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ABSTRACT 

Satellite imagery such as Landsat has been in use for decades for many landscape 

and regional scale mapping applications, but has been too coarse for use in detailed forest 

inventories where stand level structural and compositional information is desired. 

Recently available high spatial resolution satellite imagery may be well suited to mapping 

fine-scale components of ecosystems, however, this remains an area of ongoing research.  

The first goal of this thesis was to assess the capacity of high spatial resolution 

satellite imagery to detect the variability in late seral coastal temperate rainforests in 

British Columbia, Canada. Using an object-based classifier, two hierarchical 

classification schemes are evaluated: a broad classification based on structural 

(successional) stage and a finer classification of late seral vegetation associations. The 

finer-scale classification also incorporates ancillary landscape positional variables 

(elevation and potential soil moisture) derived from Light Detection and Ranging 

(LiDAR) data, and the relative contribution of spectral, textural and landscape positional 

data for this classification is determined. Results indicate that late seral forests can be 

well distinguished from younger forests using QuickBird spectral and textural data. 

However, discrimination among late seral forest associations is challenging, especially in 

the absence of landscape positional variables.  

Classification accuracies were particularly low for rare forest associations. Given 

this finding, the objective of the third chapter was to explicitly examine the caveats of 

using high spatial resolution imagery to map rare classes. Classification accuracy is 

assessed in several different ways in order to examine the impact on perceived map 

accuracy. In addition, the effects on habitat extent and configuration resulting from post-
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classification implementation of a minimum mapping unit are examined. Results indicate 

that classification accuracies may vary considerably depending on the assessment 

technique used. Specifically, ignoring the presence of fine-scale heterogeneity in a 

classification during accuracy assessment falsely lowered the accuracy estimates. Further, 

post-classification smoothing had a large effect on the spatial pattern of rare classes. 

These findings suggest that routinely used image classification and assessment techniques 

can greatly impact mapping of rare classes. 
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1.  INTRODUCTION 

Forest structure refers to tree age, size, density and composition, as well as the 

vertical and horizontal arrangement of these variables. This information can be recorded 

at a range of spatial scales ranging from stand to landscape level. Typically forest 

management requires information at the stand level, as the ecological, economic and 

cultural value of a forested landscape may vary according to the structure of each stand. 

For example, tree and snag size is important for birds and mammals that nest and den in 

cavities (Bunnel et al. 2002; Franklin and Spies 1991), while branch size and tree spacing 

is an important factor determining habitat suitability for bird species such as the 

endangered marbled murrelet (Burger and Bahn 2004). Beyond ecological values, many 

First Nations have traditionally relied on certain species as a key resource and different 

species are valued more than others in commercial timber markets.    

Mapping forest structure over large areas necessitates the use of remote sensing. 

The choice of which type of remotely sensed imagery to be used will depend largely on 

the spatial resolution needed to accurately capture the desired ground elements 

(Woodcock and Strahler 1987). In general, image pixels should be considerably smaller 

than the ground elements of interest. Imagery with this characteristic is known as H-

resolution (Woodcock and Strahler 1987). In contrast, L-resolution imagery is the term 

given to imagery where image pixels are larger than the elements of interest which are 

therefore not resolvable. Aerial photographs are the conventional source of remotely 

sensed information for mapping forest structure and composition at the stand level (Goetz 

et al. 2003; Wulder et al. 2004a). Satellite imagery, while superior to aerial photographs 

with respect to spatial coverage and temporal resolution, has, until recently, only been 



 2

available at spatial resolutions too coarse to provide a detailed characterization of forest 

structure at the stand level. For example, Landsat imagery (30m spatial resolution) is 

generally capable only of distinguishing general vegetative types (e.g., deciduous versus 

coniferous) (Wulder et al. 2004a). In some cases, multi-date imagery has enhanced the 

discriminating power of Landsat imagery by capitalizing on phenological differences 

among various vegetative species (Townsend and Walsh 2001). However, multi-seasonal 

imagery of an area is not always available.  

Within the last decade, high spatial resolution optical satellite imagery has 

become available with a spatial resolution closely matching that of aerial photographs. 

For example, the QuickBird and IKONOS satellites provide multispectral imagery at 

spatial resolutions of 2.8 and 4m (70cm and 1m panchromatic) respectively. The spectral 

and textural information contained in a high spatial resolution forest scene may be related 

to fine-scale compositional differences, as well as to structural characteristics such as 

canopy gaps and crown size (Treitz and Howarth 2000; Wulder et al. 2004a). In some 

cases, high spatial resolution satellite imagery can be used to detect individual tree 

crowns (Gougeon et al. 2003; Wulder et al. 2004b). Studies of high spatial resolution 

satellite imagery for characterizing stand structure have by and large focused on stand 

age (Franklin et al. 2001b; Nelson et al. 2004), structural variables such as stand density 

and basal area  (Kayitakire et al. 2006), or to the classification of stands dominated by 

one of only a few species (Chubey et al. 2006). Classifications of compositionally 

complex stands have generally been limited to airborne imagery (Treitz and Howarth 

2000).  
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Applications of High Spatial Resolution Imagery to Fragmented Ecosystems  

High spatial resolution imagery is particularly suited to mapping small or 

fragmented ecosystems (often of high conservation concern) as such classes may be 

missed if they occupy a small portion of a pixel in medium to coarse resolution imagery 

(Cunningham 2006; Silva et al. 2005). To this end, high spatial resolution satellite 

imagery has been used in a number of studies to successfully map a range of small land 

cover classes.  As examples, multitemporal IKONOS imagery has been used to map 

Prairie wetland vegetation communities in Saskatchewan, Canada (Dechka et al. 2002) 

and heather (Calluna vulgaris) moorlands in northern England (Mehner et al. 2004) 

Elsewhere, riparian vegetation structure, traditionally difficult to detect remotely because 

of its thin, linear nature, has been characterized and classified into various types using 

QuickBird imagery (Johansen and Phinn 2006).  

Using high spatial resolution imagery to map small and fragmented ecosystems 

results in estimates of extent and landscape pattern that differ from those estimated on the 

basis of coarser resolution imagery. In a comparison of NOAA-AVHRR (1km spatial 

resolution) and Landsat TM (30 m spatial resolution) datasets, estimates of the spatial 

extent of rare classes were shown to be more accurate at higher spatial resolutions 

(Konarska et al. 2002). One study suggests that the spatial resolution of an image should 

be 2-5 times smaller than the feature of interest or risk biasing landscape pattern indices 

such as the frequency distribution of patch sizes (O'neill et al. 1996). In a study of the 

effect of changing spatial scale on landscape pattern, rare cover types were found to be 

lost most readily with increasing spatial resolution, with the rate of loss greatest for 

fragmented classes (Turner et al. 1989). 
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Estimates of the extent and pattern of small, fragmented classes may be also 

impacted by various image processing techniques. Often high spatial resolution imagery 

is classified with an object-based classifier, whereby, prior to classification, image pixels 

are merged into homogeneous clusters (objects), the size of which is determined by the 

user. In their object-based classification of forest stand structural stages, Johansen et al. 

(2007) found that small patches (width ≤ 30m) of various features were poorly classified 

because they were merged with adjacent patches of a larger size during the creation of 

image objects. This finding indicates that a given image analysis technique may not be 

appropriate for all classes of interest, particularly those which are small or fragmented.  

Although high spatial resolution satellite imagery may have an enhanced 

capability to detect small patches of classes, whether or not this capability is recognized 

will depend on the spatial resolution of the reference data utilized to assess classification 

accuracy as well as the accuracy assessment technique chosen by the map producer. 

Often, preexisting vector-based data that has been generalized to polygons is utilized as 

the truth data; this data may contain thematic ambiguity, with polygons labeled with 

multiple ecosystems. Traditional accuracy assessment only allows for one reference label 

to be considered per polygon, resulting in classification estimates that may be 

misrepresentative  (Stehman et al. 2003; Wulder et al. 2007).   

Previous Applications of High Spatial Resolution Satellite Imagery in Coastal 

British Columbia 

In the forests of coastal British Columbia, QuickBird imagery has been used to 

distinguish among several stand-level structural classes (shrub/herb, pole/sapling, young 

forest, and old-forest) with an overall accuracy of 79% (Johansen et al. 2007). However, 
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the classification accuracies reported may be misrepresentative (that is, falsely low) as 

the authors only considered the dominant label of reference polygons during accuracy 

assessment. In the same area of coastal BC, QuickBird imagery has also been used to 

distinguish among five riparian-specific structural classes (shrub dominated, deciduous 

dominated, overstocked conifer, suppressed conifer and old-growth) with per-class 

accuracies generally over 70% (Gergel et al. 2007).  

These studies utilizing QuickBird imagery in coastal British Columbia’s forests 

indicate strong potential for high spatial resolution satellite imagery to be used for 

classifying the globally rare coastal temperate rainforests. In particular, late seral 

coniferous stands in this region, Canada’s oldest, largest and most fought-over forests 

(MacKinnon 2003), can be well separated from forests in other successional stages with 

producer’s accuracies ranging from 84% to 88%. However, both of these studies were 

limited in spatial extent and utilized classification schemes that did not address finer-

scale aspects of forest structure such as species composition.  

Objectives 

Building on previous work that used high spatial resolution satellite imagery to 

map forest structural classes in coastal BC, the objective of Chapter 2 was to assess the 

suitability of high spatial resolution (2.8m) QuickBird satellite imagery for mapping the 

fine-scale variability in the species composition of late-seral forests in coastal British 

Columbia, Canada. Forest associations defined by provincial ecosystem classification 

standards are mapped. These associations differ with respect to their plant communities 

as well as to their environmental site conditions (e.g., soil moisture and soil nutrient 

regimes). In coastal British Columbia, associations are variable in size and heterogeneous 
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in composition, with many of the same overstory species occurring in multiple forest 

associations. Given this compositional variability as well as the importance of localized 

site characteristics to stand differentiation, an additional objective of this study was to 

explore the contribution of QuickBird imagery relative to ancillary landscape positional 

data (elevation and potential soil moisture) when classifying fine-scale forest 

associations. 

Beyond assessing the capability of QuickBird imagery to map late-seral forest 

associations in coastal BC, this project also serves to examine how maps derived from 

high spatial resolution remotely sensed data can misrepresent locally rare ecosystem 

classes. As the use of automated classification of high spatial resolution digital imagery 

continues to increase (and as the use becomes simpler due to computer software 

advances), it is important to consider that the technology may be misused or used without 

an understanding of the limitations or caveats associated with a particular application 

(Fassnacht et al. 2006). The remote sensing community tends to use, unquestioningly, 

certain map production and accuracy assessment techniques, yet these approaches may 

not be appropriate in all situations. One goal of Chapter 3 was to compare the 

classification accuracies of rare classes derived from several different accuracy 

assessment techniques. An additional objective was to examine the effects on habitat 

extent and configuration resulting from the post-classification implementation of a 

minimum mapping unit. A minimum feature size is commonly imposed to maintain 

simplicity in a map, or to reduce fine-scale heterogeneity perceived as error. The 

implications for rare ecosystems resulting from the generalization of a fine-scale 

classification are explored.  
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A synthesis of Chapters 2 and 3 concludes this thesis. Recommendations for the 

application of high spatial resolution satellite imagery, and suggestions for research 

questions that should be addressed in the future are also addressed.  
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2. CLASSIFICATION OF LATE SERAL COASTAL TEMPERATE 
RAINFORESTS WITH HIGH SPATIAL RESOLUTION QUICKBIRD 
IMAGERY1 
 
Introduction  

The age, size, composition and distribution of forest types across the landscape 

are critical variables for forest managers to consider when making decisions regarding the 

harvest, protection and restoration of forests. Remote sensing of the fine-scale structure 

and composition of forest stands conventionally necessitated the use of aerial 

photography and subsequent interpretation by trained analysts, particularly in complex, 

heterogeneous forest types. However, within the last decade, high spatial resolution 

satellite imagery has become available with a resolving power closely matching that of 

airborne imagery, and with its broad spatial coverage has a potential for even greater 

efficiency. Interest in the application of satellite imagery to map the fine-scale structure 

and composition of forest stands is increasing, with examples in Canada’s western 

coniferous forests (Chubey et al. 2006; Gergel 2007; Johansen et al. 2007; Nelson et al. 

2004) and elsewhere (Wang et al. 2004b). These and other studies suggest that not only 

spectral, but also textural and landscape positional information are useful for the 

classification of forested scenes captured at high spatial resolution.  

In some cases, species composition can be differentiated on the basis of spectral 

response, particularly coniferous versus deciduous species which differ significantly with 

respect to their near-infrared reflectance (Lillesand et al. 2004). However, with increasing 

image spatial resolution comes an increase in within-class spectral variability (Franklin et 

                                                 
1 A version of this chapter has been submitted for publication: Thompson, S.D., Gergel, S.E., and 
Coops, N.C. In Review. Classification of Late-seral Coastal Temperate Rainforests with High 
Spatial Resolution QuickBird Imagery.  
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al. 2001a).  Therefore, image texture, which measures the spatial arrangement of 

brightness values in an image, is a useful addition to spectral information for the 

classification of forest structure and composition. Image texture is key for the estimation 

of stand structure, as it relates to physical characteristics of the canopy such as crown size 

and density (Wulder 1998). Texture may also be useful for the classification of forest 

species composition, because structural differences among species causes differences in 

the spatial distribution of reflectance values (Franklin et al. 2001a).  

In addition to spectral and textural information, classification of forest species 

may be aided by data related to landscape position. Landscape position can influence the 

pattern of vegetation types across a landscape in several ways. Topographic variables 

(e.g. elevation, slope, and aspect) affect ground and air temperatures, precipitation 

patterns, surface and groundwater flows, and nutrients (Swanson et al. 1988; Whittaker 

1956). Position in the landscape (e.g. distance to stream, or distance to coast) may be 

important by affecting energy and material flow (e.g., wind, water, particulates) as well 

as the type and severity of natural disturbance (Swanson et al. 1988; Wimberly and Spies 

2001). Thus, topographic variables and contextual rules related to landscape position are 

often used to enhance remotely sensed vegetation classification (Chubey et al. 2006; 

Wright and Gallant 2007; Yu et al. 2006). Landscape positional data may be particularly 

useful when fine-scale phenomena (e.g. trees) cannot be well distinguished on the basis 

of spectral and textural information alone.  

We assess the capacity of high spatial resolution satellite imagery to document the 

variability in late seral coastal temperate rainforests in British Columbia, Canada, typified 

by heterogeneous stands with a highly complex structure. Many of the tree species found 
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within the study area display similar and partially overlapping signatures, particularly in 

stands containing trees of varying age and health (Leckie et al. 2005). Thus, it is 

uncertain whether spectral information provided by high spatial resolution imagery can 

be used to map these late seral forests at fine scales. Our approach uses a hierarchical 

classification scheme: First, we broadly classify the imagery based on structural 

(successional) stage. Secondly, the late seral forests were classified at a more detailed 

level into different vegetation associations. We specifically explore the relative 

contribution of spectral, textural, and landscape positional data (i.e., elevation and 

potential moisture) to improving the classification accuracy of fine-scale forest 

associations. Lastly, we present recommendations for using high spatial resolution 

satellite imagery to aid ecosystem inventories at fine spatial resolutions.  

Methods 

Study area 

The focus of our research is the coastal temperate rainforests of the outer coast of 

western Vancouver Island, British Columbia (Figure 2.1). <INSERT FIGURE 2.1> 

Climate is characterized by cool summers and mild winters (mean annual temperature ~ 

8°C) and very high amounts of precipitation (1000 - 5000 mm annually) (Green and 

Klinka 1994; MacKinnon 2003). Forests are dominated by coniferous species including 

western hemlock (Tsuga heterophylla), western redcedar (Thuja plicata), amabalis fir 

(Abies amabilis), and sitka spruce (Picea sitchensis). Approximately 40% of stands in the 

study site are greater than 250 years old (EcoCat: Ecological Reports Catalogue), while 

the remaining landscape is a mosaic of younger stands. The abundance of younger forests 
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is primarily a result of harvest within the last century, with some fine-scale gap 

disturbance resulting from windthrow.   

High Spatial Resolution Satellite Imagery 

QuickBird imagery consisting of four multispectral bands at 2.8 m spatial 

resolution was captured on June 21, 2005. The imagery was geometrically corrected prior 

to purchase by DigitalGlobe with a stated positional accuracy of less than 5m. Raw 

digital values were converted to top of atmosphere radiance units using pre-launch 

calibration coefficients in ENVI (v 4.3, ITT Industries Inc. 2006), and the image data 

were subset from the full extent of 248 km2 to the extent of the reference data (162 km2).   

Image texture layers were created from the multispectral imagery to quantify the 

spatial structure of forest associations. To determine the appropriate scale at which to 

measure spatial variation, multi-directional semivariograms were calculated for 

representative regions of each forest association for each spectral band. Semivariograms 

indicated that pixels were independent at a distance greater than approximately three 

pixels for all classes and most bands, corresponding to previous work (Johansen et al. 

2007). A window size of 3x3 pixels (radius of 1.5 pixels) was thus selected as the 

optimum window size for texture analysis. Using this 3x3 window, six texture statistics 

(angular second moment, contrast, correlation, dissimilarity, entropy and homogeneity) 

were calculated for each spectral band using the standard Grey Level Co-occurrence 

Matrix (GLCM) (Haralick 1973). Pair-wise Jeffries-Matusita (JM) distance statistics 

were calculated in ENVI for each of the six, four-band (blue, green, red, and near-

infrared) subsets, in order to determine which texture measure provided the greatest class 

separability. The JM distance is a measure of the average distance between two class 
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density functions with values increasing as the distance between class means increases 

(Richards and Jia 2006).  The range of JM values as calculated in ENVI is from 0 to 2.0 

with values greater than 1.9 indicating good separability. Here, none of the texture 

subsets achieved JM values of 1.9 or greater, however we chose the texture measure 

which achieved the highest JM value (correlation, with a value of 1.08) for use in the 

subsequent classification procedure.  

Landscape Positional Data 

Ancillary positional data (elevation and potential soil moisture) were used to 

enhance the classification of forest associations because the associations are partially 

defined by localized site characteristics (Figure 2.2). <INSERT FIGURE 2.2> These two 

data layers were derived from Airborne Light Detection and Ranging (LiDAR) data 

collected in July 2005 (Terra Remote Sensing, Sidney, BC, Canada) using a Mark II 

discrete return sensor. Ground and non-ground returns were separated using Terrascan v 

4.006 (Terrasolid, Helsinki, Finland) and ground hits were converted to a Digital 

Elevation Model (DEM) using a natural neighbour algorithm (Bater and Coops In 

Review; Sambridge et al. 1995; Sibson 1981). Using a nearest neighbour algorithm, the 

resulting 1m DEM was resampled to the spatial resolution of the QuickBird image 

(2.8m). Using 19 ground control points, the QuickBird imagery was subsequently 

georectified (using a nearest neighbour resampling algorithm) to the LiDAR imagery 

which had a higher positional accuracy. From the DEM, ArcGIS (v9.2; ESRI Inc.) was 

used to calculate, on a cell-by-cell basis, a topographic wetness index:  

           TWI = ln(a/tanβ)      (1)              



 17

where a is the specific catchment area (the upslope area per unit contour length) and β is 

the slope. The assumption behind this index is that topography influences the flow and 

accumulation of water, and thus, soil moisture patterns (Schmidt and Persson 2003). 

Potential soil moisture is a common predictor in vegetation modeling and classification 

(Taverna et al. 2004; Townsend and Walsh 1998).  

Classification Scheme  

High spatial resolution imagery was classified into classes derived from the 

Terrestrial Ecosystem Mapping (TEM) framework routinely used for ecosystem mapping 

in BC. TEM is a hierarchical system that integrates biotic and abiotic components of the 

landscape to classify ecosystems and traditionally relies on manual interpretation of aerial 

photographs and field data for map production. First, we performed a simple 

classification of the imagery to demarcate areas of late seral forests using QuickBird 

multispectral and textural imagery. Then, with the addition of ancillary data relating to 

landscape position, we classified TEM site series which are forest associations 

characterized by the climax plant communities expected under specific soil moisture and 

nutrient regimes (Green and Klinka 1994; Meidinger and Pojar 1991). Because site series 

refer to potential climax vegetation, we restricted our mapping of site series to older 

stands only (> 250 years in age), ignoring early-seral forests. TEM classes used in this 

study are shown according to their defining nutrient and moisture regimes in Figure 2.2.  

The forest classes include three swamp/bog forests, a floodplain class, two dry upland 

associations, one shoreline class (a combination of two very rare associations found only 

along coastal fringes) and the zonal vegetation association (intermediate in soil moisture 

and nutrient regime and thus best reflecting the vegetation of the regional climatic zone). 
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To ensure adequate sample sizes for rigorous classification and accuracy assessment, we 

did not classify site series which occupied only one or two polygons on the reference 

map.  

Image Classification 

A supervised classification approach was used, utilizing a Nearest Neighbour 

algorithm. Selection of training samples was guided by a digital, vector-based (1:20 000) 

Terrestrial Ecosystem Map (TEM) of the area from 2003 and 2004 (EcoCat: Ecological 

Reports Catalogue). Training samples were selected from an area representing 70% of the 

image, retaining 30% of the area for independent accuracy assessment to follow 

classification (Figure 2.3). <INSERT FIGURE 2.3> The imagery was classified using 

object-based classification software (Definiens Professional 5.0, Munich, Germany), 

which, unlike traditional pixel-based classifers, first creates groups of adjacent pixels, 

then classifies these groups (objects) based on their mean and/or standard deviation with 

respect to the various input layers. The process of grouping pixels is termed segmentation 

and is performed via a bottom-up region merging algorithm (Benz et al. 2004). Beginning 

with single pixels, region-growing continues until a heterogeneity threshold is reached 

(Benz et al. 2004). This heterogeneity threshold is defined by the user-controlled scale 

parameter, with larger values of this parameter resulting in larger image objects. Object-

based classification is well-suited to high spatial resolution imagery because it reduces 

the high within-class variability inherent in high spatial resolution imagery where 

multiple pixels may comprise an object of interest (Hay et al. 2005; Wang et al. 2004a). 

Further, image objects can be meaningfully related to one another, allowing context to be 

directly incorporated into classification (Benz et al. 2004).  



 19

Two hierarchical levels of image-objects were created. At each level, the results 

of several values of the scale parameter were visually assessed before selecting values 

which created image objects that were as large as possible and as fine as necessary to 

delineate relatively homogeneous patches of the different classes (Definiens 2006). At the 

first level (mean object size of 7.6 ha), image objects distinguished late seral forests from 

young seral stages. At the finer level (mean object size of 0.9 ha), classification of site 

series was then constrained to areas classified as old-forest in the coarser classification. 

As the location of old and young forest stands in the study area is less directly related to 

topography but rather due largely to patterns of forest harvest, we only used QuickBird 

multispectral data and texture derivatives for the broad-scale classification of old forest 

versus other successional stages. However, LiDAR-derived landscape positional data 

were used in addition to QuickBird imagery for the finer scale classification of late seral 

forest associations because the distribution of these classes does correspond well to 

landscape position. A contextual rule relating to landscape position restricted the Picea 

sitchensis (shoreline) class to within 350m of the coastline, a distance chosen after 

consulting the Terrestrial Ecosystem Map (TEM) of the study site. Contextual rules were 

also created to restrict the drier upland classes of Pinus contorta - Chamaecyparis 

nootkatensis / Racomitrium lanuginosum (LR) and Tsuga heterophylla - Chamaecyparis 

nootkatensis / Gaultheria shallon (RS) to higher elevations. Specifically, objects to be 

considered for these two classes must have a mean elevation value of at least 40m. This 

threshold was selected by looking at the range of elevation values of each of these classes 

based on their locations on the reference map. The mean and median elevations of these 

two classes are 67 m and 62 m, and 73 m and 67 m respectively, while the mean and 
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median elevation of the next highest class (Thuja plicata - Tsuga heterophylla / 

Gaultheria shallon, HS) is approximately 32 m and 21m, respectively.   

Ten data layers were used as input for the fine-scale classification of late seral 

forest associations (4 multispectral, 4 texture, elevation and the topographic wetness 

index layer). To examine the relative importance of the three types of information 

(spectral, textural and situational) utilized in the classification of forest associations, we 

once again employed the Jeffries-Matusita (JM) distance equation (previously used to 

indicate the optimum measure of texture) to examine statistical pair-wise separability of 

the classes for each subset of image data. We also compared the results of the 

classification when all ten data layers were used, to those resulting from the 

classifications using spectral data only, and from spectral and textural data only.  

Accuracy Assessment   

We performed a pixel-based accuracy assessment whereby classified pixels were 

sampled from the map using a stratified random sampling design and compared to the 

class attributed to the TEM polygon at that location. Misregistration between a 

classification and preexisting vector-based reference data is a potential problem (Wulder 

et al. 2006) and will negatively affect map accuracy, particularly as landscape 

heterogeneity increases (Smith et al. 2003). We therefore buffered the edges of each 

polygon to constrain sampling to polygon interiors. A visual assessment of the reference 

polygons overlain on the multispectral image indicated that a buffer width of 10 m would 

be sufficient.  
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Results 

The broad scale classification of late seral forests versus other structural 

(successional) stages had an overall accuracy of 92% and a corresponding Kappa 

coefficient of 0.84. User’s accuracy for late seral forests was 94% (commission error of 

6%) and producer’s accuracy was 92% (omission error of 8%).  At the finer level of late 

seral forest associations, classification accuracies were lower than those obtained at the 

broader level of classification. Classification of late seral forests into eight site series was 

41% accurate overall when spectral, textural and positional (elevation and potential soil 

moisture) data were used, 29% accurate when using only spectral and textural data, and 

28% when using solely spectral data. However, it is important to note that these overall 

accuracies do not capture the fact that some late seral forest associations were quite well 

classified.  

The separability of late seral forest associations varied for different types of data. 

Forest associations were poorly separable using spectral and textural information. Most 

pairs were best separated on the basis of landscape positional data (Table 2.1). <INSERT 

TABLE 2.1>  Jeffries-Matusita (JM) distance values ranged from 0.08 to 2.0 (mean 1.44) 

for the DEM and Topographic Wetness Index subset, from 0.03 to 0.99 (mean 0.50) for 

the four-band spectral subset, and from 0.01 to 1.08 (mean 0.45) for the four-band 

correlation (texture) subset (Table 2.2). <INSERT TABLE 2.2>  The average JM 

distance for all pairs discriminated using spectral, textural and situational data combined 

was 1.71. When only spectral/textural data was used for the classification, 

misclassification was common among forest associations that are unlikely to be found in 

the same location on the landscape (e.g., the dry upland associations versus the wetland 
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associations) (Table 2.3a and b). In contrast, the addition of LiDAR-derived landscape 

position variables (elevation and potential soil moisture) reduced class confusion among 

classes with dissimilar environmental characteristics (Table 2.3c). <INSERT TABLE 

2.3> 

Consistently, the most accurately classified were two of the wetland classes 

(Pinus contorta - Chamaecyparis nootkatensis / Sphagnum and Thuja plicata - 

Chamaecyparis nootkatensis / Coptis asplenifolia) as well as the shoreline class (Picea 

sitchensis). User’s accuracies for these most accurately classified forest associations were 

as high as 84%, with producer’s accuracies up to 94% for the classification utilizing all 

data layers (Table 2.2).  The other wetland class (Thuja plicata - Picea sitchensis / 

Lysichiton americanum) and one of the dry upland classes (Tsuga heterophylla - 

Chamaecyparis nootkatensis / Gaultheria shallon) were the least accurately classified 

forest associations, with accuracies as low as 0% (Table 2.3).  

Discussion 

We classified high spatial resolution remotely sensed imagery of a forested 

landscape into forest types using two hierarchical schemes. At the broadest level, late 

seral forests were differentiated from young successional stages with very high accuracy, 

exceeding 90%. The successional transition from recently disturbed regenerating stands 

to old-growth stands is characterized by a decrease in albedo and increase in shade 

(Roberts et al. 2004) and a corresponding increase in canopy complexity (Johansen et al. 

2007). Though the classification of mature versus old forests in the forests of the Pacific 

coast of North America has been somewhat challenging (Cohen et al. 1995; Jiang et al. 

2004), our findings agree that late seral forests can be well discriminated (75% to 90% 
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accuracy) from early seral stands solely on the basis of spectral and/or textural 

information.  

Pair-wise separability statistics indicate that within late seral stands however, 

classes are not well separated using only spectral or textural information. Although in 

general, spectral and textural data contributed slightly to the separability of stands 

dominated by species with large crowns (e.g. Thuja Plicata, Picea sitchensis) and wide 

spacing (a “rough” texture) from less productive sites (e.g. waterlogged bogs) dominated 

by species with smaller crowns (e.g., Pinus contorta).  

Texture did not significantly enhance separability of late seral forest associations 

from the use of spectral data alone. This likely indicates textural similarity among many 

late seral associations. In forest scenes, spatial variation in spectral reflectance may be a 

result of changes in species, crown closure and stem density (Franklin et al. 2001a) and 

semivariogram range has been found to differ between various forest ecosystem classes, 

attributable to differences in crown diameters (Treitz and Howarth 2000). Species 

composition, tree size and tree spacing are variable within these late seral associations 

and similar across all associations. Thus, similar semivariogram ranges among 

associations helps to explain why the calculated image texture did not enhance fine-scale 

class separability. Texture is likely more helpful for discrimination between forests which 

are structurally dissimilar, such as old and young forests (Franklin et al. 2001b; Johansen 

et al. 2007).  

The use of ancillary data describing landscape position has been shown to 

increase land cover classification accuracy relative to that using reflectance data alone 

(Bolstad and Lillesand 1992). Class separabilities incorporating elevation and potential 
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soil moisture layers were higher than those achieved using spectral or textural data, 

improving overall classification accuracy by 12% relative to the use of spectral and 

textural data. Moist, low lying classes (such as bogs and floodplain classes) were well 

separated from drier upland classes. The zonal forest association (characterized by 

intermediate soil moisture) was not as well separated as some other classes were on the 

basis of landscape position because it is found at a variety of elevations and overlaps with 

both wetter and drier associations. The shoreline (Picea sitchensis) and floodplain class 

(Thuja plicata - Picea sitchensis / Oplopanax horridus), both found on gentle to moderate 

slopes, are poorly separable in terms of Jeffries-Matusita (JM) separability distances 

measured with respect to elevation and soil moisture. However, using a contextual rule to 

restrict the shoreline class to the coastline resulted in greater separation than is indicated 

by the JM statistic.   

Accuracies reported here may be unrepresentative for a number of reasons. First, 

restricting sampling to polygon interiors tends to slightly inflate accuracy estimates 

(Hammond and Verbyla 1996), yet it remains a commonly used method. Accuracies 

reported for the finer-scale classification of forest associations may actually be 

conservative, however. It is common for small patches of subdominant forest associations 

to be scattered throughout reference polygons, yet traditional accuracy assessment 

generally allows for assessment of agreement with respect to the dominant classes only. 

Higher accuracies may be possible if matches between classified pixels and any 

subdominant classes were quantified, as explored elsewhere (Stehman et al. 2003; 

Thompson and Gergel In Review; Wulder et al. 2007). Another factor to consider is 

spatial autocorrelation among image pixels (samples located close to one another are 
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more similar than samples located further apart). Although non-independent samples will 

not bias the results of an accuracy assessment where the motive is not to infer or 

generalize to a broader population of pixels beyond that contained in the image (Stehman 

2000), spatial autocorrelation does reduce the effective sample size as many of the 

samples are actually redundant or duplicative (Griffith 2005).  As a result, the confidence 

level attributed to the results of an accuracy assessment is decreased (Stehman 2000).  

Future Work for Ecosystem Inventories 

QuickBird has shown potential for providing information at multiple scales, 

enabling one image to be used for multiple purposes. A dataset which can provide multi-

scale information has great potential for cost savings, and will be relevant in decision 

making for multiple stakeholder management which strives to manage goals and 

objectives at the landscape and stand level. This multi-scale analysis has particular appeal 

in ecosystems such as late seral coastal temperate rainforests which are structurally very 

complex, and hold a vast array of cultural, economic and ecological values (Clayoquot 

Sound Scientific Panel 1995). One particular application of high spatial resolution 

satellite imagery may lie in the domain of fine-scale vegetation modeling. Predictive 

Ecosystem Mapping (PEM) in British Columbia is sometimes used as low-cost 

alternative to Terrestrial Ecosystem Mapping (TEM).  Unlike TEM, PEM does not rely 

on manual interpretation of aerial photographs and field data. Rather, PEM uses ancillary 

spatial data (e.g. existing forest and soil inventory data) and known ecological-landscape 

relationships to predict the locations of ecosystem across a landscape (Meidinger et al. 

2000; Terrestrial Ecosystem Mapping Alternatives Task Force 1999). Satellite imagery 

(Landsat) may be used as input PEM. However, given that Landsat is insufficient for 
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fine-scale mapping in forests (Foody and Hill 1996; Harvey and Hill 2001), high spatial 

resolution satellite imagery such as QuickBird could potentially improve the predictive 

ability of such models. Furthermore, our work clearly demonstrates the utility of 

landscape positional variables in aiding forest association mapping with QuickBird 

imagery. Given PEM’s framework based on ecological-landscape relationships, 

QuickBird imagery combined with appropriate terrain data may be particularly useful in 

this regard.  
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LR LS RC RS SD Shoreline YG  
0.62 0.94 0.13 0.37 0.03 0.48 0.39 HS 

 0.26 0.64 0.17 0.69 0.88 0.22 LR 
  0.88 0.56 0.99 0.83 0.37 LS 
   0.49 0.15 0.52 0.36 RC 
    0.47 0.86 0.13 RS 
     0.38 0.50 SD 
      0.81 Shoreline 

Table 2.2a. Jeffries-Matusita (JM) distances separating each pair of classes. Spectral data 

layers only. 

 

LR LS RC RS SD Shoreline YG  
0.94 1.07 0.47 0.42 0.10 0.11 0.74 HS 

 0.07 0.44 0.29 0.96 0.68 0.12 LR 
  0.49 0.41 1.08 0.83 0.14 LS 
   0.08 0.50 0.38 0.15 RC 
    0.46 0.27 0.11 RS 
     0.13 0.76 SD 
      0.53 Shoreline 

Table 2.2b. Jeffries-Matusita (JM) distances separating each pair of classes. Textural data 

layers only. 

 

 
LR LS RC RS SD Shoreline YG 
1.47 1.19 1.41 1.04 1.02 0.84 1.46 HS 

 2.00 2.00 1.62 2.00 2.00 2.00 LR 
  0.62 2.00 0.45 0.37 1.74 LS 
   2.00 1.14 0.92 1.79 RC 
    2.00 2.00 2.00 RS 
     0.08 1.79 SD 
      1.48 Shoreline 

Table 2.2c. Jeffries-Matusita (JM) distances separating each pair of classes.  Landscape 

positional data layers only. 
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LR LS RC RS SD Shoreline YG 
1.80 1.82 1.61 1.35 1.05 1.19 1.74 HS 

 2.00 2.00 1.74 2.00 2.00 2.00 LR 
  1.43 2.00 1.67 1.47 1.84 LS 
   2.00 1.47 1.4 1.87 RC 
    2.00 2.00 2.00 RS 
     0.6 1.9 SD 
      1.78 Shoreline 

Table 2.2d. Jeffries-Matusita (JM) distances separating each pair of classes.  All data 

layers combined. 
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Figures 
 
 

 
 
 
 
 
 
 

Figure 2.1. Study area (162 km2) in the coastal temperate rainforests of western 

Vancouver Island, British Columbia, Canada. 
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Figure 2.2 Forest associations mapped in this study are characterized by particular soil 

moisture and nutrient regimes (represented by their relative position along a unitless 

edatopic grid).  LS, RC and YG are wetland forest associations, SD is the floodplain 

class, LR and RS are the dry upland classes, and HS is the zonal vegetation association 

(intermediate soil moisture and nutrient regime). Shoreline refers to the blue-listed Sitka-

spruce dominated associations found only along coastal fringes associated with high 

winds, salt spray from the ocean, and sandy or rocky substrate. Thus shoreline forest 

associations are on a separate grid reflecting their unique environment. Adapted from 

Green and Klinka 1994.

 Soil Nutrients 
       Poor                                 Rich  

LR 

RS 

 

 

HS 

YG SD 

  

So
il 

M
oi

st
ur

e 
W

et
   

   
   

   
   

   
   

   
   

   
   

  D
ry

 

LS RC 

HS Thuja plicata - Tsuga heterophylla / Gaultheria shallon  
LR Pinus contorta - Chamaecyparis nootkatensis / Racomitrium lanuginosum   
LS Pinus contorta - Chamaecyparis nootkatensis / Sphagnum 
RC Thuja plicata - Picea sitchensis / Lysichiton americanum 
RS Tsuga heterophylla - Chamaecyparis nootkatensis / Gaultheria shallon 
SD Thuja plicata - Picea sitchensis / Oplopanax horridus 
YG Thuja plicata - Chamaecyparis nootkatensis / Coptis asplenifolia 
SHORELINE Picea sitchensis 

 Soil Nutrients 
   Poor                             Rich 

 

SHORELINE 

So
il 

M
oi

st
ur

e 
   

  
W

et
   

   
   

D
ry

  

 



 35

 
 
 
 
 
 
Figure 2.3.  A supervised training approach was utilized in image classification. Prior to 

classification, the image was stratified into training and testing regions occupying 70% 

and 30% of the study area, respectively.  
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3.  CONSERVATION IMPLICATIONS OF MAPPING RARE HABITATS USING 
HIGH SPATIAL RESOLUTION IMAGERY: RECOMMENDATIONS FOR 
HETEROGENEOUS AND FRAGMENTED LANDSCAPES2 
 
Introduction 

Within the last several decades, natural resource management has struggled 

towards managing landscapes for ecosystem representation targets. Preservation of the 

full range of communities and ecosystems is important as it is assumed that by preserving 

a portion of each ecosystem the species and communities therein will be conserved (Noss 

1996). Many nature reserve networks have been designed with this in mind (Margules 

and Pressey 2000). This perspective is also central to Ecosystem-Based Management 

(EBM), increasingly used in natural resource management and conservation in many 

areas of the world (Grumbine 1994; Slocombe 1993). Of particular concern in managing 

for ecosystem representation is the conservation of rare (uncommon, and potentially at 

risk or endangered) ecosystems. Thus, accurate and up-to-date information for all 

ecosystem types in a region, especially those which are rare, is crucial.   

Fine-scale structural and compositional information of ecosystems (e.g., stand 

age, species diversity and dominance) is often required by managers, yet precise 

quantification of such fine-scale heterogeneity remains a challenge, especially over large 

areas. Conventional ecosystem inventories utilize aerial photograph interpretation and 

field surveys (Goetz et al. 2003; Wulder et al. 2004a). However, the costly and time-

consuming nature of air photo processing and interpretation results in infrequent updates 

(Green 2000; Wulder 1998). Satellite remote sensing is a systematic, cost-effective 

                                                 
2 A version of this chapter has been submitted for publication: Thompson, S.D., Gergel, S.E. In 
Review. Conservation implications of mapping rare habitats using high spatial resolution 
imagery: Recommendations for heterogeneous and fragmented landscapes.  
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method to map and monitor land cover as the (digital) imagery has a broad coverage, and 

is acquired at regular time intervals. Until recently, the spatial resolution of satellite 

imagery has been too coarse to provide information beyond very general vegetative types 

(e.g., deciduous versus coniferous) (Wulder et al. 2004a). Within the last decade, high 

spatial resolution satellite imagery (such as QuickBird and IKONOS, with spatial 

resolutions of less than 4m) has become available, capable of characterizing ecosystem 

vegetation structure at much finer resolutions, including species (Chubey et al. 2006), age 

or structural (seral) type (Franklin et al. 2001b; Gergel et al. 2007; Johansen et al. 2007). 

Thus the use of high spatial resolution satellite imagery in ecosystem mapping continues 

to increase (Wulder et al. 2004a) and is particularly recommended for small ecosystems 

or when information regarding fine-scale heterogeneity is important.  

Generally, classification errors on maps derived from remotely sensed imagery 

are greater for classes that occupy a small proportion of a study area than those that 

occupy a larger proportion (Smith et al. 2003; Smith et al. 2002). This is unfortunate as it 

is often a few select classes of conservation concern that primarily influence the 

conservation and management decisions made from maps. Inaccurate representation of 

rare cover types may have significant conservation implications. When the extent of a 

rare class is underestimated, missed areas would not be given the protection needed. In 

contrast, overestimation of the abundance of a rare ecosystem type is also problematic as 

it may result in that class no longer being considered rare and therefore not given the 

protection it requires. In addition to erroneous estimates of the overall area of an 

ecosystem, the size of an individual patch may be over- or underestimated, affecting 

patch-level conservation decisions. All of these types of map errors may also be 
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problematic when such maps are used to delineate critical habitat for the protection and 

recovery of particular threatened and endangered species, or as input for automated 

decision support tools for reserve design such as Marxan (Ball and Possingham 2000; 

Possingham et al. 2000). Correct representation of the error associated with rare 

ecosystem maps is therefore essential.  

The objective of this study is to evaluate how the portrayal and interpretation of 

rare habitat classes on maps derived from high spatial resolution satellite imagery may 

vary as a result of post-classification processing and chosen accuracy assessment 

technique. Imagery of a fragmented and heterogeneous landscape is classified and several 

accuracy assessment techniques are compared with respect to their representation of rare, 

and/or fragmented classes. To this effect, we perform (a) a standard, pixel-based accuracy 

assessment, (b) a modified assessment that acknowledges fine-scale heterogeneity, and 

(c) a polygon-level accuracy assessment. Also examined is the sensitivity of rare classes 

to the implementation of a Minimum Mapping Unit (MMU) with respect to several 

habitat fragmentation indices. Given the continuing increase in the use of high spatial 

resolution satellite imagery for detailed ecosystem inventories, explicit examination of 

techniques related to rare class mapping is particularly timely. 

Methods 

Study area 

Our research focuses on the coastal temperate rainforests of the outer coast of 

western Vancouver Island, British Columbia, within and adjacent to Pacific Rim National 

Park (Figure 3.1). <INSERT FIGURE 3.1> Climate is characterized by cool summers 

and mild winters (mean annual temperature ~ 8°C) and very high amounts of 
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precipitation (1000 - 5000 mm annually) (Green and Klinka 1994; MacKinnon 2003). 

Forests are dominated by coniferous species including western hemlock (Tsuga 

heterophylla), western redcedar (Thuja plicata), amabalis fir (Abies amabilis), and sitka 

spruce (Picea sitchensis). Several forest associations in the area have been blue-listed 

(designated as of special concern) by the Conservation Data Centre (CDC) (Table 3.1), 

BC’s NatureServe counterpart responsible for collecting and disseminating information 

on animals, plants and communities at risk. <INSERT TABLE 3.1> Approximately 40% 

of the stands in the study site are greater than 250 years old (EcoCat: Ecological Reports 

Catalogue), while the remaining landscape is a mosaic of younger stands. This is 

primarily as a result of harvest within the last century, with some fine-scale gap 

disturbance resulting from natural processes such as windthrow.   

Classification Scheme  

The high spatial resolution imagery was classified into classes derived from the 

Terrestrial Ecosystem Mapping (TEM) framework used for ecosystem mapping in BC.  

TEM is a hierarchical system that integrates biotic and abiotic components of the 

landscape to classify ecosystems via the manual interpretation of aerial photographs and 

the use of supplemental field data. We chose to map at the level of site series as this is the 

ecosystem component utilized by the Conservation Data Centre.  Site series are 

vegetation associations (ranging in size from less than 1 ha to several hundred hectares) 

characterized by the climax plant communities expected to develop under specific soil 

moisture and nutrient regimes (Green and Klinka 1994; Meidinger and Pojar 1991).  

Polygons on a Terrestrial Ecosystem Map may be labeled with more than one forest 

association (up to three), when multiple forest associations are present yet too limited in 
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extent to be distinguished separately. In such cases, the proportion of each class is noted, 

although their exact spatial location is not.  

The TEM classes used in this study are shown in Table 3.1. Because site series 

refer to potential climax vegetation, we restricted our mapping to old forests only (stands 

greater than 250 years in age), ignoring early-seral forests. In addition, to ensure adequate 

sample sizes for rigorous classification and accuracy assessment, we eliminated site 

series which were dominant in only one or two polygons on the reference map. However, 

rather than delete them, two very rare blue-listed associations with high ecological 

similarity (Picea sitchensis / Eurhynchium oreganum (SK) and Picea sitchensis / 

Polystichum munitum (SW)) were merged into one shoreline class (Picea sitchensis). 

Both are spruce dominated shoreline/oceanspray associations with similar structural and 

site characteristics. Our classification scheme also contains one other blue-listed 

association, the swamp forest Thuja plicata - Picea sitchensis / Lysichiton americanum 

(RC). We decided to include Pinus contorta - Chamaecyparis nootkatensis / Racomitrium 

lanuginosum (LR) in our rare class analysis as well. Though not formally recognized as 

rare on provincial lists, this ecosystem found on high, relatively dry sites, was locally 

rare, occupying a very small proportion of the total study area (< 1.5%), and thus 

provides another useful example of the challenges of mapping small, fragmented, locally 

rare plant associations.  

Spatial Data 

QuickBird imagery consisting of four multi-spectral bands at 2.8 m spatial 

resolution was captured on June 21, 2005. The imagery was geometrically corrected prior 

to purchase by DigitalGlobe with a stated positional accuracy of less than 5m. Raw 
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digital values were converted to top of atmosphere radiance units using pre-launch 

calibration coefficients in ENVI (v 4.3, ITT Industries Inc. 2006), and the image data 

were subset from the full extent of 248 km2 to the extent of the reference data (162 km2).   

Distinguishing among associations within coastal temperate rainforests on the 

basis of spectral information alone was expected to be very challenging as many of the 

tree species found within the study area display similar signatures, particularly in 

structurally complex late-seral stands with trees of varying age and health (Leckie et al. 

2005), and forest associations in the region contain many of the same overstory tree 

species. Thus we created image texture layers to quantify the spatial structure of each 

forest association.  To derive the size of the neighbourhood over which spatial variation 

would be measured, multi-directional semivariograms (for each spectral band) were 

calculated for representative regions of each forest association. Visual examination of the 

semivariograms indicated that pixels were no longer related at a distance of 

approximately three pixels for all classes and most wavelengths, as in our previous work 

in the area (Johansen et al. 2007). Using a 3x3 window, six texture statistics (angular 

second moment, contrast, correlation, dissimilarity, entropy and homogeneity) were 

calculated for each spectral band using the standard Grey Level Co-ocurrence Matrix 

(GLCM) (Haralick 1973). Pair-wise Jeffries-Matusita (JM) distance statistics were 

calculated in ENVI for each of the six, four-band (blue, green, red, and near-infrared) 

subsets to determine which measure provided the greatest class separability. The JM 

distance is a measure of the average distance between two class density functions with 

values increasing as the distance between class means increases (Richards and Jia 2006).  
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This analysis identified correlation as the measure which optimized class separability, 

thus it was chosen for use in the subsequent classification procedure.   

Ancillary topographic data and derivatives were also used in this study because 

site series are partially distinguished by elevation, slope position and soil moisture (Table 

3.1). We used a Digital Elevation Model (DEM) derived from airborne Light Detection 

and Ranging (LiDAR) data (Bater and Coops In Revision). The LiDAR data was 

collected in July 2005 (Terra Remote Sensing, Sidney, BC, Canada) using a Mark II 

discrete return sensor, with ground and non-ground returns separated using Terrascan v 

4.006 (Terrasolid, Helsinki, Finland). Ground hits were converted to a DEM using a 

natural neighbour algorithm (Bater and Coops In Revision; Sibson 1981) and the 

resulting 1m DEM was resampled to the spatial resolution of the QuickBird image 

(2.8m). Using 19 ground control points, the QuickBird imagery was then georectified to 

the LiDAR imagery which had a higher positional accuracy. From the DEM, ArcGIS 

(v9.2; ESRI Inc.) was used to calculate, on a cell-by-cell basis, a topographic wetness 

index:  

           TWI = ln(a/tanβ)      (1)              

where a is the specific catchment area (the upslope area per unit contour length) and β is 

the slope. The assumption behind this index is that topography influences the flow and 

accumulation of water, and thus soil moisture patterns (Schmidt and Persson 2003). 

Potential soil moisture is a common predictor in vegetation modeling and classification 

(Taverna et al. 2004; Wright and Gallant 2007).  
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 Image Classification 

The imagery was classified using object-based classification software (Definiens 

Professional 5.0, Munich, Germany), which, unlike traditional classifers that classify 

each individual pixel, first clusters then classifies groups of adjacent pixels (image 

objects) based on the mean and/or standard deviation. Pixel clustering continues until a 

heterogeneity threshold is reached (Benz et al. 2004). This heterogeneity threshold is 

defined by the user-controlled scale parameter, with larger values of this parameter 

resulting in larger image objects. The use of image objects reduces the high within-class 

variability inherent in high spatial resolution imagery and thereby increases classification 

accuracy.  

The imagery was first classified into a simple binary map demarcating areas of 

late-seral forests which were then classified into eight different forest associations, using 

a mean object size of 0.9ha. Objects much larger than this did not appear to delineate 

relatively homogeneous patches of the different classes as finely as necessary. A 

supervised classification approach was used, utilizing a Nearest Neighbour algorithm. 

Representative image objects of each class were selected to “train” the classifier, and the 

algorithm then assigned each image object to the class of the nearest sample object in 

feature space. Selection of training samples was guided by a digital, vector-based TEM 

(1:20 000) of the area which was developed in 2003 and 2004 (EcoCat: Ecological 

Reports Catalogue). Contextual rules were also created to restrict the drier upland classes 

of Pinus contorta - Chamaecyparis nootkatensis / Racomitrium lanuginosum (LR) and 

Tsuga heterophylla - Chamaecyparis nootkatensis / Gaultheria shallon (RS) to higher 
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elevations. These thresholds were selected by looking at the range of elevation values of 

each of these classes based on their locations on the reference map. 

Accuracy Assessment  

Site series on the classified image were compared to those on the vector-based 

TEM. Given that the TEM was to be used for both guiding and assessing the 

classification, the image was stratified a priori into training and testing regions (70% and 

30% of the total area respectively) to ensure truth data were independent from 

information used to guide the classification (Figure 3.2a). <INSERT FIGURE 3.2> Both 

the training and testing regions contained a representative sample of all classes examined. 

Here, we focus on user’s accuracies and associated errors of commission. User’s 

accuracies indicate the probability that a pixel (or polygon) classified on the map actually 

represents that category on the ground (Jensen 2005). User’s accuracies also represent the 

reliability of the map and thus are often the measure of accuracy in which ecologists and 

managers are most interested.  

We first performed a pixel-based accuracy assessment whereby classified pixels 

were sampled from the map using a stratified random sampling design.  Several issues 

may arise when comparing pixels from raster data to preexisting vector-based reference 

data, including positional errors, and differences between the scale of polygon delineation 

in the truth layer and the spatial resolution of the satellite imagery (Wulder et al. 2006).  

Misregistration between the classified map and reference data will negatively affect map 

accuracy, particularly as landscape heterogeneity increases (Smith et al. 2003).  We used 

a 10m buffer around each polygon to constrain sampling to polygon interiors, a method 

sometimes used to contend with this issue, despite the fact that it tends to inflate accuracy 



 51

estimates (Hammond and Verbyla 1996). The issue of scale differences between the 

classified map and the reference data is important here because during air photo 

interpretation for TEM, a Minimum Mapping Unit (MMU) is used (Ecosystems Working 

Group Terrestrial Ecosystems Task Force Resources Inventory Committee 1998). The 

MMU of the TEM dataset utilized in this study is 2.0ha, which is a coarser scale of 

generalization than that of the object-based classification (average polygon size of 0.9ha) 

to which it was compared.  The problem of comparing a fine-scale QuickBird 

classification to more generalized reference polygons was investigated by comparing the 

classified image to the dominant, as well as to the sub-dominant labels of the TEM 

reference polygons. These assessments are referred to UA1, UA2 and UA3 (user’s 

accuracies for the first, second and third dominant site series in a reference polygon 

respectively). Several other studies have explored accuracy assessment techniques 

designed to account for the thematic ambiguity that may be present in reference maps, 

including the consideration of alternate labels associated with reference polygons 

(Stehman et al. 2003; Wulder et al. 2007).  

In addition to the pixel-based accuracy assessment, we also performed a polygon-

based assessment, given that we used a per-object classifier rather than a per-pixel 

classifier. Using an object-based classification and polygon-based reference data means 

that accuracy estimates actually refer to the accuracy of a more generalized area rather 

than at the scale of individual pixels. Thus per-pixel accuracy assessment estimates where 

pixels have been drawn from the same classified object may be unrepresentative as each 

classified pixel need only match one of the classes somewhere within the associated 

reference polygon. Furthermore, adjacent pixels of the same image object will not be 
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independent. A polygon-level accuracy assessment whereby each classified image object 

is represented by only one pixel may be more appropriate because it avoids “double-

counting” a single classified image object. Further it may also account for any remaining 

positional uncertainty between a classified map and the reference data (Wulder et al. 

2006; Stehman et al. 2003). One potential problem however is that one large correct 

polygon (occupying a large portion of the map) is thus given the same weight as one very 

small incorrect polygon. On an areal basis, one could argue that this unfairly represents 

the accuracy/inaccuracy of the map as a whole. Therefore we perform a polygon-based 

accuracy assessment solely for the rare classes (which all occupy a similar range of 

average patch sizes and proportion of the landscape).   

Finally, we examined the impact of the implementation of a minimum mapping 

unit (MMU), via post-classification smoothing, on the resulting accuracy and 

fragmentation of rare classes. Traditionally, post-classification smoothing is performed 

via a moving window of a fixed size whereby the value of the centre pixel becomes the 

mean or median class of the other pixels in its neighbourhood. In this study, smoothing 

was applied at the patch level in Definiens using the merge and grow reshaping 

algorithms. Adjacent image objects were merged together if they were smaller than 2ha 

in size (the MMU of the TEM dataset) and the resulting patch took on the value of the 

class which was dominant in the neighbourhood prior to the merger. For the rare classes, 

we calculated the percent change (with reference to the basic classification) in several 

Landscape Pattern Indices (LPIs) routinely used to evaluate fragmented habitat using the 

following equation: 

          % change = [(LPIunsmoothed – LPIsmoothed) / (LPIunsmoothed)] * 100%        (2) 
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Results 

Overall map accuracy in the pixel-based accuracy assessment was 41% with 

reference to the dominant site series label (Table 3.2). <INSERT TABLE 3.2> Gains of 

15% and 5% resulted from consideration of the second and third dominant site series 

respectively. User’s accuracies (Table 3.3a) for individual classes ranged from 2% to 

84% when only the dominant site series label was considered (User’s Accuracy 1, or 

UA1), improving 0% to 42% when considering the second site series (UA2) and 0% to 

13% when the third site series was also considered (UA3). <INSERT TABLE 3.3> For 

UA1 the highest accuracies were achieved for Thuja plicata - Chamaecyparis 

nootkatensis / Coptis asplenifolia (YG), Pinus contorta - Chamaecyparis nootkatensis / 

Sphagnum (LS) and Picea sitchensis (shoreline).  The classes seeing the largest increase 

in accuracy when UA2 and UA3 were also considered were Thuja plicata - Tsuga 

heterophylla / Gaultheria shallon (HS), Tsuga heterophylla - Chamaecyparis 

nootkatensis / Gaultheria shallon RS, and Thuja plicata - Picea sitchensis / Lysichiton 

americanum (RC). Relative to pixel-level accuracy estimates, polygon-level estimates 

(Table 3.4) for two of the classes (RC and shoreline) were no different, but were higher 

for LR (42% for the polygon-based assessment vs. 21% for the pixel-based assessment). 

<INSERT TABLE 3.4> 

In the assessment of the agreement between the classified map and reference data 

(dominant class only), less common ecosystems were generally classified with lower 

accuracies than those more prevalent throughout the study area. However, accuracies 

were not directly proportional to their extent. An exception was the Picea sitchensis 

(shoreline) class, which although quite limited in extent, was classified with very high 
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accuracy. Further, commission errors (with respect to UA1) for the shoreline class were 

relatively low (12% - 16%), while in contrast, commission errors for the two other rare 

classes (Pinus contorta - Chamaecyparis nootkatensis / Racomitrium lanuginosum (LR) 

and Thuja plicata - Picea sitchensis / Lysichiton americanum (RC) were very high (79% - 

98%) (Table 3.3).  

Smoothing the classification to implement a Minimum Mapping Unit (MMU) 

increased the overall accuracy of the map very slightly to 42%, up from 41% (UA1) 

(Table 3.3b). Smoothing increased some per-class accuracies and decreased others. The 

three classes most accurately classified in the smoothed map (UA1) were also those most 

accurately classified in the non-smoothed map. Rare class accuracies either increased or 

saw no change as a result of smoothing (Table 3.3b) with respect to the dominant 

reference label. However, the relative accuracies of these three rare classes (UA1) 

remained the same (shoreline was the most accurately classified and RC the least 

accurately classified) regardless of whether or not smoothing was used.    

Implementation of a MMU greatly changed the spatial extent and pattern of 

classes. Two of the rare classes, Pinus contorta - Chamaecyparis nootkatensis / 

Racomitrium lanuginosum (LR) and Thuja plicata - Picea sitchensis / Lysichiton 

americanum (RC) were reduced in extent by 19% and 7% respectively (Table 3.5). 

<INSERT TABLE 3.5> These classes were initially overestimated, thus the reduction in 

area improved their user’s accuracies. Conversely, the extent of the rare class Picea 

sitchensis (shoreline) increased by 11% as it as it expanded at the expense of 

neighbouring pixels. Smoothing also reduced the number of patches of each rare class by 

an average of 63% (Table 3.5, Figure 3.2). The decrease in area and number of patches, 
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combined with the increase in size of patches, means these rare classes became less 

fragmented as numerous small patches were eradicated during the smoothing process.  

Discussion 

We classified late-seral forest associations in a complex landscape using high 

spatial resolution multispectral QuickBird satellite imagery and LiDAR-derived 

topographic data. Accuracies were high (~85%) for two classes, but considerably lower 

for many other classes, including most of the rare ecosystems. The areal extent of rare 

classes was often overestimated. High rates of commission for rare classes have been 

partially attributed to class imbalances (Wright and Gallant 2007). Overestimating the 

extent of rare classes can occur when common classes are misclassified, even at a very 

low rate. As a result, the accuracy of common classes must be quite high to not impact 

the abundance of rare classes (Stehman 2005). While tradeoffs among class accuracies 

are expected, the impact on rare classes will be of greater magnitude (Stehman 2005). 

Further, because classification accuracy for common classes tends to decrease with 

increasing landscape heterogeneity (Smith et al. 2003; Smith et al. 2002), mapping rare 

classes may become even more difficult in complex landscapes with a high number of 

cover types.   

Here, object-based image analysis software allowed us to introduce expert 

knowledge to reduce rates of misclassification partially caused by class imbalances. The 

inclusion of thresholds and contextual rules for two of the rare classes helped to improve 

their accuracies by reducing the possible interaction with the misclassification of more 

abundant classes. Finally, though not addressed here, it is possible that classification 

accuracies (particularly of rare classes) can be increased via the use of alternate 
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classification methods such as Artificial Neural Networks (ANN), as well as decision 

trees and the use of bagging (bootstrap aggregating) or boosting (Lu and Weng 2007).  

Here, as in other studies, when classified imagery was compared to a reference 

map with a larger Minimum Mapping Unit (MMU), traditional accuracy assessment 

tended to overestimate classification errors (Verbyla and Hammond 1995; Wulder et al. 

2007). Others have suggested this conservative bias may increase as landscape 

heterogeneity increases (Verbyla and Hammond 1995). Our results (for both the pixel- 

and polygon-based accuracy assessments) showed that ignoring fine-scale heterogeneity 

within ecosystem types can result in misleading accuracy estimates. Here, many per-class 

accuracies differed substantially when fine-scale heterogeneity present within the 

reference map units was acknowledged. Several ecosystems routinely occur as 

subdominant classes as a result of fine-scale variability in site properties. For 

example, HS occurs on sites throughout the study area with an intermediate moisture and 

nutrient. In contrast RS, RC, and YG, are found towards the extremes of the soil moisture 

gradient, rarely occurring as contiguous 2ha patches. Accuracies for these classes at the 

subdominant level were important to consider, as the levels of overestimation indicated 

by UA1 were not representative of the truth.  

Image smoothing is a commonly-used technique in mapping and image 

processing, and our results show it can greatly impact rare class mapping. The accuracy 

of all three rare classes increased after smoothing, yet this came at the expense of 

substantial changes in extent and configuration. Post-classification smoothing may be 

performed to reduce “salt-and-pepper” noise common in traditional pixel-based 

classifications. Where this type of error is present, the removal of small remnant patches 
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via smoothing increases classification accuracy (Gergel 2007; Saura 2002). Smoothing 

may also be performed to mimic a Minimum Mapping Unit (MMU), as was the case 

here. Minimum Mapping Units commonly relate to the smallest area that can be drawn 

and labeled at the scale of the planned map, or to the smallest area that can be 

conveniently managed (Goodchild 1994). Smoothing commonly increases the dominance 

of those classes which occupy a large area of the map, and decreases the extent of 

smaller, more fragmented classes (Saura 2002). Smoothing has also been found to impact 

the accuracy of landscape pattern metrics association with fragmentation (Langford et al. 

2006). Here, we smoothed a classified map to implement a MMU that corresponded with 

that used in the creation of the reference data. This resulted in a reduction in the extent 

and level of fragmentation of two of the three rare classes, while the extent of the rare 

class Picea sitchensis (shoreline) increased slightly.  

Recommendations for Mapping Rare Classes 

Based on our findings (and those of others) that show these different techniques 

may influence the perceived abundance and fragmentation of ecosystems, we suggest 

several recommendations for future work mapping rare classes in heterogeneous 

landscapes. 

First, the method used to assess the accuracy of a classification should be 

transparent to the map user. A comprehensive discussion of the full range of accuracy 

assessment methods in existence is beyond the scope of this paper, however readers are 

encouraged to consult (Stehman and Czaplewski 1998; Stehman et al. 2003; Wulder et al. 

2006). Suffice it to say that no method is perfect for all situations. Admittedly, the 

accuracy assessment method used in any situation does not change the actual accuracy of 
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any map. Nonetheless, certain estimates may better represent the map errors of relevance 

to a particular management situation. Providing accuracy estimates from more than one 

definition of agreement allows map users to choose the definition most relevant to their 

application (Stehman et al. 2003). In the comparison of our classification to reference 

data that utilized a minimum mapping unit, we found that considering only the dominant 

class within a generalized reference polygon misrepresented accuracies by ignoring fine-

scale heterogeneity. While the method used here is imperfect, we nonetheless show that 

an assessment using subdominant reference labels better represents the strengths and 

limitations of the map with respect to rare classes which are of limited abundance and 

occur in small, sometimes subdominant patches.  

We also showed that polygon-level estimates of rare class accuracies may differ 

from pixel-based estimates. There are advantages and disadvantages to both pixel- and 

polygon- based accuracy assessments (Stehman and Czaplewski 1998). Polygon-level 

estimates, unlike pixel-based estimates show accuracies from a generalized map, and may 

be higher than pixel-based estimates because of the reduction in positional errors between 

the map and reference data as well as a reduction in spatial autocorrelation of pixels. For 

applications relying on patch-level information such as habitat fragmentation analysis, 

such polygon-based assessments may better represent the accuracy of the map. Given 

these issues, and it is imperative that producers of maps ensure the details of the accuracy 

assessment utilized (e.g., sample unit, sample size and definition of agreement) are 

transparent to the map user (Wulder et al. 2006).  

Second, post-classification smoothing should be approached with caution.  

Smoothing can impact map accuracy as well as the extent and configuration of individual 
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classes (Gergel 2007; Langford et al. 2006; Saura 2002) and inaccurate representation of 

the amount and configuration of rare classes may directly impact conservation decisions.  

Regardless of the rationale behind image smoothing (whether to establish a minimum 

mapping unit or to reduce salt-and-pepper error), image smoothing has considerable 

repercussions for fragmentation statistics such as average patch size and number of 

patches, particularly for rare classes. Therefore, post-classification smoothing may not be 

appropriate in heterogeneous and fragmented landscapes. More research is needed to 

fully understand the implications of this procedure for different mapping applications. 

Conservation Implications 

As the use of remotely sensed imagery for ecosystem mapping and monitoring 

continues to increase, it is essential to explicitly consider the techniques used to produce 

and assess the maps used for conservation and ecosystem management, particularly for 

rare classes.  Troublingly, it is often the rare classes that drive important management 

decisions, yet it is often the rare classes which are mapped with the least accuracy. We 

examined changes in the classification accuracy and landscape pattern indices for three 

locally rare ecosystems which resulted solely from different mapping and assessment 

techniques. Accounting for the heterogeneity within reference polygons changed the 

estimated accuracy of one rare class by nearly ~12%. Post-classification implementation 

of a minimum mapping unit changed areal estimates by an average of 12%, decreased the 

number of patches by an average of over 60%, and increased mean patch size estimates 

by an average of more than 300%.  

Key to the conservation of biodiversity is the protection of habitat. Decisions 

regarding the types and amounts of habitat to protect often rely on the relative 
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proportions of the various habitats as shown on maps. We demonstrated that the use of a 

minimum mapping unit which ignores fine scale heterogeneity present in a landscape 

may result in erroneous estimates of the extent and configuration of these ecosystems. 

Such errors could greatly impact the management of rare ecosystems, particularly if 

small, fragmented patches are missed and not afforded the protection they require. 

Further, conservation and management decisions often rely on the results of spatially-

explicit planning models utilizing classified ecosystem maps as input (e.g., Population 

Viability Analysis (PVA), which projects population losses or gains under current or 

future management plans). As the arrangement and size of patches of habitat will impact 

the output of such models, the mapping and assessment techniques used in mapping 

habitat for species of concern is of particular importance. Maps displaying the amount 

and location of habitat are also essential for assessing ecosystem representation targets, 

and are used as input into automated decision support tools for the design of nature 

reserves. Thus, mapping techniques should be avoided which alter the composition and 

arrangement of habitat patches or which inadvertently overlook landscape heterogeneity. 

Future research into the mapping of rare classes, especially in fragmented and 

heterogeneous landscapes is needed.  
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Ecosystem 
Code 

Sample 
Size 

(pixels)  

Commissi
on Errors 

1 
UA1 UA2 UA3 

Cumulative 
User’s 

Accuracies  
HS 204 54 46. 42 7 95 
LR 180 79 21 0 1 22 
LS 310 16 84 1 2 86 
RC 247 98 2 1 11 14 
RS 327 96 4 32 13 49 
SD 132 70 30 1 0 30 

Shoreline 145 16 84 0 0 92 
YG 295 38 62 30 0 84 

Overall 
Accuracy 

  41% 15% 5% 61% 

Table 3.3a  Basic, non-smoothed classified image.   

 

Ecosystem 
Code 

Sample 
Size 

(pixels) 

Commission 
Errors 1 UA1 UA2 UA3 

Cumulative 
User’s 

Accuracies 
HS 262 56 44 48 2 94 
LR 322 76 24 0 0 24 
LS 315 11 89 0 3 91 
RC 236 98 2 4 16 22 
RS 327 99 1 36 10 47 
SD 167 63 37 0 0 37 

Shoreline 163 12 88 0 0 94 
YG 290 35 65 30 0 88 

Overall 
Accuracy 

  42% 16% 4% 62% 

Table 3.3b Map which underwent post-classification smoothing to match the 2ha 

minimum mapping unit of the reference data.   

 

Table 3.3 Accuracy assessment estimates for pixel-based assessment. UA1, UA2 and 

UA3 are the user’s accuracies of the classified map relative to the dominant, second 

dominant and third dominant label of reference polygons respectively. Associated 

commission errors are shown for the traditional (dominant class) assessment only. Rare 

classes are shaded.   
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Ecosystem 
Code 

Sample Size 
(polygons) UA1 UA2 UA3 

LR 12 42 0 0 
RC 46 2 2 4 

Shoreline 6 83 0 0 
 

 

Table 3.4 User’s accuracies for the three rare classes using a polygon-level accuracy 

assessment. The ecosystems are described in Table 2. 
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4. CONCLUSION  
 

Remotely sensed imagery is often used to map and monitor land cover. High 

spatial resolution satellite imagery is a relatively new development of increasing interest. 

Chapter 2 demonstrated that this technology may have potential for use in ecosystem 

inventories because of its ability to map and monitor forest cover at multiple scales. Late-

seral forests can be well distinguished from younger forests using QuickBird imagery, 

and with the addition of ancillary landscape positional data, some late-seral forest 

associations can be mapped with high accuracies. However many other late seral forest 

associations, particularly those which are locally rare, were mapped with significantly 

lower accuracies.   

Rare classes are commonly classified with lower accuracies than more abundant 

classes, often because of the limited representation of these classes in the training data. 

For example, in their classification of forest stands in southwestern Alberta, (Chubey et 

al. 2006) found that accuracies of % pine and % crown closure were highest for classes 

comprising the greatest proportion of training data. Many classification algorithms may 

be impacted by class imbalances. For example, parametric classification algorithms (e.g., 

maximum likelihood classification) are not appropriate when there are some classes with 

very small sample sizes, as the training data for those rare classes is likely to be non-

normal (Yu et al. 2006). Non-parametric algorithms (e.g., decision trees and nearest 

neighbour classification) may also be impacted by imbalanced training sets. The 

proportion of image pixels or objects classified as class x may increase as the proportion 

of class x in the training data increases (McIver and Friedl 2002), and class prediction 
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accuracies may be proportional to training data as well (Breiman et al. 1984in; Wright 

and Gallant 2007).  

In this study, classification accuracies of rare classes (and non-rare classes as 

well) may be improved by more advanced techniques such as artificial neural network 

classification. Further, oversampling the rare class or under-sampling the more common 

classes during training sample selection are other ways which may improve classification 

based on imbalanced representation in the training data (Barandela et al. 2004; Weiss 

2004). These methods provide options for further work.  

Given the challenge of mapping rare classes demonstrated here (Chapter 2), 

Chapter 3 of this thesis focused on how and why rare classes can be misrepresented on a 

map. Regardless of the classification accuracies obtained in this particular project, this 

analysis demonstrated that post-classification map production techniques (e.g. 

smoothing) may significantly impact an ecosystem’s spatial distribution and 

representation on a map, and also its classification accuracy. Further, when comparing a 

high spatial resolution classification to coarser scale reference data (often the only option 

because of limited resources), classification accuracies may be misrepresentative.  

The remote sensing community remains attached to the traditional confusion 

matrix approach to accuracy assessment where one classified map unit is compared to 

one reference unit, for which little or and no spatial or thematic ambiguity is allowed 

(Foody 2002). However, a non-traditional accuracy assessment may be more appropriate 

when reference data is at a coarser scale of generalization (Stehman et al. 2003). For 

example, fuzzy techniques allow for different degrees of agreement (Woodcock and 

Gopal 2000). This approach could be applied to Chapter 3 whereby different levels of 
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correctness could be assigned according to whether the match is between the dominant or 

subdominant reference class (corresponding to how liberal is the definition of 

agreement), as has been discussed elsewhere (Stehman et al. 2003). A fuzzy accuracy 

approach could also be applied by weighting accuracies according to class similarity. 

Some fuzzy approaches to accuracy assessment have recently been made easier to 

implement via a new software package specifically developed for this purpose (The Map 

Comparison Kit, RIKS, The Netherlands) but have not yet been widely adopted. This 

thesis has demonstrated that how a map is assessed can have significant repercussions for 

rare ecosystems, and should therefore serve as an impetus to further research into, and 

adoption of, non-traditional accuracy assessment techniques. At the very least, this study 

indicates simple measures of overall accuracies are of limited value, a statement which is 

consistent with existing accuracy assessment literature (Foody 2002).   

This work complements and builds upon previous studies testing the utility of 

high spatial resolution QuickBird satellite imagery for forest mapping in coastal British 

Columbia by demonstrating potential for the species-based classification of 

heterogeneous forest types. This research contributes to a growing body of literature 

indicating that high spatial resolution satellite imagery may soon be an additional tool 

used for detailed forest inventories. This thesis also draws attention to issues of mapping 

fragmented and rare classes, translating remote sensing analysis between map-makers 

and map-users and demonstrating that further research is needed. Only with further 

testing of high spatial resolution satellite imagery using non-traditional techniques will 

the full potential of high spatial resolution satellite imagery be known.  
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