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Abstract 
 
Genes, the fundamental building blocks of life, act together (often through their derived 

proteins) in modules such as protein complexes and molecular pathways to achieve a cellular 

function such as DNA repair and cellular transport. A current emphasis in genomics research is 

to identify gene modules from gene profiles, which are measurements (such as a mutant 

phenotype or an expression level), associated with the individual genes under conditions of 

interest; genes in modules often have similar gene profiles. Clustering groups of genes with 

similar profiles can hence deliver candidate gene modules. 

 

Pairwise similarity measures derived from these profiles are used as input to the popular 

hierarchical agglomerative clustering algorithms; however, these algorithms offer little 

guidance on how to choose candidate modules and how to improve a clustering as new data 

becomes available. As an alternative, there are methods based on thresholding the similarity 

values to obtain a graph; such a graph can be analyzed through (probabilistic) methods 

developed in the social sciences. However, thresholding the data discards valuable information 

and choosing the threshold is difficult. 

 

Extending binary relational analysis, we exploit ranked relational data as the basis for two 

distinct approaches for identifying modules from genomic data, both based on the theory of 

random graph processes. We propose probabilistic models for ranked relational data that allow 

candidate modules to be accompanied by objective confidence scores and that permit an elegant 

integration of external information on gene-gene relationships.  

 

We first followed theoretical work by Ling to objectively select exceptionally isolated groups 

as candidate gene modules. Secondly, inspired by stochastic block models used in the social 

sciences, we construct a novel model for ranked relational data, where all genes have hidden 

module parameters which govern the strength of all gene-gene relationships. Adapting a 

classical likelihood often used for the analysis of horse races, clustering is performed by 

estimating the module parameters using standard Bayesian methods. The method allows the 

incorporation of prior information on gene-gene relationships; the utility of using prior 

 ii



information in the form of protein-protein interaction data in clustering of yeast mutant 

phenotype profiles is demonstrated. 

 
 
 
 
 
 
 
 
 
 

 iii



Table of contents 
Abstract.........................................................................................................................................ii 

Table of contents..........................................................................................................................iv 

List of tables................................................................................................................................vii 

List of figures.............................................................................................................................viii 

Acknowledgements......................................................................................................................ix 

Co-Authorship statement...............................................................................................................x 

Chapter 1: Introduction................................................................................................................. 1 

1.1 Outline of the thesis ............................................................................................................ 2 

1.2 Introduction to genomics research...................................................................................... 6 

1.3 Relationships of genes and functional groups in cells........................................................ 7 

1.4 Experimental data on relationships..................................................................................... 8 

1.5 Finding functional groups of genes from data .................................................................. 10 

1.6 Random graph processes .................................................................................................. 14 

1.7 Likelihood based clustering of ranked relational data...................................................... 15 

1.8 Cluster validity.................................................................................................................. 16 

1.9 Graphs as models .............................................................................................................. 17 

1.10 Integrated clustering of heterogeneous relational data ................................................... 18 

1.11 Contributions of this thesis ............................................................................................. 19 

1.12 Related contributions ...................................................................................................... 20 

1.13 References....................................................................................................................... 22 

Chapter 2: Discovery and expansion of gene modules by seeking isolated groups in a random 

graph process .............................................................................................................................. 29 

2.1 Background....................................................................................................................... 30 

2.2 Results............................................................................................................................... 32 

2.2.1 Dissimilar biological modules in relational data ....................................................... 32 

2.2.2 The graph process captures evolving relationships across a spectrum of threshold.. 32 

2.2.3 Candidate modules are subgraphs of significant persistence .................................... 33 

2.2.4 Figure of merit for candidate modules based on survival time ................................. 33 

2.2.5 Augmenting the list of candidate modules: removing high leverage edges .............. 34 

2.2.6 Relationship to single linkage clustering................................................................... 35 

2.2.7 Analysis of vesicle transport and DNA damage response in yeast ........................... 35 

 iv



2.2.8 Comparison of methods............................................................................................. 37 

2.3 Discussion......................................................................................................................... 38 

2.4 Materials and methods...................................................................................................... 40 

2.4.1 Data Sources .............................................................................................................. 40 

2.4.2 Probabilistic model for the graph process and scoring survival times ...................... 41 

2.4.3 Generalized isolation ................................................................................................. 42 

2.4.4 Analyses of yeast mutant phenotype data.................................................................. 42 

     2.5 Tables and figures............................................................................................................ 44 

    2.5.1 Tables......................................................................................................................... 44 

    2.5.2 Figures ....................................................................................................................... 47 

 2.6 References........................................................................................................................ 56 

Chapter 3: Stochastic block models for ranked relationships in genomics.................................58 

3.1 Background....................................................................................................................... 59 

3.2 Results............................................................................................................................... 61 

3.2.1 A generative model for ranked relational data .......................................................... 61 

3.2.2 Bayesian estimation for the block model................................................................... 63 

3.2.2.1 Incorporating prior information.......................................................................... 64 

3.2.2.2 Estimating the labels using the Gibbs sampler ................................................... 65 

3.2.2.3 Co-labeling probabilities as key parameters....................................................... 66 

3.2.3 Adjusting the likelihood ............................................................................................ 67 

3.2.4 Impact of tuning parameter selection on performance .............................................. 69 

3.2.5 Application to yeast mutant phenotype data.............................................................. 70 

3.2.5.1 The stochastic block model performs well in noisy situations ........................... 71 

3.2.5.2 The stochastic block model identifies well-isolated modules ............................ 71 

3.2.5.3 Comparison to threshold graph clustering.......................................................... 72 

3.3 Discussion......................................................................................................................... 72 

3.4 Materials and methods...................................................................................................... 75 

3.4.1 Data sources............................................................................................................... 75 

3.4.2 Gibbs sampling .......................................................................................................... 75 

3.4.3 Formula for Hx .......................................................................................................... 76 

3.4.4 Clusters derived from estimated co-labeling probabilities ........................................ 76 

3.5 Tables and figures............................................................................................................. 77 

3.5.1 Tables......................................................................................................................... 77 

 v



 vi

3.5.2 Figures ....................................................................................................................... 79 

     3.6 References.........................................................................................................................90 

Chapter 4: Integrated clustering of yeast mutant phenotype profiles and protein-protein 

interaction data............................................................................................................................ 92 

4.1 Background....................................................................................................................... 93 

4.2 Results............................................................................................................................... 95 

4.2.1 Direct and indirect data reveal different structures.................................................... 95 

4.2.2 Integration of prior information improves clustering ................................................ 96 

4.3 Discussion......................................................................................................................... 98 

4.4 Materials and methods...................................................................................................... 99 

4.4.1 Data preprocessing..................................................................................................... 99 

4.4.2 Stochastic block model .............................................................................................. 99 

4.4.3 Shrinkage distance method ...................................................................................... 100 

4.5 Tables and figures........................................................................................................... 101 

4.5.1 Tables....................................................................................................................... 101 

4.5.2 Figures ..................................................................................................................... 102 

4.6 References....................................................................................................................... 109 

Chapter 5: Discussion ............................................................................................................... 111 

5.1 Contributions of this thesis ............................................................................................. 112 

5.2 Topics related to this thesis............................................................................................. 113 

5.2.1 Feature based clustering .......................................................................................... 113 

5.2.2 Feature selection ...................................................................................................... 113 

5.2.3 Model extensions ..................................................................................................... 114 

5.2.4 Probabilistic models and statistical inference.......................................................... 115 

5.3 Future research................................................................................................................ 115 

5.4 References....................................................................................................................... 117 

 
 
 



 vii

List of tables 
 
Table 2.1: Results for the Miso(0,1) method for the vesicle transport data ............................... 44 

Table 2.2: Results for vesicle transport data with Miso(2,6)...................................................... 45 

Table 2.3: Results for DNA damage data with Miso(0,1). ......................................................... 46 

Table 2.4: Results for DNA damage data with Miso(2,6) .......................................................... 46 

Table 3.1: Results for the CHS6 dataset with the following parameter settings: ....................... 77 

Table 3.2: Clustering results for the CPY data ........................................................................... 78 

Table 4.1: Recovery of known gene modules in clusterings of protein-protein interaction data.

.................................................................................................................................................. 101 

 

 
 
 



 viii

List of figures 
 
Figure 2.1: Smoothed histograms of the observed intra- and inter- module relationships for 

selected protein complexes from yeast vesicle transport data. ................................................... 47 

Figure 2.2: Schematic illustration of a graph process and the birth and death of identifiable 

subgraphs. ................................................................................................................................... 49 

Figure 2.3: The observed graph process for yeast vesicle transport data. .................................. 50 

Figure 2.4: Relative performance of module detection methods applied to yeast vesicle 

transport data. ............................................................................................................................. 52 

Figure 2.5: Relative performance of module detection methods applied to yeast DNA damage 

response data............................................................................................................................... 54 

Figure 3.1. Influence of size of the blocks on update probabilities using the original and 

adjusted likelihoods. ................................................................................................................... 79 

Figure 3.2: Impact of initial labeling on results.......................................................................... 83 

Figure 3.3: Impact of M on clustering results............................................................................. 85 

Figure 3.4: Impact of the ratio of ‘within block’ to ‘between blocks’ abilities on the clustering 

results. ......................................................................................................................................... 86 

Figure 3.5: Gene modules in CHS6 graph process after 315 steps. ........................................... 88 

Figure 3.6: Comparison of stochastic block model to MCL clustering for different threshold 

graphs.......................................................................................................................................... 89 

Figure 4.1: PPI network extracted for the genes contained in the CHS6 data.......................... 102 

Figure 4.2: Stochastic block model clustering of the gene profiles (not using prior information).

.................................................................................................................................................. 103 

Figure 4.3: Comparison of performance of methods................................................................ 104 

Figure 4.4: Integrated clustering of the gene profiles............................................................... 105 

Figure 4.5: Impact of prior information on co-clustering probabilities (multiplied by 100).... 106 

 

 
 



 ix

Acknowledgements 
 

I would like to thank my supervisors Jennifer Bryan and Wyeth Wasserman, who have both 

been instrumental in getting me excited and active in the field of statistics in molecular biology. 

Thanks for the excellent support, opportunities and the freedom to explore my own research, 

which made for a great PhD experience. 

 

Thanks to my committee members, Paul Gustafson and especially John Petkau, who has been a 

great mentor over the years. Thanks to Liz Conibear, who was very generous with her time and 

data and fun to work with. 

 

My academic environment has been great; many thanks to the people at the Department of 

Statistics and the Centre for Molecular Medicine and Therapeutics (CMMT), in particular the 

Wasserman lab. Special thanks to Shannan Ho Sui and Debra Fulton for organizing all the sushi 

lunches and for housing me on my visits in Vancouver. 

 

Thanks to Hugo Dominguez for the generous accomodation, all the trips to the airport; also 

thanks to Hugo and Matias Salibian-Barrera hanging out with me often on Friday night. 

 

I’ve interacted with many more people during the course of my PhD, academically and 

personally, and most interactions were very positive and nice. I want to thank all of these 

people; UBC is a great place to study. 

 

Last but not least, I want to thank my family: my mom, who has been supportive during all 

these years; my partner Lukpla (Somrudee Sritubtim), who encouraged me to do a PhD in the 

first place and has been a source of inspiration throughout, and Lukpla’s family who has been 

very welcoming. 

 

 

 



 x

Co-authorship statement 
 

 

Chapter 2: The collaboration with the Conibear laboratory was initiated by Jennifer Bryan and 

Wyeth Wasserman. The analysis was conceived and executed by Jochen Brumm and Jennifer 

Bryan, with feedback from Wyeth Wasserman and Elizabeth Conibear. The manuscript was 

written jointly by Jennifer Bryan, Wyeth Wasserman and Jochen Brumm. Elizabeth Conibear 

read and approved the manuscript. 

 

Chapters 3 and 4: The analysis was conceived and executed by Jochen Brumm, with feedback 

from Jennifer Bryan, Wyeth Wasserman and Elizabeth Conibear. The manuscript was written 

by Jochen Brumm, with suggestions and edits from Jennifer Bryan and Wyeth Wasserman. 

 

 

 
 
 
 
 
 
 
 
 
 
 



 

 1

 
 

Chapter 1: Introduction 
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1.1 Outline of the thesis 

 

A brief overview of the motivation, objectives and content of the thesis precedes presentation of 

a review of the scientific literature pertinent to the thesis.  The overview will highlight themes 

and techniques common to different chapters and provides a link between the contents of the 

thesis and the diverse topics in the literature review. To keep the overview short, we provide 

details and references later in the literature review, where the topics are discussed in more 

detail. 

 

An ultimate aim of the thesis research was to develop applied statistical methods appropriate 

for data generated by a biological researcher who has a particular interest in a cellular system. 

Examples of such cellular systems are DNA repair, vesicle transport and chromosome 

segregation. These systems are usually composed of modules of genes acting in concert. The 

common goal to our methods is to predict functional relationships between genes (or more 

precisely the proteins they produce) through identification or expansion of modules – groups of 

interacting genes or proteins – involved in such systems.  

 

The data is derived from assays that query an objectively selected set of potentially relevant 

genes. Genes were selected because they showed interesting behavior in prior assays relevant to 

the system of interest (we typically deal with less than 500 genes per study). We collaborated 

closely with the laboratory of Dr. Elizabeth Conibear (UBC), which studies the vesicle 

transport system in yeast. The Conibear data and other emergent data from the yeast research 

community capture a quantitative contribution of individual genes or combinations of genes to 

phenotypes or other quantifiable outcomes. There are two types of measures for relationships: 

the indirect measurement of relationships via gene profiles that query the similarity of behavior 

of genes under various conditions, and the direct measurement of relationships, where pairs of 

genes are subjected to a query and the outcome is seen as a measure of the relationship. Data 

producing assays can be classified as high-throughput and gold standard. The procedure 

followed by the Conibear lab and increasingly within the research community is to identify 

candidate relationships from high-throughput assays, which are then validated in time-

consuming, gold standard follow-up experiments. 



 

 3

 

We typically know few genes that are members of a system/module, which makes prediction 

methods relying on training data difficult to use. We can, however, assume that pairs of genes 

in the same functional module will behave more similarly than and have stronger measured 

relationships than pairs of genes where the genes are in different modules. Methods that try to 

exploit this assumption to identify candidate modules are typically called clustering procedures. 

 

There are many clustering procedures available, developed for many different applications. In 

genomics, the arrival of high-throughput assays for both indirect (e.g. microarrays) and direct 

measurement of relationships (e.g. yeast-two-hybrid and co-immunoprecipitation) has led to a 

proliferation of clustering methods. 

 

Data on indirect measurements of relationships is most important for this thesis. This data can 

be represented in different ways: either as data points in a d-dimensional space (where d is the 

number of conditions measured), as a n-by-n matrix of distances or similarities (where n is the 

number of genes in the study), or as an n-by-n matrix with entries being 0 or 1, where 1 

indicates a relationship and 0 indicates absence of a relationship. This last structure can be 

viewed as the adjacency matrix of a graph, where the nodes are the genes and edges are placed 

if the data indicated a relationship. This graph can be derived from the matrix of similarity 

values by ‘thresholding’ the data, classifying each value below threshold as 0 and each value 

above as 1. For this reason, the resulting graph is often called a threshold graph. 

 

The matrix of similarity values is an attractive starting point for clustering in genomics. The 

similarity matrix is the input to the popular hierarchical agglomerative clustering algorithms. 

The drawback, however, is that methods based on similarity values tend to be purely 

algorithmic in nature. That is, a typical application of an algorithm like the hierarchical 

agglomerative clustering used on its own delivers a clustering, but the algorithm gives no 

guidance on which clusters should be considered candidate modules, there is little protection 

from false positive predictions in noisy data and it is not clear how to take advantage of other 

data sources that are available. 

 

These problems make the thresholding option of similarity values attractive. It turns the 

problem of clustering indirect relational data into a problem of clustering direct relational data; 
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a problem that has received much attention in fields ranging from physics to image processing 

to social network analysis. There are a number of papers in which this methodology is 

successfully applied to the analysis of genomic data sets. 

 

This thesis is concerned with generalizations of the threshold graph clustering procedure and 

their applications in genomics. Our approach is based on the application of a sequence of 

similarity thresholds, leading to a process of threshold graphs. The process starts with an empty 

graph (corresponding to a very strong threshold), and then acquires edges one-by-one according 

to less-and-less stringent thresholds until finally all edges have been added to the graph.  

 

Using such a graph process as a data structure provides broader analysis options than a single 

threshold graph. For example we can examine the evolution of groups of genes during the 

process. In Chapter 2, we generalize a clustering method based on graph processes originally 

introduced by Ling [1] and apply it to profiles derived from yeast mutant phenotype profiles. 

The method considers the evolution of singly connected subgraphs within the process. We 

introduce a measure of external isolation of these groups in the process, and derive a p-value for 

this measure based on a null model of random evolution. We show that groups that are 

exceptionally well isolated correspond to protein complexes in the data sets to which we apply 

the method. 

 

High-throughput genomics data can be difficult to interpret for multiple reasons.  The data may 

be flawed due to technical limitations of the laboratory assays or instrumentation. Alternatively, 

the data may be an accurate reflection of the biological reality - there is considerable 

complexity in the biological system that is not adequately described by existing 

conceptualizations and therefore data may appear flawed, at our current level of understanding.  

In this thesis the term "Noisy" is used to describe data that fails to define well-isolated modules 

- such noise may be a reflection of either of the above points. 

  

The measure of evolution developed in Chapter 2 is simple and has a nice correspondence to 

single linkage clustering. Noisy data (in the sense that genes in different modules are more 

similar to each other than genes in the same module), however, can lead to a total breakdown of 

the procedure (even for our generalized measure of isolation). Also, for the model of random 

evolution it is difficult to take advantage of other available information (prior knowledge), 
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which could be used to overcome noise in the data. Both of these points are major concerns in 

the analysis of yeast mutant profile studies, where the laboratory data can be noisy and relevant 

high-throughput data in the form of observed protein-protein physical interactions is readily 

available. 

 

For this reason, we sought a simple model that could represent the data generation of the graph 

process. We were inspired by stochastic block models used in the social sciences. The model 

postulates that each gene belongs to a block, but we have lost the label indicating this 

membership. The probability that a relationship is observed between genes of the same block is 

higher than the probability of observing a relationship between genes from different blocks. 

 

To make this model applicable to graph processes, one must have a likelihood for drawing an 

edge in the process. For this purpose, we recognized that a graph process is equivalent to a 

ranking of the edges of a graph. Likelihoods for rankings of items are well-established; the 

model that we found most attractive is that of a stagewise ranking model. In this model, each 

edge has its own unobserved ‘ability’ (this type of model is often used for races, where the 

ability is an inherent quality of an individual racer). At each step of the graph process, the 

probability of choosing an edge (in other word, winning the race) depends on the abilities of the 

edges remaining at this stage. The chosen edge is then eliminated from all subsequent stages 

(competitions). 

 

In the context of the stochastic block model, the abilities of edges within a block are higher than 

the abilities of edges between blocks. This means that in the ideal, noise-free process all ‘within 

block’ edges appear before the ‘between blocks’ edges. This allows us to search for a labeling 

of genes that gets as close as possible to this ‘ideal’ process, since each labeling of genes 

implies abilities of the edges between genes. 

 

This model can be viewed within the Bayesian paradigm, viewing the missing gene labels as 

parameters of interest. This approach has the advantage of making standard Bayesian 

optimization procedures available to search for the optimal labeling, and it enables us to 

systematically integrate additional information into the clustering procedure through a prior 

distribution on the labeling parameters. 
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Chapter 3 develops the stochastic block model in detail and demonstrates its utility on two data 

sets of yeast mutant phenotype profiles. 

 

Chapter 4 shows how to apply the general model in the case of integrating protein-protein 

interactions with yeast mutant phenotype profiles. 

1.2 Introduction to genomics research 

 

Molecular biology is concerned with the study of properties and relationships of molecules to 

explain biological (mostly cellular) phenomena. Examples of such cellular functions include 

cell division, DNA repair, chromosome segregation, and regulated transport of molecules 

within cells. To inquire about these cellular processes, molecular biology draws upon 

techniques from different fields, most notably biochemistry and genetics, and techniques 

involving the manipulation and investigation of cells. A key focus point in molecular biology is 

the protein. Proteins themselves are translated from molecules called (messenger) RNA, which 

in turn is transcribed from DNA. The stretch of DNA encoding such RNA is called a gene, and 

is the most fundamental unit of interest in a cell since it provides both the basis for cellular 

function as well as inheritance. We will in this thesis talk about the “function of genes” or 

“genes that interact”, which often refers to the function of the derived protein of a gene – we 

generalize the term gene to include both the DNA and its products (RNA and protein). There 

may be more than one protein derived from a gene, which is not important for the purpose of 

this thesis. 

 

Research in molecular biology has exploded since the completion of the first genome 

sequencing projects, most notably for our purposes the genome of the model organism S. 

cerevisiae (baker’s yeast). Knowledge of the entirety of the genes in an organism has motivated 

the automation of experiments, as researchers increasingly seek to obtain data for many genes 

at once. Experiments done in this high-throughput style are often referred to as “genomic” 

studies. 

 

Model organisms play a vital role in translating the foundations laid by the genome sequence 

projects into insights into cellular function, in particular those relevant for human disease. Some 

key model organisms related to humans include, besides yeast, the pufferfish (F. rubripes), a 
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worm (C. elegans), a fruitfly (D. melanogaster) and the mouse (M. musculus). Data obtained in 

the study of these organisms allow researchers to make inferences about cellular functions of 

human genes, since many of the key cellular mechanisms are evolutionarily conserved. Since 

many labs work on the same organism, creation of technology and integration of effort becomes 

possible. 

 

In this thesis, we only consider systems in yeast. Yeast is a well-studied organism where high-

throughput data is readily available. Also, functional annotations of many genes are available, 

making the evaluation of computational methods easier. Our methods do not rely on 

annotations, making them attractive for lesser understood organisms, but our evaluation of 

performance takes advantage of the available annotations. 

1.3 Relationships of genes and functional groups in cells 

 

The cataloguing of genes through genome sequencing projects is an important foundation for 

molecular biology, but it typically doesn’t allow researchers to understand the role of genes in 

human disease and development.  

 

Key to the understanding of gene function is the recognition that genes typically do not act 

alone to accomplish cellular tasks. This became obvious when it was discovered that the 

number of genes in humans was only in the order of about 30,000, much less than originally 

anticipated given the complex nature of human biology and variety of human cell types. Since 

then, many studies have confirmed that in fact genes are often organized in ‘assembly lines’ 

called pathways, where genes act in sequence to achieve cellular function and in ‘hubs’ called 

protein complexes, where genes act jointly and are often linked by physical interaction [2-4]. 

 

Either structure can be defined abstractly by relationships between genes, where we define two 

genes to be related if they are interacting either in a protein complex or a pathway. This is a 

popular view of cellular systems in genomics, where authors will often summarize their 

findings from a sometimes bewildering array of experiments in a diagram displaying these 

perceived relationships; see [5] for an attempt to formalize this approach. A tool that has 

become very popular for displaying relationships between genes is Cytoscape [6].  Identifying 

these biological relationships from data is the key objective of this thesis. 
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1.4 Experimental data on relationships 

 

It is typically difficult to establish biological relationships between genes from experimental 

data for a variety of reasons. Establishing true functional relationship usually requires a series 

of tedious, time-consuming ‘gold standard’ experiments that can only be performed for a few 

candidate pairs of genes. 

 

In contrast, genome sequencing projects and subsequent assay development has led to the 

creation of many so-called “high-throughput” assays that query many genes at once. In this 

sense, we call our data genomic data. These genomic measurements are usually not seen as 

sufficient to prove function; follow-up gold standard experiments are needed. Hence it is 

important to keep the number of false positive predictions low because follow-up is expensive 

and can usually only be done for a few genes at a time.  

 

One type of experimental relationship data captures a direct measure of physical interactions 

between proteins. Examples of such assays are the physical recovery of protein complexes 

extracted from cells (e.g. co-immunoprecipitation assay) [7-9] or a genetic testing system that 

produces a visible result if a physical interaction occurs between proteins produced by two gene 

sequences (i.e. yeast-two-hybrid assay) [10, 11]. In the co-immunoprecipitation approach, after 

cross-linking (creating covalent atomic bonds between proteins in close proximity) and thereby 

fixing the otherwise temporary protein-protein interactions, an antibody which specifically 

binds to a known protein can be used to extract all proteins interacting with the target protein. 

(The antibody can be physically attached to a bead and thus the bead-antibody-protein complex 

can be separated from the rest of the proteins which remain in solution.) The proteins recovered 

are then identified by one of many methods, for instance mass spectrometry.  The yeast-two-

hybrid system is based on the creative use of a well-known transcription factor (GAL4). 

Transcription factors are proteins that bind to a piece of DNA and catalyze the initiation of 

transcription of a nearby gene.  In the two-hybrid assay, the GAL4 transcription factor is split 

into two separate proteins and each of these half-proteins is fused with one of two potentially 

interacting proteins. The transcription factor can only initiate transcription if the two half-

proteins are physically interacting, thus the GAL4 protein activity will only be restored if the 

two proteins form a stable complex. To provide a measurable property, the target DNA 
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sequence for the GAL4 protein is placed adjacent to a “reporter gene” – a gene that produces a 

protein that has quantifiable activity. Hence increased detection of the reporter gene, typically 

beta-galactosidase for yeast two-hybrid assays, indicates physical interaction between the pair 

of proteins. 

 

These direct measurements of interactions can be effective, but not all protein interactions can 

be detected in this way. The interactions in yeast-two-hybrid, for example, are forced within the 

artificial fusion protein within the cellular nucleus with only two proteins at a time. This is not 

the natural interacting environment the proteins find themselves in typically. Also, the transient 

‘assembly line’ interactions within pathways are often not detectable by this assay. The same 

goes for co-immunoprecipitation experiments; here also the availability of suitable antibodies 

represents an obstacle. Both methods are plagued by considerable false positive rates and are 

difficult and expensive to perform on a high-throughput basis. For a review, see [12]. A number 

of databases are available (BioGrid [13], SGD [14], MIPS [15] and BIND [16]) that make the 

existing interaction data easily available. 

 

When it is not feasible to obtain results from direct assays, researchers resort to indirect 

measurements of biological relationships. The key is to measure the ‘phenotype’ caused by a 

gene under a given condition. The most prevalent type of phenotype currently used is the 

transcript abundance of a gene under a certain condition (“gene expression”), which can be 

measured simultaneously for many genes by a microarray. In this thesis, we are concerned with 

a loss-of-function phenotype for a gene under a given condition. This is achieved by disabling a 

given gene in the organism, in our case yeast. To achieve this, a yeast strain is created that has a 

normal genome, except that for one chosen gene one of the two alleles is mutated, leading to 

half the “gene dosage” (often referred to as haploinsufficiency). If the strain is a diploid, that is 

if there is only one allele for each gene, the deletion eliminates the production of the protein 

completely. These strains may have impaired function, which may be assessed by measuring 

growth or other phenotypes associated with the strains. The difference from wildtype for these 

measurements is then associated with the mutated gene, providing a measure of the importance 

of the gene under the given condition. 

 

If we now collect measurements of a given gene under various conditions, we obtain a feature 

vector that describes the ‘behavior’ of the gene. In the case of the yeast mutant phenotype 
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features, we refer to such a vector as a yeast mutant phenotype profile (YMP). To obtain a 

measure of the relationship between two genes, we score how similar their respective profiles 

are. This can be accomplished by applying one of many available distance or association 

measure to all the pairs of profiles. Common choices are measures based on Euclidean distance, 

(ranked) correlation or mutual information. 

 

The yeast community has created a resource of yeast mutant strains, one for each gene in the 

yeast genome (except for the roughly 1500 mutants that do not survive under ideal growth 

conditions, corresponding to the so-called essential genes) [17]. Since the creation of this 

resource, studies with these strains have proliferated [18, 19]. 

 

In this thesis, we mainly focus on indirect measures of relationships. We use the direct 

measures of relationships for validation purposes in Chapter 3, and as prior information in 

Chapter 4. We do not discuss the choice of similarity measure in this thesis, although we 

recognize that it does have an impact on the results. 

 

1.5 Finding functional groups of genes from data 

 

Before the advent of high-throughput measures, biological researchers would only consider the 

most obvious relationships observed in data, which would be directly interpreted as biological 

relationships. This type of direct interpretation of data leads to many false predictions when 

applied to high-throughput data. Direct measures of association for example are known to 

produce spurious interactions due to the nature of the assay. Indirect measures of relationship 

on a continuous scale need to be converted into predicted true biological relationships. It is 

assumed that if genes are biologically related then their profiles are similar, but how similar 

does a pair of genes have to be before we call them biologically related?  

 

To reduce number of false positive predictions of relationships, we take advantage of the fact 

that genes are organized in modules and look for groups of related genes (clusters). Clustering 

predicts functional relationships by effectively solving a discriminative problem, where each 

gene is associated with the group of genes that it is most closely related to. We assume for the 

sake of simplicity that each gene is associated with exactly one module and that the 
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experimental conditions are all relevant for the discrimination of modules, so that automatic 

feature selection is not necessary. Future work may address generalizations of these 

assumptions. 

 

Clustering has been an important part of applied data analysis in many different fields, and 

many different methods for both indirect and direct measures of relationships are available. 

Clustering is generally described as the attempt to find groups of similar items in data in an 

“unsupervised” fashion (that is without using training data). It is a very large area of research 

and applied in many diverse areas of science, ranging from image analysis to linguistics. We 

will only discuss selected highlights from the literature here, and even for these selected items 

the number of available research articles is large. For the interested reader, some well-known 

books on clustering methods include [20-22]. 

 

We have already introduced the importance of groups of related genes in genomics research. A 

lack of training data is still common, even in well-studied organisms such as yeast, meaning 

that clustering methods will remain important in genomics for the long-term. Also, functional 

groups can be different in different situations, meaning that the actual associations of genes 

may vary between conditions investigated. 

 

For the investigation of indirect measures of relationships, the data comes to us in the form of 

gene profiles. One possible type of clustering is based on viewing each profile as a data point in 

d-dimensional space, where d is the number of conditions under investigation. There are many 

popular methods based on this representation, like k-means [23] and model-based clustering 

procedures [24]. These common approaches have been successfully applied in genomics; see 

for example [25]. 

 

A different representation of the data starts by converting the matrix of gene profiles into a 

matrix of pairwise similarity values. For each pair of profiles, a measure like the Euclidean 

distance or correlation is used to produce a measure of similarity. Sometimes these similarities 

are derived as distances; we will keep referring to these measures as similarities (and assume 

that an appropriate transformation has been applied where necessary). The choice of the basic 

form of the distance matrix to best capture biological similarity depends on the nature of the 

relationship expected. Similarity based on correlation, for example, is less dependent on the 



 

 12

magnitude of the measured values than similarity based on Euclidean distance. A related issue 

is the choice of variable weighting; some papers advocate the use of weights applied to the 

values derived under a given condition. However, current research doesn’t support a universal 

recommendation; see [26]. 

 

Hierarchical agglomerative linkage algorithms are extremely popular for clustering of a matrix 

of similarity values. These algorithms start by placing each gene in its own cluster and then 

proceed to join the ‘closest’ pair of clusters at each step until all genes are in the same cluster. 

This leads to a hierarchy of partitions, which can be represented by a tree-like structure called a 

dendrogram, where the leaves of the tree are the individual genes and the cluster joins are 

represented by joining the corresponding branches. Finally, groups are extracted from the 

dendrogram (so the dendrogram is typically not of interest by itself). The definition of ‘closest 

pair of clusters’ varies, but is always based on a summary measure of the similarities between 

all the pairs of genes in the two disjoint clusters. Popular choices are “single linkage”, where 

the maximum similarity is taken as the summary statistic, “average linkage” (mean similarity) 

and “complete linkage” (minimum similarity).  

 

The average linkage clustering algorithm was popularized in genomics by the seminal paper 

[27], which remains one of the most influential papers in genomic data analysis. Hierarchical 

agglomerative clustering remains popular [19, 28]; other popular clustering procedures are 

based on self-organizing maps [29]. Clustering has been successfully applied to yeast mutant 

phenotype profiles [18, 30]; for a review of clustering microarray data, see [31]. 

 

The matrix of similarity values is a flexible representation with proven utility in genomics (for a 

different use of the similarity matrix, see for example [32], where the matrix is used to find a 

set of representative examples to represent clusters). We will take this representation as the 

starting point for the methods in this thesis. 

 

There is a class of methods that turn the matrix of similarity values into an adjacency matrix for 

a (weighted) graph [33, 34]. A graph has so-called nodes which in our context are genes and it 

has edges representing pairwise relationships. An adjacency matrix displays the value of the 

edge weight for all gene pairs (so both its rows and columns represent genes, and a value 

greater than zero in any cell means that an edge is placed between the respective genes.  A 
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graph provides a very flexible and well-studied framework that is mainly meant to provide a 

language and representation for a wide variety of problems. By phrasing the clustering in this 

language, algorithms developed for graphs in general can be applied to this clustering problem. 

The basic problem in graph clustering is to find groups of nodes that either have many edges 

placed within the group or few edges placed to nodes outside the group, or both. 

 

A simple and commonly used method is to apply a threshold to the similarity matrix to turn it 

into an adjacency matrix, so that an edge is placed between genes with a similarity higher than 

the threshold [35-37]. Methods of this nature are closely related to the methods in this thesis. 

We call a graph derived in this way a threshold graph. For a different way to construct a graph 

using a similarity matrix, see [38]. 

 

For indirect measurements, representing the data as a graph derived from a similarity matrix, 

although proven effective, is not the most immediate choice. For direct measures of 

relationships, however, graphs are the most obvious framework for data analysis. The fact that 

both types of data can be represented in such a way opens the door to graph based integration 

approaches, as we will see in Chapter 4. 

 

Graph-based clustering in genomics has been mostly applied to direct measures of relationship. 

Clustering of direct relational data in genomics became popular and necessary with the 

generation of high-throughput interaction data.  Previously, in high quality data, measured 

relations between genes were automatically considered ‘real’. The high throughput data 

produces many false positives, making it necessary to process the data. It became clear that the 

clustered relational data could help reduce false positives in the data and hence reveal protein 

complexes [10, 39]. This has led to the development of many specialized clustering algorithms 

[40], and algorithms originally developed for other purposes have been successfully applied 

[41, 42]. Graph clustering is by no means confined to networks in genomics and has attracted 

much attention in diverse fields [43-45]. 

 

Our approach in Chapters 3 and 4 is inspired by stochastic block models for social networks 

[46, 47]. In these models, nodes are assumed to be labeled with a fixed number of labels, but 

the labels are not observable. Relationships are more likely to occur between nodes with the 
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same labels. This leads to a likelihood which can be optimized with standard statistical 

techniques, notably Gibbs sampling.  

 

There are also approaches that take relational data and map it into a feature-space 

representation. An approach that maps a similarity matrix into a two-dimensional space is 

called multi-dimensional scaling [48]. Recently, there have been developments in the social 

sciences that map a network into an unobserved feature space [49]. 

 

1.6 Random graph processes 

 

The methods in the previous section are, as viewed in our context, mostly for the analysis of a 

single threshold graph. While the use of a single threshold graph is convenient, because 

standard methods for graph clustering are immediately transferable, we propose to use a 

sequence of thresholds to derive a graph process as the basis for the analysis instead. This 

circumvents the choice of a threshold, and allows for the examination of the evolution of 

groups rather than groupings observed in a single graph. 

 

The theory of evolving graph processes is in fact very old and famous and predates much of the 

modern graph analysis [50, 51]. Erdős and Rényi recognized that the evolving random graph 

process could be used as a tool for the analysis of individual graphs, where the graph under 

investigation is compared to graphs that are plausible to occur under the random evolution 

model. For a recent review of this branch of graph theory, see [52].  

 

A generalization of this type of graph evolution has been successfully used in the analysis of 

complex networks like the internet and networks in ecology and sociology. In these observed 

networks, it was found that the distribution of degrees of nodes (the number of edges hitting a 

node) is different from the type of distribution an Erdős and Rényi graph process could 

produce. Networks are instead modeled as the result of an adaptive process, where the placing 

of a new edge depends on edges already placed. This type of model has been used to analyze 

global properties of protein interaction networks as well [44, 53-58].  
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Graph processes have also been used to judge the output of clustering algorithms [1]. It turns 

out that certain types of hierarchical agglomerative linkage algorithms can be viewed within the 

framework of graph processes; see for example [59] and  [60]. We elaborate on this connection 

in Chapter 2. Ling’s method is important for our work since it introduces measures of evolution 

for groups of nodes in the graph process. This type of scoring is at the heart of all methods 

developed in the scope of the thesis research. 

 

The measures of evolution proposed by Ling in his work rely heavily on properties of 

subgraphs. In [1], he proposed to score the evolution of singly connected components in the 

process. Singly connected components are subsets of nodes where each node can be reached 

from any other node by traversing edges, and no other nodes outside the component can be 

reached. This can be effective, as we show in Chapter 2, but the composition of these singly 

connected components can be heavily affected by noise in the data used for the graph process. 

 

To circumvent this problem, we chose a different route to score evolution in graph processes 

that is less affected by noise. The key to this approach is the observation that a graph process 

obtained by adding an edge at each step is mathematically equivalent to a ranking of edges. For 

this reason, we sometimes refer to this data structure as ranked relational data. We are not 

aware of any work previous to this thesis that exploits this connection for the purpose of 

clustering. Framing the problem in terms of ranks gives us access to a body of literature 

concerned with the analysis of ranks and permutations, of which we now highlight some 

relevant parts. 

 

1.7 Likelihood based clustering of ranked relational data 

 

The analysis of ranks of items, or viewed differently, permutations of items, has a long 

tradition. Ranks of items arise naturally in many applications, including among others in 

problems concerning the analysis of personal preferences [61] and horse races [62]. We will use 

the racing analogy to explain our genomic application. 

 

Likelihoods for permutations are often based on the ‘ability’ of each horse. It reflects an 

unobserved quantity relating to the probability of the horse to win a race against other horses. 
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This quantity can be inferred if the horse is observed in multiple races, and once determined can 

be used to predict the outcome of a race. 

 

Our analysis is based on the Luce-Plackett model [63]. We give a detailed description of this 

model in Chapter 3. There are many approaches to the analysis of permutations. Most closely 

related to our approach, besides the Luce-Plackett class, is the Thurstonian approach [61, 64]. 

For a book about the analysis of ranked data, see [65]. 

 

In our approach, the items to rank are edges representing relationships between genes. To apply 

the Luce-Plackett model, we need to equip each edge with an unobserved ability to beat other 

edges in the graph process race. Here is where the link to the stochastic block model for binary 

relational data comes in: the ability of edges connecting genes in the same block is higher than 

the ability of edges connecting genes in different blocks. An assignment of genes to blocks 

(labeling) hence leads to an assignment of abilities to edges. The likelihood scores how well 

these abilities reflect the observed graph process. The solution to the problem can now proceed 

in analogy to the binary problem, with the binomial likelihood replaced by the Luce-Plackett 

likelihood. 

 

In Chapter 3 we show how to use standard statistical optimization techniques to solve the 

problem of finding a ‘most likely’ labeling of genes. Note that, with the assumption that the 

‘between blocks’ abilities are lower than the ‘within block’ abilities; the likelihood is maximal 

if all ‘within blocks’ edges arrive first in the process, in agreement of our intuitive notion of a 

useful graph process. 

 

 

1.8 Cluster validity 

 

It has been long recognized that clustering algorithms produce clusters even when random data 

(without structure) is used as input. Also, even in the presence of clusters the assignment of 

items to clusters may not be optimal due to peculiarities of the algorithm. 



 

 17

For these reasons, a large number of tools are available to either protect the user from erroneous 

clusterings or to post-process the clustering output in order to improve the items to clusters 

assignments. The phrase “cluster validation” is sometimes used to refer to some of these tools. 

There are also many tools which validate clusterings using external reference data, which we 

will not consider here. A comprehensive overview of some of cluster validation in applications 

to gene expression is given in [66]. 

 

Related to the methods in this thesis are probabilistic tests that are applied to judge if data 

contains more than one cluster and post-processing tools that assess a data partitioning derived 

from a clustering algorithm. Probabilistic tests for the existence of a clustering structure in the 

data need to specify a model of ‘structure-less’ data. This model can be based on a feature 

space representation or a relational representation. Our p-values in Chapter 2 are based on the 

model of random evolution of the graph process. We also use as a competitive method for 

cluster selection a test derived by [67], which relies on a feature-space representation of the 

data. For reviews of such methods, see [68, 69].  

 

Post-processing tools that assess a partitioning are plentiful, since they can use inherently 

intrinsic scores (based for example on within-cluster and between-cluster similarity) as an 

optimization criterion and do not have to specify a probabilistic model. A few such tools are 

described and assessed in a simulation study in [69]. Among the most popular are gap-statistics 

[70] and silhouette scores [71]. See also [72] for a general reference on how to compare 

partitions. 

 

Another criterion to assess the validity of a  cluster is stability, either across multiple clusterings 

obtained from bootstrapping the data set, or by combining clusterings obtained from various 

algorithms [73].  

 

1.9 Graphs as models 

 

It is important to distinguish between graphs that represent data and graphs that represent true 

biological relationships between genes. In this thesis, we only consider models for the true 

relationships that correspond to ‘complete blocks’; that is a gene is either related to all other 
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genes in a module or to none. Such constraints are often relaxed in genomics, where this 

assumption may not be realistic. Some genes participate in more than one module, for example, 

and the heterogeneity of gene modules can lead to data structures where a gene is only closely 

related to a subset of its module. 

  

Graphs as representations of true biological relationships are used in many methods in 

genomics, for an application to protein interaction networks, see [74]. Even more general 

network structures are considered in [75]. Graphical models are also used in this context, where 

the graph represents dependence structure between measurements across the gene set. For an 

example related to our applications, see [76] . 

 

1.10 Integrated clustering of heterogeneous relational data 

 

A diverse range of assays have emerged in genomic research. Since we cannot observe 

molecules in their native state, each assay needs to exploit a particular cellular process or 

phenomenon, leading to built-in biases of the methods. Co-immunoprecipitation for example, 

relies on the availability of suitable antibodies to the protein of interest. Yeast mutant 

phenotypes rely on the correlation between molecular interaction and the similarity in 

phenotype. Furthermore, predicting gene relationships from one assay alone can lead to many 

false positive relationships. For this reason, researchers strive to take advantage of the various 

data sources available, since integration may improve the predictions [77-79].  

 

Methods for the integration of genomic data are actively researched. We are most concerned 

with approaches that aim to use multiple data sources to find modules, in contrast to approaches 

that are more directly aimed at data integration [80-82], which could be used in conjunction 

with our methods. Methods to use multiple data sets to predict gene modules are often 

discussed in the context of integrating gene expression and protein- protein interaction 

measurements [40, 83]. We will limit ourselves to the discussion of yeast mutant phenotype 

data and direct protein interaction data. This applied situation is simpler than in other cases, 

since both data sources try to explore the same underlying biological truth. For a paper that 

attempts to integrate phenotypic and protein-protein interaction data, see [84]. 
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There are two simple strategies to integrate this type of indirect relational data with direct 

relational data. By clustering, it is possible to convert the indirect relational data into a graph, 

which is subsequently overlaid with the graph obtained from the direct measurements. 

Alternatively, we can incorporate the direct relational data into the similarity measure which is 

subsequently used for clustering [85, 86]. 

 

Our approach can deal with the two sources of information independently: by representing the 

direct relational data as prior information in our Bayesian approach, we can perform integrated 

clustering. Our approach is similar in spirit to work on the model-based clustering of gene 

expression data [87] and to approaches to clustering with soft constraints [88].  

 

1.11 Contributions of this thesis 

 

This thesis introduces graph processes as a useful tool for data analysis and presents methods to 

analyze this data structure. Methods built on graph processes retain benefits of the relational 

data model while using more information than a single graph. We demonstrate that following 

the evolution of groups of genes in this process can be used to identify functional modules in 

genomic data. 

 

Chapter 2 builds on Ling’s theoretical work for cluster scoring based on external isolation, 

extends it and applies it to genomic data. We generalize Ling’s method to allow for situations 

with higher noise levels, and demonstrate that this generalization indeed improves sensitivity. 

 

Chapter 3 introduces a stochastic block model for the analysis of graph processes. This is a 

novel parametric model for graph processes, and we demonstrate its utility in genomics. By 

modeling the graph process with a likelihood for a ranking, we introduce a novel model for 

relational data in genomics. Our parametrization of the parameters for this likelihood is inspired 

by similar models for binary data in the social sciences. Our model allows the use of standard 

optimization techniques to solve difficult clustering problems by delivering a clustering 

solution with confidence scores. It also provides a basis for the integration of other data sources 

into the clustering.  
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In Chapter 4, we use the model developed in Chapter 3 to demonstrate the utility of our novel 

method for data integration to overcome noise in the data. We address the important problem of 

integrating protein-protein interaction data and yeast mutant phenotype profiles.  

 

1.12 Related contributions 

 

The choice and development of methods in this thesis were strongly influenced by several 

applied projects conducted in parallel to this thesis: 

 

1) Global analysis of yeast endosomal transport identifies the Vps55/68 sorting complex [89]. 

 

This paper uses the method developed in Chapter 2 to predict protein complex membership 

using yeast mutant phenotype data and experimentally validates a novel interaction predicted 

by our method as biologically relevant.  

 

2) Ulysses - an application for the projection of molecular interactions across species [90]. 

 

This paper demonstrated that reliable biological relationships can be obtained by overlaying 

multiple networks of protein-protein interactions. It also shows that the networks suffer from 

low coverage of protein interactions. 

 

3) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation 

stress response [91]. 

 

Our thesis demonstrates the utility of the derived methods on yeast mutant data. Gene 

expression measurements are another important data source where the prediction of gene 

modules is of interest. In this paper, we analyzed a time-course of microarray measurements 

during the fermentation of grape juice. We used a semi-supervised clustering approach to 

identify gene modules involved in the stress response during fermentation.  

 

4) oPOSSUM: identification of over-represented transcription factor binding sites in co-

expressed genes [92]. 
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As an alternative to intrinsic evaluation of candidate modules, sometimes it is possible to score 

based on an independent source of data. In this paper, the overrepresentation of transcription 

factor binding sites in a candidate gene module (derived from a gene-expression study, for 

example) is used to identify meaningful gene regulation relationships. 

 

5) Gene characterization index: assessing the depth of gene annotation [93]. 

This paper explores the nature and depth of annotations in the human genome by establishing 

an automated score using available data sources designed to capture a researcher’s perception 

of ‘depth of annotation’ of a given gene. Applying the score to the genome reveals trends in 

research and potential drug target genes. 
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Chapter 2: Discovery and expansion of gene modules by seeking 

isolated groups in a random graph process1

 

 

 

 

 

 

 

 

 
1 A version of this chapter has been submitted for publication. Brumm J, Conibear E, Wasserman WW, Bryan, J: 
Discovery and expansion of gene modules by seeking isolated groups in a random graph process. 
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2.1 Background 

 

Much of systems biology research aims to identify biologically meaningful relationships 

between genes or their products, such as protein-protein interactions or co-membership in a 

biological pathway. This undertaking can be viewed as moving from the “parts lists” produced 

by genome sequencing projects to the assembly instructions for a complex system.  

 

The combination of entities and their relationships is often described as a network, which can 

represent diverse biological systems such as cellular or signal transduction pathways [1, 2]. A 

common assumption made in the analysis of networks is the existence of biologically defined 

subnetworks commonly referred to as modules. Examples of such a module are a protein 

complex or a gene expression regulon.  

 

Quantitative data from diverse genome-scale experiments can be exploited for the identification 

of new modules and the expansion of known modules. Correlation of expression levels or, more 

relevant to this study, loss of function phenotypes across multiple conditions provides an 

indirect measure of gene-gene relationship. Other assays such as yeast two-hybrid or genetic 

interaction screens using double knockouts, provide direct measures of these relationships. 

Early approaches to such studies were limited by a binary representation of the observations, 

but increasingly more powerful analysis is enabled by quantitative readouts [3-5]. 

 

While the quantitative data can be highly reproducible and informative, identifying the relevant 

functional relationships can still be a challenge. In noisy data there is great risk of predicting a 

spurious relationship between any pair of genes. An analytical approach based on modules, 

however, moves the focus from individual to connected sets of relationships. To invoke a 

concept from social network analysis, there is greater evidence for a relationship reinforced by 

common associations than for an individual, seemingly strong pairing.  This principle is the 

basis for many algorithmic approaches for network identification [6-8].  
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The two main paradigms for module finding utilize different representations of the 

relationships: (i) a graph is obtained by applying a global threshold to the relationship data; or 

(ii) a hierarchy such as a dendogram (or tree) is produced by a clustering algorithm. In graph-

based approaches, nodes represent genes and edges represent relationships.  A ‘threshold graph’ 

is obtained from continuous relational data by classifying all pairs with similarity above the 

chosen threshold as related, and all other pairs as not related. The graph is subsequently 

processed, for instance based on the density of intra-group relationships, to produce candidate 

modules. In tree-based approaches, genes appear as leaves connected by branches, where 

branch height corresponds to some measure of relationship strength. Gene groups are obtained 

by pruning the tree, often by invoking a global height threshold.  

 

In both approaches, the specification of a global threshold is fundamentally limiting. Modules 

in genomic data can be dissimilar: they can vary greatly in size, in internal cohesion (how 

related two genes within a module are) and external isolation (how unrelated the genes in the 

module are to genes in other modules). No single threshold graph or pruning of a tree reveals 

all of the modules in a heterogeneous biological system.  Both methods are limited in their 

ability to perform well for the simultaneous analysis of all modules and are extremely sensitive 

to the selection of the threshold parameter. 

 

We develop a novel approach for the detection of modules in relational genomic data.  Our 

approach is fundamentally based on the ranking of the relationships between genes. Viewed in 

terms of the graph paradigm introduced above, we work with the entire sequence of threshold 

graphs that result from sliding the global threshold from stringent to permissive, Modules in 

this sequence of graphs are identified as groups that appear and persist as cohesive subgraphs. 

This approach for the detection of module isolation, which we refer to as the Miso method, 

permits the identification of modules with differing internal cohesion and determines the 

statistical significance of each candidate module. Extending a theoretical method introduced by 

Ling [9], the Miso method can also be used to score clusters in any single linkage dendrogram.  

In application to two collections of yeast mutant data [10, 11], we show that our method 

successfully identifies known protein complexes. Furthermore, our method predicted a new 

module which was subsequently experimentally confirmed  [11]. A comparative study 

establishes that the Miso method performs very well relative to several alternative methods 

based on the post-processing of threshold graphs or dendrograms. Additionally, this comparison 
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underscores the practical advantage offered by the tuning parameter of the Miso method.  Its 

natural interpretation as a measure of stringency provides external guidance when selecting a 

value appropriate for a specific application and, more generally, implies a predictable 

relationship between its value and classical measures of performance. 

 

2.2 Results 

 

2.2.1 Dissimilar biological modules in relational data 

 

We assume that genomics data arrives in the form of ranked pairwise relationship scores (e.g. 

derived from Euclidean distance or correlation). While such data can be generated by many 

approaches and take many forms, for the purpose of this report we analyze only yeast mutant 

phenotype data in which the modules we seek are protein complexes.  In Figure 2.1, we 

compare the intra-module and extra-module (genes not known to be in the module) 

relationships for known protein complexes associated with vesicle transport in yeast 

(description to follow below).  We present both ranked relationships and the associated 

underlying continuous association measures. For all these complexes the intra-module relations 

generally are stronger than the extra-module relations. However, the threshold that provides the 

best modular distinction varies noticeably between complexes. Summarizing, there is no global 

threshold that is ideal for the recovery of all network modules. 

 

2.2.2 The graph process captures evolving relationships across a spectrum of 

threshold 

 

Graph processes are a useful representation of pairwise relationships. In contrast to a single 

graph, a graph process is an ordered set of graphs generated by incrementing a parameter. 

Conceptually within the process this parameter can be thought of as time. As illustrated in 

Figure 2.2, the process is initiated with a graph that has all genes but no edges. The next graph 

is obtained by placing an edge between the pair of genes with the highest relationship rank. 

Subsequent edges are added in the order of gene-gene relationship scores. This results in a 
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sequence of graphs that starts with an empty graph and ends with a complete graph.  When a 

global threshold (i.e. one value of the parameter) is applied to relational data, the entire analysis 

is based merely on a single graph. 

 

2.2.3 Candidate modules are subgraphs of significant persistence 

 

It is our thesis that modules will appear and persist within this graph process for a period of 

time as identifiable subgraphs. 

 

The most straight-forward, identifiable subgraphs are the ‘singly connected’ components that 

arise during the graph process. These subgraphs have the defining property that every gene pair 

is linked by a sequence of edges within the subgraph and no edge connects to this subgraph 

from the outside.  Figure 2.3 presents an example of a graph process produced by the ranked 

yeast vesicle transport data. The emergence (Figure 2.3 A) and disappearance (Figure 2.3 B) of 

subgraphs corresponding to modules (protein complexes associated with the vesicle transport 

system) can be observed.  The set of all singly connected components appearing in the graph 

process can be enumerated and form a set of candidate modules. 

 

2.2.4 Figure of merit for candidate modules based on survival time 

 

To facilitate interpretation, the candidate modules must be assessed with a quantitative measure 

of significance.  Such a score ranks candidates for expensive validation studies and provides an 

objective measure of confidence.  Our measure of significance for a candidate module is based 

upon the length of time it survives within the graph process as an identifiable subgraph. We say 

a subgraph is born when the associated set of nodes first becomes singly connected and dies 

upon the placement of the first edge connecting a node in the subgraph to a node outside the 

subgraph.  The survival time is the difference between death and birth. Figure 2.2 illustrates 

birth, death, and survival of candidate modules in a simple example.  

 

Following Ling [9], we assess the statistical significance of an observed survival time by 

comparing it to the distribution of survival times in a randomly evolving graph process.  At the 



 

 34

birth of a specific candidate module, each remaining edge can be classified based on the two 

associated nodes; the edge is ‘within’ (both nodes in the candidate), ‘between’ (exactly one 

node in the candidate), or ‘outside’ (neither node in the candidate).  The death of the candidate 

module occurs upon the placement of the first ‘between’ edge. The distribution of this waiting 

time under random evolution is easily obtained and, therefore, we can compute a p-value for the 

observed survival time. Intuitively, this method assumes that ‘within’ edges typically arrive 

before ‘between’ edges and that biological modules will often appear as identifiable subgraphs 

that enjoy unusually long survival times. We refer to this p-value as an isolation index. 

 

2.2.5 Augmenting the list of candidate modules: removing high leverage edges 

 

Noise in the data can lead to the premature placement of edges between genes belonging to 

distinct biological modules, which violates the assumption that ‘within’ edges arrive before 

‘between’ edges. Such noise could arise from the limitations of the experimental assay or from 

true biological heterogeneity (e.g. a protein belongs to multiple modules).  In our procedure, 

where candidate modules are singly connected subgraphs, such errors in edge order can affect 

survival times and even the composition of the list of candidate modules.  Our method could 

fail to detect a true biological module if its survival time is truncated or if, when it first 

emerges, it is already embedded within some larger group of genes.  These two problems arise 

when a mistimed edge arrives after or before, respectively, the birth of the module.  

 

To make our Miso procedure robust to this sort of error, we extend it by considering the impact 

of high-leverage edges, i.e. the ‘between’ edges whose placement cause the death of a candidate 

module. To mitigate the effect of these high leverage edges that hit a module after birth, we 

compute the waiting time and associated p-value for the arrival of the k-th ‘between’ edge, for k 

= 1,2, ..., K, and define the extended k-isolation index as the minimum of these K p-values.  To 

reduce the impact of edges that hit a module before birth, we consider parallel graph processes 

in which each individual high-leverage edge is postponed until the end. We extract candidate 

modules and associated p-values from these processes using the procedures described above. 

We form the list of candidate modules obtained from all one- and two-edge removed processes. 

 

To introduce the nomenclature that follows - the number of allowed mistimed edges before and 
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after birth are given in parentheses. For example, Miso(0,1) refers to the modules that are not 

hit before birth, and for which isolation is assessed until the first edge hits after birth; Miso(2,6) 

refers to the isolated modules that were hit at most twice before birth and tracked until at most 

six hits have occurred after birth. 

 

2.2.6 Relationship to single linkage clustering 

 

Our approach, in which candidate modules are singly connected components, is related to 

single linkage hierarchical clustering. The candidate modules identified by Miso(0,1) are 

exactly the clusters arising in the dendrogram.  Therefore one broadly useful application of our 

method is the selection of significantly isolated clusters from single linkage clustering (see 

[11]). While dendrograms are a useful representation of single linkage clustering, clusters that 

are significantly k-isolated with k>1 may not be detectable by visual inspection.  Candidate 

modules detected via the removal of one or more high leverage edges may not even appear as 

clusters in the dendrogram.  

 

2.2.7 Analysis of vesicle transport and DNA damage response in yeast 

 

For the model organism S.cerevisiae the research community has created a collection of 

modified strains in which each member of a panel has a distinct gene disabled [10, 12, 13]. 

Using an appropriate assay, the phenotype of each strain in the panel is measured under a set of 

conditions. It is anticipated that for two genes within a module their respective mutants will 

display similar properties. We apply our methods to yeast mutant phenotype studies of two 

important systems - vesicle transport [11] and DNA damage response [14].  The modules 

within the vesicle transport system are well annotated, making this set suitable for the 

evaluation of our analytical method. Although the modules are less deeply annotated, we 

present an analysis of the DNA damage data as an independent validation. 

 

We first applied our methods to a data set exploring vesicle transport. In eukaryotic cells, the 

directed movement of substances in membrane-bound sacs (vesicles) within the cell is called 

vesicle transport. Vesicle traffic is regulated by protein modules that select cargo for 
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incorporation into a forming vesicle and direct vesicle docking and fusion with the appropriate 

target membrane. The modules tend to be conserved between species, thus knowledge 

generated in studies of yeast can reveal the biochemical mechanisms by which defects in 

protein and lipid trafficking contribute to human disease. 

 

Quantitative phenotypes were obtained under 14 conditions for 279 genes that displayed a 

strong phenotype in an initial, independent genome-wide screen [11]. The 279 genes include 

137 genes known to belong to 25 modules.  In the analysis reported in [11], we used the 

Miso(0,1) method with great success and the key results are displayed on top of a dendrogram.  

For example, the two largest candidate modules correspond almost exactly to two previously 

known modules – namely, the protein pump V-ATPase and the ESCRT subcomplexes (Table 

2.1).  Another high-scoring candidate module (“55-68”) was subsequently validated in 

prospective experiments that confirmed a predicted protein-protein interaction.  Here, in 

addition to the most conservative implementation [Miso(0,1), Table 2.1], we also apply our 

method in a more aggressive form [Miso(2,6), Table 2.2] to the vesicle transport data.  We find 

that 78% [Miso(0,1)] and 63% [Miso(2,6)] of the predicted within-module relationships are, in 

fact, ‘true’, i.e. are implied by the prior knowledge, and that 48% [Miso(0,1)] and 53% 

[Miso(2,6)] of true relationships are successfully predicted.  The Miso methods perform as well 

or, arguably, better than published alternatives at recovering and expanding modules in the 

yeast vesicle transport system (detailed further below). 

 

We then applied our methods to the DNA damage response phenotype data described in [14].  

DNA damage response pathways are relevant for cancer in humans, both for prevention and 

treatment. In [12] the authors analyze the phenotypic response of 140 deletion mutant strains in 

36 conditions related to exposure to DNA damaging agents. From the average linkage 

dendrogram, interpreted in light of expert knowledge, the authors selectively identified the 

following six functional groups containing 23 genes: 

 

 C1: NER (RAD2, RAD4, RAD10, RAD14, and RAD1)  

 C2: error-prone TLS (REV1 and REV3);  

 C3: PRR (RAD6, RAD18, and RAD5);  

 C4: homologous recombination (RAD57, RAD51, and RAD54);  

 C5: cell-cycle checkpoint control (RAD9, RAD24, RAD17, DDC1, and MEC3) 
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 C6: (SHU2, SHU1, CSM2, MPH1, and PSY3). 

 

We recover these hand-picked modules in an objective fashion using our methods (Tables 2.3 

and 2.4). The conservative Miso(0,1) output contains modules C1 and C2 perfectly, with partial 

recovery of C3 (2 of 3 predicted; no additional predictions), C4 (2 of 3; 2 additional genes 

included) and C5 (2 of 5; no additional). Two additional modules of 3 genes each were 

predicted. Analysis with Miso (2,6) recovers C1, C5 and C6 perfectly. Compared to the 

Miso(0,1) results, C3 is unchanged and both C2 and C4 have one additional gene.  In addition, 

the Miso(2,6) method predicts only one other candidate module, with the noteworthy property 

that  4 out of the 5 genes are known to be involved in DNA repair. 

 

2.2.8 Comparison of methods 

 

To assess the relative performance of the Miso method, we applied it along with alternative 

methods to the vesicle transport data (Figure 2.4). The DNA damage response data is less 

suitable for comparative analysis due to the sparse annotations; the results are given for 

completeness in Figure 2.5, but will not be discussed in detail here.  We selected 

representatives from the two broad categories described above: graph-based and dendrogram-

based methods. We used MCL [6] as the representative graph clustering procedure because it 

performed well in a benchmark test [15]. For the identification of modules within a 

dendrogram, we consider both global cuts, including the one suggested by the Gap statistic, and 

local cuts. Objective local cuts, although not commonly used in genomics, are included because 

they are the most similar conceptually to the Miso method.  Based on the work of Milligan and 

Cooper [16], we employ the local cut criterion introduced by Duda and Hart [17]. 

 

All of these procedures must be supplied with a tuning parameter to return a list of candidate 

modules. The tuning parameters of the methods we study are conceptually very different. For 

the Miso method, the tuning parameter is a p-value cutoff and therefore is a measure of 

stringency (i.e. the closer the parameter is to zero the higher the positive predictive value).  For 

none of the other methods is there such a simple relationship between the tuning parameters and 

the performance of the method. MCL requires the specification of a similarity threshold which, 

in effect, corresponds to the selection of a single threshold graph. MCL proceeds to identify 
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candidate modules as dense subgraphs within the selected graph. In the context of a 

dendrogram, a global cut across a tree partitions the genes into clusters which are the candidate 

modules.  This global cut can be viewed either as the selection of a similarity threshold, as in 

MCL, or more relevant in actual practice, as specifying the number of clusters. Local cuts 

applied to a dendrogram are implemented in a bottom-up manner to determine when to merge 

clusters based on their lack of separation.  

 

Based on existing annotation of modules associated with vesicle transport, any relationship 

(edge) between two members of the same module is considered “true”, all other relationships 

“false”. Two metrics are computed to quantify performance.  We use the positive predictive 

value (PPV), which gives the rate of true positive predictions among all positive predictions, 

and the sensitivity, which gives the proportion of true relationships predicted.  Biological 

knowledge is incomplete, therefore a portion of the “false” predictions will be true – i.e. the 

reported PPV measures are conservative.  Groups of greater than 50 genes were not considered 

as valid candidate modules, since the true biological modules of interest (protein complexes) 

are of much smaller size.  

 

The results for our comparative study, given in Figure 2.4, show that the Miso methods are the 

best with respect to PPV and match the performance of the other methods with regards to 

sensitivity. In Figure 2.4 a), the Miso methods perform as expected with Miso(0,1) making a 

smaller number of higher quality predictions relative to Miso(2,6). The local cut methods 

perform uniformly worse with respect to PPV and exhibit maximum sensitivities that are 

comparable to those of the Miso methods (Figure 2.4 b). The most striking finding for the 

global cut methods is the volatile relationship between the tuning parameters and performance, 

especially for PPV (Figure 2.4 c). This volatility demonstrates the importance of the tuning 

parameter as well as the difficulty of choosing its optimal value, particularly in the absence of 

known annotations.  

 

2.3 Discussion 

 

Based on the analysis of graph processes, we have introduced a novel method for the 

identification of biological modules in ranked relational data. Building on a theoretical 
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foundation from Ling [9], the Miso methods accommodate the heterogeneity and noise that is 

inherent to genomic data and detect modules that vary widely in size, external isolation and 

internal cohesion. An objective measure of confidence -- a p-value -- is assigned to each 

candidate module, prioritizing candidates for further study.  Because the isolation index is a 

measure of stringency, it is particularly attractive for applications in which there is little or no 

prior biological knowledge to guide the selection of tuning parameters. 

 

In the ongoing effort to identify modules from genomic data, the most dominant 

methodological approaches are based on one of two representations of the data: graphs and 

hierarchical clusterings (dendrograms).  Regardless of the analytical paradigm, a key challenge 

is to overcome the combined effect of biological heterogeneity and experimental variability.  

The distinctive, individual properties of real biological modules generally imply that there is no 

universal ‘signature’ that would enable module detection based on threshholding relationship 

strength or, by extension, some related summary measure.  This reveals, therefore, a 

fundamental limitation of methods based on threshhold graphs or the global pruning of 

dendrograms.  In the presence of diverse modules, the Miso methods are better able to perform 

well for many modules simultaneously, since each candidate module is evaluated in a distinct 

timeframe within an evolving graph process. 

 

It is increasingly common to address the variability in genomic relational data by using 

probabilistic approaches to graphs [7, 15, 18]. When analyzing a single observed graph, noise 

can be acknowledged by recognizing the potential error associated with each observed edge (or 

lack thereof). The graph process paradigm for module finding, originally introduced by [9] and 

adapted and extended for genomic data analysis here, offers a natural extension of the 

probabilistic graph based analysis. 

 

Data from genomic data tends to be very noisy (in that genes in different modules are more 

similar to each other than to genes in the same module). Our extensions of the original isolation 

index offer improved sensitivity by allowing for a few mistimed edges in the graph process. 

However, even the extended Miso method is sensitive to noise of the magnitude often observed 

in genomic data. While it will still maintain a high quality of predictions, its sensitivity will be 

diminished in datasets with less separation (due to lack of adequate assays or technical 
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variability). We expect that with continuing development of assays lack of separation will 

become less of an issue, whereas the heterogeneity of complexes is inherent in the biological 

systems. 

 

The study of an evolving graph process offers a promising new direction for the discovery of 

biological modules. Building on the groundwork laid here, an intriguing approach to the 

analysis of noisy relational data is to move from a model of random evolution representing the 

absence of modules to a constructive model driven by the presence of modules. In such an 

approach, the probabilistic model for relational data is represented by a likelihood function that 

explicitly incorporates the properties of gene-gene relationships between and within modules.  

Such an extension provides a natural basis for solving even harder problems, such as the 

integration of relational data arising from distinct experiments or even different platforms. 

 

2.4 Materials and methods 

 

2.4.1 Data Sources 

 

The vesicle transport data was reported in [11]. The data is obtained by plating yeast mutant 

colonies in 1536-array format on nutrient media. The growth of the colonies in the presence of 

various chemicals or the secretion of certain proteins (as determined by biochemical assays) is 

measured by quantifying images by densitometry. The measurement values were preprocessed 

by averaging across replicates, correcting for background intensity by subtracting the values of 

blank spots and converting the measurement of growth or secretion into a percentage relative to 

the wild-type strain. In an initial, independent genome-wide screen, 279 genes that displayed a 

strong phenotype were selected. Quantitative phenotype measurements can be arranged in array 

form with the rows being the gene knockout strains and the columns the conditions, the values 

of this array were processed by scaling each column by its standard deviation. Indirect 

measures of relationships were obtained by applying Euclidean distance to the rows of the 

preprocessed array. 
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The DNA damage data was taken from [10], where the authors report an analysis of 140 genes. 

We take the same genes here and apply our procedure to the data using a Euclidean distance 

measure. 

 

2.4.2 Probabilistic model for the graph process and scoring survival times 

 

A graph process is a representation of the ranking of quantitative, pairwise gene-gene 

relationships for n genes.  Ties within the N=n(n-1)/2 gene-gene relationship ranks were 

randomly ordered and the resultant ranking was held constant for all analyses reported here. To 

analyze an observed graph process in a probabilistic fashion, the null model assumes that all 

rankings of pairwise relationships are equally likely. As noted by Ling [9], this assumption does 

not strictly hold when the rankings are derived from a distance measure, because of the 

constraint that the triangle inequality imposes on pairwise distances.  

 

As introduced above, a candidate module is a simply connected subgraph and its survival time 

is the difference between the rank of the edge that established the subgraph and the edge that 

adds a new member. Our measure of significance is the p-value for the survival time in a 

random graph process. Since edges are drawn without replacement, the probability of choosing 

a particular edge at step t out of all possible N edges is 1/(N-t) (any of the N-t edges left has 

equal probability).  

 

For the purpose of scoring a specific candidate module, we define ‘success’ as the placement of 

an edge between two genes either both within or both external to the module.   We define 

‘failure‘ as the placement of an edge between one gene within the module and one gene 

external to the module; this results in the death of the candidate module. We denote the 

probability of failure at step t as pt, and note that the probability of success is simply (1 – pt). A 

survival time of r for a module of size c born at step b then implies there were (r-1) successes at 

steps b+1, b+2,…, b+r-1 followed by a failure at step b+r. The probability of failure at step 

b+j can be computed as follows: there are N-(b+j) edges remaining, of which c (n-c) constitute 

failures.  Therefore the probability of failure at step b+j is pb+j = c (n – c) / (N – b – j). The null 

distribution of the survival time S is given by 

 



 

 42

 1 2 1( ) (1 )(1 ) (1 )b b b r b rP S r p p p p+ + + − += = − − … −  

 

We approximate these probabilities by setting pb+j to the constant pb+1, leading to an 

approximating geometric distribution for S. Ling established that this approximation is good if r 

is small compared to N-b. 

 

2.4.3 Generalized isolation 

 

To address the problem of mistimed edges, we consider a more general set of survival times: 

the waiting times to the 1st, 2nd ,…, k-th failure, where k is a low number (we evaluated up to 

k=6).  

 

To derive the null distribution of these survival times, we can use the same reasoning, except 

that the number of the number of edges that lead to failure is now c (n-c) - k - 1 so that  pb+j = 

(c (n – c) – k – 1) / (N – b – j). We are now waiting for the k-th failure, so the approximating 

distribution is negative binomial rather than geometric. These two distributions are identical for 

k = 1. 

 

The situation where a group of genes is hit before birth requires a different approach.  To 

identify such groups, we analyze a modified graph process: we remove all n-1 module-killing 

edges individually from the original graph process and apply our method to the modified 

process, leading to the Miso(1,k) method. Iterating this procedure by removing all n-1 module-

killing edges from all n-1 modified processes leads to the Miso(2,k) method. For any candidate 

module, we utilize the minimum p-value for 1, 2, …, k.  

2.4.4 Analyses of yeast mutant phenotype data 

 

In all methods, we did not consider groups of size greater than 50 to be valid candidate modules 

since they are not suitable for follow-up experiments. For the Miso method, the results did not 

vary noticeably for a wide range of size cutoffs. 

 

For the MCL method, we picked a sequence of threshold graphs with 500, 1000, … up to half 



 

 43

of the relationships available, at which point MCL only finds a few clusters. We also tried 

different settings of the granularity tuning parameter for MCL but found that while this 

parameter can improve the results for a single graph, the set of results for our sequence of 

graphs did not benefit from choosing different levels of granularity. For this reason we ran each 

MCL procedure with the default granularity setting. 

 

For the global cuts of dendrograms, we chose cuts leading to 3, 10, 20, …, 100 clusters. We 

found that cuts leading to few clusters did not perform well, but included 3 since it was the 

value chosen by the gap statistic. To create Figure 2.4 and Figure 2.5, we retrieved the height 

corresponding to the chosen number of clusters and matched it to the rank in the process 

(number of edges with similarity less or equal to this height)  

 

In contrast to the gap statistic and other methods that can be applied to any partitioning (from a 

hierarchical or any other clustering), local cuts (sometimes called “stopping rules”) are 

restricted to hierarchical agglomerative methods. The cuts are conducted as formal tests if the 

cluster resulting from a merge step in the clustering contains one or two clusters (the joins are 

performed until there is evidence against the null-hypothesis of one cluster). For any chosen 

rejection value for the test statistic, the method delivers a set of candidate modules. To perform 

this test, assumptions about the distribution of the data have to be made, given in detail in [17]. 

 

All clustering except for MCL (version 06-058, default settings) was done in R [19]. 
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2.5 Tables and figures 

 

2.5.1 Tables 

Table 2.1: Results for the Miso(0,1) method for the vesicle transport data 

The table shows the composition of significantly isolated candidate modules (Bonferroni 

corrected p-value less than 0.05), and is a subset of the results in [11]. The “birth” column gives 

the step in the graph process when the module is first connected, the “death” column gives the 

first time an edge from outside hits the module, the p-value is computed with  Miso(0,1). Most 

candidate modules can clearly be associated with a protein complex. The 55-68 cluster contains 

a relationship validated in [11]. Omitted are a candidate module of size 3 and 7 of size 2 with 

unknown annotations. 

Candidate 

module 

Size Birth Death p-value Composition 

V-ATPase 18 4314 7922 6.82E-228 V-ATPase (18) 

ESCRT 13 4348 4506 1.52E-05 ESCRT(13) 

Retromer (I) 10 3224 3530 9.76E-09 Retromer(4),PI3K(2),ClassD VPS(1), 

ClassA/D VPS (1) 

COG/YPT6 9 1252 1468 1.46E-04 COG(4),YPT6(4),ARF(1) 

SWR-C 6 1073 1524 5.56E-07 SWR-C(6) 

INO80 4 1413 2326 3.95E-10 INO80(2) 

55-68 3 463 2072 1.51E-13 55-68(2),ClassD VPS(1) validated 

ClassB  3 6451 7599 3.23E-11 ClassB VPS (3) 

PI3KC 2 12208 21651 1.10E-84 PI3K(2) 

ClassD 2 2644 6344 4.16E-23 ClassD VPS (2) 

Garp 2 1029 2923 1.92E-10 GARP(2) 

Retromer(II) 2 130 1844 2.70E-07 Retromer(2) 
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Table 2.2: Results for vesicle transport data with Miso(2,6).  

Candidate modules derived from the Miso(2,6) method with a (Bonferroni-corrected) p-value 

cutoff of 0.05. 

 

Cluster Size Remarks 

Vatpase 21 Vatpase(18),ClassC VPS 

Escrt 13 Escrt(13) 

Retromer 12 Retromer(6),PI3KC(2) 

SWR-C 11 SWR-C (8) 

YPT/COG 9 YPT(4),COG(4),ARF(1) 

55-68 4 55-68(2),ClassD VPS 

EE 3 EE(2) 

Glycosyl 3 Glycosyl(2) 

PI3KC 3 PI3KC(2),ClassC VPS(1) 

ClassD 3 ClassD VPS(3) 

ClassB 3 ClassB VPS(3) 

DNA 3 SWR-C(1), RSC(2) 

Garp 2 Garp(2) 
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Table 2.3: Results for DNA damage data with Miso(0,1). 

Candidate modules derived from the Miso(0,1) method with a (Bonferroni-corrected) p-value 

cutoff of 0.05. 

 

Cluster Size Birth Death p-value Remarks 

RAD4, RAD2, RAD10, RAD14, RAD1 5 2233 6760 3.68E-145 5/5 from C1

RAD18, RAD5 2 995 5525 1.40E-52 2/3 from C3

MMS4P, YBR099C, MUS81 3 364 2838 3.73E-41 Not on list 

REV1,REV3 2 13 2862 6.06E-31 2/2 from C2

RAD9, RAD24 2 252 795 1.34E-06 2/5 from C5

LTE1,BCK1,CLA4 3 219 490 4.03E-05 Not on list 

RAD57,RAD55, RAD51, HPR5 4 162 353 7.64E-05 2/3 from C4

 

Table 2.4: Results for DNA damage data with Miso(2,6) 

Candidate modules derived from the Miso(2,6) method with a (Bonferroni-corrected) p-value 

cutoff of 0.05. 

 

 

Cluster Size Remarks 

RAD4,RAD2,RAD10,RAD14,RAD1 5 5/5 from C1 

RAD5,RAD18 2 2/3 from C3 

REV1,REV3,RAD23 3 2/2 from C2 

RAD59,MMS4P,YBR099C,PPH3,MUS81,SAE2 6 4/5 DNA Repair 

SHU2,SHU1,CSM2,MPH1,PSY3 5 5/5 from C6 

RAD9,RAD24,MEC3,RAD17,DDC1 5 5/5 from C5 

RAD51,RAD57,RAD55,RTT101,HPR5 5 2/3 from C4 
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2.5.2 Figures 

 

Figure 2.1: Smoothed histograms of the observed intra- (solid lines) and inter- (dashed lines) 

module relationships for selected protein complexes from yeast vesicle transport data [11].  

The Euclidean distance is presented on a rank scale in A and on the original scale in B. The 

plots depict the heterogeneity in the internal cohesion and external isolation of protein 

complexes.  

 

Figure 2.1 A 
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Figure 2.1  B 
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Figure 2.2: Schematic illustration of a graph process and the birth and death of identifiable 

subgraphs, defined here as singly connected components.   

A graph process proceeds by sequentially adding edges in rank order. When two subgraphs are 

joined, two candidate modules ‘die’ and a new candidate module is born. Survival time is 

defined as the number of edges added in the graph process between birth and death. We show 

steps 4,5,6 and 11 here in panels A, B, C and D, respectively. In B a ‘between’ edge joins 

subgraphs (2,3,5) and (4) into a new subgraph. In C, a ‘within’ edge is placed which does not 

affect subgraph membership. In D, the subgraph born in B dies resulting in a survival time of 

11-6 = 5. Panel E provides the corresponding single linkage dendrogram. Note that the height 

of cluster merge events corresponds exactly to death and birth events of subgraphs. 
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Figure 2.3: The observed graph process for yeast vesicle transport data at step 2000 (A) and 

5000 (B).  

Node color corresponds to protein complex membership; unannotated genes appear in grey. 

Specific identifiable subgraphs in panel A have been incorporated into larger subgraphs in 

panel B. 

 

Figure 2.3 A: 
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Figure 2.3 B: 
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Figure 2.4: Relative performance of module detection methods applied to yeast vesicle 

transport data.  

Displayed are the PPV (top row) and sensitivity (bottom row). The horizontal axes correspond 

to the tuning parameters specific to each class of methods; see Section 2.4: Materials and 

methods. For the Miso methods in column a), the tuning parameter is the threshold applied to 

module-specific p-values.For the local cuts in column b) the tuning parameter is the rejection 

value for the Duda-Hart test statistic. For the global methods in column c), the tuning parameter 

corresponds to a step in the graph process (see Materials and methods). 

The puzzling behaviour of the single linkage PPV curve in column c) results from a late joining 

gene pair corresponding to a true biological relationship. Column d) summarizes the range of 

PPV and sensitivity values. 
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Figure 2.5: Relative performance of module detection methods applied to yeast DNA damage response data.  

Displayed are the PPV (top row) and sensitivity (bottom row). The horizontal axes correspond to the tuning parameters specific to 

each class of methods; see Section 2.4: Materials and methods. For the Miso methods in column a), the tuning parameter is the 

threshold applied to module-specific p-values, for the local cuts in column b) the tuning parameter is the rejection value for the 

Duda-Hart test statistic. For the global methods in column c), the tuning parameter corresponds to a step in the graph process (see 

Materials and methods). 
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Chapter 3: Stochastic block models for ranked relationships in 

genomics2

 

 

 

 

 

 
2 A version of this manuscript will be submitted for publication. Brumm J, Wasserman WW, Bryan J: Stochastic 
block models for ranked relationships in genomics. 
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3.1 Background 

 

Cells depend on genes (and their derived proteins) to perform functions such as signal 

transduction, intra-cellular transport and chromosome segregation. To achieve a function in a 

given cellular context, genes act in concert as part of gene modules; such gene modules are 

often protein complexes or molecular pathways. Finding gene modules and their member genes 

will remain an important task in genomics, in particular since the composition of modules can 

be different even in related cellular contexts. 

 

An effective way to investigate gene modules is to collect data on the behavior of genes under 

conditions or treatments known to trigger the cellular context of interest. By measuring a gene-

specific feature, such as a gene expression measurement or a loss-of-function mutant phenotype 

under each condition, a behavior profile of a gene is established. Genes in the same module 

often have similar gene profiles; conversely the similarity of gene profiles can be used to 

predict joint module membership.  

 

The lack of known annotations of genes to modules makes methods for the unsupervised 

detection of modules, commonly referred to as clustering, important. Representing the data in 

the form of pairwise relationships, either as a matrix of pairwise similarity values or an 

adjacency matrix representing a graph has been used successfully in genomics [1-4]. In addition 

to its utility for clustering, the relational representation of data is natural for direct measures of 

functional relationship, such as protein-protein interactions and co-localization experiments. As 

we show in this paper, viewing gene profiling data within the relational paradigm allows for the 

straightforward incorporation of directly measured relational data such as protein-protein 

interactions into the analysis. 

 

Relational data is often analyzed as a graph, where relationships between genes are either 

considered present or absent [2]. We have earlier introduced graph processes as a useful 

paradigm extending the graph-based search for gene modules (Chapter 2). In a graph process 

obtained from similarity values for gene profiles, edges are added between nodes (representing 
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genes) in the ranked order of similarity, starting with an empty graph and ending with a 

complete graph containing all edges between all genes.  

 

Here we develop a data generating model of the graph process under the assumption that edges 

connecting genes within a module tend to arrive earlier in the graph process than edges between 

a genes in different modules (module clustering assumption). Assignments of genes to 

candidate modules (called blocks) that fulfill the module clustering assumption score a high 

probability, allowing us to search for a clustering solution by optimizing the likelihood 

function. 

 

The likelihood is based on two key observations: 1) the candidate assignment of genes to blocks 

induces a labeling of edges as ‘within block’ and ‘between blocks’, and 2) the graph process of 

these labeled edges can be modeled as a standard stage-wise ranking (and scored with the 

corresponding likelihood) where within block edges are ‘stronger’ than between blocks edges. 

Likelihoods for rankings based on unobserved ‘strength’ parameters such as the ability of a 

horse to win a race have long been used [5-7]; typically the strength parameters are determined 

by analyzing multiple races. Here, the repeated placement of edges within and between 

modules allows their determination. The use of such a ranking model for the graph process is 

the key innovation of this paper. 

 

The modeling of the module clustering assumption as a stochastic block model is inspired by 

methods for the analysis for binary data from the social sciences [8, 9]. Key to the stochastic 

block model, as for other latent class models, is the representation of the block label for each 

node as a random variable taking on values in a discrete set of block labels. 

 

Our model is a principled approach to relational data analysis. Our method performs well in 

applications and is robust to noise, facilitates integration and gene-module assignments can be 

computed using standard optimization techniques. In this paper we lay the foundations for the 

stochastic block model for graph processes, a specific application will be considered in Chapter 

4. 
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3.2 Results 

 

3.2.1 A generative model for ranked relational data 

 

To express our assumptions about gene modules in a model, we assume there is a true, 

unknown modular organization of the n genes under study, i.e. each gene belongs to exactly 

one of M underlying biological blocks. We refer to the hypothesized modules as blocks to 

distinguish them from the biologically defined gene modules, since some gene modules may 

not be recognizable in a given study.  For a specific gene i, we refer to its block membership as 

its ‘label’, denoted by c(i), where i = 1, 2, …, n  and ( ) {1,2, , }c i M∈ … .  The complete 

organization of genes in blocks or, equivalently, the complete collection of gene labels, c = 

(c(1), c(2), …, c(n)), is the parameter we wish to estimate.  That is, we wish to find the (latent) 

gene labeling that is most compatible with the observed ranked relational data. In order to 

specify a likelihood for the observed data (ranks of gene-gene relationships) in terms of the 

parameter of interest (the latent gene labels), we employ a novel combination of stochastic 

block model theory from social network analysis and stage-wise ranking models initially 

developed for applications such as horse racing. 

 

In a stage-wise ranking model, each item to be ranked is often assumed to have an underlying 

‘strength’ parameter [5, 10], such as the propensity of a racehorse to win races.  In our 

application, these items are the N = n(n-1)/2 edges that comprise the edge set of the complete 

graph on the n genes (nodes) and the strength of edge k, denoted λk(c), is fundamentally 

determined by the modular structure captured by the labels c (detailed below). We define λ(c) = 

(λ1(c), …, λN(c)). The likelihood of the ranks can be constructed by considering a sequential 

selection procedure, hence the name ‘stage-wise ranking model’.  At the first stage, we will 

choose one item (edge, in our case) from the full set (N possible edges), where the choice 

probability of item k is given by  

1

(( | ( )) )

( )

k
N

r
r

cP k c
c

λλ
λ

=

=

∑
. 

The chosen item is then removed from all subsequent stages of the procedure.  
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The set of the not-yet-selected items (edges) will be denoted by S and, in a manner similar to 

the initial selection, we carry out a sequential selection procedure, in which one item is selected 

at each stage and which ultimately results in an observed ranking of the items.  The general 

choice probability of item k, if it is contained in S, is given by 

( |
( )

) )( () k

r
S

r S

P k cc
c

λλ
λ

∈

=
∑

, 

and is zero otherwise.  To continue the race analogy, a horse’s probability of beating the other 

horses in S is given by its strength parameter relative the total strength represented in S.  We 

assume that our ranked relational data arises from this type of stage-wise ranking model that is 

driven by the choice probabilities or, equivalently, by the underlying item strengths. 

 

An observed ranking of the gene-gene edges, such as the observed graph process, is denoted 

by 1( , , )Nπ π π= … , meaning that πw ∈  {1, …, k, …, N } is the index of the edge with rank w. 

Observed tied ranks are broken at random. If we denote the set of edges remaining at stage l  

by , the likelihood for the observed ranked relationships is lS
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This likelihood is invariant under multiplication of λ(c), that is 

 

 ( | ( ) ) ( | ( ))P c P cπ λ π γ λ=                                                                          (3.2) 

 

for any constant γ > 0. 
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Our most fundamental assumption is that λk(c), the strength of the edge k, depends only on the 

labels of the two associated nodes. That is, if edge k connects the two nodes i and j, λk(c) 

depends only on c(i) and c(j). As a result of our assumption that edge strength is solely 

determined by the module membership of the associated genes, the entire collection of edge 

strengths are generated by the entries of an M by M matrix Λ, where Λl,m is the edge-strength 

parameter for edges connecting the block with label l to the block with label m, and we assume 

that  Λl,m = Λm,l. 

  

In this paper we will only use the homogeneous block model, in which all diagonal elements of 

Λ (corresponding to the strength of ‘within block’ edges) are equal to λW, and all off-diagonal 

elements (corresponding to the strength of ‘between blocks’ edges) are equal to λB. We assume, 

in accordance with the module clustering assumption, that λW > λB.  Recall that the likelihood is 

invariant to multiplication of λ(c) by a positive constant. This implies that, without loss of 

generality, we can redefine λW to be the ratio of within and between edge strengths, i.e. r = λW / 

λB, and assume that λB is equal to 1.  With respect to edge strength parameters, the likelihood 

now only depends on r. 

 

Note that in this model-specification, the parameters λk(c) depend only on the n by n matrix 

B(c), with Bij(c) = 1 if c(i) = c(j) and Bij(c) = 0 otherwise. This matrix simply records if an edge 

is within a block or between blocks, and is a different way to express the influence of c on the 

likelihood which is convenient for incorporating prior relational information, as we show 

below. The matrix B is the adjacency matrix for the graph that represents the block structure, 

where edges are present between all nodes in the same block and no edges are present between 

blocks. In summary, we can express the likelihood as 

 

( | ( )) ( | ( ) , )P c P B c rπ λ π= . 

 

3.2.2 Bayesian estimation for the block model 

 

We analyze the problem using the Bayesian paradigm. The Bayesian approach allows for the 

incorporation of prior information, which is often available in genomic studies. Furthermore, 
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sequential conditional updating algorithms like Gibbs sampling can be used to resolve the 

problem of estimating the labels [8].  

 

3.2.2.1 Incorporating prior information 

 

The stochastic block method can be used effectively without prior information, as we show 

below; here we show how to incorporate relational data as prior information into the analysis. 

An application of the stochastic block model using prior information is given in Chapter 4. We 

restrict our attention to prior information in the form of binary relational data (such as protein-

protein interactions). It is convenient to represent this type of prior relational data by an 

adjacency matrix A  where  if genes i and j are related in the prior data and zero 

otherwise. The key to incorporating this prior information into the analysis is the adjacency 

matrix B, representing the block-structure induced by the labeling c. It is now possible to 

‘overlay’ these two graphs and evaluate which edges corresponding to the block-graph 

represented by B are present in the prior graph represented by A. 

1ijA =

 

We assume that the prior probability for two genes having the same label, conditional on A, is 

given by 

  

 ( ( ) ( ) | 1) ( ( ) 1| 1)ij ij ijP c i c j A P B c A α= = = = = = ,                                  (3.3) 

 ( ( ) ( ) | 0) ( ( ) 1| 0)ij ij ijP c i c j A P B c A β= = = = = = .                                (3.4) 

 

To simplify formulas, we define the following counts for the number of concordant and 

discordant pairs between prior information and the relationships induced by the candidate 

labeling: s11 = #{ i<j: c(i) = c(j), Aij = 1}, s01 = #{ i<j: c(i) ≠ c(j), Aij = 1}, s10 =  #{ i<j: c(i) = 

c(j), Aij = 0}  and s00 = #{ i<j: c(i) ≠ c(j), Aij = 0}, so that s11 is the number of gene pairs in the 

same block (Bij(c) = 1) that are a priori related (Aij = 1), s01 the number of gene pairs in 

different blocks (Bij(c) = 0) that are a priori related (Aij = 1) and so on. We also define s0 = #{ 

i<j: Aij = 0}, the number of gene pairs a priori unrelated. 
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We assume that a priori all relationships are independent. With this assumption, the prior 

probability of the adjacency matrix B(c) of a labeling c is given by: 

 
1 1( ( ) | , , ) ( ) [1 ( )](1 ) (1 )ij ij ij ijA A A

ij ij
i j

P B c A B c B c Aα β α β α− −

<

= + − −∏ β−  

       01 10 0011 (1 ) (1 )s s ssα α β β= − − . 

  

The parameter α  would typically be chosen close to 1, if a prior relationship represents strong 

evidence towards a true functional relationship given what is known about the assay used to 

derive the prior information. If coverage of these prior relationships is low, that is, only few 

relationships between genes in the same module are observed, (as in the case of protein-protein 

interactions), we set β  to 0.5. In the latter case, the above equation simplifies to 

 

01 011( ( ) | , , 0.5) 0( ) 51 .s ssP B c A α β α α= = − , 

 

where the last factor is independent of the labeling c. 

 

3.2.2.2 Estimating the labels using the Gibbs sampler 

 

Our Bayesian inference relies on the joint posterior distribution of the parameters, given the 

data. The joint posterior distribution for the latent labels is proportional to the product of the 

likelihood and prior distribution:  

 

( | , , , , ) ( | ( ), ) ( ( ) | , , )P c r A P B c r P B c Aπ α β π α β∝ .                           (3.5) 

 

This posterior distribution is used to estimate the gene labels. To obtain samples from the 

posterior distribution, we use the well-known Gibbs sampling procedure. This procedure starts 

with random values for the gene labels and then updates the label for each gene c(i) in turn 

according to the following conditional probabilities. For any m∈1,2, …, M, this update 

probability is determined through the relationship 
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Here c[-i] is the vector of labels except for c(i), refers to the labeling where c(i) = m (and all 

other values are unchanged) and K is the likelihood integrated over all possible values for c(i) 

(and hence is independent of m). Equation 

c

(3.6) allows us to compute the update probabilities 

for the vector c(i), as these are multinomial probabilities, so that the probability that c(i) = m 

can be computed using the ratio 
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                                                                 (3.7) 

 

even though K is unknown. 

 

The updated gene label is drawn from the updated multinomial distribution for c(i). Updating 

each gene label in turn and iterating through these updates yields samples for each gene label; 

these samples are approximately distributed like samples for the gene labels from the joint 

posterior probability distribution (3.5) for all genes. We call one round of updating of all gene 

labels one ‘Gibbs iteration’. 

3.2.2.3 Co-labeling probabilities as key parameters 

 

The probability pij = P( c(i) = c(j) ) that nodes i and j are in the same block (referred to as co-

labeling probabilities) are useful parameters for our method. The block labels are not identified 

in our model in the sense that an arbitrary switching of labels leads to the same value for the 

likelihood. It is well-known that if the labels are not identified, the Gibbs sampler might visit 

more than one of these equivalent labelings (this is often described as ‘label-switching’ [11]). 

The co-labeling probabilities are invariant under relabeling, facilitating the interpretation of the 

output of the algorithm [9]. The co-labeling probability pij can be estimated by the co-labeling 

rate of nodes i and j in the Gibbs iterations.  
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Aside from these technical considerations, the estimated co-labeling probabilities are very 

useful in applications. As they provide a confidence score for each gene-gene relationship, they 

allow for the prioritization of the output of our procedure for follow-up experiments, in which 

the pairs of genes with the highest estimated co-labeling probability are investigated for co-

membership in the same gene module first. 

 

3.2.3 Adjusting the likelihood 

 

The block structure imposed by the labeling c determines the types of items available for the 

ranking (how many edges are within blocks, how many between blocks). As we show here, the 

number of within and between edges in the collection of items influences the magnitude of the 

likelihood for the ranking. Since we compute the likelihood with varying c, we need to consider 

this effect. 

 

It is apparent from the formula (3.1) that the numerator of the likelihood does not depend on the 

order of the edges, but only on the number of within and between edges. As λW > λB, the 

numerator is maximized by taking the node labeling resulting in the maximal number of within 

edges, leading to an inherent tendency to re-assign a gene from a small block to a large block. 

This tendency leads to the accumulation of many genes in a giant block during the Gibbs 

iterations, except for genes in blocks that are well-separated from other blocks.  

 

To counteract the influence of the numbers of items available, we recognized that only the 

relative magnitude of the likelihood is important in determining the ratio (3.7) for updating the 

label of a gene. If two labelings lead to approximately the same number of within and between 

edges, the numerators of the likelihood (3.1) cancel out approximately in the ratio. 

Consequently, we adjusted the likelihood by only calculating the denominator of (3.1); that is, 

we used  
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instead of the likelihood in the computation of (3.7). 

 

To investigate the impact of size of the blocks on the conditional marginal probabilities (3.6) 

(the probability of assigning a given node to the respective blocks) using either the original or 

the adjusted likelihood, we used the well-annotated CPY data introduced in Chapter 2 (see 

Section 3.2.5.2 below). To get a biologically accurate labeling, we labeled each gene with its 

biological annotation, making each block correspond to a gene module. We illustrate the impact 

of the adjustment using a gene (called gene X here; other genes could have been used for the 

illustration as well) from the COG/YPT6 module; this module fulfills the module clustering 

assumption well. Genes of unknown function were assigned to the same block; most genes in 

this block correspond to mutant strains with profiles similar to the wild-type strain profile. We 

then compute the update probabilities for the given gene X for each block; Figure 3.1A shows 

the size of the block plotted against the rank of the corresponding update probability using the 

original and adjusted likelihood. Using the original likelihood, the update probability with the 

highest rank is for the assignment of gene X to the largest block (corresponding to not 

annotated genes). 

 

Ideally, the update probability for the assignment of gene X to the COG/YPT6 block would be 

highest. Figures 3.1B and 3.1C explore the relationship between update probability and the 

edge-ranks from gene X to each block in more detail. In both plots, the ranks of the edges from 

each block to gene X are given along the horizontal axis and the blocks are ordered from 

highest update probability (top) to lowest (bottom). While the early arrival of edges from the 

block to gene X generally leads to greater update probabilities (as desired), the update 

probability is sensitive to differing block sizes, rewarding small blocks in the case of the 

adjusted likelihood and large blocks in the case of the original likelihood.  

 

We found that in the Gibbs sampling procedure, using the adjusted likelihood led to a vastly 

superior performance as measured by the ability of the algorithm to recover known gene 

modules. Hence all of our results are based on the adjusted likelihood. 
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3.2.4 Impact of tuning parameter selection on performance 

 

Two key parameters that influence the performance of the algorithm are the number of blocks, 

M, and the ratio of within-block to between block edge strengths r. We could not find suitable 

estimators for these parameters (see Discussion). We also tried the internal quality score 

suggested in [9] (called Hx there) for selecting M or r, but found that the value of Hx is 

unfortunately of no help in choosing M (Hx decreased with M), and tends to select large values 

of r (in the analyses presented in Figure 3.4, the lowest value of Hx corresponds to a value of 

r=100). Since we could not find a way to automatically choose values for r and M, we instead 

treat them as tuning parameters to be chosen by the user. This section explores the impact of the 

tuning parameter choices on the estimators of the co-labeling probabilities. 

 

To judge the impact of various parameter choices, we analyzed the CPY data with varying 

parameter choices. To evaluate the results from our procedure, we took advantage of the known 

membership of genes in biological modules. Since this data is well annotated, a comparison 

between the block structure revealed by our procedure and the true biological module structure 

can be used to judge the quality of the derived block structure as well as the impact of 

parameter choices. 

 

We determined the number of true positive (TP) gene pairs (both members of the pair are in the 

same block that and are known to be in the same gene module), the number of false positive 

(FP) gene pairs (both members of the pair are in the same block that but  they are not known to 

be in the same gene module) and the number of false negative (FN) gene pairs (the members of 

the pair are in different blocks but they are known to be in the same gene module). We used the 

positive predictive value PPV (= TP/(TP+FP)), the rate of correct predictions in all predicted 

interactions) and the sensitivity (= TP/(TP+FN), the percentage of available protein-protein 

interactions recovered). We prefer the PPV over alternative measures, because it measures the 

success rate of the scientists in their follow-up experiments (that are only performed on pairs of 

genes predicted to be in the same module; there are TP + FP such pairs). To obtain predictions, 

we applied a threshold to the estimated co-labeling probabilities for the gene pairs, classifying a 

pair as within-block if its estimated co-labeling probability was above the given threshold. We 
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varied the threshold from stringent (=1) to weak (=0) and recorded the PPV and sensitivity at 

each threshold. 

 

We first evaluated the impact of the initial labelings on performance. Figure 3.2 shows the 

difference in performance for repeated runs of the procedure, which was started from a random 

label assignment. Figure 3.2A shows a case with unusual differences (M=20 and r=10) and 

Figure 3.2B a case with differences typically observed for other parameter settings (M = 60 and 

r = 5). As expected, the impact of the initial labeling is generally higher for low sensitivity 

(corresponding to stringent cutoffs for pij) and lower for cutoffs leading to higher sensitivity, 

because stringent cutoffs lead to few predicted co-labeled gene pairs.  

  

Next we evaluated what impact the choice of M has on the resulting block assignments. Figure 

3.3 shows selected runs of the algorithm for r = 10. It shows that the performances are 

comparable, if M is chosen large enough. We recommend to choose M large compared to the 

number of modules expected to be relevant in the data, keeping in mind that the running time of 

the procedure increases considerably with M (see Discussion).  

 

The impact of the choice of r for given M is shown in Figure 3.4. Figure 3.4 A shows the results 

for M = 40 and Figure 3.4 B for M = 60. Intermediate choices as values for r delivered the best 

performance. We found that for this dataset, large values of r rewarded internally cohesive, but 

not necessarily externally isolated groups of genes. This leads to results with a considerably 

lower PPV, because subsets of larger gene groups get identified as gene modules, in particular 

from the set of gene profiles similar to wild-type strain profile.  

 

3.2.5 Application to yeast mutant phenotype data 

 

The methodological developments presented here were motivated by collaboration with the 

Conibear lab at the University of British Columbia, which aims to elucidate the mechanisms of 

vesicle transport in the cell. This machinery is used by the cell to facilitate regulated transport 

of chemicals or proteins within the cell. To study the gene modules relevant in the vesicle 

transport system, gene profiles in the form of yeast mutant phenotypes were obtained, using a 

collection of yeast strains with individual genes disabled [12]. Besides data produced in their 
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own lab, the Conibear lab also uses publicly available repositories of yeast mutant profiles. We 

apply our method to a subset of data derived in [13]. This data, measuring the growth of yeast 

mutants across a wide spectrum of drugs, is referred to as the CHS6 data here. 

 

3.2.5.1 The stochastic block model performs well in noisy situations 

 

The CHS6 data motivated the development of the stochastic block method, since it proved too 

noisy for our previously developed isolation index (Chapter 2). The graph process stopped after 

315 steps (Figure 3.5) shows that the data is too noisy for the isolation index to uncover the 

important AP1 and Escrt gene modules. Genes in these modules (highlighted in color) are, even 

at this early stage in the graph process, already well-connected to genes outside the module.  In 

this case the number of between-module connections exceeds the noise tolerance of the Miso 

method (Chapter 2), even of the Miso(2,6) method. 

 

The stochastic block model succeeded in identifying suitable candidate modules even in this 

noisy data (Table 3.1). Of the six candidate modules with more than three genes, four 

correspond well to relevant gene modules. The AP1 candidate module (size 17), which contains 

5 out the 7 known AP1 genes, contains several not yet annotated genes of interest for follow-up 

studies by the Conibear lab, particularly as some show promising behaviour in other assays 

(data not shown). The Escrt candidate module contains high proportions of relevant genes, 

known to be involved in vesicle transport. Note that the given list is almost the complete output 

of our procedure (small clusters are listed in the Table caption); no annotation-guided selection 

needed to be performed.  

 

3.2.5.2 The stochastic block model identifies well-isolated modules 

 

Our previous analysis of the CPY data using the Miso method (Chapter 2) was able to identify 

gene modules effectively as the relevant modules were well-separated, leading to a graph 

process with little noise. To assess the performance of the stochastic block method in a low-

noise setting, we re-analyzed the CPY data. The results, given in Table 3.2, are comparable to 

the results we obtained earlier with the Miso method (Tables 2.1 and 2.2), recovering the 
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relevant V-ATPase, SWR-C, Retromer, and Escrt gene modules well. In particular, the output 

includes the gene module validated in [14]. These results show that the stochastic block method 

offers excellent performance in this situation with low noise. 

 

3.2.5.3 Comparison to threshold graph clustering 

 

We used the CPY data to assess the performance of our method. The CPY data is well-

annotated, making it useful for method evaluation. We compared the performance of the 

stochastic block model, which is based on the graph process, to the collection of clusterings that 

can be obtained by clustering a chosen sequence of individually clustered threshold graphs. As 

a graph clustering method, we chose MCL [15] which has been shown to be an effective 

method [16]. We created threshold graphs every 500 steps up to 20000 edges; each such graph 

was clustered using MCL. We eliminated clusters of size greater than 50 from consideration, 

since they would not be used in an applied situation and unduly lower the PPV. For the 

stochastic block method, we varied the cutoff for the estimated co-labeling probabilities from 

stringent (threshold = 1) to weak (threshold = 0). 

 

The estimated co-labeling probabilities are useful for the prioritization of follow-up 

experiments, since the sensitivity decreases and the PPV increases with increased probability 

threshold (Figure 3.6). The performance of the MCL-based method, on the other hand, depends 

on the choice of a good threshold graph, which is difficult (see Chapter 2 for more on the 

challenge of threshold selection). Overall, choosing a cutoff of about 0.4 for the co-labeling 

probabilities in the stochastic block model delivers performance comparable to the best 

available MCL-based procedure (Figure 3.6). 

 

3.3 Discussion 

 

This paper demonstrates the utility of graph processes as a useful data structure and offers an 

algorithm to predict functional relationships. Our method works in difficult situations with 

noisy data while retaining excellent predictive performance in situations with low noise. The 

co-labeling rates delivered by the Gibbs sampling procedure offer confidence values for 
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predictions of individual functional relationships that are useful for the prioritization of follow-

up experiments. These rates could also be used as input to methods integrating across different 

platforms for gene function prediction [17]. 

 

Our probabilistic approach allows us to incorporate prior information in the form of pairwise 

relationships, such as protein-protein interactions. This is more difficult to achieve in a feature-

space representation of the data (used by algorithms such as k-means), where each gene profile 

is represented as a point in a high-dimensional space. The utility of our method using prior 

information will be presented in Chapter 4. 

 

Our likelihood for the ranking can be alternatively viewed as a Thurstonian model, which 

assumes that the ranking is obtained through the ordering of values of underlying, unobserved 

random variables with continuous values [18]. Our model can be obtained by assuming that the 

distribution of these latent random variables is exponential [6], revealing a potential limitation, 

since for exponential random variables the mean is equal to the standard deviation. This implies 

that if late edges (which tend to be edges between blocks) correspond to large values of the 

latent variables, the variability of the latent values corresponding to between-blocks edges is 

also large, an assumption that may not be realistic for the data. However, if a different 

distribution (such as a normal) is assumed for the Thurstonian model, the likelihood for the 

ranking is a multi-dimensional integral, making it more difficult to evaluate. 

 

An evaluation of the procedure on data other than the CPY data would be desirable. However, 

experimental data often suffers from the lack of annotations, making evaluation difficult. 

Simulation studies, on the other hand, require the user to assume that the model used to 

generate the data is an appropriate reflection of the structure observed in experimental data of 

interest, an assumption that is often rejected by applied scientists, making the results hard to 

communicate to the potential users of the methods. 

 

Automatic determination of the model parameters r and M proved difficult. Although it is 

possible to estimate r with the maximum likelihood estimator when the correct labels are 

known, we found that the maximum likelihood estimator performs poorly when the labels are 

incorrect, pushing the ratio r towards 1 during the Gibbs iterations; a value of r close to 1 leads 

to poor clustering results. The model selection statistic Hx did not perform very well on the 
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CPY data but, at least for choosing r, may work better in datasets where internal cohesion of 

clusters is the dominating feature. Choosing M automatically is less important in our method (in 

contrast to true partitioning methods like k-means, for example), since the ultimate clustering 

solution does not seem to be affected severely as long as M is chosen large enough. 

 

A limitation of our method is the computational complexity. In its current form, each likelihood 

evaluation for n genes is on the order of O(n2) ( meaning that there is a constant z such that the 

worst case performance in terms of computing time can be bounded above by z n2 ). Each 

Gibbs step is hence of order O(n M n2), since each node label is evaluated for each of the M 

available blocks. This high demand on computing time limits the possibilities for Gibbs 

convergence diagnostics and limits the number of genes we may consider (our biggest example 

is the CHS6 data with n=329, for which, with M = 40, 120 Gibbs steps took several hours to 

complete on a regular computer with a 2 GHz CPU and 1 GB of RAM). The computational 

complexity of the algorithm may be reduced by using an approximation to the likelihood, as 

most informative events in the graph process happen quite early (the edges appearing at late 

stages of the process are typically only between blocks). 

 

In general, the Gibbs sampling procedure needs to be monitored to assess convergence. This is 

not a simple problem in general, and we may not be able to guarantee convergence of our 

sampling procedure for our method, since the computational complexity for our method 

prohibits many Gibbs iteration steps. In our applications, starting from a random labeling, the 

Gibbs sampler converged rapidly towards a clustering solution close to the ‘true’ module 

assignments constructed from known annotations. In difficult situations, it may be necessary to 

start the Gibbs sampler from a labeling reasonably close to a desired solution. One possibility 

would be to construct a complete or average linkage clustering and extract M clusters from the 

corresponding tree as a starting labeling of the nodes. 

 

Thresholding of the co-labeling rates may sometimes be desired, if a list of predictions rather 

than a ranking of follow-up experiments is desired. Finding a suitable threshold was difficult 

because the estimated co-clustering probabilities are severely affected by M and to a lesser 

degree by the choice of r. 
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The focus of the current paper is to introduce the stochastic block model for graph processes 

and establish its utility and limitations. A more detailed application to the integrated analysis of 

yeast mutant phenotype profiles and protein-protein interactions will be presented in Chapter 4. 

A possible extension of the stochastic block model is to use the block labels to integrate 

multiple gene profile data sets. Future work also includes the generalization of the simple block 

structure used in this paper; this is particularly attractive since the co-labeling rates are a 

flexible output which may accommodate structures such as a single gene belonging to more 

than one functional module which is often the case in biological systems. 

 

3.4 Materials and methods 

 

3.4.1 Data sources 

 

The CPY data was introduced in Chapter 2 and [14]. This data set contains 279 yeast mutant 

profiles that were normalized and converted into pairwise similarities using Euclidean distance. 

 

The CHS6 data was extracted from [13], where yeast mutant strains were exposed to 82 

conditions; a subset of 329 genes was selected for showing a strong phenotype in an initial 

screen performed in the Conibear lab. We converted the profiles into pairwise similarities using 

the commonly used measure of (1 – C) as the similarity score (where C is the Pearson 

correlation), after dividing each value by the standard deviation of the values for all 329 genes 

in the given condition. 

 

3.4.2 Gibbs sampling 

 

The Gibbs sampler was always initialized with a random labeling. All results presented here are 

based on 110 iterations; the first 10 iterations were discarded when we computed the co-

labeling rates (the number of times a pair was in the same block, divided by the number of 

Gibbs sampling iterations) 
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3.4.3 Formula for Hx 

 

The quantity for model assessment used by [9], adapted for our situation with undirected 

graphs, is 

 

 
2 ˆ ˆ(1 )

( 1) ij ij
i j

Hx p p
n n <

= −
− ∑ . 

 

The motivation given in [9] is that if Hx is small, for each pair it is clear if they are in the same 

block ( approximately equal to 1) or not ( approximately equal to 0), indicating a strong 

clustering structure.  

ˆ ijp ˆ ijp

 

3.4.4 Clusters derived from estimated co-labeling probabilities 

 

After thresholding the estimated co-labeling probabilities, the gene-pairs predicted to be in the 

same block can be viewed as edges in a graph. If the the threshold is chosen stringent, the graph 

typically has several unconnected components. We use these components as clusters to 

summarize the results succinctly.  
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3.5 Tables and figures 

 

3.5.1 Tables 

Table 3.1: Results for the CHS6 dataset with the following parameter settings:  

co-labeling rate threshold = 0.5, M = 40, r = 10 (see “Materials and methods” on how to obtain 
the clusters from estimated co-labeling probabilities). Not listed are 2 clusters of size 3 and 7 
clusters of size 2 with unremarkable composition. The most notable gene modules found in a 
given candidate module are listed under ‘Remarks’ with the number of genes in the candidate 
module and the number of genes in the module given in parentheses. The table is ordered to 
show the most remarkable clusters on top. 

 

Cluster Size Remarks 

AP1 17 AP1 (5/7) 

Escrt 17 Escrt (4/7), Class B/C VPS(4/9), Retromer (3/4), 

ClassD VPS(3/5), AP3 (2/2) 

DNA 7 DNA (4/8) 

Rho 5 Rho (2/2) 

UB 3 UB (2/8) 

Garp/YPT6 2 Garp/YPT6 (2/5) 

? 10 Mixed annotations 

Orfs 8 Mostly uncharacterized 
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Table 3.2: Clustering results for the CPY data (threshold of 0.5 for co-labeling rates)  

for r=5, M=40. The most notable gene modules found in a given candidate module are listed 

under ‘Remarks’ with the number of genes in the candidate module and the number of genes in 

the module given in parentheses. The table is ordered to show the most remarkable clusters on 

top. Not listed are clusters of size 2. The VPS 55-68 candidate module was validated in [14]. 

 

Cluster  Size  Remarks 

V-ATPASE 14 V-ATPASE (14/20) 

ESCRT  7  ESCRT (7/14) 

SWR-C  7  SWR-C (7/9) 

COG/YPT6  7  COG (3/5), YPT6 (4/5)  

RETROMER  6  RETROMER (6/6)  

VPS 55-68  3  VPS 55-68 (2/2),  

V-ATPASE 3  V-ATPASE (3/20) 

ClassD  3  ClassD VPS(3/6)  

PI3KC 3  PI3KC (2/4) 
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3.5.2 Figures 

 

Figure 3.1. Influence of size of the blocks on update probabilities using the original and 

adjusted likelihoods.  

Figure A shows the rank of the update probabilities plotted against the size of the respective 

block. B and C show the ranks of edges hitting the gene in the COG/YPT6 module displayed 

along the x-axis; the y-axis splits the ranks by module. The plots are ordered by the update 

probability of assigning the gene to the group, with the first line corresponding to the group 

with the highest likelihood (so ideally the COG module would occupy the first line of the plot). 

B shows the edge-ranks in the order of update probabilities using the original likelihood; C in 

the order corresponding to the adjusted likelihood.  
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Figure 3.1A 
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Figure 3.1B 
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Figure 3.1C 

 

 
 

 

   



 

 83

Figure 3.2: Impact of initial labeling on results.  

The PPV (= TP/(TP+FP)) is plotted against sensitivity for repeated runs of the procedure from 

random starting points with the same parameter settings. Settings are: M = 20 and r = 10 for A 

and M = 60 and r = 5 for B.  

 

Figure 3.2A 
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Figure 3.2B 
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Figure 3.3: Impact of M on clustering results.  

The number of blocks available for the Gibbs sampler, M, is a key parameter in the procedure. 

This plot shows the impact of different choices of M for r = 10. 
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Figure 3.4: Impact of the ratio of ‘within block’ to ‘between blocks’ abilities on the clustering 
results.  

The choice of r = λW/λB influences the performance of the stochastic block model. A shows the 

results for varied r with M = 40; B shows the results for M=60. 

 

Figure 3.4A 
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Figure 3.4B 
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Figure 3.5: Gene modules in CHS6 graph process after 315 steps.  

Only one component in the resulting graph is shown. The colors correspond to genes in the AP1 

module (red) and the Escrt module (blue). Even at this early stage, the number of edges 

connecting the two modules and to other genes is large.  
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Figure 3.6: Comparison of stochastic block model to MCL clustering for different threshold 
graphs.  

The top row shows the PPV and the bottom row the sensitivity. The x-axis represents the cutoff 

applied to the co-clustering rates for the stochastic block model (first column), and the number 

of edges in the threshold graph to be clustered for the MCL method (second column). 
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Chapter 4: Integrated clustering of yeast mutant phenotype profiles 
and protein-protein interaction data3

 

 

 
3 A version of this chapter will be submitted for publication. Brumm J, Wasserman WW, Bryan J: Integrated 
clustering of yeast mutant phenotype profiles and protein-protein interaction data. 
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4.1 Background 
 

Finding functional modules of genes, such as protein complexes and molecular pathways 

involved in intra-cellular transport or stress response, remains an important and challenging 

problem in genomics. In order to identify novel modules and unknown members of partially 

characterized modules, a gene profiling experiment can be performed to measure a gene-

specific cellular response, such as gene expression of loss-of-function phenotype under specific 

conditions. Similarity in the observations for a set of experiments between two genes serves as 

an indirect measure of functional relationship. Although indirect, this similarity can reflect the 

in vivo membership of modules if appropriate treatments or conditions are assessed [1, 2]. To 

detect modules based on profile similarities, an unsupervised clustering algorithm is usually 

employed as sufficient and appropriate training data for a supervised algorithm is rare. 

 

For the successful application of clustering methods, noise is a common limiting property of 

genomic biological data. Integration of data collected in independent assay formats is a 

promising strategy to overcome this challenge [3-6]. The integrated approaches offer the 

prospect of improved clustering as more information becomes available, an important 

consideration for researchers using high-throughput profiling assays and clustering as an initial 

screen to select promising candidate modules for expensive validation experiments.  

 

In this paper, we present an application of the probabilistic clustering procedure derived earlier 

(Chapter 3) for the clustering of yeast mutant phenotype profiles aided by direct relational data 

in the form of protein-protein interactions. Such direct relational data derived through such 

techniques as the yeast-two-hybrid assay, is often sparse and reflects a capacity for interaction 

but does not specify the precise biological context (i.e. the physiological and environmental 

state) in which interaction occurs [7]. However, such direct measures offer a route to improved 

clustering of noisy gene profile data. 

 

There are several methods that could be considered for integrated clustering of gene profiles 

and direct relational data. The active subnetwork approach  [8, 9]  identifies subnetworks in the 

direct relational data that show unusually high similarity in the indirect relational data. 

Alternatively, the distance measure (used to assess the similarity of gene profiles) underlying 
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the clustering can also be modified to integrate the data. In the shrinkage distance approach, the 

distance between a pair of genes observed in the direct relational data is reduced by a user-

determined shrinkage factor. In the combined distance approach a graph-based distance 

measure constructed for the direct relational data is combined with the distances for the indirect 

data into a single distance score [10, 11]. Lastly, what we term the ‘graph overlay method’ is 

often presented in applied papers dealing with multiple networks that are combined into a 

single graph [3]. In this approach, both indirect and direct relational data are converted into a 

graph; these graphs are then overlaid and informally assessed. 

 

The active subnetworks approach and the combined distance approach both emphasize the 

importance of the direct relational data and are therefore predicated on broad coverage of such 

data; that is, a high percentage of interactions between genes in the relevant modules need to be 

observed.. This coverage requirement limits the utility of these algorithms for applications in 

genomics research.  

 

In contrast to these approaches, our emphasis is on clustering the indirect relational data, using 

the direct relational data as auxiliary information (avoiding the undesirable requirement for 

high coverage), leaving the shrinkage distance and overlay approaches as suitable competitors 

to our integrated clustering procedure. The shrinkage distance approach integrates the data 

before clustering, making it vulnerable to false positives in the direct relational data. The 

overlay approach, on the other hand, integrates the data after the clustering, relying heavily on 

suitable individual clusterings. Our integrated clustering approach uses the direct relational data 

in conjunction with the likelihood in the search for the best clustering solution, leading to 

superior performance in our application of the algorithm to the integrated clustering of gene 

profiles derived from yeast mutant phenotypes from [2] and direct relational data in the form of 

protein-protein interactions extracted from [12] as we show below. 

 

Our method uses the stochastic block model for relational data clustering based on graph 

processes we introduced earlier (Chapter 3). Postulating an unobserved assignment of genes to 

blocks (clusters) and using a likelihood for the graph process given a candidate labeling, the 

algorithm delivers for each pair of genes an estimate of the co-clustering probability that 

measures how likely it is that genes are in the same module. Because our method uses a 

relational data structure, incorporating direct relational data in the form of a prior probability 
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distribution in the algorithm is straightforward (Chapter 3). Here we consider as a case-study 

the integration of protein-protein interactions into the clustering of yeast-mutant phenotype 

profiles. We show that in this case, the integrated clustering offers considerable improvements 

in the co-clustering rates of genes within known functional modules compared to the clustering 

ignoring the prior information, even if the protein-protein interactions contain a high proportion 

of false positives.  

 

4.2 Results 
 

4.2.1 Direct and indirect data reveal different structures 
 

The CHS6 data set containing the gene profiles used in this study was introduced earlier 

(Chapter 3); it is a set of 329 gene profiles selected from [2]. The protein-protein interaction 

(PPI) data was extracted from [12] (using the extended set of interactions given there) and 

combined with interaction data in the SGD [13]. We selected the interactions matching the 

gene-pairs contained in the CHS6 data, giving 246 unique pairwise interactions.  

 

The PPI data, depicted in Figure 4.1, reveals that several of the known modules also exhibit 

high within-module connectivity (all graph displays in this paper were obtained using 

Cytoscape [14]). The Class B/C, Garp, CCV and DNA complexes are visible as tightly 

connected subgraphs, as is a part of the AP1 module. The PPI data contains 162 interactions 

between genes that are annotated in different modules; many of these interactions are likely 

false positives. As customary in the analysis of PPI data to deal with false positive interactions, 

we clustered the PPI graph using the MCL graph clustering algorithm [15, 16] (in this paper we 

always use version 06-058 with default settings); our results below refer to the clusters derived 

from the PPI graph. 

 

The clustered gene profiles, using the stochastic block model without prior information (with M 

= 40 and r = 10), also reveals some clusters corresponding to known modules (Figure 4.2; 

Table 4.1 gives the summary statistics). The Class B/C module appears fused with the Retromer 

and Escrt modules and the AP1 module appears as part of a larger cluster. There are also three 

clusters of size greater than 5 that have no clear functional association. 
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The two data sources reveal complementary, but differing structures (Table 4.1, Figure 4.2). 

The Escrt and Retromer modules are part of a larger cluster for the gene profile data, but appear 

as small individual clusters for the PPI data. The AP1 module is also represented by a tight and 

pure cluster in the PPI data but as part of a much larger cluster in the gene profile clustering. On 

the other hand, only two genes of the Garp module appear as a block in the gene profile 

clustering but this module appears as a part of a cluster of size 8 in the PPI data. The CCV 

cluster revealed by the PPI data was not observed in the available gene profile data. The 

clustered PPI data reveals many small clusters not found in the gene profile clusters, but the 

mixed annotations and small sizes makes it hard to judge which could be subsets of functional 

gene modules. The gene profile clustering reveals a few larger clusters with mixed and sparse 

annotations, possibly including genes in the cluster that are not part of the associated module. 

 

4.2.2 Integration of prior information improves clustering 
 
We evaluated the three strategies identified above of incorporating prior information: the 

shrinkage distance method, the graph overlay method and our stochastic block method. We 

evaluated two issues concurrently: 1) Does the incorporation of prior information improve the 

performance of the respective method, as compared to the method not using prior information 

and 2) Which methods perform best. As metrics for assessing the utility of prior information in 

the clustering of gene profiles and to compare the performance of different methods, we used 

the rate of true positive predictions, PPV (the number of true positive relationship predictions 

divided by the number of all predictions) and the sensitivity, the rate of true interactions 

recovered (the number of true positive predictions divided by the number of all available true 

interactions). To evaluate the stochastic block models, we applied a threshold to the estimated 

co-clustering probabilities to obtain binary relationship predictions (pairs of genes with an 

estimated co-cluster probability above the threshold are predicted to be in the same module). 

Note that these predicted relationships are not transitive. 

 

The shrinkage distance method [10, 11] incorporates the PPI data in the distance measure by 

reducing the distance of pairs of genes which are a priori related by a pre-defined shrinkage 

factor (see Materials and methods). We use this shrinkage distance with varying shrinkage 

factors in conjunction with our stochastic block model; i.e. we use the shrinkage distance to 
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compute the pairwise distances for the gene profiles which are subsequently clustered using the 

stochastic block model (without using prior information).  

 

To apply the graph overlay approach to our data, we first applied the stochastic block model 

(not using prior information) to the gene profile data.  Thresholding the estimated co-clustering 

probabilities yields a graph of predicted relationships between genes. This graph is then 

overlaid with the PPI graph, and subsequently clustered with MCL to obtain predicted modules. 

 

The integration of PPI improves all methods (Figure 4.3). The shrinkage distance method 

performs best at an intermediate choice of the shrinkage parameter, but it has a higher PPV than 

the clustering not using prior information only at thresholds corresponding to low sensitivity. 

The graph overlay method has a higher sensitivity than the PPI data clustered by itself. The 

stochastic block model using prior information has a higher PPV at all levels of sensitivity than 

the stochastic block model without prior information. 

 

Overall, the stochastic block model using prior information performed best. It outperformed 

both the stochastic block model without prior information and the stochastic block model using 

the shrinkage distance uniformly, offering a higher PPV at each given sensitivity. The overlay 

method is the most competitive for the co-cluster graph derived at higher thresholds 

(corresponding to fewer edges) but the performance of this method deteriorates at a threshold of 

0.3 for the estimated co-clustering probabilities. The union graph is a good structure for 

capturing complementary information, but it has no effective use for ‘double’ edges (pairs that 

are present in both co-cluster and prior graph). The stochastic block model, on the other hand, 

incorporates additional information by modifying the objective function, taking into account the 

presence of ‘double edges’, which could also be extended to incorporate more than one type of 

prior information.  

 

The stochastic block model using the protein-protein interactions delivers high quality clusters, 

extending the PPI clusters and improving the clusters obtained without using prior information 

(Figure 4.4 and Table 4.1, compared to Figures 4.1 and 4.2). Compared to the clustering not 

using prior information, the Class B/C module separates from the Escrt and Retromer modules 

and the Garp cluster is new. The clusters with sparse annotations from the clustering without 

prior information are mostly retained. The stochastic block model with prior information 



 

 98

delivers the most suitable clustering for follow-up studies, striking a balance between the tight 

PPI clusters and the larger, but noisier gene profile clusters. It also eliminates many small 

clusters, leaving only few candidate modules compared to the PPI clustering. 

 

The improvement of the estimated co-clustering probabilities within modules through the 

incorporation of PPI is shown in Figure 4.5A for the Garp module and in Figure 4.5B for the 

ClassB/C module (although the incorporation of prior information may not always lead to 

improved estimated co-clustering probabilities within a module; see the DNA module example 

in Figure 4.5C). The improvement in estimated co-cluster probability is not just for pairs related 

in the prior data, but also for other pairs within the module, showing the power of integrated 

clustering. The incorporation of prior data also broke the continuous spectrum of estimated co-

cluster probabilities obtained when not using prior information into well-differentiated groups, 

corresponding to ‘within’ and ‘between’ module edges (Figures 4.5 A and B). 

 

4.3 Discussion 
 

The stochastic block method, using prior information, outperforms competitive methods and is 

able to identify relevant gene modules in this difficult data set better than the stochastic block 

model not using prior information. The estimated co-clustering probabilities it provides are a 

useful measure for the prioritization of follow-up experiments.  

 

A class of algorithms not considered here are clustering methods that represent the gene 

profiles as vectors in a high-dimensional feature space [17, 18], extended to allow the 

incorporation of prior data [19]. Note however, that the feature-space methods cannot readily 

incorporate prior relational data [20]. 

 

The shrinkage and overlay methods could be used with any suitable clustering algorithm. 

However, using the same algorithm for the competitive methods as for our method allows us to 

isolate the impact of prior data on the results. 

 

The overlay method is most competitive in this application but it only works well in sparse 

graphs. This problem will be exacerbated if more than one set of prior information is to be 
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incorporated. Future research will be directed towards the inclusion of such multiple priors (for 

example joint integration of functional categorization such as GO [21] and protein-protein 

interactions). 

 

Clustering is now an essential tool in the arsenal of the applied researcher. As cellular systems 

are studied in more depth, more data and information becomes available. Data is typically 

noisy, so it is important to take advantage of this information to deliver quality predictions for 

follow-up studies. This paper has demonstrated the utility of the use of prior information in the 

stochastic block model in the important example of integrated clustering of protein-protein 

interactions and yeast mutant phenotype profiles.  

4.4 Materials and methods 
 

4.4.1 Data preprocessing 
 

The CHS6 data (introduced in Chapter 3) is a subset of 329 genes measured under 82 

conditions selected from [2] according to their mutant phenotype in an independent screen. The 

gene profile data was normalized by dividing by the standard deviation for each condition. The 

similarity of two gene profiles was computed as one minus the correlation of these two profiles.   

 

Documented protein-protein interactions used as prior knowledge were downloaded from the 

yeast community database SGD on March 20, 2007. In pre-processing, redundancy was 

removed.   

 

The ‘DNA module’ is a broad category of genes which participate in a variety of modules 

related to the integrity and production of DNA in yeast, such as DNA repair and DNA 

replication. 

 

4.4.2 Stochastic block model 
 

The model is introduced in detail in Chapter 3. For the Gibbs sampling procedure, parameters 

were set to 110 iterations, of which the initial 10 iterations were discarded as the burn-in period 



 

 100

for the sampler. The prior co-cluster probability was set to 0.99, if an edge was present in the 

PPI data (called α in Chapter 3), or 0.5 if no edge was present (called β in Chapter 3). Results 

were not very sensitive to changing α to other values close to 1. 

 

4.4.3 Shrinkage distance method 
 

The shrinkage distance method introduced in [11] computes a distance from gene profiles using 

a given distance function d and a set of known functional relationships between genes. The 

function d is then ‘shrunk’ by a factor s (0 < s < 1), if a pair of genes has a functional 

relationship, that is if x and y are two gene profiles, d*(x,y) = s * d(x,y) if the two corresponding 

genes are related, and d*(x,y) = d(x,y) if not. In [11], this method is applied to functional 

categories and used with a customized algorithm. We adapt the philosophy here and use 

observed protein-protein interaction as ‘functional relationships’. We use the stochastic block 

model as the clustering algorithm. 
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4.5 Tables and figures 
 

4.5.1 Tables 
 

Table 4.1: Recovery of known gene modules in clusterings of protein-protein interaction data. 

Column A: Gene modules known to be relevant for the CHS6 data; number of constituent genes 

given in parentheses. Columns B – D: results of various approaches to identify biological 

modules in the CH6 data; reported as (number of genes from the given modules in 

cluster)/(number of genes in cluster).  Column B: PPI data (Figure 4.1) clustered with MCL 

(version 06-058 with default settings).  Column C: stochastic block model result, no prior 

information used.  Column D: stochastic block model, using the PPI data as prior information. 

The MCL clustering revealed in addition two clusters of size 7, three clusters of size 5, 5 

clusters of size 4, 11 clusters of size 3 and 26 clusters of size 2 (the complete set of clusterings 

for column C is given in Figure 4.2; for column D in Figure 4.4)  

 

 

(A) Module (B) PPI data processed 

with MCL 

(C) Stochastic block 

model, no prior 

(D) Stochastic block 

model with prior 

Class B/C (9) 9/18 7/17 8/13 

Escrt (9) 3/3 4/17 8/15 

Garp (5) 5/8 2/2 4/6 

AP1 (5) 4/6 5/17 5/16 

Retromer (4) 3/4 3/17 4/15 

DNA (8) 3/3 4/7 5/7 

CCV (5) 4/6 1/17 1/2; 1/15  
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4.5.2 Figures 
 

Figure 4.1: PPI network extracted from [12] for the genes contained in the CHS6 data.  

Selected gene modules are identified by color. 
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Figure 4.2: Stochastic block model clustering (M = 40, r = 10) of the gene profiles (not using 

prior information).  

The graph displays edges where the estimated co-clustering probability is greater than 0.5.  
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Figure 4.3: Comparison of performance of methods.  

The PPV is plotted against the sensitivity; lines are obtained by decreasing the threshold for the 

co-cluster probability from stringent (threshold=1) to weak (threshold=0). Dots on the line 

corresponding to the stochastic block model using prior information indicate thresholds of 0.6, 

0.5, 0.4 and 0.3.  
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Figure 4.4: Integrated clustering of the gene profiles (M = 40, r = 10).  

The graph displays edges where the estimated co-clustering probability is greater than 0.5. 
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Figure 4.5: Impact of prior information on co-clustering probabilities (multiplied by 100).  

A shows the estimated co-clustering probabilities for the Garp module, B for the ClassB/C 

module and C for the DNA module. The probabilities are split by method (with and without 

prior) and by nature of relationship (within module, between module and outside). 

Relationships contained in the protein-protein interaction data are indicated by a red triangle. 

The plotted symbols are jittered along the x-axis to reduce overplotting. 

 

A 
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Chapter 5: Discussion 
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5.1 Contributions of this thesis 

 

Clustering methods are and will continue to be central to the interpretation of experimental data 

in genomics. There are an increasing number of assays that query relationships between genes, 

producing data for both direct and indirect interactions. Beyond the assays producing data 

analyzed in this thesis, there are high-throughput approaches in use for study of co-localization 

within cellular compartments, in-situ expression (providing two dimensional RNA or protein 

expression patterns from slices of an organ or organism), protein-protein interaction data from 

mass spectrometry, and more. In short, new approaches that provide a capacity to incorporate 

data of diverse form and character have a receptive and waiting audience.   

 

Clustering methods will also remain important because gene modules can be different in 

different cell types. There is increasing evidence that regulatory systems in cells rely on 

combinatorial mechanisms. Subsets of a large group of proteins called transcription factors 

come together in various combinations to activate the expression of specific sets of genes, each 

of these sets being a gene module in our terminology. For example, there is now evidence that 

there are many types of neurons, and that the differences between these types are driven by 

combinatorial control of a set of transcription factors [1]. Deciphering these combinatorial 

mechanisms that are active in subtypes of cells will require more detailed experiments. 

 

While standard clustering algorithms have been used successfully in many applications in 

genomics, output from standard clustering algorithms has to be interpreted with care in the 

presence of noise, which is prevalent in genomic data. Since these algorithms always produce a 

clustering, regardless of the nature of the input data, noise can force genes into the same cluster 

that are functionally unrelated. 

 

This thesis introduces methods based on ranked relational data for the unsupervised discovery 

of functional modules of genes. Ranked relational data captures information in the data beyond 

binary pairings, while maintaining the universality and utility of relational data structures. 

Viewing ranked relational data as a ranking of items also allowed us to develop probabilistic 

clustering methods based on classical likelihoods developed for the analysis of horse races. Our 

probabilistic methods allow the determination of confidence scores for clusters and the 
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integration of prior knowledge about direct relationships (such as protein-protein interactions). 

Our approach is robust to noise in the data and provides reliable prediction of true blocks of 

small size. 

 

5.2 Topics related to this thesis 

 

5.2.1 Feature based clustering 

 

Gene profiles, which are measurements of a phenotype or an expression collected under a 

number of conditions, can be represented as a feature vector in a vector space. There are many 

clustering algorithms, such as k-means and others, that use this representation [2], as well as 

probabilistic approaches that have been used in genomics [3, 4]. These algorithms have 

drawbacks, however. The number of conditions measured is often high (leading to a high-

dimensional feature space) and the values measured may be categorical, making probabilistic 

approaches that rely on a distribution for the feature vectors less attractive. We have also seen 

in Chapter 4 that the integrated clustering of direct relational data and gene profiles may not be 

straightforward [5].  

 

5.2.2 Feature selection and geneset selection 

 

In experiments with many conditions, it is often of interest to distinguish conditions that allow 

one to identify a gene module from conditions that do not help in identification (often called 

“feature selection”). Feature selection is not easily accomplished for gene profile data, if the 

gene profiles are converted into relational data using a distance (or similarity) measure that 

summarizes across all conditions. To accommodate feature selection, avoiding the use of a 

distance measure and instead representing genes and conditions as nodes in a graph which is 

subsequently clustered may be a promising approach [6]. See also [7] for a more general 

application of such data structures.  
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Which set of genes is selected for clustering may have substantial influence on the clustering 

results. In the MISO method for example, the isolation p-values might depend on the nature of 

gene modules in the data. Since MISO depends on the ranking of the data, the presence of 

multiple gene modules with comparable within-module similarities will lead to later birth of the 

full modules as opposed to the situation where only one of these modules is present in the data.  

However, this dependence of the clustering result on the selection of genes is true for most 

clustering methods, since the identification of clusters and the discrimination of genes into 

clusters will depend on the relative density and isolation of potential clusters. 

 

 

 

5.2.3 Model extensions 

 

This thesis considers only simple stochastic block models, with homogenous ‘strength’ 

parameters for the within block and between blocks relationships. Extensions could be 

considered that relax these constraints, but would be useful only if a suitable estimator for the 

strength parameters could be found. 

 

We also used prior information only in binary form. This restriction can be relaxed, at the 

expense of a moderate increase in computing time, if the database used records a reliability 

coefficient (such as WI-PHI [8]). 

 

The greatest obstacle to the utility of the methods proposed is the computational complexity 

(discussed in Chapter 3). The stage-wise form of the likelihood is a precise model for the graph 

process, but implies a large computational burden. A potential avenue for improvement are 

approximations to the likelihood computations. The label update step for a given gene, for 

example, could potentially be based only on the first m edges hitting the node, with m being 

much smaller than the number of genes. 
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5.2.4 Probabilistic models and statistical inference 

 

Our probabilistic procedure produces confidence scores for genes being in the same clusters, 

but we are hesitant to recommend cut-offs classifying gene-gene relationships as ‘present’ or 

‘absent’ without establishing a model that appropriately reflects the data. Such a model could 

be used to evaluate such cut-offs and establish realistic performance estimates for future data, 

possibly even for statistical inference eliminating the need for expensive follow-up studies.  

 

A model for relational data could be based on a parametric model for the observed similarities 

like the one suggested in [9]. However, modeling genomic data is ambitious and often regarded 

skeptically by biologists. The module clustering assumption used in Chapter 3 reduces complex 

cellular systems to relationships between genes. Clearly there are biological limits to our 

fundamental assumption that ‘genes within a module will produce similar profiles’.  In a living 

cell, the delineation of what genes are within a module and outside a module might be difficult. 

A related problem is the fact that genes within modules have differing functions, leading to 

heterogeneous gene profiles within a module. 

 

5.3 Future research 

 

A useful and methodologically close extension of our model would be to integrate multiple 

gene profile datasets. Experiments are often done in different labs and may even come from 

very different assays, making data standardization for subsequent integration difficult. 

Combining the ranked relationships may offer an effective way to circumvent this. 

 

For this extension, however, deviations from the stochastic block model we consider may be 

necessary as a gene may belong to one module in the first dataset and to a different module in 

the second dataset. Also, to extend the method to gene expression datasets, hierarchical 

structures for the module parameters may be useful. When considering gene regulatory 

networks bipartite graph structures on the gene-gene relationships may also provide additional 

flexibility [6, 10, 11]. Incorporating the dynamics of gene modules into the model could also be 
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important in the analysis of time-course studies, as gene modules are often assembled 

transiently (for example, in the response to stress [12, 13]).  

 

Other model specifications that capture the graph process evolution are also available and may 

provide advantages over the models considered in this thesis. Models that map relational data 

into a feature space are used in the social sciences [14]. It may also be possible to model the 

distances directly (by using exponential random variables, such as suggested in [9]). Such an 

approach could be more effective since it uses more information than the rank-based approach. 

 

The analysis of high-dimensional data sets to uncover the functional organization of genes 

within a cell remains a challenging and important task. New assays, such as RNA interference 

[15], are constantly emerging to collect such data. These assays offer more and more insight 

into the complex networks of genes within cells; improving clustering methods ensures that 

scientists gain the most from these novel information sources. 
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