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Abstract

Previous experimental observations have shown that the pseudoelastic response of NiTi shape
memory alloys (SMA) is localized in nature and proceeds through nucleation and propagation of
localized deformation bands. It has also been observed that the mechanical response of SMAs is
strongly affected by loading rate and cyclic degradation. These behaviors significantly limit the
accurate modeling of SMA elements used in various devices and applications. The aim of this work is
to provide engineers with a constitutive model that can accurately describe the dynamic, unstable
pseudoelastic response of SMAs, including their cyclic response, and facilitate the reliable design of

SMA elements.

A 1-D phenomenological model is developed to simulate the localized phase transformations
in NiTi wires during both loading and unloading. In this model, it is assumed that the untransformed
particles located close to the transformed regions are less stable than those further away from the
transformed regions. By consideration of the thermomechanical coupling among the stress,

temperature, and latent heat of transformation, the analysis can account for strain-rate effects.

Inspired by the deformation theory of plasticity, the 1-D model is extended to a 3-D
macromechanical model of localized unstable pseudoelasticity. An important feature of this model is
the reorientation of the transformation strain tensor with changes in stress tensor. Unlike previous
modeling efforts, the present model can also capture the propagation of localized deformation during
unloading. The constitutive model is implemented within a 2-D finite element framework to allow
numerical investigation of the effect of strain rate and boundary conditions on the overall mechanical
response and evolution of localized transformation bands in NiTi strips. The model successfully
captures the features of the transformation front morphology, and pseudoelastic response of NiTi strip
samples observed in previous experiments. The 1-D and 3-D constitutive models are further extended
to include the plastic deformation and degradation of material properties as a result of cyclic loading.
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Chapter 1: Introduction

Owning to their unique thermomechanical behavior, shape memory alloys (SMAs) are being
increasingly used in many engineering applications ranging from actuators and dampers, to medical
devices, and orthodontic wires. Acquiring a thorough understanding of SMAs behavior has therefore
been the subject of extensive research since the material was first discovered by Chang and Read
(1951). In the next few sections, a detailed description of the extraordinary behavior of SMAs, and a

survey of the state-of-the-art in material modeling and related challenges are presented.

1.1. MACROSCOPIC BEHAVIOR AND APPLICATIONS OF SHAPE MEMORY
ALLOYS

SMAs are often classified as smart (functional/adaptive) materials, due to their ability to
sense small changes in the environmental conditions, such as temperature, and respond by altering
their mechanical/physical properties. SMAs are characterized by two important thermomechanical
properties known as shape memory effect, and pseudoelasticity (or superelasticity), which take place
over different temperature ranges. Shape memory effect is the ability of material to recover its
original shape after large inelastic deformations (up to 10 %) upon raising the temperature of material
by only a few degrees (Wayman, 1981). This behavior is observed below a certain transition
temperature. At higher temperatures, pseudoelastic behavior is observed during which the material
can accommodate a very large inelastic strain characterized by a long stress-plateau during
mechanical loading and recovery of all the applied deformation through a lower stress-plateau during
unloading (Otsuka and Shimizu, 1981). These two behaviors are schematically shown in Figure 1-1.
The crystalline structures of the material at various stages are also marked on the diagram which will

be explained in the subsequent sections.
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Figure 1-1. Schematic presentation of the thermomechanical behavior of SMAs at (a) low temperature

(shape memory effect), and (b) high temperature (superelasticity).

Some examples of shape memory alloys are NiTi (also known as Nitinol), CuAlZn,
CuAlZnMn, CuAlINi, and AuCd. Among these, NiTi is by far the most common SMA for practical

applications in spite of its high cost. This is due to its exceptional strength and ductility, good fatigue



properties, high corrosion resistance, and excellent biocompatibility. Therefore, this research is

mainly concerned with the thermomechanical behavior of NiTi.

The number of SMAs applications has become large, and a comprehensive overview is
beyond the scope of this study. Only selected examples of the applications are briefly discussed here
(for more examples see Duerig et al., 1990; Otsuka and Wayman, 1998; Van Humbeeck, 2001; Kohl,

2004).

1.1.1. SMAs as actuators and sensors

SMA actuators belong to the category of thermal actuators, which are capable of converting
thermal energy into mechanical work. Since SMAs exhibit shape recovery over a large amount of
strain, they can develop significant recovery stresses if they are restrained. The principles behind the
application of SMA as actuators are shown in Figure 1-2. At low temperature (Figures 1-2a), the
SMA can be easily deformed in the presence of a small biased force (represented by the spring in
Figure 1-2). Upon heating, a solid-solid phase transformation takes place during which the material
recovers its original shape and exerts a large amount of force if restrained (demonstrated by the
stretched spring in Figure 1-2b). By cooling the actuator, the material transforms to its low-

temperature phase again and releases the force (Figures 1-2a).

Detwinned Austenite
martensite @
(2) (b)

Figure 1-2. The principle of shape memory actuation. (a) Low temperature; (b) High temperature.



SMA actuators have been successfully used as electric switches for diesel engine radiator
fans, thermostatic mixing valves, under-water robotic actuators (Ohkata and Suzuki, 1998), high
pressure gas micro-valves (Kohl et al., 1999). SMA actuators are particularly attractive for aecrospace
applications due to their lightweight and small size (Jardine et al., 1997; Strelec et al., 2003). A recent
example is Boeing’s Variable Geometry Chevron which utilizes a NiTi actuator to reconfigure the
shape of chevrons on the trailing edge of a jet engine to optimize nozzle performance for a variety of

flight conditions (Calkins, 2006).

1.1.2. Vibration control and seismic protection using SMAs

The area enclosed by the pseudoelastic loop of Figure 1-1 is the dissipated mechanical work
which converts to heat. Since SMAs display pseudoelastic hysteresis behavior over large strain
ranges, a significant amount of energy dissipation can be obtained (Dolce and Cardone, 2001a,b). In
recent years, considerable attention has been paid to the use of SMAs in the protection of structural
systems against seismic loads, and also acoustic and vibration control of mechanical systems (see for
example: Dolce et al., 2000; Saadat et al., 2001; Han et al., 2003; McCormick et al., 2006). Several
types of seismic damping devices are available today; however, current technologies present some
limitations mostly related to maintenance and reliability. Shape memory alloys have the potential to
eliminate most of the limitations involved in current technologies, owing to their resistance to large
strain cyclic fatigue, re-centering capability and high corrosion resistance. Bruno and Valente (2002)
numerically compared the performance of a traditional damping system (steel-rubber damper) and
SMA dampers. The analysis revealed that SMA dampers generally have better performance and less
maintenance and functional costs. A state-of-the-art overview of different applications of NiTi SMAs

in structural vibration control is given by Wilson and Wesolowsky (2005).



1.1.3. Medical applications of NiTi

The most commercially successful applications of NiTi SMAs in recent years have been in
the biomedical engineering. The reason for this is the combination of biocompatibility, corrosion-
resistance, and excellent pseudoelastic properties of NiTi which cannot be found in any other

material.

An orthodontic arch wire made of NiTi was the first application in this field (Sachdeva and
Miyazaki, 1990). In this application, the pseudoelastic property of NiTi is utilized as the material is
capable of exerting a constant force over a large displacement range. This allows the NiTi arch wire
to apply a constant force for a long time as the teeth gradually move. Stainless steel arch wires, on the

other hand, quickly release the restoring force when teeth start moving.

NiTi tubes have been used as guide-wires in minimal invasive surgery (Song et al., 2003).
Guide-wires are used to insert small surgical or endoscopical devices into the body for diagnostic or
medical treatments. The superelastic property of NiTi provides an exceptional flexibility which

prevents the guide-wire from being permanently deformed during the surgery.

A more recent application of NiTi is the self-expanding cardiovascular stent (Duerig et al.,
2002). A stent is an intravascular tubular scaffold that supports the inner diameter of a blood vessel to
prevent blockage. The NiTi stent is initially folded at a low temperature to occupy less space. As the
stent enters the body, its temperature increases and the reverse transformation takes place which
results in self-expansion and shape recovery. In some cases, the stent may also be compressed at a
high temperature and then inserted into the body which will expand as it is released exhibiting

pseudoelastic response.

NiTi elements are also largely used in orthopedic implants. In this application, the shape

memory effect is exploited to exert compressive recovery forces on fractured bones or spinal



vertebrae to accelerate the healing process. A NiTi bone anchor, fixation nail, or bone staple is
inserted at the fracture site in its low-temperature deformed phase, and then is heated by an external

device. Upon heating, the material recovers its original shape and closes the gap.

1.2. METALLURGICAL ASPECTS AND THERMOMECHANICAL PROPERTIES OF
SMAS
1.2.1. Microscopic origin of superelasticity and shape memory effect
Pseudoelasticity and shape memory effect in SMAs originate from a displacive
(diffusionless) phase transformation between two solid phases called austenite and martensite. The
transformation from austenite to martensite is often referred to as the martensitic transformation (or
forward transformation), whereas the transformation from martensite to austenite is called the

austenitic transformation or (reverse transformation).

The martesitic transformation and its inverse transformation can be induced by either
changing the temperature or stress. In the absence of stress, an SMA material at high temperatures
exists in the parent phase (austenite phase) and upon decreasing the temperature, the crystalline
structure undergoes a phase transformation from austenite into martensite. The temperatures
corresponding to the start and finish of the forward transformation in the stress-free condition are
called the martensitic start and finish temperatures, which are denoted by M, and Mj, respectively (see
Figure 1-3). Similarly, the temperatures at which the reverse transformation starts and ends in the
absence of stress are called the austenitic start and finish temperatures denoted by A4 and Ay,
respectively. Since there is a hysteresis associated with the martensitic transformation in SMAs, the
start and finish temperatures of forward and reverse transformations do not coincide. This hysteresis
behavior is also shown in Figure 1-3. The parameter y in Figure 1-3 indicates the extent of

transformation and is called the martensitic fraction. Martensitic fraction by definition is the



volumetric fraction of martensite, i.e., it is equal to zero when the material is completely in the
austenite phase and equal to one when the material is completely in the martensite phase. As shown,

in a particular temperature range (M, < T < 4;), both martensite and austenite phases are stable.

Y A

Twinned
martensite 1

R

Austenite

HH o

Figure 1-3. Temperature-induced transformation at zero stress.

The temperature-induced martensitic transformation in SMAs is a self~accommodating
transformation. Self-accommodation is a mechanism by which the material preserves its original
shape during the transformation and no macroscopic strain is produced as a result of the phase
transformation in the stress-free condition. Since the lattice structures of austenite and martensite are
of different shapes (Figure 1-4a and 1-4b), it is naturally expected that the newly produced martensite
phase is stressed by the surrounding austenite phase due to strain mismatch. In order to accommodate
itself inside the parent phase (self-accommodation), the martensite must undergo a severe
deformation. In ordinary metals, such as steel, the self-accommodation is achieved through slip which
is an irreversible process, and results in permanent deformation of martensite. In SMAs, the
martensite phase has a low degree of lattice symmetry. As a result, the martensite phase can exist in
multiple variants which are energetically equivalent but have different crystallographic orientations.

This property allows for the formation of randomly distributed martensite variants at the microscopic



level (twinning), which gives rise to self-accommodation (Miyazaki et al., 1989a). The slip and

twinning mechanisms of self-accommodation are schematically shown in Figure 1-4.

(@) (b) (© (d)
Figure 1-4. Schematic illustration of the austenite and martensite lattice structures, and different self-
accommodation mechanisms. (a) Austenite; (b) Martensite without self-accommodation; (c) Self-

accommodated martensite by twinning; (d) Self-accommodated martensite by slip.

The two adjacent martensitic plates with different crystallographic orientations (variants) are
also called rwins which are separated by a twin boundary. The ability of SMAs to exist in the twinned

and detwinned martensitic states plays an important role in their observable macroscopic behaviors.

When shear stress is applied to a twinned martensite, the pairs of martensitic twins begin to
convert into a single variant of martensite preferred by the direction of applied stress (Miyazaki et al.,
1989b). This process is called detwinning or reorientation. During the detwinning process, a
significant amount of strain is produced while the stress level remains almost constant (point “a” to
“b” in Figure 1-1a). Unloading only recovers a small elastic strain, leaving the material with a large
residual strain (point “c” in Figure 1-l1a). If the temperature is increased, the material starts
transforming from martensite back into austenite (point “c” to “d” in Figure 1-la). Since the

macroscopic strain associated with the austenite is the same as that of twinned martensite, the

material recovers its original shape during the heating process (shape memory effect).

As mentioned earlier, the phase transformation may also be triggered by stress. To explain
pseudoelasticity, consider an SMA material in the parent phase with 7> A;. When stress is applied to

(TP 2] [TPS ]

the austenite phase, the material initially behaves similar to a linear elastic solid (point “0” to “a” in

-8 -



Figure 1-1b). At a critical stress level, the phase transformation from austenite into martensite
initiates. Due to presence of stress during the transformation, the product phase is a single variant
(detwinned) martensite which is oriented preferentially according to the direction of applied stress. As
a result, a large amount of strain is produced during the stress-induced martensitic transformation in
SMAs (point “a” to “b” in Figure 1-1b). During the unloading process, an inverse phenomenon takes
place. The material deformation at the initial stages of unloading mainly consists of elastic
deformations (point “b” to “c” in Figure 1-1b). The martensite phase loses its stability as the stress
level drops to a critically low value. At this point, the inverse transformation starts and the martensite
phase transforms back into austenite during which the transformation-induced strain is recovered
(point “c” to “d” in Figure 1-1b). Similar to temperature-induced transformation, the stress-induced

transformation also exhibits a hysteresis behavior which appears as the hysteresis loop shown in

Figure 1-1b.

Further details on the crystallography of various SMAs and microscopic aspects of
martensitic transformation, shape memory effect, and pseudoelasticity can be found in Miyazaki and

Otsuka (1989), Miyazaki et al. (1989a,b), Otsuka and Wayman (1998), and Bhattacharya (2003).

1.2.2. Thermal sensitivity of SMAs behaviors

The mechanical behavior of SMAs is strongly dependent on temperature. This is primarily
due to the fact that the initial microstructure of material (austenite/twinned martensite/detwinned
martensite), and also the transformation stresses depend on temperature. Typical mechanical response

of SMAs at various temperature ranges and initial conditions are schematically shown in Figure 1-5.

Below the martensitic finish temperature (7<My), the deformation mode for initially twinned
martensite is mainly governed by the detwinning process. The stress-strain curves in this range

exhibit a stress plateau associated with the martensite-to-martensite conversion (detwinning). The



residual strain after unloading is reversible by heating. The same type of mechanical behavior is also
observed for twinned martensite in the range My <7<A,. Experiments have shown that the flow stress
for detwinning decreases with increasing temperature in NiTi alloys as shown in Figure 1-6

(Miyazaki et al., 1981a).
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Figure 1-5. Influence of temperature and thermal history on mechanical behavior of SMAs. (a) 7<M; or

twinned martensite at M;<7<A; (b) Austenite at M, <7T<Ag; (¢) T>Ag; (d) Tprastic <7

In the range M <7<A,, when the material is initially in the austenitic phase, the stress-strain

curve exhibits a plateau stress which corresponds to the stress-induced martensitic transformation.

-10 -



The stress-induced transformation results in a large inelastic strain which remains after unloading
(Figure 1-5b). The residual strain can only be recoverable by raising the temperature of material to
above the austenite finish temperature (Ap). However, if the initial temperature is higher than the
austenite finish temperature, i.e. 7>Ag, the transformation strain is automatically recovered upon
unloading due to reverse transformation (pseudoelastic behavior, Figure 1-5¢). It is well known that
the critical stresses at which the forward and reversing transformations start increase with increasing

the temperature (Figure 1-6).

Above a certain limiting temperature (Tpasic), the stress required for inducing forward
transformation becomes so high that plastic deformation through movement of dislocations and slip
precedes the formation of stress-induced martensite. In that case, simultaneous plastic deformation
and stress-induced transformation occur during loading. The introduction of plastic deformation
creates an internal residual stress. The formation of an internal stress field by dislocations stabilizes
the martensite, which prohibits the full transformation of martensite back to austenite during
unloading. This results in a residual strain after unloading (Figure 1-5d). The residual strain consists
of some permanent plastic deformation due to lattice slip, and some transformation strain associated
with the residual pockets of detwinned martensite (Miyazaki et al., 1981a; Shaw and Kyriakides,
1995). The residual strain can be partially recovered by heating as the residual martensite transforms
to austenite, but when the material is cooled the residual strain returns to its previous value (Shaw and

Kyriakides, 1995).

-11 -
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Figure 1-6. The sensitivity of transition stresses to temperature in Tis;.,Ni wire specimens (adapted from

Miyazaki et al., 1981a)

1.2.3. Instability and Liiders-like deformation in NiTi SMAs

Experiments have shown that the stress-induced transformation in NiTi shape memory alloys
is inhomogeneous in nature and proceeds through Liiders-type localized deformation. Liiders-type
deformations are observed during the early stages of yielding in mild steel (Lomer, 1952; Butler,
1962; Hall, 1970; Kyriakides and Miller, 2000). The initiation of plastic deformation in mild steel
under displacement-controlled conditions is characterized by a sudden drop in stress from the upper
yield stress to the lower yield stress. This event is accompanied by the rapid formation of localized
high-strain deformation bands which spread throughout the specimen as the loading continues.
During the propagation of localized deformation, the nominal stress remains essentially constant at
the lower yield stress. The localization of deformation in mild steel is due to instability of the

mechanical behavior of material during yielding. The origin of such mechanical instability in mild

-12-



steel is related to certain micro-scale interactions between dislocations generated during yielding of

the material (Kyriakides and Miller, 2000).

Similar localization phenomenon has also been observed in pseudoelastic response of NiTi
samples during both forward and reverse transformations. Inhomogeneity of transformation in NiTi
was first noticed by Miyazaki et al. (1981b) during the tensile testing of wire samples at a very low
strain rate (6x107 s™). They observed that the phase transformations at this strain rate proceed
through the propagation of a transformation front characterized by a narrow localized deformation
band travelling from one side of the specimen to the other side. This behavior is shown schematically
in Figure 1-7. Leo et al. (1993) confirmed the inhomogeneous nature of the stress-induced
transformation by monitoring the local variations of temperature along the wire during loading. Since
heat is released (absorbed) during the forward (reverse) transformation the localized transformations

result in non-uniform temperature distributions.

Transition zone
(transformation front)

/ Austenite Z Martensite

—>
/]
/

Figure 1-7. Deformation localization (Liiders-like deformation) during stress-induced transformation in

NiTi wire

Shaw and Kyriakides (1995) presented a systematic study of the subject through in-situ local
measurements of temperature and strain during the pseudoelastic response of NiTi wires. Multiple
small thermocouples and miniature extensometers were mounted at discrete locations along the wire
to accomplish this. They demonstrated that the stress-induced A—M and M—A phase

transformations in NiTi wires are characterized by the nucleation and propagation of distinctly

- 13-



nonuniform instabilities (locally transformed regions). It was shown that at low strain rates (of the
order of 10 s™" and smaller) the forward and reverse transformations proceed at essentially constant
stresses. They also observed that the number of nucleation events and propagating fronts can vary
depending on the loading rate. The effect of loading rate will be discussed in more detail in the

following section.

The localization of transformation in thin strips of NiTi was later studied by Shaw and
Kyriakides (1997) through full-field monitoring of the deformation and thermal changes. The
inhomogenous evolution of the transformation was observed by recording the surface state of a brittle
coating at prescribed time intervals using an optical camera. An infrared thermal camera was also
used to simultaneously measure the full-field distributions of temperature. It was found that the
transition fronts in uniaxial extension of NiTi strips are nearly straight sharp discontinuities at an
angle of 6=50°~60" to the specimen axis (Figure 1-8a). They also observed that the fronts
occasionally change their angle from + @ to — @ via formation of an intermediate criss-cross pattern
(also referred to as finger-type pattern; see Figure 1-8b). In fact, the finger-type pattern is the
prevailing shape of the transformation front in the case of strips with a small length to width ratio

(Shaw and Kyriakides, 1998).

In their discussion of the experimental results, Shaw and Kyriakides (1997, 1998) associated
the formation of localized deformations (sharp inclined bands of high strain) to nucleation of a new
phase. Based on a set of isothermal experiments, Shaw and Kyriakides (1997) demonstrated that the
nucleation of martensite requires a distinctly higher stress (nucleation stress) than the stress required
subsequently to drive the existing transformation front(s) (propagation stress). Conversely, the
nucleation of austenite during unloading occurs at a significantly lower stress than the stress observed
during the propagation of the reverse transformation front(s) at a constant temperature. This behavior

is shown in Figure 1-9.

- 14 -
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Figure 1-8. Transformation fronts during uniaxial extension of NiTi strips. (a) Straight, inclined fronts;

(b) Finger-type fronts.
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Figure 1-9. Stress peak and valley at the onset of instability during the isothermal pseudoelastic response

of NiTi wires (adapted from Iadicola and Shaw, 2002a)

The experimental investigation of Liiders-like deformation in NiTi has gained considerable
attention in recent years. Taking advantage of high-accuracy infrared imaging techniques, Pieczyska
et al. (2004, 2006a) reported heterogeneous temperature distributions related to the nucleation and

development of the new phase in NiTi sheet specimens during loading and unloading. It was shown
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that even at relatively high strain rates (of the order of 10 s™) where the nominal stress-strain curves
exhibit a stable mechanical behavior (positive slope during the transformation), both the forward and
reverse transformations occurred in a localized manner. The number of nucleation events and
coexisting transformation fronts increases dramatically at such high strain rates as compared to the
rather low strain-rate experiments of Shaw and Kyriakides (1997). However, the shapes of localized
deformation bands (characterized by high-temperature regions) were similar to those reported by
Shaw and Kyriakides (1997), i.e., bands with straight transition fronts inclined at an angle of about
50° (Figure 1-8a). These phenomena were also observed during stress-controlled tests (Pieczysksa et

al., 2006b).

The formation of localized deformation bands has also been investigated in NiTi tubes by Li
and Sun (2002), and Feng and Sun (2006) using high-speed in-situ optical imaging. The onset of the
unstable mechanical behavior in a NiTi tube during displacement-controlled uniaxial extension is
marked by a sudden drop in nominal stress accompanied by the rapid formation of a narrow helical
localized band inclined at an angle of 60° to the axis of tube (Figure 1-10a). Upon further loading, the
helical band grows in length and width followed by the domain self-merging into a cylindrical
domain. This process is accompanied by the gradual branching of the fronts at the two ends of the
cylindrical domain into several sharp tips (Figure 1-10b), which resemble the finger-type patterns
observed during the uniaxial tests of NiTi strips (Figure 1-8b). It was shown that the sequence of
events during unloading is not the exact opposite of that during loading. The reverse transformation
starts with the inverse convoluted motion of the branched fronts, followed by a sudden switch to
smooth inclined fronts (Figure 1-10c). Further unloading results in the merging of the two smooth
fronts which is accompanied by a peak stress in stress-strain response. It was noticed that the
topology of the localized domain depends on the previous loading/unloading history, and the change

in the front morphology is an unstable process accompanied by the respective stress drop or jump.
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Figure 1-10. Various localization patterns observed during uniaxial loading/unloading of NiTi micro-

©

tubes. (a) Initial helical band; (b) Cylindrical domain with branched fronts (adapted from Feng and Sun,
2006);

An interesting experimental technique has been recently presented by Daly et al. (2007) to
establish the full-field quantitative strain maps of localization in thin sheets of NiTi. In this technique
called digital image correlation, the displacement field is measured by optically tracking a random
pattern on the surface of the specimen. It was shown that the stress-induced transformation initiates in
a homogenous manner characterized by the deviation of stress-strain response from linearity prior to
the nucleation of localized deformation bands. This observation is contrary to the conclusion of Shaw
and Kyriakides (1995, 1997) which attributes the nucleation of localized bands to the nucleation of
the new phase. The initiation of transformation prior to the nucleation of localized bands has also
been supported by other experimental observations such as optical microscopy (Brinson et al., 2004),
mechanical unloading just before the nucleation event (Li and Sun, 2002; Feng and Sun, 2006), and
uniform temperature increase during the initial loading stage (Pieczyska et al., 2004, 2006a,b).
Another important observation reported by Daly et el. (2007) was that once the localized bands
nucleate, the transformation strain inside the bands does not jump to its maximum level but rather

continues to increase as the stress increases.
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Despite the similarities between the experimental observations on instability and Liiders-like
deformation in NiTi alloys, various hypotheses have been proposed for the origin of deformation
localization in NiTi. One possible reason for deformation localization in NiTi is the intrinsic
instability of the material behavior (strain softening) during the phase transformation (Shaw and
Kyriakides, 1998; Idesman et al., 2005; Feng and Sun, 2006). This hypothesis is supported mainly by
the apparent resemblance between the Liiders-like behavior in NiTi and the propagation of
instabilities in other material systems and structures such as neck-propagation in polymers and

domino crushing of cellular solids (Kyriakides, 1993).

Another explanation is provided by researchers who believe that the strain-softening behavior
in SMAs is an unrealistic assumption. According to this group, the underlying mechanism of
deformation localization is the severe geometric distortion due to the large transformation strain
(geometric instability) rather than the material instability (Sittner et al., 2005; Favier et al., 2001).
They have shown that a positive (but small) tangential modulus in the stress-strain response during
the transformation can also lead to localization. This theory is backed by some micro-mechanical
calculations which rule out the possibility of strain softening. However, Shaw and Kyriakides (1998)
reported that the relatively large drop in stress at the onset of the stress-plateau cannot be modeled by
geometric instability alone. Through carefully designed experiments, ladicola and Shaw (2002a) have
demonstrated that the “true” load drop can be as high as 17% if the effects of stress concentrations at

the gripped ends are eliminated.

The localization phenomena explained above are related to the stress-induced martensite
transformation and its reverse transformation in NiTi. The Liider-like deformation has also been
observed during the loading of thermally induced martensite which includes detwinning and
reorientation of martensite variants (Liu et al., 1998, 2000). However, this is not always the case and

the deformation of martensite in some alloy compositions of NiTi has been reported to be
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homogenous and characterized by stable stress-strain responses (Shaw and Kyriakides, 1995; Ng and

Sun, 20006).

Regardless of its origin, the localization of deformation in NiTi has important implications on
its application and modeling. This is because the true, local behavior of the material is quite different
from what is observed on the bulk level. Therefore, the intrinsic instability of the material is an

important issue which must be carefully accounted for in any modeling effort.

1.2.4. Strain dependence of pseudoelastic behavior

The deformation behavior of NiTi SMA is strongly affected by the maximum applied strain.
From a macroscopic point of view, the deformation of a virgin NiTi sample during loading within the
pseudoelastic regime (T >4y) can be divided into four stages as shown schematically in Figure 1-11
(Miyazaki et al., 1981a; Liu et al., 1999; Tan et al., 2004). The mechanism of deformation and

unloading behavior at each stage is explained as follows:

1.2.4.1. Stagel

The initial loading of material includes the elastic deformation of the austenite phase. The
small non-linearity observed at the end of this stage is associated with some partial martensitic
transformation which takes place in a homogenous manner (Brinson et al., 2004; Pieczyska et al.,
2004, 2006a,b; Daly et al., 2007). Unloading at the end of this stage results in a narrow hysteresis
loop which corresponds to the reverse transformation and elastic unloading (Li and Sun, 2002; Feng

and Sun, 2006).

-19 -



/ ‘

Figure 1-11. Dependence of the pseudoelastic responses of NiTi on the maximum applied strain.

1.2.4.2. Stage I1:

In stage II, the deformation proceeds through a localized manner over a distinct stress plateau
(Liiders-like deformation). Although the majority of stress-induced martensitic transformation occurs
in this stage, the start and end of the stress-plateau are associated with the nucleation and eventual
coalescence of one or several localized transformation bands rather than the initiation and completion

of the transformation (Tan et al., 2004).

Unloading of a specimen loaded to this stage starts with elastic unloading of the stress-
induced martensite, followed by the stress-induced reverse transformation exhibiting a stress plateau
and Liiders-like behavior. It should be noted that the initial part of unloading is not a purely elastic
deformation, and is accompanied by some homogenous reverse transformation, as well as some

martensite-martensite conversion (reorientation) at microscopic levels.

For specimens deformed to the end of the stress-plateau during loading, the beginning of

lower stress-plateau upon unloading is characterized by a pronounced stress-valley which corresponds
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to the nucleation of localized deformation. For specimens unloaded prior to the ends of the upper
stress-plateau, the inverse stress-peak is absent due to the existence of a localized austenite band from
the previous partial martensitic transformation. However, the plateau stress during unloading does not

depend on the maximum applied strain (Lin et al., 1994).

1.2.4.3. Stagelll

It has been observed through various experimental techniques that the end of Liiders-like
deformation in the pseudoelastic response is not the end of phase transformation, and that the stress-
induced transformation continues beyond the stress plateau (Tan et al., 2004; Brinson et al., 2004;
Khalil-Allafi et al., 2004). This is particularly apparent when considering the difference in the

tangential modulus of loading and unloading at this stage (Daly et al., 2007).

The deformation in this stage is stable and the stress increases as the loading continues. The
increase in stress results in slip and movement of dislocations which gives rise to some plastic
deformation. The residual strain observed at the end of unloading in Figure 1-11 is attributed to this

mechanism.

As shown in Figure 1-11, the reverse transformation stress (lower plateau stress) decreases
with increasing maximum applied strain. The decrease in transformation stress is due to the residual
stress field that is formed as a result of plastic deformations. The residual stress field has a similar

effect on the forward transformation stress upon reloading (Miyazaki et al., 1981a).

In summary, the deformation mode in stage III is a combination of elastic deformation, slip,

and stress-induced martensitic transformation.

221 -



1.2.44. Stage IV
The amount of recoverable strain rapidly decreases in this stage and the lower stress plateau

completely disappears due to severe plastic deformation. Most of the deformation in this stage is

plastic through the movement of dislocations.

1.2.5. Strain-rate sensitivity of SMAs
It has been experimentally shown that the pseudoelastic stress-strain responses of SMAs

depend strongly on the applied strain rate (Leo et al.,, 1993; Shaw and Kyriakides, 1995, 1997;
Tobushi et al., 1998; Pieczyska et al., 2006a,b). A typical strain rate sensitivity of NiTi is shown in

Figure 1-12. It can be seen that both the transition stress and the size of the pseudoelastic hysteresis in

NiTi shape-memory wires depend on the strain rate.
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Figure 1-12. The pseudoelastic response of NiTi wire at various strain rates (adapted from Leo et al.,
1993)
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Tobushi et al. (1998) attributed the strain-rate dependency of SMA behavior to the inherent
rate-dependency of material resistance against the motion of the austenite/martensite interface
(internal friction resistance). Based on the similarities between the stress-induced martensitic
transformation and Liiders deformation in mild steel, they argued that the increase in transformation
stress with strain rate is similar to the increase in resistance against the progress of plastic
deformation with strain rate for normal metals. In contrast to this theory, Leo et al. (1993) and Shaw
and Kyriakides (1995) attributed the nature of such sensitivity to transient heating effects caused by
the release or absorption of the latent heat of transformation. Similar to most solid-state
transformations, some amount of heat is released during the transformation from austenite to
martensite, or absorbed during the reverse transformation. As explained in Section 1.2.2, the
transformation stress strongly depends on temperature. Therefore, the latent heat of transformation
can severely influence the pseudoelastic response of SMAs due to internal self-heating (or cooling) of

the material.

Through in-situ optical microscopy, Brinson et al. (2004) investigated the microstructural
evolution of NiTi during the stress-induced martensitic transformation at various loading rates and
various loading stages. It was found that the strain rate had a little effect on the microstructure of
martensite. Based on this observation they concluded that strain rate effects are largely due to the

latent heat in the specimen.

Shaw and Kyriakides (1995, 1997) demonstrated that the localization of deformation during
the transformation causes the local strain rate in the transition region to be significantly amplified
compared to the global strain rate. Consequently, the rate of heat generation/absorption, and therefore
the magnitude of temperature variations at the active transformation fronts can be significantly higher
than expected. Their observations revealed that the uniaxial pseudoelastic response of NiTi at low

strain rates is characterized by a distinct stress-plateau, and the propagation of only one or two
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transformation fronts. At high strain rates, the latent heat could not be removed (or supplied) fast
enough and therefore the temperature variations are large enough to significantly increase/decrease
the stress level. This can result in the nucleation of the new phase at other sites along the specimen,
and propagation of several transformation fronts at the same time. At very high strain rates, numerous
nucleation events take place which makes the deformation more homogeneous. In that case, the
overall mechanical response of the material also becomes more stabilized as the stress-strain curves

maintain a positive slope during the transformation (Pieczyska et al., 2006a,b).

1.2.6. Effect of cyclic loading on pseudoelastic behavior

Repetitive loading-unloading cycle has a pronounced effect on the subsequent
thermomechanical behavior of SMAs. In general, mechanical cycling reduces the critical stresses
needed to induce the forward and reverse transformations, as well as the size of the hysteresis loop.
Moreover, the residual strain usually observed at the end of unloading increases with increasing the
number of cycles (Miyazaki et al., 1986; Strnadel et al., 1995; Tobushi et al., 1996, 2005; Gong et al.,
2002). As an example, the stress-strain responses from a NiTi specimen subjected to cyclic loading
are shown in Figure 1-13. The cyclic changes are more severe during the early stages of cyclic
loading. As the number of cycles increases, the material behavior approaches a saturation limit

beyond which the pseudoelastic response does not significantly change with the number of cycles.

The cause for the effect of cyclic deformation is the generation of dislocations during the
stress-induced transformation. Microstructural observations have revealed that even at low strain
levels (Stage II in Figure 1-11) mechanical cycling produces a strongly oriented pattern of
dislocations (Miyazaki et al., 1986; Sittner et al., 2003). The gradual accumulation of dislocations

around infinitesimal defects produces a microscopic residual stress field. The residual stress field
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assists the stress-induced martensitic transformation while resisting the inverse transformation. As a

result, the transformation stresses during both loading and unloading are reduced.

The microscopic residual stress field also causes some residual pockets of martensite which
do not transform back into austenite during unloading. Therefore, the total permanent strain is caused

by a combination of micro-plasticity and residual martensite.
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Figure 1-13. Effect of cyclic loading on pseudoelastic behavior of NiTi (reproduced with permission from

Tobushi et al., 2005).

The residual stresses produced during the cyclic deformation may be used to induce the fwo-
way shape memory effect. In that case, the biased external force shown in Figure 1-2 is replaced by
the internal residual stresses to create a stand-alone actuating system (for examples see Hebda and
white, 1995; Tobushi et al., 1996; Inaba et al., 2002). Therefore, the cyclic loading is also sometimes

referred to as training effect in order to reflect this phenomenon.
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For some NiTi alloys that have been subjected to special heat treatments, the cyclic
deformation also tends to stabilize the overall pseudoelastic response of the material. That is, the flat
stress plateau disappears after a number of cycles and the stress-strain curve exhibits a positive slope
during loading and unloading (Miyazaki et al., 1986; Liu et al., 1999). It is tempting to conclude
based on this observation that the phase transformation occurs homogeneously after cyclic training.
However, it has been experimentally shown that the stress-induced transformation still results in

deformation localization in spite of the overall stable pseudoelastic response of the material (Iadicola

and Shaw, 2002b).

Figure 1-14 shows the effect of localization during cycling loading on the overall
pseudoelastic response of a NiTi wire. The full pseudoelastic response of the “virgin” material in the
first cycle is shown in Figure 1-4(a). The pseudoelastic response of the wire after being cycled up to a
maximum strain of 3.3% for N=100 cycles is also given in Figure 1-14(b). During the 100" cycle, the
stress plateaus have almost disappeared and the material seems to exhibits a mechanically stable
behavior. Also the height of the hysteresis loop has significantly decreased compared to the first
cycle. However, if the wire is loaded beyond the strain limit of the initial cycles (3.3%) a completely
different behavior is observed as shown in Figure 1-14(c). The reason for this behavior is as follows:
since the wire is only partially transformed during the first 100 cycles only some parts of the sample
experience the phase transformation due to the localization, and other sections deform elastically. As
the wire is loaded beyond the 3.3% strain, the transformation fronts enter parts of the wire which have
not been transformed more than once. Therefore, the stress plateau appears again in the pseudoelastic

loop and the transformation stresses reach the same values as those seen in the first cycle.
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Figure 1-14. Effect of deformation localization on the cyclic behavior of a NiTi wire. (a) Full pseudoelastic
loop in the first cycle; (b) 100™ pseudoelastic loop during the partial cyclic loading to a maximum strain
of 3.3%; (c) Full pseudoelastic loop after 100 cycles to a maximum strain of 6% (adapted from Miyazaki

et al., 1981b).
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ladicola and Shaw (2002b) investigated the effect of cyclic loading on the nucleation and
propagation of localized transformation bands in NiTi wires through full-field infrared measurements
of temperature. They observed that even after stabilization of the pseudoelastic response, the stress-
induced transformation proceeds via a non-uniform and localized manner. They explained that the
positive slope of the stress-strain response after cyclic conditioning is due to the gradual progression
of the transformation fronts into regions that have experienced a limited number of transformations
and therefore require a higher stress for transformation. Another important observation is that the rate
of cyclic change depends strongly on the test temperature. They observed that at higher temperatures
the material approaches its fully-trained state at a faster rate (fewer cycles). They attributed this trend
to the increase in transformation stress with increase in temperature. It was observed that the
evolution of the transformation fronts during cyclic loading is also dependent on the temperature.

That is, the number of propagating fronts tends to increase with increasing test temperature.

The above experimental observations suggest that the Liiders-like deformation and

localization of deformation are important factors in the cyclic response of NiTi shape memory alloys.

1.3. CONSTITUTIVE MODELING OF SMAS

In order to exploit the superior mechanical properties of SMAs in various applications, it is
essential to have a reliable constitutive model that is both accurate and convenient to incorporate into
engineering tools such as the finite element method (FEM). The desirable model must be able to
describe such important behaviors as mechanical instability, localization of transformation,
thermomechanical coupling, strain rate effects, and cyclic degradations as explained in detail in

Section 1.2.

There are two approaches to establish a constitutive relation for any material. One is the

microscopic physical method. The other is the macroscopic phenomenological method. In
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micromechanical models, the behavior of individual microstructural grains in polycrystalline SMAs
are modeled based on the behavior of single-crystalline SMA and lattice parameters. This solution is
then used to analyze a boundary value problem for a polycrystalline SMA. Micromechanical methods
can successfully explain the underlying mechanism of fundamental phenomena, but their numerical

simulations of macroscopic problems are often complex and deviate from experimental observations.

The phenomenological methods are based on continuum thermomechanics and internal
variables that reflect the microstructural changes on the macroscopic level. These methods are often
used in engineering applications; however, they require experimental data to find the model
parameters. During the past two decades, several models of the behavior of SMAs have been
developed based on one of these two approaches or a combination of both. A common feature of most
of these models is that they have been developed for the case of “stable” mechanical behavior, and
therefore they do not account for the localization of deformation. However, as explained earlier the
“true” local behavior of NiTi SMA is quite different from the global response of a NiTi specimen.
Some of these models will now be briefly explained, followed by an assessment of the state-of-the-art

on the modeling of unstable pseudoelastic behavior.

1.3.1. Modeling of stable pseudoelastic behavior

Tanaka (1986) and Tanaka et al. (1986) developed a one-dimensional phenomenological
constitutive model based on the Helmholtz free energy function for an SMA material of finite length.
The Helmholtz free energy is the summation of the non-chemical energy, such as the strain energy
and the thermal energy, and the chemical free energy. They argued that the phase transformation is
basically governed by the minimization of the free energy. By using this assumption and basic

thermodynamic laws, they derived an incremental constitutive relation that related the increment of
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stress (do ) to those of strain (de¢), temperature (d7 ), and an internal variable () which

characterizes the extent of phase transition (martensitic fraction) as:

do=Dde+Qdy+6OdT (1-1)

The coefficients of the constitutive equation are the elastic modulus D (Young’s modulus),

the thermal expansion modulus @, and the transformation modulus ©Q, which must be determined
through experiments. They also expressed the martensitic fraction during the forward and reverse

transformations in terms of exponential functions of stress and temperature (kinetics equations) as:

{7/ =1—exp|bycy (M, —=T)+by,0c], Forward transformation (dy > 0) (1-2)

y= exp[bAc A (AS -T )+ b Ao], Reverse tranformation (dy < 0)
where ba, by, Ca, v are material parameters.

The nucleation criteria for both direct and reverse transformations were formulated using the
kinetics equations and the assumption that the transformations are completed when the martensitic
fraction reaches a value of 0.99 (martensitic transformation) or 0.01 (reverse transformation).
Substituting y= 0.01 and y= 0.99 in the kinetics equations (1-2) defines a set of four lines on a o-T
diagram which correspond to the start and finish of the transformations. The incremental constitutive
equation was integrated by assuming that the coefficients are constant to derive a simple finite
relation. Later, Sato and Tanaka (1988) relaxed this assumption and suggested that the elastic and
thermoelastic moduli in this finite form could be expressed as linear functions of the martensitic
fraction. The model of Tanaka was later used to qualitatively predict the overall pseudoelastic and

shape memory behavior of a NiTi alloy wire (Tanaka, 1990).

Liang and Rogers (1990) modified the Tanaka model to provide a more accurate and

quantitative description of SMAs. They employed the finite constitutive equation of Tanaka, but
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replaced the exponential form of the transformation kinetics with a cosine relation. They also

considered the transformation of a material with mixed austenite and martensite phases.

Liang and Rogers (1992) extended their one-dimensional constitutive relation to a multi-
dimensional thermomechanical constitutive relation. They utilized the concept of the Helmholtz free
energy and the first and second laws of thermodynamics to derive a three-dimensional rate equation
that related the rate of change of the second Piola-Kirchhoff stress tensor to the rates of the Green-
Lagrange strain tensor, temperature, and martensitic fraction. Based on experimental observations
that the hydrostatic pressure had a small influence on the phase transformation, they expressed the
second law of thermodynamics in terms of the J, equivalent Green-Lagrange strain. Furthermore,
they also assumed that the increment of strain could be decomposed into elastic and transformation
components. The coefficients that appeared in the constitutive equation were the tensors of elastic and
thermoelastic moduli, and the transformation tensor. For the transformation kinetics, they expressed
the martensitic fraction as the cosine functions of temperature and the equivalent Piola-Kirchhoff
stress. The application of the model was limited to simple loading cases such as the torsion of a

circular SMA rod.

The models introduced by Tanaka and Liang-Rogers were not able to simulate the detwinning
of thermally-induced martensite and the subsequent shape memory effect. Based on the incremental
constitutive relation of Tanaka, a one-dimensional constitutive model was developed by Brinson
(1993) to describe both the pseudoelastic and reorientation of thermal martensite. In this model, the
total martensitic fraction was divided into two components: one corresponding to the temperature-
induced martensite (twinned martensite), and the other associated with the stress-induced martensite
(detwinned martensite). Two types of constitutive relations were developed. The first relation was
obtained by integrating the incremental equation assuming that the material coefficients are constant,

which resulted in a relation similar to the models of Tanaka (1990) and Liang-Rogers (1992). In the
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second model it was assumed that the elastic modulus and transformation modulus are linear
functions of martensitic fraction prior to the integration. The transformation kinetics used in the
model were based on the kinetics introduced by Liang and Rogers (1992), which were modified to
account for the conversion between the austenite, twinned martensite, and detwinned martensite at
various temperature ranges. The model was further refined by Bekker and Brinson (1998) to account

for combined thermal and mechanical loading, and also partial transformations.

A “practical” three-dimensional constitutive model was developed by Boyd and Lagoudas
(1994a) and Lagoudas et al. (1996). They extended the constitutive model of Tanaka (1986) and Sato

and Tanaka (1988) by rewriting the incremental constitutive equation in (1-1) as:
do; =Cyy, de,, —Cyy del) —a,, dT (1-3)
where Cjy, is the elastic stiffness tensor and o; is the thermoelastic expansion tensor.

The transformation strain tensor g,;t) in above equation is given by,

S ..
—%%%dy, Forward trans. (dy > 0)
® o
dey’ = 0 &l (1-4)
-=—dy, Reverse trans. (dy <0)
Dz®

where & is the von-Mises equivalent stress, and £ is an equivalent transformation strain defined

as,

_ 2
g0 — Egéy)g;t) (1-5)

The kinetics of transformation are similar to those from Tanaka (1986) except that the
uniaxial stress in equation (1-2) is replaced by the von-Mises equivalent stress & (J, transformation

surface). From equation (1-4) it can be seen that the transformation strain tensor does not change if
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the transformation does not proceed (dy = 0). However, in general three-dimensional non-
proportional loading the martensite variants convert to each other (reorientation) to accommodate the
change in the direction of applied load. This results in reorientation of transformation strain tensor

without changing the overall martensitic fraction.

To address the simultaneous transformation and reorientation of variants, Boyd and Lagoudas
(1996) developed a general micromechanics-based model that considers the transformation of
austenite into a number of martensitic variants, as well as the conversion of variants to each other. For
the special case of only one martensite variant, they proposed a particular non-associated flow rule
during unloading to account for the reorientation of the transformation strain tensor (Boyd and

Lagoudas, 1994b).

An extension of the model of Boyd and Lagoudas (1996) was presented by Qidwai and
Lagoudas (2000) where the tensile-compression asymmetry observed in the pseudoelastic response of
SMAs was included. They considered several different transformation surfaces based on J,, /; and J;

invariants.

A completely different approach to model three-dimensional behavior of SMAs was
presented by Brocca et al. (2002) based on the microplane theory. In this theory, the three
dimensional behavior of a material is obtained by superimposing the effects of inelastic deformations
calculated on several planes of different orientations called microplanes. The normal and shear
components of stress acting on each plane are first found based on the macroscopic stress tensor. The
normal and shear components of strain are then calculated based on a one-dimensional model. The
particular one-dimensional model that was used in this model was that of Bekker and Brinson (1998).
However, any other one-dimensional model could also be used to describe the behavior of SMAs on

each microplane.
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Recently, Kadkhodaei et al. (2007) presented a micro-plane theory in which only one shear
stress component (the resultant shear component) is considered on each micro-plane rather than two
shear components. They showed that unlike other micro-plane theories, this approach does not cause

shear strain during uniaxial loading or axial strain during shear loading.

1.3.2. Modeling of the unstable pseudoelastic behavior

While most of the constitutive models developed in the past have focused on the overall
mechanical response of shape memory alloys, there have been a few notable efforts to model the
localized unstable transformation behavior of the material. Abeyaratne and Knowles (1993)
developed a one-dimensional thermodynamic framework based on the Helmholtz free energy to
simulate the isothermal transformation in an SMA bar. They constructed an explicit form of the
Helmholtz free energy with two wells, corresponding to the equilibrium states of the austenite phase
and martensite phase. The kinetics relation is also determined a priori by expressing the speed of the
interface as a function of the driving force (stress) and temperature. They treated the propagating
phase boundaries as traveling field discontinuities, across which jump conditions are enforced.
Therefore in their model a point inside the body is either martensite or austenite and the concept of
martensitic fraction does not appear. Kim and Abeyaratne (1995) extended the model to consider the
heat generation during transformation. This time, the kinetics of transformation (speed of phase
boundaries) was not specified a priori but was determined as part of the solution which was obtained
using a finite difference method. Based on their results the following conclusions were drawn: the
phase boundary temperature increased with the loading rate; the area of the hysteresis loop in the
pseudoelastic response increased with the loading rate; an increase in the environment temperature
resulted in a shift of the hysteresis loop to the higher stresses. Although this model proved to be

successful in capturing the propagation of the transformation front in SMAs, it is not suited for
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implementation in the finite element method. Moreover, its practical application is limited to one-

dimensional problems.

A different type of analysis has been presented by Sun and Zhong (2000) to simulate the
nucleation and propagation stresses for a single transformation band in a NiTi wire. The wire was
modeled as an elastic rod containing a single cylindrical transformation inclusion with a uniform
axisymmetric transformation strain. The FEM was implemented to calculate the elastic energy
associated with strain discontinuity across the austenite/martensite interface. The total elastic energy
and Gibbs free energy of the composite were obtained by superposition. They assumed that the
nucleation event at a stress peak is accompanied by the formation of a localized martensite band with
finite length. Based on the calculations, they related the magnitude of the stress drop to the length of
the initial nucleation band. By comparing the results to the experimental observations of Shaw and
Kyriakides (1995) they concluded that this length must be approximately equal to half the radius of
the wire. The effect of specimen aspect ratio on the load drop was also discussed based on the
numerical analysis. A similar approach was implemented by Messner et al. (2000), this time using
Helmholtz free energy to analyze the nucleation of martensite bands in SMA flat strips. They found
that the inclination of the transformation front with respect to the loading direction (54°) helps to

minimize the total elastic energy of the system.

Shaw and Kyriakides (1998) proposed a plasticity-based model to capture the material
instability observed in NiTi strips. Based on the similarities between the localized unstable
propagation of Liiders bands in fine-grained mild steel and the localized deformation in SMA strips,
they concluded that continuum level strain localization based on a shear mechanism (rather than
microstructure) is the dominant player in the observed behavior of NiTi strips. The material was
assumed to behave as an isothermal, rate independent J,-type elasto-plastic solid with isotropic

softening. The key ingredient of the constitutive model is a trilinear stress-strain response that has two
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stable elastic branches, and an intermediate unstable softening branch as shown schematically in
Figure 1-15. The heat generation during the phase transformation and the thermal interaction of an
SMA specimen with the environment and the sensitivity of the transformation stress to temperature
were neglected in their model. Explicit transformation kinetics were not employed in this approach,
and the extent of transformation was calculated from the amount of plastic deformation at any point
in the specimen. The model was implemented with a three-dimensional finite element mesh to
simulate the propagation of transformation front(s) in quasi-static extension of NiTi strips. In this
case, the transformation front was a local propagating neck with a finite length. The same type of
approach has also been recently used by Hu et al. (2007) to simulate the nucleation and propagation

of localized helical bands in uniaxial loading of NiTi tubes.
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Figure 1-15. Trilinear stress-strain response used in the plasticity model of Shaw and Kyriakides (1998)

Shaw (2000), and Iadicola and Shaw (2004) extended the work of Shaw and Kyriakides
(1998) by considering the temperature variations and thermomechanical coupling of the material with
its environment. Several trilinear stress-strain characteristic responses at various temperatures similar

to that shown in Figure 1-15 were considered to account for the thermal effects. They numerically
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investigated the effect of the latent heat of transformation, heat transfer, and loading rate on the

evolution of instabilities in NiTi dog-bone strip samples using FEM.

Due to the inherent irreversibility of plastic deformation, the approaches implemented by
Shaw and Kyriakides (1998), Shaw (2000), Iadicola and Shaw (2004), and Hu et al. (2007) are
limited to the forward transformation case (loading), i.e., the reverse transformation and strain
recovery upon unloading cannot be modeled by these methods. Moreover, the J, incremental
plasticity theory does not recognize the reorientation of plastic strain (transformation strain in this

case) which occurs during the general non-proportional loading.

1.4. OBJECTIVE AND SCOPE

Despite the extensive experimental and theoretical work in the past two decades, some
aspects of SMA behavior are still subject to intense research. Among these are the instability in the
mechanical behavior of some SMAs during stress-induced transformation, the sensitivity of their
response to loading rate, and the degradation of material properties due to repeated loading-unloading
cycles. In some important applications such as microactuators, stents, guidewires, and other
biomedical applications, relatively slender structures are subjected to rather complex deformations.
Also, in some other applications, SMA elements are often subjected to dynamic loading, which
involves localized heating/cooling. Given the small length scale of most applications involving

SMAs, accurate modeling of localized deformation behavior of SMAs becomes critical.

The local nature of stress-induced transformation plays an important role in the dynamic
pseudoelastic response of shape memory alloys due to the local generation/absorption of heat. The
existing models which recognize the instability and localized nature of stress-induced transformations
are either inconvenient for use in engineering numerical packages or limited only to the case of

forward transformation. Therefore, one of the objectives of this research is to develop a convenient
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continuum-level engineering model to study the unstable dynamic pseudoelastic response of NiTi
SMAs over a wide range of loading rates. The proposed one-dimensional and multi-dimensional
models are primarily intended for implementation in a finite element framework, which can then be
applied to model complex geometries. In this work, the modeling efforts are focused on the behavior
of NiTi alloys at temperatures above 4; where the material exhibits a full pseudoelastic hysteresis.
The current study is also limited to the unstable regime and therefore deformations beyond the stress-

plateau (Stage III, and IV in Figures 1-11) are neglected.

While the propagation of instabilities in various material systems during mechanical loading
have been extensively studied using various numerical and analytical methods in the past, the inverse
phenomena during unloading has not received enough attention from a mechanical point of view.
Another objective of this study is to provide an in-depth understanding of the mechanical origin of the
propagation of localized deformation bands during pseudoelastic response, particularly during the
reverse transformation. This goal is achieved by numerically studying the problem using a

continuum-level three-dimensional model and FEM.

In Chapter 2, the derivation of a one-dimensional phenomenological model is presented, and
the numerical examples are compared to the experimental observations. The extension of the model to
the three-dimensional case is explained in Chapter 3, where simulations of the nucleation and
propagation of transformation bands in thin sheets of NiTi during both forward and reverse
transformations are presented. The effects of cyclic loading on unstable behavior of material are
incorporated into the models in Chapter 4. Chapter 5 contains a concluding summary of the
contributions and results obtained throughout this research. Potential future work to extend and

enhance the present modeling effort is also included in Chapter 5.
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Chapter 2: One-Dimensional Constitutive Model'

This chapter describes the development of a one-dimensional constitutive model to capture
the thermomechanical coupling and the localized phase transformations that occur during the
dynamic response of shape memory alloys. The model is then implemented into a finite element code
to simulate the dynamic behavior of a NiTi wire subjected to various thermomechanical loading
conditions. The numerical simulations of the pseudoelastic response show close qualitative agreement
with previously reported experimental data. Relaxation and restrained recovery in a partially

transformed wire are also simulated to show the versatility of the model.

2.1. INTRODUCTION

Experiments have shown that the mechanical response of shape memory alloys is highly
sensitive to loading rate (Leo et al., 1993; Shaw and Kyriakides, 1995, 1997; Tobushi et al., 1998;
Pieczyska et al., 2006a,b). The origin of this rate-dependent behavior, however, is not the usual
viscoelastic effect, but rather it arises from the complex coupling that exists among stress,

temperature, and the rate of heat generation during stress-induced phase transformations.

A typical quasi-static (isothermal) pseudoelastic behavior of NiTi SMA is shown
schematically in Figure 2-1(a). When a unidirectional stress is applied to an SMA sample at a very
slow strain rate, the forward (a-b) and reverse (d-e) transformations propagate at constant stresses

manifested by two stress plateaus.

! Parts of this chapter have been published in the following paper: Azadi, B., Rajapakse R.K.N.D., Maijer, D.
M., 2006. One-dimensional thermomechanical model for dynamic pseudoelastic response of SMA. Smart
Materials and Structures 15, 996-1008.

- 49 -



c A—M
Gt b a A—-M b /
w w
3 3
= I Em = I
7 7
1
OM—a M—A
¢ M—>A
Ex
1
_— _—
Strain Strain
(a) (b)

1
—0—0— Oiu
081 —o—0o— Gun
5
0.6 1
<)
2
L 041
~—
7
0.2
0 T T T
40 60 80 100
Temperature ("C)
()

Figure 2-1. Pseudoelasticity in NiTi shape memory alloy. (a) Isothermal quasi-static displacement-
controlled response; (b) Stress-strain response at high strain rate; (¢) Variation of transformation
stresses with temperature (Shaw and Kyriakides, 1995).

Similar to other solid-state transformations, some amount of heat is released during the
transformation from austenite to martensite, or absorbed during the reverse transformation. Because
the forward and reverse transformation stresses (o,_,, and o, ) are strongly dependent on
temperature (see Figure 1c¢), the internal self-heating or cooling that occur during the transformation

can influence the mechanical response of the material. At very slow strain rates with effective heat
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transfer to the environment, the latent heat of transformation is dissipated fast enough to prevent a
significant change in temperature. At higher strain rates on the other hand, the effect of local
heating/cooling on the transformation stress is not negligible, and a distinct stress plateau is no longer

distinguishable as shown in Figure 1(b).

Experiments have shown that the stress-induced transformations in NiTi shape memory
alloys are inhomogeneous in nature and result in distinctly nonuniform and propagating deformations
(Shaw and Kyriakides, 1995, 1997; Tan et. al., 2004; Pieczysksa et al., 2004, 2006a,b; Feng and Sun,
2006). This localization phenomenon, also known as Liiders-like deformation, adds to the complexity
of the SMASs’ behavior. Due to localization of deformation, the local strain rate at the transformation
front is significantly amplified compared to the global strain rate. Consequently, even at fairly low
strain rates the local temperature changes at transformation fronts become large enough to change the
magnitude of the stress required to transform the rest of the material. In order for a constitutive model
to capture such localized behaviors and the rate dependency of shape memory alloys, both the mutual
interaction of stress-temperature, and the inhomogeneous nature of phase transformation must be

taken into account.

In this chapter, a one-dimensional thermomechanical model of SMAs is developed in order to
simulate the nucleation and propagation of transformation front(s) in an SMA wire. The
thermomechanical coupling among the transformation stress, internal heating/cooling, and the heat
exchanges with the ambient medium are considered thus allowing the model to capture the strain rate
effects. The local martesitic fraction is a basic variable which is defined as the volume fraction of
martensite at a point. Based on the definition of martensitic fraction and by using the basic continuum
mechanics method, a constitutive relation is derived that relates the increment of total strain to those
of stress, temperature, and martensitic fraction. The kinetics of transformation is controlled by a

transformation evolution rule which determines the increment of stress in terms of the increments of
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temperature and martensitic fraction during the phase transformation. The transformation evolution
rule is expressed in terms of a set of transformation surfaces in the stress-temperature space. The
model allows for the determination of the amount of phase transformation under a constant
mechanical load and varying ambient temperature. The model also includes a variable nucleation
criterion for the initiation of transformation, which is dependent on the distance of a material point

from the fully transformed regions.

2.2. CONSTITUTIVE RELATIONS
In this section, the derivation of constitutive relations for a simplified one-dimensional

element of SMA material is presented.

2.2.1. Introduction of local martensitic fraction

The observation of unstable propagation of the transformation fronts in SMAs suggests that it
is necessary to consider the stress-induced transformation as a local phenomenon which takes place at
a material point. Although there is evidence of some small homogeneous phase transformations in the
stable part of the pseudoelastic response (Brinson et al., 2004; Daly et al., 2007), it is assumed here
that in general, phase transformation occurs in an inhomogeneous fashion. Therefore, the local
martensitic fraction y is introduced to describe the volumetric fraction of the martensitic phase at a

point. The average martensitic fraction over a volume ¥, which is denoted by y may be expressed in

terms of the local martensitic fraction y as:

_ 1
7=yl 2-1)

Consider an incremental one-dimensional element of material that has been partially
transformed as shown in Figure 2-2. If a uniaxial stress denoted by o is applied to this element, the
total elastic strain of the element £ is obtained as:
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OIS A 4 (2-2)
EM EA

where Ey and E, are the elastic modulus of martensite and austenite, respectively (see Figure 2-1).

The local martensitic fraction y is also defined as:

dLy

- M 2-3
dL,, +dL, 2-3)

v

where dLy and dL, are proportional to the volume of martensite and austenite phases, as shown in
Figure 2-2. The value of y therefore can vary from 0 to 1 with y=0 corresponding to a fully austenite

phase and y=1 corresponding to a fully martensite phase.

FL'I
(-
f———l—

dL,  dLy,

Figure 2-2. A partially transformed one-dimensional element.
Equation (2-2) can be rewritten in the following form:

e®=_9 (2-4)

E(y)

where E is the effective elastic modulus of the element given by:

EAEM
yE,+(-p)Ey

E(y)= (2-5)

Note that the effective elastic modulus, £, is obtained as a nonlinear function of y.
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2.2.2. Strain decomposition
It is well known that during the stress-induced martensitic transformation some amount of
seemingly permanent strain is produced due to the formation of detwinned single variant martensite.

If this transformation-induced strain is denoted by Ag,, the total transformation strain for the element

shown in Figure 2-2 will be equal to:

A
oo dwhde (2-6)

Fol— =
dL,, +dL,

Next, it is assumed that the total strain of the element (& ) can be expressed as the summation

of elastic and transformation strains as:

e=e9 45" = EL+ 7 Ag, 2-7)

Parameter Ag, in the above equations is a material property and must be determined through
experimental data. In order to experimentally measure the value of Ag,, consider the typical stress-

strain response of a shape memory wire during a slow strain-rate isothermal loading-unloading
experiment, as shown in Figure 2-1(a). Ideally, the experimental stress-strain response used to
calibrate the model must be obtained through the local measurements of stress and strain at a point
similar to the measurements of Shaw and Kyriakides (1995) by miniature extensometers. As an
approximation, it is assumed that the forward transformation starts at point @ and ends at the end of

the stress plateau, point b. Based on previous equations, the total strain at point b (¥ = 1) is given by:

which can be used to find Ag, as,
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Ae =¢, —Gg—*M (2-8)
M

Alternatively, the information related to point d can also be used to find Ag; as,
o
Ag, =gl — =24 2-9
t d EM ( )
It should be noted that the value of transformation strain Ag, differs from the length of stress

plateau observed during the forward or reverse transformations. From the above equations, it can be

shown that the length of stress plateau during loading is given by,

1 1
g, — |, =Ae, +[E_E_AJO-AHM (2-10)
and during unloading by,
e, - =Ae + LI Orn (2-11)
d e EM EA

Therefore, the lengths of both stress plateaus are greater than the amount of transformation-
induced strain in the present model. It can also be seen from equations (2-10) and (2-11) that the
upper stress plateau is longer than the lower one, which is due to the change in the elastic portion of
strain upon unloading at a lower stress. Interestingly, this result is in agreement with the experimental
stress-strain curves which often exhibit shorter reverse plateaus (Tan et al., 2002). Experimental
results have also revealed that the length of the stress plateau increases with increasing test
temperatures (Shaw and Kyriakides, 1995; Tan et al., 2002). This observation has led to a common
belief that the amount of transformation-induced strain (Ag, ) also depends on temperature (or stress
level). Figure 2-3 compares the measured length of the stress plateau during loading and the

calculated transformation strain based on equation (2-8) at various temperatures. The values of ¢| ,
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&|,» Oasm»> and Ey, are taken from the experimental stress-strain curves reported by Shaw et al.,

(2003). In this figure, the transformation strain calculated from equation (2-8) or (2-10) does not

exhibit such a strong temperature-dependency. Therefore, it is assumed that the transformation strain

(Agy) is independent of temperature or stress.

0.07 ; T . . .

0.065}

0.06

0.055¢

Stress (MPa)

0.05r J

0.045 ‘ ‘ ‘ ‘ ‘
10 0 10 20 30 40 50

Temperature (°C)

Figure 2-3. Variations of stress-plateau length and transformation strain with temperature.

Since the constitutive relations described in the above equations are non-linear, it is more
appropriate to express them in incremental form in order to facilitate the numerical solutions. The
incremental relation obtained from equations (2-5) and (2-7) is,

dg:[L+1_—7Jda+(i—i+Agtde 2-12)

Ey E\ Ey E,
which is the increment of total strain in terms of the increments of stress, temperature, and martensitic
fraction at a point. This relationship holds at any instant whether the material point is undergoing an

elastic deformation (dy =0) or a phase transformation (dy = 0). It will be shown in the next section
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that the increment of stress is related to the increments of temperature and martensitic fraction via the

transformation evolution rule.

2.2.3. Nucleation and evolution of transformation

In an isothermal quasi-static test, once the transformation starts (nucleation), the level of
stress is kept constant and the transformation appears to be more strain-driven than stress-driven.
However, it is the level of stress that determines whether the current phase is stable or not. On the
other hand, stress is not the only factor that makes the microstructure unstable: a change in
temperature may also result in instability and initiation of transformation. At higher strain rates,
where both stress and temperature are varying during the phase transformation, the effect of
temperature on the production of detwinned martensite must also be considered (temperature-induced
martensitic transformation). In this section, the governing incremental equations of phase
transformation (kinetic relations) are developed for the most general case in which the temperature
may also change and result in transformation; that is, both the stress-induced and temperature-induced

transformations are taken into account.

Using carefully designed experiments, Shaw and Kyriakides (1997) and ladicola and Shaw
(2002) have shown that during the loading stage, the nucleation of martensite occurs at a distinctly
higher stress than that required to subsequently continue the transformation, as shown in Figure 2-4(a)
and also Figure 1-9. By contrast, the nucleation stress of austenite in a martensitic region during
unloading is lower than the stress required to propagate the transformation (Because of the particular
shape of the specimen used in the experiments, a stress valley at the beginning of the reverse
transformation is not observed in Figure 2-4(a), however, the inverse stress peak during unloading is

clearly seen in Figure 1-9).
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Figure 2-4. (a) Nucleation and propagation stresses during displacement-controlled tests of NiTi dog-
bone strips (experimental data adapted from Shaw, 2000). (b) Schematic representation of nucleation and

finish lines used in the model
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Shaw and Kyriakides (1997) mentioned that these characteristics are similar to the properties
of other propagating structural instabilities such as neck propagation in polymers or mild steel. All of
these quasi-static displacement-controlled loading examples exhibit initiation (nucleation) loads that

are distinctly higher than the lowest load required to propagate the instability.

Based on these observations, it is assumed here that at any temperature, the nucleation stress

for untransformed particles ¥ =0 (or y =1 for reverse transformation) is slightly higher (or lower)
than the stress required to complete the transformation of a partially transformed particle (0 <y <1).

In order to specify a stability margin for the nucleation of the new phase, an idea similar to the
concept of a yield surface in plasticity theory is introduced here. In the case of a forward
transformation, a martensite nucleation surface (line) is defined in the stress-temperature space,
which determines the highest possible energy level for an austenite particle to be stable. Once the
stress-temperature vector reaches the nucleation surface, martensite is nucleated and further loading
results in the continuation of transformation. During the continuation of transformation, the stress-
temperature vector moves towards a lower energy state. The lowest energy level, which determines
the completion of transformation for a partially transformed particle is defined by another surface in
the stress-temperature space, which is called the martensite finish surface (line). Similarly, austenite
nucleation and finish surfaces (lines) are also defined for reverse transformation. In one-dimensional
cases, in which only one stress component exists, these surfaces are reduced to a set of four curved
lines, which are schematically shown in Figure 2-4(b). These curves can be determined through a set

of quasi-static tests at various temperatures (similar to those shown in Figure 2-4a).

So far, the qualitative transformation behavior of a material during nucleation and
propagation was described. In order to quantify the direction of incremental changes during the
transformation at a local material point, it is necessary to introduce the corresponding transformation
evolution rule for forward and reverse transformations. In other words, it is required to fix the path of
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incremental changes in the stress-temperature space from the nucleation line towards the finish line.
To this end, it is assumed that the stress-temperature vector always lies on an instantaneous
transformation line during the evolution from the highest energy level (nucleation line) to the lowest
energy level (finish line). The location of this instantaneous transformation line is somewhere

between the nucleation and finish lines and is determined by the martensitic fraction y . The
instantaneous martensite transformation line for a given value of y is defined by the following

equation:

Fym(o,y,T)=0—-oy(y,T)=0 (2-13)
For the first nucleation of forward transformation in an austenite area, o,, satisfies the
following conditions:
ovp(T) <oy (7, T) <oy (T)
om(0,7) = oy (T) (2-14)
om(LT) = oy (T)
oun and oy in the above equation determine the martensite nucleation and finish lines as depicted

in Figure 2-4(b). Similarly, the instantaneous austenite transformation line is also defined as:

FM~>A(O-777T)EO-_O-A(}/7T):O (2-15)
and o, satisfies the following conditions for the nucleation of first austenitic element in a fully

martensite region:

Oan(T) ST\ (7, T) S0 pp(T)
oA(LT) =0z (T) (2-16)
0,(0,T)=0,p(T)

where o,y and o, are the austenite nucleation and finish stresses as shown in Figure 2-4(b).
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The simplest way to specify the form of instantaneous transformation lines is through the

linear interpolation of nucleation and finish stresses. That is,

om(7,T)=1=p)oyn(T) +y oye (T) (2-17)

and,

a7 D)=y oun(T) + (1 =7)oap(T) (2-18)

Shaw and Kyriakides (1997) argued that once the new phase is nucleated, the stress field
associated with each transition front provides a trigger mechanism for transforming the
untransformed adjacent grains. Thus, as in other problems of this class, it is expected that the
initiation stress for transformation of austenitic particles located adjacent to the fully transformed
regions be smaller than the nucleation stress of those surrounded by the parent phase. The same

scenario is also expected for the partially transformed particles. Therefore, it is assumed that there is
an instantaneous martensite nucleation line o\ (T) defined for partially transformed particles
(0<y<1), or austenitic particles (7 =0) that are located close® to the interface of two phases

(transformation front). For austenite particles surrounded by other austenite aggregates, this line

coincides with the nucleation line o, (7). In other cases, the instantaneous martensite nucleation
line is located somewhere between the martensite nucleation line o, (7) and martensite finish
line o (T) depending on the current state of stress, temperature, martensitic fraction, and distance

from the transformation fronts (see Appendix A for details). The transformation evolution rule in this

? The region that is affected by the transformation front is physically characterized by a narrow transition zone
which separates the austenite and martensite phases (Figure 1-7). It is needed to mathematically clarify the
meaning of “close”. For a fully transformed material particle located at point x, a radius of influence &is
defined so that for particles located in [x-£, x+£], the instantaneous nucleation surface is used rather than the
nucleation surface. Later in the FEM analysis it will be assumed that £ is equal to the length of each element.
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case is applied to calculate the amount of transformation by replacing o, (7) by O';:/IN (T) in

equation 2-17. Similarly, an instantaneous austenite nucleation line o, (T) is also defined for the
reverse transformation of partially transformed particles (0 < y <1), or martensite particles (y =1)

that are close” to the austenite/martensite interface. Hence, the instantaneous transformation stresses

in the general case are replaced by,

ou(7.T)=(1-p)oun(T)+y oy (T) (2-19)

and,

oA(7.T) =y o (D) + (=)o (T) (2-20)

where oy (T) and o,y (T) may or may not coincide with oy () and o, (T), respectively.

The instantaneous transformation lines defined in equations (2-13) and (2-15) together with
(2-19) and (2-18) determine the onset of transformations in the stress-temperature space. Once the

transformation starts, the evolution of transformation is governed by the following evolution rules:

dFy A (0,7, T)=0, Forward transformation (d y > 0)
(2-21)
dFy (o7, T)=0, Reverse transformation (d y < 0)

The above transformation evolution rules together with the constitutive relation in equation

(2-12) can be used to calculate the increments of stress (do ) and martensitic fraction (dy ) in terms
of the increments of total strain (d& ) and temperature (d7 ). The details of numerical calculations

based on the concepts of instantaneous nucleation line and transformation evolution rule are presented

in Appendix A.
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It should be noted that the observed nucleation and propagation stresses in a uniaxial
experiment, such as those shown in Figure 2-4(a), dependent on both the microstructure of the
material and its geometry. Therefore in the present one-dimensional model, the nucleation and finish

stresses ( Oy » Tan > Omr » Omr ) e measured/chosen for a particular wire geometry.

2.2.4. Heat of transformation
In order to consider the effect of heat released during phase transformation, the conservation

of energy must be ensured. The incremental form of the conservation equation is,

ocde=du® +du +dqg, (2-22)
where ' (J/m®) is the elastic energy density, u” (J/m’) is the specific internal energy (excluding the
elastic energy), and gg (J/m’) is the heat generated per unit volume. The elastic energy density is

given by,

u® =§E(y>[s<s>12 (2-23)

Using (2-4), (2-5) and (2-23) the change in the elastic energy density is obtained as,

A0 — ode® _%(EL_ELJU%W (2-24)
M A

Substituting (2-7 and (2-24) in equation (2-22) gives,

N | 1
dg. =—-du? +—| — —— |o%dy+oA¢, d
9e 2(EM EAJ 4 &
or,
- 1( 1 1
S - (i) 2 y
=V 4| | ——— +0A¢ 2-25
e |:2[EM EA] ti|7/ ( )
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where (") denotes the time derivative (d—). Next, it is assumed that the rate of change in the specific
t

internal energy #” (W/m?®) is proportional to the rate of transformation (7 ). That is,

PAL, s Forward transformation (y > 0)
u® = (2-26)
—pAhy_, . 7, Reversetransformation (y <0)

where p (Kg/m’) is the material density, and Ak, ,,, and Ah,, . (J/Kg) are the total changes in

enthalpy during the forward and reverse transformation at zero stress, respectively.

The values of Ah, ., and Ah, ,, can be determined through Differential Scanning

Calorimetry (DSC) tests. The rate of heat generation is therefore given by,

—PpAhy o+ l(L - Lj ‘to Agt:l 7, Forward transformation (y > 0)

2\ Ey E,
4o = (2-27)
I 1 1], . . .
PALy A +—| ——— 0" +OoA¢g |7, Reverse transformation (y < 0)
| 2\Ey E,

2.3. NUMERICAL EXAMPLES

In this section, the pseudoelastic response of a NiTi wire subjected to various
thermomechanical loadings is determined based on the proposed model. The capabilities of the model
in simulating the rate effects, propagation of instabilities, and temperature-induced transformations
are demonstrated. Some of the simulation results are compared with the experimental observations of

Shaw and Kyriakides (1995). A summary of their experimental procedure is provided in Appendix B.
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2.3.1. Finite element model

The constitutive model was implemented in a nonlinear finite element (FE) code, which was
developed by using FORTRAN as an in-house numerical tool. The wire was discretized into one-
dimensional rod elements with linear shape functions. The coupled mechanical and thermal
equilibrium equations were solved using a modified Newton-Raphson non-linear iterative scheme.
The step-by-step integration of the heat transfer equation with time was calculated using the
Backward Euler method which is unconditionally stable. A summary of the finite element
formulation and the non-linear calculations are given in Appendix C. The convergence with respect to

time was obtained by choosing a small enough time step for each simulation. The chosen time step

was equal to 107°/& (s) where & is the applied strain-rate measured in s”'. The effect of inertia was

neglected due to its minor effects.

For each of the following simulations, the numerical analysis was repeated with different
element sizes to ensure the convergence of the results. Further refinement of the mesh did not alter

the results of the simulations reported here. In each case, the radius of influence (£ ), which is used to

determine whether a Gauss integration point is close to a fully transformed region (see the footnotes

in Section 2.3.3), was assumed to be equal to the length of each element.

The diameter and the gauge length of the wire were assumed to be D=1.07 mm and L5=63.5
mm, respectively. These values were chosen based on the specimen used by Shaw and Kyriakides
(1995). The gripped ends of the wire were each assumed to have a length of 0.2Lg. The gauge length
and the gripped lengths of the wire were discretized respectively into 50 and 10 elements, as shown in
Figure 2-5. In order to produce stress concentrations at the grips, the cross-sectional area of the very

first and last elements of the gauge length were reduced by 10% and 15%, respectively (the elements
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with reduced cross-sectional areas are shown by “Vv” in Figure 2-5). These values were chosen

arbitrarily to cause a stress concentration in one end that was higher than the other end.

Gripped end Gauge length Gripped end
02LG LG OZL(, |

[ »le >l
V|~ Vl

I e
(,‘f((((((((i&((((((((((((( - (CCCCCCCCCCCe e

((C
(50 elements) ;@;
L+

Figure 2-5. Finite element discretization of the wire.

The thermal interaction between the wire and the environment was taken into account by
assigning a constant heat transfer coefficient (/) to the external surface of each element as shown in

Figure 2-6. The heat transfer was considered by employing the following one-dimensional equation:

a( oT
Ox

. 4h
k— |+ pC T+—(T-T . )=g 2-28
6x] pC, D( R (2-28)

where k is the conductivity (W/m K), C, is the heat capacity (J/’kg K), 7, is the ambient temperature

(K), and g is the heat generation term given in equation (2-27).

Convection (%)

< >

Conduction / Conduction

|A ;|
| |

dx

Figure 2-6. Heat transfer mechanisms in a one-dimensional element.
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The ambient temperature was held constant at 7, =70 °C. The temperatures of the two ends
of the rod (x =-0.2L;, 1.2L;) were also assumed to be constant and equal to the ambient

temperature (70 °C). This is a reasonable assumption since the grips were also held inside the thermal
bath during the actual experiments. The thermal expansion/contraction was neglected in the following

simulations due to its minor effect on the results.

The thermo-physical properties of a material in general depend on the phase (martensite or
austenite), temperature, stress and strain. However, as a first approximation, the thermo-physical
properties are considered to be independent of all state variable. Table 2-1 shows the chosen thermal
and mechanical parameters. The thermal conductivity (&), specific heat (C,), density (p), and
enthalpy change during forward transformation ( Ak, _,,, ) were taken from Shaw (2000), although the

composition of NiTi alloy used by Shaw and Kyriakides (1995) is slightly different from that used in
Shaw (2000). It was assumed that the zero-stress enthalpy change during the reverse transformation

(Ahy,_, ) is the same as that during the forward transformation (— Ak, ), ). A few different values of

heat transfer coefficient (%) in the range typical for stagnant air and water environments (Incropera
and DeWitt, 1996) were tried. The values of 4 were chosen based on the best fit to the experimental

results. The values of elastic modulus (£, Eyv) and transformation strain ( Ag, ) are the average values

calculated based on the local measurements reported by Shaw and Kyriakides (1995). It was assumed

that Ag, is constant and does not change with temperature. The transformation finish stresses ( oy,
o Ar) Were assumed to be the same as the propagation stresses given in Figure 2-1, approximated by

the following linear functions of temperature:

oy (T) = 0y (T) = 81682 x10° T —9.6269x 108 (2-29)

0, (T) = 0 ,p(T) = 71248 x10° T —19524 %108 (2-30)
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Due to stress concentrations at the gripped ends of the specimens in the experiments of Shaw

and Kyriakides (1995), the exact measurements of nucleation stresses are not possible from the

experimental data. Based on the experimental results presented by Shaw and Kyriakides (1997) and

Iadicola and Shaw (2002), it is known that the apparent nucleation stress during forward

transformation o, is approximately between 10% to 20% higher than the propagation stress o .

In the case of reverse transformation the nucleation stress o, is between 17% to 30% lower than

the propagation stress o,p. In the following simulation it was assumed that o, and o,y

respectively are 14% higher and 20% lower than the corresponding propagation stresses. That is,

o = 1140, (T) =9.3117x10% T-10.9747x10%

G an = 0.80 4 (T) = 5.6998x10° T~ 1.5619x 108

(2-31)

(2-32)

The above values seemed to give reasonable results. The variation of nucleation and finish

stresses with temperature are plotted in Figure 2-7.

Table 2-1. Thermo-physical properties of the NiTi wire and ambient

Parameter Value
Elastic modulus of austenite E, (GPa) 74.21
Elastic modulus of martensite Ey (GPa) 25.53
Transformation strain Ag, 0.0415
Stress-free enthalpy change Ay s —Ahy o, kg™) 12300
Density p (kgm?) 6500
Thermal conductivity k (Wm' K" 18
Specific heat capacity ¢, d kg' K™ 837
Heat convection coefficient in air hy (W m?K") 15
Heat convection coefficient in water Byee (Wm? K™ 400
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Figure 2-7. Nucleation and finish lines used in the simulations.

2.3.2. Displacement-controlled loading-unloading
A series of displacement controlled loading-unloading simulations at various displacement
rates were conducted. The results compared to the experimental data from Shaw and Kyriakides

(1995) are presented in this section.

2.3.2.1.  Simulation of pseudoelastic behavior at low strain-rate

The behavior of the NiTi wire during one loading-unloading cycle at a constant displacement
rate of &/ L, = 4x107 s was simulated. The simulated stress-strain response is compared with
experimental data in Figure 2-8(a). The temperature profile along the wire at various times is shown
in Figure 2-8(b). As can be seen the variation in temperature is very small, which agrees with the
experimental observations of Shaw and Kyriakides (1995). The predicted evolution of phase
transformation is compared with experimental observations in Figure 2-9. In these plots, o is the

displacement of the end point and x shows the location along the wire as defined in Figure 2-5.
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Figure 2-8. Simulation of the pseudoelastic behavior of the NiTi wire at 5/L, =4x10~ s™ in 70 °C water.

(a) Stress-strain response (Experimental results adapted from Shaw and Kyriakides, 1995); (b)

Temperature profiles.
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Figure 2-9. Evolution of A—M and M—A transformations in the pseudoelastic response of the NiTi wire
at &/ Ls=4x 107 s in 70 °C water. (a) Simulation; (b) Experiment (adapted from Shaw and Kyriakides,
1995).
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The forward transformation in this simulation is first nucleated at x=Lg where the highest
stress concentration exists. After the nucleation, the level of stress remains almost constant since the
change in temperature at the transformation front is very small. As the transformation front progresses
along the wire from x=0, the driving force does not become large enough to nucleate the
transformation at other points along the wire. This behavior is also seen in the experiment, except that
in the experimental result the forward transformation is nucleated at both ends but only one of them
propagates. During unloading, both ends are adjacent to austenitic regions (i.e., the gripped ends),
which means that the level of stress required for nucleation of austenite is higher at these end points
compared to the middle points, However, the reverse transformation is nucleated at x=0 which has a

lower level of stress than the other end due to a lower stress concentration.

It is seen that the length of the stress plateau in the experimental result is slightly longer than
in the simulation, and there is also some residual strain at the end of the loading cycle in the
experimental result. These effects are mainly attributed to the slippage at the grips (Shaw and
Kyriakides, 1995), which is not modeled in the present simulations, and could be partly due to the

approximate material properties.

A small stress peak followed by a dip is observed at the beginning of the stress plateau in the
simulation, which corresponds to the nucleation of martensite and is not exhibited in the experimental
result. In the experiment, the complicated state of stress at the grips results in early transformation of
the adjacent particles during the stable part of the response where stress is still increasing. This early
transformation in turn results in deviation from linear elastic behavior and suppression of the stress
peak. However, at the beginning of the reverse transformation a small stress valley is seen in both the
experiment and the simulation, which corresponds to nucleation of austenite in martensite phase. Two
small valleys at the end of stress plateaus in both the forward and reverse transformations are also

seen, which are due to the reduction in cross-sectional areas of the end elements.
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2.3.2.2.  Simulation of pseudoelastic behavior at moderate strain-rate

1

The results of the simulation for a moderate strain rate of §/L, =4x10™*s" are shown in

Figures 2-10 and 2-11. It can be seen that at this strain rate the transformation is first nucleated at the
upper end, and soon after that another transformation front emanates from the lower end and the two
transformation fronts propagate simultaneously. This behavior is also seen in the experiment. This is
due to the increase in temperature at the initial transformation front, which tends to stop the
propagation of the current front and initiate the transformation at another location with lower
temperature. The predicted nucleation point in the reverse transformation is quite close to the
experimental observation. Since the middle point is the final point to start transforming into
martensite and does not complete the transformation, a small amount of residual parent phase remains
untransformed in the middle element. This makes the middle element a preferred point for initiation
of the reverse transformation (in addition to the end elements which are adjacent to the austenitic
region). On the other hand, since the level of stress is slightly lower in the intermediate elements
compared to the first and last elements of the gauge length, the reverse transformation is nucleated at

the middle point rather than the end points.

It should be emphasized that nucleation of the reverse transformation is a complicated
phenomenon, which depends on the location of defects in the microstructure. Therefore, accurate
prediction of the nucleation point in the reverse transformation (and even the forward transformation)
requires a knowledge of the imperfections and impurities in the specimen. These factors, however, are
not considered in the present simulations, and the nucleation of transformation is imposed only by

such factors as stress concentrations or residual untransformed phases.
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Figure 2-10. Simulation of the pseudoelastic behavior of the NiTi wire at 5/L, =4x10™ s™ in 70 °C

water. (a) Stress-strain response (Experimental results adapted from Shaw and Kyriakides, 1995); (b)

Temperature profiles.
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Figure 2-11. Evolution of A—M and M—A transformations in the pseudoelastic response of the NiTi
wire at 5/ Ls=4x 10* s™ in 70 °C water. (a) Simulation; (b) Experiment (adapted from Shaw and

Kyriakides, 1995).
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2.3.2.3.  Simulation of pseudoelastic behavior at high strain-rates

The simulation of pseudoelastic response at strain rates higher than 5/ Lg =4x107* !

resulted in severe self-heating/cooling at the propagating transformation fronts. Figure 2-12 shows the
simulated transformation behavior at a strain rate of 6/L, =4x107 s, Similar to the moderate

strain rate case, two transformation fronts initiate at the top and bottom ends of the wire. As the fronts
propagate, the temperature and stress increase. At some point during the loading, the stress becomes
so high that nucleation occurs in the middle portion of the wire. As observed in Figure 2-12(a), the
nucleation of transformation in the mid-span is uniform. This is the result of the uniform temperature
field in the mid-span and the fact that there is no preferred nucleation site. In practice however, a
random distribution of defects and impurities exists along the wire length which results in non-
uniform nucleation of transformation. These effects cannot be explicitly considered in the present
model. In order to force the transformation to occur non-uniformly, a random deviation from the
original cross-sectional area was introduced along the wire gauge length. The amplitude of the

deviation was £0.5% from the original cross-sectional area, as shown in Figure 2-13.
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Figure 2-12. Simulation of the transformation behavior of the NiTi wire at §/L, =4x107 s™ in 70 °C

water. (a) Evolution of transformation; (b) Temperature profiles.
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Figure 2-13. Random deviation from the original cross-sectional area along the wire gauge length.

The simulation was repeated at a strain rate 6/Lg =4x10~ s with the new distribution of

cross-sectional area along the wire gauge length. In order to achieve the convergence in the finite
elements solution, the number of elements in the gripped end and the gauge length of the wire were
increased to 20 and 100 respectively. The results of the simulation are shown in Figures 2-14 and 2-
15. The stress-strain response is in good agreement with the experimental results. It is seen from the
simulation results that up to six transformation fronts may simultaneously propagate in this case. The
experimental observations of Shaw and Kyriakides (1995) also verify the propagation of multiple
transformation fronts at this strain rate. However, the spatial resolution of the measurements in their

experiments did not allow for accurate tracking of the transformation fronts.
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Figure 2-14. Pseudoelastic behavior of the NiTi wire at &5/ L, =4x10" s in 70 °C water based on

simulation and experiment (experimental response adapted from Shaw and Kyriakides, 1995).
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Figure 2-15. Simulation of the transformation behavior of the NiTi wire at &/ L, =4x10" s'in 70 °C

water. (a) Temperature profiles; (b) Evolution of transformation.
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For simulating the pseudoelastic response of the wire at the very high strain rate of
5/ Lg =4x107 s an even finer mesh density was required to achieve convergence. The same
distribution of defects was used as shown earlier in Figure 2-13, and the number of elements in the
gripped end and gauge section of the wire were increased to 30 and 200 respectively. The simulated
pseudoelastic response compared to the experimental results is shown in Figure 2-16. The evolution

of transformation and the temperature profiles predicted by the model are also shown in Figure 2-17.
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Figure 2-16. Pseudoelastic behavior of the NiTi wire at §/L, =4x107 s in 70 °C water based on

simulation and experiment (experimental response adapted from Shaw and Kyriakides, 1995).
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The stress level of the simulated pseudoelastic response during the reverse transformation is
higher than that in the experimental response. Also it is higher than the reverse stress plateaus
predicted at the lower strain rates (Figure 2-18a). The reason for this is found from Figure 2-17(b)
which shows that the overall temperature of the wire is still quite high at the beginning of reverse
transformation. It is seen from Figure 2-17(b) that the maximum temperature reaches about 98.5°C
during the forward transformation. The heat transfer during the elastic portion of unloading, however,
is not efficient enough to dissipate the produced heat. In contrast, the temperature of the wire
measured at a point during the experiments of Shaw and Kyriakides (1995) exhibits a drop to the
ambient temperature during elastic unloading. Therefore, the difference between the simulation and

experimental results may be attributed to the chosen heat transfer coefficients.

The pseudoelastic response of the wire at various strain rates based on the simulations and
experimental results are compared to each other in Figure 2-18. The model successfully describes the
strain rate effects and thermal interactions with the ambient environment. As mentioned earlier, the
residual strains at the end of unloading in the experimental results are mainly due to grip slippage as
pointed out by Shaw and Kyriakides (1995). The same effect is probably responsible for the
difference between the widths of the hysteresis loops measured in the experiments and those

predicted by the simulations.
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Figure 2-17. Simulation of the transformation behavior of the NiTi wire at &/ L, =4x107 s'in 70 °C

water. (a) Temperature profiles; (b) Evolution of transformation.
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Figure 2-18. The pseudoelastic response of the wire at various strain rates in 70 °C water. (a)

Simulations; (b) Experiments.

-84 -



2.3.3. Temperature-induced transformation at constant stress

In this section the results of a simulation at constant applied stress and variable ambient
temperature are shown. The wire is initially stressed to a level that is slightly lower than the stress
required to initiate the martensitic transformation. The ambient temperature is then decreased with
constant cooling rates to start the transformation while the stress is held constant. The initial

temperature of the wire and environment (water) is 70 °C, and the applied stress is:

o =543 (MPa)
The thermo-physical properties and the thermal boundary conditions are the same as before.
The finite element mesh density was similar to that used in the simulation of pseudoelastic response
at the highest strain-rate in the previous section (i.e., 40 elements in the gripped ends and 240
elements in the gauge length). The results of simulation for a number of different cooling rates are
shown in Figure 2-19 though 2-21. It is seen from the results that the temperature-induced
transformation under constant stress is sensitive to the rate of cooling and involves nucleation and

propagation of one or more transformation fronts.

At T, =-2x1072 °C 5™ transformation starts at the point with the highest stress concentration

(i.e., at x=Lg) and propagates towards the other end. As the transformation front propagates, the
temperature becomes low enough to nucleate the transformation at the other end. The second

nucleation happens at T, = 65.9 °C, and the transformation of the gauge length completes at T, =

63.9 °C.
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Figure 2-19. Thermomechanical responses of the wire subjected to ambient cooling under constant stress

(T, o =—2X 10_2 °C s™). (a) Evolution of transformation; (b) Temperature profiles; (c) Strain response.
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At T, —2x1071 °C s, the forward transformation is again nucleated at x=Lg, and the
second nucleation occurs at the other end at T,,= 65.3 °C. In this case, just before the full
transformation of the gauge length at 7., = 57 °C, another nucleation occurs in the mid-span of the

wire and four transformation fronts propagate simultaneously until the end of transformation.

At the highest cooling rate 7., =—-5x1071 °C s™ the first and second nucleations occur at

almost the same time in the upper and lower ends of the gauge length. Before the completion of the

transformation, the transformation also nucleates at several middle points in the wire at about T, =

57.9 °C. The transformation eventually completes at 7., = 54.6 °C.

The strain responses of the wire versus ambient temperature at various cooling rates are
compared to each other in Figure 2-22. A common feature in all of the curves is a sharp turn which
corresponds to the nucleation of martensite at new sites during the cooling process. It is interesting to
observe that the range of ambient temperature over which the transformation completes increases
with increasing cooling rate. This is mainly due to the self-heating of the wire during the forward
transformation. As the cooling rate increases, the rate of transformation also increases which in turn
results in an increase in the temperature of the propagating transformation front(s). This effect, which
is clearly seen in the temperature profiles of the wire, opposes the transformation and prohibits the

rapid transformation of the wire at high cooling rates.
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Figure 2-20. Thermomechanical responses of the wire subjected to ambient cooling under constant stress

(T'OO =-2x 10_1 °C s™). (a) Evolution of transformation; (b) Temperature profiles; (c) Strain response.
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Figure 2-21. Thermomechanical responses of the wire subjected to ambient cooling under constant stress

(T, o =—5x% 10_1 °C s™). (a) Evolution of transformation; (b) Temperature profiles; (c) Strain response.
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Figure 2-22. The strain response of the wire versus ambient temperature.

2.3.4. Relaxation and restrained recovery in a partially transformed wire

The last set of results corresponds to the simulation of relaxation in a constrained partially
transformed specimen subjected to temperature variations. Thermo-physical properties and thermal
boundary conditions are the same as those in the previous simulations. The finite element mesh
density is set back to its original size (10 elements in the gripped ends and 50 elements in the gauge

length). In the present simulations, the specimen is first partially transformed by a displacement-
controlled loading at a low strain rate of & /Lg =4x107° s' in 70 °C water until §/L; =3.5%,
followed by an unloading to o/L; =3% . In the second stage, the ambient temperature is increased
or decreased to induce the forward or reverse transformation while the total strain is held constant at
0/Lg =3% . Figure 2-23 shows the results of the simulation for a drop in the ambient temperature of
50 °C at a cooling rate of 7, = —5x 1072 °Cs’. A single transformation front nucleates in the upper

end and propagates toward the mid-span as a result of the initial loading of the wire. The existing
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transformation front further propagates toward the other end as the ambient temperature decreases. As
a result of the transformation, the total inelastic strain in the wire increases. However, since the total
strain is constant, the elastic strain in the wire decreases, which lowers the stress level of the wire

(relaxation).

If the ambient temperature increases, the reverse transformation occurs. This recovers the
transformation strain and elevates the stress level in the wire. This phenomenon is called constrained

recovery. The simulation results in this case are shown in Figure 2-24. The ambient temperature is

increased by 50 °C at a rate of T,, = —5x 1072 °C s while the total strain is kept constant.

These simulations show that the local temperature changes at the transformation front are
negligible compared to the variations in wire temperature. The amount of temperature-induced
transformation in these simulations is very small compared to the results of constant stress
simulations in the previous section, where small changes in temperature resulted in full
transformation of the specimen. This can be explained by noting that during the decrease in
temperature, further transformation of austenite to martensite lowers the level of stress, which makes
the austenite phase more stable. During the reverse transformation (increase in ambient temperature)
a similar self-prohibiting mechanism also exists; that is, the recovery of transformation strain raises

the level of stress, which makes the martensite phase more stable.
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Figure 2-23. Simulation of relaxation in a partially transformed NiTi wire. (a) Evolution of

transformation. (b) Stress response; (¢) Time history of strain and ambient temperature.
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Figure 2-24. Simulation of constrained recovery in a partially transformed NiTi wire. (a) Evolution of

transformation. (b) Stress response; (¢) Time history of strain and ambient temperature.
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Chapter 3: Three-dimensional Constitutive Model’

A three-dimensional macroscopic-level constitutive model of shape memory alloys exhibiting
unstable pseudoelastic behavior is presented in this chapter. A mechanical approach is used to
develop the constitutive relations based on the deformation theory of plasticity. The model is used to
simulate the localized deformation and transformation front propagation in NiTi strips subjected to
various loading conditions. Special attention is paid to the multi-axiality of stress state at the

transformation fronts during the forward and reverse transformations.

3.1. INTRODUCTION

The transformation fronts observed during the uniaxial loading of NiTi wire samples are in
the form of narrow axisymmetric transition zones which separate the highly deformed martensitic
areas from the low-strain parent phase as shown earlier in Figure 1-7. It is clear that the state of stress
at the transformation front is three-dimensional due to the strain mismatch between the austenite and
martensite regions. Based on the hypothesis proposed by Shaw and Kyriakides (1997), the stress
concentration at the transformation front during loading transforms the nearby austenitic grains and
prohibits the homogenous nucleation of martensite throughout the sample. However, because of the
large aspect ratios (length to diameter) of wire specimens, and that the details of transformation fronts
were not the focus of study, the one-dimensional constitutive model presented in the previous chapter

was developed without explicitly calculating the complex stress-state at the transformation fronts.

3 Parts of this chapter appear in the following papers:
1- Azadi, B., Rajapakse R. K.N.D., Maijer, D. M., 2007. Multi-dimensional constitutive modeling of
SMA during unstable pseudoelastic behavior. International Journal of Solid and Structures 44, 6473-
6490.
2-  Azadi, B., Maijer, D. M., Rajapakse R.K.N.D., Finite element simulation of strain-rate effects on
localized unstable pseudoelastic response of shape memory alloys. Journal of Mechanics of Materials
and Structures (submitted on Oct 14, 2007; 29 pages; submission number: 071014).
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For non-wire specimens, such as strips and hollow cylinders, the shape of the transformation
fronts are more versatile and complex than in wires as shown in Figures 1-8 and 1-10 (see also Shaw
and Kyriakides, 1997, 1998; Pieczyska et al., 2004, 2006a,b; Feng and Sun 2006; Daly et al., 2007).
The pattern of the transformation fronts can potentially affect the performance of the NiTi elements
that have small aspect ratios. Studying the details of the stress distributions at the transformation

fronts is also important for understanding the fundamental behavior of material.

The first attempt to analytically study the nucleation and propagation of transformation bands
in NiTi strip was presented by Shaw and Kyriakides (1998). They proposed a plasticity-based model
to capture the material instability during the uniaxial loading of NiTi strips under isothermal
conditions. The material was assumed to behave as an isothermal, rate independent J,-type elasto-
plastic solid with isotropic softening during the forward transformation. Based on the similarities
between the unstable propagation of Liiders bands in fine-grained mild steel and the transformation
bands in NiTi strips, they concluded that continuum level strain localization is the dominant
mechanism in the observed behavior of NiTi strips during the martensitic transformation. The
analysis, however, was limited to the forward transformation and the strain recovery upon the reverse

transformation was ignored.

Shaw (2000), and Iadicola and Shaw (2004) extended the analysis of Shaw and Kyriakides
(1998) by considering the thermomechanical coupling of the material with its environment, and
investigated the effect of loading rate on the evolution of instabilities. The same approach has also
been used recently by Hu et al. (2007) to simulate the nucleation and propagation of localized helical

transformation bands in NiTi tubes.

While the role of material instability and stress-concentration in propagation of

transformation fronts during the forward transformation has been analytically established, it is not yet
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clear how the propagation of transformation fronts during the reverse transformation is governed by
the complex multi-axial stress field developed at the transformation fronts. Answering this question is
the main motivation behind developing a multi-axial constitutive model of unstable pseudoelastic
behavior in this chapter. Characteristics of the incremental constitutive relations in modeling the
unstable pseudoelastic response are first discussed. It is shown that the path-dependent nature of the
inelastic deformation (transformation strain) in incremental constitutive models may prohibit the full
recovery of inelastic deformation in a continuum body. Derivation of a tofal transformation strain
constitutive model is then presented. The present model aims to overcome the deficiency of previous
plasticity-based analyses in modeling of the reverse transformation through nucleation and
propagation of localized austenite bands. The model is implemented in a finite element code to
simulate the nucleation and propagation of a single transformation front during the forward and
reverse transformation of a short NiTi strip under isothermal conditions. The effect of heat generation
on the pseudoelastic response and propagation of transformation fronts in dog-bone specimens are
then considered in numerical simulations. The morphology of the transformation front and the effect

of loading rate and boundary conditions on its evolution are studied in detail.

3.2. GENERAL REMARKS ON MODELING OF REVERSIBLE INELASTIC
DEFORMATION

Based on the classical flow rule of plasticity, the increment of the plastic strain tensor de® is
related to the gradient of a plastic potential function Q through following equation:

deP _d2%20) (3-1)
oo,

y

where ¢ is the stress tensor and dA is a positive scalar known as the plastic multiplier. The

multiplier factor dA4 is determined using the yield criterion in plasticity theory. Depending on the
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choice of the plastic potential function Q and the yield criterion, various plasticity theories can be
developed. If the chosen potential function and yield surface are expressed by the same functions, the
corresponding flow rule is known as an associated flow rule. If different functions are used for the

plastic potential and the yield surface, the resulting flow rule is called a non-associated flow rule.

For ordinary metals, plastic strain is produced because of the movement of dislocations inside
the microstructure. Therefore, it is irreversible and cannot be recovered by mechanical unloading. In
contrast with this, the transformation strain observed during the pseudoelastic behavior of SMAs is
produced by simultaneous stress-induced martensitic transformation and reorientation of martensitic

variants, which can be recovered during the reverse transformation.

The question that naturally arises is whether a similar flow rule can also be implemented to
describe the pseudoelastic behavior of SMAs. In that case, equation (3-1) can be modified to give the
increment of transformation strain during the forward or reverse transformation as:

oP(s,T,y)

O

del =da (3-2)

where &£ is the transformation strain tensor, P is the transformation potential function, and y is the

volume fraction of martensite phase which is a positive scalar varying between 0 and 1. The
fundamental difference between the above equation and the flow rule of plasticity in (3-1) is that the

scalar multiplier d 4 in equation (3-2) can be either positive or negative depending on the direction
of transformation (forward or reverse). The increment of transformation strain (d&®) is proportional
to the increment of martensite phase production (dy ). Therefore, equation (3-2) can be rewritten in
the following form:

dgét) = Awdy (3-3)

O
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where the proportionality factor 4 is a function of material properties, state variables, and loading
history in general. Similar to the concept of a yield surface in plasticity, the evolution of
transformation in the forward or reverse directions is governed by the corresponding kinetic relations,

which control the extent of transformation (y ) in terms of all state variables.

Consider a continuum region R occupied by an SMA as shown in Figure 3-1. Within R,

consider a material point denoted by p.

Figure 3-1. A continuum region occupied by an SMA

In general, material point p may be subjected to a general three-dimensional loading-
unloading path in the six-dimensional stress space, which corresponds to the six components of stress

tensor, o;;’s. To make it easier to visualize, consider a plane-stress loading-unloading path in the

three-dimensional stress space (o, —o, — 0, ) as shown Figure 3-2. The loading path is denoted by /

(from point o to point 0’), and the unloading path is denoted by u (from point o’ back to o).
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Figure 3-2. Loading-unloading path in the stress space.

The total transformation strain at the end of the loading-unloading loop is found by

integrating equation (3-3) as,

oP(o,T, oP(e,T,
g =IA;+ﬁd7+jA%d7 (3-4)
! u y

Oy

o

It can be seen from the above equation that the total transformation strain € depends on the

integration path and loading history. In order to ensure the reversibility of the transformation strain,
the sum of integrals in equation (3-4) must be equal to zero at the end of any loading-unloading path

(where y becomes zero again). This is of course a mathematical constraint which must be satisfied

regardless of the physical properties of material. Since the loading path / does not necessarily
coincide with the unloading path u, the potential functions and yielding criterion usually used in

plasticity theories cannot be used to model shape recovery. Thus determining a proper transformation
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potential function and corresponding yield surfaces (transformation surfaces) during the forward and

reverse transformations is more complex than in plasticity theory.

So far, the necessary mathematical condition for the reversibility of transformation strain at a
material point has been discussed. In problems with uniform stress fields, the above condition is
sufficient to ensure the full recovery of transformation strain throughout the spatial domain R.
However, multi-dimensional problems generally involve non-uniform stress fields, and individual
points in the continuum body may experience different loading paths. This is especially true when
localization of transformation and/or stress concentrations result in peculiar and complex stress
distributions in the continuum domain. Unlike the elastic deformation, the transformation strain
described by the incremental flow rule in equation (3-3) is not a functional of the final state of stress
and temperature, but depends on the integration path. It is possible that the distribution of inelastic
deformation left at the end of the loading path produces local areas of high stress concentration which
prohibits the reverse transformation at those sites. Therefore, the mathematical reversibility of
constitutive relations for a single point like p does not automatically ensure the shape recovery over

the entire volume R.

A few three-dimensional constitutive models based on equation (3-3) have been developed in
the past which can successfully capture the recovery of transformation strain at a material point along
complex multi-axial loading loops (for notable examples see Boyd and Lagoudas, 1994; Auricchio et
al., 1997; Helm and Haupt, 2003; Bouvet et al., 2004a). These models have been developed and used
for analyzing the stable pseudoelastic behavior of SMAs. However, the performance of these models
for the mechanically unstable regimes with transformation localization is open to question. In fact, it
will be shown in the subsequent sections that the numerical simulations based on a path-dependent

incremental constitutive equation similar to the model of Boyd and Lagoudas (1994), which is
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reversible for a material point, fails to fully recover the transformation strain in the entire domain

during the localized pseudoelastic behavior.

Finding a proper transformation flow rule that is truly reversible and guarantees the recovery
of transformation strain during the unstable pseudoelastic response for any loading path and geometry
seems to be a challenging problem. In the following section, the aim is to propose a multi-
dimensional constitutive model that is not only mathematically reversible at a single material point,

but also gives a consistent solution over the entire domain during the unstable pseudoelastic response.

3.3. ATOTAL DEFORMATION CONSTITUTIVE MODEL
The flow rule given in equation (3-3) relates the increments of transformation strain tensor to

the increment of martensitic fraction y and the gradient of a potential function. Since the gradient of

the potential function is not constant during the loading path, the components of the final
transformation strain depend on the integration path and loading history. If the potential function and
kinetic relations are not carefully chosen, it is highly possible that the transformation strain does not
recover along some integration paths, unless model use is limited to proportional loading-unloading

cases.

In this section, a different type of constitutive relation is proposed in which the “total”
transformation strain is related to the gradient of a potential function. The constitutive model is
inspired by the deformation theory of plasticity, with two sets of yielding criteria for forward and
reverse transformations. The model is intended to describe the material behavior at a local point
subjected to general thermomechanical loading. The major assumptions and equations governing the

stress-strain-temperature relations in this model are summarized in the following sections.
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3.3.1. General considerations
Conventional additive strain decomposition is used to relate the total strain tensor € to the

®

elastic £ and transformation € components as,

— - ®
&y =& Ty (3-5)
The elastic strain tensor is related to the stress tensor through the fourth-order equivalent

compliance tensor (D) as,

z;e) = Dg/kl (o (3-6)

£
It is assumed that the equivalent compliance of the material D is a linear function of

martensitic fraction y, given by:

Dy (n) =y D) +(1—y) Dy (3-7)

where D® and D™ are the elastic compliance tensors of the pure austenite and martensite phases,

respectively. The martensitic fraction y is a positive number between 0 and 1, which characterizes
the extent of transformation, i.e., ¥ =0 corresponds to the full austenitic phase and y =1 corresponds
to the full martensitic phase at a point. In this study, the individual phases are assumed to be isotropic.
Therefore, the equivalent compliance tensor D defined in (3-7) is also an isotropic tensor. The
equivalent Young’s modulus, £, and Poisson’s ratio, v, of the mixture of two phases can be
calculated from equation (3-7) to be:

E\Ey

E(v) =
” YE,+(=-9)Ey

(3-8)

and,
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Y= YVvmEA T A=)V AiEy (3-9)
VEL+(1-7)Ey

(E,,v,)and (E,,vy) in the above equations are the Young’s modulus and Poisson’s ratio

of the individual martensite and austenite phases, respectively. It should be noted that the equivalent
elastic modulus, F, obtained by the assumption made in equation (3-7) is consistent with the relation

proposed by in Chapter 2 for the one-dimensional model.

3.3.2. Constitutive relation of transformation strain
The total transformation strain is assumed to be expressed in terms of other variables by the

following equation:

&y = A—;P ¥ (3-10)
Oy

where P is the transformation potential function, and A4 is a scalar quantity. In general, 4 is a function

of all state variables (¢&;,0,,T,7) and deformation history. Note that the reversibility of the

ij

transformation strain has already been guaranteed since for y =0 the components of the total

transformation strain tensor gg) become zero from equation (3-10).

In fact, the constitutive relation assumed in equation (3-10) is similar to the equation used in
deformation theories of plasticity (Khan and Huang, 1995), in which the finite form of plastic strain is
given as a function of final stress state. Such constitutive structures are generally inappropriate for
plastic deformation since the path dependency of plastic strain is ignored. However, the deformation
theory of plasticity is applicable in problems with nearly proportional loading where elastic unloading
never occurs (Budiansky, 1959). The theory was also implemented in a study of bifurcation

phenomenon and plastic buckling (Hutchinson, 1974).
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In order to find the proportionality factor A in equation (3-10), it is assumed that:

F9— A, y (3-11)

®

where &' is called the effective transformation strain, and provides a scalar measure of the total

transformation strain. This quantity is defined in the following form:

_ 2
gV = Eefjt)gg) (3-12)
The parameter Ag, in equation (3-10) is a material property, which indicates the maximum

attainable transformation strain during a uniaxial tension test. Substituting equation (3-10) in (3-12)

and the subsequent result in (3-11) gives the proportionality factor as,

P (3-13)
2 oP opP
3 do; doy
Therefore, the transformation strain is given by:
PN op (3-14)

; ¥
" [2.0P oP Ooy
3 0o, 0oy,

Note that the above relation holds at any time during the general multi-axial loading-

®

unloading of SMA. This means that the components of the transformation strain tensor &

can
continuously change without any change in the extent of martensitic fraction ( y ), and even after the
completion of transformation (y =1). This way, the direction of the transformation strain tensor is

always adjusted according to the current direction of the potential gradient. This mode of deformation

is referred to as reorientation.
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It should be noted however that the value of the effective transformation strain £ depends

only on the extent of transformation ( ), and does not change without progress in transformation (see
equation 3-11). In other words, forward (reverse) transformation increases (decreases) the magnitude
of the effective transformation strain £, while the current gradient of the potential function controls

the orientation of the transformation strain tensor glg.t). The reorientation of transformation strain in

stress-induced martensite (oriented martensite) based on the applied stress state has been
experimentally observed for some SMAs (Bouvet et al., 2002). It has been shown that the martensite
variants evolved and oriented during the stress-induced martensitic transformation can transform to
other variants with different orientations upon change in the direction of applied load (Zheng et al.,
2000). An incremental form of equation (3-14) is given below to better illustrate the reorientation

feature of the model:

oP

A oo,
d or dy+Ae y 0 J

dO_I’S
2 0P P Ooy do, | |2 P 0P
3 0oy, Ooy 3 0oy, Ooy

This equation applies to both the forward (dy >0 ) and reverse (d y < 0) transformations, and

de =

(3-15)

also when neither of the transformations is taking place (dy =0). The first term on the right hand

side of this equation corresponds to the phase transformation, and the second term characterizes the

reorientation of transformation strain, which may happen independently from the transformation.

Hence, there can be a non-zero change in transformation strain dgi(jt) while dy is zero. It must be

reemphasized that according to equation (3-11), the magnitude of the effective transformation strain

does not change if reorientation without transformation is the only mechanism of deformation.
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Note that an expression of transformation strain similar to equation (3-15) has been
previously proposed by Auricchio et al. (1997) with a different derivation. In their model however,
the reorientation is active only during loading, and the reorientation of transformation during reverse
transformation has been neglected. As shown later by numerical examples, the reorientation of
transformation strain during reverse transformation is as important and needs to be considered for full

recovery of the transformation strain during unstable pseudoelastic response.

The choice of transformation potential function P is described in the next section after

introducing the kinetics of transformation.

3.3.3. Kinetics of transformation

It has been verified by experiments that the stress-induced martensitic transformation under
multi-axial stress state is triggered and controlled by the input mechanical work (Sittner et al., 1995).
For yielding of ordinary metals, this mechanical work is characterized by a kind of equivalent stress.
A similar approach is followed here in the case of initiation and completion of the martensitic
transformation and its reverse transformation. For example, in the case of forward transformation it is
assumed that the transformation starts when the equivalent stress reaches a critical value, known as

the martensite nucleation stress (o ), and the transformation ends at another critical value called
the martensite completion stress (o). For intermediate stages (i.e., during the evolution of

transformation) the value of equivalent stress must be somewhere between these two critical values,

depending on the extent of transformation identified by y . It must be noted that these critical stresses

are functions of temperature, and the variation of temperature during the transformation affects the

stress required to continue the transformation.

Based on the above discussion, the initiation of forward transformation is marked by the

following conditions:
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F, y(0,,7,7)=0, y<lI (3-16)

where,

F, w=0-ou(.T) (3-17)

In above equation, & is an equivalent stress which is assumed to be the Von-Mises effective

stress defined as,

& =425.8

2555y

(3-18)

S is the deviatoric stress tensor given by,

S, =0, —%5”. (3-19)

g y

The choice of the Von-Mises effective stress is mainly driven by the strong macroscopic
similarities between Liiders bands in steel (dislocation plasticity) and localized transformation bands
in NiTi (displacive phase transformation). However, other types of effective stress can also be used

without loss of generality in the present model.

In equation (3-17), o\ (7,T) is the instantaneous martensitic transformation stress, which

satisfies the following conditions:

0,7)= T
{O-M( )=oun(T) (3-20)

om(LT) =0y (T)

It is assumed that o, (y,T) is linear in terms of y, that is,
o7, T)=10-y)oun(T)+7oyc(T) (3-21)

Similarly, the initiation of reverse transformation is characterized by the following condition,
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FM%A(G{/"]/’T):Oi 7>0

where,

F . =0-0,(T) (3-22)

and the instantaneous austenitic transformation stress o, is:

O T) =y o (T)+(=7) O uc(T) (3-23)

where o,y and o, are the austenite nucleation and austenite completion stresses, respectively.

During the evolution of transformation, the effective stress must be somewhere between the
nucleation and completion stresses, depending on the extent of transformation and an associated
hardening/softening rule. Once the transformation starts, the conditions that govern the evolution of

the transformation are,

dFy (0,7, T)=0, Forward transformation (d y > 0)
(3-24)
dFy A (O'i]- ,7,1)=0, Reverse transformation (d y < 0)

For materials such as NiTi, which exhibit localization of deformation and unstable
mechanical behavior, the local stress-strain relation loses its positive slope during the transformation.
It has been experimentally shown that the stress required to nucleate the martensite is higher than the
stress associated with the completion of martensitic transformation. By contrast, the stress required to
trigger the nucleation of austenite during unloading in lower than the stress required to propagate the
reverse transformation (Shaw and Kyriakides, 1997; ladicola and Shaw, 2002). Such unstable
behaviors imply that the nucleation stress in the above kinetics relations must be higher (lower) than
the completion stress during the forward (reverse) transformation. As shown later, such a “softening”

feature in the kinetic of transformation results in localization and propagation of transformation
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front(s) in the simulations. The nucleation and completion stresses are material properties and can be
measured or calculated based on carefully designed and executed uniaxial loading-unloading tests at
different temperatures (Iadicola and Shaw, 2002). Note that the nucleation and completion stresses in
the present three-dimensional model are dependent only on the microstructure of the material. They
cannot be directly measured from the experimental values which are also geometry-dependent. As
will be seen in Section 3.4, calibration is required to find the nucleation and completion stresses using

the numerical simulations of a sample with particular geometry.

It should be noted that the concept of an instantaneous nucleation stress defined in the one-
dimensional model (Chapter 2) does not appear in the present three-dimensional model. The
instantaneous nucleation stresses were used to account for the effect of stress concentration at the
transformation front on the nearby particles. However, in the three-dimensional analysis the effect of
stress concentrations are automatically considered. Also note that the transformation completion

stresses (O e, Oxc) defined for the three-dimensional model are quantitatively different from the

transformation finish stresses defined for the one-dimensional model (o, 0 ,p) in Chapter 2.

For materials which exhibit hardening behavior during forward (reverse) transformation, the
completion stress is higher (lower) than the nucleation stress. The localization is unlikely in those

cases, and the form of o (y,I) and o, (y,T) must be carefully chosen in order to fit the
experimental data.

As stated earlier, the stored elastic energy, which is identified by the equivalent stress,
controls the nucleation and evolution of transformation through kinetic relations. In the present model

it is assumed that the same equivalent stress also controls the direction of the transformation strain,

and the transformation potential function is chosen to be the Von-Mises effective stress. This
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assumption is similar to the assumptions used in the associated flow rules of plasticity. Therefore, the

transformation potential function is given by:

P=c (3-25)
A simplified summary of the constitutive equations and kinetic relations based on the above

assumption is given in Table 3-1.

Table 3-1. Summary of the constitutive model.

Constitutive Relations
Finite form:

3 S,
oy = DR + -0 oy + 206,y

Incremental form:
D, 3 S,
d&; =Dy (y)doy + {(DSI\:II) _ng':\l))dkl +5A5t gj}dV

where,

— 3 Ag, 1 38;8u
D;‘jkl(y):D;‘jkl(y)+E?(5ik§j _gé‘g/'é‘kl _E 52 4

Kinetic Relations
Forward transformation:

3 Si' 12 ’
dF, ., =0 = ——do; ~[1-9) ol (1) +r ole MNAT =[o3c (T) - oy (T)]dy =0

o

Reverse transformation:

3Sl‘j ' '
dF, ,=0 = Egda@,—[wAN<T)+<1—7>oAc(T)]dT—[oAN(T)—aAC(T)]dy:o

The stress-strain relation coupled with the kinetic relations form a set of highly nonlinear
equations. These equations can be linearized and numerically solved by expressing them in

differential form as shown in Table 3-1. However, numerical errors may develop due to strong non-
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linearity. An efficient iterative method is provided in Appendix D for solving this set of simultaneous

nonlinear equations, which has been used in the FEM analyses of the next section.

A few remarks regarding the limitations and validity of the assumptions in this constitutive

model are necessary:

Remark 1. The details of the microstructure of material are not considered in deriving the
relationships in this constitutive model, and the transformation-related phenomena at the lattice and
on the grain levels are ignored. The derivation of the model from the deformation theory of plasticity
solely originates from the similarities between plastic yielding and stress-induced transformation on
the macroscopic level. As mentioned earlier, the idea of using plasticity theory in the modeling of
unstable localized pseudoelastic behavior of NiTi is not new (Shaw and Kyriakides 1998; Shaw 2000;
Iadicola and Shaw 2004; Hu et al., 2007). However, the mathematical irreversibility of plastic
deformation in incremental theories of plasticity limits their application to forward transformation
only. To overcome this deficiency, the present total deformation theory is employed rather than its

incremental counterpart.

Remark 2. Although the transformation strain in this model is expressed in a finite form
(equation 3-14), the constitutive model is not totally path-independent. From the kinetic relations it is
apparent that the martensitic fraction is path-dependent and must be calculated incrementally.
However, the orientation of the transformation strain tensor is a function of the final stress state and

independent of the loading path.

Remark 3. The present constitutive model is intended to model the macroscopic, but local
pseudoelastic behavior of an SMA at a material point. Due to the localization of deformation, the

material behavior as described by equations (3-10) through (3-25) is not representative of the bulk
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material response. Therefore, this constitutive model may not be the best choice for analyzing SMAs

that exhibit stable mechanical behavior (such as most copper-based SMAs).

Remark 4. The use of the Von-Mises effective stress in the yield criteria limits the
application of the model to materials that behave symmetrically in tension and compression. A
number of researchers (see for example Liu et al., 1998) have reported that NiTi alloys exhibit
tension-compression asymmetry. Different yield surfaces have also been proposed to describe this
asymmetry based on either micromechanical calculations (Lexcellent and Blanc, 2004) or
experimental data (Bouvet et al., 2004b). The tension-compression asymmetry, however, does not
impact on the current work which focuses on tension. Although the local stress field at the
transformation front is multi-dimensional, as shown later the localized stress field only deviates
slightly from the uniaxial state, and therefore, the use of the Von-Mises effective stress is justified

here.

Remark 5. It has been shown through experiment that phase transformation in NiTi starts
homogenously prior to the nucleation of localized deformation bands through stable mechanical
behavior and homogeneous deformation (Feng and Sun, 2006; Daly et al., 2007). Tan et al. (2004)
also reported that the end of the stress plateau in pseudoelastic response is not the end of phase
transformation and that the stress-induced transformation continued beyond the stress plateau. The
mechanically stable stress-induced phase transformation is not considered in this current analysis.
However, it would be straightforward to incorporate into the constitutive model by revising the form

of the yield criteria in equations (3-21) through (3-23).

3.3.4. Heat of transformation
The heat generation/consumption during the transformation may be calculated by writing the

energy conservation law as,
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— ;@ 4 50

O-ijgij_u +u

+4g (3-26)
where 1'© (J/m?) is the elastic energy density, u” (J/m®) is the specific internal energy (excluding the

elastic energy), q, (J/m?) is the generated heat, and () denotes the time derivative (%). The elastic

energy density is given by,
@_1l_ o 307
u- = EO'U 81»]- ( - )
Equations (3-26), and (3-27) together with (3-5) and (3-6) give the heat generation term as,

. o 1 L
qG:a,jg,;"+Eaij(D$§>—D;,§})ak, y—u® (3-28)

It is assumed that the rate of change in specific internal energy, 1 (W/m?), can be expressed

as,

i =pAhy v 7, 7>0
or, (3-29)
u(i):_pAhM—)A 7, 7<0

where p (kg/m’) is the density, and Ah aosm » Ay, 4 (J/kg) are the total change in enthalpy due to

phase transformation at zero-stress state during forward and reverse transformations, respectively.

According to (3-29), the rate of heat generation is obtained to be:

. . 1 L
b0 =06 +{ 30,0 = DRy~ ph 72 720
or, (3-30)

. ) 1 ..
4G = O'ijg;it) + {E o (D%) - Dg,’:l))okl + pAhM_m};/, y<0
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Note that Ah, .\, and Ah,, ,, are material properties that can be measured by Differential

Scanning Calorimetry (DSC).

3.4. FEM SIMULATIONS

In this section, the proposed constitutive model is used to numerically study the Liiders-like
deformations in NiTi shape memory alloys during pseudoelastic response. An in-house FEM code
was developed in FORTRAN for the numerical simulations. The FEM code is capable of handling
non-linear problems with coupled thermomechanical fields. The modified Newton-Raphson method
was used to solve the set of non-linear equations. A summary of the finite element formulations and

the non-linear calculations are given in Appendix C.

3.4.1. Quasi-static extension of a short NiTi strip

A short strip of NiTi subjected to displacement-controlled uniaxial extension under
isothermal conditions is simulated using the proposed constitutive model. The simulation results
based on an incremental constitutive model are also provided for comparison. The details of the

incremental constitutive model are given in Appendix E.

The strip geometry and FE mesh are depicted in Figure 3-3. The strip dimensions (14x4x0.4

mm®) and boundary conditions are similar to the strip modeled by Shaw and Kyriakides (1998):

u =0 :O’ u|x:L:5

X

=0, | =0

V| x=L,y=0

x=0,y=0

where u and v are displacement components in the x- and y- directions, and ¢ is the applied end

displacement.
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The strip was discretized with two-dimensional, 8-node isoparametric plane-stress
(serendipity) elements. The number of elements in the axial and transverse directions is 70 and 20,
respectively, which is the same as the mesh density used in the simulation of Shaw and Kyriakides
(1998). They used three-dimensional 20-node elements with two elements in the thickness direction.
However, it is shown that the two-dimensional plane-stress finite element analysis used here is
successful in capturing the features of the transformation front, and a three-dimensional analysis is
not necessary. Note that although the finite element modeling is two-dimensional, the normal
component of transformation strain in the transverse direction still exists due to the incompressibility
of transformation-induced deformation, and therefore, all important quantities are accounted for in the

analysis.

The sensitivity of the finite element analysis to mesh-size was investigated by trying a
number of different mesh densities. The mesh density selected in the present analysis (70x20) is
computationally efficient and captures the important features of the transformation fronts. The details

of the convergence study are provided in Appendix F.

o

3

Point 1
Point 2
L= 14 mm
0.008 mm
Yy Y
b=4 mm
(a) (b)

Figure 3-3. (a) Geometry and finite element discretization of the strip; (b) Corner imperfection.
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A very small geometric imperfection is introduced at the lower right corner of the strip (x=0,
y=-b/2) in order to initiate the transformation at this point as a result of the stress concentration
(Figure 3-3b). The imperfection has the shape of a cosine function (half period) with amplitude of

4x10 mm and width of 0.4 mm.

The elastic behavior of the individual austenite and martensite phases was assumed isotropic
and homogeneous. The mechanical parameters chosen for this analysis are given in Table 3-2. The
critical values of stress for nucleation and completion of transformations ( oy » Ope > Oan s> Tac ) Were
obtained by fitting the results of the simulations to the nucleation and propagation stresses of NiTi
strips at 25 °C observed in the experimental results reported by Shaw and Kyriakides (1997) (see
Figure 2-4a). The elastic moduli of austenite and martensite, and maximum engineering
transformation strain (Aeg,) were also chosen based on the tri-linear stress-strain model used in the
simulation of Shaw and Kyriakides (1998). Note that the measures of stress and strain in Table 3-2
are the second Piola-Kirchhoff and Green, respectively. This is because the FEM program has been

developed for general large-deformation problems in anticipation of future research.

Table 3-2. Mechanical properties of the short NiTi strip at 25 °C.

Parameter Value
Elastic modulus of Austenite E, (GPa) 62.7
Elastic modulus of Martensite Ey; (GPa) 38.7
Poisson’s ratio VasVum 0.3
Transformation strain Ag, 0.0398
Martensite nucleation stress w (MPa) 424.7
Martensite completion stress Oxec (MPa) 353.1
Austenite nucleation stress 9 (MPa) 143.6
Austenite completion stress Fic (MPa) 221.6
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For better illustration of the material properties given in Table 3-2, the local one-dimensional
engineering stress-strain response for one complete loading-unloading cycle is shown in Figure 3-4.
The upper and lower intermediate branches correspond to the forward and reverse transformations.
The intermediate branches slightly deviate from perfect straight lines due to variation of the elastic

modulus with martensitic fraction (see equation 3-8).

500 T T T T T

400

300

Stress (MPa)

200

100

O 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06
Strain

Figure 3-4. Local uniaxial engineering stress-strain response of NiTi used in the simulation.

The force-displacement responses from the present simulation and the simulation of Shaw
and Kyriakides (1998) are shown in Figure 3-5. Since Shaw and Kyriakides (1998) only simulated the
forward transformation, the comparison with their work is possible only for the forward
transformation. As seen in Figure 3-5, the result of the present model shows fully recovery of
deformation upon unloading. A stress peak at the nucleation of forward transformation and a small
dip at the end of the upper stress plateau that are typically observed in the experiments can also be

found in the results corresponding to both simulations.
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Figure 3-5. Nominal stress-strain response of the NiTi short strip.

A set of contour plots showing the martensitic fraction during the loading (forward
transformation) is shown in Figure 3-6. Each contour represents the extent of transformation
corresponding to various applied displacements. Transformation is first nucleated at the lower right
corner due to the stress concentration. Initially, a Hill-type special localization is formed which later
switches to a finger-type pattern as the transformation propagates. This type of transformation pattern
is also observed in the experimental observations (Shaw and Kyriakides, 1998). As the inclined
transformation band grows, the lateral deflection of the strip increases at the lower end of the strip.
On the other hand, the axial force opposes the growth of lateral deflection. Eventually some
transformation bands in the opposite direction are also nucleated to minimize the lateral deflection.
This process is repeated as the loading continues. The mechanism of successive formation of finger-

like edges in alternate directions is described in detail by Shaw and Kyriakides (1998).
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Figure 3-6. Sequence of martensitic fraction contours during loading.

In Figure 3-7, black and white regions of axial strain at selected loading stages are compared
with those from Shaw and Kyriakides (1998). The Green-Lagrange strains were converted to true
strains (logarithmic strains) for this purpose. The regions with axial strain of 2% or higher are shown
in black, and those with lower axial strains are in white. In the first three plots, the transformation
patterns from the two simulations are identical. The axial strain contours then start showing some

deviation from each other, although the overall pattern of the transformation front remains similar.
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Figure 3-7. Sequence of logarithmic axial strain distribution during loading.

The loading is terminated at o6/L = 4.78%, just before the entire domain transforms into

martensite. This leaves some small partially untransformed areas near the x=L end.

The evolution of martensitic fraction during unloading (reverse transformation) is plotted in
Figure 3-8. The reverse transformation started at the partially untransformed regions (martensite-
austenite mixture) left at the end of loading phase. As shown later, this is because the level of stress is
lower in these partially transformed regions. The reverse transformation initially proceeds along an
inclined band, but soon after a rather symmetric criss-cross pattern is formed. This criss-cross pattern
continues during the propagation of the reverse transformation front, and the sharp finger-type edges
that were seen during loading are not present. Unfortunately, the experimental data are not available
to verify the predicted shape of transformation fronts during the reverse transformation of the short

NiTi strips.
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Figure 3-8. Sequence of martensitic fraction contours during unloading.

To understand the role of the stress distribution in the propagation of transformation fronts,

contours of effective stress (&) during forward and reverse transformations at selected

loading/unloading stages are shown in Figure 3-9. In Figure 3-9(a), the stress level is higher on the

untransformed (austenite) side of the transformation front during the forward transformation. This

effect transforms the austenite regions close to the transformation front and prohibits the nucleation of

martensite bands at other places. Therefore, only one transformation front moves upward. During

unloading on the other hand, the level of stress is lower on the martensite side of the front, which

makes the adjacent martensitic particles unstable. Therefore, the reverse transformation occurs only at

the propagating transformation front which moves downward.
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Figure 3-9. Distributions of effective stress at selected loading/unloading stages. (a) Loading; (b)

Unloading.
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It should be noted that the high or low stress concentrations seen at the transformation fronts
in Figure 3-9 are caused by the localization of deformation. Deformation localization also results in a
complex multi-axial state of stress at the transformation fronts despite the uniaxial nature of the
applied extension. In order to better illustrate the multi-axiality of the stress state, the variation in
stress, transformation strain, and martensitic fraction during loading and unloading at two sample
points are shown in Figure 3-10. The location of sample points are denoted by “Point 1” and “Point

2” in Figure 3-3(a). Point 1 is located at (x=0.4L, y=0) and Point 2 is located at (x=0.4L, y=b/4).

The transformation from austenite to martensite during loading occurs quite suddenly at these
two points. The state of stress is initially two-dimensional during the forward transformation. As
explained earlier, the multi-axiality of the stress state during the transformation is due to the
localization of deformation. Therefore, the transformation strain tensor is also initially multi-axial and
has three non-zero components. The stress tensor gradually becomes uniaxial again as the
transformation front passes over and transformation ends. It is seen that the components of
transformation strain tensor also change to align themselves with the evolving stress tensor. This
behavior is due to reorientation of transformation strain embedded in the proposed constitutive model.
In fact, it is the reorientation of transformation strain tensor that results in a uniform distribution of
stress in the transformed areas despite the non-uniformity of the stress distribution at the

transformation fronts (see Figure 3-9).

During the reverse transformation, it is seen that the state of stress becomes two-dimensional
again due to deformation localization at the transformation front. Eventually, the transformation

strains are fully recovered at Points 1 and 2.
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Figure 3-10. Variations of martensitic fraction, stress, and transformation strain at Point 1 and Point 2.
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For the purpose of comparison, a path-dependent incremental constitutive model was also
employed to simulate this problem. The incremental constitutive relations which are similar to those
in the model of Boyd and Lagoudas (1994) are described in Appendix E. The material parameters

used with the incremental model are the same as those provided in Table 3-2.

The predicted engineering stress-strain response based on the incremental constitutive model
is shown in Figure 3-11. Despite the reversibility of the transformation strain in this model, the
overall pseudoelastic response exhibits a large residual strain upon unloading. This can be explained

by looking at the distribution of martensitic fraction throughout the sample.
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d/L

Figure 3-11. Nominal stress-strain response of the NiTi short strip based on the incremental constitutive

model (Appendix E).

Two sets of contour plots showing the evolution of martensitic fraction during the forward
and reverse transformations are shown in Figure 3-12. The results of simulation based on the
incremental model are similar to those predicted by the total deformation model during the forward

transformation (see Figure 3-6). However, the transformation behavior during unloading based on the
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incremental model (Figure 3-12b) is quite different from that predicted by the total deformation
model (Figure 3-8). During unloading, the reverse transformation initiates at numerous points
throughout the sample, and a distinct moving front does not exist anymore. Although the
transformation occurs in a localized manner, it is not limited to the vicinity of a single propagating
transformation front. By the end of unloading, the majority of the sample has transformed back into
austenite, however, some isolated pockets of martensitic phase still remain throughout the sample.
The reason for this behavior is the presence of a biased non-uniform stress distribution produced

during the forward transformation.

The predicted distributions of equivalent stress based on the incremental constitutive model at
select instants are shown in Figure 3-13. As the transformation front propagates during loading, local
regions of high stress concentration are formed inside the transformed areas (Figure 3-13a). These
high-stress regions are found to be along the finger-like edges nucleated during the forward
transformation. Upon unloading, the mismatch in strain between the neighboring transformed and
untransformed regions further intensifies the stress concentration (Figure 3-13b). The high stress
concentration prohibits the occurrence of the inverse transformation. Consequently, some localized
martensitic areas are locked inside the parent phase, and the transformation strain is not recovered at
every point (Figure 3-12b). In contrast, the reorientation of transformation strain in the total
deformation model (Figure 3-10) results in a fairly uniform distribution of stress across the
transformed areas as seen in Figure 3-9. This prevents particles from being locked in the localized

high stress concentration zones during reverse transformation.
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Figure 3-12. Predicted evolution of transformation based on the incremental constitutive model

(Appendix E). (a) Loading; (b) Unloading.
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Figure 3-13. Predicted distributions of equivalent stress based on the incremental constitutive model

(Appendix E). (a) Loading; (b) Unloading.
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3.4.2. Effect of heat generation and loading rate

After verifying the ability of the model to capture unstable pseudoelastic response in the
previous section, the analysis is extended to include the internal heat generation/consumption and
thermal interactions with environment. The constitutive model is implemented within an FEM
simulation to predict the nucleation and propagation of transformation-induced instabilities during the
pseudoelastic response of NiTi dog-bone samples at various loading rates. The simulation results are
compared with the experimental observations of Shaw and Kyriakides (1997). A brief description of

the experimental procedure used by them can be found in Appendix B.

The geometry of the sample and FE mesh are shown in Figure 3-14. The sample is similar to
the one used in the experiments of Shaw and Kyriakides (1997), which has a uniform thickness of 0.4
mm. The two-dimensional spatial domain was discretized with 8-node serendipity plane-stress
elements. The gauge section was discretized with 150 elements along the length and 10 elements
across the width. A small dent with a depth of 0.04 mm was introduced at the top right corner of the
gauge section as shown in Figure 3-14. The purpose of this geometric imperfection is to control the
location of the first nucleation. Physically, this imperfection manifests itself as a manufacturing defect
at the junction of the gauge section and fillet. There is no other artificial imperfection and all the

events following the first nucleation take place naturally as a result of the numerical solution.

The nodal displacements along the bottom end of the specimen (x = 0) are fixed while those
across the top end (x = L) are pulled at a constant rate. The temperatures of both ends are fixed at the
ambient temperature (25 °C). Shaw (2000) justified this assumption based on the large size of the
metallic grips used in the experiments. The heat loss due to natural convection has been considered by
assuming a constant convective film coefficient, /co— 4 (W/rn2 K), for all the exposed surfaces and
free edges of the sample (Shaw, 2000). The imposed mechanical and thermal boundary conditions

may be expressed as,
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where u and v are the displacement components in the x- and y- directions, respectively, o is the

applied end displacement, T (°C) is the temperature, and ¢ (W/m?) is the rate of heat loss per unit

arca.
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Figure 3-14. Geometry and finite element discretization of the dog-bone sample.
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In the experiments of Shaw and Kyriakides (1997), the variation in temperature at the
moderate strain rate was in the range of +12 °C and -5 °C. Therefore, heat transfer through radiation
was assumed to be negligible. Thermal expansion/contraction was also ignored in the following

analysis due to its minor effect on the results.

The sensitivity of the present numerical analysis to mesh size, and the uniqueness of the
solution were examined. Despite the instability of mechanical behavior, only minor mesh sensitivity
was observed in the numerical simulations conducted with finer meshes. As pointed out by Shaw
(2000), the generation or absorption of heat during the transformation stabilizes the mechanical
response. Additionally, the recovery of material stability at the end of phase transformation has an
overall stabilizing effect on the solution. As a result, the overall force-displacement response,
temperature variation, the number of nucleation events, and the basic features of the front
morphology are not affected by mesh size. However, the exact location and timing of nucleation

events, and also the orientation of transformation fronts (+6 or —0) are sensitive to mesh size.

3.4.2.1. Material parameters and calibration of the constitutive model

In the present analysis, it is assumed that individual solid phases behave as isotropic
materials. A set of stress-strain curves derived from the isothermal (low strain rate) uniaxial tensile
tests on NiTi dog-bone samples reported by Shaw (2000) have been used to find the mechanical
parameters of the constitutive model (see Figure 2-4a). The mechanical responses of the material at
three different temperatures (15, 25, and 35 °C) have been considered for this purpose. The elastic

modulus of individual phases ( £,,E,,), and the transformation strain (Ag,) are the average values

measured directly from the experimental results.

In order to find the nucleation and completion stresses during the forward transformation, a

set of isothermal simulations at various temperatures were run on the dog-bone sample shown in
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Figure 3-14. By best-fitting the nominal nucleation stress and propagation stress (Maxwell stress)
obtained from the numerical analysis to those from the experiments at the above mentioned

temperatures, the following linear relationships were established,

oy (T) =9.4258 T+189.13  (MPa)
oy (T) = 48158 T +232.73  (MPa)

The tapered sections of the sample in Figure 3-14 experience a lower level of stress.
Therefore, some residual austenite remains in those areas at the end of stress plateau. This effect
masks a visible stress valley at the onset of reverse transformation in the stress-strain response, both
in the simulations and experiments. In order to eliminate the end effects, Shaw and Kyriakides (1997)
used straight specimens to experimentally measure the nucleation stress during reverse
transformation. During these tests, austenite nucleation upon unloading occurs in the middle of test
section and is accompanied by a distinct stress valley. To calibrate the model for reverse
transformation, a straight specimen was also used in the isothermal simulations, as depicted in Figure
3-15. The dimensions and FE mesh of the specimen are similar to those of the gauge section of the
dog-bone sample. A slight side imperfection in the form a bump was introduced at x=L/5 to control
the location of the first nucleation. The height of the bump was 0.04 mm. The specimen was first

loaded until the entire domain was fully transformed into martensite, and then was unloaded.

The following linear relationships were found to best fit the nucleation and propagation
stresses of the reverse transformation obtained from the isothermal experiments at different

temperatures,

o (T)=75128 T—4422 (MPa)
0,e(T)=10276 T-3531 (MPa)
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In above relations 7 is in °C and oy ,0yc>0an>0ac are the second Piola-Kirchhoff

stresses. The variations of the nucleation and completion stresses with temperature are shown in
Figure 3-16. In Figure 3-16, the nominal (engineering) nucleation and propagation stresses (Maxwell
stress) as determined by the isothermal simulations are also shown. Notice the large difference
between the engineering nucleation stress and the second Piola-Kirchhoff nucleation stress during the
reverse transformation. This difference is due to the large amount of strain induced during the
forward transformation. The local isothermal behavior of the material according to the constitutive

model is shown in Figure 3-17.

T
L=39 mm yd
w=2.5 mm
~L_
Small bump
§ LS
vy i

Figure 3-15. Geometry and finite element discretization of the sample used for the calibration of the

model in reverse transformation
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Figure 3-16. Chosen 2nd Piola-Kirchhoff nucleation and completion stresses and their equivalent
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Figure 3-17. Local isothermal 1-D stress-strain behavior of SMA according to the constitutive model.
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In order to show the close fit of the chosen mechanical properties, the overall pseudoelastic
responses of the dog-bone sample based on the isothermal simulations are compared to the
experimental results in Figure 3-18. The deviation from linear elasticity during loading at 15 °C is
probably due to the rhombohedral phase transformation (A—R) that occurs prior to martensitic
transformation at this low temperature (further details can be found in Shaw and Kyriakides, 1995).
Also, the deviation from linearity during loading at 25 °C is due to the early phase transformation
which occurs homogenously prior to the nucleation of localized transformation bands (Feng and Sun,

2006; Daly et al., 2007; also Remark 5 at the end of Section 3.3.3.).

Thermal parameters of the NiTi strip, including zero-stress enthalpy change, AZ, ., the

thermal conductivity, k, specific heat capacity, C,, and density, p, were taken from Shaw (2000). It
was also assumed that the stress-free enthalpy change for the martensite to austenite transformation,
Ahy,_, A , 1s the negative of that for the austenite to martensite transformation. As an approximation,
all thermal parameters were assumed to be independent of phase, temperature, or other state variables.

Table 3-3 summarizes the chosen mechanical and thermal properties.
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Figure 3-18. Pseudoelastic response of NiTi strip under isothermal conditions. (a) 7" =15 °C; (b) T =25
°C; (¢) T =35 °C (Experimental data are taken from Shaw, 2000).
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Table 3-3. Mechanical and thermal properties of the NiTi strip.

3.4.2.2.

Parameter Value
Elastic modulus of Austenite E, (GPa) 57.55
Elastic modulus of Martensite Ey (GPa) 28.00
Poisson’s ratio VasVum 0.3
Transformation strain Ag, 0.0429
Martensite nucleation stress %w (MPa) 9.4258 T +189.13
Martensite completion stress Ove (MPa) 48158 T +232.73
Austenite nucleation stress O (MPa) 75128 T —44.22
Austenite completion stress O (MPa) 10276 T -35.31
Enthalpy change at zero-stress Ahy s —Ahy . Tkg)  -12.3x10°
Thermal conduction coefficient k (Wm' K" 18
Specific heat capacity G d kg' K 837
Density p (kgm™) 6.5x10°

Simulation of loading-unloading at low strain-rate

The pseudoelastic response of the dog-bone sample, shown in Figure 3-14, was simulated for

The predicted force-displacement response is compared with the experimental measurements
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low strain-rate displacement-controlled loading-unloading. The ambient air temperature surrounding

the sample and the temperature of the grips was 25 °C. The specimen was loaded at a constant rate of

5‘/ L =107 s™". The deformation was paused at §/L =6.4% for 5 minutes to allow the sample to

reach thermal equilibrium, followed by unloading at a constant rate of 5/ L,=-10"s",

of Shaw and Kyriakides (1997) in Figure 3-19. A sequence of 14 contour graphs showing the
distribution of phase and temperature corresponding to the deformed configurations of the specimen

during the forward transformation are provided in Figure 3-20. The contours are separated by



intervals of 6/L; =0.4% with the first and last contour corresponding to J6/L; =0.8% and
8/Lg =6%, respectively. The first region to transform to martensite nucleates at the geometric

imperfection described earlier, and a sharp inclined deformation band forms with the well-known
angle of 55° to the specimen axis. Upon additional loading, the single, well-defined transformation
front evolves into an alternating criss-cross pattern, which is similar to the pattern Shaw and
Kyriakides (1997) observed in their experiments. As loading continues, the temperature at the
transformation front increases (Figure 3-21), which in turn results in an increase in the nominal stress

as shown in Figure 3-19. At §/L ~2.7%, a second transformation front nucleates at the lower end

of the gauge section due to the stress concentration near the round fillet. The second nucleation event
causes the drop in the load observed in both the experiment and the simulation results (refer to Figure
3-19). As the fronts approach each other, they become straight and inclined across the width with the
same orientation to minimize the mismatch between them. At the instant of coalescence, the fronts
make an angle of 57.5° with the loading axis. Overall, the mechanical response, distribution of
temperature, evolution of transformation, and details of the transformation fronts are in good

agreement with the experimental observations of Shaw and Kyriakides (1997).

The sequence of events leading to the initial shape change of the transformation front is
particularly interesting. Figure 3-21 shows a close up view of the transformation front (phase
distribution contour) and distorted mesh, as well as the predicted bending moment at the top end of
the specimen (x=L,) as a function of loading. The contour and mesh image labels correspond to
various loading stages which are marked in Figure 3-21(c). In the distorted mesh images, the lateral
displacement (v) has been multiplied by a factor of 20 to accentuate the lateral deflection in Figure 3-
21(b). When the inclined transformation band nucleates at time @ and begins to spread, the lateral
deflection increases continuously at the front. The lateral deflection causes a bending moment to build

up at the specimen end, which tends to straighten the specimen. The bending moment and lateral
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deflection reach their maximum between times & and @, where the first finger emanates from the
upper front in order to balance the lateral deflection, and straighten the specimen. As a result, the
bending moment and lateral deflection decrease from time ©® to ®. The subsequent evolution of the
transformation front can be described as successive nucleation and growth of finger patterns in

alternative directions in order to keep the lateral deflection minimum.
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Figure 3-19. Pseudoelastic response of NiTi strip at §/L, =10~ s”'. Experimental data are taken from

Shaw and Kyriakides (1997).
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Figure 3-20. Sequence of events during forward transformation at §/L, =10~ s~'. (a) Martensitic

fraction; (b) Temperature.
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Figure 3-21. Details of front morphology evolution during nucleation of forward transformation. (a)
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During the pause between loading and unloading, the temperature of the sample returns to the
ambient temperature. The evolution of the phase transformation and temperature distributions during
the reverse transformation are shown in Figure 3-22. As expected, the reverse transformation initiates
at the tapered ends of the sample due to the reduced stress at these regions. The two transformation
fronts propagate toward each other at the same speed. During most of the unloading part, the
converging fronts are predicted to propagate through inverse shrinkage of the finger-type patterns
observed during the forward transformation. However, experimental results of Shaw and Kyriakides
(1997) suggested that the fronts during reverse transformation are quite sharp and straight with an
inclination angle of approximately 56°. This discrepancy between the predicted and observed results
is probably due to the lack of information on the exact boundary conditions at the gripped ends in the
model. As will be discussed later, small misalignments in the boundary conditions may result in sharp

inclined fronts during the reverse transformation.

In addition to difference in the shape of the transformation fronts, the magnitude of the
predicted temperature drop during reverse transformation is also different from the measurements of
Shaw and Kyriakides (1997). The maximum temperature drop observed during the experiment was -2
°C whereas in the simulation it was predicted to reach -3.6 °C. This discrepancy may be partly due to
uncertainties in the thermo-physical properties of the specimen and thermal boundary conditions,
and/or partly due to the assumption that zero-stress latent heat in forward and reverse transformations

have the same value.
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Figure 3-22. Sequence of events during reverse transformation at 5/L , =-10~ s™'. (a) Martensitic

fraction; (b) Temperature.
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3.4.2.3. Simulation of loading-unloading at moderate strain-rate

The pseudoelastic response of the dog-bone SMA specimen was simulated for a moderate
strain rate condition. A constant loading rate of 5/ L, =107 s™" was applied until S/Lg =7.65%,

followed by a S5-minute hold, and then unloading at the same constant rate. The ambient air
temperature was 25 °C. The nominal stress-strain response is shown in Figure 3-23. The evolution of
phase transformation and distribution of temperature during the forward and reverse transformations
are depicted in Figures 3-24 and 3-25. The transformation behavior is very similar to the experimental
observations of Shaw and Kyriakides (1997). The localized transformation is first nucleated at the top
corner followed by a second nucleation event at the lower end and two nucleation events in the mid-
span. The shape of transformation fronts match those observed in the experiment. For the duration of
the loading phase, they are sharp and straight, with an inclination angle ranging from 55° to 65° to the
vertical axis. Only occasionally will one or two fingers develop at the front. This can be explained by
noticing that the lateral deflection developed in each front compensate the lateral deflection in another
front, and therefore the sharply inclined fronts can survive without branching and developing crossing

fingers.

An interesting feature of the stress-strain response in Figure 3-23 is the stress-relaxation
during the break time between loading and unloading, which can be seen in both the simulation and
experimental results. This stress-relaxation is caused by the phase transformation due to the

temperature decrease during the pause period (Pieczyska, 2006c¢).
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Figure 3-23. Pseudoelastic response of NiTi strip at §/L, =107 s~'. Experimental data are taken from

Shaw and Kyriakides (1997).

Unlike the low strain rate case, the transformation fronts during unloading at this moderate
strain rate are mostly straight, with an inclination angle between 54° and 62°. The fronts emanating
from the sample ends, however, are initially fingered and gradually become straight as they approach

the middle fronts.

The temperature distributions during forward transformation agree with the measurements of
Shaw and Kyriakides (1997). But as in the previous simulation, the predicted temperatures exhibit a
much larger temperature drop (-13 °C) during the reverse transformation as compared to the
experiments (-5 °C). This large deviation from the experimental measurements suggests that the
stress-free enthalpy change during the reverse transformation ( Ah,,_,, ) must be substantially smaller
than its counterpart during forward transformation. The DSC measurements reported in Shaw (2000),

however, do not show such a large difference. Further investigation is needed to clarify this issue.
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Figure 3-24. Sequence of events during forward transformation at §/L, =107 s™'. (a) Martensitic

fraction; (b) Temperature.
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Figure 3-25. Sequence of events during reverse transformation at 5/L , =-107 s”'. (a) Martensitic

fraction; (b) Temperature.
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3.4.2.4. Simulation of loading-unloading at high strain-rate

This simulation was performed for a high strain rate beyond the loading rates applied in the
experiments of Shaw and Kyriakides (1997). The elongation rate in this case was 5/ L, =5x107s7",
which is five times faster than the moderate strain rate case. The loading was stopped at
6/Lg =7.65% , followed by a 5-minute hold and then unloading. The predicted nominal stress-strain
response at this rate is compared to those at the low and moderate strain rates in Figure 3-26. The
evolution of the phase transformations and temperature during loading and unloading are shown is

Figures 3-27 and 3-28, respectively.

Similar to the previous cases, the first nucleation event occurs at the top end of the gauge
section where the geometric imperfection is located. Shortly after that, seven narrow bands, some
parallel and some opposing each other are nucleated almost simultaneously in the gauge section. The

number of nucleation events in this case is substantially larger than those observed in the previous

two cases.
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Figure 3-26. The simulated pseudoelastic response of NiTi strip at various elongation rates.
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Figure 3-27. Sequence of events during forward transformation at §/L, =5x10~ s'. (a) Martensitic

fraction; (b) Temperature.
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Figure 3-26 indicates that the change in the nominal stress-strain response with strain rate
does not exhibit a linear trend. The difference between the stress-strain curves at the low and
moderate strain rates is more pronounced than the difference between those at the moderate and high
strain rates. As explained earlier, the increase or decrease in plateau stress is caused by the increase or
decrease in temperature at the transformation fronts. The magnitude of temperature variation at the
front depends on the rate of transformation, which is proportional to the speed at which the
transformation front propagates. The propagation speed, on the other hand, decreases with the number
of coexisting transformation fronts (Shaw and Kyriakides 1995, 1997, 1998). Consequently, the
increase of the transformation front temperature in the high strain rate case is hampered by the
increase in the number of transformation fronts, which in turn results in a relatively small increase in

the nominal stress.

By increasing the elongation rate, it is seen that the transformation fronts become even
sharper, and emanating fingers disappear during the reverse transformation. This is due to the fact
that the number of nucleation events increases by an increase in the strain rate. As explained earlier,
concurrent transformation fronts tend to maintain the overall straightness of the sample, and reduce
the bending moment that cause the fronts to branch. Hence, the sharp inclined transformation fronts

survive for long periods before finally merging.

3.4.3. Effect of boundary conditions

When performing uniaxial tension tests, it is important to minimize grip misalignment in
order to reduce the out-of-axis loading. However in practice, a pure uniaxial test may be difficult to
achieve. For most materials which exhibit stable mechanical behavior, a small variation in loading
conditions does not usually affect the observed behavior. But it is suspected that the transformation

behavior of NiTi samples undergoing uniaxial tensile tests may be sensitive to grip misalignments
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due to the instability of mechanical response. The dog-bone simulation has been used to evaluate the
possible effects of misalignment on the transformation behavior. A lateral misalignment of 0.35 mm
was applied to the lower end of the sample shown in Figure 3-14. The new displacement boundary

conditions are now given by,

u|x:LO =39, |x:L0,y:0 =0

All other boundary conditions were applied as previously described. The simulations for the
low and moderate strain-rate conditions were repeated with new boundary conditions. The overall
force-displacement response, the number of transformation fronts, and distribution of temperature
were hardly affected by the new boundary conditions in any of the simulations. During the forward
transformation at the moderate strain rate, only the orientation (+0 or —0) of the intermediate
transformation bands were affected by the misalignment. On the other hand, the reverse
transformation for both strain-rates exhibited dramatic change in the morphology of transformation
fonts (especially at the low strain rate). Figure 3-29 shows the evolution of the reverse transformation.
The two transformation fronts become sharp and straight shortly after exiting the tapered ends of the
specimen. As shown previously, a straight inclined front tends to increase the amount of lateral
deflection, which in turn helps to compensate for the misalignment of the specimen ends. The axial
load acts as a restorative force which resists the growth of lateral deflection. During the forward
transformation, where the axial load is quite large, lateral deflection is opposed, and the straight
inclined band eventually converts to a criss-cross front in order to reduce the lateral deflection.
During the reverse transformation, the transformation proceeds at a much smaller axial load, and
therefore a larger amount of lateral deflection can exist. The kinking of the specimen due to lateral

deflection is visible in Figure 3-29, which can also be observed in the experiments of Shaw and

Kyriakides (1997).
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8/Lg =52% 5/Lg =0.4%

Figure 3-29. Transformation behavior of the specimen with misaligned grips during reverse

transformation at 5/ =-107*s7".
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Chapter 4: Modeling of Cyclic Effects’

In many engineering applications, SMA elements are subjected to periodic loading-unloading
cycles which results in the alteration and/or degradation of material properties. In this chapter, the
one-dimensional and three-dimensional constitutive models developed in the previous chapters are
extended to incorporate the effects of mechanical cycling during the unstable pseudoelastic behavior.
The generalized one-dimensional constitutive model is used to simulate the cyclic behavior of a NiTi
wire at different temperatures. The role of transformation-induced plasticity in determining the

location of nucleation events is also studied numerically by using the three-dimensional model.

4.1. INTRODUCTION

As explained in Chapter 1, the pseudoelastic characteristics of SMAs are strongly affected by
cyclic loading (Miyazaki et al., 1986; Strnadel et al., 1995; Tobushi et al., 1996, 2005; Liu et al.,
1999; Gong et al., 2002; Iadicola and Shaw, 2002a). The forward and reverse transformation stresses,
the size of the hysteresis stress, and the amount of the transformation-induced strain are all affected
by the preceding cyclic deformation as shown in Figure 1-13. The origin of cyclic effects is the
introduction of microscopic plastic deformation during the stress-induced transformation which is
referred to as the transformation-induced plasticity. The dislocations are formed during the forward
transformation due to the incompatibility of transformation strain at the grain boundaries (Miyazaki et

al., 1986; Sittner et al., 2003).

The residual stress field formed by the microscopic plastic deformation influences the

stresses required to induce the phase transformations. As a result, both the forward and reverse

* A version of this chapter will be submitted for publication: Azadi, B., Rajapakse R.K.N.D., Maijer, D. M.,
Modeling of the Cyclic Behavior of Shape Memory Alloys during Localized Unstable Mechanical Response.
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transformation stresses and the size of the hysteresis stress decrease with increasing number of cycles.
Additionally, the residual stress field shields some pockets of martensite and prevents them from
being transformed into austenite during unloading. The residual martensitic phase and the
microscopic plastic deformation result in the macroscopic permanent strain at the end of the loading-

unloading cycles in Figure 1-13.

In some engineering applications where it is necessary for the material to exhibit a uniform
steady-state behavior, cyclic loading may be used to condition or “train” the SMA prior to service.
However, the process of cyclic training deteriorates the superior pseudoelastic characteristics of the
virgin material, such as the large dissipation capacity, and eventually leads to fatigue damage. It is
therefore reasonable to try to exploit the excellent properties of the material during the early cycles in
some potential applications. For this purpose, it is important to understand the nature of the cyclic
effects and incorporate them in the constitutive modeling in order to effectively predict the material

response.

One of the first attempts to model the cyclic behavior of SMAs was the phenomenological
model presented by Tanaka et al. (1992, 1995). They extended a one-dimensional model also
developed by Tanaka (1986, 1990) to include cyclic effects by introducing three internal variables
associated with the residual stress, residual strain, and the volume fraction of the irreversible residual
martensite. They assumed that the evolution of the internal variables could be expressed as

exponentially decaying functions of the number of forward and reverse transformations.

Lexcellent and Bourbon (1996) used a thermodynamic approach and employed the concept of
the free energy of the specimen in a one-dimensional model. They assumed that a portion of the
martensitic volume fraction is not recovered after each cycle. This behavior eventually saturates with

the number of cycles. The residual strain was attributed to residual martensite only.
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Bo and Lagoudas (1999) and Lagoudas and Bo (1999) developed a one-dimensional model of
cyclic behavior based on a framework provided earlier by Boyd and Lagoudas (1994a). This is the
first model that allows the plastic strain and transformation strain to develop simultaneously during
the forward and reverse transformations. The model has been extended to three dimensions by
Lagoudas and Entchev (2004). The flow rules for transformation and plastic strains are both based on
the flow rules presented in Boyd and Lagoudas (1994b). The transformation conditions and yield

surfaces were also assumed to be described by the same functions.

As discussed in the previous chapters, the localization of deformation and kinetics of
transformation are important factors in determining the dynamic pseudoelastic response of NiTi shape
memory alloys. The inhomogeneous nature of the phase transformation also has important
implications on the cyclic behavior of the material. As shown experimentally by Miyazaki et al.
(1986) and Iadicola and Shaw (2002a), the localization of deformation during cyclic loading of NiTi
wires can result in an inhomogenous change in the material properties. That is, some parts of the
sample are affected by the cyclic changes while other parts remain unaffected. This can produce
serious errors when attempting to predict the material response if the localization phenomenon is not
properly accounted for in the model. However, the constitutive models reviewed earlier do not

consider these effects during the cyclic loading.

A one-dimensional model that takes into account the inhomogenous nature of transformations
was developed by Abeyaratne and Kim (1997) based on the concept of the Helmholtz free energy
function. They generalized the thermoelastic model of Abeyaratne and Knowles (1993) by assuming
that the energy barriers between the austenite and martensite are changed by the defects generated
during cyclic deformation, so that the nucleation of the forward transformation becomes easier while
nucleation of the reverse transformation becomes more difficult with increasing number of cycles.

Only one internal variable associated with the cyclic effects was introduced, which was the number of
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times that a material point has undergone the forward transformation. The model was able to
qualitatively capture the effects of localized partial cyclic loading on transformation stress such as
demonstrated in Figure 1-14. However, the effect of cyclic loading on transformation strain,
generation of residual strain, and strain rate effects were neglected. The model also is not suitable for

use within a finite element framework.

The objective of this chapter is to generalize the one-dimensional and multi-dimensional
constitutive models developed in the previous chapters to account for the cyclic effects and
transformation-induced plasticity. For the first time, the effect of temperature on the rate of cyclic
changes is also considered in the following generalized constitutive models. The one-dimensional
model is used within a finite element framework to simulate the dynamic pseudoelastic response of a
NiTi wire subjected to partial cyclic loading. The strain-rate effects and thermal interactions with the
ambient environment are also considered. The results of the simulations are then compared with the
experimental observations reported by ladicola and Shaw (2002a). The results of a simulation
employing the multi-dimensional model are also presented to study the effects of transformation
induced plasticity and the impact of the residual macroscopic stress field on the nucleation of

transformations.

4.2. MODIFICATION OF THE ONE-DIMENSIONAL CONSTITUTIVE MODEL

4.2.1. General considerations and stress-strain relationship

To account for the macroscopic residual strain produced during cyclic loading, it is assumed
that the total strain contains a permanent strain component denoted by ¢®. The permanent strain is
introduced to account for microscopic plastic deformations and residual martensitic pockets locked at

the grain boundaries. Therefore, the total strain (¢) is expressed as,

- 162 -



e=g® 4 o0 L o0 (4-1)
where the elastic strain (¢'°) is related to the stress (o) by,
OIS A 4 (4-2)
EM EA

and the recoverable transformation strain (¢") is obtained according to,

eV =Ae (1) y (4-3)
where Ag, is the maximum recoverable transformation strain as defined in Chapter 2. As mentioned

in the previous section, some amount of the stress-induced martensite does not transform back into

austenite at the end of each cycle. Therefore, it is assumed that Ag, is a function of the cyclic effects

which are characterized by a new state variable called the cyclic identifier. The cyclic identifier
denoted by A is a function of the number of preceding cycles and other state variables in general. In
particular, the amount and rate of cyclic change has been shown to be strongly dependent on
temperature (Miyazaki et al., 1986; ladicola and Shaw, 2002a). Therefore, the mathematical

expression for the parameter A is assumed to be given by,

A= [(a,T +b,) H(dy) dy (4-4)

where H is the Heaviside step function defined as,

1 x>0

H() = {O o (4-5)

The parameters @, and b, are material properties which define the effect of temperature on

the evolution of the cyclic identifier during martensitic transformation. The physical meaning of the
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cyclic identifier A and parameters a, and b, should become clearer in the next few paragraphs. For

isothermal cycling, the cyclic identifier is given by,

A=(a,T+b,) [H(dy)dy

where the integral on the right hand side is the accumulated martensitic fraction during forward
transformation. If the material particle undergoes a sequence of full forward and reverse

transformations in each cycle (y =0 —1— 0) the above equation simply gives the number of times

the particle has undergone the forward transformation.

Differentiating equation (4-4) gives,

T+b,)d dy>0
d/l:{(al ﬂ,) 7 7/ (4_6)

0 dy <0

According to this equation the cyclic identifier A does not change during the reverse transformation.
This is, of course, a reasonable assumption as the reverse transformation does not eliminate the
defects generated during the forward transformation nor does it generate any additional defect

(Miyazaki et al., 1986).

In the next step, other material parameters which are sensitive to cyclic deformation are
expressed in terms of the parameter A. The changes in the pseudoelastic behavior and permanent
strain during the cyclic loading have been experimentally shown to be exponentially decaying
functions of the number of cycles. That is, with increasing cycles the pseudoelastic response
approaches a limiting state which is referred to as the fully-trained response throughout this text.

Therefore, the maximum transformation strain (Ag,) is assumed to be given by the following

exponential expression,
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Ae () =Ae® —[Ac® —ae (1) (4-7)
where Agfo) is the initial transformation strain corresponding to the virgin material (4 =0), and

Agt(”) is the transformation strain at the saturation limit (A =o0).
Similarly, the evolution of the permanent strain is also given by the following equation:

P =g (1-e") (4-8)

(e0)

where &

is the maximum permanent strain at the saturation limit.

The incremental form of the evolution equation for transformation strain is obtained by

differentiating equation (4-3) as,

de® :|:A5t(/1)+7%:| dy (4-9)
Y

where,

—(a,T+b)) [Agfo) —Agf"")]e_”I dy >0

w = (4-10)
4 0 dy <0
The incremental evolution rule of the permanent strain is also given by,

de® =Ag, (1) dy (4-11)

where Ag,(4) is called the cyclic plasticity multiplier and is given by,

(a,T+b,)e? e dy>0
Ag, () = (4-12)

0 dy <0
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Using equations (4-1), (4-2), (4-9), and (4-11), the incremental stress-strain relationship may

be expressed as:

(L+l_deo+(i—i+Agt(/1)+Agp(/1)+7/dAgtdef, dy >0

Ey E, Ey E, dy

de = (4-13)
(L+1‘_7Jda+[i_i+mt(,1)]d7 dy <0
EM EA EM EA

4.2.2. Kinetics of transformation

The nucleation criteria and the transformation evolution rules in this model are essentially the
same as those described in Chapter 2 and Appendix A. The only difference is that the evolution of the
transformation nucleation and finish stresses with cyclic deformation are also taken into account in

the generalized model.

The martensite nucleation and finish stresses are described by the following equations,

o (4 T) = o (1) = o (1) - ()] a-e) (4-14)
oy (AT) = o (1) =[o (1) - o ()] - ) (4-15)

and the nucleation and finish stresses of the reverse transformation are given by,

T (T) = QD) - e Q (1) - R (D)1 -e ) (4-16)
o (AT) = e UT) = [0 Q1) - o5 (D] 1= ) (4-17)

In the above equations, the ¥ and ) superscripts correspond to the values of the nucleation
and completion stresses in the virgin (A=0) and fully-trained (A1 =) states of the material,

respectively.
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The instantaneous nucleation stresses for forward and reverse transformation are given by,

oxn (A T)=a oy (4, T)+(1—a) oy (4,T) (4-18)

oA =a oA T)+(1-a) o (A,T) (4-19)
where the parameter o is determined according to the procedures described in Appendix A for each

case.
The initiation of transformations in the forward direction are triggered according to the

following conditions,

Fy (o7, T,A)=0, y<l (4-20)

whereas the initiation of reverse transformation during unloading is identified by the following

conditions:
Fyalo,y,T,2)=0, y>0 (4-21)
F,_ ,u and F, . in equations (4-20) and (4-21) are transformation potential functions given
by,
FA»M(O-J/’T»/?’) = G_(l_y)o-ly\ﬂ/[N(T:ﬂ') _7/O-MF(T’A) (4'22)
and,
R0, T A) =0 =y op (T, ) = (1=7) 046 (T, ) (4-23)

Substitution of (4-18) and (4-19) into (4-22) and (4-23) yields,

Fyom(osyT,A) =0 —a-y)ouw(4T)~(I-a+ay) oy (T, 1) (4-24)

and,
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Fyalo,, T, ) )=c—ayo,AT)-(1—ay)o (T, 1) (4-25)
The evolution of transformation during the forward transformation is governed by the

following incremental kinetic relationship,

dF, .y (o,7,T,A) = Fpoom do+ Faou dy + Fpom dT =0, dy>0 (4-26)
oo oy or

and during the reverse transformation by the following condition,

dFy A (0,7, T, ) = OFyion do+ OFrion dy + OFrion dT =0, dy>0 (4-27)
oo oy oT

Note that the variation of the cyclic identifier (A ) during the forward transformation needs to

be taken into account when calculating the derivative of the transformation potential function with

oF .
respect to (% ). That is,
Y

A _ oo (T2 A) =0 (T )]~ (@, T + B, a1~ ) ST (1= 4 ) 200 L (4.08)
oy oA oA
Since the parameter 4 does not change during the reverse transformation, the derivation of

Fy_, . with respect to y is given by,

@J =ao (T, ) -0, (A,T)] (4-29)
7

A calculation procedure similar to the one explained in Appendix A may be used to find the
increments of stress, martensitic fraction, and cyclic identifier during the forward and reverse

transformations based on the elastic-predictor and transformation-corrector method.
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4.2.3. Heat of transformation

Since some amount of martensite is retained during the process of cyclic deformation and
does not contribute to the subsequent transformations, the latent heat of transformation is reduced
during the subsequent cycles loading. To account for this, the stress-free enthalpy changes are

assumed to be given by the following relationships:

Al (D) = M02 — [0 2, = AR =) (4-30)
Al a () =MD = [An® — ARG, = e (4-31)

Additionally, the role of irreversible mechanical work due to the generation of permanent
strain must also be considered. Therefore by employing equations (2-27) and (4-11), the heat

generation during the cyclic loading is obtained as,

by D - Lot o as Dt ons, | G20)
] 2\Ey, E,
4 = (4-32)
Ah (,1)+l L ) P A |7 (7 <0)
_,0 M—oA 2\ e, E, t Vs Ve

4.3. MODIFICATION OF THE THREE-DIMENSIONAL CONSTITUTIVE MODEL
The generalization of the three-dimensional model developed in Chapter 3 for cyclic loading
is straightforward based on the discussions provided in Section 4.2. Therefore for brevity, only a

summary of the updated constitutive relations are provided in the following section.

4.3.1. General considerations and stress-strain relationship
The additive decomposition of the total strain tensor into elastic, transformation, and

permanent strains yields,

- 169 -



&y =Dy (o +e +&) (4-33)

The first term on the right hand side of equation (4-33) is the elastic strain. The compliance

tensor ( Dy, ) is also given in equation (3-7). Based on the constitutive relations developed in Chapter

3, the transformation strain is given by,

o__ As()  op ,
" [2 6P oP Ooy
3 0oy, 0oy,

(4-34)

where Ag,(A)is given in equation (4-3) and the definition of A is the same as before (equation 4-4).
The potential function P is also chosen to be the Von-Mises effective stress as described in Chapter 3.

As explained in the introduction, the origin of the permanent strain is the generation of
dislocations during forward transformation, which in turn is a result of slip. Therefore it is natural to

postulate that the evolution of permanent strain gl;p) follows the flow rule of incremental plasticity as

given in equation (3-1). Moreover, it is also assumed that the potential function for plastic

deformation (Q) is the same as that for transformation (P). Based on these assumptions, the

generation of permanent strain is governed by the following incremental relation:

As,(A)  op
dy,

2 0P 0P doy

3 0oy, Ooy

where Ag,(4) is the cyclic plasticity multiplier and needs to be determined. For this purpose, the

de? = dy>0 (4-35)

effective permanent strain is defined as,

dg® = %def}’) del (4-36)
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which is assumed to follow the same evolution rule that the one-dimensional permanent strain &®

follows (equation 4-8). That is,

EM =gP(1-e*) (4-37)

(p)

. N( ) . . .
;. from equation (4-35), and £ from equation (3-37) into equation (4-36)

Substituting de
yields the cyclic plasticity multiplier as,
(@, T+b,)e® e dy>0
Ag, (1) = (4-38)

0 dy <0

which is exactly the same as the cyclic plasticity multiplier obtained for the one-dimensional case in

equation (4-12).

In summary, the incremental stress-strain relationships from equation (4-33) through (4-38)

may be written as,

— 3 dAe, \S;
Dy (r)do, + {(Dﬁ? - Do, + E(Agt (A)+Ag, (1) + }/d—y‘j?}d y  dy>0
de, = (4-39)
Y ( ™) (A)) 3 Sy
Dy (y)doy +\Dyi' — Dyi Jow +EA5t(/1)g dy dy<0

4.3.2. Kinetics of transformation

The criteria for initiation of transformations are,

Fy (o7, T,4)=0, y<l (Forward transformation)
(4-40)

Fyoaloy,y,T,4)=0, y>0 (Reverse transformation)
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where,

F, w=0-(1=-p)ouyw(T,A)-yoyc(T,1)
(4-41)
Fy.=0—yoxnTA)—(1=y)o (T, )

In the above equation, o, and o, are the martensite nucleation and completion stresses

as functions of the cyclic identifier according to,

o (AT) = O (1) =[O (1) - (D] - e ) (4-42)

e (AT) = O (T) o0 (1) - o2 ()| (=) (4-43)

The nucleation and completion stresses of the inverse transformation are also given by,

o (L T) = Q1) - e QT - o R(D)] 1 -e) (4-44)

orc(AT) = U(T) - [T - o2 ()] 1 - ) (4-45)
As before, the © and ) superscripts correspond to the material properties of the virgin

(A =0) and fully-trained ( A = o) materials, respectively.

The following kinetics relations control the evolution of transformations:

dF, (o, 7,T,A)=0 Forward transformation (d y > 0)
(4-46)

dFy,a(0y,7,T,A4) =0 Reverse transformation (d y < 0)

The variation of the cyclic identifier (A1) during forward transformation must be taken into
account when the above kinetics relations are enforced. It should also be noted that the value of A

does not change during the course of reverse transformation.
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4.3.3. Heat of transformation
As mention in Section 4.2.3., the heat generation due to plastic work during the forward
transformation must be taken into account when calculating the heat generation term. From equation

(3-30) the total generated heat during forward/reverse transformations is given by,

. . . 1 o
4o =05 + 0,60 + {an D,%) — Doy — P AR,y (/1)} 7, 7>0

(4-47)

. . 1 ) )
dg = al.jg;;) + {5 o; (D,%) - D;;;)ak, —pAhy . (/1)} 7, 7 <0

where Ah, ,\,(4) and Ahy, . (A) are found from equations (4-30) and (4-31).

4.4. NUMERICAL SIMULATIONS

4.4.1. One-dimensional simulation of NiTi wire
The cyclic responses of a NiTi wire at two different temperatures are simulated using the
proposed one-dimensional model. The simulation results are compared qualitatively with the

experimental observations of ladicola and Shaw (2002a).

4.4.1.1. Material characterization and FEM model

The numerical analysis presented in this section are based on the experimental observations
of ladicola and Shaw (2002a,b). The experimental setup and the corresponding finite element model
are shown schematically in Figure 4-1. NiTi wire specimens, with a diameter of ¢= 0.765 mm and
gauge length of Lg= 60 mm, were subjected to uniaxial displacement-controlled tests. Three
thermoelectric modules (Peltier cooler/heater) with an overall length of L= 52 mm were placed
between the wire and an aluminum conduction block (not shown in Figure 4-1a). The aluminum

block provides an isothermal heat sink, while the thermoelectric modules maintain a prescribed
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temperature difference between the wire and aluminum block. Good thermal contact between the
wire and thermoelectric modules was achieved by using a thermally conductive paste. The

temperatures of the grips (7;) were also increased relative to the temperature of the thermoelectric

modules ( 7% ) in order to eliminate the effect of stress-concentration and early nucleation at the grips.

) )
T Grip T
[/ " //////(
hconv,l
Outer T, "4 mm
thermoelectric ’ A
\
’ 6 mm
6 mm hconv,2 v
Y T 0,2 - A_
A -
hconv,3 E
>
NiTi wire 40mm L;  Lg=60mm T ST R
@0.765 mm | -
Inner i —
thermoelectric conv.2 -
T. 0,2 |
— Y
v
A
6 mm
* ! hconv,l
v T,
7777777 !
Grip
(a) (b)

Figure 4-1. (a) Experimental setup (adapted from Iadicola and Shaw, 2002a); (b) Finite element model.
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To account for the heat transfer conditions presented by the thermally conductive paste and
thermoelectric modules, different convective film coefficients and ambient temperatures are assigned
to the corresponding sections of the wire in the FEM model as shown in Figure 4-1(b). The
convective film coefficient and ambient temperature associated with the air gap between the outer

thermoelectric module and the grip at each end are denoted by 4., and T, respectively. The

respective convective film coefficients assigned to the regions in contact with the outer and inner

thermoelectric modules are also denoted by (4,,,,7,,) and (h,, 5,7, 3).

Since the gap was filled with stagnant air, 4, , is set equal to 4 W/m® K based on the

convective film coefficient used in the simulations of Chapter 3. Following a trial-and-error process,
it was also found that the combination of thermal paste and electric module can be modeled by

assuming a value of 4, , = h, ; =1200 W/m® K for the central part of the wire (Lt). Based on these

values, the changes in temperature during transformations predicted by the simulations are in the

same range as those recorded in the experiments (+2 °C).

The pseudoelastic properties of the virgin samples are measured using the uniaxial tests
reported by Iadicola and Shaw (2002b) at different temperatures. In both tests, the nucleation events
during the forward and reverse transformations were forced to occur in the central part of the wire by
adjusting the distributions of temperature. This method allowed for the accurate measurements of
nucleation stresses without having to deal with the stress-concentration effects at the grips. Assuming
a linear relationship with temperature, the nucleation and finish (propagation) stresses of the virgin

material are obtained from the experimental results as,
oW (T)=10T +295 (MPa)
oW (T)=8.17 T +244.92 (MPa)
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o (T)=2.07T+98.32 (MPa)

o0(T)=4.02T +128.52 (MPa)
Note that in the above relations the temperature is measured in (°C) and the stresses are the

nominal (or engineering) values.

The elastic moduli of austenite and martensite (£, ,Ey) are assumed to be constant and
equal to the average values reported by Iadicola and Shaw (2002a). The transformation strain of the
virgin material (Agfo)) is the average of the values measured directly from the stress-strain curves

reported by ladicola and Shaw (2002b). Since the wire samples were partially transformed during the

(0)

tests, the localization of transformation has been considered in the calculation of Ag, .

The material properties necessary to describe the cyclic behavior are obtained from the results
of the cyclic experiments performed by ladicola and Shaw (2002a) on the same type of NiTi wire that
was used by ladicola and Shaw (2002b). Two sets of displacement-controlled cyclic experiments

were performed at nominal specimen temperatures of 7. =16.5 °C and T =24.6 °C and an elongation

rate of &/ L; =107 s"'. During the first cycle of both experiments, the entire length of the material

within the central part of the wire (Lt) was transformed, and then completely unloaded. Subsequent

cycles were performed by loading-unloading of the sample between &6/L; =0.013 and

§/Lg =0.047 .

The cyclic parameters @, and b, , and the transformation finish stresses (propagation stresses)

associated with the fully trained material (A =o0) are calculated based on the experimental
measurements of the drop in propagation stresses with the number of cycles. For this purpose, it is

assumed that the propagation stresses are linear functions of stress; that is,
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() _ () ()
ovr (T)=ayg T+ by

ol (D) =al) T457
Based on experimental observations, the temperature of the transformation fronts during the
tests were approximately constant, and 2 °C higher/lower than the nominal temperature of the

specimen (77 ) due to the heat generation. Based on these assumptions, and equations (4-4), (4-15),

and (4-17), the evolution of propagation stresses during the tests is approximated by,

(0)

(UMP UMP) [6<0> (Ty +2)— a2 x (T, +2)—b§,}?](l— -T2 )(N-1) )

(0)

(GAP O Ap ) [O-(O) (T - 2) a(“’) X (T 2) b(w) ] (1 — e(_a/lx(TT_z)_b/l)N)

where N is the cycle number. By fitting the above values to those measured from the experiments
using a least squares optimization method, the six parameters a,, b,, aln, b2, a3, b7 are

obtained as,

a, =3.444x10°, b, =-2.322x107
aly) =2.4655 (MPa/°C), biy) =230.16 (MPa)

al?) =6.2371 (MPa/°C), b} = 64.835 (MPa)
Unfortunately, the available experimental results do not provide much information about the

variation of nucleation stresses (o , O an ) With cyclic deformation. In order to find the values of the

nucleation stresses, it is assumed that the ratios of the nucleation stresses to propagation stresses do

not change during the cyclic tests. That is,
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L OB 7 165,246 °C
O AF T=T; O AF T=T;

Assuming a linear relationship with temperature, the nucleation stresses are obtained from the

above conditions as,

o(T)=3.0510T +277.77 (MPa)

o'\(T)=3.6359 T +53.95 (MPa)
Using the obtained values of a; and b,, the maximum permanent strain (g}()w)) can be
obtained from equation (4-8) and the measured value of residual strain at the end of cyclic loading in

the experiment. Similarly, the value of transformation strain at the saturation limit (A& ) may also

be obtained by measuring the transformation strain in the last cycle, and using equation (4-7).

The zero-stress enthalpy changes for the virgin material A, (=—AhY. , ) are assumed to

be the same as those used in the previous chapters. To find the values of AR{")\, (=—ARY ), it is

assumed that the enthalpy changes are proportional to the value of transformation strain Ag!™; that
18,

() (e0) ()
Ah g _ Ahy _ Ag;

(0) (0) (0)
Ay’ Ay, Ag,

The above assumption is based on the fact that the latent heat of transformation and
transformation strain are both reduced due to the residual martensite trapped during the cyclic

deformation.
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Other thermo-physical properties of the material such as density o, thermal conductivity % ,
and specific heat capacity C are assumed to be independent of cyclic loading, and their values are

taken from Chapter 2. Table 4-1 summarizes the mechanical and thermal properties of the NiTi wire.

The values of stresses and strains in Table 4-1 are the engineering (nominal) values.

Table 4-1. Mechanical and thermal properties of the NiTi wire

Parameter Value

Elastic modulus of Austenite E, (GPa) 73.5

Elastic modulus of Martensite Ey (GPa) 34

Cyclic thermal parameter a, (K" 3.444x107

Cyeclic thermal parameter b, -2.322x107
Transformation strain (virgin material) Agfo) 0.0539
Transformation strain (fully-trained material) Agf‘”) 0.0485

Maximum residual strain A 0.00572

Martensite nucleation stress (virgin material) oW (MPa) 10709 +295
Martensite nucleation stress (fully-trained material) o) (MPa) 3.0510 79 +277.77
Martensite finish stress (virgin material) o (MPa) 8.17T1 +244.92
Martensite finish stress (fully-trained material) o) (MPa) 246557 +230.16
Austenite nucleation stress (virgin material) o' (MPa) 207779 +98.32
Austenite nucleation stress (fully-trained material) o) (MPa) 3.6359 70 +53.949
Austenite finish stress (virgin material) a/(f% (MPa) 40279 +128.52
Austenite finish stress (fully-trained material) 0'/(;%) (MPa) 6.2371 T +64.835
Zero-stress enthalpy change (virgin material) Ahf‘?LM (T kg™ -12.3x10°

Zero-stress enthalpy change (fully-trained material) Ahf;ﬂM (T kg -11.07x10°

Thermal conduction coefficient k (Wm' K" 18

Specific heat capacity G d kg' K 837

Density p (kgm™) 6.5%10°
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The gauge length of the wire (Lg) is divided into 120 elements. A small geometric
imperfection is introduced in the center of the wire by reducing the cross-sectional area of the two
elements located in the mid-span. The role of this imperfection is to force nucleation to occur at this
location, and simulate a material defect that causes a small stress-concentration. The FEM
formulations and solution methods are similar to those described in Chapter 2 and Appendix C for the

one-dimensional case.

4.4.1.2.  Simulation I
The cyclic behavior of the wire sample shown in Figure 4-1 is simulated at an ambient

temperature of 7 =16.5 °C. The applied thermal and mechanical boundary conditions are as follow,

=T =T, =46°C

x=—4 mm x=56 mm

T, =25°C

m’

T,,=T,,=T; =165°C

o0

u|x:-4 mm = O

Ul . =0, i=1073sf1
xX= mm LG

where x is the axial coordinate measured from the bottom end of the outer thermoelectric module, and
u is the displacement component along the x- axis as shown in Figure 4-1(b). The initial temperature
distribution of the wire resulting from the above thermal conditions is compared to the experimental
measurement in Figure 4-2. There is a clear discrepancy between the measured temperature
distribution and that from the FE calculation. This is because of the approximate thermal properties

used in the model, and uncertainty of the assumed thermal boundary conditions.
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Figure 4-2. Initial temperature distribution along the wire length (experimental data taken from Iadicola
and Shaw, 2002a).

The wire is subjected to displacement-controlled loading-unloading cycles at an elongation
rate of &/ L, =107 s, During the first cycle, the wire is strained to §/L; =0.06 followed by
unloading to zero strain. In subsequent cycles, the wire is cycled between 6/L; =0.013 and
5/L; =0.047 . At the end of the 42™ cycle, the wire is fully unloaded again to zero stress and the
simulation ends.

In Figure 4-3(a), the predicted nominal stress is plotted against the global elongation for the
entire test. The experimental stress-strain response reported by of ladicola and Shaw (2002a) is
provided in Figure 4-3(b) for comparison. Except for the last few cycles, the predicted mechanical
response of the wire is in good agreement with experimental data. The changes in propagation
stresses of forward and reverse transformation (Ao, _,\, , Aoy, ) With cycles are shown in Figure 4-
4. The predicted propagation stress in each cycle was assessed at ¢/L; =0.03 for loading and at

0/L; =0.025 for unloading.

During the first cycle, a gradual rise in stress-strain response is observed at the end of loading
(0/Ls =0.06). This behavior is also seen in the experimental stress-strain response. The reason is
that the transformation fronts nucleated in the central part of the wire enter the hotter regions of the

wire near the grips (Figure 4-2) which requires a higher propagation stress.
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Figure 4-3. Nominal stress-strain response of the NiTi wire during cyclic loading at 7. =16.5 "C. (a)

Simulation (b) Experiment (reproduced with permission from Iadicola and Shaw, 2002a).
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Figure 4-4. Change in propagation stress relative to cycle 1 during cyclic loading at 7. =16.5 "C. (a)

Forward transformation; (b) Reverse transformation.
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A common feature in the measured and simulated stress-strain responses in Figure 4-3 is that
as the global elongation (6/L.) approaches its maximum value of 0.047, the stress increases and

reaches the same maximum value seen in the previous cycles. This behavior can be explained by

examining the evolution of the transformation fronts during cyclic loading.

The evolution of the phases and the propagation of the transformation fronts based on the
simulation are shown in Figure 4-5(a). The corresponding time-history predictions of the nominal
stress during cyclic loading are also plotted in Figure 4-5(b). The nucleation of forward
transformation in the first and second cycles occurs at x/L1=0.5 where the geometric imperfection is
located. A nucleation event for reverse transformation does not take place since the transformation
fronts already exist. Also starting from cycle 3, the specimen is partially unloaded, and therefore the

nucleation of forward transformation disappears for the same reason.

In each cycle, the transformation fronts move slightly into regions which did not transform in
the previous cycle. This can be seen in Figure 4-5(a) as a gradual growth in the length of the fully
transformed region during the forward transformation in each cycle. As the transformation fronts
move through the regions that have experienced fewer previous transformations, the stress tends to
increase since those regions have been less affected by the cyclic loading and require a higher
transformation stress. This effect has been experimentally observed by Miyazaki et al. (1981) and
Iadicola and Shaw (2002a). Based on the simulation results presented here, it was found that the
gradual decrease in the transformation strain with cyclic loading (equation 4-7) is the underlying
mechanism for an overall increase in the fraction of transformed material during cyclic loading. Since

the maximum global strain is held constant during the cycles (0/L; =0.047), the decrease in the

transformation strain is compensated by pushing the transformation fronts further into the less cycled

parts of the specimen.
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Figure 4-5. Evolution of (a) phases, and (b) nominal stress with cycles at 7 = 16.5 °C (simulation).
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Similar to the gradual growth in the amount of martesitic phase produced in each cycle, the

amount of recovered austenite at the end of each cycle also increases with the number of cycles. This

effect is due to introduction of a permanent deformation (&®) during forward transformation which
does not recover upon unloading. Since the overall elongation of the wire at the end of unloading in

each cycle is the same (J/L; =0.013), some amount of the remaining martensite from previous

cycles must be recovered in order to compensate for the introduction of the permanent deformation.

As more austenitic material is recovered at the end of each cycle, a higher stress is required to
transform it into martensite. A higher stress is required because the areas just transformed into
austenite are less affected by cyclic deformation compared to those that have experienced a larger
number of transformations. Therefore, the newly recovered austenite areas do not initially transform
during loading, but transform later when the stress is rising at the end of loading. The residual pockets
of austenite appear as two parallel white strips in the contour plots of Figure 4-5(a) from cycle 7.
However, the occurrence of this phenomenon cannot be verified from the experiments of Iadicola and
Shaw (2002a) where they used infrared images of temperature profiles at 1-second intervals to track

the propagation of transformation fronts.

In the simulation results, the propagation of only two co-existing transformation fronts is
repeated during the first 36 cycles. The predicted transformation behavior of the specimen changes in
the last six cycles by switching to four co-existing transformation fronts during the forward and
reverse transformations. The change in the transformation behavior starts in cycle 37, where the
reverse transformation initiates at four different points along the wire. Although it is difficult to
distinguish in Figure 4-5(a), some small pockets of austenite at the mid-span of the wire do not fully
transform to martensite during the loading segment of this cycle. The residual austenitic points later

become preferred nucleation points during the reverse transformation. Moreover, since these pockets
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of residual austenite have experienced a small number of transformations, the stress required to
transform them to austenite is relatively high which allows them to transform in the early stages of

unloading.

The change in the transformation behavior of the wire has a pronounced effect on the overall
stress-strain response in the last few cycles which can be seen in Figure 4-3(a) and 4-5(b). For better
illustration, the time history of stress during selected cycles is shown in Figure 4-6. The first change
in behavior appears in cycle 36 during which the lower stress plateau initially exhibits a higher stress
level compared to its previous cycle followed by smooth transition to a lower value. This behavior is
also repeated in the subsequent cycles. As explained earlier, the nucleation and propagation of the
reverse transformation in the mid-section of the wire requires a higher stress compared to other
sections of the wire that have been subjected to a higher number of transformations. This results in a
higher stress plateau during the reverse transformation. As the transformation fronts enter the highly

cycled regions again (Figure 4-5a), the plateau stress drops to a lower value.

A similar “staircase” effect (Abeyaratne and Kim, 1997) is also observed during the forward
transformation starting from cycle 38. As seen in Figure 4-5(a), the forward transformation in this
cycle starts at about x/Lt~0.25 and x/L1=0.75. These locations have experienced a high number of
transformations in the preceding cycles. Therefore the transformation stress is relatively low in these
regions. As the transformation fronts enter the central part of the wire, the plateau stress gradually

rises to an upper level.

Based on the above discussion, it may be concluded that the change in the number of co-
existing transformation fronts effectively stabilizes the overall mechanical response of the specimen

through the “staircase” effect.
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those reported by ladicola and Shaw (2002a) at selected cycles. The temperature variations are
obtained by subtracting the initial temperature profile shown in Figure 4-2 from the subsequent
temperature profiles. The number on top of each diagram (N) corresponds to its respective cycle
number. The selected cycles are also marked on Figure 4-3(b). Only two transformation fronts move
back and forth throughout the entire test in the experiment, while a change in transformation behavior
takes place as of cycle 37 in the simulation results which was explained earlier. As shown in the next

section, a change in the number of propagating transformations has been observed during an

600
500}
400
300
200

100

N=36

N=37

N=38

N=39

0 |
2450

In Figure 4-7, the temperature change profiles obtained from the simulation are compared to

|
2500

|
2550

|
2600

— > Time (s)

experiment conducted at a higher temperature.

- 188 -

|
2650

Figure 4-6. Time history of stress during selected cycles.

|
2700




X/LT

473 813 11153 1493 1833 2173 2513 2853
——— Time (s) [ |
-2 0 2
AT °C
(a)

X/LT

473 813 1153 1493 1833 2173 2513 2853
—— Time (s) [ |
2 0 2
AT °C

(b)

Figure 4-7. (a) Infrared images of temperature variation at selected cycles (reproduced with permission
from experiments of Shaw and Kyriakides, 2002a); (b) Simulated profiles of temperature variation

during cyclic loading at 7. =16.5 °C.
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In the simulation results, the transformation of residual pockets of austenite at the end of the
forward transformations in each cycle is identified by a momentarily flare of increased temperature in
the central part of the wire. As mentioned earlier, this behavior was not observed in the infrared
measurements of this experiment. It is probably because the stress concentration that exists at the
interface of highly cycled and less cycled regions cannot be effectively modeled with a one-
dimensional model. This allows some residual austenite to survive during the early stages of forward
transformation in the simulation. The discrepancy between the simulation and experiment may also
be due to the inaccuracy of thermal measurements. As shown later, momentary high-temperature

spots have been observed occasionally during a cyclic test performed at a higher temperature.

4.4.1.3. Simulation IT
The cyclic behavior of the NiTi wire shown in Figure 4-1 is simulated in this section for a

higher ambient temperature of 7, =24.6 °C. The thermal and mechanical boundary conditions are

similar to those explained in the previous section, except for the following condition:

T,,=T,;=T;=246"C

The applied cyclic loading is exactly the same as that described in the previous section for the
lower temperature case (Simulation I). The only difference is that the wire is subjected to only 32
cycles in the present case. The predicted and measured pseudoelastic responses of the wire during
cyclic loading at this temperature are shown in Figure 4-8. The changes in propagation stresses during

forward and reverse transformations (Ao, ,Aoy, . ) With cycles are also plotted in Figure 4-9.

The cyclic changes are larger at this temperature, and the material response approaches its fully-
trained state at a faster rate. This behavior is not surprising since the temperature sensitivity of the

cyclic parameters has already been embedded in the constitutive model through equation (4-6).
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Figure 4-8. Nominal stress-strain response of the NiTi wire under cyclic loading at 7. =24.6 °C. (a)

Simulation (b) Experiment (reproduced with permission from Iadicola and Shaw, 2002a).
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Figure 4-9. Change in propagation stress relative to cycle 1 during cyclic loading at 7. =24.6 "C. (a)

Forward transformation; (b) Reverse transformation.
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The final residual strain at the end of cycles in the experimental results is higher than the
permanent strain predicted by the present model. The primary reason is slippage at the grips which

was also reported by Iadicola and Shaw (2002a) with the experimental results.

Observing both the predicted and experimental results, the overall mechanical response of the

wire at this temperature (7;=24.6 °C) is more stable compared to that at the lower temperature
(T;=16.5 °C). This trend may be explained by investigating the localized transformation behavior of

the material. The predicted evolution of phases and the propagation of transformation fronts are
shown in Figure 4-10(a). The time-history of the nominal stress during cyclic loading is also plotted
in Figure 4-10(b). The change in transformation behavior from two fronts to four co-existing
transformation fronts occurs much earlier (cycle 11) compared to the previous case. This is due to the
faster rate of accumulation of cyclic effects at the present temperature. As a result, the stress-strain

response of the specimen exhibits a more stable behavior.

The change in the number of transformation fronts with cycles in this case was also verified
by the experimental observations. The temperature variations during cyclic loading measured by the
infrared imaging system are shown in Figure 4-11(a). The predicted temperature changes along the
wire length are shown in Figure 4-11(b). In both cases, two transformation fronts propagate back and
forth during the early cycles. As the number of cycles increases, the number of transformation fronts
increases to three or four co-existing fronts. However, there are some differences in the predicted and
measured behaviors. Starting from cycle 16, the predicted transformation behavior during loading
shows some deviations from the experiment, but the reverse transformation behaviors from the

experiment and simulation are more or less the same throughout the test.
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Figure 4-10. Evolution of (a) phases, and (b) nominal stress with cycles at 7. = 24.6 °C (simulation).
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In cycle 16, a second change in the predicted transformation behavior of the wire occurs. At
the beginning of loading in this cycle, the two inner transformation fronts start propagating toward
each other while the outer transformations do not move. This is again because the stress concentration
at the interface of the highly cycled austenitic areas and less cycled martensite areas cannot be
accurately accounted for by the present one-dimensional model. In cycle 16, this results in a more
favorable transformation condition at the inner transformation fronts. The inner transformation fronts
stop propagating when they reach the central part of the wire. The reason is that a higher stress is
required to transform this region. As a result, the inner transformation fronts stop and the outer
transformation front start propagating. Therefore, starting from cycle 16 only two transformation

fronts propagate at each time.

As described in the previous section, the underlying mechanism of the change in the
transformation behavior is a combination of the effects of the residual permanent strain, and residual
austenite particles which do not fully transform during the forward transformation. The
transformation of a residual isolated pocket of austenite at the end of a loading segment appears as a
momentarily high-temperature spot in the simulated temperature variation profiles (Figure 4-11Db).
Similar high-temperature spots are occasionally observed in the experimental infrared (e.g., cycles 18
and 30 in Figure 4-11a). Nevertheless, the above hypothesis cannot be completely verified by the

existing experimental evidence and requires further theoretical and experimental investigation.

It should be noted that the difference between the simulation and experimental results is also
related to the chosen thermomechanical parameters. Especially the values chosen for the nucleation

stresses of the full-trained material are probably far from their real values.
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Figure 4-11. (a) Infrared images of temperature variation at selected cycles (reproduced with permission

from experiments of Shaw and Kyriakides, 2002a); (b) Simulated profiles of temperature variation

during cyclic loading at 7. = 24.6 °C.
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4.4.2. Three-dimensional simulation of the wire

The pseudoelastic response of the NiTi wire is simulated using the three-dimensional model,
in an effort to understand the role of the transformation-induced plasticity in nucleation and
propagation of transformation fronts. Although the wire can be effectively simulated by a one-
dimensional model, studying certain features of the transformation front and distributions of residual

stress and strain are better suited to a full multi-dimensional analysis.

The geometry of the wire and FE mesh are shown in Figure 4-12. The wire is discretized
using 8-node quadratic axisymmetric elements. The radius of the wire is divided into 3 elements
while its length is divided into 400 elements. The applied mechanical and thermal boundary

conditions are,

u" x=0 _ux x=0 :O
u" x=L =0
ul _, =90, Z=2x10"s"
Tx:O :T|x:L =25 OC

where u, and u, are the displacement components in the radial () and axial (x) directions.

The ambient media is assumed to be stagnant air at 7, =25 °C. A convective film coefficient

of h... =4 W/m>K is assigned to the outer surface of the wire to represent the thermal interaction of

cony
the wire and the environment. The material is assumed to be the same NiTi wire used in the previous
section, with the thermomechanical properties given in Table 4-1. The values of the nominal stresses
and engineering strains were converted into the corresponding 2™ Piola-Kirchhoff and Green-

Lagrange values for use in the three-dimensional model.
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Figure 4-12. Geometry of the wire and axisymmetric finite element mesh.
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As pointed out in Chapter 4, the transformation completion stresses in the multi-axial
constitutive model (o, 0 ) are different from the transformation finish stresses used in the one-
dimensional model (o, 0 A5 )- By fitting the isothermal propagation stresses from the simulations to

those from the experiments of Iadicola and Shaw (2002b), the completion stresses are obtained as,

Ope =5.9354xT 9 +169.27 (MPa)

O e =5.8675xT 9 +160.28 (MPa)

A very small geometric imperfection is introduced at the lower corner of the wire (i.e., at
r=D/2 and x= 0) to control the location of the first nucleation event. No other artificial effect is

introduced.

The wire is subjected to displacement-controlled loading-unloading at a strain rate of

S/L=2x10" s, The global stress-strain response of the wire is shown in Figure 4-13. Contour
plots of the distribution of martensitic fraction throughout the sample during loading and unloading
are shown in Figure 4-14. Due to the symmetry of the wire, the contour graphs are plotted on the r-x

plane (Figure 4-12).
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Figure 4-13. The nominal stress-strain response of the NiTi wire.

During loading, the forward transformation is first nucleated at the lower end of the wire
followed by a second nucleation at the upper end due to the stress concentrations imposed by the
geometric imperfection (lower end) and boundary conditions (upper end). As the transformation
fronts propagate toward the central part of the wire, the temperature of the specimen increases which
elevates the level of stress as seen in Figure 4-13. As a result, a third nucleation event takes place in

the mid-span of the wire. Each nucleation event is accompanied by a drop in the stress-strain curve.

As the transformation fronts approach each other, the effect of heat generation is intensified
and the stress continuously rises without occurrence of any additional nucleation event. The first two
transformation fronts meet each other at x/L= 0.67, followed by the coalescence of the two remaining
fronts at x/L= 0.29. By the end of loading segment, the entire length of the wire has transformed into

martensite.
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A 5-minutes delay is assumed between loading and unloading to allow the temperature of the

specimen to return to the ambient temperature. The specimen is then unloaded at the same elongation

rate of §/L=-2x10" s, It is seen that the nucleation of the reverse transformation occurs at the
exact same locations that the fronts coalesced during the forward transformation. This is an
interesting result which has also been repeatedly observed in various experiments (Shaw and
Kyriakides, 1995; Shaw and Kyriakides, 1997; Iadicola and Shaw 2002a,b). According to these
observations, the coalescence sites of the transformation fronts become the preferred nucleation

points for the subsequent transformations.

To better understand the interaction of two converging transformation fronts, the distribution
of the Von-Mises effective stress (& ) before and after the coalescence of two transformation fronts
are depicted in Figures 4-15(b) and 4-15(c). The distribution of phases before the two fronts merge is
also shown in Figure 4-15(a). Despite the introduction of the permanent deformation, the distribution

of stress is quite uniform in the transformed regions (y =1). However, after the two fronts merge

together, the effective stress does not exhibit a uniform distribution at the site of coalescence. This is
because the two transformations propagate in opposite directions and the resulting permanent strains

have mismatching directions.
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Figure 4-14. Sequence of martensitic fraction contours. (a) Loading; (b) Unloading.
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Figure 4-15. (a) Distribution of phases before the coalescence event; (b) Distributions of effective stress
corresponding to figure (a); (c) Distributions of effective stress after the coalescence.

As explained in Chapter 3, the state of stress at the transformation front is three-dimensional
due to a severe deformation gradient. As a result, the permanent deformation (&£ ) produced during
the transformation is not uniaxial and depends on the gradient of the stress tensor (equation 4-35).
Unlike the transformation strain (£ ) which can reorient itself after the completion of transformation,
the direction of permanent strain does not change once the transformation front passes over. Since the

permanent strains produced at a coalescence site are in opposite directions, a residual macroscopic

stress field is produced which facilitates the nucleation of subsequent transformations.
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The distributions of permanent strains produced at the site of the coalescence are given in
Figure 4-17. The distribution of shear strain ( ;/g’)) is particularly interesting. The directions of shear

strain on the opposite sides of the coalescence site are exactly opposite to each other. The non-
uniform distribution of permanent strain at this point is clearly responsible for the residual stress field

observed in Figure 4-15.

As a final remark, it should be noted that the residual permanent strain calculated in the
present model is a macroscopic quantity, and differs from the concept of microscopic plastic strain.

As explained in the introduction, the microscopic plastic deformation occurs at the grain boundaries
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and results in a microscopic residual stress field which assists the nucleation of transformation. The
macroscopic residual strain on the other hand, may or may not produce a considerable residual stress

field as shown by the above example.
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Chapter 5: Summary and Conclusions

The mechanical instability of some SMAs results in localized transformation and Liiders-like
deformation. Previous experimental and theoretical investigation has shown that nucleation and
propagation of the localized transformation bands have important implications for the dynamic
pseudoelastic response of SMAs. In particular, the sensitivity of an SMA’s response to strain rate and
cyclic degradation is directly influenced by inhomogenous transformation. Motivated by the above

facts, the main objectives of this research have been:

1) to develop a reliable and convenient constitutive model for engineers to predict the dynamic,

unstable pseudoelastic response of SMAs, including their cyclic response, and

2) to provide a better understanding of the mechanical origin of shape recovery occurring

through unstable propagation of transformation bands.

5.1. SUMMARY OF MODEL DEVELOPMENT

A one-dimensional thermomechanical model was developed to describe the unstable
pseudoelastic behavior of SMAs and to simulate the nucleation and propagation of transformation
front(s) in an SMA wire. A key assumption in the model is that the untransformed particles located
close to the transformation fronts are less stable than those further away from these interfaces. This
constitutive model was used to simulate the pseudoelastic behavior of a thin SMA wire at various
strain rates. The results of the simulations were in good agreement with previous experimental
observations. The behavior of a NiTi wire subjected to various thermal loadings under constant-stress

or constant-strain conditions was also studied numerically.

The one-dimensional model was extended to a multi-axial constitutive model of unstable

pseudoelastic response. The model was developed based on a total deformation constitutive relation
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(the deformation theory of plasticity). In this model, the total transformation strain is expressed in
terms of the gradient of an effective stress. This feature allows the simultaneous accommodation of
the transformation and the reorientation of transformation strain according to the current state of
stress. The model was implemented in a finite element code to simulate the Liiders-like behavior and
localized transformations occurring during the uniaxial extension of NiTi strips. Special attention was
paid to the multi-axiality of the stress state at the transformation fronts during the forward and reverse
transformations. The effects of heat generation and boundary conditions on the nucleation and
propagation of transformation fronts were also studied. The simulation results proved to be in good

agreement with previous experimental observations.

The one-dimensional and three-dimensional constitutive models of unstable pseudoelastic
behavior were extended to include the effects of transformation-induced plasticity and cyclic
deformation. For this purpose, a new internal state variable (cyclic identifier) was defined that
characterizes the amount of preceding cyclic deformation at various temperatures. The generation of
an irreversible plastic deformation during the forward transformation was also incorporated. The
updated one-dimensional model was applied to simulate the pseudoelastic behavior of a NiTi wire
subjected to cyclic loading. The model was able to qualitatively capture the effect of cyclic loading on
the overall mechanical response of the specimen, as well as the nucleation and propagation of

transformation fronts.

5.2. CONCLUSIONS
The following conclusions can be drawn from the numerical simulations of the NiTi wire

under various loading conditions based on the one-dimensional model:

e The one-dimensional constitutive model proved to be successful in describing the

dynamic unstable pseudoelastic response of SMA wires subjected to various loading
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conditions. The effects of loading rate and heat generation on the overall pseudoelastic
response, and nucleation and propagation of transformation fronts, are captured by the

model.

Defects and impurities in the material can be effectively included in the FEM analysis by
introducing a random deviation from the original cross-sectional area along the wire
length, which results in a more realistic model and prevents the transformations from
occurring homogeneously throughout the wire. However, a higher mesh density is

required in the FE model to achieve convergence in this case.

The simulations of the pseudoelastic response at various strain rates revealed that the
height of the hysteresis loop does not always increase with increased loading rate. In fact,
if the heat generated during the forward transformation is not dissipated fast enough
during elastic unloading, the reverse transformation occurs at a higher stress level than

might be expected. This effect reduces the height of the hysteresis loop.

Simulating the temperature-induced transformation in a wire at constant stress revealed
that the required change in temperature for full transformation of the specimen strongly
depends on the cooling rate. As the cooling rate increases, the drop in ambient

temperature required to transform the specimen increases.

Based on the simulations of NiTi strip samples using the three-dimensional model, the

following conclusions can be drawn:

The total transformation strain model is clearly successful in describing the nucleation
and propagation of transformation fronts during both loading and unloading. Although
the model was applied to simulate the uniaxial extension of NiTi strips, the analysis was

multi-axial in nature and involved calculation of the two-dimensional stresses and strains.
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Therefore, the model is able to capture the unstable pseudoelastic behavior in problems

that involve multi-axial loading.

It was shown through a numerical example that the reversibility of transformation strain
in a constitutive model for uniform stress fields does not automatically guarantee the
recovery of inelastic deformation when strain localization takes place. As shown in the
simulations, the state of stress at a transformation front is very complex due to rapid
changes in the strain tensor across the front. Upon unloading, the mismatch in the strain
tensor between the neighboring transformed and untransformed regions may further
intensify the stress concentration. This effect may prohibit the occurrence of the reverse
transformation. Consequently, some localized martensitic areas are locked inside the

parent phase, and the transformation strain is not fully recovered throughout the material.

The reorientation of the transformation strain plays an important role in the reversibility
of inelastic deformation during unstable pseudoelastic behavior, preventing particles from
being locked in localized high stress concentration zones during reverse transformation.
Due to reorientation, the direction of the transformation strain tensor is continuously
updated according to the current direction of stress, which minimizes the mismatch
between the transformed and untransformed areas. The reorientation of transformation

strain also results in a fairly uniform distribution of stress across the transformed areas.

The success of a purely mechanical approach in correctly describing the forward and
reverse transformations verifies that the continuum-level phenomena are the major
drivers in the nucleation and propagation of martensitic transformation and its reverse
transformation in NiTi shape memory alloys, regardless of the detailed microstructural

root of the material instability.
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The number of propagating transformation fronts is an important factor in determining
the overall mechanical response of the material in non-isothermal conditions. The number
of coexisting transformation fronts influences the local variations of temperature at

individual fronts, which in turn affects the overall pseudoelastic response.

The comparison between the calculated temperature drop during reverse transformation
and experimental measurements clearly indicates that the zero-stress enthalpy change
(stress-free latent heat) of forward transformation must be greater than that of the reverse
transformation. This conclusion, however, does not agree with reported DSC
measurements. Further experimental and theoretical analysis is required to clarify this

difference.

The numerical analysis of the effect of boundary conditions on the evolution of
transformation fronts indicated that the front morphology is sensitive to imperfections
and misalignments in the boundary conditions, especially during the reverse

transformation.

The following conclusions can be drawn based on the numerical simulations of cyclic

deformation:

Residual pockets of austenite that gradually accumulate during cyclic loading may
change the transformation behavior of a wire specimen, and result in the nucleation and

propagation of multiple transformation fronts throughout the sample.

The change in transformation pattern (number of propagating fronts) during cyclic
deformation has a pronounced effect on the overall pseudoelastic response of the

material.
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e An increase in the number of transformation fronts tends to stabilize the stress-strain
response of the material via a “staircase” effect. The forward transformation tends to
initiate in regions that are highly cycled. As the transformation fronts enter the less
cycled areas, the stress increases. This effect results in a positive slope for the stress-

strain response curve.

o The stress concentration that exists at the interface of highly cycled and less cycled
regions cannot be effectively modeled using the one-dimensional model. This limitation
results in some differences between the simulation results and experimental observations.

It is expected that a three-dimensional analysis can overcome this deficiency.

e The simulation of the pseudoelastic response of a NiTi wire using the multi-dimensional
model revealed an interesting effect of transformation-induced plasticity. It was
demonstrated that the mismatch in the permanent strain produced at the coalescence site
of two transformation fronts results in a non-uniform macroscopic residual stress field.
The residual stress field makes the coalescence site a preferred nucleation point for the

subsequent forward or reverse transformations.

5.3. PROPOSED FUTURE WORK

The main focus of the present research was on the pseudoelastic behavior of SMAs. In
addition to pseudoelasticity, SMAs exhibit other important behaviors, such as the one-way shape
memory effect, two-way shape memory effect, and ferroelasticity. In these behaviors, the
transformation or detwinning strain is not recovered by mechanical unloading, but rather results in a
residual strain that can be recovered by raising the temperature of material. In the present three-

dimensional constitutive model, however, the transformation strain becomes singular at stress equal
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to zero, and therefore, it cannot be used to describe the above-mentioned behaviors. Extending the

present modeling effort to include such behaviors should be the subject of a future study.

Although the FE analyses of the NiTi strips presented in this work were multi-dimensional,
the applied external loads were uniaxial. The localization of deformation under more complex loading
conditions, such as torsion, tension-torsion, and biaxial extension, requires investigation. Some
experimental observations suggest that the localization of deformation is not observed during torsion
or compression in alloys that exhibit Liiders-like deformation in uniaxial tension. The origin of such
inconsistency in the material response at various loading conditions is currently being investigated by
a number of researchers using different experimental and theoretical methods. It would be interesting
to numerically investigate the response of a SMA sample under such loading conditions while
material behavior is unstable. It is suspected that some structural effects, such as geometric distortion,
might result in the hardening in spite of the inherent instability of the constitutive behavior of

material.

An important topic for future work is the three-dimensional analysis of the evolution of phase
transformations during cyclic loading. Numerical simulations of the cyclic effects presented in this
research were based on a one-dimensional model in which the stress concentration at the
transformation fronts was incorporated in the analysis using the “radius of influence” concept. This
was shown to exhibit some deficiencies during partial cyclic loading. A full three-dimensional
analysis, on the other hand, will naturally take into account the effect of stress concentration, and is

expected to provide valuable information about the nature of cyclic effects.

Finally, the experimental study of the in-situ localized behavior of NiTi SMAs is another
exciting topic for further investigations. In particular, the reorientation of transformation strain as a

result of the martensite-to-martensite conversion can be experimentally investigated using neutron
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diffraction techniques. Neutron diffraction is a crystallographic method that uses a neutron beam to
accurately measure the lattice strains in a representative volume of material during mechanical

loading.
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Appendix A. Details of Calculations Based on the
Transformation Evolution Rule (One-Dimensional Model)

Based on the transformation evolution rule described in Section 2.2.3, a numerical procedure
that calculates the increments of stress and martensitic fraction in terms of the increments of strain
and temperature during one-dimensional forward transformations was developed. In this procedure,
the value of stress is initially calculated based on the elastic prediction; if the result is outside the

stability region, the value of stress is corrected so that the stress-temperature vector (o,7 ) lies on the

corresponding transformation line (this procedure is similar to the well-known elastic-predictor and

plastic-corrector scheme used in the numerical implementation of plasticity theory).

A.1. FORWARD TRANSFORMATION
To start, consider a material particle whose initial state of stress-temperature-transformation

is specified by the point a(o,,T,,7,) in Figure A-1, which is located either below or on the

instantaneous martensite transformation line. It is assumed that the instantaneous nucleation line is

given by:

oy (1) =a oy (1) + (1= @) oy (T) (A-1)
where the parameter « varies between 0 and 1 and characterizes the relative location of the
instantaneous nucleation line. Two different cases are identified as follows:

CASE 1: For an austenitic material point (7, = 0) which is surrounded by other austenite particles

far from any transformation front, ¢ is equal to 1 which implies that the instantaneous nucleation line

coincides with the martensite nucleation line o (7).

-216 -



Instantaneous
transformation line

o =(1-7,)ouw(T)+7,0e(T)

Instantaneous
transformation line

U:(l_yd)G;AN(T)+7dUMF(T)

Stress

Temperature

Figure A-1. Calculation of incremental changes during the forward transformation (elastic prediction

and transformation correction).

CASE 2: For a partially transformed particle (0 <y, <1), or an austenite particle (y, =0) that is
located in the close vicinity of a transformation front, the values of ¢ is obtained by imposing the

following condition:

i@, 70T =0, (1= 7)o T + 7, 0 (T)]=0 (A2)
This implies that the current stress-temperature vector (o,,7, ) must be located on an instantaneous
transformation line characterized by the martensitic fraction y,. Since the instantaneous nucleation

line cannot be below the transformation finish line, the value of « is assumed to be zero in cases that

the stress-temperature vector is located below the martensite finish line. Therefore, the value of «

from equations (A-1) and (A-2) is obtained as,
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o =max{0, 9, = () } (A-3)
(1_7u)[GMN(Ta)_GMF(Ta)]

After finding the appropriate value for the parameter «, the final form of function F,_

becomes,

Fyom(@.y.D)=0=[1-naow@)+(1-a+ay) o) (A-4)
If the increments of strain and temperature are given to be de and d7 respectively, the final
state of material assuming elastic deformation is characterized by point b(o,,7,,7,) in Figure A-1

where:

T, =T, +dT
o,=0,+E(y,)ds (A-5)
}/b :}/a

If point b is still located below or on the transformation line (i.e., F,_,\;(0,,7,,7,)<0), the
elastic trial has been successful and no further calculation is required. On the other hand, if point b is
located beyond the instantaneous transformation line (i.e., F,_\(c,,7,,7,)>0), the amount of
phase transformation must be calculated and the value of stress must also be corrected. In that case, it
is assumed that the behavior of material remains elastic until point ¢, where the line ab crosses the
transformation line, and further loading results in phase transformation along the path cd as shown in

the figure. The state of material at point ¢ is given by,

T,=T,+pdT
o.=0,+E(y,) pde (A-6)
Ve =7a

where [ is the solution of the following equation,
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Fyoulo, +E(y,) pde,T, + BdT,y,)=0

Substituting (A-4) in (A-7) gives,

,8_ O-a _(1_7/a)ao-MN(Ta)_(l_a+a7/a)GMF(Ta)
- OF
_ZA-M

dT - E(y.)d
oT (7,)de

Vo To)

where,

OF ,m 9oyN 90 \r
—==—(1- -(l-a+ —
oT (I-pe—r=-(1-a+ay)—

If the state variables at point d are given by,

T,=T,+dT
o,=0,+do’

Ya=7V,tdy

(A-7)

(A-8)

(A-9)

(A-10)

the incremental changes of stress and martensitic fraction (do',dy ) during the transformation (line

cd), are obtained by simultaneously enforcing the stress-strain relationship (equation 2-12) and the

transformation evolution rule (equation 2-20) that are,

(- p)de =492 +(GC _Ce +AgtJd7

E(y,) \Eu E,
and
dF, ;=0
Substituting (A-4) in (A-12) gives,
F F
do-’JraA—_’M (l—ﬂ)dTJraA—_’M dy=0
o |y, Vol

where,
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Prt _ gy (T) — e (T)] (A-14)
oy

Combining equation (A-10) and (A-12) yields the increment of martensitic fraction as,

E( )dﬁm dT

Y o

dy=(-B)— el (A-15)
7 ly.m By Ey

Substituting dy from above equation back into (A-11) gives the increment of stress do” as,
_ OF, A—->M

de —( e _Gey Ag, jaFA_’M
oy (o) Ey, E, oT
_ 6FA—>M
oy

dr

(7e>T.)

o o
+F ¢ ——° +A¢
(}/a)(E E tJ

do' = (1- PE(,) (A-16)

(7e.T.) M A

A.2. REVERSE TRANSFORMATION
A similar procedure can also be followed for calculation of stress and martensitic fraction
during the reverse transformation. The details of the procedure are not given here for the sake of

brevity. However, some of the fundamental equations are presented.

The graphical representation of elastic-prediction and transformation-correction in this case is
shown in Figure A-2. As before, the initial state of material is represented by the point a(o,,7,,7, ).

The instantaneous nucleation line is given by:

o) =aonM)+(1-a)ou(T) (A-17)

where the value of parameter « is determined according to the following two cases:

CASE 1: For a martensite particle (, =1) located in a martensitic region the values of « is equal to

1.
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CASE 2: For a partially transformed particle (0 <y, <1), or a martensite particle (y, =1) that is
located in the close vicinity of a transformation front, the values of & is obtained by imposing the

following condition:

FMHA(Ga’}/a’Ta) = O-a _[7/41 G;N(Tu)+(1_7/u)GAF(Ta)]:0 (A_IS)

Substitution of equation (A-17) into the above equation gives,

a= maX{O, % =Ty } (A-19)
Va [O-AN(Ta)_GAF(Ta)]

The final form of the function F,,, becomes,

Fy (o7, T)= a—[ay GAN(T)+(1—a7)aAF(T)] (A-20)
The rest of the calculations based on the elastic-prediction and transformation-correction
scheme to find the final state of the material (point d in Figure A-2) are similar to those explained for

the forward transformation case.

A

dT

Instantaneous
transformation line

O_ZHO_ZN(T)*(l’Vd)O—AF(T)

Instantaneous
transformation line

0=7,0m D) +(1-7,) 0 (T)

Stress

Temperature

Figure A-2. Calculation of incremental changes during the reverse transformation (elastic prediction and

transformation correction).
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Appendix B.  Qutline of Experiments
The setup and testing conditions used in the experiments of Shaw and Kyriakides (1995,
1997) are briefly described in this appendix. The results of these experiments have been used in

Chapter 2 and 3 to verify the simulation results.

B.1. DISPLACEMENT-CONTROLLED EXTENSION OF NITI WIRE (SHAW AND
KYRIAKIDES, 1995)

In the experiments of Shaw and Kyriakides (1995), the uniaxial mechanical response of NiTi
was established as a function of temperature and loading rate. The experiments were conducted on
polycrystalline Nis 1o, T1 wire with a diameter of 1.07 mm. The material processing consisted of 30%
cold drawing following by annealing at 500 °C for 3 min. As a result, the material had an austenite

microstructure at temperatures above 50 °C. Each experiment was performed using a virgin specimen.

The experiments were performed with prescribed displacement rates without interruption
between loading and unloading. The test specimens had an overall length of 127 mm, and a test
section of 63.5 mm. Each end was clamped between hardened flat plates along machined v-grooves in

specially designed stainless steel grips.

In order to maintain a reasonably constant specimen temperature during testing, the specimen
was placed in an isothermal liquid bath during the test. The bath temperature was controlled to within
+0.2 °C of a prescribed value by a circulating system. Water was used as temperature control
medium for experiments conducted in the range of 10 to 80 °C. To allow for the installation of the
specimen into grips inside the liquid bath, relatively long grips had to be used which were designed to

be much stiffer than the test specimen.

The load was measured by a 5 kN load cell, and the crosshead displacement was measured by

a high resolution optical encoder within the testing machine. Local deformation and temperature were
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monitored by miniature extensometers at up to four locations on the test section and by small
thermocouples at up to six locations. The extensometers had a gauge length of 2.5 mm, a strain range
of £15%, and a mass of less than 13 g. They were held in place by spring loaded clamping rods and
knife edges. Each was coated with a flexible waterproof coating and was designed to be self
temperature compensating. Corrections were made to the extensometer calibrations before each
experiment to account for small changes in the gauge lengths caused by installation and thermal

expansion.

The thermocouples were type ‘K’ with exposed junctions made of fine (0.076 mm) diameter
wire. Small clips were used to mount the thermocouples to the specimen, and a thermally conductive
paste (Omegatherm 201) was used for electrical insulation and to ensure good thermal contact with

the specimen.

According to Shaw and Kyriakides (1995), there were some uncertainties associated with the
measurements. The displacement was measured with an uncertainty of less than 0.8%, but grip
slippage introduced additional error in the average strain calculated from the displacement. The
slippage in the grips was observed when comparing the local and global strain measurements
obtained from the miniature extensometer and crosshead displacement. The uncertainty in load
measurement was less than 0.1%, but the uncertainty in the reported stress could be as high as 2% due
to variation in the diameter of the wire. The miniature extensometer strains were calibrated to have an
uncertainty of less than 1%. The thermocouples were also calibrated to measure the temperature with
an uncertainty of 1%, but the uncertainty in temperature measurement could be as high as +1 °C due
to the deformation of the wire and junction. The complex heat transfer conditions at the junction
formed by the specimen, the thermocouple, the conductive paste, and the ambient fluid also had some

effect on the measured temperature.
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B.2. UNIAXIAL TENSION OF NIT1T STRIP (SHAW AND KYRIAKIDES, 1997)

Shaw and Kyriakides (1997) presented a methodology for simultaneous full-field monitoring
of the deformation and temperature in NiTi strip samples during mechanically unstable regimes. They
used polycrystalline Nisg 5o, Ti formed into a continuous flat strip with a width of 4 mm and thickness
of 0.395(£0.005) mm. After being tailored by thermomechanical processing, the material was in its
austenite phase at temperatures above 15 °C. The processing left a thin (5 pm), glossy black oxide
layer (TiO,) on the strip which is a brittle ceramic and tends to shatter when subjected to significant
strains such as those associated with the martensitic transformation. This resulted in surface relief and
reflectivity changes which under proper lighting could be observed optically. This feature was later

used to track the evolution of stress-induced transformations.

Dog-bone test specimens were machined from the strip with an overall length of L= 100 mm
and gauge section of 39(L¢)x2.525(w) mm”. The wider ends of each specimen were gripped between
two hardened flat plates tightly clamped together with four capscrews. In addition, to improve
alignment and minimize slippage, each end of the test sample was pinned to the grips with a dowel
pin.

The specimens were tested in a standard electromechanical testing machine in room
temperature air (25 °C). The load was measured with a S5kN load cell and the end deflection was
measured with a high resolution optical encoder. The specimen was first pulled at a constant end-
deflection rate (5 ) to a strain just past the termination of the upper stress plateau. After waiting few
minutes, the specimen was unloaded at the same displacement rate. Two experiments were performed
at elongation rates of 5/ L, =10"s" and 5/ L, =107 s™'. A virgin sample was used in each test to

avoid cyclic effects.
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The change is surface reflectivity of the specimen as a result of phase transformation and
shattering of the oxide layer was recorded by a photographic camera programmed to take photos at 40
s time intervals. Also, an infrared imaging radiometer was used to record the thermal history of the
entire test section during the loading/unloading cycle. The thermal camera had a 20 °C measurement
range and a 4x zoom. For the particular setup used in the experiments, the spatial resolution of the
camera was 0.3 mm, and the accuracy of thermal measurements was within £0.1 °C. The measured
signal was converted into calibrated color contours which were recorded on video tapes at 30
frames/s. A microphone was placed near the photographic camera to record the sound of its shutter on

the video. This sound was later used to synchronize the optical and thermal images.
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Appendix C. Finite Element Formulations
An overview of the finite element formulations used to solve the boundary values problems is

provided in this appendix.

C.1. THE FINITE ELEMENT FORMULATIONS OF SOLID CONTINUUM

Using the virtual work principle, the weak form of the equilibrium equation is given by,

[oy02,av = [ fiouds+ [boudv (C-1)
p© §© ©
where v denoted the element volume, s is the element surface, u, is the displacement, f; is the

traction force acting on the surface, and b, is the body force per unit volume. The above variational

equation may be expressed in the vector form as,

jésTcdv= jaqudH j&udev (C-2)
(© S(t) (©

It is assumed that the displacement vector u can be expressed in terms of the nodal

displacements as,

u=Nu® (C-3)

where u®® denotes the vector of nodal displacements, and N contains the Lagrange interpolation

functions. Furthermore, the strain vector can be derived by differentiating equation (C-3); that is,

e=Bu® (C-4)
where B contains the derivatives of the Lagrange interpolation functions. The matrices N and B
depend on the element type, and can be found from various FEM books. Substituting (C-3) and (C-4)

in (C-2) gives,
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su' [BTodv=5a" [N"fds+5u® [N"bdv (C-5)
(e)

»© §©
The above equation must hold for any value of Su . Hence,
jBTodv= jNdes+jNdev (C-6)
NO) §© NO)
The left hand side of the above equation is the element internal force vector while the right

hand side is the element external force vector. After assembling the elements, the above equation

results in the following equation:

y(U)=0 (C-7)
where U denotes the global displacement vector, and y is called the residual force vector defined

as,

v =0(U)-F (C-8)
In the above equation ¢ is the (global) internal force vector obtained by assembling the element

internal force vectors,

o= (IBTdeJ (C-9)

elements

and F is the (global) external force vector obtained by assembling the element external force vectors:

F= > “NdeHINdevJ (C-10)
elements \ ¢(©

»©

Equation (C-7) is a non-linear equation which can be solved using an iterative numerical

scheme. Suppose that the solution of equation (C-7) is known at iteration (i), and the solution at
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iteration (i+1) is to be found. Using the Taylor’s series expansion, the residual force vector at

iteration (i +1) can be approximated by,

WU = y(U) + [a—"’

JaU@+m=0 (C-11)

u=u"®
where sU") is the increment. Neglecting the higher order terms in the above equation, S U is

obtained as:

su» | o¥
ou

-1
J w(U?) (C-12)

U=y

The displacement vector at (i +1) iteration is given by,

U =u® +5U0? (C-13)

The iteration is continued until equation (C-7) is satisfied. The above iterative scheme is

called the Newton-Raphson method. Newton-Raphson is a fast-converging method that is ideal for
most problems in solid mechanics. However, this method fails to trace the equilibrium path near the

stationary points (zero tangential modulus). In the vicinity of a stationary point, the Jacobian matrix

(i.e., Z—E) becomes singular and the Newton-Raphson iteration diverges. Stationary points often

appear in problems that involve materials with softening behavior and mechanical instability. Riks
and Modified Riks schemes are often used to solve the non-linear equilibrium equations through
stationary points. In these methods, the stiffness matrix and its inverse must be calculated at each
iteration, which is computationally expensive. To avoid the computational cost of Riks method, a
Modified Newton-Raphson scheme is utilized to solve the non-linear equations. In this method, the

Jacobian matrix in equation (C-12) is replaced by a constant stiffness matrix. The stiffness matrix and
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its inverse are calculated only once at the beginning of the FE calculations, and then used in each of
the following iterations. Although the number of iterations required for convergence is much larger in
the Modified Newton-Raphson method, the overall computational time is reduced compared to the

Riks method in problems that have a large number of elements.

C.2. FINITE ELEMENT FORMULATIONS OF HEAT TRANSFER PROBLEM

The differential form of the heat transfer equation is given by,

V.(VT)+¢q —pcp‘z—f=o (C-14)

where V is the gradient (nabla) operator, and “.” denotes the scalar product. The weak form of the

above equation for an element is given by,

j w(V.(kVT) +46 - pC, aa—g dv=0 (C-15)
(e)

v

where w is a weight function. The above equation can be rewritten in the following form,

j (V.(kaT) —(YW).(kVT) + gow—pC, %WJ dv=0 (C-16)

NO)
Using the divergence theorem it is obtained,
. oT
- j wq,ds - j (Vw).(kVT)dv + j (46 =Py~ wdv=0 (C-17)
§© NO! ,©

where ¢, is the heat flux per unit area defined as,

4, =—kVTn (C-18)
In the above definition, mis the unit vector normal on a surface. If a convective film

coefficient (4, ) is assigned to the outer surface of the element, the heat flux is given by,

conv
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qn = hconv(T_Tao) (C_19)

Next, the temperature field is expressed in terms of the nodal temperatures as,

T=N,;TY (C-20)
where N, contains the Lagrange interpolation functions, and T denotes the vector of nodal

temperatures. The gradient of temperature can be obtained by differentiating equation (C-20) as,

VT =B, T (C-21)
where By contains the derivatives of the Lagrange interpolation functions. Substituting equations (C-

19), (C-20), and (C-21) into (C-17) and following the Galerkin approach, the heat transfer equation

becomes,

- _ T©
—{ IN$ . NTdsJ(T@ ~T,) —{ IB$ kBTdv}T(e) + IN$ Godv —[ INL)CpNTva M o2
s© y© »© (©
Upon assembling the elements, the global heat transfer equation is expressed as,
oT
KT+C§+H(T—TOO):QG (C-23)

where,

K=Y ( j B$kBTdv] (C-24)

elements

c=> J'NLOCPNTva (C-25)

elements \ ()

H = z J.N¥ hconv NTds] (C_26)

elements\ ¢(©
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Q=Y [ | N%%dv} (C-27)
elements \ ,(©)

and T is the global temperature vector.

An implicit time-integration method (Backward Euler) is used to solve equation (C-23).

Suppose that the temperature is known at time ¢,, and the temperature is to be found at time

t,. =t,+At.Itis assumed that,

aT(nH) T(n+1) _ T(n)

C-28
ot At ( )
Substituting (C-28) into (C-23) yields,
T
KT +C v + H(T(n+1) -T,)= Qng) (C-29)

which can be solved for TV .
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Appendix D. Numerical Solution of the Three-Dimensional
Constitutive Relations

In this appendix, a numerical solution of the nonlinear constitutive relations of the proposed
multi-axial model during the forward or reverse transformation is provided. If the total strain tensor &
and temperature 7 are prescribed during the transformation, it is desired to find the stress tensor ¢

and martensitic fraction y .

Due to the symmetry of the tensorial stress-strain relation given in Table 3-1, it can be

rewritten using the matrix notations as:

3 1

ey =[plief+ Az r—is) (D-1)
where,

&y O S

€y O S»

I R 2 S T O (0-2)

V23 O3 285

713 O3 AT

712 O 28,
and,

[D(»)]= D™ ]+ - p)|D®] (D-3)
where,

-232 -



1o'A A 0 0
En Ep Ep
A LA 0 0
En Epn Ep
14 14
A A L 0 0 0
[D(A)]: Exn B Ep (D-4)
2(i4v,y )
0 0 0 - 0 0
A
2\1+v
0 0 0 0 ( A) 0
EA 2(l+vA)
0 0 0 0 0 -
L A
and,
LI " 0 0 0
Ev B En
Mmoo M, 0 0
Ev Ev Eg
V; V;
MM L 0 0 0
[D(M)]Z Ey By By (D-5)
2(1vy)
0 0 0 - 0 0
M
2\1+v,
0 0 0 0 ( M) 0
EM 2(l+vM)
0 0 0 0 0 -
L M

If elastic deformation and reorientation are the only mechanisms of deformation (i.e.,

dy =0), Newton-Raphson or other iterative methods can be used to solve equation (D-1). When

simultaneous elastic deformation, reorientation, and transformation take place, the additional kinetic

relation is given by:

T=Y() (D-6)

where,

1- )+ T F d transf ti
Y(y)= {( y)oun () +yoyc(T) orward transformation (D-7)

o)+ (=)o, (T) Reverse transformation

Using (D-6), equation (D-1) can be rewritten in the following form:
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e}=|pm e} (D-8)

where,
L g o
2 2
Ag y 7% 1 —% 000
[D(V)]Z[D(V)]‘*‘ =L 1500 (D-9)
Y()| 2 2
0 0 0 3 00
o 0 0 030
Lo 0 0 00 3]
From (B86) and (D-9) ¢ can be expressed in terms of € and y as:
A 1
o}=1D0]" e} (D-10)
Substitution of (D-10) back in (D-6) gives an algebraic equation in terms of y as:
f)=c()-Y()=0 (D-11)
Newton-Raphson iterative scheme can be utilized to numerically solve the above equation for
y . That is,
()
(i+) _ f
oy = i
(] (D-12)
dy

7/(i+1) — 7/(1') +8}/(i+l)

The derivative of the function f with respect to » needs to be calculated in each iteration.

From equation (D-11) it is obtained that,

df (o5 [do]|_d ]
dy _{80} {d7} de(y) ®-13)

where,
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)2

and from (D-10),

- o

Next, it is noticed that,

o] D)=

where [1 ] is the identity matrix. Differentiation the above equation and using (D-3) give:

sBol" )=o) ol

From equation (D-3) and (D-9) it can be shown that,

—_

| =] —
[

L=l o227 (0 L |

OOON

| |
© S Oyl = =
(= -
o o w o
o w o o
w o o o

Using equation (D-13) through (D-17) the value of d f'/d y is finally obtained as,

L2yl ([D( )l }—%Y(y)

(D-14)

(D-15)

(D-16)

(D-17)

(D-18)

(D-19)

The values of ¥ that is obtained from the iterations in (D-12) can be inserted in equation (D-

10) to find the stress vector {o}.
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Appendix E.  An Incremental Three-Dimensional Constitutive
Model

In this section, an incremental constitutive model for pseudoelastic response is described. The
model is able to capture the recovery of transformation strain during reverse transformation for a
material point. The incremental flow rules used in this model are in fact similar to those proposed
earlier by Boyd and Lagoudas (1994a). The performance of this incremental constitutive model in

simulating the unstable pseudoelastic response is examined in Section 3.4 using FEM.

E.1. GENERAL CONSIDERATIONS
The additive decomposition of strain, and elastic strain-stress relations are assumed to be the

same as those in the total deformation constitutive model. Therefore,

g5 = g;.e) + 6‘5-0 (E-1)
where
gi(je) _ Dijkl (V) oy, (E-2)
and
Dy () =y D + (=) Diy) (E-3)

E.2. FLOW RULE OF FORWARD TRANSFORMATION
The transformation strain during the forward transformation is calculated by utilizing the

incremental flow rule of equation (3-3) as:

del) = Aagﬂd y (E-4)
Gy
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P_, is the transformation potential function during the forward transformation which needs

A->M

to be determined. In order to find the corresponding proportionality factor A4, it is assumed that:

dg© =Ag, dy (E-5)

where £ is an effective transformation strain defined by the following incremental relation,

~ 2
dg® = 1/ Ed e de) (E-6)

It is seen from equation (E-6) that the value of £ is dependent on the deformation history.
Therefore, &Y is referred to as the path-dependent effective transformation strain throughout this
text to distinguish it from the effective transformation strain defined in equation (3-12).

The parameter Ag, has the same meaning as in the total deformation constitutive model in

Chapter 3. Substituting equation (E-4) in (E-6) and the subsequent result in (E-5) give the

proportionality factor as:

Ag,

g aPA~>M aPA‘)M
3 do,; OJoy

Therefore, the transformation strain is given by:

A=

(E-7)

A P
515‘t) — &y 0 ASM d]/ (E_S)
\/ 20pP_, 0P, 90

A->M A->M

3 0oy Ooy

The forward transformation potential function ( P,_, ) is chosen to be the Von-Mises effective

—M

stress & defined in equation (3-18). Therefore,
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S
de = %Agt —dy (E-9)
o

E.3. FLOW RULE OF REVERSE TRANSFORMATION

A similar general incremental flow rule is also used for the reverse transformation:

dgﬁ::AQ%fAdy (E-10)

,
For the transformation strain to be fully recovered upon the completion of reverse

transformation (i.e., at ¥ =0), the following conditions must hold,

O] E— (E-11)

il "
To ensure the complete recovery of transformation strain, the effective transformation strain
g9 define in equation (3-12) is used during the reverse transformation. It is assumed to be

proportional to the martensitic fraction according to,

£V =xAs y (E-12)
where x is a correction factor that accounts for the mismatch between the two effective

transformation strain defined in equations (3-12) and (E-6) at the end of forward transformation. That
18,

=~
¢ (E-13)

K="%m

end of forward transformation

By looking at equations (E-12) and (3-12) it can be easily verified that if y =0 the

components of transformation strain tensor (gg) ’s) must also be equal to zero which satisfies the

condition in equation (E-11).
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Differentiating equations (3-12) and (E-12) gives:

dg® =§#=KA£td7 (E-14)
Substituting (E-10) into above relation gives the proportionality factor A to be,

kK Ag gY

EaPMaA ‘gi('t)
3 doy Y

A (E-15)

Based on the equations (E-10) through (E-15), the transformation strain should be

recoverable along any integration path and for any transformation potential function P,

M—A

However,

. . . . OP
®is normal to the gradient of the potential function —=2 | the

06

if the transformation strain tensor €

denominator on the right hand side of equation (E-15) vanished and the proportionality factor 4
looses its finiteness. To avoid this situation, it is assumed that the gradient of the potential function is

always in the same direction as the transformation strain. That is,

OP,
ﬁ =g} (E-16)
G
or,
P, =0y (E-17)
Substituting (E-16) into (E-15) and using (3-18) yields:
K Ag
A= o L (E-18)

Therefore, from equations (3-22), (3-24) and (3-15) the final form of the reverse transformation flow

rule is obtained as,
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©

(t) g!/
de;’ =K Ag, =0 dy (E-19)

The above flow rule is in fact very similar to the one proposed by Boyd and Lagoudas
(1994a) to describe the reverse transformation except for the correction factor x which does not
appear in their model (see equation 1-4). Using equation (E-14), the flow rule of reverse

transformation can be rewritten in the following form:

de® =51 g, (E-20)

Notice that the parameter x does not appear in the latter form of the flow rule. Equations (E-
19) and (E-20) imply that the orientation of the transformation strain tensor does not change during
the course of reverse transformation, and only the magnitude of its components are proportionally

reduced to zero.

E.4. KINETICS OF TRANSFORMATION
The kinetics of transformation are assumed to be the as those described for the total

deformation model in Chapter 3. In summary,

dFya(0y,7,T) =0, Forward transformation (d y > 0)

(E-21)
dF, m(oy,7,T) =0, Reverse transformation (d y < 0)
where,
FA%M:5_[(1_7/)O-MN(T)+}/GMC(T)] (E-22)
Fo =0 =[yom@+1-7)ox(D)]

A simplified summary of the constitutive equations and kinetic relations based on the above

assumption is given in Table E-1.
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Table E-1. Summary of the incremental constitutive model.

Constitutive Relations
Forward transformation:

3 S,
dey =Dy (r)doy +{(D4‘%) _Di(/‘/l?l))o-kl +5A5t gj}dﬂ/

Reverse transformation:

g
dey =Dy (y)doy +{(Dz‘%) _D;‘/I?l))o-kl +7j}d7

Kinetic Relations
Forward transformation:
3 Sl“ ’ ’
dF,, =0 = Z—doy~[1-p) i)+ 7y ole MNAT =[o3c (T) - oy (T)]dy =0

A->M —_
o

Reverse transformation:

3Si' ’ '
dF, =0 = S2do; ~[yolM)+ =)ol MPT -[on(T) -4 (D]dy =0
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Appendix F.  Convergence Study of the Finite Element Solution

A mesh-sensitivity study was conducted to examine the convergence of the FEM analysis
with respect to the number of elements. A simulation of the short NiTi strip described in Section 3.4.1
was repeated for three different densities of mesh (35x10, 70x20, 105x30). Selected simulation

results at different instants during loading are shown in Figure F-1.

Similar results were observed for the nucleation event, and propagation of the transformation
front during forward transformation up to /L =1.6% for all these cases. However, above this strain
some minor mesh sensitivity was observed due to the softening behavior embedded in the kinetics of
transformation. As stated by Shaw & Kyriakides (1998), the recovery of material stability at the end
of the phase transformation has an overall stabilizing effect on the solution, since the localized
deformation is eventually arrested. Therefore, the mesh sensitivity has a minor effect on the shape of
the propagating transformation front at particular loading/unloading stages (beyond &/L =1.6%).
However, the force-displacement response and the overall features of the transformation fronts during

forward or reverse transformation were hardly affected by the mesh size.

The CPU times of FE calculations up to an elongation of &/L =4% for various mesh

densities are provided in Table F-1. From the convergence study it was concluded that a mesh density

of 70x20 is able to captures all important features with satisfactory convergence and time efficiency.

Table F-1. Approximate CPU times for various mesh densities.

Mesh density CPU time (loading to &6/L =4%)
35%10 4.86 (hrs)

70x20 54.80 (hrs)

105x30 242.18 (hrs)

- 242 -



35x10

35x10

Figure F-1. Distribution of martensitic fraction at selected loading stages.

70x20

0/L=0.8%

70x20

o0/L=1.0%
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1
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Figure F-1. (Continued).
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35x10 70x20 105%30

0/L=1.6%

35x10 70x20 105x30

0.5

o0/L=1.8%

Figure F-1. (Continued).
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35x10 70x20 105%30

0/L=2.0%

35x10 70x20 105x30

0/L=22%

Figure F-1. (Continued).
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