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Abstract 

 

 

This thesis presents cutter swept volume generation, in-process workpiece modeling and 

Cutter Workpiece Engagement (CWE) algorithms for finding the instantaneous intersections 

between cutter and workpiece in milling. One of the steps in simulating machining operations 

is the accurate extraction of the intersection geometry between cutter and workpiece. This 

geometry is a key input to force calculations and feed rate scheduling in milling. Given that 

industrial machined components can have highly complex geometries, extracting 

intersections accurately and efficiently is challenging. Three main steps are needed to obtain 

the intersection geometry between cutter and workpiece. These are the Swept volume 

generation, in-process workpiece modeling and CWE extraction respectively.  

In this thesis an analytical methodology for determining the shapes of the cutter swept 

envelopes is developed. In this methodology, cutter surfaces performing 5-axis tool motions 

are decomposed into a set of characteristic circles. For obtaining these circles a concept of 

two-parameter-family of spheres is introduced. Considering relationships among the circles 

the swept envelopes are defined analytically. The implementation of methodology is simple, 

especially when the cutter geometries are represented by pipe surfaces. 

During the machining simulation the workpiece update is required to keep track of the 

material removal process. Several choices for workpiece updates exist. These are the solid, 

facetted and vector model based methodologies. For updating the workpiece surfaces 

represented by the solid or faceted models third party software can be used. In this thesis 

multi-axis milling update methodologies are developed for workpieces defined by discrete 

vectors with different orientations. For simplifying the intersection calculations between 

discrete vectors and the tool envelope the properties of canal surfaces are utilized. 

A typical NC cutter has different surfaces with varying geometries and during the 

material removal process restricted regions of these surfaces are eligible to contact the in-

process workpiece. In this thesis these regions are analyzed with respect to different tool 

motions. Later using the results from these analyses the solid, polyhedral and vector based 

CWE methodologies are developed for a range of different types of cutters and multi-axis 

tool motions. The workpiece surfaces cover a wide range of surface geometries including 

sculptured surfaces. 
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Chapter 1 

Introduction 

 

 

 Manufacturing is an integral and indispensable part of the economy. As a result of global 

competition, manufacturers are facing challenges for both reducing the production costs and 

improving the product quality at the same time. They are trying to reduce the lead time 

before the implementation of a new product and also to minimize the cycle of the product 

development. Manufacturing contains different areas such as forging, casting, machining etc. 

Machining or cutting of metal is a key activity in most manufacturing environments. Today 

modern machine tools are CNC (Computer Numeric Control) milling machines and lathes. A 

microprocessor in each machine reads the NC-Code program that the user creates and 

performs the programmed operations. Traditionally, the NC program is verified and 

corrected by a costly time consuming process of machining plastic or wooden models. For 

solving this problem a new approach Virtual Machining (VM) has been introduced.  

 

1.1 Virtual Machining 

One of the techniques for advancing the productivity and quality of machining processes 

is to design, test and produce the parts in a virtual environment. VM is used for simulation of 

the machining process prior to actual machining, thereby avoiding costly test trials on the 

shop floor. Virtual machining can be considered manufacturing in the computer. Figure 1.1 

shows three major components of the VM: Computer Aided Process Planning (CAPP), 

Geometric modeling and Process modeling. 
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Figure 1.1: Virtual Machining 

 

A CAD model is taken as an input into CAPP. In CAPP, machining operations which 

include tool paths and process parameters such as spindle speed and feed rate are generated. 

The generated tool paths and the process parameters are input to geometric modeling.  In 

geometric modeling NC toolpaths are verified to eliminate un-cut material and gouges on the 

final part surfaces, to prevent cutter and workpiece collisions during machining. Cutting 

forces are a key input to simulating the vibration of machine tools (chatter) prior to 

implementing the real machining process. This simulation can be used to optimize 

instantaneous process parameters to avoid chatter and improve machining quality. 

Instantaneous cutting forces are determined by the feed rate, spindle speed, and Cutter 

Workpiece Engagements (CWEs). CWEs are extracted in geometric modeling for supporting 

cutting force prediction in process modeling. In process modeling, cutting forces, power and 

torque are predicted by utilizing the laws of the metal cutting process and CWEs obtained 

from geometric modeling. Also process parameters can be optimized to obtain better 

machined part quality. The optimized process parameters and the tool paths are sent to a 

CNC machine for producing the final workpiece. In the following sections geometric 

modeling and process modeling are introduced. 
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1.2 Geometric Modeling  

In geometric modeling CWEs are extracted according to the input requirements from 

process modeling. Figure 1.2 illustrates the steps involved in geometric modeling for 

extracting CWEs. Inputs from a CAD/CAM system include the geometric representation of 

the initial workpiece, the tool path and the geometric description of the cutting tool. 

 

 
 

Figure 1.2: Steps in the geometric modeling for extracting CWEs 

 

In the first step, swept volumes are generated for the cutting tool following a tool path. 

Then in the second step these swept volumes are subtracted from the initial workpiece 

sequentially to obtain the updated workpiece (in-process workpiece). The in-process 

workpiece in geometric modeling is important for both NC toolpath verification and CWE 

extraction. In step 3 the in-process workpiece geometry is used to find the CWEs for each 

tool path. The output from CWE extraction is passed on to process modeling where cutting 

forces are predicted and used to analyze and optimize the process. 

 Three main steps are therefore needed to obtain CWEs in geometric modeling 

� Swept Volume Generation 
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� In-process Workpiece Modeling 

� CWE Extraction 

In the next subsections each step is introduced. 

 

1.2.1 Swept Volume Generation  

One of the subtasks in identifying the CWE geometry involves updating the in-process 

workpiece geometry after each non-self intersecting tool path (or tool path segment). An 

accurate model of the in-process workpiece is therefore important to ensure that correct CWE 

geometry is calculated as the simulation progresses and the cutting tool reenters regions 

previously milled. Creating the in-process workpiece requires modeling and subtracting the 

swept volume generated by each cutter movement along successive tool paths from the 

model of the stock, finally yielding the machined surfaces of the final part model. 

Mathematically, the swept volume is the set of all points in space encompassed within the 

object envelop during its motion. The moving object which is called the generator can be a 

curve, a surface or a solid and in this thesis the generator is a rigid milling cutter. The motion 

of the generator is called the sweep motion. The simplest sweep motions are the translational 

sweep (Figure 1.3(a)) and rotational sweep about a fixed axis (Figure 1.3(b)). 

 

 
 

Figure 1.3: Swept volumes from 2 ½ -Axis milling 

 

In 2 ½ Axis and 3 Axis milling, the swept volumes of the cutters can be generated by 

sweeping the profile curve along the tool path. Figure 1.4 illustrates the swept volume 

generated by a helical tool motion. If a cutter takes a complex tool motion such as 

translational plus rotational (non fixed rotational axis), the corresponding sweep operation is 
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called a general sweep. This kind of tool motions appears in 5-Axis milling. There is a great 

challenge in swept volume generation for 5-Axis tool motions where cutters with different 

surface geometries move along 3- dimensional spatial curves with changing tool axis 

orientations. Although important research has been done on swept volumes, today’s CAD 

systems do not include swept volume generation as a component. 

 

 
 

Figure 1.4: Sweeping the profile curve along tool path 

(3-Axis helical milling) 

 

For swept volume generation some methods have been developed. Unfortunately in these 

methods swept volume computations have been done with complex differential equations 

that require numerical solutions. These limit their practicality and therefore, few methods 

have been proposed to determine efficiently the swept profile in NC machining. But these 

methodologies are either cutter geometry specific or they provide approximate solutions. The 

efficiency of these methodologies still needs to be improved. 

 

1.2.2 In-process Workpiece Modeling 

For NC verification and CWE extraction an accurate in-process workpiece representation 

is needed. The modeling of the in-process workpiece and the calculation of CWE geometry 

involves trade-offs between computational efficiency and the accuracy of the result. 

Determining the correct combination of these two factors is an open question that involves 

developing and understanding of the requirements for milling process modeling for which the 

CWE geometry is an input. Several choices for modeling the in-process work piece exist. The 

two most common are mathematically accurate solid modeling that are used in CAD systems 
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and approximate modeling such as those used in computer graphics: facetted and z-Map 

models. Solid modeling offers the best choice for highly accurate modeling of the geometric 

conditions. However challenges exist to making this approach both efficient and generally 

robust to handle degenerate geometric conditions that can occur when large numbers of tool 

paths need to be simulated. Further, the presence of accurate geometric and topological 

(connectivity between geometry) information can potentially be exploited to develop 

“intelligent” approaches for CWE geometry extraction. These would search for patterns 

(features) in the removal volumes where the engagement geometry is constant or changing in 

a predictable way. This is not possible when using approximate models where accurate 

geometry and relationships are not maintained in the data structure. The use of solid models 

therefore has unstudied potential. The approaches to In-process Workpiece Modeling are 

discussed in the following subsections. 

 

� Solid Modeling 

 Solid modeling technique also called volumetric modeling is used in many applications 

such as geometric design, NC code generation and visualization. The use of solid models for 

manufacturing is becoming more widespread with developing computer technology. The 

most popular solid modeling representation schemes are the constructive solid geometry 

(CSG) and boundary representation (B-rep) schemes. 

  In the CSG approach a complex surface is created from simpler solids called primitives 

by using Boolean operators: Intersection ( ∩ ), Union ( ∪ ) and Difference (─). The primitives 

are parameterized solids that are either regular geometric shapes such as spheres, cones and 

cubes or complex application specific features such as drill/counter-bored holes. The 

hierarchical representation of features and the Boolean operations is captured in a binary tree 

called the CSG tree where leaves represent primitives and nodes represent Boolean 

operations (Figure 1.5). 

 

 Figure 1.5 has been removed due to copyright restrictions. The information removed is 

the hierarchical representation of features and the Boolean operations in a binary tree for 

describing the CSG tree [35]. 
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 In solid modeling, boundary representation (B-rep) is a methodology for representing 

shapes using their limits. If it is compared with the CSG representation which uses only 

Boolean operations and primitive objects, the B-rep has a much richer set of operations and 

because of this for CAD systems it is more appropriate. B-rep models contain two parts: 

geometry and topology. The geometry information in the B-rep model is composed of 

curve/surface equations and point coordinates. The topology information is the connectivity 

between geometric entities FACE, EDGE and VERTEX.  

� The shape of a FACE is defined by a surface which has a boundary represented by 

connected EDGEs. 

� The shape of an EDGE is defined by a curve which has a boundary represented by 

two VERTEXs. 

� A point represents the location of the VERTEX.  

Other elements in the B-rep representation are the SHELL (a set of connected FACEs), the 

LUMP (collection of SHELLs) and the LOOP (a circuit or list of EDGEs bounding a FACE). 

There are several ways of viewing this data structure. For example it can be considered as a 

tree or a hierarchy with BODY as a root. A BODY can have LUMPs which are comprised of 

SHELLs formed from a group of FACES.  

 In this thesis both for updating the in-process workpiece and for extracting the CWEs, 

under the solid modeler section, a B-rep methodology is used. For this reason a commercial 

geometric modeler ACIS [4] is utilized. ACIS is an object oriented geometric modeling 

toolkit designed for use as a geometric engine. Figure 1.6 shows the data structure used in 

ACIS.  

 

 Figure 1.6 has been removed due to copyright restrictions. The information removed is 

the ACIS representational hierarchy [4]. 

 

In the B-rep based approach, the in-process workpiece can be generated by subtracting a 

swept volume of the cutter from the workpiece. Figure (1.7) illustrates the generation of the 

in-process workpiece in the i
th

 tool motion. 
iGS  Represents the swept volume in the i

th
 tool 

motion and 1−iW is the in-process workpiece before the i
th

 tool motion. Subtracting 
iGS from 
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1−iW  i.e. )*( 1 iGi WSW
i

=−− updates the in-process workpiece for the next tool motion and 

also intersecting 
iGS  with 1−iW  generates the removal volume iRV .  

 

 
 

Figure 1.7: Generation of in-process workpiece and the removal volume 

 

 

� Facetted Models 

 Another alternative for modeling the in-process geometry that is starting to receive more 

attention are Polyhedral Models. These may offer a good compromise between manageable 

computational speed, robustness and accuracy. These models have become pervasive in 

supporting engineering applications. They are found in all CAD applications as facetted 

models for visualization and are used extensively in simulation, CAE and rapid prototyping. 

In this modeling approach workpiece surfaces are represented by a finite set of polygonal 

planes called facets. The most commonly used shapes are the triangles and because of this 

the term facet is usually understood to mean triangular facet. Converting the mathematically 

precise models to the triangulated model is called tessellation. For tessellation the original 

surfaces of the model are sampled for sets of points and then these points are connected for 

constructing triangles. The STL (Stereolithography Tessellation Language) format for rapid 

prototyping is the most well-known file format for the triangulated models.  In the STL 

model each facet is described by three vertices and a normal direction of the triangle as 

shown in Figure 1.8. The normal vector is directed outward from the surface and the vertices 
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are ordered with respect to the right hand rule. For the non-planar surfaces using a greater 

number of facets gives a better approximation of the tessellation to the original surface. 

 

 facet normal ZYX nnn  

     outer loop 

        vertex 
111

ZYX vvv   

    vertex 
222

ZYX vvv  

       vertex 
333

ZYX vvv  

     endloop 

 endfacet 

 

 

     (a)                                                    (b)                                 

Figure 1.8: (a) STL file structure, and (b) a tessellated mechanical part. 

 

 

� Z-Map Models 

 In these modeling techniques the workpiece geometry is broken into a set of evenly 

distributed discrete vectors which are called z-direction vectors or ZDVs (Figure 1.9). The 

length of the each vector represents the depth of the workpiece. The spacing of the ZDVs is 

adjusted according to a desired level of accuracy. The z-Map approach has three sub-tasks: 

Discretization of workpiece, Localization and intersection. In the discretization, the design 

surface is transformed into a sufficiently dense distribution of surface rays. The localization 

process finds the possible subset of rays for each tool motion. Finally in the intersection task 

the cut values between z-direction vectors and the tool swept envelope are found for updating 

the workpiece surfaces. In this methodology the toolpath envelope is modeled as a set of 

geometric primitives such as cylinder and plane. Thus the computational cost for calculating 

the intersections between the cutter and the workpiece is reduced by doing simple 

line/primitive intersection for multi-Axis machining. 

 

 Figure 1.9 has been removed due to copyright restrictions. The information removed is 

the updating the workpiece surfaces represented by z-vectors [7]. 
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1.2.3 Cutter Workpiece Engagement Extraction 

 One of the steps in simulating machining operations (Virtual Machining) is the accurate 

extraction of the intersection geometry between the cutting tool and the workpiece during 

machining. Given that industrial machined components can have a highly complex 

workpiece and cutting tool geometries, extracting Cutter/Workpiece Engagement (CWE) 

geometry accurately and efficiently is challenging. CWE geometry is a key input to force 

calculations and feed rate scheduling in milling operations. This geometry defines the 

instantaneous intersection boundary between the cutting tool and the in-process workpiece at 

each location along a tool path.  From the CWE, the cutter flute entry/ exit angles ( Entryϕ  and 

Exitϕ ) and depth of cut d are found (Figure 1.10) and are in turn used to calculate the 

instantaneous cutting forces in the radial, tangential and feed directions. The primary task in 

finding the CWE geometry is finding the boundary of the engagement region. This may also 

be multiple regions. The representation of this boundary will depend on the mathematical 

representation of the workpiece’s surfaces.  

 

 
 

Figure 1.10: Cutter Workpiece Engagement parameters. 

 

In CWE extraction the task is relatively simple when cylindrical end mills and simple 

workpieces are used (Figure 1.11(a)). However in practice this is often not the case. The 

force prediction and feedrate scheduling are largely affected by accuracy of the predicted 

area. The most complicated CWE calculations occur during the machining of sculptured 
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surfaces (Figure 1.11(b)). Forces in sculptured surface machining are difficult to determine 

because of the continuously changing CWE geometry that can occur at each feed step. This 

makes feedrate scheduling for the complex part quite difficult. For this reason when 

machining complex parts  the feedrate is typically set to a constant value over a number of 

cutter tool paths based on  the worst case engagement geometry that the cutter encounters. 

Furthermore if the cutting tool geometry is also complex and the machining process involves 

rotational axes i.e. 4 or 5 axis machining then finding the engagement geometry becomes an 

even more challenging task. 

 
                    (a)                                                                   (b) 

Figure 1.11:  (a) CWE boundaries during a rectangular block, and (b) a sculptured  

surface machining  

 

The approaches for finding the CWE geometry can be classified into two major 

categories based on the mathematical representation of the workpiece geometry. These are 

Solid modeling approaches, and Discrete modeling approaches. These approaches to CWE 

extraction are discussed in the following subsections. 

 

� Solid Modeling Approach to CWE Extraction 

 For solid models these take the form of simple dual form algebraic/parametric surfaces 

(planes, spheres, cylinders, cones, tori) or pure parametric surfaces (Bezier, B-spline, 

NURBS). When the workpiece and cutting tool are represented by parametric surfaces then 

the solid modeling approach applies numerical parametric surface intersection algorithms 

which are based on subdivision, and curve tracing (marching) methods [10,11,59,65]. On the 

other hand if the workpiece and cutting tool are represented by the natural quadric surfaces 

then analytical methods that are either geometric or algebraic may be applied 



Chapter 1. Introduction 

 

 12 

[33,48,55,56,63]. While solid modelers have been recognized as one approach to finding 

CWE geometry, for limited applications, computational complexity and robustness remain 

issues that need to be addressed if the approach is to be viable from a practical perspective.  

Other limitations come for the size of the data structure that is necessary in particular for 

capturing relationships between topology. These relationships are preserved when using a 

solid modeler for small surface artifacts such as cusps that are generated during machining 

(Figure 1.12). This results in a data structure that is large and that grows as the simulation 

progresses particularly when ball and bull nose cutters are being used.  

 

 
 

Figure 1.12: Final machined surfaces with cusps 

 

� Discrete Modeling Approaches to CWE Extraction 

Discrete modeling approaches have been used in verifying the correctness of NC tool 

paths. Some of these have been extended to extracting CWEs in support of physical 

simulation of the process that starts with the calculation of the cutting forces. A number of 

approaches in this area can be classified into two groups: CWE extraction in polyhedral and 

in z-Map and vector based models. 

 

CWE extraction in polyhedral models  

Polyhedral models use facets (in this thesis triangular facets) and they are supported by many 

CAD softwares. Since each facet in the model is planar with linear boundaries, the 

intersection algorithms that need to be applied are simpler than those used in the solid 

modeling approach. A cutting tool intersects with a facet in a different ways (Figure 1.13). 

For obtaining the CWE area, facets of the removal volume which contain linear boundaries 

are intersected with the surface of the cutter and then the intersection points are connected to 
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each other. The use of the removal volume as the basis for CWE extraction greatly reduces 

the size of the data structure that must be manipulated. 

 

 
       

Figure 1.13: Possible cutter/facet intersections 

  

The faceting algorithm that generates this model approximates surfaces to a specified chordal 

error. As can be seen from the 2D view (Figure 1.14) this results in facets that lie outside the 

tool envelop at a given location even though the cutting tool is in contact with the actual 

removal volume surface. This facet should be considered in finding the CWE boundary but 

would be difficult to detect since it does not intersect with the tool geometry. These errors 

can be reduced by increasing both the resolution of the polyhedral mesh and the radius of the 

cutter.  

 

 
 

Figure 1.14: The chordal error in cutter facet intersections 

 

 

CWE extraction in Z-Map and vector based models  

The z-Map and vector based models represent the workpiece using directional vectors 

emanating from a grid on a workpiece surface. These are updated as the cutting tool sweeps 
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through different regions of the grid to capture the new heights of the workpiece i.e. the in-

process workpiece boundary. The engagements are determined by finding intersections 

between the cutting tool geometry and vectors along the normals at discrete points on the 

surface. These intersections are calculated by a vector/surface intersection instead of 

surface/surface intersection in solid modeling. Although this approach results in a shorter 

computation time than a solid modeler based approach for example, the accuracy of this 

approach greatly depends on the resolution of workpiece. In geometric simulation, the 

dominant approaches are the vector based solutions. Though mathematically more tractable 

than the solid modeler approach, as shown in Figure 1.15 these techniques suffer from 

inaccuracies due to the rasterization effect common to many discretized problems [91].  

 
Cutting tool area

Vector intersect 
with cutter

Actual intersection

 
 

Figure 1.15:  Z–map calculation errors when the grid size is large 

 

Though accuracy is improved by increasing the resolution of the underlying grid, this comes 

with the expense of larger memory and computational requirements. 

 There is always a tradeoff between computational efficiency and accuracy in these 

approaches. Table 1.1 shows the comparison of the solid modeler and the discrete modeler 

approaches for the CWE extractions. 

 

 

Table 1.1: Comparisons between CWE extraction methods 
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1.3 Process Modeling  

Physical simulation needs CWEs as inputs to predict cutting forces. In process modeling, 

the cutting forces are predicted by utilizing CWEs obtained from geometric modeling. In 

order to properly define the input format from CWE for force prediction, a force model must 

be identified. Numerous models have been proposed in the literature e.g. Refs. [5,18,30,70]. 

In this thesis we calculate the CWEs for supporting the force prediction model described in 

[5]. This model finds the Cartesian force components by analytically integrating the 

differential cutting forces along the in-cut portion of each cutter flute. In this model the CWE 

area with a fixed axial depth of cut is defined by mapping the engagement region on the 

cutter surface onto the φ  - z plane which represents the engagement angle (φ ) versus the 

depth (z) of cut respectively (Figure 1.16). 

 

 Figure 1.16 has been removed due to copyright restrictions. The information removed is 

the CWE area for the force prediction [5]. 

 

As shown in Figure 1.16, the inputs from CWEs to this force model are the entry )( stφ and 

the exit )( exφ angles of the cutter with respect to the feed vector and the axial location 

),( maxmin dd of the cutter engagement area. This force model is limited to a CWE area with a 

boundary defined by four connected lines. For general engagement conditions, the CWE area 

can be discretized into smaller engagement zones (Figure 1.17) and the overall result is 

obtained by integrating the forces obtained from these zones. 

 

 Figure 1.17 has been removed due to copyright restrictions. The information removed is 

the CWE area decompositions for sculptured surfaces [89]. 

 

1.4 Scope of This Research 

From the above it can be seen that to support the development of Virtual Machining a 

number of challenges exist in performing Cutter Workpiece Engagement (CWE) calculations 

and making these more efficient and robust. These are: Swept volume generation, In-process 
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work piece modeling and CWE extractions. Considering these challenges together, the 

objectives of this thesis are: 

 

� To develop a computationally efficient and generic swept volume methodology for multi-

axis milling operations. A toolpath may contain hundreds or thousands of tool motions which 

make the computational cost for characterizing the geometry of each tool swept volume 

prohibitively expensive. This limitation motivates research in this thesis into methodologies 

that provide computationally simple analytical solutions to the swept volume generation 

problem. 

� To develop an efficient and robust in-process workpiece update methodology. During 

machining simulation for each tool movement the modification of the workpiece geometry is 

required to keep track of the material removal process. Because NC verification and Cutter 

Workpiece Engagement (CWE) extraction directly depend on material removal an accurate 

in-process workpiece update is needed. 

� To develop a methodology for identifying regions of the cutter surfaces that have the 

potential to engage with the workpiece during machining. A typical NC cutter has different 

surfaces with varying geometries and during the material removal process restricted regions 

of these cutter surfaces are eligible to contact the in-process workpiece. Identifying these 

regions is critical to simplifying the CWE extraction calculations for a wide range of cutters 

performing multi-axes machining. 

� To develop solid (B-rep), polyhedral and vector based multi-axes CWE extraction 

methodologies to support the calculation of cutting forces in milling. These methodologies 

should be developed using a range of different types of cutters and tool paths defined by 3, 5-

axes tool motions. The workpiece surfaces should cover a wide range of surface geometries 

such as the sculptured surfaces. 

 

1.5 Organization of Thesis 

 Henceforth the thesis is organized as follows: A review of related literature is presented 

in Chapter 2, followed by a new generic swept volume methodology for multi-axes milling in 

Chapter 3. In Chapter 4 efficient in-process update methodologies are presented. Feasible 

engagement regions of the cutter surfaces during the machining are analyzed in Chapter 5, 
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followed by the CWE extraction methodologies for solid, polyhedral and vector based 

representations in Chapter 6. The conclusions and possible future research directions are 

discussed in Chapter 7. Appendices clarifying some of the computational details are provided 

following the Bibliography. 
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Chapter 2 

Literature Review 

 

 

 As is shown in Chapter 1, Virtual Machining has two main parts: the geometric modeling 

and the process modeling. The process modeling requires Cutter Workpiece Engagement 

(CWE) calculations from the geometric modeling to predict the cutting forces in milling. This 

becomes a challenging task when the geometry of the cutter and the workpiece are complex 

in multi-axis machining. An extensive amount of research has focused on geometric and 

physical simulations of the machining process. The important contributions from these 

research works are integrated in the virtual machining environment. In this chapter some of 

the important research contributions in this field will be reviewed. Specifically research into 

swept volume generation, in-process workpiece modeling and CWE extraction 

methodologies is reviewed.  

 

2.1 Swept Volume Generation 

 Mathematically, the swept volume is the set of all points in space encompassed within the 

object envelop during its motion. A swept surface is the boundary of the swept volume. The 

swept surfaces and volumes are frequently used in graphical modeling, computer aided 

design, NC machining verification and robot analysis etc. As mentioned in chapter (1),  

swept volume generation is considered one of the important steps in  virtual machining, since 

removal volume generation and the in-process work piece update require swept volumes. 

 The mathematical formulation of the swept volume problem has been investigated using 

jacobian rank deficiency method [1,2], sweep differential equation (SDE) [15], envelope 

theory [53,61,82], implicit modeling [75] and Minkowski sums [25]. Abdel Malek et al. [3] 

presented a comprehensive survey and review on the methodologies for the swept volume 

generation. Although in the past decades the problem of the swept volume generation has 

been studied widely, the problem is still not considered to be sufficiently well solved. 

The basic idea in NC verification and simulation is to remove the cutter swept volume 

from the workpiece stock and thus to obtain the final machined surfaces. For NC machining 
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some swept volume generation methods have been developed. Wang et al. [83] computed the 

boundary points for the swept volume of APT-type cutter using the sweep envelope 

differential equations method (SEDE) [15]. Abdel-Malek et al. [1] and Blackmore et al. [15] 

solved systems of the implicit equations numerically for obtaining the swept envelopes. 

Wang et al. [82] derived the tangency condition in which the velocity of a point on the 

envelope surface must be tangent to the envelope surface.  

Unfortunately in these methods swept volume computations have been done with 

complex differential equations that require numerical solutions and these limit their 

practicality.  Therefore, few methods have been proposed to determine the swept profile in 

NC machining efficiently. In the following sub-sections some of the dominant techniques 

will be discussed.  

 

2.1.1 Sweep Differential Equation Approach 

 The Sweep Differential Equation (SDE) method and its variants [13,14,15,16,83] were 

developed for representing and analyzing swept volumes. The key element of this approach 

is the sweep differential equation (SDE). In this method the boundary of the swept volume of 

an object can be represented to be the subset of the union of a) the grazing points on the 

boundary of the object during the entire sweep at which the vector field of the SDE neither 

points into or out of the object interior b) the ingress points at the beginning of the sweep and 

c) the egress points on the object boundary (Figure 2.1). The SDE method has been 

implemented for 3D swept volume representations generated by a Flat-End and a Ball-End 

mill. But the computational cost increased in 3D problems seriously and this affected the 

speed of the implementation. In order to overcome this computational difficulty, Blackmore 

et al. [15] developed an extension of the SDE method that they called the sweep envelope 

differential equation (SEDE) approach. The SEDE algorithm is used to calculate the swept 

volume generated by a general 7-parameter APT tool in 5-axis NC milling process.  

 

 Figure 2.1 has been removed due to copyright restrictions. The information removed is 

the decomposing object boundary [15]. 
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2.1.2 Jacobian Rank Deficiency Approach 

 The Jacobian Rank Deficiency (JRD) method was presented by Abdel Malek et al. [1]. 

This approach is based on the singularity theory in differential geometry. A Jacobian rank 

deficiency condition is implemented in order to determine all entities that appear internal and 

external to the swept volume. A perturbation method is then introduced in order to select 

those entities that are boundary to the swept volume. They showed that the implicit surface is 

defined when all the 3x3 sub-Jacobians are simultaneously zero. With this approach the exact 

boundary envelope of a swept volume in a closed form can be generated.  Although the 

presented formulation is valid for any number of parameters in an entity, it becomes more 

difficult to implement because the non-linear equations resulting from the determinants of the 

sub-jacobians also increases and system becomes more difficult to solve. 

 

2.1.3 Swept Profile Based Approaches 

Chung et al. [21] developed a methodology for representing the cutter swept surface of a 

generalized cutter in a single valued form. They obtained analytical expressions of the 

generating curve for different cutter geometries. However this methodology is limited to 3-

axis milling with linear tool motions. Sheltami et al. [67] proposed a method that is based on 

identifying generating curves along the toolpath and connecting them into a solid model of 

the swept volume. It has been shown that at each instance in time there exists a curve on the 

cutter surface that describes the contribution of the tool position to the final bottom swept 

surface. This curve represents the imprint of the tool on the machined surface. However this 

technique has not yet been extended to include turns or twist of the general 5-axis tool 

motions. Also it is assumed that this curve could be approximated by a circle. However this 

assumption looses its validity in 5-axis tool motions. Roth et al. [75] presented a geometric 

method for generating swept volume of a toroidal end mill performing 5-axis tool motions. 

This technique, called imprint or cross product method, uses vector algebra for obtaining the 

points on the swept envelope and thus eliminates the use of the complicated SEDE equations. 

The method is based on discretizing the tool into pseudo-inserts (Figure 2.2) and identifying 

imprint points using a modified principle of silhouettes. For obtaining the imprint curve the 

imprint points of each pseudo-insert are connected by a piecewise linear curve. Later the 

collection of imprint curves is joined to approximate the swept surface.  
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 Figure 2.2 has been removed due to copyright restrictions. The information removed is 

the (a) The pseudo-inserts of the toroidal End mill, and (b) the position of a pseudo-insert at 

two tool positions [75]. 

 

 Pottman and Peternell [61] described an explicit geometric method for computing the 

characteristic points of a moving surface of revolution. In this method the plane, normal to 

the velocity vector is intersected with a circle chosen from the surface of revolution. The 

valid intersections generate the characteristic points on the envelope surface. Later Mann et 

al. [52] extended the imprint method to simulate the milling operations with different cutter 

geometries. They described that the imprint method can be used with cylinder and torus 

cutter geometries for obtaining the swept profiles. Chiou et al. [20] developed a swept profile 

methodology for a generalized cutter in 5-axis NC machining by analyzing the machine tool 

motions based on the machine configurations. In this work the swept envelope of a cutter is 

constructed by integrating the intermediate swept profiles. Later Du et al. [86] introduced a 

new B-Rep based approach which is partly derived from Wang’s method [82]. In this work 

instantaneous profiles of the Fillet-End cutter are calculated by introducing the basis of the 

moving frame. This approach approximates the swept profile of a Fillet-End mill in the 

parametric form by interpolating a set of points on the cutter surface.  

 

2.1.4 Discussion 

From the above discussion it can be seen that sweep differential equation and jacobian 

rank deficiency approaches generate the most precise boundaries of a swept volume in the 

parametric or implicit form. But because they contain numerical calculations their application 

to NC machining is limited. On the other hand, the nature of the swept profile based 

approaches promises an approximation to the swept volume. Though accuracy is improved 

by decreasing the distance between consecutive tool locations and by using more grazing 

points for the swept profile, this comes at the expense of longer simulation runs. A toolpath 

may contain hundreds or thousands of tool motions which make the computational cost for 

characterizing the geometry of each tool swept volume prohibitively expensive. This 

limitation motivates research in this thesis into methodologies that provide computationally 
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simple analytical solutions to the swept volume generation. Also in the literature the swept 

profile based approaches have concentrated mainly on the simpler milling cutter geometries. 

A comprehensive analytical solution in 5-axis milling has not yet been described for the 

general surface of revolution which covers the broadest range of cutter geometries. 

In this thesis an analytical methodology for determining the shape of the swept envelopes 

generated by a general surface of revolution is developed. In this methodology, cutter 

surfaces performing 5-axis tool motions are decomposed into a set of characteristic circles. 

For obtaining these circles a new concept two-parameter-family of spheres is introduced. In 

this concept the center of a moving sphere is a function of two parameters representing the 

cutter surface and the tool motion. For a given 5-axis tool motion a member from this family 

of spheres generates two circles: a characteristic and a great circle. Considering the 

relationship between these circles an analytical formula which describes the swept envelope 

is developed. The implementation of the methodology is simple, especially with cutter 

geometries represented by pipe surfaces such as the torus and circular cylinder with fewer 

calculations being used.  

 

2.2 In-process Workpiece Modeling 

For NC simulation and CWE extraction an accurate in-process workpiece representation 

is needed. NC simulation usually implies cutting simulation and verification. The cutting 

simulation is for visualization of the cutting process and the verification is for comparison of 

the machined surface with the design surface. The modeling of the in-process workpiece 

geometry involves trade-offs between computational efficiency and the accuracy of the 

result. Several choices for modeling the in-process work piece exist. The two most common 

are mathematically accurate Solid modeler based methodologies that are used in CAD 

systems and approximate modeler based methodologies such as those used in computer 

graphics. In the following sub-sections these approaches will be discussed.  

 

2.2.1 Solid Modeler Based Methodologies 

 Solid modeling theory was developed in the late 1960s and early 1970s. Currently the 

most popular schemes used in solid modelers are the Boundary representation (B-rep) and 

Constructive Solid Geometry (CSG). In the B-rep methodology an object is represented by 
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both its boundaries defined by Faces, Edges, Vertices and the connectivity information. In 

the CSG representation the Boolean operations and the simple primitives are saved in a 

binary tree data structure. Solid modeling methodologies offer the possibility of doing both 

simulation and verification. For simulation the swept volumes of the tool movements are 

subtracted from the in-process workpiece model. Verification is performed by Boolean 

differences between the processed workpiece and the design part. Researchers have in the 

past investigated the potential of solid modelers for supporting the machining process [68-

71,73,76,80]. The computational complexity due to the Boolean operations was identified as 

one of the difficulties in applying this methodology. Developments in computer processor 

speeds and new computational technologies such as parallel computing now make this a 

more viable prospect [72]. 

 Voelcker and Hunt [80] did an exploratory study of the feasibility of using CSG 

modeling system for NC simulation. It has been reported that the cost of simulation in the 

CSG approach is proportional to the fourth power of the number of tool movements. A 

typical NC program can contain more than 10000 tool movements. Spence and Altintas [70] 

developed a 2 ½-axis instantaneous cutter/workpiece immersion simulation method based on 

a CSG model. This work was later transferred to the B-rep modeler [9,64]. Later Spence et 

al. [71] presented integrated solid modeler based solutions for machining. In this work, 

geometric and milling process simulation combined with online monitoring and control is 

illustrated for 2 ½-axis pocket milling application (Figure 2.3). For this purpose the ACIS 

solid modeler kernel is utilized. 

 

 Figure 2.3 has been removed due to copyright restrictions. The information removed is 

the updating in-process workpiece [71]. 

 

 Elbestawi et al. [37] developed an improved process simulation system for Ball-End 

milling of sculptured surfaces. The workpiece, cutter and CWE geometries are modeled using 

a geometric simulation system which uses the commercial solid modeler (ACIS) as a 

geometric engine. Later Imani et al. [38] presented a method for geometrically simulating a 

3-axis Ball-End milling operation. They developed an advanced sweeping/skinning technique 

for generating a precise B-rep model of the Ball-End mill swept volume (Figure 2.4). In this 
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work semi finishing operations are simulated by performing consecutive Boolean operations 

between the in-process workpiece and the cutter swept volumes. The critical geometric 

information such as the instantaneous chip geometry and the scallop heights are extracted 

from the in-process workpiece. 

 

 Figure 2.4 has been removed due to copyright restrictions. The information removed is 

the 3-axis cutter swept volume with the boundary faces [38]. 

 

2.2.2 Approximate Modeler Based Methodologies 

 For increasing efficiency and robustness in the process of the workpiece update a number 

of approximate approaches have been developed. The approaches can be classified into three 

major categories: Image space (or view based) methods, Object based methods and 

polyhedral model based method. 

 

� Image space (or view based) methods 

  Chappel [19] developed a method called the “point vector technique”. The design 

surface is approximated by a set of points and the vectors originating from these points 

extend until they reach the boundary of the original stock. For simulating the machining, 

each vector on the workpiece surface is intersected with the cutter swept volumes and the 

vector length is shortened if it intersects the swept volume. Oliver and Goodman [58,74] 

presented an approach similar to Chappel’s. In this approach the workpiece is discretized into 

arrays containing the surface coordinates and the corresponding normal vectors. The 

discretization of the workpiece surfaces are done according to the computer graphics image 

of the workpiece surfaces. Each pixel on the screen is projected onto workpiece surface and 

these pixel points on the surface become the approximation of the workpiece (Figure 2.5). In 

this work the vector - cutter swept volume intersections are performed with a similar 

approach to Chappel’s.  

 

 Figure 2.5 has been removed due to copyright restrictions. The information removed is 

the simulation of the NC milling by projecting pixels of a computer graphics image onto the 

part surface [58]. 
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Later Wang [81,82] developed an image space approach. For each pixel on the screen a 

vector is generated and using a scan-line algorithm the intersections between vectors and the 

toolpath envelope are calculated. The z-buffer of the workpiece is modified by applying 

Boolean difference operations with the z-buffer of the tool swept volumes. Also Van Hook 

[78] developed an approach called the “extended z-buffer”. The pixel images of the cutter are 

pre-computed and then the cutter is subtracted from the workpiece as it moves along a 

toolpath. This method is applied to 3-axis milling in which the orientation of the cutter is 

fixed. Later Atherton [6] extended Van Hook’s method to handle 5-axis milling.  

 The main limitations with the image space methodologies are: Because they are view 

dependant, errors not visible in the chosen viewing direction are undetected. For detecting 

the errors in another view of the part, the entire simulation must be started again. Also small 

machining errors i.e. less than 0.1mm are unlikely to be detected by a visual inspection of the 

computer graphics image. Despite their limitations the view based approaches are the best 

approximation methodologies for determining how much material is being removed for a 

given tool movement. Each pixel can represent a volume of material and, material removal 

can be approximated with accuracy dependent on the size of the object and the number of the 

pixels [41]. 

 

� Object based methods 

 The Object based in-process workpiece update methodologies are developed in [23, 

24,32,39,40]. In these methodologies a set of points are chosen on the workpiece surfaces 

and using these points actual surfaces are approximated. These methodologies use similar 

calculation techniques from Chappel’s [19] and Oliver’s [58] approaches. Using the tool 

movements the vectors on the surface of the workpiece are updated. Some of the 

advantageous of these approaches are [41]: a) Material removal simulation is efficiently 

accomplished by intersecting the surface normals with the tool swept volumes. b) The 

machining verification is easily done by the updated vector length. Also using the color 

contour map of the workpiece surface, out of tolerance areas can be seen. c) The user can 

specify the accuracy of the simulation. 
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 Jerard et al. [40] described a 3-axis machining methodology for simulating the geometric 

aspects of numerically controlled machining. The methodology is based on a discrete 

approximation of the object into a set of surface points. Vectors passed through these points 

are intersected with the tool movements (Figure 2.6). For increasing the efficiency the 

localization methodology described in [41] is used. 

 

 Figure 2.6 has been removed due to copyright restrictions. The information removed is 

the updating the workpiece surfaces represented by parallel z-vectors [40]. 

 

 Fussell and Jerard in their recent research [32] used an extended z-Buffer model and a 

discrete axial slice model for representing the workpiece and the cutting tool (Ball-End mill) 

respectively.  In this work a 3-axis approximation of the 5-axis tool movement is used to 

simplify the calculations while maintaining a desired level of accuracy (Figure 2.7-a). Since 

the tool swept volume is modeled as a set of geometric primitives such as natural quadric 

surfaces and planes, the intersection calculations are simplified to a set of line/surface 

intersections. It is assumed that all primitives are linear and the curvatures in the toolpath and 

the tool orientations are neglected. For this reason 5-axis tool paths are subdivided into many 

3-axis toolpaths.  Although approximating the 5-axis tool moves with 3-axis linear tool 

moves is a primary drawback in this work, the comparisons by Quinn [62] to the exact 5-axis 

tool moves with the 3-axis approximation method show that the 3-axis method is faster and 

robust. Another drawback in this work is that all discrete vectors of the workpiece model lie 

in one direction regardless of surface normal directions, where the directions are along the 

vertical z-axis of a Cartesian coordinate system (Figure 2.7-b). 

 

 Figure 2.7 has been removed due to copyright restrictions. The information removed is 

the (a) A 3-axis approximation of 5-axis swept volume, and (b) the extended  z-buffer model 

of workpiece [32]. 

 

 Baek et al. presented a z-Map update method for linearly [7] and circularly [8] moving 

APT-type tools in 3-axis milling. Machining process is simulated through numerically 

calculating the intersection points between the z-Map vectors and the tool swept envelope. 
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The intersection points are expressed as the solution of a system of nonlinear equations. This 

system of equations is transformed into a single-variable function whose zero is a solution of 

the system. Also in this work they show how to calculate the candidate interval in which the 

unique zero exists. In this methodology both the tool rotation axis and the z-Map vectors are 

restricted to lie along the vertical z-axis of a Cartesian coordinate system. 

 Park et. al. [43] developed a hybrid cutting simulation methodology via the Discrete 

Normal Vector (DNV) and the Discrete Vertical Vector (DVV) models. In the DNV approach 

a workpice consists of discrete vectors whose direction vectors are surface normal vectors, 

where all directions are not necessarily identical. Also spacing may vary depending upon the 

surface local properties. On the other hand, in the DVV approach all discrete vectors of the 

workpiece model lie in only one direction regardless of surface normal directions, where the 

directions are along the vertical z-axis of a Cartesian coordinate system. The DNV approach 

generates better surface quality especially when the workpiece model has vertical walls, 

sharp edges, and overhang (Figure 2.8). But on the other hand in the DNV representation the 

localization of the cutter swept envelope is difficult and this decreases the computational 

efficiency. The main idea in this work is to take full advantage of each type’s strengths in 

terms of speed. But on the other hand, in this hybrid methodology the cutter swept volumes 

are generated by a solid modeler.  A typical toolpath may contain thousands of tool motions. 

In this case using the solid modeler for the cutter swept volume generation increases the 

computational cost during the simulation. 

 

 Figure 2.8 has been removed due to copyright restrictions. The information removed is 

the DNV and DVV representation of the workpiece surfaces [43]. 

 

� Polyhedral model based method 

 Another alternative for updating the in-process workpiece in NC machining is a 

polyhedral model based method. In the polyhedral model the workpiece surfaces are 

represented by a finite set of polygonal planes called facets. The most commonly used shapes 

are triangles and converting the mathematically precise models to the triangulated models is 

called tessellation. In this approach in order to achieve real time NC simulation the number 

of polygons has to be reduced. But this results in poor image quality. Ong et. al. [49] 
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developed an approach to reduce the number of polygons without much loss in image quality 

(Figure 2.9). They proposed an adaptive regular mesh decimation algorithm which uses a 

quadtree to represent the milling surface. This algorithm can automatically adjust the 

polygon density to approximate the milling surface during the simulation in real time. 

 

 Figure 2.9 has been removed due to copyright restrictions. The information removed is 

the regular mesh decimation for 3-axis NC milling simulation [49]. 

 

2.2.3 Discussion 

 During the machining simulation for each tool movement the modification of the 

workpiece geometry is required to keep track of the material removal process. Because the 

NC verification and Cutter Workpiece Engagement (CWE) extraction directly dependent on 

the material removal an accurate in-process workpiece modeling is needed. 

 From the literature review it can be seen that several choices for modeling the in-process 

work piece exist. The two most common are mathematically accurate solid modeling that are 

used in CAD systems and approximate modeling such as those used in computer graphics: 

facetted and discrete vector models. Each methodology has its own strengths and weaknesses 

in terms of computational complexity, representation accuracy and the robustness. It can be 

seen from the literature that for updating the workpiece surfaces represented by the solid or 

faceted models third party softwares can be used. For example the ACIS solid modeling 

kernel is one of these softwares.  

 But on the other hand for the workpiece geometries represented by discrete vectors 

accurate and computationally efficient in-process workpiece update methodologies are 

needed. In the literature the discrete vectors have orientations along the z-axis of the standard 

bases of R
3
. But when the in-process workpiece has some features like vertical walls and 

sharp edges, representing the workpiece with one directional vectors generates less accurate 

results in visualization of the final product and CWE extractions. Also in recent works [7,8] 

the tool axis has a fixed orientation along the z-axis of the standard bases of R
3
 and the 

workpiece updates are performed numerically for the common milling cutters. Still needed 

are in-process workpiece update methodologies in which the workpiece geometries are 

represented by discrete vectors having different orientations and the tool rotation axes have 
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arbitrary inclinations in space. Also in these methodologies for the given cutter geometry the 

calculations, if it is possible, must be analytic for computational efficiency. 

 In this thesis the discrete vectors with their orientations in the directions of x,y,z-axes of 

the standard bases of R
3
 are used. Therefore in this representation more vectors in different 

directions are used and thus the quality in the visualization of the final product has been 

increased. A typical milling tool path contains thousands of tool movements and during the 

machining simulation for calculating the intersections only a small percentage of all the 

discrete vectors is needed. For this purpose for localizing the tool envelope during simulation 

the Axis Aligned Bounding Box (AABB) is used. For simplifying the intersection 

calculations the properties of canal surfaces are utilized. In the developed methodologies the 

tool motions in (3+2)-axis milling in which the cutter can have an arbitrary fixed orientation 

in space are considered. The 5-axis tool motions can be approximated by (3+2)-axis tool 

motions and an example is given for illustrating this situation. The calculations for the major 

cutter geometries such as the sphere, cylinder, frustum of a cone and flat-bottom surfaces are 

made analytically. Because of the complexity of the torus shape the calculations are made by 

using the numerical root finding methods. For this purpose a root finding analysis is 

developed for guaranteeing the root(s) in the given interval.  

 

2.3 Cutter Workpiece Engagement Extraction  

 The goal in CWE extraction is to obtain engagement conditions between milling cutter 

and the in-process workpiece for supporting process modeling. From the CWEs instantaneous 

in-cut segments or engaged portions of the cutting edges are obtained. For extracting the in-

cut segments CWE boundaries are intersected with the cutter edges either in 2D or in 3D 

Euclidian space. In both approaches edge/edge intersection is performed. In the 2D-space 

approach, first the cutter contact face is intersected with the in-process workpiece and CWE 

boundary is obtained in 3D Euclidian space. Then this CWE boundary and the cutter edges 

are mapped into two dimensional space. Finally for obtaining the in-cut segments, each 

cutting edge is intersected with the CWE boundary in this space [70,89]. In the 3D-space 

approach intersections between CWE boundary and cutter edges are performed in 3D 

Euclidian space [26,37]. In this thesis for extracting in-cut segments the 2D-space approach 

is utilized.  
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 In the literature, based on the mathematical representation of the workpiece geometry, the 

CWE extraction methodologies can be classified into three major categories: Solid model 

based, polyhedral model based and discrete vector based methods. Also some other existing 

CWE extraction methods are discussed in section (2.3.4). 

 

2.3.1 Solid model based methods 

 Some research on Solid model based CWE extraction methodologies for supporting 

process modeling has been reported [26,,37,47,70,89]. In these CWE extraction 

methodologies the initial workpiece geometry is represented by using the B-rep model. 

Geometric and topological algorithms of this model are utilized for both updating the in-

process workpiece and extracting the CWE geometry. For updating the in-process workpiece 

geometry first the swept volume of the cutter is generated for a given toolpath segment and 

then this volume is subtracted from the current workpiece state using regularized Boolean 

subtraction. Cutter workpiece engagement calculations are performed using this new 

workpiece state until the start of the following tool path segment. If the toolpath has self 

intersections then for obtaining the correct CWEs it may be necessary to decompose the 

given toolpath into non-intersecting smaller segments. From the literature the CWE 

extractions using a solid modeler can be classified into two groups:  2 ½-axis and 3-axis 

methods. 

 

� 2 ½-Axis methods 

 For calculating CWEs in 2 ½-axis milling with a Flat-End mill, a B-rep based approach 

has been presented by Spence et al. [70]. Figure 2.10(a) illustrates that a Flat-End mill 

engages with the in-process workpiece Wi at a constant depth of cut d along the entire 

toolpath. It is shown in Figure 2.10(b) that engagements are determined by performing the 

intersections between an advancing semi circle Ci moving in the tangential direction of the 

toolpath and the boundaries of Wi on an engagement plane PLZ-Top. The engagement 

geometry is calculated as entry ( stφ ) and exit ( exφ ) angles for each step of the Flat-End mill 

(Figure 2.10(c)). The step taken between each CWE calculation is the feed per revolution of 

the cutter. Although this methodology is an important step in applying solid modeling 

technology to the CWE extraction problem, it only generates the constant depth of cut.  
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 Figure 2.10 has been removed due to copyright restrictions. The information removed is 

the extracting CWEs by advancing semi circle approach  for 2 ½ -axis milling [70]. 

 

 Later Yip-Hoi et al. [89] presented another B-rep based approach for extracting CWEs in 

2 ½ - axis milling. He extended Spence’s methodology by performing the regularized 

Boolean intersection operation between a semi cylindrical cutter surface and the in-process 

workpiece (Figure 2.11). In this work for imprinting the engagement region boundaries on 

the cutter surface, the solid modeler’s (ACIS) surface/surface intersection algorithms are 

used. Then the engagement boundaries are mapped from 3D Euclidian space into 2D space 

defined by the engagement angle and the depth of cut respectively. Later these engagement 

regions are decomposed into smaller rectangular regions for fulfilling the requirement of the 

force model described in [5]. The advantage of this methodology is that it can be applied to a 

wider range of workpiece geometries i.e. the initial workpiece geometry is not rectangular 

prismatic. On the other hand it is still a 2 ½ -axis methodology with a Flat-End mill and the 

engagement boundaries are limited to straight lines and circular arcs. 

 

 Figure 2.11 has been removed due to copyright restrictions. The information removed is 

the extracting CWEs by advancing semi cylinder approach for 2 ½ -Axis milling [89]. 

 

� 3-Axis methods 

 Elbestawi et al. [37] developed a Ball-End milling process simulation system. In this 

work the Ball End mill performs 2-axis or an ascending (with different up-hill angles) 3-axis 

motion. The geometries of the workpiece, the cutter and CWEs are modeled using (ACIS) as 

a geometric engine. The engaged portion of the cutting edge (the instantaneous in-cut 

segment) is computed in two steps: In the first step the boundary of the contact face between 

the spherical portion of the Ball-End mill and the in-process workpiece is obtained. This 

boundary consists of one circular edge and two B-spline edges (Figure 2.12). In the second 

step the intersection points between interpolated cutting edge and boundary curves of the 

contact face are found. This is performed by using edge/edge intersections with a prescribed 

tolerance. Finally the cutting edge is decomposed into in-cut and out-cut segments. 
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 Figure 2.12 has been removed due to copyright restrictions. The information removed is 

the 3-axis CWE extraction with Ball-End mill [37]. 

 

 Also El-Mounayri et al. [26] presented a geometric approach for 3-axis machining 

process simulation using a Ball-End mill. In this work solid models are used for representing 

the in-process workpiece and the removal volume. The cutting edges are represented by 

Bezier curves in 3D Euclidian space. For obtaining the in-cut segments of the cutting edges, 

the Bezier curves are intersected with the removal volume (Figure 2.13). Later these 

segments are used for evaluating the instantaneous cutting forces. 

 

 Figure 2.13 has been removed due to copyright restrictions. The information removed is 

the procedure for extracting in-cut segments of the cutting edges [26]. 

 

2.3.2 Polyhedral Model Based Methods 

 Although they are approximate, polyhedral models provide the advantage of simplifying 

the workpiece surface geometry to planes which consist of linear boundaries. Thus the 

intersection calculations reduce to line / surface intersections. These can be performed 

analytically for the geometry found on cutting tools. Some research [88,90] on polyhedral 

based CWE extraction methodologies for supporting the process modeling has been reported. 

 Yao [88] presented geometric algorithms for estimating cutter engagement values for 3-

axis Ball-End milling processes of tessellated free-form surfaces. In this work 3D surface 

geometry is represented by an STL (“Stereo lithography”) model in which surfaces are 

tessellated or broken down into a series of small triangles. It is assumed that the toolpath is a 

linear segment and only the frontier of the Ball-End mill has engagement with the workpiece 

(Figure 2.14). The engaged portion of the cutter is estimated in three steps: First finding 

triangles that intersect the cutter, then intersecting those triangles with the cutter for obtaining 

the intersection curve segments and finally using those curve segments to form the closed 

engagement region.  
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 Figure 2.14 has been removed due to copyright restrictions. The information removed is 

the cutter engagement portion [88]. 

 

 Later Yip-Hoi et al. [90] presented a polyhedral model based CWE calculation 

methodology in 2 ½-axis and 3-axis millings. For reducing the amount of data and 

calculations this methodology works on removal volumes instead of the in-process 

workpiece. To further reduce the number of intersections an R
*
-tree based localization 

technique is applied for localizing the facets that have potential intersections with the cutting 

tool. The methodology first calculates the intersection points between facet edges and the 

cutter, and then using a mark circle method it creates intersection segments between these 

intersection points. Finally an undirected graph is used for connecting those intersection 

segments to form the boundary of the CWE area. As explained in section (1.2.3) there is a 

cordal error in the polyhedral model representations. In this case the cutter does not intersect 

the facets on the side-wall surfaces of the removal volume. In this work for solving this 

problem the cutter radius is enlarged slightly (Figure 2.15). Therefore the entry angles are 

slightly larger while the exit angles are less than what they should be. 

 

 Figure 2.15 has been removed due to copyright restrictions. The information removed is 

the (a) Chordal error in the cutter facet intersection, and (b) the radius enlargement of the 

cutter [90]. 

 

2.3.3 Discrete Vector Based Methods 

 Some research on discrete vector based CWE extraction for supporting process modeling 

has been reported [18,31,32,42,91]. In these approaches the workpiece is broken into a set of 

evenly distributed parallel lines which have directions along the vertical z axis of the 

Cartesian coordinate system. Multiple z values are stored in one vector, allowing extensions 

to multi-axis milling with multiple tool passes. The spacing between vectors can be 

determined based on the desired accuracy, local surface curvature of the workpiece and the 

tool size. CWEs are extracted according to requirements of the mechanistic force model. The 

mechanistic force model divides the cutting tool into a set of axial disc elements.  
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 There are two primary concerns for each disc element. First concern is whether or not the 

disc element is in contact with the in-process workpiece and the second concern for a disc 

engaged with the in-process workpiece is to define the limits of the engagement in terms of 

entry/exit angles. The entry and exit angles are calculated by solving for the normal direction 

component of each intersection, and storing the maximum and minimum normal positions 

found during a given tool move (Figure 2.16). 

  

 Figure 2.16 has been removed due to copyright restrictions. The information removed is 

the Entry/exit angle calculation for each disc [31]. 

 

2.3.4 Other Existing Methods 

 So far it is shown that there are mainly three major approaches for extracting CWEs. Also 

there are some other existing methodologies which are not classified under major 

approaches. For example Stori et al. [84] presented a metric based approach for toolpath 

optimization in high speed machining. For obtaining cutter engagements a pixel based 

simulation procedure is used (Figure 2.17). In this work a Flat-End mill follows a 2D linear 

toolpath. Both the local in-process geometry and the cutter is discritized. Any un-machined 

area is represented by a 0, and the machined area is represented by a 1. The instantaneous 

engagements are estimated by checking the status of the in-process workpiece geometry for 

the pixels that overlap the circumference of the cutting tool in the given cutter location point. 

 

 Figure 2.17 has been removed due to copyright restrictions. The information removed is 

the pixel based engagement extraction [84]. 

 

 Also Gupta et al. [34] developed an analytical method for computing cutter engagement 

functions in 2.5D machining. In this work the analytical approaches are described for 

determining the cutter engagements utilizing the engagement functions for individual half 

spaces that comprise the workpiece geometry (Figure 2.18). The edges of the workpiece are 

represented as half spaces. The formulae are obtained for determining the cutter engagement 

functions in the cases: circular cut and linear half space, and circular cut and circular half 

space. 
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 Figure 2.18 has been removed due to copyright restrictions. The information removed is 

the “A linear tool path and region expressed as a Boolean expression of half spaces” [34]. 

 

2.3.5 Discussion 

 The purpose of Cutter Workpiece Engagement (CWE) extraction is to identify 

engagement conditions between the cutter and the in-process workpiece during the milling 

operation for predicting the cutting forces. From the above discussion it can be seen that 

Research work on CWE extraction can be classified into three main approaches: Solid 

modeler based, polyhedral modeler based and vector based methodologies. There is always a 

tradeoff between computational efficiency and accuracy in these approaches. For example 

the polyhedral and vector based approaches generate approximated CWE results and because 

of this they require a shorter computational time than does the solid modeler based approach. 

But on the other hand in the solid modeler based approach the most accurate CWEs are 

obtained with the cost of higher computational time. These three main approaches to CWE 

extraction are discussed in the following parts. 

 

� In the literature solid modeling approaches are concentrated on simple workpiece 

surfaces such as cylinders and planes. But the most complicated CWE calculations occur 

during the machining of sculptured surfaces. Because of continuously changing surface 

geometry, modeling CWEs in sculptured surface machining is not so easy. In the given 

approaches the cutters perform either 2 ½ -axis machining or 3-axis machining with 

ascending motion in which only the front part of the cutter removes material. But sometimes 

with respect to the motion type the back side or the bottom-flat part of a cutter may have 

contact with the in-process workpiece. For example in a plunging motion of a Flat-End mill 

the bottom flat surface removes material. Therefore CWE extraction with different surfaces 

of a cutter must be addressed. Also there is a needed for a 5-axis CWE extraction 

methodology in which cutter has changing orientations. 

� From the literature, it can be seen that for the polyhedral model based CWE extractions so 

far little work has been conducted. Also there is a robustness issue in CWE extractions 

because of the chordal error. 
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� In the literature, the proposed discrete vector based methodologies represent the in-

process workpiece by using discrete vectors which lie in only one direction regardless of the 

surface normal direction. But when the orientation of the cutter axis is parallel to these 

vectors, for some cutter geometries, extracting CWEs becomes difficult i.e. 3-axis machining 

with a Flat-End mill. 

 

 From the above discussion it can be seen that comprehensive methods for extracting 

CWEs using solid, polyhedral and discrete vector approaches are yet to be fully developed. In 

this thesis solid, polyhedral and vector based CWE methodologies are developed using a 

range of different types of cutters and tool paths defined by 3, 5-axes tool motions. The 

workpiece surfaces cover a wide range of surface geometries such as the sculptured surfaces. 

In 3-axis solid and polyhedral model approaches to reduce the size of the data structure that 

needs to be manipulated the removal volume is used instead of the in-process workpiece. For 

5-axis machining it is the workpiece itself. 

  In the 3-axis solid modeler methodology the cutter surfaces are decomposed into sub-

constituent surfaces with respect to the feed vector direction. Then these surfaces are 

intersected with their removal volumes for obtaining the boundary curves of the closed CWE 

area. Decomposing the cutter surfaces allows CWEs for different parts of a given cutter 

geometry, i.e. bottom flat or back side of a cutter to be more easily extracted. During the 

material removal process only certain parts of the cutter surfaces are eligible to contact the 

in-process workpiece. In this thesis for representing these regions of the cutter boundary a 

terminology feasible contact surfaces (FCS) is introduced. The word feasible is used because 

although these surfaces are eligible to contact the in-process workpiece, they may or may not 

remove material depending on the cutter position relative to the workpiece. Because in a 

solid model the envelope boundary for 5-axis tool motions are approximated by spline 

curves, applying the same methodology described for the 3-axis milling generates non robust 

results. Because of this in the 5-axis methodology an offset body obtained from the feasible 

contact surface is intersected with the in-process workpiece at a given cutter location point. 

Then  face/face intersections are performed for obtaining the boundaries of the CWEs.  

 For addressing the chordal error problem in polyhedral models a 3-axis  mapping 

technique is developed that transforms a polyhedral model of the removal volume from 



Chapter 2. Literature Review 

 37 

Euclidean space to a parametric space defined by location along the tool path, engagement 

angle and the depth-of-cut. As a result, intersection operations are reduced to first order 

plane-plane intersections. This approach reduces the complexity of the cutter/workpiece 

intersections and also eliminates robustness problems found in standard polyhedral modeling. 

Because in 5-axis tool motions the direction of the tool axis vector continuously changes 

applying the mapping described for the 3-axis milling increases the distortions of the facets. 

Therefore an approach similar to that of the 5-axis solid modeler is developed. In this 

approach the only difference is the application of the face-face intersections. 

 In the discrete vector approach the cutter surfaces are sliced along the tool rotation axis 

and then the surface of each slice is decomposed into buckets. The sizes of the buckets are 

adjusted with respect to the resolution of discrete vectors. Later during the simulation 

discrete vectors are intersected with the cutter surfaces for representing the material removal 

and the buckets which contain the intersection points are plotted  

 

2.4 Summary 

 In this chapter, a review of the literature in swept volume generation, in-process 

workpiece modeling and CWE extraction are presented. It has been shown that because a 

toolpath contains thousands of tool motions the swept volume generation becomes costly in 

terms of large memory and computational requirements. For this reason for NC machining 

the swept volume construction must be easy and the geometric information for defining the 

volume must require less memory. The accuracy of the in-process workpiece modeling 

effects the quality of the CWEs. Especially in the object based in-process workpiece update 

methods using discrete vectors lying only in one direction generates problems in both 

workpiece surface quality and CWE representations. For the CWE extractions there is a need 

to develop 3 to 5-axis machining approaches for different types of cutter and workpiece 

surfaces in solid, polyhedral and vector based models. 
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Chapter 3 

Cutter Swept Volume Generation 

 

 

 This chapter presents an analytical methodology to calculate cutter profiles for modeling 

the swept volumes of general surfaces of revolution with respect to 5-axis tool motions. In 

this methodology the geometry of a cutter is considered as a canal surface. Briefly a canal 

surface is an envelope of a moving sphere with varying radius. In this methodology, cutter 

surfaces performing 5-axis tool motions are decomposed into a set of characteristic circles. 

For obtaining these circles a new concept two-parameter-family of spheres is introduced. In 

this concept the center of a moving sphere is a function of two parameters representing the 

cutter surface and the tool motion. On the other hand the radius of the moving sphere is only 

a function of one parameter. For a given 5-axis tool motion a member from this family of 

spheres generates two circles: a characteristic and a great circle. Considering the relationship 

between these circles an analytical formula which describes the swept envelope is developed. 

Also applying this methodology, the implicit envelope equations of the common cutter 

geometries performing 5-Axis tool motions are derived. 

 The parametric representations of canal surfaces in one-parameter family of spheres are 

presented in section (3.1). The concept of the two-parameter-family of spheres is introduced 

in section (3.2), followed by the closed form swept profile equations in section (3.3). 

Examples from the implementation of the methodology are shown in section (3.4), and 

finally the chapter ends with the discussion in section (3.5). 

 

3.1 Canal Surfaces 

A canal surface Ф is the envelope of a moving sphere with varying radius, defined by a 

trajectory of its center (spine curve) m(t) and a radius function r(t), where t∈R. When the 

radius function r(t) has a constant value, the canal surface is also called as a pipe surface. 

Canal surfaces have wide applications in different areas such as shape reconstruction, 

construction of blending surfaces, transition surfaces between pipes and robotic path 

planning [28,66,83]. Some examples of the canal surfaces are pipe surfaces, tori, natural
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 quadrics and dupin cyclides [50,60]. For simulation and computer graphics, a model which 

contains canal surfaces has some advantageous such as the model construction is easy, the 

geometric information for defining the model requires less space and efficiency is high for 

rendering the model  [45,57,87]. Defining equations of a canal surface are expressed as [60] 

 

   0)())((:)( 22 =−−Σ trtPt m                (3.1) 

   0)()()())((:)( =′+′−Σ′ trtrttPt m·m              (3.2) 

 

where Σ(t) represents one-parameter family of spheres and P = (x,y,z) is a point on the sphere 

surface (see Figure 3.1). A canal surface can contain a one parameter set of so called 

characteristic circles K(t). The characteristic circles are obtained by the following 

intersection 

 

   )()()( tttK Σ′Σ= I                   (3.3) 

 

where the plane Σ' is perpendicular to the vector of m′ . The reality of a canal surface in 

general depends on )(tr ′ and the length of m′ . If the envelope is real then the following 

condition holds 

   0)()( 22
≥′−′ trtm                  (3.4) 

 

3.1.1 Explicit Representation of Canal Surfaces 

Fig. 3.1 illustrates a canal surface with defining parameters. In this figure for a given 

parameter value t, a moving sphere touches the canal surface Ф at a characteristic circle K(t). 

A canal surface can be parameterized by using K(t). For parameterization the center C(t) and  

the radius R(t) of the characteristic circle are used. The center can be expressed as  

 

   
)(

)(
)(cos)()()(

t

t
ttrtt

m

m
mC

′

′
+= ϕ               (3.5) 
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where )(tϕ is an angle (Fig. 3.1) between two vectors )(tm′ and )(m- tP , and it satisfies 

the following dot product equation 

 

   )(cos)()()())(( tttPttP ϕmmm·m ′−=′−           (3.6) 

 

 
 

Figure 3.1: Geometric description of a canal surface 

 

Using Eqs.(3.1), (3.2) and (3.6) the following trigonometric equation is derived 
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)(

)()(

)())((
)(cos

t

tr

ttP

ttP
t

mmm
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=ϕ             (3.7) 

 

By substituting the equivalent of )(cos tϕ into Eq.(3.5) the center of the characteristic circle 

is expanded as follows 

   2
)(

)(
)()()()(

t

t
trtrtt

m

m
mC

′

′
′−=                (3.8) 

 

Also the radius R(t) of the characteristic circle is obtained by  
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)(

)()(
)()(sin)()(

22

t

trt
trttrtR

m

m

′

′−′
== ϕ            (3.9) 

 

where the equivalent of )(sin tϕ  is derived from Eq.(3.7). A canal surface Ф can be 

considered as a set of characteristic circles, and thus by using Eqs. (3.8) and (3.9) Ф can be 

expressed as  

 

   ))(sin)()(cos()(),( tttRttK BMC θθθ ++=                 (3.10)  

 

where θ is an angle of the characteristic circle and it changes in the ranges of 0 to 2π. Also in 

Eq.(3.10), M(t) and B(t) are the unit normal and binormal vectors of the  Frenet trihedron and 

they are on the plane Σ'(t) which contains the characteristic circle.  For the canal surface the 

frenet trihedron is formed with the following components 
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where T(t) is the unit tangent vector in the direction ofm′ . It is assumed in Eq. (3.11) that the 

spine curve m is biregular, in other words along m the following condition is fulfilled 

 

   0)()( ≠′′×′ tt mm                       (3.12) 

 

3.1.2 Cutting Tool Geometries as Canal Surfaces  

 According to the Automatically Programmed Tool (APT) definition [46] milling cutters 

can be defined. The cutter geometries are represented by natural quadrics and torus. Natural 

quadrics consist of the sphere, circular cylinders and the cone. Together with the plane (a 

degenerate quadric) and torus these constitute the surface geometries found on the majority 

of cutters used in milling. For example a ball nose end mill is defined by two natural quadric 

surfaces – spherical and cylindrical. Other examples are shown in Fig 3.2. 
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Figure 3.2: Some typical milling cutter geometries 

 

Also the cutters shown in Fig. 3.2 can be considered as canal surfaces. For example, if a 

sphere moves along a straight line and the radius of the sphere increases linearly, a canal 

surface so called a frustum of a cone is generated (Fig. 3.3(a)). On the other hand if a sphere 

with a constant radius follows a spine curve trajectory, it envelopes a special canal surface 

called a pipe surface. Two common pipe surfaces cylinder and torus are built when the 

sphere moves along linear path and a circular path respectively (Fig. 3.3(b)-(c))  

 

 
 

Figure 3.3: Generating cutter geometries with a moving sphere 

 

 

3.2 Two-Parameter-Family of Spheres in Multi-Axis Milling 

 It is shown in section (3.1) that a moving sphere Σ(t) follows a spine curve trajectory 

and it envelopes a canal surface Ф, where t is a spine curve parameter. But when a cutter 
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performs a milling simulation, a moving sphere of the cutter geometry follows two different 

trajectories: the first one is the spine curve and the second one is the toolpath trajectory 

represented by the parameter u∈R. In this case the center of the moving sphere can be 

represented by two parameters. The two-parameter-family of spheres can be defined by 

 

  Σ(t,u)  :  Σ(P - m(t,u))
2  

–  r(t)
2  

 = 0            (3.13) 

 

where Σ(t,u) represents two-parameter family of spheres and P is a point on the sphere 

surface. Note that in Eq. (3.13), although the center of the sphere m is a function of two 

parameters t and u, the radius r is only a function of the parameter t. This is because the 

cutter radius only changes along the spine curve for a given cutter location. Let Σt and Σu be 

the partial derivatives of Σ(t,u) with respect to t and u. These partial derivatives can be 

expressed as  

 

  Σ t(t,u) :  Σ (P - m(t,u)) · mt + r rt = 0            (3.14) 

  Σ u(t,u) :  Σ (P - m(t,u)) · mu  = 0             (3.15) 

 

where mt and mu are the partial derivatives of m(t,u) with respect to corresponding 

parameters. Note that when the cutter geometry is pipe surface rt becomes zero. Eqs. (3.14) 

and (3.15) represent two planes with the surface normals mt and mu respectively. In this 

section it will be shown that under a tool motion the two-parameter-family of spheres 

generates so called grazing points on the cutter envelope surface. Grazing points are the 

discrete points that the surface of the cutter will leave behind as it moves in the space. The 

following remarks and the property motivate finding grazing points. 

 

Remark 3.1: A characteristic circle K embedded in Σ(t,u)  is a solution of the system of Eqs. 

(3.13) and (3.14)  

   ),(),(),( utututK tΣΣ= I   
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 This is an intersection of a sphere Σ with a plane Σt which has a normal vector in the 

direction of mt. 

 

Remark 3.2: By definition a great circle is a section of a sphere that contains a diameter of 

the sphere [44]. A great circle S is a solution of the system of Eqs. (3.13) and (3.15)  

 

   ),(),(),( utututS uΣΣ= I  

 

Also this is an intersection of a sphere Σ with a plane Σu which has a normal vector in the 

direction of mu. It can be concluded from remarks (3.1) and (3.2) that the characteristic and 

the great circles lie on the planes Σt and Σu respectively. These circles are illustrated in Fig. 

3.4 for a given parameter set t and u. 

 

               
     

Figure 3.4: (a) The characteristic K, and (b) the great S circles  

 

Property 3.1: 

(i) Intersecting characteristic and great circles generates points on the cutter envelope surface 

(see Fig. 3.5) and also these points are the solution of the system of Eqs. (3.13-3.15) 

(ii)  Alternatively if a point P = (x,y,z) is one of these intersection points then it satisfies the 

following system of envelope equations [82] 

 

 0),,,( =uzyxf                       (3.16) 

   0
),,,(

=
∂

∂

u

uzyxf
                                                        (3.17) 
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where ),,,( uzyxf implicitly represents the family of cutter surfaces with respect to the 

toolpath parameter u.  

 

 
 

Figure 3.5: Intersecting the characteristic (K) and the great (S) circles  

 

According to property (3.1) if a point P lies on the cutter envelope surface then P satisfies 

both circle equations i.e. P ∈  K  ∩ S. The relative positions of two circles K and S may be 

classified into three cases: (i) they intersect at two different points, (ii) they intersect at one 

point tangentially and (iii) they don’t intersect (Fig. 3.6).  

 

 
 

Figure 3.6: Intersection cases between K and S. 

 

The common cutter geometries are defined by cylinder, frustum of a cone and torus surfaces. 

In the following subsections using those geometries which perform 5-axis motion the validity 

of property (3.1) will be analyzed. Also for these geometries the implicit envelope equations 

will be derived. Later in section (3.3) the methodology will be generalized for a surface of 

revolution. 5-axis tool motions are represented by the trajectory of the tool center point F(u), 

and the instantaneous orientation of the tool axis A(u) which is always coincident with the 
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tool rotation axis. Using F(u) and A(u), a Tool Coordinate System (TCS) on the tool can be 

defined by a set of mutually orthogonal unit vectors n, d, and e as  

 

 An = ,    if 0≠
∂

∂

u

A
 then 

|/|

/

u

u

∂∂

∂∂
=

A

A
d and nde ×=   

or                        (3.18) 

 if 0=
∂

∂

u

A
and 0≠

∂

∂
×
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F
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u

u

∂
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×

∂

∂
×

=
F

A

F
A

e  and ned ×=  

According to Eq. (3.18) the position and the orientation of the cutter must be piecewise 

differentiable. And also plunging motion along the cutter rotational axis is not allowed. 

 

3.2.1 Applying the Methodology on the Cylinder Surface 

 Fig. 3.7 illustrates a cylinder surface with a member of two-parameter-family of spheres 

which is also called moving sphere. In this figure F and Fu represent the tool center point 

which is defined at the tool bottom surface and the velocity vector at this point respectively.  

 

 
Figure 3.7: The moving sphere of a cylinder surface 

in 5-axis motion 

 

The center of the moving sphere can be expressed by 
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  m(t, u) = F(u) + t n(u)                      (3.19) 

 

where n is a function of the parameter u. After taking partial derivatives of m with respect to 

parameters t and u, the following equations are obtained. 

 

  mt(t,u) = n(u)                             (3.20)                             

  mu(t,u) = Fu(u) + t nu(u)                                                                            (3.21) 

 

where subscripts represent the corresponding derivatives. Because the cylinder surface is a 

pipe surface, the radius of the moving sphere is constant i.e. r(t) = r and thus  rt = 0. When m, 

mt, mu, r and rt are substituted into Eqs. (3.13-3.15), they yields the following expanded 

versions respectively. 

 

 (P – F(u)) · (P – F(u)) – 2t{(P – F(u)) · n(u)}+t
2
 –r

2
 = 0                                       (3.22) 

 (P – F(t) – t n(u)) · n(u) = 0                                                   (3.23) 

 (P – F(u) – t n(u)) · (Fu(u) + t nu(u)) = 0                    (3.24) 

  

According to property (3.1) if a point P satisfies the system of Eqs. (3.22 – 3.24) then it lies 

at the intersection of the characteristic and the great circles. The characteristic circles (K) are 

the solution of system of Eqs.(3.22) and (3.23), and  the great circles (S) are the solution of 

system of Eqs.(3.22) and (3.24). For solving this system of equations the parameter t from 

Eq.(3.23) is extracted as  

 

 t = (P – F(u)) · n(u)                   (3.25) 

  

and then it is plugged into Eq.(3.22). This yields the following implicit representation of the 

cylinder surface in 3D Euclidian space 

 

 (P – F(u)) · (P – F(u)) – {(P – F(u)) · n(u)}
2
 – r

2
 = 0          (3.26) 
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where P is a position of a point (x,y,z) on the cylinder surface. The above equation can also 

be denoted by f(x, y, z, u) = 0. By performing dot product operations Eq. (3.24) is expanded 

as  

 (P – F(u)) · Fu(u) – t {Fu(u) · n(u)+(P – F(u)) · nu(u)} = 0        (3.27)  

 

Notice that in this expansion n(u) · nu(u) = 0. Substituting Eq. (3.25) into Eq. (3.27) yields 

 

 (P – F(u)) · Fu(u)  – (P – F(u)) · n(u) {Fu(u) · n(u) + (P – F(u)) · nu(u)} = 0    (3.28)  

 

Eq. (3.28) is the partial derivative of the Eq. (3.26) with respect to u and also it can be 

denoted by 0/),,,( =∂∂ uuzyxf .Thus the property (3.1) holds for the cylindrical surface. 

 

3.2.2 Applying the Methodology on the Frustum of a Cone Surface 

 The 5-axis motion of a conical surface with its moving sphere is illustrated in Fig. 3.8. In 

this figure V(u) and α represent tip of the cone and the cone half angle respectively. Also the 

tool center point F(u) is the center of the lower base. 

 

 
 

Figure 3.8: The moving sphere of a cone surface 

in 5-axis motion 
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The tip of the cone can be expressed by (see Fig. 3.8) 

 )(
tan

)()( u
α

r
uu b n-FV =                  (3.29) 

where rb is the radius of lower base. Also from this figure, the center of the moving sphere 

can be obtained by 

 

 m(t, u) = V(u) + t n(u)                 (3.30) 

 

The partial derivatives of m with respect to t and u are derived as  

 

 mt(t, u) = n(u)                    (3.31) 

 mu(t, u) = Vu(u) + t nu(u)                      (3.32) 

 

For the frustum of a cone surface the radius of the moving sphere linearly increases. This 

radius and its derivative can be expressed by r(t) = t sinα and rt(t) = sinα respectively. By 

substitutions of m, mt, mu, r and rt, the system of Eqs. (3.13-3.15) is expanded respectively 

as  

 

 (P – V(u)) · (P – V(u)) – 2t{(P – V(u))· n(u)}+t
2
 cos

2
α =0         (3.33) 

 (P – V(u) – t n(u)) · n(u) + t sin
2
α = 0                  (3.34) 

 (P – V(u)) · Vu(u) – t {Vu(u) · n(u)–(P – V(u)) · nu(u)} =0                                 (3.35) 

 

For solving the system of Eqs. (3.33-3.35), the parameter t from Eq.(3.34) is extracted as  

 

 
α

uuP
t

2cos

)())(( n·V−
=                   (3.36) 

 

Substituting Eq. (3.36) into Eq. (3.33) yields the implicit representation f(x, y, z, u) = 0 of the 

frustum of a cone surface in 3D Euclidian space 

 

 (P – V(u)) · (P – V(u))–(1+tan
2
α){(P – V(u)) · n(u)}

2
 = 0         (3.37) 
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Also plugging Eq. (3.36) into Eq. (3.35) yields the following partial derivative 

0/),,,( =∂∂ uuzyxf of the Eq. (3.37) with respect to u 

 

 (P – V(u)) · Vu(u)+(1+tan
2
α) {(P – V(u)) · n(u)] {Vu(u) · n(u)–  

         (P – V(u)) · nu(u)} = 0         (3.38) 

Thus the property (3.1) holds for the frustum of a cone surface also. 

 

3.2.3 Applying the Methodology on the Toroidal Surface 

 It is shown in previous two sections that for the cylinder and the frustum of a cone 

surfaces the spine curve or trajectory of the moving sphere is linear. But in case of the 

toroidal surface, the moving sphere follows a circular trajectory. Figure 3.9 illustrates a 

toroidal surface with the moving sphere. 

 

 
 

Figure 3.9: The moving sphere of a toroidal surface 

in 5-axis motion 

 

The center of the moving sphere can be expressed as  

 

 m(t, u) = F(u) + R cos t d(u) + R sin t e(u)            (3.39) 

 

where two orthogonal unit vectors d and e define the plane of the circular trajectory in 3D 

Euclidian space, also R and F are the major radius and the center of the torus. Taking the 

partial derivatives of m with respect to t and u yields 
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 mt(t,u) = –R sint d(u) + R cos t e(u)                   (3.40)                             

 mu(t,u) = Fu(u) + R cost du(u) + R sin t eu(u)                                                    (3.41) 

 

Because the torus is a pipe surface the radius of the moving sphere is constant i.e. r(t) = r and 

thus rt = 0. When m, mt, mu, r and rt are plugged into Eqs. (3.13-3.15), the following 

expanded versions are obtained respectively. 

 

 (P – F(u)) · (P – F(u)) – 2 R cost(P – F(u)) · d 

                                                     – 2 R sint (P – F(u)) · e  +  R
2
  –  r

2 
 = 0                             (3.42) 

 (P – F(u) – R cost d – R sin t e) · (–R sint d + R cos t e) = 0                                 (3.43)  

 (P – F(u) – R cost d –R sin t e) · (Fu(u) + R cost du+ R sin t eu)  = 0                    (3.44) 

 

Solving Eq.(3.43) for the parameter t yields the following two expressions 

 

 
22 }))({(}))(({
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uPuP
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=                                                (3.45) 

 
22 }))({(}))(({

))((
sin

·eF·dF

e·F

uPuP

uP
t

−+−

−
=             (3.46)   

Plugging cost and sint into Eq. (3.42) yields the following implicit representation f (x, y, z, u) 

= 0 of the toroidal surface in 3D Euclidian space. 
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}))({(}))(({2

))(())((

·eF·dF

       F   · F  

uPuPR
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                                        (3.47) 

 

The above equation can be arranged by squaring the both sides and this yields  

 

 
0)}))({(}))(({(4
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For example when P = (x,y,z), F = (0,0,0), d = [1 0 0]
T
 and e = [0 1 0]

T 
 are plugged into  the 

Eq. (3.48), the well known formula of a torus is obtained in the origin of the Euclidian space 

as follows 

 (x
2
 + y

2
 + z

2
  + R

2
 – r

2
 )

2
 –4R

2
 (x

2
 + y

2
 )  =  0    

     

Also plugging cost and sint into Eq. (3.44) yields the following partial derivative 

0/),,,( =∂∂ uuzyxf of the Eq. (3.47) with respect to u. 

 

 ( ) 0}))({(}))(({2)())((
22 =−+−

∂

∂
+− ·eF·dF     F  · F  uPuP

u
RuuP u

      (3.49) 

 

Thus the property (3.1) holds for the toroidal surface also. 

 

3.3 Closed Form Swept Profile Equations  

 In section (3.1) a canal surface has been described explicitly by K(t,θ), where the 

parameter t represents the spine curve or the trajectory of the moving sphere center. Later in 

section (3.2), a methodology based on the two-parameter-family of spheres concept has been 

introduced. For describing the motion of the moving sphere, a new parameter u which 

represents a toolpath has been introduced. In this section by utilizing the two-parameter 

families of spheres, the closed form swept profile equations for the general surface of 

revolution will be derived. In general the radius R(t,u) and the center C(t,u) of the 

characteristic circle are defined by the following equations. 
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mC −=                                                                (3.51) 

 

where the center of the moving sphere m(t,u) defined  by two parameters. Note that these 

equations are very similar to those of canal surfaces defined in section (3.1.1), where the 
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center of the moving sphere is the function of t. A cutter surface considered as a set of the 

characteristic circles can be defined by using Eqs. (3.50) and (3.51) as 

 

 )),(sin),()(cos,(),(),,( 21 utututRututK wwC θθθ ++=            (3.52) 

 

where [ ]πθ 2,0∈ . In Eq. (3.52), two orthogonal unit vectors w1(t,u) and w2(t,u) define the 

plane of the characteristic circle K. In general the cutter geometries have either circular or 

linear spine curves. For example, the toroidal surface has a circular spine curve (Figure 3.10). 

In this case w1(t,u) and w2(t,u) represent respectively the normal M(t,u) and bi-normal B(t,u) 

unit vectors of the Frenet frame, i.e. the frame formed by the following three vectors 
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where T(t,u) is the tangent vector along the spine curve m(t,u).  

 

 
 

Figure 3.10: The characteristic circle K of the torus in the Frenet Frame 

 

On the other hand, cylindrical and conical surfaces have linear spine curves (Figure 3.11). In 

this case the Frenet Frame components are not applicable for them because the curvature 

vanishes and the following condition does not hold 
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),(),(

2

2

≠
∂

∂
×

∂

∂

t

ut

t

ut mm
                 (3.54) 

 

For this situation w1(t,u) and w2(t,u) in Eq. (3.52) represent  d and e components of the Tool 

Coordinate System(TCS) respectively. 

 

 
Figure 3.11: The characteristic circle K in TCS 

 

The points on the cutter surface that lie on the moving sphere are embedded in the 

characteristic circle K(t,u,θ). Thus the normal vector of the cutter surface can be expressed as 

(see Figures 3.10 and 3.11) 

 

 ),(),,(),,( ututut mKN −= θθ                                                                       (3.55) 

 

According to property (3.1) if a point is on the envelope surface then it is embedded in the 

circles K and S. Thus the following equation holds 

 

 0),(),,( =utut um·N θ                                                                           (3.56) 

 

where mu is the velocity vector of the moving sphere center. Plugging Eq. (3.55) into Eq. 

(3.56) yields 

 

 ( ) 0),(),(),,( =− utututK um·mθ               (3.57) 
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After replacing K with its equivalent from Eq. (3.52) and taking the dot product, Eq. (3.57) 

takes the following trigonometric form  

 

 0sincos 012 =−+ AAA θθ                                                              (3.58) 

 

where  

 ( ) ( ) ( )( )utututRA u ,,, 12 m·w=  

 ( ) ( ) ( )( )utututRA u ,,, 21 m·w=  
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Equation (3.58) can be written in the following form  

 

 ( ) 0sin 0

2

2

2

1 =−++ AAA βθ                 (3.59) 

 

where ( )12

1

2 ,tan AA
−=β . Solving Eq. (3.59) for θ yields 
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Under the condition of 2

0

2

2

2

1 AAA ≥+ , the inverse function )(sin 1
x

− is in the range of   

]2/,2/[ ππ− . In this case, there exist real solutions for 2,1θ and the characteristic circle K 

contains one or two grazing points. Plugging 2,1θ into Eq. (3.52) yields the closed form 

equation of the cutter envelope surface 

 

 )),(sin),()(cos,(),(),,( 22,112,1 utututRututK wwC θθθ ++=      (3.60) 
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Note that, under the condition of 2

0

2

2

2

1 AAA <+ , the Eq. (3.58) does not have a real solution. 

When this is the case, certain cross sections of the cutter do not contain any grazing point 

(Figure 3.12). 

 

 
 

Figure 3.12: Limits of the grazing points in the general  

surface of revolution 

 

As mentioned before in section (3.1.2) cylinder and torus surfaces are called pipe surfaces. 

By definition a pipe surface is an envelope of the family of spheres with a constant radius. In 

this surface type the centers of the characteristic circle and the moving sphere equal to each 

other. Eq. (3.14) which represents a plane with a normal direction vector mt contains an rt 

term. For a pipe surface because the radius of the moving sphere r is constant, this term 

becomes equal to zero, i.e.  rt = 0. In this case the characteristic circle obtained by 

intersecting Eq. (3.13) and Eq.(3.14) becomes a great circle of the moving sphere, lying in 

the normal plane of the spine curve. Also this great circle is perpendicular to the vector mt. 

Thus a moving sphere of a pipe surface under a cutter motion contains two great circles: The 

first one which is perpendicular to vector mt represents the cutter surface geometry and the 

second one which is perpendicular to vector mu represents the tool motion. Both great circles 

share the same center m along a spine curve (Figure 3.13) 
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            (a)                                                               (b) 

 

Figure 3.13: The characteristic circle K becomes a great circle in (a) torus, 

and in (b) cylinder surfaces 

 

If a cutter geometry is a pipe surface, there is an alternative simpler solution for obtaining 

grazing points on the cutter envelope surface. The following property motivates this 

alternative solution for pipe surfaces. 

 

Property 3.2: A surface normal vector of a moving sphere, generated by the vector product 

of mt and mu, passes through a grazing point on the envelope surface. 

 

According to property (3.2), the normal vector of a moving sphere N which passes through a 

grazing point P1 and the center of the moving sphere m, is perpendicular to both mt and mu 

(Figure 3.13(a-b)). Thus N can be expressed by the following equation. 

 

 ( ) ( )utut ut ,, mmN ×=                                                                            (3.61) 

 

Using equation (3.61), points P1 and P2 on the envelope surface can be calculated as  

 ( )
|||| N

N
,m1 rutP += ,  

 ( )
|||| N

N
,m2 rutP −=                                                               (3.62) 
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Note that the angle between two grazing points P1 and P2 is 180
0
 for cutter geometries 

represented by pipe surfaces. A detailed proof of the property (3.2) is presented in Appendix 

A.1. 

 

3.4 Examples 

 The presented methodology has been implemented using the ACIS solid modeling kernel. 

Figure 3.14 shows the envelope surfaces of Flat-End, Ball-End and Fillet-End cutters in 5-

axis milling. For each illustration three cutter geometries are shown for the cutter locations: 

at the beginning, at the middle and at the end of the toolpath respectively. Also for these 

cutter locations their corresponding swept profiles curves colored by red are shown. In these 

figures cutter envelope surfaces are generated by the two-parameter-family of spheres. For 

the Flat-End and the Ball-End mills a member of this family is shown by a red sphere. On the 

other hand for the Fillet-End mill two spheres are shown, green sphere is for the torus part 

and the red sphere is for the cylinder part respectively. For these examples a single toolpath 

segment is used. In another example a Taper-Ball-End mill is performing 5-axis tool motions 

(Figure 3.15). The cutter envelope surfaces are shown from different point of views. In this 

case the toolpath contains a number of segments. 

 

                   
       (a)                                          (b)                                            (c) 

 

Figure 3.14: Envelopes surfaces of (a) Flat-End, (b) Ball-End, and 

(c)Fillet-End cutters. 

 



Chapter 3. Cutter Swept Volume Generation 

 59 

 
 

 
 

Figure 3.15: Envelope surfaces of a Taper-Ball-End mill from different  

points of view in 5-axis milling 

 

 

3.5 Discussion 

 A typical NC toolpath may contain thousands of tool motions which make the 

computational cost for characterizing the geometry of each tool swept volume prohibitively 

expensive. In this chapter an analytical approach for determining the shape of the swept 

envelopes generated by a general surface of revolution has been presented. The cutter 

geometries have been modeled as canal surfaces generated by the one-parameter family of 

spheres. For modeling the 5-axis tool motions a new parameter has been introduced for the 

center of the moving sphere. For describing the cutter envelope surfaces the two-parameter-

family of spheres has been introduced. Analytically it has been proven for a general surface 

of revolution that any point on the envelope surface also belongs to a member from the two-

parameter-family of spheres.  In this methodology describing the radius function and the 

spine curve of the moving sphere different cutter surfaces can be obtained. From this sense 

the methodology is independent of any particular cutter geometry. The implementation of the 

methodology is simple, especially if the cutter geometries are pipe surfaces such as torus and 

circular cylinder fewer calculations are used. Although the examples from the application of 
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the methodology are shown for the common milling geometries described by 7-parameter 

APT like cutters [46], the developed methodology can be applied to rare cutter geometries 

also (Figure 3.16). Later in the next chapter it will be shown that using the methodology 

developed in this chapter brings computational efficiency to the update process of in-process 

workpieces represented by discrete vectors. The spherical surface has not been considered in 

developments because simply the swept profile of a sphere is the great circle which is 

passing through the center of the sphere and having a normal along the direction of the 

motion. Self intersections in this research have not been considered. Modifications to the 

methodology will need to be developed for this special case. 

        

Figure 3.16: Different cutter geometries generated by a moving sphere
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Chapter 4 

In-process Workpiece Modeling  

 

 

 In this chapter the methodologies for modeling the in-process workpiece in milling 

operations are presented. During the machining simulation for each tool movement the 

modification of the workpiece geometry is required to keep track of the material removal 

process. Because the NC verification and Cutter Workpiece Engagement (CWE) extraction 

are directly dependent on the material removal an accurate in-process workpiece modeling is 

needed. Several choices for modeling the in-process work piece are exist. The two most 

common are mathematically accurate solid modeling that is used in CAD systems and 

approximate modeling such as those used in computer graphics: facetted and discrete vector 

models. In the workpiece update process first the swept volume of a given tool movement in 

the cutter location data file is modeled and then this volume is subtracted from the in-process 

workpiece. For updating the workpiece surfaces represented by the solid or faceted models 

third party softwares can be used. For example in the solid modeler based approach the cutter 

swept volumes can be generated by using the ACIS solid modeling kernel and then using the 

Boolean subtraction operation defined in this kernel the cutter swept volumes are subtracted 

from the in-process workpiece. These update methodologies are briefly introduced in this 

chapter. On the other hand for the workpiece geometries represented by discrete vectors 

efficient in-process workpiece update methodologies for different cutter geometries 

performing multi-axis machining are needed. In the literature [7,8,18,24,32,41,91] the 

discrete vectors have orientations along the z-axis of the standard bases of R
3
. But when the 

in-process workpiece has features like vertical walls and sharp edges, representing the 

workpiece with one directional vectors generates less accurate results in visualization of the 

final product [43] and CWE extractions. For increasing the accuracy more vectors with 

different orientations are needed. But in this case localizing the cutter envelope during the 

simulation becomes difficult and therefore the computational time increases. Therefore an 

efficient localization methodology is required. Also in recent works [7,8] the tool axis has a 

fixed orientation along the z-axis of the standard bases of R
3
 and the workpiece updates are 

performed numerically for the milling cutter geometries. Therefore in this chapter the vector 
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based update methodologies are developed for the vectors having different orientations. 

These methodologies allow multi-axis milling in which the tool may have an arbitrary 

orientation in space. Also for the cutter geometries defined by a circular cylinder, frustum of 

a cone, sphere and plane the updating calculations are performed analytically. For the torus 

geometry numerical approaches with guaranteed root finding results are utilized. 

 The common milling cutter geometries are presented in section (4.2.1). In these 

representations cutter surfaces are defined parametrically at the origin of the standard bases 

of R
3
. In this section for derivations the properties of canal surfaces given in chapter (3) are 

utilized. The vector based workpiece model and the localization of the cutter envelope are 

presented in section (4.2.2). In the first part of this section a workpiece modeling strategy is 

introduced and in the second part a localization methodology for the cutter envelope surfaces 

is presented. The workpiece update methodologies in multi-axis milling for different cutter 

geometries are presented in section (4.2.3). In the introduction part of this section the general 

formulas for defining the cutter envelopes are derived and then in the following subsections 

these formulas are utilized in the intersection calculations of different cutter geometries. 

Examples from the implementation of the methodologies are shown in section (4.2.4), and 

finally the chapter ends with the discussion in section (4.3). 

 

4.1 Modeling the In-process Workpiece in Solid and Facetted representation 

 A solid modeler based in-process workpiece update is illustrated in Figure (4.1). Inputs 

from a CAD/CAM system include the geometric representation of the initial workpiece, the 

tool path and the geometric description of the cutting tool. In the first step, the swept volumes 

of the cutting tool are generated for a given tool path. Then in the second step these swept 

volumes are subtracted from the initial workpiece sequentially for obtaining the updated 

workpiece (in-process workpiece). In this research for modeling the in-process workpiece 

and the swept volume the B-rep based geometric modeler ACIS kernel and C++ is utilized.  
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Figure 4.1:  A B-rep Solid Modeler based in-process workpiece update.  

 

In this research for updating the in-process workpiece represented by tessellated models a 

prototype system is assembled using existing commercial software applications and C++ 

implementations. This system is shown in (Figure4.2). The cutter swept volume is generated 

by the ACIS solid modeler and then this swept volume is exported as a STL format using 

ACIS functions. A Boolean intersection between this swept volume and the current in-

process workpiece is performed using the polyhedral modeling Boolean operators 

implemented in a commercial application, Magics X [51]. This prototype system creates STL 

model of the in-process workpiece. 

 
 

Figure 4.2:  A Polyhedral Modeler based in-process workpiece update.  
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4.2 Modeling the In-process Workpiece in Vector Based Representation 

In this section the multi-axis milling update methodologies are developed for workpieces 

defined by discrete vectors with different orientations. For simplifying the intersection 

calculations between discrete vectors and the tool envelope the properties of canal surfaces 

are utilized. 

 

4.2.1 Milling Cutter Geometries in Parametric Form 

 The methodologies for updating the in-process workpiece represented by discrete vectors 

are developed for cutters with natural quadrics and toroidal surfaces. Natural quadrics consist 

of the sphere, circular cylinders and the cone. Together with the plane (a degenerate quadric) 

and torus these constitute the surface geometries found on the majority of cutters used in 

milling. In this chapter the major cutter geometries (circular cylinder, frustum of a cone and 

torus) are defined parametrically by using the properties of the canal surfaces defined in 

chapter (3). The parametric representation of a canal surface generated by a one-parameter 

families of spheres is given by the characteristic circle as 

 

 ))(sin)()(cos()(),( 21 tttRttK wwC θθθ ++=                                             (4.1) 

  

where θ∈ [0,2π]. C(t) and R(t) represent the center and radius of the characteristic circle 

respectively and they are expressed as follows 
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where for t∈R, m(t) and r(t) are the center of the moving sphere and the radius function 

respectively. The center m(t) is located on the spine curve (the trajectory of the moving 

sphere). Also in Eq. (4.1) two orthogonal unit vectors w1(t) and w2(t) define the plane of the 

characteristic circle K(t, θ). Figure (4.3) illustrates the major cutter geometries as canal 
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surfaces with respect to the standard basis of R
3
 denoted by (i, j, k) unit vectors and the 

origin O. In this figure the cutter geometries have either circular or linear spine curves. If 

they have linear spine curves (See Figure 4.3,a-b)  w1(t) and w2(t) represent  the x and y axis 

of the local coordinate system respectively. On the other hand if they have a circular spine 

curve (see Figure 4.3 -c) w1(t) and w2(t) represent respectively the normal M(t) and bi-

normal B(t) unit vectors of the Frenet frame, i.e. the frame formed by the following three 

vectors 
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where T(t) is the unit tangent vector in the direction of )(tm′ . It is assumed in Eq. (4.4) that 

the spine curve represented by m(t) is biregular, in other words along m(t) the following 

condition is fulfilled 

 

 0)()( ≠′′×′ tt mm                                   (4.5) 

 

            
              (a)                                       (b)                                               (c) 

Figure 4.3:  Cutter geometries as canal surfaces: (a) cylinder,  

 (b) frustum of a cone and (c) torus). 

 

In the following sub sections the parametric representations of the surface geometries shown 

in Figure (4.3) are found by using the Eqs. (4.1-4.5). Later in section (4.2.3) they will be used 

for updating the in-process workpiece. 
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4.2.1.1 Cylinder Surface 

 The cylinder surface can be parameterized by using the characteristic circle given in 

Eq.(4.1). Two of the variables in this equation C(t) and R(t) depend on the center and the 

radius function of a moving sphere. From Figure (4.3 -a), the center of a one-parameter 

family of spheres can be written as 
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where the parameter t takes values between zero and the height of the cylinder, i.e. t∈[0,h]. 

The partial derivative of the Eq. (4.6) with respect to t equals to the unit vector k and 

thus 1||)(|| =′ tm . As explained in chapter (3), the cylinder surface is also a pipe surface with a 

constant radius r. Therefore the derivative of the radius function is equal to zero i.e. 0)( =′ tr . 

Thus the center and the radius of the characteristic circle can be represented by C(t) = tk and 

R(t) = r respectively. Plugging the center and the radius into Eq. (4.1) yields the cylinder 

surface geometry in the following parametric form 
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4.2.1.2 Frustum of a Cone Surface 

 As illustrated in Figure (4.3 -b), the origin of the standard basis O is located above the 

cutter bottom center with distance equal to Rb tan α, where Rb and α represent the radius of 

the cutter bottom and the cone half-angle respectively. The center of a moving sphere is 

obtained by km tt =)( , where the limits of t from Figure (4.3-b) are defined by 
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where h represents the height.  For the frustum of a cone surface the radius of a moving 

sphere r(t) is given by  
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When m(t), r(t) and their derivatives with respect to t are plugged into Eqs.(4.2) and (4.3), 

the center and the radius of the characteristic circle is obtained as follows 

 

 C(t) = (t cos
2
α – Rb tan α ) k              (4.10-a) 

 R(t) = t sinα cosα + Rb                                                                                       (4.10-b) 

              

Plugging Eqs.(4.10-a,b) into Eq. (4.1) yields the frustum of a cone surface geometry in the 

following parametric form 
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4.2.1.3 Torus Surface 

 In Figure (4.3-c) a torus surface is shown with the origin O in the center of the torus. For 

a torus the spine curve is a circle and therefore the center of a moving sphere is obtained by  
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where ρ  is the major radius of the torus and t∈[0, 2π]. The partial derivative of Eq. (4.12) 

with respect to t is obtained as follows 
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  j   i  m ttt cossin)( ρρ +−=′                  (4.13) 

 

As a pipe surface torus has a constant radius r and therefore 0)( =′ tr . When )(tm , )(tm′ , r(t) 

and )(tr ′ are plugged into Eqs.(4.2) and (4.3), the center and the radius of the characteristic 

circle are obtained as follows 

 

  j   i  C ttt sincos)( ρρ +=                     (4.14-a) 

 rtR =)(                    (4.14-b) 

 

Also for describing the characteristic circle of the torus the components of the Frenet frame 

are needed. For this purpose the partial derivative of Eq.(4.13) with respect to t is obtained as 

follows 

 

  j    i  m tRtRt sincos)( −−=′′                  (4.15) 

 

Plugging )(tm , )(tm′ and )(tm ′′  into Eq. (4.4) yields 

 

 T(t) = – sint i + cost j,      M(t) = k,    B(t) =  cost i+ sint j          (4.16) 

 

Finally plugging Eqs. (4.14-a,b) and (4.16) into Eq. (4.1) yields torus surface geometry in the 

following parametric form 
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4.2.2 Workpiece Model and Localization 

 There are two main approaches for representing the in-process workpiece using discrete 

vectors [43]: Discrete Normal Vector and Discrete Vertical Vector approaches. In the 
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Discrete Normal Vector approach (Figure 4.4 -a) a workpice is made up of discrete vectors 

whose directions are the surface normals of the workpiece. In this representation all 

directions are not necessarily identical. Also spacing may vary depending upon the surface 

local properties. On the other hand, in the Discrete Vertical Vector approach (Figure 4.4-b) 

all discrete vectors of the workpiece model lie in only one direction regardless of surface 

normal directions, where the directions are along the vertical z-axis of the standard basis of 

R
3
. 

 

 
                                   (a)                                                            (b) 

Figure 4.4:  Representing the workpiece surfaces by (a) surface normal vectors  

and (b) vertical vectors. 

 

 

The workpiece model can have vertical walls and sharp edges (Figure 4.5). The Discrete 

Normal Vector approach can represent those surface features well with respect to a given 

tolerance. But because in this approach the directions of discrete vectors are not identical, 

localizing the cutter envelope surface during the machining simulation becomes difficult and 

therefore the computational time increases. During the machining simulation the most time 

consuming process is the localization of the cutter envelope [43]. Although the Discrete 

Vertical Vector approach gives less accurate results in the representation of the vertical walls 

and the sharp edges, it is computationally faster and the localization of the cutter envelope is 

easy.  
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Figure 4.5:  Representing the feature shapes in Discrete Normal vector  

and discrete vertical vector approaches. 

 

 For some workpiece geometries 3-axis machining is not suitable for updating the 

surfaces. For example, if the part is deep (Figure 4.6-a) a 3-axis tool path is not sufficient 

enough for finishing. Nor can they be used for milling hard material with long cutters without 

generating a bad surface finish and long machining times. For solving this problem the 

spindle of the cutter is tilted and a shorter cutting tool is used (Figure 4.6-b). This type of the 

machining is called as (3+2)-axis milling in which a cutter can have an arbitrary fixed 

orientation in space. In this thesis the discrete vector update methodologies are developed for 

(3+2)-axis milling. Also this methodology can be adapted to 5-Axis milling with some 

approximations. 

 

 Figure 4.6 has been removed due to copyright restrictions. The information removed is 

the (a) 3-Axis machining, and (b) (3+2) - Axis machining [36]. 

 

In this research the workpiece is modeled by discrete vectors having orientations in the 

directions of x,y,z-axes of the standard basis of R
3
. Therefore this representation can be seen 

as an enhanced version of the Discrete Vertical Vector approach. In this representation more 

vectors in different directions are used and thus, especially when the workpiece has features 

like vertical walls and sharp edges, the quality in the visualization of the final product and 

CWE area is increased. Also the localization advantage of the Discrete Vertical Vector 

approach is preserved. In machining simulations the initial workpiece geometry is mostly 

represented by a rectangular stock. The modeling this stock with discrete vectors is easy 

because for a given direction all discrete vectors have the same height and the same 
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orientation. But on the other hand if the initial workpiece surfaces have arbitrary shapes then 

some steps must be taken for representing the initial workpiece using discrete vectors. In this 

research the workpiece is initially represented by a tessellated (triangular facets) model. For 

transforming this tessellated model into a discrete vector model first the Axis Aligned 

Bounding Box (AABB) of the initial workpiece model is obtained (Figure 4.7-a). For this 

purpose the maximum and minimum x,y,z coordinates of the facets are used. The AABB is a 

rectangular six-sided box (in 3D, four sided in 2D) categorized by having its faces oriented in 

such a way that its face normals are at all times parallel with the axes of R
3
. Then from the 

faces represented by Oxy, Oxz and Oyz coordinate systems (see figure 4.7-b) rays are shot 

through the tessellated model in the directions of the z, y and x - axes of R
3
 respectively. For 

finding the portions of the rays which represent the workpiece, triangle/ ray intersections are 

performed. If a ray is made up of several sub lines then using the linked list data structure 

these lines are connected to each other. Also later during the machining simulation if a line is 

partitioned into smaller lines again the linked list data structure is used for connecting them. 

Note that for localization purposes (it will be explained later) the discrete vectors are located 

in the buckets. 

                                      

 
         (a)                                                    (b) 

Figure 4.7:  Representing initial workpiece with discrete vectors located 

in XY, XZ and YZ planes  

 

 For updating the in-process workpiece the discrete vectors are intersected with the tool 

envelope. It would be computationally expensive to calculate the intersections of all the 

discrete vectors for each tool movement. It is therefore desirable to localize the calculations 

by eliminating from consideration the vectors which have no possibility of intersecting the 

tool envelope for the given toolpath segment. In this research for localizing the cutter 

envelope during the simulation the bounding box concept is utilized. There are several types 
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of bounding boxes in 2D space such as a circle, Axis Aligned Bounding Box (AABB), 

Oriented Bounding Box (OBB), convex hull etc. There is always a tradeoff between a better 

bound and a faster test in these approaches. For this research the AABB approach in 2D 

space is utilized. The best feature of the AABB is its fast overlap check, which simply 

involves direct comparison of individual coordinate values. In this work for a given tool 

movement three AABBs which are the projections of the tool envelope on to Oxy, Oxz and 

Oyz coordinate systems are generated. In the following section the steps for obtaining the 

AABB of the tool envelope in Oxy coordinate system are given. The AABBs in Oxz and Oyz 

coordinate systems can be obtained following the same steps. The localization of the tool 

envelope in Oxy coordinate system has four steps. For these steps please refer to Figure (4.8). 

In this figure a Taper-Ball-End mill is moving between the cutter locations PS and PE. 

 

Step 1: Finding the bounding cylinder in 3D: In this step at the cutter location point PS the 

bounding cylinder of the cutter having an orientation in the direction of the tool axis is found. 

The dimensions of the bounding cylinder are defined by the height and the largest radius of 

the cutter. For example for the Taper-Ball-End mill shown in (Figure 4.8) the top circle (ctop) 

has the largest radius r. Therefore using the same radius r the bottom circle (cbottom) of the 

bounding cylinder can be obtained. The center of the cbottom is located at the tool tip point of 

the cutter. There is a symmetry plane which contains the tool rotation axis and passes through 

the centers of the ctop and cbottom. The normal vector of this plane (Nplane) can be obtained 

by ]100[plane ×= nN . Intersecting this plane with ctop and cbottom of the bounding cylinder 

generates four points I1, I2, I3, and I4 respectively in 3D space.  



Chapter 4. In-process Workpiece Modeling 

 73 

 
 

Figure 4.8: AABB of a tool movement in Oxy coordinate system. 

 

Step 2: Finding the bounding box of the cutter in 2D: Assuming I1 and I4 are the 

outermost points, two circles ctop and cbottom and those four intersection points are projected 

onto Oxy coordinate system. This projection generates the bounding box of the cutter which 

has the corner points P1, P2, P3, and P4. These corner points can be calculated by  
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where nx and ny  are the components of the tool rotation axis vector n. 
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Step 3: Finding the AABB of the tool movement: In this stage first using the same steps (1 

and 2) the bounding box of the cutter for the location of PE is found. Now there are two 

bounding boxes with eight corner points in Oxy coordinate system. Then using the minimum 

and maximum x and y coordinates of those eight corner points (P1 to P8) the AABB of the 

tool movement is obtained. Note that because the tool performs a motion with a constant 

orientation, the projections of the intermediate tool motions between PS and PE are also 

contained in the same AABB of the tool movement.  

Step 4: Finding the set of buckets: In this step the overlap check is performed between the 

buckets and the AABB of the tool movement. The buckets in Oxy coordinate system can be 

thought as AABBs. For finding the overlapping buckets the AABB – AABB intersection is 

performed. The algorithm for this test can be found in [27]. If an overlap is found then the 

discrete vectors in the overlapping bucket are used for the intersection test for updating the 

in-process workpiece. Thus only a small percentage of all the discrete vectors are examined 

for each tool movement. The intersections will be shown in the next section for different 

cutter geometries. 

 

4.2.3 Updating In-process Workpiece in Multi-Axis Milling 

 In this section the in-process workpiece surfaces are updated by using different milling 

cutters. Although in section (4.2.2) the discrete vectors have orientations along the x, y and z-

axes of the standard basis of R
3
, in this section the update formulas will be derived for the 

general case in which the discrete vectors have arbitrary orientations. Also for the 

calculations (3+2)-axis milling in which a cutter can have an arbitrary fixed orientation in 

space is considered.  

In multi-axis milling tool motions are represented by the trajectory of the tool control 

point F(u) and the instantaneous orientation of the tool axis A(u) which is always coincident 

with the tool rotation axis, where u∈[0,1]. In section (4.2.1) the major cutter geometries are 

parametrically defined with respect to the standard basis of R
3
 which has an origin at O. In 

this section the control points of these geometries are defined with respect to the location 

which corresponds to O. For example the location of the control point for the cylindrical 

surface is at the bottom radial center, for the frustum of a cone surface it is above the bottom 

radial center with distance equals to Rb tanα and for the toroidal surface it is at the center of 
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the torus. A complex toolpath can be considered as the combination of line segments, where 

each segment represents the linear distance between two consecutive cutter location points. 

For a linear tool path (line segment) the control point can be expressed with respect to the 

tool path start PS(xS,yS,zS) and end PE(xE, yE,zE) coordinates as follows 

 

 F(u) = PS + (PE - PS ) u                                 (4.19) 

 

where the difference of (PE - PS) is called as the instantaneous feed direction denoted by f. 

Note that for the (3+2)-axis machining the instantaneous tool orientation A(u) is fixed 

between the tool locations PS and PE. Two sets of coordinate systems are used in this paper. 

A Work Piece Coordinate System (WCS) which is coincident with the standard basis of 

R
3
denoted by unit vectors [i j k], and a local Tool Coordinate System (TCS) denoted by unit 

vectors [d e n]. Using F and A, one can define TCS on the tool defined by a set of mutually 

orthogonal unit vectors n, d, and e. The TCS is defined as 

 

 |A|/An == ][ zyx nnn                                                                                          (4.20) 

 if 0≠
∂
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×

u

F
A  then 

||

][

u

ueee zyx

∂
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×
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×

==
F

A

F
A

e  and ned ×== ][ zyx ddd       

 

According to above definitions it is not allowed for the cutter to plunge along its rotational 

axis A(u). Also it is assumed that the d axis of the TCS is aligned with the instantaneous feed 

direction. In this work the discrete vectors which represent the workpiece are defined by 

 

 ( ) vIIIvI aba −+=)(                   (4.21) 

 

where v∈[0, 1] and also ( )aaaa zyxI ,, and ( )bbbb zyxI ,, are the start and end points of a vector 

respectively. If the cutter surfaces parameterized in section (4.2.1) move with respect to TCS 

a point on the cutter surface can be described in WCS as follows 

 



Chapter 4. In-process Workpiece Modeling 

 76 

 ),(][)(),,( θθ tKuutG MM nedF +=                                (4.22) 

 

where the subscript M represents the cutter surface type i.e. cylinder, frustum and torus. 

When a cutter moves along a toolpath three types of surfaces are generated: The ingress 

surface ),,( utGM θ−  at u = 0, the intermediate portion (also called as the envelope surface) 

),,(0 utGM θ  at 0<u<1 and the egress surface ),,( utGM θ+ at u = 1 (see Figure 4.9). Updating 

the in-process workpiece at the start and end of the toolpath segment is easy, for this purpose 

the discrete vectors are intersected with the tool geometry at PS and PE respectively. In the 

following sub sections the formulas will be developed for updating the in-process workpiece 

in the intermediate portion )10,,(0 << utGM θ . 

 

 
 

Figure 4.9: Decomposing the swept surface into three regions 

 

Cutter surface geometries given in section (4.2.1) are canal surfaces and therefore their 

surface normal N can be represented in the WCS as follows 

 

 ),(),,(),,( ututGut M mN −= θθ                                               (4.23) 

 

where m(t,u) is the center of a moving sphere which is defined in the WCS as follows 
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 )(][)(),( tuut mnedFm +=                                                         (4.24) 

 

A point on the envelope surface is embedded in ),,( utGM θ and also the surface normal (N) 

passing through it is perpendicular to the velocity vector at the center of the moving sphere. 

In (3+2)-axis milling with linear toolpath the velocity vector is equal to the feed direction 

vector (f). Therefore for an arbitrary point on the envelope surface the following dot product 

equation holds 

 

 0),,(),,(0 == f·N ututGM θθ                  (4.25) 

 

Plugging Eq. (4.23) into the above equation yields 

 

 ( ) 0),(),,( =− f·m ututGM θ                                                (4.26) 

 

The above equation is solved for θ with respect to the given values of parameters u and t. 

There are three possible solutions for θ: two distinct real solutions θ1,2 ,  two equal real 

solutions 21 θθ =  , and no real solution. Plugging the values of θ into Eq. (4.22) yields the 

locations of the points on the envelope surface 

 

 ),(][)(),,( 2,12,12,1 θθ tKuPutG MM nedF +==                                     (4.27) 

 

where P1,2 represents two points which correspond to θ1,2 respectively. As explained in 

chapter (3), the circular cylinder and torus are pipe surfaces. By definition a pipe surface is 

described as an envelope of the family of the spheres with a constant radius. The spine curve 

(also called as trajectory) of a moving sphere is a line for the cylinder and a circle for the 

torus. It has been proven in chapter (3) that for the circular cylinder and torus surfaces there 

is an alternative solution in finding the location of an arbitrary point on the envelope surface. 

In this alternative solution the normal vector passing through a point on the envelope surface 

can be obtained by  
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Then using the above equation the coordinates of an arbitrary point on the envelope surface 

with respect to the given values of u and t are found by 

 

 
||),(||

),(
),(2,1

ut

ut
rutP

N

N
m m=                  (4.29) 

               

where r is the radius of the moving sphere. In Eq. (4.29) the signs (m ) indicates that there are 

two opposite points on the cutter envelope surface with an angular difference equals to 180
0
. 

The formulas developed in this section will be used in the following sub sections for different 

cutter geometries.  

 

4.2.3.1 Updating with Flat-End mill 

 A Flat-End mill is made up of a cylindrical surface at the side and a flat surface at the 

bottom. Depending on the feed vector direction the cylindrical and flat surfaces engage with 

the workpiece within [0,π] and [0,2π] angular ranges respectively. In the following two 

subsections the analytical formulas will be derived for these surfaces. 

 

Cylindrical surface 

 As explained before the circular cylinder is a pipe surface and a location of a point on the 

envelope surface can be found with either Eq. (4.27) or Eq. (4.29). Because of its simplicity 

the Eq. (4.29) will be used in derivations. The center of the moving sphere for the cylindrical 

surface can be obtained by plugging Eqs. (4.6) and (4.19) into Eq. (4.24) 
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For finding the normal vector defined in Eq. (4.28) the partial derivatives of Eq. (4.30) with 

respect to u and t are taken as follows 

 

 ( ) f
m

=−=
∂

∂
SE PP

u

ut ),(
,  n

m
=

∂

∂

t

ut ),(
             (4.31) 

 

Plugging Eqs. (4.30) and (4.31) into Eq.(4.29) yields the coordinates of points on the cylinder 

envelope surface as follows 

 

 nfe turPP S ++= )(2,1 m                       (4.32) 

 

When the values of t∈[0,h] and u∈[0,1] are substituted into Eq. (4.32) two planar envelope 

surfaces denoted by 0

cylinderG  are generated (see Figure 4.10). These surfaces spanned by two 

linearly independent vectors f and n have their origins at the locations erPS +  and erPS − . 

The feed (f) and tool axis (n) vectors are linearly independent because according to TCS 

definition given in Eq. (4.20) the cutter does not have a plunging motion along its rotational 

axis. Therefore the directions of these two vectors are not opposite. 

 

 
 

Figure 4.10: Envelope surfaces generated by the cylindrical part of  

a Flat-End mill 
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A point at which a vector intersects the envelopes ( 0

cylinderG ) is described by setting the vector 

line I(v) given in Eq. (4.21) equals to P1,2 given in Eq. (4.32). Thus this yields a linear system 

of three equations in three variables t, u and v as follows 

 

 nfe turPvIII Saba ++=−+ )()( m                                            (4.33) 

 

The Eq. (4.33) can be written in a matrix forms as 

 

 AB
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u
1−=
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                    (4.34) 

 

where  
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There are three possible intersection cases between an envelope plane and a vector: no 

intersection, vector intersects in one point and vector lies in the plane. All these cases are 

illustrated in Figure (4.11 -a,b,c). 

 

 
             (a)                          (b)                               (c) 

Figure 4.11: Possible intersections between a vector and envelope plane: (a) no intersection, 

(b) one intersection, and (c) vector lies in the plane. 

 

If the vector is parallel to the envelope plane or if it lies in the envelope plane then the 

columns of the matrix B will be linearly dependant. In this case because the matrix B 
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becomes singular there will be no real solution for Eq. (4.34). If the vector intersects the 

envelope planes (see Figure 4.12), the real parameter values u1,2 , v1,2  and t1,2  are obtained 

from Eq. (4.34). If these parameter values satisfy the ranges defined by t∈[0,h], u∈[0,1] and 

v∈[0,1] then the vector is updated. 

 

 
Figure 4.12: Parameter sets for updating the discrete vector 

 

 

Bottom-Flat surface 

  Figure (4.13) illustrates the Bottom-Flat surface of a Flat-End mill. This surface (also it 

can be thought as a disc) is enclosed by a circle defined in WCS. Because a disc is not a canal 

surface, in this section a different approach is used for the derivations. The parametric 

representation for a circle of radius R centered at F(u) is given by  

 

 ( ) edF tRtRutuP sincos)(, ++=                (4.35) 

     

where t∈[0,2π], d = [dx  dy  dz] and e = [ex  ey  ez] are two orthogonal unit vectors of the TCS 

which define the plane of the circle.  
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Figure 4.13: Intersecting the Bottom-Flat surface with a discrete vector. 

 

A point at which a vector intersects the Bottom-Flat surface is described by setting the line 

I(v) from Eq.(4.21) equals to P(u,t) given in Eq. (4.35). Thus this yields a nonlinear system of 

three equations in three variables u, t and v as follows 

 

 ( ) xxSESaba etRdtRuxxxvxxx sincos)( ++−+=−+                       (4.36-a)

 ( ) yySESaba etRdtRuyyyvyyy sincos)( ++−+=−+                              (4.36-b) 

 ( ) zzSESaba etRdtRuzzzvzzz sincos)( ++−+=−+                                 (4.36-c) 

 

For the general solution of this system, first the equivalent of the variable v from Eq. (4.36-b) 

is substituted into Eqs.(4.36-a) and (4.36-c) respectively. Thus two nonlinear equations with 

variables u and t are obtained. Then the equivalent of u from one of these two equations is 

plugged into another for eliminating u. Therefore the final nonlinear equation only depends 

on the variable t and it can be solved analytically. But as explained in section (4.2.2), because 

of the localization approach adopted the workpiece is represented by discrete vectors having 

orientations in the directions of x,y,z–axes of the standard basis of R
3
. In this section the 

formulas are derived for the discrete vectors having orientations in the direction of the z-axis 

of R
3
. For the x and y directions similar steps can be applied. Having orientations along the 

z-axis of R
3
 eliminates v from Eqs. (4.36-a) and (4.36-b). Further for eliminating u the 
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equivalent of u from Eq. (4.36-a) is plugged into Eq. (4.36-b) and this yields the following 

equation with variable t 

  

 0sincos =−+ CtBtA                         (4.37) 

 

where the constant coefficients are given by 

 ( )
ySExSE dxxdyyRA )()( −−−=  

 ( )
ySExSE exxeyyRB )()( −−−=  

 )()()()( SaSEaSSE xxyyyyxxC −−+−−=  

Eq. (4.37) can be written in the following form  

 

 ( ) 0sin22 =−++ CtBA β                  (4.38) 

 

where ( )BA,tan
1

2

−=β . Solving Eq. (4.38) for t yields 
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                                                             (4.39) 

 

If in Eq. (4.39) 222
CBA ≥+  then the inverse function (.)sin 1− is in the range of   

]2/,2/[ ππ− . In this case, there exist real solutions t1,2. For updating the discrete vector the 

values of u and v must be checked also. Therefore t1,2 are plugged into Eq. (4.36-a) for 

obtaining u values. Later the values of t and u are plugged into Eq. (4.36-c) and this yields 

the values of v.  If the parameter values are in the ranges defined by u∈[0,1] and v∈[0,1], 

then the vector is updated. Also note that when the Bottom-Flat surface moves along a linear 

tool path, an elliptical cylinder is generated (plunging or horizontal motions are excluded). In 

Figure (4.14) three possible intersection cases between this cylinder and a vector are 

illustrated for a given tool path defined between PS and PE. 
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Figure 4.14: Intersection cases between the Bottom-Flat surface and a discrete vector 

 

 

4.2.3.2 Updating with Tapered-Flat-End Mill 

 A Tapered-Flat-End mill is made up of a frustum of a cone surface at the side and a flat 

surface at the bottom. With respect to the feed vector both surfaces engage with the 

workpiece within [0, 2π] angular ranges. In this section the analytical formulas for updating 

the in-process workpiece are derived for the frustum of a cone surface. The formulas for the 

bottom flat part can be used from section (4.2.3.1). When Eq. (4.11) is plugged into Eq. 

(4.22) the frustum of a cone surface in WCS is obtained as follows 
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For finding the center of a moving sphere in WCS, km tt =)(  from section (4.2.1.2) is 

plugged into Eq. (4.24) and this yields 
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The locations of arbitrary points on the envelope surfaces generated by the frustum of a cone 

are obtained by Eq. (4.27). For this purpose it is needed to calculate θ1,2 for the given 

parameter values of  u and t. Eqs (4.40) and (4.41) are plugged into Eq. (4.26) and this yields 
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 (t sinα cosα + Rb )cosθ (d • f) - (t sin
2
α + Rb tan α )(n • f) = 0                              (4.42) 

 

Notice that e • f = 0. When the Eq.(4.42) is solved for θ the following equation is obtained 

 

 
















•

•
= −

fd

fn
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2,1 m                                                                                      (4.43) 

 

Plugging Eqs.(4.43), (4.11) and (4.19) into Eq.(4.27) yields the following envelope surface 

equation for the frustum of a cone 

 

 Gfrustum(t,θ1,2,u) = PS + (PE - PS  ) u + (t sinα cosα + Rb )cosθ1,2 d  

               + (t sinα cosα + Rb )sinθ1,2 e + (t cos
2
α – Rb tan α )n            (4.44)  

 

The above equation can be rearranged as follows 

 

 Gfrustum(t,θ1,2,u) = O1,2 + u f + k S1,2                                                              (4.45) 

 

where  

 O1,2  = PS + Rb cosθ1,2 d + Rb sinθ1,2 e – Rb tan α n  

 S1,2  =  sinα cosθ1,2 d +  sinα sinθ1,2 e +  cosα n  

 k = t cosα 

 

When the values of ]cos/,0[ 2 αht ∈ and u∈[0,1] are substituted into Eq. (4.45) two planar 

envelope surfaces are generated (see Figure 4.15). These envelope surfaces spanned by 

linearly independent vectors f and S1,2 have origins at O1,2 . 
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Figure 4.15: Envelope surfaces generated by the frustum of a cone part. 

 

By setting a vector line I(v) from Eq.(4.21) equal to Gfrustum(t,θ1,2,u), a linear system of three 

equations in three variables are obtained as follows 

 

 2,12,1)( SfO kuvIII aba ++=−+               (4.46) 

 

The Eq. (4.46) can be written in a matrix forms as 
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where  

 

 332,1132,1 )]([,][ ×× −=−= baa IIBIA SfO            (4.48) 

 

If the columns of the matrix B are linearly independent then Eq. (4.47) generates the real 

parameter values u1,2 , v1,2   and t1,2. If these parameter values satisfy the ranges defined 

by ]cos/,0[ 2 αht ∈ , u∈[0,1] and v∈[0,1] then the vector is updated. 
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4.2.3.3 Updating with Fillet-End mill 

 A Fillet-End mill is made up of a toroidal surface at the lower side, a flat surface at the 

bottom and a cylindrical surface at the upper side. Depending on the feed vector direction 

each one of these surfaces updates the in-process workpiece. For example in Figure (4.16) 

three possible motion types are illustrated with respect to the feed vector f: descending 

(plunging), horizontal and ascending motion respectively. In these figures redlines on the 

cylindrical surfaces and red curves on the toroidal surfaces represent the grazing points at 

which the discrete vectors may intersect the envelope surface 0

torusG . In this section for 

calculations the descending motion shown in Figure (4.16 -a) will be used and solutions of 

the other motion types can be obtained by using the same steps. In this section the workpiece 

update formulas will be derived for the toroidal surface of the Fillet-End mill. The formulas 

for the cylindrical and bottom flat parts can be used from section (4.2.3.1). 

 

 
                                          (a)                      (b)                   (c) 

Figure 4.16: Motion types with respect to the feed vector f: (a) descending,  

(b) horizontal, and (c) ascending motion. 

 

For a toroidal surface the center of a moving sphere in WCS is obtained by plugging Eqs. 

(4.12) and (4.19) into Eq. (4.24) and this yields 
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The partial derivatives of Eq.(4.49) with respect to u and t are obtained as follows 
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As explained before, the toroidal surface is a pipe surface with a constant radius and a 

circular spine curve. An alternative solution has been given in Eq. (4.29) for finding the 

location of an arbitrary point on the envelope surface generated by torus. In this section 

because of its simplicity, in calculations this alternative solution will be used. The signs ( m ) 

in Eq. (4.29) represent two opposite grazing points P1 and P2 with an angular difference 

equals to 180
0
 (see Figure 4.17).  

                                                                                                                    

 
 

Figure 4.17: The envelope parameters of a toroidal surface 

 under the plunging motion 

 

Because for the descending motion the grazing point P2 always lies within the body of the 

Fillet-End mill, for updating the in-process workpiece P1 which corresponds to the (+) sign in 

Eq. (4.29) will be used. Thus an arbitrary point on the envelope surface of a torus with 

respect to the descending motion can be represented by 
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where mu(t,u) and mt(t,u) are the partial derivatives of m(t,u) with respect to u and t.  

Plugging m(t,u), mu(t,u) and mt(t,u) from Eqs. (4.49) and (4.50) into Eq. (4.51) yields 
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For simplifying the calculations the cross products in Eq. (4.52) will be denoted by 

dfk ×== ][ zyx kkk and efq ×== ][ zyx qqq . A point at which a vector intersects the 

cutter envelope is described by setting the vector line I(v) described in Eq.(4.21) equals to P1 

given in Eq. (4.51). Thus this yields a nonlinear system of three equations in three variables t, 

u and v as follows 
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For solving the above system of equations, first the equivalent of the variable v from Eq. 

(4.53-b) is plugged into Eqs.(4.53-a) and (4.53-c) respectively. Thus with this process two 

nonlinear equations with variables u and t are obtained. Later the equivalent of u from one of 

these equations is plugged into another for eliminating u. Therefore the final nonlinear 

equation depends on the variable t only. But in this research, as explained in section (4.2.2), 

for representing the in-process workpiece the directions of discrete vector lines are taken 

along the x, y and z axes of the standard basis of R
3
. Therefore in the following parts the 

nonlinear system given by Eqs. (4.53-a,b,c) will be solved for discrete vectors having 

orientations along the z-axis of R
3
 and the similar steps can be used for the discrete vectors 

pointing in the direction of x and y axes of R
3
.  

 When the discrete vectors are oriented in the z-axis direction of R
3
, the variable v from 

Eqs. (4.53-a) and (4.53-b) are eliminated and thus these two equations are only dependent on 

u and t. Further for eliminating u the equivalent of u from Eq. (4.53-a) is plugged into Eq. 

(4.53-b) and this yields the following nonlinear function with variable t 

 

 ( ) ( ) ( ) 0sincos =++= CttBttAtf                (4.54) 

 

where 
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The following property motivates finding the solution of the nonlinear function f (t) 

 

Property 4.1: For a given linear toolpath the swept envelope of the torus ( 0

torusG ) has a 

convex shape and a discrete vector intersects this envelope at most two points. 

 

According to property (4.1) there are three possible intersection cases between an envelope 

surface generated by a torus and a discrete vector:  vector intersects in two points, vector 

intersects in one point and no intersection. All three cases are illustrated in Figure (4.18). In 

this figure the envelope surface 0

torusG  has two parts, the lower envelope ( 0

, LowertorusG , colored 

by green) and the upper envelope ( 0

, UppertorusG , colored by gray) surfaces, i.e. 

0

,

0

,

0

UppertorusLowertorustorus GGG ∪= . As explained before the cutter is performing a descending 

motion. Therefore for updating the in-process workpiece the lower envelope surface is taken 

into account. The upper envelope surface is not considered in the calculations because during 

the tool motion it is enclosed within the cylindrical part of the Fillet-End mill. Thus the 

intersection points shown in Figure (4.18) are located on the lower envelope surface 

( 0

, LowertorusG ). 
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Figure 4.18: Envelope /vector intersection cases: two points (1),  

one point (2) and no intersection (3). 

 

The real solutions of Eq. (4.54) correspond to the intersection points described by the 

property (4.1). For solving the nonlinear function f(t) given in Eq. (4.54) a parameter interval 

for t is required. As illustrated in Figure (4.19 -a,b),  for obtaining  0

, LowertorusG the parameter t 

takes values in the range defined by ]2/3,2/[ ππ∈t . In these figures the envelope boundary 

made up of grazing points (colored by red) intersects with discrete vectors in one or two 

points. It can be seen from Figure (4.19 -a) that if there is one intersection point (I1) which 

corresponds to t1 the function values at π /2 and  3 π /2 have opposite signs i.e. 

0)2/3()2/( <ππ ff . On the other hand if there are two intersection points (I1 and I2) which 

correspond to t1 and t2 then the function values at π /2 and 3π /2 have the same sign i.e. 

0)2/3()2/( >ππ ff . 
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       (a)           (b) 

Figure 4.19: The roots of the nonlinear equation f(t) when the vector intersects 

 in (a) one point  or in (b) two points. 

 

Thus the first step for solving the Eq. (4.54) is to check the signs of function f(t) at π /2 and 

3 π /2. If the signs are opposite then there is only one root in the interval defined by 

]2/3,2/[ ππ∈t . Therefore one of the numerical root finding methods, i.e. Bisection, can be 

used to calculate the single root t1. But on the other hand if the signs of function f(t) at π /2 

and 3π /2 are the same then the numerical methods can not be applied directly. For this case 

the following theorem motivates finding two roots t1and t2. 

 

Theorem 4.1: (Rolle's Theorem)   Let the function f be continuous on [a, b], and 

differentiable on (a, b), and suppose that f (a) = f (b). Then there is some c with a < c < b 

such that f'(c) = 0. 

 

The function f(t) given in Eq. (4.54) has coefficients A(t) and B(t) which are also a function 

of t . These coefficients have a denominator given by q k tt cossin +− . Expanding this 

denominator yields 
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 ( ) ( )22222222 cossincossin zyxzyx qqqtkkkttt +++++=+− q k        (4.55) 

 

Note that for the above equation the dot product between k and q equals to zero i.e. 

 

 k • q = (f ×d) • (f ×e) = (f • f) (d • e) - (f • e) (d • f) = 0 

 

It can be seen from Eq. (4.55) that the denominator can not be zero. Therefore the function 

f(t) given in Eq. (4.54) is continuous.  

Also because A(t), cost, B(t), sint and C are differentiable at )2/3,2/( ππ , the nonlinear 

function f(t) given in Eq.(4.54) is also differentiable in the open interval given 

by )2/3,2/( ππ  . Furthermore, if the function f(t) has two roots t1 and t2 in the interval 

]2/3,2/[ ππ∈t  then 0)()( 21 == tftf . Therefore the Rolle’s Theorem holds for the Eq. 

(4.54) and thus there is a value c between two roots t1 and t2 for which f'(c) = 0. If the c value 

is found, the interval given by ]2/3,2/[ ππ∈t is partitioned into two sub intervals defined by 

],2/[ cπ and ]2/3,[ πc  .Now 0)()2/( <cff π and 0)2/3()( <πfcf and thus by applying one 

of the numerical root finding methods, i.e. Bisection, into these  two sub intervals the roots t1 

and t2 can be found. In this research for finding c value, a Matlab [54] function fminbnd is 

used.  fminbnd finds the minimum of a function of one variable within a fixed interval. The 

algorithm used in fminbnd is based on golden section search and parabolic interpolation. See 

[29] and [17] for details about the algorithm. Note that when the signs of f(t) at π /2 and 

3π /2 are the same i.e. 0)2/3()2/( >ππ ff , then each one of )2/(πf and )2/3( πf has a 

minus sign or vice versa. If each one has a minus sign then for finding the local minimum 

value at c using fminbnd the nonlinear function f(t)  is multiplied by minus. This process only 

reflects the function f(t) with respect to t-axis in (t, f(t)) graph and it does not change the 

locations of the roots. The whole process for finding the roots of the nonlinear equation f(t)  

is given in Algorithm (4.1).  

 



Chapter 4. In-process Workpiece Modeling 

 94 

 
 

Algorithm 4.1: Obtaining the roots of f(t). 

 

If the function f(t) has root(s) then for updating the discrete vector the values of the 

parameters u and v must be checked. The root(s) obtained from Algorithm (4.1) are plugged 

into Eq. (4.53-a) for finding the value(s) of the toolpath parameter u. Then the root(s) and u 

value(s) are plugged into Eq. (4.53-c) for obtaining the vector parameter v. If the parameter 

values are in the ranges of u∈[0,1] and v∈[0,1], then the vector is updated. Otherwise it can 

be concluded that there is no intersection between the cutter envelope and the discrete vector. 

 

4.2.4 Implementation 

  The presented methodologies have been implemented by using C++ software. Figure 

(4.20) and (4.21) show the simulation of the Door mold and Auto hood respectively. The 

initial workpieces are given as rectangular stocks and for the machining a Ball-End mill with 

10 mm radius in Figure (4.20) and 5 mm radius in Figure (4.21) is used. In the both 

machining simulations one layer of toolpahts (colored by red) are used. The toolpath files for 

these two examples are taken from VERICUT [79]. For visualizing the final workpieces 

discrete vectors are tessellated by using Matlab. 
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Figure 4.20: NC milling simulation of a Door mold. 

 

 

 
 

 

Figure 4.21: NC milling simulation of an Auto hood. 

 

In the next example the machining simulation of the gearbox cover is illustrated (Figure 

4.22). For designing the gear box cover and then generating the toolpaths UGS NX3 [77] is 

used. For this machining simulation there are three layers of toolpaths. In the first layer a 

Flat-End mill with 5mm radius updates the in-process workpiece (Figure 4.22 -a). In the 

second and third layers the Ball-End mills with radiuses 5mm and 2.5 mm respectively 

perform the simulation (Figure 4.22 -b, c). For visualizing the in-process workpiece after 

each processed layer Matlab is used for tessellation. The green lines in these figures represent 

the toolpaths.  
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                    (a)                                            (b)                                          (c) 

Figure 4.22: NC milling simulation results for a Gearbox cover with (a) A Flat-End mill and 

(b,c) Ball-End mills. 

 

In the last example the developed methodology is applied to the 5-axis impeller machining 

(see Figure (4.23)). The Taper-Ball-End mill is used. In Figure (4.23 -a) the initial workpiece 

with toolpaths and in Figure (4.23 -b) the finished cavity of one blade are shown. In this 

example 5-axis tool moves are approximated by (3+2)-axis tool moves. This is achieved by 

subdividing each 5-axis toolpath into as many (3+2)-axis toolpaths as necessary to maintain 

the desired level of accuracy. For minimizing the error introduced by (3+2)-axis 

approximation the average of the tool orientations at the beginning and at the end of a 

toolpath segment is used for the fixed tool orientation on this segment. 

 
                                       (a)                                                       (b) 

Figure 4.23: NC milling simulation for 5-axis impeller machining. 
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4.3 Discussion 

In this chapter discrete vector based in-process workpiece update methodologies have 

been presented. The discrete vectors with their orientations in the directions of x,y,z-axes of 

R
3
 have been used. Therefore in this representation more vectors in different directions have 

been used and thus, especially when the workpiece has features like vertical walls and sharp 

edges, the quality in the visualization of the final product has been increased. Also the 

localization advantage of the Discrete Vertical Vector approach has been preserved. A 

typical milling tool path contains thousands of tool movements and during the machining 

simulation for calculating the intersections only the small percentage of all the discrete 

vectors is needed. For this purpose for localizing the tool envelope during the simulation the 

Axis Aligned Bounding Box (AABB) has been used. The best feature of the AABB is its fast 

overlap check, which simply involves direct comparison of individual coordinate values. As 

explained in this chapter for some workpiece geometries 3-axis machining is not suitable for 

updating the workpiece surfaces. Because of this in the developed methodologies the tool 

motions in (3+2)-axis milling in which the cutter can have an arbitrary fixed orientation in 

space have been considered. The exact 5-axis milling motions are not preferable in the 

workpiece update simulations because all the calculations require using the nonlinear root 

finding algorithms and therefore the computational time becomes high. Under this 

consideration 5-axis tool motions can be approximated by (3+2)-axis tool motions. An 

example has been given in Figure (4.23) for illustrating this situation. In this chapter for 

simplifying the intersection calculations the properties of canal surfaces defined in section (3) 

are utilized. The cutter envelope and vector intersection calculations for the cylinder, frustum 

of a cone and Flat-Bottom surfaces have been made analytically. Because of the complexity 

of the torus shape these calculations have been made by using the numerical root finding 

methods. For this purpose a root finding analysis has been developed for guaranteeing the 

root(s) in the given interval. The intersection formulas for the sphere surface have not been 

developed because when a sphere moves along a linear toolpath it envelopes a cylinder 

which has an orientation in the direction of the feed vector. Therefore the update formulas for 

the spherical part of a cutter are reduced to cylinder-vector intersection. 
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Chapter 5 

Feasible Contact Surfaces 

 

 

In this chapter the feasible contact surfaces of NC cutters under varying tool motions are 

presented. A typical NC cutter has different surfaces with varying geometries. For example a 

Flat-End mill has a cylindrical part at the side and a flat part at the bottom. During the 

material removal process only certain parts of the cutter surfaces are eligible to contact the 

in-process workpiece. In this chapter for representing these so-called certain parts a 

terminology feasible contact surfaces (FCS) is introduced. The word feasible is used because 

although these surfaces are eligible to contact the in-process workpiece, they may or may not 

remove material depending on the cutter position relative to the workpiece. When the FCS 

contact the in-process workpiece the Cutter Workpiece Engagements (CWEs) are generated.  

Since CWEs are subsets of FCS, formulating the FCS helps us to better understand the CWE 

generation process. The boundaries of the FCS are defined by the cutter geometry and the 

envelope boundary set. The envelope boundary set contains points that the cutter surface will 

leave behind as it moves along a toolpath. Throughout this chapter it is assumed that the 

cutter follows a rigid motion. Simply a rigid motion is a transformation over time that does 

not change the shape of the cutter, only its location and orientation. Therefore for the given 

tool motions the cutter geometry stays fixed but on the other hand the envelope boundary set 

may change. 

 Two factors effect the construction process of the FCS: the cutter geometry and the 

motion type. For example for a Flat-End cutter, in 2 ½-axis milling only the cylindrical part 

has a FCS, but on the other hand in 3-axis plunge milling both the cylindrical and the flat 

parts have a FCS. The general tool motions in milling are presented in section (5.1) and 

followed by the milling cutter geometries in section (5.2). For obtaining the FCS the 

envelope boundary sets of a generic cutter performing 5-axis tool motions are formulated in 

section (5.3). For this purpose a tangency function defined by the surface normal and the tool 

velocity is utilized. Later in section (5.4) the distribution of the feasible contact surfaces with 

respect to cutter velocity is analyzed. Then finally the chapter ends with the discussion in 

section(5.5).
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5.1 Tool Motions in Milling 

 As mentioned in the introduction, tool motions are one of the inputs in the construction of 

feasible contact surfaces (FCS). Later it will be shown in section (5.4) with examples that the 

type of the tool motion is a key component in the decision of “whether or not cutter surfaces 

contain the FCS”. In the first part of this section the main milling motions with their typical 

characteristics are introduced and then in the second part the formulae which define the 

location and the velocity of an arbitrary point on the cutter surface are derived. 

 There are mainly three types of cutter motions in milling: 2 ½-axis, 3-axis and 5-axis. In 

2 ½ - axis motion which is the simplest, a cutter simultaneously translates along two 

Cartesian axes with a fixed tool axis vector (Figure 5.1-a). On the other hand a 3-axis tool 

motion which has a fixed tool axis vector allows the cutter three degrees of freedom. These 

three degrees of freedom correspond to simultaneous translations along three Cartesian axes 

(Figure 5.1-b). One of these degrees allows the cutter to slide up and down. In 5-axis tool 

motion, a cutter has five axes of movement, three of which are translational and the other two 

rotational (Figure 5.1-c).  

 
                       (a)                                   (b)                                         (c) 

Figure 5.1: Cutter motions in milling: (a) 2 ½-axis, (b) 3-axis, (c) 5-axis. 

 

 In this work two kinds of coordinate systems are used: The local - Tool Coordinate 

System (TCS) and the reference - Machine Coordinate System (MCS). The three unit 

Cartesian coordinates of the TCS are denoted by xL , yL , and zL. The TCS is positioned at the 

tool tip F with zL along the rotation axis vector n (Figure 5.2). On the other hand the MCS is 

represented by the basis vectors i, j, and k along   xM - yM - zM respectively. The position and 

the orientation of the TCS are specified with respect to the MCS. Let the basis of the TCS be 

defined as 

 

 nz =L ,    if 0≠n&  then 
||

L
n

n
x

&

&
= and LLL zxy ×=          
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          if 0=n& , then                   (5.1) 

 nz =L , 
|| F

F
L

Vn

Vn
y

×

×
= if 0F ≠× Vn and LLL zyx ×=  

 

where FV  is the velocity in the origin of TCS. According to Eq. (5.1) the position and the 

orientation of a cutter (G) must be piecewise differentiable and also plunging motion along 

the cutter rotation axis is not allowed. 

 
 

Figure 5.2: The local and reference frames of a cutter 

 

As mentioned in the introduction, throughout this chapter it is assumed that the cutter follows 

a rigid motion in E
3
. Thus a tool motion can be described analytically by   

 

 r = d + R p                      (5.2)  

 

where p and r are the position vectors of an arbitrary point on G in the local and the 

reference coordinate system respectively. R is a rotation matrix and d is a translation vector. 

The rotation matrix is an orthogonal matrix for a rigid body transformation. In general d and 

R are functions of time t. Therefore Eq. (5.2) determines the location of a point in MCS at a 

given time. The velocity of a point on G can be obtained by differentiating Eq.(5.2) with 

respect to t 

 

 pdr R&&& +=                                                                                                               (5.3)  
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Plugging the equivalent of p from Eq.(5.2) into Eq. (5.3) yields 

 

 ( )drdr - −+= 1RR&&&                                                                                           (5.4) 

 

where the multiplication of two matrices ( 1-RR& ) is called as the angular velocity matrix 

denoted by Ω . Ω  is a skew symmetric matrix. This can be proven as follows: Since R is an 

orthogonal matrix, RR
T
 = I and R

-1
 = R

T
.  By differentiating RR

T
 = I, the following equation 

is obtained. 

 

 0TT =+ RRRR &&                      (5.5) 

 

The second term in Eq.(5.5) can be written as ( ) ( )T1TT1T −− == RRRRRR &&& . And also the first 

term in this equation is equal to 1−RR& . Thus Eq. (5.5) takes the following form 

 

 ( )T11 −− −= RRRR &&                      (5.6) 

 

The above equation proves that  Ω  is a skew symmetric matrix. The general form of Ω  is 

given by  

 

 

















ΩΩ−

Ω−Ω

ΩΩ−

=Ω

0

0

0

XY

XZ

YZ

                  (5.7) 

 

where XΩ , YΩ  and ZΩ  are three components of the angular velocity in MCS. The skew 

symmetric matrix Ω  can also be represented as a vector. For example by using the 

components of Ω  the angular velocity vector ω can be represented by  

 

 kjiω ZYX Ω+Ω+Ω=                    (5.8) 
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It can be easily verified that the multiplication of Ω  with an arbitrary vector, let say m, in 

MCS is equal to the cross product between ω and this vector, i.e. 

 

 mωm ×=Ω                            (5.9) 

 

Therefore Eq. (5.4) which defines the velocity of an arbitrary point on G can be rewritten as  

 

 ( ) pωddrdr ×+=−Ω+= &&&                 (5.10) 

 

Later in section (5.3) the instantaneous velocity of the tool axis will be required. It is derived 

from the following equation 

 

 kn R=                      (5.11) 

 

Differentiating Eq. (5.11) yields 

 

 nnkn Ω=== −1RRR &&&                       (5.12) 

 

From Eq. (5.9), the above equation takes the following form   

 

 nωn ×=&                           (5.13) 

 

Thus the instantaneous velocity of the tool axis can be calculated in terms of angular velocity 

and the rotation axis vector. 

 

5.2 Milling Cutter Geometries  

 The construction of feasible contact surfaces requires the modeling of the tool geometry. 

In this section for obtaining a variety of cutter shapes a parametric model of a generic cutter 

is used (Figure 5.3). The geometry of the generic cutter can be described by the following 

parameters [46] 
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R:  Major radius,   rc: Minor radius of the corner torus. 

hc:  Distance between cutter tip point and the center of the corner radius. 

α:  Angle from tool rotation axis to the cutter bottom, (0 < α ≤ π/2). 

β:  Angle between upper cone side and tool rotation axis,  (-π/2 < β < π/2). 

r:  Cutter radius ,  h: The height of the tool. 

 

By appropriately choosing these parameters a variety of cutter shapes can be obtained. 

 

 
 

Figure 5.3: Geometric definition of the generic cutter 

 

The generic cutter can be decomposed into Upper-Cone (GU), Corner-Torus (GT) and Lower-

Cone (GL) parametric surfaces and the boundaries between these surfaces are C1 - 

continuous. The representations of these surfaces with respect to TCS are given by  
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where  θ∈[0,2π], cu∈[0,hu], cl∈[0,hl], φ ∈[(π/2- α),( π/2- β)] and also there are following 

relationships between the geometric parameters. 

 βcoscrRr += ,      ( ) αα tan/coscl rRh +=  

 αsinclc rhh += ,      βsinccu rhhh +−=  

 

Also Eqs. (5.14,a-c) can be written in the MCS as: 
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where t∈R is a toolpath parameter and M indicates that representations are in the MCS. The 

normal of a cutter surface can be described in the TCS as  
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where s and q are the geometric parameters. Also the normal can be written in the MCS for 

each part of the generic cutter as 

 

 ( ) LLLU cossincoscossin yxzN βθβθβ ++−=Q
M

                    (5.17-a) 

 ( ) LLLT sinsinsincoscos yxzN φθφθφ ++−=QM                                     (5.17-b) 

 ( ) LLLL cossincoscossin yxzN αθαθα ++−=Q
M                                       (5.17-c) 

 

where Q is an arbitrary point on the cutter surface. 
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5.3 Calculating the Feasible Contact Surfaces 

 Two inputs for describing the Feasible Contact Surfaces (FCS), the tool motions and the 

milling tool geometries have been presented in the previous two sections. The formulae 

developed in these sections will be used for describing the FCS. A typical milling cutter 

contains varying geometries and during the machining each one of these geometries behaves 

differently and in turn this effects the construction of the FCS. This can be explained with a 

simple example. For example a Flat-End mill has a cylindrical part at the side and a flat part 

at the bottom. In a 2 ½-axis milling only the cylindrical part can contact in-process 

workpiece and also only the front of the cylinder can remove material. From this example it 

can be seen that bottom flat part and the back of the cylinder can not remove material. In this 

example the front part of the cylinder represents the feasible contact surface. The more 

complicated situation occurs when a cutter performs a multi-axis machining. In this work for 

calculating FCS of the generic cutter performing 5-axis tool motions a tangency function is 

utilized. The tangency function f is defined with respect to surface normal ( )p,tM N and 

instantaneous velocity ( )p,t
M

V  as [82] 

 

 ( ) ( ) ( )p,tp,tp,tf MM V·N=                                                                             (5.18) 

 

where p and t represent the cutter geometry  and the toolpath parameter respectively. At any 

instant the surface boundary of a cutter can be partitioned into three sub boundaries with 

respect to tangency function: forward boundary (egress points), envelope boundary (grazing 

points) and backward boundary (ingress points). Figure (5.4) illustrates these three 

boundaries. Thus cutter surfaces at time t are enclosed within these three boundaries  

 

 ( ) ( ) ( ) ( )tpGtpGtpGtpG
MMMM ,,,, 0 +− ∪∪=            (5.19)                               

where  

( )tpG
M ,+

 is the forward boundary with ( ) 0>p,tf  

( )tpG
M ,0

 is the envelope boundary with ( ) 0=p,tf , and  

( )tpGM ,−  is the backward boundary with ( ) 0<p,tf  
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Figure 5.4: Boundary partition of the generic cutter. 

 

The cutting tool can contact the in-process workpiece through the forward and the 

envelope boundaries and therefore the combination of these two boundaries defines the 

feasible contact surfaces of a cutter. The word feasible is used because these surfaces are 

eligible to contact the in-process workpiece. Although they are eligible to contact the material 

removal depends on the cutter position relative to the workpiece. The Cutter Workpiece 

Engagements (CWEs) are the imprints of FCS on the in-process workpiece and for a given 

instant both the in-process workpiece and the cutter surface must share a point from FCS. To 

clearly see the relationship between FCS and CWEs the following terminology is introduced. 

 

General Terminology 

CWEK(p,t): The set of all points on a cutter surface at  location t where ( ) 0≥p,tf . These    

   are also called as kinematically feasible engagement points.  

CWE(p,t): The set of all points on a cutter surface at location t that are engaged with the           

workpiece. 

 

According the above terminology the feasible contact surfaces can be represented by the 

set CWEK where ( ) ( ) ( )tpGtpGtpCWE
MM

K ,,,
0∪= + . Also the relationships among these sets 

can be written as (
GK CWECWECWE ⊂⊂ ), where GCWE  denotes the set of all points on a 

cutter surface.  
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 A typical NC cutter has different surfaces with varying geometries and during the 

machining the engagement characteristics of each surface become different. In this work for 

clearly seeing this, the FCS are distributed among actively cutting surfaces. Under this 

consideration the set CWEK can be divided into constituent sub sets. For example in Figure 

(5.5) a Flat-End mill is moving along a helical tool path for enlarging a hole. Because of the 

plunging effect both the side (cylindrical) and the bottom (flat) faces have contacts with the 

in-process workpiece. For this case the set CWEK can be written as  

 

 BottomKSideKK CWECWECWE ,, ∪=                   (5.20) 

 

where the sets CWEK,Side and CWEK,Bottom represent the FCS generated by the cylindrical 

and the flat part respectively. Also in this figure the cutter workpiece engagements as the 

subsets of FCS are shown. 

 

 
 

Figure 5.5: Point sets used in defining engagements 
 

It will be shown in the next chapter that for obtaining the cutter workpiece engagements the 

geometric limits of the set CWEK are required. These geometric limits are determined by the 
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cutter surface boundaries and the envelope boundary. Figure (5.6) illustrates these geometric 

limits for the toroidal part of a Fillet-End mill.  

 

 
Figure 5.6: Boundaries of the CWEK in the Fillet-End mill 

 

Because the cutter performs a rigid motion defined in section (5.1) the cutter surface 

boundaries stay fixed. These boundaries can be calculated by using the formulae defined in 

section (5.2). But on the other hand, the content of the envelope boundary changes. Therefore 

for modeling the FCS the calculation of the envelope boundary is the primary concern in this 

work. In the following subsections the envelope boundary of the generic cutter performing 5-

axis tool motions will be calculated. As noted before in section (5.2), the defined geometry of 

a generic cutter can be decomposed into three sub surfaces: upper-cone, corner-torus and 

lower-cone. Therefore the full envelope boundary of the cutter can be generated by 

combining the partial envelope boundaries which are described on the individual cutter 

surfaces. 

 

5.3.1 Envelope Boundary of the Upper-Cone 

 In Figure (5.7) a general end mill performing 5-axis machining is shown with three 

arbitrary points on different surfaces. From this figure, the velocity of an arbitrary point IU on 

the upper-cone surface can be expressed in MCS by  

 ( )
→

×+= UU

M
IFI ωVV FU                 (5.21) 

where the vector 
→

UIF is defined in TCS. When the Eq. (5.14-a) is plugged into the above 

equation, the velocity becomes as 
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( ) ( ) ( ) ( ) ( )
( ) ( )L

LLFU

sintan

costansin

yω

xωzωVV

×++

×++×+−+=

θβ

θββ

u

uuccU

M

cr

crcrhI
     (5.22) 

 
 

Figure 5.7: Arbitrary points IU, IT and IL on the upper-cone, corner-torus 

 and lower-cone surfaces respectively. 

 

For obtaining the envelope boundary of the upper-cone, Eqs. (5.22) and (5.17-a) are plugged 

into the following equation  

 

 ( ) ( ) ( ) 0, UU == U

M

U

M

u

U
IItc,f N·Vθ                             (5.23) 

 

Then by performing vector operations Eq. (5.23) takes the following form  

 

 

( ) ( ) ( ) ( )
( ) ( )
( )[ ] ( ) 0sincossin

]sincos

sintan[coscos,

FLFL

L

LFL

=−

++−

+++=

V·zV·y

y ·ω

y ·ωV·x

ββθ

ββ

βββθθ

ucc

uu

U

crh

crtc,f

      (5.24) 

 

Note that for the above expansion the scalar triple product is evaluated as   

 

 )()()( ba·cac·bcb·a ×=×=×  

 

and also Eq. (5.13) is utilized for the following  operation 
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( )

0
||||

=
×

==
n

nω
·ω

n

n
·ωx ·ω L

&&

&
 

 

Eq. (5.24) can be written in a closed form  

 

 ( ) 0sincos, =−+= UUUu

U
CBAtc,f θθθ             (5.25) 

 

where 

 ( ) ( ) ( ) ( ) ( )LLFL sincossintancos y ·ωy ·ωV·x uccuU crhcrA +−+++= βββββ  

 ( )FLcos V·yβ=UB  

 ( )FLsin V·zβ=UC  

 

In ( xbxa sincos + ) type equations, the combination of cosine and sine functions can be 

written as a single sine function as 

 

 ( )ζθ +=+ xcbxa sinsincos                  (5.26)  

 

where the amplitude 22 bac += , the phase ( )ba /arctan=ζ  and 0≠b . The derivation of 

Eq. (5.26) can be shown by utilizing the complex domain operations as  
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   (5.27) 
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Note that in the last line of the above equation cosine representation is transformed into sine 

representation under the consideration of arctan function as 
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Thus the Eq. (5.25) can be written in the following form  

 

 ( ) 0sin22 =−++ UUUU CBA κθ                (5.28) 

 

where ( )UUU BA /arctan=κ . Solving Eq. (5.28) for θ yields 
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,              (5.29)  

 

When Eq. (5.29) is plugged into Eq. (5.15-a), for a given cutter location point the 

envelope boundary of the upper-cone surface is obtained. 

 

5.3.2 Envelope Boundary of the Corner-Torus 

 The velocity of arbitrary point IT on the toroidal surface (Figure 5.7) can be expressed in 

MCS by  

 ( )
→

×+= TT

M
IFI ωVV FT                 (5.30) 

 

Plugging Eq. (5.14-b) into Eq. (5.30) yields 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( )L

LLFT
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xωzωVV

×++

×++×−+=

θφ

θφφ

c

cccT

M
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         (5.31) 
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For obtaining the envelope boundary of the corner-torus, Eqs. (5.31) and (5.17-b) are 

plugged into the following equation  

 

 ( ) ( ) ( ) 0, TT == T

M

T

MT II,tf N·Vθφ                                   (5.32) 

 

and considering the vector operations the above equation yields  

 

 ( ) 0sincos, =−+= TTT

T CBA,tf θθθφ             (5.33) 

 

where 

 ( ) ( ) ( )LLFL cossinsin y·ωy ·ωV ·x φφφ ++= cT hA  

 ( )FLsin V·yφ=TB  

 ( )FLcos V·zφ=TC  

 

Eq. (5.33) can be written in the following form  

 

 ( ) 0sin22 =−++ TTTT CBA κθ                (5.34) 

 

where  ( )
TTT BA /arctan=κ . Solving Eq. (5.34) for θ yields 
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,               (5.35) 

 

When Eq. (5.35) is plugged into Eq. (5.15-b), for a given cutter location point the 

envelope boundary of the corner-torus surface is obtained. 
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5.3.3 Envelope Boundary of the Lower-Cone 

 The velocity of a point IL on the lower-cone surface (Figure 5.7) is given by 

 

 ( )
→

×+= LL

M
FII ωVV FL                 (5.36) 

 

The Eq. (5.36) is expanded by substitution of Eq. (5.14-c) as 

 

 
( ) ( ) ( )

( )L
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sintan

costan

yω

xωzωVV
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×+×+=
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l

llL

M

c

ccI
             (5.37) 

 

Eqs. (5.37) and (5.17-c) are plugged into the following equation  

 

 ( ) ( ) ( ) 0, LL == L

M

L

M

l

L
IItc,f N·Vθ                                   (5.38) 

 

and after the vector operations the envelope boundary of the lower-cone is obtained in the 

closed form  

 

 ( ) 0sincos, =−+= LLLl

L
CBAtc,f θθθ                  (5.39) 

 

where 

 ( ) ( ) ( )LFLL coscostansin y ·ωV ·xy ·ω llL ccA αααα ++=  

 ( )FLcos V·yα=LB  

 ( )FLsin V·zα=LC  

 

The Eq. (5.39) is transformed into the following form  

 

 ( ) 0sin22 =−++ LLLL CBA κθ                                                      (5.40) 

 

where ( )
LLL BA /arctan=κ , and it is solved for θ as 
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,              (5.41)  

 

When Eq. (5.41) is plugged into Eq. (5.15-c), for a given cutter location point the 

envelope boundary of the lower-cone surface is obtained. 

 

5.4 Analyzing the Distribution of Feasible Contact Surfaces 

 In the previous section the generic cutter surfaces have been partitioned into three 

boundary point sets by utilizing the tangency function. Then for each surface patch the 

envelope boundary which defines the limits of the feasible contact surfaces (FCS) has been 

formulated by calculating the parameter θ. For a given cutter geometry, any change in the 

tool tip velocity VF and the angular velocity ω  will effect the range of θ and in turn the 

location of the point set CWEK which represent the feasible contact surfaces. Therefore the 

cutter motion type has direct effect in the construction process of FCS. 

 In 5-axis machining the cutter rotation axis can be tilted in any direction. In general 

during machining the side face of the cutter has instant contact with the in-process workpiece 

and the engagement angle covers the angular range of [0
0
, 180

0
]. For example in Figure 

5.8(a-b) Taper-End and Ball-End mills are performing 5-axis motions and only the side faces 

of these cutters contain the point set CWEK. But on the other hand in 3-axis milling the tool 

rotation axis is fixed and with respect to the tool tip velocity, more cutter surfaces may be 

involved in machining. This is illustrated for 3-axis plunge motion in Figures (5.8-c) for a 

Flat-End mill and ((5.8-d) for a Ball-End mill respectively.  
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                    (a)                         (b)                           (c)                     (d) 

Figure 5.8: Instantaneous cutter contact surfaces in (a,b) 5-axis, 

 and in (c,d)  3-axis plunge motions 

 

Because 3-axis motion can cover more contact surfaces, in this section the distribution of the 

FCS on the cutter will be analyzed with respect to this motion type. For defining the limits of 

the FCS two boundaries are used: the surface boundaries and the envelope boundary. The 

surface boundaries are fixed for a given tool motion and they can be calculated from section 

(5.2). For calculating the envelope boundary, the formulae developed in section (5.3) will be 

utilized by considering that the angular velocity is zero. Also the tool tip velocity VF will be 

denoted by f which is short for the feed. In Figure (5.9-a) the generic cutter profile and the 

feed vector f are shown. Initially the feed vector is coincident with the zL axis of the TCS. 

From this figure the feed angle ψ  which is measured from the zL axis in the clock wise 

direction can be obtained as 

 

 













= −

L

L1  ·
cos

zf

zf
ψ                   (5.42) 

  

Any change in the direction of feed vector will effect the distribution of the FCS on the 

cutter. For clearly seeing this, the generic cutter is partitioned into two sections (Figure 5.9-

b): Front face (F) and Back face (B). An unbounded plane which passes through yL and zL 

axes of TCS separates these two faces.  
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                       (a)                      (b) 

Figure 5.9: Feed angle ranges 

 

Figure (5.9-a) illustrates that the feed angleψ  takes different values in five different regions 

(shaded area). The angles which separate these regions are defined by the geometric 

parameters α and β of the generic cutter from section (5.2). Also the second and the fourth 

columns of Table (5.1) show the feed angle ranges corresponding to these five regions. In 

this table the first and the third columns show alpha numeric symbols i.e. F1, B2 etc. for 

different ranges of the feed angle. Letters F and B denote the front and the back faces of the 

cutter (Figure 5.9-b) respectively.  

 

 

Table 5.1: The angular ranges of the feed angle 

 

 

According to the feed angle ranges given in Table (5.1) the cutter can have three types of 

motion: Ascending type (F1 to F4), Horizontal type (F5) and Descending type (B1 to B4). 

With respect to these tool motions the following propositions can be given  
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Proposition 5.1: When the cutter has ascending and horizontal type motions which cover the 

range of [ ]0
90,βψ ∈ , the point set CWEK is located on the front face (F) of the cutter. 

Therefore only the front face can contain the feasible contact surfaces during the machining 

 

Proposition 5.2: When the cutter has descending motion which covers the range 

of ( ]βψ −∈ 00
180,90 , the point set CWEK is located on both the front and the back faces of the 

cutter. Therefore both faces can contain the feasible contact surfaces during the machining. 

  

Note that feed angles ( βψ < ) and ( βψ −> 0
180 ) are excluded from these propositions. 

because in the former one the top circle of the upper-cone touches the workpiece and in the 

latter one all cutter surfaces totally plunge into the workpiece. These propositions will be 

proven for the corner-torus surface of the generic cutter by considering the feed angle in the 

ranges of F1, F3, B2 and B4 from Table (5.1). The results for the other surface patches can 

be found in Table (5.2). The results of these propositions will be used in the next chapter 

during the cutter work piece engagement identifications. 

 

Proof: It has been shown in section (5.2) that two of the geometric parameters for describing 

the corner-torus are θ and φ . Figures (5.10-a, b) illustrates that φ  is measured in CCW 

direction from the tool rotation axis and θ is measured in CCW direction from the xL axis of 

TCS. It can be seen from these figures that theφ  angle of an arbitrary point P must lie within 

the range of ]90,90[ 00 βα −−  i.e. 

 

 )90()|()90( 00 βφα −≤∈≤− TGPP              (5.43) 

 

When the lower ( )αφ −= 090L and the upper ( )βφ −= 090U  limits of φ  from Eq. (5.43) are 

plugged into Eq. (5.35), the following expressions are obtained: 

 

 ( )
( ) 








= −

L

LL

x·f

z·f α
θ

tan
cos 1

2,1 m                                                                                (5.44-a) 
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 ( )
( ) 








= −

L

LU

x·f

z·f β
θ

tan
cos 1

2,1 m                                                                            (5.44-b) 

 

where superscripts L and U represent the lower and the upper limit respectively. Note that the 

angular velocity in Eq. (5.35) becomes zero in 3-axis machining. 

 

 
                                (a)                                                     (b) 

Figure 5.10: The corner-torus with upper and lower surface boundaries. 

 

�  Cutter has a feed angle ( βψ = ) 

 In this case the angle between the feed vector f and zL axis equals to β and the cutter has 

an ascending motion. For this feed angle the dot products in Eqs. (5.44,a-b) are evaluated as 

follows 

 

 βcos|| LL z||fz·f =         )90cos(||
0

LL β−= x||fx·f  

 

Plugging the above equations back into Eqs. (5.44-a, b) yields 

 

 





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= −
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θ
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tan
cos 1L

2,1 m                               (5.45-a)

 
0U

2,1 0=θ                                                          (5.45-b) 
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Note that when the lower and the upper limits of φ  are equal to each other i.e.  

)90()90( 00 βα −=− , the corner-torus disappears from the generic cutter. For the corner-torus 

geometry to be present, the inequality )( αβ <  must hold and thus under this 

consideration )tan(tan αβ < . In calculations these inequalities will be used frequently. The 

ratio inside the parenthesis of Eq. (5.45-a) is greater than one and thus the inverse cosine 

function does not have a real solution. In Eq. (5.45-b) θ has repeated roots of zeros. 

 From the above results it can be concluded that when the generic cutter moves with the 

feed angle equal to β, the envelope boundary of the corner-torus contains only one point 

which corresponds to angles ( )βφ −= 090U and 0U

2,1 0=θ . In Figure (5.11-a), F1 represents this 

point which is located on the front face of the corner-torus. Thus this proves the proposition 

(5.1) for this motion type. 

 

 
                 (a)                                                                       (b) 

Figure 5.11: Envelope boundary sets on the (a) front, and the (b) back faces 

of the corner-torus.  

 

�  Cutter has a feed angle ( αψ = ) 

 In this case the cutter is performing an ascending motion with a feed angle equals to α. 

After evaluating Eqs. (5.44-a, b) with α, the following equations are obtained 

 

 0L

2,1 0=θ                                  (5.46-a) 

 
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The ratio inside the parenthesis of Eq. (5.46-b) is positive and less than one. Therefore for a 

given parameter set ( )βφ −= 090U and U

2,1θ  the upper surface boundary of the corner-torus 

contains two points which are members of the envelope boundary. These are two symmetric 

points with respect to the feed vector and they are located on the front face of the corner-

torus. The repeated roots in Eq. (5.46-a) and the lower limit ofφ , ( )αφ −= 090L generate a 

point on the lower surface boundary of the corner-torus. This single point which is also a 

member of the envelope boundary is located on the front face. From these results it can be 

seen that the upper and the lower surface boundaries of the corner–torus contain envelope 

boundary points on the front face. Therefore it can be concluded that changing φ between 

( )αφ −= 090L  and ( )βφ −= 090U  generates new envelope boundary points on the front face. 

F3 in Figure (5.11-a) shows an example of the envelope boundary for this motion.  

 Thus for this motion type the envelope boundary on the front face and the portion of the 

upper surface boundary on the front face draw the limits of the point set CWEK. Thus this 

proves the proposition (5.1) for this motion type. F3 in Figure (5.12) illustrates the point set 

CWEK with shaded area.  
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Figure 5.12: Feasible contact surfaces of the toroidal part with 

respect to the cutter feed angle. 

 

�  Cutter has a feed angle ( αψ −= 0
180 ) 

 In this and the following case the cutter has a plunging motion with respect to feed 

vector. When the feed angle αψ −= 0
180  is plugged into Eqs. (5.44-a, b), the following 

results are obtained 

 

 0L

2,1 180m=θ                                         (5.47-a)

 



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



−
= −

α

β
θ

tan

tan
cos 1

2,1 m
U                               (5.47-b) 

  

In Eq.(5.47-a), the lower limit of θ has two real solutions 0180m . These two solutions and the 

lower limit ofφ , ( )αφ −= 090L generate only one point on the lower surface boundary of the 
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corner-torus. This point which also belongs to the envelope boundary is located on the back 

face. The ratio inside the parenthesis of Eq. (5.47-b) is greater than -1 and therefore there are 

two distinct real solutions for the upper limit of θ. These solutions and the upper limit ofφ , 

( )βφ −= 090U produce two distinct points on the upper surface boundary of the corner-torus. 

These points which are members of the envelope boundary are located on the back face. 

Therefore by changing φ  between its limits other envelope boundary points are generated on 

the back face. In Figure (5.11-b), B2 represents the envelope boundary for this motion type. 

The limits of the point set CWEK are defined by the envelope boundary on the back face and 

the portion of the upper surface boundary on the front face. Thus this proves the proposition 

(5.2). B2 in Figure (5.12) illustrates the point set CWEK with shaded area.  

 

�  Cutter has a feed angle ( βψ −= 0
180 ) 

With this feed angle Eqs. (5.44, a-b) take the following form 

 

 
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θ

tan

tan
cos 1L

2,1 m                            (5.48-a)

 
0U

2,1 180m=θ                                                         (5.48-b) 

 

Because the ratio in Eq.(5.48-a) is less than -1, there is no real solution for the lower limit of 

θ. The upper limit has two solutions in Eq. (5.48-b). These solutions and the upper limit ofφ , 

( )βφ −= 090U  produce only one point on the upper surface boundary of the corner-torus. B4 

in Figure (5.11-b) shows this point on the back face.  For this motion it can be said that 

even there is only one envelope boundary point, the whole surface of the corner-torus 

contains points from the set CWEK. B4 in Figure (5.12) illustrates the point set CWEK with 

shaded area. For clearly seeing this situation the tangency function in Eq. (5.18) is utilized 

for the corner torus. Under the 3-axis machining the tangency function of the corner-torus 

takes the following form 

 

 
( ) ( ) ( )

( )L

LL

sinsin

sincoscos,,

y·f

x·fz·f

φθ

φθφφθ

+

+−=tf
             (5.49) 
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When the Eq. (5.49) is evaluated for the feed angle βψ −= 0
180 , it yields 

 

 ( ) ( )θβφβφφθ cossinsincoscos,, += ftf               (5.50) 

 

where ]2,0[ πθ ∈  and thus θcos ∈[-1, 1]. Note that because the feed vector f and yL axis of 

TCS are orthogonal, their dot product is equal to zero. According to Eq. (5.43) it can be said 

that  βφ sincos ≥  and φβ sincos ≥ . When these inequalities are evaluated in Eq. (5.50) the 

tangency function becomes ( ) 0,, ≥tf φθ , where ]90,90[ 00 βαφ −−∈ . Therefore the whole 

surface of the corner-torus contains the point set CWEK. Thus this proves the proposition 

(5.2). B4 in Figure (5.12) illustrates the point set CWEK with shaded area.  

 Also the upper and the lower cone surface patches of the generic cutter may have feasible 

contact surfaces (FCS). The distribution of FCS on these surfaces can be analyzed using the 

same steps taken for the corner-torus. Table (5.2) shows the distribution of FCS on each 

surface patch of the generic cutter with respect to the motion types defined in Table (5.1). 

CWEK,U, CWEK,T and CWEK,L represent the feasible engagement point sets of the upper-cone, 

the corner-torus and the lower-cone surface respectively. If for a given feed angle, the surface 

patch does not contain any point from the FCS, the symbol { } is used for representing this 

situation. For example, in Table (5.2) for the feed angle in F2 only the upper-cone and the 

corner-torus surfaces have FCS and thus during the material removal only these surfaces can 

contact the in-process workpiece. 

 

 

Table 5.2: CWEK point sets of the generic cutter under different tool motions. 
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5.5 Discussion 

 In this chapter the engagement behaviors of NC cutter surfaces under varying tool 

motions have been presented by introducing the feasible contact surfaces (FCS) terminology. 

The description of the FCS has been made by utilizing the kinematically feasible engagement 

points contained in the set CWEK. In a typical NC cutter the constituent surface geometries 

show differences and because of this during the machining the engagement characteristics for 

these surfaces become different. Under this consideration the set CWEK has been partitioned 

among the constituent surfaces of a cutter. As mentioned in this chapter, the Cutter 

Workpiece Engagements (CWEs) are the subsets of the FCS and for calculating CWEs the 

boundaries of the FCS must be identified. In this work these boundaries which are limits of 

the set CWEK have been defined by the cutter surface boundaries and the envelope 

boundaries. Under the rigid tool motions the cutter surface boundaries stay fixed. But on the 

other hand the envelope boundaries may change. For modeling the envelope boundaries a 

tangency function defined by the surface normal and the tool velocity has been utilized. Later 

by changing the tool velocity direction the distributions of the FCS on the cutter have been 

analyzed. Also it has been shown with examples that only the certain parts of the cutter 

surfaces have contacts with the in-process workpiece. The results from this chapter will be 

used in the CWEs generation.   
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Chapter 6 

Cutter Workpiece Engagements 

 

In this chapter the methodologies for obtaining Cutter Workpiece Engagements (CWEs) in 

milling are presented. Cutting forces are a key input to simulating the vibration of machine 

tools (chatter) prior to implementing the real machining process. These forces are determined 

by the feed rate, spindle speed, and CWEs (captures the depth of cut). Of these finding the 

CWE is most challenging due to the complex geometry of the in-process workpiece and 

varying tool motions. The CWE geometry defines the instantaneous intersection boundary 

between the cutting tool and the in-process workpiece at each location along a tool path. 

Figure (6.1) summarizes the steps involved in CWE extraction. Inputs from CAD/CAM 

include the tool paths in the form of a CL Data (cutter location data) file, geometric 

description of the cutting tool and a geometric representation (B-rep, polyhedral, vector 

based model) of the initial workpiece. The key steps which are the swept volume generation 

and the in-process workpiece update have been presented in the previous chapters.  
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Figure 6.1: CWE Extraction Steps
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In this chapter the CWEs are calculated for supporting the force prediction model 

described in [5]. This model finds the Cartesian force components by analytically integrating 

the differential cutting forces along the in-cut portion of each cutter flute. In this model CWE 

area with a fixed axial depth of cut is defined by mapping the engagement region on the 

cutter surface onto X - Y plane which represents the engagement angle versus the depth of 

cut respectively (Figure 6.2). 

 

 Figure 6.2 has been removed due to copyright restrictions. The information removed is 

CWE area for the force prediction, [5]. 

 

 In this chapter the methodologies for finding the CWEs are developed based on the 

mathematical representation of the workpiece geometry. The workpiece geometries are 

defined by a solid, a polyhedral and a vector based modeler respectively. Although 

polyhedral and vector based approaches require a shorter computational time than does the 

solid modeler based approach, the accuracy of these approaches depends greatly on the 

resolution of the workpiece. There is always a tradeoff between computational efficiency and 

accuracy in these approaches. For example the solid modeler has an advantage in accuracy 

because it provides an accurate geometric representation for the workpiece. Therefore in the 

solid modeler based approach the most accurate representations of the CWEs are obtained. 

But on the other hand this modeler uses numerical techniques that are limited primarily by 

efficiency and robustness. 

 The Cutter Workpiece Engagements in Solid Models are presented in section (6.1). This 

section contains two methodologies: Engagement Extraction Methodology in 3-Axis Milling 

(section 6.1.1) and Engagement Extraction Methodology in 5-Axis Milling (section 6.1.3) 

respectively. In the 3-axis milling methodology the cutter surfaces are decomposed with 

respect to the feed direction as explained in chapter (5), and then these decomposed surfaces 

are intersected with their removal volumes for obtaining the closed CWE area. In the 5-axis 

methodology the similar approach is utilized with one difference. In this case the in-process 

workpiece is used instead of cutter removal volumes. The developed solid modeler based 

methodologies are implemented using ACIS solid modeling kernel. The both methodologies 

are supported by examples. 
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 The Cutter Workpiece Engagements in Polyhedral Models are presented in section (6.2). 

Also this section contains two methodologies. In the 3-axis CWE methodology (section 

6.2.1) the chordal error problem described in chapter (1) is addressed. For finding the CWEs 

a polyhedral representation of the removal volume is mapped from Euclidean space into a 

parametric space. Thus CWE calculations are reduced to line-plane intersections. In this 

methodology the formulas are developed for the linear, circular and helical toolpaths. For the 

5-axis milling a direct triangle/surface intersection approach (section 6.2.2) is developed. In 

this approach for generating CWE area, without doing mapping the cutter surface is 

intersected with the triangular facets obtained from the in-process workpiece. The Cutter 

Workpiece Engagements in Vector Based Models are presented in section (6.3). In this 

methodology the workpiece geometry is broken into a set of evenly distributed discrete 

vectors and also the cutter is discretized into slices perpendicular to the tool axis. For 

generating CWEs the intersections are performed between discrete vectors and cutter slices. 

Finally the chapter ends with the discussion in section (6.4).  

   

6.1 Cutter Workpiece Engagements in Solid Models 

This section presents Solid modeling methodologies for finding Cutter Workpiece 

Engagements (CWEs) generated during 3 and 5-axis machining of free – form surfaces using 

a range of different types of cutting tools and tool paths. Figure (6.3) summarizes the steps 

involved in CWE extraction using B-rep based solid modeler. Inputs from CAD/CAM 

include the tool paths in the form of a CL Data (cutter location data) file, geometric 

description of the cutting tool and a geometric representation (B-rep) of the initial workpiece. 

Key steps include swept and removal volume generation for each tool path. Although 

computational complexity and robustness, for limited applications, remain issues that need to 

be addressed, solid modelers have been recognized as one approach to finding CWE 

geometry. Solid modelers have an advantage in accuracy because they generate the exact 

mathematical representation for the intersections. The methodologies in this section have 

been implemented using a commercial geometric modeler (ACIS) which is selected to be the 

kernel around which the geometric simulator is built. In these approaches, in-process 

workpiece updating and cutter/workpiece engagement extraction are performed using 

geometric and topologic algorithms within the solid modeler kernel. In these situations the 
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solid modeling approach applies numerical surface intersection algorithms which are based 

on subdivision, and curve tracing (marching) methods. 

 

 
 

Figure 6.3: A B-rep Solid Modeler based CWE extraction 

 

 

6.1.1 Engagement Extraction Methodology in 3-Axis Milling 

 This section presents a B-rep Solid modeler based methodology for finding CWEs 

generated during 3 -axis machining. For this purpose cutter surfaces are decomposed with 

respect to the tool feed direction and then they intersected with their removal volumes for 

obtaining the boundary curves of the closed CWE area in 3D Euclidian space. Later these 

boundary curves are mapped from Euclidean space to a parametric space defined by the 

engagement angle and the depth-of-cut for a given tool geometry.  

 As explained in chapter (5), a typical NC cutter has different surfaces with varying 

geometries and during the machining the engagement characteristics of each surface become 

different. Under this consideration in this section the kinematically feasible engagement 

points CWEK are divided into constituent sub sets. The primary task in finding the CWE 

geometry is finding the boundary of the engagement region. The boundary set of CWE is 
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represented by bCWE. This defines the geometry required for input to process modeling (i.e. 

force prediction). Thus  

 

 )()()( tCWEtCWEtbCWE K⊂⊂                           (6.1) 

 

These three sets are illustrated in (Figure 6.4) for the Flat-End mill performing a helical tool 

motion. In this figure the sets bCWE, CWE and CWEK are shown separately for the side 

(cylindrical) face and the bottom (flat) face of the Flat-End mill. 

 

 
 

Figure 6.4: Point sets used in defining Engagements 

 

 For the force model described in [5] in-cut segments of the cutting edges are needed. In 

this section for obtaining in-cut segments both bCWE and the cutting edges are mapped into 

2D space defined by the engagement angle (u) and the depth of cut (v). Then the curve/curve 

intersection is performed between bCWE and the cutting edges. The common milling cutters 

have different surface geometries i.e. a Ball-End mill is defined by two natural quadric 

surfaces – spherical and cylindrical. As a result of this the parameterization of the 

engagement area differs for each cutter surface.  In the Flat-End mill, for example, the depth 

of cut v for an arbitrary point P ∈  CWE is the distance between the location of P and the 

cutter tool tip along the tool rotation axis, and the engagement angle u is measured from the 

yL axis of TCS (Figure 6.5).  
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Figure 6.5: CWE parameters of an arbitrary point P. 

 

 The engagement parameters for different cutter surfaces are illustrated in Figure (6.6). 

Because the Flat-End, the Taper-End and the Fillet-End cutters have a flat surface at their 

bottom, also in this figure the engagement parameters of the cutter bottom surface are shown. 

As explained in chapter (5), when the feed angle is in the range of (B1 to B4) the cutter 

bottom surface can have contact with the workpiece during the machining.  

 

      
            (a)                           (b)                      (c)                      (d)                         (e) 

Figure 6.6: Defining CWE parameters u and v on (a) torus, (b) sphere, (c) frustum of a cone, 

(d) cylinder, and (e) flat bottom surfaces of common milling cutters.
 

 

It has been shown in chapter (5) for the 3-axis machining that according to the feed angle 

ranges the cutter can have three types of motion: Ascending type (F1 to F4), Horizontal type 

(F5) and Descending type (B1 to B4). These motion types effect the construction of the 

kinematically feasible engagement point set CWEK and consequently this changes the angular 

ranges of the engagement parameter u as follows   

 

� If the feed angle is in the range of (F1 to F5) only the front face of the cutter can have 

contact with the workpiece and the engagement angle u covers ],0[ π range i.e. 

π≤∈≤ )|(0 CWEu PP .  
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� If the feed angle is in the range of (B1 to B4), both the front and the back faces of the 

cutter can have contact with the workpiece. This time the range of the engagement angle u 

becomes: π2)|(0 ≤∈≤ CWEu PP  

 

The two cases above show that based on the kinematics of the 3-axis machining the cutter 

surfaces differently contribute to the CWE extraction. For this reason cutter surfaces are 

broken down into their constituent sub surfaces. It has been shown in chapter (5) that, the 

front and the back surfaces are separated by an unbounded plane which passes through yL and 

zL axes of TCS. Also if the cutter has a flat bottom surface then this surface lies on another 

unbounded plane which passes through xL and yL axes of TCS. This decomposition is shown 

for the Taper-End and Flat-End mills in Figure (6.7), where GBack, GBottom and GFront represent 

the constituent sub surfaces of the cutter geometry G. Table (6.1) shows the decomposition of 

the surface geometries for the common milling tools. 

 

 
 

Figure 6.7: Geometric decomposition of the cutter surfaces 

 

 
 

Table 6.1: Constituent surfaces of cutter geometries after geometric  

decomposition in 3-axis milling. 

 

Each constituent surface of a cutter geometry given in the Table (6.1) generates its 

kinematically feasible engagement point set with respect to the cutter feed vector. For 

example when a Fillet-End mill has a descending motion described by (B1 to B4) all three 
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constituent surfaces of the toroidal part: GBack ,  GBottom and GFront generate the sets  

CWEK,Back, CWEK,Bottom and   CWEK,Front respectively (see Figure 6.8). Thus the following 

equation can be written for a toroidal part performing this motion 

 

 FrontKBottomKBackKK CWECWECWECWE ,

*

,

*

, ∪∪=           (6.2) 

 

where *∪  and later 
*∩  represent regularized Boolean union and intersection set operations 

respectively.  

 
 

Figure 6.8: Decomposing the point set CWEK of the torus  

into three parts. 

 
 

Note that depending on the motion type some of these subsets can be empty. For example in 

the ascending motion (F1 to F5) only the front part of the cutter engages with the workpiece 

and therefore only the set CWEK,Front is considered as a full set. Table (6.2) shows these three 

sets for different cutter geometries with respect to the feed angle ranges. The symbol Ø 

represents an empty set for a given feed angle range.  

 

 
Table 6.2: Feasible engagement points for cutter surfaces with respect to the tool motions 
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The following properties (6.1) and (6.2) motivate finding the Cutter Workpiece Engagements 

in 3-axis milling. 

 

Property 6.1: Given a tool path Ti for the i
th

 tool motion and the cutter surface geometry: 

a) Sweeping the point sets CWEK,Back, CWEK,Bottom and CWEK,Front   along Ti generates the 

swept volumes of the corresponding cutter surfaces i.e. SVi (Back), SVi (Bottom) and  SVi 

(Front) respectively. For a given tool motion and the cutter surface geometry the constituent 

parts of the set CWEK are chosen from the Table (6.2) for sweeping. For example Figure 

(6.9) illustrates this for the Fillet-End mill which follows a linear toolpath in descending 

motion (B1 to B4). 

 

 
                         (a)                                        (b)                                             (c) 

Figure 6.9: Swept volumes generated by the kinematically 

 feasible engagement point sets.
 

 

b) Intersecting the swept volumes from the property 1(a) with the in-process workpiece Wi-1 

generates the removal volumes as follows 

 

 )()(*

1 BackRVBackSVW iii →∩−               

 )()(
*

1 BottomRVBottomSVW iii →∩−                         (6.3) 

 )()(
*

1 FrontRVFrontSVW iii →∩−  

 

where RVi (.) represents the corresponding removal volume of each swept volume. Note that 

for the i
th

 tool motion the total removed material from the in-process workpiece can be 

denoted as follows 

 

 )()()( **
FrontRVBottomRVBackRVRV iiii ∪∪=                                             (6.4) 
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Property 6.2:  The intersection of constituent surfaces GBack, GBottom and GFront with their 

corresponding removal volumes (.)iRV  generates the cutter workpiece engagement boundary 

bCWEi for the given cutter location as follows 

 

 

)}({

)}({

)}({

*

**

**

FrontRVG

BottomRVG

BackRVGbCWE

iFront

iBottom

iBacki

∩

∪∩

∪∩=

                                                                     (6.5) 

 

The 3-axis CWE extraction methodology is summarized in Figure 6.10. The inputs are i
th

 

toolpath segment Ti, in-process workpiece Wi-1 and the constituent surfaces of the cutter 

geometry G.  

 

 
 

Figure 6.10: Procedure for obtaining the CWEs 
 

The reported method has been implemented using a commercial geometric modeler 

(ACIS) which is selected to be the kernel around which the geometric simulator is built. In 

the described methodology for generating the bCWEs, the face–face intersections between 

cutter surfaces and the removal volume surfaces are performed. For this purpose a given 

removal volume is decomposed into its faces by using ACIS function api_get_faces. The 

faces obtained from this function are intersected with the cutter surface which is also 
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represented as a FACE Entity. These intersections are performed by using the function 

api_fafa_int. For obtaining the cutter surface i.e. GFront, first the circular wires which are 

perpendicular to the tool axis are generated along the tool axis and then they are skinned by 

using the function api_skin_wires.  It has been shown in chapter (1) that ACIS 

representational hierarchy contains BODY, LUMP and SHELL etc. Therefore a body can be 

represented by LUMPs, a LUMP can be represented by SHELLs and so on. The function 

api_fafa_int generates intersection curves as a BODY Entity. For obtaining the properties of 

these curves i.e the start and end coordinates, these BODYs are decomposed into LUMPs, 

SHELLs, WIREs and EDGEs respectively. The Algorithm (6.1) for this process is shown 

below in the C++ format. The inputs are RVi(Front), GFront and a cutter location point PCL. It 

generates the closed boundary set of the CWE area for the given cutter location point.  

 

Input: RVi (front), GFront, PCL ( xCL, yCL, zCL) 

Output: bCWEi at PCL 

 
ENTITY_LIST face_list;                                      // Container of removal volume faces 

FACE *ff = api_get_faces(RVi (front), face_list); //points the first face of the face_list 

FACE    *cutter_face = GFront;  

BODY   *int_curve = NULL;                                 //a member from  bCWE 

LUMP   *rem_vol_lump = NULL; 

SHELL *rem_vol_shell = NULL; 

WIRE   *rem_vol_wire = NULL; 

EDGE   *rem_vol_edge = NULL; 

 

while( (ff = (FACE*)face_list.next()) != NULL) { //iterates until all faces of the  

                                                                                   //removal volume is processes 

api_fafa_int(cutter_face, ff, int_curve); 

rem_vol_lump = int_curve→lump(); 

while(rem_vol_lump != NULL){ 

rem_vol_shell  = rem_vol_lump→shell(); 

while(rem_vol_shell  != NULL){ 

rem_vol_wire = rem_vol_shell→wire(); 

while(rem_vol_wire != NULL){ 

rem_vol_edge = rem_vol_wire→coedge()→edge(); 

 

// process the edge here for obtaining bCWEs 

 

rem_vol_wire = rem_vol_wire→next(); 

} 

                      rem_vol_shell  = rem_vol_shell→next(); 

            } 

            rem_vol_lump = rem_vol_lump→next(); 

      } 

      ff = ff→next(); 

} 

 

Algorithm 6.1: Obtaining the closed boundaries of the CWEs 
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6.1.2 Implementation 

 Figures (6.11) and (6.12) show Flat-End and Taper-End mills removing material along a 

linear ramping tool path i.e. the tool moves in all three axes simultaneously. The removal 

volumes associated with the different cutter surfaces are separated. In the case of the Flat-

End mill this gives the material removed by the cylindrical at the side and the flat at the 

bottom surfaces. Plots of CWEs at different Cutter Locations (CLs) are illustrated. These are 

obtained by intersecting the constituent surfaces of the cutter with their corresponding 

removal volumes. Two formats are used for plotting the CWEs. The first is an XY plot of 

depth-of-cut v (as measured from the tool tip point) versus engagement angle u. The second 

plot shows the engagement area of the cutter bottom surface in a polar format: cutter bottom 

radius r versus engagement angle u. In Figure (6.11) the Flat-End mill is performing a 

descending motion in which the feed angle is in the range of (B1 to B4). Thus both the 

cylindrical and the bottom surface remove material. For this motion type of the Flat End mill 

only the CWEK,Front  and the CWEK,Bottom point sets are active. The XY plots show the 

engagement between zero and π  for the front face, and polar plots show the engagement 

between zero and 2π for the bottom flat face. 

 

 
 

Figure 6.11: CWEs for the Flat End mill performing a linear 3-axis  

descending motion. 

 

In Figure (6.12) because the Taper-End mill is ramping up in which the feed angle is in the 

range of (F1 to F5), only the point set CWEK,Front is active during the material removal. Thus 
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for this motion type, only the front face of the cutter contributes to the CWE extraction 

procedure with the engagement angle u changes between zero andπ radian. 

 

 

Figure 6.12: CWEs for the Taper-End mill performing a linear 3-axis  

ascending motion. 

 

In the last example (Figure 6.13) a Flat-End mill is following a helical toolpath (plunging 

cutting) for enlarging a hole. In this example both the side and the bottom faces of the Flat-

End mill are removing material. The cutter performs three half turns each corresponding to a 

00
1800 − range i.e. third turn has the starting angle 0

360 and ending angle 0
540 . In this motion 

of the Flat-End mill the point sets CWEK,Front  and  CWEK,Bottom  are active. The total removed 

material RV (Front) and RV (Bottom) are shown for each half turn with different colors. For 

the cutter location CL1 both types of plots are shown because the bottom of the cutter is 

removing material at this location also.  For CL2 only the side (cylindrical) face of the cutter 

has engagement with the workpiece.  
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Figure 6.13: Helical Tool Motions with a Flat-End Mill and CWEs 

 

6.1.3 Engagement Extraction Methodology in 5-Axis Milling 

 This section presents a B-rep Solid modeler based methodology for calculating CWEs in 

5-axis milling operation. Many of the steps defined in the previous section for the 3-axis 

CWE methodology are applicable for the 5-axis CWE methodology in this section. There is 

only one main difference between these two methodologies. In 5-axis CWE methodology for 

obtaining bCWEs the feasible contact surface of a cutter will be intersected with the in-

process workpiece instead of the removal volume which is used in the 3-axis CWE 

methodology. At any given instance of the 5-axis tool motion the bottom center and top 

center of the rigid cutter may move in directions that do not lie in the same plane. For 

example in Figure (6.14-a), the top velocity vector VTop and the bottom velocity vector 

VBottom point to the different directions. An arbitrary velocity V on the tool axis can be 

calculated by linearly interpolating VTop and VBottom as follows 

 

 ( ) BottomTop 1 VVV uu −+=                  (6.6) 

 

where u∈[0,1]. On the other hand in 3-axis milling the top and bottom centers of the cutter 

move in the same direction (Figure 6.14-b). 

 As explained in chapter (5), a cutter contacts in-process workpiece through the set of 

CWEK. Most of the points in this set lie towards the front of the cutter and are machined 

away as the tool leaves its current position. Only those points for which the motion direction 
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is perpendicular to the cutter surface normal are left behind on the machined surface as a 

curve. As explained in chapter (5), these points define the envelope boundary of the cutter 

which describes the geometric limits of the set CWEK.  

 

 
                                             (a)                                                (b) 

Figure 6.14: (a) Envelope boundary in 5-axis milling, and in  

(b) 3-axis milling respectively. 

 

 As explained in chapter (5), for defining the boundaries of the feasible contact surfaces 

(FCS) envelope boundary set is used. As illustrated in Figure (6.14-b) for the Flat-End mill 

performing 3-axis machining, because the top and the bottom velocity vectors of the cutter 

point to the same direction the envelope boundary has a linear characteristic. But on the other 

hand in the 5-axis tool motions the velocity vector on the cutter axis continuously changes 

and as a result the envelope boundary looses its linearity (see Figure 6.14-a). In this case the 

envelope boundary curves are approximated by splines. For example in the case of a Flat-

End mill, these boundaries are represented by the helix like curves [12]. Because of the 

approximation in the envelope boundary curves the CWE methodology described for the 3-

axis milling does not properly work for the 5-axis milling. The intersections obtained 

numerically by the B-rep solid modeler become non robust. For solving this problem a 

methodology based on the intersections between the FCS and the in-process workpiece is 

presented in this section. This methodology is explained for an impeller machining using a 

Taper-Ball-End mill and it can also be applied to other milling cutters performing 5-axis tool 

moves. 

 In Figure (6.15-a) a Taper-Ball-End mill is shown for a given Cutter Location (CL) point. 

At this CL point the feasible contact surface defined by the envelope and cutter surface 

boundaries is constructed (Figure 6.15-b). In the next stage (Figure 6.15-c) we offset this 

surface in the (+/-) directions of the velocity vector V with an infinitesimal amount ( 2/ε ). 

This process makes this surface a volume which is called as BODY. To minimize the error 
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introduced by this offsetting the location of the vector V is taken in the middle of the tool 

axis. This causes a geometric error at both VTop and VBottom in equal magnitude and zero error 

halfway between these two points. 

 

 
                   (a)                                           (b)                                              (c) 

Figure 6.15: Offsetting the feasible contact surface 

 

 As illustrated in Figure (6.16) there are three main steps for generating the CWEs. In the 

first step the BODY obtained by offsetting the feasible contact surface is intersected with the 

in-process workpiece at a given cutter location point. This intersection generates a removal 

volume. In the second step the removal volume is decomposed into its constituent faces and 

between these faces and the feasible contact surface face/face intersections are performed. 

Each one of these intersections generates a curve. The full boundary of the CWE area, bCWE 

is the combination of each individual curve obtained from face/face intersections. Finally in 

the last step, bCWE represented in 3D Euclidian space is mapped into 2D space defined by 

the immersion (engagement) angle and the depth of cut. Note that these 3 steps are performed 

for each cutter location point on a toolpath segment. 
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Figure 6.16: CWE steps in 5-axis milling methodology 

 

 The implementation of the 5-axis CWE methodology is illustrated in Figures (6.17) to 

(6.19) respectively. For this implementation the solid modeler kernel (ACIS) and C++ is 

used. The ACIS function api_get_faces decomposes the faces of the in-process workpiece. 

Then each one of these faces is intersected with the feasible contact surface utilizing the 

function api_fafa_int. For obtaining the closed boundaries of the CWEs the same procedure 

described in Algorithm (6.1) is followed. In Figures (6.17) and (6.18) for the given three 

cutter location points XY plots of depth-of-cut versus immersion angle are plotted. These 

examples are illustrated for the first and second passes of the cutter. Also in these figures the 

removal volumes for each passes are shown. From these two figures it can be seen that the 

amount of the removed material in the first pass is more than that of the second pass. In 

Figure (6.19) the in-process workpiece is shown after the third and fourth passes 

respectively. 
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Figure 6.17: 5-axis CWEs during the first pass of the impeller machining 

 

 

 

 
 

Figure 6.18:  5-axis CWEs during the second pass of the impeller machining 
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Figure 6.19: In-process workpieces after the third and fourth passes respectively.  

 

 

6.2 Cutter Workpiece Engagements in Polyhedral Models 

 Polyhedral models provide the advantage of simplifying the workpiece surface 

geometry to planes which consist of linear boundaries. Thus the intersection calculations 

reduce to line / surface intersections. These can be performed analytically for the geometry 

found on cutting tools. For obtaining CWE area, facets which contain linear boundaries are 

intersected with the surface of the cutter and then the intersection points are connected to 

each other. If the cutter surface has the second order equation, e.g. cylinder, cone or sphere 

natural quadric surfaces, each line – surface intersection gives two roots. If the cutter surface 

has the fourth order equation e.g. torus, each line surface intersection gives four roots. In 

most cases only one of these roots are needed for obtaining the CWEs and the rest is 

redundant. CWE extraction algorithms must be robust enough to handle the complete set of 

intersection cases between the cutting tool and a triangular facet (see Figure 6.20). 

 

 
 

               Figure 6.20: Typical intersections between a facet and a cutting tool 

 

A major consideration in CWE extraction is the form of the in-process geometry. Beyond 

there being differences based on the type of model being used there is also a choice of using 

the in-process workpiece or the removal volume. Either can be generated by applying 

4 Intersection points 

 1 Tangent point 

Cutting tool 

2 Intersection     
points 

1 tangent and            
2 intersection points 



Chapter 6. Cutter Workpiece Engagements 

 144 

Boolean operations between the swept volume for a tool path and the initial workpiece or in-

process workpiece generated by the previous tool path (subtraction or intersection). The use 

of the removal volume instead of the in-process workpiece has a number of advantages: 

 

� The size of the geometry model that must be manipulated by the CWE extraction 

algorithms is significantly smaller for the removal volume. 

� The use of the removal volume model better supports parallel computation strategies for 

CWE extraction. The CWEs for each removal volume can be extracted independently. An 

agent based methodology that does just this is described in [85].  

 

For these reasons the removal volume is used in the research described in this chapter to 

capture the in-process geometry.  

 Since a polyhedral model is an approximate representation of the exact analytical surface 

from which it was generated it would seem that similar accuracy issues to those found in the 

discrete modeling approaches exist. One example is illustrated in (Figure 6.21). Shown is the 

polyhedral model of a removal volume machined from the workpiece by a cylindrical end 

mill. The faceting algorithm that generates this model approximates surfaces to a specified 

chordal error. As can be seen from the 2D view this results in facets that lie outside the tool 

envelop at a given location even though the cutting tool is in contact with the actual removal 

volume surface. This facet should be considered in finding the CWE boundary but would be 

difficult to detect since it does not intersect with the tool geometry. 

 

 
 

Figure 6.21: The edges of facets deviate from the real surface 

 

In this section CWEs are calculated for the common milling cutters performing 3-axis and 

5-axis tool movements. In calculations the cutting tool geometries are represented implicitly 
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by natural quadrics and toroidal surfaces. Natural quadrics (Figure 6.22-a) consist of the 

sphere, circular cylinder and the cone. Together with the plane (a degenerate quadric) and 

torus these constitute the surface geometries found on the majority of cutters used in milling. 

For example a ball nose end mill (BNEM) is defined by two natural quadric surfaces – 

spherical and cylindrical. Other examples are shown in Figure (6.22-b). 

 

 
 

 
(a) 

 

  
            (b) 

Figure 6.22: (a) Constituent surfaces of milling cutters and 

(b) some typical milling cutter surfaces. 

 

In developing the CWE methodologies for the polyhedral models the implicit equations 

of the cutter geometries will be used. These are 

 Sphere: ( ) ( ) 02 =−−•− rCPCP                                      (6.7-a) 

 Cylinder: ( ) ( ) ( )[ ] 022 =−•−−−•− rnBPBPBP                                               (6.7-b) 

 Cone:   ( )[ ] ( ) ( ) 0)(cos 22 =−•−−•− VPVPnVP α                                              (6.7-c) 

 Torus:  [ ] 0])[(4( 222222 =−+−• rzzRRr C--)C-P)C-P(                            (6.7-d) 

 Plane:   0)( =•− nBP                                                        (6.7-e) 
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where P represents the position of an arbitrary point on the cutter’s surface and the 

coordinates of C are (xC, yC, zC).  

 

6.2.1 Engagement Extraction Methodology in 3-Axis Milling 

 This section presents a methodology for calculating CWEs from polyhedral models 

that addresses the chordal error problem described in section (6.2) and which reduces the 

problem to line-plane intersections for the common milling cutter geometries and move 

types. In this methodology for finding the CWEs in 3-Axis milling, a polyhedral 

representation of the removal volume is mapped from Euclidean space into a parametric 

space. The nature of the swept geometry and the goal of engagement extraction points 

towards a preferred parameterization. As shown in Figure(6.23), the engagement(immersion) 

angle (φ), depth of cut (d) for points on the cutter surface and the tool tip distance (L(t)) 

make up this parameterization, P(φ, d, L(t)) where (0 ≤ t ≤ 1). 

 

 
 

Figure 6.23: CWE parameters
 

 

This mapping as will be seen has the effect of reducing the cutting tool geometry to an 

unbounded plane. Thus the boundary of the CWE is found by performing first order 

intersections between the planar representation of the cutting tool and the planar facets in the 

polyhedral representation of the removal volume. 
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General Terminology 

Ti       : Tool path for the i
th

 tool motion 

RVi    : Removal volume generated for i
th

 tool motion in E
3
. 

M      : A transformation that maps RVi from E
3
 to P(φ, d, L) i.e. M: E

3
 → P(φ, d, L) 

P

iRV : The map of RVi in P(φ, d, L). 

N       :   Surface normal of a point on cutter. 

CWEK(t): The set of all points on the surface of a cutter at location t along a tool path where f 

• N ≥ 0. These are kinematically feasible engagement points for a given instantaneous 

feed vector f. 

CWE(t): The set of all points on the surface of a cutter at location t along a tool path that       

are engaged with the workpiece. 

bCWE(t): Points on the boundary of CWE(t). 

 

In finding engagement geometry the following property of the representations for removal 

volumes in the parametric space P(φ, d, L) motivate finding the mapping M: E
3
 → P(φ, d, L). 

Property 6.3: Given 
P

iRV a representation of the removal volume RVi for tool path Ti in P(φ, 

d, L), its intersection with an unbounded plane Q generates a closed set of points CWE(t) that 

constitutes all points in engagement with the workpiece at location t along the tool path.  

 

 Of interest is the boundary set of CWE(t), bCWE(t). This defines the geometry required 

for input to process modeling (i.e. force prediction). Thus 

 

  bCWE(t) ⊂  CWE(t) ⊂  CWEK(t)                 (6.8) 

 

These three sets are illustrated in Figure (6.24). 
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Figure 6.24: Point sets CWEK(t), CWE(t) and bCWE(t) used in defining engagements 

 

 The property given above point to a novel approach for finding the engagement geometry 

assuming that the mapping M can be constructed: Given 
P

iRV  generated by applying M to 

RVi , CWE(t) and bCWE(t) can be found by intersecting 
P

iRV  with an unbounded plane for 

each cutter location  defined by t (Figure 6.25). The use of an unbounded plane in finding 

engagements eliminates the problem highlighted in Figure (6.21) where the chordal error in 

the polyhedral representation of a removal volume introduces uncertainty in the intersection 

calculation. Further the reduction of the cutter surface geometry to a first order form 

simplifies intersection calculations particularly when the removal volume is polyhedral. 

 

 

 
 

Figure 6.25: CWE calculations in the parametric domain P(φ, d, L). 
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6.2.1.1 Mapping M for Linear Toolpath 

 In this section derivations for the linear tool path will be shown for the Ball Nose End 

Mill (BNEM) and formulas for the other cutter types can be found in Appendix A-2. A 

BNEM is made up of a hemi-spherical and a cylindrical surface. Based on the kinematics of 

3-axis machining subsets of these surfaces denoted CWEK,S(t) and CWEK,C(t) respectively 

will contribute to the set CWEK(t) as defined in chapter (5) i.e.  

 

 CWEK (t) =  CWEK,S(t) ∪  CWEK,C(t) 

 

Transformation formulas will be derived for the mapping of the hemi-spherical surface, 

Msphere. The methodology and many of formulae developed apply equally to the mapping for 

the cylindrical surface of the cutter, Mcyl. This will be further explained later in this section. 

 

Derivation of Msphere for the BNEM                      

 In addition to the geometric definition of the surface the location of a point on the cutter 

geometry as it moves along a tool path is also required. To do this the following terms are 

introduced (see Figure 6.26). 

 

 
Figure 6.26: Description of a point on a cutter moving 

along a Tool Path 

 

WCS: Workpiece Coordinate System (i, j, k). This is where the geometry of the removal 

volume and tool paths are defined. 

TCS: Tool Coordinate System (u, v, w) positioned at the tool tip with w along the cutter 

axis. It is assumed that the x axis of the local tool coordinate system is aligned with 

the feed vector direction. 
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T(t):  The position of the tool tip point (xT, yT, zT, t) at t along tool path Ti in the WCS. 

I:  The position of a point (xI, yI, zI) on the cutter surface that belongs to the set CWEK(t) 

at t along tool path Ti in the WCS. 

F(t):  The position of a reference point (xR, yR, zR, t) on the cutting tool axis at t along   

 tool path Ti . 

 

Note that in this section the components of the (TCS) are defined by u,v and w which are 

different than those defined in chapter (5). The reason for this is to maintain the clarity in the 

variable symbolization i.e. to use less subscripts. The possible 3-axis linear tool motions are 

shown in Figure (6.27): horizontal, ascending and descending (from left to right) 

respectively. 

 
 

Figure 6.27: 3-axis Linear Tool Motions with a BNEM 

 

For motions A and B the engagement angle of a point at )(, tCWE SK∈I must lie within [0,π] 

i.e. πϕ ≤∈≤ ))(|(0 , tCWE SKII . At C both the front and the back sides of the hemi-spherical 

surface of the cutter have engagements and the total engagement area covers the full [0,2π] 

range i.e. πϕ 2))(|(0 , ≤∈≤ tCWE SKII .The mapping will be developed for the most general 

case C where the hemi-spherical surface engages the workpiece in two regions – the front 

contact face CWEK,s1(t) and the back contact face CWEK,s2(t) where  

 

 2,1,, )( sKsKSK CWECWEtCWE ∪=   

 

Figure (6.28) shows the engagement regions and parameters (φ, d, L) for a point at I on the 

hemi-spherical surface. 
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                                        (a)                                                (b) 

Figure 6.28: Engagement regions of the (a) front and (b) back contact faces 

 

The mapping methodology is summarized in Figure (6.29) and consists of 4 steps. The inputs 

are a point on the removal volume I(xI,yI,zI)∈E
3
, the implicit representation of the cutter 

surface geometry G and the parametric form of the tool path Ti. 

 

 

 

Figure 6.29: Procedure for performing Mapping  

MG:E
3
 → P(φ, d, L). 

 

Step 1:  In this step the parameter value t along Ti  is found. For a linear tool path, the tool tip 

coordinates with respect to tool path start VS(xS, yS, zS) and end VE(xE, yE, zE) points are given 

by, 
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 ( ) tt )( SES VVVT −+= ,   10 ≤≤ t                                (6.9) 

 

For a BNEM the reference point at F is chosen to be the center of the sphere. Its location can 

be expressed using the cutting tool tip coordinates as, 

 

 ( ) nTF rtt += )(                                          (6.10) 

 

where r and n are the radius of the hemi-sphere and unit normal vector of the tool axis 

respectively. When the hemi-spherical surface moves along a tool path, a family GS(t) of 

surfaces is generated. An expression for this family of surfaces is obtained by substituting in 

the coordinates of the reference point at F from Eq.(6.10) into the implicit form of a sphere 

given by Eq.( 6.7-a). 

 

 ( ) ( ) 0:)( 2 =−−•− rtGS FPFP                                                             (6.11) 

 

When the point at P belongs to the set CWEK,S(t), Eq.(6.11) can be rewritten as, 

 

 ( ) ( ) 0:)( 2

, =−−•− rtCWE SK FIFI                    (6.12) 

 

Given a point at I that is known to be an engagement point, Eq.(6.12) can be expanded to 

take on the following quadratic form,  

 

 A2 t
2
 + A1 t + A0   = 0                      (6.13) 

 

where the coefficients A2 , A1 and A0  are  given by, 

  

 
2

2 SE VV −=A  

 ( ) ( )[ ]SES VVnVI −•−−−= rA 21
                (6.14) 

 22

0 rrA −−−= nVI S
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Solving for t in Eq.(6.13) gives the position of the cutter tool tip when the point at I is an 

engagement point between the cutter and the workpiece. In finding the correct tool position 

for an intersection point I the following property is used.  

 

Property 6.4: Given a linear tool path Ti and the cutter surface geometry G, for 3-axis 

machining, 

a)  The maximum number of tool positions where the cutter touches a point in space is equal 

to the degree of the cutter surface geometry G, i.e. sphere is a degree of two surface. 

b) If a point belongs to the removal volume then there is at least one cutter location where 

the cutter surface touches this point. 

c)  If the point is on the boundary of the swept volume SVi of the cutter there is a single tool 

position where the cutter surface touches this point.   

 

 The solution for Eq.(6.13) gives two real roots (Property 6.4-a,b) t1 and t2 where t1 ≤ t2. 

These roots represent two possible cutter locations where the intersection point I lies on the 

spherical surface as shown in Figure (6.30-a). To differentiate between the two choices and 

make the correct selection for t, the sign of the dot products f • N1 and f • N2 between the 

feed vector f and the surface normals N1 and N2 for the two positions of the cutter is used. A 

negative value indicates that I is in the shadow of the cutter and so cannot be a member of 

CWEK(t). For example, as shown in the figure at location t2 the dot product is negative while 

at t1, it is positive. It is easy to see that for linear tool motions the smaller root of Eq.(6.13) 

should always be used.  

 For the special case where I lies on the boundary of the swept volume of the cutter such 

that the scalar product f • N1, N2 = 0, the cutting tool has only one cutter location (Property 

6.4-c) as shown in Figure (6.30-b). The solution to Eq. (6.13) yields a repeated root and also 

I satisfies the following system of equations as shown at [82] 

 

 0),,,( III =tzyxGS  ,      0
),,,( III =

∂

∂

t

tzyxGS            (6.15) 
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           (a)                                         (b) 

Figure 6.30: Different cutter locations for I ∈ CWEK(t). 

 

Step 2: Given the value of the tool path parameter t = tI when the cutter surface passes 

through I, a transformation is created to map the global coordinate system (WCS) to a local 

tool coordinate system (TCS) at this location on the tool path. With the w axis of cutter being 

one of the axes of the TCS the v axis (see Figure 6.28) is obtained from the cross product of 

w and the instantaneous feed direction vector f(t=tI). The third axis u is perpendicular to the 

first two.  

 ||/)( fwfwv ××=                   (6.16)

 ||/)( wvwvu ××=   

where  

 

 kjif )()()( SESESE zzyyxx −+−+−=                   (6.17)  

 

Using Eqs.(6.16) the transformation of a point in the TCS to one in the WCS is given by, 

 

 [ ]
Itt == JI'I                     (6.18) 

where 

 

 [ ]

II

I

TTTT

w
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u

J

tt

www

vvv

uuu

tt

tt

tztytx

zyx

zyx

zyx

t
==

=



















≡



















=

1)()()(

0

0

0

1

0

0

0

)(

                     (6.19) 
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and I' are the coordinates of I in the TCS. 

 

Step 3: To find ϕ(t) and d(t) the coordinates of an engagement point in the TCS is required. 

This is obtained from Eq.(6.18) as, 

 

 [ ] 1

I
'

−

== ttJII                     (6.20) 

 

Given that [ ]
Itt=J  is orthogonal, its inverse is defined by, 

 

 [ ]

I

I

1)()()(

0

0

0

1

tt

wvu

wvu

wvu

tt

ttt

zzz

yyy

xxx

=

−

=



















•−•−•−

=

TwTvTu

J       (6.21) 

 

Expanding equation (6.20) using (6.21) gives the coordinates of I'(
III ,, zyx ′′′ ). These are,  

 

 )( II ttx =•−•=′ TuuI   

 )( II tty =•−•=′ TvvI                                                                                    (6.22) 

 )( II ttz =•−•=′ TwwI  

  

Step 4: Given the coordinates of I' on the hemi-spherical surface of the BNEM, its tool 

engagement angle ϕ(t) is obtained using spherical coordinates. The Engagement angle for the 

front contact face CWEK,s1(t) is given by 

 

 














′+′

′
== −

2

I

2

I

I1

I cos)(
yx

y
ttϕ                                                     (6.23-a) 

 

and for the back contact face CWEK,s2(t)  is given by 
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













′+′

′
−== −

2

I

2

I

I1

I cos2)(
yx

y
tt πϕ                                                          (6.23-b) 

 

The depth of the engagement point for the spherical part is the angle from T(t) to I' such that: 

 

 






 ′
−== −

r

z
ttd I1

I 1cos)(                                                                    (6.24) 

 

and finally the parameter L(t) of I is obtained using, 

 

 SE VV −== tttL )( I                   (6.25) 

 

Derivation of Mcyl for the BNEM                      

The mapping for the cylindrical surface of the Ball end cutter is obtained following the 

same steps just developed for the hemispherical cutter surface. It can be seen that except for 

the first, all steps and equations to accomplish the mapping remain the same. For the first 

step, the geometry of the cylinder changes Eqs.(6.11) and (6.12) to, 

 

[ ] 0)()()(:)( 22 =−•−−−•− rtGC nFPFPFP                                                (6.26) 

and, 

 [ ] 0)()()(:)( 22

, =−•−−−•− rtCWE CK nFIFIFI                                               (6.27) 

 

respectively (see Figure 6.31). Where r and n are the radius of the cylindrical surface and the 

unit normal vector of the tool rotation axis respectively. As with Eq.(6.13), Eq.(6.27) results 

in a quadratic equation in t when I and F are substituted. The solution to this and the 

remaining steps in the mapping procedure lead to the representation of a point I on the 

cylindrical surface of the BNEM in (ϕ, d, L) coordinates. Detailed transformation formulas 

for the cylindrical end mill can be found in the Appendix A.2.  
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                   Figure 6.31: Cylindrical contact face CWEK,C(t) of BNEM 

 

 

6.2.1.2 Mapping M for Circular Toolpath 

 In this section we highlight the mapping procedure for a circular tool path. The steps 

summarized in (Figure 6.29) can be followed with some important differences. One in 

particular is that the feed direction changes as a function of the tool path parametric variable 

t. This impacts the transformation from the WCS to the TCS. The parametric representation 

for the tool tip point for a circular tool path of radius R centered at ),,( CCC zyx=C is given by 

 

 ( ) edCT )sin()cos( tRtRt ++=                                                                  (6.28) 

 

where [ ]π2,0∈t  (see Figure 6.32). d(xd, yd, zd) and e(xe, ye, ze)  are two orthogonal unit 

vectors defining the plane of the circular tool path. Thus, this representation for T is general 

even though circular interpolation on most milling machines is restricted to the XY, XZ and 

YZ planes.  
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Figure 6.32: Moving coordinate frame for circular tool path 

 

As with linear tool paths the local tool coordinate system TCS defined with u, v and w has its 

origin at the tool tip point. The reference point F is expressed in terms of the cutting tool tip 

coordinates using Eq.(6.10). Following the same steps outlined in section (6.2.1.1) Eq.(6.28) 

is substituted into Eq.(6.10) then into the implicit equation of the hemispherical surface of the 

cutter (6.7-a) with the coordinates of a point I belonging to the CWEK(t) obtained from the 

removal volume. The resulting equation can be expressed in terms of the parameter t in the 

following form 

 

 0)sin()cos( 012 =++ AtAtA                                                                       (6.29) 

 

where A2, A1 and A0 are constants for the current intersection point I given by the following 

expressions 

 

 ( ) ( ) ( )[ ]ZCIYCIXCI nrzznryynrxx −−−−−−=a ,                                         (6.30) 

 ( )da •−= RA 22
,   ( )ea •−= RA 21

,  222

0 rRA −+= a   

  

Eq.(6.29) in t can be written in the following form 

 

 0)sin( 0

2

2

2

1 =+++ AtAA θ                     (6.31) 
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where  ( )12

1

2 ,tan AA
−=θ . This leads to the following general equation for t 

 

 ( ) παθ nt
n

+−+−= 1 ,  
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where n is integer. Define n1 to be the smallest n such that t > t0. Then n1 can be calculated as  
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After n1 is found it can be incremented by unit steps to calculate the next tool tip point T for 

the given I. There can be up to two cutter location points in the interval for a given 

engagement point I (Figure 6.33). As explained in section (6.2.1.1) the minimum root is 

selected. If I is on the envelope surface of the cutter (Property 6.4-c), Eq.(6.29) gives two 

repeated roots. Having solved for the parameter t value when I is an engagement point, it is 

substituted into equation (6.28) to find the tool tip coordinates. The direction of the feed 

vector at this location is given by  

  

 

k

ji
T

f

))cos()sin((

))cos()sin(())cos()sin(()(

ed

ededI

ztztR

ytytRxtxtR
dt

d
tt

+−+

+−++−===
                     (6.34) 

 

 
Figure 6.33: Parameter values of the cutter tool tip 
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Given f and t, Eqs.(6.23-a,b) and (6.24) are used to find ( )d,ϕ parameters for I and L(t) of I 

is obtained using 

 

 tRttL I == )(                                                                                (6.35)      

                                            

the mapping for the cylindrical portion of the cutter follows the same steps using the implicit 

surface for a cylinder. 

 

6.2.1.3 Mapping M for Helical Toolpath 

 A special case of 3-axis machining is helical milling shown in Figure (6.34). In this 

operation a cutting tool is feed along its tool axis (Z-axis) as a circle is interpolated by the 

other two (X and Y axes). The cutter follows a helical trajectory. This operation is useful for 

(1) contour milling of cylindrical protrusions or for enlarging of pre-machined or pre-formed 

holes, (2) for hole machining into solid stock.  

 

                
 

Figure 6.34: Sweeps for Helical Milling
 

 

In this section derivations of the mapping M for the helical toolpath will be shown for the 

Flat-End mill. The methodology and many of formulae developed apply equally to the 

mapping for the other types of the cutter geometries. A Flat end mill is made up of a 

cylindrical surface for its side and a flat surface for its bottom. Based on the kinematics of 3-

axis machining these surfaces denoted CWEK,c1(t) and CWEK,c2(t) respectively will contribute 

to the set CWEK(t) as defined before i.e.  

 

 CWEK (t) =  CWEK,c1(t) ∪  CWEK,c2(t) 
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As explained in section (5), during machining each cutter surface contributes to CWEs 

differently. Because of this the removal volumes generated by the side and flat surfaces of 

the Flat-End mill are separated in this research. The Side face (Figure 6.35-a) has an 

engagement in the range of zero toπ, and the bottom face (Figure 6.35-b) in the range of zero 

to 2π .  

 

 
           (a) 

 
           (b) 

Figure 6.35: Removal volumes of (a) side face and 

(b)  bottom face. 

 

In this section the mapping methodology to be described is applied to the removal 

volume generated by the cutter side face only. This is because directly intersecting a plane 

which is perpendicular to the tool rotation axis with the removal volume of the bottom face 

gives the CWEs of the bottom face. For the cylindrical surface tool reference point F equals 

to the tool tip point T (see Figure 6.36) and the parametric representation for the tool tip 

point for a helical tool path of radius R centered at C( xc, yc , zc ) is 

  

 ( )



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+
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==
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C

C

TTT )sin(

)cos(

,,,)( T  F             (6.36) 

where t ∈[0, 2π ] and 2πc is a constant giving the vertical separations of the helix’s loops 

where c < 0. 
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Figure 6.36: Parameters describing a helical tool motion for the Flat-End mill 

 

Following the same steps outlined in section (6.2.1.1), Eq.(6.36) is substituted into the 

implicit equation of the cylindrical surface of the cutter (6.7-b) with the coordinates of a 

point I belonging to the CWEK(t) obtained from the removal volume. The resulting equation 

can be expressed in terms of the parameter t in the following form 

 

 0)sin()cos( 012 =++ AtAtA                         (6.37) 

 

where 

 ( ) RxxA CI −−= 22
 

 ( ) RyyA CI −−= 21              

 ( ) ( ) 2222

0 rRyyxxA CICI −+−+−=  

 

Eq.(6.37) in t can be solved by applying the Eqs.(6.32) and (6.33). There can be up to two 

cutter location points in the interval for a given engagement point I (Figure 6.37). As 

explained in Property (6.4) the minimum root is selected. 
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Figure 6.37: Different cutter locations for an engagement 

point I ∈ CWEK(t). 

 

As with linear tool paths the local tool coordinate system TCS defined with u, v and w has its 

origin at the tool tip point. The direction of the feed vector for the parameter t value from 

Eq.(6.36) is given by 

 

 kji
T

f ctRtR
dt

d
tt I ++−=== )(cos)(sin)(                                                          (6.38) 

Using t, the parameter L(t) of I is obtained by 

 

 22)( cRtttL II +==                                                          (6.39) 

 

Given f and t, the Eq.(6.23-a) is used to find ϕ  parameter for I and finally, the depth of the 

engagement point as defined by the distance from T(t) to I' measured along the tool axis 

vector is simply the z-coordinate of I'.  

 

 )()( III ttzttd =•−•=′== TwwI                                                      (6.40)  

 

6.2.1.4 Implementation 

 In this research the mappings developed in the previous sections are applied directly to a 

polyhedral representation of the removal volume. The specific representation utilized is the 

STL (“Stereo Lithography”) format though other representations (VRML, .jt, .hsf etc.) can as 

easily be adopted. As explained in chapter (1), in the STL representation the geometry of 

surfaces is represented by small triangles called facets. These facets are described by three 
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vertices and the normal direction of the triangle. To test the methodology for CWE 

extraction, a prototype system has been assembled using existing commercial software 

applications and C++ implementations of the mapping procedure described above. This 

system is shown in (Figure 6.38). Simulation of the CLData is performed using VERICUT a 

commercial NC verification application. This application uses a voxel-based model to 

capture changes to the in-process workpiece. STL representations of in-process workpiece 

states can be generated from the voxel representation prior to any tool path motion in the 

CLData file. Not currently available through the programmable APIs provided for 

customization is a function for outputting STL representations of removal volumes. 

However, this is probably an easy extension to implement. Thus, to obtain removal volumes 

for a given tool motion, (ACIS) is utilized to model a B-rep solid of the associated swept 

volume. 

 

 
 

Figure 6.38: Implementation of CWE extraction methodology 

 

These swept volumes are exported to STL format. A Boolean intersection between this swept 

volume and the current in-process workpiece output from Vericut is performed using the 

polyhedral modeling Boolean operators implemented in a third commercial application, 

Magics X [51].Though currently a manual process this prototype system creates STL models 



Chapter 6. Cutter Workpiece Engagements 

 165 

of removal volumes generated during the machining of complex components. It utilizes the 

same CAD/CAM data generated for machining the part.  

 In this section examples of the application of the mapping M to removal volumes 

generated by different types of cutting tools and tool motions are presented. The first set of 

examples is designed to demonstrate the generality of the approach with respect to tool 

geometry and linear, circular and helical tool motions. The second set comes directly from 

applying the prototype system described in the previous section to CAD/CAM data created in 

machining a gearbox cover. This demonstrates the practicality of the methodology. 

 

Example Set 1 

 In this example set different cutting tools and linear, circular and helical tool motions are 

presented to demonstrate the generality of the approach. Figures (6.39) to (6.41) show Ball, 

Flat and Tapered-Flat End mills removing material along a linear ramping tool path i.e. the 

tool moves in all three axes simultaneously. In each case the original and transformed 

removal volumes are given. The removal volumes associated with the different cutter 

surfaces are separated. In the case of the flat end mill this gives the material removed by the 

cylindrical (Side Face) and flat (Bottom Face) cutter surfaces. Plots of CWEs at different 

Cutter Locations (CL) along the tool path are illustrated. These are obtained by intersecting 

the transformed removal volume with a plane representing the cutting tool. Two formats for 

plotting the CWEs are used. The first is an XY plot of depth-of-cut (as measured from the 

tool tip point) versus engagement angle. The second plot shows the engagement area of the 

cutter bottom surface (Figure 6.40) in a polar format. 

  In the linear ramping example of the Ball-End mill the plots show that engagement of the 

cutter occurs over the full range i.e. [0, 2π]. Between zero and π  the engagement is due to 

the front contact face (the CWE in this zone is divided to illustrate this) and between π and 

2π due to the back contact face. For the Flat-End mill XY plots show the engagement 

between zero and π  for the side face and polar plots show the engagement between zero and 

2π for the bottom face. Because the Tapered-Flat-End mill is ramping up only its front face 

has engagement with the workpiece and it changes between zero andπ. 

 

 



Chapter 6. Cutter Workpiece Engagements 

 166 

 
 

Figure 6.39: CWEs for Ball-End mill performing  

a linear 3-axis move 

 

 

 

 

 
 

Figure 6.40: CWEs for Flat End mill performing 

a linear 3-axis move 
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Figure 6.41: CWEs for Tapered-Flat-End mill performing 

a linear 3-axis move 

 

The next example shows a Flat-End mill removing material along a helical tool path (Figures 

6.42 – a,b,c).  In each case the original and transformed removal volumes are shown. In 

Figure (6.42-d) the transformed removal volumes for the side face are shown and for the 

given CLs (cutter location points) CWEs are obtained by intersecting a plane representing the 

cutting tool with the transformed removal volume.  Two formats for plotting the CWEs are 

used.  The first is an XY plot of the depth of cut (DOC) and immersion angle which is 

generated by the side face of the flat end mill. The engagement of this surface of the cutter 

occurs over the [ ]π,0  range as can be seen. The second is a polar plot of the cutter radius 

versus the immersion angle which is generated by the bottom surface of the flat end mill. The 

engagement for the bottom face of the cutter occurs over the [ ]π2,0  range. For CL1and CL2 

both types of plots are shown because the bottom of the cutter is removing material at these 

locations. For the other cutter locations only the side face of the end mill is engaging the 

workpiece. 
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Figure 6.42: Helical Tool Motions with a Flat-End mill and CWEs 

 

The final example (Figure 6.43) demonstrates the transformation as applied to a circular 2½D 

tool path. These results together show that the mapping methodology reduces various 
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combinations of cutter and tool path geometry to a generic form to which a single 

intersection operator can be applied. 

                                                                                    

 
 

Figure 6.43: CWEs for Flat-End mill performing 

 a circular move 

                                           

Example Set 2 

 The examples in this section are created using the steps outlined in Figure (6.38). The 

Figure (6.44) shows model of a gearbox cover to be machined from rectangular stock. The 

CAD model and tool paths for machining were both created using Unigraphics NX3. In this 

figure, it is shown in-process workpiece and the removal volume for the next tool path 

generated by Vericut, ACIS and Magics. The removal volume generated by the ball nose end 

mill clearly shows the complicated removal volume shapes and resulting CWEs that can be 

generated when machining complex parts.  

 



Chapter 6. Cutter Workpiece Engagements 

 170 

 
 

Figure 6.44: CWEs for Ball-End mill performing 

a linear 3-axis move 

 

Figure (6.45) shows a helical milling operation for enlarging a hole. In this example both the 

side and the bottom faces of the Flat-End mill are removing material. In this figure side face 

removal volumes are shown. The cutter performs four half turns each corresponding to a 0
0
 – 

180
0
 range i.e. third turn has the starting angle 360

0
and ending angle540

0
along the tool path.  

 

 
 

Figure 6.45: Helical tool path application with removal 

volumes for each half turn. 

 

It can be seen from Figure (6.46) that starting from the first turn the material removal rate is 

constantly increasing. Then this rate becomes constant for the third and the fourth turns.  
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Figure 6.46: CWEs of the Helical Tool Motions 

 

6.2.2 Engagement Extraction Methodology in 5-Axis Milling 

 In 3-axis milling cutter translates along a tool path with a fixed tool axis vector. For the 

3-axis CWE methodology described in the previous section the mapping is performed with 

respect to the Tool Coordinate System (TCS) in which the z –axis was fixed. In this 

methodology it is assumed that the size of the facets of the removal volume must be small 

enough. Thus during the mapping of the removal volume the triangle deformation stays small 

enough. Later this will be discussed in the discussion section. On the other hand in 5-axis 

tool motions the direction of the tool axis vector continuously changes. When the mapping 

described in the previous section is applied to the removal volume obtained from the 5-axis 

tool motions, the deformation on the triangles becomes big. One of the solutions for reducing 

the deformation is to use much smaller triangular facets but this brings a heavy 

computational load to CWE extractions. Therefore, in this research, the mapping 

methodology is not applied for obtaining CWEs in the 5-axis milling. We developed a new 

methodology for the 5-axis CWE extractions. This methodology is explained in Figure (6.47) 

for the impeller machining by using a Taper-Flat-End mill and it has 3 main steps:  

 

Step 1: In this stage there are two components: the in-process workpiece and the BODY. 

Both of them are represented by triangular facets having vertices and normal vectors. For a 

given Cutter Location (CL) point the BODY is generated as a solid using the methodology 

described in section (6.1.3) and then it is exported to STL format for obtaining the tessellated 

representation. A Boolean intersection between this tessellated BODY and the current in-
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process workpiece is performed using the polyhedral modeling Boolean operator. This 

intersection process creates an STL model of the removal volume for a given CL point. 

Step 2: In this stage there are two components also: The removal volume in the STL format 

and the feasible contact surface in the solid format. The analytical surface/line intersections 

are performed between the feasible contact surface and the triangles of the removal volume. 

For example in Figure (6.47)-steps 2, triangles of the removal volume are intersected with the 

cone and sphere parts of the feasible contact surface.  

Step 3: In this last step the connection of the intersection points obtained in the previous step 

generates the boundary of the CWE, bCWE. Then this boundary described in 3D Euclidian 

space is mapped into 2D space defined by the engagement angle and the depth of cut. 

 

 
 

Figure 6.47: CWE extraction steps for 5-axis milling. 

 

Although this 5-axis CWE methodology in polyhedral models is explained by using the 

Taper-Flat-End mill, the methodology applies equally for the other cutter surfaces also. If the 
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cutter surface has the second order equation, e.g. cylinder, cone or sphere natural quadric 

surfaces, each line – surface intersection gives two roots. If the cutter surface has the fourth 

order equation e.g. torus, each line surface intersection gives four roots. In most cases only 

one of these roots are needed for obtaining the bCWEs and the rest is redundant. During the 

implementation the ACIS geometric kernel with C++ is used for creating and tessellating the 

BODY and the Magics is used for the polyhedral Boolean intersections and updating the in-

process workpiece. These three steps are performed for each tool path segment. After 

processing a toolpath segment for CWE extractions, the material is removed from the in-

process workpiece in the vicinity of the toolpath segment.  

 

6.3 The Cutter Workpiece Engagements in Vector Based Model 

In this section for the CWE calculations the cutting tool geometries are represented 

implicitly by natural quadrics and the plane (a degenerate quadric). Natural quadrics consist 

of the sphere, circular cylinder and the cone. 

 

6.3.1 Intersecting Segment Against Plane 

 Given a point P with normal n on a planeπ , the following equation can be written for all 

points X on this plane 

 

 ( ) 0=− PX· n                                                                           (6.41) 

 

In the above equation the vector (X-P) is perpendicular to the vector n. When the dot product 

in Eq.(6.41) is distributed across the subtraction the implicit representation of the plane takes 

the form of dX =· n where Pd · n= . Let a segment is given by ( ) vIIIvI aba −+=)(  for 

10 ≤≤ v . For finding the intersection point I (see Figure 6.48) between the segment and the 

plane the equivalent of I(v) is substituted for X in the plane equation and then this equation is 

solved for v 

 

 ( )( ) dvIII aba =−+· n                  (6.42)  
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Isolating v in the above equation yields ( ) ( )( )aba IIIdv −−= · n· n . The expression for v 

can now be inserted the parametric equation of the segment I(v) for finding the intersection 

points I  

 

 ( ) ( )( )[ ]( )ababaa IIIIIdII −−−+= · n· n             (6.43) 

 

 
 

Figure 6.48: Intersecting a segment against a plane 

 

6.3.2 Intersecting Segment Against Sphere 

 Let a segment is given by ( ) vIIIvI aba −+=)(  for 10 ≤≤ v . Let the sphere surface 

defined by ( ) ( ) 2rCXCX =−− · , where C is the center of the sphere, and r is radius. To find 

the v value at which the segment intersect the sphere surface I(v) is substituted for X, giving 

 

 ( )( ) ( )( ) 2
rCvIIICvIII abaaba =−−+−−+ ·                 (6.44) 

 

Let CI a −=k and ( ) abab IIII −−=d then the Eq.(6.44) takes the form of 

( ) ( ) 2rvv =++ dk·dk . Expanding the dot product yields the following quadratic equation 

in v                                                                                            

 

 ( ) ( ) 0=−++ 22 k·kd·k2 rvv                (6.45) 

The solutions of this quadratic equation is given by 
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 ( ) ( ) ( ) ][
2

2,1

2
k·kd·kd·k rv −−−= m              (6.46) 

 

Solution of the above equation gives three outcomes with respect to the 

discriminant ( ) ( ) ][
2 2k·kd·k r−−=∆ . If 0>∆ there are two real roots for which segment 

intersects the sphere twice (Figure 6.49-a), If 0=∆ there are two equal real roots for which 

the segment hits the sphere tangentially (Figure 6.49-b), and if 0<∆ there are no real roots 

which corresponds to segment missing the sphere completely (Figure 6.49-c). Although for 

the case given by 0>∆ there are two real roots, one of them can be false intersection (Figure 

6.49-d,e). In this case the segment can start inside or outside sphere. One of the v values from 

Eq.(6.45), its value is in the range of ]1,0[∈v , gives the intersection point. 

 

 
                             (a)                  (b)                 (c)                   (d)                (e) 

Figure 6.49: Different cases in segment/sphere intersections: (a) Two intersection points, (b) 

intersecting tangentially, (c) no intersection, (d) segment starts inside sphere, and (e) segment 

starts outside sphere. 

 

 

6.3.3 Intersecting Segment Against Cylinder 

 A cylinder with an arbitrary orientation can be described by an axis which passes through 

points B and Q, and by a radius r (see Figure 6.50). Let X denotes a point on the cylinder 

surface. The projection of the vector (X-B) onto the cylinder axis defined the vector (Q-B) 

yields 

 

 ( ) n·BXBP −=−                             (6.47) 

 

where the unit vector ( ) BQBQ −−=n . Applying Pythagorean Theorem to triangle 

defined by the points B, X and P yields 
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 ( ) ( ) 222
rBPBXBXBX +−=−−=− ·             (6.48)  

    

Plugging Eq.(6.47) into Eq.(6.48) yields the following implicit representation for a cylinder 

surface 

 

 ( ) ( ) ( ){ } 022
=−−−−− rBXBXBX n··             (6.49) 

 

 
 

Figure 6.50: A segment is intersected against the cylinder given by points  

B and Q and the radius r. 

 

The intersection of a segment ( ) vIIIvI aba −+=)(  with the cylinder can be found by 

substituting I(v) for X into Eq.(6.49) and solving for v. 

 

( )( ) ( )( ) ( )( ){ } 022
=−−−+−−−+−−+ rBvIIIBvIIIBvIII abaabaaba n··      (6.50) 

 

Setting BI a −=d and ab II −=k  in the above equation the above equation can be written in 

the following form 

 

 A2 v
2
 + 2A1 v + A0   = 0                          (6.51) 

 

where  

 ( )2

2 n·k-k·k=A  

 ( ) ( )n·dn·k-d·k=1A  
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 ( ) 22

0 rA −= n·d-d·d  

 

Solving Eq.(X) for v gives 

 

 
2

02

2

11

2,1
A

AAAA
v

−−
=

m
                                    (6.52) 

 

The sign of ( )02

2

1 AAA − determines the number of real roots in the above equation. If the 

sign is positive, there are two real roots, which correspond to the line intersecting the 

cylinder in two points. If the sign is negative, there are no real roots, which corresponds to 

the line not intersecting the cylinder. When ( )02

2

1 AAA − equals to zero there are two equal 

real roots signifying that the line tangentially touching the cylinder. 

 

6.3.4 Intersecting Segment Against a Cone 

 The cone (see Figure 6.51) is defined by a vertex V, unit axis direction vector n and half-

angleα , where ( )2/,0 πα ∈ . Let P define the points on the cone surface. The half-angle α  is 

between P-V and n, therefore the following expression can be written 

 

 αcos=













V-P

V-P
 · n                        (6.53) 

 

The above equation is squared for eliminating the square root calculations and this yields the 

following quadratic equation 

 

 ( )( ) ( )22
cos V-PV-P · n α=                (6.54) 
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Figure 6.51: A cone with defining parameters 

 

The Eq.(6.54) represents a double cone which has the original cone and its reflection in the 

opposite direction of n. For the intersection calculations the original cone is needed. For 

eliminating the reflected cone the constraint ( ) 0>V-P · n is taken into account also. The 

quadratic cone equation given in Eq.(6.54) can be written in a quadratic form as 

( ) ( ) 0=V-PV-P
T

M , where IM α2cos−= Tnn . Therefore the original cone which has 

the unit axis vector n can be defined by  

 

 ( ) ( ) 0=V-PV-P
T

M , and ( ) 0>V-P · n             (6.55) 

 

Let the line segment is defined by ( ) vIIIvI aba −+=)( , where v∈R. For obtaining the 

intersection points between the line segment and the cone )(vI is substituted into Eq.(6.55) 

and this yields the following quadratic equation in one variable 

 

 A2 v
2
 + 2A1 v + A0   = 0                          (6.56) 

 

where  

 ( ) ( )TT

abab IIMIIA −−=2  

 ( ) ( )V-P
T

MIIA ab −=1  

 ( ) ( )V-PV-P
T

MA =0  
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As explained in section (6.3.3) the sign of ( )02

2

1 AAA − determines the number of real roots in 

the above equation. 

 

6.3.5 Obtaining the Cutter Workpiece Engagements 

 In the discrete vector approach calculating the CWEs are straight forward. By intersecting 

the line segments with the cutter geometries the intersection points are obtained. For mapping 

the intersection points into 2D domain represented by the engagement angle vs. depth of cut, 

cutter surfaces are decomposed into the grids (Figure 6.52). During simulation if any one of 

these grids contains an intersection point, then it is mapped into 2D space. The resolution of 

the grids on the cutter surfaces is adjusted with respect to the resolution of the discrete 

vectors of the workpiece. 

 

 
 

Figure 6.52: Decomposing cutter surfaces into grids. 

 

 

6.4 Discussion 

 The methodologies presented in this chapter target the important problem of finding 

Cutter Workpiece Engagements (CWEs) in the milling operations. The CWEs have been 

calculated for supporting the force prediction model which requires the CWE area in the 

format described by the engagement angle versus the depth of cut respectively. The 

developed methodologies can be classified into three categories based on the mathematical 

representation of the workpiece geometry: Solid modeler based, polyhedral modeler based 

and vector based methodologies. There is always a tradeoff between computational 

efficiency and accuracy in these approaches. For example the polyhedral and vector based 

approaches generate approximated CWE results and because of this they require a shorter 
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computational time than does the solid modeler based approach. But on the other hand in the 

solid modeler based approach the most accurate CWEs are obtained. 

 In section (6.1) the B-rep solid modeler based CWE methodologies for the 3 and 5-axis 

milling have been developed using a range of different types of cutters and tool paths. In the 

3-axis methodology the decomposed cutter surfaces have been intersected with their removal 

volumes for obtaining the boundary curves of the closed CWE area. For this purpose a 

removal volume has been decomposed into its constituent faces and then the face/face 

intersection have been performed between the feasible contact surface and these constituent 

faces at a given cutter location point. Examples have been presented to show that the 

approach generates proper engagements. Also it can be seen from the examples that in this 

methodology the computational load in terms of the required Boolean operations is higher for 

the descending motions described in chapter (5). For example in the ascending motion of a 

Flat-End mill only the cylindrical part removes the material from in-process workpiece and 

because of this one Boolean intersection is needed for obtaining the required removal volume 

in this methodology. But on the other hand the descending motion of the same cutter requires 

two Boolean intersections one for the cylindrical part and another for the bottom flat part. For 

the 5-axis milling we had to develop another methodology. As explained in section (6.1.3), 

because the envelope boundary for 5-axis tool motions are approximated by spline curves 

applying the same methodology described for the 3-axis milling generates non robust results. 

Because of this in 5-axis methodology a BODY obtained from the feasible contact surface 

has been intersected with the in-process workpiece at a given cutter location point. Then the 

face/face intersections have been performed for obtaining the boundaries of the CWEs. In this 

methodology for minimizing the error introduced by offsetting the feasible contact surface 

infinitesimally, the offset direction vector has been chosen at the middle of the tool rotation 

axis. 

 In section (6.2) the polyhedral modeler based CWE methodologies for the 3 and 5-axis 

milling have been developed. For the 3-axis milling a mapping methodology has been 

developed that transforms a polyhedral model of the removal volume from Euclidean space 

to a parametric space which is defined by the cutter engagement angle, depth of  cut and 

cutter location. To reduce the size of the data structure that needs to be manipulated the 

removal volume has been used instead of the in-process workpiece. This approach also has 
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the potential of being implemented using a parallel processing strategy [85]. This mapping 

methodology brings some important advantages over other approaches [88,90]. First, the 

complexity in the CWE calculations is reduced to first order analytical plane-plane 

intersections. When compared to other polyhedral modeling approaches it has greater 

robustness because it addresses the chordal error problem found in intersecting polyhedral 

models. In this methodology it has been assumed that the size of the facets in the removal 

volume is sufficiently small so as not to introduce significant errors in the CWE boundaries. 

To study this, a comparison has been made between engagements obtained from intersecting 

the removal volume using a B-rep solid modeler (the most accurate approach) and those from 

the 3-axis polyhedral approach described in this chapter using different faceting resolutions. 

Examples of the original and transformed removal volumes are shown in Figure 6.53(a) and 

(b) respectively. CWEs are obtained for cutter locations CL1 to CL29. For CL5 the CWEs from 

the solid modeler (Figure 6.53(c)) and polyhedral modeler at facet resolutions of 2 mm 

(Figure 6.53(d)), and 6mm (Figure 6.53(e)) are shown. To compare the effect of the size of 

the facets the CWE area is decomposed using a QuadTree [22] spatial data structure (Figure 

6.53(f)). 

 

 
 

Figure 6.53: Removal Volumes and CWEs for different resolutions 
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The area of the CWE is obtained by accumulating the square areas that lie within the 

QuadTree representation of the CWE boundary. For each CL point the areas obtained from 

the different resolutions are compared with that of the B-rep solid modeler (Figure 6.54(a)). 

The graph shows a 4% error at 6mm and less than 1% at 2mm.  Figure 6.54(b) shows the 

facet size vs. intersection time i.e. the time for obtaining the CWE area for a given cutter 

location point. While the absolute value would vary depending on the implementation, the 

trend should remain the same. This shows that there is a small increase in the intersection 

time as the resolution is decreased from 6mm to 2mm after which it increases significantly. 

Both the error and intersection time results point to 2mm being a practical limit for the facet 

size in this example. We point out that this limit will vary depending on the cutter size. An 

expression needs to be developed to calculate the resolution that considers this parameter. 

 

 (a)   (b) 

Figure 6.54: The effect of the facet resolutions 
 

Because in 5-axis tool motions the direction of the tool axis vector continuously changes 

applying the mapping described for the 3-axis milling has increased the distortions of the 

facets. Therefore an approach similar to that of the 5-axis solid modeler has been developed. 

In this approach the only difference was the application of the face-face intersections. These 

intersections have been performed between triangular facets of a BODY and a solid 

representation of the feasible contact surface. 

 And finally in section (6.3) a vector based CWE methodology has been developed. In this 

methodology the cutter has been discretized into slices perpendicular to the tool axis. For 

obtaining the CWEs the intersections have been performed between discrete vectors and 

cutter slices. The intersection calculations are straight forward. 
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Chapter 7 

Conclusions 

 

 

7.1 Contributions and Limitations 

 In this thesis new methodologies have been proposed to facilitate Cutter Workpiece 

Engagement (CWE) extractions in milling process modeling. This includes an analytical 

methodology for determining the shapes of the cutter swept envelopes in multi-axes milling, 

methodologies for updating the in-process workpiece surfaces, analysis of the feasible cutting 

faces and finally algorithms for extracting CWEs. More specifically the contributions are 

summarized as follows: 

 

� An analytical approach for determining the envelope of a swept volume generated by a 

general surface of revolution performing multi-axes machining has been developed. 

  In this approach the cutter geometries are represented using canal surfaces and for 

describing the cutter envelope surfaces the two-parameter-family of spheres has been 

introduced. Analytically it has been proven that for cutter surfaces performing 5-axis tool 

motions any point on the envelope surface is also a member of the point set generated from 

the two-parameter-family of spheres formulation. Later the methodology is generalized for 

cutters with general surfaces of revolution which performs 5-axis tool motions. In this 

methodology, by describing the radius function and the trajectory of the moving sphere, 

different cutter surfaces can be obtained. In this sense the methodology is independent of any 

particular cutter geometry. The implementation of the methodology is simple. Especially 

when the cutter geometries are pipe surfaces, fewer calculations are needed for describing the 

cutter envelope surfaces. Although examples from the application of this methodology have 

been shown for common milling cutter geometries described by the 7-parameter APT model, 

this methodology can be also applied to rare cutter geometries. In some cases of 5-Axis 

milling the cutter swept volume maybe self-intersecting, which requires special processing to 

handle the topological and geometric problems due to the complex tool motions. Self 

intersections in this research have not been considered. Modifications to the methodology 

will need to be developed for this special case. 
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� A discrete vector model based in-process workpiece update methodology has been 

developed.  

 During machining simulation, for each tool movement modification of the in-process 

workpiece geometry is required to keep track of the material removal process. In this thesis 

in-process workpiece modeling (or updating) methodologies have been developed using a 

discrete vector representation. These vectors having orientations in the directions of the 

x,y,z-axes of R
3
 are intersected with tool envelopes. With this representation more vectors in 

different directions are used when compared to other discrete vector approaches. Therefore 

especially when the workpiece has features like vertical walls and sharp edges, the quality in 

the visualization of the final product has been increased. Also the localization advantage of 

the Discrete Vertical Vector approach has been preserved. For simplifying the intersection 

calculations the properties of the canal surfaces have been utilized. For cutter geometries 

defined by a circular cylinder, frustum of a cone, sphere and plane the vector intersection 

calculations for updating have been made analytically. Because of the complexity of the torus 

geometry the calculations in this case have been made by using a numerical root finding 

method. For this purpose a root finding analysis has been developed for guaranteeing the 

root(s) in the given interval. A typical milling tool path contains thousands of tool 

movements and during the machining simulation for calculating the intersections only a 

small percentage of all the discrete vectors is needed. For this purpose a localization 

methodology, based on the Axis Aligned Bounding Box (AABB) of each tool movement, has 

been developed. The best feature of the AABB is its fast overlap check, which simply 

involves direct comparison of individual coordinate values. As explained in chapter (4), for 

some workpiece geometries 3-axis machining is not suitable for updating the surfaces. Also 

exact 5-axis milling tool motions are not preferable in workpiece update simulations because 

the calculations require using the nonlinear root finding algorithms and therefore the 

computational time becomes high. Therefore in the developed methodologies tool motions 

using (3+2)-axis milling are considered instead. Using (3+2)-axis tool motions in which a 

cutter can have an arbitrary fixed orientation in space, 5-axis tool motions can be 

approximated. An example has been given for illustrating this situation. The Discrete Normal 

Vector (DNV) approach has not been considered in this research. The DNV approach can 

represent the workpiece surface features well with respect to a given tolerance. But because 
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in this approach the directions of discrete vectors are not identical, localizing the cutter 

envelope surface during machining simulation becomes difficult. If the workpiece surfaces 

are represented by DNVs then an efficient localization methodology will need to be 

developed.  

 

� The engagement behaviors of NC cutter surfaces under varying tool motions have been 

analyzed. 

  A typical NC cutter has different surfaces with varying geometries and during the 

material removal process restricted regions of these surfaces are eligible to contact the in-

process workpiece with respect to the tool motions. In this thesis for representing these 

regions the terminology feasible contact surfaces (FCS) has been introduced. The word 

feasible has been used because although these surfaces are eligible to contact the in-process 

workpiece, they may or may not remove material depending on the cutter position relative to 

the workpiece. When the FCS contact the in-process workpiece the Cutter Workpiece 

Engagements (CWEs) are generated.  Since CWEs are subsets of the FCS, formalizing the 

FCS helps us to better understand the CWE generation process. The FCS have been 

formulized by using the cutter surface and the cutter envelope boundaries. The cutter surface 

boundaries are fixed, but on the other hand the cutter envelope boundaries may change 

depending on the tool motion. For modeling the cutter envelope boundaries a tangency 

function defined by using the surface normal and the tool velocity has been utilized. Later by 

changing the tool velocity direction the distributions of the FCS on the cutter have been 

analyzed. The results from these analyses are later used in the development of the CWE 

extraction methodologies. 

 

� Methodologies for obtaining Cutter Workpiece Engagements (CWEs) in milling have 

been developed.  

 A major step in simulating machining operations is the accurate extraction of the CWE 

geometries at changing tool locations. These geometries define the instantaneous intersection 

boundaries between the cutting tool and the in-process workpiece at each location along a 

tool path. The methodologies presented in this thesis target the important problem of finding 

CWEs in milling operations. The CWEs are calculated for supporting the force prediction 
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model requires the CWE area in the format described by the engagement angle versus the 

depth of cut. In these methodologies a wide range of cutter geometries, toolpaths including 5-

axis tool motions and workpiece surfaces have been used. The workpiece surfaces cover 

different surface geometries including sculptured surfaces. The developed CWE extraction 

methodologies can be classified into three categories based on the mathematical 

representation of the workpiece geometry: Solid modeler based, polyhedral modeler based 

and vector based methodologies. There is always a tradeoff between computational 

efficiency and accuracy in these approaches.  

 In 3-axis solid and polyhedral model based approaches developed in this thesis to reduce 

the size of the data structure that needs to be manipulated the removal volume has been used 

instead of the in-process workpiece.  In the 3-axis solid modeler methodology the cutter 

surfaces have been decomposed into different regions with respect to the feed vector 

direction. Then these surface regions have been intersected with their removal volumes for 

obtaining the boundary curves of the closed CWE area. Decomposing the cutter surfaces in 

this way allows CWEs to be obtained for different parts of a given cutter geometry, e.g. 

bottom flat or back side of a cutter. Using a solid modeler based representation the envelope 

boundaries generated by 5-axis tool motions are approximated by spline curve. Applying the 

solid model based methodology described for 3-axis tool motions to the removal volume 

obtained from 5-axis tool motions can generate un-expected results because of the non-robust 

surface/surface intersections. Therefore in this thesis for 5-axis tool motions in-process 

workpiece has been used instead of the removal volume. In this approach the feasible contact 

surface generated at a given cutter location point has been offsetted linearly with an 

infinitesimal amount. As a result of this linear offsetting a surface volume has been 

generated. Then this volume has been intersected with the in-process workpiece. Later 

face/face intersections have been performed for obtaining the boundaries of the CWEs. In this 

5-axis solid model based methodology by linearly offsetting the feasible contact surfaces, the 

CWE extractions have became more robust.  

 For addressing the chordal error problem in polyhedral models a 3-axis  mapping 

technique has been developed that transforms a polyhedral model of the removal volume 

from Euclidean space to a parametric space defined by location along the tool path, 

engagement angle and depth-of-cut. As a result, intersection operations have been reduced to 
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first order plane-plane intersections. This approach reduces the complexity of the 

cutter/workpiece intersections and also eliminates robustness problems found in standard 

polyhedral modeling. Because in 5-axis tool motions the direction of the tool axis vector 

continuously changes applying the mapping described for the 3-axis milling increases the 

distortions of the facets. Therefore a CWE extraction approach similar to the 5-axis solid 

modeler based approach has been developed. In the polyhedral model based CWE extractions 

2mm was the practical limit for the facet size. Still needed is an expression for finding the 

optimal facet size. 

 

7.2 Future Work 

 The future research work based on this thesis is summarized in the following: 

 

� In this thesis for the polyhedral model based CWE extraction methodologies a prototype 

system has been assembled using existing commercial software applications and C++ 

implementations. For future work a standalone polyhedral based CWE extraction approach 

that replaces the various commercial components will be developed.  

 

� The CWE areas must be decomposed for integrating with the force prediction model. 

More efficient decomposition techniques (e.g. Quadtrees) will be investigated as a way for 

representing the engagement geometry. A study of such techniques can lead to a new 

formulation for the force prediction model that may be more efficient and provide greater 

capability to manipulate and interpret the results. 

 

� An efficient localization methodology will be developed for localizing the cutter swept 

envelopes during the material removal process, in which the workpiece surfaces are 

represented by Discrete Normal Vectors (DNV). 

 

� The CWE extraction algorithms developed in this thesis will be integrated with the 

Virtual Machining. 
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Appendix A 

Obtaining the grazing points for cutter geometries represented by pipe surfaces. 

 

 As mentioned in chapter (3), the cylinder and torus surfaces are called as pipe surfaces. 

By definition a pipe surface is an envelope of the family of spheres with a constant radius. In 

this surface type the centers of the characteristic circle and the moving sphere equal to each 

other. In this section because of its complexity the property (3.2) is proven for the torus 

surface and for the cylindrical surface similar steps can be used. When the components of the 

Frenet frame given in Eq.(3.53) are plugged into Eq. (3.52), the torus surface is obtained as a  

set of the characteristic circles in the following form 

 

 )),(sin),()(cos,(),(),,( utututRututK BMC θθθ ++=                       (A.1) 

 

where [ ]πθ 2,0∈ . The radius of the moving sphere for the pipe surfaces is constant. 

Therefore the partial derivative of the radius with respect to the toolpath parameter t equals to 

zero, i.e. ( ) 0=trt . Thus under this condition the radius and the center of the characteristic 

circle from Eqs. (3.50) and (3.51) become as  

 

 rutR =),( ,  ),(),( utut mC =                 (A.2) 

 

Plugging the equations given in (A.2) into (A.1) yields 

 

 )),(sin),((cos),(),,( ututrututK BMm θθθ ++=          (A.3) 

 

For obtaining a point (so called grazing point) on the cutter envelope surface Eq.(A.3) is 

plugged into Eq. (3.55) and then the resultant equation representing the surface normal is 

plugged into Eq. (3.56). These yields 

 

 ( ) ( ) 0sincos =+ B·mM·m uu θθ                (A.4) 
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The trigonometric terms from Eq.(A.4) are extracted as follows 
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Plugging θcos  and θsin  from Eq.(A.5) into Eq.(A.3) yields 
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For simplifying the Eq.(A.6) the following cross product representation is used 

 

 cb·a-bc·acba )()()( =××                                          (A.7) 

 

Under the rule given in Eq.(A.7) the nominator and inside the parenthesis of Eq.(A.6) can be 

written as follows 

 

 ( ) ( ) )( BMmBM·m-MB·m ××= uuu              (A.8) 

 

Also from Eq.(A.7) the length of the nominator inside the parenthesis can be written as 

follows  

 

 ( ) ( ) ( ) ( )22
)(|| B·mM·mBMm||BM·m-MB·m uuuuu +=××=                 (A.9) 

 

It can be seen that Eq.(A.9) equals to the denominator given  inside the parenthesis of 

Eq.(A.6). Plugging equivalents of nominator and denominator given inside the parenthesis of 

Eq.(A.6). from Eqs.(A.8) and (A.9) yields 
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In the above equation the cross product of the normal and bi-normal unit vectors are equal to 

the tangent vector of the spine curve i.e. BMT ×= . Thus Plugging the equivalent of of T 

from Eq.(3.53) into Eq.(A.10) yields two grazing points P1,2  
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Thus the property (3.2) is proven for the torus which is also a pipe surface. 
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Appendix B 

Mapping parameters for milling cutter geometries 

 

 

B.1 Derivation of Mcyl 

 A Flat end mill is made up of a cylindrical surface CWEK,c1(t) at the side and a flat 

surface CWEK,c2(t) at the bottom (Figure B.1-a,b). Based on the kinematics of the 3-axis 

machining these surfaces will contribute to the set CWEK(t) as defined in section (6.2.1) i.e. 

2,1,)( cKcKK CWECWEtCWE ∪= . For the cylinder surface the engagement angle of a point at 

)(1, tCWE cK∈I must lie within [0,π] i.e. ( πϕ ≤∈≤ ))(|(0 1, tCWE cKII ) and for the flat 

surface it must lie within [0,2π] i.e. ( πϕ 2))(|(0 2, ≤∈≤ tCWE cKII ). 

 

                   
                                                 (a)                                                  (b) 

Figure B.1: (a) Cylindrical  CWEK,c1(t), and (b) bottom CWEK,c2(t), 

  faces of the Flat End Mill 

 

 

B.1.1 Obtaining CWE Parameters for the Cylindrical Surface 

 For the cylindrical surface tool reference point F equals to the tool tip point T.  

  

( ) ( ) ttt )( SES VVVTF −+==                      (B.1) 

 

For the first step, the geometry of the cylinder changes Eq.(6.11) and (6.12) to, 

 

{ } 0)()()(:)( 22
=−•−−−•− rtGC nFPFPFP                  (B.2)
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and, 

 

    { } 0)()()(:)( 22

, =−•−−−•− rtCWE CK nFIFIFI             (B.3)  

 

respectively. As with Eq.(6.13), Eq.(B.3) results in a quadratic equation in t when I and F are 

substituted. In this case the coefficients 12 , AA  and 0A  are given by, 

 

( ) ( ) ( )[ ]SISISI zzyyxx −−−=a  

( )[ ] 22

2 SESE VVnVV −•−−=A    

( ) ( )[ ] ( ) ( )SESE VVaVVnna −•−−••= 221A             (B.4) 

( ) 222

0 rA −•−= ana    

 

Two real roots of the Eq.(B.3) represent two cutter locations according to Property (6.4) the 

minimum of them is taken to be the correct tool position as explained in section (6.2.1.1). 

Using Eq.(6.23-a) and (6.25) the parameters ϕ  and L are obtained. Finally, the depth of the 

engagement point as defined by the distance from T(t) to I' measured along the tool axis 

vector is simply the z-coordinate of I'. 

 

)()( tztd I TwwI •−•=′=                                                     (B.5) 

 

B.1.2 Obtaining CWE Parameters for the Flat Surface 

 CWE parameters for the Flat surface are obtained without doing mapping. An unbounded 

plane which is perpendicular to the tool rotation axis is intersected with the original removal 

volume of the bottom surface for a given cutter location point. Engagement angle ϕ  is found 

by Eqs.(6.23-a) and (6.23-b). The depth of the cut for the bottom surface is the distance 

between the intersection point I and the center of the bottom surface such that 

 

22

II yxd ′+′=                     (B.6) 
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B.2 Derivation of Mcone 

  Conical part of a Tapered Flat End Mill is made up of a front CWEK,co1(t) and back 

CWEK,co2(t) conical contact faces at the side and a flat surface CWEK,co3(t) at the bottom 

respectively (see FigureB.2). Based on the kinematics of the 3-axis machining these surfaces 

will contribute to the set CWEK,Co(t) as defined in section (6.2.1) i.e.  

 

)()()( 3,2,1,, tCWEtCWECWEtCWE coKcoKcoKCoK ∪∪=                                            (B.7) 

 

For the given tool motion type C in Figure (6.27), the cutter has engagements with all its 

surfaces and the total engagement area covers the full [0,2π] range i.e. 

πϕ 2))(|(0 , ≤∈≤ tCWE CoKII . 

 

                    
                                          (a)                                                                    (b) 

Figure B.2: (a) Front CWEK,co1(t), and (b) back CWEK,co2(t) conical  

faces of Tapered Flat End Mill 

  

CWE parameters for the flat surface are used from B.1.2. For the Tapered Flat End Mill tool 

reference point F equals to the tool tip point T, Eq.(B.1). For the first step, the geometry of 

the cone changes Eqs.(6.11) and (6.12) to, 

 

( ){ } 0)(tan1)()(:)(
22 =•−+−−•− nVPVPVP αtGCo

          (B.8) 

 

and  
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 ( ){ } 0)(tan1)()(:
22

, =•−+−−•− nVIVIVI αCoKCWE                                   (B.9) 

 

whereα , n and V are the cone half angle, unit normal vector of the tool rotation axis and 

cone vertex coordinates (see Figure 6.22-a) respectively. The relationship between V and F is 

given by 

 

n-FV
α

r

tan
=                                                                               (B.10) 

 

where r is the radius of the cone bottom surface. As with Eq.(6.13), Eq.(B.9) results in a 

quadratic equation in t when I and F are substituted. In this case the coefficients 
12 , AA  and 

0A  are given by, 

 


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ααα tantantan
a                                                      

( ) ( )[ ] 222

2 tan1 SESE VVnVV −•+−−= αA                                                 (B.11) 

( ) ( ) ( )( ) ( )[ ]SESE VVnnaVVa −••++−•−= α2

1 tan122A  

( ) ( )222

0 tan1 ana •+−= αA    

      

Two real roots of the Eq.(B.9) represent two cutter locations according to property (6.4) and 

the minimum of them is taken to be the correct tool position as explained in the section 

(6.2.1.1). Using Eqs.(6.23-a,b),(6.25) and (B.5) the parameters (ϕ , d, L) are obtained.  

   

B.3 Derivation of Mtorus 

 A Toroidal portion of the end mill is made up of front CWEK,t1(t) and back CWEK,t2(t) 

contact faces at the side and a flat surface CWEK,t3(t) at the bottom respectively (see Figure 

(B.3)). Based on the kinematics of the 3-axis machining these surfaces will contribute to the 

set CWEK,T(t) as defined in section (6.2.1) i.e. 
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)()()( 3,2,1,, tCWEtCWECWEtCWE tKtKtKTK ∪∪= .                                               (B.12) 

 

      
                                     (a)                                                                       (b) 

 Figure B.3: (a) Front CWEK,t1(t),and (b) back CWEK,t2(t) contact faces 

 of Toroidal End Mill 

 

CWE parameters for the flat surface are used from B.1.2. The reference point at F is chosen 

to be the center of the torus. Its location can be expressed by the cutting tool tip coordinates 

as, 

 

( ) nTF rtt += )(                                                                          (B.13) 

 

 where r and n are the radius of tube (Figure (B.3-a)) and unit normal vector of the tool axis 

respectively. For the first step, the geometry of the torus changes Eqs.(6.11) and (6.12) to, 

 

( ) ( ){ } ( ){ } 04:)( 222222 =−−+−−−•− rzzRRrtG CT FPFP                                 (B.14) 

 

and 

 

( ) ( ){ } ( ){ } 04: 222222

, =−−+−−−•− rzzRRrCWE CTK FIFI                                 (B.15) 

 

respectively. Eq.(B.15) results in a quartic 4
th

 order polynomial equation in t when I and F 

are substituted. 

001

2

2

3

3

4

4 =++++ AtAtAtAtA                                                          (B.16) 
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 In this case the coefficients   01234 ,,, AAAAA   are given by, 

 

( )SE VVa −= , ( )SV-Ib =  

4

4 a=A ,   ( )baa •−=
2

3 4A  

( ) ( ) ( ) 2222222

2 424 SE zzRRrA −+−−+•= baba                                         (B.17) 

( ) ( ) ( )SESI zzzzRRrA −−−−−•−= )(84 2222

1 bba     

( ) [ ]222
2

222

0 )(4 rzzRRrA SI −−+−−= b  

 

The Eq.(B.16) gives four roots and according to the property (6.4) toroidal surface has 

maximum four locations for I. For example, two CWE points 1I  and 2I  are shown in 

Figure(B.4). Along the tool path, toroidal surface touches the point 
1I  at four interference 

locations i.e. 
4321 T,T,T,T  thus for  

1I  the Eq.(B.16) gives four distinct real roots such that 

4321 tttt <<<  and as explained in section (6.2.1.1) minimum of them is taken to be the tool 

location when cutter touches  this point. 

 

 
 

Figure B.4: Cutter interferences with a point in space 

 

 Toroidal surface touches 
2I  at the interference location 

5T and because 
2I  is on the envelope 

surface of the cutter, Eq.(B.16) gives repeated real roots for this point. Using Eqs.(6.23-a,b) 

and (6.25), (ϕ , L) parameters  are obtained. The depth of the engagement point is obtained 

by 
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