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Abstract

The ultimate goal in the manufacturing of a part is to achieve an economic production plan with 

precision and accuracy in the first attempt at machining. A physics-based comprehensive model-

ing of the machining processes is a fundamental requirement in identifying optimal cutting condi-

tions which result in high productivity rates without violating accuracy throughout the part 

production process. 

This thesis presents generalized virtual simulation and optimization strategies to predict and opti-

mize performance of milling processes up to 3-axis. Computationally efficient mathematical 

models are introduced to predict milling process state variables such as chip load, force, torque, 

and cutting edge engagement at discrete cutter locations. Process states are expressed explicitly as 

a function of helical cutting edge - part engagement, cutting coefficient and feedrate. Cutters with 

arbitrary geometries are modeled parametrically, and the intersection of helical cutting edges with 

workpiece features are evaluated either analytically or numerically depending on geometric com-

plexity. The dynamics of generalized milling operations are modeled and the stability of the pro-

cess is predicted using both time and frequency domain based models. These algorithms enable 

rapid simulation of milling operations in a virtual environment as the part features vary.

In an effort to reduce machining time, a constraint-based optimization scheme is proposed to 

maximize the material removal rate by optimally selecting the depth of cut, width of cut, spindle 

speed and feedrate. A variety of user defined constraints such as maximum tool deflection, 

torque/power demand, and chatter stability are taken into consideration. Two alternative optimiza-

tion strategies are presented: pre-process optimization provides allowable depth and width of cut 
ii



during part programming at the computer aided manufacturing stage using chatter constraint, 

whereas the post-process optimization tunes only feedrate and spindle speed of an existing part 

program to maximize productivity without violating physical constraints of the process. Opti-

mized feedrates are filtered by considering machine tool axes limitations and the algorithms are 

tested in machining various industrial parts.

The thesis contributed to the development of a novel 3-axis Virtual Milling System that has been 

deployed to the manufacturing industry.
iii
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Chapter 1

Introduction

Milling operations are most widely used to more accurately produce net shapes in the manufactur-

ing industry. Applications can be found in the milling of dies and molds, jet engine parts made of 

heat resistant alloys, aircraft fuselage and wing panels, and biomedical parts. The machining of 

small parts may technically only take a few minutes in overall mass production applications, 

while dies, molds and aerospace parts in fact may take several days of milling when accuracy and 

productivity rates become key determinants in the economic survival of the manufacturing indus-

try.

Both the accuracy and surface quality of machined parts are influenced by the relative vibrations 

between the machine tool and part structures, the selection of proper tool geometry and grade, the 

positioning accuracy, and the thermal stability of the computer controlled machine tools. Produc-

tivity within machining operations is measured by the volumetric material removal per unit time, 

which is desired to be as high as possible within the physical limitations of the machine and the 

processes.

There is no mathematical model of integrated machining physics used in the industry. Process 

planners select cutting conditions, i.e. depths of cut, spindle speeds, and feedrates based on their 

accumulated experience, which is gained through trial and error over a period of years. When a 

part becomes considerably more costly, such as with an aircraft wing panel or a large stamping 

die, planners select the most conservative material removal rates in order to avoid scrapping of the 
1



Chapter 1. Introduction   
parts caused by tool failure, vibrations, and overloading of the machine tool spindle. Neverthe-

less, it is a preferred approach to test the machining operations in a virtual environment and 

achieve an accurate and economically sound part that has been machined during the first trial on 

the factory floor. This scenario is ultimately possible if the physics behind the machining process 

is modeled and integrated to computer aided manufacturing systems where parts are graphically 

and virtually machined ahead of real-time production. While the geometric simulation of the part 

machining is already available, the physics behind machining process has not been developed 

with sufficient accuracy and computational efficiency to achieve a true Virtual Milling System. 

This thesis presents a novel 3-axis Virtual Milling System with integrated mechanics, dynamics 

and optimized process planning algorithms.

The mechanics and dynamics of milling for arbitrary cutters and workpiece engagement condi-

tions are modeled. First, the chatter vibration free spindle speeds, depth and width of cut are pre-

dicted with torque and power constraints of the machine. Closed form expressions are developed 

to predict cutting forces, torque, and power when the cutter-part engagement conditions can be 

mathematically defined. Cutters and engagements with arbitrary shapes are handled by the new, 

computationally efficient numerical methods. As the cutter travels along varying part features, the 

process states such as maximum forces, torque, power, chip load, tool deflection and vibrations 

are predicted. The spindle speed and feedrates are automatically adjusted to achieve highest mate-

rial removal rate while respecting the physical limits of the machine and cutting tool. The devel-

oped algorithms are integrated to a prototype Virtual Machining System, and its effectiveness is 

demonstrated in machining a sample gear box cover and a stamping die for a passenger car door 

panel.
2



Chapter 1. Introduction   
The thesis is organized as follows: 

A review of related literature is presented in Chapter 2. The generalized mathematical model of 

parametric tool geometry and process mechanics are presented in Chapter 3. The generalized 

model uses parametric cutting tool geometry to predict resulting chip load force distribution along 

the cutting edge using closed form formulations as a function of arbitrary cutter-part intersection 

geometry. Process outputs such as cutting forces, bending moment, tool deflection, spindle torque 

and power consumptions are predicted using mechanics of 3-axis milling operations. Computa-

tionally efficient, closed-form formulations are derived for cutters with analytically defined cut-

ting edges. When the cutter and part features have arbitrary geometries, computationally efficient 

numerical algorithms are employed.

Chapter 4 is dedicated to generalized dynamics of 3-axis milling operations. The chatter stability 

of the milling operations are solved both in frequency and time domains. A detailed comparison 

of various stability models is also presented. Moreover, the analytical zero-order solution avail-

able in literature is generalized to model stability of end mills with complex geometries.

In Chapter 5, virtual optimization of milling operations based on physics of metal cutting is dis-

cussed. First, the optimal spindle speed, depth and width of cut are identified by considering the 

chatter stability, torque and power limits of the machine to assist process planners during NC pro-

gramming. Another optimization scheme that is proposed is based on the mechanics of cutting 

that varies along the tool path as the part geometry changes dynamically. This process is modeled 

at each tool location along the NC tool path; maximum values of chip, force, deflection, torque, 

and power are evaluated; chatter stability is assessed, and cutting parameters (feedrate and spindle 

speed) are automatically adjusted to avoid violating any of the constraints. Lastly, a filtering algo-
3
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rithm is developed to eliminate sudden changes in optimized feedrates that cannot be achieved 

due to both limited acceleration and deceleration of the motors. The thesis is concluded with a 

short summary of the main results and contributions.
4



Chapter 2

Literature Review

2.1. Overview

Contrary to advancement in machine tool technology and milling tool development, cutting 

parameters such as spindle speed, feedrate, depth and width of cut are selected conservatively to 

avoid the risk of damaging costly workpieces and machine tools during manufacturing. There is 

an increasing demand for virtual process simulators that are capable of predicting performance 

measures such as cutting forces, tool deflection, workpiece/tool vibrations, spindle torque and 

power demands. Complex parts with many geometric features lead to dynamically changing 

engagement conditions during machining that require automatic selection of cutting parameters 

along the tool path to fully exploit the capacities of machine tool and milling cutter. Hence, virtual 

process simulation and optimization are essential components to maximize material removal rates 

while maintaining accuracy of the part in milling operations. The areas of kinematics of milling, 

dynamics of milling and chatter stability, milling process simulation and cycle time optimization 

are the foundations to achieve virtual machining studied in the thesis, and the related past 

research  reported in the literature is reviewed in this chapter.

2.2. Kinematics of Milling

Milling is an intermittent multi-point cutting operation, in which each tooth is in contact with the 

workpiece for a fraction of a spindle period. Tooth contact time varies as a function of width of 

cut, spindle speed and number of flutes. Unlike turning where chip thickness is constant, milling 
5



Chapter 2. Literature Review
tool follows a trochoidal path due to simultaneous feed and rotation motions leading to a variable 

chip thickness. Two different methods shown in Figure 2.1. are observed in planar milling: up 

(conventional) and down (climb) milling. In up milling, chip thickness increases as the cutter 

rotates and the direction of the cutter rotation opposes the feed motion. In down milling, on the 

other hand, the initial chip thickness, where tool enters into the workpiece, is at its maximum and 

decreases until it leaves the workpiece at zero chip thickness. The direction of the cutter rotation 

is same as the feed motion in down milling. 

The early research [1]-[7] focused on chip formation in milling and estimated power consumption 

of the spindle during machining. Martelotti modeled the kinematics of milling where a tooth fol-

lowed a trochoidal path resulting in a complex chip model [8]. He showed that the chip thickness 

in planar milling can be approximated by a simpler expression when radius of the cutter is large 

compared to the feed:

, (2.1)

where h is the instantaneous uncut chip thickness, c is the feed per tooth and  is the tooth immer-

sion angle. 

h φ( ) c φsin⋅=

φ

Y

X
X

φst= 0 Feed

φ
φex= π

Feed

Y

(a) (b)
Figure 2.1 : Methods of milling operations: (a) up milling; 

(b) down milling.
6



Chapter 2. Literature Review
Sinusoidal chip thickness approximation in Eq (2.1) does not hold in 3-axis profiling and circular 

helical milling where the cutting tool is fed parallel to the cutter axis as well as perpendicular to it 

(see Figure 2.2). In order to calculate uncut chip thickness for general 3-axis milling applications, 

Fussell et al. [9] used the vector in the direction of travel to estimate how chip was generated in 

the case of a ball end mill. Projection of the travel vector onto the surface normal was used to cal-

culate the uncut chip thickness. Lazoglu et al. [10]; on the other hand, separated conventional hor-

izontal feed motion from downward/upward motion, and calculated uncut chip thickness 

contributions of each motion individually. Resultant uncut chip thickness was then obtained by 

combining chip thickness values from both motions.

A great selection of cutting tools are used in the industry to machine different parts. In the aero-

space industry, cylindrical end mills are heavily involved in roughing and semi-finishing of alu-

minum ribs; whereas, helical ball and bull nose end mills are mostly preferred by the die and mold 

industry in machining sculptured surfaces. In the literature, milling mechanics had been devel-

oped for specific types of cutters such as face [12], cylindrical [13]-[15], ball end [16]-[18], and 

tapered ball end mills [19]. The most general approach was proposed by Altintas and Engin [20]. 

Figure 2.2 : 3-axis milling examples (source: Esprit [11]).
7
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In their model, standard Automatically Programmed Tools (APT) definition of a solid end mill 

was adopted and milling tools were successfully generalized by wrapping a helical flute around a 

parametrically defined cutter body. Using the exact kinematics of milling, the undeformed chip 

thickness distributions along flutes were accurately calculated in the presence of structural vibra-

tions.

2.3. Modelling of Milling Forces

Analytical and semi-analytical prediction of milling forces have been intensively researched in 

the past to avoid empirical techniques, which require an abundant amount of experimental data. In 

the late 1920s, Salomon [21] expressed the specific cutting pressure as an exponential function of 

the chip thickness based on the work done with a straight tooth cutter. Sabberwal and Koenigs-

berger [22][23] used similar exponential specific cutting pressures to model milling forces analyt-

ically. This model is known as mechanistic model and the instantaneous force acting at right 

angles to the chip area is calculated by the product of the chip area and the specific cutting pres-

sure (K):

, (2.2)

where  is the specific cutting pressure, C and m are constants depending on the work-

piece material and the milling cutter,  is the chip area, a is the depth of cut and h is the instan-

taneous uncut chip thickness. This approach has been adopted by many researchers [13][24]-[26]

in the analysis of milling forces.

Armarego [27][28] defined an alternative form of mechanistic modeling by separating shear 

deformation (cutting) from the edge effect (rubbing). Cutting coefficients were defined based on 

the classical oblique model [28][29][30], whereas edge forces were related to rubbing of the work 

FCutting Force K a h⋅ ⋅=

K C hm⋅=

a h⋅
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material on the flank face of the cutting edge. In this thesis, the linear edge force model by Armar-

ego and Epp [27] is adopted to formulate the milling forces. The linear edge force model 

expresses the cutting force as a function of cutting coefficients, axial depth of cut and chip thick-

ness as:

, (2.3)

where  are the edge and cutting force coefficients, respectively. In order to calculate 

cutting forces, cutting force coefficients need to be identified for the work material. One of the 

most widely studied models to determine cutting force coefficients is the mechanistic approach 

[13][24][31]. In this model, cutting forces are measured while keeping immersion constant and 

varying feedrates. Then, linear regression is applied to fit an approximate line to the average of 

measured cutting forces, which leads to identification of the unknown cutting force coefficients 

[30]. Since geometric properties of a milling cutter such as helix angle, rake angle, relief angle; 

workpiece material and other variables are all embedded in cutting coefficients, identified cutting 

coefficients become valid only for a specific cutter and a workpiece material.

Another approach to determine cutting coefficients is based on an orthogonal to oblique cutting 

transformation. An orthogonal cutting database composed of shear stress, shear angle and friction 

coefficient identified from orthogonal cutting tests is transformed into three dimensional oblique 

milling mechanics [30]. The advantage of this method is that the coefficients obtained represent 

the true behavior of the material and local cutting edge geometry, and they are not limited to a 

specific tool geometry. Except for inserts having irregular rake face geometry with chip breaking 

grooves, this technique is applicable to end mills with arbitrary geometry, twist drills, boring and 

turning tools.

FCutting Force Ke a⋅ Kc a h⋅ ⋅+=

Ke, and Kc
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In an overview study, Smith and Tlusty [32] classified various models of the milling process into 

five groups:

(1) the Average Rigid Force Static Deflection Model: This model takes material removal rate as a 

basis for calculation of process outputs. Cutting force, static tool deflection, torque and power are 

assumed to be linearly dependant on material removal rate. This model is the simplest and the 

least accurate as there is no simple relationship between material removal rate and process out-

puts. 

(2) the Instantaneous Rigid Force Model: Force is computed on incremental sections of the helical 

cutting edge and the resultant force is calculated using vectorial sum of all incremental forces. In 

this model, cutter deflection in response to force does not cause any change in force. Sabberwal 

and Koenigsberger [23] presented the first model in this group.

(3) the Instantaneous Rigid Force, Static Deflection Model: This is similar to the previous model 

but static deflection of the tool is also considered under static loading. In this model, deflection of 

the cutter does not influence the uncut chip thickness, hence it does not affect the cutting forces. 

Form errors can be predicted at points where the helical flutes generate the finished surface.

(4) the Instantaneous Force with Static Deflection Feedback Model: The deflection of the cutter is 

computed and its influence on the chip thickness and the force is considered by Sutherland et al. 

[13] and Armarego et al. [33].

(5) the Regenerative Force, Dynamic Deflection Model: This is the most accurate and complex 

model of the milling process. The equations of motion are solved in the time domain in order to 

calculate the vibration of the tool. These vibration terms are then used to calculate instantaneous 

dynamic chip thickness, which results in dynamic cutting forces. Term "regeneration" is used to 
10
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emphasize that the effect of previous time steps are taken into account. Tlusty and Ismail [34] pre-

sented the time domain simulation of helical end mills by including the structural dynamics of the 

system. Sutherland and DeVor [35] utilized the regeneration model and improved their static 

model by considering dynamic cutting force as a feedback. Montgomery and Altintas [36] and 

Altintas and Lee [37] contributed significantly to the prediction of chip formation using the exact 

kinematics of milling. In their model, surface and cutter locations were divided into small ele-

ments so that exact chip thickness was calculated by intersecting the tool and the current surface 

at each time step (see Figure 2.3). Surface and cutter locations were calculated using dynamics of 

workpiece and cutter; therefore, nonlinearities such as the tool jumping out of cut and the influ-

ence of vibrations could be easily incorporated into their general dynamic model. By integrating 

the process along each cutting edge in contact with the workpiece, cutting forces, vibrations, and 

dimensional surface finish were predicted. Smith and Tlusty [38] used time domain simulation to 

obtain peak-to-peak force ratios, which were later used as a criterion in identification of stability 

limits. Tlusty and McNeil [24] and Sutherland and DeVor [13] have also contributed to dynamic 

modeling of milling processes using the regeneration technique. In this thesis, two of the above 

models are adopted for milling simulations. The instantaneous rigid force - static deflection model 

(the model #3) type of approach is developed for fast and efficient process simulation of a com-

plete part; whereas a detailed time domain simulation based on the regenerative force - dynamic 

deflection model (the model #5) is used to analyze a milling process with fixed cutting conditions 

(spindle speed, feedrate, depth and width of cut).
11
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2.4. Process Simulation

Mechanics of milling have been extensively studied in the past. It would be fair to state that the 

mechanics of milling to predict cutting forces and chip generation are well established when the 

cutter-part intersection boundaries are steady state and simple. Although metal cutting mechanics 

models still have room for improvements in modeling shear deformation and friction at the tool - 

chip interface [39], the current challenge is to predict cutting forces, torque, power, form errors, 

temperature and vibrations along a tool path as part geometry, i.e. boundary condition, varies. 

There are two fundamental challenges in achieving a functional, machining process simulation 

system: identification of cutter-part intersection along a tool path at discrete feedrate intervals; 

and development of computationally efficient process models.

There has been research effort in simulating the machining of parts in a CAM environment. Altin-

tas and Spence [26] used constructive solid geometry to identify cutter-part intersection, and re-

Y

X

Exact Chip Thickness
Workpiece

End Mill

Previous Surface

Combined Dynamics
of Cutter, Workpiece,
and Machine Tool

Current Surface
(being generated)

Figure 2.3 : Exact kinematics of a milling tool for 
calculation of the chip thickness.
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formulated mechanistic milling process model to predict cutting forces; however, this approach 

was applicable only to planar operations along a straight line with simple cylindrical tools. Jerard 

and Fussel et al. [40][41][42] have contributed significantly in evaluating cutter-part engagement 

conditions with computationally efficient algorithms based on the Z-buffer method. In this 

method, the workpiece was broken into a set of evenly distributed discrete z direction vectors, 

with the length of each vector representing the depth of the workpiece. The intersection of the z 

vectors with the swept surfaces of the tool path envelope were used to update the workpiece. Cut-

ting forces were then calculated using the removed material volume and other geometric informa-

tion. Spence et al. [43][44] developed cutter-workpiece intersection for 2.5 D milling operations 

using constructive solid geometry, which was later transferred to the ACIS [45] Boundary repre-

sentation (B-Rep) modeller [46]. Yip-Hoi et al. [47] presented feature based cutter-part intersec-

tion model for cylindrical end mills using ACIS solid modeler. Although more accurate cutter-

part engagement surfaces can be obtained from solid modeling, computation time drastically 

increased due to surface-surface intersections. Weinert et al. [48][49] developed B-Rep based cut-

ter-part intersection and mechanistic models to predict process forces in milling. Abrari and 

Elbestawi [50] developed closed-form formulations for ball and cylindrical end mills by project-

ing the chip area onto a set of reference coordinate planes; however, this method cannot be gener-

alized if the cutter geometry gets more complex or if the kinematics of the process is not planar. In 

the feature-based machining area, other researchers mainly focused on the identification of geo-

metric features on a part to identify number, type, and sequence of machining operations, and this 

area is not within the scope of this work.
13
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In this thesis, cutter envelope - part intersection boundaries are identified by a commercially 

available algorithm [51]. Computationally efficient mathematical models are proposed to predict 

milling process state variables such as chip load, force, torque, and cutting edge engagement at 

discrete cutter locations. Process states are expressed explicitly as a function of helical cutting 

edge - part engagement, cutting coefficient, and feedrate. Cutters with arbitrary geometries are 

modeled parametrically, and the intersection of their helical cutting edges with workpiece features 

are evaluated either analytically or numerically depending on the geometric complexity. Process 

variables are computed efficiently for each cutting edge - part engagement feature through aggre-

gation of oblique cuts distributed along the helical flute to predict total force, torque and power 

generated at each feedrate interval. In order to decrease computation time, closed form solutions 

are proposed to capture only the maximum and minimum values of process outputs eliminating 

the need for complete time history simulation.

2.5. Process Optimization

It is difficult to achieve high productivity in milling as parts become more complicated with 

increased number of geometric features. Variation of a part geometry along the tool path results in 

constantly changing depth and width of cut; therefore, conservative machining parameters are 

preferred to prevent unforeseeable failures such as tool breakage and spindle stall. In one study 

[52], it was shown that the resultant force acting on a tool could increase by more than a factor of 

ten in a simple cornering cut. In order to increase productivity, process parameters should be 

assigned as the cutter-part intersection varies along the tool path. Bearing this objective in mind, 

many researchers have carried out volumetric analyses of the material removal rate (MRR) to 

schedule feedrate and to optimize the process. One of the early feedrate optimization schemes was 
14
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proposed by Wang [53]. He used solid modeling to calculate the swept volume, and adopted the 

specific energy method to calculate the spindle horse power requirement and the resultant force. 

Feedrate was then adjusted based on machinability constraints provided in handbooks. Since this 

method was based on pure volumetric analysis, it was not accurate in modeling the process. Ip et 

al. [54] proposed a fuzzy based MRR optimization approach to increase machining efficiency. In 

their model, an optimum feedrate for each cutting point in the machining of sculptured surfaces 

was calculated, and the cutting force was kept constant. The surface gradient and tool life were 

treated as fuzzy input variables. Commercial CAM packages are also based on volumetric analy-

sis ignoring the physics of the metal cutting process. VeriCut’s Optipath [51] and MasterCam’s 

HiFeed [55] perform feedrate scheduling based on the amount of material removed per unit time. 

Assuming that cutting forces are proportional to the MRR, and changing the feedrate accordingly 

may result in not only tool breakage and form errors above tolerance, but also spindle stall due to 

excessive loading.

Apart from volumetric approaches, some researchers concentrated on feedrate scheduling using 

physical constraints. In the early 1990s, Altintas [26] outlined a detailed flow chart of a compre-

hensive machining simulation and optimization scheme that considers not only the geometric fac-

tors but also mechanics and dynamics of milling, controller performance and feed drive dynamics 

as well as volumetric errors of a machine tool to compensate for machining errors and reduce 

cycle time by adjusting machining parameters (see Figure 2.4). Over the years, a large number of 

publications have been produced tackling problems related to individual areas; however, a sys-

tematic study of milling process simulation and optimization has not been conducted yet. Yazar et 

al. [56] used cutting force predictions for feedrate optimization in 3-axis milling and proposed 
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various rough milling strategies to reduce machining time and cost. Lim et al. [57] proposed cut-

ting path adaptive feedrate strategy to increase the productivity of sculptured surface machining 

subjected to force and dimensional constraints. The finished surface was divided into grids, each 

of which represented a control point where chip thickness, force, and deflections were calculated. 

Finding acceptable feedrate limits at each control point, a feedrate map was constructed for NC 

programmer so that proper feed value and direction could be selected. Bailey et al. [58] reduced 

machining time by adjusting the feedrate based on maximum chip thickness and force constraints 

depending on the type of the operation, i.e., roughing, semi-finishing, or finishing. Lazoglu et al. 

[59] optimized feedrates by keeping the predicted cutting forces at a desired constant value during 

sculpture surface machining. They compared two different feedrate scheduling strategies, one 

based on the material removal rate (MRR) and the other based on constrained force. It was shown 

that the MRR based feedrate scheduling led to higher feedrates violating physical constraints such 

as cutting forces, and chip load. The geometric intersection between tool and workpiece was used 

to simulate cutting forces by Fussell et al. [60]; however, their model was still discrete in a sense 

that the cutter was divided into thin slices and the intersection of each slice was used to calculate 

cutting forces. Budak et al. [61] approached the optimization problem from a chatter stability 

point of view. They showed that the MRR variation with respect to the axial depth of cut became 

a bell like curve depending on the natural frequencies in orthogonal directions of the cutting, i.e., 

feed and normal directions.

All of the proposed optimization methods presented thus far have focused on very specific milling 

operations with a dedicated constraint such as cutting force, chip load, stability or geometric vol-

ume removal. Hence, there is still a demand for a generalized optimization strategy that combines 
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different machining constraints including cutting forces, chip thickness, spindle torque-power, 

form errors on the workpiece and even stability of the system to determine the most efficient 

machining parameters.

2.6. Dynamics of Milling and Chatter Stability

When structural dynamics is taken into account, time-dependent and periodic cutting forces also 

become dependant on vibrations resulting in dynamic cutting forces. Depending on cutting condi-

tions, dynamic cutting forces lead to chatter vibrations, which occur in milling due to dynamic 

characteristics of the machine tool, workpiece and cutting process; and can be best explained by a 

phenomenon called regeneration of waviness. The regeneration phenomenon was first explained 

by Tlusty [62] and Tobias [63]. The mechanism of chip regeneration is as follows: when one of 

the flutes is in cut, vibration is initiated due to an excitation force. The vibrating flute starts to 
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leave a wavy surface behind, which is then cut by the next flute, which also vibrates and leaves 

another wavy surface behind (see Figure 2.5.). The final chip thickness is determined by the dif-

ference between the two wavy surfaces. Depending on the phase shift between these waves, the 

maximum chip thickness may grow exponentially while oscillating at a chatter frequency that is 

close but not equal to a dominant structural mode in the system [64]. Chatter vibrations leave a 

wavy and poor surface behind leading to increased cutting forces which may destroy the work-

piece, tool, tool holder and even the spindle. Like any other dynamical system, vibrations during 

machining can be stable, critically stable or unstable (chatter vibration) depending on the cutting 

conditions.

There have been numerous efforts in the literature to map out stability charts for milling opera-

tions. There are some difficulties in the resolution of stability for milling. In milling, cutting 

forces rotate with the tool rotation and excite the structure in different orthogonal directions with 

varying magnitude. Time dependant - trigonometric coefficients, which orient cutting forces and 

change the direction of excitation, are called the directional coefficients. Tlusty [62] approached 

this problem by applying his orthogonal cutting stability formulation to milling with an average 

directional coefficient as well as an oriented transfer function. He proposed the chatter-free axial 

depth-of-cut as:

, (2.4)

where  is the cutting coefficient, b is the radial depth of cut, d is the diameter of the tool, N is 

the number of teeth, and the term  is the real part of the transfer function oriented in the 

direction of chip thickness. Tobias [63] proposed a similar solution except that the cutting coeffi-
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cient was expressed as a complex number with the dependency on effective cutting speed and 

chip thickness. Moreover, he developed stability lobes by relating the phase of vibrations to the 

spindle speed. Later, Merritt [65] used feedback control theory to verify the theory developed by 

Tlusty and Tobias and used the Nyquist stability criteria to obtain stability lobes. Although these 

theories were widely accepted and used by many researchers, they lacked accuracy for most of the 

milling operations because the two coupled directions were reduced to one directional flexibility 

(like turning operation) with the necessary adjustments on the transfer function (G). 

Minis and Yanushevsky [66] applied the theory of periodic differential equations and obtained the 

resulting characteristic equation of infinite order:

, (2.5)

where  is the Kronecker delta, I is a (2m+1)-by-(2m+1) identity matrix, a is the depth of cut, 

 is the cutting force coefficient in tangential direction, (r,k) are harmonic numbers, i.e 

,  is the tooth passing frequency and  is the oriented transfer 

function, which consists of directional milling coefficients and two dimensional transfer func-
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tions. The equation above was truncated and numerically solved to determine the eigenvalues. 

Later, Budak and Altintas [67] solved Eq. (2.5) analytically, by considering the lowest Fourier 

mode (k=0) and  at the limit of stability (marginal stability) and obtained chatter free-

axial depth of cut as:

, (2.6)

where N is the number of teeth.  and  are the real and imaginary values of , which is 

obtained as an eigenvalue of the following equation:

 , (2.7)

where  is the oriented transfer function of the machine tool and workpiece in the feed and 

normal directions. Unlike Eq (2.4), the eigenvalue formulation in Eq (2.7) not only takes rotating 

cutting forces into account but it also allows dynamic excitation of orthogonal flexibilities indi-

vidually.

In recent years, stability of highly intermittent milling has been studied. When radial immersion is 

extremely small (e.g. less than 10% of the diameter), excitation forces (i.e. cutting forces) turn 

into impulses containing a large number of frequency components in their spectra. Stepan and 

Bayly et al. [68] studied intermittent machining by modeling dynamics of milling only in one 

direction. Two different sets of chatter frequencies were obtained from the criterion for stability 

obtained using the Floquet theory. The first set of frequencies referred to the Hopf bifurcation and 

was defined as:

 , (2.8)
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where  is the dominant chatter frequency and  is the tooth passing frequency. The 

second set referred to the Period Doubling Bifurcation leading to

. (2.9)

In addition to the Hopf Bifurcation, which is the type of bifurcation seen in traditional chatter, the 

Period Doubling (Flip Bifurcation) was shown to be a typical mechanism for stability loss in 

intermittent milling process. Davies et al. [69] also modelled intermittent milling by restricting 

structural flexibilities in the direction perpendicular to the feed (referred as Y axis) due to very 

low radial width of cut. In his model, the cutter was considered to be under free vibrations when it 

was out of cut, and delayed force vibrations within cut - since the ratio of time spent cutting to the 

spindle period was very small for low immersion milling. Combining these two vibration condi-

tions - one becoming the boundary condition of the other - the forced periodic motion of the tool 

for intermittent milling was obtained. Stability solution revealed two types of vibrations in the 

system affecting the stability: the Hopf Bifurcation with the emergence of a traditional chatter fre-

quency only and the Period Doubling (Flip Bifurcation) seen at odd multiples of the half-tooth 

passing frequency. Bayly et al. [70] proposed finite element analysis in time to solve stability in 

time domain for low immersion milling. The system was assumed to have a single-degree-of-free-

dom. Interrupted cutting was divided into two parts: in-cut and out-of-cut, similar to what was 

done in reference [69]. Time spent in-cut was divided into finite elements to model the interrupted 

cutting operations. A discrete system and the approximate solution was then matched with the 

analytical free response during out-of-cut. The complete, combined solution was cast in the form 

of a discrete map relating position and velocity at the beginning and end of each element to the 

corresponding values one period earlier. The eigenvalues of the linearized map were used to 
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determine stability. Bayly et al. [71], later, extended their stability analysis to cover two-degree-

of-freedom systems by expressing the equations of motion in a matrix-vector form. Stepan et al. 

[72][73] proposed an alternative analytical solution for stability prediction of general milling 

operations. In their model, the delay differential equation representing dynamics of milling was 

approximated by a series of piece-wise ordinary differential equations and stability charts were 

constructed by point-by-point investigation of the parameter domain, i.e., spindle speed and depth 

of cut. This model was called the Semi-Discretization approach and proved to be an efficient time 

domain based analytical solution for these delay differential equations. Olgac et al. [74] presented 

an analytical solution for the stability of linear time invariant time delay systems. Time delay in 

the equation of motion, which makes the system nonlinear, was replaced by a bilinear expression 

and the stability of the new characteristic equation of the system was checked by using the Routh 

Hurwitz criterion while a range of depth of cut and spindle speed was swept. Merdol and Altintas 

[75] revisited and solved the multi frequency form of the milling stability model presented by 

Budak and Altintas [67] for low immersion case, and proved that added stability lobes could 

equally well be predicted in the frequency domain. They focused on a single-degree-of-freedom 

system and compared the stability charts with the benchmark experimental tests presented earlier 

by Stepan and Bayly et al. [68].

When the dynamics of metal cutting are correctly modeled, the analysis of stability of a milling 

operation reduces to solving an eigenvalue problem as shown in Eq (2.5). Except for a special 

case (when only the lowest Fourier component of the directional coefficients is used), stability 

lobes are generated iteratively requiring numerous calculation of the eigenvalues. Unfortunately, 

the size of this eigenvalue problem increases considerably depending on the number of harmonics 
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taken into account in characterizing the directional coefficients; therefore, the standard calcula-

tion of eigenvalues between iteration steps becomes computationally expensive. Since the system 

defined by the characteristic equation varies slightly at each iteration step, eigenvalues and eigen-

vectors can be estimated providing an initial guess for the next eigenvalue solution. Eigenvalue 

re-analysis, the study of variation of eigenvalues and eigenvectors due to variations in system 

parameters, has long been studied by various researchers. Approximate models for eigenvalue 

calculations are constructed based on the following factors: accuracy of the approximation; effi-

ciency of the method (computational load); and ease of implementation [76]. One widely 

accepted re-analysis technique is the perturbation method used to calculate modal changes. Clas-

sical perturbation analysis [77]-[79] focused on calculation of distinct eigenvalues. Although the 

accuracy of the approximation can be improved by addition of higher order terms, classic analysis 

works only for small perturbations. Moreover, the required computational expense increases 

sharply due to the more complex formulas for higher order perturbations, and the accuracy of the 

solution inevitably suffers as computation errors accumulate. In order to improve accuracy for 

larger perturbations, a number of algorithms were proposed based on the incorporation of the 

Rayleigh quotient into the perturbation analysis [80]-[83]. Larger perturbations can be divided 

into a number of small perturbations, and the re-analysis computations are carried out step-by-

step as suggested by Lu et al. [83]. The step-by-step perturbation method starts to lose its accu-

racy due to accumulation of computation errors when there are too many perturbation steps; 

therefore, an iterative method must also work in tandem with the step-by-step method [83][84]. 

Algorithms presented by Lu et al. [83] are found to be sufficient for eigenvalue re-analysis and 
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applied directly to increase computational efficiency of the solution of the machine tool stability 

problem in this thesis.
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Chapter 3

Process Simulation

3.1. Introduction

The simulation of the manufacturing processes in a computer environment is the ultimate goal of 

virtual machining. Although significant work has been reported in modeling individual but sim-

plified machining processes, generalized mathematical modeling of arbitrary operations - an 

essential step to predict part specific operations in virtual machining - has not been addressed yet. 

This chapter presents a generalized mathematical model that uses parametric cutting tool geome-

try covering all possible helical end mills to model mechanics of 3-axis milling operations. Gener-

alizations are carried out analytically or numerically depending on the complexity of the process 

and cutting tool geometry. Machining outputs such as cutting forces, form errors, power and 

torque demands are simulated and compared against experimental data.

3.2. Kinematics of Milling

Process simulation of milling depends on both the kinematics of the cutting tool and cutter - 

workpiece intersection. The kinematics of the tool is directly correlated to the motion of the 

machine tool axes. In this sense, milling machines are classified based on motions delivered by 

different axes, which are attached either to the table or the spindle. In 3-dimensional work space, 

a maximum of three translations and three rotations can be achieved. The majority of the milling 

machines used by industry comprise 3, 4, and 5-axis machine tools. The convention used by 

machine tool builders to assign axes is as follows:
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• x and y axes are orthogonal in direction and lie in the plane of the workpiece surface,

• z axis is the remaining Cartesian axis assigned perpendicular to the workpiece surface,

• rotations around x, y, and z are named as A, B, and C axes, respectively.

A typical 3-axis horizontal milling machine is shown in Figure 3.1. For this machine, x and y axes 

are attached to the spindle where the cutter is mounted and the z axis motion is delivered along the 

guideways of the table to which the workpiece is clamped. Since each axis represents an indepen-

dent motion, velocities at the tool centre and the workpiece can be represented by velocities of the 

corresponding axes, or equivalently, all relative motions can be referenced to the cutter, assuming 

the workpiece is stationary. Various combinations of velocity vectors define the final surface pro-

file generated on the workpiece. For example, face milling requires only planar velocities whereas 

drilling, like plunge milling can be accomplished only by assigning a motion into the workpiece 

in the z direction. Different milling operations and corresponding velocity vector configurations 

are shown in Figure 3.1.

Figure 3.1 : Typical horizontal milling machine, different milling operations.
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In milling, the tool follows a trochoidal path [8] due to simultaneous rotation and feed motions. A 

continuously changing chip geometry leads to varying cutting forces that are periodic at either 

tooth or spindle period - depending on the arrangement of tooth spacing, i.e. regular versus vari-

able.

In a general milling operation, as illustrated in Figure 3.2, there are two different coordinate sys-

tems defined in the Cartesian space. The global system represents the Machine Tool Coordinate 

System (MTCS) denoted by (X-Y-Z). A machine tool uses this coordinate system to drive the cut-

ting tool to a desired location during machining. On the other hand, there is another coordinate 

system attached on the cutter called the Cutter Coordinate System (CCS) denoted by (x-y-z). The 

x-axis of the CCS is always aligned with the instantaneous feed direction on the XY plane,  (rep-

resented by ) which dynamically changes as the cutter generates features on a part. For 3-axis 

milling, the MTCS and the CCS have identical third orthogonal directions, z and Z axes. The rota-

tion matrix between two coordinate frames can be defined as:

. (3.1)

Throughout this thesis, the CCS is used as a default coordinate frame to model kinematics and 

mechanics of milling, however, the above transformation can be used to switch coordinate frames 

without loss of generality.

3.3. Geometric Relations for Milling Cutters

Since cutting mechanics require geometric information of an end mill as an input, geometric vari-

ables of an end mill have to be analyzed in detail before proceeding with the modeling of cutting 
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forces. In the literature, generalized geometric models for milling cutters were previously studied 

by Altintas and Engin [20]. They used standard CAD/CAM convention to define any milling cut-

ter shape via seven parameters, which are highlighted in boxes in Figure 3.3.a. Although these 

seven parameters are sufficient to define the envelope of a milling cutter, the cutting flutes need to 

be wrapped around the cutter body to complete the geometric modelling.

When a cutter is rotated at a certain spindle speed, n [rpm], the angular position of the cutter var-

ies over time as:

. (3.2)

At any time step t [sec], the angular position of an element located at an axial height z on flute j 

can be calculated as:

, , (3.3)

x
y

α X

Y

MTCS

CCS
fxy

Workpiece

z

Z

XY

Figure 3.2 : Coordinate systems in a milling operation.
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where N is the number of teeth, , which is dependant on the cutter envelope geometry and 

helix type, is the lag angle at elevation z due to the local helix angle. For an end mill,  is the 

pitch angle of flute j and is expressed as:

, (3.4)

and

, (3.5)

when teeth are evenly spaced (even pitch cutter). Angular positions are measured from the y-axis 

in a clock-wise direction as shown in Figure 3.3.b. In the following sections, geometric relations 

of general end mills will be presented. Based on the conventions used in [20], the envelope of the 

cutter is divided into three geometric portions namely TIP, ARC, and TAP, and the local geome-

try is defined for each portion. Once all the geometric relations are known, the unit vector perpen-

dicular to cutter body at axial elevation z and angular position  can be defined as:

, (3.6)

where i, j, and k are unit vectors in the principal directions x, y and z, respectively. This unit 

geometry vector will be important to determine the chip thickness later in this chapter.

3.3.1. Lag Angle ( ) Representation

As mentioned before, complete geometric modelling of an end mill can be obtained only when 

cutting flutes are considered. The lag angle accounts for the local helix angle by describing the 

relative angular position of any point along the cutting flute, with respect to the flute tip’s angular 

position. For a general end mill, the lag angle along each section is represented as follows:

• Tip Section ( ):

ψ z( )

φpj

φpj j 1–( )φp=

φp 2π N⁄=

φj

nj z( ) κ z( ) φj z( ) i⋅ κ z( ) φj z( ) j⋅ κ z( ) k⋅cos–cos⋅sin+sin⋅sin=

ψ z( )

0 z Mz≤<
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. (3.7)

To prevent singularity at the tool tip, z value must start from a finite but very small number, for 

example from z =  as stated in reference [20].

• Arc Section ( ):

. (3.8)

• Tapered Section ( ),

(3.9)

where  is the helix angle, and , the nominal helix for a constant lead cutter, is defined as:

, (3.10)

where  is the lead of the helical flute. Boundaries of each zone, TIP, ARC, and TAP are 

given as follows:

, (3.11)

, (3.12)

, (3.13)

, (3.14)
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where , , and . Some examples on how seven 

parameters are used to obtain lag angles for some commonly used end mills are as follows:

• Cylindrical End Mill (R= = = =0, =D/2) with helix angle  and diameter D,

, (3.15)

where .

• Tapered Helical Ball End Mill ( = =0, =R= ) with taper angle ,

         Ball End Section with ball radius :

 for , (3.16)

         Tapered Section with constant helix ( ):

 for , (3.17)

         Tapered Section with constant lead ( ):

 for , (3.18)

where ,  , , 

, .

3.3.2. Radius ( ) and Axial Immersion Angle ( ) Representations

The cutter envelope at each section (TIP, ARC, or TAP) is determined by the local radius. For a 

general end mill, the radius along the axis of the cutter is denoted by R(z) and axial immersion 

angle, , is defined between axis of the cutter, and a line perpendicular to the tangent of the 

cutter envelope at axial height z. For each section, two variables can be represented as follows:

• Tip Section:

u 1 α βtantan–( )D 2⁄= 0 α π 2⁄<≤ β π 2⁄<

Rz α β Rr i0
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z=

ki0
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, (3.19)

. (3.20)

• Arc Section:

, (3.21)

. (3.22)

• Tapered Section

, (3.23)

. (3.24)
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3.4. Mechanics of Milling - Generalized Kinematics

Process simulation of a milling operation requires extensive and accurate modeling of the mate-

rial removed by the cutter at each time step. The most fundamental parameter in cutting mechan-

ics is the chip thickness. A typical milling operation with a general end mill is shown in Figure 

3.4. In 3-axis milling, the feed motion of the cutter can be represented in a vector form as:

, (3.25)

where c [mm/rev.tooth] is the feed per tooth and  is the unit feed vector in the direction of 

resultant tool motion expressed as:

, . (3.26)

As a convention, the feed vector in XY plane is aligned with the x-axis of the cutter; therefore, the 

resultant planar feed is represented as a combination of X and Y feed components 

. Consider that the cutter is divided into differential axial elements with height 

dz. When the tool moves in the feed direction, flute j generates an uncut chip thickness that can be 

calculated by projecting the feed vector  onto the geometry vector  via a dot product  

of two vectors:

. (3.27)

As material is removed from the workpiece, forces are exerted on the tool. Three orthogonal dif-

ferential cutting forces generated by each axial element are represented in a rotating coordinate 

frame, and depicted in Figure 3.4. In order to relate differential rotating cutting forces to the 

instantaneous chip thickness, the Linear Edge Force Model [27] is implemented:

f c fu⋅=

fu

fu fxy i⋅ fz k⋅+=  fu 1=

fxy  fx
 2 fy

 2+=

f nj z( ) ( )•

hj φ z,( ) nj z( ) f• c fxy κ z( ) φj z( )sin⋅sin⋅ fz κ z( )cos⋅–( )⋅= =
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, (3.28)

where dS(z) is the differential contact length expressed as:

 , (3.29)

and dz is the axial height of the differential element.  are cutting force coefficients 

due to the shear and  are edge cutting force coefficients due to the rubbing of the tool 

flank with the workpiece, in radial, tangential and axial directions, respectively.

The oblique cutting coefficients,  [N/ ], are either obtained from mechanistic 

calibration tests or transformed from an orthogonal cutting database that contains shear stress ( ), 

shear angle ( ), friction angle ( ) and the edge cutting force coefficients [86]. Although, in 
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general, the edge cutting forces are dependent on the chip thickness, the linear model - Eq (3.28) - 

is still acceptable as a first order approximation [29]. The influence of size effect, chip thickness, 

local rake and oblique angle on shear stress, shear angle and friction angles are considered in 

detail later. Differential cutting forces in Cartesian tool coordinates (CCS) can be obtained by 

using coordinate transformation:

. (3.30)

By substituting Eq (3.28) into Eq (3.30), the differential cutting forces can be represented as

, (3.31)

where ,

, (3.32)

. (3.33)
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Differential cutting forces have to be integrated within the axial limits defined by the portion of 

the respective flute in-cut. If these limits are denoted by  and  at which the flute j enters 

into and exits the engagement zone, respectively, the total cutting forces acting on flute j can be 

expressed in an integral form as:

, (3.34)

where . The integrations are carried out to reduce cut-

ting force experienced by each flute into the following form:

, (3.35)

where

. (3.36)

And finally, total cutting forces at time t ( ) are calculated by simply adding contribution 

of each flute:

. (3.37)

Note that the representation of cutting forces in Eq (3.37) is convenient because it separates the 

geometry of the cutter and the mechanics of milling from the feedrate in a closed form. Since 

coefficients , and  need to be calculated once for a constant cutter-workpiece 
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engagement at time t, the effect of the feedrate on process outputs can be easily taken into 

account.

There are additional important process outputs beside cutting forces in x-y-z directions, some of 

which are spindle torque and power, and the resultant cutting force on the tool. The differential 

torque on flute j is obtained by multiplying differential tangential force with local radius of the 

cutter at axial height z:

, (3.38)

where .dz and ,  

from Eq (3.28). Similar to cutting forces, the overall torque is obtained by carrying out the inte-

gration between engagement boundaries and adding the contribution of all flutes:

(3.39)

Since power is equal to torque times spindle speed (n), it can be trivially calculated as:

 , (3.40)

where  and i=0,1. 

Unlike torque and power, the resultant cutting force has a nonlinear relationship with the feedrate. 

Resultant force is defined as vector summation of x-y forces which has a magnitude of 

. (3.41)
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Taking the square of both sides and substituting Eq (3.37) for the x and y forces, the following 

form is obtained:

, (3.42)

where coefficients are derived as:

, (3.43)

and  (p = 0,1; q = x,y). All of these additional process outputs will be analyzed 

more closely when they are used as constraints for feedrate optimization in the optimization chap-

ter.

3.5. Cutting Force Coefficient Identification

Two types of cutting force identification schemes are presented in this section. The orthogonal to 

oblique cutting transformation is based on geometric parameters of the cutter and cutting edge. 

This method transforms experimentally identified material properties into cutter-geometry-depen-

dent cutting force coefficients for a variety of milling cutters. On the other hand, evaluation of 

cutting force coefficients for tools possessing complex cutting edges (e.g., chip breakers) are con-

ducted by the mechanistic method. This model tunes the cutting force coefficients for a specific 

cutter and cutting conditions, hence cannot be used in a generalized sense. Details of both meth-

ods are given in the following sub-sections.
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3.5.1. Orthogonal to Oblique Cutting Transformation

Helical end milling is an oblique cutting technique where the cutting edge is no longer perpendic-

ular to the cutting speed but inclined with an inclination angle ( ), which is essentially equal to 

the helix angle for an end mill. Orthogonal and oblique cutting geometries are shown in Figure 

3.5. There are three important parameters for the determination of the cutting coefficients, the 

shear stress ( ), the shear angle ( ) and the friction angle ( ). These parameters can be deter-

mined from orthogonal cutting tests for different rake angles ( ) and cutting velocities [87]. The 

shear angle is an angle between the cutting speed (V) and the shear plane. The friction angle is 

defined on the rake face and the cutting edge is assumed to be sharp without edge radius.

Using orthogonal cutting forces, namely feed/radial ( ) and tangential ( ), material cutting 

parameters, the shear stress, the shear angle and the friction angle can be obtained as:

, (3.44)
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, (3.45)

, (3.46)

where h is the uncut chip thickness, b is the width of cut,  is the rake angle and  is the chip 

compression ratio, which is defined as a function of uncut (h) and cut chip thickness ( ) as, 

. The oblique cutting coefficients for each chip segment are obtained by applying the 

orthogonal to oblique transformation proposed by Budak, Altintas and Armarego [30], where the 

chip flow angle ( ) is assumed to be equal to the local oblique angle ( ), i.e. , as pro-

posed by Stabler [88]. While Stabler’s rule may not yield an accurate prediction of chip flow 

angle, it does not influence the prediction of cutting forces significantly [27]. The cutting force 

coefficients for oblique cutting can be expressed:

, (3.47)

where . In the oblique cutting transformation, the orthogonal shear angle is 

assumed to be equal to the normal shear angle in oblique cutting ( ); the normal rake angle 

is equal to the rake angle in orthogonal cutting ( ) and the chip flow angle is equal to the 

oblique angle ( = ). The edge cutting force coefficients in tangential and radial directions, i.e. 

, are calculated from the orthogonal cutting data by simply finding the force axis intercept 
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of the force-feedrate graph where the feedrate is zero. In the verification part, these edge cutting 

force coefficients are expressed as a function of rake angle and cutting speed; however, they can 

just as well be assumed to be constant without losing too much accuracy. The edge cutting force 

coefficient in the axial direction ; on the other hand, is taken as zero, which is known to be 

very small in oblique cutting [28].

3.5.2. Mechanistic Model

Although the orthogonal to oblique transformation provides cutting force coefficients for a vari-

ety of milling cutter geometries using three orthogonal parameters (shear stress, shear angle, fric-

tion coefficient), it is not always possible to identify these parameters when cutting tools with 

complex cutting edges are used. Moreover, constructing an orthogonal cutting database is very 

time consuming and costly. An alternative method is called the Mechanistic model [30]. In this 

model, average cutting forces per tooth period are measured while the feedrate is varied during 

each experiment with constant immersion and axial depth of cut (a). Any effect of run-out on 

measurements can be eliminated by dividing the total force per spindle revolution by the total 

number of teeth. Average cutting forces measured for m different feedrates is represented as a 

vector of length 3m, .

Since the total material removed per tooth is constant, the helix angle can be ignored for calculat-

ing average milling forces [64]. Due to the periodic nature of cutting forces in milling, averaging 

can be carried out only for one period, i.e., pitch angle . Finally, analytical average milling 

forces can be described as:

, (3.48)
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where  and  are the cutter entry and exit angles, respectively and  is the switching 

function defined as: 

. (3.49)

Considering a cylindrical end mill with  and zero helix angle, total cutting forces 

acting on flute j can be obtained by simply multiplying differential cutting forces in Eq (3.31) by 

the depth of cut (a):

. (3.50)

Moreover, the immersion angle, , in  and  reduces to the following form when 

the helix angle is not in effect; . Using Eqs (3.32) and (3.33) with 

 and planar milling feed conditions ( =1, =0), the average cutting forces in Eq 

(3.48) are calculated as:

, (3.51)

where . The above equation can be expressed in an alternative form, 

which isolates unknown cutting force coefficients:

, (3.52)

where , and the transformation matrix T(c) represents the 

effect of both cutting geometry and feedrate (c) and is given by:
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, (3.53)

where , , , 

 and . Averages of the measured cutting forces at m 

different feedrates are equated to analytically obtained average cutting forces:

, (3.54)

where  is a 3m-by-6 matrix, and ’s (i=1,...,m) are various 

feedrates used during experiments. Applying the Least Squares method to Eq (3.54), unknown 

cutting coefficients are successfully identified using the pseudo inverse as:

. (3.55)

Note that these cutting coefficients are only valid for a specific cutter, depth of cut, and radial 

immersion. For cutters other than cylindrical end mills, integrations involved in Eq (3.36) must be 

carried out either analytically or numerically due to the effect of the axial immersion angle, . 

For example, for a ball end mill:

, (3.56)

and

. (3.57)
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Note that for general end mills, full or half immersion cases have to be used for cutting force coef-

ficient identification. This way integration limits (z’s) do not depend on angular rotation of the 

cutter and Eq (3.48) will still be valid.

3.6. Cutter Engagement Feature (CEF) - Cutter Engagement Plane (CEP)

The intersection between the cutter and the workpiece determines the region where the tool actu-

ally removes material. The shape of the intersection zone varies as a function of tool and work-

piece geometries as well as width and depth of cut. The simplest intersection shape occurs 

between a cylindrical cutter and a prismatic workpiece as shown in Figure 3.6. For better visual-

ization purposes, the intersection area, which is originally wrapped around the cutter, is unfolded 

and mapped onto a plane that has a vertical axis defined as the axial depth of cut and the horizon-

tal axis as the angular position defined from the y-axis in clockwise direction. This plane is called 

the Cutter Engagement Plane (CEP). Each rectangle that is part of the intersection area will be 

referred to as the Cutter Engagement Feature (CEF) throughout this thesis. Using a similar map-

ping technique, the flute can be mapped onto the CEP, which then will appear as a slanted line 

when the helix is constant. The CEFs can be generalized when an arbitrary cutting tool intersects 

with a workpiece shaped other than prismatic. In this case, the CEFs will no longer be rectangular 

but they will be bounded by free form curves. An example of a generalized CEF is shown in Fig-

ure 3.7.

In order to simulate cutting forces through Eq (3.37), first, boundaries of the engagement domain 

at which each flute enters and exits have to be determined, then, the integration is carried out over 

this range. Both calculations are performed either analytically or numerically. Although former is 
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preferred due to the smaller computational burden, deriving a generalized analytical relation is not 

always possible.

It is important to state that the calculation of the engagement zone, i.e. intersection between cutter 

and workpiece, is not among one of the objectives of this research, it is rather taken as an input 

from a CAD system. In addition to available commercial packages that provide cutter/workpiece 

intersection maps, there is also considerable amount of research conducted in this field. Takata 

[89] used the Z-buffer method to obtain the cutter/workpiece intersection for machining force pre-
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Figure 3.6 :  Cutter - workpiece intersection, CEF mapping.

0

A
xi

al
 D

ep
th

 o
f C

ut

Immersion Angle
π

Flute

CEF

Figure 3.7 : Generalized CEF.
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Chapter 3. Process Simulation
diction. In many other studies, the Z-buffer method has been extensively used for machining pro-

cess simulation [40][90][91]. Spence et al. [31] developed cutter-workpiece intersection for 2.5 D 

milling operations using constructive solid geometry, which was later transferred to the ACIS 

Boundary representation modeller [45][46].

3.6.1. Determination of Integration Boundaries

Integration boundaries to calculate machining state variables are obtained by calculating intersec-

tion points between each flute and engagement boundary. The simplest CEF, a rectangle, was 

studied earlier by Altintas et al. [26]. In their research, axial integration boundaries were obtained 

depending on the position of the flute, however, this method was limited to cylindrical end mills. 

In this research, the method in reference [26] is generalized so that integration boundaries for any 

cutter geometry can be determined.

Figure 3.8.a shows five distinct cases for flute-CEF intersection, one of which is detailed in Fig-

ure 3.8.b. Parameters bounding the CEF, i.e , , ,  are provided by a CAD sys-

tem hence known. For a given tool position , angular limits of the flute are determined 

Figure 3.8 : Rectangular CEF; (a) possible intersection cases, (b) 
parameter definition for CEFs.
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both at the bottom and the top of the CEF using Eq (3.3), i.e.,  and 

. Based on these limits, a decision mechanism shown in Figure 3.9 is used to 

obtain axial positions between which the flute is in-cut, i.e. integration boundaries:

In Figure 3.9,  represents a function that calculates the axial height z for a given angular 

position of flute j. Mathematically, it is equivalent to solving for z for a given angular position, 

, in Eq (3.3). For a cylindrical end mill, the lag angle, , is substituted 

and z is simply solved as:

, (3.58)

where  is the helix angle, and D is the diameter of the tool. The above solution is analytical 

because rectangular CEF imposes the condition that engagement boundaries 

 can only vary along either  or  line; however, such a 

useful property does not hold when more complex cutters like ball end mills are considered.
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Figure 3.9 : Calculation of integration boundaries 
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Consider a prismatic workpiece being machined by a ball end mill as shown in Figure 3.10.a, 

where w is the width of the workpiece and  is the offset from its centre line. Since the cutter 

radius varies at each elevation along the z-axis, the entry and exit angles do not remain constant, 

i.e.  and ; therefore, the CEF - shown in Figure 3.10.b - will not be a 

rectangle unless it is a full immersion case. Variation of immersion along cutter axis is not limited 

to ball end mills, but it is also true for any kind of general end mill. For a known workpiece width 

and centre line offset, start and exit angles of immersion at each axial point z or better known as 

the boundaries of the CEF,  = , can be calculated using local cutter radius 

as follows:
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Figure 3.10 : (a) Planar machining with a ball end mill, (b) example CEF for ball end milling.
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If the workpiece is not prismatic but has a profile on its surface (Figure 3.7), then the intersection 

between the cutter and workpiece might not be obtained analytically as described above. In the 

most general case, the CEF is bounded by a curve referred as , and the variation of the 

integration boundaries as tool rotates is depicted in Figure 3.11.

yval  >= 0

YES (   ) R(z) <= yval 

φbnd (z) = 0

φbnd (z) = cos-1(yval / R(z))

R(z) <= |yval|

φbnd (z) =�π

φbnd (z) = π/2 + sin-1(|yval| / R(z)) 

NO (   )

Start Angle: yval = yos + w/2, bnd = st

Exit Angle: yval  = yos - w/2, bnd = ex

NO (   )

YES (   )

YES (   )

NO (   )

φbnd z( )
49



Chapter 3. Process Simulation
Assume that at a certain time step, flute j intersects with the CEF,  curve, at axial height 

, which leads to the following relation at the intersection point: 

. (3.59)

This equation might not be solved for  analytically due to the presence of non-linear terms 

both in  and . Redefining Eq (3.59) in a residue form:

, (3.60)

roots satisfying  can be sought numerically. Brent’s numerical root finding algo-

rithm [92] is selected due to its high convergence rate. This algorithm first brackets the root(s) 

within the domain of minimum and maximum axial points. A root is called "bracketed" between 

 and  when  and  have opposite signs (Figure 3.12). To account for all the roots, 

the domain is divided into a number of segments and all possible roots are bracketed. Next, algo-

rithm fine tunes the roots which lie between brackets.
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Figure 3.11 : Change of integration boundaries over time for the most general case.
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Brent’s method utilizes two methods for its fine tuning: the bisection method and inverse qua-

dratic interpolation. The bisection method evaluates the function value at the midpoint of the 

bracket, checks its sign against  and , and replaces the new point on the side that has 

the same sign as  or . The method stops when two limiting brackets are within an error 

bound specified by the user. Since signs of the limits are always checked at each iteration step, 

this method is guaranteed to converge; however, at the cost of speed, i.e. linear convergence. On 

the other hand, inverse quadratic interpolation uses three points to fit an inverse quadratic func-

tion (z = g( )) and determines the next root estimate at y=0 [92] as:

, (3.61)

where , i = 0, 1, 2, and  is selected such that . Although a quadratic 

method has a higher convergence rate, its success depends solely on the smoothness of the func-

tion. In conclusion, Brent’s method successfully combines the fast convergence of inverse qua-

dratic interpolation with the reliability of the bisection method, by switching between these two 

methods depending on the local behavior of the function g. It should also be mentioned that the 
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Figure 3.12 : Root bracketing.
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Brent’s method does not need the derivative information of function g, hence complexity of g is 

not an obstacle when the solution is sought for complex CEFs.

3.6.2. Performing Integration

Having calculated the boundaries of the integral, machining state variables - for example cutting 

forces in Eq (3.35) can be acquired by taking the integral along the cutting edge in contact with 

workpiece. Differential cutting forces in Eq (3.31) contain two geometric terms varying as a func-

tion of axial height z: axial immersion angle , and lag angle . Except for cylindrical end 

mills, one or both of these terms bring non-linearity into the integrand. Moreover, cutting force 

coefficients, , generally vary along the cutter axis for many complex cutters such as 

ball end and tapered ball end mills acting as an alternative source of nonlinearity. A numerical 

integration algorithm is indispensable for calculating machining state variables to handle cases 

with nonlinearities.

The integration problem is defined as:

, (3.62)

where g(z) is expressed by Eqs (3.32) and (3.33) depending on type of the machining state vari-

able. Exact solution to Eq (3.62) can be approximated numerically using Trapezium rule as:

, (3.63)

where  represent the Trapezoidal approximation with  panels, i.e., step size of

 = , (3.64)

and error estimate :

κ z( ) ψ z( )

Krc Ktc Kac, ,

I g z( ) zd
zroot 1,

zroot 2,
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g z( ) zd
zroot 1,
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∫ Ik
0≈

Ik
0 2k

δk zroot 2, zroot 1,–( ) 2k⁄

O δ2( )
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, (3.65)

where I(0) is the approximate integration value,  and  are constants. A better approximation 

can be obtained by exploiting the error expansion. For example, consider two trapezoidal approx-

imations with one has a half step size with respect to the other:

, (3.66)

. (3.67)

The first error terms are eliminated by multiplying Eq (3.66) by 4 and subtracting it from Eq 

(3.67), an improved estimate is obtained with error estimate O( ):

. (3.68)

The method of error elimination is called Richardson extrapolation and  is called the first Rich-

ardson Extrapolant. In general,  is the mth Richardson Extrapolant obtained by halving the step 

size, , at each stage, and the successive Richardson Extrapolants can be calculated by the follow-

ing recursion:

, (3.69)

where , ,and M is the maximum number of refinements. The error 

term for this approximation becomes O( ). The recursive formula can also be defined in a 

matrix form as follows:
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.

The numerical integration algorithm that employs both Richardson extrapolation and adaptive 

integration is called Romberg integration [92], which is used in this thesis to integrate differential 

cutting forces and other machining state variables when numerical integration due to non-lineari-

ties is required. In simulations, the maximum number of refinements, M, was limited to 20. Adap-

tive integration is achieved by simply refining step size, , until the difference between 

successive approximate integrals is less than some specified tolerance. In the matrix above, each 

column represents refinement of the sampling of the integrand as k is increased while m is kept 

constant.

Romberg integration is quite powerful for sufficiently smooth integrands that do not posses any 

singular values over the interval including end points [92]. In this case, the integrands are the ele-

ments of force coefficient matrices (A) in Eqs (3.32) and (3.33), and among all, critical terms are 

the ones that have denominators comprised of either  or . The singularity 

can appear only when  since  is not physically possible as seen in Figure 

(3.3). From Eq (3.22),  angle of a ball end tool reduces to

 , (3.70)

where ,  is the ball radius, and from the geometry of ball end:

. (3.71)

I1
0       

I2
0 I1

1      

I3
0 I2

1 I1
2     

I4
0 I3

1 I2
2 I1

3    

. . . . .   

. . . . . .  

Ik
0 Ik 1–

1 . . . . I1
m

δ

1 κ z( )sin⁄ 1 κ z( )tan⁄

κ z( ) 0= κ z( ) π=

κ

κ z( )sin R z( ) Rb0⁄=

R z( ) z 2Rb0 z–( )= Rb0

κcos z( ) Rb0 z–( ) Rb0⁄=
54



Chapter 3. Process Simulation
If the first tangent line (TIP) does not exist so that tool geometry starts with an arc then the sine of 

axial immersion angle varies considerably along the arc segment close to the tool tip, and 

becomes zero at the tip point (z = 0), which introduces an infinity in some integrands of the forces 

in Eq (3.32). In summary, any tool carrying a ball end part has to be analyzed carefully while 

numerically calculating cutting forces because some of the differential forces (integrands) are nei-

ther smooth nor non-singular at or near the tool tip. The following change of variable is proposed 

to relax singularity condition:

, (3.72)

and it is substituted into radius:

. (3.73)

Using the above conversion, new integrands are now obtained as:

, (3.74)

. (3.75)

Note that at the tool tip, the relation  holds; therefore, singularity is 

avoided and computation time is immensely reduced due to faster convergence. The variation of 

edge integrand in y direction is shown in Figure 3.13 before and after the change of variable is 

applied to smooth out the integrand.
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3.6.3. Special Case: Flute Re-cut

Under special circumstances, for example when depth of cut and/or helix angle on the cutter are 

very high, the cutting flute might enter into the same cutting region at several different axial loca-

tions at a fixed tool position. This special case, shown in Figure 3.14.b, has to be taken into con-

sideration during process simulation for accurate calculation of cutting forces.
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Figure 3.13 : Variation of edge integrand in y direction for a 12 mm ball end mill.
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Consider a case when cutter-workpiece engagement is composed of multi CEFs as shown in Fig-

ure 3.15. The Cutter Engagement Plane (CEP) bounded between  and 

 defines the possible Cutting Region at the front of the cutter, where  is the high-

est of all CEF elevations for a given cutter and workpiece combination. The condition for a flute 

to re-enter into the cutting region can be derived using the lag angle ( ), which is previously 

defined in Section 3.3.1 for each cutter geometry. In general, if the lag angle of a flute is bigger 

than 2  for maximum height, , then it is concluded that very same flute exists in cutting 

region more than once at different axial locations. This is named as the re-cut condition.

During process simulation, flute re-cut condition can be detected by checking the number of 

occurrence:

, (3.76)

where

, (3.77)
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Figure 3.15 : Cutting region at the front of the cutter.
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and the ceil(x) function returns a value representing the smallest integer that is greater than or 

equal to x. Flute re-cut will appear when >1. Figure 3.16 presents different cutting configura-

tions for same depth of cut but various helix angles. Four shaded zones (1,...,4) represent same 

cutting region that will overlap when z-  plane is wrapped around body of the cutter. In case (a), 

flute helix is not high, therefore, it does not the re-cut the workpiece, i.e., the flute only resides in 

Zone 1. On the other hand, for the remaining cases, the helix is selected high enough to ensure 

that the flute enters into the cutting region more than once (Zones 1,2,...). In such cases, if any 

process output is to be calculated, then "Equivalent Flute-Positions" column shows how many 

more flute angles have to be used to consider re-cut condition. For example, when case (d) occurs, 

the flute re-cuts the workpiece three times, therefore, for a fixed tool position, forces acting on 

that flute are calculated by adding the contribution of forces for each occurrence of the same flute 

in the cutting zone. Similar analysis can be done when the CEP is defined at back of the cutter, 

i.e., .

3.7.  Verification

Cutting experiments were conducted to verify the proposed model. 20 [mm] diameter cylindrical 

end mill with 30 [degree] helix was used to cut Aluminum Al 7050 with the following cutting 

coefficients: = 796 [N/ ], = 169 [N/ ], = 222 [N/ ], = 28 [N/mm], 

= 31 [N/mm], and = 1.4 [N/mm]. The engagement domain is comprised of three different 

axial depths of cut (3, 7, 11 [mm]) as seen in Figure 3.17. The spindle speed and the feedrate used 

in tests were 500 [rpm] and 200 [mm/min], respectively. Simulation results are compared against 

measurements in Figure 3.17.

nocc

φ

φ π 2π,[ ]∈

Ktc mm2 Krc mm2 Kac mm2 Kte

Kre Kae
58



Chapter 3. Process Simulation
Real Flute-Position Equivalent Flute-Positions 
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A second set of experiments was conducted on an industrial part, a gear box cover. The part was 

made out of Al 6061 using two different sizes of milling cutters. The first cutter was a 10 [mm] 

end mill with 2 flutes, whereas the second one was a 25 [mm] indexable cutter with 2 inserts. Cut-

ting coefficients, presented in Table 3.1, were identified using the mechanistic model, details of 

which were given in the "Mechanistic Model" section. Spindle speed values of 17000 [rpm] and 

20000 [rpm] were used for 25 [mm] and 10 [mm] cutters, respectively. The maximum chip load 

on the cutter was maintained for varying widths of cut. According to the tool manufacturer’s cata-

φ

z

Immersion Angle

Ax
ia

l D
ep

th
 o

f C
ut

 [m
m

]

Tool Rotation [deg] 

-300
180 3600

-200

0

-100

100

-200

0

200

400

600
-500

500

1000

0

Fz
 [N

] 
Fy

 [N
] 

Fx
 [N

] 

Measured
Simulated

Cutter

3

7

11

feed direction
FO

R
C

E

MAP

Figure 3.17 : Multiple immersion milling, engagement map, simulated versus measured 
cutting forces.
60
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log, recommended chip load was 0.1 [mm/tooth.rev] for the 10 [mm] end mill, and 0.2 [mm/

tooth.rev] for the 25 [mm] indexable cutter.

Various milling operations such as profile, face, and helical milling are shown on a piece part in 

Figure 3.18. For each operation, the measured experimental cutting forces are compared against 

simulated ones in Figures 3.19-3.21. Although measurements captured complete variation of cut-

ting forces over time, cutting forces were simulated only to obtain minimum and maximum values 

for varying immersion and tool positions. The difference in process times and cutting force mag-

nitudes between simulation and actual cut is due to the trajectory generation, and the limited max-

imum feed speed of the machine, which was set to 5000 [mm/min].

Table 3.1 : Cutting force coefficients of Al 6061
Tool Type

[N/mm]
 

[N/mm]
 

[N/ ]
 

[N/ ]
10 [mm] 38.38 -9.792 403.396 98.911
25 [mm] 21.34 23.141 662.296 72.86

Kte Kre Ktc
mm2

Krc
mm2
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Figure 3.18 : (a) Face milling, (b) right side profiling, (c) top hole helical milling, (d) middle 
hole helical milling.
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Figure 3.19 : Face milling a) measured, (b) simulated cutting forces.
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In co-operation with Sandvik Coromant, Sweden, a die was machined to verify the proposed algo-

rithms. The original part, a die for a car door panel, was first scaled down so that the part could be 

machined using a conventional machine tool. Steel casting of size 425x325x220 [mm] was pro-

vided by Uddeholm. Different views of both stock (casting) and final part are given in Figure 

3.22.a-d.
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Chapter 3. Process Simulation
The operation plan for this part contained 9 steps with 8 different milling cutters. Cutters ranging 

from 63 [mm] to 4 [mm] were used to complete all operations. Important geometric parameters 

and serial numbers of the tools from Sandvik Coromant catalogue are presented in Table 3.2, and 

the operation list is provided in Table 3.3.

The workpiece material was Uddeholm Carmo - Carmo Cast with a hardness of 270 [HB]. Cut-

ting conditions for material modeling tests consisted of various depths of cut depending on ball or 

edge radius, and feedrates mostly selected from Sandvik Coromant’s Main Catalogue. Cutting 

forces were collected using CUTPRO’s data acquisition module, MALDAQ. Sampling frequency 

(a) (b)

(c) (d)

Figure 3.22 : Test part stock and final shape (a) isometric; (b) left side; (c) front; (d) top 
views.
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was set in such a way that forces were measured at least at each 3 [degree] angular rotation of the 

tool during cutting. Cutting tests were performed under dry conditions, and build-up edge was 

observed at high feedrates and depths of cut for some cutters. Such cutting tests were rejected 

from the measurement pool to eliminate the bias due to improper chip formation. Measured cut-

ting forces were averaged out for approximately 20 [revolutions] of the cutter and the unknown 

cutting force coefficients were identified for each axial depth of cut. To reduce the number of 

coefficient sets to one per tool, coefficients were averaged over depth of cut and the final results 

are tabulated in Table 3.4 for each tool used in the tests.

.
Table 3.2 : List of milling cutters used in experiments.

Tool No N H [deg] D [mm] SD [mm] Cutter Body Insert Type Shank Type Cutter Type Overhang
T63 4 7 63 Arbor R300-06Q22-12L R300-1240M-KH/3040 Arbor Bull Nose 154 mm
T20 2 -10 20 25 R216-20B25-050 R216-20 T3 M-M 1025 Weldon Ball End 50/51 mm

T20F 2 0 20 25 R216F-20A25C-115 R216F-20 50 E-L P10A Cylindrical Ball End at the stepover
T16 2 -10 16 20 R216-16B20-040 R216-16 03 M-M 1025 Weldon Ball End 50 mm
T12 4 27 12 12 R216.44-12030-AI12G Cylindrical Ball End 37 mm
T8 2 27 8 8 R216.42-08030-AI08G Cylindrical Ball End 27 mm
T6 2 25 6 6 R216.42-06030-AI06G Cylindrical Ball End 21 mm
T4 2 27 4 6 R216.42-04030-AI04G Cylindrical Ball End 20 mm

N: Number of Flutes/Inserts, H: Helix Angle, D: Tool Diameter, SD: Shank Diameter

Table 3.3 : List of Operations.
67



Chapter 3. Process Simulation
In an effort to measure cutting forces during machining, casting was mounted on a measurement 

platform: Kistler 9281B Dynamometer, which was then mounted on the machine tool’s table. 

MAL’s 4-Channel I/O Box with MALDAQ measurement software was used to collect cutting 

force data. In addition to forces, the sound data from a high quality ICP microphone placed inside 

the machine was also collected with the same sampling rate as for cutting forces.

Measured and simulated cutting forces in three principal directions of the machine tool are shown 

in Figure 3.25 for semi-finishing of the walls with T63. Note that, although complete time history 

of cutting forces was captured by the dynamometer, the simulation contained only minimum and 

maximum values of cutting forces at each engagement map. In general, a close match between 

measured and simulated cutting forces is evident; however, there are sections where cutting forces 

deviate from simulation drastically. For example around 36th [second], although the measured 

axial (z) force has a minimum of -200 [N], predicted value is still at zero. In order to determine 

the source of such deviation, a detailed analysis was performed starting with the engagement map 

shown in Figure 3.26.a. The intersection between the tool and workpiece reveals that cutter is cur-

rently in down milling with about 25 [degree] immersion. Considering that T63 has 4 flutes with 

90 [degree] pitch angle, cutter must stay out of cut 90-25=65 [degrees] within each tooth period. 

With the tool rotating at 1011 [rpm], the time spent out of cut ( ) and spindle period ( ) 

Ktc [N/mm²] Krc [N/mm²] Kac [N/mm²] Kte [N/mm] Kre [N/mm] Kae [N/mm]
T63 2312.7 1443.1 -167.5 62.82 112.74 20.15
T20 2294.2 1137.5 -536 63.53 100.24 5.45
T20F 2024.1 1132.9 42.2 53.73 64.2 1.54
T16 2068.1 1120.9 -99.54 41.4 72.63 19.71
T8 2156 924.1 172.9 29.44 19.75 1.24

Table 3.4 : Average cutting force coefficients for Uddeholm Carmo - Carmo Cast.

tout tperiod
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are calculated as , . Figure 

3.26.b shows cutting forces for a time window of two spindle periods, i.e. approximately 0.12 

[seconds]. Four peaks due to four flutes are clear in z cutting forces within one spindle period, 

however, they never drop to zero when all flutes are out of cut. Moreover, x and y cutting forces 

have more than four peaks in one spindle period. This kind of measurement distortion is attributed 

to the reduced bandwidth of the dynamometer due to the heavy workpiece (~150 [kg]); therefore, 

it can be concluded that simulation results are still in good agreement with the measured cutting 

forces when dynamometer distortion is discarded.

Simulated cutting forces are compared against measured cutting forces at different sections of the 

part as well. Results are presented in Figures 3.27-3.30. In finishing operations, although cutting 

forces were recorded, the dynamometer signal was dominated by noise due to extremely light 

cuts. Reducing the scale setting on the charge amplifier did not help to reduce noise levels, there-

fore, these measurements were not left out of the analysis.

In addition to measurement errors, there are other sources of errors in predicting cutting forces, 

some of which can be listed as follows:

- Cutting Force Coefficients: One set of average cutting force coefficients was used for 

each cutter which might have led to deviation in extremely low and high depths of cut 

(see Figure 3.23). Since identification tests were run for multiple depths and chip thick-

ness values, this type of error can be reduced by using a more complex cutting force 

coefficient model taking depth variation and size effect into account.

tout
60 65( )

360 1011( )
-------------------------- 10.7 μs[ ]= = tperiod

60 360( )
360 1011( )
-------------------------- 59.3 μs[ ]= =
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- Real Feedrate: Since the CNC characteristics were estimated, simulated feedrates did 

not exactly match the values during real machining (see Figure 3.24). Any error on fee-

drate estimation was directly reflected on cutting forces.

- Engagement: At some sections of the workpiece, cutter workpiece intersection was 

either noisy or the map resolution was not small enough to capture true intersection, 

which might have led to under or over estimation of cutting forces.

-Flute Geometry: Most of the cutters had large run-outs resulting in one flute cutting more 

than the other, which in turn led to conservative cutting force prediction. Moreover, 

periphery and centre inserts had different geometries although they were assumed iden-

tical for simulations. Lastly, tool wear over time affecting the edge geometry hence 
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resulting in increase in cutting force coefficients was not taken into account. In all simu-

lations, coefficients identified with sharp tools were used.
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Figure 3.27 : T63-Operation 1, roughing of the top part at z=163.5 [mm].
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Figure 3.28 : T63 - Operation 1, roughing at z = 88.51 [mm].
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Figure 3.29 : T20 - Operation 2, semi-finishing of the top.
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Chapter 4

Dynamics of Milling Operations

4.1. Introduction

During a milling operation, cutting forces acting on the tool excite the tool - tool holder - spindle 

structure, leading to a variation in cut chip thickness, which in-turn changes cutting forces excit-

ing the structure. In the literature, such self-excited vibrations during metal cutting are called 

regenerative chatter vibrations. If regeneration is not controlled, the cutting process may go to an 

unstable zone where exponentially increasing vibrations can potentially damage the tool, the 

workpiece and even the whole machine tool structure.

Dynamics of milling processes has been studied by many researchers after pioneering works of 

Tlusty [62] and Tobias [63]. A considerable amount of work has focused on the stability of a mill-

ing process with an objective to predict a stability chart that would allow selection of chatter free 

cutting conditions. The dynamics of milling operations are developed and presented for 3-axis 

machining applications in this chapter. Stability of milling is analyzed with different methods 

including analytical model of chatter vibrations presented by Altintas and Budak [67], the Semi 

Discretization method proposed by Stepan et al [73], and the Multi Frequency solution by Budak 

and Altintas [67], and Merdol and Altintas [75]. Moreover, the analytical zero order solution is 

generalized to model stability of end mills with complex geometries. Finally, an alternative eigen-

value search method is proposed to accelerate iterative calculation of stability lobes when the 

Multi Frequency solution is used.
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4.2. Dynamics of Milling

A typical machine tool consists of the column, the housing, the spindle and the table. Tool holder 

is the physical interface between the cutting tool and the machine tool, and depending on the 

application, different tool holder - cutting tool assemblies are used in production. Since all of 

these structural components are physically connected to each other, together, they define a multi-

degree-of-freedom structural dynamic system. Some of the important sources of flexibilities are 

shown in Figure 4.1. In low speed machining, typically large and heavy components with low nat-

ural frequencies such as the spindle housing, the column and the fixture are excited; whereas high 

speed machining always excites the spindle, the tool holder and the tool that have high natural fre-

quencies. Once excited, structural flexibilities cause the tool to vibrate, which undulates the chip 

thickness generated along the cutting flute, and the tool starts to leave a wavy surface behind as 

seen in Figure 4.2. This wavy surface is then removed by the successive flute, which also vibrates; 

therefore the difference between two surfaces becomes dynamically varying. Since prediction of 

cutting forces, torque, power, and vibrations are closely related to the instantaneous chip geome-

try, dynamic chip thickness distribution along the cutting edge has to be accurately modeled.

Figure 4.1 : Main sources of flexibilities in milling.
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In general, the cutter geometry can be defined by a unit vector perpendicular to the cutter body 

(Figure 4.2) for flute j as:

, (4.1)

where i, j, and k are the unit vectors in the principal directions x, y and z, respectively. According 

to the regeneration phenomenon, the difference between the current vibrations and the vibrations 

that happened one tooth-pass period before is important. The vibration vector  is defined as:

, (4.2)

where , , , and  is the 

tooth period defined as:

, (4.3)

where  is the tooth passing frequency:

, (4.4)

N is the number of flutes, and  [rad/s] is the rotational speed of the spindle. Vibration marks are 

directly imprinted on the chip because of the combined rigid and vibration motions of the cutter. 

The dynamic chip thickness can be obtained by taking the projection of vibrations on the unit vec-

tor perpendicular to the cutter geometry:

. (4.5)

nj z( ) κ z( ) φj z( ) i⋅ κ z( ) φj z( ) j⋅ κ z( ).kcos–cos⋅sin+sin⋅sin=

Δ t( )

Δ t( ) Δx t( ) i⋅ Δy t( ) j⋅ Δz t( ) k⋅+ +=

Δx t( ) x t( ) x t τ–( )–= Δy t( ) y t( ) y t τ–( )–= Δz t( ) z t( ) z t τ–( )–= τ

τ 2π ωT⁄=

ωT

ωT N Ω⋅=

Ω

hd j, z t,( ) nj z( ) Δ t( )•=
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For two different end mill geometries, the vibration vector, the unit geometry vector and the 

resulting dynamic chip thickness are presented in Figure 4.3. For a cylindrical cutter, vibration in 

the axial direction of the cutter (z-axis) does not contribute to dynamic chip thickness; whereas, 

for a ball end mill, three orthogonal vibrations influence chip thickness.

Differential cutting forces in tangential, radial and axial directions can be described using the lin-

ear edge force model [27] as:

, (4.6)
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Figure 4.2 : Undulations on the chip, and dynamic chip thickness.
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where dS(z) is the differential contact length expressed as:

 , (4.7)

where dz is the differential axial depth of cut,  are the cutting force coefficients due 

to the shear and  are the edge cutting force coefficients due to the rubbing of the tool 

flank with the workpiece, in radial, tangential and axial directions, respectively [86]. The helix 

angle is taken as zero since its effect on the stability of a milling operation [64] is negligible for 

most of the engagement conditions.

Cutting forces acting on flute j are then calculated as:

, (4.8)
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Figure 4.3 : Dynamic chip thickness definition for general end mills.
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where a is the axial depth of cut,  is the average axial immersion angle, and  is the aver-

age dynamic chip thickness obtained from Eq (4.5) after replacing  with  in Eq (4.1). For com-

plex cutters such as ball end and bull nose, axial immersion angle varies along the z-axis; 

therefore, it can be assumed to be acting in the middle of the maximum axial depth of cut [96]. 

For instance, a ball end mill has an average axial immersion angle of . Note that cutting 

forces become independent of the z variable with the introduction of the average axial immersion 

angle. Cutting forces in rotating coordinates are projected onto Cartesian coordinates through a 

geometric transformation matrix:

, (4.9)

where total rotating cutting forces are calculated by adding the contribution of each flute as:

. (4.10)

Substituting Eq (4.8) into Eq (4.10), and then into Eq (4.9), relation between cutting forces and 

vibrations is derived as:
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, (4.11)

where time-varying directional coefficients in each principal direction are obtained as:

, (4.12)

, (4.13)
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j 1=
∑= =

axy t( ) axy j,

j 1=

N

∑ gj 1 2φjcos+( ) 2φj Kr κsin Ka κcos+( )sin+[ ]⋅–
j 1=

N

∑= =

axz t( ) axz j,

j 1

N

∑ 2gj φjcos κtan⁄ φj κcossin Kr Ka κtan⁄+( )+[ ]⋅

j 1

N

∑= =

ayx t( ) ayx j,

j 1=

N

∑ gj 1 2φjcos–( ) 2φj Kr. κsin Ka. κcos+( )sin–[ ]⋅

j 1=

N

∑= =

ayy t( ) ayy j,

j 1=

N

∑ gj 2φjsin 1 2φjcos+( ). Kr. κsin Ka. κcos+( )–[ ]⋅

j 1=

N

∑= =

ayz t( ) ayz j,

N

∑ 2gj φjsin– κtan⁄ φj. κcoscos . Kr Ka κtan⁄+( )+[ ]⋅

N

∑= =
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, (4.14)

where  is the switching function which is equal to unity while cutting and zero other-

wise,  and . One important observation about directional coeffi-

cients is that they significantly change the direction of excitation as the tool rotates and this 

constitutes the fundamental difference between the dynamics of turning and milling. Eq (4.11)

can be expressed in the time domain as:

, (4.15)

where the vibration difference vector is , the dynamic cutting forces 

vector is  and the directional coefficient matrix is

. (4.16)

azx t( ) azx j,

j 1=
∑ 2gj φj. κ.cossin Kr φj. κ.Kasinsin–[ ]⋅

j 1=
∑= =

azy t( ) azy j,

j 1=

N

∑ 2gj. φjcos . κ.cos Kr φjcos . κ.Kasin–[ ]

j 1=

N

∑= =

azz t( ) azz j,

j 1

N

∑ 2gj. κcos– κtan⁄ .Kr κ.Kacos+[ ]

j 1

N

∑= =

gj g φj( )=

Kr Krc Ktc⁄= Ka Kac Ktc⁄=

f t( ) 1
2
--- a Ktc A t( ) Δ t( )⋅ ⋅ ⋅ ⋅=

Δ t( ) Δx Δy Δz, ,{ }T=

f t( ) Fx Fy Fz, ,{ }T=

A t( ) Aj t( )

j 1=

N

∑
axx j, axy j, axz j,

ayx j, ayy j, ayz j,

azx j, azy j, azz j,
j 1=

N

∑= =
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4.3. Stability of Milling

In order to achieve high material removal rates in milling, a careful dynamic stability analysis has 

to be carried out and cutting parameters must be selected accordingly to avoid unstable (chatter) 

vibrations. Eq (4.15) describes how dynamic cutting forces in milling are generated. A dynamical 

system can be defined by expressing the equation of motion at the discrete points along the cut-

ting tool and applying cutting forces as external excitations:

, (4.17)

where  represent physical degrees of freedom,  

is the excitation force vector, and n is the number of degrees of freedom. M, C, K are n-dimen-

fx1

fx2

fxn
.
.
.

x1

x2

xn

Figure 4.4 : Multi degree-of-freedom 
milling dynamics.

M x·· t( )⋅ C x· t( )⋅ K x t( )⋅+ + fx=

x t( ) x1 x2 … xn, , ,{ }T= fx fx1 fx2 … fxn, , ,{ }T=
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sional mass, damping and stiffness matrices, respectively. Physical and modal displacements are 

related by mode shapes as:

, (4.18)

where  are modal displacements corresponding to each mode, and  is 

the number of modes, respectively. The mode shape matrix (n-by- ) is defined as:

. (4.19)

Each column of the mode shape matrix ( ) represents a ratio of structural displacement ampli-

tudes at each node in response to each mode, i.e. eigenvectors. When Eq (4.18) is substituted into 

Eq (4.17), the equation of motion in modal coordinates is obtained as:

, (4.20)

where , and  are modal mass and stiffness matrices, and  is 

the modal force vector:

x Px . μ=

μ μ1 μ2 … μmx
, , ,{ }T= mx

mx

Px

px 11, px 12, . . px 1mx,

px 21, px 22, . . px 2mx,

. . . . .

. . . . .
px n1, px n2, . . px nmx,

=

Px

Mμ μ·· t( )⋅ Cμ μ· t( )⋅ Kμ μ t( )⋅+ + fxμ=

Mμ Px
T.M.Px= Kμ Px

T.K.Px= fxμ
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= = . (4.21)

When the system has a proportional damping, the modal damping matrix is expressed as 

. A similar analysis can be performed for the rest of the orthogonal directions (y 

and z):

, (4.22)

, (4.23)

where =  and =  are modal force vectors of length  and ;  and  are 

the number of modes;  and  are mode shape matrices of size (n-by- ) and (n-by- ); and 

 and  are excitation force vectors in y and z directions, respectively. Using mode shapes, 

physical and modal displacements are related in y and z directions:

, (4.24)

, (4.25)

where  and  are modal displacement vectors in y and z directions, respectively. Eqs (4.35)-

(4.23) can be assembled into a single matrix equation of the form:

fxμ Px
Tfx

px 11,  fx1 px 21,  fx2 … px n1,  fxn+ + +
px 12,  fx1 Px 22,  fx2 … px n2,  fnx+ + +

…
px 1mx,  fx1 px 2mx,  f2x … px nmx,  fxn+ + +⎩ ⎭

⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

Cμ Px
T.C.Px=

Mη η·· t( )⋅ Cη η· t( )⋅ Kη η t( )⋅+ + fyη=

Mν ν·· t( )⋅ Cν ν· t( )⋅ Kν ν t( )⋅+ + fzν=

fyη Py
Tfy fzν Pz

Tfz my mz my mz

Py Pz my mz

fy fz

y Py  η⋅=

z Pz  ν⋅=

η ν
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, (4.26)

where  is the transformation matrix between physical and modal forces and defined as:

, (4.27)

, (4.28)

, (4.29)

, (4.30)

where  is the total number of modes, and  and  are defined similar to 

Eq (4.30). Without loss of generality, dynamics can be analyzed at the tool tip. Let all modes be 

normalized to unity at the tool tip (Point #1): 

; (4.31)

MΓ Γ·· t( )⋅ CΓ Γ· t( )⋅ KΓ Γ t( )⋅+ + Tfull fall t( )⋅=

Tfull

Tfull

Px
T 0 0

0 Py
T 0

0 0 Pz
T

mt mt×

=

fall t( ) fx t( )  fy t( )  fz t( )
⎩ ⎭
⎨ ⎬
⎧ ⎫

T

=

Γ t( ) μ1 μ2 … μmx
η1 η2 … ηmy

ν1 ν2 … νmz
, , , , , , , , , , ,{ }T=

MΓ

Mμ 0 0
0 Mη 0
0 0 Mν mt mt×

=

mt mx my mz+ += CΓ KΓ

px 11, px 12, … px 1mx, 1= = = =

py 11, py 12, … py 1my, 1= = = =

pz 11, pz 12, … pz 1mz, 1= = = =
⎭
⎪
⎪
⎬
⎪
⎪
⎫
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and forces be applied only at the tool tip: 

. (4.32)

The equation of motion now reduces to:

, (4.33)

where T is the reduced transformation matrix:

, (4.34)

and f(t) is the cutting force vector:

. (4.35)

Note that varying dynamics along the depth of cut can be considered by simply considering the 

distributed forces ( ) and displacements along the cutter axis. Cutting forces in 

milling are previously defined in Eq (4.15), and they can be re-expressed using modal coordinates 

and the transformation matrix T as:

fx1 Fx t( )  fx2, 0 …  fxn, , 0= = =
fy1 Fy t( )  f2y, 0 …  fyn, , 0= = =
fz1 Fz t( )  fz2, 0 …  fzn, , 0= = =

⎭
⎪
⎪
⎬
⎪
⎪
⎫

MΓ Γ·· t( )⋅ CΓ Γ· t( )⋅ KΓ Γ t( )⋅+ + T f t( )⋅=

T

1{ }mx
0 0

0 1{ }my
0

0 0 1{ }mz mt 3×

=

f t( ) Fx t( ) Fy t( ) Fz t( )
⎩ ⎭
⎨ ⎬
⎧ ⎫

T

=

fxn  fyn  fzn, , 0≠
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. (4.36)

Substituting Eq (4.36) into Eq (4.33), and reorganizing the terms:

,

, (4.37)

where

, (4.38)

the general equation of motion in Eq (4.37) can be expressed in a state space form as:

, (4.39)

where

, (4.40)

, (4.41)

f t( ) 1
2
--- a Ktc A t( ) T T Γ t( ) Γ t τ–( )–{ }⋅ ⋅ ⋅ ⋅ ⋅=

MΓ Γ·· t( )⋅ CΓ Γ· t( )⋅ KΓ Γ t( )⋅+ + T 1
2
--- a Ktc A t( ) T T Γ t( ) Γ t τ–( )–{ }⋅ ⋅ ⋅ ⋅ ⋅ ⋅=

MΓ Γ·· t( )⋅ CΓ Γ· t( )⋅ KΓ LΓ t( )–( ) Γ t( )⋅+ + LΓ t( ) Γ t τ–( )⋅–=

LΓ t( ) 1
2
--- a Ktc T A t( ) T T⋅ ⋅ ⋅ ⋅ ⋅=

Θ· t( ) U t( ) Θ t( )⋅ V t( ) Θ t τ–( )⋅+=

Θ t( ) Γ t( )

Γ· t( )⎩ ⎭
⎨ ⎬
⎧ ⎫

=

U t( )
0 I

MΓ
1– LΓ t( ) KΓ–( )    MΓ– 1– CΓ

=
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. (4.42)

Modal parameters (mass, damping and stiffness) of the structure are identified from a set of 

impact tests by attaching an accelerometer at the tool tip and tapping it with an instrumented ham-

mer in the direction of interest. Measured acceleration and force data are then used to obtain the 

frequency response function (FRF), from which modal parameters are extracted using a modal 

analysis software [93].

4.3.1. Time Domain Based Stability Solution

The equation of motion in milling - represented by Eq (4.39) - is a time periodic delay differential 

equation (DDE). The regenerative effect due to the wavy surface on both sides of the chip appears 

as the delay term; whereas, rotating cutting forces represented by directional coefficients intro-

duces periodicity into the equation of motion. In milling, the delay and the periodicity of the sys-

tem are both equal to the tooth period ( ). Stability of linear DDE depends on infinite number of 

characteristic roots making stability properties of delayed systems extremely complex [73]. 

Stepan et al. [73] proposed a semi-analytical solution called the Semi-Discretization (SD) method 

for the stability of linear delayed systems. The SD method in reference [73] was applied to two 

degree-of-freedom milling with a single mode in each direction. In this section, the SD method is 

applied to investigate stability characteristics of dynamics of generalized milling applications. 

General form of three degree-of-freedom milling dynamics with multiple modes is derived in the 

the previous section and the resulting state space form is expressed in Eq (4.39).

V t( )
0   0

MΓ– 1– LΓ t( )   0
=

τ
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The idea behind the SD method is to approximate the time delayed and time-dependant terms 

with piecewise constant functions so that the DDE can be reduced into series of ordinary differen-

tial equations (ODEs). Since the actual time domain terms are not discretized and left unchanged, 

an exact solution for each ODE can be obtained. The SD starts with construction of the time inter-

val division as shown in Figure 4.5. Delay time (tooth period) is divided into finite number of ele-

ments of length  such that

, (4.43)

where k is an integer and the time at each interval is expressed as:

, . (4.44)

Note that time step or size of a discrete element must be set much smaller than the period of the 

highest structural mode so that dynamics can be properly captured within the solution. In this 

study, time step is set equal to or smaller than one tenth of the period of the largest mode.

Once the discretization is completed, the time-dependant matrices, which contain dynamic 

parameters and directional coefficients, are approximated with constant matrices for each discret-

ization interval :

, , (4.45)

Δt

Δt T k⁄=

ti i Δt⋅= i 0 1 … k, , ,=

[ti ti 1+ ),

Ui
1
Δt
------- U t( ) td

ti

ti 1+

∫= Vi
1
Δt
------- V t( ) td

ti

ti 1+

∫=
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and the delayed term is approximated as a weighted linear combination of the delayed discrete 

values  and :

, (4.46)

where  when the time delay is equal to the time period of the system, which is 

always the case for a milling system. When both approximations, Eqs (4.45)-(4.46), are substi-

tuted into non-autonomous DDE expressed in Eq (4.39), the system becomes a linear autonomous 

ODE within a time interval:

, . (4.47)

Θi k– Θi k– 1+

Θ t τ–( ) Θ ti kΔt–( ) wb Θi k–⋅ wa  Θi k– 1+⋅+≈ ≈

wa wb 1 2⁄= =

Θ· t( ) Ui Θ t( )⋅ Vi wb Θi k–⋅ wa  Θi k– 1+⋅+( )⋅+= ti t ti 1+<≤( )

ti

t

Q

ti+1ti-k ti-k+1

T=k*Δt

Δt 2Δt kΔt

0 1 2 k

0

Counter

Time

Discretization of the delay (tooth period)

Approximation of the delayed term

Figure 4.5 : Approximation of the delayed term 
using the semi-discretization (SD) by Stepan 

and Insperger [73].
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Being treated as an initial value problem, i.e. , Eq (4.47) has an exact solution of the 

form:

. (4.48)

Substituting  in Eq (4.48), first, the state at the exit of the ith time interval is found as:

, , (4.49)

and then a discrete map is defined as:

, (4.50)

where

, (4.51)

, (4.52)

are ( -by- ) matrices;

Θ ti( ) Θi=

Θ t( ) e
Ui t ti–( )

 Θi⋅ e
Ui t ti–( )

I–( ) Ui
1– Vi wb Θi k–⋅ wa  Θi k– 1+⋅+( )⋅ ⋅ ⋅+=

t ti 1+=

Θi 1+ Si Θi⋅ Ri wb Θi k–⋅ wa  Θi k– 1+⋅+( )⋅+= ti t ti 1+<≤( )

ϒi 1+
 full Ψi

full ϒi
full=

Si e
Ui Δt

=

Ri Si I–( ) Ui
1– Vi⋅ ⋅=

2mt 2mt
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(4.53)

is a [ -by- ] matrix; and

(4.54)

is a vector of length ( ). It is clear from Eq (4.42) that  does not play any role 

in Eq (4.39); therefore,  in Eq (4.49) does not depend on  or . Using this 

observation, size of the problem can be reduced and a new discrete map is defined as:

, (4.55)

where  is a square matrix of size .(k+2):

Ψi
 full

Si 0 0 … 0 wa Ri⋅ wb Ri⋅

I 0 0 … 0 0 0
0 I 0 … 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 … 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0

=

2mt k 1+( ) 2mt k 1+( )

 ϒi
 full

Γi  Γ· i  Γi 1–  Γ· i 1– …  Γi k–  Γ· i k–
⎩ ⎭
⎨ ⎬
⎧ ⎫

T

=

2mt k 1+( ) Γ· t τ–( )

Θi 1+ Γ· i k– Γ· i k– 1+

ϒi 1+ Ψi ϒi⋅=

Ψi mt
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(4.56)

and  is a vector of length .(k+2):

. (4.57)

Note that additional subscripts of  and  in Eq (4.56) are used to indicate sub matrices defined 

within the specified row and column ranges. The transition matrix over one period can now be 

defined by coupling all the discrete maps:

, (4.58)

where . According to the Floquet theory, the stability of a linear periodic system 

depends on the characteristic multipliers (eigenvalues) of the so-called principal or transition 

matrix and if all eigenvalues of  are in modulus less than one, then the system is asymptotically 

stable [73].

4.3.2. Frequency Domain Based Stability Solutions

An alternative method to the time domain based solution of chatter stability is a frequency domain 

based method. Similar to cutting forces, the directional coefficient matrix, , is also periodic 

Ψi

Si 1…mt  1…mt,( ) Si 1…mt  mt+1…2mt,( ) 0 0 … … waRi 1…mt  1…mt,( ) wbRi 1…mt  1…mt,( )

Si mt+1…2mt  1…mt,( )    Si mt+1…2mt  mt+1…2mt,( ) 0 0 … … waRi mt+1…2mt  1…mt,( )     wbRi mt+1…2mt  1…mt,( )

I 0 … … … … 0 0
0 0 I 0 … … 0 0
0 0 0 I 0 … 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 … I 0

=

ϒi mt

ϒi Γi  Γ· i  Γi 1– … Γi k 1––  Γi k–⎩ ⎭
⎨ ⎬
⎧ ⎫

T

=

Si Ri

Φ Ψk 1– Ψk 2– …Ψ0⋅=

ϒk Φ ϒ0⋅=

Φ

A t( )
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at the tooth passing frequency ( ) or at the tooth period ( ), i.e., = . Harmonic 

functions can be expressed by Fourier series [67] as:

, (4.59)

where i is the imaginary unit, and the Fourier coefficients are defined as:

. (4.60)

In order to obtain Fourier coefficients, first, Eq (4.16) is substituted into Eq (4.60):

. (4.61)

Since , where  is the pitch angle for an 

even-pitch cutter, the summation in the above relation can be taken out by changing integration 

limits:

, (4.62)

ωT τ A t( ) A t τ+( )

A t( ) Ar e
irωTt

⋅

r ∞–=

∞

∑=

Ar
1
τ
---  A t( ) e

irωTt–
td⋅

0

τ

∫=

Ar
1
τ
---  Aj t( )

j 1=

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

e
irωTt–

td⋅

0

τ

∫
1
τ
---  Aj t( )

j 1=

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

e irNΩt– td⋅

0

τ

∫= =

φj φ j 1–( )φp+ Ω t j 1–( ) τ⋅+( )= = φp 2π N⁄=

Ar
1
τ
---    Aj γ( ) e irNΩγ– γ d⋅

jτ

j 1+( )τ

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

j 1=

N

∑⋅=
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where  is still a time variable like t; however, acting between different limits. Using the relation 

between the rotation angle, and the rotational speed of the tool, i.e., , integration can be 

redefined as:

. (4.63)

Since  contains the switching function , the above expression can be simplified by taking 

all flutes into account within the immersion zone:

, (4.64)

where  is defined equal to  in Eq (4.16) without the dependency on flute number j, i.e., 

 being unity and .

The right-hand-side of Eq (4.15) is a function of not only the tooth passing frequencies due to 

directional coefficients , but also the vibration (chatter) frequency due to vibration terms, 

. Thus, as a reaction, dynamic milling forces ( ) should contain both the tooth passing 

frequencies ( ) and the chatter frequency,  when the system is marginally stable. In gen-

eral, Floquet’s theorem [66][98][99] states that for a second order differential equation with peri-

odic and piece-wise continuous coefficients, the solution has the following form:

, (4.65)

γ

θ Ωτ=

Ar
1
τΩ
-------    Aj θ( ) e irNθ– θ d⋅

jφp

j 1+( )φp

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

j 1=

N

∑⋅=

Aj θ( ) gj

Ar
N
2π
------ A θ( ) e irNθ– θd⋅

φst

φex

∫=

A θ( ) Aj t( )

gj φj θ=

A t( )

Δ t( ) f t( )

k ωT⋅ ωc

f t( ) e
sλt

p t( )⋅=
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where  is a periodic function of the tooth passing frequency ( ). It is evident from Eq 

(4.65) that the milling system is stable if the real part of exponent  is negative. Since the cutter 

and the workpiece vibrate at the chatter frequency on the stability border,  can be replaced by 

 to ensure marginal stability [67]. When periodic function  is also expanded by 

using Fourier series, the following expression is obtained for the dynamic milling forces:

. (4.66)

Spindle is a multi degree of freedom dynamical system whose dynamics is reflected at the tool tip 

during machining process. Considering each principal direction, the displacement response to an 

acting force  can be expressed as:

 , (q = x,y,z), (4.67)

where D is the differential operator , G(D) is the transfer function expressed in terms of 

modal parameters such as natural frequency ( ), modal mass (m) and damping ratio ( ):

, (4.68)

where M is the total number of modes. Considering all directions with direct (diagonal elements) 

and cross (off-diagonal elements) transfer functions, a matrix form of displacements can be writ-

ten as:

p t( ) ωT

sλ

sλ

sλ iωc= p t( )

f t( ) e
iωct pk e

ikωTt

k ∞–=

∞

∑ pk e
i ωc kωT+( )t

k ∞–=

∞

∑= =

fq t( )

q D( ) G D( ) fq t( )⋅=

d …( ) dt⁄

ωn ζ

G D( )
1 mj⁄

D2 2 ζj ωn j, D⋅ ⋅ ⋅ ωn j,
2+ +

----------------------------------------------------------------
j 1=

M

∑=
100



Chapter 4. Dynamics of Milling Operations
, (4.69)

where  is the overall transfer function matrix:

. (4.70)

Note that if there is no coupling between orthogonal axes, the dynamic displacement for each axis 

is obtained by multiplying the transfer function of each axis with the milling force, i.e., the trans-

fer function matrix  becomes a diagonal matrix. The vibration difference vector is 

expressed by using the transport delay (tooth period, ) as:

. (4.71)

Substituting Eqs (4.66), (4.69), and (4.71) into Eq (4.15) yields

. (4.72)

Using the definition of parametric transfer functions of linear periodic systems given in reference 

[100], Minis and Yanushevsky [66] expressed Eq (4.72) as:

x t( )
y t( )
z t( )⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

G D( ) f t( )⋅=

G D( )

G D( )
Gxx D( ) Gxy D( ) Gxz D( )

Gyx D( ) Gyy D( ) Gyz D( )

Gzx D( ) Gzy D( ) Gzz D( )

=

G D( )

τ

Δ t( ) 1 e Dτ––( )
x t( )
y t( )
z t( )⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

⋅=

f t( ) 1
2
--- a Ktc A t( ) 1 e Dτ––( ) G D( ) pk e

i ωc kωT+( )t
⋅ ⋅

k ∞–=

∞

∑⋅ ⋅ ⋅ ⋅=
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. (4.73)

Eq (4.65) is substituted into the left-hand-side of Eq (4.73), and both sides are divided by  to 

obtain:

, (4.74)

where  is replaced by  as . Multiplying both sides of the above 

equation by , integrating from 0 to , and using the orthogonality principle [67], the 

following is obtained:

which can be simplified to

, , (4.75)

where . The infinite limits of the summation must be truncated in order to solve 

the system of equations. If the maximum number of harmonics is limited to , and the summa-

tion in Eq (4.75) is expressed in matrix form, then the problem is reduced to an eigenvalue prob-

lem:
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, (4.76)

where  is the eigenvalue, p is the eigenvector defined as:

, (4.77)

 is a 3(2 +1)-by-3(2 +1) matrix called oriented transfer function:

, (4.78)

where

. (4.79)

Directional coefficients for the multi frequency case are obtained by carrying out the integration 

in Eq (4.64):
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, (4.80)

where matrix elements are

, (4.81)

, (4.82)

, (4.83)
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. (4.84)

Note that some coefficients in Eq (4.84) are undefined when rN = , , therefore, undefined 

elements of the directional coefficient matrix, , in Eq (4.80) are separately calculated as 

• when rN = 2, (r>0):

, (4.85)

• when rN = 1, (r>0):
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. (4.86)

Once positive coefficients (r>0) are calculated, negative coefficients (r<0) simply become equal 

to complex conjugates of the positive ones. Finally, a non-trivial solution can be found when the 

determinant vanishes:

, (4.87)

where  is the vibration frequency, and  is the tooth passing frequency. Eq (4.87) describes 

the characteristic equation of the closed loop milling system. When the oriented transfer function 

 is known, all eigenvalues can be determined, from which critical depths of cut are 

obtained as:

, (4.88)

where , , i is the imaginary unit and subscripts R and I 

represent real and imaginary parts, respectively. Substituting =  

into Eq (4.88), real and imaginary parts of depth of cut are expressed as:
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, (4.89)

. (4.90)

In order to obtain a physical value, the imaginary part of the limiting depth of cut must be zero, 

which results in the following root condition:

  . (4.91)

Substituting Eq (4.91) into Eq (4.89), real depth of cut is solved as:

. (4.92)

The root condition in Eq (4.91) can be expressed alternatively as:

. (4.93)

Dividing both sides by the magnitude of the eigenvalue:

, (4.94)

where , the root condition for each eigenvalue can be simplified as:
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, (4.95)

where

, (4.96)

is the phase shift of the eigenvalue. Finally, the general root function can be determined by multi-

plying individual root conditions for each eigenvalue:

, (4.97)

where  is the maximum number of harmonics. Since roots (chatter frequencies) of Eq (4.97)

guarantee real-valued depths of cut, this equation will be useful when stability lobes are con-

structed iteratively. Note that, in the most general case, eigenvalues are functions of both excita-

tion and tooth passing frequencies; therefore, .

4.3.2.1. Zero Order (ZO) Solution

The most simplistic approximation to directional coefficient matrix can be done by considering 

the average component of the Fourier series expansion, i.e., when r = 0. In this case, general char-

acteristic equation in Eq (4.87) reduces to:

, (4.98)
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and the overall transfer function matrix, , becomes independent of spindle speed or . 

This simplifies the problem as eigenvalues of Eq (4.98) can be solved by just specifying a chatter 

frequency, . Having found the eigenvalues, allowable depths of cut are calculated from Eq 

(4.92) only when real parts of the eigenvalues are positive. Among all positive depths of cut, the 

lowest one is selected to mark the stability boundary.

The next step is to calculate spindle speeds for this depth of cut. Using the root condition in Eq 

(4.95), the phase shift can be related to the chatter frequency and the spindle speed in a general 

form as:

, (4.99)

where  represents "lobe" numbers. From Eq (4.99):

, (4.100)

where  is the phase angle between current and previous vibration marks. Since eigen-

values hence phase angle can be calculated for a given , a set of spindle speeds, n [rev/min], is 

obtained from solving for tooth period  as:

. (4.101)

4.3.2.2. Generalized Zero Order (GZO) Solution

Cutters used in 3-axis milling operations are generally complex cutters with varying geometry 

along the axis such as ball end and bull nose types. Rotating dynamic cutting forces acting on the 
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tool must be projected onto fixed machine tool axes using the local geometry of the cutter. It is 

important how forces are distributed between orthogonal directions along which structural flexi-

bilities are defined for stability consideration. When the stability equation in Eq (4.98) is ana-

lyzed, it becomes evident that this equation is limited to an end mill with a single geometry 

because it contains only one directional coefficient matrix, which is earlier defined in Eq (4.11) to 

relate dynamic displacements to dynamic cutting forces. Moreover, Eq (4.98) contains only one 

cutting force coefficient, which is unlikely for general end mills as change of cutting force coeffi-

cient along the axis can be significant. In conclusion, zero order stability equation for a general 

end mill has to be expressed in a more general form.

For general end mills, the envelope of the cutter varies along the cutter axis as shown in Figure 

4.6.a. Although the cutter can be divided into more axial elements, the geometry in this figure is 

divided into three parts for simplicity and the stability analysis can still be done without loss of 

generality. For each section, a relative depth of cut term is assigned, each of which is limited 

between zero and an upper boundary as shown in Figure 4.6.a. Separating the cutting force coeffi-

cient from the depth of cut and considering the influence of each geometry with a different direc-

tional coefficient matrix, stability for a general end mill can now be described as:

, (4.102)

where  is the delay term containing the cutting force coefficient 

,   is the relative depth of cut, and  is the directional coefficient matrix of each section 

(i=1,2,3).
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The characteristic equation of general end milling dynamics given in Eq (4.102) must be analyzed 

in multiple steps as it varies along the axis. The solution starts with the lowest relative depth of 

cut, , having the following characteristic equation:

, (4.103)

which can alternatively be represented as a standard eigenvalue problem as:

, , (4.104)

where . Since Eq (4.104) is identical to Eq (4.98), allowable depth of cut and spindle 

speeds are solved analytically as described in Section 4.3.2.1 (ZO solution). One important differ-

ence is that only depths of cut within the range of characteristic equation, i.e. , are 

accepted to construct stability lobes. For out of range values, i.e. when the critical depth of cut 
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exceeds the upper boundary of the corresponding geometry, the stability problem is reformulated 

by considering the effect of successive geometry resulting in a new characteristic equation:

. (4.105)

The above equation can be represented in an equivalent general eigenvalue problem as:

, (4.106)

where  and . There are three unknowns in 

this equation: the tooth period ( ) or the spindle speed, the depth of cut ( ) and the excitation 

frequency ( ). Since chatter vibrations occur at frequencies close to natural frequencies of the 

structure, the excitation frequency can be scanned around the modes of the structure; however, 

this will not be sufficient to solve for eigenvalues due to presence of the C matrix. As stated ear-

lier, a physical depth of cut is possible only for eigenvalues satisfying the general root function in 

Eq (4.97); therefore, first, a frequency band is established in between the smallest ( ) and 

largest ( ) natural frequencies of the structure. This band is then divided into a finite number 

of elements at which eigenvalues and root function, , are calculated at a fixed spindle speed 

(or similarly tooth period ) using standard eigenvalue solver. Brent’s Algorithm [92] is used to 

solve for roots (chatter frequencies) between frequencies for which root function changes sign. 

Graphical representation of root search is shown in Figure 4.7. Once critical relative depths of cut, 

, are calculated at chatter frequencies, the smallest depth of cut is selected and a range check, 

i.e. , is performed before accepting it as a valid solution. Advancing through 

the remaining sections of the tool, the complete stability chart is constructed for a general end 
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Chapter 4. Dynamics of Milling Operations
mill. Although GZO solution is an iterative approach, it provides a better estimate for stability as 

characteristic equation is constructed more realistically.

4.3.2.3. Multi Frequency (MF) Solution

Cutter, workpiece and machine tool structures are subjected to periodic and transient vibrations 

due to the intermittent engagement of the cutter teeth and periodically varying milling forces. 

Wave-forms of milling forces have harmonic components of the tooth passing frequency depend-

ing on the width of cut and/or the number of teeth. This dependency is such that the smaller the 

width of cut and/or the less the number of teeth on the cutter, the higher the number of harmonics 

is involved in cutting forces; therefore, the frequency domain solution should cover wider spec-

trum of frequencies involved in the cutting process. In this section, multi frequency (MF) solution 

to dynamic milling equation, which includes multiple harmonics of tooth passing frequency, is 

analyzed.

In Section 4.3.2, marginal stability of milling process is described as a standard eigenvalue prob-

lem (Eq (4.76)) including effects of multiple harmonics due to directional coefficient matrix and 

dynamic cutting forces. Similar to GZO solution, stability lobes for MF case are constructed via 

iterative solution of Eq (4.76) by assigning spindle speed (or ), and searching for positive-real 

depths of cut by iterating chatter frequency ( ). Such analysis for a single mode can be found in 

startω
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Figure 4.7 : Graphical representation of iterative root search.
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the author’s previous work [75]. Unlike GZO solution where the smallest of all depths of cut is 

selected to represent the stability boundary at a fixed spindle speed, extra care must be given in 

the case of MF. Although some of these solutions (depths of cut) are related to neighboring 

branches or lobes, some exist as a result of multiple harmonics. In order to distinguish acceptable 

solutions from the unacceptable, the physical validity of each solution has to be checked, and in 

this thesis, it is proposed to do this through physical interpretation of eigenvalue solutions. In Eq 

(4.76), an eigenvector p is defined for each eigenvalue. Elements of eigenvector represent relative 

strength of each harmonic on dynamic cutting forces, which are already expanded into Fourier 

series as shown in Eq (4.66). Since dynamic cutting forces are directly related to regeneration or 

vibration difference vector dominated by excitation frequency , the first component of eigen-

vector, , has to be the biggest in order for the solution to be physically viable. In other words, 

the root condition in Eq (4.91) is a necessary but not a sufficient condition, and any solution 

(depth of cut) resulting in an eigenvector whose first component is not being the largest is mathe-

matically possible but physically impossible to exist, therefore, it needs to be eliminated from sta-

bility lobes.

Properties of different stability methods presented in this chapter are compared in Table 4.1. 

"Variable" directional coefficient matrix means that the solution method allows the cutter to be 

divided into a number of axial elements at which directional coefficient matrix can be defined 

separately. In "scanning" type solution, stability of milling operation is checked by point by point 

investigation of the parameter domain, i.e., spindle speed, depth of cut, and width of cut; whereas, 

"analytical" and "iterative" solution types seek for a specific solution defining the stability bound-

ary.

ωc

p0
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4.3.2.4. Iterative Stability Solution and Eigenvalue re-analysis

The iterative MF solution becomes computationally demanding because the step size associated 

with the chatter frequency needs to be small enough to account for all possible roots in the vicin-

ity of a particular structural mode. Structural modes for machine tools are usually in the order of 

hundreds and even thousands of Hertz; whereas, the step size sometimes becomes as low as  

Hz, even if only three digit accuracy is demanded, which is not enough for convergence in many 

cases (two harmonics and up). Another computational difficulty is due to eigenvalue solution. If 

 is the total number of harmonics of the tooth passing frequency taken into account, 3(2 +1)

complex eigenvalues are obtained from Eq (4.87), which means that at each iteration step corre-

sponding to a very small change in chatter frequency estimate, a significant number of eigenval-

ues have to be recalculated. A better and more intelligent technique is to estimate eigenvalues 

based on previously calculated ones, hence a search algorithm with a high convergence rate and 

an eigenvalue estimation method are indispensable. In this section, algorithms presented by Lu et 

Table 4.1 : Summary of different stability solution methods. SD: Semi-discretization (Section 
4.3.1); ZO: Zero order (Section 4.3.2.1); GZO: Generalized zero order (Section 4.3.2.2); MF: 

Multi frequency (Section 4.3.2.3); Dir. Coef.: Directional coefficient matrix A in Eq (4.16); Sln. 
Type: Solution type, Scanning means that stability is solved (chatter or stable) for a given set of 
cutting conditions; Cmp. Time: Computation time, lower number indicates shorter computation 

time.
Method Input Output Dir. Coef. Sln. Type Cmp. Time

SD Spindle speed
Depth of cut

Stability state:
Stable/Unstable

Variable Scanning 3

ZO Chatter frequency Spindle speeds
Depth of cut

Fixed Analytical 1

GZO Spindle speed
Chatter frequency 

Depth of cut Variable Iterative 2

MF Spindle speed
Chatter frequency 

Depth of cut Fixed Iterative 3

ωc

ωc

ωc

10 3–

hr hr
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al. [83] and Lou et al. [85] for eigenvalue re-analysis are applied to increase computational effi-

ciency of the solution of the machine tool stability problem. By eliminating the need for recalcu-

lation of eigenvalues, stability lobes are solved and constructed more intelligently.

Consider the generalized eigenvalue problem of n-by-n complex matrix pairs A and B:

, (4.107)

where ’s are the eigenvalues, ’s and ’s are the associated right and left eigenvectors, 

respectively, , and "*" is the complex conjugate transpose operator. Suppose that the 

original eigenvalue problem is represented when A= , B= , , , and 

. For a finite change of matrices A and B, the modified eigenvalue problem becomes:

, (4.108)

where = + , = + , = + , = + , = + . 

Note that  terms represent perturbation due to a parameter change in matrices A and B, which is 

the frequency in this case. Since the procedure is identical for both right and left eigenvalues, in 

the following section, derivations for only right eigenvalue problem is presented. Substituting the 

perturbed values in right eigenvalue problem in Eq (4.108) and omitting a small second order 

component [83]:
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. (4.109)

When it is assumed that the system has distinct eigenvalues, the right and left eigenvectors form a 

complete set of vectors, i.e., they become linearly independent. Thus, perturbations  and  

can be expressed as complex linear combinations of all eigenvectors,  and  [85]:

. (4.110)

Note that, in ( = + ), the effect of  vector  can be combined into the first term 

because the mode vector  only describes the proportional relation among its elements [85], 

hence the  term is excluded in Eq (4.110). This statement is also valid for the left eigenvector. 

When Eq (4.109) is multiplied by  and the orthogonality condition of the eigenvectors, being

, (4.111)

is applied, the variation in eigenvalues can be easily calculated as:

. (4.112)

Finally, eigenvalue estimate for the modified system becomes:
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. (4.113)

This is just a specific form of the Rayleigh quotient for the eigenvalue problem in Eq (4.107). If 

Eq (4.110) is substituted into Eq (4.109) and the result is multiplied by  ( ), the follow-

ing form is obtained:

,

= . (4.114)

Using the orthogonality condition in Eq (4.111), the above equation is simplified as follows:

 ( ), ( ). (4.115)

Coefficients for the left eigenvalue problem in Eq (4.108) are similarly obtained as:

, ( ), ( ), (4.116)

and finally eigenvectors of the perturbed system are easily found by:
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. (4.117)

Since both eigenvalue and eigenvector estimates are expressed in terms of modified matrices, it is 

possible to use them in an iterative sense. Iteration starts with the exact solution of unperturbed 

system: , , and  and the eigenvalue solution of the modified system is estimated using 

Eqs (4.113) and (4.117): , , and . Convergence at each step is checked by comparing 

the rate of change of eigenvalue estimate:  where tol is user-defined toler-

ance. If the iteration is not successful, a new set of eigenvalues are estimated by replacing the 

original eigenvalues and eigenvectors with the new estimates, i.e. = , =  and 

= . Although the perturbation method described above involves operation count of , 

which is identical to a standard n-by-n eigenvalue problem operation count, computation time is 

still reduced by utilizing available information (eigenvalues and eigenvectors of the unperturbed 

problem) as initial estimates in the solution of the modified eigenvalue problem. Comparing Eqs 

(4.87) and (4.107), matrix pairs A and B for chatter stability are simply equal to:

. (4.118)

It is essential for the eigenvalue estimation to trace the same eigenvalue when stepping from one 

frequency to another. At the beginning, eigenvalues are calculated for a set of frequencies; how-

ever, their orders are independent of each other at each frequency. Figure 4.8.a shows an example 

of variation in eigenvalue indices when frequency is slightly changed. Note that index of each 

eigenvalue corresponds to the element number of the eigenvalue vector obtained from solution of 
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Chapter 4. Dynamics of Milling Operations
Eq (4.87). An appropriate sorting criterion to obtain consistent indices is to check the relative dis-

placement of eigenvalues. Eigenvalues obtained at the starting frequency, , are taken as the 

reference for indexing, and when the frequency is varied slightly, the distance of each new eigen-

value from the previous one is calculated. By sorting the distances, proximity of each eigenvalue 

is determined, and proper indexing is achieved. Figure 4.8.b shows the effect of sorting on index-

ing eigenvalues and how eigenvalues are successfully traced.

Eigenvalue estimation is incorporated into the stability solution to increase computational effi-

ciency. The only difference from the previously presented method is that the fine tuning stage of 

the root search (Figure 4.7) is now achieved by estimating eigenvalues instead of solving them 

using a standard eigenvalue solution.

 

4.4. Comparison of Stability Methods

In an effort to compare various stability methods presented above, the stability of a milling opera-

tion is investigated. Dynamic parameters of a 76.2 [mm] face milling cutter with four 25.4 [mm] 

ωstart

λ5

λ6

λ2

λ1λ1

λ3

λ4

λR λR 

ω0
ω1

ω0
ω1

λ3 λ6

λ2

λ5

λ4

λI λI

λ5

λ6

λ2

λ1λ1

λ3

λ4
λ2 λ4

λ6

λ5

λ3

(a) (b)
Figure 4.8 : Shift of eigenvalues when the frequency is changed from  

to : (a) unsorted eigenvalues; (b) sorted eigenvalues.
ω0

ω1
120



Chapter 4. Dynamics of Milling Operations
circular inserts (N=4) mounted on a three axis horizontal machining centre are given in Table 4.2

[101]. Stability is investigated for a half immersion down milling ( =0 and = ) of a P20 

steel with the following constant tangential, radial and axial cutting force coefficients, respec-

tively: =3146 [N/ ], =1680 [N/ ], =419.4 [N/ ]. In addition to time (SD) 

and frequency (ZO, GZO, MF) domain based stability methods, a comprehensive time domain 

simulation is also used to construct stability lobes for comparison.

In order to account for the variation of directional coefficients along tool axis, the cutter is divided 

into a number of axial elements and individual directional coefficients are calculated. Since depth 

of cut is scanned in the semi-discretization (SD) and generalized-zero-order (GZO) solutions, 

overall directional coefficients at a given depth are calculated by aggregation of the axial ele-

ments. On the other hand, for methods seeking for a depth of cut such as zero-order (ZO) and 

multi-frequency (MF), average directional coefficients are used at mid point, i.e., when = . 

Number of discrete time elements for the SD is varied depending on the spindle speed to accom-

modate either minimum of 40 elements, or a time step that is one tenth of the lowest period 

(inverse of the highest natural frequency) in the system to prevent aliasing. The sampling time of 

the time-domain (TD) solution is also varied with a similar approach to capture dynamics accu-

rately.

Table 4.2 : Dynamic parameters [101].
Direction Natural Frequency

[Hz]
Stiffness

[N/m]
Damping

[-]
X 28 2.54 e7 0.17

55 4.30 e7 0.12
Y 28 2.15 e8 0.10

55 6.18 e8 0.06

φst φex π 2⁄

Ktc mm2 Krc mm2 Kac mm2

κ π 4⁄
121



Chapter 4. Dynamics of Milling Operations
A complete set of stability lobes are plotted in Figure 4.9 and chatter frequencies obtained from 

frequency domain based solutions are given in Figure 4.10. The ZO solution is improved with the 

proposed GZO by considering the variation of the directional coefficient matrix along the cutter, 

and it has become closer to the TD solution. The SD and the GZO are in good agreement below 

425 rpm; however, the minimum stability limit, which is expected to be constant, has increased 

from 6 mm to 8.7 mm above 425 rpm when the SD solution is used. Similar increase is also 

observed in the TD solution. In an effort to investigate this behavior, frequencies are checked in 

this region. Chatter frequency at 475 rpm, where tooth passing frequency is =31.7 Hz, is 

found to be =60.2 Hz. As mentioned before, when chatter occurs, dynamic cutting forces - 

Eq (4.66) - have components of not only chatter frequency but also frequencies that are a tooth 

passing frequency away from chatter frequency. Unless radial immersion is very low, these har-

monics do not influence the stability [75]. In this case-study, although radial immersion is consid-

erably high, it is found out that harmonics play an important role around a specific spindle speed 

region. For example at 475 rpm, ( - )/ =28.5 Hz corresponds to one of the structural 

modes resulting in the distribution of vibration energy between two neighboring modes and 

increased stability. In order to observe the effect of harmonics, stability lobes are generated by 

using MF solution. Low ( =1) and high ( =5) numbers of harmonics are used for comparison. 

Although, one harmonic is enough to capture the stability increase, better accuracy is obtained 

with the addition of more harmonics. It is observed that the stability solution has not changed 

when more than five harmonics are used. Eigenvectors are analyzed at different spindle speeds, 

and magnitudes of them are normalized with respect to the magnitude of eigenvectors at the chat-

ter vibration frequency, i.e.,

ωT 2π⁄

ωc 2π⁄

ωc ωT 2π

hr hr
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. (4.119)

Figure 4.11 displays eigenvector magnitudes in the x direction at two spindle speeds. At 475 

[rpm], where increased stability occurs, eigenvectors corresponding to harmonics have larger 

magnitudes, and the strength of the first harmonic (1,-1) is almost 80% of the magnitude of eigen-

vector corresponding to chatter vibration frequency (see Figure 4.11.a). Since the magnitude of 

each eigenvector component represents the relative vibration strength at the corresponding fre-

quency, the increase in stability can be explained by the fact that vibration energy is split mostly 

between two modes of the structure. This observation is similar to the working principle of a 

tuned mass damper (harmonic absorber). At 310 [rpm], where the MF solution becomes almost 

identical to the ZO solution, the magnitudes of harmonics are generally smaller and strength of 

the first harmonic has dropped to less than 40% of that of the one at chatter vibration frequency. 

When general stability trend is concerned, it is observed that the MF solution is capable of captur-

ing the increase in stability when a mode is located at a frequency that is one or a couple of tooth 

passing frequencies away from the dominant chatter frequency.

p 1{ }T p1
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phr
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The same spindle speeds are analyzed using the SD solution by selecting depths of cut right on the 

stability border, where modulus of the largest eigenvalue is unity. Eigenvalues of the transition 

matrix - Eq (4.58) - are solved for spindle speeds of 475 [rpm] and 310 [rpm], and the results are 

shown in Figure 4.12. At 475 [rpm] and depth of cut of 12.8 [mm], more eigenvalues appear 

closer to the unit circle compared to that of the transition matrix with 310 [rpm] and depth of cut 

of 7.6 [mm]. Although the marginally stable vibration is dominated by the eigenvalue pair equal 

to unity while others diminishing at a steady state, another eigenvalue pair being very close to 

unity (modulus of 0.94) at 475 [rpm] is suspected of causing the unusual increase in stability. This 

observation is parallel to the results obtained from the multi-frequency (MF) solution, however, 

no analytical proof is available.
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The performance of the eigenvalue estimation technique is also tested using the same milling sys-

tem. Since the root function is critical to solve for chatter frequencies, its estimation is used for 

performance evaluation. The root function considering one harmonic is calculated with exact 

eigenvalues obtained at 1000 sample frequency points evenly spaced between / =14 [Hz] 

and / =100 [Hz]. The same root function is approximated at sample points using eigen-

value estimation in between limited number of exactly calculated eigenvalues, and comparisons 

are presented in Figure 4.13. The approximation in Figure 4.13.a is based on 10 exact eigenvalues 

and it is clear that the estimation suffers. On the other hand, increasing the number of exact eigen-

values to 50 improved estimation significantly as seen in Figure 4.13.b. In summary, approximat-

ing the eigenvalue problem with 50 exact points requires less computational load while 

maintaining acceptable accuracy.
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4.5. Summary

Several frequency and time domain chatter stability techniques are presented in this chapter. Each 

method has its advantages, disadvantages and limitations. The zero order (ZO) solution is the only 

and fastest approach that solves for chatter free cutting conditions directly; however, it is limited 

to single immersion cases with constant cutting force coefficients. The proposed Generalized 

Zero Order (GZO) solution on the other hand, is an iterative approach that includes the effect of 

varying cutter geometry (i.e. varying directional coefficient matrix) and cutting force coefficients 

along the axis of the cutter. Cutting conditions are specified as inputs; therefore, complex cutter 

engagements (multiple depths and widths of cut) can be successfully handled with this solution, 

which is a requirement for virtual milling of parts. Semi-discretization (SD) and multi frequency 

(MF) methods are capable of capturing the effect of higher harmonics mostly due to multiple 

mode excitation or highly interrupted cutting, which happens when radial immersion is lower than 
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10% of the cutter diameter in general. Both solutions are indirect as stability lobes are generated 

iteratively or by checking stability for specified cutting conditions. Although the problem size is 

increased drastically compared to the zero order solution, longer computation time is justified 

with the increased accuracy in stability prediction for finish milling operations.

Stability lobes provide guidelines for chatter free selection of spindle speed, axial depth and radial 

depth of cut during process planning, as well as checking whether the process will experience 

chatter along the tool path. The optimization of milling process in the Virtual Machining environ-

ment is presented in the following chapter, where the chatter is used as a fundamental constraint. 

Chatter free cutting conditions are used as a safe starting point and further optimized with respect 

to other physical constraints. Since the biggest improvement in cycle time reduction can be 

achieved during roughing, and semi finishing operations, which have simple and large cutter 

engagements, the zero order solution is frequently used in the next chapter to solve for stability 

lobes.
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Chapter 5

Process Optimization

5.1. Introduction

In the manufacturing industry, significant inefficiency occurs due to improper selection of 

machining parameters such as speeds, feedrates, and depths of cut. Traditionally, industry uses 

machinability data handbooks as a source for selection of parameters, which generally represent 

conservative machining conditions, serving as a safe operating point. These parameters are then 

tuned for individual operation by costly trial and error type experiments, which lead to machine 

down times and scrap parts. In this chapter, the optimization of milling processes are based on 

process physics, and linear and nonlinear programming. The physics based planning, provides a 

useful tool to process engineers to tailor machining parameters in a computer environment during 

the Computer Aided Manufacturing (CAM) stage and simulate the performance for different cut-

ting conditions for efficiency comparison.

This chapter presents a novel generalized optimization strategy that combines different machining 

constraints including cutting forces, chip thickness, spindle torque-power, form errors on the 

workpiece and even stability of the system to determine the most efficient machining parameters. 

The nature of optimization varies with the availability of the design variables and constraints; 

therefore, both linear and non-linear programming algorithms are used to obtain optimum 

machining parameters.
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5.2.  Process Optimization

Manufacturing of a part follows a well-defined methodology (Figure 5.1) that starts with the con-

ceptual design of a part generated in a solid modeler by a design engineer. This step is known as 

the Computer-Aided Design (CAD). Later, in the CAM stage, a process engineer takes over the 

solid model to generate necessary numerical control (NC) code that contains cutting tool motions 

in workpiece space and process parameters such as feedrate and spindle speed values. The CAM 

stage requires the most expertise due to its direct impact on the process efficiency and the quality 

of finished product. Selection and even sequence of cutting operations make a significant differ-

ence in cycle time of a part. After part programming is completed, the part is taken over by a shop 

floor engineer who tests the machinability of the part under specified cutting conditions and 

makes changes to the part program if necessary. At the same time, costly cutting trials are con-

ducted in order to increase the productivity. A much preferred alternative, however, is to be able 

to simulate and optimize the process in virtual environment. This will not only reduce the set-up 

time drastically, but it will also cut down unnecessary expenditure due to increased machine down 

times and scrapped parts. 

Some of the critical cutting variables involved in process planning are classified as geometric 

parameters such as depth and width of cut, and performance parameters like feedrate and spindle 

speed. Proper selection of all will lead to satisfactory surface finish tolerance with optimum 

power consumption, longer tool life, and higher productivity. Necessary relations to simulate 

machining operation of a part have been discussed in an earlier chapter. In this chapter, machining 

state variables (process outputs) will be used to obtain optimum machining conditions.
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The optimization problem is separated into two independent parts. The first part is called Pre-Pro-

cess and the second part is referred as Post-Process Optimization. Although these optimization 

strategies, which will be presented in the following sections, are different, they both share the 

same objective which is to maximize productivity of milling operations. Highly efficient manu-

facturing can only be achieved by maximizing the Material Removal Rate (MRR); therefore, the 

MRR will be the objective function throughout this chapter. In manufacturing, the MRR is 

defined as:

, (5.1)

where a is the axial depth of cut, B is the radial width of cut, c is the feed per tooth, n  is the spin-

dle speed and N is the number of flutes on the milling cutter, see Figure 5.2. In an optimization 

problem, parameters a, B, c, n, and N are called design variables. Objective function in Eq (5.1) is 

subject to two types of constraints named linear and nonlinear constraints. Linear constraints are 

bounds on the design variables and can be simply expressed as:

, (5.2)
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where q is a design variable limited by lower bound  and upper bound . Nonlinear con-

straints; on the other hand, are rather expressed in a function form such as:

, (5.3)

where  is a nonlinear constraint that is expressed as a function of design variables.

In milling operations, sources of constraints can be classified under two categories. First is the 

limitations due to machine tool characteristics, which involve machine tool torque/power curves, 

structural dynamic properties of cutter-machine tool assembly, minimum/maximum spindle 

speed, and axis limitations (maximum feedrate). The second source of constraints is due to the 

machining properties. Form error due to static deflection of the tool, minimum/maximum chip 

load, maximum surface speed and tool life, are the most important limitations in this category. 

Some of the constraints listed above directly become upper and lower bounds on one of the design 

variables, i.e., they are linear constraints. For example, minimum/maximum spindle speed and 

feedrate constraints can be simply expressed as  and , respec-

tively. The cutting speed influences tool wear, and the chip thickness below a threshold will cause 

the tool to rub the workpiece material, whereas, the chip thickness above a maximum value will 

lead to cutting edge chipping and eventually tool breakage. On the other hand, machining process 

qlb qub

fnc a B n N, , ,( ) 0≤

fnc
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Figure 5.2 : Design variables.
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outputs such as form error, torque/power demands, and dynamic characteristics of the cutter/

machine tool indirectly limit design variables; therefore, they impose nonlinear constraints. In the 

following sections, linear or nonlinear relationship between process outputs and design variables 

will be derived depending on the type of the optimization problem (Pre or Post Process Optimiza-

tion).

5.3. Pre-Process Optimization

The ultimate goal of the virtual machining concept is to be able to simulate and optimize milling 

operations at the process planning stage. In a sense, the Pre-Process Optimization serves as a tool 

given to a process engineer to obtain the most optimum cutting parameters based on constraints 

during the process planning stage. In other words, it provides the CAM software with the upper 

bound of cutting parameters to obtain an efficient milling operation (NC program). Figure 5.3

shows at which stage of manufacturing planning, the Pre-Process Optimization is used. Given in 

Eq (5.1), the objective function has five design variables in total. The cutter is usually chosen 

before selecting cutting conditions and generating the tool path; therefore, one of the design vari-

ables, number of teeth (N) is known prior to the optimization. Spindle speed (n), on the other 

hand, is selected based on either surface finish and tool life requirements specified in handbooks, 

or stability of cutting due to dynamic of milling, details of which will be presented later in this 

section. Finally, objective function for the Pre-Process Optimization reduces down to the follow-

ing form:

. (5.4)fobj a B c⋅ ⋅=
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5.3.1. Stability Constraint

Chatter stability is one of the limiting factors for the selection of cutting parameters. Stability of a 

milling process is dependant on three parameters: depth of cut, width of cut, and spindle speed. 

Improper selection of any of these leads to an unacceptable surface finish due to chatter vibration 

marks as depicted in Figure 5.4. The mathematical relationship between design variables and 

dynamics of a milling process has already been comprehensively presented in the Chapter 4 of 

this thesis; therefore, stability of a milling process is taken as input in this section.

Stability boundaries represented as a function of cutting parameters are called stability lobes. For 

a constant width of cut (B), stability can be solved to obtain chatter stability diagram presented in 

Figure 5.5.a. Operation points that fall under the graph lead to chatter free machining. Spindle 

speeds at and around that the peaks of each lobe such as  and  have advantage 

because depth of cut can be increased while maintaining the stability of the process. Alternatively, 

stability lobes can be obtained for various widths of cut while keeping axial depth of cut constant. 
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Figure 5.3 : Optimized NC code generation flow chart with the Pre-Process Optimization module.
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For convenience, instead of actual width of cut, normalized width of cut, b, is preferred as it var-

ies between 0 and 1 corresponding to no and full immersion cases, respectively:

, (5.5)

where D is the cutter diameter,  and  are the cutter entry and exit angles, respectively.

 Stability lobes for constant width of cut are shown in Figure 5.5.b. When both stability lobes are 

compared, it can be seen that locations of the lobes remain same. This is due to the fact that loca-

tions of the lobes are not determined by the type of solution but rather by the dynamic parameters 

of the system, which are functions of structural elements such as tool, tool holder, spindle and 

machine tool. Having located optimum spindle speeds, design space - shown in Figure 5.6 - can 

now be formed by extracting maximum stable depth and width of cut at a constant spindle speed 

from various stability charts similar to the ones in Figure 5.5. but obtained with different widths 

and depths of cut in parallel to the proposed method in reference [61]. The use of the stability 

design space will become more significant when case studies are presented at the end of this sec-

tion.
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5.3.2. Machine Tool Torque/Power Constraints

Apart from stability, torque/power limit of the machine tool shall not be exceeded at any time. 

Both torque and power are dependant on the tangential component of the cutting force, , 

and vary as the cutter rotates:

 [Nm], (5.6)

 [hp], (5.7)

where D is the cutter diameter in [m], n is the spindle speed in [rpm], and  is in [N]. In this sec-

tion, an analytical solution for cylindrical end mills is derived to determine the maximum torque 

and power rapidly as design variables (cutting conditions) vary so that design space can be con-

structed for torque/power constraint.

Consider a Cutter Engagement Feature (CEF) for a cylindrical end mill composed of depth of cut 

"a" and immersion angles " " and " " as shown in Figure 5.7. Angular positions of the cutter 

at which the first flute completely enters into and exits the CEF are called  and , 

respectively and they can be expressed as:

, (5.8)

, (5.9)

where  and  is the helix angle. Two different cases occur when  

and , and they are named as "Case I" (Figure 5.7.a) and "Case II" (Figure 5.7.b), 

respectively.

Ft φ( )

Torque φ( ) Ft φ( ) D 2⁄⋅=

Power φ( ) Ft φ( ) D.π.n
60

---------------⎝ ⎠
⎛ ⎞ 1.34102 10 3–×⋅ ⋅=
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φcr 1, φex ki0
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2 i0tan( ) D⁄= i0 φcr 0, φex<

φcr 0, φex≥
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For a cylindrical end mill, tangential cutting force for flute j can be obtained by integrating differ-

ential cutting forces along:

, (5.10)

where  is the angular position of differential element dz,  is the 

current angular position of flute j ( ), N is the number of teeth,  is the pitch angle 

and defined as  for a uniform pitch cutter. Integration can be defined between alter-

native boundaries using  conversion:

, (5.11)

which can be further simplified as:

, (5.12)

where lower ( ) and upper ( ) integration boundaries are the angles at which flute enters 

and exits the cutter workpiece engagement area (see Figure 5.8).
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Total tangential cutting force acting on the tool can be obtained by summing individual contribu-

tions of all flutes:

. (5.13)

Variation of lower ( ) and upper ( ) integration limits are graphically represented in Figure 

5.9, where grey area represents the "in-cut" zone. Since the effect of helix is already embedded in 

the integration limit, the cutting flute can be represented as a vertical line moving to the left of the 

figure as time advances. The cutting zone is divided into three distinct regions and the definition 

of each integration limit is tabulated in Table 5.1 for two different cases.
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Figure 5.8 : Cutter workpiece engagement, integration boundaries.
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Table 5.1 : Integration boundaries for different regions.

where , , , 

and

, (5.14)

Total tangential force given in Eq (5.13) can be expressed in a general form when integration 

boundaries in Table 5.1 are substituted. In order to isolate the dependency of integration bound-
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aries on the immersion angle, sum/difference formulae for sine and cosine are utilized, and ana-

lytic tangential force is reorganized as:

, (5.15)

where const is the collection of all terms that does not contain any angle ( ) or time dependent 

term next to it. Coefficients, C, are derived for each different case and region, and given in Table 

5.2. In order to locate the extremum, the first derivative of tangential force is equated to zero:

, (5.16)

where .

Table 5.2 : Generalized coefficients for tangential force.

Depending on the angular location of the cutter, flutes that are in contact with the workpiece vary 

as shown in Figure 5.10. At one point in time, only flutes 1, 2, and 3 are in cut at regions 1, 2, and 

3; however, another moment same flutes cut regions 2, 2, and 3. In order to determine all possible 

intersection configurations, pitch angle is divided into a couple of pieces and tool position is 

swept in that range. Since cutting forces in milling are periodic at tooth period, it is guaranteed 
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that no combination will be left out. Moreover, such sweeping process is very fast because it does 

not require any heavy mathematical operation (only boolean operations are used).

Once all possible scenarios are identified, critical angular positions of the cutter at which mini-

mum and maximum forces appear can be calculated by solving Eq (5.16). Using the trigonometric 

identity, , Eq (5.16) can be reduced into quadratic equation and two roots, if 

they exist, are calculated as:

, . (5.17)

In addition to roots obtained above, angular positions , , , and , which are 

located at the boundaries of piece-wise integration limits, are also taken into account and stored as 

roots. At final stage, all possible roots are simply substituted into Eq (5.15) to obtain tangential 

forces. Roots giving the global minimum and maximum forces are selected as the critical angular 

position,  and , respectively.
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Once tangential forces are known, torque and power demands denoted by  and 

 are easily calculated. In order to prevent violation of torque/power constraints, cumu-

lative average torque and power shall not exceed machine tool torque/power limitations at spindle 

speed n:

, (5.18)

 and  are machine tool torque and power curves, respectively, and they are provided by 

the machine tool manufacturer (see Figure 5.11). 

Subscript "cav" indicates cumulative average which is mathematically defined as:

 , (5.19)

where q={Torque,Power}. Standard piecewise logarithmic relation of motor torque/power with 

spindle speed can be expressed as:

, (5.20)
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Figure 5.11 : Typical torque-power 
characteristics of a machine tool.
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where q={T,P}, and {n: } is the spindle speed. Note that since torque/power curves 

are logarithmic, the constraints associated with these two quantities become non-linear inequality 

constraints.

5.3.3. Chip Thinning Constraint

When the width of cut is smaller than the radius of the tool (b < 0.5), maximum chip thickness 

will never reach the commanded feed per tooth value in up/down milling. Moreover, for opera-

tions with ball end or face mills, chip starts to thin as depth of cut decreases as shown in Figure 

5.12. Reduced chip thickness not only results in reduced material removal rate but it also makes 

cutting edge rub on workpiece rather than cut it. In order to avoid these problems, the feedrate has 

to be modified as cutting conditions, depth and width of cut, change.

Earlier in Eq (3.27), the chip thickness for 3-axis milling was defined as:

, (5.21)

where c is the feed per tooth,  and  are the components of a unit vector in the direction of 

resultant feed and tool axis,  is the axial immersion angle measured from x axis in a clock-wise 

direction and  is the radial immersion angle measured from y axis also in a clock-wise direction. 

Depending on the depth and width of cut, maximum chip thickness is reached at certain  and  

n1 n n2< <

hex

a

R

κ

z

c x

Figure 5.12 : Chip thickness for a face mill with a round insert.
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values denoted by  and , respectively. There are two distinct cases for 3-axis milling 

operations:

(a) Ramping Up or Planar Milling : Only the front of the cutter ( ) can 

engage in a cut. In this case, maximum chip thickness is obtained when , 

, or at values closest to these. This rule can be generalized as follows:

and axial immersion angle at  if .

(b) Ramping Down : Both front and back of the cutter can engage in a cut. At the 

front of the cutter ( ), maximum chip thickness is reached when , and the 

axial immersion angle is found as follows:

,

. (5.22)

At the back of the cutter ( ); on the other hand, maximum chip thickness is reached 

when  or , and , or at values closest to these.

If the desired maximum chip load is denoted by  and the necessary feedrate to achieve this 

maximum chip load is denoted by , feedrate of the tool is updated by the following relation:

, (5.23)

Down Milling ( ) Up Milling ( )

 
  

φmax
chip κmax

chip

 fxy 0≥ fz 0≥,( ) 0 φ π≤ ≤

φmax
chip π 2⁄=

κmax
chip π 2⁄=

φex π= φst 0=

If (φst π 2⁄ ), φmax
chip=φst> If (φex π 2⁄ ), φmax

chip=φex<

If (φst π 2⁄ ), φmax
chip=π 2⁄≤ If (φex π 2⁄ ), φmax

chip=π 2⁄≥

κmax
chip κ z a=( )= a R<( )

 fxy 0≥ fz 0<,( )

0 φ π≤ ≤ φmax
chip π 2⁄=

dhex
dκ

----------- c  fxy κcos φmax
chipsin⋅ ⋅ fz κsin⋅+( )⋅ 0= =

κmax
chip fxy φmax

chipsin⋅–
fz

----------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

atan=

π φ 2π≤ ≤

φmax
chip π= φmax

chip 2π= κmax
chip 0=

hmax

cmax

cmax
hmax

hfactor
---------------=
145



Chapter 5. Process Optimization
where  is the chip thinning factor. Note that 

the chip thinning factor must be limited with an upper value in order to avoid extreme magnifica-

tion of the feedrate when very small depth and width of cut are present.

5.4. Verification for Pre-Process Optimization

5.4.1. Case Study I

An example machining operation was simulated using the proposed analytical algorithm. 20

[mm] diameter, 4-flute cylindrical end mill was used to go through an immersion zone of =0, 

=30 [degrees] with a feedrate of 0.05 [mm/tooth.rev] at 5000 [rpm]. Al 7075 was selected as 

workpiece with the following tangential cutting and edge force coefficients: [N/

] and  [N/mm]. Integration boundaries at different depths of cut are presented in 

Figure 5.13.a along with simulated tangential cutting forces. The variation in maximum tangential 

forces with change in depth of cut is obtained using the efficient analytical algorithm and the 

result is presented in Figure 5.13.b. 

Maximum tangential cutting force can be effectively used to determine optimum radial width and 

axial depth of cut. One constraint of the process is the torque and power limits of the machine 

tool, which is given in Figure 5.14. By varying both axial depth of cut (a) and normalized radial 

depth of cut (b) for a fixed feedrate and spindle speed, and calculating maximum tangential force 

which leads to torque and power demands, the safe operation region can be identified as shown in 

Figure 5.15. Any point picked in this feasible region will not violate the machine tool’s torque and 

power characteristics. Cutting force coefficients used in this example are  [N/ ] 

and  [N/mm].
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forces, (b) analytically obtained maximum tangential forces.
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Similar analysis can also be conducted from stability point of view. The stability of the process is 

dependent on both radial width of cut and axial depth of cut as explained before. Using stability 

lobes, combination of radial width of cut and axial depth of cut for each spindle speed is obtained. 

In this example, dynamic parameters in two orthogonal directions are taken from reference [61]: 

natural frequency  [Hz],  [Hz]; stiffness  [N/m], 

damping ratio . Using these modal parameters, sample stability diagram for full 

immersion is obtained and presented in Figure 5.16. It is evident that cutting conditions that fall 

under stability pockets provide efficient machining; therefore, spindle speed that has the highest 

possible value yet that is still in the range of machine limits (Figure 5.14) is selected for analysis. 

For this example case, this value is 12600 [rpm]. The stability limit along with torque and power 

limits at 12600 [rpm] are plotted in Figure 5.15. From this figure, it is clear that not only stability 

of the process limits the selection of optimum process parameters, but also torque and power 

demands put additional boundaries on the feasibility region. Since the main objective for the 

selection of parameters is to increase production by maximizing MRR, the MRR is calculated 
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using Eq (5.1) and plotted in Figure 5.17. The depth of cut at which maximum MRR can be 

achieved is around 5 [mm] and for this particular case, it is limited mainly by the torque limit of 

the machine. Note that stability of the process is not function of feedrate when linear force model 

is used; whereas, torque and power are. Although the stability limit in Figures 5.15 and 5.17 will 

remain the same regardless of the feedrate, both the torque and power limits will vary. If the fee-

drate is low, then the MRR is limited mainly by the stability; however, as the feedrate gets higher, 

torque and power demands will increase, hence the torque and power limits will become more 

conservative in determining the suitable depth of cut - radial width of cut pair.
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Note that the second stability lobe located at 6300 [rpm] is not selected as a design point because 

stability lobes significantly decrease as spindle speed is lowered. Although the torque and power 
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Figure 5.16 : Stability lobes for full immersion milling case.
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demands are lower, process parameters are limited by the stability of the system, which can be 

seen clearly in Figure 5.18.

5.4.2. Case Study II

Proposed optimization algorithm was used for process planning of an industrial part, the front 

face of a helicopter gear box cover. A two fluted helical end mill with 10 [mm] diameter and a 25 

[mm] indexable cutter with 2 inserts were used. The original two-sided part, solid model of front 

face during machining, and a picture of machined part are shown in Figure 5.19.  In order to pre-

vent tool holder - workpiece collision and allow enough room for chip evacuation, the tool over 

hang was selected as 45 [mm]. Dynamic characteristics of both tools were identified by impulse 

model testing, and measured frequency response functions (FRFs) are presented in Figures 5.20

and 5.21. The work material was Al 6061 and the experimentally identified cutting coefficients 

are given in Table 5.3.
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Figure 5.18 : Radial and axial depths of cut curves for up-
milling, feasible region (6300 [rpm]).
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       (a)                                               (b)                                              (c)

Figure 5.19 : Gear box cover: (a) complete solid model (double sided machining), (b) 
solid model for machining front features, (c) real cut part with front features.
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Figure 5.20 : Transfer functions of 10 [mm] endmill in x and y directions (HSK63A-Shrink Fit).
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Based on material data and dynamic characteristics of tool-tool holder-machine tool assembly, 

stability lobes were calculated (see Figure 5.22). For 10 [mm] end mill, the maximum spindle 

speed of the machine tool, 20000 [rpm], was selected, whereas, for the 25 [mm] indexable cutter, 

wide enough stability pocket around 17000 [rpm] was selected.

In order to give a general idea of how stability lobes vary as a function of immersion conditions, 

Figure 5.23 is provided. It can be observed that the location of a high stability pocket around 

20000 [rpm] propagates as immersion (or width of cut) is varied. Since the objective is to maxi-

mize the production, the MRR variation as a function of immersion and spindle speed is plotted in 

Table 5.3 : Cutting force coefficients of Al 6061
Tool Type  

[N/mm]
 

[N/mm]
 

[ ]
 

[ ]
10 [mm] 38.38 -9.792 403.396 98.911
25 [mm] 21.34 23.141 662.296 72.86
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Figure 5.21 : Transfer functions of 25 [mm] indexable cutter in x and y directions (HSK63A-
Corogrip).
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Figure 5.24, which justifies the argument that high productivity is achieved around pockets of sta-

bility with the highest possible spindle speed.
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Process planning charts were constructed at selected spindle speeds based on analysis summa-

rized in Case Study I. Both stability and torque/power curves of the machine tool (Figure 5.25) 

were used as constraints. Design spaces with supplementary charts are given in Figures 5.26 and 

5.27. Charts 5.26-5.27.a present the design spaces that were used to select proper width and depth 

of cut combination to determine machining strategy for optimum production, i.e. maximum mate-

rial removal rate (see Charts 5.26-5.27.b). For 10 [mm] tool, deep depths of cut with reduced 

width of cut were used; whereas, for 25 [mm] tool shallow depths of cut with increased widths of 

cut were preferred for part programming to maximize the MRR. Charts 5.26-5.27.c provide alter-

native representations for the design space, start angle of cut versus depth of cut. Note that since 

down milling was used, exit angle  was always equal to 180 [degrees].φex
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Finally, Charts 5.26-5.27.d show the variation of feedrate as the width of cut changes. This chart 

ensures that the maximum chip load specified by the process planner is always maintained even 

0

0.2

0.4

0.6

0.8

1
b

2 4 6 8 10 12 14 15
60

80

100

120

140

M
R

R
 [c

m
3 /m

in
]

a [mm]

0  

50 

100

150
180

φ s
t

2 4 6 8 10 12 14 15
a [mm]

 [d
eg

]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.11

0.12

0.13

0.14

Fe
ed

 R
at

e 
[m

m
/th

.re
v]

b

2 4 6 8 10 12 14 15

a [mm]

(a)

(b)

(c)

(d)

Figure 5.26 : Process planning charts for 10 [mm] end mill, n=20000 [rpm], N=2: (a) stability 
limited design space, (b) objective function, (c) start angle for down milling, (d) feedrate 

0

0.2

0.4

0.6

0.8

1

7 8 9 10 11 12 13 14 15200

400

600

800

1000

1200

b

0

50

100

150
180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.24

0.28

0.32

0.36

0.4

M
R

R
 [c

m
3 /m

in
]

a [mm]

φ s
t

a [mm]

 [d
eg

]
Fe

ed
 R

at
e 

[m
m

/th
.re

v]

b

(a)

(b)

(c)

(d)

7 8 9 10 11 12 13 14 157 8 9 10 11 12 13 14 15

a [mm]

Figure 5.27 : Process planning charts for 25 [mm] indexable cutter, n=17000 [rpm], N=2: (a) 
torque limited design space, (b) objective function, (c) start angle for down milling, (d) feedrate 

variation.
157



Chapter 5. Process Optimization
when the width of cut changes (for details, refer to the "Chip Thinning Constraint" section of this 

chapter).

The gear box cover was successfully cut without presence of chatter vibrations and spindle stall. 

The workpiece was mounted on a table dynamometer to measure cutting forces acting on the cut-

ter in machine coordinates. For further comparison, process was also simulated in virtual environ-

ment using developed closed form algorithms.

5.5. Post-Process Optimization

Post-process optimization is an effective tool to optimize cutting parameters of an existing NC 

program; therefore, parameters such as depth and width of cut, which will effect the existing 

planned tool path, are not changed whereas performance parameters such as feedrate and spindle 

speed are optimized.

The flow chart for process optimization is given in Figure 5.29. The idea here is to maximize fee-

drate and spindle speed by virtually simulating the process after planning stage and recommend-

ing new feedrates and spindle speeds by checking the process outputs against both machining and 

machine tool constraints. Some important machining constraints are form errors left on the part, 

CAD Model Process Planning (CAM)

Post-Process Optimization

Constraints: 
Machining
Machine Tool

Optimized
NC CodeNC Code

Output

Figure 5.28 : Optimized NC code generation flow chart with Post-Process Optimization module.
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maximum chip load and maximum resultant force on the tool, where as important machine tool 

constraints are the torque and power characteristics.

In milling, sinusoidal variation of the chip thickness as the cutter rotates causes cutting forces, 

shown in Figure 5.30, to oscillate between maximum and minimum points. In terms of optimiza-

tion, only extremum points limit the range of cutting parameters during process planning. In the 

previous chapter, it has been shown that an analytical solution for cutting forces is not always pos-

sible. In the same sense, the maximum and minimum of cutting forces cannot always be obtained 

analytically and a numerical method is needed. Note that the tasks of maximization and minimiza-

tion are trivially related to each other, since the maximum of function g is same as the minimum 

of -g. In this section, both maximization and minimization problems will be expressed as a mini-

mization problem, i.e. if  represents varying cutting forces, then

.

START END

Figure 5.29 : Process optimization flow chart.

F φ( )

    Minimum Force min F φ( )( )⇒
        Maximum Force  min F φ( )–( )⇒
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There are numerous numerical solutions to tackle the minimization problem. A commonly used 

method for one-dimensional minimization (to minimize a function of one variable) without calcu-

lation of the derivative is called Brent’s Method [92]. This method takes three initial immersion 

points ( ) that potentially bracket the minimum, i.e., satisfy the following relations: 

 & , then it estimates the next minimum point by inverse parabolic 

interpolation, i.e., finding the location of extremum of the parabola defined by these three points. 

Inverse parabolic interpolation is derived as follows. First, a parabolic curve is drawn passing 

through three points, namely end points =  and = , and a midpoint = . Note that 

there are two possibilities, one with a minimum and one with a maximum as seen in Figure 5.31. 
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Figure 5.30 : Sample force variation for a 
uniform pitch cutter.
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Either parabola can be described as:

. (5.24)

Substituting given immersion angles, a set of equations are obtained:

. (5.25)

The extremum of the parabola can be found by equating the first derivative of function F to zero:

, (5.26)

and from Eq (5.26),  is obtained as:

. (5.27)

min parabola
max parabola

F(φ)

φ
φa φb φc

Figure 5.31 : Two possible quadratic functions.
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φ

φ
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Combining Eqs (5.25) and (5.27), and solving system of linear equations for ’s, the formula for 

the abscissa  for the extremum of the parabola is obtained as:

. (5.28)

Since F( ) is not known to be minimum or maximum, minimization scheme cannot solely 

depend on Eq (5.28). In this case, the signum of  can be used for final decision such that if it is 

positive, the extremum is minimum, if negative, one has a maximum. Inverse parabolic interpola-

tion for two iteration steps is depicted in Figure 5.32.

When the function is not co-operative, for example, when three points are co-linear (  =  = 

) so that denominator of Eq (5.28) becomes zero or there are sharp changes in the function 

value then the method switches to sure but slow technique, like golden search [92]. Golden search 

is analogous to the bisection method and used for finding the minimum of a function using a brute 
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force approach. Bearing in mind that golden ratio is equal to  = 0.61803, given a bracketing 

triplet of immersions, the next point to be tried is placed at a fraction (1- ) into the larger of the 

two intervals measuring from the middle point :

, (5.29)

where . Then the update decision is again made 

based on bracketing the minimum, i.e., if  <  then  replaces the midpoint and 

 becomes an end point, else if  <  then  remains midpoint with  replac-

ing one of the end points,  or . Either way the width of the bracket, ( - ), reduces until a 

desired tolerance is achieved.

In order to account for all local extremums, one tooth period (or one spindle period for non-uni-

form pitch cutter) is divided into three sections, extremums for each range are determined, and 

finally the global solution is selected as the minimum of all. The bracketing condition for the ini-

tial points ( ) is satisfied through an iterative algorithm which starts from any set of 

points and moves in the downhill direction until the downhill trend of the function stops so that 

the minimum is bracketed.

5.5.1. Feedrate Optimization

In the previous chapter, it is shown that majority of the process outputs becomes linearly depen-

dent on the feedrate in the following form provided that cutting force coefficients are independent 

of the feedrate:

, ( x, y, z, t, r, trq, pwr), (5.30)

GR
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where subscripts x, y, z, t, r are cutting forces in the feed, perpendicular to feed, axial, tangential, 

and radial directions, trq and pwr are spindle torque and power, respectively. Force coefficients 

 and  are functions of process type, tool geometry, and time (or angular position). In Chap-

ter 3, a numerical search technique has been presented to obtain the angular position at which a 

process output becomes maximum, which is denoted as  in this section. At the most critical 

instance, process output -Eq (5.30)- reaches the user-defined maximum, :

 , (5.31)

for which maximum allowable feedrate can be solved as:

. (5.32)

There are two other important process outputs that do not have as straight forward a relationship 

with feedrate: 1) The resultant force causing bending moment; 2) the form error due to static 

deflection of the tool. 

The resultant force in xy-plane is previously defined as:

. (5.33)

Similar to Eq (5.31), maximum resultant force is equated to user-defined maximum , i.e. 

, and the maximum feedrate is obtained by solving quadratic equation as:

, (5.34)

where . From two possible 

solutions in Eq (5.34), smaller positive real answer is selected.
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Form errors in milling result from the static tool deflection at the entry ( ) and exit ( ) 

points of the cutter due to forces only in y-direction. Generating the surface becomes complex 

when the end mill has helical flutes and there are more than one engagement zone (CEF). At any 

tool position, tool deflection in y-direction is calculated using cantilever beam approximation that 

has a cylindrical cross section with an effective radius , where 0.8 is the approxi-

mate scale factor due to flutes [94]. An example case is given in Figure 5.33. In order to find the 

actual form error, tool deflection must be calculated not necessarily at the tool tip but at the axial 

point where a helical flute generates the surface. The axial location of the surface generation point 

is referred as . Total tool deflection reflected at the surface generation point can be found by 

adding up the deflections at  caused by y direction forces of each CEF:

, (5.35)

where deflection is defined by [95] as:

, (5.36)

where E is the Young’s Modulus and I is the area moment of inertia of the tool. Cutting forces act-

ing on the tool are concentrated at the middle point of their respective CEFs. When Eq (5.36) is 

analyzed, it can be seen that the deflection of the tool is directly proportional to the magnitude of 

force in y-direction; therefore linear relationship between feedrate and deflection is still applica-

ble:
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. (5.37)

The tool position, , at which maximum surface deflection is generated can be calculated; 

however, it is not trivial to come up with deflection coefficients  and  explicitly. A more 

practical approach to obtain these two coefficients is using linear interpolation. Given two arbi-

trary feedrates,  and , the corresponding deflections  and  are calculated. Utilizing those 

two points, maximum allowable feedrate for a user-defined deflection constraint  can be 

found as:

. (5.38)

Note that if  is solved as a negative number, it means that edge forces are already enough to 

create a deflection more than the specified deflection constraint ; therefore, under no circum-

stances, can such a constraint be satisfied.
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5.5.2. Feedrate and Spindle Speed Optimization

As mentioned earlier, highly efficient manufacturing can only be achieved by the maximizing 

material removal rate (MRR) - Eq (5.1). Cutter locations are generated when process planning is 

completed at the CAM stage; therefore, it is required that any optimization taking place after-

wards shall not change any physical cutter location information. Regarding axial depth of cut, 

width of cut, and number of flutes as system input parameters, i.e., constants, the number of free 

parameters (design variables) in the MRR finally reduces from five to two: feedrate and spindle 

speed. Dropping the constants from the MRR, a simplified objective function called "reduced 

MRR" denoted by rMRR is defined for optimization problem as:

. (5.39)

In addition to constraints presented previously, which are functions of only feed, two more con-

straints that are a function of spindle speed can be added. The first constraint is torque-power 

characteristics of the machine, which are given in Eqs (5.18) and (5.20), and the second constraint 

is the chatter stability. 

Stability lobes can be generated for each process using dynamic characteristics of the tool/work-

piece. As mentioned before, the depth of cut (a) is already provided in the NC code. The fixed 

depth of cut corresponds to a horizontal line in stability lobes shown in Figure 5.34. Regions that 

fall under the curve ensure that the process is stable, therefore, their respective lower and upper 

spindle speeds are noted to be used as a constraint on spindle speed (design variable):

, (5.40)

fobj rMRR c n⋅= =

n nmax i,≤

n– nmin i,–≤ ⎭
⎬
⎫
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where i = 1,2,...,M, and M is the number of stable regions at depth of cut a. There are two special 

cases for the selection of the spindle speed range. If the depth of cut in NC code is less than the 

minimum of the stability lobe denoted by , then full spindle speed range of torque/power 

curve is to be used. However, if the depth of cut (a) is more than the peak point of the stability 

border, , then the process is already unstable, therefore, optimization will not be applica-

ble. For optimization to be successful, every effort must be made to select stable depths of cut. In 

the complete virtual machining package, necessary stability lobes are provided prior to process 

planning.

The described non-linear optimization problem with linear and non-linear inequality constraints is 

solved by routines of MATLAB’s optimization tool-box [97]. The constrained nonlinear optimi-

zation (nonlinear programming) is employed by sequential quadratic programming (SQP). Two 

main stages of implementation, i.e. the Hessian matrix update, and quadratic programming (QP) 
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have the following properties: the Hessian matrix is updated using the BFSG method and qua-

dratic programming method is an active set strategy [97].

Graphical representation of the design space is obtained for a case that has only torque and power 

constraints and plotted in Figure 5.35. Any cutting condition selected within the feasible region 

will respect torque and power characteristics of the machine; however, the most optimum solution 

(maximum MRR) is obtained only at the limits of the constraints which is marked with a star in 

the figure. The coordinates for this point are c = 0.2088 [mm/tooth.rev], and n = 5250 [rpm]. Sud-

den changes of the constraints like the torque constraint around 5500 [rpm] increases the number 

of iterations before the algorithm converges, or even sometimes results in non-convergence. 

Nonetheless, convergence is ensured by scanning each spindle speed range where the torque and 

power curves change behavior and the biggest of all is selected as the final optimum solution.

5.6. Filtering "Unrealizable" Feed Commands

Once optimization is completed, a new set of feedrates is generated. Optimized feedrates might 

fluctuate sharply depending on the rate of change of intersection between the cutter and work-

piece, i.e., how much the workpiece geometry varies along the tool path. For example, if the tool 

goes through an existing hole on the workpiece, the engagement changes fast leading to rapid feed 

adjustment within a small travel distance. A sample output of Post-Process Optimization engine is 

given in Figure 5.36. Sudden changes in the feedrate within short tool motion, marked in the fig-

ure, cannot be achieved due to limited acceleration and deceleration of the motors. In this section, 

such feed commands are described as "unrealizable". Every machine tool has acceleration and 

deceleration characteristics based on its motor torque capability. NC unit of the machine tool 

ensures that variations in commanded feedrate do not overload motors with excessive accelera-
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tion or jerk. Since feed motion planning is performed by machine tool’s NC unit, the objective of 

this section is not to duplicate feed motion planning but to come up with a set of rules to filter out 

sharp feedrate changes obtained during constraint-based optimization.

5.6.1. Classification of Feed Blocks

In order to automate the filtering process, feed steps are classified under four main groups 

depending on start ( ), commanded ( ), and end ( ) feedrates. All of the groups are shown in 

Figure 5.37. Black dots represent nodes at the start and end points of each block. Previous and 

next feed blocks can only be attached at these nodal points. Dashed lines at both ends indicate the 
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allowable trends for previous and next feed blocks. Due to such restrictions, there are a limited 

number of feed block combinations as presented in Figure 5.38, where circles represent different 

feed types.

 Feed type stated in the middle circle can only be preceded by the types shown on its left; and suc-

ceed by the ones on its right. Each type has also its unique acceleration and deceleration proper-

ties: TYPE 1 has both acceleration and deceleration, TYPE 2 has only acceleration, TYPE 3 is 

constant velocity block, whereas TYPE 4 has only deceleration. TYPE 1 is further divided into 

three subgroups by considering the relationship between start and end feed commands. Four types 

and their sub-groups will later be used to build rules for filtering unwanted feed commands.
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Feedrates passed from optimization module are first scanned and classified according to four 

main types described above. Total travel length is also calculated using tool positions and stored 

for each feed block. Figure 5.39 shows necessary parameters for the ith feed block.
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Figure 5.37 : Types of feed command used for filtering.
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5.6.2. Filtering Rules

For a given step feed command between initial and final feed values, machine tool uses certain 

amount of time to accelerate to a commanded feed value and decelerate to a final feed while cruis-

ing at a constant velocity in between. Kinematic profiles for a constant acceleration and decelera-

tion case are shown in Figure 5.40. The objective of motion planning is to achieve commanded 

feedrate and stay at constant velocity only if possible. The minimum distance of travel required 

for such motion is obtained by calculating the area under the velocity curve when 

, ,  as:

, (5.41)
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where A and D are acceleration and deceleration limits, respectively. If an acceleration or deceler-

ation stage does not exist for the feed block, then its corresponding term should not be considered 

in the above equation.

In order for a feed block i where i =  to be realizable, the actual path length has to be long 

enough to accommodate minimum length requirement;

 . (5.42)

The equality case of the above inequality represents a motion with no constant velocity section, 

i.e., .

When Eq (5.42) is not satisfied, feed block needs to be updated by reducing commanded feedrate 

to either preceding or succeeding feedrate depending on the feed block type. This update will not 

only affect the current block but it will also change the type and limiting feed values of neighbor-

ing blocks; therefore, a set of update rules has to be established. 
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Figure 5.40 : Constant acceleration kinematic profiles.
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Consider that all feedrate commands are stored in an array called the Feed-array, and i represents 

the position of current feed block to be processed in that array. The Feed-array is first scanned to 

classify each feed block using the convention presented earlier. Later, each feed block is checked 

to determine whether the minimum length requirement given in Eq (5.42) is satisfied. In Table 

5.4, all possible feed block configurations are shown and rules of update are given for each feed 

block combinations. In the "Update Rule" section, circles represent types of feed blocks. Current 

feed block with index i is represented with a shaded circle. When the current feed block cannot be 

realized due to the minimum length requirement, the update rule is initiated and the current feed 

block is converted into a different feed block by merging neighboring block or blocks depending 

on the formula of update rule. The type of the new feed block can be the same as one of the blend-

ing feed blocks or it can be a different type. Update rules are classified under three major catego-

ries: FORWARD, BACKWARD, and FULL UPDATEs depending on the involvement of 

succeeding, preceding, or both blocks. FORWARD UPDATE reduces the current feedrate to the 

value of succeeding block. Since feed blocks prior to the current one are not affected from this 

update, the current block’s index, i, remains as it is, however, the total length of the Feed-array

reduces by one. The BACKWARD UPDATE is required when the current feedrate is reduced to 

the commanded feedrate of the preceding block. In the Feed-array, this update has to be reflected 

onto the prior block. Once update is completed, current block’s index, i, and the length of the 

Feed-array is reduced by one. FULL UPDATE is conducted only when a feed block of TYPE 

1.c is not realizable. The current feedrate is dropped down to the value of neighbouring feed com-

mands, and in the Feed-array, both preceding and successive blocks have to be updated due to 
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symmetric nature of TYPE 1.c, i.e. . To complete the update, the current block’s index, i, 

is reduced by one whereas the total length of the Feed-array is reduced by two.

Table 5.4 : All possible update configurations with proposed update rules, 
shaded circle represents current step, i.e., the step being processed.

A simplified flow diagram of filtering algorithm is given in Figure 5.41. The Feed_Update() is a 

sub-routine that organizes update events. It takes the Feed-array and current block’s index, i, as 
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Figure 5.41 : Update algorithm flow chart.
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input, and it returns updated the Feed-array with updated index i. In some cases, when very nar-

row feed blocks appear next to each other, one update will not be sufficient to obtain a realizable 

feed block. Moreover, two of the update options, FWD III and IV, affect the previous feed block 

and possibly change it from a realizable block to an unrealizable one. To make filtering more 

robust to handle mentioned special cases, the Feed_Update() is used as a recursive function. 

Using recursion, feed block is continuously updated until minimum length requirement is satis-

fied before program moves to the next feed block. An example of feed filtering with recursive 

updating is given in Figure 5.42.

When a feed block is not realizable, instead of reducing feedrate to one of the neighboring feed 

values, an alternative method can be developed by using minimum path length requirement given 

in Eq (5.41) to solve for maximum possible feedrate. In this thesis, this method is named as Max-

imum Feed Correction (MFC). For a known path length of feed block i, , maxi-

mum feedrate for each feed block type is calculated as
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. (5.43)

The previous feed filtering example is solved once more by using MFC and steps are shown in 

Figure 5.43. The result of filtering with MFC shows that obtained feedrates tend to follow opti-

mized feedrates more closely, which results in increased productivity compared to filtering with-

out MFC. On the other hand, filtering without MFC generates more uniform feedrates leading to 

decreased feed fluctuations along the tool path especially when many more feed blocks are con-

sidered. Bearing in mind that feed fluctuations along tool path will cause feed marks on the fin-

ished product, filtering without MFC becomes the method of choice during finish milling, 

whereas filtering with MFC is rather preferred for roughing operations due to decreased cycle 

time.
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Optimized feedrates given in Figure 5.36 are filtered out using the proposed algorithm. 1000 

[mm/ ] ( 1 [g]) is used for both machine acceleration and deceleration. Filtered feedrates 

along with original optimized (raw) feedrates are presented in Figure 5.44 for comparison.
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5.7. Updating the Original CL File

A complete flow diagram of a CL file optimization algorithm is given in Figure 5.45. The first 

step is to read the original CL file and obtain cutter-workpiece engagement along the tool path. 

CL file provides target tool coordinates with a type of motion desired in between i.e. linear or cir-

cular. Since geometry of the workpiece might change during this point to point motion, tool path 

is divided into many more segments in between target points, and the cutter-workpiece engage-

ment is obtained at this higher sampling rate. The increment for sampling is determined based on 

the stock size. In the flow diagram, these additional points are numbered by appending the previ-

ous CL file point number. For example, three additional points after the first coordinate but before 

the second coordinate in the CL file are numbered as 1.1, 1.2, and 1.3. Once the intersection 

between cutter and workpiece is successfully obtained, the next step is to adjust the feedrate and 

spindle speed based on user defined constraints. Critical (minimum/maximum) process outputs 

are calculated using cutter engagement features (CEFs) and necessary feedrate and spindle speed 

adjustments are determined. Optimization might result in highly fluctuating feedrates due to con-

tinuously varying workpiece geometry. Sharp feedrate changes may not only saturate axes 

motors, but they will also result in undesired feed-marks on the finished surface; therefore, opti-

mized feedrates are first filtered. The final step is to update the original CL file with optimized 

and filtered feedrate and spindle speed commands. As described before due to higher sampling, 

there will be intermediate points in between original CL file points. If these additional points fall 

in between a linear tool command (G01), then all of them are added into a final optimized CL file 

along their optimized feeds and speeds. On the other hand if they are located in between a circular 

tool command (G02-G03), then intermediate points are not added between original CL file target 
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points, but the feedrate will be updated with minimum feedrate of all intermediate points. This 

update strategy is depicted in Figure 5.46 for both linear and circular tool commands.

GOTO  /   X1,    Y1,    Z1
FEDRAT/ OFF1,MMPM
SPINDL/ OFS1,RPM,CLW
GOTO  /   X1.1,    Y1.1,    Z1.1
FEDRAT/ OFF2,MMPM
SPINDL/ OFS2,RPM,CLW
GOTO  /   X1.2,    Y1.2,    Z1.2
FEDRAT/ OFF3,MMPM
SPINDL/ OFS3,RPM,CLW
GOTO  /   X1.3,    Y1.3,    Z1.3
FEDRAT/ OFF4,MMPM
SPINDL/ OFS4,RPM,CLW
GOTO  /   X2 ,    Y2,    Z2
��� .
��� .
��� .
FEDRAT/ OFF12,MMPM
SPINDL/ OFS12,RPM,CLW
GOTO  /   X6 ,    Y6,    Z6
��� .
��� .
��� .

GOTO  /   X1,    Y1,    Z1
FEDRAT/ F1,MMPM
SPINDL/ S1,RPM,CLW
GOTO  /   X2,    Y2,    Z2
GOTO  /   X3,    Y3,    Z3
FEDRAT/ F2,MMPM
SPINDL/ S2,RPM,CLW
GOTO  /   X4,    Y4,    Z4
GOTO  /   X5 ,   Y5,    Z5
GOTO  /   X6 ,    Y6,    Z6
��     .
��     .
��     .

F2, S2

F: Feedrate
S: Spindle Speed
OF : Optimized F
OS: Optimized S
OFF : Optimized & Filtered F
OFS: Optimized & Filtered S

Figure 5.45 : CL file optimization routine.
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5.8. Verification for Post-Process Optimization

The existing NC program for the die part described in the Chapter 3 was optimized using the pro-

posed method. The machine tool used for producing the die was a 3-axis horizontal machining 

centre with maximum torque and power of 98 [Nm] and 15 [kW], respectively. Torque and power 

curves of the spindle shown in Figure 5.47 were obtained from the documentation of the machine.

(X,Y,Z)1

(X,Y,Z)2

(X,Y,Z)1.1

(X,Y,Z)1.2

(X,Y,Z)1.3

OFF1

OFF2

OFF3 OFF4

(X,Y,Z)1 (X,Y,Z)2(X,Y,Z)1.1 (X,Y,Z)1.2 (X,Y,Z)1.3

OFF2 OFF3 OFF4OFF1

(X,Y,Z)1

(X,Y,Z)2

OFF1 = min(OFF1,...,OFF4)

G01: Linear Segment

G02-G03: Circular Segment

Feedrate can be varied along the path

Uniform feedrate is required along the path

: Tool coordinate from Original CL File

: Intermediate point due to sampling for optimization

Figure 5.46 : Feedrate update strategy for linear versus circular segments.

Figure 5.47 : Estimated Torque and Power Curves.
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Controller parameters tabulated in Table 5.5 were also required for making reasonable estima-

tions of the cycle time and feedrate variation due to acceleration and deceleration of the table. The 

rest of the machine tool related data are tabulated in Table 5.6 for documentation purposes.

Torque and power curves of the machine were used as constraints for all cutters although they 

were most critical only for roughing operations, i.e., large depth and width of cut. Moreover, max-

imum chip thickness was also specified for each cutter based on Sandvik Coromant’s Metal Cut-

ting Technical Guide and Main Catalogue. Lastly, maximum spindle speed was set for some of 

Table 5.5 : Assumed Characteristics of the Heidenhain Controller.

Table 5.6 : Other parameters of the machine tool used for verification.
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the operations considering dynamic characteristics, speed limitations of the spindle, and recom-

mended surface speed. A summary of user-defined constraints is given in Table 5.7. Note that the 

optimized feed per tooth was capped at approximately 3.7 times the maximum chip thickness for 

very low immersions and depths of cut. This constant value corresponds to a cutting condition 

with 15% of the diameter of radial and axial immersions.

Second stage optimization was run, necessary feedrate adjustments were automatically calculated 

and placed inside the original CL file creating the optimized CL file. The optimized CL file con-

tained 940,000 lines as opposed to the original file’s 315,699 lines due to newly added optimized 

feedrate commands.

Cycle times of operations were recorded during machining. There were some data logging diffi-

culties during machining with the original CL file; therefore, time data could be recorded only for 

a few operations. Moreover, since spindle speed and feedrate were changed by the programmer 

for operations 6-9 in the original file just before machining at the site, these operations were not 

Table 5.7 : Optimization Criteria for Different Operations and Cutting Tools.
Opt. 
Code

Maximum Chip 
Thickness [mm]

Maximum Spindle 
Speed [rpm]

Comments

Opt 63 0.25 n/a For roughing with T63
Opt 63 0.056 n/a For finishing with T63
Opt 20 0.15 3000 For semi-finishing with T20
Opt 16 0.10 n/a For semi-finishing with T16

Opt 20F1 0.15 3000 For semi-finishing with T20F
Opt 20F2 0.05 3000 For finishing with T20F
Opt 20F3 0.10 3000 For finishing of outer walls with T20F

Opt 12 0.05 5300 For rest milling with T12
Opt Small 0.025 6000 For rest milling with T8, T6, T4
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included in the comparison. Leaving operations 6-9 out of analysis do not affect results signifi-

cantly because they had light or no cutting content. Cycle times were also predicted and results 

are tabulated in Table 5.8. The discrepancy between real and predicted cycle times was expected 

since CNC characteristics were assumed for the controller on the machine (see Table 5.5).

Cycle time is one parameter to evaluate the optimization, however, it is not the only one when 

other aspects of machining operation are considered. Indeed the goal of optimization is to maxi-

mize material removal rate and reduce cycle time, however, this must be done in a controlled way 

by respecting physical constraints as explained before.

The cycle time reduction of Operation 1 (roughing) is reduced by 25.4% compared to the original 

program. More important than the cycle time was the experience and observation made during 

this operation. When the part was machined with the original program, there were some problems 

with the tool. At first, tool temperature increased to such a high level that inserts turned into red 

and finally chipped due to reduced chip thickness. At small feedrates, the tool was more in a 

grinding state than in a cutting state resulting in increased temperature and wear of the inserts (see 

Table 5.8 : Cycle time results of operations.

Cycle Times Cycle Time
[hr:min:second] Real Predicted % Error Real Predicted %Error Difference

Operation 1 1:58:00 1:57:00 -0.8% 1:28:00 1:17:24 -12.0% -25.4%
Operation 2 0:03:10 0:03:13 0:02:29 -22.7% -21.5%
Operation 3 2:58:33 2:05:00 2:28:00 18.4% -17.1%

Operation 4 0:10:50 0:08:04 -25.0% 0:05:00 0:04:13 -15.6% -47.7%
Operation 5 0:46:12 1:01:00 0:58:26 -4.2% 26.5%
(Semi-Finishing)
Operation 5 2:30:14 3:30:00 3:55:00 11.9% 37.7%
 (Finishing)
Operation 6 0:11:00
Operation 7 0:19:27
Operation 8 0:14:06
Operation 9 0:18:50

Original VMS
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Figure 5.48.a for chip formation). Inserts had to be replaced or rotated many times before the 

operation ended. In addition to tool wear and temperature, there were serious chatter problems at 

some sections of the program leading up to chipping of inserts. The power consumption read from 

operator’s panel was around 20% during this operation. Since it was not possible for the program-

mer to foresee how the cutting conditions would change during machining, the feedrate was con-

servatively selected. Optimized CL file of Operation 1; on the other hand, contained feedrates that 

were constantly changing along tool path. This resulted in increased chip thickness hence, a 

decreased temperature (see Figure 5.48.b for chip formation). The cutting operation was smoother 

with increased efficiency (power consumption was around 40%) Chatter problems also disap-

peared due to a decrease in cutting force coefficients when chip thickness became larger. Compar-

ison of the tool T63 after both original and optimized programs are visually made in Figure 5.49. 

Parts of the damage to T63 (with original program) were due to sudden insert failures.

Figure 5.48 : Chip formation with (a) 
original, (b) optimized NC programs. 

(a) (b)
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An opposite case, a case with increased cycle time after optimization is also analyzed. The first 

half of Operation 5 was semi-finishing of the top section of the die. The tool path of this operation 

showed a steep gradient near the beginning and end resulting in sudden loading and unloading of 

the tool (see Figure 5.50 for the tool path). During optimization, not only maximum chip thick-
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Figure 5.49 : Pictures of T63 from front and bottom after execution of 
original and optimized CL files.

Figure 5.50 : T20F - Part of the tool path from Operation 5, Semi-Finishing.
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ness was lowered, but the feedrate was also controlled during sudden geometry changes so that 

loading on the tool was kept uniform throughout the tool path. Inserts used during original and 

optimized programs were analyzed after completion of Operation 5, and pictures of them are 

shown in Figure 5.51 for comparison. The insert used in the uncontrolled original program 

chipped at the tip section whereas the insert used in the optimized program showed only regular 

wear marks without any apparent damage to itself.

Virtual optimization is a tool to control cutting conditions to meet user-defined constraints so that 

part program can be executed with reduced or no problems. The user is expected to define what 

the most critical machining parameters to be controlled are through constraints such as maximum 

chip thickness, torque/power limitations, and cutting loads on the tool. For cases when an original 

program is too conservative, the optimization will result in a faster process with increased fee-

drate and spindle speed thus shortening machining time. On the other, machining operation is 

slowed down if an aggressive feedrate scheduling is detected. In summary, it can be concluded 

that cycle time will reduce or increase depending on the priorities set by the user-defined con-

straints.

(a) (b)
Figure 5.51 : Pictures of T20F inserts after the (a) original, 

(b) optimized machining.     
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Conclusions

6.1. Conclusions

A novel, physics based 3-axis virtual milling system is introduced in this thesis. The system 

receives the NC part program, and the geometry of blank and part from an industry standard Com-

puter Aided Manufacturing (CAM) environment. The part-cutter engagement conditions are iden-

tified along the tool path, and used as boundary conditions to simulate the physics of milling 

operations. The system is capable of simulating cutting forces, torque, power, vibrations, dimen-

sional form errors, chip loads, and bending load on the spindle bearings along the tool path 

through computationally efficient, generalized mathematical models of milling processes. The 

system allows prediction of cutting performance and possible damage to the part and the machine 

in a virtual environment so that remedial action can be taken before actual production takes place. 

In parallel, a series of physical constraints can be imposed and cutting conditions can be automat-

ically adjusted along the tool path to achieve highest material removal rates without damaging the 

part and the machine.

The virtual milling system is composed of three components:

1) Cutter-part engagement boundaries; 2) computationally efficient mathematical models of the 

mechanics and dynamics of generalized milling operations; 3) a graphical user interface that 

allows the user to set the physical parameters and visualize the process. The academic contribu-

tions of the thesis belong to the second component, which governs the physics of the machining 
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processes. The cutter-part engagement conditions are extracted from a Z-buffer based commercial 

software that provides a grip map of cutter-part intersection. The grip map is then interpolated, 

smoothed and projected on the cutter body to form a three dimensional envelope of the cutter-part 

intersection.

The thesis contributions can be summarized as follows:

The generalized geometric model of arbitrary cutter geometries with helical or indexable cutters 

is introduced. The intersection of general helical flute with a three-dimensional cutter-part 

engagement domain is divided into regions and closed form integrations are obtained to solve the 

mechanics and dynamics of milling for arbitrary cutters. Analytical and numerical models are 

developed to locate cutter positions when minimum and maximum values of process states are 

attained along the tool path and the process simulation time of a complete part is reduced signifi-

cantly. This work is published in an archival journal [Merdol, S.D., Altintas, Y., 2006, Virtual 

Simulation and Optimization of Milling Operations Part I: Process Simulation, ASME Journal of 

Manufacturing Science and Engineering, accepted].

The generalized mechanics and dynamics of milling are developed, which can handle cutters hav-

ing arbitrary geometries. The model has two stages; pre-process planning and post-process simu-

lation. First, chatter stability of the machine tool - workpiece material is solved. Several 

mathematical approaches are introduced and their performances are compared. Analytical zero 

order solution is generalized to model stability of tools with complex geometries. Multi-frequency 

solution is analyzed in detail and a new eigenvector based chatter decision criteria is proposed. It 

is shown that the frequency domain stability solutions with zero and multi frequency components 

are computationally most feasible in identifying chatter free spindle speed, depth and width of 
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cut. The generalized mathematical model allows dividing the engagement into features and 

assembling their equations of motion matrixes analytically in order to solve the stability problem 

efficiently in the frequency domain. The chatter stability lobes are combined with torque and 

power limits of the machine to obtain the most efficient chatter free spindle speed, depth and 

width of cut combinations, which are provided to the planners ahead of NC program generation.

Machining of a part in a virtual environment as the cutter moves along the tool path is simulated 

after the NC program is generated. The process mechanics and dynamics are decoupled in two 

parts: geometric orientation depending on the geometry of cutter-part engagement conditions, and 

the mechanics and dynamics of the process. Since the minimum and maximum values of the pro-

cess states, i.e. force, torque, power, tool deflection, and chip thickness, are used as process mea-

sures, the geometric parts of the equations are reformulated as closed form analytical equations 

whenever possible or represented by discrete numerical models when cutters with arbitrary geom-

etries are used. The proposed algorithms led to a rapid prediction of process states as the cutter 

moves along the tool path with varying engagement conditions. A comprehensive optimization 

formulation to maximize material removal rate is introduced. A large number of process con-

straints including dynamics of the process, machine tool torque and power limits, and cutting 

forces acting on the tool are taken into account in optimal selection of cutting parameters: spindle 

speed, feedrate, depth and width of cut. The material removal rates are optimized by automati-

cally adjusting feeds and speeds along the tool path. The novel algorithms are published in archi-

val journals [Merdol, S.D., Altintas, Y., 2006, Virtual Simulation and Optimization of Milling 

Operations Part II: Optimization and Feedrate Scheduling, ASME Journal of Manufacturing Sci-
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ence and Engineering, accepted] - [Merdol, S.D., Altintas, Y., 2007, Virtual High Performance 

Milling, Annals of the CIRP Manufacturing Technology, Vol. 56-1,pp. 81-84]. 

The process is interrogated at any engagement station by first checking the stability of the process 

using discrete time solution of the delayed differential equation in modal coordinates. The time 

varying periodic directional factors of the milling are considered by checking the stability of the 

system in linear time-domain solution. On the other hand, the complete time history of process 

states such as vibrations, chip load, and dimensional surface finish are simulated numerically, 

allowing nonlinear cutting force coefficients, tool jumping out of cut conditions, tool run-out, ser-

rated and variable pitch cutters. 

The algorithms of this work are finally integrated into a prototype industrial product: Virtual Mill-

ing System.

6.2. Future Research Directions

There are remaining key challenges before achieving a fully virtual machining of parts using dig-

ital models of the machine tool and the cutting process. The present Z-buffer based cutter-part 

engagement identification algorithms do not have high accuracy at small grid sizes. The computa-

tional cost increases dramatically if the grid size is reduced. It is necessary to develop computa-

tionally efficient yet accurate cutter-part engagement identification algorithms.

The process mechanics and dynamics models must be able to cover 5-axis milling, turning, bor-

ing, drilling, reaming and thread cutting in order to simulate the machining of a complex part on a 

machining centre.

The stability of turning, drilling, boring, reaming and low speed machining with sufficiently prac-

tical accuracy remain unsolved. The contact between the flank face of the tool and wavy finish 
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surface add additional stiffness and damping but their physics are yet to be modeled with an 

acceptable accuracy.

CNC dynamics, i.e. feed and spindle servo systems, change the effective chip loads that directly 

affects all process states along the tool path. The dynamics of the CNC system must be integrated 

to the process physics in order to improve the accuracy of the virtual simulation of the machining 

process and machine tool motion.
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