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Abstract

This thesis consists of the manuscripts of two research papers. In the first paper,

we verify a recent conjecture of Kenyon/Szendrői by computing the generating

function for pyramid partitions. Pyramid partitions are closely related to Aztec

Diamonds; their generating function turns out to be the partition function for the

Donaldson–Thomas theory of a non-commutative resolution of the conifold sin-

gularity {x1x2−x3x4 = 0} ⊂ C4. The proof does not require algebraic geometry;

it uses a modified version of the domino (or dimer) shuffling algorithm of Elkies,

Kuperberg, Larsen and Propp.

In the second paper, we derive two multivariate generating functions for three-

dimensional Young diagrams (also called plane partitions). The variables corre-

spond to a colouring of the boxes according to a finite abelian subgroup G of

SO(3). These generating functions turn out to be orbifold Donaldson–Thomas

partition functions for the orbifold [C3/G]. We need only the vertex operator

methods of Okounkov–Reshetikhin–Vafa for the easy case G = Zn; to handle the

considerably more difficult case G = Z2 × Z2, we will also use a refinement of

the author’s recent q–enumeration of pyramid partitions.

In the appendix, written by Jim Bryan, we relate the diagram generating func-

tions to the Donaldson-Thomas partition functions of the orbifold [C3/G]. We find

a relationship between the Donaldson-Thomas partition functions of the orbifold
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and itsG-Hilbert scheme resolution. We formulate a crepant resolution conjecture

for the Donaldson-Thomas theory of local orbifolds satisfying the Hard Lefschetz

condition.
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1.1 Introduction

This thesis answers several variants of the following problem: How many different

ways are there to stably stack n boxes in the corner of a room? These stable

stacks of boxes are called three-dimensional Young diagrams, or sometimes 3D

partitions or plane partitions elsewhere in the literature.

The modern way to answer this question is by giving a generating function:

we write down a formal power series in q such that the coefficient of qn is the

answer that we seek. The answer to this simplest version of the problem is

∑
π 3D partition

q|π| =
∞∏

n=1

(
1

1− qn

)n

, (1.1)

as computed by MacMahon [5]. The problems considered in this thesis involve

two variations on this theme:

• We consider different shaped stacks of boxes, called pyramid partitions, as

well as 3D Young diagrams.

• We give multivariate generating functions in variables qg, where g runs over

some finite group G, some index set. The boxes in the diagrams are as-

signed different colours in a prescribed pattern which respects the multipli-

cation rule of G, and the coefficients of the generating function allow one

to determine how many ways to stack the boxes given a certain number of

boxes of each colour if one follows the pattern.
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1.2 Thesis theme and objectives

The overall theme of the thesis is, obviously, to count piles of colored boxes; how-

ever, there is an underlying theme of exploring the relationships between pyramid

partitions and 3D Young diagrams. On the one hand, Chapter 2 uses a technique

called dimer shuffling to reduce the question of enumerating pyramid partitions

to a well-known computation in Donaldson–Thomas theory: a certain weighted

count of 3D Young diagrams which share a common asymptotic leg of boxes.

On the other hand, Chapter 3 uses the calculus of vertex operators to evaluate

certain coloured generating functions on 3D Young diagrams and on pyramid par-

titions; the pyramid partition result is in turn applied to count 3D Young diagrams

coloured according to the action of the group Z2 × Z2. It is likely that such links

are symptomatic of a deeper connection between these types of objects, but so far

we do not know what that connection might be.

1.3 Literature review

The question of enumerating pyramid partitions was raised in [8, 4], and the theo-

rems of Chapter 2 were conjectured there based on computational evidence. Pyra-

mid partitions arose implicitly in [7] as the height functions of dimer covers on

the square lattice.

There is an extensive literature on 3D Young diagrams, beginning with Macma-

hon’s work [5]. Many other proofs of (1.1) are known – see the introduction to

Chapter 3. Very little has been published on ”coloured” enumerating problems,

with the exception of [3, 1]; these papers prove a generating function which can

be easily specialized to count 3D Young diagrams with Zn colouring. The result
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on Z2 × Z2–colouring is new.

The dimer shuffling technique used in Chapter 2 were pioneered in [2] for

the purpose of counting Aztec Diamonds. The vertex operator machinery used

in Chapter 3 was first used to count 3D Young diagrams by Okounkov [7] and

Okounkov–Reshetihkin [6].
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Chapter 2

Counting pyramid partitions with

dimer shuffling
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Figure 2.1: Special bricks, assembled into the configuration ε3.

2.1 Introduction

Consider the pyramid-shaped stack of square bricks shown in Figure 2.1 . The

bricks are the same ones used to q-enumerate Aztec Diamonds in [2]: ridges on

the top and bottom of the bricks restrict the manner in which the bricks may be

stacked. Each brick rests upon two side-by-side bricks, and is rotated 90 degrees

from the bricks immediately below it. We use two colors of bricks – light and

dark – to make alternating layers of this pyramid, starting with dark bricks at the

pyramid’s apex.

In Figure 2.1, there is a row of three dark bricks at the top of the pyramid. It

is straightforward to build a similar pyramid with a row of n ≥ 1 bricks along the

top. Following [6], we make the following definitions:

Definition 2.1.1 The pyramid with a row of n dark bricks at the top is called the
0A version of this chapter has been submitted for publication. Young, B. Computing a pyramid

partition generating function with dimer shuffling.
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empty room1 of length n, and is denoted εn.

Definition 2.1.2 A pyramid partition of length n is a finite subset π of the bricks

of εn such that if B is a brick in π, then all of the bricks of εn which rest upon B

are also in π. Let Pn denote the set of all pyramid partitions of length n.

Definition 2.1.3 The weight of π, w0(π), is

q
#{dark bricks in π}
0 q

#{light bricks in π}
1 .

In other words, a pyramid partition is a collection of bricks removed from εn

such that the remaining pile of bricks is stable. For our treatment, it is better to

draw pyramid partitions by drawing the remaining pile of bricks. For an example

of a pyramid partition drawn in this way, see Figure 2.2. Note that εn is itself a

pyramid partition of weight 1, for all n.

There is a third way to view a pyramid partition π, which is much more useful

computationally. Recall that a dimer cover (or 1-factor) of a graphG is a subgraph

G′ such that every vertex of G′ has degree 1. Each brick in π has two dimers sten-

cilled on the top; dark bricks have vertical (North-South) dimers, whereas light

bricks have horizontal (East-West) dimers. When one views π from above, one

can see a dimer cover of the square lattice (see the right-hand image in Figure 2.2).

It is helpful to think of the lattice points as pairs of half-integers, so that the origin

lies above the axis of symmetry of εn.

Since every pyramid partition has only finitely many bricks, the dimer cover

associated to π looks like that of εn (see Figure 2.3) when one moves far enough
1This admittedly strange terminology is borrowed from the jargon of 3D partitions, which are

made of stacks of boxes in the corner of a room. Here, the configuration of minimum weight is an

empty room, with no boxes.
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Figure 2.2: A pyramid partition of length 1, viewed from the side and from above

Figure 2.3: The empty rooms of lengths 1 and 2.

(a) ε1 (b) ε2



10

from the origin. Indeed, given a dimer cover T of the square lattice which is

asymptotically identical to εn, it is straightforward to construct a corresponding

pyramid partition which looks like T from above: the correspondence is bijective.

We shall therefore refer to these dimer configurations as pyramid partitions, as

well.

In [6], Szendrői defines a bivariate generating function for Pn by

Z
(n)
A (q0,−q1) =

∑
π∈Pn

w0(π)

and observes that Z(1)
A (q0, q1) arises as the partition function for the Donaldson–

Thomas theory of a non-commutative resolution of the conifold singularity {x1x2−

x3x4 = 0} ⊂ C4. Szendrői conjectures that

Z
(n)
A (q0,−q1) = M(1, q0q1)

2
∏
k≥1

(1 + qk
0q

k−1
1 )k+n−1

∏
k≥1

(1 + qk
0q

k+1
1 )max(k−n+1,0)

(2.1)

where M(x, q) is the MacMahon function

M(x, q) =
∞∏

n=1

(
1

1− xqn

)n

.

This conjecture (or at least the special case q0 = q1 = q) was originally posed by

Kenyon [3].

We present a proof of this conjecture. We first do the case n = 1, using a

modification of the domino shuffling argument of [2], originally used to compute

the weight generating function of an Aztec Diamond. Strikingly, this case uses the

Donaldson-Thomas partition function of the resolution of this conifold, computed

in [1].

Before we go any further, let us choose a more convenient notation.
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Definition 2.1.4 Let

Z(n; q0, q1) := Z
(n)
A (q0,−q1) =

∑
π∈Pn

w0(π);

Z(∞; q0, q1) := M(1, q0q1)
2M(−q−1

1 , q0q1)
−1.

We may now restate (and prove) Equation (2.1) for n = 1 in the following

form:

Theorem 2.1.5 Z(1; q0, q1) = M(−q−1
1 , q0q1)

−1Z(∞; q0, q1).

We have chosen the notion somewhat suggestively here. Our proof, very infor-

mally speaking, is that domino shuffling transforms pyramid partitions of length

n into pyramid partitions of length n + 1 in a weight-preserving manner (the

transformation is not quite bijective). Repeating this procedure forever, we get

“pyramid partitions of length ∞”. These objects are easily weight-enumerated

due to a surprising bijection with a type of 3D partitions which we have called

super–rigid partitions (see Section 2.6). It is also possible to use our methods to

prove equation (2.1) for general n, which in our new notation looks like this:

Z(n; q0, q1) = M(1, q0q1)
2
∏
k≥1

(1 + qk
0q

k−1
1 )k+n−1

∏
k≥1

(1 + qk
0q

k+1
1 )max(k−n+1,0)

(2.2)

In section 7, we shall outline how to modify our proof of Theorem 2.1.5 to handle

this more general case. The proof is relegated to a later section of the chapter

because it contains essentially no new combinatorial ideas (only greater compli-

cation) and n = 1 case is of greater geometric interest.
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2.2 Dimer shuffling

Next, we will describe the shuffling algorithm, originally published in [2]. We

shall call this algorithm dimer shuffling, rather than domino shuffling, since all of

our pictures are of dimers, which are dual to the dominos of [2]. However, the

shuffling algorithm is identical. We review it here in order to define all of our

terminology.

The purpose of the algorithm is to transform a pyramid partition of length

n into a pyramid partition of length n + 1. Unfortunately, the dimer shuffle is

not quite an honest function from Pn to Pn+1; one can only say that it sends a

collection of pyramid partitions of length n to a related collection of length n+ 1.

So let us first describe the bijective part of the algorithm, the sliding map, which

acts on certain partial dimer covers T of the square lattice.

First of all, we colour the vertices of the lattice black and white in a checker-

board pattern. Any dimer on this lattice has one endpoint of each color. Of course,

we must pick the parity of this colouring; it depends on the parity of n (see Fig-

ure 2.3). If n is odd, then the center square of the lattice has a black vertex in the

upper left corner. Otherwise, that vertex is white.

We adopt the following definitions of [2] (changing the notation slightly):

Definition 2.2.1 Two side–by–side dimers (or, sometimes, their four endpoints)

are called a block. A block is odd if it has a black vertex in the upper left corner;

otherwise it is even.

Figure 2.4(a) shows the different types of odd and even blocks. As you can

see in Figure 2.3, the empty room of length n always has precisely n odd blocks

in a vertical line in the center.
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Figure 2.4

Odd Even

(a) Odd blocks and even blocks

W
S

E

N

(b) The directions in which

dimers move during sliding

Definition 2.2.2 An odd–deficient (respectively, even–deficient) dimer cover is a

partial dimer cover such that the set of non-covered vertices is a finite union of odd

(respectively, even) blocks. Given a dimer cover T , construct the odd–deficient

dimer cover T̃ by deleting all of the odd blocks of T . Construct the even–deficient

dimer cover T̂ by deleting all of the even blocks of T . Let

P̃n := {π̃ : π ∈ Pn},

P̂n := {π̂ : π ∈ Pn}.

Definition 2.2.3 The sliding map S is a mapping from the set {dimers on the

colored square lattice} to itself. If d is a dimer, then define S(d) to be the other

dimer in the odd block containing d. If T is an odd-deficient partial dimer cover,

then define S(T ) to be the partial dimer cover {S(d) : d ∈ T}.

Observe that S moves each dimer in T one unit to the north, south, east, or

west, depending on its position; Figure 2.4(b) shows the directions in which the

dimers move. We shall often call dimers northbound, southbound, eastbound, or

westbound, according to the direction in which they slide. Note that S depends on

the parity of the lattice coloring we have chosen.

Lemma 2.2.4 S is an involution on the set of odd-deficient dimer covers. The

restriction S|P̃n
is a bijection from P̃n to P̂n+1 with their usual colorings.
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Figure 2.5

(a) An odd-deficient π̃ ∈ P̃1. (b) S(π̃).

Proof. One first shows that S is an involution, essentially by analyzing all of the

possible local odd-deficient configurations of dimers. This is done in detail in [2].

To verify that the image of S is P̂n+1, observe that S(ε̃n) = εn+1. The parity of

the usual coloring of Pn+1 is the opposite of that of Pn, so for π ∈ Pn, S(π) is

even–deficient and asymptotic to εn+1. �

Figure 2.5 shows how S works. In (a), we have deleted all of the odd blocks of

the pyramid partition in Figure 2.2; the missing odd blocks are marked with grey

squares. In (b), we have applied S, and now the grey squares denote the missing

even blocks. Observe that S(π) ∈ P̂2.

We may now define the dimer shuffling algorithm, which extends S to a map

S : Pn → {formal sums of pyramid partitions of length n+ 1}.

Definition 2.2.5 Let π ∈ Pn. The following three steps constitute the dimer shuf-
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fling algorithm:

1. (Deleting) Delete all of the odd blocks in π to get π̃.

2. (Sliding) Compute S(π̃), as defined above.

3. (Creating) Now we have a partial dimer cover which is possibly missing

some even blocks. Each block may be filled in with either two horizontal

dimers, or two vertical dimers. Define S(π) to be the formal sum of all of

these fillings.

It is fairly straightforward to see that these steps are well-defined and that they

do indeed give you a formal sum of dimer covers of the plane; this is shown in

detail in [2].

Finally, let us prove a lemma about the number of odd blocks of a pyramid

partition. Observe that Figure 2.5(a) has 10 odd blocks, whereas (b) has 9 even

blocks. In general, we have:

Lemma 2.2.6 Let π̃ ∈ P̃n. Then #{odd blocks in π̃}−#{even blocks in S(π̃)} =

n.

Proof. Suppose there are m odd blocks in π and m′ even blocks in S(π). Let R

be a 2a×(2a+2n−2) rectangle of lattice points centered at the origin, where a is

large enough that π is identical to εn outsideR, and there are no odd blocks of π on

the boundary of R. For example, for the odd-deficient partition of Figure 2.5(a),

we could take a = 7 and R to be the 14× 14 rectangle of lattice points shown in

the illustration.
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Each dimer has two endpoints and each (missing) odd block has four vertices,

so the number of dimers in R is

(2a)(2a+ 2n− 2)− 4m

2
. (2.3)

Now let us shuffle the dimers in R. The same dimers now fit into a (2a − 2) ×

(2a+ 2n) rectangle, which has (2a− 2)(2a+ 2n) lattice points, and contains all

m′ odd blocks. So the number of dimers in R is also equal to

(2a− 2)(2a+ 2n)− 4m′

2
(2.4)

Setting Equations (2.3) and (2.4) equal, we obtain the lemma. �

2.3 Weighting the lattice

In order to use domino shuffling as a computational tool, we need to find a way

to calculate the weight of a pyramid partition from its dimer form, without inter-

preting it as a pile of bricks. Our strategy shall be to assign a monomial weight to

every edge of the square lattice in such a way that the normalized product of the

edge weights of any pyramid partition π is w0(π). This idea is mentioned in [6],

but we shall need to be explicit about what edge weights we use and how we do

the normalization.

In order to determine the proper weights to use, it is helpful to consider how a

minimal change in the dimer configuration should affect the weight. We make the

following definition:

Definition 2.3.1 Let π be a pyramid partition. An elementary move is the act of

adding an appropriately colored block to π to obtain a new pyramid partition.
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Figure 2.6: Elementary moves for adding a bricks to pyramid partitions

×q1−→

×q0−→
×q0−→

×q1−→

When we analyze the effect an elementary move has on the dimer version of

π, we see that there are two different types of elementary moves for adding a

dark or light brick. They are shown in Figure 2.6; recall that our convention in

drawing the brick pictures is to show the complement of the pyramid partition! An

odd elementary move should contribute q0 to the weight, whereas an even move

should contribute q1.

We may now assign a weight to each edge of the square lattice which is com-

patible with the elementary moves, in the following sense: select any 2× 2 block

of vertices in the weighted lattice. If it is an odd block, we should have

weight of two horizontal dimers
weight of two vertical dimers

= q0,

and if it is an even block, we should have

weight of two vertical dimers
weight of two horizontal dimers

= q1.

In fact, there are many ways to do this, but it is convenient to choose the
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weighting in which all vertical edges have weight 1, and all the northbound hor-

izontal edges closest to the x axis have weight 1 (see Figure 2.7). We adopt the

convention that in a weighted lattice, edges with no marked weight get weight 1.

Definition 2.3.2 If d is a dimer, then w0(d) is the weight assigned to d in Fig-

ure 2.7. Explicitly, w0(d) = 1 if d is vertical; if d is horizontal, then

w0(d) =



(q0q1)
−t if d is centered at (2s, 2t− 1

2
), s, t ∈ Z

q0(q0q1)
t if d is centered at (2s, 2t+ 1

2
), s, t ∈ Z

q−1
1 (q0q1)

t if d is centered at (2s+ 1, 2t− 1
2
), s, t ∈ Z

(q0q1)
−t if d is centered at (2s+ 1, 2t+ 1

2
), s, t ∈ Z

Now we need to explain how to use these edge weights to compute the weight

of a pyramid partition π. Naively, we want to say that the weight of π is the

product of the weights of its edges. However, since π covers the entire plane and

has an infinite number of edges, this is meaningless. Fortunately, all one has to do

is to normalize the weight in the following sense:

Lemma 2.3.3 Suppose that π ∈ Pn. Let R be a finite region of the lattice which

contains all of the edges where π differs from εn. Then

w0(π) =

( ∏
e∈R∩π

w0(e)

)( ∏
e∈R∩εn

w0(e)

)−1

.

Proof. As a base case, let π = εn and observe that both sides are equal to

1. Next, suppose that the lemma holds for some pyramid partition π0; by the

preceding remarks, it also holds for all π which differ from π0 by an elementary

move. The lemma then follows by induction on the number of bricks in π. �
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Figure 2.7: The w0 weighting on the square lattice. The heavy black line is the x

axis.
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2.4 Weighting and shuffling

We shall use a different weighting function, w1, to weight S(π). Essentially, we

want to think of the weight of a dimer as being unaffected by the shuffling oper-

ation. In fact, we shall define a series of weight functions w1, w2, w3, . . ., which

have the property that

w0(d) = w1(S(d)) = w2(S
2(d)) = · · ·

for any dimer d.

Definition 2.4.1 Let d be dimer in a pyramid partition of length n (with the usual

lattice coloring). Let a ≥ 1. Define the weight function wa by

wa(d) = w0(S
−1 ◦ S−1 ◦ · · · ◦ S−1︸ ︷︷ ︸

a−1

(d)).

For a comparison of w0 and w1, see Figure 2.8. Observe that if d is a vertical

dimer, then wa(d) = 1 for all a. In [2], there is only one weighting function, w0,

and the generating function is manipulated so that w0 can be reused.

Lemma 2.4.2 Let d, d′ be horizontal dimers, with d′ immediately north of d. Then

wa(d)wa(d
′) =

q
a+1
0 qa

1 if the block formed by d, d′ is odd,

qa
0q

a−1
1 if the block formed by d, d′ is even.

Proof. When a = 0, the lemma follows from the definition of w0. Now, suppose

a > 0. If the block d, d′ is even, then S−1 interchanges d and d′, so

wa(d)wa(d
′) = wa−1(S

−1(d))wa−1(S
−1(d′)) = wa−1(d

′)wa−1(d) = qa
0q

a−1
1
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Figure 2.8: A comparison of the weightings w0 and w1
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by induction on a; otherwise, (d, S−1(d)) and (d′, S−1(d)) are odd blocks under

the alternate coloring, and we have

wa(d)wa(d
′) = wa−1(S

−1(d))wa−1(S
−1(d′))

=
wa−1(S

−1(d))wa(d)wa(d
′)wa−1(S

−1(d′))

wa(d)wa(d′)

=
(qa

0q
a−1
1 )2

qa−1
0 qa−2

1

= qa+1
0 qa

1

again by induction on a. �

Next, we define what we mean by the weight of an odd–deficient or even–

deficient dimer cover:

Definition 2.4.3 Let η̃ be an odd-deficient (or even-deficient) pyramid partition

of length n. Let π be the pyramid partition obtained by filling in the missing odd

(even) blocks of η̃ with pairs of vertical dimers. Then we define

wa(η̃) = wa(π).

If there are m odd blocks in η̃, then∑
π fills in η̃

wa(π) = (1 + qa+1
0 qa

1)
mwa(η̃) (2.5)

because each odd block of η̃ may be filled in two ways: we can use two vertical

dimers (which each have weight 1) or we can use two horizontal dimers (which

have a combined weight of qa+1
0 qa

1 by Lemma 2.4.2). Similarly, if there are m′

odd blocks in S(η̃), we have∑
π′ fills in S(η̃)

wa+1(π
′) = (1 + qa+1

0 qa
1)

m′
wa+1(S(η̃)) (2.6)
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As η̃ runs over P̃n, S(η̃) runs over P̂n+1. Also, Lemma 2.2.6 implies thatm−m′ =

n, so combining Equations (2.5) and (2.6), we get∑
π∈Pn

wa(π) = (1 + qa+1
0 qa

1)
n
∑

π∈Pn+1

wa+1(π) (2.7)

Using Equation (2.7) k times, starting with n = 1 and a = 0, yields

Z(1; q0, q1) =

(
k∏

i=1

(1 + qi
0q

i−1
1 )i

) ∑
π∈Pk+1

wk(π). (2.8)

As k →∞, the product on the right-hand side becomes M(−q−1
1 , q0q1)

−1, which

is certainly good news, as this is one of the factors which appears in the statement

of Theorem 2.1.5. Next we need to try to understand the sum∑
π∈Pk+1

wk(π)

in the limit k →∞.

2.5 Length-∞ pyramid partitions

In order to speak sensibly about the limit of the weighting functions wn as n gets

large, we must shift our viewpoint slightly. We shall split the square lattice along

the x axis, giving us two half planes. There are infinitely many vertical edges

which cross the x axis; we shall include these edges in both half-planes, and

identify them. A pyramid partition of length 1 therefore corresponds to two half-

pyramid partitions which agree along the “ragged” edges of the two half-planes

(see Figure 2.9). Note that we don’t quite have two matchings of the two graphs

because the edges which cross the x axis are not necessarily in π.
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Figure 2.9: A pyramid partition, being split into two pieces which agree along the

seam.

This is a trivial change of viewpoint, but it allows us to shuffle the upper

and lower half-planes independently. When we are applying S to the weights

in the lower half-plane, let us imagine that we are travelling with the southbound

weights. From our new point of view, the northbound weights now move two units

north, the “westbound” weights move northwest, and the “eastbound” weights

move northeast. Similarly, when we are applying S to the upper half-plane, we

are travelling with the northbound weights.

Now it is clear what happens to the weight function wn as n goes to infinity. In

the lower half-plane, nothing happens to the (now stationary) southbound edges

at all. However, the weights of the northbound edges get multiplied by q0q1. Let

q = q0q1. If we start with n = 1 and shuffle k times, the northbound edges are

multiplied by qn. As n → ∞, qn → 0 in the ring of formal power seies, so these
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Figure 2.10: The weighting w∞, top and bottom pieces.
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edges get weight zero. In the same way, the southbound edges in the upper half

plane get weight zero. We call this weight functionw∞; it is shown in Figure 2.10.

We compute the weights of pyramid partitions in the same way as before: by

normalizing by the weight of ε∞ (see Figure 2.11). When we compute the sum∑
π w∞(π), we find that pyramid partitions with southbound edges in the upper

part, or northbound edges in the lower part, get assigned weight zero. Therefore,

the only configurations π that contribute to the sum
∑
w∞(π) are in fact perfect

matchings on the heavy edges in Figure 2.10, asymptotically identical to the empty

room of length infinity (see Figure 2.11).

Furthermore, if a dimer configuration of this type has horizontal edges arbi-

trarily far south in its upper half, or arbitrarily far north in its lower half, it also

gets weight zero. Thus the only dimer configurations that get nonzero weight un-
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Figure 2.11: The empty room of length∞, ε∞, top and bottom halves
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der w∞ have a large frozen region of vertical dimers in the northern region of the

bottom half, and a corresponding region in the souther region of the top half.

Definition 2.5.1 A pyramid partition of length∞ is a dimer configuration π with

w∞(π) > 0.

In order to determine whether pyramid partitions of length∞ can be weight-

enumerated in any sensible way, we should try to write down a set of elementary

moves which can be applied to the empty room, sequentially, and are capable of

generating all such π. One such set is depicted in Figure 2.12. Moves of type (b)

and (c) may be applied anywhere in the north and south regions of the diagram,

respectively; move (a) alters an entire column of vertical dimers which crosses

from the top half of the pyramid partition to the bottom half; t indicates how far

from the origin the endpoints of the column lie.

One uses these elementary moves as follows. Suppose we wish to construct

a partition π ∈ P∞. Start with ε∞, and apply the “infinite” elementary move (a)
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Figure 2.12: Elementary moves for generating elements of P∞ from ε∞

...
... ×q1qt

−→

(a) Middle region

×q−→

(b) Upper region

×q−→

(c) Lower region

until the frozen region in the middle is correct. Then apply move (b) to the upper

region and move (c) to the lower region until you have π.

Note that move (a) deletes horizontal dimers from ε∞ symmetrically in pairs.

The first application of the move deletes the two dimers marked A in Figure 2.11;

the next deletes two dimers markedB, and so on. Furthermore, the weight change

of move (a) depends on where it is applied. If two dimers marked A are deleted,

then the weight increases by q1q; if two dimers marked B are deleted, then the

weight increases by q1q2, and so on.

2.6 A weight-preserving bijection

We begin by defining super–rigid partitions, which are so named because they are

a class of three-dimensional partitions whose generating function is the partition

function for the Donaldson-Thomas theory of Calabi-Yau threefolds which come

from super-rigid rational curves (see [1]). We recall their definitions and lemma:

Definition 2.6.1 A super-rigid partition is a triple (π0, λ, π∞), where π0 and π∞
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are three-dimensional partitions sharing a common infinitely long leg of boxes,

whose cross-section is a (2-dimensional) Young diagram of shape λ (see Fig-

ure 2.13).

Lemma 2.6.2 (Lemma 2.9 of [1]) Assign to the super-rigid partition (π0, λ, π∞)

the weight z|λ|qN(π0,λ,π∞), where

N(π0, λ, π∞) = N = |π0|+ |π∞|+
∑
i,j∈λ

(i+ j + 1).

The generating function for super-rigid partitions under this weighting scheme is

ZX(z, q) = M(1, q)2M(−z, q)−1;

The following is an immediate consequence of Lemma 2.6.2 and of Definition 2.1.4:

Lemma 2.6.3 Z(∞; q0, q1) = ZX(q1, q0q1).

There is a “folklore” correspondence between 3D partitions and dimer covers

of the hexagon lattice [4]: if we view a 3D partition from far away along the line

x = y = z, it appears to be a tiling of the plane by lozenges. Replacing each of

these lozenges with a dimer, we get a dimer cover of the hexagon lattice. A simple

reorientation of the edges of the hexagon lattice shows that it is the same as the

“brickwork” lattices defined by the heavy lines of Figure 2.10.

Let us apply this observation to create a correspondence between super-rigid

partitions and pyramid partitions of length∞. Starting with (π0, λ, π∞), replace

both π0 and π∞ by their dimer versions, and then reorient all of the edges so that

the dimers fit onto the brickwork lattice (see Figure 2.13). The fact that π0 and

π∞ share a common asymptotic leg λ causes the frozen region of vertical dimers
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Figure 2.13: A super-rigid partition (π0, λ, π∞) redrawn as a pyramid partition of

length∞

π∞

λ

π0
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to appear in the middle of the figure. The correspondence is clearly bijective, and

with a little care, we can make this bijection weight-preserving.

Consider any super-rigid partition (π0, λ, π∞). We can construct this partition

from the empty super-rigid partition (∅, ∅, ∅) using the following three elementary

moves:

(a) Add a line of boxes in position (i, j) to the asymptotic leg, with weight

q1q
i+j+1. Repeat until we have constructed λ.

(b) Add a box to the left end of the partition, with weight q. Repeat until we

have constructed the super–rigid partition (π0, λ, ∅).

(c) Add a box to the right end of the partition, with weight q. Repeat until we

have constructed (π0, λ, π∞).

A partition constructed in this manner will be weighted correctly to contribute

to Z(∞; q0, q1). Note that we have deliberately chosen these moves to have the

same names as those in Figure 2.12. Define a bijection

Φ : P∞ → {super-rigid partitions}

as follows: given π ∈ P∞, determine a set of elementary moves to construct π

from ε∞, and then use the corresponding moves in the same order to create a

super-rigid partition. This super-rigid partition is Φ(π).

Since each of these elementary moves affects the weight in the same manner

as the corresponding move on pyramid partitions, Φ is weight-preserving. Thus Φ

also preserves the generating functions:∑
π∈P∞

w∞(π) = Z(∞; q0, q1).
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In the limit n→∞, Equation 2.8 now says

Z(1; q0, q1) =

(
∞∏
i=1

(1 + qi
0q

i−1
1 )i

)
Z(∞; q0, q1)

which proves Theorem 2.1.5.

2.7 The generating function for general n

Next, we shall use the same argument to calculate Z(n; q0, q1). Applying Equa-

tion (2.7) k times, starting at a = 0 but leaving n arbitrary, we get

Z(n; q0, q1) =

(
k∏

i=1

(1 + qi
0q

i−1
1 )i+n−1

) ∑
π∈Pk+n

wk(π). (2.9)

Taking the limit as k approaches infinity, we again get a sum over pyramid parti-

tions of length∞, but with a slightly modified weight function wn
∞:

Zn(; q0, q1) =

(
∞∏
i=1

(1 + qi
0q

i−1
1 )i+n−1

) ∑
π∈P∞

wn
∞(π), (2.10)

wn
∞ has the property that the elementary move of type (a) carries the weight

q1q
i+j+n. This means that the corresponding super-rigid partition (π0, λ, π∞) has

weight q|λ|1 qN(n), where

N(n) = |π0|+ |π∞|+ (n− 1)|λ|+
∑
i,j∈λ

(i+ j + 1).

We only need a slight modification to the argument of [1] to compute the sum on

the right-hand side of Equation 2.10. We begin with the one-leg formula for the

topological vertex (see [5]) , which states that∑
π asymp. to λ

q|π| = M(q)q(
λ
2)sλ′(q), (2.11)
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where
(

λ
2

)
=
∑

λi∈λ

(
λi

2

)
, λ′ denotes the transpose of λ, and sλ′(q) denotes the

principal specialization xi = qi−1 of the Schur function sλ′(x1, x2, . . .). Applying

(2.11) twice, we have∑
π∈P∞

wn
∞(π) =

∑
λ

∑
π1,π∞→λ

qN(n)q
|λ|
1

= M(1, q)2
∑

λ

q
|λ|
1 q(n−1)|λ|+(λ

2)+(λt

2 )+
P

(i,j)∈λ i+j−1sλt(q)sλ(q)

= M(1, q)2
∑

λ

q
|λ|
1 qn|λ|sλt(q)sλ(q)

= M(1, q)2

∞∏
i,j=1

(1 + q1q
i+j+n−2)

= M(1, q)2

∞∏
k=1

(1 + qk
0q

k+1
1 )max(k−n+1,0).

This proves Theorem 2.2. �

2.8 Conclusion

There are two obvious applications of the computational techniques of this paper,

which we will pursue in future work:

1. The shuffling procedure still works for certain pyramid partitions which

are not asymptotic to εn. In particular, we can allow pyramid partitions

to have up to four asymptotic legs, pointing NW, NE, SW, and SE, whose

shapes are given by partitions λNW , λNE, λSW , λSE . It seems possible that

we could compute the generating function for such configurations using the

full topological vertex formula of [5]. Such a result might shed some light

on flop transitions in topological string theory.
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2. It may be possible to compute a somewhat more refined generating func-

tion,using 2n variables rather than just two. This would have the effect of

introducing diagonal “stripes” on the alternate layers of the pyramid par-

tition. Such a count may be related to the partition functions of orbifold

Donaldson-Thomas theory (see Chapter 3).

The geometric value of both of these approaches is unclear at best; let us be

conservative and say that they would be good combinatorial exercises. One inter-

esting hint of geometry which as arisen from this paper, however, is the direct link

between the Donaldson-Thomas partition function of the conifold, Z(1, q0, q1),

and the Donaldson-Thomas partition function of the resolution, Z(∞, q0, q1). We

have observed a similar coincidence in the DT partition functions of orbifolds and

their resolutions (see the Appendix).
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Chapter 3

Counting 3D Young diagrams with

vertex operators
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3.1 Introduction

A 3D Young diagram, or 3D diagram for short, is a stable pile of cubical boxes

which sit in the corner of a large cubical room. More formally, a 3D Young

diagram is a finite subset π of (Z≥0)
3 such that if any of

(i+ 1, j, k), (i, j + 1, k), (i, j, k + 1)

are in π, then (i, j, k) ∈ π. The ordered triples are the “boxes”; the closure

condition means that the boxes of a 3D partition are stacked stably in the positive

octant, with gravity pulling them in the direction (−1,−1,−1).

3D Young diagrams are well–studied; they are also called plane partitions or

3D partitions elsewhere in the literature. The first result on 3D Young diagrams

is due to Dr. Percy MacMahon [6]. MacMahon was the first to “q–count” (i.e. to

give a generating function for) 3D Young diagrams by volume:∑
π 3D diagram

q|π| =
∏
n

(
1

1− qn

)n

, (3.1)

where |π| denotes the number of boxes in π. Generating functions of this form

will appear frequently, so we adopt the following notation:

Definition 3.1.1 Let

M(x, q) =
n∏

i=1

(
1

1− xqn

)n

M̃(x, q) = M(x, q)M(x−1, q)

0A version of this chapter has been submitted for publication. Young, B., with an appendix

by Bryan, J. Generating functions for colored 3D Young diagrams and the Donaldson-Thomas

invariants of orbifolds.
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We call M(x, q) and M̃(x, q) the MacMahon and MacMahon tilde functions,

respectively. Strictly speaking, M̃(x, q) lies in the ring of formal power series

Z[[x, x−1, q]]. However, in all of our applications, we will specialize x and q in

such a way that no negative powers of any variables appear in the formulae (see

Theorems 3.1.4 and 3.1.5).

Since MacMahon, there have been many proofs of (3.1), spanning many fields:

combinatorics, statistical mechanics, representation theory, and others. Recently,

there has been a thorough study of the various symmetry classes of 3D Young

diagrams [2], and of many macroscopic properties of large random 3D Young

diagrams [9]. There is also active research in algebraic geometry which relies

upon enumerations of various types of 3D partitions [7].

We will derive two refinements of MacMahon’s generating function. Fix a set

of colours C, and replace the variable q with a set of variables,

Q = {qg | g ∈ C}.

We call C the set of “colours”. We will need to assign a colour to each point of the

first orthant. In particular, we will usually have C = G, a finite Abelian group. In

this case, addition in Z3
≥0 must respect the group law of G.

Definition 3.1.2 A colouring is a map

K : (Z≥0)
3 → C.

If C = G is a finite Abelian group, then a G–colouring is a colouring which is

also a homomorphism of additive monoids.

Note that a G–colouring is uniquely determined by K(1, 0, 0), K(0, 1, 0) and

K(0, 0, 1), and that K(0, 0, 0) is the identity element of G.
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There is a simple way of defining a G–colouring KG when G is a three–

dimensional matrix group G. Decompose G as a direct sum of one–dimensional

representations Rx, Ry, Rz. The set of irreducible representations of any Abelian

G forms a group Ĝ ' G under tensor product, so let ψ be an isomorphism

ψ : Ĝ −→ G and define

KG(i, j, k) = ψ(R⊗i
x ⊗R⊗j

y ⊗R⊗k
z ).

Both of the colourings used in this paper are of this form.

We next define the multivariate generating function ZG = ZG(Q) which

“Q–counts” diagrams (that is, ZG counts each diagram with the Q–weight of its

boxes):

Definition 3.1.3 For g ∈ G, let |π|g be the number of g–coloured boxes in π,

|π|g = |K−1
G (g) ∩ π|.

Define the G-coloured partition function

ZG =
∑

π3D partition

∏
g∈G

q|π|gg .

The question of determining ZG, though completely combinatorial, has its

genesis in a field of enumerative algebraic geometry called Donaldson-Thomas

theory. When G is a finite Abelian subgroup of SO(3) (which forces G = Zn

or Z2 × Z2), there is a colouring induced by the natural three dimensional rep-

resentation for which the generating function ZG is, up to signs of the variables,

the orbifold Donaldson–Thomas partition function for the quotient stack [C3/G]

(see Appendix A). Although it is not yet clear why, these seem to be precisely the

groups G for which ZG has a product formula.
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Theorem 3.1.4 Let G = Zn and let the colouring KZn be given by

KZn(1, 0, 0) = 1

KZn(0, 1, 0) = −1

KZn(0, 0, 1) = 0.

Let q = q0 · · · qn−1 and for a, b ∈ [1, n− 1], let q[a,b] = qaqa+1 · · · qb. Then

ZZn = M(1, q)n
∏

0<a≤b<n

M̃(q[a,b], q).

The proof of Theorem 3.1.4 is straightforward; it is essentially a simple mod-

ification of the methods used in [11]. We include it for completeness and as an

introduction to the vertex operator calculus used to prove Theorem 3.1.5. There

are several other ways to prove Theorem 3.1.4, some of which have (at least im-

plicitly) appeared in the literature. For example, [1, 4] both compute a generating

function with variables xk(k ∈ Z) which can be easily specialized to ZZn . The

result [1] is particularly notable, as it is a direct computer algebra implementa-

tion of MacMahon’s techniques of combinatory analysis. The following theorem,

however, is new:

Theorem 3.1.5 Let G = Z2 × Z2 = {0, a, b, c} and let the colouring KZ2×Z2 be

given by

KZ2×Z2(1, 0, 0) = a

KZ2×Z2(0, 1, 0) = b

KZ2×Z2(0, 0, 1) = c.

Let q = q0qaqbqc. Then

ZZ2×Z2 = M(1, q)4 · M̃(qaqb, q)M̃(qaqc, q)M̃(qbqc, q)

M̃(−qa, q)M̃(−qb, q)M̃(−qc, q)M̃(−qaqbqc, q)
.
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Figure 3.1: A partition coloured according to KZ2×Z2 and to KZ3

(a) KZ2×Z2 – weight q30
0 q29

a q31
b q28

c (b) KZ3 – weight q40
0 q38

1 q40
2

See Figure 3.1 for pictures of a partition coloured in the manner described by

these theorems.

As an application of these theorems, we will compute the Donaldson-Thomas

invariants of the orbifolds [C3/Zn] and [C3/Z2 × Z2]. The orbifold Donaldson-

Thomas partition function of [C3/G] has variables labeled by representations of

G (see Appendix) and hence has the same variables as the G-coloured diagram

partition function. In the Appendix, we prove that the diagram partition function

and the Donaldson-Thomas partition function are related by simple sign changes

on the variables:

Theorem 3.1.6 The orbifold Donaldson-Thomas partition functions of the orb-

ifolds [C3/Z2 × Z2] and [C3/Zn] are given by

ZDT
C3/Zn

(q0, q1, ..., qn−1) = ZZn(−q0, q1, ..., qn−1)

ZDT
C3/Z2×Z2

(q0, qa, qb, qc) = ZZ2×Z2(q0,−qa,−qb,−qc)
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where q and q[a,b] are defined as in Theorems 3.1.4 and 3.1.5.

There is a striking similarity between the Donaldson-Thomas partition functions

of the orbifold [C3/G] and the crepant resolution given by the G–Hilbert scheme.

The following is proved in the Appendix:

Theorem 3.1.7 Let YG −→ C3/G be the crepant resolution of C3/G given by the

G-Hilbert scheme. YG has a natural basis of curve classes indexed by non-trivial

elements of G. The Donaldson-Thomas partition functions of YZn and YZ2×Z2 are

given by

ZDT
YZn

= M(1,−q)n
∏

0<a≤b<n

M(q[a,b],−q),

ZDT
YZ2×Z2

= M(1,−q)4 M(qaqb,−q)M(qbqc,−q)M(qaqc,−q)
M(qa,−q)M(qb,−q)M(qc,−q)M(qaqbqc,−q)

,

where {q1, ..., qn−1} and {qa, qb, qc} are the variables corresponding to curve

classes and q is the variable corresponding to Euler number.

We see from these theorems that the reduced partition function of the orbifold

[C3/G] is obtained from the reduced partition function of the resolution by identi-

fying the variables appropriately and then simply writing a tilde over every factor

of M in the formula! A similar phenomenon was observed by Szendrői for the

partition function of the (non–commutative) conifold singularity and its crepant

resolution [13].

It would be very desirable to have even a conjectural understanding of the

relationship between the Donaldson–Thomas theory of an arbitrary Calabi–Yau

orbifold and its crepant resolution(s). We formulate a conjecture for the case of a

local orbifold satisfying the hard Lefschetz condition (see Conjecture A.3.1.
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Theorem 3.1.5 is not straightforward to prove. Essentially none of the standard

proofs of MacMahon’s colourless result can be modified to work in this situation.

The generating function was first conjectured by Jim Bryan based on some re-

lated phenomena from Donaldson–Thomas theory; concurrently, Kenyon made

an (unpublished) equivalent conjecture for Z2 × Z2–weighted dimer models on

the hexagon lattice, based on computational evidence.

Having this conjectured formula was crucial for finding the proof of Theo-

rem 3.1.5, which involves a somewhat bizarre detour: one must first Q–count

pyramid partitions (see Figure 3.4). One then performs a computation with vertex

operators to make ZZ2×Z2 emerge. We discovered this idea serendipitously while

trying to generalize our earlier work on pyramid partitions [14].

3.2 Review: the infinite wedge space

Our general strategy will be to think of a 3D diagram π as a set of diagonal slices,

{πk | k ∈ Z}, where πk is the set of all bricks which lie in the plane x − y = k.

We will then analyze how one passes from one slice to the next. Since we will

be summing over all 3D Young diagrams, it is very helpful to consider (possibly

infinite) formal sums of the form ∑
λ∈some set of partitions

fλ(Q) · λ,

where fλ(Q) is a power series in the elements ofQ. A nice way of describing the

set of all such sums is the charge–zero subspace of the infinite wedge space,

(Λ∞/2)0V
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where V is a vector space with a basis labeled by the elements of Z + 1
2
. This

setting allows one to define, quite naturally, several useful operators on partitions.

The use of (Λ∞/2)0V , and its associated operators, was in part popularized

by [8, Appendix A], and we shall adhere to the notation established there. In this

section, we have collected the minimum number of formulae necessary for our

purposes. We will use Dirac’s “bra–ket” notation

〈λ |µ〉

to denote the inner product under which the partitions are orthonormal. We will

need need the bosonic creation and annihilation operators αn, defined in [8, Ap-

pendix A] in the section on Bosons and Vertex Operators. The operators αn satisfy

the Heisenberg commutation relations,

[αn, α−m] = nδm,n. (3.2)

Concretely, α−n acts on a 2D Young diagram λ by adding a single border strip of

length n onto λ in all possible ways, with sign (−1)h+1, where h is the height of

the border strip (see Figure 3.2). The operator αn is adjoint to α−n, and acts by

deleting border strips.

Let xj(j ≥ 1) be indeterminates; and define the homogeneous, elementary,

and power sum symmetric functions as usual:∑
i

hi(x1, x2, . . .)t
i =

∏
i

1

1− xit∑
i

ei(x1, x2, . . .)t
i =

∏
i

(1 + xit)

pi(x1, x2, . . .) =
∑
j≥1

xi
j
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Figure 3.2: Applying α−3 to a partition

h = 3
h = 2

+−+

h = 1
α−3

For a comprehensive reference on symmetric functions, see [12]. We next define

the vertex operators Γ±:

Definition 3.2.1

Γ±(x1, x2, . . .) = exp
∑

k

pk

k
α±k

The matrix coefficients (with respect to the orthonormal basis formed by the 2D

Young diagrams) of the Γ± operators turn out [8, A.15] to be the skew Schur

functions,

〈λ |Γ−(x1, x2, . . .)|µ〉 = 〈µ |Γ+(x1, x2, . . .)|λ〉 = sλ/µ(xi).

We will need the following well-known theorem from representation theory (see,

for example, [3, Chapter 8]) to work with Γ± and other exponentiated operators.

Theorem 3.2.2 (Campbell-Baker-Hausdorff) If A and B are operators, then

log(exp(A) exp(B)) = A+B +
1

2
[A,B] + · · · ,
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where the higher–order terms are multiples of nested commutators of A and B.

It is certainly possible to give more terms in the expansion, but we shall only need

the following two corollaries.

Corollary 3.2.3 If A and B are commuting operators, then

exp(A) exp(B) = exp(A+B).

Corollary 3.2.4 If A and B are operators such that [A,B] is a central element,

then we have

exp(A) exp(B) = exp([A,B]) exp(B) exp(A).

3.3 The operators Γ(x), Γ′(x), and Qg

Our next goal is to define precisely what it means for two diagonal slices λ, µ to

sit next to one another in a 3D Young diagram, and to define operators for working

with such slices.

Definition 3.3.1 Let λ, µ be two 2D Young diagrams. We say that λ interlaces

with µ, and write λ � µ, if µ ⊆ λ and the skew diagram λ/µ contains no vertical

domino.

For example, (6, 3, 2) � (4, 2), because the skew diagram (6, 3, 2)/(4, 2) has no

two boxes in the same column. The following lemma is easy to check:

Lemma 3.3.2 The following are equivalent:

1. λ � µ.
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2. The row lengths λi, µi satisfy λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · .

3. λi − µi = 0 or 1, for each pair of columns λi, µi.

4. λ and µ are two adjacent diagonal slices of some 3D Young diagram.

Note that we have used the convenient, but slightly nonstandard, notation λi to

denote the columns of λ.

Part (3) will become relevant in Section 3.5, when we will see that adjacent

diagonal slices of a pyramid partition also interlace.

We are mainly interested in two specializations of Γ±(x1, x2, . . .) which create

interlacing partitions, and which depend only upon a single indeterminate q. The

first will be denoted Γ±(q), and is obtained by performing the specialization x1 7→

q, xi 7→ 0 for i > 1. Its formula is

Γ±(q) = exp
∑

k

qk

k
α±k. (3.3)

Recall [12, Chapter 7] that if λ, µ are partitions, then we may define the skew

Schur function sλ/µ(x1, x2, · · · ) by
∑

T x
T , where T runs over the set of semi-

standard tableaux of shape λ/µ. Following [11], we see that

sλ/µ(q, 0, 0, . . .) =

q
|λ|−|µ| if λ � µ

0 if λ 6� µ.

One can then show [10] that

Γ−(q)µ =
∑
λ�µ

q|λ|−|µ|λ Γ+(q)λ =
∑
µ≺λ

q|λ|−|µ|µ. (3.4)

For the second specialization, recall that there is an involution ω on the alge-

bra of symmetric functions [12, Chapter 7.6], given by any one of the following
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equivalent definitions:

ek(xi)←→ hk(xi)

pk(xi)←→ (−1)k−1pk(xi)

sλ/µ(xi)←→ sλ′/µ′(xi)

Here, λ′ is the transpose partition of λ. To obtain the second specialization, called

Γ′±(q), we first perform the involution pk 7→ ωpk and then specialize x1 7→ q, xi 7→

0 (i > 1) as before. We obtain the formula

Γ′±(q) = exp
∑

k

(−1)k−1qk

k
α±k (3.5)

with the property that

Γ′−(q)µ =
∑
λ′�µ′

q|λ|−|µ|λ Γ′+(q)λ =
∑
µ′≺λ′

q|λ|−|µ|µ.

Lemma 3.3.3 If a and b are commuting variables, then we have the following

multiplicative commutators in C[[a, b]]:

[Γ+(a),Γ′−(b)] = 1 + ab [Γ′+(a),Γ−(b)] = 1 + ab

[Γ+(a),Γ−(b)] =
1

1− ab
[Γ′+(a),Γ′−(b)] =

1

1− ab

Proof. Let us compute the first of these commutators; the others are similar.

Let us apply (3.2), and then use Corollary 3.2.4 to rephrase the answer as the
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exponential of a commutator. We have

[Γ′+(a),Γ−(b)] = exp
∑
j,k

(−1)j−1ajbk

jk
[αj, α−k]

= exp

(
−
∑

j

(−ab)j

j

)

= exp(log(1− (−ab))).

�

We next define diagonal operators Qg for assigning weights to 2D partitions.

Definition 3.3.4 For g ∈ G, define the weight operator Qg by

Qg |λ〉 = q|λ|g |λ〉 .

The operator Qg can be commuted past any of the Γ± operators, at the expense of

changing the argument of Γ±:

Γ+(x)Qg = QgΓ+(xqg) QgΓ−(x) = Γ−(xqg)Qg

Γ′+(x)Qg = QgΓ
′
+(xqg) QgΓ

′
−(x) = Γ′−(xqg)Qg.

3.4 Counting with Zn colouring

As a motivating example, let us use (3.4) to write down a vertex operator expres-

sion which computes MacMahon’s generating function (3.1), using the variable

q = q0. This formula appears in [11] with marginally different notation.

Consider a 3D Young diagram π and its diagonal slices:

φ ≺ · · · ≺ π−2 ≺ π−1 ≺ π0 � π1 � π2 � · · · � φ,
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where φ denotes the empty partition. Each such π contributes

q
|π|
0 = q

P
|πn|

0

to the generating function, so we have

∑
π 3D diagram

q|π| =

〈
φ

∣∣∣∣∣
∞∏
i=1

(Γ+(1)Q0)
∞∏
i=1

(Γ−(1)Q0)

∣∣∣∣∣φ
〉
.

This works because the operators Γ− and Γ+ pass from one slice to the next larger

(respectively smaller) slice in all possible ways, and the Q0 operators assign the

proper weight to each slice. One then commutes all the Γ− operators to the left

and all the Γ+ operators to the right (following the method outlined in [11]) to

compute the generating function.

Let us now write down a vertex operator expression which computes ZZn .

Here, Q = {q0, . . . , qn−1}, q = q0q1 · · · qn−1, and K = KZn . The computation

is straightforward (following precisely the method of [11]) but awkward, so it is

helpful to organize the work by collecting together n vertex operators at a time.

Note that the diagonal slices of π are all monochrome (see Figure 3.3), so we

define

A±(x) = Γ±(x)Q1Γ±(x)Q2 · · ·Qn−1Γ±(x)Q0

Then, the following vertex operator product counts Zn–coloured 3D diagrams:

ZZn =
〈
φ
∣∣· · ·A+(1)A+(1)A+(1)A−(1)A−(1)A−(1) · · ·

∣∣φ〉 (3.6)

Let q = q0q1 · · · qn−1, and let Q = Q0Q1 · · ·Qn−1. We use the commutation



50

Figure 3.3: Slicing a Z3–coloured 3D diagram

relations of the previous section to compute

A+(x) = Q · Γ+ (xq1q2q3 · · · qn−1q0) Γ+ (xq2q3 · · · qn−1q0) · · ·Γ+ (xq0)

A−(x) = Γ+(x)Γ+(xq1) · · ·Γ+(xq1q2 · · · qn−1) ·Q

= Γ+

(
xqq−1

1 q−1
2 · · · q−1

n−1q
−1
0

)
Γ+

(
xqq−1

2 q−1
3 · · · q−1

n−1q
−1
0

)
· · ·

· · ·Γ+

(
xqq−1

0

)
·Q

Next, set

A+(x) = Q−1A+(x); A−(x) = A−(x)Q−1.

From this expression, it is clear that

A+(x)A−(y) = C(x, y) · A−(y)A+(x)

whereC(x, y) is the following product of the n2 commutators obtained by moving
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a Γ+ past a Γ−:

C(x, y) =

(
1

1− qxy

)n ∏
0≤a≤b<n

(
1

1− (qaqa+1 · · · qb)qxy

)
·
∏

0≤a≤b<n

(
1

1− (qaqa+1 · · · qb)−1qxy

)
We now follow the derivation of MacMahon’s formula in [11]. Starting with

(3.6), we convert all of the A± into A± and move the resulting weight functions

to the outside of the product (where they act trivially). This gives

ZZn =
〈
φ
∣∣· · ·A+(q2)A+(q)A+(1)A−(1)A−(q)A−(q2) · · ·

∣∣φ〉 .
We then commute all A+ operators to the right and all A− to the left:

ZZn = 〈φ| · · ·A+(q2)A+(q)A+(1)A−(1)A−(q)A−(q2) · · · |φ〉

= C(1, 1)

〈
φ

∣∣∣∣· · ·A+(q2)A+(q)A−(1)A+(1)A−(q)A−(q2) · · ·
∣∣∣∣φ〉

= · · ·

=
∞∏

i,j=0

C(qi, qj) ·
〈
φ
∣∣A−(1)A−(q)A−(q2) · · ·A+(q2)A+(q)A+(1)

∣∣φ〉 .

The vertex operator product in the final line is now equal to 1, because 〈φ|A−(x) =

〈φ| and A+(x) |φ〉 = |φ〉. Finally, we rewrite the remaining product with MacMa-

hon functions:

ZZn =
∞∏

i,j=0

C(qi, qj)

= M(1, q)n
∏

0≤a≤b<n

M(qa · · · qb, q)M(q−1
a · · · q−1

b , q)

= M(1, q)n
∏

0≤a≤b<n

M̃(qa · · · qb, q),
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Figure 3.4

(a) The set B of bricks (b) A pyramid partition removed from B

and Theorem 3.1.4 is proven. �

3.5 Pyramid partitions

The methods of the Section 3.4 may also be used to Q-count a similar type of

three-dimensional combinatorial object, called pyramid partitions. Essentially,

we want to replace Z3
≥0 with the upside–down pyramid shaped stack of bricks

shown in Figure 3.4. Note that the bricks have ridges and grooves set into them;

this helps to remind us how the bricks are meant to stack.

Szendrői [13] introduced us to the ideas in this section, albeit in a different

context. He proves that counting pyramid partitions with a slightly simpler colour
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scheme (namely specializing q0 = qc, qb = qa) yields a certain noncommutative

Donaldson–Thomas partition function. We shall borrow some of Szendrői’s ter-

minology, but not much of the machinery that he developed.

We will start by giving a rather algebraic definition for the bricks in a pyramid

partition. Consider the quiver (or directed graph) P shown in Figure 3.5(a). The

vertices of P are the elements of Z2 × Z2 = {0, a, b, c}. The edges are labelled

{v1, w1, v2, w2}.

Definition 3.5.1 A word in P is the concatenation of the edge labels of some

directed path in P . We may optionally associate a base to a word; the base is the

starting vertex of the path.

Note that a word based at 0 may also be based at c, but not at b or a. Any path in

P is uniquely determined by its base and its word.

Definition 3.5.2 Form the path algebra CP spanned by all words in P , and define

the noncommutative quotient ring A = CP/IW , where

IW = 〈v1wiv2 − v2wiv1, w1vjw2 − w2vjw1〉 , i, j ∈ {1, 2}.

If B is a word in CP , we write [B] for its residue class in CP/Iw.

Definition 3.5.3 A brick is an element [B] of CP/IW , where B is a word based

at the vertex 0. Let B be the set of all bricks.

To understand how to draw Figure 3.4, we interpret the edge labels of P as

vectors in Z3.
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Figure 3.5

v2 w2

v1

w1

v1

w1

v2w2

0

c

a

b

(a) The quiver P (b) A pyramid partition π

Definition 3.5.4 Let

v1 = (−1, 1, 0) v2 = (1, 1, 0)

w1 = (0, 1,−1) w2 = (0, 1, 1).

The position of a brick [B] is the sum of the vectors corresponding to the edge

labels in [B]. The brick corresponding to the empty walk, [ ], is located at the

origin.

We next define a “colouring” on B.

Definition 3.5.5 Define

Kpyramid : B −→ Z2 × Z2

by setting Kpyramid([B]) to be the final vertex of any path whose word is B. We call

Kpyramid([B]) the colour of B.

For an example of all of these concepts, define the brick [B] by the word

B = v2w2v2w1. The brick [B] is based at the vertex 0, ending at the vertex b.
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Figure 3.6: A view of the pyramid B from below. The bricks have been shrunk to

points, and some checkerboard–coloured slices are shown.

q0, qc

qb, qa

qa, qb

The position of [B] is (2, 4, 0); [B] is the c-coloured brick in the top layer of

Figure 3.5b.

Note that the colour is completely determined by the x and y coordinates of

[B]; Figure 3.6 shows the colouring as viewed from along the z axis.

Definition 3.5.6 A pyramid partition π is a subset of B such that if [B] ∈ π then

every prefix of B also represents a brick in π.

Note that pyramid partitions may also be defined algebraically, although it is

unnecessary to do so for this paper. A pyramid partition corresponds to a framed

cyclic CP/IW –module based at 0, much in the same way that a 3D Young diagram
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corresponds to a monomial ideal in C[x, y, z]. We refer the reader to [13] for

further details of this approach.

Our next goal is to show that the diagonal slices of a pyramid partition interlace

with one another. This will allow us to reuse the strategy of Section 3.4 to obtain

a nice product formula for Zpyramid.

Definition 3.5.7 Let π be a pyramid partition. Define the kth diagonal slice of

π, written πk, to be the set of all bricks in π whose position (x, y, z) satisfies

x− y = k.

Lemma 3.5.8 Let k ≥ 0. Then

π−2k = {[(v1w2)
kW ]} ∩ π,

π2k = {[(v2w1)
kW ]} ∩ π,

where W runs over all words in v1w1 and v2w2, and

π−2k−1 = {[(v1w2)
kv1W

′]} ∩ π,

π2k+1 = {[(v2w1)
kv2W

′]} ∩ π,

where W ′ runs over all words in w1v1 and w2v2. Moreover, the bricks of πk form

a 2D Young diagram; the slices are single–coloured, as follows:

Colour of πk =



0 if k = 0 (mod 4)

b if k = 1 (mod 4)

c if k = 2 (mod 4)

a if k = 3 (mod 4).
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Figure 3.7: A diagonal slice of a pyramid partition, interpreted as a 2D Young

diagram

Proof. Let us prove the first equation; the other three are similar. Note that the

brick represented by the word (v1w2)
k is in position (−k, 2k, k) and thus lies in

the −2kth diagonal. Appending v1w1 or v2w2 to this word adds (−1, 2,−1) or

(1, 2, 1) to the position, which does not alter x− y.

To see that the bricks of π−2k form a 2D Young diagram, observe that w1v1

and w2v2 commute in CP/Iw. The suffix (w1v1)
i(w2v2)

j corresponds to the (i, j)

box in the Young diagram. Again, the other cases are similar. The colours are

easy to check directly. �

Figure 3.7 shows the central slice π0 of the pyramid partition of Figure 3.5b.

Every brick has been replaced with a square tile to make the orientation of the 2D

Young diagram clear.

Lemma 3.5.9 For k ≥ 0, we have the following interlacing properties (where the
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prime denotes transposition of 2D Young diagrams):

π2k � π2k+1 π′−2k � π′−2k−1

π′2k+1 � π′2k+2 π−2k−1 � π−2k−2

Proof. Let us handle the first case. Let Rj
k be the set of bricks in the jth column

of πk, and suppose that |Rj
k| = `jk. Explicitly,

Rj
2k+1 = {(v2w1)

kv2(w1v1)
j(w2v2)

i | 0 ≤ i < `j2k+1}

= {(v2w1)
k(v1w1)

j(v2w2)
iv2 | 0 ≤ i < `j2k+1},

Rj
2k = {(v2w1)

k(v1w1)
j(v2w2)

i | 0 ≤ i < `j2k}.

In particular, each of the bricks in Rj
2j ∪ R

j
2j+1 may be represented as some

prefix of the word

(v2w1)
k(v1w1)

j(v2w2)
max{`j

2k,`j
2k+1}.

Informally speaking, Rj
2k and Rj

2k+1 form a chain of bricks, each of which

rests on the previous one (see Figure 3.8). It follows from Definition 3.5.6 that

`j2k − `
j
2k+1 ∈ {0, 1}; then part (3) of Lemma 3.3.2 says that π2k � π2k+1.

Next let us see that π′2k+1 � π′2k+2. Let Ri,k be the ith row of πk, with |Ri,k| =

`i,k. We have

Ri,2k+2 = {(v2w1)
k(v2w2)

i(v1w1)
j | 0 ≤ j < `i,2k+2}

= {(v2w1)
kv2(w2v2)

i(w1v1)
j | 0 ≤ j < `i,2k+2},

Ri,2k+1 = {(v2w1)
kv2(w2v2)

i(w1v1)
j | 0 ≤ j < `i,2k+1}.
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Figure 3.8: The jth columns of two adjacent slices π0, π1

from which it follows that `j,2k+1 − `j,2k+2 ∈ {0, 1}. This means that π′2k+1 �

π′2k+2. See Figure 3.9 for an illustration of the difference between the row–

interlacing and column–interlacing behaviour.

The remaining cases are similar. �

Figure 3.9: Row– and column–interlacing behaviour for adjacent diagonal slices

of a pyramid partition
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3.6 A generating function for pyramid partitions

We will now compute the following generating function for pyramid partitions.

Definition 3.6.1 Let π be a pyramid partition. For g ∈ Z2 × Z2, let

|π|g = |K−1
pyramid(g) ∩ π|

denote the number of boxes coloured g in π. Define

Zpyramid =
∑

π pyramid partition

∏
g∈Z2×Z2

q|π|gg .

Theorem 3.6.2

Zpyramid =
M(1, q)4M̃(qbqc)M̃(qaqc)

M̃(−qa, q)M̃(−qb, q)M̃(−qc, q)M̃(−qaqbqc, q)
,

where q = q0qaqbqc.

Theorem 3.6.2 may seem unrelated to the other theorems in this paper, but it

will turn out that it is the key to computing ZZ2×Z2 . The proof is much like that of

Theorem 3.1.4.

Proof. We define a vertex operator product which counts pyramid partitions. Let

us first define an operator which sweeps out four slices of the pyramid partition at

the same time. Let

A
′
±(x) = Γ±(x)QbΓ

′
±(x)QcΓ±(x)QaΓ

′
±(x)Q0,

so that

Zpyramid =
〈
φ
∣∣∣· · ·A′+(1)A

′
+(1)A

′
−(1)A

′
−(1) · · ·

∣∣∣φ〉 .
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It is simple to check this product against Lemmas 3.5.9 and 3.5.8 to be sure that it

describes the correct colouring and interlacing behaviour. Set

A′+(x) = Q−1
0 Q−1

b Q−1
c Q−1

a A
′
+(x)

A′−(x) = A
′
+(x)Q−1

0 Q−1
b Q−1

c Q−1
a .

Commuting the weight operators past the vertex operators gives

A′+(x) = Γ+(xqbqcqaq0)Γ
′
+(xqcqaq0)Γ+(xqaq0)Γ

′
+(xq0)

and

A′−(y) = Γ−(yqq−1
b q−1

c q−1
a q−1

0 )Γ′−(yqq−1
c q−1

a q−1
0 )

·Γ−(yqq−1
a q−1

0 )Γ′−(yqq−1
0 )

so that

Zpyramid =
〈
φ
∣∣· · ·A′+(q2)A′+(q)A′+(1)A′−(1)A′−(q)A′−(q2) · · ·

∣∣φ〉 . (3.7)

The commutation relation for these A′ operators is

A′+(x)A′−(y) =
(1 + qbxyq)(1 + qbqcqaxyq)(1 + q−1

b xyq)(1 + qcxyq)

(1− xyq)(1− qbqcxyq)(1− xyq)(1− qcqaxyq)

·(1 + q−1
c xyq)(1 + qaxyq)(1 + (qbqcqa)

−1xyq)(1− q−1
a xyq)

(1− (qbqc)−1xyq)(1− xyq)(1− (qcqa)−1xyq)(1− xyq)

·A′−(y)A′+(x).

Because of the mixed Γ and Γ′ operators, some of the commutation factors now

appear in the numerator. We now move the A′+ operators in (3.7) to the left of

the expression, while moving the A′− operators to the right. As in the proof of

Theorem 3.1.4, all of the A′ vanish, and we are left with the commutator

Zpyramid =
M(1, q)4M̃(qbqc, q)M̃(qaqc, q)

M̃(−qa, q)M̃(−qb, q)M̃(−qc, q)M̃(−qaqbqc, q)
,
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where q = q0qaqbqc. �

Note that this method gives an alternate proof of the result in [14], when we

specialize q0 = qc, q1 = qa = qb.

3.7 Counting Z2×Z2–coloured 3D Young diagrams

We will now prove Theorem 3.1.5. Let us name the elements of Z2×Z2 {0, a, b, c}

as in the previous section, and recall the definition ofKZ2×Z2 from Theorem 3.1.5.

Our set of indeterminates is Q = {q0, qa, qb, qc}. Let q = q0qaqbqc.

Before we proceed to compute this generating function, consider the kth diag-

onal slice x− y = k of the positive octant. Note that we have

KZ2×Z2(x, x+ k, z) = (x− z)c+ kb.

In particular, the box (x, x + k, z) is coloured k · b if x ≡ z (mod 2), and k ·

b + c otherwise. In other words, each diagonal slice of π is now coloured in

a checkerboard fashion, whereas in the Zn case, they were single–coloured (see

Figure 3.10). We need to introduce a two–coloured weight function if we are to

use vertex operators to compute ZZ2×Z2 .

Definition 3.7.1 For g, h ∈ Z2 × Z2, let

Qghλ = q#{(i,j)∈λ | i≡j (mod 2)}
g · q#{(i,j)∈λ | i6≡j (mod 2)}

h · λ.

We may write down a vertex operator product which sweeps out a 3D diagram in

diagonal slices, according to the Z2 × Z2 colouring. It is

ZZ2×Z2 = 〈φ| · · ·QbaΓ+(1)Q0cΓ+(1)QbaΓ+(1)Q0c

·Γ−(1)QabΓ−(1)Q0cΓ−(1)Qab · · · |φ〉
(3.8)
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Figure 3.10: Slicing a Z2 × Z2–coloured 3D diagram

Unfortunately, Γ± no longer commutes nicely with theQgh operators, so our usual

approach to computing with vertex operators fails here. The problem is fundamen-

tal, and it does not appear that we can resolve it in a natural way. We need a new

idea.

However, there are two clues which tell us how to proceed. The first clue is

that the desired formula for ZZ2×Z2 is very close to Zpyramid, so it would suffice to

prove the following:

Lemma 3.7.2

ZZ2×Z2 = M̃(qaqb, q) · Zpyramid.

The second clue is that if we attempt to compute Zpyramid by slicing along lines

x + y = k, rather than x − y = k, then the slices of the pyramid partition

are checkerboard–coloured as well! See Figure 3.6, which shows the colouring

scheme from below. The heavy black lines represent two edges of the pyramid,

corresponding to prefixes of the words (w1v1)
k and (w2v2)

k, so bricks which lie
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on these lines represent the corners of the slices.

So, using our checkerboard coloured weight operators, we can write down a

different vertex operator product which still counts pyramid partitions.

Lemma 3.7.3

Zpyramid = 〈φ| · · ·QbaΓ
′
+(1)Q0cΓ+(1)QbaΓ

′
+(1)Q0c

·Γ−(1)QabΓ
′
−(1)Q0cΓ−(1)Qab · · · |φ〉

Proof. One must check that the interlacing behaviour of the slices is correct, and

that the correct weights are assigned to each slice. This is similar to the proofs of

Lemmas 3.5.8 and 3.5.9. �

Observe that (3.8) is very similar to the product in Lemma 3.7.3, so we shall

look for a way to transform Γ±(x) into Γ′±(x).

Definition 3.7.4 Define

E±(x) = exp
∑
k≥1

x2k

k
α±2k.

Lemma 3.7.5 The operators E± have the following properties:

Γ±(x) = Γ′±(x)E±(x).

[E±,Γ±] = 0.

E+(x)Γ−(y) =
1

1− (xy)2
Γ−(y)E+(x).

Γ+(x)E−(y) =
1

1− (xy)2
E−(y)Γ+(x).

Γ′+(x)E−(y) = (1− (xy)2)E−(y)Γ′+(x).

Proof. These are all simple applications of Corollaries 3.2.4 and 3.2.3 as well as

(3.3) and (3.5). �
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In fact, unlike Γ±(x), E±(x) also commutes nicely with the checkerboard

weight operators Qgh.

Lemma 3.7.6

E−(x)Qgh = QghE−(x
√
qgqh);

QghE+(x) = E+(x
√
qgqh)Qgh.

Proof. The operator α2n has the effect of adding all possible border strips R of

length 2n to the boundary of a 2D Young diagram. Since the length of the strips

R is even, any such R has the same Qgh–weight. Indeed,

Qgh ·R = (qgqh)
n ·R = (

√
qgqh)

|R| ·R,

It follows that(∑
n

x2n

n
α−2n

)
Qgh · λ = Qgh

(∑
n

(q
√
qgqh)

2n

n
α−2n

)
· λ

and thus

E−(x)Qgh = QghE−(x
√
qgqh).

The case of E+ is similar. �

Finally, we have the following property of E±, inherited from the correspond-

ing property of α±n:

〈φ|E−(x) = 〈φ|

E+(x) |φ〉 = |φ〉
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Proof of Lemma 3.7.2. Let us alter the first line of (3.8) by transforming half

of the Γ+(1) operators into Γ′+(1) operators,〈
φ

∣∣∣∣∣
∞∏
i=1

Γ+(1)QbaΓ+(1)Q0c

∣∣∣∣∣
=

〈
φ

∣∣∣∣∣
∞∏
i=1

Γ+(1)QbaΓ
′
+(1)E+(1)Q0c

∣∣∣∣∣
=

〈
φ

∣∣∣∣∣
∞∏
i=1

Γ+(1)QbaΓ
′
+(1)Q0c

∣∣∣∣∣ ·
∣∣∣∣∣
∞∏
i=0

E+(qi)E+(Qi√qbqa)

∣∣∣∣∣ .
Now, continue to move the E+ term to the right through the second line of (3.8).

We have∣∣∣∣∣
∞∏
i=0

E+(qi)E+(Qi√qbqa)

∣∣∣∣∣ ·
∣∣∣∣∣
∞∏
i=1

Γ−(1)QabΓ−(1)Q0c

∣∣∣∣∣φ
〉

= C ·

∣∣∣∣∣
∞∏
i=1

Γ−(1)QabΓ−(1)Q0c

∣∣∣∣∣ ·
∣∣∣∣∣
∞∏
i=0

E+(qi)E+(Qi√qbqa)

∣∣∣∣∣φ
〉

= C ·

∣∣∣∣∣
∞∏
i=1

Γ−(1)QabΓ−(1)Q0c

∣∣∣∣∣φ
〉
,

where C = M(1, q)M(q−1
b q−1

c , q) is the product of the commutators generated by

Lemma 3.7.5. Next, change half of the Γ− to Γ′− in the above expression,∣∣∣∣∣
∞∏
i=1

Γ−(1)QabΓ
′
−(1)E−(1)Q0c

∣∣∣∣∣φ
〉

and commute them out to the left. This time, we pick up the multiplicative factor

M(qaqb, q)

M(1, q)
,

and the factors M(1, q) cancel. We have shown that

ZZ2×Z2 = Zpyramid · M̃(qaqb).
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so Lemma 3.7.2 and Theorem 3.1.5 are now proven. �

3.8 Future work

It would obviously be wonderful to have a combinatorial proof of these identities;

such a proof might be analagous to the “n–quotient” on 2D Young diagrams,

which decomposes a Young diagram into n smaller Young diagrams and an n–

core. The authors suspect, however, that such a proof would be rather difficult

to find. One indication of this is that there are formulae for 3D Young tableaux

which fit inside an A×B×C box, but computational evidence suggests that there

is no such nice formula for Z2 × Z2–coloured partitions.

One could attempt to compute the Donaldson–Thomas partition functions of

arbitrary toric Calabi-Yau orbifolds. To this aim, it should be possible to develop

an orbifold version of the topological vertex formalism following [7]; this is a

work in progress. It would also be interesting to try to extend Szendrői’s work [13]

in noncommutative Donaldson–Thomas theory using the results of this paper.

One box counting problem which is of great interest is to take G = Z3 and the

colouring K given by

K(1, 0, 0) = K(0, 1, 0) = K(0, 0, 1) = 1.

However, this problem appears to be rather difficult. The group representation

does not naturally embed into SO(3) or SU(2), so Donaldson–Thomas theory

does not generate any conjectures as to what the answer might look like. Indeed,

Kenyon [5] conjectures that there is no nice product formula in this example.

One unifying theme between 3D diagrams and pyramid partitions is quivers:

both objects arise from a quiver path algebra modulo an ideal generated by a
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superpotential [13]. Perhaps one can extend the methods to other quivers and

superpotentials.

However, the most intriguing direction for future work is simply to try to un-

derstand these proofs more fully. The reader may perhaps have noticed that the

appearance of pyramid partitions seems somewhat unmotivated. Undoubtedly,

there is some underlying geometric or representation-theoretic reason why these

product formulae exist.
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Chapter 4

Conclusion
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4.1 Directions for future research

In addition to the future work mentioned at the end of Chapters 2 and 3, it is worth

mentioning that this thesis has raised several obvious links between pyramid par-

titions and 3D Young diagrams. In Chapter 2, pyramid partitions are transformed

into a certain type of 3D Young diagram by dimer shuffling. In Chapter 3, we

define an operator which sweeps out 3D Young diagrams, and then modify it in

such a way that it sweeps out pyramid partitions. These techniques are superfi-

cially unrelated to one another, but the fact that they both preserve the intricate

colour schemes of the corresponding objects is unlikely to be a coincidence. It

would certainly be interesting to develop some framework which genuinely ex-

plains why these techniques work, and how to generalize them.

The dimer theoretic techniques and vertex operator techniques have both been

used with great success in various probabilistic questions. One can define a prob-

ability measure on the set of 3D Young diagrams, and then use vertex operator

techniques to study properties of randomly chosen 3D Young diagrams [1], for

example their correlation functions or limiting shape. The author intends to ex-

plore probabilistic applications of this work in future research.

4.2 Relevance of the research

The most direct application of this work is to Donaldson–Thomas theory, which is

the field of mathematics which gave rise to the questions answered in this thesis.

We have, implicitly, given a concrete way to calculate various types of Donaldson–

Thomas invariants for the conifold [2] and for several orbifolds; hopefully, this and

future work will help geometers better understand the structure of these spaces.
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The work may also be of interest to those studying other aspects of 3D Young

diagrams; one can now attempt (for example) to count colored 3D Young diagrams

which posess various symmetries.

Finally, the dimer and vertex operator techniques are very general, and they

can be used for different purposes than ours. We suspect that it will be fairly

fruitful to use vertex operators to study statistical mechanical problems on the

square lattice.

4.3 Strengths and weaknesses of the research

The primary strength of this work is that it has proven several concrete, enumera-

tive formulae which answer several open questions in Donaldson–Thomas theory.

The combinatorial difficulties were nontrivial and several insights were required

before any progress could be made, especially in the case of the Z2×Z2–colouring

on pyramid partitions.

The primary weakness of the results is their ad hoc nature: the methods are

rather specific to the problem at hand, which somewhat limits the scope of our

work. For example, there are no other known colourings of 3D Young diagrams to

which the methods of Chapter 3 immediately apply. Farther–ranging applications

of these ideas will require new ideas and techniques.
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Appendix A

Donaldson-Thomas theory of C3/G

and its crepant resolution (by Dr.

Jim Bryan)
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A.1 Review of Donaldson-Thomas theory

Donaldson-Thomas theory, in its incarnation due Maulik, Okounkov, Nek-

rasov, and Pandharipande, constructs subtle integer valued deformation invariants

of a threefold X out of the Hilbert scheme of subschemes of X . If X is a Calabi-

Yau threefold, i.e., KX is trivial, then this invariant has a simple formulation due

to Behrend. It is given by the weighted topological Euler characteristic of the

Hilbert scheme where the weighting is by ν, an integer valued constructible func-

tion which is canonically associated to any scheme [1].

LetX be a (not necessarily compact) threefold with trivial canonical class. Let

In(X, β) be the Hilbert scheme of subschemes Z ⊂ X having proper support of

dimension less than or equal to one and with [Z] = β ∈ H2(X) and n = χ(OZ).

We define the Donaldson-Thomas invariant Nn
β (X) to be

Nn
β (X) = e(In(X, β), ν)

=
∑
n∈Z

e
(
(ν)−1 (n)

)
,

where e(·) denotes topological Euler characteristic and ν is Behrend’s constructible

function .

The invariants are assembled into the partition function ZDT
X as follows. Let

C1, . . . , Cl be a basis for H2(X,Z) such that any effective curve class β is given

by d1C1 + · · · + dlCl with di ≥ 0. Let v1, . . . , vl be corresponding variables and

let vβ = vd1
1 · · · v

dl
l . The Donaldson-Thomas partition function of X is defined by

ZDT
X (v, q) =

∑
β∈H2(X,Z)

∑
n∈Z

Nn
β (X)vβqn.
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Define the reduced partition function by

ZDT
X (v, q)′ =

ZDT
X (v, q)

ZDT
X (0, q)

= M(1, q)−e(X)ZDT
X (v, q)

where the second equality is a theorem proved by [2, 12, 13].

Maulik, Nekrasov, Okounkov, and Pandharipande conjecture that Donaldson-

Thomas theory is equivalent to Gromov-Witten theory. We assemble GW g
β (X),

the genus g Gromov-Witten invariants of non-zero degree β into the reduced Gro-

mov-Witten partition function as follows:

ZGW
X (v, λ)′ = exp

(∑
β 6=0

∞∑
g=0

GW g
β (X)vβλ2g−2

)
.

Conjecture A.1.1 [14] Under the change of variables q = −eiλ the reduced

partition functions of Donaldson-Thomas and Gromov-Witten theory are equal:

ZDT
X (v, q)′ = ZGW

X (v, λ)′.

This conjecture has been proven in the case where X is a toric local surface

[14] and when X is a local curve [8, 16].

A.2 Orbifold Donaldson-Thomas theory of [C3/G]

Extending Donaldson-Thomas theory to the case of three dimensional orb-

ifolds is expected to be routine since the Hilbert scheme of substacks of a Deligne-

Mumford stack has been constructed by Olsson and Starr [17], although it isn’t

clear how best to choose the discrete data in general.
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The orbifolds that we consider are simple enough that we can identify the

Hilbert scheme directly. Let G be a finite subgroup of SU(3). A substack of

[C3/G] may be regarded as a G-invariant subscheme of C3, and consequently we

can regard the Hilbert scheme of [C3/G] as a subset of the Hilbert scheme of C3.

Since we require our substacks to have proper support, we need only consider zero

dimensional subschemes of C3. For any G-representation R of dimension d we

identify HilbR([C3/G]) ⊂ Hilbd(C3) as follows:

HilbR([C3/G]) =
{
Z ⊂ C3 : Z is G-invariant with H0(OZ) = R

}
.

This Hilbert scheme has a symmetric perfect obstruction theory induced by the

G-invariant part of the of the perfect obstruction theory on Hilbd(C3) = Id(C3, 0).

However, we do not need this construction since we can define the Donaldson-

Thomas invariants directly using Behrend’s constructible function.

Definition A.2.1 The Donaldson-Thomas invariants of [C3/G] are indexed by

representations of G and are given by the Euler characteristics of the Hilbert

schemes, weighted by Behrend’s ν function:

NR(C3/G) = e(HilbR([C3/G]), ν).

Let q0, . . . , qr be variables corresponding to R0, . . . , Rr, the irreducible rep-

resentations of G. For a representation R = d0R0 + · · · + drRr, let qR denote

qd0
0 · · · qdr

r . We define the orbifold Donaldson-Thomas partition function by

ZDT
C3/G(q0, . . . , ql) =

∑
R

NR(C3/G)qR

where R runs over all representations of G.
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We now restrict our attention to groups G which are subgroups of SO(3) ⊂

SU(3) and are Abelian. Finite subgroups of SO(3) admit an ADE classification.

They are the cyclic groups, the dihedral groups, and the platonic groups. The

only Abelian groups from this list are the cyclic groups Zn and the Klein 4-group

Z2 × Z2. The action of k ∈ Zn on C3 is given by

k(x, y, z) = (ωkx, ω−ky, z)

where ω = exp
(

2πi
n

)
. The action of Z2 × Z2 = {0, a, b, c} on C3 is given by

a(x, y, z) = (x,−y,−z),

b(x, y, z) = (−x, y,−z),

c(x, y, z) = (−x,−y, z).

As in the introduction, we choose an isomorphism ψ of the group of represen-

tations Ĝ with G. Explicitly, we identify 1 ∈ Zn with L, the representation of Zn

where 1 ∈ Zn acts by multiplication by exp
(

2πi
n

)
. For Z2 × Z2 = {0, a, b, c} we

identify a, b, and c with the representations α, β, and γ given by the action on the

x, y, and z coordinates of C3 respectively.

Theorem A.2.2 Let qk be the variable corresponding to the group element k ∈

Zn and the character Lk. Then

ZDT
C3/Zn

(q0, . . . , qn−1) = ZZn(−q0, q1, . . . , qn−1)

where ZZn is the Zn-colored 3D diagram partition function introduced and com-

puted in the main body of the paper (Theorem 3.1.4).

Let {q0, qa, qb, qc} be variables corresponding to {0, a, b, c}, the group ele-

ments of Z2 × Z2, and {1, α, β, γ}, the characters of Z2 × Z2. Then

ZDT
C3/Z2×Z2

(q0, qa, qb, qc) = ZZ2×Z2(q0,−qa,−qb,−qc)
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where ZZ2×Z2 is the Z2 × Z2-colored 3D diagram partition function introduced

and computed in the main body of the paper (Theorem 3.1.5).

PROOF: Let G be Zn or Z2 × Z2 and let T ⊂ (C×)
3 be the subtorus with

t1t2t3 = 1. The action of T on C3 commutes with the action of G and hence

defines a T -action on [C3/G] and on HilbR(C3/G). The fixed points of T in

HilbR(C/G) ⊂ Hilbdim R(C3) are isolated, even infinitesimally [2, Lemma 4.1],

and they correspond to monomial ideals in C[x, y, z]. The monomial ideals in turn

correspond to 3D Young diagrams π where if Z denotes the T -fixed subscheme

of C3, then

H0(OZ) =
∑

(i,j,k)∈π

ti1t
j
2t

k
3

as a T -representation viewed as a polynomial in t1, t2, t3 modulo the relation

t1t2t3 = 1. Following [14], we adopt the notation

Qπ =
∑

(i,j,k)∈π

ti1t
j
2t

k
3.

By [2, Prop. 3.3], the ν-weighted Euler characteristic of HilbR(C3/G) is given by

a sum over the T -fixed points, counted with sign given by the parity of the dimen-

sion of the Zariski tangent space of HilbR(C3/G) at a fixed point corresponding

to 3D diagram π. Hence both the Donaldson-Thomas and the diagram partition

functions are given by a sum over 3D diagrams, weighted, up to a sign, by the

same variables. Thus our main task is to determine the sign.

Let π be a 3D diagram having N = |π| boxes and having |π|g boxes of color

g ∈ G. Let Tπ denote the Zariski tangent space of HilbN(C3) at the subscheme

corresponding to π. Let

(Tπ)0 ⊂ Tπ
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be the Zariski tangent space of HilbR([C3/G]) ⊂ HilbN(C3) at the same point.

Tπ can be regarded as both a T -representation and a G-representation. (Tπ)0 is

given by the G-invariant subspace of Tπ.

The difference of Tπ and its dual T∨π , regarded as a virtual (C×)
3-representa-

tion, is computed in [14, equation (13)] and given by

Tπ − T∨π = Qπ −
Qπ

t1t2t3
+QπQπ

(1− t1)(1− t2)(1− t3)
t1t2t3

where

Qπ(t1, t2, t3) = Qπ(t−1
1 , t−1

2 , t−1
3 ).

Using the relation t1t2t3 = 1 to eliminate t3 from the above expression, we can

regard Tπ − T∨π as an element in

R(T ) ∼= Z[t1, t2, t
−1
1 , t−1

2 ],

the virtual representation ring of T .

Following [14], we let

Vπ = Qπ +QπQπ(1− t1)(1− t2)t−1
1 t−1

2

which satisfies the easily verified equation

Tπ − T∨π = Vπ − V ∨
π (A.1)

in R(T ), and also has the crucial property that the constant term of Vπ is even [14,

Lemma 10]. These facts allow us to use Vπ as a surrogate for Tπ when computing

the parity of the dimension:

Lemma A.2.3 Let (Tπ)0 and (Vπ)0 denote the G-invariant part of Tπ and Vπ re-

spectively, then

dim (Tπ)0 ≡ vdim (Vπ)0 mod 2.
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PROOF: From equation (A.1) we see that Tπ − Vπ is self-dual. Thus all non-

constant monomials occur in pairs of the form aij(t
i
1t

j
2 + t−i

1 t
−j
2 ). Moreover, the

constant term of Vπ is even [14, Lemma 10] and the constant term of Tπ is zero

[2, Lemma 4.1]. Thus we have

vdim (Tπ − Vπ) ≡ 0 mod 2.

Indeed, the above argument shows that if we restrict Tπ − Vπ to any self-dual

collection of weights, the virtual dimension will be even. In particular, the G-

invariant part of Tπ − Vπ has even virtual dimension, which proves the lemma.

�

To compute the parity of the G-invariant part of Vπ, we work in the represen-

tation ring of G with mod 2 coefficients. The restriction map

R(T ) ∼= Z[t1, t2, t
−1
1 , t−1

2 ]→ RZ2(G)

is explicitly given by

(t1, t2) 7→ (L,L−1)

in the case where G = Zn, and by

(t1, t2) 7→ (α, β)

in the case where G = Z2 × Z2.

For any W ∈ RZ2(G) and any irreducible representation ζ , let [W ]ζ ∈ Z2

denote the coefficient of ζ in W . We compute [Vπ]1 in

RZ2(Zn) = Z2[L]/(Ln − 1)
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as follows.

[Vπ]1 =
[
Qπ +QπQπ(1− L)(1− L−1)

]
1

= [Qπ]1 +
[
QπQπ(L+ L−1)

]
1

= [Qπ]1 +
[
QπQπ

]
L−1 +

[
QπQπ

]
L

= [Qπ]1

= |π|0 mod 2

Since [Vπ]1 is equal to the dimension of the Zn-invariant part of Tπ modulo 2, the

3D diagram π is counted with sign (−1)|π|0 in the Donaldson-Thomas partition

function of C3/Zn. This proves first part of Theorem A.2.2.

We now compute [Vπ]1 in

RZ2(Z2 × Z2) = Z2[α, β]/(α2 − 1, β2 − 1).

We use the fact that in this ring, the square of an arbitrary element is equal to the

sum of its coefficients:

(n1 + n2α+ n3β + n4αβ)2 = n1 + n2 + n3 + n4,

and we compute as follows.

[Vπ]1 =
[
Qπ +QπQπ(1− α)(1− β)αβ

]
1

= [Qπ]1 +
[
Q2

π(1 + α+ β + αβ)
]
1

= [Qπ]1 + [|π|(1 + α+ β + αβ)]1

= |π|0 + |π| mod 2

= |π|a + |π|b + |π|c mod 2.
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Since [Vπ]1 is equal to the dimension of the Z2×Z2-invariant part of Tπ modulo 2,

the 3D diagram π is counted with sign (−1)|π|a+|π|b+|π|c in the Donaldson-Thomas

partition function of C3/Z2×Z2. This proves the remaining part of Theorem A.2.2

and so the proof of Theorem is complete. �

Remark A.2.4 For any finite Abelian subgroup G ⊂ SU(3), the Donaldson-

Thomas invariants of C3/G are given by a signed count of boxes colored by G.

However, it is not always true that this sign is obtained by simply changing the

signs of some of the variables. For example, consider the case ofG = Z3 acting on

C3 with equal weights on all three factors. The sign associated to a 3D partition

π can be computed by the methods of this appendix and is given by

(−1)|π|(1+|π|0|π|1|π|2)+|π|0 .

Thus the colored 3D diagram partition function and the Donaldson-Thomas par-

tition function are not related in an obvious way.

A.3 The Donaldson-Thomas crepant resolution

conjecture

A well known principle in physics asserts that string theory on a Calabi-Yau

orbifold X is equivalent to string theory on any crepant resolution Y → X . Con-

sequently, it is expected that mathematical counterparts of string theory, such as

Gromov-Witten theory or Donaldson-Thomas theory, should be equivalent on X
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and Y . Precise formulations of these equivalences are known as crepant resolu-

tion conjectures. The crepant resolution conjecture in Gromov-Witten theory goes

back to Ruan, and has recently undergone successive refinements [18, 6, 9, 10].

In this section we formulate a crepant resolution conjecture for Donaldson-

Thomas theory. Our conjecture has somewhat limited scope: we stick to the “lo-

cal case” where X is of the form [C3/G], and (for reasons explained below) we

impose the hard Lefschetz condition [6, Defn 1.1], which implies [5] that G is a

finite subgroup of either SU(2) ⊂ SU(3) or SO(3) ⊂ SU(3).

The most straightforward formulation of the crepant resolution conjecture in

Donaldson-Thomas theory posits that the partition functions of the orbifold and

its resolution are equal after some natural change of variables. For the orbifold

[C3/G], we saw in the previous section that the partition function has variables

naturally indexed by irreducible G-representations. By the classical McKay cor-

respondence, the crepant resolution YG → C3/G given by the G-Hilbert scheme

has a basis ofH∗(YG) also labelled by irreducibleG-representations [4, 15]. How-

ever, the variables of the Donaldson-Thomas partition function of YG correspond

to a basis of H0(YG)⊕H2(YG). So in order to get the number of variables of ZDT
YG

and ZDT
C3/G to match, we need

H∗(YG) = H0(YG)⊕H2(YG).

This occurs if and only if YG → C3/G is a semi-small resolution. This condition

is equivalent to the orbifold satisfying the hard Lefschetz condition.

Conjecture A.3.1 Let X be a local, 3 dimensional, Calabi-Yau orbifold satisfy-

ing the hard Lefschetz condition, namely, X = XG = [C3/G] where G is a finite

subgroup of either SU(2) ⊂ SU(3) or SO(3) ⊂ SU(3).
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Let q0, q1, . . . , ql be variables corresponding to the irreducible G-representa-

tions R0, R1, . . . , Rl where R0 is the trivial representation. Let YG → XG be

the crepant resolution given by the G-Hilbert scheme and let v1, . . . , vl be the

variables corresponding to the basis of curve classes in YG labelled by the non-

trivial G-representations R1, . . . , Rl.

Then the Donaldson-Thomas partition functions of YG and XG are related by

the formula

ZDT
XG

(q0, . . . , ql) = M(1, q)−e(YG)ZDT
YG

(q, v1, . . . , vl)Z
DT
YG

(q, v−1
1 , . . . , v−1

l )

under the identification of the variables

vi = qi for i = 1, . . . , l,

q = qRreg

= qdim R0
0 · · · qdim Rl

l .

Proposition A.3.2 Conjecture A.3.1 holds for G Abelian, namely for G = Zn or

G = Z2 × Z2.

Remark A.3.3 Szendrői proved [19] that a similar relationship holds between

the Donaldson-Thomas partition functions of the non-commutative conifold sin-

gularity and its small resolution.

Remark A.3.4 The Gromov-Witten partition function of YG has been computed

for all G in SU(2) or SO(3) in [5] (see also Remark A.3.5). This provides, via

the MNOP conjecture, a prediction for ZDT
YG

and hence our conjecture A.3.1 gives

a prediction for ZDT
C3/G which can be tested term by term. Verification of this

prediction for terms of low order has been obtained by D. Steinberg in the case

where G is the quaternion 8 group.
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In light of Theorems 3.1.4, 3.1.5, and A.2.2, Proposition A.3.2 is equivalent to

Theorem 3.1.7 which we prove here.

A.3.1 Proof of Proposition A.3.2 / Theorem 3.1.7:

Since G is Abelian, YG is toric and so via [14, Theorems 2 and 3], the reduced

Donaldson-Thomas partition function of YG is equal to the reduced Gromov-Wit-

ten partition function of YG after the change of variables q = −eiλ. Thus it suffices

to compute the Gromov-Witten partition function of YG
1. The pithiest way to

encode the Gromov-Witten invariants is in terms of Gopakumar-Vafa invariants,

or so called BPS state counts. It is well know that each genus zero BPS state

count n0
β contributes a factor of M(vβ,−eiλ)−n0

β to the Gromov-Witten partition

function (see for example the proof of Theorem 3.1 in [3]). Thus the content of

Theorem 3.1.7 is that YZn has genus 0 Gopakumar-Vafa invariants occurring in the

classes Ca+· · ·+Cb for 0 < a ≤ b < nwith value -1, and that YZ2×Z2 has genus 0

Gopakumar-Vafa invariants occurring in the classes Ca, Cb, Cc, and Ca +Cb +Cc

with value 1 and in the classes Ca + Cb, Ca + Cc, and Cb + Cc with value -1.

Moreover, all other Gopakumar-Vafa invariants are zero. These assertions are

proved in [11]: the case of YZ2×Z2 is Corollary 16 and Proposition 19 and the case

1In [14] it is shown that the reduced Donaldson-Thomas partition function of a toric Calabi-Yau

threefold can be computed via the topological vertex formalism. In general, the topological vertex

formalism has been proven to compute the Gromov-Witten partition function only in the “two-

leg” case. While YZn is a local surface and can be computed with two-leg vertices, YZ2×Z2 has

the geometry of the closed topological vertex [7] and requires a three-leg vertex. However, in this

case, the invariants have been computed by both the vertex formalism as well as by localization

and have been shown to agree [11]. Thus we know that the Gromov-Witten/Donaldson-Thomas

correspondence holds for both YZn
and YZ2×Z2 .



88

of YZn is Proposition 12. �

Remark A.3.5 The Gromov-Witten and Donaldson-Thomas theories of YG are

equivariant theories and so in general depend on the choice of the torus action.

In this paper, we have assumed that the torus is chosen to act trivially on the

canonical class. This choice is required to apply the topological vertex formalism

as we have done in the above proof. We warn the reader that the computation

of the Gromov-Witten invariants of YG for general G ⊂ SO(3) done in [5] is

done using the C× action induced from the diagonal action on C3/G. This does

not change which classes carry Gopakumar-Vafa invariants, but it can change the

values of the invariants in those curve classes that admit deformations to infinity.
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