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Abstract

In this dissertation, we extend the scope of problems where the clustering algorithm Linear Grouping
Analysis (LGA) can be applied.

The first extension relates to the linearity requirement inherent within LGA, and proposes a new
method for relaxing this requirement by non-linearly transforming the data into a Feature Space,
such that in this space the data might then form linear clusters. In order to do this we utilise what
is known in the literature as the Kernel Trick. However, one side effect of this transformation is
that often the dimension of the transformed space is significantly larger, which can result in more
dimensions than there are observations in a given cluster, and cause problems with orthogonal
regression. To deal with this situation, we also introduce a new method for calculating the distance
of an observation to a cluster when its covariance matrix is rank deficient.

The second extension concerns the combinatorial problem for optimizing a LGA objective function,
and adapts an existing algorithm, called BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies), for use in providing fast, approximate solutions, particularly for the case when data
does not fit in memory. We also provide solutions based on BIRCH for two other challenging
optimization problems in the field of robust statistics, and demonstrate, via simulation study as
well as application on actual data sets, that the BIRCH solution compares favourably to the existing
state-of-the-art alternatives, and in many cases finds a more optimal solution.
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Chapter 1

Introduction

Cluster analysis is the study of how to partition data into homogeneous subsets so that the par-
titioned data share some common characteristic. In two and three dimensions, the human eye
is excellent at distinguishing between clusters of data when they are clearly separated. However,
when there are more than three dimensions and/or the data is not clearly separated, an algorithm
is required which in turn needs a metric of similarity that quantitatively measures the characteristic
of interest. An oft cited example of a clustering algorithm is k-means, which partitions data into
compact spheres, a characteristic that can be measured with the within-cluster sum of squares.
Generically clustering algorithms are combinatorial problems, insofar as they are searching for an
optimal partition of the data in order to minimize an objective function. The set of all possible
partitions is referred to as the solution space of the problem, and not surprisingly the size of this
space increases dramatically with the number of observations, dimensions and clusters.1

Linear Grouping Analysis (LGA) is an algorithm for clustering data around hyperplanes that was
first introduced in Van Aelst et al. (2006). This algorithm is most appropriate when:

• the variables are related/correlated, which results in clusters with an approximately linear
structure; and

• it is not natural to assume that one variable is a “response”, and the remainder the “explana-
tories”.

LGA measures the compactness within each cluster via the sum of squared orthogonal distances
to hyperplanes formed from the data. However, if the data is not at least approximately linear
within a cluster, then clearly this measure is no longer appropriate. In order to measure orthogonal
distances, the algorithm relies heavily on the covariance matrix of each cluster to determine its
structure, and requires among other things a certain minimum number of observations (relative to
the dimension) in order to specify the shape fully.

In this thesis we propose three new extensions to this algorithm. They are:

I - Relax the linearity assumption via transformation of the data set.

II - Allow LGA to perform in the situation where at least one of the covariance matrices does
not adequately specify the structure of its cluster.

III - Make LGA scalable with respect to the number of observations.

When the data is not linearly structured, we transform the data into an alternative space, commonly
referred to the “feature space”, and this is a technique that is frequently used in classification

1For example, it was shown in Welch (1982) that k-means for three or more clusters is a NP -hard problem.
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Chapter 1. Introduction

problems in the machine learning literature. Often these transformations dramatically increase
the dimension of the data set, resulting in a covariance matrix that has insufficient observations
to completely specify the new structure of a transformed cluster. In order to deal with this, we
introduce a new distance metric, called the “partially orthogonal distance”. Together, these are the
topics in Chapter 2.

Finally, we introduce an adaption of an algorithm called BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies) as a means of making LGA scalable by substantially reducing the size
of the solution space. In order to do this, we create subsets of the data that are compact and locally
similar, and maintain a list of attributes for each subset such that clustering can be done with the
subsets instead of the full data set. As it turns out, this approach can be used for a number of
different algorithms that also aim to solve combinatorial problems, and we provide details of these
in Chapter 3.

In the remainder of this chapter we provide an introduction to the LGA algorithm, and then provide
a general introduction to some feature space methods. We then conclude with a review of BIRCH,
and the algorithms on which it is applied.

1.1 An Overview of Linear Grouping Analysis

Linear Grouping Analysis (LGA) involves grouping data around hyperplanes, and utilizes orthog-
onal regression to find hyperplanes that minimize the sum of the squared orthogonal distances of
each observation to its representative hyperplane.

First consider the k-means algorithm, which groups the data into k spheres by minimizing the
sum-of-squares within clusters. The objective function for this criterion is

k∑

i=1

n∑

j=1

zij(xj −mi)
⊤(xj −mi),

where xj ∈ R
d, j = 1, . . . , n is our data, mi (i = 1, . . . , k) are the centres of each sphere, and

zij =

{

1 if observation j is part of cluster i

0 otherwise.

This is the arrangement of the data with the most compact clusters, where the sum-of-squares for
each cluster measures the sum of squared distances of each observation in the cluster to its centre.
In order to minimize the objective function, k-means has a two step procedure:

1. Given a clustering of data, for each cluster calculate the sample mean of all the observations
currently belonging to the cluster.

2. Calculate the Euclidean distance of each observation to each cluster’s centre, and relabel the
observation as belonging to the cluster which is closest.

This process is iterated until convergence, and is initialized with a number of different starting
configurations. The result with the smallest within cluster sum-of-squares is selected as the best
partition.

2



Chapter 1. Introduction

Contrast this with LGA, which endeavours to find the partition with associated hyperplanes which
minimizes the orthogonal distances of each observation to these hyperplanes. In this context, we
parametrize a hyperplane by the vector it is orthogonal to (ai) , and a constant (bi), and denote
this hyperplane H(wi, bi) ≡ Hi. The orthogonal distance of an observation xj to the hyperplane
Hi is given by

d 2
O(xj ,Hi) = (a⊤

i xj − b)2,

and so the objective function for LGA is given by

k∑

i=1

n∑

j=1

zij d 2
O(xj ,Hi).

This objective function is referred to as the Residual Orthogonal Sum of Squares (ROSS). In order
to minimize this objective, an approach like that of k-means is used:

1. Given an clustering of data, find the hyperplane that best fits the data in each cluster.

2. Calculate the orthogonal distance of each observation to each hyperplane, and assign the
observation to the hyperplane that is closest.

Once again, this is iterated to convergence, and is started from a number of different initial configu-
rations. To find the parameters for a hyperplane that best fits a subset of data, we use Orthogonal
Regression, as given in the following well known result.

Result 1.1.1 (Orthogonal Regression) Let y1, . . .yj ∈ R
d be a set of data with sample covariance

matrix S. Let the eigenvectors of S be e1, . . . , ed with corresponding eigenvalues λ1 ≥ λ2 ≥ . . . >
λd ≥ 0. Then the solution to

arg min
a,b

j
∑

i=1

(a⊤yi − b)2

subject to the constraint ||a|| = 1 is given by

a = ed and b = e⊤d ȳ.

Proof of 1.1.1 Adding and subtracting a⊤ȳ yields

arg min
||a||=1,b

n∑

i=1

(

a⊤yi − b
)2

= arg min
||a||=1,b

a⊤Sa + n
(

a⊤ȳ− b
)2

.

It is clear that the second term is minimized by setting b = a⊤ȳ. To find the minimum of the first
term,

arg min
||a||=1

a⊤Sa = arg min
||a||=1

a⊤EΛE⊤a

3



Chapter 1. Introduction

where E is a column matrix containing the eigenvectors of S, and Λ a diagonal matrix with the
eigenvalues on the diagonal. Let w = E⊤a and note that ||w|| = ||a||. Then

min
||a||=1

a⊤EΛE⊤a = min
||w||=1

w⊤Λw

= min
||w||=1

∑

w2
i λi

≥ min
||w||=1

λd

∑

w2
i = λd.

Finally, by substitution, this lower bound is achieved when a = ed. �

For those readers familiar with Principal Components Analysis, it is clear that orthogonal regression
is looking for the subspace of dimension (d − 1) that is closest to the data in the L2-sense. This
corresponds with the basis formed by the first (d− 1) principal components, which are the same as
the first (d− 1) eigenvectors, and are orthogonal to the last principal component - ergo, the result
above.

This equivalence between PCA and orthogonal regression gives us a useful relationship between
the nature of the covariance matrix and its specification of the structure of the data set. Consider
a data set in d-dimensions, but with an orthonormal basis that has less than d vectors describing
any meaningful variation in the data – this equates to the number of positive, non-zero eigenvalues
being less than d. Clearly in this case, the orthonormal basis described by PCA will not be able to
span the full dimension of the data set. This is discussed further in Chapter 2.

LGA is then given by the following algorithm.

Algorithm 1.1.2 (LGA)
LGA is made up of the following five steps:

1. Scaling of the variables: each column of the data set is divided by its standard deviation so that
it has unit variance.

2. Generation of starting value: a starting configuration is generated consisting of a partition of the
data set into k mutually exclusive sets of d observations (i.e. an observation can belong at most
in one set). For each of these sets, calculate the hyperplane that fits it (with zero error).

3. Initialization of groups: for each starting hyperplane, calculate the squared orthogonal distance of
all observations to that hyperplane. Then assign each point to the hyperplane which it is closest,
and recalculate the hyperplanes based on the new cluster membership.

4. Iterative refinement: Recalculate step 3 for each resulting hyperplane until either a) the solution
converges (i.e. the membership sets remain the same for two consecutive iterations) or b) the
solution fails to converge after an arbitrary number of iterations (e.g. 10).

5. Resampling: Repeat steps 2-4 a number of times and select the solution with the smallest total
orthogonal sum of squares.

The code to do this is implemented in the R package lga (Harrington, 2008).

4



Chapter 1. Introduction

For completeness, we close this section with a brief mention of two alternatives to LGA that are both
applicable in forming clusters that are linear in shape. Regression based clustering (e.g. Gawrysiak
et al. (2001)) is a close relation to LGA insofar as the methodology is broadly built around the
same idea:

1. Randomly select starting configurations;

2. Fit a standard linear regression model to the data; and

3. Allocate the observations to the line of smallest residual.

This process is iterated, until some criteria is met. The main limitation of this approach, is that for
many data mining applications there is no response/explanatory type of variables, and arbitrary
selection of these will lead to different solutions.

Model based clustering (e.g. Banfield and Raftery (1993), Fraley and Raftery (2002)) is a flexible
maximum likelihood approach to cluster analysis, and utilizes mixture models to specify the cluster
characteristics. Most commonly the underlying distribution is a multivariate normal, but other
options are available; for example points clustered uniformly along a straight line (Banfield and
Raftery (1992)).

In the case of the multivariate normal, the solution is found using the EM algorithm, and is
implemented in R in the package mclust. An example of mclust versus lga is given in Figure 1.1. In
this case, the LGA solution is more consistent with the underlying biological reasoning. However,
the mclust does form clusters that are elliptical in nature, and perhaps would yield a better solution
with the “tweaking” of the covariance structure.

1.1.1 On the Nature of Combinatorial Problems

Broadly speaking we are concerned with combinatorial problems that arise from trying to find a
partition of a data set such that a specific objective function is minimized. The nature of the
partition may be a “best” subset of the data (in the case of some robust estimators), or completely
partitioning the data set into mutually exclusive sets (which is the case in cluster analysis). Either
way, these problems are considered to be non-convex since there are many different configurations
with local minima (though the meaning of “local” differs depending on context), and as such a
simple hill-climbing algorithm such as a Newton-Raphson method is not guaranteed to find the
global minimum.

One common method for solving problems such as these involves selecting a random partition/subset
of the data set, and then using the data to suggest what an improved configuration might be through
an iterative approach of evaluating the objective function, and then sorting the data into partitions
or subsets, and this is the approach given in the previous section. Clearly, for a given starting
configuration, there is no guarantee that the algorithm will converge to the correct solution, but
by selecting a large number of different starts, one can become more confident of finding the global
minimum.

The source of this confidence can be shown in the following simple illustration. In the context
of LGA, we propose two different starting configurations for a data set with two clusters, given
graphically in Figure 1.2. In the figure on the left, clearly this is a “bad” starting configuration,
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(b) Mclust with k = 3.

Figure 1.1: An example of LGA versus Mclust using the olfactory bulbs vs. brain weight data set.
The data set is the same as the one used in Section 4.1 of Van Aelst et al. (2006). The number of
clusters was determined by Mclust using BIC. For reference, the GAP Statistic (Tibshirani et al.,
2001) suggests two clusters for LGA.
Key: m = monkeys, i = insectivores, p = primitive primates, c = carnivores, a = apes, h = humans,
H = horses.

since the initial points are from different clusters, and the starting hyperplanes do not resemble the
“true” hyperplanes. While it is not certain that this starting configuration would not converge to
the correct solution, it is off to a bad start.

Now consider Figure 1.2(b), where the initial configuration is a “good” starting point, since the
approximately correct structure of the clusters has already been established. In this case, only a
few iterations would be required before convergence. Mathematically, we can describe a “good”
starting point with the following: let C1, . . . , Ck be the true partition of the data set and S1, . . . , Sk

be the initial starting configuration. Then a partition can be considered a good starting position
iff Si ⊂ Ci ∀i ∈ {1, . . . , k}.
Therefore, the more starting configurations used to initialize the algorithm, the higher the chance
of finding a“good” starting point. As it turns out, with LGA it is possible to enumerate the number
of starts required so that the probability of obtaining at least one sample with d points from each
group is 95% (i.e. there’s a 95% chance that at least one starting solution has all the observations
correctly clustered). The probability of this occurring is

p =

(
n1

d

)

(
n

d

) ×

(
n2

d

)

(
n− d

d

) × · · · ×

(
nk

d

)

(
n− d× (k − 1)

d

) × k! =

∏k
i=1

(
ni

d

)

∏k−1
i=0

(
n− d× i

d

) × k!
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1

1 2
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(a) Bad starting position

1

12

2

(b) Good starting position

Figure 1.2: A demonstration of the importance of starting initialization, with two clusters illustrated
by some points and a confidence contour. In both plots we have the same four points; however,
on the left the initial partition has points from different clusters together, producing an initial
hyperplane that does not reflect the true shape of the clusters. On the right the initial positions
are subsets of the true clusters, and the hyperplanes reflect the correct structure.

where ni is the number of elements in cluster i, and n the total number of observations.2 Therefore
we require m samples such that 1− (1− p)m = 0.95. Assuming that each of the clusters are equal
sized (i.e. ni = ⌈n/k⌉ where ⌈a⌉ is the “ceiling” integer part of a), this equates to

m =

⌈
log(0.05)

log(1− p)

⌉

(1.1)

where p simplifies to

p =

(
n1

d

)k

∏k−1
i=0

(
kn1 − di

d

) × k!.

A plot of equation (1.1) for different values of k and d is given in Figure 1.3.

1.2 Extending Linear Grouping Analysis

In this section we provide some background on the material in Chapter 2, which is concerned with
performing LGA with non-linear patterns. At first glance, this might seem rather contradictory,

2Note that this differs from the result provided in Van Aelst et al. (2006).
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Figure 1.3: The number of samples required to achieve a 95% probability of a“good” initial partition
when n1 = . . . = nk = 1× 106.

since by definition the underlying hyperplanes must be “flat”, and therefore not appropriate for
non-linear patterns. While this is certainly true in Euclidean space, in Chapter 2 we transform the
data so that the clusters are linear, and then perform LGA in this transformed space (called the
Feature Space).

However, one side effect of transforming the data is that frequently the dimension of the transformed
space is dramatically larger than the original dimension of the data, to the point where there are
more dimensions than observations, which means that the covariance matrix no longer fully specifies
the structure of the data in all dimensions. Rather than reduce the dimension directly via standard
algorithms such as Principal Components Analysis, instead we propose a new metric for when there
are more dimensions than observations.

What follows is a brief background on some of the other approaches used in dimension reduction
for clustering, and a brief discussion of why these approaches would not work in the context of
LGA. We then introduce a method for transforming the data, accompanied by an example where
it has also been used.
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1.2.1 Dimension Reduction and Clustering

Dimension reduction via Principal Components Analysis (PCA) is used in many different situations.
One example is when d is large, and n substantial, since the reduction in the overall size of a
data set is dramatic if the number of dimensions is reduced. Another common example is where
there are many dimensions, which makes it difficult to visualize the data, and a lower-dimensional
representation is desired.

PCA has been discussed previously in clustering literature, though the sentiment regarding its
effectiveness is mixed. Articles that advocate this approach include Jollife et al. (1982), where
principal components analysis is applied on a data set to reduce the number of dimensions from 20
to 10, and an approach similar to k-means applied to the PC scores. In Jolliffe (2002), a section is
devoted to describing heuristically when it may be advantageous to apply PCA prior to clustering.
One useful case is where some columns are similar (in the Euclidean distance sense), and thus are
effectively over-represented with respect to their importance in clustering. Finally, in Ben-Hur and
Guyon (2003), applying PCA on DNA microarray data was used with some success.

However, there are also articles that demonstrate where PCA does not work. For example, in
Chang (1983) it was shown that in the case of a mixture of two normals, the first few PCs may
contain less cluster structure information than other PCs. And in Yeung (2001), applying PCA
prior to clustering gene expression data was found empirically not to work well.

In the context of LGA, it can easily be shown that a dimension reduction approach using PCA
is unlikely to work. While dimension reduction would work on clusters that are a priori known
as the true structure of each cluster is then accurate, applying PCA on a whole data set prior to
clustering would not take into account the (probably) differing structures, and could even project
data from different clusters onto the same space. Clearly, therefore, any dimension reduction should
take place after a clustering has been proposed.

1.2.2 Transforming Data into a Feature Space

If the clusters of data do not form hyperplanes, then the objective function associated with LGA
is not an appropriate measure of similarity within each cluster. Consider the following data set
made up of two groups of data, given in Figure 1.4(a). Clearly the data is nonlinear in nature, and
the LGA solution does not correctly identify the true groupings. By applying the transformation
Φ(x) = (x2

1, x2), however, the data is then linear in this new space, and LGA then identifies the
correct grouping.

In this case we explicitly specified a transformation, and then applied LGA to the transformed
data. An alternative approach is to calculate the pairwise cross product between all transformed
observations, and then through mathematical manipulation work with this cross product instead.
This methodology is referred to as a “Kernel Method”, and is the approach taken in Chapter 2.

Let x ∈ R
d, and consider a nonlinear transformation Φ(x) such that Φ : R

d → F , what we refer to
as the feature space. Using the dot product, called the kernel function and denoted

k(x,x′) = Φ(x)⊤Φ(x′)

instead of the transformation directly is commonly called the “kernel trick”. The advantage of this
approach is that the kernel function can then be either explicitly specified as we did before, or
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(b) Transformed Data

Figure 1.4: A demonstration of transformation to linearity. The symbols and colors correspond to
the partition found by LGA using the original data (left), and the transformed data (right). The
hyperplane for each partition is also provided.

implicitly defined by stating the kernel function directly. In the latter case, while it may not be
possible to specify an equivalent function Φ, a result called “Mercer’s Condition”gives the necessary
and sufficient conditions under which Φ does exist, and allows the kernel trick to be used.

Some of the more common kernel functions are presented in Table 1.1. It is common to form
a matrix of the kernel functions for all observations, with K ∈ R

n×n and (K)ij = k(xi,xj) for
(i, j = 1, . . . , n). The matrix K is commonly referred to as the Kernel Matrix.

In order to give a simple demonstration of how the kernel trick is applied, we give a simple example
from Girolami (2002) (Feature Space k-means). Recall the k-means objective function, given by

k∑

i=1

n∑

j=1

zij(xj −mi)
⊤(xj −mi),

where mi (i = 1, . . . , k) are the centres of each sphere and zij denotes the membership of observation
j in cluster i. Ignoring the summation temporarily and expanding the brackets yields

x⊤
j xj − 2x⊤

j mi + m⊤
i mi,

where nj =
∑n

j=1 zij and mi =
∑n

j=1 zijxi/nj is the sample mean of all the observations in the i-th
cluster. Clearly

x⊤
j mi =

1

ni

∑

l

zilx
⊤
l xj m⊤

i mi =
1

n2
i

∑

l

∑

m

zilzimx⊤
l xm.
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Name of kernel k(x, z) .

Rational Quadratic*

1− ||x− z||2
||x− z||2 + θ

Polynomial
(

γx⊤z + θ
)d

Exponential*

exp

(

−||x− z||
θ

)

Radial Basis Function (RBF)*

exp

(

−||x− z||2
θ

)

Wave*
θ

||x− z|| sin
( ||x− z||

θ

)

Table 1.1: Some commonly used kernels. Source: Genton (2001). The kernel functions that are
starred are of the type “isotropic”, which means it is only a function of the distance ||x− z||.

Finally, applying the transformation Φ by substituting xi with Φ(xi), and denoting the center of
the i-th cluster in the feature space by mΦ

i , yields the following representation in the feature space

k∑

i=1

n∑

j=1

zij(Φ(xj)−mΦ
i )⊤(Φ(xj)−mΦ

i ) =

k∑

i=1

n∑

j=1

zij

{

Φ(xj)
⊤Φ(xj)−

2

ni

∑

l

zilΦ(xl)
⊤Φ(xj) +

1

n2
i

∑

l

∑

m

zilzimΦ(xl)
⊤Φ(xm)

}

,

and applying the kernel trick

=

k∑

i=1

n∑

j=1

zij

{

k(xj ,xj)−
2

ni

∑

l

zilk(xl,xj) +
1

n2
i

∑

l

∑

m

zilzimk(xl,xm)

}

. (1.2)

In other words, instead of applying the transformation to x and then performing k-means, we can
perform k-means in the feature space by optimizing equation (1.2) directly. An approach that is
similar to this, but relevant for LGA instead, is taken in Chapter 2.

Kernel methods have been used elsewhere in a clustering context in addition to Girolami (2002).
Spectral clustering (Ng et al., 2001) has a novel approach of examining the kernel matrix (in this
case the RBF kernel is used) to search for a block diagonal structure that typifies cluster designs.
For example, consider two clusters where all the points within a cluster are very compact, and

11



Chapter 1. Introduction

the two clusters are very far apart. Then any isotropic kernel matrix would appear to be a block
diagonal with a matrix of all ones on the block diagonal, and zero elsewhere.

Support Vector clustering (Ben-Hur et al., 2001) takes a dramatically different approach, and
is more consistent with the approach used in Support Vector Machines than the more standard
clustering algorithms that are a combinatorial problem on an objective function. In this article
they transform the data into the feature space, and then form the smallest sphere that encloses
the complete data set. This sphere is then mapped back into the Euclidean space, where it forms
a set of contour boundaries which enclose clusters of data. Points within each of these contour
boundaries are then considered to be clusters. This approach does not require the specification of
the number of clusters, and the examples provided in the paper suggest that this approach is highly
sensitive to tuning parameters.

1.3 Finding Approximate Solutions to Combinatorial Problems

with Very Large Data Sets using BIRCH

In Chapter 3 we review an algorithm that allows for the optimization of a class of combinatorial
problems to be done in an approximate way, and then extend it to a number of combinatorial
problems relevant to statistics. The algorithm is called BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies, Zhang et al., 1997), and has the advantage that it scales very well
with respect to the number of observations. In this section, we give some motivation for BIRCH,
including alternative implementations of this algorithm, and then review other, similar, algorithms.
We conclude with a review of the robust methods and clustering algorithms that are extended in
Chapter 3.

Interested readers should refer to Appendix B for a description of the implementation of BIRCH
in R, which has been submitted to the Journal of Statistical Software.

1.3.1 Motivation

One approach for solving non-convex optimization problems, such as LGA, is to explore the solution
space in order to find the configuration that yields the global minimum of a given objective function.
We do this by starting at a number of different subsets of the data set which allows the structure
of the data to suggest where to go. This type of local search is more effective than just performing
random searches over the solution space, and is the approach used in Section 1.1 for optimising the
LGA objective function.

However, as the number of dimensions and/or the number of observations increases, then clearly the
solution space is increasing in size, and so too the number of subsets required in order to adequately
cover this space. The algorithm BIRCH is an effective method of reducing the size of the solution
space, making optimization much easier.

BIRCH works by pre-processing a data set and grouping observations together into locally com-
pact, similar subclusters. Associated with each subcluster is a vector of summary statistics, called
clustering features (CFs). In practise, these clustering features are formed using an algorithm that,
heuristically, examines each observation of a data set in isolation, finds the closest subcluster, and
adds it to the subcluster, updating the CFs in the process. If the observation is not close to any
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subcluster, then it forms it own subcluster.

It can be shown that for a certain class of algorithm, an approximately equivalent optimization
over an objective function is possible using the CFs instead of the underlying data. This is very
advantageous, since the solution space with respect to subclusters is several orders of magnitude
smaller than that of the full data set. In this way, we can optimize more efficiently.

The nature of the approximation in the process lies in the fact that we are using subclusters,
rather than the underlying observations, when selecting subsets of the data. For example, consider
Orthogonal Regression, given in Result 1.1.1, and assume that we have the following tuple as our
CF:

CFJ =




∑

i∈LJ

1,
∑

i∈LJ

Xi,
∑

i∈LJ

XiX
⊤
i



 = (nJ , LSJ , SSJ);

i.e. the number of observations, the sum of those observations, and the sum of squares of those
observations.

Recall, that the orthogonal regression solution is given by the eigenvectors of the covariance matrix
and the mean of the underlying data. It can be shown that these statistics can be calculated from
the CFs directly – i.e. the calculation of the orthogonal regression using the CFs is identical to the
calculation using the underlying observations making up those subclusters. In this sense, the CFs
can be considered sufficient statistics for calculating orthogonal regression.

Now consider the LGA algorithm, which utilizes orthogonal regression for calculating distances.
In particular, LGA is trying to find the clusters of data with the minimum residual orthogonal
sum of squares to their closest hyperplane. Now consider the equivalent with BIRCH subclusters,
where LGA attempts to find the partition of subclusters that minimize the ROSS. As demonstrated
above, we can calculate the ROSS exactly, but if the “true” partition of the data requires splitting
observations within one subcluster, then the global minimum (based on the underlying observations)
cannot be achieved.

Clearly, as the number of subclusters increases - equivalently, the number of observations in each
subcluster decreases - then the need to split subclusters in order to find the global minimum is less
of an issue as the subclusters are more “granular”. However, a direct side effect of the increased
number of subclusters is the increased size of the solution space, which means there is a trade-off
between accuracy and optimization efficiency. This is discussed at length in Chapter 3.

Finally, one additional benefit of this approach involves the practical consideration of the limitations
of the statistical software, R (R Development Core Team, 2007). R requires that a data set be held
in memory for an analysis, which may not be possible if the data set is very large. As mentioned
before, BIRCH only pre-processes observations one at a time, and produces an object much smaller
than the original data set. Therefore, as long as the BIRCH object can fit into memory (which
is always the case as long as the parameters for building the object are set correctly), it has no
limitation beyond that of the operating system for the size of data sets it can deal with.

1.3.2 Literature Review

The algorithm BIRCH was first introduced in Zhang et al. (1997) in a Computer Science subject
area journal, and focused mostly on operational details such as a self-sizing mechanism for fitting
within a certain sized memory. In terms of clustering, this article used a hierarchical clustering
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paradigm on the subclusters for providing good quality initialization to a further algorithm, and
briefly discusses other clustering methods such as CLARANS (Ng and Han, 2002) and k-means.

A direct extension of BIRCH is given in Chiu et al. (2001), which makes BIRCH applicable to data
of mixed type attributes. This is done through a new clustering feature, given by

CFJ = (nJ , LSJ , SSJ ,NBJ)

where the additional element, NBJ , contains a table for each categorical attribute, and a summary
of counts for each categorical attribute in subcluster J .

In the broader family of algorithms that are applicable to large data sets, there are many examples
that are variations of BIRCH. Two of these are STING (Wang et al., 1998) and CURE (Guha et al.,
2001). The STING (Statistical Information Grid-based) algorithm divides the spatial area into
rectangular cells, and employs a hierarchical structure such that differing levels of cells correspond
with different resolutions of the data. Summary statistics for each cell are maintained, and are
used much in the same way as the CFs in BIRCH. However, the actual contents of the CFs were
different, and more orientated towards SQL-type queries.

In CURE (Clustering Using Representatives), a hierarchical clustering algorithm is also used. How-
ever, its process of forming the hierarchy is somewhat different. CURE begins by drawing a random
sample of points out of the data set, which then become representative points. These points are
then “shrunk” by a fraction α towards the centroid of the set of data, and then the closest points
are merged together. This process is repeated, yielding at the end multiple representative points
for each cluster.

Finally, BIRCH is discussed in the context of real-time data in Guha et al. (2003), as an algorithm
that is capable of receiving data in increments without needing to hold the “old” data in memory.
This feature is referred to as a data stream, and the article goes on to describe various characteristics
that define this type of data.

1.3.3 Algorithms Extended

The applicability of the BIRCH algorithm is defined by a) the specification of clustering features
that can be updated by data arriving singly, and b) the ability of an underlying objective function
to be specified in terms of the clustering features instead of the underlying observations. If these
two criteria are met, then BIRCH can be used to reduce the solution space of the combinatorial
problem, and enable analysis of data sets that would otherwise be too large to fit in memory.

Clearly a number of combinatorial algorithms could be adapted for use with BIRCH. In Chap-
ter 3, we demonstrate this approach with the following algorithms: Least Trimmed Squares (LTS,
Rousseeuw and Leroy, 1987), Minimum Covariance Determinant (MCD, ibid) and Robust Linear
Grouping Analysis (RLGA, Garćıa-Escudero et al., 2007).

LTS is a robust regression estimator, and is concerned with finding the subset of h = αn,α ∈ (0.5, 1]
observations that minimize the squared residuals such that

h∑

i=1

r2
(i) (1.3)

where r2
i = (yi − x⊤

i β̂)2 and r2
(i) denotes the i-th order statistic of this residual. The mechanism
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for optimizing this equation is called fast-LTS, was first introduced in Rousseeuw and van Driessen
(2006), and is given by the following algorithm:

Algorithm 1.3.1 (fast-LTS)
For a number of different, randomly selected subsamples of size d:

1. Use the random subsample to compute the ordinary least squares (OLS) regression estimator β̂.

2. Iterate the following steps until convergence, or a specified number of iterations has occurred:

(a) Let H ← { the h smallest squared residuals, r2 = (Y −Xβ̂)⊤(Y −Xβ̂)}.
(b) Calculate the OLS estimator β̂ based on the observations in H.

These steps are commonly referred to as“concentration steps”

Select the solution with the smallest LTS, as given by equation (1.3).

MCD is a robust estimator for location and dispersion, and is concerned with finding the subset
of h = αn,α ∈ (0.5, 1] observations that have the sample covariance with smallest determinant, as
given by

arg min
J∈H
|SJ | (1.4)

where H is the solution space of all subsets of size h,

SJ =
1

h− 1

∑

i∈J

(Xi − X̄J)(Xi − X̄J)⊤ and X̄J =
1

h

∑

i∈J

Xi.

The algorithm for minimizing this objective function is called fast-MCD (Rousseeuw and van
Driessen, 1999), and is given by the following algorithm.

Algorithm 1.3.2 (fast-MCD)
For a number of different, randomly selected subsamples of size (d + 1):

1. Use the initial subsample to calculate an initial estimate of the sample mean and covariance.

2. Iterate the following steps until convergence, or a specified number of iterations has occurred:

(a) Let H ← { the h points with smallest Mahalanobis distances: (X− µ̂)⊤S−1(X− µ̂)}.
(b) Calculate the new µ̂, S based on the observations in H.

These steps are commonly referred to as“concentration steps”

Select the solution with the smallest MCD, as given by equation (1.4).

Clearly, both LTS and MCD have much in common in their approach to optimizing an objective
function. As it turns out, these algorithms are also both amended in the same fashion if the data set
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is large. For large n, a nested approach to optimization is used, whereby a number of subsamples of
size ns << n are taken, and two concentration steps are performed from a variety of random starts
within each subsample. For each subsample the best 10 solutions (with respect to the objective
function) are stored. Then the subsamples are pooled together, and the best solutions from the
previous stage are used to initialize a number of concentration steps. Once again, the best 10
solutions are retained, and used to seed concentration steps on the whole data set.

The last algorithm extended for use with BIRCH is Robust LGA (RLGA) (Garćıa-Escudero et al.,
2007), which is the robust equivalent of LGA. The goal of RLGA is to find the h = αn subset
with the minimum residual orthogonal sum-of-squares to the respective hyperplanes, and has a very
similar algorithm as given for LGA in Algorithm 1.1.2, with the following amendments:

3a. Select the αn subset: Order the orthogonal residual of each observation to its closest hyperplane.
Select the smallest αn observations, and use just those observations to recalculate the hyperplanes
using orthogonal regression.

5. Resampling: Repeat steps 2-4 a number of times and select the solution with the smallest trimmed
orthogonal sum of squares.

This algorithm is implemented in the R package lga.
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Chapter 2

Extending Linear Grouping Analysis∗

2.1 Introduction

Linear Grouping Analysis (LGA, Van Aelst et al., 2006) involves grouping data around hyperplanes,
and utilizes orthogonal regression to select hyperplanes that minimize the sum of the squared
orthogonal distances of each observation to its representative hyperplane. This has the advantage
that it treats all variables in a symmetric way, and does not require the identification of “response”
or “explanatory” variables (Zamar, 1989).

In this article we briefly review LGA, and then introduce two new methods for extending its appli-
cability. The first method introduces a variant of orthogonal regression, called partially orthogonal
regression, which is motivated by high dimensional data which can produce clusters with covari-
ance matrices that are rank deficient. The second method relaxes the linearity requirement of LGA
by utilizing a machine learning technique of transforming the data set into a feature space and
then performing LGA in this space. We then conclude with some examples, and a brief discussion
including promising directions for future research.

2.2 Linear Grouping Criterion

The goal of LGA is to find k hyperplanes, parametrized by wi ∈ R
d and bi ∈ R and denoted

H(wi, bi) ≡ Hi (i = 1, . . . , k) such that Hi = {z : w⊤
i z = bi}, with the smallest residual orthogonal

sum of squares (ROSS). With our data given by x1, . . . ,xn ∈ R
d, a membership matrix Z with

binary elements (Z)ij = zij ∈ {0, 1}, i = 1, . . . , k, j = 1, . . . , n, where a ‘1’ means that observation
j is a member of cluster i, and a set of hyperplanes H = {H1, . . . ,Hk}, the objective function for
LGA is given by

R(x1, . . . ,xn|H,Z) = R(X|H,Z) =

k∑

i=1

n∑

j=1

zij d 2
O(xj ,Hi), (2.1)

where

d 2
O(xj ,Hi) = (w⊤

i xj − bi)
2

is the square orthogonal distance of xj to the hyperplaneHi, and X denotes our set of observations.
To optimize equation (2.1) with respect to the set of hyperplanes H and the membership matrix Z,
Van Aelst et al. (2006) utilizes a two-step approach. For an initial partition given by membership
matrix Z0, do the following:

∗A version of this chapter will be submitted for publication. Harrington, J. A. and Salibian-Barrera, M. Extending
Linear Grouping Analysis. Full proofs for every result, lemma and theorem are given in Appendix A.

19



Chapter 2. Extending Linear Grouping Analysis

Step I - For each cluster, as defined by the membership matrix Zj, we calculate the best fitting
hyperplane. I.e.

Hj = arg min
H

R(X|H,Zj).

Step II - Then, given the hyperplane for each cluster, we can calculate the distance of every
observation to each hyperplane, and assign each observation to the closest. This is used
to update the membership matrix. I.e.

Zj+1 = arg min
Z

R(X|Hj ,Z).

This procedure continues until convergence – equivalently until Zj+1 = Zj – or j = N , where N is
a user-specified maximum number of iterations. Note that Step I could be decomposed into

min
H
R(X|H,Zj) = min

H

(
k∑

i=1

R(xi|Hi)

)

,

where xi are the observations in partition i (as determined by Zj), and are mutually exclusive sets.

⇒ min
H
R(X|H,Zj) =

k∑

i=1

min
Hi

R(xi|Hi).

This means that to find the set of hyperplanes that minimizes Step I, it is sufficient to find the
hyperplane that minimizes each cluster. In order to find the best fitting hyperplane in Step I, we
use the following, well known, result.

Result 2.2.1 (Orthogonal Regression) Let x1, . . . xn ∈ R
d have sample covariance matrix S. Let

the eigenvectors of S be e1, . . . , ed with corresponding eigenvalues λ1 ≥ λ2 ≥ . . . > λd ≥ 0 and
Rank(S) ≥ (d− 1). The solution to

min
a,b

n∑

i=1

(a⊤xi − b)2

subject to the constraint ||a|| = 1 is given by

a = ed and b = e⊤d x̄.

Note that in this definition restrictions are given with respect to the smallest eigenvalues, as it is
explicitly stated that the smallest eigenvalue must be unique (i.e. have multiplicity one). This is
because if more than one of the smallest eigenvalues are equal, then the eigenvectors associated with
these eigenvalues are no longer unique. In the context of orthogonal regression this situation is most
likely to occur when there are fewer observations in a cluster than dimensions (more specifically,
n < d − 1), or if one column is linearly dependent on the others, as this would result in multiple
zero-valued eigenvalues and a covariance matrix rank less than (d− 1).
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Figure 2.1: An example of LGA applied to the allometry data set from Crile and Quiring (1940),
with k = 4. The different colours and symbols correspond to the clusters found, and the lines are
the hyperplanes associated with each cluster.

It is clear that orthogonal regression is very closely related to principal components analysis, which
is looking for the vector which specifies the maximal variance, and is given by the eigenvector
associated with the largest eigenvalue. As it turns out the solution is essentially the hyperplane
formed by the basis of (d− 1) principal components, which is the hyperplane orthogonal to the last
principal component.

The LGA algorithm is initialized from a number of different random starting partitions to facilitate
the search for a global minimum. These are given by hyperplanes determined by k random sub-
samples of size d. The number of starts is selected such that the probability of a “good” starting
configuration is 95%, where a good start is defined as the configuration that is a subset of the
actual partitioning. The logic behind this approach is that, given a starting configuration with hy-
perplanes resembling the “true” solution, Step II will then produce the correct membership matrix.
For example, consider clustering n observations into k clusters, with the correct partition given by
C1, . . . , Ck. Then a good starting configuration would comprise of I1, . . . , Ik where |Ij | = d, and
Ij ⊂ Cj∀j ∈ {1, . . . , k}.
Example. We reproduce an example from Van Aelst et al. (2006) using an allometry data set,
obtained from Crile and Quiring (1940). This data set studies the relationship between the brain
and body weight for n = 282 vertebrates, and a logarithmic (base 10) transformation has been
applied to each column. Setting k = 4, a plot of the clusters is given in Figure 2.1. The R package
lga was used to find the clusters.
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2.3 Partially Orthogonal Regression

In the discussion associated with Result 2.2.1 above, the importance of the multiplicity of the small-
est eigenvalue of the sample covariance matrix was highlighted. One situation in which repeated
eigenvalues occur is when the rank of the covariance matrix for a cluster is less than (d−1) – which
is often caused by small clusters and/or high dimensions. This is a situation that occurs repeatedly
in Section 2.4, where we apply transformations that increase the dimension considerably.

One approach for dealing with clustering when the rank of the sample covariance matrix for any
cluster is less than (d−1) would be via dimension reduction. Methods of dimension reduction have
been discussed previously in clustering literature. For example, in Jollife et al. (1982) principal
components analysis is applied on a data set to reduce the number of dimensions from 20 to 10,
and an approach similar to k-means applied to the PC scores. In Jolliffe (2002), a section is devoted
to describing heuristically when it may be advantageous to apply PCA prior to clustering. However,
in Chang (1983), it was shown that, at least in the case of a mixture of two normals, the first few
PCs may contain less cluster structure information than other PCs. And in Yeung (2001), applying
PCA prior to clustering gene expression data was found not to work well empirically.

In the context of LGA, it can easily be shown that a dimension reduction approach using PCA is
unlikely to work. While dimension reduction would work on clusters whose membership is given a
priori, since the actual structure of each cluster is then known, applying PCA on a whole data set
prior to clustering would not take into account the (probably) differing structures, and, at worst,
project data from different clusters onto the same space. Clearly, any dimension reduction should
take place after a partition has been proposed.

Unfortunately, since LGA relies heavily on the use of eigenvectors via orthogonal regression, we
cannot simply ignore dimension problems that result from the covariance matrix of any cluster
having rank less than (d−1), as the last eigenvector is not unique, and this is the vector used as per
Result 2.2.1 for the calculation of the orthogonal distance. Therefore, in this section we introduce
a new measure of distance, called Partially Orthogonal Regression (POD), as an alternative to
orthogonal regression for when this is the case.

Definition 2.3.1 Let C ∈ R
d×d be a sample covariance matrix of rank 1 < ν < (d − 1), with

(ei, λi), i = 1, . . . , d the eigenvector/value pairs such that λ1 ≥ . . . ≥ λν > λν+1 = . . . = λd = 0.
Let µ ∈ R

d be a fixed point and let E = (e1| . . . |eν) be the basis of a hyperplane H going through µ,
consisting of the eigenvectors of C with positive eigenvalues.

Then the Partially Orthogonal Distance (POD) of a point y ∈ R
d to H is given by

d 2
P (y;E,µ) = z⊤(P1 + P2/λν)z, (2.2)

where z = y −µ, P1 = I−EE⊤, P2 = eνe
⊤
ν ,

E =





| | |
e1 e2 · · · eν

| | |



 .
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Figure 2.2: Introducing Partially Orthogonal Regression. We have two clusters, centred at µ1 and
µ2 with identical covariance matrix C with eigenvalues λ1 > λ2 > λ3 = 0. Note that the axes are
the eigenvectors of C, and these axes are shown inside the cluster to emphasize their structure. An
observation which are we trying to cluster is given by y, and is not part of either cluster.

It can be easily shown that equation (2.2) can be broken into two separate distances, comprising:

d 2
P (y;E,µ) = d 2

E(y,p) + d 2
S(p, ỹ), (2.3)

where d 2
E(y,p) = z⊤P1z is the Euclidean distance of y to its projection p on the basis E going

through µ, and d 2
S(p, ỹ) = z⊤P2/λν z is a scaled distance of y to the hyperplane orthogonal to the

vector eν and going through µ.

In order to motivate why this approach is appropriate when there are fewer observations than di-
mensions in any cluster, we give an illustration in R

3, where only one eigenvalue is zero. Although
orthogonal regression could still be applied here, we utilize this simple illustration to give an intu-
ition into this approach without needing to imagine higher dimensions where any intuition might
be lost. Our example is sketched in Figure 2.2.

We have two clusters (I and II) with centres µ1,µ2 ∈ R
3 and both clusters have covariance matrix

C ∈ R
3×3 with eigenvalues λ1 > λ2 > λ3 = 0. A situation where this might occur is where each

of the clusters has been built with only three observations, as indicated in the figure. Now let us
consider a new observation, y ∈ R

3, which is not part of either cluster, and ponder the question of
which cluster it should belong to, keeping in mind that this approach needs to generalize to where
more than one eigenvalue is equal to zero (i.e. λ3 = 0 has multiplicity greater than one).
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Figure 2.3: Looking at the e2− e3 plane. Note that the thickness in the clusters in the direction of
e3 is for illustrative purposes only.

Two new alternatives for measuring the distance of y to each cluster are:

Distance I – The orthogonal distance of y to the hyperplane given by the basis made up of the
eigenvalues with only positive eigenvalues; or

Distance II – The orthogonal distance of y to the hyperplane orthogonal to the eigenvector with
the smallest positive eigenvalue.

Next we shall discuss briefly each of the distances above, show that these distances correspond with
the elements identified in equation (2.3), and finally justify why the inclusion of both distances is
logical.

Distance I – The orthogonal distance of y to the hyperplane given by the basis made

up of the eigenvalues with only positive eigenvalues: In our illustration, the basis with
positive eigenvalues is made up of (e1, e2), and is orthogonal to e3. Therefore, in this situation the
orthogonal distance to a hyperplane defined by this basis is equivalent to the orthogonal distance
as it would be calculated using Result 2.2.1 (standard orthogonal regression). This distance is
illustrated in Figure 2.3, and is denoted d 2

E(y,p) in equation (2.3).

However, there are two problems with using orthogonal regression directly. Firstly, since our desired
application includes the situation where the multiplicity of the smallest eigenvalue is greater than
one, the smallest eigenvector may not be unique, and therefore the vector e3 cannot be used for
calculation. Thus, instead of calculating distances using orthogonal vectors (as in Result 2.2.1),
we would use the projection of y onto the basis for which the eigenvectors are well defined (in our
example, e1 and e2), and then calculate the distance of our observation to this projection.

Furthermore, with this distance we are measuring how close our observation is to the hyperplane
orthogonal to e3 (which extend to infinity in the directions e1 and e2), without considering how
close y is to the linear structure shown in Figure 2.3. That is, y may be close to the hyperplane
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Figure 2.4: A “bird’s-eye-view” looking down onto the e1 − e2 plane.

orthogonal to e3 for one cluster, but close to the data associated with another cluster in all other
dimensions.

Distance II – The orthogonal distance of y to the hyperplane orthogonal to the eigen-

vector with the smallest positive eigenvalue: In our illustration, the eigenvector associated
with the smallest positive eigenvalue is e2, and the distance of y to this hyperplane is proportional
to d 2

S(p, ỹ), as seen in Figure 2.4. Clearly this is equivalent to performing orthogonal regression by
ignoring the contribution of e3, and is equivalent to the orthogonal distance in the e1 − e2 plane.

While the linear structure of the data is visible in this plane, there are three possible faults with
this approach.

• Firstly, if the two clusters were different only in the e3 direction, then this would not be a
useful measure as it would be equal for both clusters.

• Secondly, we are discarding any information present in e3 that might be relevant in deciding
which cluster the observation belongs to (as seen in Figure 2.3).

• Finally, when calculating distance we are not considering the structure of the data in a
Mahanalobian-sense; i.e. the distance in the direction of e2 should be expressed in terms of
how spread out the data is in that direction, in the same way that Mahalanobis distance
considers distance to the centre of a data set in terms of the confidence contours of the data’s
covariance structure.

In order to reflect the structure of the cluster, we scale the Euclidean distance of p to ỹ by the
smallest positive eigenvalue, since this distance is solely a function of the matching eigenvector,
addressing the third fault.

These arguments show that there is some value in each approach, and so we combine them into
our new measure of distance, as given in equation (2.3). In order to generalize our illustration to
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d dimensions, let us assume that we now have ν positive eigenvalues – in practise we select ν such
that c% of the total variation in the data is explained i.e.

arg min
ν

∑ν
i=1 λi

∑d
j=1 λj

> c. (2.4)

Consider the basis of interest – in our illustration we have only λ3 = 0 which defines the basis
(with any meaningful variation) as e1 − e2; in d dimensions this corresponds with the basis E =
(e1| . . . |eν). Then Distance I corresponds to the distance between y and its projection, p, on the
basis E and going through µ – this gives our result for d 2

E(y,p).

Finally, recall Distance II, which measures how far away y is to the clusters in the e1 − e2 plane,
as shown in Figure 2.4. Given that in this basis y is equivalent to p (its orthogonal projection
on to the basis), the distance from y to a cluster corresponds to the distance of p to ỹ, where ỹ

is the projection of y onto the hyperplane orthogonal to eν . Given that we wish to express this
distance with respect to the structure of the cluster, we scale this distance by the eigenvalue λν ,
as the distance in this direction is proportional only to eν , and no other eigenvector. This is the
distance denoted d 2

S(p, ỹ). By then adding d 2
E(y,p) and d 2

S(p, ỹ), we then have Definition 2.3.1.

Remark. Consider Definition 2.3.1, Figures 2.2 – 2.4, and assuming λν = 1. Then d 2
S(p, ỹ) =

d 2
E(p, ỹ), and by Pythagoras Theorem

d 2
P (y;E,µ) = ||y − p||2 + ||p− ỹ||2 = ||y − ỹ||2 = d 2

E(y, ỹ)

i.e. the Partially Orthogonal Distance can be decomposed into two orthogonal distances, and is
equivalent to the Euclidean distance from y to ỹ.

In order to perform LGA with POD, we propose the following algorithm.

Algorithm 2.3.2 (LGA-POD)
LGA with partially orthogonal distances is made up of the following five steps:

1. Generation of starting value: a starting configuration is generated consisting of a partition of
the data set into k mutually exclusive sets of nsamp observations (i.e. an observation can belong
at most in one set). For each of these sets, calculate the number of eigenvectors that explain
99.99% of the data using equation (2.4). Call this ν.

2. Initialization of groups: for each starting hyperplane with corresponding ν, calculate the par-
tially orthogonal distance of all observations to that hyperplane. Then assign each point to the
hyperplane which it is closest.

3. Iterative refinement: Recalculate step 3 for each resulting hyperplane until either a) the solution
converges (i.e. the membership sets remain the same for two consecutive iterations) or b) the
solution fails to converge after an arbitrary number of iterations (e.g. 10).

4. Resampling: Repeat steps 2-4 a number of times and select the solution with the smallest partially
orthogonal sum of squares.

The rationale behind this algorithm, in particular the setting of ν, is similar to that given in
Section 2.2, insofar as we randomly select a number of different starting configurations with the hope
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of getting one that is a subset of the true partitioning. As before, this is intuitively advantageous,
since the hyperplanes will already be the appropriate shape, but now also the number of eigenvectors
(ν) will be set correctly.

The setting of the nsamp parameter requires some care. It is desirable to set the value as small
as possible, as this makes it much easier to find a “good” starting configuration. However, setting
nsamp too low will exacerbate any rank problems further, as the number of eigenvectors with
positive eigenvalues corresponds directly with the initial number of observations in the build set.

Example. We simulate two rank deficient clusters by simply adding a constant column to each.
This is comparable with the data set illustrated in Figure 2.2. In this case we have generated two
clusters of size 30 from a multivariate normal Xi = N (µ,Σ), i = 1, 2, with µ = (0 0)⊤ and Σ a
diagonal matrix with 2 on the diagonal. Then for the first cluster we set Y1 = (X1|0) and for
the second Y2 = (X2|5). Clearly there is no variation in the third dimension, and the covariance
matrix of either cluster will be of rank two. Applying the algorithm to this data set yields a perfect
clustering, and a plot is given in Figure 2.5(a). Note that in the first two dimensions the clusters
are not separable.

Example. We simulate two clusters with more dimensions than observations, and therefore have
covariance matrices that are less than full rank. Once again using the multivariate normal distribu-
tion, we generate 15 observations from a N20(µ1,Σ) and 15 observations from a N20(µ2,Σ), where
µ1 = (0, . . . , 0)⊤ and µ2 = (3, 3, 3, 0, . . . , 0)⊤. The covariance matrix is given by a diagonal matrix
with elements (4, 2, 0.1, . . . , 0.1). Applying the algorithm to this data set yields a perfect clustering,
and a plot is given in Figure 2.5(b).

2.4 Linear Grouping in the Feature Space

In Section 2.2 we introduced a criterion for clustering around hyperplanes in Euclidean space.
Clearly, the underlying assumption is that the data in these clusters are aligned in a linear fashion.
In this section we relax this assumption, by transforming the data into a Feature Space where
the data may have a linear structure, and performing LGA within this space. We denote the
transformation

Φ : R
d → F

with F ∈ R
F , and refer to the corresponding clustering algorithm in the feature space as kLGA.

Since it can be shown that the LGA objective function (equation (2.1)) only depends on the cross-
products of the observations, rather than working with the transformed data directly, we instead
manipulate the cross-product k(x,x′) = Φ(x)⊤Φ(x′), called the kernel function, utilizing what is
commonly called the kernel trick in machine learning literature. The advantage of this is flexibility
and generality; if we wish to specify the transformation directly, it is trivial to calculate the kernel
function i.e. the transformation is explicitly defined. However, it is also possible to specify the
kernel function directly, with the transformation being implicitly defined. In the latter case, while
it may not be possible to describe the actual transformation, a result called Mercer’s Theorem
provides necessary and sufficient conditions for the kernel function such that the existence of the
transformation is guaranteed. Interested readers should refer to Schölkopf and Smola (2002) for
further details.

There are various examples of unsupervised learning methods using feature spaces and kernel func-
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Figure 2.5: Examples of LGA-POD on data sets whose clusters have covariance matrix of less than
full rank.
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tion transformation in machine learning literature, though they are not as well known as the su-
pervised learning methods (e.g. SVM classifiers (Schölkopf and Smola, 2002), SV Regression (ibid),
and Least-Squares SVM (Suykens et al., 2002)). Examples of unsupervised methods include Kernel
PCA (Schölkopf et al., 1998), Kernel Feature Analysis (Smola et al., 2002), and those with specific
application in clustering such as Spectral Clustering (Ng et al., 2001), a feature space version of
k-means (Girolami, 2002) and Support Vector Clustering (Ben-Hur et al., 2001). In this article, we
have adopted a similar framework to that of (Girolami, 2002), though the details are substantially
different.

In order to apply this methodology to LGA, we will transform the observations into the feature
space and then express the objective function in terms of dot-products. Assuming that all covariance
matrices in the feature space have rank of F or (F−1), the results of Section 2.2 apply immediately.
However, when the transformation is only given implicitly by the choice of kernel function, we will
need to use the results in Kernel PCA (kPCA, Schölkopf et al., 1998) to find the eigenvectors of
the covariance matrix in the feature space. Following this, we look at the case where the covariance
matrices have rank less than (F − 1), which in turn closely resembles the development of the POD
metric. Finally, we will discuss some of the technical challenges associated with this calculation.

2.4.1 Preliminaries and Notation

Applying the transformation in equation (2.1), we are interested in minimizing the objective func-
tion

R (Φ(X )|H,Z) =

k∑

i=1

n∑

j=1

zij d 2
O (Φ(xj),Hi)

with all the parameters defined the same as in equation (2.1). It is trivial to show that if the covari-
ance matrix is F or (F − 1), then the best fitting hyperplane through the transformed observations
has the same parameters as given in Result 2.2.1. This necessitates the spectral decomposition of
the sample covariance matrix of the observations Φ(xi), i = 1, . . . , n, given by

CΦ =
1

n

n∑

i=1

(
Φ(xi)− Φ̄(xj)

) (
Φ(xi)− Φ̄(xj)

)⊤
=

1

n

n∑

i=1

Φ̃(xi)Φ̃(xi)
⊤,

where Φ̃(xi) = Φ(xi) − Φ̄(x) and Φ̄(x) is the sample mean of the transformed data. Define
k̃(xi,xj) = Φ̃(xi)

⊤Φ̃(xj), and let the eigenvalues of CΦ be given by λ1 ≥ λ2 ≥ . . . ≥ λF−1 > λF ≥ 0,
with corresponding eigenvectors ei ∈ R

F , i = 1, . . . , F .

For computational ease, we generate the kernel matrix K ∈ R
n×n, (K)ij = k(xi,xj) and the centred

kernel matrix K̃ ∈ R
n×n, (K̃)ij = k̃(xi,xj). It was first shown in Schölkopf et al. (1998) that K̃

can be calculated from K with the following lemma.

Lemma 2.4.1 The centred kernel matrix, K̃ is given by

K̃ = K− 1

n
1nK−

1

n
K1n +

1

n2
(1nK)1n,

where 1n is a n× n matrix containing ones.
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Let the eigenvectors of K̃ be given by αj ∈ R
n (j = 1, . . . n), with corresponding eigenvalues λ̃j .

Now, we can use the following theorem, from Schölkopf et al. (1998).

Theorem 2.4.2 (Schölkopf et al. (1998)) The eigenvector associated with the j-th largest eigenvalue
of CΦ, ej ∈ R

F is given by

ej =
1
√

λ̃j

n∑

i=1

αi
jΦ̃(xi),

where αi
j is the i-th element of the vector αj ∈ R

n, the eigenvector associated with λ̃j, the j-th largest

eigenvalue of K̃. Furthermore,

λi =
λ̃i

n
.

Note that we cannot calculate ej directly, since Φ̃(xi) is unknown. However, we can calculate
e⊤j Φ̃(xk) ∝

∑
αi

jΦ̃(xi)
⊤Φ̃(xk) =

∑
αi

j k̃(xi,xk) for example, as the dot-product can be calculated
using the centred kernel function in Lemma 2.4.1. And, as will be shown in the next section, this
allows us to calculate orthogonal regression in the feature space.

2.4.2 kLGA with Orthogonal Regression

In any clustering paradigm, there is the concept of a build set of observations (in this case used to
form the hyperplanes) and then a subsequent step of calculating the distance of all observations to
this hyperplane. For convenience, we introduce notation that is more consistent with this approach.

Let S denote the indices of the build set of observations with cardinality m = |S|. The kernel
matrix of the observations in S is given by KS ∈ R

m×m with elements k(xi,xj) (i, j ∈ S), and
applying Lemma 2.4.1 to KS yields its corresponding centred kernel matrix K̃S . Finally, let S[i]
denote the i-th element of S, and

kS
j =








(K)S[1], j

(K)S[2], j
...

(K)S[m], j







∈ R

m,

where (K)a, b denotes the (a, b) element of the kernel matrix K. Let a matrix containing these
vectors for all observations be given by

KF =

(

kS
1

... kS
2

... · · · ... kS
n

)

∈ R
m×n.

We now have the building blocks for performing orthogonal regression in the feature space. Consider
a build set (S) of points with m observations in the feature space whose covariance matrix has rank
(F − 1) or F where F is the dimension in the feature space. In order to calculate the orthogonal
distance in the feature space, we combine the results from Result 2.2.1 (Orthogonal Regression)
and Theorem 2.4.2 (kPCA), to get the following distance metric.
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Result 2.4.3 The orthogonal distance of observation y = Φ(x) to a hyperplane orthogonal to ek (with
λk > 0 and k ≤ F ) and built on observations with indices in the set S, is given by

d 2
O(y,H) = (ek · y− ek · ȳs)

2, (2.5)

where

ek · ȳs =
1

m2
√

λ̃k

α⊤
k

(

mKS1− 1⊤KS1
)

, (2.6)

ek · yi =
1
√

λ̃k

α⊤
k (kS

i −
1

m
1⊤kS

i ), (2.7)

ȳs is the sample mean of the observations in S, αk ∈ R
n is the eigenvector associated with λ̃k, the

k-th largest eigenvalue of K̃S , and 1 is a vector of length m containing all ones.

When the observation yi = Φ(xi) in the lemma above is part of the build set, equation (2.5)
simplifies to

(ek · yi − ek · ȳ)2 =





m∑

j=1

αj
kK̃

S
ji





2

from Lemma 2.4.1. In order to make this result easier to implement for coding, we can express
Result 2.4.3 in such a way that it can be calculated for a matrix Y (each row being an observation)
with the following equation:

d 2
O(Y,H) =








d 2
O(y1,H)

d 2
O(y2,H)

...
d 2

O(yn,H)








=
1

λ̃k

(

(KF − 1

m
1mKF )⊤αk − b

)2

,

where 1m is a m×m matrix containing all ones, and

b =
1

m2
αk

⊤
(

mKS1m − 1⊤
mKS1m

)

.

This derivation raises some interesting technicalities regarding rank. It was assumed (explicitly
and implicitly) in this section that the covariance matrix CΦ ∈ R

F×F has rank F or (F − 1) in
the feature space, the dimension of which is defined by the transformation Φ. However, in the
calculation of the eigenvectors of CΦ, we use the spectral decomposition of K̃S ∈ R

m×m, where m
may be larger or smaller than F . This means that the number of positive (non-zero) eigenvalues
of K̃S determines uniquely the approach that is required.

In practise, if the transformation Φ is explicitly specified, then the dimension of the feature space
can be determined, and it will be known ex ante whether the covariance matrix in the feature space
is going to have rank F or (F − 1) when the number of observations in the build set is taken into
consideration. However, if an implicit transformation is used, more care is required. In particular,
some kernel functions, such as the Radial Basis Function (RBF), transform the data into an infinite
dimensional space, and therefore no sample covariance matrix based on a finite sample will be full
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Figure 2.6: Plots from example one for kLGA. On the left we have the output from kLGA, with
and explicit transformation Φ(x) = (x1,x

2
1,x2). Also on this plot is the hyperplanes that the (non-

feature space) LGA would fit. On the right we look at the percentage of total variation explained,
based on the eigenvalues, for the first cluster using two different kernel functions.

rank. Therefore, prior to using Result 2.4.3, careful analysis of the eigenvalues of K̃S should be
undertaken.

Example. To introduce kLGA with orthogonal regression, we first use a simple example with an ex-
plicit transformation function. For the first cluster, we have 200 independent random bivariate sam-
ples from the model X ∼Unif(0, 1), and Y = 80(X−1

2 )2+ǫ where ǫ ∼ N (0, 2.82). The second cluster
has 300 independent random bivariate samples from X ∼Unif(1

2 , 3
2), and Y = −80(X − 1)2 − 10 + ǫ

where ǫ ∼ N (0, 1.52). The transformation function is given by Φ(x) = (x, x2, y).

The results from kLGA are given in Figure 2.6(a). As a matter of reference, we also provide an
analysis of the eigenvalues for two other kernel functions, being the Wave Kernel and the RBF
kernel, given by

Wave: k(x, z) =

{
θ

||x−z|| sin
(
||x−z||

θ

)

if ||x− z|| > 0

1 if ||x− z|| = 0
(2.8)

RBF k(x, z) = exp

(

−||x− z||2
θ

)

. (2.9)

A plot of the total variation explained versus the number of eigenvalues, as given by the equation
∑ν

i=1 λi/
∑n

j=1 λj , ν = 1, . . . , 50, is provided in Figure 2.6(b) for each kernel function. Clearly the
dimension of transformed data using the implicitly defined transformation is substantially larger
than that for our explicitly defined transformation, which has a dimension of three.
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2.4.3 kLGA with POD

As mentioned in the previous section, the rank of the covariance matrix in the feature space is
as relevant in the feature space as it is in the Euclidean space, which was discussed at length in
Section 2.3. As a result, we conclude our foray into the feature space with an extension of the POD
methodology for use in the feature space. Recalling Definition 2.3.1, and proceeding along the same
lines as Section 2.4.3, we get the following result.

Result 2.4.4 Let there be k eigenvectors, denoted e1, . . . , ek, with positive (non-zero) eigenvalues.
The Partially Orthogonal Distance (POD) of a point y = Φ(x) ∈ R

F to the hyperplane with basis
e1, . . . , ek going through ȳs is given by

d 2
P (y,E, ȳs) = z⊤z +

1

λk

z⊤eke
⊤
k z− z⊤EE⊤z,

where z = y − ȳs and

E =





| | |
e1 e2 · · · ek

| | |



 .

In practise, this equation can be expressed using equations (2.6) and (2.7) for all observations at
once, with

d 2
P (Y,H) =








d 2
P (y1,H)

d 2
P (y2,H)

...
d 2

P (yn,H)








= Diag
(

K̃∗
)

+
1

λ̃k/m

(

(KF − 1

m
1mKF − b′)⊤

αk
√

λ̃k

)2

−
(

(KF − 1

m
1mKF − b′)⊤A

)2

,

where m = |S|, 1m is a m×m matrix containing all ones,

K̃∗ = K− 1

m
1mKF − 1

m
KF 1m + (1mKS)1m,

b′ =
1

m2

(

mKS1− 1⊤KS1
)

,

and

A =





| | |
α1/

√

λ̃1 α2/
√

λ̃2 · · · αk/
√

λ̃k

| | |



 .

In order to cluster using this formula, Algorithm 2.3.2 is used, and the parameter nsamp is required
in order to specify the size of the initial sample. Recall that in the Euclidean space (which is the
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context of Section 2.3), nsamp should be the smallest value such that the relevant dimensions
are included, where the relevant dimensions can be defined as the number of positive eigenvalues
determined in equation (2.4). However, in the feature space, there are kernel functions that imply
a dimension that is infinitely large, which makes this approach more difficult. In this case, the
size of nsamp given in equation (2.4) may need to be very large in order to capture the necessary
information (see, for example, Figure 2.6(b) for an indication of this with the RBF kernel), which
makes the combinatorial problem extremely difficult. In the examples that follow, we have selected
a smaller value for ν in the interests of an easier optimization step, and leave the detailed study of
this problem to further research.

Example. In this example we generate two bivariate clusters. In the first cluster, X ∼Unif(−π, π)
and Y = sin(X)/4 + ǫ with ǫ ∼ N (0, 1), while in the second cluster X ∼Unif(−π, π) and Y =
5 sin(X)+ ǫ, with ǫ defined the same. Each cluster contains 100 independent observations following
the above models.

Using the wave kernel function given in equation (2.8), with θ = 10 we run the kLGA(POD)
algorithm, with the results given in Figure 2.7(a).

Example. In our second example, we form two clusters with the following characteristics:

Cluster 1 - 400 independent observations from the model: X ∼Unif(−π, 2π) and Y = 5 sin(X) +
15 + ǫ with ǫ ∼ N (0, 0.25)

Cluster 2 - A combination of two models.

• 100 independent observations from the model:
X ∼Unif(−π, π) and Y = −10|X| + ǫ where ǫ ∼ N (0, 4).

• 100 independent observations from the model:
X ∼Unif(3− π, 3 + π) and Y = −10|X − 3|+ ǫ, where ǫ ∼ N (0, 4).

We use kLGA(POD) with the RBF Kernel Function (equation (2.9)). The results are given in
Figure 2.7(b). Note that there is some misclassification, however this accounts for less than 1% of
the whole data set.

2.5 Discussion and Future Research

In this article we have introduced two significant extensions to the LGA algorithm. The first extends
LGA to allow the covariance matrix of any cluster to have rank less than (d−1) by introducing a new
distance called Partially Orthogonal Regression. The second method extends LGA to the feature
space by using the kernel trick, allowing for clustering non-linear patterns and is demonstrated for
both cases where covariance matrices have rank F or (F − 1), and the rank is less than (F − 1).

Much of the discussion was devoted to the number of positive eigenvalues within the feature space,
and how it is of crucial importance. Further research in this area is necessary, in particular the
relationship between the number of eigenvalues and the number of the starting samples for initializ-
ing the algorithms (given by the parameter nsamp). In the methods given here we explicitly check
that the nature of the eigenvalues is consistent with the algorithm chosen, but have not currently
quantified the effects of this approach.
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Figure 2.7: Plots from the examples for kLGA (POD). On the left we have the output from kLGA
(POD) using the wave kernel with θ = 10. On the right we have the output from kLGA (POD)
using the RBF kernel with θ = 200.

It is clear that further research is required into the selection of the kernel functions, and tuning the
parameters of these functions, though this comment can be applied more generally to the area of
feature space methodologies as a whole. However, in the area of unsupervised learning, of which
these algorithms are part, this is especially difficult since the option of first training the algorithm
using a known solution is not relevant. Methods have been proposed elsewhere, such as cross
validation, and this would be a logical place to start.

With respect to selection of kernel functions and LGA more specifically, research is required into
the nature of the topology of the spaces generated with implicit transformations, and how they
relate to the underlying assumptions regarding linear clusters in these spaces. It may be possible
to determine in which cases LGA is sensible, and in which feature spaces LGA makes no sense.

One avenue of research that has already proved fruitful, though is not yet at maturity, is the use
of the gap statistic (Tibshirani et al., 2001) for the selection of the polynomial degree when using
a polynomial kernel. The gap statistic is useful for examining nested models in order to discover
the “elbow” in residual sum of squares, and has been used successfully for finding the number of
clusters in the context of k-means and LGA. In this case, it is intuitively consistent that, as the
degree of the polynomial increases, the ROSS decreases slowly until the “true” degree is attained,
at which point it decreases dramatically. Once the degree exceeds the “true” value, once again the
ROSS decreases slowly. Since the gap statistic is tuned to find such “elbows”, it seems to work well,
though further work is required.
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Chapter 3

Finding Approximate Solutions to

Combinatorial Problems with Very

Large Data Sets using BIRCH∗

3.1 Introduction

A very large data set is traditionally defined as one that exceeds the size of the main memory on a
computer. Once this size is exceeded, paging/swapping is required to access the data which is very
inefficient and time consuming.

In this paper we focus on the problem of finding approximate solutions to non-convex optimiza-
tion problems, particularly those that arise when computing high-breakdown point robust estima-
tors, such as the Minimum Covariance Determinant and the Least Trimmed Squares estimators
(Rousseeuw and Leroy, 1987). The optima of these problems are generally found by using some
variation of random search algorithms. Recently improved methods based on this approach have
been shown to perform better than other heuristic algorithms, like simulated annealing and tabu
search (see Salibian-Barrera et al. (2007)). The basic idea of the random subsampling algorithm
(Rousseeuw, 1984) is to generate a candidate solution by randomly drawing a subsample from the
data. This candidate is then refined by performing local improvements in the objective function
to find a local minimum near this starting point. In the robust statistics context this strategy is
expected to find a good approximation to the optimum when the random subsample of the data
is drawn from the “good” observations (non outliers). In general, a very large number of random
starts are needed to ensure the solution space is well represented among these candidates, and
furthermore, each starting point requires many refinement iterations.

To fix ideas, consider the MCD estimator, which for a sample X1, . . . ,Xn ∈ R
p and an integer

n/2 ≤ h ≤ n, is defined as the sample mean and covariance matrix of the subsample of size h with
sample covariance matrix with the smallest determinant. This is a combinatorial problem (there
are n!/(h!(n − h)!) possible subsamples of size h) whose solution can be approximated using the
fast-MCD algorithm (Rousseeuw and van Driessen, 1999). This approach randomly draws a large
number (N) of subsamples of size p+1, which are then enlarged and iteratively refined by selecting
points that are close (in the Mahalanobis distance sense) to the starting values. We see that this
algorithm accesses the whole data set a very large number of times. When the data set is large (i.e.
it is not possible to store it in memory), input/output delays due to paging or swapping make the
use of these methods unfeasible.

∗A version of this chapter is in the review process for publication. Harrington, J. and Salibian-Barrera, M. (2007)
Finding Approximate Solutions to Combinatorial Problems with Very Large Data Sets using BIRCH, “Special Issue
on Statistical Algorithms and Software” of Computational Statistics and Data Analysis.
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We adopt the following essential criteria for an algorithm to be successful when applied to very
large data sets:

• it should only require one read through the data set, after which the data set can be discarded;

• it should only require one line of data to be held in memory at any point in time; and

• it should reduce the effective size of the solution space for combinatorial problems.

We will show that the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
algorithm can be adapted appropriately to find approximate solutions to optimization problems
such as those mentioned above. These methods satisfy the conditions listed above. In this paper
we illustrate this approach by applying BIRCH to find approximate solutions to the optimization
problems that define the MCD and the LTS (Least Trimmed of Squares) (Rousseeuw and Leroy,
1987). Finally, we also adapt BIRCH to the linear grouping algorithm (LGA) (Van Aelst et al.,
2006) and its robust version (RLGA) (Garćıa-Escudero et al., 2007).

Our presentation will be organized as follows. Section 3.2 briefly describes the BIRCH algorithm.
In Section 3.3 our approach is applied to compute approximations to the MCD and LTS estimators,
and to run the RLGA algorithm, with very large data sets. We show that the algorithm we propose
works very well (compared with the state-of-the-art alternatives) when the data set fits in memory.
Moreover, our numerical experiments show that, in this case, our algorithm can be used to very
quickly compute a good starting point that when iterated using the whole data set converges to
the same solution found by the best algorithms available. Section 3.4 reports the results of two
simulation studies that indicate that this new method also works very well in large data sets.
Finally, some concluding remarks are included in Section 3.5.

3.2 Data Pre-processing

The data pre-processing algorithm BIRCH was first introduced in Zhang et al. (1996). It groups
the data set into compact subclusters that have summary statistics (called Clustering Features
(CF)) associated to each of them. These CFs are computed and updated as the subclusters are
being constructed. The end result is an “in-memory” summary of the data, where “local” compact
subclusters are represented by appropriate summary statistics.

This approach lends itself to robust statistics and clustering, in that both methodologies are con-
cerned with finding areas of homogeneous data that are locally similar and dense. As such, it
is a simple extension to consider using compact subclusters instead of individual observations to
obtain a fast and good approximation to the solution of the corresponding optimization problems.
It is important to note that by choosing the summary statistics appropriately we can evaluate
the objective function exactly. In other words, the approximated nature of this approach is only
due to the fact that both the random starts and the subsequent iterative refining steps use sets of
points (subclusters) instead of individual observations. Further discussion of the influence of this
approximation is given in Section 3.2.2.

The advantage of pre-processing the data is that, once completed, the data set can be discarded,
and the number of subclusters is much reduced relative to the number of observations, thereby
making the combinatorial problem smaller.
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It will be shown in Section 3.2.1 that at no point in time is more than one observation required to
be held in memory, and combined with the previous points, this means we have met our essential
criteria mentioned in Section 3.1.

In the original BIRCH article, the method proposed adapts a global clustering algorithm e.g.
CLARANS (Ng and Han, 2002), and selects the clustering for the desired number of groups. These
are then used as seeds for an optional cluster refinement, though it is unclear if this is based on the
complete data set, or performs further steps using just the subclusters. An extension to k-means
on mixed type attributes is given in Chiu et al. (2001). Neither of these articles explicitly considers
the application of BIRCH from the perspective of a combinatorial problem and the reduction of
the solution space.

Since the introduction of BIRCH, other methods for the formation of tree-like structures and
their application have been explored. In Breunig et al. (2001), BIRCH is used as an initial step
to “compress” the data set into representative objects. However, in the context of hierarchical
clustering, the concern is that the size of each subcluster (as given by its number of observations)
is not considered. As such, a post-processing step is proposed, involving going back to the original
data set and sampling a number of objects, with the number proportion to the size of the subcluster.
These points are subsequently used for clustering.

Other improvements are offered in Nassar et al. (2004) and Tung et al. (2005) regarding how the tree
is created. In the first article, the BIRCH algorithm is optimized for data sets with “real-time” data
streams by adding an attribute to subclusters that have been amended since the first construction.
This allows for incremental updating of only those subclusters that have recently admitted data
without needing to rebuild an entire tree. Finally, in the latter article, a dual criteria of spatial
proximity as well as orientation is considered in the merging of subclusters; the combination of
these attributes would make for a more compact merged subcluster.

The idea of using summary statistics of subsets of the data is also explored in other ways; for
example in spatial statistics via grid based methods (e.g. Wang et al., 1998). It was also noted in
this article that care must be taken when using BIRCH that the columns are of similar scale when
the subclusters are being formed, else the interpretation of Euclidean and Mahalanobis distance
becomes difficult, a fact that is implemented in the following algorithms. In the case where the
data set does not fit in memory, an approach for scaling is proposed in the next section.

3.2.1 Forming the Subclusters

A simplified algorithm for forming the subclusters is given next. Further details of the complete
algorithm, including refinements such as self-sizing, subcluster splits and CF-Trees, can be found
in Zhang et al. (1996).

Let X1, . . . ,XN denote the sample to be processed, where Xj ∈ R
p.

Pre-processing:

1. The first observation X1 forms its own subcluster.

2. Let T be the set of current subclusters, and let X̄t, and CFt, t ∈ T be the associated subcluster
centres and clustering features (currently left unspecified).

3. For each of the remaining observations X2, . . . ,XN :

39



Chapter 3. Combinatorial Problems, Large Data Sets and BIRCH

(a) Calculate the L2-norm distance from Xj to each of the centres X̄t of the existing sub-
clusters. Select the closest centre X̄t0 .

(b) If the observation meets the “closeness” and“compactness” criteria described below, then
Xj joins the t0 subcluster, and both X̄t0 and CFt0 are updated.

(c) If not, a new subcluster t + 1 containing Xj is formed, with X̄t+1 = Xj and CFt+1 the
corresponding clustering features, and the list of subclusters is updated: T = T ∪ {Xj}

The clustering features we consider are functions of the subcluster members that are easily updated
when a new observation joins (e.g. the sum of the elements of the subcluster). It is clear from the
above that only a single observation is held in memory at any point in time.

Note that this algorithm requires the calculation of the distances between Xj and every subcluster
centre. This can be avoided by using a more efficient structure, such as a CF-tree which is similar
to a “B+”-tree (Wedekind, 1974). In this approach, each observation is passed to a root node,
with a number of non-leaf nodes as children. Each non-leaf node contains the sample mean of all
observations beneath it. The observation is then simply passed down this tree to the closest non-leaf
node based on L2-norm distance to the centres, and each centre is updated as the observation is
given to it. Finally, when it reaches the appropriate subcluster, it is either absorbed, or else forms
its own subcluster. Once a non-leaf node exceeds a (user-specified) number of subclusters, it splits
with the subclusters allocated to the split non-leaf nodes based on a proximity measure. A more
complete description of this structure is given in Appendix B, which is also available as Harrington
and Salibian-Barrera (2008).

The number of subclusters that are formed at the end of this algorithm depends on the criterion
used to decide whether a new observation being processed can join an existing subcluster or needs
to form a new cluster. Consider a point Xj currently being processed, and let X̄t0 be the closest
subcluster centre. In order for Xj to join the t0 cluster, Zhang et al. (1996) required either of the
following criteria:

Parameters:

(i) closeness – ‖Xj − X̄t0‖ ≤ a for some pre-defined a > 0.

(ii) compactness – The trace of the sample covariance matrix of the union of observations in the
t0 cluster and Xj cannot exceed a pre-defined constant b > 0.

Although other measures of compactness, e.g. the generalized variance, can be used in (ii), we
followed the original BIRCH specification by using the trace. In our algorithm we use both jointly,
as we found that any one of these criteria alone was not enough to form subclusters that summarize
the data well. The disadvantage of using only the “compactness” criterion is that, when the number
of observations within a subcluster is large, a point could be far from the centre of the subcluster,
and yet adding it to the subcluster would not noticeably affect the sample covariance matrix of
the members of the subcluster. In other words, it may allow for “scatter” outside the otherwise
compact body of points within the subcluster.

The disadvantage of only using the “closeness” criterion is apparent when there are few points in a
subcluster. Consider an extreme example of three observations on a line. The first two observations
have the sample mean exactly bisecting them. When the third point is added, the sample mean of
the new subcluster would shift towards the new point, increasing the distance of the first observation
to the new centre. As more points are added on this line, this shifted centre would admit more
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points as they meet the closeness criteria, whilst moving the initial points further away. We refer to
this effect as “travelling”. The subcluster centre starts shifting and the subcluster becomes unduly
“long”. In other words, the compactness of the subcluster is reduced. The combination of these
criteria, therefore, ensures that the resulting subclusters are compact.

As mentioned in the proceeding section, the data set should be scaled by dividing each column
by its standard deviation prior to pre-processing. This necessitates the calculation of the standard
deviations, which can be done either directly if the data set is sufficiently small, or else by using a
very large value for the closeness and compactness criteria, yielding a very small tree from which
the calculation of these statistics is trivial. The algorithm is then re-run on the same data set with
each observation scaled as it is processed. It should be noted that a robust scale estimate would
be preferable for scaling the data set; however there is no “updating formula” for such estimators
with high breakdown point, and therefore cannot be applied within the BIRCH framework.

3.2.2 Selection of Parameters

The selection of the closeness and compactness parameters is a trade-off between (a) granularity of
the data sets and (b) reduction of the effective solution space. Clearly as these parameters increase,
the number of subclusters decreases and the “size” of the subclusters increases. The impact on the
solution to combinatorial problems is that the solution is “coarser” in that the subclusters reflect
less the subtleties of the underlying data set. Therefore, increasing these parameters would yield
solutions further away from that found using the original data set, and vice versa decreasing the
parameters would give a solution more closely approximating the solution based on the original
data set.

However, by decreasing the parameters, the solution space is enlarged due to the increased number
of subclusters, which makes for a more difficult combinatorial problem, to the point where any
potential gains in optimality of the solution might be lost. Also, an increased number of subclusters
requires more memory, which may be a limiting factor.

Clearly, if a refinement step following this algorithm (as suggested in Zhang et al. (1996)) were to
take place, then a “coarse” solution would be sufficient. If, however, this were not to be practical
because the size of the data set excludes this option, then the selection of the parameters is of more
significance. The question of setting of parameters is explored further in the following sections,
where the results of our experiments suggest that the optimality of the solution is only slightly
affected by the selection of the parameters, and it is irrelevant if refinement takes place.

3.3 Applications

In this section we show how to adapt this approach to compute two robust estimators (the MCD for
multivariate location and scatter, the LTS for linear regression) and a robust clustering algorithm:
the Robust Linear Grouping Analysis. We will show that the approximate solutions obtained by
our approach compare very well with those given by current algorithms.
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Consider the CF given by the following tuple:

CFJ =




∑

i∈LJ

1,
∑

i∈LJ

Xi,
∑

i∈LJ

XiX
⊤
i



 = (nJ , LSJ , SSJ);

i.e. the number of observations, the sum of those observations, and the sum of squares of those
observations. The set LJ contains the members of subcluster J . Let N be the number of subclusters,
and for all i 6= j ∈ {1, . . . , N}, Li ∩ Lj = ∅ by construction. We can define the addition operator
in a natural way:

CFI + CFJ
def
= (nI + nJ , LSI + LSJ , SSI + SSJ) (3.1)

≡




∑

i∈{LI∪LJ}

1,
∑

i∈{LI∪LJ}

Xi,
∑

i∈{LI∪LJ}

XiX
⊤
i



 ,

which equates exactly to the features associated with the union of the member vectors LI ∪LJ . We
call these statistics “sufficient”, insofar as the evaluation of the objective functions we are interested
in on the observations of a subcluster (or a union of subclusters) can be done exactly using only
the CF ’s. Thus, as mentioned before, we do not need to keep the data set in memory.

3.3.1 Minimum Covariance Determinant

The Minimum Covariance Determinant (MCD) (Rousseeuw, 1984, p 877) is a robust measure of
location and dispersion. It is calculated by finding the subset of data of size h = αn, α ∈ (1

2 , 1]
whose sample covariance matrix has smallest determinant i.e. ifH is the solution space of all possible
subsets of size h, then the MCD is

arg min
J∈H
|SJ |

where

SJ =
1

h− 1

∑

i∈J

(Xi − X̄J)(Xi − X̄J)⊤ and X̄J =
1

h

∑

i∈J

Xi

The location and dispersion estimate is then given by the sample mean and sample covariance of
this subset.

We compared the performance of our algorithm with the fast-MCD (Rousseeuw and van Driessen,
1999), which randomly selects (p + 1) sized subsets of data, calculates its sample mean (µ̂) and
covariance matrix (Ŝ), and then updates them using the following “concentration” steps.

Concentration Step:

• Let H ← { the h points with smallest Mahalanobis distances: (X− µ̂)⊤S−1(X− µ̂)}

• Calculate the new µ̂, S based on the observations in H.

It can be shown that these concentration steps always decrease the objective function above, and
are iterated until convergence or until some upper bound on iterations has occurred. The outputs
from this algorithm are estimates for µ̂, S and a vector of the points that make up the “best”
h-subset.
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As this is a local search algorithm, a large number of random starting configurations is required
in order to adequately cover the solution space. It is easy to show that this number grows very
rapidly as a function of the dimension p and number of observations of the data.

Our new algorithm, MCD-BIRCH, uses the subclusters derived in Section 3.2, and then attempts
to find the optimal size-h set H using the following algorithm.

MCD-BIRCH:

1. Run the pre-processing algorithm.

2. For each subcluster, calculate its covariance matrix, and the corresponding rank. Retain an
index of those subclusters whose covariance are of full rank.

3. Randomly select a sufficient number of subclusters of full rank to adequately cover the solution
space. For each of these subclusters (denoted by H):

(a) Calculate the Mahalanobis distance of all remaining subcluster centres to the centre of
H, using its centre (µ̂H) and covariance matrix (ŜH) (which are computed using the
CF’s of H).

(b) Order the distances, and select the smallest number of subclusters with closest centres
such that the sum of the number of observations in the union of these subclusters exceeds
h = αn.

(c) Calculate µ̂H and ŜH using the combined CF of this union of subclusters (from equation
(3.1)) to form a new seed.

(d) Let H be the union of these subclusters, and update its CF.

(e) Iterate from (a) until convergence or until a fixed number of iterations is exceeded.

4. Select the configuration with smallest determinant of the combined sample covariance matrix.

Remark. Note that in Step 2 we only consider “full rank clusters” because we need to compute the
Mahalanobis distances (which requires the inverse of the covariance matrix). This restriction is not
of much concern because clusters that are not full rank may not be representative of the shape as
they usually contain very few observations.

Clearly, the merged CF can be considered sufficient statistics for the calculation of the MCD
objective function. Consider a set of CFs A with complete membership vector L = ∪i∈ALi. Then

SA =
1

nA − 1
SSA −

1

n2
A

LSALS⊤
A

≡ 1

|L| − 1

∑

i∈L

(Xi − X̄L)(Xi − X̄L)⊤

This is also a local search algorithm, but rather than searching over a solution space of dimension
(
n
h

)
, the search is over a much smaller (but coarser) solution space. However, despite this coarseness,

the following examples will show that the approximation appears to be very good. Furthermore, if
the data set can fit in memory, concentration steps using the individual observations can be applied
to the resulting µ̂ and S estimates until convergence, as described for fast-MCD.

Example. The Digitized Palomar Sky Survey (DPOSS) data has been used in articles related to
robustness (e.g. Rousseeuw and van Driessen (1999), Rousseeuw and van Driessen (2006), etc) as
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well as clustering (e.g. Rocke and Dai (2003)). It contains characteristics from celestial objects,
and has 132,402 observations in 33 dimensions. For further information see Odewahn et al. (1998).

In this example, we run the fast-MCD algorithm and the MCD-BIRCH algorithm on the“Aperture”
and “Combined stellar function” columns for each of the F, J and N bands, yielding p = 6. The
fast-MCD algorithm is implemented in R as covMcd from the library robustbase1, and the MCD-
BIRCH algorithm as covMcd.birch in the library birch2.

Using fast-MCD the log of the determinant of the resulting covariance matrix was -30.71 with the
number of random starting subsamples set at 500. This compares favourably with MCD-BIRCH
with a log-determinant of -30.69 using just 100 random starting subclusters. Furthermore, the
two best h−subsets (with α = 0.51) have 99.7% of members in common. Finally, performing
a refinement by using the solution from MCD-BIRCH as the starting seed for one sequence of
concentration steps (to convergence) on the full data set yields a log(MCD) of -30.71, and the best
h-subsets have 99.9% of observations in common.

Example. This data was taken during a Nuclear Physics experiment using an accelerated ion beam
incident on a hydrogen gas target at the DRAGON facility at TRIUMF, Canada’s National Nuclear
and Particle Physics Laboratory (Engela et al. (2005) and Hutcheon et al. (2003)).3 Some of the
ions combine with the hydrogen atoms in a nuclear fusion reaction, resulting in an excited product
nucleus being formed which ‘decays’ within a billionth of a second to a stable energy configuration.
This decay process involves the emission of one or more high energy photons, gamma rays, which
are subsequently detected using a set of sensitive instruments surrounding the gas target. These
reactions are measured for the purpose of understanding their role in stars in the field of Nuclear
Astrophysics.

Because of the discrete quantum nature of energy levels in an excited nucleus, the gamma rays
in question have discrete energies and can occur in various combinations of one another (but all
adding up to the same total energy). When more than one gamma ray is detected the values of the
two highest energies are retained. Plots of the data set are given in Figures 3.1 & 3.2, and there
are 209,037 observations and two dimensions.4

In this case, the fast-MCD algorithm achieved a log(MCD) of -7.531 using 500 starting subsamples,
and the log(MCD) using MCD-BIRCH was -7.524 using 100 starting subclusters. There was a
98.6% intersection rate between the two best h−subsets. Performing an additional refinement on
the full data set using the solution from MCD-BIRCH yielded a log(MCD) of -7.532, and has 99.9%
of observations in common with fast-MCD. Contours of 95% confidence ellipsoids derived from the
asymptotic χ2 approximation using the classical, fast-MCD and MCD-BIRCH estimates of location
and dispersion are given in Figure 3.1, and based on this plot it is clear that the fast-MCD and
MCD-BIRCH algorithms are producing near-identical results.

1Original code by Rousseeuw and Van Driessen, adapted by Valentin Todorov. R package version 0.2-8.
2The package birch is available on CRAN, and also contains the algorithms for LTS-BIRCH, RLGA-BIRCH and

others. The pre-processing code is written in C++, and the remaining code written in native R. Version 1.1-2 of
birch was used for this article, and is discussed in detail in Harrington and Salibian-Barrera (2008) (a copy of this
article is given in the appendices)

3Many thanks to Dr C. Ruiz from TRIUMF for providing this data.
4It should be noted that with this example, as well as the ones that follow, the estimates calculated are not

necessarily those that would be chosen if “real” analysis (in the statistical sense) were to be done. Rather, the data
sets are used for illustration purposes only.
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Figure 3.1: TRIUMF Data Set: In this plot is the data set with the contours based on 95%
confidence ellipsoids derived from the asymptotic χ2 approximation using the fast-MCD, MCD-
BIRCH and classical estimates. The classical confidence contour is the red line. The x-axis has
been trimmed for clarity.
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Figure 3.2: TRIUMF Data Set: a smoothed color density representation of the scatter plot using
smoothScatter from the Bioconductor package geneplotter. The contours from Figure 3.1 are
also provided. The axes have not been trimmed.
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Compactness

2−2 2−3 2−4 2−5 2−6 2−7 2−8

C
lo

se
n
es

s 2−0 log(MCD) −29.75 −29.35 −29.87 −30.56 −30.62 −30.67 −30.69
N 7 10 37 160 569 1902 6570
h 67858 68157 67628 66304 66262 66204 66205

log(MCD)-R −30.71 −30.71 −30.71 −30.71 −30.71 −30.71 −30.71

2−1 log(MCD) −29.86 −30.07 −29.87 −30.56 −30.62 −30.67 −30.69
N 13 16 37 160 569 1902 6570
h 67654 67173 67628 66304 66262 66204 66202

log(MCD)-R −30.71 −30.71 −30.71 −30.71 −30.71 −30.71 −30.71

2−2 log(MCD) −30.08 −30.08 −30.48 −30.61 −30.62 −30.67 −30.69
N 49 49 51 154 569 1902 6570
h 66421 66421 66374 66220 66262 66205 66202

log(MCD)-R −30.71 −30.71 −30.71 −30.71 −30.71 −30.71 −30.71

2−3 log(MCD) −30.52 −30.52 −30.52 −30.47 −30.62 −30.67 −30.69
N 137 137 137 163 576 1902 6570
h 66272 66272 66272 66437 66260 66205 66202

log(MCD)-R −30.71 −30.71 −30.71 −30.71 −30.71 −30.71 −30.71

2−4 log(MCD) −30.61 −30.61 −30.61 −30.64 −30.57 −30.67 −30.69
N 409 409 409 417 625 1905 6570
h 66243 66243 66243 66203 66347 66205 66205

log(MCD)-R −30.71 −30.71 −30.71 −30.71 −30.71 −30.71 −30.71

2−5 log(MCD) −30.64 −30.64 −30.64 −30.64 −30.66 −30.68 −30.69
N 1012 1012 1012 1012 1012 1937 6574
h 66229 66229 66229 66229 66203 66201 66201

log(MCD)-R −30.71 −30.71 −30.71 −30.71 −30.71 −30.71 −30.71

2−6 log(MCD) −30.68 −30.68 −30.68 −30.68 −30.68 −30.68 −30.69
N 2943 2943 2943 2943 2943 2924 6589
h 66201 66201 66201 66201 66201 66208 66201

log(MCD)-R −30.71 −30.71 −30.71 −30.71 −30.71 −30.71 −30.71

Table 3.1: The effect of user selected parameters on number of subclusters and performance. N
is the number of subclusters resulting from the selection of parameters, h is the number of actual
observations in the h-subset, and performance is measured by the log of the MCD. The log of the
MCD after refinement on the best solution from MCD-BIRCH is given by log(MCD)-R.

Selection of Parameters for MCD-BIRCH

As mentioned in Section 3.2.2, the selection of the user-parameters (compactness and closeness) is
left to the user without much in the way of guidance other than balancing the size of the combi-
natorial problem with coarseness of the solution. In all applications in this article, the selection of
these parameters was based entirely on achieving a certain number of subclusters. In most cases
approximately 5000 subclusters was the level chosen, based on the proximity of the BIRCH solu-
tion to the algorithm it was benchmarking. In order to quantify the effect of this selection, we
examine here the effect on the log-MCD for the DPOSS data set in Table 3.1 for different values
of compactness and closeness.

Based on this analysis it would appear that the selection of parameters within certain “reasonable”
bounds has little effect on the eventual efficacy of the algorithm. In particular, if further refinement
on the solution is taken using concentration steps on the complete data, then the accuracy in the
selection of the parameters is not crucial.

The philosophy of this article has been to treat the setting of these parameters much in the same
way one would treat the setting of a bandwidth parameter in a smoothing operation. That is, there
is no necessarily right or wrong answer, but rather something that suits the needs of the problem
at hand.
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3.3.2 Least Trimmed Squares

Consider a linear model of the type
Y = Xβ + ǫ

with squared residuals given by r2
i . Let r2

(i) be the ordered squared residuals. The Least Trimmed

Squares (LTS) (Rousseeuw and Leroy, 1987) estimator is a robust regression estimator that can
be tuned to have high-breakdown point, independently of the dimension p of the covariates X. As
the name suggests, the LTS estimator minimizes the trimmed sum of the squared residuals. For a
given choice of n/2 ≤ h ≤ n, the LTS estimator minimizes

h∑

i=1

r2
(i) ,

where r2
(i) denotes the i-th order statistic of the squared residuals.

The so called “fast-LTS” algorithm in Rousseeuw and van Driessen (2006) uses a similar strategy as
the fast-MCD algorithm described above. In this case the algorithm uses the initial random sub-
sample to compute the ordinary least squares (OLS) regression estimator β̂. This initial estimator
is then improved using the following “concentration” steps.

Concentration Step:

• Let H ← { the h smallest squared residuals, r2 = (Y −Xβ̂)⊤(Y −Xβ̂)}

• Calculate the OLS estimator β̂ based on the observations in H.

These steps, called concentration steps, are iterated until convergence or until a predetermined
maximum number of iterations is exceeded. The output from this algorithm is the estimate for β̂

and a vector of the points that make up the best h-subset.

The BIRCH equivalent to LTS (LTS-BIRCH) uses the pre-processing from Section 3.2. However,
this time the augmented matrix Z = (X|Y) is preprocessed and that the elements of the corre-
sponding CF’s can be partitioned as follows:

LSJ =

(∑

i∈LJ
Xi

∑

i∈LJ
Yi

)

SSJ =

(∑

i∈LJ
XiX

⊤
i

∑

i∈LJ
XiYi

∑

i∈LJ
XiYi

∑

i∈LJ
Y 2

i

)

Note that LSJ ∈ R
(p+1) and SSJ ∈ R

(p+1)×(p+1). It can then be shown by elementary matrix
algebra that β̂ and

∑

i∈L r2
i (the within-cluster sum of squared residuals) can be calculated based

entirely on the CFs, and therefore they are sufficient statistics for the purposes of calculating the
LTS objective function for the observations in the J subcluster.

The algorithm is as follows.

LTS-BIRCH:

1. Run the pre-processing algorithm.

2. For each subcluster, calculate the rank of the sum-of-squares matrix. Retain an index of those
subclusters whose sum-of-squares are full rank.

3. Randomly select a sufficient number of subclusters of full rank to adequately cover the solution
space. For each of these clusters (denoted by H):
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(a) DPOSS

fast-LTS –

Model:
MAperF = 1.728 − 0.957 × csfF

log(RMS)= -7.698

LTS-BIRCH –

Model:
MAperF = 1.712 − 0.938 × csfF

log(RMS) = -7.696
log(RMS) with refinement = -7.698

(b) TRIUMF

fast-LTS –

Model:
Y = 0.595X
RMS = 0.03921

LTS-BIRCH –

Model:
Y = 0.597X
RMS = 0.03926
RMS with refinement = 0.03921

Table 3.2: The fitted regression lines for each approach on each data set, and the Mean Squared
Residuals (with logarithm applied for DPOSS). The refinement step applies one concentration step
on the whole data set using the solution from LTS-BIRCH.

(a) Calculate the OLS estimator β̂ based on H.

(b) Using β̂, calculate the sum of squared residuals (SSR) for all other subclusters.

(c) Order these SSR, and select the smallest number of subclusters with smallest SSR’s such
that the sum of the number of observations in the union of these subclusters exceeds
h = αn.

(d) Let H be the union of these subclusters, and update its CF.

(e) Iterate until convergence or until a fixed number of iterations is exceeded.

4. Select the configuration with smallest sum of squared residuals.

Example. Revisiting the DPOSS data, the LTS estimate is calculated using the ltsReg command
from the package robustbase, and then using the equivalent BIRCH approach available in the
birch package. Following the same approach as in Rousseeuw and van Driessen (1999), the data
set consists of just those observations classed as stars, and the relationship between the attributes
“csfF” and “MAperF”. The plot of the data, with fitted lines, is given in Figure 3.3, and the fitted
models in Table 3.2(a). The fast-MCD algorithm used 5000 random starting subsamples, and the
LTS-BIRCH algorithm 100 random starting subclusters. For a comparison of processing times for
each algorithm, see Section 3.4.1.

Example. Returning to the TRIUMF Data Set, we perform LTS without an intercept term. A plot
of the fits is given in Figure 3.4, with results in Table 3.2(b). The two sets have 97.7% of points in
common. Note that the fast-LTS and LTS-BIRCH lines are sufficiently similar that they obscure
each other.
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Figure 3.3: DPOSS Data Set. The lines are the resulting regression lines for fast-LTS, LTS-BIRCH
and classical LS. The red data points are for points in both LTS h−subsets, and the darker points
are for those that are only in one of the sets.

3.3.3 Robust Linear Grouping Analysis

Linear Grouping Analysis (LGA) (Van Aelst et al., 2006) is a clustering algorithm for data sets in
which the interest lies in detecting linear structures, such as hyperplanes. The main advantage of
this algorithm over others with similar goals (e.g. Gawrysiak et al., 2001) is that it does not require
an explanatory/response relationship between the variables (it is not model based), but rather finds
hyperplanes using orthogonal regression.

Assuming that we are searching for k hyperplanes, and given a membership vector Ci for the i-th
cluster, the optimization problem associated with LGA is

min
C1,...,Ck

k∑

i=1

∑

j∈Ci

d(xj ,Hi)
2 , (3.2)

with d(xj ,Hi) the orthogonal distance of xj to hyperplane Hi. The minimization is taken over all
possible disjoint partitions of {1, . . . , n} into k sets C1, . . . , Ck. The proposed algorithm to find a
solution to (3.2) starts from an initial configuration (obtained drawing random subsamples from the
data) and then forming clusters by assigning points to their closest hyperplane (using orthogonal
distances). The current configuration is then updated using the new clusters, and this procedure
iterated until convergence. After repeating this for many starting configuration, the one with the
smallest final residual orthogonal sum of squares is selected as the approximated solution to (3.2).
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Figure 3.4: TRIUMF Data Set. The lines are the resulting regression lines for fast-LTS,
LTS-BIRCH and OLS (dashed). The red points are those in both LTS h−subsets, and the darker
points are those that are only in one of the sets. The x-axis has been trimmed for clarity.

Recently, a robust version of this algorithm has been proposed in Garćıa-Escudero et al. (2007).
For a given integer n/2 ≤ h ≤ n (that determines the robustness properties of the solution), we
need to solve

min
H∈H

min
CH

1 ,...,CH
k

k∑

i=1

∑

j∈CH
i

d(xj ,Hi)
2 ,

where H is the set of all subsets of {1, . . . , n} of size h, and, as before, CH
1 , . . . , CH

k form a disjoint
partition of size k of H, for each H ∈ H. In terms of finding an approximate solution to this
problem, the proposed algorithm is very similar to that of LGA.

• Let H ← { the h smallest orthogonal distances d(xi), i = 1, . . . , n}, where d(xi) denotes the
orthogonal distance of xi to the closest hyperplane.

• Update the hyperplanes using only the observations in H.

These steps are iterated until convergence or a pre-determined upper bound on the number of
iterations is attained.

Our new algorithm, RLGA-BIRCH, instead uses the subclusters derived in Section 3.2, and is given
by:

1. For each subcluster, calculate its covariance matrix, and the corresponding rank. Retain an
index of those subclusters whose covariance matrix are of full rank.
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Figure 3.5: DPOSS Data Set: The red and green points represent the output where both RLGA and
RLGA-BIRCH agree. The darker points are those where the two algorithms are not in agreement.

2. Randomly select a subset of k subclusters of full rank. Use each for a seed to:

(a) Calculate the hyperplanes of each seed, using the covariance estimate derived from the
seed’s CF.

(b) Calculate the average residual orthogonal sum-of-squares for each subcluster, to every
hyperplane. Retain just the distance to the closest hyperplane.

(c) Order the distances, and select the smallest subset of the closest subclusters such that
the sum of the number of observations within these subclusters just exceeds h.

(d) For each hyperplane, generate a fit based on all subclusters that belong to it and are in
the “best” subset. Use these as the seeds for the next iteration.

(e) Iterate until convergence or until a predetermined maximum number of iterations is
exceeded.

3. Select the configuration with smallest residual orthogonal sum-of-squares.

Example. DPOSS Data Set. We construct an outlier map (Rousseeuw and Van Zomeren, 1990) by
plotting the Mahalanobis distances using standard estimates against Mahalanobis distances using
robust distances, given in Figure 3.5. We then apply RLGA and RLGA-BIRCH to this data set as
a means of robustly identifying the two groups.

The residual orthogonal sum-of-squares using the original algorithm is 870.0 versus the BIRCH
approach with 873.0. The two best h-subsets have 98% of observations in common. Finally, one
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refinement step performed using the BIRCH solution to initialize the algorithm, gives a best h-
subset with residual orthogonal sum-of-squares of 870.0, and 99.8% of observations in common
with the original algorithm’s solution.

3.4 Simulation Studies

3.4.1 Simulation Study with LTS

The example in Section 3.3.2, suggests that LTS-BIRCH compares very well with the best algo-
rithms available to compute LTS when the data fit in memory. In this section we report the results
of a simulation study that confirms this observation. We also provide a simple example where
LTS-BIRCH does significantly better than the fast-LTS using much fewer starting candidates. The
reason for this lies in the much smaller (though coarser) solution space belonging to LTS-BIRCH,
and is easier to explore thoroughly via a random search algorithm.

Let the level of contamination be denoted c%. Each data set has [n(1 − c)] observations gen-
erated from the null model Y = Xβ0 + ǫ, X ∼ Np(0, I), ǫ ∼ N (0, 1) with β0 = (1, . . . , 1)⊤.
We added [nc] of contamination following a linear model with β = (−1, 1)⊤ when p = 2, and
β = (5.5,−23.5, 1, . . . , 1)⊤ when p = 20, and covariates Xc ∼ Np(µ,Σ) with µ = (5, 0, . . . , 0) and
Σ a diagonal matrix of 1.1.

In order to make a fair comparison, we introduce two additional methods referred to as LTS-BIRCH-
R and fast-LTS-BIRCH. LTS-BIRCH-R takes the best solution from LTS-BIRCH, and uses it as
a seed for up to twenty concentration steps, or less if convergence of the “best” subset is achieved,
using the whole data set. This allows for a more realistic comparison in objective function with
fast-LTS.

It is difficult to make meaningful comparisons in the processing times due to differences in language
used for coding each algorithm. The fast-LTS algorithm is written in FORTRAN and somewhat
mature. The tree building part of LTS-BIRCH is written in C++, which was chosen for ease in
development rather than speed, while the LTS part of the algorithm is coded in R. Finally, the
concentration steps are performed in R.

In order to get a rough upper bound on the timing of the R part of these algorithms, we propose the
following: build the CF-Tree in C++, and then perform LTS using fast-LTS on just the centres of
the subclusters. We call this method fast-LTS-BIRCH. While the results with respect to objective
function could be very different to that of LTS-BIRCH, the processing time of fast-LTS-BIRCH
will approximate the time of LTS-BIRCH were it to be coded in C/FORTRAN, as (a) the number
of starting samples and steps to convergence are approximately the same; and (b) is an upper
bound since fast-LTS performs many more concentration steps on different starting candidates
than LTS-BIRCH-R.

The metrics used to measure the effectiveness of each algorithm are:

(a) the percentage difference in the “best h mean squared residual” compared to the residuals
obtained with β0, i.e.

r̄i − r̄i,0

r̄i,0
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n = 30, 000 n = 100, 000 n = 250, 000 n = 1, 000, 000

p = 2, c = 0% 0.05 0.1 0.1 0.15
p = 2, c = 15% 0.1 0.1 0.1 0.3
p = 2, c = 35% 0.1 0.1 0.1 0.3
p = 20, c = 35% 22 25 27 30

Table 3.3: The parameters used for creating the CF-tree using BIRCH for the LTS simulation
study. The parameters are closeness and compactness, and in each simulation the parameters are
equal.

where r̄i is the average of the h-subset of squared-residuals from the given model (fast-LTS,
MCD-BIRCH, etc.), and r̄i,0 is the average of the h smallest squared “residuals” Yi − β0Xi.

(b) the percentage of “outliers” (contaminated observations) that are included in the best h-subset.

In each case, we generated 100 samples, and the outputs from fast-LTS, LTS-BIRCH and LTS-
BIRCH-R retained,5 for the following combinations of sample size n, number of covariates p, and
proportion of contamination c:

• p = 2, 20

• n = 30, 000, 100, 000, 250, 000, 1, 000, 000

• c = 0%, 15%, 35%.

The parameters used are given in Table 3.3, and were set in order to achieve approximately 3,000-
4,000 subclusters. The algorithm fast-LTS used 500 subsamples for starting seeds, and LTS-BIRCH
and LTS-BIRCH-R used 100. The level α was set at 0.5. The processing time was measured on a
Intel Xeon CPU 3.00GHz linux box.

Box plots of the first metric are given in Figures 3.6 and bar plots of the second metric in Figure 3.7.
The processing times are given in Table 3.4.

Firstly, with the parameters p = 2, c = 0% and p = 2, c = 15% (Figures 3.6(a), (b)), it is clear
that all methods produce residuals very close to that of the null model, and the performance bar
plot (omitted) reinforces this, with both methods having less than 5% contaminated observations
in the best h-subset for all simulations. However, for p = 2, c = 35% it becomes apparent that
LTS-BIRCH is beginning to outperform fast-LTS in both residuals (Figure 3.6(c)) as well as percent
contamination (Figure 3.7(e)). Finally, for p = 20, c = 35% LTS-BIRCH clearly is still finding the
correct solution, whereas fast-LTS is not (Figures 3.7(d) & 3.7(f)).

In terms of processing time, it is not surprising that in all cases fast-LTS was faster than LTS-BIRCH
and LTS-BIRCH-R, but as identified previously, it is not reasonable to make direct comparisons
due to differences in computing language. Instead, a more reasonable comparison in processing
time can be gained with fast-LTS and fast-LTS-BIRCH, which are clearly much closer. Given that
there is a lot of scope for making this algorithm more efficient, primarily through choice of the

5For fast-LTS-BIRCH, just the processing time is kept.
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Figure 3.6: Box plots of the mean difference between the “true”LTS residual and the one calculated
using different methods. The methods are: (1) fast-LTS; (2) LTS-BIRCH; (3) LTS-BIRCH-R. Each
data set (given by n) is simulated 100 times.
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Figure 3.6 continued: Box plots of the mean difference between the “true” LTS residual and the
one calculated using different methods. The methods are: (1) fast-LTS; (2) LTS-BIRCH; (3) LTS-
BIRCH-R. Each data set (given by n) is simulated 100 times. Note that the y-axis in this case has
a different scale.

p = 2, c = 0% p = 2, c = 15%

n (1) (2) (3) (4) (1) (2) (3) (4)

30,000 0.8 21.0 39.6 3.2 0.8 12.5 13.1 2.2
100,000 2.1 17.3 32.8 4.5 2.0 19.1 21.5 4.8
250,000 4.6 25.6 49.2 9.2 4.4 29.6 36.7 9.7

1,000,000 10.6 41.9 85.4 27.4 11.7 26.7 55.7 19.5

p = 2, c = 35% p = 20, c = 35%

n (1) (2) (3) (4) (1) (2) (3) (4)

30,000 0.7 11.8 12.1 2.3 2.4 55.2 57.0 4.3
100,000 1.9 18.0 19.4 4.7 4.2 57.0 65.1 7.7
250,000 4.1 28.2 32.8 9.7 10.3 59.7 83.3 14.3

1,000,000 11.5 26.6 52.5 19.4 40.3 95.0 225.9 49.5

Table 3.4: The median total processing time for each LTS algorithm in seconds. Key: (1) - fast-LTS;
(2) - LTS-BIRCH; (3) - LTS-BIRCH-R; (4) fast-LTS-BIRCH.
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Figure 3.7: Bar plots of the percentage of contaminated observations in the “best” subset for LTS.
The data set is generated 100 times and the percent contamination in the h−subset is retained.
The darkest shade bars are for fast-LTS, the mid-shade for LTS-BIRCH, and the lightest bars for
LTS-BIRCH-R.
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language in which it is coded, it is expected that with further development this algorithm will be
much faster.

It should be noted that, regardless of whether or not it is faster than fast-LTS, LTS-BIRCH-R
does very well in all scenarios. In those situations where the fast-LTS solution has a slightly
lower objective function than LTS-BIRCH (in particular, the few visible in Figures 3.6(a), (b)),
concentration steps on the whole data set using one solution from the LTS-BIRCH solution as a
seed yields at worst identical results as the fast-MCD solution, and in most cases a better solution.

3.4.2 Simulation Study with MCD

In this section we confirm the results found in Section 3.3.1, demonstrating via a simulation study
how the number of dimensions, the level of contamination, and number of observations affect the
performance of fast-MCD and MCD-BIRCH.

Our simulation involved selecting different levels of n, p and contamination (c%), and generating
100 data sets. We then calculated the MCD for each data set using the fast-MCD algorithm as
implemented in the R package robustbase, followed by MCD-BIRCH, and MCD-BIRCH with a
refinement step consisting of a sequence of concentration steps performed using the best MCD-
BIRCH solution as the initial seed. This last method is denoted MCD-BIRCH-R, and is a more
direct comparison of MCD, as the fast-MCD has a number of concentration steps on its best
solutions. Once again we also provide the timings for fast-MCD-BIRCH for comparison with fast-
MCD, with the former method carrying out fast-MCD on just the centres of the subclusters as an
estimate of the upper bound for processing MCD-BIRCH were it to be coded in FORTRAN/C++.

Each data set had [n(1 − c)] observations generated from the null model X ∼ Np(µ0, I) with
µ0 = (0, . . . , 0)⊤. We then added [nc] of contaminated observations with model X ∼ Np(µ, I) with
µ = (10, . . . , 10)⊤. This is the same simulation study as that performed in (Rousseeuw and van
Driessen, 1999).

The metrics used to measure the effectiveness of each algorithm are:

(a) the logarithm of the determinant of the sample covariance of the best h-subset to the asymptotic
estimate i.e.

log (|S|)
where |S| is the MCD estimate from the method used; and

(b) the percentage of “outliers” (contaminated observations) that are included in the best h-subset.

The logarithm is applied because of the sometime large differences in MCD estimates for different
algorithms and simulations.

The parameters used for creating the BIRCH trees are given in Table 3.5. Plots of each metric and
method for p = 20 are given in Figures 3.8 – 3.9, and similarly in Figures 3.10 – 3.11 for p = 30.
Finally, the processing time was measured on a Intel Xeon CPU 3.00GHz linux box, and are given
in Table 3.6.

In the set of plots for p = 20, it is clear that the number of observations, n, does not significantly
affect the performance of the fast-MCD or MCD-BIRCH-R methods, and in all cases the fast-MCD
median MCD is larger than the median MCD-BIRCH-R estimate. What is interesting is that as
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n = 100, 000 n = 250, 000 n = 1, 000, 000

p = 20, c = 30% 23 26 30
p = 20, c = 40% 23 26 30
p = 30, c = 30% 40 45 50
p = 30, c = 40% 40 45 50

Table 3.5: The parameters used for creating the CF-tree using BIRCH for the MCD simulation
study. The parameters are closeness and compactness, and in each simulation the parameters are
equal.
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Figure 3.8: Box plots of the logarithm MCD estimate, calculated using three different methods.
The methods are: (1) fast-MCD; (2) MCD-BIRCH; (3) MCD-BIRCH-R. Each data set (given by
n) is simulated 100 times.
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Figure 3.9: Bar plots of the percentage of contaminated observations in the “best” subset for MCD.
The data set is generated 100 times and the percent contamination in the h−subset is retained.
The darkest shade bars are for fast-MCD, the mid-shade for MCD-BIRCH, and the lightest bars
for MCD-BIRCH-R.
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Figure 3.10: Box plots of the logarithm of the MCD estimate, calculated using three different
methods. The methods are: (1) fast-MCD; (2) MCD-BIRCH; (3) MCD-BIRCH-R. Each data set
(given by n) is simulated 100 times.

n increases, so too does the MCD-BIRCH estimate, but in the bar plots in Figure 3.9 the MCD-
BIRCH method still performs very well, with no contaminated observations in the best h-subset.
This will be discussed shortly.

In the set of plots for p = 30, it is clear that the MCD-BIRCH-R method is consistently producing
the most optimal result, whereas fast-MCD only finds an equivalent result a few times. For the
remainder of the simulations, fast-MCD and MCD-BIRCH are producing similar, less optimal
results (relative to MCD-BIRCH-R).

In both the box plots of MCD, it is clear that as n increases, so too does the MCD for MCD-
BIRCH, and yet the performances given in the bar plots remain perfect. While, at first glance, this
may appear contradictory, however upon further investigation it appears that this is an artifact of
the methodology for selecting the radius and compactness attributes i.e. choosing parameters such
that we have approximately 3000-4000 subclusters. Therefore, although the number of subclusters
has remained the same, the magnitude of the data reduction, equivalently the increase in data
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Figure 3.11: Bar plots of the percentage of contaminated observations in the“best” subset for MCD.
The data set is generated 100 times and the percent contamination in the h−subset is retained.
The darkest shade bars are for fast-MCD, the mid-shade for MCD-BIRCH, and the lightest bars
for MCD-BIRCH-R.
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p = 20, c = 30% p = 30, c = 30%

n (1) (2) (3) (4) (1) (2) (3) (4)

100,000 6.12 31.18 39.66 7.74 9.92 39.86 50.36 10.38
250,000 16.22 44.31 72.92 14.82 29.88 57.50 109.78 19.45

1,000,000 69.02 91.47 245.42 50.75 113.72 116.82 364.35 65.76

p = 20, c = 40% p = 30, c = 40%

n (1) (2) (3) (4) (1) (2) (3) (4)

100,000 8.29 50.83 60.90 8.28 16.37 56.31 74.50 12.52
250,000 15.83 52.78 75.82 14.38 26.96 65.81 105.17 21.19

1,000,000 64.17 96.95 203.91 48.72 109.50 115.75 314.15 65.41

Table 3.6: The median total processing time for each MCD algorithm in seconds. Key: (1) -
fast-MCD; (2) - MCD-BIRCH; (3) - MCD-BIRCH-R; (4) fast-MCD-BIRCH.

granularity, is getting higher. Looking at the estimate of centre and dispersion derived from the
MCD-BIRCH algorithm turns out to be nearly identical with the “known” result in all cases. This
phenomenon deserves more investigation, and will be left for further research.

Based on the results in Table 3.6, fast-MCD has a shorter processing time than MCD-BIRCH
and MCD-BIRCH-R in all cases. It should also be reiterated that fast-MCD is entirely written
in FORTRAN, and therefore the fast-MCD-BIRCH algorithm provides a more direct comparison
in timings. In this case, therefore, the BIRCH algorithm is significantly faster than the fast-MCD
algorithm when n = 250, 000 and 1, 000, 000 regardless of p, and certainly provides a direction for
further optimization.

3.5 Conclusion

Computing robust estimators with good robustness properties generally requires finding the so-
lution to highly complex optimization problems. The current state-of-the-art algorithms to find
approximate solutions to these problems involve the local refinement of a potentially large number
of random starting points. These random initial candidates are generally constructed by drawing
random subsamples from the data, and the iterative refinement steps involve calculations over the
whole data set. Since these approximating algorithms typically need to access the entire data set
a very large number to times, they become unfeasible in practise when the data do not fit in the
computer’s memory.

In this paper we show how the BIRCH algorithm can be adapted to calculate approximate solutions
to problems in this class. We illustrate our approach by applying it to find approximate solutions
to the optimization problems that define the LTS and MCD estimators, and also to the RLGA
algorithm. Our approach is compared with the fast-LTS and fast-MCD algorithms on real large
data sets that fit in memory. We show that, even for very large data sets that fit in memory, our
proposal is able to find approximate LTS and MCD estimators that compare very well with those
returned by the fast-LTS and fast-MCD algorithms. Furthermore, in this case (large data sets that
fit in the computer’s memory), our approximate solution can easily be iteratively refined (as it is
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done in both fast-LTS and fast-MCD). In some cases, this procedure converges to the same solution
as fast-LTS and fast-MCD (or an extremely close one); but in some other cases our approach is
able to find a better solution (in terms of value of the objective function) than that returned by
the fast- algorithms. Note that our algorithm can find this good starting point much faster than
both the fast-LTS and fast-MCD algorithms.

Finally, the simulation studies indicate that our method performs comparably well to fast-LTS
and fast-MCD in simple situations (large data sets with a small number of covariates and small
proportion of outliers) and does much better than fast-LTS and fast-MCD in more challenging
situations without requiring extra computational time. These findings seem to confirm that when
attempting to find a good approximated LTS or MCD estimator for data sets that do not fit in
memory, our approach provides a computationally feasible and reliable algorithm. Furthermore,
when additional concentration steps are performed on the whole data set using the single best result
from LTS-BIRCH and MCD-BIRCH, the resulting estimators always exceed those from fast-LTS
and fast-MCD.

To the best of our knowledge there is currently no other reliable algorithm in the literature that can
be used for these problems without having to access the whole data set a large number of times.
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Chapter 4

Conclusion

This chapter contains an outline of the results obtained in the thesis, the problems that we encoun-
tered, and the directions we foresee for future work.

Chapter 2 - Extending linear grouping analysis:

• We reviewed the Linear Grouping criterion (Van Aelst et al. (2006)), as implemented in the
R package lga, and discussed two requirements for LGA to work. The first requirement was
with respect to the smallest eigenvalues of the covariance matrix of a cluster. In particular,
the multiplicity of the smallest eigenvalue had to be one in order for the associated eigenvector
to be uniquely defined and orthogonal regression to be applicable. One common situation
where the multiplicity of the smallest eigenvalue would be greater than one was in the case
where there were fewer observations than dimensions within a cluster, a situation that was
relevant to following sections. The second requirement was that the cluster must be linear in
shape.

• We then introduced a substitute measure, called Partially Orthogonal Regression, for the
situation where the first requirement had been violated due to more dimensions than obser-
vations. In particular, we considered two clusters that had multiplicity issues, and provided a
measure for determining to which cluster an observation (which was not part of either cluster)
belonged. It was made up of two distance measures, the first measuring distance in the basis
where the eigenvalues were positive, and the second measuring how far away an observation
was to a cluster in the dimensions where the eigenvalues were zero.

• We then relaxed the second requirement by introducing linear grouping within a feature
space, via an explicit or implicit transformation to linearity. In order to do this, we leveraged
off Kernel PCA methodology and the Kernel Trick. One side effect of these transformations,
however, was that typically the dimension of the space increased dramatically (especially with
implicit transformation), such that the number of observations was less than the number of
dimensions. Therefore, a POD approach in the feature space was provided along with an
orthogonal regression approach in the feature space.

• It remains for further study what the best tactic would be for the selection of kernel functions,
as well as their tuning, though this is a problem prevalent in a lot of scholarship associated
with the use of Kernel Methods. A good, motivating, example would also be of some value.

Chapter 3 - Finding Approximate Solutions to Combinatorial Problems with Very

Large Data Sets using BIRCH:

• We reviewed the algorithm BIRCH, as originally discussed in Zhang et al. (1997), which was
first used as an approximate method for clustering data in the case where the data set did
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Chapter 4. Conclusion

not fit in the available physical memory. This approach created a summary of the data set
comprised of compact subclusters of observations, each with associated statistics that allowed
for the calculation of an objective function of combinations of the subclusters, and without
needing to refer back to the original data set.

• The nature of combinatorial problems were then discussed more generally, in particular how
the data set needed to be referred to a number of times during optimization, and how the size
of the solution space meant that the problem gets more difficult as the dimensions and/or
number of observations increased. The application of BIRCH was then generalized to a
particular class of combinatorial problem where the objective function could be calculated
in terms of the clustering features, which was a much simpler optimization problem than
optimizing the objective function on the whole data set.

• We then extended BIRCH to three challenging optimization problems to do with robust
statistics, being the Minimum Covariance Determinant estimate for location and dispersion,
Least Trimmed Squares estimate for building linear models, and RLGA - the robust equivalent
to LGA, and showed its efficacy on real data sets, and for the first two methods, simulation
studies as well. In all cases, the BIRCH approach yielded at least equivalent, and in many
cases improved, solutions to the original algorithms.

• While we demonstrated how the selection of parameters for BIRCH did not materially affect
the results for each algorithm, especially in the cases where optional refinement steps occurred,
further research in the selection of parameters might provide additional insight into further
improvement. Lastly, other examples of difficult optimization problems could benefit from an
implementation within the BIRCH framework, if practical.
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Appendix A

Proofs and Derivations for Chapter 2

The proof of Result 2.2.1

Orthogonal regression is the technique in which we select a hyperplane such that the orthogonal
distances between the observations and the hyperplane are minimized. We define the hyperplane
by H(a, b) = {y : a⊤y = b}. The orthogonal distance between an observation y and hyperplane H
is then given by

d 2
O(y,H) = (a⊤y− b)2

We have observations x1, . . . ,xn. Then minimizing the squared orthogonal distance yields

min
||a||=1,

b

n∑

i=1

(

a⊤xi − b
)2

= min
||a||=1,

b

n∑

i=1

(

a⊤xi − a⊤x̄ + a⊤x̄− b
)2

= min
||a||=1,

b

n∑

i=1

{(

a⊤xi − a⊤x̄
)2
− 2

(

a⊤xi − a⊤x̄
)(

a⊤x̄− b
)

+
(

a⊤x̄− b
)2
}

= min
||a||=1,

b

n∑

i=1

(

a⊤xi − a⊤x̄
)2

+ n
(

a⊤x̄− b
)2

= min
||a||=1,

b

a⊤Sa + n
(

a⊤x̄− b
)2

.

It is clear that the second term is minimized by setting b = a⊤x̄. To find the minimum of the first
term,

min
||a||=1

a⊤Sa = min
||a||=1

a⊤EΛE⊤a

where E ∈ R
d×d is a matrix with the eigenvectors of S as columns, and Λ ∈ R

d×d a diagonal matrix
with the corresponding eigenvalues on the diagonal. Let w = E⊤a. Then

min
||a||=1

a⊤EΛE⊤a = min
||w||=1

w⊤Λw as ||w|| = ||a||

= min
||w||=1

d∑

i=1

w2
i λi ≥ min

||w||=1
λd

d∑

i=1

w2
i = λd.
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Appendix A. Proofs and Derivations for Chapter 2

Finally, by substitution, this lower bound is achieved when a = ed.
�

The rationale for Definition 2.3.1

Using Equation (2.3) as the starting point, we need to calculate

d 2
P (y;E,µ) = d 2

E(y,p) + d 2
S(p, ỹ)

Start with d 2
E(y,p) – it can be shown that the distance between y and its projection p on the basis

E = (e1| . . . |eν) going through µ is equal to the distance between (y−µ) = z to the basis E, going
through the origin. Let p∗ be the projection of z onto E (going through the origin), given by

p∗ =
ν∑

i=1

(ei · z)ei = EE⊤z. (A.1)

Therefore,

z− p∗ = z−EE⊤z = (I−EE⊤)z.

Let P1 = I−EE⊤, and note that P1 is idempotent and symmetric. Then

d 2
E(y,p) = d2

E(z,p∗) = (z− p∗)⊤(z− p∗)

= z⊤P⊤
1 P1z = z⊤P1z.

Now for d 2
S(p, ỹ) – this can be thought of as the distance between p and its projection ỹ on the basis

Ẽ = (e1| . . . |eν−1) going through µ, which is equal to the distance between p∗ and its projection
ỹ∗ on the basis Ẽ = (e1| . . . |eν−1) going through the origin. Therefore,

ỹ∗ = ẼẼ⊤p∗

and

p∗ − ỹ∗ =

ν∑

i=1

(ei · z)ei −
ν−1∑

i=1

(ei · z)ei = eνe
⊤
ν z (A.2)

by substituting in the definition of p∗ from equation (A.1). Finally, in the article, we defined
the scaled distance d 2

S(a,b) in a manner similar to a Mahalanobis distance, and stated that the
direction which needs to be scaled is given by λν . Instead of simply applying this directly, we
instead scale the direction with the inverse of the whole covariance matrix, and show that this is
indeed the case.

d 2
S(p, ỹ) = d 2

S(p∗, ỹ∗) = (p∗ − ỹ∗)⊤C−1(p∗ − ỹ∗)

where C = EΛE⊤ is the sample covariance in the basis E. Then, from equation (A.2)

= z⊤eνe
⊤
ν EΛ−1E⊤eνe

⊤
ν z =

1

λν

z⊤eνe
⊤
ν z

�
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Appendix A. Proofs and Derivations for Chapter 2

The proof of Lemma 2.4.1

Starting with the definition of (K̃)ij ≡ K̃ij = k̃(xi,xj) (omitting the bracket for convenience)

K̃ij = Φ̃(xi)
⊤Φ̃(xj)

=

(

Φ(xi)−
1

n

∑

k

Φ(xk)

)

·
(

Φ(xj)−
1

n

∑

l

Φ(xl)

)

= Φ(xi) · Φ(xj)− Φ(xi)
1

n

∑

l

Φ(xl)−
1

n

∑

k

Φ(xk) · Φ(xj) +
1

n2

∑

k

Φ(xk)
∑

l

Φ(xl)

= Φ(xi) · Φ(xj)−
1

n

∑

l

Φ(xi) · Φ(xl)−
1

n

∑

k

Φ(xk) · Φ(xj) +
1

n2

∑

k

∑

l

Φ(xk) · Φ(xl)

= Kij −
1

n

∑

l

Kil −
1

n

∑

k

Kkj +
1

n2

∑

k

∑

l

Kkl (A.3)

Expressing this as matrix operations yields the result.
�

The proof of Result 2.4.2

We are interested in finding the solution to

λe = CΦe (A.4)

where

CΦ =
1

n

n∑

i=1

Φ̃(xi)Φ̃(xi)
⊤. (A.5)

Substituting equation (A.5) into (A.4) yields

λe =

n∑

i=1

(

Φ̃(xi)
⊤e
)

Φ̃(xi).

This means that all solutions of e lie in the span of Φ̃(xi). Therefore

e =

n∑

i=1

αiΦ̃(xi) (A.6)
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for some scalars α1, . . . , αn. Substituting equations (A.5) & (A.6) into equation (A.4), and multi-
plying by Φ̃(xk) yields

λΦ̃(xk) ·
(

n∑

i=1

αiΦ̃(xi)

)

= Φ̃(xk) ·




1

n

n∑

j=1

Φ̃(xj)Φ̃(xj)
⊤





(
n∑

i=1

αiΦ̃(xi)

)

λ

n∑

i=1

αiΦ̃(xk) · Φ̃(xi) =
1

n

n∑

j=1

n∑

i=1

αi

(

Φ̃(xk) · Φ̃(xj)
)(

Φ̃(xj) · Φ̃(xi)
)

λ

n∑

i=1

αiK̃ki =
1

n

n∑

j=1

n∑

i=1

αiK̃kjK̃ji

Generalizing this yields
nλK̃α = K̃K̃α. (A.7)

It can be shown (though currently omitted) that the solutions λ and α for the equation

nλα = K̃α

are the same as those for the equation (A.7). Finally, to make these eigenvectors orthonormal, we
calculate the norm

ei · ei =
n∑

j=1

n∑

k=1

αj
iα

k
i Φ̃(xj)

⊤Φ̃(xk)

where αj
i is the j-th element of αi

=
n∑

j=1

n∑

k=1

αj
iα

k
i K̃jk

= αi · K̃αi = nλiαi ·αi

= nλi

Therefore, for ei to be orthonormal, divide αi by
√

nλi. Obviously, if ei · ej = 0 then so too will
be n

√
λiλj ei · ej (i.e. they remain orthogonal).

�

72



Appendix A. Proofs and Derivations for Chapter 2

The proof of Result 2.4.3

From Result 2.4.2, we have

ek =
1
√

λ̃k

m∑

j=1

αj
kΦ̃(xS[j])

and xS[j] is the observation associated with the j-th element of the set S. Then the constant term,
ek · ȳs, is given by:

ek · ȳ =
1
√

λ̃k

m∑

j=1

αj
k

(
Φ(xS[j])− Φ̄

)

︸ ︷︷ ︸

Φ̃(xS[j])

·

ȳs
︷ ︸︸ ︷(

1

m

∑

i∈S

Φ(xi)

)

=
1
√

λ̃k

m∑

j=1

∑

i∈S

αj
k

(

1

m
Φ(xS[j]) · Φ(xi)−

1

m2

∑

l∈S

Φ(xl) · Φ(xi)

)

=
1

m2
√

λ̃k

m∑

j=1

m∑

i=1

αj
k

(

mKS
ji −

m∑

l=1

KS
li

)

=
1

m2
√

λ̃k

m∑

j=1

αj
k

(

m
m∑

i=1

KS
ji −

m∑

i=1

m∑

l=1

KS
li

)

Let kS
i be a vector, with kS

i =
(
(K)S[1], i (K)S[2], i . . . (K)S[m], i

)⊤
(as defined in Section 2.4.2 on

pg. 30) and 1 is a vector of length m containing all ones. Then

ek · ȳ =
1

m2
√

λ̃k

α⊤
k

(

mKS1− 1⊤KS1
)

(A.8)

Similarly, the first term is given by

ek · yi =
1
√

λ̃k

m∑

j=1

αj
k

(
Φ(xS[j])− Φ̄

)
· Φ(xi)

=
1
√

λ̃k

m∑

j=1

αj
k

(

Φ(xS[j]) · Φ(xi)−
1

m

∑

l∈S

Φ(xl) · Φ(xi)

)

=
1
√

λ̃k

m∑

j=1

αj
k

(

KS[j]i −
1

m

∑

l∈S

Kli

)

and writing this in vector notation

=
1
√

λ̃k

α⊤
k

(

kS
i −

1

m
1⊤kS

i

)

(A.9)
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The proof of Result 2.4.4

Starting with Definition 2.3.1, and expanding the bracket

d 2
P (y;E, ȳs) = z⊤(P1 + P2/λk)z

= z⊤z +
1

λk

z⊤eke
⊤
k z− z⊤EE⊤z (A.10)

where z = y− ȳs. In order to express this in vector notation let zi = yi− ȳs, and in the remainder
of this proof we tackle each of the elements of this equation.

In general,

z⊤i zj = (yi − ȳs)
⊤ (yj − ȳs)

=

(

Φ(xi)−
1

ns

∑

k∈S

Φ(xk)

)

·
(

Φ(xj)−
1

ns

∑

l∈S

Φ(xl)

)

= Kij −
1

m

∑

l∈S

Kil −
1

m

∑

k∈S

Kkj +
1

m2

∑

k∈S

∑

l∈S

Kkl

from equation (A.3). Expressing this in matrix form for all z⊤i zj , (i, j ∈ {1, . . . , n}) yields

K̃∗ = K− 1

m
1m ·KF − 1

m
KF · 1m +

1

m2
(1m ·KS) · 1m,

and the diagonal elements of this matrix give the required result.

The second element of equation (A.10) can be found by applying Result 2.4.3, and recognizing that
λk = λ̃k/m from Result 2.4.2. Finally, the third element can be found by generalizing this equation
for all values of αi, i ∈ 1, . . . , k.

�
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Appendix B

birch: Working with Very Large Data

Sets*

B.1 Introduction

Dealing with large data sets in R can be difficult and time consuming, especially when the size of the
data set is larger than the available computer memory. The first difficulty arises because when the
size of a data set exceeds available physical memory, paging/swapping is required, which typically
slows down the computer performance dramatically. An additional problem becomes apparent
when one needs to find good approximate solutions to combinatorial problems for very large data
sets. More specifically, we are concerned with computing the Minimum Covariance Determinant
estimator (MCD, Rousseeuw and Leroy, 1987) for multivariate observations, the Least Trimmed
Squares regression estimator (LTS, ibid), the clustering provided by the Linear Grouping Analysis
algorithm (LGA, Van Aelst et al., 2006), and its robust version (RLGA, Garćıa-Escudero et al.,
2007). The existing approximating algorithms for these problems require multiple passes over the
entire data set, and thus the effect of paging and swapping is greatly exacerbated, to the point of
making them unfeasible. Furthermore, note that due to the large size of the solution space, these
algorithms typically consider a number of data-driven random starts that are iteratively improved.
Obtaining good approximate solutions requires a very large number of random starting points. The
number of random starts increases rapidly with the sample size, so that even for data sets that fit
in memory, these algorithms may not be able to find a good approximate solution in a reasonable
amount of time.

One strategy to work with large data sets is provided by a pre-processing algorithm called BIRCH
(Balanced Iterative Reducing and Clustering using Hierarchies), first introduced in Zhang et al.
(1996), which summarizes the data using a tree with a relatively small number of subclusters and
associated “sufficient statistics”. These can be used to easily calculate sample statistics on subsets
of the data without having to access the data set. This tree is built with one pass of the data, and
only a single observation needs to be held in memory at any time.

The focus of this article will be describing the implementation of the package birch in R, referring
the reader to Harrington and Salibian-Barrera (2007) (herein referred to as the original article) for
a more in depth discussion of the motivation and advantages of this approach. This package also
provides methods for these BIRCH trees that compute very good approximated MCD estimators,
LTS Regression estimators, and LGA and RLGA clusterings. Additional methods are also described
for performing basic operations on trees such as subsetting, plotting and basic summary statistics.
Finally, we provide some examples using a commonly analyzed data set, which will demonstrate

∗A version of this chapter has been submitted for publication. Harrington, J. and Salibian-Barrera, M. (2008)
birch: Working with Very Large Data Sets, Journal of Statistical Software.
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the syntax and the efficacy of this approach.

B.1.1 BIRCH

A simplified description of this algorithm is given next, with the reader referred to Zhang et al.
(1996) for further details of the complete algorithm, including refinements such as self-sizing and
subcluster splits. Let x1, . . . ,xN denote the sample to be processed, where xj ∈ Rd. The algo-
rithm creates subsets of the observations, with LJ denoting the index of observations in the J-th
subcluster. In this implementation, the clustering features (CF) are given by the tuple:

CFJ =




∑

i∈LJ

1,
∑

i∈LJ

xi,
∑

i∈LJ

xix
⊤
i



 = (nJ , LSJ , SSJ) ,

i.e. the number of observations in the leaf, the sum of those observations, and their “sum of squares”.
It was shown in the original article that in each of the clustering and robust algorithms below the
above clustering features are sufficient statistics for the respective objective functions.

The algorithm processes the observations sequentially as follows:

1. The first observation x1 forms its own subcluster.

2. Let T be the current set of subclusters, and let x̄t, and CFt, t ∈ T be the associated subcluster
centres and clustering features.

3. For each of the remaining observations x2, . . . ,xN :

(a) Calculate the distance from xj to each of the centres x̄t of the existing subclusters. Select
the closest centre x̄t0 .

(b) If the observation meets the “closeness” and“compactness” criteria described below, then
xj joins the t0 subcluster, and both x̄t0 and CFt0 are updated.

(c) If not, a new subcluster t + 1 containing xj is formed, with x̄t+1 = xj and CFt+1 the
corresponding clustering features, and the list of subclusters is updated: T = T ∪ {xj}

Once this algorithm is complete, we have a “list” of compact subclusters that are locally similar,
with associated summary statistics of the underlying observations making up each subcluster.

Note that this algorithm requires the calculation of the distance between xj and every subcluster
centre. This can be avoided by using more efficient structures, such as a CF-tree, which is similar
to a “B+”-tree (Wedekind, 1974). In this approach, each observation is passed to a root node,
with a number of non-leaf nodes as children. These non-leaf nodes contain the sample mean of all
observations beneath them. The observation is then simply passed down this tree to the closest
non-leaf node, and each centre is updated as the observation is given to it. Finally, when it reaches
the appropriate subcluster, it is either absorbed, or else forms its own subcluster. Once a non-leaf
node exceeds a (user-specified) number of subclusters, it splits with the subclusters allocated to the
split non-leaf nodes based on a proximity measure. A graph of this structure is given in Figure B.1.

The number of subclusters that are formed at the end of this algorithm, denoted as NL, depends on
the criteria used to decide whether a new observation being processed can join an existing subcluster
or needs to form a new cluster. Consider a point xj currently being processed, and let x̄t0 be the
closest subcluster centre. In order for xj to join the t0 cluster we require:
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Appendix B. birch: Working with Very Large Data Sets

Figure B.1: The tree structure used for pre-processing in birch. The area shaded in grey is the
data returned as the subclusters.

(i) closeness: ‖xj − x̄t0‖ ≤ a for some pre-defined a > 0.

(ii) compactness: The trace of the sample covariance matrix of the observations in the t0 cluster
and xj cannot exceed a pre-defined constant b > 0.

Using both criteria is a departure from the approach in Zhang et al. (1996) which proposes using
only one of the criteria; for a discussion of this, see the original paper.1

It should be noted that for combinatorial problems, such as k-means, etc., BIRCH is a useful
approximation when the full data set cannot fit into memory, or is sufficiently large to make
random-search algorithms unfeasible. The properties of this approximation will naturally depend
on the level of coarseness of the tree – equivalently, the ratio of number of subclusters to number
of observations in the underlying data set. However any other non-combinatorial algorithm, such
as ordinary least squares, that can use the CF-tuple summary statistics, are doubly advantageous,
since in these cases it is possible to calculate the solution exactly from the CF summaries.

B.2 Package birch: Implementation in R

The package birch is available on CRAN2 and written in C/C++ and R (R Development Core
Team, 2007). The command for creating a BIRCH tree is given by the syntax

1In the implementation of this package, the user is required to set both criteria. However, if only one is desired,
then the other criterion can be set to a very high number, thereby not affecting the outcome.

2This article describes version 1.1-2 of the package.
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birchOut <- birch (x, radius, compact = radius, keeptree=FALSE, ...)

where x is either an R matrix, a text file name, or any “connection” (in the R sense) to the original
data set that is compatible with read.table. The arguments radius and compact specify the
“closeness” and “compactness” criteria, respectively. If x is referring to a file name, then the ...

argument allows the user to furnish additional information regarding the kind of data set, and is
consistent with the syntax for read.table (e.g. sep="," for comma-separated variable files). The
advantage of creating the tree directly from a file or a connection is that, at no time, is the complete
data set held in memory.3

If the argument keeptree is set to TRUE, then the CF-tree created is kept in memory. The following
commands

birch.addToTree(x, birchObject, ...)

birchOut <- birch.getTree(birchObject)

birch.killTree(birchObject)

can be used to add data to the tree, retrieve the data from the tree, and remove the tree from
memory. Clearly this is advantageous when additional data is to be added or when dealing with
real-time data streams, though the user should be aware that, until such time as the tree is removed
from memory, there are effectively two copies of the subclusters and their associated CFs and
member lists in memory.

The code for creating a BIRCH tree is primarily written in C/C++, with the R API used for
fetching the data. All other code (e.g. covMcd.birch, lts.birch, etc.) is written entirely in R.
The structure of the object produced by birch (herein referred to as a birch object) is given in
Table B.1.

B.2.1 Generic Internal Methods

Various generic methods have been implemented for use on a birch object. They are:

print, summary, dim, length, [ ], cbind, plot, pairs, points, lines

The print method produces a brief description of the object, in particular the number of subclus-
ters, the attributes used for creating the object, and the dimensions of the original data set. The
summary method produces the column means and covariance of the whole data set, and can be
assigned to an object (comprised of a list with names means and cov) if desired. The method dim

produces a vector of length three, containing the tuple: Number of observations in the underlying
data set; number of dimensions of the data set; and the number of subclusters in the object, while
the method length simply produces the number of subclusters in the object. This last method is
useful when building a tree to a certain number of subclusters, as is often the case (motivation for
this approach is given in the original article).

Subsets of a birch object can be created using the standard R notation [i, j], with i specifying
which subclusters to retain, and j which columns. However, care should be used when subsetting
by column, as

3By design, R will process the data in batches of at most 100,000 observations.
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Data:

Name Description Dimension
sumXi A matrix containing the sum of the observations,

∑
xi, in each sub-

cluster
NL × d

sumXisq An array containing the sum of squares of the observations,
∑

xi x
⊤
i ,

in each subcluster
d× d×NL

N A vector containing the number of observations in each subcluster NL × 1
members A list containing which observations are in each subcluster. NL

Attributes:

Name Description
xcolnames The column names of the original data set.
xdim A vector containing the number of observations in the original data set, the

number of columns in the original data set, and the number of subclusters.
compact The value for compact used when forming the tree.
radius The value for radius used when forming the tree.
internal A pointer to the tree held in memory (if applicable).

Table B.1: The structure of a birch object. NL is the number of subclusters in the object.

birch(z, 0.1)[,1:2]

will not yield the same result as

birch(z[,1:2], 0.1)

as the Euclidean distances and trace criteria mentioned previously will produce differing results
when calculating birch on the whole data set, versus on a subset of the columns. Furthermore,
data that is close (in the Euclidean sense) in d dimensions, may not be close in e > d dimensions,
particularly when e− d is large. In order to reflect this, the compact and radius attributes will be
set to NA in the former case. The method cbind is useful in the case where a constant is to be put
in front of each observation of the data set, and updates the sumXi and sumXisq data. However,
once again, care should be used with this command, as

birch(cbind(1,z), 0.1)

will not yield the same result as

cbind(1, birch(z, 0.1))

for the same reasons as those given when subsetting by column.4 Once again, in the latter case,
the compact and radius attributes will be set to NA.

We have two plotting methods for birch objects: plot for two-dimensional data; and pairs for
data with more than two dimensions. Each method has an optional argument, centers, with the

4The Euclidean distances will be the same, but the trace of the covariance matrix will be different.
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Figure B.2: A new plot method. The shaded area represents the ellipse that is produced when
centers=FALSE.

default set to FALSE. In the default operation, the methods produce 95% ellipses5 based on the
covariance matrix for each subcluster with N > d, centred at its sample mean, and is very effective
at visualizing the data when there are a reasonable number of subclusters. However, in order to
reflect the fact that each observation within a subcluster is within a certain Euclidean distance of
the centre of the subcluster, as specified by the radius attribute, the ellipses are truncated at this
distance. A graphical representation of this is given in Figure B.2. For subclusters with N ≤ d
observations, only the centre of the subcluster is plotted.

When the number of subclusters is large this plot becomes less informative, and setting the argument
centers = TRUE produces a plot of just the sample means of each subcluster. These methods
accept the usual plotting arguments, such as col argument for assigning a different colour to each
subcluster.

B.2.2 Clustering

Even when the data set fits in memory, clustering with BIRCH can be highly advantageous for large
data sets, as clustering with subclusters rather than the full dimensional data set is a much simpler
combinatorial problem. In this case, the above approximate solution can easily be refined to provide
a solution that is in many cases better than the one found by attempting direct optimization over
the full data set. For an extended discussion on this, refer to the original article.

Two clustering methods are provided: kmeans.birch and lga.birch (rlga.birch is discussed in
the following section).6 Each of these algorithms take a birch object as input, and in the simplest
case the number of clusters to find. Their syntax is given by

kmeans.birch (birchObject, centers, nstart = 1)

lga.birch (birchObject, k, nsamp=100)

where birchObject is a birch object. For k-means, centers is either (a) the number of clusters to

5The ellipses are produced using the package ellipse, which uses a multivariate normal reference distribution.
6Non-BIRCH versions of lga and rlga are available on CRAN in the package lga.
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find, or (b) a matrix of k rows and d columns containing the initial seed to use, and nstart is the
number of random starts to use. For LGA, k specifies the number of clusters to find, and nsamp the
number of random starting positions. Both methods return a list containing the clusters found, in
terms of subclusters and the actual observations making up these subclusters, as well as the value
of the objective function: the Residual Sum of Squares (RSS) in the case of kmeans.birch, and
the Residual Orthogonal Sum of Squares (ROSS) for lga.birch.

An alternative approach for k-means is provided via the command dist.birch, which calculates
the pairwise distance between the centres of the subclusters and produces a dist object, which can
be used in conjunction with the hclust and cuttree commands to provide an initial seed for the
kmeans algorithm. An example of this is given in the help files, and in Section B.3.

B.2.3 Robust Statistics

Three methods are implemented in this package for robust statistics: covMcd.birch, ltsReg.birch
and rlga.birch. These methods are the main focus of the original article, and so will not be
discussed in detail here.7

The syntax for all three methods is given by

covMcd.birch(birchObject, alpha=0.5, nsamp=100)

ltsReg.birch(birchObject, alpha=0.5, intercept=FALSE, nsamp=100)

rlga.birch(birchObject, k, alpha=0.5, nsamp=100)

where alpha is the size of the h-subset (between 0.5 and 1) as a percentage of the whole data
set, and nsamp is the number of starting positions for the random search. For the LTS command,
the argument intercept adds a unit vector to the data set via the cbind mechanism given in
Section B.2.1.8 The values returned from each algorithm are given in Table B.2.

Two methods are also provided for optional “refinement steps” for MCD and LTS when the data
set fits in memory. As mentioned previously (and elsewhere – see the original article), the solution
using BIRCH is approximate, in particular because of the “coarseness” of the underlying tree. If a
more accurate solution is required and the data set fits in memory, then an additional step can be
taken whereby the solution from the BIRCH algorithm is used to seed additional iterations (local
refinements) using the whole data set. The syntax to do this is given by

covMcdBirch.refinement (covOut, x, alpha=0.5)

ltsBirch.refinement (ltsOut, x, y, alpha=0.5, intercept=FALSE)

where covOut and ltsOut are the outputs from covMcd.birch and lts.birch respectively. If the
data set was not loaded into R because it was loaded directly from a file or connection, then these
methods are not applicable.

7Further information on each of the underlying algorithms can be found in Rousseeuw and van Driessen (1999),
Rousseeuw and van Driessen (2006), and Garćıa-Escudero et al. (2007) (for RLGA). The non-BIRCH versions of the
first two methods can be found in robustbase, and in lga for RLGA.

8Reiterating the comment in Section B.2.1, the cbind mechanism is only approximate w.r.t. arguments. A (better)
alternative is to form a birch object on the data set with the unit vector added as the first column. However, at
times this is not possible, and this mechanism is then applicable.
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MCD:

Name Description
zbar estimate of location.
Sz estimate of covariance.
Det the Minimum Covariance Determinant.
best a list containing the index of subclusters making up the h-subset and

the index of actual observations making up the h-subset.

LTS:

Name Description
best a list containing the index of subclusters making up the h-subset and

the index of actual observations making up the h-subset
raw.coefficients the fitted LTS regression line
Resids A list containing the sum of squared residuals for the best subset, as

well as the sum of squared residuals for the whole data set (based on
the LTS regression equation).

RLGA:

Name Description
clust a list containing the clustering in terms of the subclusters and the

clustering in terms of the actual observations
ROSS the residual sum of squares of orthogonal distances to the fitted hy-

perplanes based on the best data set.

Table B.2: The outputs from each of the robust algorithms.

B.3 Example

We illustrate the capabilities of the package by analyzing the data set commonly referred to as the
DPOSS data set.

The Digitized Palomar Sky Survey (DPOSS) data has been used in articles related to robustness
(e.g. Rousseeuw and van Driessen (1999), Rousseeuw and van Driessen (2006), etc.) as well as
clustering (e.g. Rocke and Dai (2003)). It contains characteristics from celestial objects, and has
132,402 observations in 33 dimensions. For further information see Odewahn et al. (1998).

As a first step, we take a subset of the data set by selecting the “Aperture” and “Combined stellar
function” variables (scaled such that the sample mean is zero, and variance one) for just the F
band, yielding p = 2 and n = 132, 402. This data is in the file "dposs_2d.csv", and in order
to demonstrate the functionality, it is loaded directly from a local file in the first instance, and
a web server in the second case. We then produce two trees – the first with radius set to 1.5
and compactness equal to 5, and a second with both radius and compactness set to 0.05. These
attributes were set for the purposes of visualization. Plots of these are given, along with the original
data set, in Figure B.3.

R> library(birch)
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(a) Radius = 1.5, Compactness = 5, Nleafs = 14 (b) Radius = Compactness = 0.005, Nleafs = 2,283

Figure B.3: The birch plot method, applied on birch objects of differing size. The first plot
contains a plot of the ellipses (blue), centres (red), and the underlying data (green). The second
plot just contains the centres.

R> mytree2 <- birch("dposs_2d.csv", compact=5, radius=1.5, sep=",",

+ header=TRUE)

R> length(mytree2)

[1] 14

R> ## the object z is a matrix containing the data in dposs_2d.csv

R> plot(z, col=’green’, pch=".")

R> lines(mytree2, col=’blue’);

R> points(mytree2, col=’red’)

R> mytree <- birch("http://www.stat.ubc.ca/~harringt/dposs_2d.csv",

+ 0.005, sep=",", header=TRUE)

R> length(mytree)

[1] 2283

R> plot(mytree, centers=TRUE)

We then perform the MCD on a different subset of the DPOSS data set, this time selecting the
“Aperture” and “Combined stellar function” for each of the F, J and N bands and just those
observations classified as stars yielding p = 6 and n = 55, 716. The full DPOSS data set is
stored in the R object dposs. The following code forms a birch object, and calculates the MCD
and a refinement.
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R> ## Create data set

R> z <- scale(dposs[dposs[,"Class"] == 1,

+ c("MAperF","csfF","MAperJ","csfJ","MAperN","csfN")])

R> ## Create Birch Object

R> mytree <- birch(z, 0.1)

R> length(mytree)

[1] 6192

R> ## Calculate MCD

R> set.seed(1234)

R> abc <- covMcd.birch(mytree, alpha=0.5, nsamp=100)

R> summary(abc, digits=3)

CovMcd using birch

MCD = 7.566695e-10

Estimate of center

[1] -0.130 -0.291 -0.121 -0.270 -0.133 -0.540

Estimate of dispersion

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.4580 -0.06658 0.4380 -0.09068 0.4768 -0.02701 # etc...

R> log(abc$Det)

[1] -21.00209

R> abcRef <- covMcdBirch.refinement(abc, z, alpha=0.5)

R> ## Once again, summary works with this object (not shown here)

R> log(abcRef$Det)

[1] -21.24701

For reference, the equivalent result using covMcd from the package robustbase yields a log(MCD)
of −21.24578, which is slightly higher (i.e. less optimal) than the one found by refining the BIRCH
approximate solution.

The LTS algorithm assumes that the object provided is made up of the exploratory and response
variables, much in the same way as lsfit.

R> x <- z[,2]

R> y <- z[,1]

R> mytree3 <- birch(cbind(x,y), 0.002); length(mytree3)

[1] 1818

R> set.seed(1234)

R> abc<- lts.birch(mytree3, intercept=TRUE, alpha=0.5, nsamp=100)

R> summary(abc)

LTS using birch

LTS = 1591.565
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Coefficients

[1] -1.470226 -4.232881

R> abcRef <- ltsBirch.refinement(abc, x, y, alpha=0.5, intercept=TRUE)

R> summary(abcRef)

LTS using birch

LTS = 1495.513

Coefficients

x1 x2

-1.501868 -4.331047

For reference, the equivalent results using ltsReg from the package robustbase yields a RSS of
1495.893, which again is slightly worse than the result produced by refining the BIRCH approximate
solution.

In order to demonstrate RLGA we construct an outlier map (Rousseeuw and Van Zomeren, 1990) by
plotting the Mahalanobis distances using standard estimates against Mahalanobis distances using
robust distances. We then apply RLGA-BIRCH to this data set as a means of robustly identifying
the two groups.

R> library(robustbase)

R> set.seed(1234)

R> z <- scale(dposs[, c("MAperF","csfF","MAperJ","csfJ","MAperN","csfN")])

R> a <- covMcd(z)

R> ## create the data set

R> robdist <- mahalanobis(z, colMeans(z[a$best,]), cov(z[a$best,]))

R> classdist <- mahalanobis(z, colMeans(z), cov(z))

R> x <- scale(cbind(classdist, robdist), center=FALSE)

R> mytree <- birch(x, 0.001, 0.001); length(mytree)

[1] 2042

R> set.seed(1234)

R> b <- rlga.birch(mytree, k=2, alpha=0.75)

In order to plot this result in the first two dimensions, we use the following code, with the result
given in Figure B.4

R> plot(mytree, centers=TRUE, col=b$clust$sub+1)

Finally, we provide a small demonstration of the implementation of kmeans.birch. Using the tree
formed for the RLGA example, we first use kmeans.birch directly.

R> abc <- kmeans.birch(mytree, 2, nstart = 100)

R> abc$RSS

[1] 145512.2
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Figure B.4: The results from RLGA.

R> ## Add a refinement step (using the k-means algorithm directly)

R> centers <- rbind(summary(mytree[abc$clust$sub == 1,])$mean,

+ summary(mytree[abc$clust$sub == 2,])$mean)

R> ghi <- kmeans(x, centers=centers)

R> sum(ghi$withinss)

[1] 145429.4

Then, running the non-BIRCH version for comparison.

R> ## Run the non-BIRCH version for comparison

R> def <- kmeans(x, 2)

R> sum(def$withinss)

[1] 145429.4

R> ## A crosstab of the clustering outputs for kmeans and kmeans.birch

R> table(def$cluster, abc$clust$obs)

1 2

1 650 87162

2 44177 413

R> ## A crosstab of the clustering outputs for kmeans and

R> ## kmeans.birch with refinement step

R> table(def$cluster, ghi$clust)
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1 2

1 0 44590

2 87812 0

i.e. the result from kmeans.birch with a refinement step is identical to that provided by kmeans

directly.

Following this, we use the command dist.birchwith hclust (the hierarchical clustering algorithm)
in order to suggest starting centers, and then complete one iteration with these centers as seeds.

R> hc <- hclust(dist.birch(mytree), method="ward")

R> ## Find which "clusterings" correspond with two groups

R> memb <- cutree(hc, k = 2)

R> ## Form the centers based on these

R> centers <- rbind(summary(mytree[memb == 1,])$mean,

+ summary(mytree[memb == 2,])$mean)

R> ghi <- kmeans.birch(mytree, centers)

R> ghi$RSS

[1] 145533.9

R> ## A crosstab of the clustering

R> table(ghi$clust$obs, def$clust)

1 2

1 87639 1089

2 173 43501

B.4 Conclusion

In this article we have introduced the package birch, and described its implementation in R. While
most of the justification for this algorithm is provided elsewhere, in particular in Harrington and
Salibian-Barrera (2007), the benefits mentioned previously are two-fold: firstly, in the case of
very large data sets, a compact summary of the data can be calculated without needing to load
the complete data set into memory, and secondly that for combinatorial problems, the effective
solution space is significantly reduced, and an approximate solution can easily be computed using
the clustering features.

The first benefit is clearly provided by functionality in the birch command for building a tree by
loading a data set directly from text file, URL or connection, and at no time is the whole data set
held in memory. Clearly, therefore, the only limiting factor in terms of size is that the tree doesn’t
get too large, which in turn is controlled directly through the selection of the compactness and
radius criteria. To our knowledge, this is the only approach that has this feature that is capable of
solving combinatorial problems like the ones given here.

In demonstrating the second benefit, we refer to a summary of the results in Section B.3, given
in Table B.3. The first thing that is apparent is that the BIRCH results are performing very
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Minimum Covariance Determinant Dimension of combinatorial problem Obj. Function
Non-BIRCH 55, 716 × 6 -21.246
BIRCH without refinement 6, 192 × 6 -21.002
BIRCH with refinement 6, 192 × 6 -21.247

Least Trimmed Squares Dimension of combinatorial problem Obj. Function
Non-BIRCH 55, 716 × 2 1,495.893
BIRCH without refinement 1, 818 × 2 1,591.565
BIRCH with refinement 1, 818 × 2 1,495.513

k-means Dimension of combinatorial problem Obj. Function
Non-BIRCH 132, 402 × 2 145,429.4
BIRCH without refinement 2, 024 × 2 145,512.2
BIRCH with refinement 2, 024 × 2 145,429.4

Table B.3: A selection of results in the Example section.

well compared with the non-BIRCH version even without the refinement steps, in spite of the
fact that this is intended to be an “approximate” solution. Indeed, examples can be found – and
some are given in the original article – where the nature of the combinatorial problem and reduced
solution space allows BIRCH to achieve results that are superior to the non-BIRCH algorithms.
Furthermore, when refinement is applied, the results perform as well as the non-BIRCH version.
While these results are sufficient to suggest the merit of this approach, when combined with the
fact that these methods are easily scaled with respect to the number of observations, and to a lesser
extent the dimension, it is clear that where large data sets are involved, the BIRCH algorithm is
an approach worth considering.
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