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ABSTRACT 

Bacterial infection is a leading cause of morbidity and mortality arising from platelet 

transfusions (1, 2). Storage of platelet products at room temperature (20 to 24ºC) provides ideal 

conditions for bacterial proliferation (1, 3-6). Furthermore, platelets are stored in plasma 

containing bioavailable iron that bacteria require to survive (7). Thus we hypothesize that the 

inclusion of iron chelators will bind and remove iron, thereby inhibiting bacterial growth in both 

culture medium and platelet concentrates. Additionally, we hypothesize that residual red blood 

cells (RBCs) in platelet units may contribute bioavailable iron that promotes bacterial growth.  

To test these hypotheses, we first assessed growth of Staphylococcus epidermidis in 

culture medium after treatment with the iron chelators deferoxamine (DFO) or phytic acid. DFO 

significantly inhibited bacterial growth in a dose dependent manner (p < 0.009). Conversely, 

phytate only inhibited bacterial growth at concentrations ≥ 100 mM (p < 0.001); at ≤ 5 mM, 

phytate supplied S. epidermidis with additional nutrients and significantly promoted growth (p < 

0.001). Subsequently, we monitored the change in RBCs over time. Hemolysis, methemoglobin, 

and iron levels all significantly increased over the 7-day storage period (p < 0.001) releasing 

bioavailable iron. Indeed, we found that S. epidermidis growth in iron-poor medium drastically 

increased with the addition of RBCs, thus supporting our second hypothesis. Surprisingly, the 

inclusion of DFO in minimal medium did not demonstrate a bacteriostatic effect in the presence 

of RBCs. The inhibitory effect of DFO was likely overcome by iron released from the elevated 

methemoglobin levels arising from the direct interaction of DFO with hemoglobin. Previous 

studies demonstrate that methemoglobin releases iron more quickly than normal hemoglobin (8).  

Lastly, we evaluated the effect of DFO on microbial growth in platelet concentrates using 

the BacT/ALERT system. The presence of DFO significantly inhibited S. epidermidis growth in 

buffy coat platelets in a dose dependent manner (p < 0.001). With these findings, the inclusion of 

iron chelators is a promising approach to preventing transfusion-transmitted bacterial infection 

and providing patients with a safer platelet product. 
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I.^INTRODUCTION

BACTERIAL CONTAMINATION OF PLATELET PRODUCTS

Bacterial infection is a leading cause of morbidity and mortality arising from platelet

transfusions in the developed world (1, 2). Studies report that approximately 1 in 3,000 platelet

units are bacterially contaminated (3, 9), and 1 in 25,000 platelet transfusions result in sepsis (2,

3, 10-13). The most common source of contamination is the skin, due to inadequate sterilization

of the donor's arm prior to the phlebotomy process (3, 6, 13-15). Further, storage of platelet

products at room temperature (20 to 24°C) provides ideal conditions for bacterial proliferation (1,

3-6). Consequently, with approximately 9 million platelet units transfused annually in the United

States, and over 400,000 units in Canada (16), a cost-effective means to increase the safety of

this essential blood product is needed (17).

PLATELETS

Platelets are anuclear particles (2 to 4 jam in diameter) derived from the highly granular

cytoplasm of bone marrow megakaryocytes (18, 19). Approximately 70% of platelets produced

are found in the bloodstream, while 30% reside in the spleen as functional reserves (18). The

normal platelet count in the blood is 150 to 400 x 10 9/L (18, 19). Circulating platelets survive for

7 to 10 days, and play a prominent role in hemostasis and blood clotting (18).

Although platelets lack a nucleus, they have abundant cytoplasmic granules (18). In

particular, alpha and dense granules contain a variety of substances, such as fibrinogen, von

Willebrand's Factor (vWF), serotonin, and adenosine diphosphate (ADP), which are secreted in

the event of vascular injury (18, 19). This process is known as the release reaction, and is

essential to the clotting function and hemostatic role of platelets (18, 20, 21).

1



Platelet Function in Hemostasis

Primary hemostasis is the major function of platelets and involves three mechanisms:

adhesion, degranulation, and aggregation (see Figure 1) (18, 22). At the site of vascular injury,

vessels constrict to decrease blood loss, and to facilitate platelet contact with the damaged

endothelium (18, 23). Importantly, vWF, a plasma protein that is also secreted from the alpha

granules of platelets, binds subendothelial collagen exposed to the blood (18, 23, 24).

Consequently, vWF binds its platelet receptor, glycoprotein Ib/IX (GPIb/IX), thus allowing

platelets to adhere to the injured site (see Figure 1A) (18, 24, 25).

Following adhesion, platelets release calcium (Ca2+), which initiates thromboxane A2

(TXA2) formation, and granule release of serotonin and ADP (18, 24). TXA 2 acts as a

vasoconstrictor, and promotes platelet degranulation (see Figure 1B) and aggregation (18, 24).

Serotonin also supports vasoconstriction, while ADP attracts more platelets to the site for

aggregation (18, 24). Specifically, Ca2+ promotes binding of plasma fibrinogen to the GPIIb/IIIa

platelet receptor causing platelets to aggregate and create a plug (see Figure 1 C) (18, 26-31).

Formation of the platelet plug occurs within seconds after vascular injury and temporarily

prevents bleeding until a permanent fibrin clot is produced (18).
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Figure 1. Platelet (A) adhesion, (13) degranulation, and (C) aggregation promote blood
clotting following vascular injury. (A) At the site of vascular damage, vWF binds
subendothelial collagen exposed to the blood. Platelets possess a GPIb/IX receptor that binds
to vWF, thus allowing platelets to adhere to the injured site. (B) At the platelet level, adhesion
promotes platelet degranulation, and release of Ca t- and ADP. (C) ADP attracts more platelets
to the site, while the platelet GPIIb/IIIa receptor binds Ca 2 ' and fibrinogen to form a platelet
plug that will prevent further bleeding.
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Platelet Disorders

Treatment and prevention of bleeding requires adequate platelet quantity and quality (18).

Unfortunately, there are various disorders where platelet number and/or function are abnormal,

and hemostasis is impaired.

As previously stated, the normal platelet count in the blood is 150 to 400 x 10 9/L (18, 19).

Thrombocytopenia is an abnormal decrease in the number of circulating platelets (18). Common

causes of thrombocytopenia include increased platelet loss (hemorrhage), increased platelet

destruction via autoantibodies, and decreased platelet production due to bone marrow failure

(32). Idiopathic thrombocytopenic purpura (ITP) is one of the most common quantitative platelet

disorders with prevalence in children under ten years of age (32-34). Characterized by easy

bruising and severe thrombocytopenia, ITP is a disorder of increased platelet destruction in the

blood due to autoantibodies against platelet membrane antigens, GPIIb/IIIa or GPIb/IX (32, 33,

35).

Defective platelet production can arise from inherited aplastic anemia or acquired bone

marrow failure from chemotherapy or medications (36). For example, in leukemia, immature

cells accumulate in the bone marrow leaving no room for normal cells (i.e., megakaryocytes) to

exist and proliferate (32, 36). Other quantitative platelet disorders include disseminated

intravascular coagulation (DIC), hemolytic uremic syndrome (HUS), and thrombotic

thrombocytopenic purpura (TTP) (32, 37-39).

Qualitative platelet disorders are based on abnormal platelet function or response, due to

an inherited defect or as a symptom of an acquired disease (32). Bernard-Soulier Syndrome and

Glanzmann's Thrombasthenia, for instance, are rare, autosomal recessive disorders characterized

by a platelet membrane protein defect (25, 32, 40-43). Individuals with Bernard-Soulier do not

express enough or have non-functional platelet GPIb/IX receptors, thus reducing platelet

adhesion following endothelial damage (25, 32, 40, 42, 43). In contrast, patients with
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Glanzmann's Thrombasthenia have a dysfunctional or absent GPIIb/IIIa complex, resulting in a

loss of platelet aggregation (31, 32, 41, 42). Other functional platelet disorders include storage

pool disease, where granules are deficient or the granule release mechanism is defective, (32, 42)

and aspirin-induced TXA2 inhibition, which prevents the vasoconstriction, granule release, and

platelet aggregation normally induced by TXA 2 (32, 40-48).

PLATELET TRANSFUSIONS

Individuals who are bleeding due to abnormal platelet number and/or function may

require platelet transfusions to re-establish hemostasis (49, 50). Specific indications for platelet

transfusions include cancer patients undergoing chemo- or radiation therapy resulting in

decreased platelet production, preoperative patients with low platelet counts, patients recovering

from bone marrow or organ transplant surgery, and bleeding patients with an inherited or

acquired platelet dysfunction (49-51).

Platelets for transfusion are obtained in three ways: apheresis, platelet-rich plasma, and

buffy coat. Single donor platelet concentrates are produced by apheresis, whereby platelets are

removed from a donor's whole blood, and the remaining blood components are immediately

returned to the donor (51). Alternatively, random donor platelets or platelet-rich plasma (PRP) is

prepared by centrifuging whole blood at certain speeds to separate red blood cells (RBCs) and

plasma from platelets (51-53). The resulting platelet concentrates from 3 to 5 donors are then

pooled into a single unit, while the remaining RBCs and plasma are stored at 4°C and -18°C,

respectively, until required for transfusion (51, 53). This PRP method is extensively used in the

United States. In Europe (54) and recently in Canada (55), whole blood derived platelets are

prepared via the buffy coat method, which involves: (1) a hard spin, to separate the buffy coat

layer from the RBCs and platelet-poor plasma; (2) pooling of buffy coats from 4 to 6 donors; (3)
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a soft spin, to isolate the platelets; and (4) a final filtration step, to leukoreduce the platelet

concentrate (54-57).

All three procedures produce an adequate number of quality platelets to prevent and treat

bleeding (56). Apheresis platelets are preferred for individuals with compromised immune

systems (e.g., leukemia and bone marrow transplant patients) as they limit the recipient's

exposure to multiple donors (10, 51, 56, 58). Apheresis technology, however, involves potential

donor risks such as toxicity from the citrate anticoagulant used to prevent blood clotting during

separation, significant bruising or hematoma, and localized or systemic infection (54, 56, 58-62).

This process is also expensive and does not utilize the whole donor unit as in PRP and buffy coat

procedures (54, 56).

Because whole blood derived platelets are pooled from multiple donors, the risk of

transfusion-transmitted infection increases. Figure 2 illustrates this problem and the fact that only

one contaminated donor unit is needed to spoil a complete PRP or buffy coat product.

Importantly, if a whole blood unit contains a very low number of bacteria, pooling it with

multiple units will dilute the initial inoculum, making it difficult to detect by Gram stain or

culture during the short interval between pooling and transfusion.
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Platelets removed by PRP or buffy coat
method and pooled into one bag.

Whole blood
donor units:
(-450 mL)

1
^

3^4^5

Pooled platelet product
(Final volume: —200 to 300mL)

Figure 2. Bacteria present in one donor unit of whole blood will contaminate the final
pooled platelet product. Platelets removed from WB units of multiple donors are processed
and pooled to make a single PRP or buffy coat platelet product. If donor unit 4 is bacterially
contaminated, the final pooled platelet product will also be contaminated. Furthermore, if the
initial bacterial inoculum is very low (e.g., 10 bacteria or 0.02 cfu/mL), the final concentration
in the pooled platelet unit could be as low as 7.4 x 10 -5 cfu/mL.

* Denotes bacterial contaminated units.
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PROBLEMS WITH PLATELET PRODUCTS

Storage

In 1969, Murphy and Gardner found that platelets stored at room temperature are most

optimal in viability and function for transfusion (63). In contrast, the lifespan of platelets

decreased by —30% after storage at 4°C (63). Further studies have shown that unlike RBCs,

platelets become activated at 4°C and undergo a morphological change from discoid to

spherocytic (64-68). Subsequently, activated platelets progressively deteriorate in function and

lifespan during storage and in circulation after transfusion (66). These findings led to the current

standard of storing platelets at 20 to 24°C (1, 51, 67).

This practice, however, created two problems. First, platelets suspended in nutrient-rich

plasma and stored at room temperature with gentle agitation make an excellent growth

environment for a wide spectrum of bacteria (see Table 1) (1, 3-5). Second, to reduce the risk of

bacterial proliferation, platelet storage is limited to 5 days (14, 67). Unfortunately, this short

shelf life increases the number of uncontaminated units discarded, resulting in platelet shortages

and increased demand for platelet donors.

Table 1. Bacterial contaminants isolated from transfused platelet products.*

Organism Number of times isolated
(number of fatalities)

Percentage of total
contaminated products (%)

Staphylococcus epidermidis 98 (3) 38.6 (1.2)
Diphtheroids 95 37.4
Staphylococcus aureus 17 (1) 6.7 (0.4)
Enterobacter species 13 (2) 5.1 (0.8)
Bacillus species 14 (2) 5.5 (0.8)
Escherichia coli 8 (2) 3.1 (0.8)
Pseudomonas species 6 2.4
Flavobacterium species 3 1.2

Total 257 (10)

*Data summarized from 1971 to 2005 (1, 3, 6, 11, 12, 14, 69-75).
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Contamination

The risk of acquiring an infectious disease from a blood product is a longstanding

problem (1-3, 9-12, 76). With improvements to donor screening of blood-borne viruses, the rates

of transfusion-transmitted viral infections (e.g., hepatitis B virus (HBV), human

immunodeficiency virus (HIV)) have dramatically decreased (3, 77-80). Thus the most prevalent

infectious risk associated with transfusion is bacterial contamination, particularly, of platelet

products (1-3, 9, 81, 82).

As noted, studies report that approximately 1 in 3,000 platelet units are bacterially

contaminated (3, 9). Contaminants predominantly originate from a donor's skin flora, and are

introduced into the platelet product at low concentrations during phlebotomy (3, 6, 9, 13-15, 76).

Subsequent storage at room temperature in a nutrient-rich platelet bag enables bacteria to rapidly

proliferate from <10 to >106 colony forming units/mL within the allowed storage time of

platelets (1, 3, 76). Other possible although less frequent, mechanisms for bacterial

contamination are asymptomatic donor bacteremia and contamination during processing of the

platelet product. Approximately 1 in 25,000 platelet transfusions have been estimated to result in

sepsis and 1 in 60,000 result in death (2, 3, 9-12, 76).

Bacterial Contaminants of Platelet Products

Many of the organisms recovered from contaminated platelet units (Table 1) are a part of

the normal skin flora, such as Staphylococcus sp., Bacillus sp., and diptheroids (1, 6, 9, 14, 71,

72, 74). Other contaminating microbes originate from either the environment (Pseudomonas and

Flavobacterium sp.) or from a blood donor with asymptomatic bacteremia (Enterobacter sp.,

Staphylococcus aureus, Escherichia coli) (1, 70, 71, 74).

Among these contaminants, Staphylococcus epidermidis is the most frequently isolated

and implicated in transfusion-associated sepsis (74). Wagner and colleagues compiled the results
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of eight separate studies and revealed that S. epidermidis was the infectious agent in 25% of the

septic events from transfused platelets (74). Likewise, to Boekhorst et al. performed a two year

bacterial screening study and found that 25.2% of platelet product contamination was caused by

S. epidermidis (73). Fatalities consequent to transfusion of platelets contaminated with S.

epidermidis have also been reported (69, 70, 75), revealing the pathogenic potential of this skin

bacterium.

PREVENTION OF BACTERIAL CONTAMINATION

Bacterial Avoidance

Skin disinfection is the first line of defense in reducing transfusion-transmitted infection

(83). Several studies have shown that disinfection, specifically using isopropyl alcohol and

iodine, drastically reduces the number of bacteria present at the phlebotomy site (83-86).

However, certain skin flora such as diptheroids and Staphylococcus sp., reside in the deeper skin

layers, and may avoid surface decontamination (6, 71, 74, 84).

Investigators have suggested that these bacteria are introduced into the donated blood via

a skin plug formed from the needle puncture during phlebotomy (87). Since the majority of the

contaminating bacteria can be detected in the first few milliliters of each blood unit (2), diversion

pouches have been designed to exclude the initial 15 to 30 mL of whole blood from the main

collection bag (3, 84, 88-90). Several studies have found that diversion alone decreases the

prevalence of skin flora in whole blood units by approximately 50% and with improved skin

disinfection the prevalence decreases by 70% (84, 89, 91). Consequently, a residual

contamination risk of at least 30% remains (91) and is evident from the data summarized in

Table 1. Furthermore, neither diversion nor improved skin disinfection techniques prevent

transmission from rare asymptomatic bacteremic donors (15, 91-93). Therefore, to assure safety,
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additional testing of platelet concentrates is necessary to detect bacteria prior to transfusion (15,

92).

Bacterial Detection

Blood suppliers in both Europe and North America have implemented the BacT/ALERT

system (bioMárieux, St. Laurent, QB, Canada) for routine bacterial testing of apheresis platelets

(94-97). The BacT/ALERT is a standard automated culture system that utilizes a colorimetric

sensor of culture bottles to detect bacterial growth (1, 98, 99). Samples of platelet concentrates

are transferred to a sampling pouch via a sterile connection device, which maintains a closed

system (91, 96). After the pouch is detached, the contents are inoculated into culture bottles

containing tryptic soy broth. The bottles are then placed in the BacT/ALERT instrument and

incubated at 37°C. If bacteria are present in the sample, they proliferate and generate carbon

dioxide. The presence of carbon dioxide causes a sensor in the bottle to change color (1, 98, 99).

This color change is detected by the BacT/ALERT system, which produces audible and visual

alarms to notify lab personnel of a positive sample (98). The BacT/ALERT detects most aerobic

and anaerobic bacteria within 24 hours of bottle inoculation (93, 94, 96, 100).

Another automated detection system approved by the Food and Drug Administration

(FDA) for use in the United States is the Pall enhanced bacterial detection system (Pall eBDS)

(1). Unlike the BacT/ALERT, the Pall eBDS is limited to detecting aerobic bacterial growth as

the presence of bacteria is determined by measuring oxygen consumption in the sample (1, 92,

96, 99). Furthermore, the Pall eBDS requires a minimum 24 hour incubation before the oxygen

level can be measured (1, 92). However, an advantage of the Pall eBDS is that samples of

platelets to be tested are transferred directly into a culture pouch via a sterile connecting device

(1, 92, 99). This provides a closed system, which minimizes the risk of false-positive results

from environmental contaminants (92, 99).
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Numerous studies have shown that the BacT/ALERT and Pall eBDS are capable of

detecting a wide array of potentially contaminating bacteria and that their sensitivity levels are

comparable (92, 94, 101-103). Implementation of these systems, however, has not eliminated the

risk of septic reactions (73, 76, 82, 104). False-negative screens have led to life threatening and

fatal cases of sepsis following platelet transfusions (73, 104). Further investigations, therefore,

are needed to improve the sensitivity of bacterial detection systems.

Bacterial Elimination

In contrast to the above, a variety of pathogen reduction strategies are being tested

against bacteria (99, 105, 106). The best studied technology is the Intercept Platelet System,

which uses a psoralen compound, amotosalen that can cross the membrane or cell wall of

pathogens and intercalate into their DNA (99, 105, 107). Subsequently, amotosalen is activated

in the presence of ultraviolet (UV) light and forms permanent crosslinks in the DNA that

prevents bacterial replication (99, 105, 107). Janetzko et al. demonstrated that the Intercept

system had no influence on in vitro platelet function (105). However, clinical trials have shown a

reduction in post-transfusion platelet recovery (-11-26%) and survival (1.5 days) following 5-

day storage of amotosalen/UV treated platelets (108, 109). Furthermore, the impact of this

treatment and evaluation of the potential toxicity of such chemicals on the platelets and/or the

transfusion recipient remains to be established (1, 3).
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STAPHYLOCOCCUS EPIDERMIDIS AND IRON IN PLATELET PRODUCTS

Staphylococcus epidermidis

S. epidermidis is ubiquitous in nature, and a major constituent of the normal flora of

human skin and mucus membranes (99, 110-115). These bacteria are regularly shed from the

skin, and adapt easily to dryness and temperature changes in the environment (112). Originally,

S. epidermidis was considered to be a non-pathogenic contaminant of clinical specimens (110-

112, 114). The organism, however, has emerged as the most common Staphylococcus sp.

isolated and implicated as the causal agent in human diseases (110, 112, 114, 115).

Classification

S. epidermidis is classified in the bacterial family Micrococcaceae under the genus

Staphylococcus (110, 112, 116). Staphylococci are spherical gram positive cocci occurring in

singles, pairs, short chains, or irregular clusters (110, 112, 115). Colonies of most Staphylococci

grow on agar plates within 24 hours, and are typically small (1 to 2 mm in diameter), circular,

entire, and white or beige pigmented (110, 115). Differentiation of Staphylococcus sp. is

important in the prognosis and treatment of bacterial infections. The first test usually performed

is the coagulase test. This determines whether the isolated bacteria can convert plasma fibrinogen

into a fibrin clot, and differentiates the coagulase-negative, S. epidermidis from the more

predominant coagulase-positive pathogen, S. aureus (110, 112).

Infections

S. epidermidis is predominantly an opportunistic nosocomial pathogen that affects

immunocompromised patients (99, 117). For instance, breaks in the host's natural barriers (i.e.,

skin) via surgery or insertion of indwelling devices allows S. epidermidis at the site of the break

to colonize and cause infection (111-113, 118). Frequent infective complications include
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endocarditis after cardiac surgery and prosthetic heart valve implantation, wound infections

following orthopedic joint replacement, and central nervous system infections with cerebrospinal

fluid shunts (111, 113, 118-123). Neonates and bone marrow recipients often require central

venous lines to receive fluids, medications, and blood products, and are often

immunosuppressed, making them especially vulnerable to opportunistic S. epidermidis infection

(110, 112, 113, 117, 124-126).

Iron and Staphylococcus epidermidis

Progression to infection is largely dependent on the bacteria's ability to acquire iron from

their host (7, 127-132). Virtually all bacteria require iron to survive and proliferate (7, 127, 128,

130, 133-135). Several essential biological processes require iron including DNA synthesis,

dinitrogen reduction, and aerobic and anaerobic respiration (136-142). Iron also serves as a

cofactor of enzymes that function to protect bacteria from host defense mechanisms. For

instance, microbial catalase combats toxic oxygen species, such as superoxide and hydrogen

peroxide, released from human phagocytic cells (143). Other bacteria produce beta-lactamase,

which inactivates certain widely prescribed antibiotics including penicillin, ampicillin, and

cefazolin (144-146).

The importance of iron is further illustrated by its limited availability in vivo (128, 132,

136). Iron exists primarily in its insoluble and highly toxic ferric (Fe 3±) iron form, and thus must

be bound intracellularly or to proteins (131, 133, 137). In humans, plasma iron circulates bound

to transferrin, an 80 kilodalton (kDa) glycoprotein with two N- and C-terminal iron-binding

domains (128, 131, 135, 147-151). Transferrin has a strong affinity for Fe 3+ as indicated by its

low dissociation constant (Kd) of —10 -22 M (150-152). Normally, only one third of transferrin is

saturated allowing it to uptake any free iron and transport it around the body (128, 131, 134,

149). Alternatively, iron is incorporated into the heme molecule of the oxygen carrier proteins
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hemoglobin and myoglobin, or is bound to the main intracellular iron-storage protein ferritin

(128, 132, 140, 149). Because iron is predominantly bound, free ionic iron levels are too low to

support bacterial growth (127, 128, 133, 135, 148). Thus bacteria have developed efficient

mechanisms to acquire this essential metal (127, 128, 134-136, 149, 153).

One major iron acquisition system is mediated by siderophores (127, 128, 130, 131, 133,

134, 136, 148, 149, 153, 154). By virtue of their high binding affinity, many siderophores can

remove iron from ferritin or transferrin, and transport it into the microbe where it is utilized to

maintain bacterial function or deposited within iron storage proteins (e.g., bacterioferritin) for

future reserve (127, 128, 136, 153). These Fe 3+-specific chelating compounds are synthesized by

certain microbes in response to iron deficiency (127, 128, 133). In 1994, Lindsay and Riley

showed that S. epidermidis grows poorly in iron-depleted media, owing to their inability to

secrete siderophores (133). Earlier work by Schade demonstrated that S. epidermidis only

proliferates in human serum containing transferrin when excess iron is added (129). These

findings suggest that S. epidermidis must possess a mechanism other than siderophores for

obtaining iron.

Information on the iron acquisition mechanism used by S. epidermidis is limited. By

1992, several studies showed that the growth of S. epidermidis in human peritoneal dialysate

(HPD), an iron-restricted medium containing transferrin, resulted in the expression of a 42-kDa

surface protein (154, 155). Upon further investigation, Modun and coworkers demonstrated that

growth in HPD promoted binding of human transferrin to the S. epidermidis cell wall and

specifically to this 42-kDa protein (see Figure 3) (148). The above findings confirmed that S.

epidermidis acquires iron via a siderophore-independent process, involving a transferrin-specific

binding protein (Tpn) located within the bacterium's cell wall (127, 148, 156). Although the

bacterial mechanism by which iron is released from Tpn-bound transferrin remains unknown,

evidence of Tpn expression in vivo during infection suggests that iron must be internalized to be
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used, and that this receptor, therefore. may contribute to the virulence of S. epidermidis (127,

135, 157).

Plasma transferrin

41::# *L-,

Transferrin available to
uptake free plasma Fe 3 Th

S.^ \4111:\\epidermidis^ Tpn

cell wall

°\411•
Intracellular iron pool

Figure 3. S. epidermidis acquire transferrin-bound iron via a 42-kDa transferrin specific
membrane protein (Tpn). (A) Plasma iron (Fe 3±) circulates in the body bound to transferrin.
To acquire this Fe 3 '-, S. epidermidis possess a cell wall receptor, Tpn, which recognizes and
specifically binds transferrin. (B) Once removed from transferrin, Fe' 4 is internalized and used
by the bacterium. (C) The unsaturated transferrin is then free to uptake any free plasma Fe 3+ .

* Modified from reference (136).

Iron in Platelet Products

Plasma, the medium in which platelets are stored, has proven to be favorable for S.

epidermidis growth. Thus, given the frequency of S. epidermidis as a platelet contaminant (25%

of contaminated units), plasma must contain available sources of iron to permit bacterial survival

and propagation (see Figure 4).
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Bioavailable or free iron (Fe 3±) exists at very low levels (10 -18 M) in the environment

(128, 148). However, during various pathologic conditions such as acute leukemia, thalassemia,

myelodysplastic syndromes, and hemochromatosis, these levels are elevated due to the iron-

saturation of transferrin (158-163). Incidentally, patients with these conditions have an increased

incidence of infection, indicating that the free iron exists in a form available for bacterial uptake

(162).

Hershko and colleagues first identified the free iron as non-transferrin bound iron (NTBI)

(162). Matinaho et al. later showed that NTBI exists in platelet concentrates (7). More

importantly, the authors showed that S. epidermidis growth in platelet concentrates was

dependent on the presence of NTBI (7). This supports previous studies and indicates that NTBI

is critical for the proliferation of S. epidermidis (7, 129, 134, 164-166).

Another possible source of iron in plasma is RBCs (167, 168). Platelet concentrates are

derived from whole blood and processed to separate the blood components (51-53). Apheresis or

centrifugation of the whole blood is designed to remove donor RBCs; however, a small number

of red cells remains. Over time, the RBCs age and lyse, releasing their hemoglobin, which

degrades and releases iron (149, 167, 169). The findings that NTBI levels increased during the

storage of plasma-depleted RBC units and in platelet concentrates prepared from whole blood

stored overnight, supports the latter (167, 168). Consequently, as hypothesized in this thesis, the

risk of bacterial growth and transmission likely increases with storage time, in part due to the

saturation of plasma transferrin, and the subsequent presence of bioavailable iron arising from

the breakdown of residual RBCs (see Figure 4) (168).
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Figure 4. Bacterial growth in platelet products is dependent on bioavailable iron.
(A) Platelet concentrates are isolated from whole blood and stored in plasma at room
temperature for a maximum of 5 days. Initially, the plasma contains bioavailable iron (Fe 3+)
and partially saturated transferrin. The latter is a plasma glycoprotein that can mop up the Fe 3+

to an extent. (B) Once transferrin is saturated, excess Fe 3+ exists as NTBI (arrow), a chelatable
form available for bacterial uptake. Plasma also contains residual RBCs. Apheresis or
centrifugation of whole blood is designed to remove donor RBCs; in reality, a small number
remains in platelet concentrates. Over time, residual RBCs age and lyse, their hemoglobin
breaks down, and Fe 3+ is released (dashed circle). (C) Thus the risk of bacterial growth and
transmission may increases with storage time, in part due to the saturation of transferrin and
the subsequent presence of Fe 3+ arising from residual RBCs.
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IRON CHELATORS

History of Iron Chelation Therapy

Most free plasma iron originates from old or damaged RBCs that have been degraded by

liver and spleen macrophages (170-172). Ordinarily, transferrin in healthy individuals is partially

saturated and can readily uptake this free iron (128, 131, 134, 159). Certain diseases, however,

particularly thalassemia, require regular RBC transfusions, which accelerate iron release and

saturation of transferrin (159, 161, 162, 170, 172, 173). As the body has no physiological

mechanism for excreting iron, NTBI circulates in the plasma eventually accumulating in and

damaging the liver, spleen, bone marrow, pancreas, and heart (152, 159, 161, 170, 172-175).

Toxicity to the heart results in cardiac failure, the most common cause of morbidity and

mortality in thalassemia patients, followed by bacterial infection (172, 173, 176-178).

Chronically transfused patients, therefore, require concomitant chelation therapy to avoid

the effects of iron overload (163, 173, 176, 179). Chelators are chemical compounds that bind

and remove free metal ions from the body. In the early 1970s, Richard Propper and his

colleagues demonstrated that continuous subcutaneous infusion of the iron chelator DFO to iron

overload patients promoted urinary iron excretion (180, 181). Subsequent studies showed that

DFO drastically reduced the incidence of cardiac failure and organ toxicity, and improved the

longevity and quality of life of thalassemia patients (170, 172-175, 177, 179, 182-187).

Since Propper et al.' s demonstration, adverse side effects have been associated with DFO

therapy and driven researchers to develop an alternate, but equally effective pharmaceutical

chelator. The efficacy of a chelator depends on many factors including administration route,

metal affinity, bioavailability, and toxicity (188, 189). Ideally, a chelator should be administered

orally and absorbed by the gastrointestinal tract, should preferentially bind and remove Fe 3+

(including NTBI), be available in the plasma to continuously bind NTBI between doses, and

cause minimal side effects to the iron-overload patient (173, 188-190). Moreover, an optimal
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iron chelating agent must be affordable to accommodate chronically transfused patients

worldwide (173).

To date, two effective, oral chelators are approved for use in certain countries.

Deferiprone (L 1) was first licensed in India in 1995, followed by Europe in 1999 where it is

prescribed for patients who do not respond to DFO therapy (188). Deferiprone is a bidentate

chelator and binds Fe 3+ at a 3:1 ratio (Kd —10-35 M) (179, 191, 192). Consequently, the

deferiprone-iron complex has no net charge enabling it to cross membranes and remove excess

intracellular iron (179). Iron excretion by deferiprone occurs primarily via the urine, and is

comparable to that achieved with DFO (191, 193). Reported side effects of deferiprone are

usually abdominal pain, nausea, and vomiting; joint problems and mild neutropenia are less

frequent (179, 188, 194). Agranulocytosis, characterized by severe reduction of circulating

granulocytes, is the most serious complication of deferiprone, but occurs rarely (< 0.5% of

patients) (179, 188, 191, 194).

The more recently approved (2005) and first oral iron chelator to be used in North

America is deferasirox (195). Commonly known as ICL670, this tridentate chelator is highly

selective for iron and binds the metal at a 2:1 ratio (179, 196, 197). The resultant ICL670-iron

complex is stable, uncharged, and excreted in the stool (179, 197). Remarkably, ICL670 has a

long plasma half-life (8 to 16 hours) compared to DFO (minutes) and deferiprone (< 2 hours),

allowing it to scavenge and excrete iron between daily doses (179, 197). ICL670 was also

initially viewed as being well-tolerated with minor, infrequent adverse events (e.g., headaches,

mild diarrhea, and abdominal discomfort) upon initiation of therapy (179, 196-198)

Although once-daily oral administration of ICL670 would increase patient compliance,

its hefty cost is a burden to patients worldwide (170, 179). Furthermore, the United States FDA

and Health Canada recently issued an advisory warning following reports of fatal acute renal

failure and cytopenias in patients receiving ICL670 (199). Deferiprone is the least expensive
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chelator. However, its ability to penetrate the blood brain barrier may result in removal or

redistribution of iron in the brain, leading to neurotoxic effects (179, 189, 200). These limitations

and evidence that DFO reverses cardiac damage have made DFO the gold standard for treating

iron overload (172, 177, 179).

Deferoxamine (DFO)

DFO (see Figure 5) is a natural bacterial siderophore isolated from Streptomyces pilosus

(173, 175, 201, 202). It has a high, specific affinity for Fe 3+ (Kd^10" 31 M) and binds the metal at

a 1:1 ratio (170, 172, 173, 179, 188, 192, 201, 203-205). As a hydrophilic molecule with a

molecular weight of 561 g/mol, DFO cannot easily cross cell membranes. Hence, DFO has two

pathways for removing excess iron from the body (172, 201, 206, 207). First, DFO readily

chelates plasma iron (i.e., derived from hemoglobin) and excretes it in the urine (201, 206, 208).

Alternatively, DFO enters hepatocytes via facilitated uptake, where it binds cytosolic iron for

excretion in the stool (201, 206-208). Both pathways generate a stable complex that renders iron

inactive, and prevents it from producing toxic free radicals that destroy cellular proteins,

membranes, and DNA (170, 172-174, 188, 202, 209-213).

N — C/\--C °
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Figure 5. Chemical structure of deferoxamine.
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Use of DFO, therefore, to treat transfusion induced iron overload has greatly reduced

morbidity and mortality of thalassemia patients for over 30 years (170, 176, 179, 214).

Additionally, DFO is used to treat acute iron intoxication of children who have ingested

concentrated iron supplements, and has been beneficial in other situations of progressive iron

overload, such as hereditary hemochromatosis, sickle cell anemia, myelodysplastic disorders,

and acute leukemia (158-161, 163, 201, 208, 215, 216). Despite success with DFO, a number of

factors illustrate the need to develop an alternate chelator.

For instance, DFO is not orally absorbed and has a short plasma half-life of only 5 to 10

minutes (173, 179, 202, 217). To address this issue, DFO is administered as a bolus

subcutaneous injection, an implantable pump, or through a central venous line, all of which

allow for continuous high-dose intravenous therapy (173, 180, 181, 217). These procedures are

invasive and inconvenient, and result in poor patient compliance (173, 179, 182, 202, 217). The

high costs of DFO and infusion delivery systems make chelation therapy unaffordable for

patients in both developing and developed countries (172, 173, 186, 209, 217). Lastly, DFO

therapy is associated with various side effects including local skin and allergic reactions, vision

and hearing impairment, bone and growth abnormalities, and pulmonary and renal toxicity (172,

192, 214, 215, 218). Importantly, the majority of these events occur in patients with a low iron

burden who have received high doses of DFO (177, 218, 219). Thus an appropriate dosage of

DFO must chelate excess iron while permitting sufficient levels of iron for biological processes

and consequently avoiding toxic complications (177).

Phytic Acid (phytate)

A potential, non-toxic alternative to the above chelators is phytic acid (Kd —10 -25 M) (see

Figure 6), a plant constituent abundant in legumes, cereals, seeds, and nuts (220-224). These

foods are major staples in developing nations and are important sources of protein in Western
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vegetarian diets (223, 225-229). Plant foods are also a rich source of essential trace elements

including zinc, magnesium, calcium, and iron (223, 227). Interestingly, the bioavailability of

these elements is low in plants characterized by high levels of phytate (220-223, 225-228).

Figure 6. Chemical structure of phytic acid.

Phytate has been shown to possess iron chelating activity (221-223). Specifically, phytate

binds iron in the gut, impairing its absorption and promoting its excretion from the body (225,

230, 231). This phenomenon may contribute to iron deficiency commonly seen in populations

that rely on plant-based foods; conversely, it may play a beneficial health role in preventing iron

overload and iron-driven oxidative damage (221, 222, 231). Investigators have shown that

phytate inhibits iron-mediated hydroxyl radical formation and reduces membrane lipid

peroxidation in a manner comparable to DFO (221, 222, 232, 233). These antioxidant properties

combined with its low toxicity make phytic acid a desirable iron chelator for therapeutic

application in iron overload states (222). However, at present, phytate has not yet been

developed as a pharmaceutical chelator for treating iron overload.
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HYPOTHESES

As previously described, platelet transfusions are critical to treat and prevent bleeding.

Platelet concentrates, however, are still frequently associated with transfusion-transmitted

infection and most current strategies (see Table 2) only reduce, not eliminate, bacterial

contamination. While new methods which do eliminate bacteria by targeting DNA are now

available, they are very expensive, and associated with poor platelet survival and some potential

risk to the recipient. Importantly, plasma in which platelets are stored provides bacteria with the

bioavailable iron they need to survive and proliferate (see Figure 3) (7). Withholding iron from

bacteria, therefore, may be an effective approach to preventing microbial growth during platelet

storage (7, 234).

Table 2. Current strategies to prevent transmission of bacteria from platelet products.

Strategy^Example(s)
^

Benefit(s)*
^

Limitation(s)*

Bacterial
avoidance

(1) Skin antiseptic
(isopropyl alcohol,
iodine)

(2) Diversion pouch
(remove first
15-30 mL of whole
blood)

Risk of bacterial
contamination
reduced by
approximately 70%.

Bacteria residing in deeper
skin layers may avoid
surface decontamination;
cannot prevent transmission
from donors with
asymptomatic bacterial
infections.

Bacterial^(1) BacT/ALERT system
detection^(CO2 production)

(2) Pall eBDS
(02 consumption)

Wide array of
aerobic/anaerobic
bacteria detected
in < 24 hours.

Cannot always detect slow
growing organisms; false
negative screens have led to
recipient sepsis and/or
death.

Bacterial
elimination

(1) Intercept Platelet
System (prevents
bacterial replication
using amotosalen/UV
light)

In vitro platelet
functions are not
affected by
chemical treatment.

Associated with reduced in
vivo platelet recovery and
survival; toxicity to platelets
and transfusion recipients
unknown.

*Data from references (1, 6, 15, 71, 73, 74, 83-86, 89, 91-93, 99, 101-105, 108, 235)
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In this thesis, we hypothesized that the inclusion of iron chelators in platelet concentrates

will have a bacteriostatic effect on bacterial growth (see Figures 4 and 7). Our second hypothesis

is that residual RBCs in platelet concentrates contribute bioavailable iron during storage that

promotes bacterial survival and growth (see Figure 4B).

Binds Iron = Inhibit Bacterial Growth

Figure 7. Schematic of hypotheses. (A) Inclusion of iron chelators in a bacterially
contaminated platelet product will (B) bind any plasma Fe 3+ or NTBI (arrow), as well as
iron released from residual RBCs (dashed circle). (C) Consequently, bacterial growth will
cease under these iron-poor conditions, thus decreasing the risk of bacterial transmission
and infection in the recipient.

To test our hypotheses, S epidermidis, the normal skin bacterium most frequently

isolated from platelets and implicated in transfusion-associated sepsis, was chosen. First, S.

epidermicli.s' was cultured in nutrient broth (NB) to establish a standard growth curve. After 24

hours, a series of dilutions of the bacterial culture were made, and the optical density measured at
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a wavelength of 600 nm (0D600). The dilutions of the 24-hour culture were immediately plated

on nutrient agar and incubated overnight to count the number of viable bacteria. The relationship

between the OD600 readings and the viable counts were then graphed to derive a standard

calibration curve from which all further OD600 readings were converted to bacterial

concentration.

Second, experiments were conducted to determine the effect of iron chelators on bacterial

growth in culture medium. S. epidermidis was grown in NB treated with various concentrations

of DFO or phytate, and the OD600 was followed over 72 hours. DFO is the gold standard drug for

treating iron overload. In contrast, phytic acid was chosen as a non-toxic alternative chelator.

Importantly, performing these experiments with culture medium provided a controlled

environment (i.e., defined nutrient concentrations) to validate our system for determining the

effect of iron chelators on bacterial growth and to verify previous findings by Matinaho et al (7).

Regarding our second hypothesis, S. epidermidis was cultured in I% hematocrit

suspensions prepared in Hank's Balanced Salt Solution (HBSS), with or without DFO, for 7

days. Preliminary experiments in our lab had shown immediate lysis of RBCs when added to the

NB. To avoid hemolysis and to limit bioavailable iron, we chose HBSS, a solution designed to

maintain the physiological pH range and to provide cells with minimal nutrients for survival. On

days 0, 1, 3, 5, and 7, bacterial growth was determined by the standard plate count method, and

RBC lysis, methemoglobin, and iron levels were measured spectrophotometrically to determine

the effect of storage time on RBCs.

Last, the automated BacT/ALERT system was used to determine the effect of DFO on

bacterial growth in platelet concentrates. Aerobic culture bottles containing buffy coat platelets

were spiked with DFO and/or S. epidermidis and the presence or absence of growth was detected

by the BacT/ALERT instrument over 6 days. Samples positive for bacterial growth were plated

to determine the bacterial concentration and to verify the instrument results.
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The issue of bacterial contamination in platelet units is of serious concern. Using

chelators to remove iron from platelet concentrates may provide a new approach to inhibiting

microbial growth and eliminating transmission of bacteria during transfusion. Furthermore,

successful implementation of iron chelators will provide patients with a safer platelet product,

and may improve the storage conditions and increase the inventory of platelet concentrates.
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H. MATERIALS AND METHODS

BACTERIAL STRAIN AND PREPARATION

S. epidermidis, strain 12228 (American Type Culture Collection (ATCC), Manassas, VA,

USA) was cultured on nutrient agar (Becton Dickinson, Franklin Lakes, NJ, USA) in 100 x 20

mm petri plates (Sarstedt Inc., Montreal, QB, Canada) for 24 hours, in a 37°C incubator. Plated

colonies were resuspended in nutrient broth (NB, Becton Dickinson) containing a 15% glycerol

cryoprotectant (Fisher Scientific, Ottawa, ON, Canada) and aliquoted into 2 mL cryotubes

(Nalgene Nunc International, Rochester, NY, USA). Stocks of S. epidermidis aliquots were then

frozen and stored at -80°C. For subsequent experiments, one stock was thawed at room

temperature, sub-cultured on a nutrient agar plate, and incubated at 37°C overnight. Sub-culture

plates were wrapped with Parafilm and stored at 4°C for up to 1 month.

Twenty-four hours before performing a bacterial spiking experiment, a single, isolated

colony from a S. epidermidis sub-culture plate was inoculated into a 16 x 150 mm flint glass

culture tube (VWR International, Mississauga, ON, Canada) containing 10 mL of NB. The tube

was vortexed and incubated overnight in a 37°C water bath, with constant agitation (140 rpm).

BACTERIAL STANDARD CALIBRATION CURVE

Following overnight incubation, a series of dilutions of the bacterial culture were

prepared (see Figure 8), and the OD600 was measured using a Helios Spectrophotometer (Thermo

Fisher Scientific Inc., Waltham, MA, USA). The dilutions of the 24-hour culture were

immediately plated on nutrient agar and incubated overnight at 37°C. Isolated colonies were

subsequently counted using an Electronic Colony Counter (Carolina Biological Supply

Company, Burlington, NC, USA), and expressed as colony forming units per milliliter (cfu/mL).
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Figure 8. Serial dilutions and standard plates for S. epidermidis calibration curve.
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The relationship between the OD600 readings and the viable counts were then graphed, and the

equation of the best-fit line derived as,

y = 0.026158 — 0.26086x^ (1)

or

1 OD600 = 3.73 x 10 8 cfu/mL.^ (2)

The latter was used to convert all further OD600 readings to bacterial concentration.

BACTERIAL GROWTH IN NUTRIENT BROTH (NB)

Prior to bacterial spiking in NB, stock solutions of DFO or phytate were prepared (as

described below) and mixed with fresh NB dispensed in sterile 16 x 150 mm flint glass culture

tubes. Each tube was spiked with 0.1 mL of a 24 hour S. epidermidis culture and vortexed. Tubes

containing NB only, and NB with DFO or phytate only were also prepared as negative controls.

For estimation of the initial bacterial concentration, 0.8 mL of each control and spiked

samples were immediately aliquot into disposable cuvettes (Sarstedt). The NB only control was

used as a blank to adjust the spectrophotometer to zero. Readings of the remaining samples were

measured by OD600 and converted into bacterial concentration using equation (2). The initial

concentration of S. epidermidis was standardized to —5 x 106 cfu/mL. All samples were

subsequently incubated in a 37°C water bath with constant agitation (140 rpm), and OD600

readings were taken over 72 hours to establish a growth curve.

IRON CHELATORS

Deferoxamine (DFO) mesylate salt and phytic acid (phytate) sodium salt were purchased

from Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada). For bacterial spiking experiments in

NB, a stock solution of DFO (1 mM) or phytate (1 M) was prepared in a 50 mL conical tube

(Sarstedt) using sterile saline. DFO and phytate were weighed out using a Denver Instrument
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Company XT Series Model 400D balance (Denver, CO, USA). Samples of each stock solution

were subsequently aliquot into 12 x 75 mm borosilicate glass culture tubes (VWR International),

and diluted with saline to obtain 35, 50, 100, and 500 uM, or 5, 10, and 50 mM solutions of DFO

or phytate, respectively. All DFO solutions were immediately wrapped in aluminum foil, as DFO

is light sensitive. Additional experiments were conducted to test high phytate concentrations of

100 and 1000 mM. As phytate is difficult to dissolve at higher concentrations, for these

experiments, the appropriate amount of phytate was weighed directly into the culture tube and

suspended to yield the desired final concentration.

RED BLOOD CELL AND HEMATOCRIT PREPARATION

On the designated days for bacterial spiking in 1% hematocrit suspensions, whole blood

was collected from normal, healthy, human donors in ethylenediaminetetraacetic acid (EDTA)

additive tubes. To remove the plasma and buffy coat layer, the tubes were centrifuged at 1,000 x

g for 5 minutes at room temperature using a Clay AdamsTM Sero-fuge Model 2002 (VWR). The

remaining packed RBCs (pRBCs) were washed three times with sterile saline and the hematocrit

determined using a Clay AdamsTM Autocrit Ultra 3 Centrifuge Model 420575 (VWR). Based on

the hematocrit (H1 ), the volume (Vi) of pRBCs needed to prepare a 1% hematocrit (H2)

suspension with HBSS was calculated using the following equation:

H1 V1 = H2 V2.^ (3)

where V2 is the final volume. The hematocrit solutions were prepared in 16 x 150 mm flint glass

culture tubes, covered with Parafilm, and gently inverted to evenly distribute the pRBCs.

SPIKING PROTOCOL FOR HEMATOCRIT SUSPENSIONS

One percent hematocrit suspensions were spiked with 0.1 mL of a 24 hour S. epidermidis

culture. The initial bacterial concentration was —5 x 10 6 cfternL as determined from the ()Dom
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and equation (2) (as described above). Working DFO solutions prepared from a 15 mM stock

were added to the bacterial spiked hematocrit suspensions to obtain final DFO concentrations of

25, 50. 500, and 1000 p.M. HBSS solutions with pRBCs and/or DFO were also prepared as

negative controls, and to compare RBC changes in the presence and absence of an iron chelator.

All samples were mixed several times by inversion and kept agitated in a 37°C water bath for 7

days. On days 0, 1, 3, 5, and 7, spiked suspensions were sampled for standard plate counts and

RBC experiments (described below).

STANDARD PLATE COUNT PROTOCOL

To assess bacterial growth in the presence of RBCs and/or DFO, 0.1 mL aliquots were

removed from each spiked suspension, and serially diluted (10 -1 up to 10 -8) in sterile saline. Final

dilutions of 10 -2 to 10 -4 were made for samples without RBCs, while higher dilutions (10 -6 to 10 -

8 ) were chosen for spiked hematocrit suspensions. For each sample, a 0.1 mL volume of the

desired final dilution was dispensed onto the surface of a nutrient agar plate. Drops were spread

around the agar surface using sterile disposable spreaders (30 mm blade width) (VWR). Once

dry, the plates were inverted and stored in a 37°C incubator.

After 18-24 hours, the plates were removed from the incubator and the number of cfu/mL

counted using an Electronic Colony Counter. The number of viable bacteria was subsequently

determined from the following equation:

Number of colonies (cfu) = Number of viable bacteria/mL.^(4)
(Dilution)(Volume plated)

RED BLOOD CELL EXPERIMENTS

The effect of storage time (i.e., 7 days) on RBCs was assessed based on RBC lysis,

hemoglobin oxidation status, and levels of Fe 3+ . These results were then compared to the counts
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of viable bacteria counts to determine whether RBCs contribute to the growth of S. epidermidis

in minimal medium (HBSS).

Hemoglobin Concentration and Red Cell Lysis

Total hemoglobin and percent RBC lysis were determined using the Drabkin's Assay

(236). Briefly, Drabkin's Reagent converts hemoglobin to cyanomethemoglobin, which absorbs

light at 540 nm. Aliquots of the spiked hematocrit solutions were removed and immediately

mixed with Drabkin's to measure total hemoglobin. A second aliquot of each sample was

centrifuged, and the supernatant removed and mixed with Drabkin's. Both total and supernatant

hemoglobin concentrations were calculated from the OD at 540 nm as grams of hemoglobin per

100 mL of solution (g%):

[g% hemoglobin] = OD540  x (Final volume/Sample volume).^(5)
6.8

Subsequently, the supernatant hemoglobin was calculated as a percent of total hemoglobin, to

give percent RBC lysis:

Percent RBC lysis = (Supernatant hemoglobin/Total hemoglobin) x 100%.^(6)

Hemoglobin Oxidation

For hemoglobin oxidation status, RBC hemolysates were prepared by mixing 80 j.iL of

each spiked hematocrit suspension with 1 mL of double distilled water. Hemolysates were then

scanned from 500 to 701 nm. Absorbances at 560, 577, 630, and 700 nm were recorded to

calculate the oxyhemoglobin, methemoglobin, and hemichrome levels (mM) as described

previously (237):
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Oxyhemoglobin (mM) = 29.8 (0D577-0D700) - 9.8 (0D630-0D700) - 22.2 (0D560-0D7oo) (7)

Methemoglobin (mM) = 7 (0D577-0D7co) - 76 .8 (0D630-0D700) - 13.8 (0D560-0D7co) (8)

Hemichrome (mM) = 33.2 (0D577-0D700) — 36 (0D630-0D700) - 58.2 (0D560-0D700) (9)

Determination of Bioavailable Iron

Bioavailable or Fe3+ iron was measured by spectrophotometry using the ferene iron assay

(238). Sample aliquots were mixed with 40% trichloroacetic acid (TCA) and centrifuged at 1,310

x g to precipitate out any protein. The supernatants were then removed and mixed with

thiourea/ascorbate and Ferene S solutions. The thiourea/ascorbate solution was added to convert

Fe3+ to the ferrous (Fe2±) state; subsequently, ferene S (3-(2-pyridy1)-5,6-bis(2,5-furylsulfonic

acid)-1,2,4-triazine) chelated Fe2+ to form a bright blue colored product, with an absorbance at

594 nm. The OD594 readings were converted to iron concentrations (11M) using the equation

below:

[Fe3+] = (0D594  — Blank) x 3.^ (5)
0.0355

SPIKING PROTOCOL FOR OUTDATED BUFFY COAT PLATELETS

The following procedures were done in a biological safety cabinet. All necessary

materials were labeled and disinfected with 70% ethanol prior to entering the sterile

environment. Aseptic technique was maintained throughout each experiment to avoid exogenous

contamination of the platelets.

Preparation of Staphylococcus epidermidis and DFO

A 24 hour S. epidermidis culture (prepared as described above) was serially diluted in

sterile saline to obtain a 10 3 and a 102 cfu/mL suspension. The amount of dry DFO needed to
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produce 25, 50, and 500 mM stock solutions was calculated and weighed out in 15 mL conical

tubes. DFO aliquots were wrapped in aluminum foil, and dissolved in sterile saline in the

biological safety cabinet immediately before inoculating BPA bottles.

Sampling of Unspiked Platelet Unit

Outdated, leukoreduced buffy coat platelets were generously donated from normal,

healthy volunteers, and prepared by Canadian Blood Services (CBS) in Vancouver, British

Columbia. Platelet units were kept on a platelet agitator at 22°C until ready to use and, after

experiments, discarded according to the CBS biohazard protocol.

Strict aseptic technique was used when sampling from platelet units. First, the plastic

closure of the platelet bag was disinfected with an alcohol swab for 30 seconds, and removed and

discarded into a biohazard container. A sterile sampling site coupler (Fenwal Inc., Round Lake,

IL, USA) was then inserted in place of the plastic closure and swabbed with alcohol for 30

seconds. A 21G-1 inch bevel needle (Becton Dickinson) was threaded into a vacutainer holder

(Becton Dickinson) and carefully inserted into the sterile sampling site coupler. To confirm that

the platelet unit was not previously contaminated, a 3 mL sample was drawn into a no additive

Vacutainer tube (Becton Dickinson), and later Gram stained and plated on nutrient agar. Nine

mL of buffy coat platelets were subsequently inoculated into each labeled, BacT/ALERT aerobic

culture bottle (BPA bottle) (bioMerieux, St. Laurent, QB, Canada), as illustrated in Figure 9.

BPA bottles were disinfected with an alcohol swab before and after adding platelets.

Spiking BPA Bottles with DFO

A 1 mL syringe (Becton Dickinson) attached to a 20G-1 inch bevel needle (Becton

Dickinson) was used for each stock DFO solution. After disinfecting the BPA bottles containing

platelets, 1 mL of the 25 mM DFO solution was injected into each of its corresponding BPA
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bottles, giving a final concentration of 0.5 mM DFO. Spiking continued with the 50 and 500 mM

stock DFO solutions to give final concentrations of 1 and 10 mM DFO, respectively.

Spiking BPA Bottles with Staphylococcus epidermidis

S. epidermidis suspensions (10 3 and 102 cfu/mL) were placed on a vortex and inoculated

into their designated BPA bottles as explained above for DFO. The initial bacterial

concentrations relative to the volume of platelets (9 mL) added were 10 2 and 10 1 cfu/mL,

respectively. To validate these concentrations, 0.1 mL from each S. epidermidis suspension was

spread around a nutrient agar plate and incubated at 37°C for 18-24 hours.

BacT/ALERT Automated Microbial Detection System

Within 1 hour of inoculation, spiked BPA bottles were taken to the BacT/ALERT 3D

Combination Module System (bioMerieux) located at the Canadian Blood Services' NetCAD

Laboratory (University of British Columbia, Vancouver, BC, Canada). Samples were identified

to the instrument by scanning the barcode on the bottles and then typing in an identification

name. Bottles were placed in the BacT/ALERT system until recognized as positive, or, if

negative, for a maximum of 6 days.
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Figure 9. Schematic for spiking BPA bottles with platelets, DFO, and S. epidermidis.

Outdated
buffy coat

platelet unit

Aliquot well-mixed platelet unit into aerobic BPA bottles and spike accordingly.

Draw '9 mL' mark (-) on all bottles before aliquoting platelets.

1
•••■•■■■•^••■••■■0

Negative S. epidermidis DFO S. epidermidis (10' cfu/mL) S. epidermidis (10 2 cfu/mL)
Control Controls Controls

+ DFO (0.5, 1, or 10 mM) + DFO (0.5, 1, or 10 mM)
(Platelets only) (10' or 102 cfu/mL) (0.5, 1, or 10 mM)

Mix spiked bottles well by inversion. Place in BacT/ALERT instrument within 1 hour of spiking.



VALIDATION OF BACT/ALERT SYSTEM

All samples reported as positive by the BacT/ALERT System were subjected to manual

tests (described below) to validate the presence of bacteria.

Gram Staining

Ten !IL samples from each positive BPA bottle was removed and spread evenly across a

75 x 25 x 1 mm frosted microscope slide (Corning, Corning NY, USA). Once dry, slides were

heat fixed over a Bunsen burner, and stained using a Gram's Stain Kit (Becton Dickinson).

Slides were looked at under a Zeiss light microscope (Carl Zeiss Canada Ltd., Toronto, ON),

using a 100 X oil immersion lens. Digital photographs of representative fields were captured as

TIF files using a digital camera (Sony DXC-950P) mounted on the microscope. Images were

saved as tiff files.

Viable Counts

Additionally, positive samples were serially diluted 10 -1 to 10 -8 (as described above), and

plated on nutrient agar to further verify the presence of bacteria.

STATISTICAL ANALYSIS

In order to investigate the influence of deferoxamine or phytic acid on S. epidermidis

growth, for each concentration of each chelator the mean and standard deviation (SD) were

calculated. Using the mean and SD values, growth curves were plotted for each chelator

concentration over 72 hours, and the curves were compared using ANOVA. The statistical

software used was SigmaStat Version 3.11 (Systat Software Inc., San Jose, CA, USA). When

significant differences were found by ANOVA, concentrations were compared using Holm-

Sidak paired t-tests.
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For bacterial growth in the presence of RBCs and/or DFO, the number of cfu/mL for each

condition was normalized to the positive S. epidermidis control. The normalized data was then

log transformed to better approximate the distribution. Duplicate values for each condition were

averaged and compared using ANOVA. When ANOVA revealed significant differences, Holm-

Sidak t-tests were performed to compare the mean values between conditions.

For assessing RBC degradation, the percentage of RBC lysis and methemoglobin, and the

levels of Fe 3+ were determined on day 0, 1, 3, 5, and 7. At each time point, the mean and SD for

each test was calculated, and the mean values subsequently compared using ANOVA. A Holm-

Sidak t-test was then performed when ANOVA identified significant differences.

Lastly, for bacterial growth in buffy coat platelets, at each condition the mean and SD

were calculated and compared by ANOVA. Pair wise comparisons were performed using the

Holm-Sidak t-test when significant differences were found by ANOVA.
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III. RESULTS

STANDARD GROWTH CURVE FOR STAPHYLOCOCCUS EPIDERMIDIS

Bacterial cultures were prepared in NB and incubated at 37°C for 24 hours. To establish a

growth curve for S. epidermidis, samples were prepared as described in the Materials and

Methods section, and the OD600 of each was measured (n=4). Figure 10 shows the average OD

readings versus time in hours, from which we established the lag, log, stationary, and death

phases of bacterial growth. To determine the relationship between OD600 and the bacterial

concentration, tenfold serial dilutions (Figure 8) of 24 hour cultures were plated and bacterial

colonies were counted following incubation at 37°C for 24 hours (n=3). A graphic presentation

of the positive linear correlation between the mean OD600 (y) readings and the number of

bacteria counted (x) is shown in Figure 11. The equation of the best-fit line was derived as y =-

0.026158 — 0.26086x (r = 0.996), or alternatively, 1 OD600 = 3.73 x 10 8 cfu/mL. Using the latter

equation, we standardized the initial inoculum concentration of bacteria for all subsequent

experiments.
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Figure 10. Growth curve of S. epidermidis cultured in nutrient broth and incubated for
72 hours at 37°C (n=4). The graph is of OD at 600 nm versus time in hours, and highlights
the (A) lag, (B) log, (C) stationary, and (D) death phases of S. epidermidis growth. (A) During
the lag phase, growth marginally increased as the bacteria adapted to their environment. (B)
After 4 hours, S. epidermidis entered their log phase of growth, as illustrated by the rapid
increase in growth. (C) Subsequently, S. epidermidis growth reached a plateau or stationary
phase, indicating a decrease in nutrients and the number of living bacteria. (D) As nutrient
levels further decreased, the number of living bacteria further declined over time in the final
death phase of growth.
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Figure 11. Optical density readings at 600 nm have a linear relationship with bacterial
concentration of a 24 hour S. epidermidis culture (n=3).
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EFFECT OF IRON CHELATORS ON BACTERIAL GROWTH IN CULTURE

MEDIUM

Deferoxamine

To assess the effect of DFO on bacterial growth in culture medium, S. epidermidis was

cultured in NB and treated with various concentrations of DFO (0, 3.5, 5, 10, 50, 100 gM) (n=3).

Samples were measured by OD600, and the mean of the readings were plotted versus time in

hours in Figure 12. All conditions were significantly greater than the negative control at all time

points (p < 0.002). From 0 to 6 hours, there was no significant difference between the conditions;

however, at 8 hours, the positive control (0 1AM DFO) was significantly greater than the 5, 10,

50, and 100 p.M DFO groups (p < 0.002), but not significantly different from the 3.5 pIVI DFO

group. These results suggest that the bacteria initially used pre-existing intracellular iron stores

arising from growth in iron-rich NB medium to support their growth (136, 153). After 8 hours,

the ()Doc, readings significantly decreased with increasing concentrations of DFO up to 48 hours

(p < 0.009). Thus bacterial growth was inhibited by DFO in a dose dependent manner.
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Figure 12. DFO inhibits S. epidermidis growth in NB in a dose dependent manner (n=3).
Importantly, after 6 hours bacterial growth significantly decreased in the presence of
increasing concentrations of DFO (p < 0.009).
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Phytic Acid

Phytate, a natural iron chelator with a high affinity for Fe 3+, was expected to behave

similarly to DFO. Surprisingly, in the presence of low phytate concentrations (0.5, 1, 5 mM),

bacterial growth significantly increased in a dose dependent manner in comparison to that of the

positive control (p < 0.001) (Figure 13A), suggesting that the phytate-iron complex was readily

used by the bacteria. After 24 hours, no difference in growth was found between these phytate

concentrations and the positive control.

Subsequently, we investigated whether this growth enhancement could be overcome by

increasing the concentration of phytate. In the presence of 100 and 1000 mM phytate, bacterial

growth was significantly less than S. epidermidis grown without phytate up to 48 hours (p <

0.001) (Figure 13B). As shown in the graph, bacterial growth in presence of 100 mM phytate

was significantly decreased, but initially followed the same curve as the positive control. After

12 hours, however, the growth curve began to increase, eventually becoming greater than all

other conditions at 72 hours (p < 0.001). In contrast, the OD600 of the 1000 mM condition was

significantly greater than all other conditions from 0 to 4 hours (p < 0.008), but decreased over

time. By 6 hours, the 1000 mM phytate sample was significantly lower than the positive control

and 100 mM phytate, and similar to that observed in the negative control, suggesting that very

high phytate levels exhibited bactericidal activity.
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Figure 11. Phytic acid (A) promoted and (B) inhibited S. epidermidis growth in NB at
different concentrations. (A) At < 5 mM, phytate significantly enhanced bacterial
proliferation (p < 0.001) (n=2). (B) Conversely, phytate decreased bacterial growth at 100 mM,
and dramatically inhibited growth at 1000 mM (p < 0.001) (n=3).
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RED BLOOD CELLS DEGRADE DURING 7-DAY STORAGE

To determine the effect of storage time on red blood cells, RBCs were suspended in

HBSS to a final hematocrit of 1 and 5%, and incubated at 37°C for 7 days. On days 0, 1, 3, 5, and

7, the percent lysis, percent methemoglobin, and iron levels were measured

spectrophotometrically to assess red cell changes. For the 1% hematocrit suspension, the percent

RBC lysis steadily increased between days 0 to 5, and significantly increased by day 7 (p <

0.001) (Figure 14A). Similarly, the methemoglobin levels in the 1% hematocrit remained

constant up to day 5, and then significantly increased by day 7 (p < 0.001) (Figure 14B). With

the 5% hematocrit, change in percent hemolysis and methemoglobin (Figure 14A and B,

respectively) was gradual between days 0 to 3, but significantly increased by day 5 and

furthermore by day 7 (p < 0.001).

These results demonstrate that iron is clearly released by residual RBCs over the storage

time of platelet concentrations. This iron would potentially be bioavailable for bacterial

replication. The accelerated lysis, methemoglobin generation, and iron release are likely

accelerated by glucose depletion and the subsequent metabolic failure of the residual RBCs. The

presence of platelets or bacteria would further exacerbate the rate of glucose utilization.
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Figure 14. RBCs break down as
storage time increases. During 7-day
storage at 37°C, both 1% (A) and 5%
hematocrit (^) suspensions showed an
increase in (A) percent RBC lysis, (B)
percent methemoglobin, and (C) iron
levels, verifying that break down of
RBCs over time (n=3). HBSS, in which
RBC suspensions were prepared, served
as a negative control (•).
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BACTERIAL GROWTH INCREASES IN THE PRESENCE OF RBCS AND/OR DFO

Based on the above finding, 1% hematocrit solutions treated with various concentrations

of DFO (25-1000 pM) were prepared to determine whether: (a) iron released from aged RBCs

contributes to bacterial growth, and (b) DFO can chelate this iron and inhibit bacterial

proliferation. Samples were prepared in HBSS, which provided minimal nutrients and an

appropriate pH for cell survival, but did not support bacterial growth as compared to growth in

NB (Figure 15). As shown by the positive control, in the absence of an iron source, S.

epidermidis actually died out over 24 hours. However, proliferation in the presence of RBCs was

drastically increased over 24 hours. Interestingly, growth also increased in the presence of RBCs

and different DFO concentrations, and no significant difference was found between growth with

1% hematocrit and with RBCs and DFO (p > 0.05). This may have resulted from a known

adverse interaction between DFO and RBCs (239).

To test this, we compared RBC break down over time in the presence and absence of

various concentrations of DFO. First, we observed a similar trend in percent lysis of RBCs, with

and without DFO (Figure 16), as compared to our earlier results (Figure 14A). Specifically from

day 3 to day 7, the positive control and RBCs mixed with 500 and 1000 i_iM DFO showed a

significant increase in hemolysis (p < 0.007). On day 3 and day 5, the positive control and the

500 ptM DFO condition, respectively, showed the greatest increase in percent lysis (p < 0.002

and < 0.001, respectively) in comparison to all other conditions. By day 7, all samples showed a

significant increase in hemolysis from that on day 0 (p < 0.007), but all conditions were not

significantly different from each other (p > 0.02). Second, in contrast to the gradual increase in

percent methemoglobin seen in Figure 14B, Figure 17 shows that methemoglobin levels

increased more rapidly over time in the presence of increasing concentrations of DFO (p <

0.005). Similarly, the change in iron levels during the 7-day storage period was dependent on

DFO concentration (Figure 18). Over time, iron levels significantly increased with decreasing
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concentrations of DFO (p < 0.005). Importantly, iron levels were below the detectable limits of

the spectrophotometer for the 500 and 1000 µM DFO conditions. Thus DFO clearly increased

methemoglobin formation, which may have accelerated iron release within the RBC, but did not

increase hemolysis. While DFO did chelate iron, it would be in competition with any bacteria to

capture this iron.
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Figure 15. RBCs promoted bacterial proliferation from 0 (■) to 24 hours (III) in minimal
medium in both the absence and presence of DFO (n=3). Conversely, neither HBSS nor
HBSS + 1000 tM DFO supported bacterial growth, as illustrated by the decline of the log
scale number of cfu/mL from 0 to 24 hours.
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Figure 16. Presence of DFO did not have an impact on RBC lysis during 7-day storage
(n=3).
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Figure 17. Production of methemoglobin increased over time in the presence of increasing
concentrations of DFO (p < 0.005) (n=3).
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Figure 18. Iron released from RBCs was effectively chelated by DFO in a dose dependent
manner (n=3).
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DEFEROXAMINE INHIBITS BACTERIAL GROWTH IN BUFFY COAT PLATELETS

To more closely approximate actual platelet storage conditions, the effect of DFO on

microbial growth in platelet concentrates was assessed using the BacT/ALERT system. In

contrast to our experiments in NB, buffy coat platelet samples were treated with various

concentrations of DFO (0, 0.5, 1, 10 mM) and subsequently spiked with S. epidermidis to a final

concentration of 10 1 or 102 cfu/mL. Bacterial concentration of the inoculums was determined by

OD600 using equation (2). Figure 19A shows the time needed for the BacT/ALERT to detect the

presence of bacteria in buffy coat platelets with the inclusion of DFO.

The average detection time for the positive S. epidermidis control at an initial inoculum

of 10 1 cfu/mL was —19 hours (SD, 0.24 hours) and was —17 hours (SD, 0.13 hours) at the 10 2

cfu/mL level (Figure 19A). Both average detection times correspond with the literature and

reflect the mean time it took S. epidermidis of the same inoculum levels to reach the log phase of

growth in NB (Figure 19B) (93, 240). Therefore, the time to detect S. epidermidis growth is

dependent on the initial bacterial concentration, and is comparable between the BacT/ALERT

system and by OD600.

More importantly, the addition of DFO dramatically delayed the time needed to detect S.

epidermidis growth by the BacT/ALERT system (p < 0.001) (Figure 19A). For example, in

samples with a 10 2 cfu/mL inoculum, the presence of 1 mM DFO prolonged the detection time to

—40 hours, while 10 mM DFO was not positive until —52 hours. These DFO concentrations

further delayed growth in platelets with 10 1 cfu/mL to —49 and —58 hours, respectively.

Evidently, the inclusion of DFO had a significant bacteriostatic effect on S. epidermidis in

platelet concentrates, which supports our hypothesis (see Figure 7). Moreover, our data

demonstrate that iron chelators have potential for creating a safer platelet product and

eliminating the transmission of bacteria during transfusion.

55



60

O

720^12^24^36
^

48^60

0 2 4 6 8 10

58.08 h

51.84 h

50

40

30

Average time
to detect

20^positive control

19 h (A)

17 h (M)

10

18 h

^•

Time (hours)

O

O

1.40 c)

1.201

1.001

0.80'

0.60]

0.40

0.20

0.00

16 h

10' cfu/mL

102 cfu/mL

DFO (mM)

Figure 19. (A) DFO inhibits bacterial growth in buffy coat platelets in a dose dependent
manner (p < 0.001), as determined by the BacT/ALERT system (n=3). The time to detect S.
epidermidis growth is dependent on the initial bacterial concentration, and is comparable
between (A) bacteria cultured in platelets and measured by the BacT/ALERT system, and (B)
bacteria cultured in NB and measured by OD600.
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V.^DISCUSSION

Platelets are responsible for the majority of transfusion-transmitted bacterial infections

(1, 2, 93). Table 2 outlines the strategies that have been developed and implemented to avoid and

detect bacterial contamination of platelet products. As previously noted, both topical antiseptic

and/or diversion pouches do not fully eliminate the risk of contamination from the skin plug or

from donors with asymptomatic bacterial infections (15, 92). Likewise, bacterial detection

systems can miss the presence of slow growing microbes, resulting in recipient sepsis and even

death. When bacteria are detected, contaminated units must be discarded. This is especially

problematic when blood banks experience platelet shortages or when uncontaminated units are

available but are not the appropriate blood-type for recipients that urgently require a platelet

transfusion. Discarding units is also wasteful and costly, in terms of materials, processing the

units, and training lab personnel, as well as a loss to recipients who need platelets.

A more cost-effective approach would be to target any bacteria present in the bag by

inhibiting their growth. Table 3 is a summary of our hypotheses, and the corresponding results

and their implications. We first investigated whether the inclusion of the iron chelator, DFO, in

culture medium and in platelet concentrates would inhibit bacterial growth. Upon addition of

DFO to nutrient broth, the growth of S. epidermidis was significantly inhibited in a dose

dependent manner (see Figure 12), thus verifying the results by Matinaho et al (7). We observed

a similar dose dependent response to DFO in buffy coat platelet samples, as will be discussed

later in this section.

In addition to DFO, we evaluated the effect of phytic acid on bacterial growth in nutrient

broth. Despite its known ability to bind iron and our hope to use it as a non-toxic chelator,

phytate at 0.5, 1, and 5 mM promoted bacterial growth in a dose dependent manner (see Figure

13A). In contrast, bacterial growth decreased with the addition of 100 mM phytate and was

prevented at 1000 mM (see Figures 13B). These findings suggest that phytate has a bacteriostatic
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Table 3. Summary of our hypotheses, results, and their implications.

Hypothesis^Result (Yes/No)
^

Figure (page) Implication(s)

(1) DFO inhibits^Yes^12 (p. 44)
^

DFO effectively removed iron in
bacterial growth^ culture medium, thus limiting
in nutrient broth.^ S. epidermidis growth.

(2) Phytic acid inhibits
bacterial growth in
nutrient broth.

No (< 5 mM)
Yes (> 100 mM)

13 (p. 46) Low concentrations of phytic
acid supplied S. epidermidis with
nutrients to grow. Higher
concentrations inhibited growth,
thus demonstrating phytate's
bacteriostatic/bactericidal
capability.

(3) RBCs degrade over Yes^14 (p. 48)
^

Bioavailable iron (Fe 3+) released
time and release^ from RBCs increased over time
iron.^ and was dependent on

hematocrit.

(4) RBCs release iron
during storage that
promotes bacterial
growth in minimal
medium.

Yes 15 (p. 51) As storage time increases,
residual RBCs in platelet bags
may provide additional nutrients
for contaminating bacteria to use
to proliferate.

(5) DFO inhibits
bacterial growth in
the presence of
RBCs (i.e., iron) in
minimal medium.

No; however,
DFO increased
methemoglobin
production in a
dose dependent
manner.

15 (p. 51);
17 (p. 53)

Interaction between DFO and
free hemoglobin may contribute
to bacterial growth by facilitating
iron release from RBCs. Other
iron chelators may be more
suitable and should be
investigated (see Table 4).

(6) DFO chelates iron
released by RBCs
during storage in
minimal medium.

Yes 18 (p. 54) DFO effectively removed iron
released from RBCs in a dose
dependent manner, but becomes
saturated due to high iron content
of RBCs.

(7) DFO inhibits
bacterial growth in
platelet
concentrates.

Yes 19A (p. 56) In platelet concentrates, DFO
effectively reduced S.
epidermidis proliferation, thus
increasing the "safe" status of the
platelet sample from —19 hours
to —58 hours.
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effect at higher concentrations. However, because phytate at concentrations < 5 mM enhanced

bacterial growth, it is not a favorable chelator for preventing microbial growth in platelet

products. Additionally, phytate was very difficult to dissolve at 100 mM and 1000 mM, and thus

would not be practical to prepare and infuse into platelet concentrates.

Our second hypothesis was to determine whether RBCs released iron that would promote

bacterial proliferation in platelet products. First, we assessed RBCs changes over time by

measuring hemolysis, methemoglobin, and iron. A significant increase was observed for all three

tests during the 7-day storage period (see Figure 14), indicating that RBCs, and consequently

hemoglobin, break down over time. This corresponds to the normal hemolysis of old or damaged

RBCs in the body, and the release of iron from degraded hemoglobin, as described in the

introduction. Second, knowing that Fe 3+ is released from RBCs over time, we evaluated bacterial

growth in the presence and absence of RBCs (i.e., iron). In an iron-poor medium, S. epidermidis

did not proliferate; the addition of RBCs, however, provided the necessary bioavailable iron for

bacterial replication (see Figure 15). Surprisingly, no bacteriostatic effect was seen with the

addition of DFO. This outcome may be associated with the elevated methemoglobin levels we

observed in the presence of DFO (see Figure 17). Our finding is supported by Rice-Evans et al.

who showed that free hemoglobin released from lysed RBCs interacts with DFO, resulting in

methemoglobin formation (239). Incidentally, methemoglobin is known to lose iron at a faster

rate than normal hemoglobin (8). Thus the inclusion of DFO in RBC suspensions may have

accelerated hemoglobin oxidation and iron release, which consequently overcame the inhibitory

effect of DFO.

Although DFO did not reduce bacterial growth in 1% hematocrit suspensions, it had a

dramatic bacteriostatic effect in buffy coat platelet concentrates. As predicted, platelets

inoculated with 102 cfu/mL at a given DFO concentration were detected by the BacT/ALERT

earlier than those with 10 1 cfu/mL. Subsequently, the time it took to detect a positive reading for
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each bacterial concentration significantly increased with increasing concentrations of DFO (p <

0.001). In fact, as illustrated in Figure 19A, DFO sustained a bacteriostatic effect for up to 58

hours — more than three times longer than the time to detect bacterial growth in the absence of

DFO. This delay in growth would add a substantial margin of safety during platelet storage.

Furthermore, our results show that the inclusion of an iron chelator is a positive step towards

preventing transfusion-related sepsis in recipients.

Despite these promising results, a disadvantage of DFO is that it is a microbial

siderophore produced as a means to obtain iron from the environment or from host iron-binding

proteins (127, 128, 130, 131, 133, 134, 148, 149, 154, 241). Although we showed that DFO does

not promote S. epidermidis growth in culture medium or in buffy coat platelets, other bacterial

platelet contaminants (Table 1) may be able to utilize DFO if it is added to platelet products.

Since the purpose of adding chelators to platelet products is to inhibit microbial growth, further

studies subjecting an array of bacterial species to DFO would help to determine this chelator's

potential as a bacteriostatic agent in platelet concentrates.

Additionally, with phytic acid's ability to act as a nutrient, and with the known clinical

toxicities of DFO and its potential to help bacteria sequester iron, other iron chelators must be

investigated. Table 4 describes the properties of various iron chelators that have been studied as

an alternative to DFO in chelation therapy. One synthetic chelator of particular interest is HBED

(N,N'-bis(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid), which, like DFO, binds Fe 3+ in

a 1:1 ratio with high affinity and specificity (188, 209, 242, 243). Moreover, numerous in vitro

and in vivo models have demonstrated the lack of toxicity of HBED, as well as its efficiency in

excreting iron when administered orally or parenterally to rodents and primates (188, 209, 242,

243). Another attractive chelator is a modified version of DFO called 40SD02. Attaching a starch

polymer to DFO creates a high molecular weight compound (260 kDa) with the same specificity

and affinity for iron (173, 188, 205, 244). The 40SD02 chelator is also able to remain in the
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Table 4. Properties of chelators of interest for inhibiting bacterial proliferation in platelet products.

Chelator
Natural or
Synthetic Size

Chelator to
Iron ratio

Route of
administration

DFO Natural 561 Da 1:1 Intravenous or
(deferoxamine) (S. pilosus) subcutaneous infusion

Phytic acid Natural 660 Da ND** ND
(phytate) (plant)

ICL670
(deferasirox)

Synthetic 373 Da 2:1 Oral

LI
(deferiprone)

Synthetic 139 Da 3:1 Oral

HBED
(N,N' -bis(o-
hydroxybenzyl)
ethylene-
diamine-N,N'-
diacetic acid

Synthetic 386 Da 1:1 Oral or subcutaneous
infusion

40SD02
(starch-DFO)

Synthetic 260 kDa 1:1 Intravenous

Adverse effect(s) & Limitations*

Associated with local and systemic reactions;
expensive; limited access to intracellular iron
pools as DFO cannot penetrate cell membranes;
short plasma half-life; low patient compliance.

ND

Mild nausea, vomiting, headaches; acute renal
failure; cytopenias; hypersensitivity reactions;
expensive.

Agranulocytosis; may penetrate blood brain
barrier.

Pruritis, urticaria

*Data from references (172, 173, 179, 188, 192, 194, 196, 198, 199, 205, 209, 214, 215, 218, 242-244)

**ND, not defined.



plasma longer, and does not cause the acute adverse effects of DFO. Both these chelators are

potential candidates for the treatment of iron overload and, therefore, may be suitable agents for

removing iron in platelet products.

In summary, we showed that DFO has a dose dependent bacteriostatic effect on microbial

growth in culture medium. In comparison, phytic acid was not a consistent bacteriostatic agent as

it both promoted and inhibited S. epidermidis growth at different concentrations. We also

demonstrated that RBCs contribute bioavailable iron necessary for microbial growth. Thus

residual RBCs in platelet concentrates may be an important food source for bacterial

contaminants thereby prolonging their survival and increasing their chances of infecting platelet

transfusion recipients. Subsequently, we found that DFO did not reduce bacterial growth in a 1%

hematocrit solution. The addition of DFO, however, appeared to increase methemoglobin

production in a dose dependent manner suggesting a possible interaction between DFO and free

hemoglobin. Lastly and most importantly, the inhibitory effect of iron chelation was

demonstrated in platelet concentrates spiked with S. epidermidis. In a dose dependent manner,

DFO dramatically prolonged the time to detect bacterial growth by the BacT/ALERT system.

FUTURE DIRECTIONS

Prevention of bacterial growth in platelet concentrates using iron chelators seems very

promising. In addition to evaluating various chelators in platelet concentrates, iron chelators

should be assessed in platelet additive solutions (PAS). PAS are synthetic, glucose-free solutions

designed as an alternative medium for storing platelets (245). The use of PAS has been shown to

improve platelet preservation and has been well-received by recipients after 4 to 12 day storage

(56, 245, 246). PAS, however, does not possess transferrin or ferritin, which are natural

bacteriostatic chelating agents found in plasma. Supplementing PAS with iron chelators,
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therefore, would not only diminish the risk of transfusion-induced infection, but also improve the

storage conditions and quality of platelet concentrates.

Subsequently, it is important to determine how chelators impact platelets in both plasma

and PAS. Assessing platelets in vitro by morphology, platelet counts, ability to aggregate,

hypotonic shock response, and protein and CD marker expression will determine whether iron

chelators alter platelet structure and/or function. The latter can be further evaluated in vivo via

bleeding times and platelet survival studies to help determine whether iron chelators are feasible

as a means to inhibit microbial growth in platelet concentrates. Pending these results, inclusion

of iron chelators could prevent transfusion-transmitted bacterial infection and provide patients

with a safer platelet product.
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