed to be such that t1 < t2 < … < t600. 

 

 

Figure 8. An example with no conflicting primary paths. 

 

Using the setup above, in the beginning, each link services at most 20 flows.  The 

backup paths are then computed in two rounds using the three steps described in Section 

3.6.  In the first round, only the primary and backup path information of flows originating 

from the same source node is used.  This is to simulate the fact that it takes time to 

propagate routing information to all the nodes in the network.  In the second round of 

backup path computation, all the routing information of all flows is available to all nodes.  

The backup paths computed in this step take advantage of the routing information of all 

the traffic in the network. 

Once the primary and backup path of each flow are mapped out, each case of 

single link failure in the network is tested.  A total of 80 failure cases are tested.  For each 

single link failure case that causes at least one backup path to be activated due to at least 



 

 46 

one failed primary path, the following metrics are calculated.  The average number of 

backup paths on each link, 
ifailCaseABPL , is computed as follows: 

NDL

pathLength

ABPL
∑

= j

j
B

)B(

ifailCase , where Bj  is a backup path that is 

activated in ifailCase  and NDL is the total number of the distinct links 

used by the backup paths activated in ifailCase . 

Then, the value reported in Figure 9, ratio, is computed as follows: 

NFC

ABPL
ratio

∑
= i

ifailCase

, where NFC is the number of failure cases 

considered. 

A ratio of one indicates that on average, when a link is used after a link failure caused 

one or more primary paths to fail, that link is used by one re-routed flow.  Thus, a high 

ratio indicates high contention for a link.  Figure 9 shows the ratio for six cases, each 

with 100, 200, 300, 400, 500, and 600 flows in the network, as described above. 

For comparison, Figure 9 includes the ratio calculated for disjoint backup paths.  

Disjoint backup paths are computed by first taking out the links used by their respective 

primary paths, and then by invoking Dijkstra’s algorithm on a graph with unit link 

weights on each remaining link.  As mentioned, the minimum ratio is one, which is also 

included in Figure 9.  Figure 9 shows that there is clearly more contention at each link 

when disjoint paths are used, whereas AvoidPBO is able to spread out the links used by 

backup paths.  While further evaluation of AvoidPBO is provided in Chapter 6, these 

preliminary test results show that the links that AvoidPBO chooses to avoid are 

reasonable and yield better backup paths than simply computing disjoint paths. 
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Figure 9. Comparison of the ratio of total number of links used to the number of distinct links used. 

 

3.11 Chapter summary 

This chapter describes the foundation of a system that can provide more reliable QoS 

service specifically in the event of a single link failure.  Such a system has been shown to 

be built by combining existing popular network protocols such as OSPF and MPLS.  

Using AvoidPBO, backup paths can be chosen to complement the fixed and reserved 

primary paths.  When backup paths are activated due to a single link failure, AvoidPBO 

backup paths are more spread out than disjoint backup paths, which bode well for the 

flows routed on these backup paths in terms of QoS.  One glaring drawback with 

AvoidPBO is its overhead, which is examined and improved in Chapter 4. 
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4 Overhead Reduction 

4.1 Chapter outline 

While the method (AvoidPBO) in Chapter 3 showed evidence of reducing resource 

contention (Figure 9), the need to broadcast the primary and backup path information of 

every traffic flow (Section 3.5) is a big drawback because it is cost prohibitive.  With 

AvoidPBO, in an effort to reduce congestion, potential congestion is also introduced.  In 

addition, although the computation of backup paths can be performed in the background 

on a secondary processor, the need to look at routing information of every single flow in 

the network to compute the backup paths can be time consuming.  Section 4.2 describes 

how to condense the raw routing information used by AvoidPBO to a level that is fixed 

regardless of the amount of traffic in the network.  Although the routing information is 

condensed, Section 4.3 shows that it is condensed in such a way that it still contains 

usable and helpful information to compute effective backup paths.  Two methods, TP 

[15] and TPmax [18] [19], which use the condensed routing information to compute 

backup paths in a manner similar to AvoidPBO are provided in Sections 4.4 and 4.5, and 

Section 4.6 discusses some potential future extensions.  Sections 4.7 and 4.8 discuss the 

differences among AvoidPBO, TP, and TPmax, and Section 4.9 provides a summary of 

this chapter. 
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4.2 Condensed routing information 

As alluded to in Chapter 3, because AvoidPBO broadcasts path information of all flows, 

the communication cost incurred by AvoidPBO can be prohibitive.  The main goal of this 

chapter is to reduce this communication overhead while retaining competitive 

performance.  To retain competitive performance, the condensed routing information 

needs to contain similar critical information used by AvoidPBO, mainly the information 

that allows an algorithm to determine the resources to avoid in each specific situation. 

4.2.1 PTP and BTP 

Assume that L is the number of links in the network.  The primary and backup 

paths stored at each source node are first condensed into two arrays of size O(L2) bytes: 

the primary traffic placement array (PTP) and the backup traffic placement array (BTP).  

A source node Ni  is required to store the primary and backup paths of its own flows, 

because it is responsible for computing the primary and backup paths and setting up the 

data forwarding paths for the flows it originates.  Based on the primary and backup path 

information of its flows, Ni  constructs iNPTP  and iNBTP . 

4.2.2 Construction and rationale 

The principle employed by AvoidPBO is to first determine the links that may be used at 

the same time by higher priority traffic, either the primary path traffic or higher-ranked 

backup path traffic, and then manipulate the link weights so that lower-ranked traffic tries 

to avoid those links.  In other words, it is important to know which links are used 

simultaneously under what circumstances.  Thus, instead of sending out complete path 

information, the source node can condense the path information such that it still contains 
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information about the links that are used simultaneously and the circumstances under 

which this occurs.  For example, among the flows depicted in Figure 10 and summarized 

in Table 6, for flow f1 originating at node N1 with a pair of paths, primary path P1 using 

links {l1, l2, l3} and backup path B1 using links {l4, l5, l6, l7}, this can be aggregated and 

presented in the form of the usage of links when one of the links, l1, l2, l3, l4, l5, l6, or l7, 

fails.  In this case, when l1 fails, l4, l5, l6, and l7 will all carry flow f1.  The same goes if 

the link failure occurs at l2 or l3.  On the other hand, when any other link fails, for 

example when l4 fails, l1, l2, and l3 will carry the flow.  Thus, information regarding f1, 

P1, and B1 can be condensed into “which link carries the traffic when a particular link 

fails”: 

when l1 fails, l4, l5, l6, l7 carry the traffic; 

when l2 fails, l4, l5, l6, l7 carry the traffic; 

when l3 fails, l4, l5, l6, l7 carry the traffic; 

when l4 fails, l1, l2, l3 carry the traffic; 

when l5 fails, l1, l2, l3 carry the traffic; 

when l6 fails, l1, l2, l3 carry the traffic; 

when l7 fails, l1, l2, l3 carry the traffic. 

Instead of sending out raw path information of all its flows, a node can condense the path 

information into a traffic placement array, TP, of size L2.  In this case, TPi, j indicates the 

number of flows using link lj when link li fails.  TP can further be divided into two parts, 

PTP and BTP, where PTP is the traffic placement of primary paths and BTP is the traffic 
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placement of backup paths.  Using the example above, 1NPTP  stores the following 

information: 

when l4 fails, l1, l2, l3 carry primary path traffic; 

when l5 fails, l1, l2, l3 carry primary path traffic; 

when l6 fails, l1, l2, l3 carry primary path traffic; 

when l7 fails, l1, l2, l3 carry primary path traffic. 

1NBTP  stores the following information: 

when l1 fails, l4, l5, l6, l7 carry backup path traffic; 

when l2 fails, l4, l5, l6, l7 carry backup path traffic; 

when l3 fails, l4, l5, l6, l7 carry backup path traffic. 

To sum up, at each node Ni , primary and backup path information is condensed 

into iNPTP  and iNBTP .  Assume that the flows originating at Ni  are categorized as the 

following: 

PPPPk  = the set of flows whose primary paths use link lk, 

BBBBj  = the set of flows whose backup paths use link lj, 

APAPAPAPj, k, defined as the set of flows that continue to use their 

primary paths when lj fails and these primary paths all use 

lk, 

   = {f | f ∉ PPPPj ∧ f ∈ PPPPk}, and 
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ABABABABj, k, defined as the set of flows that have a failed primary path 

when lj fails and their corresponding backup paths all use 

lk, 

   = {f | f ∈ PPPPj ∧ f ∈ BBBBk}. 

Then, the values condensed by Ni  are 

iN
kj,PTP , defined as the number of flows that use their primary paths 

when lj fails and these primary paths all use lk, 

   =  APAPAPAPj, k, and 

iN
kj,BTP , defined as the number of flows that use their backup paths 

when lj fails and these backup paths all use lk, 

   =  ABABABABj, k. 

The definitions above are also summarized in Table 7 and Table 8. 

Using the earlier example where N1 originates a single flow using P1 and B1, 

1N
kj,PTP  should be zero for all links lk when l1 fails, because there is no other primary 

path traffic when l1 fails.  1N
1j,PTP , 1N

2j,PTP , and 1N
3j,PTP  for all links lj except l1, l2, and l3, 

should all store one, because if any link other than l1, l2, or l3 fails, P1 is used.  

Conversely, 1N
41,BTP , 1N

51,BTP , 1N
61,BTP , and 1N

71,BTP  should all have the value of one, 

because when l1 fails, there is backup path traffic on l4, l5, l6, and l7.  Table 9 provides a 

summary of the elements in 1NPTP  and 1NBTP  based on the traffic that originates from 

N1, which is described in Table 6. 
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Overall, based on the primary and backup path information stored at Ni , Ni  

condenses per-flow information into link-based information that stores the usage of 

network resources in the event that a link lj fails, as summarized in Table 8.  Because the 

two arrays actually communicated into the network are of fixed size regardless of the 

amount of traffic in the network, the use of PTP and BTP reduces the communication 

cost to a more reasonable constant size in a fixed network. 

 

 

Figure 10. A diagram of the sample flows summarized in Table 6. 
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Table 6. Sample flows. 
Source node order Source node Flow order Flow Primary path Backup path 

N1 f1 P1: { l1, l2, l3} B 1:    {l4, l5, l6, l7} 
N2 f2 P2: { l5, l2, l8} B2: Compared to f1, should avoid l4, l5, l6, and l7. 

h
ig

h
�

lo
w

 

N2 

h
ig

h
�

lo
w

 

f3 P3: { l9, l10} B3: • Compared to f1, should avoid l1, l2, and l3. 
• Compared to f2, should avoid l5, l2, and l8. 

 

Table 7. Groupings of primary and backup paths of flows originated at Ni. 

Set Definition Value 
PPPPj    The set of flows whose primary paths use link lj.  

BBBBj    The set of flows whose backup paths use link lj.  

APAPAPAPj, k 
The set of flows that continue to use their primary paths when lj fails and these primary paths all use lk. { f | f ∉ PPPPj ∧ f ∈ PPPPk} 

ABABABABj, k 
The set of flows that has a failed primary path when lj fails and their corresponding backup paths all use lk. { f | f ∈ PPPPj ∧ f ∈ BBBBk} 

 

 

Table 8. Definition of each element in iNPTP  and iNBTP . 
Data Definition Value 

iN
kj,PTP  The number of flows originated at Ni  that use their primary paths when lj fails and these primary paths all use lk.  APAPAPAPj, k 

iN
kj,BTP  The number of flows originated at Ni  that use their backup paths when lj fails and these backup paths all use lk.  ABABABABj, k 
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Table 9. 1NPTP  and 1NBTP  based on Table 6. 

Array Values in each element of 1NPTP  and 1NBTP  
1N
kj,PTP  = 1, where },,{ and }{ 321k321j llllllll ∈−−−∈ LLLL . 

1NPTP  
1N
kj,PTP  = 0, where LLLL∈∈ k321j lllll  and },,{ . 

1N
kj,BTP  = 1, where },,,{ and },,{ 7654k321j lllllllll ∈∈ . 

1NBTP  
1N
kj,BTP  = 0, where LLLLLLLL ∈−−−∈ k321j lllll  and }{ . 

Assumption: LLLL is the set of links in the network. 

 

4.3 Determining conflicts using PTP and BTP 

The algorithms discussed in this chapter, TP (Section 4.4) and TPmax (Section 4.5), are 

algorithms designed to compute paths that are intended to remain unreserved to 

complement the reserved primary paths.  Like AvoidPBO in Chapter 3, TP and TPmax 

require routing information of other traffic in the network, and they use that information 

to determine the conflicts and undesirable links.  When the primary and backup path 

information of traffic flows is available, the steps taken to determine the links to avoid 

are the same as those taken by AvoidPBO in Sections 3.6.1 and 3.6.2.  For example, a 

source node Ni  naturally knows of the primary and backup paths of the flows it 

originates for routing purposes.  Ni  can easily determine how its own flows can plan to 

avoid each other using the primary and backup paths of these flows, as is done by 

AvoidPBO in Sections 3.6.1 and 3.6.2.  Unlike AvoidPBO, when planning to avoid 

conflicting traffic originated by other source nodes, Nj , ji NN ≠ , the routing information 

that TP and TPmax use is in the form of PTP and BTP described in Section 4.2.  This 

section explains the rationale behind the use of PTP and BTP.  Table 10 summarizes the 

conditions under which a link is determined to be a conflicting link based on PTP and 

BTP.  Sections 4.4.1, 4.4.2, and 4.4.3 describe the three steps that TP takes to modify link 
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weights based on the routing information available to a source node, and Sections 4.5.1, 

4.5.2, and 4.5.3 describe the three steps that TPmax takes. 

As mentioned, with TP and TPmax, each source node constructs both PTP and 

BTP, and this information is broadcast to other source nodes periodically.  Using the 

example described in Figure 10 and Table 6, source node N1 constructs the two arrays 

1NPTP  and 1NBTP  described in Table 9 and periodically exchanges these two arrays 

with N2.  Source node N2 accepts and stores these two arrays for future use.  As 

described in Section 3.4, the central idea in computing effective backup paths is to 

identify undesirable links and add weight to those links.  For the purpose of computing 

unreserved backup paths, the undesirable links are the links that are being used by higher 

priority traffic at the same time that the prospective backup path needs to be activated.  

With AvoidPBO, the identification of these conflicting links is made with the help of the 

primary and backup paths taken or planned by all the other traffic in the network.  With 

TP and TPmax, these undesirable links are identified using the PTP and BTP collected 

from other source nodes.  In this example, source node N2 uses 1NPTP  and 1NBTP  when 

it calculates backup paths for its flows. 

Based on the principles established by AvoidPBO, to compute a backup path N2 

first identifies the links used by conflicting primary paths, and then adds extra weight to 

those links to avoid them.  In the second step, N2 identifies the links used by conflicting 

higher priority backup paths, and then adds extra weight to those links to avoid them.  

Thus, to compute the backup path for flow f3, N2 first determines the links used by 

conflicting primary paths that B3 should avoid.  To avoid the links of such flows 

originating from N1, N2 uses 1NPTP .  Because 1N
19,PTP , 1N

29,PTP , 1N
39,PTP , 1N

110,PTP , 
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1N
210,PTP , and 1N

310,PTP  all store the value of one, indicating that when l9 or l10 fails and B3 

is activated, there is primary path traffic on l1, l2, and l3.  Thus, N2 decides that B3 should 

avoid links l1, l2, and l3.  As a backup path, B3 should proactively avoid primary path 

traffic that is alive at the same time that it is activated, and so extra weight should be 

added to these three links accordingly. 

The second step involves determining and avoiding links of conflicting higher 

priority backup paths.  To compute B2 for its flow f2 whose primary path P2 uses links {l5, 

l2, l8} (Table 6), N2 should decide that links l4, l5, l6, and l7 should be avoided.  This 

decision is made because 1N
42,BTP , 1N

52,BTP , 1N
62,BTP , and 1N

72,BTP  all have the value of one, 

indicating that when l2 fails, there is one flow using its backup path on l4, one on l5, one 

on l6, and one on l7.  In addition, when l2 fails, B2 is also needed, indicating that B2 needs 

to avoid other higher ranked backup paths that are also activated when l2 fails.  Like 

AvoidPBO, backup paths need to be ranked so that only one conflicting backup path 

avoids the other.  However, in this case, because the backup paths are grouped by source 

nodes, the simplest ranking of the backup paths is based on the ranking of the source 

nodes.  Assuming that flows originated from N1 are ranked higher than those from N2, 

then backup paths of flows originating at N2 should proactively avoid potentially 

conflicting traffic indicated in 1N
kj,BTP .  Thus, f2 should avoid traffic indicated in 1N

42,BTP , 

1N
52,BTP , 1N

62,BTP , and 1N
72,BTP . 
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Table 10 summarizes the conditions under which a link lk is considered a 

conflicting link, of either the conflicting primary path link variety or the conflicting 

backup path link variety. 

Table 10. Conflicting links based on comparison between Px and all pairs of jN
PTP  and jN

BTP . 

Conflicting link Condition 

Conflicting primary path link lk If 0N >j

km,PTP . 

Conflicting backup path link lk If 0N >j

km,BTP  and priority of Nj  is higher than Ni . 

Assumption: link xP∈ml . 
 

4.4 Traffic placement method (TP) 

Like AvoidPBO, TP [15] is an algorithm that computes backup paths that are intended to 

complement their corresponding primary paths to provide added reliability and are 

intended to remain unreserved when the corresponding primary paths are alive.  Each TP 

source node Ni  stores the primary and backup path information of the flows it originates.  

Based on this information, Ni  constructs iNPTP  and iNBTP .  This condensed 

information is the only information that is communicated into the network.  To compute 

the backup paths, the same principles as first described in Section 3.4 and then reiterated 

in Section 4.3 above are followed.  The basic idea is to determine conflicting links and 

then add weight to those links so that Dijkstra’s algorithm avoids them.  The difference 

between TP and AvoidPBO is that the information used to make this decision is different 

in certain circumstances. 

Under TP, to compute the backup path, Bx, of flow fx, whose reserved primary 

path is Px, source node Ni  follows the three steps described in Sections 4.4.1, 4.4.2, and 

4.4.3 to add extra weight.  To begin to compute the backup paths, each TP source node 
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Ni  uses the primary and backup path information of its own flows, which is called the 

internal information in Section 4.4.1.  Ni  also uses jNPTP  and jNBTP  received from 

other nodes Nj , ji NN ≠ , which is called the external information in Section 4.4.2.  Like 

AvoidPBO, TP also adds extra weight on the primary path Px, which is discussed in 

Section 4.4.3.  Once the extra weight is added, Dijkstra’s algorithm is invoked to 

compute the shortest path, which is designated as Bx.  Finally, Section 4.4.4 provides a 

summary of TP.  The pseudo code for TP is provided in Figure 12. 

4.4.1 Step 1: extra weight based on internal inform ation 

This step involves determining conflicts using the explicit primary and backup path 

information source node Ni  stores regarding its own flows.  This explicit routing 

information is in the same format as the routing information AvoidPBO uses.  The 

difference is that a TP source node only has such information regarding its flows, 

whereas an AvoidPBO source node eventually has such information regarding all traffic 

in the network.  Thus, in this step, source node Ni  uses the same rules established in 

Sections 3.6.1 and 3.6.2 to modify link weights.  The conditions under which a link is 

determined to be a conflicting link are summarized in Table 4.  The implementation of 

TP is based on the steps described in Sections 3.8.1 and 3.8.2.  A summary of the 

variables used in the calculation of the extra weight is in Table 11 and Table 12, and the 

actual formulae are in Table 13.  Below is an example of the link weight modification 

process based on the sample scenario in Figure 10 and Table 6. 

Based on the sample flows in Figure 10 and Table 6, to compute the backup path, 

B3, of flow f3, N2 first determines the links to avoid based on the primary and backup 
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path information of f2.  Because N2 is the source node for both f2 and f3, N2 should have 

no trouble ranking f2 and f3 relative to each other and determining how their respective 

backup paths should avoid each other.  Based on the rule of avoiding conflicting primary 

path links in Section 3.6.1, N2 decides that B3 should avoid l5, l2, and l8.  (This is because 

when B3 is activated, P2 is still alive.)  Thus, extra is added to links l5, l2, and l8, as 

depicted in Figure 11. 

 

Figure 11. Internal information known by the TP source node N2. 
 

4.4.2 Step 2: extra weight based on external inform ation 

In addition to avoiding traffic generated by its own source node in Section 4.4.1, for a 

flow fx whose primary path is Px, the prospective backup path Bx should avoid 

undesirable links due to the traffic generated by other nodes Nj , ji NN ≠ .  This section 

involves adapting the process described in the previous step such that the external 

information, jN
PTP  and jN

BTP , ij NN ≠∀ , is used to determine extra link weights.  

Table 10 summarizes the conditions under which a link is considered a conflicting link, 

whether it is a conflicting primary path link or a conflicting backup path link.  The rest of 
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this section explains the implementation of TP, specifically the actual weight added to 

such a conflicting link. 

Like before, both conflicting primary path links and conflicting backup path links 

should be avoided, and thus, should have extra weight added.  Similar to the basic ideas 

described in Sections 3.6.1 and 3.6.2, Bx should avoid the primary path traffic that is 

active when Bx is activated, and Bx should also avoid the higher-ranked backup path 

traffic that is active when Bx is activated.  With TP, jN
PTP  is used to determine the 

conflicting primary path links and the amount of extra weight added to those links.  

jN
BTP  is used to identify the higher priority conflicting backup path links and the extra 

weight added to those links. 

Assume that lm is a link in Px ( xP∈ml ).  Because jN
km,PTP  stores the number of 

primary path flows that lk carries when lm fails, jN
km,PTP  is also the number of primary 

path flows that lk carries when Px fails and Bx is activated.  Thus, Bx should avoid lk and 

extra weight should be added on lk.  In TP, the extra weight added to lk is simply 

factorPTP *N j

km, .  The total extra weight added to lk based on jN
PTP  is jNTP_

kl
pew  in 

Table 14, which is equal to factorPTP *
P

N
∑

∈ x

j

m

km,
l

. 

Similarly, Bx should avoid other backup path traffic that is active the same time 

that Bx itself is activated.  However, because backup paths are not reserved, Bx has as 

much right to or priority over a particular network resource as any other backup path.  To 

prevent discounting and avoiding too many links, either Bx should avoid other backup 

path traffic, or vice versa.  Similar to Section 3.7 regarding AvoidPBO, a rule should be 
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agreed upon among all nodes to determine which backup path traffic should avoid other 

conflicting backup path traffic.  Assume that backup path traffic originated at source 

nodes with higher IP addresses (e.g. 216.x.x.x) should avoid the backup path traffic 

originated from source nodes with lower IP address (e.g. 128.x.x.x).  Then, only gNBTP , 

where Ng has a lower IP address than Ni , should be used to determine link weights.  

Assume that xP∈ml .  Because gN
km,BTP  stores the number of backup path flows that lk 

carries when lm fails, gN
km,BTP  is also the number of backup path flows that lk carries when 

Px fails and Bx is activated.  Like before, a weight of factorBTP *Ng

km,  should be added on 

lk.  The total extra weight added to lk based on gNBTP  is gNTP_
kl

bew  in Table 14, which is 

equal to factorBTP *N

Nover priority higher  has N

P

g

ig

x

km,

m

∑
∈l

. 

A summary of the variables used for the calculation of extra weight is provided in 

Table 11 and Table 12.  Table 14 provides the actual formulae used to calculate the extra 

weight. 

4.4.3 Step 3: extra weight based on the primary pat h 

Like AvoidPBO, the last step is to add enough extra weight onto the primary path, Px, so 

that Dijkstra’s algorithm can compute a backup path Bx such that it is disjoint from Px if 

possible.  Weight that is added to a link in the previous two steps, Sections 4.4.1 and 

4.4.2, is also added to each link lm, where xP∈ml .  Like AvoidPBO, an additional |NNNN |* 

factor is also added to each link lm, xP∈ml , to discourage the use of any link used by Px 
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even if the alternative is to traverse through all the nodes in the network.  Based on Table 

11 and Table 12, the actual formula to calculate the extra weight is provided in Table 15. 

 

computeBackupTP (flow fx) { 
 W: weight matrix W. 
 Wk: weight on link lk. 

 jN
PTP : condensed primary path information from node Nj . 

 jN
BTP : condensed backup path information from node Nj . 

 P x: primary path of fx. 
 src: source of fx.  
 dest: destination of fx. 
 Ni : source node of fx. 
  

for j = 1 .. number of jN
PTP - jN

BTP  information pairs 
stored 
for each link lk in the network 

add extra weight proportional to jN
km,PTP  to Wk, 

where link lm is in P x  

end 
 if Nj  has higher priority than Ni  then  
  for each link lk in the network  

add extra weight proportional to jN
km,BTP  

to Wk, where link lm is in P x 

end 
      end 
 add weight w primary , where w primary  >> Wk, to each link lm in P x  
 use Dijkstra’s algorithm and the new weight matrix  W 
  to compute a shortest path between src and dest. 
}   

Figure 12. The pseudo code for TP. 
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Table 11. Notations and symbols referred to in Table 12, Table 13, Table 14, and Table 15. 
Notation Definition and value 
NNNN    The set of nodes in the network. 

LLLL    The set of links in the network. 
Ni  The source node that originates flow fx. 

Nj  A node, NNNN∈jN , but ij NN ≠ . 

Ng 
A node, NNNN∈gN , but ig NN ≠ .  Ng generally denotes a node whose traffic has higher priority than Ni  when it is used in 

Chapter 4. 
iNFFFF  The set of flows fi that are originated at Ni . 

fx The flow whose backup path Ni  is computing, iNFFFF∈xf . 

Px The primary path of flow fx, which is considered as a set of links. 
Bx The prospective backup path of fx, which is considered as a set of links. 
fi A generic flow. 
Pi  The primary path of fi, which is considered as a set of links. 
Bi  The backup path of fi, which is considered as a set of links. 

 

Table 12. Notations based on regarding AvoidPBO from Table 3 and the extra weight determined, also based on AvoidPBO. 
Notation Definition and value 

i

k

fpewl  

The extra weight added to the link iP∈kl  based on comparison between fi and fx, which is equal to 





>
=

 .0)P ,P( if ,                                                         0

 .0)P ,P( if , *)  , (

xi

xi

aredLinksnumberOfSh

aredLinksnumberOfShfactorffnflictsnumberOfCo xi  

(This value is the same as in Table 5.) 

i

k

fbewl  

The extra weight added to the link iB∈kl  based on comparison between fi and fx, which is equal to 





>
=

 .0)P ,P( if , *)  , (

 .0)P ,P( if ,                                                         0

xi

xi

aredLinksnumberOfShfactorffnflictsnumberOfCo

aredLinksnumberOfSh

xi

 

(This value is the same as in Table 5.) 
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Table 13. Formulae used to determine extra weight based on internal information by a TP source node. 
Notation Definition and Value 

kl
pewernalint _  

The sum of extra weight added on lk, iP∈kl , due to all conflicting primary paths based on internal routing information in 

Section 4.4.1, which is equal to iN, FFFF∈∀∑
≠

i

xi

i

k
fpew

ff

f
l

. 

kl
bewernalint _  

The sum of extra weight added on lk, iB∈kl , due to all higher priority conflicting backup paths based on internal routing 

information in Section 4.4.1, which is equal to iN

over  priority  higher    has  

, FFFF∈∀∑
≠

i
i

k

xi

xi

fbewf

ff

ff
l

. 

 

Table 14. Formulae used to determined extra weight based on the external information by a TP source node. 
Notation Definition and Value 

jNTP_
kl

pew  According to TP (Section 4.4), the weight added on lk based on jN
PTP , which is equal to factorPTP *

P

N
∑

∈ x

j

m

km,
l

. 

gNTP_
kl

bew  

According to TP (Section 4.4), the weight added on lk based on gNBTP , which is equal to 

factorBTP *N

Nover priority higher  has N

P

g

ig

x

km,

m

∑
∈l

. 

 

Table 15. Formula used to determine the extra weight to add to llllm, xP∈∀ ml , by a TP source node. 

Notation Definition and Value 

ml
ewpp_TP_  

The extra weight added on lm, xP∈∀ ml , is equal to 

factorbewpewbewpew f

ff

ffff

f *)TP_()TP_()(
N Nover  priority  higher    has  N

NN

over  priority  higher    has  

NNNN
LLLL LLLL

∑ ∑ ∑ ∑∑∑
∈ ∈≠≠

++++
j ig

gj

k k

kk

i

k

xi

xixi

i

k

l l
llll
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Table 16. Formulae used to determined extra weight based on the external information by a TPmax source node. 
Variable Definition and Value 

jNTPmax_
kl

pew  According to TP (Section 4.4), the weight added on lk based on jN
PTP , which is equal to factorPTP *}{max N

P

j

x
km,

m ∈l
. 

gNTPmax_
kl

bew  

According to TP (Section 4.4), the weight added on lk based on gNBTP , which is equal to 

factorBTP *}{max N

Nover  priority  higher    has  N

P

g

ig

x

km,
m∈l

. 

 

Table 17. Formula used to determine the extra weight to add to llllm, xP∈∀ ml , by a TPmax source node. 

Variable Definition and Value 

ml
ewpp_TPmax_  

The extra weight added on lm, xP∈∀ ml , is equal to 

factorbewpewbewpew
L

ff

ff

f

ff

f *)TPmax_(TPmax_
N Nover  priority  higher    has  N

NN

over  priority  higher    has  

NNNN
LLLL

∑∑ ∑ ∑∑∑
∈ ∈≠≠

++++
j ig

gj

k k

kk

xi

xi

i

k

xi

i

k

l l
llll
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4.4.4 TP summary 

TP is an algorithm that computes backup paths that are intended to stay unreserved prior 

to a failure but still remain effective after a failure.  It is based on AvoidPBO.  The 

difference is that its source nodes construct and communicate their routing information in 

the PTP and BTP format (Section 4.2).  In this case, PTP and BTP are used to identify 

conflicting links and determine the extra weight to be added.  The formulae to compute 

the extra weight are summarized in Table 13, Table 14, and Table 15.  Like AvoidPBO, 

for a flow fx, once link weights are modified based on all the available routing 

information, Dijkstra’s algorithm is used to compute a shortest path, which is designated 

as the backup path Bx. 

4.5 Traffic placement method using the max{} function (TPmax) 

TPmax is similar to TP.  The only difference is in the calculation of the extra weight 

using PTP and BTP.  Once link weight modification is complete, Dijkstra’s algorithm is 

invoked to compute the shortest path, which becomes the eventual backup path, just like 

AvoidPBO and TP.  Sections 4.5.1, 4.5.2, and 4.5.3 present the formulae used to 

calculate the extra weight, and Section 4.5.4 provides a short summary of the TPmax 

algorithm.  The formulae used to calculate extra weight are summarized in Table 13, 

Table 16, and Table 17.  The pseudo code for TPmax is provided in Figure 13. 
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computeBackupTPmax (flow fx) { 
 W: weight matrix W. 
 Wk: weight on link lk. 

 jN
PTP : condensed primary path information from node Nj . 

 jN
BTP : condensed backup path information from node Nj . 

 P x: primary path of fx. 
 src: source of fx.  
 dest: destination of fx. 
 Ni : source node of fx. 
  

for j = 1 .. number of jN
PTP - jN

BTP  information pairs 
stored 

 for each link lk in the network  

max ← the maximum among jN
km,PTP  where link lm is 

in P x 

 add extra weight proportional to max to Wk 

end 
 if Nj  has higher priority than Ni  then  
  for each link lk in the network  

max ← the maximum among jN
km,BTP  where 

link lm is in P x 

add extra weight proportional to max to 
Wk 

end 
      end 
 add weight w primary , where w primary  >> Wk, to each link lm in P x  
 use Dijkstra’s algorithm and the new weight matrix  W 
  to compute a shortest path between src and dest. 
}   

Figure 13. The pseudo code for TPmax. 
 

4.5.1 Step 1: extra weight based on internal inform ation 

As mentioned in Section 4.4.1, this step refers to the adjustment of link weights based on 

the explicit primary and backup path routing information known to the source node itself, 

i.e., the information concerning the flows that the source node originates.  Details 

regarding this step can be found in Section 4.4.1 and in the discussion regarding 

AvoidPBO in Sections 3.4, 3.6.1, 3.6.2, 3.8.1, and 3.8.2.  The formulae for computing the 

extra weight are provided in Table 13. 
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4.5.2 Step 2: extra weight based on external inform ation 

Like TP, this step involves adapting the process of determining undesirable links and 

their link weights in Section 4.5.1 to use PTP and BTP.  The underlying principles are the 

same as TP.  The rationale of using PTP and BTP was already discussed in Section 4.3 

and details of steps taken by TP are provided in Section 4.4.2.  This section will only 

discuss the formulae TPmax uses to calculate the actual extra weight. 

Assume that Ni  is the source node that originates fx, whose primary path is Px and 

the prospective backup path is Bx.  Assume also that lm is a link on Px ( xP∈ml ).  Then, 

the prospective Bx conflicts with primary path link lk if 0N >j

km,PTP  where ij NN ≠ .  In 

TPmax, factorPTP *}{max N

P

j

x
km,

m ∈l
 is added to lk, as shown in Table 16. 

Similarly, the prospective Bx conflicts with backup path link lk if 0N >g

km,BTP  

where ig NN ≠  and Ng has higher priority over Ni .  In TPmax, 

factorBTP *}{max N

Nover  priority  higher    has  N

P

g

ig

x

km,
m ∈l

 is added to lk as show in Table 16. 

4.5.3 Step 3: extra weight based on the primary pat h 

Like AvoidPBO and TP, the last step is to add enough extra weight onto the primary path 

Px, so that Dijkstra’s algorithm can compute a backup path Bx such that it is disjoint from 

Px if possible.  The extra weight added to links used by Px is shown in Table 17. 
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4.5.4 TPmax summary 

TPmax is an algorithm that computes backup paths that are intended to stay unreserved 

prior to a failure but still be effective after a failure.  It is based on AvoidPBO and is 

similar to TP.  It is different from AvoidPBO because its source nodes construct and 

communicate their routing information in the PTP and BTP format (Section 4.2).  In 

addition to the explicit routing information used by AvoidPBO, PTP and BTP are also 

used to identify conflicting links and determine the extra weight to be added to those 

links.  The difference between TP and TPmax is in the calculation of extra weight.  The 

formulae to compute the extra weight are summarized in Table 13, Table 16, and Table 

17.  Like AvoidPBO, for a flow fx, once link weights are modified based on all the 

available routing information, Dijkstra’s algorithm is used to compute a shortest path, 

which is designated as the backup path Bx. 

4.6 Variations 

Like AvoidPBO, the algorithms in this chapter can be extended to adapt to traffic with 

variable bandwidth (resource) requirements.  Instead of storing the number of flows in 

iN
kj,PTP , the amount of bandwidth, or the factored amount of resources, can be stored.  

Additionally, like the priority of traffic flows in Section 3.7, the ordering of nodes can 

also be done differently, such as through voting.  These extensions are left for future 

work (Section 7.3).  In the simulations described in Section 4.8.2 and Chapter 6, all 

traffic flows are assumed to require the same bandwidth, and thus iN
kj,PTP  stores the 

number of flows.  In these simulations, the priority of the traffic that determines the 

avoiding among conflicting backup path traffic is as described in Section 4.4.2. 
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4.7 Differences 

4.7.1 Complete path information vs. PTP and BTP 

One big difference between complete path information and PTP and BTP is in their size.  

In fact, the sheer size of complete path information is the driving reason behind the 

development of PTP and BTP.  Communicating complete path information of all traffic 

flows is cost prohibitive in practice.  In contrast, as long as the topology remains the 

same, the size of PTP and BTP remains constant regardless of the amount of traffic in the 

network.  This aspect is further discussed in Section 4.8 and evaluated in Chapter 6. 

The other big difference is the knowledge that the two different formats provides.  

With complete path information, more information regarding how traffic is routed is 

available.  For example, based on the sample flows described in Table 6 and illustrated in 

Figure 10, if the complete path of P1 is known, then one can deduce that l1, l2, and l3 all 

cause P1 to fail and B1 to be activated.  However, in the condensed form of 1NPTP  and 

1NBTP , the source node, such as N2, that has 1NPTP  and 1NBTP  only knows that when 

l1 fails, l4 should be avoided because 0N >1

41,BTP  (Table 9), and that when l2 fails, l4 

should also be avoided because 0N >1

42,BTP .  Using 1NPTP  and 1NBTP , N2 cannot tell 

that either failure causes the same backup path to be activated.  Because of this, two 

algorithms, TP and TPmax, are designed, and they represent two different ways to use 

PTP and BTP.  The difference between TP and TPmax is further discussed in Section 

4.7.2. 
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4.7.2 TP vs. TPmax 

As mentioned in Section 4.7.1, using PTP and BTP, a source node cannot discern if two 

different failure scenarios result in the same backup path to being activated.  With TP, the 

decision is to treat each failure scenario independently.  In contrast, TPmax treats all 

failures as connected.  For example, based on the sample flows and sample 1NPTP  and 

1NBTP  in Table 6 and Table 8, to compute the backup path B2, the TP source node N2 

would add factorPTP *N1

15,  and factorPTP *N1

18,  to l1.  This source node assumes that 

failures at l5 and l8 result in different primary paths to remain alive at l1.  With a TPmax 

source node N2, the weight added to l1 is }{max N

},,{

1

m,1
825m

PTP
llll ∈

.  This is based on the 

assumption that the primary path traffic that remains at l1 under the three failure cases is 

the same, and thus does not require duplicate extra weight added. 
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Table 18. Upper bounds of the communication overhead for AvoidPBO, TP, TPmax, and disjoint methods. 
Method Communication Overhead Upper bound 

AvoidPBO (Chapter 3) 
Primary and backup path information of each flow is communicated to all nodes in the 
network. 

O (FL) 

TP 
TPmax 

Constant-sized iN
kj,PTP  and iN

kj,BTP  of each node Ni  is communicated to all nodes in the 

network. 
O (NL) 

Disjoint No extra information is needed. O (1) 
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4.8 Comparisons 

4.8.1 Communication overhead upper bounds 

This section compares the upper bounds of the overhead required to communicate extra 

routing information among AvoidPBO, TP, TPmax, and the disjoint method.  Like 

Section 3.10, the disjoint method uses the shortest path disjoint from the primary path as 

the backup path.  It is considered the least expensive method because it does not require 

any extra routing information or computation other than invoking Dijkstra’s algorithm. 

Assume that F is the number of flows, N is the number of nodes, and L is the 

number of links in the network.  Broadcasting a message is assumed to cost O(L), where 

a message is sent out at most once along all the links in the network.  The communication 

overhead of the different methods compared is summarized in Table 18.  Because F >> L 

and F >> N, the communication overhead incurred by AvoidPBO can be seen as bounded 

by F, and its communication cost is not scalable as it can increase indefinitely even in a 

fixed network.  Conversely, the overhead of TP and TPmax is bounded only by O(NL), 

which is constant in a fixed network. 

4.8.2 Test for TP’s and TPmax’s ability to not reus e links 

The same test performed in Section 3.10 is performed on TP and TPmax.  This test 

computes the value ratio, where 
NFC

ABPL
ratio

∑
= i

ifailCase

.  It approximates the 

contention for a link by the activated backup paths.  A lower ratio is better in this case 

because it means the expected number of activated backup paths using a particular link is 

low.  A ratio of one indicates that only one backup path is expected to use any particular 
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link, which is highly likely to be the optimal result in a heavily loaded network.  Figure 

14 shows that TP and TPmax both produce a lower ratio than AvoidPBO, despite 

incurring much less overhead than AvoidPBO (Section 4.8.1).  Although Figure 14 

shows encouraging results for TP and TPmax, because the calculation of ratio does not 

take into account the links used by the primary paths that remain alive after a failure, 

having the lowest ratio does not necessarily mean that TP will have the best performance 

overall.  However, this simple test shows that, compared to the disjoint method and even 

AvoidPBO, the algorithms using PTP and BTP, especially TP, achieve the particular 

objective of reducing link contention among backup paths. 

 

Figure 14. Comparison of the ratio of total number of links used to the number of distinct links used, 
among AvoidPBO, TP, TPmax, and disjoint backup paths. 
 

4.9 Chapter summary 

This chapter describes a way to condense the complete routing information required by 

AvoidPBO such that the condensed format still contains critical information to identify 
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conflicting links.  Two algorithms, TP and TPmax, which compute unreserved backup 

paths based on the condensed information PTP and BTP, are developed.  Asymptotically, 

TP and TPmax incur only constant overhead (in a fixed network) whereas the overhead 

incurred by AvoidPBO can increase indefinitely as the amount of traffic in a network 

grows.  A simple diagnostic test performed on TP, TPmax, and AvoidPBO shows that the 

ability of both TP and TPmax to reduce contention for the same resources by backup 

paths is better than AvoidPBO.  The following chapters discuss more comprehensive 

tests to evaluate unreserved backup path computation methods. 
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5 Recovery Modes 

5.1 Chapter outline 

Because the backup paths are unreserved prior to the link failure, there are limitations to 

the performance of these backup paths.  Two different ways to use an unreserved backup 

path once it needs to be activated—strict recovery and relaxed recovery, are proposed in 

this chapter.  Each recovery mode results in different behaviors after a failure.  The strict 

recovery provides hard service guarantee even after a failure by sacrificing some 

connections.  The relaxed recovery maintains the connections of all traffic flows by 

sacrificing service quality after a failure.  The differences and the performance metrics 

used to evaluate the different algorithms are discussed in Sections 5.2, 5.3, 5.4, and 5.5.  

These metrics are also summarized in Table 19, Table 20, Table 21, and Table 22.  

Section 5.6 provides a summary of this chapter.  The simulation data provided in Chapter 

6 are based on these metrics. 

5.2 Strict recovery 

The use of unreserved backup paths to overcome a link failure arose from the waste of 

resources when two reserved paths (Sections 1.2.2 and 2.5) are used to tolerate a failed 

primary path.  When both the primary and backup paths are reserved prior to the failure, 



 

 78 

traffic flows are always guaranteed to recover from a link failure.  The service qualities 

experienced by these traffic flows are the same before and after the failure.  Pairing 

unreserved backup paths with the strict recovery mode is a direct comparison between the 

use of reserved backup paths and the use of unreserved backup paths. 

With unreserved backup paths each flow has a reserved primary path and an 

unreserved backup path.  Although the backup path remains unreserved prior to the 

failure, it is the goal of a backup path computation method to find a path that is most 

likely to have the resources available to re-route an additional flow after a failure.  With 

the strict recovery mode, in the event of a link failure that causes the primary path to fail, 

resources are reserved on the backup path to provide the same QoS as before the failure.  

Because the backup paths are unreserved initially, there is no guarantee that the resource 

reservation attempt on the backup path after a failure will be successful.  Consequently, 

some flows will not recover from the failure while others will.  Like the use of two 

reserved paths, the flows that recover from the failure experience the same service 

qualities as before the failure.  In other words, in the strict recovery mode, the service 

guarantee agreements agreed upon before the failure are strictly followed even after a 

failure.  This hard service guarantee after a failure is attained by sacrificing some flows.  

In this case, the performance metrics of interest, which are discussed in Section 5.3, 

generally involve the number of flows that can be successfully re-routed after a failure. 

5.3 Strict recovery performance metrics 

The performance metrics under the strict recovery mode are summarized in Table 19 and 

Table 20, and the details of the environment and the expected behaviors under the strict 

recovery mode are discussed in Sections 5.3.1 and 5.3.2. 
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5.3.1 Environment 

Assume that a network has a limited amount of resources on each link.  Assume also that 

before the failure, the traffic flows in the network use their respective primary paths and 

that these primary paths are reserved to provide the desired service quality.  In other 

words, all flows have 100% of the QoS they need.  When a link failure occurs, some 

backup paths may need to be activated.  Resource reservation on these backup paths is 

attempted first.  If resource reservation is successful, the flow is re-routed on to the 

backup paths and is considered to have survived the failure.  If there are not enough 

resources on all the links on the backup path, the flow is considered failed and not re-

routed on the backup path at all.  Overall, if a flow stays connected after the failure, that 

flow is routed either on the original reserved primary path or the newly reserved backup 

path, and the service quality provided to the flow remains unchanged. 

5.3.2 Performance metrics 

Because traffic and network topologies are rarely uniform, the effects of single link 

failures are not equal.  In certain cases, a link failure may not be felt at all because the 

link in question was not in use at the time of failure.  Depending on the distribution of the 

traffic and the network topology, each case of single link failure may result in a different 

number of successful flows and a different set of successful flows.  Thus, one comparison 

between the use of two reserved paths and unreserved backup paths can be taken from the 

overall perspective of how effective the unreserved backup paths are under different 

failure scenarios.  With two reserved paths, recovery is guaranteed for every case of 

single link failure.  With unreserved backup paths, depending on network conditions and 

the location of the failure, some failure scenarios may result in disconnection for some 



 

 80 

flows.  As summarized in Table 19, assume that FCFCFCFC is the set of failure cases tested and 

that PRCPRCPRCPRC is the set of failure cases where all of the flows that require re-routing after a 

failure can be successfully re-routed.  Then, the perfect recovery rate, defined as the 

percentage of failure cases where all flows are successfully re-routed, is equal to 

%100*
FCFCFCFC

PRCPRCPRCPRC
.  Because the approach of two reserved paths always recovers from a 

single link failure regardless of the location of the failure or the distribution of the traffic, 

the perfect recovery rate for the approach of two reserved paths can be considered 100%.  

In contrast, the perfect recovery rate of the unreserved backup path approach is unlikely 

to be 100%, and the rate observed can be an indication of how effective unreserved 

backup paths are compared to the use of two reserved paths. 

Although unreserved backup paths cannot guarantee perfect recovery under all 

circumstances, it is likely that many flows do recover from their failed primary paths 

under many circumstances.  To determine how well these unreserved backup paths 

recover from a link failure, the metrics recovery rate and success rate are used.  As 

summarized in Table 19, assume that FFFF is the set of flows started at the beginning of the 

simulation, FCFCFCFC is the set of single link failure scenarios that are considered, 
ifailCaseFPFPFPFP  is 

the set of flows with failed primary paths under ifailCase  where FCFCFCFC∈ifailCase , 

ifailCaseSRRSRRSRRSRR  is the set of flows f ∈ 
ifailCaseFPFPFPFP  that are successfully re-routed on backup 

paths under ifailCase  where FCFCFCFC∈ifailCase , and 
ifailCaseSFSFSFSF  is the set of flows 

that are successful even after a single link failure, routed either on the primary path or the 

backup path, under ifailCase  where FCFCFCFC∈ifailCase .  Then, the recovery rate is 
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defined as the percentage of successfully re-routed flows among the flows that require re-

routing, %100*
1

∑
∈FCFCFCFC FPFPFPFP

SRRSRRSRRSRR

FCFCFCFC
i

i

failCase

failCase
.  It is aimed to show, on average, the 

percentage of flows that can recover from their failed primary paths.  The success rate is 

defined as the percentage of all successful flows after a failure, 

%100*
1

∑
∈FCFCFCFC FFFF

SFSFSFSF

FCFCFCFC
i

i

failCase

failCase
.  Because a single link failure only affects a limited 

number of flows, it is expected that the success rate will be close to 100%.  In contrast, 

because the recovery rate depends solely on the effectiveness of the unreserved backup 

paths, it is expected that the backup paths become less effective as the traffic load 

increases, resulting in considerably lower recovery rate under some circumstances. 

5.4 Relaxed recovery 

In circumstances where the network was already heavily loaded with traffic before the 

failure, it is expected that few backup paths can be successfully reserved after the failure 

under the strict recovery mode described in Section 5.2.  Because of the strict adherence 

to the service agreement even after a failure, few flows, if any at all, are expected to 

overcome their failed primary paths using unreserved backup paths.  To reduce the 

amount of disconnected traffic, an alternative is to relax the service agreement after the 

failure.  This relaxed recovery mode allows all the flows to remain connected by 

sacrificing the service quality provided to traffic after the failure.  Unlike the strict 

recovery mode, resource reservation is not attempted on the backup paths before or after 

the failure.  If a primary path has failed, the corresponding backup path is always 

activated for re-routing.  Due to the missing/failed link, there are fewer resources 
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available in the network to transport the same amount of traffic.  Consequently, the 

service quality is expected to be lower than before the failure, though all flows stay 

connected.  Thus, the goal in this case is to minimize the amount of service degradation 

after a failure.  Section 5.5 discusses the performance metrics used to compare different 

backup path computation methods under the relaxed recovery mode. 

5.5 Relaxed recovery performance metrics 

The performance metrics under the relaxed recovery mode are summarized in Table 21 

and Table 22, and the details of the environment and the expected behaviors under the 

relaxed recovery mode are discussed in Sections 5.5.1 and 5.5.2. 

5.5.1 Environment 

Similar to the strict recovery mode, each flow begins by using its reserved primary path.  

Like before, the primary path is chosen and enough resources are reserved so that it can 

provide the required QoS.  A backup path computation algorithm chooses a 

complementing backup path that remains unreserved but is expected to provide good 

service after a failure.  In the event of a link failure, re-routing for all the flows affected 

by the failure is allowed. 

Assume that each link has n units of resources and that each flow requires one 

unit of resource on every link in its path to satisfy its service requirement.  Thus, to 

satisfy the service guarantee for existing traffic initially, each link carries at most n traffic 

flows.  Assume that before the failure each flow has one unit of resource reserved on 

every link of its forwarding path.  Thus, each flow is provided with 100% of its service 

guarantee.  With relaxed recovery, after a failure, traffic is routed onto the pre-planned 
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backup paths when needed, resulting in some links carrying more than n flows.  A link 

carrying more than n flows is considered to be congested, and the service quality offered 

to the flows using this link is degraded.  If a link carries less than n flows, then QoS 

provided by this link is 100% as promised.  If a link carries k flows, k > n, and each link 

only has n units of resources, then these flows will experience some QoS degradation.  If 

the most congested link used by a flow carries m flows, where m> n, then the QoS of the 

flow using this link is at most %100*
m

n
 of the original QoS guarantee, resulting in a 

drop of service quality of %100*%100
m

n− .  Using the relaxed recovery mode, although 

all flows stay connected, some flows may suffer degraded service.  So, for this recovery 

mode, the resulting degradation of service, in the form of the amount of resources 

available to a flow, is examined.  Section 5.5.2 provides detailed discussion of these 

performance metrics, which are summarized in Table 21 and Table 22. 

5.5.2 Performance metrics 

As summarized in Table 21, assume that li is a link in the network and that a flow f takes 

the path {l1, l2, …, lu}.  Assume also that FFFF is the set of flows started at the beginning of 

simulation, and that n is the units of resources on each link li.  Thus, n is the maximum 

number of flows each link li can carry without compromising QoS, and before the failure, 

n is the maximum number of flows a link actually carries.  Assume that 
il

c  is the number 

of flows that li carries, and that 
ifailCaseDDDD , defined as the set of flows using one or more 

congested links under ifailCase  where FCFCFCFC∈ifailCase , is equal to {f | ∃ nc >
il

}, 
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where flow f takes the path {l1, l2, …, lu}.  Then, the set of flows in 
ifailCaseDDDD  are 

considered to be suffering from service degradation after the failure and are the traffic of 

interest in the relaxed recovery mode.  In particular, metrics used for comparison are the 

number of congested flows, the worst case resource availability, and the average case 

resource availability. 

As mentioned, 
ifailCaseDDDD  is the set of flows that suffer from service degradation 

after the failure under ifailCase .  Thus, the number of congested flows is defined as 

∑
∈FCFCFCFC

DDDD
FCFCFCFC

i

i
failCase

failCase

1
.  Although it is preferable to have as few congested flows as 

possible, this value should also be balanced with the worst case resource availability, 

which measures the level of service degradation experienced by flows that actually suffer 

from service degradation. 

The worst case service degradation considers the level of service downgrade of 

only the flows that suffer such a condition.  The level of service degradation suffered by a 

flow is measured in terms of the amount of resources that are available to the flow after a 

failure.  As mentioned in Section 5.5.1, it is assumed that before the failure, a flow is 

provided with 100% of the resources it needs, i.e., one unit of resource on each link in the 

forwarding path.  For flows that suffer service degradation, the resources on their 

forwarding paths are shared by more traffic, and thus these flows receive less than one 

unit of resource on each link.  Assume that the service degradation of a flow f, SDf, is 

defined as the minimum amount of resources available to flow f, which is calculated with 

the formula 
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Then, the worst case resource availability is equal to 

∑
∑

∈

∈

FCFCFCFC

DDDD

DDDDFCFCFCFC
i

i

i

failCase

%100*

SD
1

failCase

failCasef
f

.  It is expected that some flows will continue to 

have 100% of the resources they desire, while some flows will not after the failure.  For 

the flows that do not have the desired amount of resources, the better path computation 

methods are expected to make more resources available to these flows, and thus, should 

yield a higher worst case resource availability. 

The last metric of concern is the average case resource availability.  This metric is 

defined to be the average service degradation of all flows, and is equal to 

∑
∑

∈

∈

FCFCFCFC

FFFF

FFFFFCFCFCFC
ifailCase

%100*

SD
1 f

f

. 

In a way, this value combines the number of congested flows and the worst case resource 

availability.  It is expected that methods with a very small number of congested flows 

might yield a good result because these non-congested flows all have 100% of resource 

availability.  From this perspective, high average case resource availability does not 

necessarily indicate a good method because it is possible for the method to be unbalanced 

by providing very good service for some flows and very bad service for others.  If the 

goal is to provide the least amount of service degradation, then the worst case resource 

availability is the more important metric.  However, all three metrics should be 
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considered together for a more complete understanding of the performance of different 

methods.  Table 22 summarizes the three metrics to evaluate different backup path 

computation methods under the relaxed recovery mode. 

5.6 Chapter summary 

In light of the drawback of wasted resources when two reserved paths, reserving both the 

primary and the backup paths in advance, are used, unreserved backup paths are 

proposed.  Traditionally, the hope for unreserved backup paths is the same as that for the 

reserved backup paths: to mask the single link failure.  In other words, the traditional way 

to use unreserved backup paths is under the static recovery mode (Section 5.2), and the 

goal of routing algorithms is to compute backup paths that can provide the same service 

quality as before the failure.  The side effect of this approach is that some flows will 

completely fail.  As the network load becomes heavier, it is expected that very few flows 

will actually recover from a failure, rendering the unreserved backup paths and the work 

done to compute these backup paths useless. 

Instead of providing reliable hard service guarantees, a better fit for unreserved 

backup paths may be to relax the service guarantee after a failure with the goal of 

minimizing the effect of the failure.  This is the approach taken in the relaxed recovery 

mode (Section 5.4), with the hope that good backup paths can be chosen so that minimal 

degradation of service can be achieved.  The two applications of backup paths are 

summarized in Table 23, and the performance metrics of concern are provided in Table 

20 and Table 22. 
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Table 19. Notations used in strict recovery performance metrics. 
Data Definition 

FCFCFCFC The set of failure cases tested whose performance data are collected.  In a network with n directed links, the largest possible FCFCFCFC 
includes all n links. 

PRCPRCPRCPRC    
The set of failure cases where all of the flows that require re-routing after a failure can be successfully re-routed based on strict 
recovery. 

FFFF The set of flows started at the beginning of the simulation. 

FPFPFPFP The set of flows with failed primary paths. 

ifailCaseSRRSRRSRRSRR  The set of flows f ∈ FPFPFPFP that are successfully re-routed on backup paths, under 
ifailCase  where FCFCFCFC∈ifailCase . 

ifailCaseSFSFSFSF  The set of flows that are successful even after a single link failure, routed either on the primary path or backup path, under 

ifailCase  where FCFCFCFC∈ifailCase . 

 

Table 20. Strict recovery performance metrics. 
Metric Definition Value 

Recovery rate 
The percentage of flows successfully re-routed (only among flows that require 
re-routing). %100*

1
∑

∈FCFCFCFC FPFPFPFP

SRRSRRSRRSRR

FCFCFCFC
i

i

failCase

failCase  

Success rate The percentage of all successful flows after a failure. %100*
1

∑
∈FCFCFCFC FFFF

SFSFSFSF

FCFCFCFC
i

i

failCase

failCase  

Perfect recovery rate The percentage of failure cases where all the flows are successfully re-routed %100*
FCFCFCFC

PRCPRCPRCPRC
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Table 21. Notations used in relaxed recovery performance metrics. 
Data Definition Formula 
FFFF The set of flows started at the beginning of simulation. 

FCFCFCFC 
The set of failure cases tested whose performance data are collected.  In a network with n directed links, the largest possible FCFCFCFC includes 
all n links. 

n The units of resources on each link li.  This is the maximum number of flows each link li can carry without compromising QoS. 

il
c  The number of flows the link li carries. 

ifailCaseDDDD  The set of flows using one or more congested links 
under failCasei. 

{ f | ∃ nc >
il

} where flow f takes the path {l1, l2, …, lu}. 

SDf 
The service degradation of flow f, which is equal to 
the minimum amount of resources available to flow f. 
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Table 22. Relaxed recovery performance metrics. 
Metric Definition Formula 

Number of congested flows 
 

∑
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Table 23. A comparison of the strict and the relaxed recovery modes. 
 Strict recovery Relaxed recovery 

• Service quality remains the same before and after the failure. • Service quality is likely worse after the failure. Trade-offs • Some flows may disconnect after the failure. • All flows stay connected after the failure. 

Goal To minimize disconnection. To minimize service degradation. 
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6 Evaluation 

6.1 Chapter outline 

In addition to the tests shown in Sections 3.10 and 4.8.2, this chapter provides additional 

evaluation of AvoidPBO, TP, and TPmax on different topologies, traffic distributions, 

and recovery modes (Chapter 5).  Sections 6.2 and 6.3 describe the simulation program in 

OPNET [62] and the resulting simulation environment.  Section 6.4 discusses the 

performance metrics, particularly how the communication cost is calculated.  

Comparisons to known methods APLV Norm, CV, and BV+APV ([48] [49]) that also 

compute backup paths that are intended to be unreserved prior to the failure, are also 

provided in this chapter.  Section 6.5 provides an overview of all the methods tested in 

this chapter as well as the expected overhead in terms of the communication cost.  

Sections 6.6, 6.7, and 6.8 provide the simulation results of three different scenarios.  

These scenarios are different yet related so that educated guesses regarding the 

performances of other conditions can be extended from these results.  Finally, Section 6.9 

provides a summary of this chapter. 
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6.2 Simulation program 

The simulations discussed in this chapter were performed in OPNET [62].  OPNET was 

chosen because it allowed the traffic to work itself out when resource reservation is 

attempted.  The simulation program was built similarly to Section 2.10.3, where an 

OSPF-like network layer is responsible for distributing the routing information.  Like the 

link-state information exchange, routing information that is required to be communicated 

among all the nodes in the network is done with exchange of information between 

neighbors.  Packet forwarding of data packets is done in the same manner as MPLS, 

where a path is first established and labels are used to indicate the forwarding path. 

At the beginning of the simulation, traffic flows are laid out over the network.  

Data packet generation, routing information exchange, and backup path re-computation 

occur at regular intervals based on the input parameters.  At a pre-selected time, a link 

failure is injected into the simulation and re-routing of affected flows is performed.  Re-

routing is performed based on the recovery modes described in Chapter 5.  The 

simulation completes once a decision is made on whether the re-routed flows are 

successful. 

6.3 Simulation choices 

6.3.1 Simulation environment 

Because fine-grained, discrete events are simulated, the computation times of each data 

point in the heaviest traffic loads shown in Sections 6.6, 6.7, and 6.8 range from almost 

one week (for TP, TPmax, APLV Norm, CV, and BV+APV) to a little over two weeks 

(for AvoidPBO).  Under this circumstance, it was not feasible to consider a multiplicity 
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of graphs.  Thus, the approach of the simulations in this chapter is to use moderate 

environments to compare the performance of the algorithms proposed in this thesis and 

other previous methods.  The aim for these experiments is to develop an understanding of 

the behavior of unreserved backup paths as a whole.  The choices of simulated graphs 

and traffic are rationalized in Sections 6.3.2 and 6.3.3 respectively. 

6.3.2 Choice of graphs 

The three setups in Sections 6.6, 6.7, and 6.8 are chosen to show the general behavior and 

performance limitations of unreserved backup paths.  These setups are modeled after 

existing work [48] [49], though slightly bigger graphs are chosen.  The graphs used 

below all consist of 20 nodes, and depending on the setup, each node has a degree of four 

or five.  While there are many types of graphs to choose from, this type of graph is a 

moderate choice in terms of environments that can best use unreserved backup paths in a 

single AS.  With a tree or tree-like graph, there will not be many alternatives to choose as 

backup paths.  Thus, the results obtained under such a condition may simply indicate a 

limitation of the network, rather than limitations of the algorithms.  In contrast, if there 

are too many alternatives because the nodes are too well-connected, then the results under 

this condition may not be indicative of the limitations of the algorithms. 

6.3.3 Choice of traffic model 

As mentioned in Section 6.3.1, at this stage, the aim is to explore the possibilities and 

potential of unreserved backup paths.  Instead of simulating special traffic characteristics, 

such as audio or video traffic, generic traffic is assumed.  Any special handling of traffic 

is left for future work (Section 7.3).  Specifically, the actual simulated traffic is designed 
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to provide an understanding of the capabilities of unreserved backup paths as well as the 

range of overhead.  Thus, different traffic loads are simulated and different types of 

traffic distributions are tested for comparison. 

6.4 Performance metrics 

The simulation results based on the metrics described in Chapter 5 are provided and 

discussed in Sections 6.6, 6.7, and 6.8.  Because one of the major concerns regarding 

these backup path computation methods is the amount of extra routing information that is 

required to be distributed through the network, this communication cost is also measured 

during the simulations and discussed in Sections 6.6, 6.7, and 6.8.  Specifically, the 

measurement provided is the bandwidth consumed by routing data for the duration of the 

simulation.  For example, with some of the methods tested (Section 6.5), the primary path 

information is sent along the pre-planned backup paths.  Assume that the packet with all 

the required information has a size of d bytes and that the backup path consists of h hops 

(links).  Then, the communication cost of sending this piece of routing information is 

hd * , because this packet continues to consume network resources until it reaches its 

destination. 

Overall, the performance of the different methods is measured based on Chapter 

5, specifically Table 20 and Table 22.  The overhead of these methods is based on the 

amount of additional routing data that is circulating in the network. 

6.5 Additional methods tested 

In addition to the methods designed in Chapters 3 and 4, known methods—APLV Norm 

[48], CV [48], and BV+APV [49], are also simulated for comparison.  A simple disjoint 
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method, which uses the shortest disjoint paths as the designated backup path, is also 

tested as a comparison to the more complex methods.  All of these methods compute 

backup paths that are intended to stay unreserved prior to the failure. 

As mentioned, in addition to the difference in performance, the other major 

difference among the methods is the difference in the communication overhead described 

in Section 6.4.  Table 24 provides an overview of the differences in terms of the 

communication overhead among AvoidPBO, TP, TPmax, APLV Norm, CV, and 

BV+APV.  The expected communication overhead upper bounds are also provided in 

Table 24.  It assumes that N is the number of nodes in the network, L is the number of 

links in the network, and F is the number of traffic flows in the network.  A discussion of 

the different methods is also provided below. 
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Table 24. A comparison of the major difference in terms of communication overhead among the backup path computation methods. 
Method Communication overhead Upper bound 
AvoidPBO (Chapter 3) • Primary and backup path information of each flow is communicated to all nodes in the network. • O (FL) 
TP (Section 4.4) 
TPmax (Section 4.5) 

• Each node constructs two fixed-sized arrays, PTP and BTP, which are communicated to all other 
nodes in the network. 

• O (NL) 

• Primary and backup path information of each flow is sent along its backup path. • O (FN) 
APLV Norm [48] 

• Condensed path information of each link is communicated to all nodes. • O (NL) 
• Primary and backup path information of each flow is sent along its backup path. • O (FN) 

CV [48] • Condensed path information of each link is communicated to all nodes.  (The condensed path 
information of each link is different from APLV Norm.) 

• O (NL) 

• Primary and backup path information of each flow is sent along its primary path. • O (FN) 
BV+APV [49] 

• Information to compute backup path of each flow is sent along its primary path. • O (FN) 
Disjoint • No extra information is needed. • O (1) 
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With the disjoint method, the link weights are modified only based on the 

corresponding primary path.  In this case, the only information needed is the topology 

and the primary path of the flow concerned.  Thus, there is no communication overhead 

associated with the disjoint method.  With the other methods, AvoidPBO, TP, TPmax, 

APLV Norm, CV, and BV+APV, the link weights are modified based on the extra 

routing information that the nodes distribute among themselves.  With AvoidPBO 

(Chapter 3), primary and backup path routing information of every flow is distributed 

throughout the network.  For TP and TPmax, Chapter 4 showed that the primary and 

backup path information is condensed into LxL arrays before being distributed 

throughout the network.  APLV Norm and CV take an approach that is somewhat of a 

combination of AvoidPBO and TP/TPmax.  With APLV Norm and CV, the complete 

primary and backup path information of a flow is distributed only along the backup path 

of that flow.  The intermediate nodes along these backup paths condense the information 

they receive based on the design of each method.  The condensed information is then 

distributed throughout the network.  BV+APV puts another twist on the approach used by 

APLV Norm and CV.  With BV+APV, primary and backup path routing information of a 

flow is distributed along the primary path of the flow.  Each intermediate node also 

condenses the information received.  The difference with BV+APV is that this condensed 

information is not broadcast over the network.  Instead, when the backup path of a flow 

needs to be computed, another message is sent out by the source node along the primary 

path to collect the condensed information.  Overall, TP and TPmax are the only methods 

expected to have constant communication overhead in a fixed network.  The difference 

among AvoidPBO, APLV Norm, CV, and BV+APV is that AvoidPBO broadcasts per-
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flow information while the other three methods only send per-flow information along 

specific paths.  Asymptotically, the overhead of AvoidPBO, APLV Norm, CV, and 

BV+APV are all bounded by F, the number of flows in the network.  The actual 

difference in the overhead measured during the simulation is provided in Sections 6.6, 

6.7, and 6.8. 

6.6 Random graph with concentrated traffic 

6.6.1 Topology, traffic, and failure cases 

The topology used in this scenario is the same as the one first used in Sections 3.10 and 

4.8.2, which is illustrated in Appendix A.  It is a randomly generated graph of 20 nodes, 

each with a degree of four.  For this simulation case, each simplex link has the ability to 

carry 370 units of traffic.  Similar to Section 3.10, 100 unique sources-destination pairs, 

roughly 26% of all possible pairings, are randomly chosen to make up the sources and 

destinations of the first 100 flows.  Their primary paths, the shortest paths computed 

using unit link weights on all links, are mapped out.  To create conflicts among traffic, 

additional traffic is generated by randomly choosing source-destination pairs among these 

first 100 pairs, and these additional flows use the same primary paths as the first 100 

flows.  Thus, flow number 101 can be considered a duplicate, with the same source and 

destination and taking the same primary path, of one of the first 100 flows, and so on. 

As described in Chapter 5, all the flows are assumed to require one unit of 

resource on each link of its primary path to satisfy their service quality, and the flows are 

mapped out such that the network can satisfy such service quality before the failure.  In 

this particular setup, a total of 12000 traffic flows are generated.  For this set of 
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simulations, traffic loads of 2000, 4000, 6000, 8000, 10000, and 12000 flows are tested.  

Among the 80 simplex links in this setup, 40 simplex links, two out-going links from 

each node, are tested.  Thus, 40 failure scenarios are tested, and all the scenarios cause at 

least one failed primary path in every traffic load test case.  More details regarding this 

particular setup are provided in Appendix B. 

6.6.2 Performance 

Figures 12-20 show the simulation results under the setup described in Section 6.6.1.  

These results include a direct comparison to the use of two reserved paths, a look at the 

difference between pairing unreserved backup paths with strict recovery and with relaxed 

recovery, and also the overhead for communicating extra routing information.  A 

discussion of these results is provided below, and Section 6.6.3 provides a summary of 

this particular simulation scenario. 

As mentioned in Sections 5.2 and 5.3, the use of unreserved backup paths was 

first designed to prevent the waste of resources when two reserved paths are used.  

Though it is not always possible, unreserved backup paths are intended to provide the 

same service as two reserved paths.  In other words, the hope for the unreserved paths is 

to achieve perfect recovery under the strict recovery mode, where resource reservation on 

the backup paths is attempted and successful.  Figure 15 shows the percentage of failure 

cases tested where perfect recovery was achieved.  As expected, perfect recovery is 

generally only achieved during very light traffic loads, the two lightest loads in this case.  

During medium loads, unreserved backup paths can provide perfect recovery for some 

link failures but not others.  At heavy loads, perfect recovery is generally impossible, 
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save for the odd one or two link failure locations.  Thus, in this regard, unreserved 

backup paths simply cannot compete with the use of two reserved paths in most cases. 

Because perfect recovery (Table 20) is an all-or-nothing measurement, it misses 

some link failure cases where many backup paths are successful.  Figure 16 provides the 

recovery rate (Table 20), which shows the average percentage of backup paths that are 

successful under the strict recovery mode.  For the better methods, a fairly high 

percentage of the backup paths are successful in the three lighter traffic loads tested.  

Specifically, in the first three loads, where traffic takes up roughly 50% or less of the 

available resources in the network, when a backup path is needed, 90% of the ones 

computed by AvoidPBO, TP, TPmax, and BV+APV are successful.  Even the simple 

disjoint methods can provide good results in some cases, particularly in the first two 

cases.  As expected, however, as the traffic load becomes heavier, unreserved backup 

paths paired with the strict recovery mode becomes increasingly ineffective.  However, 

because a link failure only affects a limited number of flows, Figure 17 shows that, as a 

whole, the network continues to function quite well for the majority of the traffic.  Thus, 

in the event of a single link failure, the use of unreserved backup paths with strict 

recovery is not catastrophic in general and may be a good compromise, particularly with 

respect to the large amounts of wasted resources incurred by reserving two paths.  The 

drawback of unreserved backup paths under strict recovery is that it is fatal for some 

traffic. 

Pairing unreserved backup paths with relaxed recovery (Sections 5.4 and 5.5) is 

expected to overcome this particular deficiency.  When the primary paths fail after a link 

failure, the relaxed recovery forgoes resource reservation on the backup paths and so 
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cannot guarantee to preserve service quality.  Instead, traffic is always allowed to re-route 

over the planned backup paths.  As a result, some traffic is expected to retain the same 

service quality as before, while some traffic is expected to be routed over links that are 

congested, as shown in Figure 18.  The traffic routed over congested links1 is expected to 

suffer some service degradation.  While it is better to have zero flows suffer from 

congestion, it is also important that these congested flows do not suffer too much service 

downgrade.  Figure 19 shows the amount of service degradation that the congested flows 

experience (Table 22).  Taking Figure 18 and Figure 19 together, although TPmax causes 

more flows to suffer from congestion, these flows do not suffer too much, even in the 

heavier traffic loads.  While some methods have flows that suffer no congestion and 

flows that suffer bad congestion, TPmax provides a more standard service for all the 

traffic concerned.  For example, even in the heaviest traffic load, TPmax can provide at 

least 90% of the original service agreement to a flow, whereas the disjoint method 

provides less than 80% of the original service quality in the worst case.  With TPmax, a 

flow either experiences the original service guarantee or has its service downgraded by 

about 10%.  With the disjoint method, a flow might experience the original service 

guarantee, but another flow suffers a downgrade of about 20%.  Figure 20 can be 

considered an average of these disparate types of service qualities experienced by the 

traffic as a whole.  Because TPmax results in a higher number of congested flows, 

especially in the two heaviest network loads, on average, the average service quality 

provided by TPmax is second to TP and AvoidPBO in those cases.  Overall, with relaxed 

recovery, all flows can remain connected, and the side effect is the possibility of small 

and maybe negligible service degradation, particularly for certain methods.  Without 
                                                 
1 These traffic flows are often called congested flows. 
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considering the overhead, if the objective is to minimize the service degradation 

experienced by a flow, then TPmax is the best option. 

Based on Figures 12-17, an emerging trend is that at light traffic loads, almost all 

methods, even the simple disjoint method, can achieve good results, whereas poor 

performance is likely expected for all methods in heavy loads.  The real difference in 

performance among the methods generally occurs in medium traffic loads, where there is 

obvious distinction between better methods and worse methods.  This is not unexpected, 

as it is logical that when there is barely any traffic in the network, any method can work, 

whereas when there the network is completely loaded with traffic, likely nothing will 

improve matters.  However, when there is room for manipulation, it is more obvious that 

some methods are better at managing traffic. 

As mentioned in Table 1, within the category of unreserved backup paths, there is 

concern that good performance needs to be balanced with scalable overhead.  

Specifically, the fear is that good performance can only be achieved by using a large 

amount of extra routing information that is not practical.  As outlined in Table 24, some 

algorithms, e.g., AvoidPBO, APLV Norm, CV, and BV+APV, that require flow-based 

information to be communicated over the network are not expected to be scalable or 

practical, because F, the number of flows (the amount of traffic), can increase 

indefinitely.  During the simulation, the amount of network resources consumed by the 

distribution of extra routing information (Section 6.4) is collected and provided in Figure 

21.  (Since the disjoint method does not require additional routing information, there is no 

overhead involved and thus this method is not shown.)  As expected, only the overhead 

of TP and TPmax stays constant, and the overhead incurred by other methods increases 
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as the amount of traffic increases.  Compared to the other methods, the overhead incurred 

by AvoidPBO can be considered off-the-chart, likely because AvoidPBO requires per-

flow information to be broadcast.  Figure 22 shows the overhead that focuses on TP, 

TPmax, APLV Norm, CV, and BV+APV to magnify the relationship among these 

methods.  Although the overhead of APLV Norm, CV, and BV+APV is expected to grow 

as the amount of traffic increases, there is one twist with CV, where the overhead for the 

case of 12000 flows is smaller than that for the case of 10000 flows.  The reason is that 

the majority of the extra routing information is communicated along the backup paths 

based on the CV algorithm design.  According to the calculation described in Section 6.4, 

the amount of overhead is also dependent on how long a piece of routing information 

circulates in the network.  If a backup path is extremely long, then not only is the 

information depicting the paths more lengthy, but the actual packet carrying the routing 

information also remains in the network for a long period of time, resulting in higher 

overhead.  Thus, the actual amount of overhead incurred by the flow-based, path-based 

methods may not always match the number of flows in the network.  In some cases, the 

overhead matches the sum of the path lengths of the paths along which routing 

information is distributed.  Figure 23 shows the sum of the path lengths of the paths taken 

when communicating routing information, which matches the trend in Figure 22.  

However, because the sum of the path lengths generally matches the number of flows, the 

overhead is still expected to increase as the amount of traffic increases. 

Based on the results of the overhead analysis, AvoidPBO should never be 

recommended for practical use.  Together with the performance analysis, none of the 

flow-based algorithms should be recommended for practical use because the performance 
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gain is relatively small compared to the overhead.  Although AvoidPBO is unsuitable for 

practical purposes, it is still instrumental in the design of TP and TPmax, which turned 

out to be both efficient and effective. 

The confidence intervals are not given in these results, and this convention is also 

used in Sections 6.7.2 and 6.8.2.  This decision was made because performance varies 

greatly with different failure locations.  As a result, lower performance generally does not 

occur under the same condition as higher performance.  In the interest of providing 

cleaner plots for interpreting the overall behavior of unreserved backup paths, only the 

average is provided.  Also, to emphasize the overall trends, solid lines are drawn through 

data points; they do not indicate actual values obtained through simulations. 

 

Figure 15. The percentage of failure cases in which unreserved backup paths can provide perfect 
recovery after a failure. 
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Figure 16. The percentage of flows that are successful after a failure, among those that require re-
routing. 
 

 

Figure 17. The percentage of flows that are successful after a failure among all the flows. 
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Figure 18. The percentage of flows that have at least one congested link along their forwarding path. 
 

 

Figure 19. The resources available to flows that have at least one congested link along their 
forwarding path. 
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Figure 20. The average resource availability for all flows. 
 

 

Figure 21. The communication overhead in terms of the amount of extra rouging information that is 
exchanged, as described in Section 6.4. 
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Figure 22. A magnified plot to show the communication overhead comparison among TP, TPmax, 
APLV Norm, CV, and BV+APV, without AvoidPBO. 
 

 
Figure 23. The sum of the path lengths of the paths to distribute flow-based rouging information. 
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6.6.3 Case summary 

The general trend is a drop in performance as the traffic load increases.  More 

specifically, the drop occurs when the network is generally half loaded with traffic prior 

to the failure.  Strict recovery is only suitable in light network loads, before the network 

is more than half loaded, and only for certain methods, such as AvoidPBO, TP, TPmax 

and BV+APV, though in extremely light loads, even the disjoint method will suffice.  

When the network is more than half full, taking the overhead analysis into consideration, 

TP or TPmax should be recommended, and the unreserved backup paths chosen should 

be used under the relaxed recovery mode.  Overall, this set of simulations shows that 

unreserved backup paths, especially when paired with relaxed recovery, can provide 

satisfactory performance even at heavy network loads.  Furthermore, using TP or TPmax, 

good results can be obtained despite using less routing information. 

6.7 Random graph with four extra links 

6.7.1 Topology, traffic, and failure cases 

For this set of simulations, the traffic and the failure cases are the same as those in 

Section 6.6.  The topology is almost the same, except that four simplex links were 

randomly selected and added into the graph, as depicted in Appendix C.  Like all the 

other links, each of these four links has a capacity of routing 370 traffic flows without 

compromising service quality.  While the general trend in the results is expected to be 

similar to Section 6.6, the main reason for this setup is to examine how well different 

methods take advantage of the extra resources. 
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6.7.2 Performance 

Figures 21-28 show the results from this simulation scenario.  Figure 24, Figure 25, 

Figure 26, Figure 28, Figure 30, and Figure 31 are analogous to the graphs provided in 

Section 6.6.2.  Figure 27 and Figure 29 provide comparisons between the scenarios 

simulated in Section 6.6 and this section.  Based on the results in Section 6.6, AvoidPBO 

is deemed unsuitable, more so than other methods, for practical purposes due to its high 

overhead.  Thus, results from AvoidPBO are not included in this section.  A discussion of 

the simulation results is provided below, and Section 6.7.3 provides a summary of this set 

of simulations. 

As mentioned, because of the minor change in the topology, the general trend of 

the performance is not expected to be different from Section 6.6.  Figure 24, Figure 25, 

and Figure 26 show the performance of the unreserved backup paths under strict recovery 

that is similar to the results in Section 6.6.2: the backup paths only work well in light 

network loads.  Because the difference is most evident in terms of recovery rate, Figure 

27 provides a comparison of recovery rates between the scenarios in Section 6.6 and this 

section.  Figure 27 shows the number of cases in which better recovery is obtained by 

adding four more links, among the 40 cases of link failures that are tested.  In general, 

TP, TPmax, APLV Norm, CV, and BV+APV are better at taking advantage of the 

additional resources than the disjoint method.  By considering how traffic is distributed in 

the network and how the distribution is expected to change in the event of a link failure, 

TP, TPmax, APLV Norm, CV, and BV+APV are better at managing the traffic to make 

the most out of the extra resources.  In contrast, the disjoint method simply considers the 

topology and the corresponding primary path when a backup path is computed.  Thus, 
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extra resources may not even be considered if they do not happen to be along the shortest 

disjoint path. 

Similarly, Figure 30 shows the resource availability experienced by congested 

flows, which is the representative performance measurement under the relaxed recovery 

mode.  Similar to Section 6.6.2, many algorithms, particularly TPmax, can maintain good 

service even at heavy network loads.  Comparing the results between the two topologies, 

Figure 29 shows the number of failure cases in which better service is obtained under the 

topology with four additional links.  Similar to the comparison in Figure 27, the methods 

that consider how traffic is routed in the network are more consistent at taking advantage 

of the extra resources compared to the simple disjoint method. 

For completeness, the overhead incurred by extra routing information distribution 

is shown in Figure 28.  This is consistent with the upper bound analysis in Table 24, 

where the overhead for APLV Norm, CV, and BV+APV increases as the amount of 

traffic increases.  As mentioned in Section 6.6.2, comparing Figure 30 and Figure 31, the 

overhead incurred by APLV Norm, CV, and BV+APV is also closely related to the paths 

on which the routing information is distributed. 



 

 111 

 

Figure 24. The percentage of failure cases with perfect recovery rate when there are four additional 
links. 
 

 

Figure 25. The percentage of successful backup paths when there are four additional links. 
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Figure 26. The percentage of successful flows when there are four additional links. 
 

 

Figure 27. The number of failure cases with better recovery rates when there are four additional 
links compared to the original topology. 
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Figure 28. The resources available to flows using at least one congested link along their forwarding 
paths when there are four additional links. 
 

 

Figure 29. The number of cases with better service quality when there are four additional links 
compared to the original topology. 
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Figure 30. The overhead incurred to communicate extra routing information when there are four 
additional links. 
 

 

Figure 31. The sum of path lengths of the paths to distribute flow-based information when there are 
four additional links. 
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6.7.3 Case summary 

As expected, additional resources, in the form of extra links, result in improved 

performance in general.  The general trend is that the improvements obtained by the 

disjoint method are limited, likely because it only considers the topology.  In contrast, 

methods such as TP and APLV Norm which consider how traffic flows related to each 

other when planning backup paths can make more adjustments and tailor the solution to 

existing network conditions, wherever the available resources happen to be.  Overall, this 

test case provides a positive outlook regarding the expected performance on topologies 

and scenarios not tested in this thesis using methods such as TP and APLV Norm.  Such 

methods are expected to adapt to the current conditions and make good use of the 

available resources. 

6.8 Random graph with random traffic 

6.8.1 Topology, traffic, and failure cases 

The topology used in this set of simulations is identical to what is used in Section 6.6.  

The difference in this case is the initial traffic.  Unlike Sections 6.6 and 6.7, the initial 

traffic is not concentrated between 100 pairs of source-destination nodes.  Instead, the 

initial traffic is randomly selected between any two nodes for the entire 12000 traffic 

flows.  Like Sections 6.6 and 6.7, for each flow, a source and destination node pair is first 

chosen, and then the shortest path between these two nodes are mapped out and reserved 

as the primary path of the flow.  Because the source and destination pairs are not limited 

to the first 100 pairings like in Sections 6.6 and 6.7, the initial traffic is expected to be 
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more spread out.  Consequently, the resources that are not initially reserved are also more 

evenly spread out over the network. 

6.8.2 Performance 

Because the overhead incurred by AvoidPBO is much too high compared to other 

methods, results from AvoidPBO are again not included in this section.  Figure 32 

provides the recovery rate (Table 20), the success rate of the activated backup paths, in 

the strict recovery mode (Section 5.2).  Like before, the general trend is that the recovery 

rate decreases dramatically when the initial traffic consumes roughly more than 50% of 

the network resources.  Compared to the traffic condition in Section 6.6, Figure 33 shows 

that the performance with less concentrated traffic is better for all traffic loads tested.  

Despite having the same number of traffic flows, which actually consumes a little more 

resources initially than the concentrated traffic setup in general, as shown in Figure 34, 

the random traffic setup still results in better performance after a failure.  While the 

dramatic drop in recovery rate begins in the case with 6000 flows when the network is 

slightly less than half full in Figure 16, Figure 32 shows that the dramatic drop with 

random traffic begins after the network is half full in the case with 8000 flows.  Likewise, 

Figure 35 provides the performance trend under relaxed recovery (Section 5.4), and 

Figure 36 also shows that better performance is obtained in the random traffic setup.  

Looking at how the initial traffic is distributed in the network, Figure 37 shows that the 

initial traffic in the setup in Section 6.6 is indeed more concentrated, generally leaving 

more links with very few resources, less than 10% of the total capacity, for re-routing.  

With so few free resources available, these links are essentially rendered useless, or 

become the weak link and bottleneck at the very least, because they are unlikely to handle 
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any re-routing successfully.  Figure 38 further shows that, with the more concentrated 

traffic distribution in Section 6.6, there are fewer links with a medium (40-70%) amount 

of resources available for re-routing.  Together, a smaller number of links with adequate 

resources and a larger number of links with very limited resources likely contribute to the 

comparatively lower performance in the concentrated traffic setup. 

Overall, the results from this section and Sections 6.6.2 and 6.7.2 all show that the 

turning point in performance is still at the point where a network is roughly 50% loaded 

with initial traffic.  If the initial traffic is more evenly distributed, or from the opposite 

perspective, if the free, available resources in the network are more evenly distributed, 

then the performance in both recovery modes is expected to be better than cases where 

traffic or free resources are concentrated in a few specific areas. 

For completeness, Figure 39 provides the communication overhead incurred 

during this simulation set.  As expected from the analysis in Table 24, only TP and 

TPmax use constant overhead regardless of the amount of traffic in the network.  When 

the amount of traffic F is much larger than the number of nodes (N) and links (L) in the 

network (F >> L and F >> N), the overhead incurred by TP and TPmax is expected to be 

the smallest among the methods tested, excluding the disjoint method. 
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Figure 32. The percentage of re-routed flows that are successful after a failure when the initial traffic 
is not concentrated, among those that require re-routing. 
 

 

Figure 33. The number of failure cases with better recovery rates when the initial traffic is not 
concentrated. 
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Figure 34. The percentage of resources used by the initial traffic under the condition described in 
Section 6.8.1. 
 

 

Figure 35. The resources available to flows that have at least one congested link along their 
forwarding path when the initial traffic is not concentrated. 
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Figure 36. The number of cases with better service quality when the initial traffic is not concentrated. 
 

 

Figure 37. The percentage of links with less than 10% of free resources available for re-routing. 
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Figure 38. The percentage of links with 40-70% of free resources available for re-routing. 
 

 

Figure 39. The overhead incurred to communicate extra routing information when the initial traffic 
is not concentrated. 
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6.8.3 Case summary 

The general trend for this simulation set is the same as those in Sections 6.6 and 6.7.  The 

twist in this simulation set is that, by keeping the initial traffic more evenly distributed, 

good performance can be obtained for more cases in the strict recovery mode.  

Performance in the relaxed recovery mode is also improved. 

6.9 Chapter summary 

Tests on the methods designed in Chapters 3 and 4, AvoidPBO, TP, and TP, are 

performed in this chapter to evaluate their performance, particularly in the face of 

changing topologies and traffic conditions.  Additionally, the trade-off between 

performance and overhead is also examined.  For comparison, several known methods in 

the same solution category are also tested.  Due to its high overhead and unsuitability, 

results from AvoidPBO are only included and discussed in the first simulation set 

(Section 6.6), which shows that AvoidPBO conforms to the general trend, except for the 

overhead.  Although any performance gain by AvoidPBO is dismissed in Sections 6.7 

and 6.8, AvoidPBO still played in important role in the design of TP and TPmax. 

In general, there is a division between light and heavy network nodes, and the 

division occurs roughly at the point where the network is half loaded with traffic.  The 

strict recovery mode only works well in light traffic loads.  Under the relaxed recovery 

mode, while more acceptable performance can be obtained by all methods, TPmax 

particularly performs well, with less dramatic decline in performance as the traffic load 

increases.  Furthermore, TPmax obtains these results despite requiring only constant 

overhead in a fixed network, which is significantly lower overhead than flow-based 

methods. 
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In terms of the performance in a changing network, slightly better performance 

can be obtained if the free resources and traffic are evenly distributed.  Although the 

methods that consider how traffic is routed incur more overhead, they are shown to adapt 

to different traffic conditions and network topologies.  Such methods can make better use 

of the available resources by managing the relations among traffic flows and the paths 

they take.  Overall, based on the performance, overhead, and adaptability, TPmax, 

especially when it is paired with relaxed recovery, is the best option when unreserved 

backup paths are used to improve service quality. 
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7 Conclusion and Future Work 

7.1 Summary 

Traditionally, a single path with enough resources reserved is used to provide the high 

QoS requested by a user.  Although this path has enough resources reserved to satisfy the 

service quality of a flow, it suffers from single link failures.  When a flow depends on 

only a single path, it can easily be disconnected in the event of a link failure in the 

network.  A popular solution to handle flows in the event of a link failure is to use two 

reserved paths per flow, both a reserved primary path and a reserved backup path.  

Because the backup paths are reserved, this approach can guarantee the same service 

quality both before and after a link failure for all flows.  However, since backup paths are 

rarely activated, the resources reserved solely for these backup paths are wasted most of 

the time. 

The approach taken in this thesis is a less expensive approach that pairs a reserved 

primary path with an initially unreserved backup path.  Several algorithms are designed 

to compute unreserved backup paths, each with different performance results and 

overhead requirements.  Using different path computation algorithms and different 

techniques to utilize the backup paths once they are needed, competitive performance 
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relative to that of reserving two paths can be achieved, thereby providing acceptable 

service quality and reliability to many applications inexpensively after a link failure. 

Based on existing work, a basic algorithm, AvoidPBO, to compute backup paths 

that are intended to be unreserved prior to the failure is designed.  To be successful, 

unreserved backup paths need to be chosen so that the activated backup paths do not fight 

over the same resources.  While the backup paths are eventually calculated by Dijkstra’s 

algorithm, AvoidPBO provides a way to determine the links that are expected to be under 

the most contention, and thus should not be chosen if possible.  Its framework differs 

from existing methods in that it does not require intermediate nodes to construct/calculate 

any routing information.  The source nodes are responsible for communicating useful 

routing information into the network, and the intermediate nodes are only required to 

exchange the routing information.  As a basic algorithm, the useful information 

AvoidPBO source nodes send out into the network is the raw path information of their 

flows.  While this is very costly, on the order of the number of flows in the network, by 

pushing all responsibility back to the source nodes, less expensive methods such as TP 

and TPmax could be derived from this framework.  In contrast, methods that require 

intermediate nodes to help compute essential routing information always require raw path 

information of flows to be sent to the intermediate nodes.  Although such methods may 

incur less overhead than AvoidPBO by reducing the number of nodes that receive per-

flow information, their reduction in overhead cannot compete with methods such as TP 

and TPmax that only require topology-based information.  Thus, even though AvoidPBO 

is likely unrealizable in practice, its design is instrumental in other practical and effective 

approaches. 
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TP and TPmax are two algorithms that compute unreserved backup paths using 

lower overhead, and they are derived from AvoidPBO.  Based on how AvoidPBO uses 

the raw path routing information to determine undesirable links, a method to condense 

routing information to two fixed size arrays, PTP and BTP, is designed.  This method 

condenses raw routing information such that the end result is useful and its size remains 

constant regardless of the amount of traffic in the network.  In a fixed network, this 

method incurs constant overhead, where each source node sends out PTP and BTP, rather 

than the flow-based overhead required by AvoidPBO and other known methods.  TP and 

TPmax are two methods developed to use PTP and BTP to compute backup paths.  Their 

performance is generally second only to AvoidPBO while using asymptotically less 

routing information.  AvoidPBO, TP, and TPmax as a group, also provides better 

performance in the majority of the test case, than the existing methods that also compute 

unreserved backup paths to provide reliable QoS.  Thus, the design decision to push 

computation back to the source nodes allows significant overhead reduction and still 

provides a way to choose effective backup paths. 

Merely carefully choosing unreserved backup paths is not always enough to 

provide acceptable service after a failure, especially when the traffic load is heavy.  When 

the traffic load is heavy, most of the resources in the network are already in use and very 

few resources will be available.  Under this circumstance, the traditional way a backup 

path is used, which ultimately requires resource reservation to be performed on the 

backup paths, results in poor performance for the majority of the traffic loads.  Thus, 

while unreserved backup paths are less expensive than reserved backup paths and are 

simpler to set up prior to the failure, getting the best results out of unreserved backup 



 

 127 

paths is not as straight forward.  If the original service quality is to be maintained, then 

some flows will be sacrificed and become disconnected (the strict recovery mode in 

Section 5.2).  The alternative is to allow all flows to remain connected through the 

remaining resources, which may result in lower service quality (the relaxed recovery 

mode in Section 5.4).  The best course of action to take depends on the network 

conditions. 

With strict recovery, the general trend is that good performance can be provided 

by all the methods tested when the network is fairly light.  Even the simple disjoint 

backup paths work well when the network load is extremely light.  In other relative light 

network loads, depending on the network setup, recovery by all flows may not be 

possible under some failure scenarios.  However, even in these situations, because the 

traffic load is relatively light, very few flows are sacrificed and become disconnected.  As 

the network load becomes heavier, performances of different backup path computation 

methods become more varied.  At the same time, unreserved backup paths result in more 

and more disconnected flows, and thus become less and less useful.  Overall, with strict 

recovery, once the network is half full, the percentage of successful recovery decreases 

dramatically, down to less than 10% success rate at worst. 

When the network is more than half full, the recourse is to mitigate the effects of 

a link failure using the relaxed recovery mode.  This sacrifices service quality to allow all 

flows to retain connection.  The overall trend is still a drop in performance as the traffic 

load increases.  Unlike the strict recovery, in the worst case, a flow can still expect to 

experience about 75% of the original service quality—a 25% drop in service quality.  

With TPmax, the service quality never goes below roughly 90%, a drop of at most 10% 



 

 128 

service quality, even when the network is more than three quarters full.  Thus, with 

relaxed recovery, all flows can remain connected, and the side effect is the possibility of 

small and possibly negligible service degradation when TPmax is used.  As the network 

load increases, TP and TPmax perform better than other methods despite using less 

routing information.  Relative to other methods, the service degradation from TP and 

TPmax is less dramatic as the traffic load increases. 

This thesis developed several techniques that can be combined to provide 

inexpensive, scalable, and satisfactory service to flows that are serviced by single 

dedicated paths, in the event of a single link failure in the network.  Using unreserved 

backup paths to mitigate the damage of a single link failure is much less expensive than 

using two reserved paths, but is not as straightforward.  In many cases, the backup paths 

need to be carefully chosen and also used differently under different circumstances for 

the best performance.  When the traffic load is light, service quality does not need to be 

sacrificed, whereas service quality has to be sacrificed to maintain flow connection when 

the traffic load is heavy.  Strict recovery can be used at light networks loads and relaxed 

recovery should be used in heavy network loads.  Considering both the performance of 

the backup paths and the overhead incurred, TP paired with static recovery results in the 

best performance in light network loads.  TPmax paired with relaxed recovery results in 

the best performance in heavy network loads.  Because TPmax uses the same routing 

information as TP, it is relatively easy to switch from TP to TPmax as the traffic load 

increases to improve the service quality.  Thus, using more sophisticated backup path 

computation methods and various different techniques, acceptable service can be 
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provided to overcome the effects of a single link failure, even without reserving resources 

on the backup paths.  At the same time, the overhead is scalable and controlled. 

7.2 Contributions to knowledge 

Most existing research generally assumes that providing re-routing at high service quality 

in the event of a single point failure in the network requires reservation of two paths 

(Section 2.5) in advance, which is extremely costly and wasteful.  In an effort to 

overcome this drawback, this thesis sets out to examine the use of unreserved paths to 

provide more reliability to improve QoS, particularly for the case of single link failures.  

A family of algorithms to compute unreserved backup paths is designed.  Based on an 

initial basic framework, resource contention behaviors are categorized to ultimately 

design scalable and effective backup path computation methods.  Performance 

evaluations show that these methods are sensitive to both the traffic and the topology to 

gain good recovery results.  By accepting the limitations of unreserved backup paths, 

additional techniques that can be applied during the recovery process based on different 

network conditions are also developed to compensate for the fact that no resource 

provisioning is performed before a failure.  Instead of forcing unreserved backup paths 

into the role of reserved backup paths, a different procedure, relaxed recovery, which 

makes better use of these unreserved backup paths, is employed.  Simulations are 

performed, and trends and behaviors are studied so that the traffic load-recovery 

procedure-algorithm combinations that yield the best results are identified.  The 

performance analysis shows that these unreserved backup paths are likely to be feasible 

in many cases.  If they are well-planned, using different techniques under different 
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conditions, unreserved backup paths, while not perfect, can provide inexpensive 

satisfactory recovery from a link failure. 

In particular, two algorithms, TP and TPmax, are not only scalable, but also yield 

extremely competitive results.  Using TP and TPmax to carefully choose backup paths, 

even if they are unreserved prior to the failure, they can still provide satisfactory 

protection against single link failures.  For a service provider, in extremely light network 

loads (at most 20% full), nothing needs to be done in advance to overcome a link failure.  

Simply re-routing flows over a disjoint path will suffice.  When the network is relatively 

lightly loaded but has enough traffic in it (20% to 50% full), unreserved backup paths 

will need to be more carefully calculated.  In these situations, TP, using scalable routing 

overhead, can provide performance nearly as good as using two reserved paths which 

guarantees perfect recovery.  When the network is more than 50% loaded, TPmax paired 

with relaxed recovery should be used, and the expected service downgrade is at most 

10%.  Under these circumstances, an application that can tolerate 10% of service 

degradation can be satisfied with this service.  With a relatively small amount of 

degradation, it is likely that software correction or more sophisticated data encoding can 

be done at the end users or at the servers so that the small drop in service quality is all but 

indistinguishable to humans.  To further improve upon network QoS, a service provider 

can be more mindful regarding the placement of primary paths by spreading them out 

more evenly.  This way, the free resources can be more effective when re-routing is 

necessary. 
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7.3 Future work 

As mentioned in Sections 3.9 and 4.6, while AvoidPBO and TP/TPmax as defined in 

Chapters 3 and 4 assume that the traffic of interest has the same service quality 

requirement, they can certainly be extended to accommodate more varieties of traffic and 

service guarantees.  The ranking of traffic and nodes in Sections 3.7.1, 4.4.2, and 4.5.2 

should also be examined further for any negative consequences of ranking.  As 

mentioned in Section 3.7.1, AvoidPBO is currently defined to use the starting time of 

traffic flows to determine the ranking and priority of backup path traffic.  A similar 

decision is made for TP and TPmax in Sections 4.4.2 and 4.5.2.  Exactly how fair these 

decisions are should be examined further, and other options of ranking should also be 

explored.  In addition to these extensions, by separating the routing information into how 

resources are used by primary and backup path, the design of AvoidPBO, TP, and TPmax 

can potentially adjust to even more non-uniform and disparate network topology and 

traffic models.  For example, when primary path traffic is completely concentrated in a 

small region of the network, information regarding backup path traffic is likely 

unnecessary because the majority of the traffic will remain in that small region even 

when there is link failure in the network.  Perhaps a better algorithm should first examine 

the disparity of traffic encoded in its routing information before sending the information 

out.  By not sending out the negligible backup path traffic that can potentially confuse 

algorithms, not only is the condition in the network more accurately illustrated, there is 

also the likelihood of a reduction in the cost of broadcasting the routing information.  In 

addition to enhancing performance, improvements on different failure modes, such as 

single node failures, should also be considered in the future.  Alternatively, because 
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complete failures are the extreme cases in a large spectrum of failure models, solutions 

for complete failures could possibly be adapted to ultimately provide fault tolerance for a 

range of failures, such as a non-negligible decrease in network capability.  Sensitivity 

tests for other details in the proposed algorithms such as the input parameter factor can 

also be performed for deeper understanding of the behaviors of the algorithms.. 

As mentioned in Section 6.3, the design of the simulations presented in this thesis 

aims to explore the potential of unreserved backup paths and a guideline on how to use 

them.  Just like there is a difference between light traffic and heavy traffic, it is likely the 

case that special handing is required for different types of traffic, such as audio or video 

traffic. 

In terms of the directions of future research, QoS routing over multiple domains 

[82] is becoming increasingly important as multiple service providers and multiple types 

of services are increasingly becoming accessible.  In such an environment, some issues 

such as the trade-off between the amount of routing information and performance will 

become more serious as the routing information will need to be distributed over a wider 

area.  Furthermore, solutions also need to be provided to guard against security issues 

such as the misuse of crucial routing information.  The question of how to recover from 

malicious or uncooperative servers may come to the forefront in the future when multiple 

domains are expected to work together while remaining conscientious of their service 

agreements to their own customers. 
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Appendices 

Appendix A 

Table 25 is the adjacency matrix representation of the randomly generated graph used in 

the experiments in Sections 3.10, 4.8.2, 6.6, and 6.8.  The actual graph is shown in Figure 

40.  For clarity of node positions, the edges are not drawn with arrows, though each 

undirected edge in Figure 40 represents two directed edges, one in each direction, in the 

simulation setup.  As mentioned in Section 3.10, this is a randomly generated graph of 20 

nodes, each with a degree of four.  The diameter of the graph is three.  This graph was 

chosen for its potential existence of a moderate number of alternate paths.  With adeguate 

alternatives, such a topology allows for assessment of the planning and negotiating 

abilities of different algorithms under a moderate environment.  If the nodes are too well-

connected, then there is likely no real difference among the methods tested in Chapter 6.  

If there are too few alternatives, then the unreserved backup path approach as a whole is 

not appropriate. 
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Table 25. The adjacency matrix representation of the randomly generated graph with 20 nodes, each 
of which has a degree of four. 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 
2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 
3 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 
4 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 
5 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 
6 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
7 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 
8 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
9 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
10 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 
11 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
12 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 
13 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 
14 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
15 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
16 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 
17 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 
18 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 
19 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 

 
 

 

 

Figure 40. Visualization of the random graph. 
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Appendix B 

One of the goals of these simulations is to determine the behavioral trends of these 

algorithms.  Both results from light and heavy traffic loads are of interest.  One point of 

interest in particular is how the broadcasting of routing information used in AvoidPBO, 

TP, and TPmax compares to BV+APV, which only sends routing information over 

primary paths.  To capture the case where any form of broadcasting is more costly than 

flow-based algorithms like BV+APV, the amount of traffic needs to be relatively low.  

Conversely, the amount of traffic needs to be high enough to capture the case where 

distributing flow-based routing information, even along very short primary paths, is more 

costly than broadcast.  All of these factors together led to this particular setting where the 

resource limit is set to 370 units per link and the traffic loads range from 2000 flows to 

12000 flows. 

Appendix C 

Table 26 is the adjacency matrix representation of the randomly generated graph plus 

four extra links used in the experiments in Section 6.7.  This graph is derived from the 

graph represented by Table 25.  The extra links are indicated in bold and italics.  Figure 

41 is a drawing of the graph, with the additional edges in red.  Like before, for clarity of 

node positions, the edges are not drawn with arrows, though each undirected edge in 

Figure 41 represents two directed edges, one in each direction, in the simulation setup.  

This graph has a diameter of three, and each node has a degree of either four or five.  The 

additional edges in this graph are intended to test whether the algorithms can exploit 

these new resources by rearranging the backup paths.  These additional links should 
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result in better performance, but it is also important that algorithms actually discover 

these additional links and use them well together with all the other links. 

 

Table 26. The adjacency list representation of the graph with four additional links. 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 
2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 
3 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 
4 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 
5 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 
6 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
7 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 
8 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
9 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 
10 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 
11 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
12 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 
13 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 
14 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
15 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
16 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 
17 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 
18 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 
19 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 

 
 

 
 
Figure 41. Visualizaion of the graph with four additional links. 


