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Abstract

This thesis addresses spatial interpolation and temporal prediction using
air pollution data by several space–time modelling approaches. Firstly, we
implement the dynamic linear modelling (DLM) approach in spatial interpo-
lation and find various potential problems with that approach. We develop
software to implement our approach. Secondly, we implement a Bayesian
spatial prediction (BSP) approach to model spatio–temporal ground–level
ozone fields and compare the accuracy of that approach with that of the
DLM. Thirdly, we develop a Bayesian version empirical orthogonal function
(EOF) method to incorporate the uncertainties due to temporally varying
spatial process, and the spatial variations at broad– and fine– scale. Finally,
we extend the BSP into the DLM framework to develop a unified Bayesian
spatio–temporal model for univariate and multivariate responses. The result
generalizes a number of current approaches in this field.
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Chapter 1

Introduction

This thesis addresses one topic in four themes. More specifically, we develop
a unified fully Bayesian hierarchical modelling approach to the interpolation
and prediction of univariate (respectively multivariate) response variables
(respectively vectors) in spatial–temporal fields, or space–time fields. The
importance of the prediction of certain responses turn out to be vital for
human health. Moreover, people tend to find faster, cheaper and better
method for prediction. These all motivates studies in this thesis.

Many researchers in these areas face responses with spatial structure
that changes over time in a dynamic fashion in the sense that the underlying
process varies in space and time (Wikle and Royle, 2004). The associated
random field is called a “space–time field”. Measurements taken on that
field yield so–called spatio–temporal data because of stochastic dependence
relationships that are both spatial and temporal in nature. Cressie (1993)
defines a space–time field as a set of stochastic processes over space that
differ over time. Space–time modelling requires that we deal with space–
time data for a variety of purposes, using various methods.

The ubiquity of such processes has led to a rich research literature on
space–time data problems spread over diverse fields such as environmental
health, climatology, epidemiology and ecology. For example, we may wish
to investigate the relationship between air pollution and health outcomes,
such as, asthma or chronic obstructive pulmonary disease. We may record
the measurements at a number of monitoring sites within the study region.
Each of those sites may: measure different sets of pollutants; contain missing
data; have a startup time that differs from those of other monitoring sites
in the network.

To model such data, we use a stochastic space–time model to capture the
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dependence between pollutants, spatially and temporally. That dependence
may derive from other processes than just those associated with the pollu-
tants themselves. For example, the dependence between pollutants could be
due to wind direction and speed since some pollutants such as the ground–
level ozone concentrations may spread with the wind. Temporal dependence
may be due to the atmospheric processes that generate the pollutants. Spa-
tial dependence can yield a high correlation between the responses for each
pollutant at different monitoring sites. Monitors in geographical proximity
tend to be highly correlated unlike those that are far apart. These correla-
tions among the monitoring sites in our application seem relatively constant
over time.

Section 1.1 introduces the AQS database used in this thesis and some
features of ground–level ozone concentrations. Section 1.2 describes some
background literature on the topic this thesis addresses. Section 1.3 presents
the plan of this thesis.

1.1 AQS Database and Ground–level Ozone

The Air Quality System (AQS) database contains measurements of air pol-
lutant concentrations in the United States, for both criteria air pollutants
and hazardous air pollutants. The former are of more concern as they are
regulated under the US Clean Air Act of 1970 to protect human health and
welfare. The US Environmental Protection Agency (EPA) set air quality
standards for six criteria air pollutants: Carbon Monoxide (CO), Nitro-
gen Dioxide (NO2), Sulfur Dioxide (SO2), Ozone (O3), Particulate Matter
(PM10 and PM2.5), and Lead (Pb).

Ozone is good up bad down in terms of the environment and health, that
is, ozone could be good or bad depending on its location in the atmosphere.
“Good” ozone occurs in the high altitude, about 6 to 30 miles from the
surface of the Earth, also called stratosphere ozone. Stratosphere ozone helps
reduce the harmful ultraviolet (UV) rays to protect life on Earth. “Bad”
ozone, one of the six principal pollutants set by EPA that occurs closest
to the surface of the Earth, often within 6 miles, also called ground–level
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ozone or troposphere ozone. Ground–level ozone is “created by chemical
reactions between oxides of nitrogen (Nox) and volatile organic compounds
(VOC) in the presence of sunlight”1. Ground–level ozone concentrations
are often high, annually in summer and daily in late morning and early
afternoon. Ground–level ozone’s absorption in the ultraviolet spectrum is
approximately 250 nanometers (nm). Ozone is measured by comparing the
degree of UV light absorption through a flow cell with ozone–free air.2.
Ozone can also be measured by differential optical absorption spectroscopy
(DOAS) instrumentation.

The US EPA sets both primary and secondary standards for ground–
level ozone at 0.08 parts per million (ppm) by volume. We use parts per
billion, the unit of ozone levels, instead of parts per million in order to be
consistent with other studies about ozone (while noting that these units are
not universally acceptable since Europe defines “billion” differently than
North America, for example). Only one–hour measured ground–level ozone
concentrations are considered in this thesis and so we have the primary and
secondary standards3 of 80 ppb.

Ground–level ozone concentrations are measurements of a space–time
process in space–time fields where the “true” ozone levels change over time
and monitoring locations. Uncertainty occurs between the measurements
and the things to be measured, that is, the “true” ozone levels. We consider
all these features in a Bayesian framework, a framework chosen for its great
flexibility. More specifically, in this thesis, we consider fully hierarchical
Bayesian models for the prediction of the ground–level ozone concentrations
using AQS database or a simulated database as our application that helps

1See the following link at US EPA: http://www.epa.gov/air/ozonepollution/basic.html.
2See the link at: http://www.epa.qld.gov.au/environmental management/air/

air quality monitoring/air pollutants/ozone/.
3According to EPA at http://www.epa.gov/air/ozonepollution/standards.html:

• Primary standards are the limits set “to protect public health, including the health
of ‘sensitive’ populations such as asthmatics, children, and the elderly.”

• Secondary standards are the limits set “to protect public welfare, including pro-
tection against visibility impairment, damage to animals, crops, vegetation, and
buildings.”
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us assess our models while being of great substantive importance.

1.2 Literature Review

Multivariate models for vectors of pollutants over networks of monitoring
sites prove to be much more powerful than their univariate counterparts.
(See Gelfand et al. (2005) for one recent approach to the development of
such models using a linear coregionalization method within a dynamic lin-
ear modeling (DLM) framework to predict the univariate and multivariate
responses in space–time domains.) By combining all the information from
different pollutants at multiple locations, we borrow strength and gain a bet-
ter understanding of the levels of pollution at these sites. Furthermore, we
obtain more accurate predictors of the pollutants at ungauged sites (unmon-
itored sites). Moreover, such models enable us to accommodate other site
specific responses in our multivariate framework. For instance, we know that
temperature affects ground–level ozone concentrations; ozone levels tend to
be higher in summer than winter. Thus temperature can be incorporated
directly in the model even though it would usually be regarded merely as a
covariate.

Another feature of space–time fields receiving increased attention in re-
cent literature is nonstationarity. (See Definition 2.2.2 in Chapter 2.) Non-
stationarity can be due to the correlation (or covariance) varying with dif-
ferent site–features or heterogeneity in pollutant levels. Higdon (1998) pro-
poses a process convolution approach to define a nonstationary process using
basis function expansions. Following that, a dynamic process convolution
method is proposed by Calder (2004). Calder and Cressie (2007) review var-
ious types of convolution–based models for spatial data, in which they cite
Fuentes’s work (Fuentes, 2002). Fuentes (2002) models the nonstationary
process through the convolution method by defining that process to be a
mixture of stationary processes at small subregion. Sampson and Guttorp
(1992) propose a deformation approach for capturing process non-stationary
while Damian et al. (2002) offer a Bayesian version of it. These covariance
models fit in well with the Bayesian hierarchical models proposed by Brown
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et al. (1994) who define and implement the generalized inverted Wishart
distribution particularly to construct covariance models for patterned data
such as those that exhibit a monotone (staircase) pattern.

We use a DLM approach to deal with the problem of nonstationarity,
amongst other things. In particular, we propose a class of fully hierarchi-
cal Bayesian models that accounts for parameter uncertainty and addresses
the curse of dimensionality in spatio–temporal modelling. In fact, one of
the greatest difficulties arising in implementing the above approaches for
spatial–temporal fields is the computational burden and inefficiency, espe-
cially in high–dimensional systems with irregularly located monitoring sta-
tions as well as sparse data. Approaches to tackling this problem include
Bayesian kriging approach by Wikle and Cressie (1999), the process convo-
lution method by Hidgon (1998), and the spatial dynamic factor approach
by Lopes et al. (2007). As an extension of Wikle and Cressie, we investigate
a fully Bayesian approach to construct the local principal spatial patterns
through an EOF approach.

1.3 Introduction to the Thesis

My thesis contains four main themes. The first implements a version of the
DLM model proposed by Huerta et al. (2004) to model an AQS database for
the ozone concentrations at one cluster of 10 monitoring stations over the
entire summer of 1995. This implementation, along with the background
knowledge for the thesis is introduced in Chapters 2 and 3. In Chapter 2,
we first review the definition and properties of spatio–temporal processes
and of Kalman filtering and smoothing methods in Gaussian DLM frame-
work. We then introduce the AQS database (1995) and an implementation
of an exploratory data analysis (EDA) based on that database. Finally, we
demonstrate use of MCMC algorithms for spatial interpolation and tempo-
ral prediction at ungauged sites. Following the theory presented in Chapter
2, we implement the DLM to model the hourly ozone concentrations based
on the database in Chapter 3. We use the software developed for this the-
sis, GDLM.1.0, to complete this implementation. We also present potential
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problems in applying this method to ground–level ozone concentrations at
that space–time domain. More discussions on this implementation of the
DLM can be referred to Dou et al. (2007).

Computational inefficiency proves a critical problem in using the AQS
database (1995) for ozone studies – the DLM is just not scalable to large
space–time domains as our work will show. Thus we explore use of an
alternative, the BSP (Bayesian spatial prediction after prefiltering) or Le–
Zidek approach that we implement for another AQS database (2000) to
spatially interpolate and temporally predict the ground–level ozone concen-
trations. In Chapter 4, we first introduce related literature work and the
AQS database for the Chicago area. We then demonstrate the methodology
of the BSP approach. We show the existence of the spatial leakage problem
(Le and Zidek, 1999) in the DLM framework, a newly result of this thesis.
We summarize the results on spatial interpolation and compare them with
the results using the DLM at the end of this chapter.

Le & Zidek (2006, p.131–183) suggest that a different modelling approach
would be needed for the temporal prediction of univariate and multivariate
responses in spatio–temporal fields. However in Chapter 5, we show how to
do this with a further modelling step so that the BSP can in fact be made
to yield one–day–ahead temporal forecasts for ground–level ozone concen-
trations. The temporal prediction results using the BSP approach are then
compared with that of the DLM and another alternative called “NAIVE”.
We summarize these comparisons at the end of this chapter, and conclude
on the advantages and disadvantages of the BSP and DLM approaches.

Because of enormous computational time savings of the BSP over the
DLM approach, we chose to extend and refine the BSP, in particular, to
incorporate both broad and fine scale spatial variations, while incorporating
autocorrelation in the time series at each of the sites that of interest. In
Chapter 6, we first show that the way EOFs ([Nancy] empirical orthogonal
functions) are traditionally computed may be misleading when the time se-
ries data autocorrelated in a simulation study. [Nancy: The EOF method
is used here for purpose of an extension into a fully Bayesian framework be-
cause of its widely and intensively usage in scientific community.] Assuming
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a known temporal covariance function, we show the corrected EOF method
better capturing main spatial patterns than the classical one. Since this co-
variance will always be unknown and so uncertain in practice, we propose a
Bayesian EOF method to represent that uncertainty. In the second simula-
tion study, we compare both the classical and corrected EOFs with the true
EOFs, assuming a known and separable spatial–temporal covariance func-
tion. However we leave the implementation of the Bayesian EOF method.
That implementation can use the MCMC algorithms already developed in
this chapter.

Finally, the flexible, general structure of the DLM allows us to inte-
grate the BSP approach into the DLM framework. Chapter 7 proposes a
unified Bayesian spatio–temporal model for univariate and multivariate re-
sponses. Using this new model, we can decompose data variations into three
components: long–term spatio–temporal; short–term principal spatial; and
short–term spatio–temporal components. The short–term spatio–temporal
components can be modelled as an BSP term. This very general, flexible
model accounts for temporal correlation in the data and so allows us to
update the information on those parameters as new data come in. To main-
tain computational speed, the Bayesian EOF has been implemented in this
model to capture the local–term principal spatial patterns in the detrended
spatio–temporal residual fields. We show the model’s generality and flexi-
bility by investigating that some well–known related models turn out to be
special cases of ours. Those related models include the DLM by Huerta et
al. (2004), Wikle and Cressie (1999), Gelfand et al. (2005), and of course,
the BSP approach itself from Le and Zidek (1992). Our model also incorpo-
rates certain computational efficiencies from theoretical results we obtain in
this thesis. In particular, we develop the MCMC algorithm to draw samples
from the joint posterior distribution of model parameters. We can imple-
ment our model using this algorithm. However that implementation will be
left to future work.

Finally in Chapter 8, we discuss future work flowing from the work of
this thesis as well as possible directions for their solutions.
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Chapter 2

Dynamic Linear Modelling

2.1 Introduction

We are particularly interested in the study for ozone concentrations, due to
its importance for the environment. Without the shielding layer of strato-
sphere ozone, ultraviolet (UV) radiation would harm life on Earth. The in-
creasing incidences of skin cancers, for example, may be linked to a thinning
of Earth’s ozone level. On the other hand, exceedingly high tropospheric
ozone levels may cause some other diseases, for instance, eye irritation and
cardiovascular diseases. We wish to study the ozone levels to more com-
pletely understand ozone today to better predict them in the future.

Ozone concentrations are a spatio–temporal field, that is, the response
variable is observed across monitoring stations, which can be fixed or varied
as time changing, over some time periods. There are many approaches
to modelling the spatio–temporal data. We have a particular interest in
dynamic linear modelling because modelling the time series process is based
on “classes of dynamic models,” which is often defined as “sequences of sets
of models.” The term, dynamic, is defined as the changes in the process
“due to the passage of time as a fundamental motive force” and the DLMs
(dynamic linear models) when the normality is assumed.

This chapter starts with an introduction to some basic notions in space–
time theory, some elementary notions and results on the DLM and a review
on Kalman filter and smoother processes in Sections 2.2–2.4.

The theme of this chapter centers on a DLM approach to modelling the
ozone concentrations in the Air Quality System (AQS)4 database. The DLM
structure (proposed by Huerta et al. (2004)) is specified by an illustrative

4AQS originally called AIRS, the terminology we use hereafter.
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example in Section 2.4 through some exploratory data analysis (EDA) and
used throughout the following sections in this chapter. Theoretical results
and algorithms on the DLM are represented in Sections 2.6 and 2.7. The
MCMC sampling scheme is outlined in Section 2.6.1. The forward–filtering–
backward–sampling (FFBS) method is demonstrated in Section 2.6.2 to es-
timate the state parameters in the DLM. Moreover, we outline the MCMC
sampling scheme to obtain samples for other model parameters from their
posterior conditional distributions with a Metropolis–Hasting step, and the
theoretical results for prediction and interpolation at ungauged sites from
their predictive posterior distributions in Section 2.7.

2.2 Space–time Process

Let D be the region of monitoring stations for study. For simplicity, we can
fix D as a finite domain to study. Suppose Y (si, t) denotes the observation
at time t ∈ R and site si ∈ D, and Z(si, t) denotes the space–time process
at time t ∈ R and site si ∈ D, with t = 1, . . . , T, and i = 1, . . . , n. There
may be additional covariates available, x(si, t).

The modeling structure is given by

Y (si, t) = Z(si, t) + ε(si, t), i = 1, . . . , n, t = 1, . . . , T, (2.1)

where ε(si, t) is a white noise process.
The space–time process Z(si, t) can be expressed as

Z(si, t) = µ(si, t) + w(si, t), (2.2)

where µ(si, t) is the mean process obtained from the observed covariate
x(si, t) and w(si, t) is a mean 0 spatio–temporal process.

Definition 2.2.1 The space–time covariance function is defined as

C(s1, s2; t1, t2) = Cov[w(s1, t1), w(s2, t2)], (2.3)

where si is the ith location, and ti is a time point, for i = 1, 2.
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Definition 2.2.2 The zero mean spatio–temporal process w(s, t) is covari-
ance stationary if

C(s1, s2; t1, t2) = C(s1 − s2; t1 − t2) = C(h; η), (2.4)

where h = s1 − s2 and η = t1 − t2.

Note that h in (2.4) denotes the vector distance between the two sites.
If w(s, t) does not satisfy (2.4), it is called a nonstationary spatio–temporal
process.

Definition 2.2.3 The zero mean spatio–temporal process w(s, t) is isotropic
if

C(h; η) = C(‖h‖; |η|), (2.5)

which means that the covariance function depends on the separation vectors
only by their length of difference, ‖h‖ and |η| . If the spatio–temporal process
is not isotropic, then it is called anisotropic.

The covariance structure for the spatio–temporal process can be simpli-
fied by assuming the separability (see Definition 2.2.4).

Definition 2.2.4 The zero mean spatio–temporal isotropic process w(s, t)
is separable if

C(‖h‖; |η|) = Cs(‖h‖)Ct(|η|), (2.6)

that is, the covariance function for the spatio–temporal process can be de-
composed as the product of an isotropic spatial and an isotropic temporal
covariance function.

If the covariance for spatio–temporal process is not separable, it is called
non–separable and the process is then nonseparable.

As Gelfand et al. (2004) mentioned, for non–stationary spatial process,
the general approach is to construct a valid separable covariance function.
Brown et al. (1994b) and Le et al. (1998) investigate a separable covari-
ance structure to deal with nonstationary multivariate spatial models in a

10
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hierarchical Bayesian framework. The advantages for this approach are: (i)
it reduces the number of parameters to be estimated in the model; (ii) it
provides a positive definite covariance matrix.

Because of the dynamic features of spatio–temporal data, we are par-
ticularly interested in modelling the process dynamically using a dynamic
modelling approach. In the following chapter, we introduce some basic no-
tations, along with results, from the dynamic modelling.

2.3 Spatio–temporal DLM

Suppose yt : n×1 is a vector observation, for t = 1, 2, . . . . The DLM contains
two equations: the observation equation and the evolution equation. The
observation equation is given by

yt = F′txt + νt, νt ∼ N [0,Vt], (2.7)

and the evolution equation is given by

xt = Gtxt−1 + ωt, ωt ∼ N [0,Wt], (2.8)

where Ft : p×n, Gt : p× p, Vt : n×n, and Wt : p× p are known matrices.
In Equation (2.7), Ft is called the design matrix, xt is the state, or system,
vector, and νt is the observational error. Equation (2.8) is also called the
evolution, state or system equation. Gt is the system or state matrix and
ωt is the system, or evolution, error with evolution matrix Wt.

The dynamic linear model is completed with the initial information for
the state parameter given by

(x0|y0) ∼ N [m0,C0]. (2.9)

2.4 Kalman Filter and Smoother

Kalman recursion, or Kalman filtering as it is sometimes referred to, is used
to update and forecast the state parameters. An analogous method is de-

11
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rived by West and Harrison (1997, Chapter 4) on updating and forecasting
state parameters in the DLM framework. This result can also be derived by
means of Bayesian inference. Carter and Kohn (1994) label this approach
forward–filtering–backward–sampling. It is particularly powerful and will
be used in the following chapter. It can, moreover, be summarized in the
following theorem which will be applied to the filtering and smoothing pro-
cesses.

Theorem 2.4.1 (West and Harrison, 1997) Let y1:t = (y1, . . . ,yt), t ≥ 1,

denote all the responses observed until time t. Under models (2.7) - (2.8),
together with the initial state information in (2.9), we have for t = 2, . . . , T

(i)

(xt−1|y1:t−1, θ) ∼ N [mt−1,Ct−1]

(xt|y1:t−1, θ) ∼ N [at,Rt]

(yt|y1:t−1, θ) ∼ N [ft,Qt]

(xt|y1:t, θ) ∼ N [mt,Ct],

where

at = Gtmt−1 Rt = GtCt−1G
′
t + Wt

ft = F′tat Qt = F′tRtFt + Vt

et = yt − ft At = RtFtQ
−1
t

mt = at + Atet Ct = Rt −AtQtA
′
t.

(ii) Let Bt = CtG
′
t+1R

−1
t+1. For 0 ≤ k ≤ T − 1,

(xT−k|y1:T , θ) ∼ N [aT (−k),RT (−k)], (2.10)

where

aT (−k) = mT−k + BT−k[aT (−k + 1)− aT−k+1]

RT (−k) = CT−k + BT−k[RT (−k + 1)−RT−k+1]B′
T−k

12
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with aT (0) = mT , RT (0) = CT , aT−k(1) = aT−k+1, and RT−k(1) =
RT−k+1.

Note that the distributions for the smoothing and filtering processes are
obtained conditionally on the parameter vector θ. In practice, it is often
exceedingly difficult to obtain the posterior distribution of θ because it may
not have any closed form. In this case, the MCMC method is often used
to obtain samples of θ from its posterior conditional distribution. After
obtaining θs, we can use Theorem 2.4.1 to get samples of state parameters
from the corresponding distributions. If we can obtain all the samples of θs
and state parameters, we can then do the prediction and interpolation, the
general goals of the kriging method.

Next we set the DLM modelling for the Cluster 2 AQS database. This
DLM modelling will be implemented in Chapter 3.

2.5 An Illustrative Example: Cluster 2 AQS

Database (1995)

We consider hourly ozone concentrations in ppb measured during 1995 at
375 different monitoring stations irregularly located in the USA. Among
the 375 stations, we choose three clusters of sites in close proximity with
10 monitoring stations each, for a total of 30 monitoring stations. The
geographical locations of these stations are given by the latitudinal and
longitudinal coordinates (see Figure 2.1).

Our goal is to construct a suitable DLM for the Cluster 2 sites based on
the explanatory data analysis (EDA) as Huerta et al. (2004) suggest. The
missing data are filled initially by the spatial regression method (SRM). The
empirical distribution of the ozone concentrations has an asymmetric shape.
So the square–root of the ozone concentrations are used as the responses due
to the normality assumption of the DLM. For our study of the periodicity
of the ozone dataset, we plot the Bayesian periodograms (Bretthorst, 1988)
for the square–root of ozone levels for this summer of 1995 at Cluster 2 sites
in Figure 2.2. We find a high peak during 1 pm to 3 pm each day for 120

13
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1995 AQS Database

Figure 2.1: Geographic locations for the 1995 AQS database in US map, where
the latitude and longitude are measured by degrees. (Diamond = Cluster 1 sites;
Upper–triangle = Cluster 2 sites; Down–triangle = Cluster 3 sites.)

days, a significant 24–hour cycle for all these gauged sites in Figure 2.2.
We also find a slightly significant 12–hour cycle by plotting the periodicities
which contribute more variation according to the spectrum for each station
in Cluster 2 sites. We do not find any obvious weekly cycles or any nightly
peaks for this database.

The DLM used in this chapter is a variation of the one proposed by
Huerta et al. (2004). The state vector equation accounts for the trend and
periodicity across the sites. The validity of this model for this example is
assessed in Chapter 3. Given the information of other covariates, such as
temperature or wind speed, better prediction of responses might be obtained
using the DLM. However, due to the lack of such knowledge, we use such a
variation of the DLM in Huerta et al. (2004).

14
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Figure 2.2: Bayesian periodogram for the square–root of hourly ozone concentra-
tions at Cluster 2 sites in the AQS database from May 15 to September 11 (1995).

Let yit denote the observed square–root of the ozone concentration, at
site si and time t, with i = 1, . . . , n and t = 1, . . . , T, where n presents the
total number of gauged sites (that is, sites with observations) in our study
and T, the total number of time points.

A variant of the state–space model for such a database is given by
(Huerta et al., 2004):

yt = 1′nβt + S1t(a1)α1t + S2t(a2)α2t + νt (2.11)

βt = βt−1 + wt (2.12)

αjt = αj,t−1 + ω
αj

t , (2.13)

where νt ∼ N [0, σ2Vλ], wt ∼ N [0, σ2τ2
y ] and ω

αj

t ∼ N [0, σ2τ2
j Vλj

], with
Vλ = exp(−V/λ) and Vλj

= exp(−V/λj), for j = 1, 2. Let yt = (y1t, . . . , ynt)′ :
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n×1 and αjt = (αj1t, . . . , αjnt)′ : n×1, j = 1, 2. Here βt denotes a canonical
spatial trend and αjit, a coefficient for site si at time t corresponding to a
periodicity component Sjt(aj), where Sjt(aj) = cos(πtj/12)+aj sin(πtj/12),
for j = 1, 2. Note that V = (vij) : n × n represents the distance matrix for
the gauged sites s1, . . . , sn, that is, vij = ||si − sj || for i, j = 1, . . . , n. Here
||si−sj || denotes the Euclidean distance between sites si and sj in kilometers.
Here the initial state x0 = (β0, α

′
10, α

′
20)

′ has been given in (2.9).
Models (2.11)–(2.13) can also be written as in (2.7) and (2.8) by letting

Gt = I, Vt = σ2Vλ and Wt = σ2W, where W is a block diagonal ma-
trix with diagonal entries τ2

y , τ2
1 exp(−V/λ1), and τ2

2 exp(−V/λ2). In other
words, the observation and the state equations can also be written as

yt = F′txt + νt (2.14)

xt = xt−1 + ωt (2.15)

where x′t = (βt, α1t
′, α2t

′), and F′t is given by




1 S1t(a1) 0 . . . 0 S2t(a2) 0 . . . 0
1 0 S1t(a1) . . . 0 0 S2t(a2) . . . 0
...

...
...

...
...

...
...

1 0 0 . . . S1t(a1) 0 0 . . . S2t(a2)




.

Let y1:T = (ym
1:T ,yo

1:T )′, where ym
1:T = (ym

1 , . . . ,ym
T ) represents all the

missing values and yo
1:T , all the observed values in Cluster 2 sites for t =

1, . . . , T. The model parameters are (λ, σ2,x1:T ,ym
1:T , a1, a2), in which x1:T =

(x1, . . . ,xT ) are the state parameters until time T, λ the range parameter,
σ2 the variance parameter and a = (a1, a2) the phase parameters. Here we
assume constant, i.e., site–invariant, phase parameters over all gauged sites
due to an empirical study at each gauged site that confirms such features of
spatio–temporal data in this field. Define γ = (τ2

y , τ2
1 , λ1, τ

2
2 , λ2) to be the

vector of parameters fixed in the DLM.
The DLM is then completed with the following hyperpriors for some of
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the model parameters:

λ ∼ IG(αλ, βλ)

σ2 ∼ IG(ασ2 , βσ2)

a ∼ N(µo
a,Σ

o
a).

The choice for such hyperpriors is addressed in Section 3.1.
We express the state–space model in two different ways because of our

dual objectives of inference for parameters and interpolation. For simplic-
ity, we use models (2.14)–(2.15) for the purpose of inference on the range,
variance, state parameters and missingness in Sections 2.6.2–2.6.3, and use
models (2.11)–(2.13) for inference about the phase parameters in Section
2.6.4 and spatial interpolation in Section 2.7.

We can see that the state–space models in (2.14)–(2.15) capture some
important features of the AIRS database. It reflects the time–dependent
structure of the data and captures the diurnal patterns of ozone concen-
trations across all the sites. Further implementation of the DLM in this
database will be revisited in Chapter 3.

2.6 Algorithms for Estimating the Model

Parameters

For the purpose of interpolation and prediction, one has to estimate all the
unknown model parameters at each gauged site and each time point. Our
goal in this section is to give the details needed to estimate the model param-
eters by the MCMC method and the forward–filtering–backward–sampling
algorithm, developed by Carter and Kohn (1994).

In Section 2.6.1, we introduce the Metropolis–within–Gibbs method to
sample from the target distribution for the model parameters given all the
observations. Sections 2.6.2, 2.6.3 and 2.6.4 give details about implement-
ing this method under the DLM. The algorithm for estimating the model
parameters is then summarized in Section 2.6.5.
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2.6.1 Metropolis–within–Gibbs algorithm

Consider the state space model (2.14)–(2.15). Let yo
1:T = (yo

1, . . . ,yo
T) :

n × T be the observation matrix at the n gauged sites until time T. Let
x1:T = (x1, . . . ,xT ) : (2n + 1)× T be the state parameters at the n gauged
sites until time T. For simplicity, the coordinates of γ are fixed but the
problem on setting them will be addressed later in Section 3.5.

The target distribution of interest is given by p(λ, σ2,x1:T ,ym
1:T , a1, a2|yo

1:T ).
Since the target density does not have a closed form, direct sampling meth-
ods cannot draw samples from it. The MCMC method is a popular way
to sequentially sample the parameters from their posterior distributions de-
pending on the last value drawn and iteratively until the convergence of the
chain is reached. As we can see from Huerta et al. (2004), the MCMC
method can be used to obtain the posterior, predictive and interpolation
results for the DLM.

A blocking MCMC scheme is used to sample each component iteratively
from the target distribution. Three blocks are chosen as (λ, σ2,x1:T ), ym

1:T

and (a1, a2). There are two reasons for such blocks in applying the MCMC
method. Firstly, it is natural to select blocks in which the parameters are
highly correlated but relatively conditional independent between the blocks.
The phase parameters are assumed independent in time and location and
so less correlated with the other model parameters. Another reason derives
from the fact that the full conditional posterior distribution of the phase
parameters can be obtained by assuming a bivariate normal hyperprior.
Details about inference are presented in Appendix A.2.

Since there is no direct way to sample from the target distribution, Gibbs
sampling is used to sample these three blocks iteratively from their full
conditional posterior distributions. In other words, we can iteratively:

(i) sample from p(x1:T , λ, σ2|a1, a2,y1:T ),

(ii) sample from p(ym
1:T |λ, σ2, a1, a2,yo

1:T ), and

(ii) sample from p(a1, a2|x1:T , λ, σ2,y1:T ).

18
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The problem is that we do not have a closed form for p(λ, σ2,x1:T |a1, a2,

y1:T ) either. However, the full conditional posterior distribution of x1:T can
be obtained explicitly by Kalman filtering and smoothing (Section 2.4), i.e.,
FFBS algorithm. Assuming an inverse Gamma hyperprior for σ2, the condi-
tional posterior distribution of σ2 given the range and phase parameters also
has an inverse Gamma distribution with new shape and scale parameters.
Note that

p(λ, σ2,x1:T |a1, a2,y1:T ) = p(λ|a1, a2,y1:T )p(σ2|λ, a1, a2,y1:T )

×p(x1:T |λ, σ2, a1, a2,y1:T ), (2.16)

which shows we can sample from the three conditional posterior distri-
butions on the right–hand–side of (2.16) iteratively to obtain the sam-
ples from p(λ, σ2,x1:T |a1, a2,y1:T ). However, there is no closed form for
p(λ|a1, a2,y1:T ). So we must sample λ from it by a Metropolis–Hasting step
within a Gibbs sampling cycle. This algorithm is often called Metropolis–
within–Gibbs. Details about sampling from the joint target distribution are
given in the next three subsections.

2.6.2 Sampling from p(λ, σ2,x1:T |a1, a2,y1:T )

We use the block MCMC scheme to sample (λ, σ2,x1:T ) from p(λ, σ2,x1:T |a1,

a2,y1:T ). Because of (2.16), ideally we can could iteratively sample λ from
p(λ|a1, a2,y1:T ), σ2 from p(σ2|λ, a1, a2,y1:T ), and x1:T from p(x1:T |λ, σ2, a1,

a2,y1:T ). However, because we do not have a closed form for that posterior
density of p(λ|a1, a2,y1:T ), we instead use the Metropolis–Hasting algorithm
to sample λ, given all the observations from the following term which is
proportional to its posterior density, that is,

p(λ|a1, a2,y1:T ) ∝ p(λ)
T∏

t=1

|Qt|−
1
2

[
β +

1
2

T∑

t=1

et
′Q−1

t et

]−(nT/2+α)

.(2.17)

Details are included in Appendix A.1.
Since we cannot compute the normalization constant for p(λ|a1, a2,y1:T ),
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the Metropolis–Hasting algorithm must be used here; it is impossible to
sample λ directly from its posterior distribution. The Metropolis–Hasting
algorithm yields an equilibrium distribution for the Markov chain, since com-
putation and simulation is easier for reversible chains where the transition
probabilities and stationary density of the chain satisfy the detailed balance
equations. In the Metropolis–Hasting algorithm, the transition kernel is a
mixed distribution for the new state of the chain: q(., .), the proposal density
and α(., .), the acceptance probability.

We choose the proposal density, q(., .), to be lognormal distribution, be-
cause the parameter space is bounded below by 0, the density of the Gaussian
distribution making in appropriate. As Moller (2002) notes, this alternative
to the random walk Metropolis considers the proposal move to be a random
multiple of the current state. From the current state λ(j−1)(j > 1), the pro-
posed move is λ∗ = λ(j−1)eZ , where Z is drawn from a symmetric density,
such as normal. In other words, at iteration j, we sample a new λ∗ from
this proposal distribution, centered at the previously sampled λ(j−1), with a
tuning parameter τ2 as the variance of the distribution of Z. Gammerman
(2006) suggests the acceptance rate, that is, the ratio of accepted λ∗ to the
total number of iterations, should be around 50%. We tune τ2 to attain that
rate. If the acceptance rate is too high, for example, 70% to 100%, we then
increase τ2. Similarly, if the acceptance rate is too low, for example, 0 to
20%, we decrease τ2 to narrow down the search area for λ∗.

The Metropolis–Hasting algorithm proceeds as follows. Given λ(j−1),

where j > 1,

• Draw λ∗ from LN(λ(j−1), τ2).5

• Compute the acceptance probability

α(λ(j−1), λ∗) = min

{
1,

p(λ∗|y1:T )/q(λ(j), λ∗)
p(λ(j−1)|y1:T )/q(λ∗, λ(j−1))

}
.

5X ∼ LN(a, b) means X follows a lognormal distribution. In other words, X = exp(Y )
where Y ∼ N(a, b).
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• Accept λ∗ with probability α(λ(j−1), λ∗). In other words, sample u ∼
U [0, 1] and let λ(j) = λ∗ if λ∗ < u and λ(j) = λ(j−1) otherwise.

We run this algorithm iteratively until convergence is reached.
Next we sample σ2, given the accepted λ, a1, a2 and the observations.

The prior for σ2 is chosen to be an inverse gamma distribution with shape
parameter α and scale parameter β. The posterior distribution for σ2 is also
an inverse gamma distribution, but with a shape parameter α + nT

2 and a
scale parameter β + 1

2

∑T
t=1 et

′Q−1
t et.

We now sample x1:T given the accepted λ, σ2, a1, a2 and y1:T , using the
forward–filtering–backward–sampling (FFBS) method as described in Sec-
tion 2.4. West and Harrison (1997) propose a general theorem for inference
on the parameters in the DLM framework. For time series data, the usual
method for updating and predicting is Kalman filter. We present the follow-
ing theorem as the FFBS algorithm (similar to the Kalman filter algorithm)
to resample the state parameters conditional on all the other parameters
and observations. FFBS is used as part of a MCMC method to sample
x1:T = (x1, . . . ,xT ) from the smoothing distribution p(xt|λ, σ2, a1, a2,y1:T ).
It is called FFBS because recent data are used to update the state parame-
ters, xt’s, recursively for t from 1 to T, as well as to sample each element of
the xt’s using all the information recursively for t from T to 1.

Theoretical results for models (2.14) and (2.15) are presented to give an
idea of how to draw samples from the posterior distribution for x1:T . One
can also obtain it from Theorem 2.4.1 in Section 2.4, by letting Gt = I,

Vt = σ2Vλ and Wt = σ2W.

The initial state parameter is given by

(x0|y0, θ) ∼ N [m0, σ
2C0], (2.18)

where y0 denotes the initial information, and m0 and C0 are known values.
Later in Section 3.1, we consider how to specify them in Cluster 2 AQS
database (1995). Let θ = (λ, σ2, a1, a2, γ). Assume all the prior information
has been given and θ’s coordinates are mutually independent. The details
on this algorithm are included in Appendix A.2.
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2.6.3 Sampling from p(ym
1:T |λ, σ2,x1:T ,yo

1:T )

The MCMC method has an important advantage that it enables us to fill in
the missing values at each iteration, that is, to treat missing values like the
model “parameters”. In this way, it avoids to use ad hoc methods for fitted
missing values, say by period means or the spatial regression method.

At any fixed time point t, after appropriately defining a scale matrix Rt,

we can rewrite the observation vector yt as follows:

Rtyt =

(
ym

t

yo
t

)
,

where ym
t : nt×1 denotes the missing response(s) at time t and yo

t : (n−nt)×
1 the observed response(s) at t. Notice that “o” represents for “observed”
and “m” for “missing”.

Let Rt = (en1 , . . . , ent , ek1 , . . . , ekn−nt
)′, where {snj : j = 1, . . . , t}

presents the gauged sites containing missing values at time point t, {skj
:

j = 1, . . . , n− nt} the gauged sites containing observed values at time t, for
all t = 1, . . . , T ; and ej is an 1×n vector such that ejj = 1, ejk = 0 if k 6= j,

for j ∈ Z+.

We already know that

(yt|λ, σ2,xt,a) ∼ N [F′txt, σ
2 exp(−V/λ)],

and so Rtyt also has a multivariate normal distribution

(Rtyt|λ, σ2,xt,a) = ((ym
t ,yo

t )
′|λ, σ2,xt,a) ∼ N [µ̃t, Σ̃t],

where

µ̃t = RtF′txt

Σ̃t = σ2Rt exp(−V/λ)R′
t.
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We can also partition µ̃t as follows:

µ̃t =

(
µ̃m

t

µ̃o
t ,

)

where µ̃m
t : nt × 1 and µ̃o

t : (n− nt)× 1.

Similarly, we have

Σ̃t =

(
Σ̃mm

t Σ̃mo
t

Σ̃om
t Σ̃oo

t ,

)

where Σ̃mm
t : nt × nt, Σ̃mo

t : nt × (n− nt) and Σ̃oo
t : (n− nt)× (n− nt).

By a basic property of the multivariate normal distribution, we have

(ym
t |λ, σ2,xt,a,yo

t ) ∼ N [µ∗∗t ,Σ∗∗
t ], (2.19)

where
µ∗∗ = µ̃m

t + Σ̃mo
t (Σ̃oo

t )−1(yo
t − µ̃o

t ), (2.20)

and
Σ∗∗

t = Σ̃mm
t − Σ̃mo

t (Σ̃oo
t )−1Σ̃om

t , (2.21)

for t = 1, . . . , T.

At each iteration, we draw the {ym
t } from the corresponding distribution

(2.19) at each time point t and then write the response variables as y1:T =
(ym

1:T ,yo
1:T ) without loss of generality, where ym

1:T = (ym
1 , . . . ,ym

T ) and yo
1:T =

(yo
1, . . . ,y

o
T ).

2.6.4 Sampling from p(a1, a2|x1:T , λ, σ2,y1:T )

We now present our method for sampling the phase parameters a = (a1, a2)′

from its full conditional posterior distribution p(a|λ, σ2,x1:T ,y1:T ), using the
samples for λ, σ2 and x1:T obtained in Sections 2.6.2–2.6.3. For simplicity,
we use the notation of models (2.11)–(2.15) in this section.

We then sample the constant phase parameters conditional on all the
other parameters and observations. Suppose a = (a1, a2)′ has a conjugate
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bivariate normal prior with mean vector µo = (µ1o, µ2o)′ and covariance
matrix Σ0. Then the posterior conditional distribution for a is normal with
mean vector µ∗ and covariance matrix Σ∗, where µ∗ and Σ∗ can be obtained
from equations (A.13) and (A.14), respectively. This result is shown in the
Appendix A.3.

We will not use a non–informative prior for a such as p(a) ∝ 1, because
that would be problematic here. The reason is straightforward: we want
to avoid cases of non–identified posterior means or posterior variances. To
be more specific, assume p(a) ∝ 1. Using the same inferential approach as
above, we find that the posterior conditional distribution for a is normal
with mean vector µ = (µ1, µ2)′ and covariance matrix Σ from equations
(A.2) and (A.3), respectively. The elements of Σ are also given in Appendix
A.3, where Σ can be singular for any t = 12k, where k is an integer. Hence
we obtain extreme values at times 12, 24, . . . , 2880, which invalidates the
assumption of constant phase parameters across all the time scales when we
sample from their full conditional posterior distribution.

For fixed values of λ, σ2 and x1:T , we sample a from N(µ∗,Σ∗) and
then obtain the median as the estimator for a for each fixed iteration by
exploiting the assumption that a1 and a2 are constant phase parameters in
the models (2.14)–(2.15).

2.6.5 Summary

The MCMC methods we use here are very similar to those of Huerta et al.
(2004) except that we use all the samples after the burn–in period, not just
the chain corresponding to the accepted samples, as they did in their paper.
That is because using only accepted Markov chains actually leads to the
biases on the samples, which indeed changes the detailed balance equation
of Metropolis–Hasting algorithm.

The algorithm we use in Cluster 2 AQS database is summarized as fol-
lowing:

------------------------------------------------------

24



Chapter 2. Dynamic Linear Modelling

Algorithm The Metropolis-within-Gibbs method

------------------------------------------------------

1. Initialization: sample

λ(1) ∼ IG(αλ, βλ)

σ2(1) ∼ IG(ασ2 , βσ2)

x(1)
1:T ∼ N(m0, σ

2(1)C0).

2. Given the (j− 1)th values, λ(j−1), σ2(j−1)
, ym

1:T
(j−1), a

(j−1)
1 , a

(j−1)
2 and

the observations yo
1:T :

(1) Sample (λ(j), σ2(j)
,x(j)

1:T ) from p(λ, σ2,x1:T |a(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T ),
where

y(j−1)
1:T = (ym

1:T
(j−1),yo

1:T ).

(i) • Generate a candidate value λ∗ from a logarithm proposal
distribution q(λ(j−1), λ), that is, LN(λ(j−1), τ2) for some
suitable tuning parameter τ2.

• Compute the acceptance ratio α(λ(j−1), λ∗) where

α(λ(j−1), λ∗) = min

{
1,

p(λ∗|a(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T )λ∗

p(λ(j−1)|a(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T )λ(j−1)

}
.

• With probability α(λ(j−1), λ∗) accept the candidate value
and set λ(j) = λ∗; otherwise reject and set λ(j) = λ(j−1).

(ii) Sample σ2(j) from p(σ2|λ(j), a
(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T ).

(iii) Sample x(j)
1:T from p(x1:T |λ(j), σ2(j)

, a
(j−1)
1 , a

(j−1)
2 ,y(j−1)

1:T ).

(2) Sample ym
1:T

(j) from p(ym
1:T |λ(j), σ2(j)

,x(j)
1:T , a

(j−1)
1 , a

(j−1)
2 ,yo

1:T ).

(3) Sample (a(j)
1 , a

(j)
2 ) from p((a1, a2)|λ(j), σ2(j)

,x(j)
1:T , y

(j)
1:T ), where y(j)

1:T =
(ym

1:T
(j),yo

1:T ).

3. Repeat until convergence.

------------------------------------------------------
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2.7 Algorithms for Interpolation and Prediction

on Ungauged Sites

Our goal in this section is to interpolate the ozone concentrations at un-
gauged sites using the DLM and the simulated Markov chains of the model
parameters (see Section 2.6). In other words, suppose s1, . . . , su are u un-
gauged sites of interest within the region of Cluster 2 sites (excluding the
possibility of extrapolation), the objective is to draw samples from

p(ys
1:T |λ, σ2,x1:T , a1, a2,y1:T ),

where ys
1:T = (ys

1, . . . ,y
s
T ) : 1×T and ys

t denotes the unobserved square–root
of ozone concentrations at the ungauged site s and time t, for t = 1, . . . , T

and s ∈ {s1, . . . , su}. Let (αs
1t, α

s
2t) denote the unobserved state parameters

at site s and time t. The DLM is given by

yt
new = 1n+1

′βt + S1t(a1)α1t
new + S2t(a2)α2t

new + νt
new, (2.22)

where yt
new = (ys

t ,yt
′)′, αt

new = (αs
1t, α1t

′, αs
2t, α2t

′)′, and νt
new ∼ N(0,

σ2 exp(−Vnew/λ)).
In Section 2.7.1, we illustrate how to sample the unobserved state param-

eters {(αs
1t, α

s
2t) : t = 1, . . . , T} from the corresponding conditional posterior

distribution. Spatial interpolation at the ungauged site s is demonstrated
in Section 2.7.2.

2.7.1 Sampling the unobserved state parameters

We first sample αs
jt given αs

j,t−1, αjt and αj,t−1, j = 1, 2. From the state
equation (2.15) to αjt

new, we know that the joint density of αs
jt and αjt

follows a normal distribution, with covariance matrix σ2τ2
j exp(−Vnew/λj),

where Vnew denotes the distance matrix for the unobserved station and the
monitoring stations. The conditional posterior distribution,

p(αs
jt|αs

j,t−1, λ, σ2, βt, α1t, α2t, a1, a2,y1:T ),
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has been derived in Appendix A.4.

2.7.2 Spatial interpolation at ungauged sites

We interpolate the square–root of ozone concentration at ungauged sites
by conditioning on all the other parameters and observations at gauged
sites. Similarly as above, ys

t and yt are jointly normally distributed from
the observation equation. The predictive conditional distribution for ys

t , that
is, p(ys

t |αs
1t, α

s
2t, λ, σ2, βt, α1t, α2t, a1, a2,y1:T ), is given in Appendix A.4.
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Chapter 3

Dynamic Linear Modelling

and Its Spatial Interpolation

In Chapter 2, we illustrate the DLM settings for the Cluster 2 AQS database.
Furthermore, we show the explicit MCMC method to estimate the model
parameters and the predictive posterior distribution for the responses at
“ungauged sites”. Here we randomly select some monitoring stations in
the database and treat them as “ungauged” (i.e., unmonitoring) sites for
the purpose of model assessment. The theme of this chapter is the spa-
tial interpolation using the DLM approach at the Cluster 2 AQS database.
Section 3.1 revisits the Cluster 2 AIRS database. Section 3.2 shows the
results of MCMC. Section 3.3 demonstrates the spatial interpolation results
on the ozone study. Section 3.4 discusses the problems underlying the DLM
process. Section 3.5 provides the summary and conclusions about this ap-
plication of the univariate DLM.

We also develop a software, written in C and R (see Appendix B), partly
solving the computational burden due to the use of MCMC algorithm in the
DLM approach. This software, GDLM.1.0, had been successfully tested
in PIMS summer school (2007). It can also be downloaded freely from
http://enviro.stat.ubc.ca/dlm and the written DEMO can be directly used
to illustrate the DLM in Chapter 2.

3.1 Cluster 2 AQS Dataset (1995) Revisited

Because of the importance and spatio–temporal features, ozone concentra-
tions are of particular interest for this study. In this section, we revisit the
ozone levels in Cluster 2 AQS database and study it using a variant of the
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implementation of the DLM approach proposed by Huerta et al. (2004).
Within the range of Cluster 2 sites, six ungauged sites are randomly se-

lected from the available sites, that is, a non–null subset of the sites within
the range of but excluding the ten gauged ones in Cluster 2. The geograph-
ical locations of these six ungauged sites, represented by the alphabetic
letters, A, . . . , F, are shown in Figure 3.1.

Cluster 2 AQS Database (1995)

1

2

3
4

5

6

7

8

9

10

AB
C

D

E

F

Figure 3.1: Geographical locations for the ten gauged sites in Cluster 2 and the
randomly selected six ungauged sites. (Number = Cluster 2 sites and letter =
ungauged sites.)

In Section 2.5, we have illustrated the features of ozone concentrations
tabled in the AIRS database by means of an explanatory data analysis and
constructed the DLM based on these features. In Sections 2.6.1–2.6.4, we
have demonstrated the use of FFBS and MCMC methods in the model used
in our study. Statistical inferences and results are presented in the above
subsections, where we illustrate the MCMC sampling scheme to obtain the
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samples of model parameters.
For the initial values of the state parameters, hyperpriors and fixed model

parameters, we use settings by Huerta et al. (2004), after confirming their
suitability by preliminary investigation. We do a Markov chain simulation
study and discuss the results in Section 3.2. We then interpolate the square–
root of ozone concentrations at ungauged sites in Section 3.3. Issues faced
in using the DLM process are discussed in Section 3.4. These issues include
monitoring two Markov chain’s convergence, highly autocorrelated chains
for λ and σ2, and time–varying effect of λ–σ2 in the DLM. These problems
and possible solutions are summarized in Section 3.5.

3.2 Markov Chain Simulation Study

We do a Markov chain simulation study to draw samples of the DLM’s model
parameters from their posterior distributions to make inference based on
them.

Initial settings
As proposed by Huerta et al. (2004), we use the following initial settings for
the starting values, hyperpriors and fixed model parameters in the DLM:

• The hyperprior for λ is IG(1, 5) and IG(2, 0.01) for σ2. The expected
value of IG(1, 5) is ∞ as are both of the variances of p(λ) and p(σ2).
These vague priors for λ and σ2 are selected since we do not have any
prior knowledge about their distributions.

• Initially the state parameters x0, is assumed to be normally distributed
with mean vector m0 = (2.85,−0.751′n,−0.081′n)′ and covariance ma-
trix σ2

1C0, where σ2
1 ∼ IG(2, 0.01) and C0 is a block diagonal matrix

with diagonal entries 1, 0.011′n and 0.011′n.

• The hyperprior for a is a bivariate normal distribution with mean
vector µo = (2.5, 9.8)′ and a diagonal matrix Σo with diagonal entries
0.5 and 0.5.
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• The model parameters in the DLM are fixed as follows: τ2
y = 0.02,

τ2
1 = 0.0002, τ2

2 = 0.0004, λ1 = 25, and λ2 = 25.

We found our results to be fairly insensitive to changes in the values
for µo, Σo, λ1, and λ2. However, it is not true for τ2

y , τ2
1 , and τ2

2 . Further
discussion on settings for these values can be found in Section 4.4 below
Equation (4.24).

Monitoring the convergence of the Markov chains
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Figure 3.2: Traces of model parameters with the number of iterations of the
Markov chains. The model parameters are: (a) – λ, the range parameter; (b) –
σ2, the variance parameter; (c) – a1, the phase parameter with respect to the 24–
hour periodicity; and (d) – a2, the phase parameter with respect to the 12–hour
periodicity.

Figure 3.2 shows the trace plots of model parameters λ, σ2, a1 and a2

with the number of iterations of the simulated Markov chains where the total
number of iterations is 4, 268. The burn–in period is chosen to be 2, 269 and
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all the remaining Markov samples are collected for posterior inference. The
acceptance rate is approximately 62%. We observe that the Markov chain
converges after a run of less than five hundreds iterations.

Table 3.1 demonstrates the median and 95% quantile from the simulated
Markov chains for the model parameters λ, σ2, a1 and a2.

Quantile λ σ2 a1 a2

2.5% 69.29 1.19 2.42 9.77
Median 71.83 1.21 2.45 9.80
97.5% 75.37 1.24 2.48 9.84

Table 3.1: Posterior summaries for λ, σ2, a1, and a2.

3.3 Spatial Interpolation

Six ungauged sites are randomly selected from the available subset of sites
within the range of Cluster 2 sites. Their geographical locations are shown
in Figure 3.1. Our goal in this subsection is to assess the model’s perfor-
mance by comparing the interpolation values with the observations at these
ungauged sites, that is, A, . . . , F . All missing values at ungauged sites are
initially filled in by the spatial regression method. The MCMC method
allows us to obtain the posterior samples for the missing values from their
posterior distributions. We use the observed data at ungauged sites to assess
the performance of the interpolation results by the DLM.

Table 3.2 demonstrates the coverage probabilities at ungauged sites when
comparing them to the corresponding credible probabilities. These coverage
probabilities are calculated by counting the number of observed responses
falling into the predictive intervals constructed by the DLM. It shows differ-
ent levels of the predictive credibility intervals and the corresponding actual
coverage probability at each of the ungauged sites based on the spatial inter-
polation using the DLM approach. In general, the coverage probabilities at
ungauged sites are larger than the corresponding credible probability, which
indicates that the error bands of the interpolation are too wide. Among
these six ungauged sites, site D has the highest coverage probability at
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these nominal levels. This may be due to the fact that Ungauged Site D is
very close geographically to Gauged Site 1 in Cluster 2 sites. It validates
our assumption that the spatial correlation is large if the pairs of sites are
close together but small if they are far apart. However, these unsatisfac-
tory coverage probabilities imply the deficiency of the DLM, which we will
address in the following sections.

Nominal levels (%)
Observed coverage fraction (%)

A B C D E F

95.0 94.9 96.9 96.5 99.7 96.1 98.1
90.0 91.9 93.7 93.5 99.4 93.6 96.8
80.0 84.8 88.5 88.2 97.7 89.6 94.3
70.0 78.7 83.5 83.3 94.0 85.8 90.6
60.0 73.0 78.5 77.1 89.7 81.6 86.6
50.0 65.2 71.5 70.4 85.6 76.1 81.4
40.0 55.2 61.4 61.0 79.2 67.9 74.7
30.0 42.2 47.6 47.5 69.6 54.9 64.4

Table 3.2: Comparisons between the nominal levels and actual predictive credibil-
ity interval coverage at the ungauged sites A, . . . , F.

Figures 3.3–3.7 show the interpolation results at Ungauged Site D from
May 14 to September 11 in 1995, where the solid lines represent the pre-
dicted median of the responses, the dashed lines represent the 95% predictive
intervals for the predicted square–root of ozone concentrations and the solid
dots represent the observations at this “ungauged” site.
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Figure 3.3: Interpolation at Ungauged Site 4 from the 1st week to the 4th week.
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Figure 3.4: Interpolation at Ungauged Site 4 from the 5th week to the 8th week.
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Figure 3.5: Interpolation at Ungauged Site 4 from the 9th week to the 12th week.
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Figure 3.6: Interpolation at Ungauged Site 4 from the 13th week to the 16th week.
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Figure 3.7: Interpolation at Ungauged Site 4 from the 17th week to the 120th day.
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Table 3.2 demonstrates the coverage probabilities at each ungauged site
using the data for the selected summer. That table shows Ungauged Site D
having the largest coverage probability comparing to other ungauged sites.
An intuitively plausible explanation: these ungauged sites are close to some
gauged sites in Cluster 2 sites. To explore this possibility let us consider
“friends” of ungauged sites, any gauged sites in Cluster 2 within 100 kilo-
meters.

Table 3.3 shows the Global Circle Distance (GCD) and Pearson’s cor-
relations between these pairs of “friends”. As an example, the relationship
between Ungauged Site D and its “friend”, Gauged Site 1, is demonstrated
in Figure 3.8. From this figure, Ungauged Site D has a strong linear as-
sociation with Gauged Site 1. It explains that the coverage probability at
Ungauged Site D is always higher than the other sites.

Ungauged Site Friend(s) GCD (km) Pearson’s r
A 2 66.6 0.73
B 2 62.5 0.74
C 2 35.5 0.84
D 1 11.0 0.95
E 2 38.0 0.70
F (7, 8) (18.6, 44.9) (0.84, 0.82)

Table 3.3: Summary of pairs of “friends” for ungauged and gauged sites.

Overall, the DLM does not predict the responses at ungauged sites very
accurately. That points to problems hidden in this method and process
model to which we turn in the next section.

3.4 Problems in the DLM

There are a number of problems with the current DLM. We summarize
several critical issues in this section and give some suggestions about their

37



Chapter 3. Dynamic Linear Modelling and Its Spatial Interpolation

s
+s+s+

s

+

s
+

s
s

+
s

+s

+
s

+
s

s+

s
+s

+

s

+
s

s

+
s+

s
+

s +s + s
+

s +s+
s

+

s

+

s

+

s
s
+ s+

s

+

s
+

s
+s

+
s

+ s +
s+

s
+

s

+

ss
+

s
+s
+

s
+

s
+

s

+
s +s

+ s+

s
+

s

+s

s

+

s
+s

+

s

+

s

+
s

+s+s +s

+

s

+

s
+

s

s
+s

+s

+

s
+

s +s

+

s
+
s +
s

+s
+

s

+
s

s
+

s
+ s

+

s
+

s
+

s +
s

+

s
+

s

+

s
+ s

s
+

s

+
s +

s

+

+s
+s+ s+ s

+ s
+ss+

s+s+s+
s

+ s
+s

+s +

s
+

s
+

s

+

s
s+

s

+

s
+

s

+

s +
s

+ s

+s
+

s
+s + s

+s
s+s+s+

s +
s
+ +

s+s
+

s+s
+s +

s

s+
s+s+ s

+
s

+

s

+
s

+s+
s

+s
+

s +
s

s+s

+
s

+
s

+
s

+
s

+
s

+
s +s +

s

+

s

+

s

s
+

s+s+ s
+

s + s +s+

s +s+s
+

s
+

s
s+s

+

s
+

s

+

s
+

s
+

s
+ s +

s+
s

+

s

+s
s

+

s

+
s
+ s

+

s

+
s

+
s

+
s

+
s+

s

+
s

+
s
s+s+

s
+

s
+ s

+

s

+ s +

s
+s

+
s

+
s+

s
s

+
s+ s
+

s + s

+

s
+ s +

s+
s+s

+
s +

s

s+
s

+

s

+

s

+

s
+

s

+
s

+s+
s

+s
+

s
+

s

s+
s

+

s

+

s

+

s

+ s +s
+ s
+s
+ s

+

s

+

s

s+

s
+

s+

s

+

s

+

s+
s +s

+s +

s

+
s

+

s
s

+

s +

s

+ s

+

s

+
s

+

s

+

s

+ s
+s+

s

+

s
s

+
s

+

s +

s

+

s

+

s+ s

+

s
+

s
+

s
+

s

s

+s

+

s

+

s+ s
+

s

+

s+

s

+s +
s+

s
+

s +

s+

s

+s +

s
+

s

+s
+

s
+

s
+

s

+

s

s
+

s
+ s

+
s

+
s

+s+
s

+
s
+
s

+ s+

s
+

s
s+s

+
s

+

s

+

s
+

s
+

s +s +s
+

s

+

s

+
s s

+

s+
s +

s

+
s

+

s
+

s+s+s
+

s

+

s
+

s

s

+
s

+
s
+

s

+

s

+

s
+

+

s
+

s

+

s

+

s
+s

s +

s+
s+

s

+

s

+s + s
+s

+
s

+
s

+

s

+
s

s+
s+s

+
s+

s

+

s
+ s+ s

+
s+

s

+

s

+
s

s
+s

+ s
+

s

+

s

+

s
+

s
+s

+s
+

s

+

s

+

s

s
+
s

+
s

+

s

+

s

+

s
+

s
+

s+
s

+
s

+

s

+

s

s +

s
+
s

+
s

+

s

+

s

+
s

+
s+

s+
s

+s

+

s

s
+s

+

s+ s
+s

+

s

+
s

+
s

+

s

+

s

+

s

+

s

s +
s+

s +s+
s

+

s+s

+ s

+s
+

s

+

s s
+

s
+

s
+

s

+

s

+
s

+
s
+

s+
s

+

s

+

s
s

+

s+

s
+

s

+

s

+

s +

s
+s

+

s

+

s

+

s
+

s s

+

s
+

s

+

s

+

s

+

s

+ s
+ s+

s
+

s +

s
+ s

s

+

s
+

s +

s

+
s

+s
+

s+s+

s

+
s

+

s
+

s

s

+
s
+s

+
s

+

s

+ s
+ s+s+ s

+
s

+s
+
s

s +
s

+
s +

s
+

s

+
s

+

s+ s+
s+

s

+s
+

s
s+

s
+s+

s
+

s

+
s+s
+ s

+s+
s

+
ss

+s
+

s+
s +

s
+

s
+
s+ s

+
s

+

s

+

s
+

s

s

+

s+

s

+

s

+
s

+
s

+

s +s +s+
s

+s

+ s

s +
s +s+s+

s
+

s
+
s+s+s+s+

s

+

s
s

+
s+

s+

s

+
s

+

s

+ s +s
+ s
+

s

+

s

+

s

s
+s+

s

+
s

+

s
+ s+

s
+

s
+

s+

s
+

s
+

s
s

+
s

+
s+s+s +

s +
s

+ s+
s

+ s
+ s
+s

s

+
s

+

s

+
s +s
+s

+s + s+
s+

s
+

s +
s s+

s+s
+

s + s +
s

+
s

+
s+s

+
s

+
s

+

s

s
+s

+
s+ s

+

s

+

s

+
s +
s

+

s

+

s

+

s

s
+

s

+ s

+

s

+ s

+

s

+
s

+s
+s

+

s

+

s

+
s

s

+
s

+

s

+
s

+

s

+

s

+ s+
s+

s

+

s

+

s
+

s

s

+

s

+
s

+

s

+

s
+ s

+s+s

+
s+s

+

s

s
+

s

+s +

s

+

s

+

s +
s +s +

s
+

s+

s

+

s

s
+

s

+ s
+

s

+

s+

s+ s+s + s+
s

+

s

+

s

s

+

s+s

+

s

+

s
+

s
+ s+

s+
s

+

s

+

s

+s

s

+ s

+

s+

s

+

s

+

s

+

s
+s +

s

+

s

+s

+

s s+

s
+

s

+

s

+

s

+ s

+

s

+ s

+

s
+

s

+
s

+

s

s

+

s

+ s

+

s

+

s

+

s+
s + s

+ s

+

s

+
s

+s

s

+

s
+

s
+

s

+

s

+
s

+

s

+s
+s

+

s

+

s

+

s

s

+s+

s

+

s
+

s

+
s +s+
s +

s
+

s

+

s

+

s

s
+

s

+

s

+

s

+

s

+
s +s+s+ s

+

s

+

s

+

s

s

+s
+
s

+

s

+

s

+
s

+ s+
s

+

s
+

s
+ s

s+
s

+

s
+

s

+

s

+

s

+
s

+s+

s

+

s
+

s

s

+

s

+

s

+

s
+

s

+
s

+s+ s
+s+

s

+

s+
s

s
+

s

+

s
+s

+
s

+

s
+

s
+

s

+
s

+s +
s

+
ss+

s
+

s
+

s

+
s

+

s

+
s

+ s
+

s+
s

+

s

+

s

s +s+

s

+

s+
s

+
s

+s
+ s+

s +
s

+

s

+
s

s
+

s

+ s
+

s +
s

+

s
+ s

+
s+

s
+ s

+

s
+

s

s

+
s

+
s

+

s

+

s

+

s

+

s+

s

+
s

+

s

+

s
+

s
s

+ s

+

s
+

s

+

s +
s

+
s

+ s
+

s+

s

+
s

+

s

s
+

s+
s

+

s

+

s
+

s
+ s+ s +

s
+

s

+

s

+

s

s+s+
s + s +

s

+s
+s

+s+
s

+

s
+s

+s

s
+s+

s+
s

+

s

+

s
+

s

+s

+

s

+

s

+
s

+ s

s

+
s

+s+ s

+

s

+
s

+s

+
s

+s

+
s

+

s

+
s

s
+

s

+

s
+

s
+

s

+

s

+

s
+

s
+s

+
s

+

s

+

s
s +s

+
s+ s

+

s+
s

+s

+

s

+ s
+

s
+

s
+

s

s
+

s + s+s +
s

+
s +

s
+
s+

s
+ s +

s

+
s

s

+

s

+ s +
s

+ s+ s +
s +s

+
s+s

+s+ s

s
+

s
+

s
+

s

+

s

+
s

+s+
s

+

s

+

s
+

s
+ s

s
+

s+s +
s

+ s
+

s

+ s
+s+

s+
s

+
s

s
+

s

+s
+

s
+

s

+

s
+

s

+

s +s
+

s

+

s

+ s

s

+s

+

s

+

s
+

s

s

+
+

s

+s

+

s

+
s

+
s

s
+

s

+
s

+

s

+
s

+

s
+

s

+
s

+

s

+

s

+

s
s

+s

+

s
+

s

+

s

+

s
+

s

+
s +s

+

s

+

s

+

ss

+s
+

s+

s

+

s

+

s
+

s +s+
s

+

s

+

s

+

s

s+s
+

s+

s

+

s

+
s

+
s+

s+
s

+

s

+

s

+ s

s

+

s
+

s

+

s

+

s

+

s+ s + s+s
+

s

+

s

+s

s

+

s

+
s

+

s

+

s +
s

+

s

+

s

+
s

s
+
s

+
s+

s

+

s

+

s

s+ s

+

s

+

s

+ s
s

+

s

+s

+
s

+

s

+s
+

s
+

s

+

s

+

s

+

s

s
+s+
s

+

s

+

s

+
s+s

+s

+s

+

s

+

s

+s

s

+s+s+s +

s

+

s

+

s
+

s
+

s

+
s+

s +

s

s

+s
+ s +

s

+

s
+

s

+s+ s+s+s
+

s
+

s
s

+

s

+
s

+

s + s

+

s

+

s
+

s+s

+

s+
s+

ss
+s

+
s

+ s

+

s

+
s +
s

+ s+s
+s

+
s

+
s

s+
s+

s
+

s
+

s

s

+ s
+

s
+s+

s

+
s
+s

s
+

s
+s

+

s

+
s

+
s

+

s

+

s
+s

+
s

+

s
+

s

s

+
s

+

s+

s

+

s

+
s

+s
+

s
+
s

+

s

+
s

s+
s

+
s

+s

+

s

+

s

+
s +s+

s

+
s+

s

+

s

s+
s+

s
+

s +

s

+
s +

s+
s + s

+

s

+s

+

s

s
+
s

+s

+s

+

s

+

s

+s
+

s
+s

+

s

+

s

+
s

s

+s+

s
+s

+

s

+

s

+
s+

s+
s

+

s

+

s

+

s
s

+

s
+s+ s

+

s

+

s

+s
+

s
+

s

+

s

+

s

+
s

s

+

s
+
s
+

s

+

s

+

s +s+s+
s

+

s

+

s
+s

s

+
s

+
s

+

s
+

s

+

s

+
s+s

+s+s

+

s

+

s
s

+

s

+s
+ s

+

s

+

s

+
s

+
s

+s
+

s

+

s
+

s
s

+

s
+s

+

s

+

s

+
s +s

+ s
+
s+

s

+

s

+s

s
+ s

+
s

+

s

+

s

+
s +

s+
s+s

+

s

+

s

+

s

s

+
s

+
s+

s

+

s

+

s

+
s

+s

+

s

+

s

+

s

s

+
s

+

s

+ s

+

s

+

s
+s+

s +

s

+
s

+

s

+
s

s

+
s

+s

+s

+

s

+

s
+

s+
s

+
s

+

s

+

s

+
s

s

+
s

+
s

+s

+

s
+

s

+

s
+

s

+
s

+
s
s

+
s
+

s
+

s +

s

+
s+

s +

s

+s
+

s +

s +
ss

+
s

+
s

+s
+

s

+

s

+

s

+ s+
s+s

+
s

+
s

s+s
+

s+s
+s

+

s

+

s
+

s
+s

+

s

+
s+

s

s

+s +

s
+

s
+

s

+

s

+

0 2 4 6 8 10

0
2

4
6

8
10

Gauged Site 1

U
ng

au
ge

d 
S

ite
 D

s
+

Gauged Site 1
Ungauged Site D

Figure 3.8: Scatterplot for the square–root of hourly ozone concentrations at
Ungauged Site D and its nearly neighbour, Gauged Site 1.

resolution in the next section.

Monitoring two Markov chains’ convergence

Figure 3.9 represents the trace plots of model parameters λ, σ2, a1, and
a2 of two chains from the initial settings in Section 3.2. These two chains
seem to mix well after several hundred iterations. It suggests the Markov
chains have converged.

Autocorrelation and partial autocorrelation of the Markov chains

However, we know that the autocorrelation function (ACF) is very im-
portant when considering the length of the chain needed to ensure the esti-
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Figure 3.9: Traces of model parameters with number of iterations of the two
Markov chains. The model parameters are: (a) −λ, the range parameter; (b)
−σ2, the variance parameter; (c) −a1, the phase parameter with respect to the
24−hour periodicity; and (d) −a2, the phase parameter with respect to the 12−hour
periodicity.

mates having the required accuracy. In other words, a highly autocorrelated
chain has to run for a long time to obtain sufficiently accurate estimates.
The partial autocorrelation function (PACF) is important in assessing the
Markov chain since a large value of the PACF at lag h indicates that the
next value in the chain is dependent not only on the immediate past but
also on the distant past.

Figure 3.10 shows the histogram as well as the ACF and PACF for the
Markov chains used in Section 3.3, after a burn–in period of 1, 000. Its ACF
plots show the λs to be highly autocorrelated. It indicates that the chain
for λ is not mixing very well, which leads to the biased estimates in Section
3.3. A possible way to reduce the autocorrelation between these λs is to
thin the Markov chain. That is, we could use every kth (k > 1, k ∈ Z+) λ
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generated by the chain to give the estimates. However, due to the unduly
large computational cost for thinning the Markov chain, we are forced to
use the whole chain for estimation and interpolation.
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Figure 3.10: Histogram (left panel), ACF (middle panel) and PACF (right panel)
of model parameters of the Markov chains after a burn–in period of 1, 000 iterations.
The model parameters are: (i) first row: – λ, the range parameter; (ii) second row:
– σ2, the variance parameter; (iii) third row: – a1, the phase parameter with respect
to the 24–hour periodicity; and (iv) last row: – a2, the phase parameter with respect
to the 12–hour periodicity.

Relationship between the pairs of λ, σ2, a1 and a2

The DLM assumes that priors of model parameters λ, σ2, a1, and a2 are
mutually uncorrelated. Figure 3.11 shows the relationship between the pairs
of these parameters and specially, a weak linear association between λ and
σ2. It indicates that λ and σ2 are actually dependent, given the observed
responses.
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Figure 3.11: Scatterplots for model parameters’ pairs: (a) λ v.s. σ2; (b) λ v.s. a1;
(c) λ v.s. a2; (d) σ2 v.s. a1; (e) σ2 v.s. a2; and (f) a1 v.s. a2.

Time varying effect of λ–σ2: coverage probabilities versus cred-

ible probabilities

It’s natural to ask whether these λs and σ2s generated from the MCMC
method are constant over all the time points, an assumption in Huerta et
al.’s DLM. In other words, we want to answer questions such as: (1) Which
data and time points used in the DLM might produce different estimation
and interpolation result? (2) Are λ and σ2 varying from time–to–time?

To help answer these questions, we design the following three simulation
studies:

(i) Study A : Implement the DLM at ungauged sites using weekly data
(Wk : k = 1, . . . , 17). Obtain the Markov chains of λ, σ2, a1 and a2.
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Also obtain the coverage probability at each ungauged site and each
week for fixed nominal levels.

(ii) Study B : Implement the DLM at ungauged sites using all the data
from week 1 to week 17 (W1:17 = {W1, . . . , W17}). Estimate the model
parameters and interpolate responses at ungauged sites. Furthermore,
obtain the coverage probabilities at each ungauged site and each week
for fixed nominal levels, using each week’s data.

(iii) Study C : Fix λ∗k at week k (k = 1, . . . , 17) using the Markov chains
obtained in Study A. Then use these λ∗ = {λ∗1, . . . , λ∗17} in the DLM.
In other words, we go through all the steps in the algorithm of Section
2.6.5 except that we use the fixed λ∗ instead of generating it by a
Metropolis–Hasting step. Note that we only need Gibbs sampling
and MCMC blocking scheme for this study. We then compute the
corresponding coverage probabilities using W1:17 at each ungauged site
and each week for fixed nominal levels.

The objective of Studies A and B is to demonstrate the effect of data
and time propagation on the interpolation results. Study C aims to tell us
there is a significant difference between the interpolation results obtained
using the fixed λ∗ and those from using the Markov samples of λs. Table
3.4 shows these fixed λ∗s in Study C.

Week 1 2 3 4 5 6 7 8 9
λ∗ 54.2 178.5 83.7 405.4 86.6 59.7 199.3 144.1 322.7
Week 10 11 12 13 14 15 16 17
λ∗ 142.2 172.7 187.9 315.8 419.0 99.8 260.3 284.8

Table 3.4: Fixed λ∗ in Study C.

Figure 3.12 illustrates the MCMC estimation results for Study A. It plots
the Markov chains for λ and σ2 using weekly data. Obviously, λ and σ2 vary
from week to week, implying that the constant λ− σ2 model is not tenable
over a whole summer for this database.

Figures 3.13–3.19 represent the coverage probabilities of the interpola-
tion results from these three studies. The solid line with dots represents
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Figure 3.12: Scatterplot for λ against σ2 given one–week–data only, constructed
from MCMC samples starting from same initial values.

the results in Study A, the dot line with solid diamond for Study B, and
the dashed line with stars, Study C. The interpolation results for Study
B and C are very similar from these figures. In other words, using these
fixed λ∗s in Table 3.4 gives us similar interpolation results as treating it to
be model parameter in the standard DLM setting, pointing to a drawback
with the current DLM. In fact, in some cases Study C even produces better
interpolation results than Study B.

The results from Study A show that, as time increases, the interpolation
results become, anomalously, more uncertain with the coverage probabilities
getting larger and larger. We can interpret this as the model trying to
incorporate the constant λ and σ2 over all the time points while they actually
vary with time.

Comparing these studies, sometimes the DLM gives better interpolation
results when using only one week’s worth of data. In any case the current
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model assumption of constant λ and σ2 is not valid in practice. Further
development of the DLM is required to incorporate time–varying model
parameters.
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Figure 3.13: Coverage probabilities v.s. 95% nominal level for ungauged sites: (a)
– site A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F. These
coverage probabilities are computed according to Study A: weekly data (dot with
solid line); Study B: W1:17 (square with dot line); and Study C: W1:17 but with fixed
λ∗ (star with dashed line).

3.5 Summary and Conclusion

We have implemented the DLM on Cluster 2 sites (AQS, 1995). Further-
more, we have applied a variant of Huerta et al.’s (2004) DLM and MCMC
method on this database for a whole summer (whereas they considered a
single week). We find deficiencies in their MCMC method which actually
uses a biased estimate of λ. In practice, their model assumption of a con-
stant λ–σ2 seems inappropriate. Moreover, preliminary studies tell us the
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Figure 3.14: Coverage probability versus 90% nominal level for ungauged sites:
(a) – site A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F.
These coverage probabilities are computed according to Study A: weekly data (dot
with solid line); Study B: W1:17 (square with dot line); and Study C: W1:17 but with
fixed λ∗ (star with dashed line).

sensitive choice for the values of τ2
y , τ2

1 , and τ2
2 , indicating the inappropri-

ate setting for these parameters to be “constant” in their model. Finally
the computational cost is of concern: that cost deriving from the use of
the FFBS method used in this chapter. The software for implementing the
DLM, GDLM.1.0, has been summarized in Appendix B.

One way to tackle the interesting problem of setting τ2
y , τ2

1 , and τ2
2 is

by setting appropriate discount factors in the discount DLM. However, we
are not recommending using the composite Metropolis–Hasting algorithm
to obtain the samples for γ = (λ, τ2

y , τ2
1 , λ1, τ

2
2 , λ2) from their joint posterior

distribution. The reason is obvious that the computational cost is huge
and it is very difficult for the Markov chains to reach its convergence after
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Figure 3.15: Coverage probability versus 80% nominal level for ungauged sites:
(a) – site A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F.
These coverage probabilities are computed according to Study A: weekly data (dot
with solid line); Study B: W1:17 (square with dot line); and Study C: W1:17 but with
fixed λ∗ (star with dashed line).

certain iterations. We find the relationship between the discount factors and
the model parameters: τ2

y , τ2
1 , and τ2

2 by a first–order polynomial dynamic
model in Section 4.4.

To deal with the time–varying λ and σ2 in the current version of the
DLM, we might be able to use the discount DLM where the discount factor
varies from time to time. However, this even exemplify the computational
burden and so will not be recommended here. Instead of the DLM, we
now propose the Le–Zidek style modelling approach (also called as BSP
approach) in the next two chapters to deal with the spatial interpolation and
temporal prediction in spatial–temporal fields (Le & Zidek, 1992–2006).
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Figure 3.16: Coverage probability versus 70% nominal level for ungauged sites:
(a) – site A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F.
These coverage probabilities are computed according to Study A: weekly data (dot
with solid line); Study B: W1:17 (square with dot line); and Study C: W1:17 but with
fixed λ∗ (star with dashed line).
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Figure 3.17: Coverage probability versus 60% nominal level for ungauged sites:
(a) – site A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F.
These coverage probabilities are computed according to Study A: weekly data (dot
with solid line); Study B: W1:17 ( square with dot line); and Study C: W1:17 but
with fixed λ∗ (star with dashed line).
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Figure 3.18: Coverage probability versus 50% nominal level for ungauged sites:
(a) – site A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F.
These coverage probabilities are computed according to Study A: weekly data (dot
with solid line); Study B: W1:17 (square with dot line); and Study C: W1:17 but with
fixed λ∗ (star with dashed line).
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Figure 3.19: Coverage probability versus 40% nominal level for ungauged sites:
(a) – site A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F.
These coverage probabilities are computed according to Study A: weekly data (dot
with solid line); Study B: W1:17 (square with dot line); and Study C: W1:17 but with
fixed λ∗ (star with dashed line).
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Chapter 4

Multivariate Bayesian

Spatial Prediction and Its

Spatial Interpolation

Many approaches other than the univariate DLM (Chapter 2) have been
developed to model space–time fields. Although the DLM provides a very
flexible approach, it can have poor predictive performance. Moreover, this
approach costs a lot of computation time and becomes impractical for large
geographical subregions, for instance, for the 274 sites in the US EPA AQS
database (1995). To overcome these difficulties, an alternative Bayesian
hierarchical modelling approach, multivariate Bayesian spatial prediction
(BSP), will be presented and its performance compared with that of the
DLM.

This BSP approach appears in a series of papers, originating with Le
and Zidek (1992). Section 4.1 presents that approach, its motivation, and
some recent applications. Section 4.2 describes the Chicago area’s hourly
ozone (O3) AQS database (2000) in this study. Section 4.3 introduces related
theoretical results for the multivariate BSP approach (Le & Zidek, 2006).
The multivariate BSP approach is then applied for spatial interpolation in
the Chicago area’s hourly ozone AQS database in Section 4.4. In Section
4.4, two other approaches, the DLM and NAIVE, are implemented for the
same purposes to give comparative assessment of the performance of the
various predictors. Sections 4.6 summarizes our conclusions about them.
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4.1 Introduction

Alternatives to the DLM have been investigated in recent years for finding
the characteristics of the mean surface of spatio–temporal processes or inter-
polating them at unmonitored (ungauged) sites within specified geograph-
ical subregions. Like the DLM they can deal with nonstationary processes
as described in Chapter 2. In particular, the multivariate Bayesian spatial
prediction (BSP) approach presented in this chapter handles nonstationary
processes, using the deformation approach (Sampson & Guttorp, 1992).

The DLM treats the processes as spatially correlated time series, that
is, parallel time series for a spatial process. Other approaches such as the
linear model of coregionalization (LMC) method also treat data as spatially
correlated time series (Gelfand et al., 2005). In contrast, the multivariate
BSP treats the data as a collection of the temporally correlated spatial
processes (Kyriakidis & Journel, 1999). Related work about the multivariate
BSP can be seen in Le and Zidek (1992), Brown et al. (1994a, 1994b), Sun
et al. (1998), Li et al. (1999), Le et al. (1997, 2001), Zidek et al. (2002),
and Le and Zidek (2006).

This chapter addresses spatial interpolation in space–time fields of hourly
ozone concentrations. The multivariate BSP is implemented in the Chicago
area throughout the whole summer of 2000. Within this geographical region,
hourly ozone concentrations are measured at 24 monitoring sites through
that time span. For comparison, the DLM method (see Chapter 2) is also
applied to this database.

The large geographical scale of the interpolation problem across the USA,
can be handled fairly well by the multivariate BSP. Unlike what was done in
Chapter 2 for the DLM, the BSP approach used in this chapter has a multi-
variate rather than univariate framework, although the response variable is
the square–root of hourly ozone concentrations, the square–root being taken
to validate the normality assumption stated in Chapter 2. We have two rea-
sons for choosing the multivariate setting: (1) to increase precision in spatial
interpolation and temporal prediction; and (2) to provide a way to reduce
the spatial correlation leakage problem arising in the univariate case. In fact,
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more accurate results can be obtained even for marginal inference based on
the joint distribution model for all of the responses rather than using only
a marginal distribution model, due to the greater uncertainty involved in
the latter. In other words, the multivariate approach allows interpolators
and predictors to “borrow strength” not only from close–by monitoring sta-
tions but also from chemical correlates (Le & Zidek, 2006, p.161). At the
same time, a potential spatial correlation leakage problem, which occurs for
whitened residuals (see Section 4.3) that have a nonnegligible lag 1 spatial
correlation between two sites, can be side–stepped. That leakage problem
seems to have been first observed by Zidek et al. (2002) while interpolating
hourly PM10 concentrations in the Vancouver area. Though not precisely
defined, the leakage happens if the cross–covariance of space and time is not
negligible in the whitened residuals due for example to a failure to correctly
model autocorrelation at fine temporal scales (Zidek et al., 2002). In fact,
it actually provides a criterion for selecting the appropriate response vector
dimension in our approach. Section 4.4 discusses appropriate initial settings
for the multivariate BSP to interpolate hourly ozone concentrations. The
advantages of using the multivariate approach have been described by Le
and Zidek (2006), and will be reviewed in Section 4.6.

The temporal prediction problem does not at first glance seem to be
embraced by the current multivariate BSP approach. The challenge arises
because the multivariate response variable used in this case has to be a 24–
dimensional response vector, in order to estimate the hyperscale covariance
matrix among these 24 “pollutants”, in reality hours, with a separability
assumption on the covariance structure. Using the whole database is not
appropriate because it invalidates the independence assumption on the re-
sponse vectors needed. However, using a part of the database leads to a
choice for the covariates, although further work on the temporal predictor
has to be done. Resolutions of some above issues and theoretical results for
temporal predictive distributions are presented in Section 5.1.

To assess the multivariate BSP model’s performances, two other alterna-
tive approaches, the DLM and NAIVE (NAIVE∗), are proposed for spatial
interpolation (temporal prediction) of the Chicago area’s hourly ozone con-
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centration’s field. These three models’ performances are then compared in
Section 4.4 (Sections 5.2–5.3) for the BSP, DLM and NAIVE (NAIVE∗),
respectively.

Computational efficiency is one major advantage of the multivariate
BSP approach. The software, EnviRo.stat, can be freely downloaded from
http://enviro.stat.ubc.ca/. Sections 4.6 and 5.5 summarize our conclusions
about the implementation of this approach.

The next section describes characteristics of the Chicago area’s hourly
ozone field.

4.2 AQS Ozone Database (2000) for the Chicago

Area

The database used in this chapter originally comes from the AQS ozone
database (2000) by EPA. The hourly ground–level ozone concentrations (in
ppb) for the whole summer in the Chicago area are extracted from that
database. The extracted database contains 24 monitoring stations at irreg-
ularly geographical locations in this area, hourly ozone concentrations being
measured at each of them. The joint spatial and temporal dependence of
the hourly ozone levels are then modelled as a spatio–temporal process in
the spatio–temporal field over the Chicago area.

To facilitate the assessment of the model’s performance for interpolation
and prediction, 14 sites are selected as “gauged” sites from 24 monitoring
stations, the remaining 10 being taken to be ungauged sites. Figure 4.1
represents the geographical locations of these 14 gauged and 10 ungauged
sites. Each has a few missing values but the gauged sites have many fewer
zero measurements during the overall time span than most of the ungauged
sites, thus providing much more information for this spatio–temporal field
(see Figure 4.2).

Figure 4.3 shows a side–by–side boxplot of the square–root of hourly
ozone concentrations at each one of the 24 monitoring stations across all
the time points. It shows that Gauged Site 3 behaves differently because
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Figure 4.1: Geographical locations for the Chicago AQS database (2000), where
the latitude and longitude are measured in degrees. (◦ = G = gauged sites and ×
= UG = ungauged sites.)

of its deviation from the median for all sites and times. Figure 4.1 shows
that gauged site to be near the Michigan River. However, it is unknown if
the difference of the observed responses at Gauged Site 3 from the rest are
due to the influence of that river or because other sites are also close to it,
for example, Gauged Sites 1 and 10. One might expect that any model not
taking account of this difference could lead to a poor model fit. This chapter
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Figure 4.2: Boxplots for the rates of: (a) missing measurements; and (b) zero
measurements, at 24 monitoring stations in the Chicago AQS database. (G =
gauged sites and UG = ungauged sites.)

will examine this issue later when comparing interpolation (see Section 4.4)
and prediction (see Section 5) of ozone concentrations’ field using three
different approaches: the multivariate BSP, DLM and NAIVE (NAIVE∗).

To explore this database further, weekday and hourly effects are exam-
ined in Figures 4.4 and 4.5, respectively, using a simple regression method.
The latter are approximately constant over all gauged sites; in particular,
the variability of the hourly effects from 0 A.M. to 10 A.M. is slightly larger
than that of the remaining hours after 10 A.M., indicating the relatively
strong constant hourly effects from 10 A.M. to 11 P.M. The weekday ef-
fects in Figure 4.4 also indicate constant weekday effects across all gauged
sites. The above exploratory data analysis (EDA) suggests modelling con-
stant weekday and hourly effects across all gauged sites. Constant weekday
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Figure 4.3: Boxplots for the square–root of hourly ozone concentrations (
√

ppb) at
24 monitoring stations in the Chicago AQS database. (G1 = Gauged Site 1; UG1
= Ungauged Site 1; and so on.)

and hourly effects point to constant effects for appropriate covariates in the
multivariate BSP approach. Next, the corresponding model settings and
methodology for the multivariate BSP is discussed in the context of the
Chicago area’s hourly ozone concentrations’ field.

4.3 Methodology

The multivariate BSP approach puts no restriction at level one of its un-
derlying hierarchical model structure on the covariance structure in the
spatio–temporal field. Instead, the covariance function is modelled by the
generalized–inverted Wishart (GIW) (Le & Zidek 1992; 2006) distribution.
That approach takes account of uncertainties about the K–step staircase
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Figure 4.4: The weekday effect of the square–root of hourly ozone concentrations
(
√

ppb) at the 14 gauged sites in the Chicago AQS database.

pattern data by allowing different degrees of freedom for different “steps”
in the data array, and allows a nonstationary covariance structure in the
field. In this approach, spatio–temporal multivariate responses are treated
as a collection of temporally correlated spatial fields at a finite number of
time points, instead of a collection of spatially correlated time series at a
finite number of monitoring stations in the DLM approach (Kyriakidis &
Journel, 1999). The multivariate BSP models spatio–temporal responses at
two levels: at the first, the spatio–temporal random function in this field is
supposed to follow a Gaussian process with the mean function depending
on the covariates as well as the corresponding coefficient matrix β, and co-
variance function Σ; at the second, the coefficient matrix β is modelled as
a random matrix, following a Gaussian process with covariance function Σ,

having a GIW distribution. The residuals after the first level of modelling
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Figure 4.5: The hourly effect of the square–root of hourly ozone concentrations
(
√

ppb) at the 14 gauged sites in the Chicago AQS database.

are called as detrended residuals, and those after the second level are called
as deAR’d residuals (Zidek et al., 2002).

The multivariate BSP approach uses an autoregressive temporal struc-
ture to incorporate short–term autocorrelations and a nonstationary spatial
covariance structure to deal with the nonstationary temporal–spatio pro-
cesses. In particular, 2–hour–block response vectors are selected in Chicago’s
hourly ozone field (Section 4.2) to reduce the loss of spatial correlation leak-
age between the sites and allow prediction at the given hour borrowing
strength from its neighbour.

Le and Zidek (2006) and Le et al. (1997) present theoretical results on
the multivariate BSP model, but only the results related to the work done
in this section are summarized here. Specifically, the data patterns of the
multivariate BSP, that is, the systematic missing data patterns, are intro-
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duced. Also it is demonstrated in the fully hierarchical Bayesian framework
about the multivariate BSP model, as well as the conditional posterior dis-
tribution of the unobserved response variables at ungauged sites and the
procedure for the hyperparameters estimation. Finally, this section presents
the posterior predictive credibility ellipsoids of the unobserved responses at
ungauged sites to assess the BSP’s model performance (Sun et al., 1998; Le
& Zidek, 2006, p.181–183). The package, EnviRo.stat, is used in this sec-
tion (http://enviro.stat.ubc.ca). The results can be reproduced using that
software since it is freely available.

Model specification

The multivariate BSP approach addresses two types of missing data pat-
terns: monotone missing (i.e., staircase pattern) and systematically missing
(Le et al., 1997); only the former is relevant here. The monotone missing
pattern occurs when the multivariate responses are measured at different
sites that start at different times. In this case, the sites can be rearranged
in such a way that the data array exhibits a monotone increasing pattern
over time (say a K–step staircase pattern, for K = 1, 2, . . .). Within each
block of the monotone missing or staircase pattern, the multivariate random
vector of responses are measured from the same starting time.

Le and Zidek (2006) provide a theory that handles such data. In our
application, K = 1 in the Chicago’s hourly ozone field because the response
variables are measured from the same starting time across all gauged sites.
[Note: at each gauged site, the small number of missing measurements are
imputed by the spatial regression method before implementing the multi-
variate BSP to interpolate the hourly ozone in the field. Unlike the DLM,
we can obtain posterior samples for the missingness by treating them as
additional parameters. Imputing the missingness by the MCMC samples
might take more computational time, however.]

In this spatio–temporal field, let n denote the total number of time
points, p, the total number of pollutants or species measured at each station,
g, the total number of gauged sites and u, the total number of ungauged
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sites. Denote the response variable at time t and gauged site gj by

Y[gj ]
t = (Y [gj ]

t,1 , . . . , Y
[gj ]
t,p ) : 1× p,

and the response variable at time t and ungauged site ui by

Y[ui]
t = (Y [ui]

t,1 , . . . , Y
[ui]
t,p ) : 1× p,

for t = 1, . . . , n, j = 1, . . . , g, and i = 1, . . . , u. At time t, the responses at
gauged sites are coordinates of the random response vector Y[g]

t = (Y[g1]
t , . . . ,

Y[gg ]
t ) : 1 × gp and at ungauged sites, Y[u]

t = (Y[u1]
t , . . . ,Y[uu]

t ) : 1 × up.

The combined random response vector at time t can be written as Yt =
(Y[u]

t ,Y[g]
t ) : 1 × (u + g)p. Consequently, the matrix variate response Y is

given by (Y1
′, . . . ,Yn

′)′ : n× (u+ g)p. Notice that Y can also be written as
(Y[u],Y[g]), where Y[u] = (Y[u]

1

′
, . . . ,Y[u]

n
′
)′, the unobserved response vari-

ables at ungauged sites, and Y[g] = (Y[g]
1

′
, . . . ,Y[g]

n
′
)′, the observed response

variables at gauged sites. Let Z : n× h be the covariates matrix, where the
total number of covariates is h. Assume that the covariates are the same
across all the sites at any fixed time point. Suppose β : h × (u + g)p is
the coefficient matrix of Z. Assume common covariates effects across all the
sites in the multivariate BSP.

The multivariate BSP model is given by

Y|β,Σ ∼ N(Zβ, In ⊗Σ)2 (4.1)

β|Σ, β0 ∼ N(β0,F−1 ⊗Σ) (4.2)

Σ ∼ GIW (Θ, δ), (4.3)

where the covariance structure Σ : (u+g)p×(u+g)p is positive definite and
follows the generalized Inverted Wishart (GIW) distribution (Le & Zidek,
2006, p.158; Brown et al., 1992; Le et al., 1997; Sun et al., 1997; Le & Zidek,
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1992).
The GIW distribution is defined recursively for the covariance function

Σ, having the K–block structure (Brown et al., 1994; Le & Zidek, 2006,
p.300). The GIW can be reparameterized by the Bartlett transformation
(Le & Zidek, 2006, p.302). In particular, for the case of K = 1, the GIW
distributed Σ in (4.3) is equivalent to (Γ[u], τ [u],Γ1), such that

τ [u]|Γ[u] ∼ N(τ [u]
0 ,H[u] ⊗ Γ[u]) (4.4)

Γ[u] ∼ IWup(δ[u],Λ[u] ⊗Ω) (4.5)

Γ1 ∼ IWgp(δ1,Λ1 ⊗Ω), (4.6)

where IW represents the inverted Wishart distribution. Equations (4.4)–
(4.6) imply that τ

[u]
0 = Φ−1

gg Φgu, H[u] = Φ−1
gg , δ[u] = δ, Λ[u] ⊗ Ω = Φu|g,

Γ1 = Σgg, Λ1⊗Ω = Φgg, and δ1 = δ− up by the properties and definitions
of the IW and GIW (Le & Zidek, 2006, p.299–301). Let H = {Θ, δ,F, β0},
Θ = {τ [u]

0 ,H[u],Λ[u],Ω,Λ1}, and δ = {δ[u], δ1}. Hence, δ[u] = δ1 + up.

Note that sine or cose functions (show in the DLM model before rep-
resenting the periodicities in spatial–temporal data) can be included in Z,
common over sites. While working with BSP, we can actually incorpo-
rate more general structure with more flexible than only using sine or cose.
Moreover, we will have affordable number of parameters. To deal with the
site–specific covariates, we can do it in two ways: (1) dealing it in the pre–
filtering stage; or (2) treating it as a random process, and then conditioning
on that response.

Given the multivariate BSP model in (4.1)–(4.3), the predictive posterior
distribution of the unobserved responses at ungauged sites and the hyper-
parameter estimates at the gauged and ungauged sites are given briefly in

2⊗ represents the Kronecker product between two matrices such that

Ap×q ⊗Bm×n =




a11B . . . a1qB
...

...

ap1B . . . apqB




pm×qn

=




b11A . . . b1nA
...

...

bm1A . . . bmnA




pm×qn

.
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the next section.

Predictive distributions and hyperparameters estimation

This subsection briefly demonstrates the method used in estimating the hy-
perparameters in the multivariate BSP approach and the predictive posterior
distribution of the multivariate response variables at ungauged sites given
those estimated hyperparameters. The hyperparameters in the BSP contain
the hyperparameters at gauged sites, Hg = (Ω,Λ1, δ1,F, β0), and those at
ungauged sites, Hu = (Λ[u],H[u], τ

[u]
0 , δ[u]). Firstly, the EM algorithm is used

to estimate the hyperparameters at the gauged sites, Hg, in the multivariate
BSP. Given those estimators, the Sampson–Guttorp method is used to esti-
mate the covariance function of the ungauged sites and the cross–covariance
function between the gauged and ungauged sites. Consequently, the estima-
tors of Γ[u] and τ

[u]
0 can be obtained from the above estimators. Finally, the

predictive posterior distribution of the response variables at the ungauged
sites is obtained conditional on those estimators of H = (Hg,Hu).

Note here we only estimate those hyperparameters once in the BSP ap-
proach. Not like the DLM, estimates for the model parameters have to be
obtained at each iteration of the MCMC runs. This one–time–estimation
greatly saves our computational time.

Suppose Y = (Y[u],Y[g]) : (n × up, n × gp), β = (β[u], β[g]) : (h ×
up, h× gp), and β0 = (β[u]

0 , β
[g]
0 ) : (h×up, h× gp). Given Y[g], the predictive

distribution of Y[u] is

Y[u]|Y[g],H ∼ tn×(up)(µ
[u|g],Φ[u|g] ⊗Ψ[u|g], δ − up + 1), (4.7)

where

µ[u|g] = Zβ
[u]
0 + (Y[g] − Zβ

[g]
0 )τ [u]

0 (4.8)

Φ[u|g] = In + ZF−1ZT + (Y[g] − Zβ
[g]
0 )H[u](X[g] − Zβ

[g]
0 )T (4.9)

Ψ[u|g] =
1

δ − up + 1
(Λ[u] ⊗Ω) (4.10)
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(Le & Zidek, 2006, p.160–161).
At the gauged sites, the multivariate BSP can deal with the case of

missing pollutants in each block. In other words, the observed responses in
the matrix–variate form may include the missing columns of some pollutants
at the gauged sites. Let l be the total number of unobserved responses at
gauged sites, and so l ∈ {0, . . . , gp}. The vector of observable responses
at gauged sites Y[g] can be partitioned into Y(1) : n × l and Y(2) : n ×
(gp − l), the missing and observed responses at gauged sites, respectively.
Let rj : (gp × 1) = (rj,1, . . . , rj,gp)′ be a vector such that rj,j = 1 and
rj,k = 0 for k 6= j, and k, j = 1, . . . , gp. Suppose R1 = (ri1 , . . . , ril), and
R2 = (ril+1

, . . . , rigp); thus R = (R1,R2) : (gp × gp), forms an orthogonal
matrix. Hence, Y(1) = Y[g]R1 and Y(2) = Y[g]R2. Let

RTΣggR =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
RT

1 ΣggR1 RT
1 ΣggR2

RT
2 ΣggR1 RT

2 ΣggR2

)

and

Ψgg = RTΦggR =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
=

(
RT

1 ΦggR1 RT
1 ΦggR2

RT
2 ΦggR1 RT

2 ΦggR2

)
,

with Σ11,Ψ11 : l× l and Σ22,Ψ22 : (gp− l)×(gp− l), respectively. Similarly,
β

[g]
0 R can be partitioned as β

[g]
0 = (β[g]

0 R1, β
[g]
0 R2) = (β[g]

(1), β
[g]
(2)).

By the properties of the multivariate t–distribution, the predictive pos-
terior distribution of Y(1) is given by

Y(1)|Y(2),H ∼ tn×h(Zβ
[g]
(1) + (Y(2) − Zβ

[g]
(2))Ψ

−1
22 Ψ21,

1
δ − up− l + 1

P1|2

⊗Ψ1|2, δ − up− l + 1), (4.11)

where

P1|2 = In + ZF−1ZT + (Y(2) − Zβ
[g]
(2))Ψ

−1
22 (Y(2) − Zβ

[g]
(2))

T (4.12)
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and

Ψ1|2 = Ψ11 −Ψ12Ψ−1
22 Ψ21. (4.13)

Furthermore, the predictive posterior distribution of Y[u] is given as follows

Y[u]|Y(2),H ∼ tn×up(Zβ
[u]
0 + (Y(2) − Zβ

[g]
(2))Ψ

−1
22 RT

2 Φgu,
Pu|2 ⊗Φu|g

δ − up− l + 1
,

δ − up− l + 1), (4.14)

where

Pu|2 = In + ZF−1ZT + (Y(2) − Zβ
[g]
(2))Ψ

−1
22 (Y(2) − Zβ

[g]
(2))

T (4.15)

(Le et al., 1997).
The next subsection explores the predictive performance of the multi-

variate BSP approach.

Predictive performance

To assess the multivariate BSP model’s performance, pointwise predictive
intervals and predictive posterior credibility ellipsoids are constructed from
the predictive posterior distributions in Section 4.3 (Le et al., 1997; Le &
Zidek, 2006).

Le and Zidek (2006) point out that the pointwise predictive distribution
of the last (or pth) pollutant at each of the ungauged sites and any fixed
time point t can be obtained from (4.14) by letting up = 1. Moreover, the
pointwise predictive variance is given by

Var(Y[u]
t |Y(2) = y(2),H) = (δ∗ − 2)−1Pt|2Φu|2, (4.16)

where δ∗ = δ − up − l + 1. Hence, the pointwise predictive intervals of the
last pollutant at ungauged site ui and the fixed time t is given by

E(Y[u]
t |Y(2) = y(2),H)± tδ∗(0.025)(Var(Y[u]

t |Y(2) = y(2),H))1/2.
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However, one might expect that the pointwise predictive intervals would
not have good calibration properties due to the accumulated uncertainty
arising from simultaneously interpolating the response variables in the spatio–
temporal field. Le et al. (1997) develop the ellipsoid credible regions for
simultaneously interpolating at ungauged sites, improving its calibration.
Those ellipsoid credible regions are given by the following theorem that we
include here for completeness.

Theorem 4.3.1 The (1 − α)−level (0 < α < 1) simultaneously posterior
credibility region is given by

{Y[u]
t : (Y[u]

t −ŷ
[u]
t )Φ−1

u|g(Y
[u]
t −ŷ

[u]
t )T <

up

δ − up− l + 1
Pt|2Fup,δ−up−l+1(1−α)},

where
ŷ

[u]
t = Ztβ

[u]
0 + (Y[g]

t − Ztβ
[g]
0 )τ [u]

0 ,

Pt|2 = 1 + ZtF
−1ZT

t + (Y[g]
t − Ztβ

[g]
0 )H[u](Y[g]

t − Ztβ
[g]
0 )T ,

and Φ−1
u|g = (Λ[u] ⊗Ω)−1.

Theorem 4.3.1 is true because

Y[u]
t |Y(2)

t ,H ∼ t1×up(ŷ
[u]
t ,

1
δ − up− l + 1

Pt|2Φu|g, δ − up− l + 1),

(4.17)

where

ŷ[u]
t = Ztβ

[u]
0 + (Y(2)

t − Ztβ
[g]
(2))Ψ

−1
22 RT

2 Φgu, (4.18)

and

Pt|2 = 1 + ZtF−1ZT
t + (Y(2)

t − Ztβ
[g]
(2))Ψ

−1
22 (Y(2)

t − Ztβ
[g]
(2))

T . (4.19)

Further work by Sun et al. (1998) shows these credibility ellipsoids to be
well calibrated. These credible regions are also constructed and compared
with the pointwise predictive intervals when interpolating in the Chicago’s
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hourly ozone field, in the next section.

4.4 Spatial Interpolation

This section’s main theme concerns the interpolation of ozone concentrations
at those ten ungauged sites using the multivariate BSP approach for the
Chicago’s hourly ozone field. Moreover, two other approaches, the DLM
and NAIVE, are also used in the same interpolation problem to assess the
model’s performance. The interpolation results using these three approaches
are then compared in this section.

The multivariate BSP approach

For the multivariate BSP model given by (4.1)–(4.3), hourly ground–level
ozone concentrations’s field is modelled as a trend plus a detrended spatio–
temporal noise (i.e., detrended residuals) at the first level of a hierarchi-
cal model; at the second level, the temporal dependence in the detrended
spatio–temporal noise is modelled through an autoregressive process with
the deAR’d residuals. These deAR’d residuals are then interpolated at
the ungauged sites in the spatio–temporal field. Finally, these interpolated
deAR’d residuals are imputed by taking them back to the trend model to
get the interpolated values at the ungauged sites. To do this, we square the
interpolated responses due to the square–root transformation we made due
to the normality assumption assumed for this model.

The multivariate BSP model has been used to interpolate Vancouver’s
hourly PM10 field (Li et al., 1999; Zidek et al., 2002). A multivariate data
model is created to reduce the loss of spatial correlation in the deAR’d resid-
uals compared with their detrended counterparts, and to allow the predic-
tions to be made on any response by borrowing strength from the close–by
responses through their spatial correlations (Le et al., 1999; Zidek et al.,
2002; Le & Zidek, 2006, p.277). This loss of spatial correlation has been
called the spatial correlation leakage problem (also seen in Section 4.5) by
Li et al. (1999), Zidek et al. (2002), and Le and Zidek (2006). The spatial
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leakage problem occurs if nonnegligible lag–1, lag–2, etc., spatial correlations
exist in the deAR’d residuals. Using those problematic deAR’d residuals to
interpolate at ungauged sites, one may anticipate that the interpolators at
any given ungauged site cannot borrow strength from its gauged neighbours
due to the small number of spatial correlation between sites (Zidek et al.,
2002; Le & Zidek, 2006). Figures 4.6 plots the spatial correlations of the
detrended and deAR’d residuals between sites, respectively. The substantial
loss of the spatial correlation of the deAR’d residuals suggests the use of the
multivariate strategy adopted here. In particular, that strategy enables one
to bypass the need for difficult fine scale autocorrelation modelling that will
inevitably be inexact and hence induce the lagged spatial cross–correlations
that can cause that leakage.
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Figure 4.6: The estimated spatial correlations of: (a)–detrended residuals, and
(b)–deAR’d residuals; between gauged sites.

But what kind of multivariate data settings should one select? Le et
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al. (1999) and Zidek et al. (2002) argue for the use of the daily response
vectors with hourly response coordinates instead of the hourly responses
themselves. One of their arguments, that the spatial leakage problem is neg-
ligible for the daily responses but not for the hourly ones, is supported by
theoretical results (Zidek et al., 2002). A related argument is that the daily
deAR’d residuals are approximately independent from each other based on
the AR structure of the detrended residuals, approximately satisfying the in-
dependence assumptions for the responses in (4.1)–(4.3). These arguments
also apply to the Chicago’s ground–level ozone field, as demonstrated by
Figure 4.7 which depicts the partial autocorrelation functions (PACFs) of
the detrended residuals, indicating an hourly AR(2) process. That implies
the possible choices of dimensions, 2,. . ., or even 6, for the daily response
vectors to achieve adequate temporal separation between them to ensure in-
dependence while at the same time, allowing pairwise temporal correlations
between hours to be estimated. Choice of the appropriate dimensionality
of the response vectors is based on how severe the spatial correlation leak-
age may result. In other words, we use multivariate AR process for the
detrended residuals, avoiding different AR process for responses at different
monitoring locations.

For simplicity, let (i:j)–hour represent the sub–data matrix for the hourly
responses from hour i to j across the gauged sites, for i, j ∈ {1, . . . , p}. Sup-
pose one were interested in interpolating say hour 11’s ozone level at any
fixed ungauged site given all the observed responses at the gauged sites.
As we discussed above, the possible response vectors could be the (10:11)–
hours, . . ., or the (6:11)–hours. For each choice of these response vectors,
the spatial correlations between all the gauge sites are estimated using the
multivariate BSP approach. Figure 4.8 shows these estimated spatial corre-
lations for the (10:11)–hours, . . ., (6:11)–hours response vectors and that of
the detrended residuals. Notice how the spatial correlation declines as the
dimensions of the response vector increases (leakage). This boxplot shows
that the (10:11)–hours response vectors have the smallest number of loss of
spatial correlations between the gauged sites, so becoming the right choice
for a multivariate data model. This is true for other hours as well, strongly
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Figure 4.7: The PACF plots for the square–root of hourly ozone concentrations
(
√

ppb) at the 14 gauged sites in the Chicago’s area AQS database.

supporting the use of 2–hour–block as the response vector. Hence, 2–hour–
block data are extracted from the Chicago AQS ozone database (2000) to
serve as the multivariate responses in a multivariate BSP model designed to
interpolate the hourly ozone concentrations in the field.

Prior to implementing the multivariate BSP approach, a small number of
missing measurements are filled in by the spatial regression method. For the
model in (4.1)–(4.3), p = 2, n = 123, u = 10, and g = 14. The multivariate
BSP approach is repeated 24 times by successively cycling the first hour
in the two–hour–block through the day to predict the hourly ozone levels
at the 10 ungauged sites, and the corresponding 95% pointwise predictive
intervals.

For example, suppose the hour of “interest” was hour 11. The re-
sponse variable at any fixed day, t, and gauged site, j, could be written

70



Chapter 4. Multivariate Bayesian Spatial Prediction and Its Spatial Interpolation

Detrended 10:11 9:11 8:11 7:11 6:11

0.
0

0.
2

0.
4

0.
6

0.
8

S
pa

tia
l C

or
re

la
tio

ns

Figure 4.8: Boxplots for the spatial correlations of the detrended residuals (De-
trended), and the estimated spatial correlations using the square–root of hourly
ozone concentrations during the hours of: 9 A.M. to 10 A.M. (10:11), 8 A.M. to 10
A.M. (9:11), 7 A.M. to 10 A.M. (8:11), 6 A.M. to 10 A.M. (7:11), and 5 A.M. to
10 A.M. (6:11), respectively.

as Y[gj ]
t = (Y[gj ]

t,10,Y
[gj ]
t,11) : 1×p. Given the BSP model in (4.1)–(4.3) and pri-

ors of the parameters, the predictive posterior distribution of Y[u] is given
by (4.7). Notice that l = 0 because the response vector contains no miss-
ing values. Two covariates, month with four levels and weekday with seven
levels, are considered in this approach due to the exploratory data analy-
sis described above for this field, which returns h = 11. Let e1 = (0, 1)′

and E1 = (e1
′, . . . , e1

′)′ : up × 1. By a basic property of the multivariate
t–distribution and the predictive posterior distribution of Y[u]

t in (4.17), the
posterior distribution of the interested pollutant at ungauged sites is given
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by

Y[u]
t E1|Y(2)

t ,H ∼ t1×u(ŷ[u]
t E1,

1
δ − up− l + 1

Pt|2E′1Φu|gE1,

δ − ug − l + 1). (4.20)

Let e0,j be the u–dimensional vector such that the jth entry is 1 and 0 oth-
erwise, for j = 1, . . . , u. Then the unobserved pth pollutant at the ungauged
site uj , Y[u]

t E1e0,j , has the following conditional posterior distribution

Y[u]
t E1e0,j |Y(2)

t ,H ∼ tδ−up−l+1(ŷ
[u]
t E1e0,j ,

1
δ − up− l + 1

Pt|2e′0,jE
′
1

×Φu|gE1e0,j). (4.21)

Hence, the predictive posterior mean and variance of the unobserved pth

pollutant are given by

E(Y[u]
t E1e0,j |Y(2)

t ,H) = ŷ[u]
t E1e0,j

and

Var(Y[u]
t E1e0,j |Y(2)

t ,H) =
1

δ − up− l + 1
Pt|2e′0,jE

′
1Φu|gE1e0,j ,

respectively. Consequently, the pointwise 95% predictive intervals of the
unobserved pth pollutant at the ungauged site ui and fixed day t is given by:

E(Y[u]
t E1e0,j |Y(2)

t ,H)± tδ−up−l+1(0.025)(Var(Y[u]
t E1e0,j |Y(2)

t ,H))1/2.

(4.22)
The above procedure is then repeated 24 times to interpolate the hourly
ozone levels in this field. The software used for this multivariate BSP ap-
proach is EnvioStat.1.0, found at http://enviro.stat.ubc.ca.

We next compare our approach with two others, the DLM and NAIVE.
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The DLM approach

The dynamic linear model (DLM) is one alternative approach to the spatial
interpolation in the Chicago area’s hourly ozone field. The DLM and its im-
plementation have been extensively explored in Chapter 2. In the Chicago’s
AQS ozone database, the total number of time points (i.e., the hours), T,

is 123 × 24 = 2952. To compare its interpolation results with those of the
multivariate BSP, same gauged and ungauged sites are selected as in Section
4.4. Hence the total number of the gauged sites, n, is 14. The initial settings
for the DLM are given next, following an investigation of the discount factor
for first–order polynomial dynamic models, to optimize this approach.

Our investigation indicates that the appropriate prior for the phase pa-
rameters a = (a1, a2)′ is N(µ0,Σ0), where µ0 = (1.5, 4.5)′ and

Σ0 =

(
0.0625 0

0 0.5625

)
.

The best initial specification for the state parameters turns out to be m0 =
(5.15,−0.751′n, 0.051′n)′ for location while C0 is a block diagonal matrix with
diagonal entries: 0.1304, 0.0158In, and 0.0003In.

The first–order polynomial dynamic model, for t ≥ 1, is then given by:

yt = βt + εt εt ∼ N(0, σ2) (4.23)

βt = βt−1 + ωt ωt ∼ N(0, σ2σ2
β), (4.24)

and the initial information: β0 ∼ N(0, σ2
0). The measurement of the rate of

adaptation to new data, i.e., the adaptive coefficient At, converges to the
constant A as t →∞, where A is a function of r = σ2

β, the ratio of the state
variance to the system variance (r ∈ [0, 1]) (Harvey, 1984; West & Harrison,
1997). r is also called the signal–to–noise ratio, large values of r implying
a clear signal in the system. The adaptive coefficient A reflects how much
weight to put on the new data in updating the predictive mean for this
simplest DLM: larger value of A represents more weight on the new data;
smaller value of A represents less weight on the new data. Consequently, the
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discount factor, δ, is defined as 1−A. Hence, the larger the discount factor
is, the less weight is attached to information provided by the new data in
updating the predictive mean at current time; the smaller δ is, the more
weight is put on the information of the new data. If δ = 0, the dynamic
model would not put any weight on the new data, resulting in a very poor
model fit. In other words, there is no signal in the system but only the noise
from the measurements. It is impossible to distinguish the signal and the
noise in the system. If δ = 1, almost all the weight would be on the new
data, resulting in a non–distinguishable signal and noise. West and Harrison
(1997) recommend setting the values of δ between 0.8 and 1. A, r, and δ, are
related by the equation: r = A2(1−A)−1 = (1− δ)2δ−1 (West & Harrison,
1997).

δ 0.80 0.85 0.90 0.95 0.99
r 0.05 0.0265 0.0111 0.0026 0.0001

Table 4.1: The relationship between the discount factor (δ) and the signal–to–noise
ratio (r).

Table 4.1 shows some of the values of δ and its corresponding r, that is,
σ2

β in (4.23)–(4.24). This table provides one way to set the initial values of
σ2

β. For the constant DLM model in Chapter 2 given the common variance
σ2 the canonical trend has a Gaussian distribution with variance σ2τ2

y , the
periodic trend with period 24, a Gaussian distribution with variance σ2τ2

1 ,

and the periodic trend with period 12, a Gaussian distribution with variance
σ2τ2

2 . The variability of the canonical trend is assumed to be larger than
that of the periodic trends; while the variability of the periodic trend with
period 24 is assumed to be larger than that of the periodic trend with period
12. In other words, one assumes that the canonical trend puts more weight
on the information provided by the new data than other periodic trends,
and the periodic trend with periodic 24 has more weight than the periodic
12 trend. For example, if the discount factors of the canonical, periodic 24,
and periodic 12 trends were set to 0.85, 0.90, and 0.95, respectively, the
corresponding values of τ2

y , τ2
1 , and τ2

2 would be 0.0265, 0.0111, and 0.0026,
respectively. Those values, divided by 17, are then selected to be the fixed
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values of the model parameters: τ2
y , τ2

1 , and τ2
2 . [The reason to divide them

by 17 were discussed in Section 3.4 to take account of the 17 weeks’ time
effect.] Both λ1 and λ2 are set at 25. The hyperpriors for σ2 and λ are
IG(2, 2) and IG(1, 5), respectively.

Those initial settings of the DLM in Section 3.2 improve the DLM
model’s fit in interpolating the responses at ungauged sites. However, it un-
derestimates the variability of the system, leading to a trade–off between the
precision and the variability of the spatial interpolator. The interpolation re-
sults for Chicago’s hourly ozone field are shown in Section 4.4. The software,
GDLM.1.0., can be freely downloaded from http://enviro.stat.ubc.ca/dlm,
to allow our results to be reproduced or for application in other contexts.

NAIVE approach

One might well suspect that the responses at the nearby gauged sites af-
fect interpolation at ungauged sites. It may seem plausible that for a rough
spatio–temporal field, the spatial correlations between the sites are so small
that the responses at different sites can be viewed to be approximately in-
dependent from each other. This leads to NAIVE approach, i.e., the “in-
terpolated” values at any ungauged site are the observed responses at that
gauged site closest to the ungauged one.

Ungauged Site Gauged Site GCD (km)
1 1 18.19
2 1 5.74
3 1 6.09
4 4 8.70
5 7 12.99
6 7 19.46
7 7 13.50
8 1 13.97
9 11 15.86

10 10 9.33

Table 4.2: The greatest circle distance (GCD) between the pairs of ungauged sites
and their closest gauged site(s) in the Chicago’s hourly O3 field.
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Table 4.2 represents the GCD (in km) between the ungauged sites and
their closest gauged sites in the Chicago’s hourly ozone field. For example,
Gauged Site 11 is the closest one to Ungauged Site 9 in terms of the GCD
in Table 4.2. The interpolated values at Ungauged Site 9 are the observed
responses at Gauged Site 11 in this approach.

NAIVE approach ignores the local characteristics in the field, not taking
account of the effects of the covariates, or other factors such as wind and
wind directions among the stations. If NAIVE approach had been proved
comparable or better than the multivariate BSP and DLM, one would prefer
it owing to its great simplicity. Section 4.4 compares NAIVE approach with
the multivariate BSP and DLM.

Comparisons and results

This subsection implements the multivariate BSP, DLM, and NAIVE ap-
proaches, to interpolate the hourly ozone concentrations at ungauged sites
in the Chicago area. These interpolation results are compared with each
other to assess the model performance of the multivariate BSP, DLM, and
NAIVE approaches. Figures 4.9–4.16 plot the interpolation results of the
three approaches at one of the ungauged sites, Ungauged Site 7, during
the first week to the sixteenth week. In these four figures, the dots rep-
resent the observed values at this ungauged site, the solid and dotdashed
lines represent the predictive mean and 95% pointwise predictive intervals
for the multivariate BSP approach, the dashed and dotted lines represent
the predictive mean and 95% empirical predictive intervals for the DLM ap-
proach, and the addition signs represent the interpolated value by NAIVE
approach, i.e., the observed values at Gauged Site 7 in this case (refer to
Table 4.2). Those empirical predictive intervals of the DLM are wiggly and
monotonically increasing as time increases, one feature observed in Section
3.4. On the other hand, the 95% pointwise predictive intervals of the mul-
tivariate BSP do not have such wiggly behavior and capture both the long–
and short–term trends at Ungauged Site 7. The interpolation of NAIVE
approach is not as good as those of the DLM and multivariate BSP for most
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time points, but it does occasionally do well when the interpolation results
for the other two approaches deviate from the observed responses.
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Figure 4.9: Interpolation at Ungauged Site 7 from the 1st week to the
2nd week. The square–root of hourly ozone concentrations are plotted
on the vertical axes and hours, on the horizontal axes. [Solid (dot-
dashed) lines = interpolation and 95% pointwise predictive intervals
by the BSP; dash (dot) lines = interpolation and 95% predictive inter-
vals by the DLM; + = interpolation by NAIVE; and ◦ = observations
at Ungauged Site 7.]

The closer the ungauged sites are to the gauged ones, the better the ex-
pected interpolation performance; that is the assumption upon which these
three approaches rest. Figures 4.17–4.18 plot the interpolation results for
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Figure 4.10: Interpolation at Ungauged Site 7 from the 3rd week to the
4th week. The square–root of hourly ozone concentrations are plotted
on the vertical axes and hours, on the horizontal axes. [Solid (dot-
dashed) lines = interpolation and 95% pointwise predictive intervals
by the BSP; dash (dot) lines = interpolation and 95% predictive inter-
vals by the DLM; + = interpolation by NAIVE; and ◦ = observations
at Ungauged Site 7.]

the three approaches at Ungauged Site 10 during the 1st and 10th week,
respectively. The overestimated predictive variances of the DLM have a
monotone increasing trend in the 10th week, compared with those in the
1st week. NAIVE approach performs quite differently from one time to the
next. For example, Figure 4.17 shows that NAIVE approach produces good
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Figure 4.11: Interpolation at Ungauged Site 7 from the 5th week to the
6th week. The square–root of hourly ozone concentrations are plotted
on the vertical axes and hours, on the horizontal axes. [Solid (dot-
dashed) lines = interpolation and 95% pointwise predictive intervals
by the BSP; dash (dot) lines = interpolation and 95% predictive inter-
vals by the DLM; + = interpolation by NAIVE; and ◦ = observations
at Ungauged Site 7.]

predictive values that are quite close to the observed responses at Ungauged
Site 10 at most times in the 1st week. However, Figure 4.18 shows that the
predicted values for NAIVE approach tend to underestimate the observed
responses. One therefore suspects that other factors contribute to the spatial
correlation between these sites, for instance, covariate effects, such as wind
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Figure 4.12: Interpolation at Ungauged Site 7 from the 7th week to the
8th week. The square–root of hourly ozone concentrations are plotted
on the vertical axes and hours, on the horizontal axes. [Solid (dot-
dashed) lines = interpolation and 95% pointwise predictive intervals
by the BSP; dash (dot) lines = interpolation and 95% predictive inter-
vals by the DLM; + = interpolation by NAIVE; and ◦ = observations
at Ungauged Site 7.]

and its direction. Two close–by sites may be correlated because they lie in
the same wind direction; on the other hand, two close–by sites may look
independent of one another if their locations lie on a line orthogonal to the
wind direction. Other interpolation results, demonstrated in Figures 4.19–
4.21, are also examined to check for the association between the response
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Figure 4.13: Interpolation at Ungauged Site 7 from the 9th week to the
10th week. The square–root of hourly ozone concentrations are plotted
on the vertical axes and hours, on the horizontal axes. [Solid (dot-
dashed) lines = interpolation and 95% pointwise predictive intervals
by the BSP; dash (dot) lines = interpolation and 95% predictive inter-
vals by the DLM; + = interpolation by NAIVE; and ◦ = observations
at Ungauged Site 7.]

variables at the ungauged site and its closest gauged neighbour.
The marginal posterior distribution of the pth pollutant tends to overesti-

mate the predictive variance of the process, as observed in Figures 4.17–4.21.
The posterior ellipsoid credible regions, constructed from the joint posterior
distributions of the p pollutants, provide well calibrated predictive results
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Figure 4.14: Interpolation at Ungauged Site 7 from the 11th week
to the 12th week. The square–root of hourly ozone concentrations are
plotted on the vertical axes and hours, on the horizontal axes. [Solid
(dotdashed) lines = interpolation and 95% pointwise predictive inter-
vals by the BSP; dash (dot) lines = interpolation and 95% predictive
intervals by the DLM; + = interpolation by NAIVE; and ◦ = observa-
tions at Ungauged Site 7.]

using the multivariate BSP approach. Figure 4.22 plots the empirical el-
lipsoid coverage probabilities across the ungauged sites at various nominal
levels. Their averages across the ungauged sites are listed in Table 4.3,
showing slightly underestimated predictive variances.

Table 4.4 shows the mean square predictive error (MSPE) at each un-

82



Chapter 4. Multivariate Bayesian Spatial Prediction and Its Spatial Interpolation

0 50 100 150

−
5

0
5

1
0

1
5

Hour

O
3

0 50 100 150

−
5

0
5

1
0

1
5

Hour

O
3

Figure 4.15: Interpolation at Ungauged Site 7 from the 13th week
to the 14th week. The square–root of hourly ozone concentrations are
plotted on the vertical axes and hours, on the horizontal axes. [Solid
(dotdashed) lines = interpolation and 95% pointwise predictive inter-
vals by the BSP; dash (dot) lines = interpolation and 95% predictive
intervals by the DLM; + = interpolation by NAIVE; and ◦ = observa-
tions at Ungauged Site 7.]

gauged site obtained by the three approaches. For all the ungauged sites,
the NAIVE approach has the largest MSPE and has the poorest model per-
formance of the three. Except for Ungauged Sites 2 and 8, the multivariate
BSP has the smallest values of the MSPE among these three approaches,
overall the best model performance among the three. At Ungauged Sites
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Figure 4.16: Interpolation at Ungauged Site 7 from the 15th week
to the 16th week. The square–root of hourly ozone concentrations are
plotted on the vertical axes and hours, on the horizontal axes. [Solid
(dotdashed) lines = interpolation and 95% pointwise predictive inter-
vals by the BSP; dash (dot) lines = interpolation and 95% predictive
intervals by the DLM; + = interpolation by NAIVE; and ◦ = observa-
tions at Ungauged Site 7.]

2 and 8, the MSPE of the DLM is slightly smaller than that of the multi-
variate BSP, implying possible local variations in the characteristics of the
ungauged sites. In other words, one might well add a nugget effect in the
multivariate BSP approach to account for the variations among the response
variables.
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Figure 4.17: The observed square–root of ozone concentrations (
√

ppb) during
the 1st week, the interpolation using the multivariate BSP, DLM and NAIVE ap-
proaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Ungauged Site 10.

Figures 4.23 and 4.24 plot the ratios of the MSPEs of NAIVE and the
DLM to that of the multivariate BSP, respectively. Figure 4.23 shows that
the interpolation for the multivariate BSP has smaller MSPE than that for
NAIVE approach over all seventeen weeks and ten ungauged sites. Figure
4.24 plots the ratio of the MSPE of the DLM interpolator to that of the
multivariate BSP, showing that better model performance of the latter over
all 17 weeks and most ungauged sites.
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Figure 4.18: The observed square–root of ozone concentrations (
√

ppb) during
the 10th week, the interpolation using the multivariate BSP, DLM and NAIVE
approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Ungauged Site 10.

The coverage probabilities of the multivariate BSP and DLM are com-
puted at the 95% nominal level as a further assessment of model perfor-
mance. Figures 4.25 and 4.26 show the side–by–side boxplots of these cov-
erage probabilities over 10 ungauged sites and 17 weeks, respectively. The
coverage probabilities of the DLM are much higher than the 95% nominal
level, for most weeks and ungauged sites. In fact, the pointwise coverage
probabilities of the multivariate BSP tend to be closer to that nominal level
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Figure 4.19: The observed square–root of ozone concentrations (
√

ppb) during
the 1st week, the interpolation using the multivariate BSP, DLM and NAIVE ap-
proaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Ungauged Site 9.

than those of the DLM.
Comparing both the MSPEs and coverage probabilities from the three

approaches, NAIVE approach has the worst model performance among these
three; the DLM approach does better than NAIVE, but not as good as
the multivariate BSP. Overall, the multivariate BSP has the best model
performance among these three.

Temporal prediction is addressed in the next section by using the mul-
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Figure 4.20: The observed square–root of ozone concentrations (
√

ppb) during
the 1st week, the interpolation using the multivariate BSP, DLM and NAIVE ap-
proaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Ungauged Site 8.

tivariate BSP approach in the Chicago area’s hourly ozone field. Moreover,
that model is assessed by comparing with the other two approaches: the
DLM and NAIVE∗ (see Section 5.3).
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Figure 4.21: The observed square–root of ozone concentrations (
√

ppb) during
the 1st week, the interpolation using the multivariate BSP, DLM and NAIVE ap-
proaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Ungauged Site 2.

4.5 Spatial Leakage in the DLM

Zidek et al. (2002) address the crucial problem caused by the spatial leakage,
or the space–time interaction problem in spatially interpolating the hourly
PM10 in Vancouver area using the univariate approach. The spatial leakage
occurred when substantial amount of between–site cross–correlations exists
until certain time lag. The whitened residuals used in their model come
from two steps: (i) firstly obtaining the detrended residuals by taking off
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Figure 4.22: Boxplot of the simultaneous posterior ellipsoid credibility regions at
various nominal levels.

the covariates effect from the response variables, for fixed site and varying
time points; (ii) then the deAR’d (or whitened) residuals can be obtained
after taking account the temporal dependence into the detrended residuals.

To be more specific, suppose Y (s, t) represents the response variable
at site s and time t, for s ∈ {s1, . . . , sp} and t = 1, . . . , n. Let zt : 1 × l

be an l-dimensional covariates vector at time t for all sites and β : 1 × l,

the regression coefficients corresponding to the l covariates. The detrended
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Nominal Coverage (%) 99 95 90 80 70 60 50
Ellipsoid Credible Coverage (%) 82 75 71 65 62 57 53

Table 4.3: The posterior ellipsoid coverage probabilities at various nominal levels.

Ungauged Site MSPE(NAIVE) MSPE(DLM) MSPE(BSP)
1 2.96 1.79 1.16
2 2.17 1.55 1.61
3 1.62 1.80 1.30
4 1.65 1.46 0.94
5 2.52 1.92 1.03
6 3.08 1.85 0.99
7 2.13 1.60 0.97
8 3.74 2.62 2.67
9 1.42 1.63 1.01

10 0.46 0.87 0.38

Table 4.4: The mean square predictive error (MSPE) at ungauged sites of the
multivariate BSP, DLM, and NAIVE approaches.

residuals, E(s, t), are given by

E(s, t) = Y (s, t)− ztβ. (4.25)

Assuming an AR(q) process for the detrended residuals, the deAR’d
residuals are denoted by e(s, t), and given by

E(s, t) =
q∑

i=1

αiE(s, t− i) + e(s, t). (4.26)

Theoretical results in Zidek et al. (2002) show the existence of potential
spatial correlations leakage for an AR(1) (detrended) process. The connec-
tions between Le–Zidek approach and the DLM allow one use the former
modelling in the DLM framework. Moreover, as a specific case of state–
space model, the DLM framework can be treated as a bridge to unify the
Le–Zidek approach and the general state–space modelling. Our objective
is to investigate potential spatial correlations leakage in the general state–

91



Chapter 4. Multivariate Bayesian Spatial Prediction and Its Spatial Interpolation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1
2

3
4

5
6

Weeks

(a
)

1 2 3 4 5 6 7 8 9 10

1
2

3
4

5
6

Ungauged Sites

(b
)

Figure 4.23: The ratio of MSPE of the interpolation by NAIVE to that of the
multivariate BSP for each of: (a) the 17 weeks; and (b) the 10 ungauged sites.

space modelling for this approach. The following content addresses the work
for an AR(p) process in (4.26). To reformulate the Le–Zidek approach as
the DLM, we can assume zt itself having a random Gaussian process with
mean 0 and very small variance matrix, σ2

zIl. Of course, we can also assume
that zt is fixed at each time point t, exactly the same as in Zidek et al.
(2002). In other words, we consider two cases here:

Case (i) zt itself has a stochastic process, for t = 1, . . . , n, that

zt = zt−1 + wz
t wz

t ∼ N(0, σ2
zIl). (4.27)
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Figure 4.24: The ratio of MSPE of the interpolation by the DLM to that of the
multivariate BSP for each of: (a) the 17 weeks; and (b) the 10 ungauged sites.

Case (ii) zt is fixed at fixed time point t, for t = 1, . . . , n.

For Case (i), models (4.25)–(4.27) can be normalized in the DLM as
follows:

Y (s, t) = F′θ(s, t) (4.28)

θ(s, t) = Gθ(s, t− 1) + wt, (4.29)

where F′ : 1×(q+1) = (1, 1, 0, . . . , 0), θ(s, t)′ : 1×(q+1) = (ztβ, E(s, t), E(s, t−
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Figure 4.25: Side–by–side boxplots of the coverage probabilities of the multivariate
BSP and DLM approaches plotted against the 10 ungauged sites, respectively.

1), . . . , E(s, t− q + 1)), w′
t : 1× (q + 1) = (wz

t β, e(s, t), 0, . . . , 0) and

G : (q + 1)× (q + 1) =




1 0 0 . . . 0
0 α1 α2 . . . αq

0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1




.

For Case (ii), we can also formalize models (4.25)–(4.27) same as above
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Figure 4.26: Side–by–side boxplots of the coverage probabilities of the multivariate
BSP and DLM approaches plotted against the time span of 17 weeks, respectively.

except the first entry in F′ to be zt((z∗t )′z∗t )−1(z∗t )′ and the (1,1) entry in G,
z∗t ((z∗t−1)

′z∗t−1)
−1z∗t−1, and z∗t = zt −

∑q
i=1 αizt−i.

For both cases, let c′i : 1 × (q + 1) such that its ithentry being 1 and
others, 0, for i = 1, . . . , q + 1. Then we have

E(s, t− i) = c′i+2θ(s, t) (4.30)

e(s, t) = c′2w(s, t), (4.31)
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for i = 0, . . . , q − 1.

Zidek et al. (2002) shows that the spatial correlation leakage occurs for
the AR(1) process if Cor(E(s, t− 1), e(s′, t)) 6= 0. Hence the lag–1 between–
site cross–covariance for any two sites s and s′ can be written as:

Cov(E(s, t− 1), e(s′, t)) = Cov{c′3θ(s, t), c′2w(s′, t)}
= c′3Cov{θ(s, t),w(s′, t)}c2

= c′3Cov{Gθ(s, t− 1) + w(s, t),w(s′, t)}c2

= c′3Cov(w(s, t),w(s′, t))c2

= c′3Wt(s, s′)c2, (4.32)

where Wt : p(p+1)×p(p+1) is the covariance matrix for the vector wt : p(p+
1)×1 = (w(s1, t)′, . . . ,w(sp, t)′)′ at fixed time point t and Wt(s, s′) : (p+1)×
(p + 1), the covariance matrix for w(s, t) and w(s′, t) for fixed t. Therefore,
the lag–1 between–site cross–correlation is not zero if (Wt(s, s′))32 6= 0.

In general, for i = 1, . . . , q−1, consider the covariance between E(s, t−i)
and e(s′, t), we then have

Cov(E(s, t− i), e(s′, t)) = Cov(c′i+2θ(s, t), c
′
2w(s′, t))

= c′i+2Cov(θ(s, t),w(s′, t))c2

= c′i+2Wt(s, s′)c2. (4.33)

Hence, the lag–i between–site cross–correlation is not zero if (Wt(s, s′))i+2,2 6=
0. This result implies that the spatial correlation leakage occurs if, for
i = 1, . . . , q − 1, Wt(s, s′)i+2,2 6= 0 for any two sites s and s′. It means
that the DLM framework cannot avoid the spatial correlation leakage prob-
lem for the AR(q) process if such conditions are satisfied.

4.6 Conclusion and Discussion

The multivariate BSP approach can be used to overcome the spatial correla-
tion leakage problem for the filtered residuals between the sites; that other-
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wise tends to incorporate a significant temporal structure in those residuals.
Unlike the DLM, the multivariate BSP approach does not assume sta-

tionarity and isotropy for the underlying process. The multivariate BSP can
incorporate the uncertainty about hyperparameters through fully hierarchi-
cal Bayesian modelling. On the other hand, the DLM approach needs some
hyperparameters to be fixed to achieve similar objective. The multivari-
ate BSP can provide ellipsoid credible regions for multiple pollutants and
simultaneous prediction; the DLM provides predictive intervals for single
pollutant only. The multivariate BSP is much more computationally effi-
cient than the DLM. Unlike the latter it can interpolate hourly ground–level
ozone over a large number of monitoring stations, an impossible task for the
DLM. In other words, it is computationally scalable.
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Chapter 5

Multivariate Bayesian

Spatial Prediction and Its

Temporal Prediction

Not only are people interested in interpolating responses at ungauged sites
given all the information at gauged sites, but also in temporally predicting
them at these gauged sites. In fact, 24–hour ahead ozone forecasting is now
commonly done in many urban areas. The modeller may be asked: “What
will the ozone concentration level be at 2 p.m. tomorrow given all data until
10 a.m. today?”; or, “What will the ozone levels be tomorrow if I have all
the measurements up to today?”

The multivariate BSP approach can be adapted to answer such questions
by taking a 24–dimensional multivariate response variable formed from the
daily 24 hourly univariate response variables, treated like 24 “species” or
“pollutants”; each entry therein represents one measurement for each of the
successive 24 hours. The multivariate model is needed due to the fact that
the daily dependence structure of the 24–dimensional multivariate response
variable invalidates the row independence assumption of the deAR’d resid-
uals in the multivariate BSP approach.

To apply the BSP, one must obtain estimates of the hyperscale spatial
covariance of the 24 pollutants given all the observed response variables.
However, the sequence of the 24–dimensional vectors of hourly responses
does not meet the BSP’s assumption of independence. To overcome this
difficulty, subsequences of vectors are systematically extracted to contain
responses separated by 24 hours. This subset of data is then used to predict
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each one of the 24 response variables at the future day.
More specifically, two sub–data matrices are formed by selecting these

24–dimensional vectors, one sequence for odd days and a second for even
days. Model assumptions hold for each sequence, allowing hyperparam-
eters at gauged sites to be estimated by the EM–algorithm via the En-
viRo.stat software cited earlier. Each “pair” of estimated hyperparameter
sets can then be averaged to form approximate “estimates” of hyperparame-
ters given all the data. Finally, the one–step ahead prediction is implemented
at gauged sites given those estimates of hyperparameters and observed re-
sponses. However, to get the 24–hour ahead forecast, obstacles remain that
we now turn to.

In fact, Section 5.1 demonstrates how to construct the above sequences
and the corresponding subdata matrices along with the multivariate settings
of the BSP model to predict each one of the 24 responses next day. Moreover,
their predictive posterior distributions are developed and the corresponding
pointwise predictive intervals at each gauged site, constructed. Section 5.2
illustrates the h–step ahead prediction by the DLM approach. Section 5.3
presents the one–day ahead temporal prediction by NAIVE∗ approach. Sec-
tion 5.4 shows the results and comparisons of the one–day ahead prediction
by the three approaches at gauged sites.

5.1 The Multivariate BSP Approach

Suppose Y
[gm

j ]

t,i represents the unobserved ith response variable at day t,

gauged site j, and Y
[go

j ]

t,i , the observed response variable, for t = 1, . . . , T ,
i = 1, . . . , p, and j = 1, . . . , g. Specifically in the Chicago’s AQS database,
T = 120, p = 24, and g = 14. Two cases are considered here to predict
the response variable at say (i) 11 P.M., or (ii) any single hour during the 0
A.M. to 10 P.M. period on day 121, the last day in the observation sequence,
whose data we set aside to be used for assessment.

• Case 1: Predict the response variable at the last hour (i.e.,

11 P.M.) of the 121st day.
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Call the corresponding multivariate BSP model “Model–1”. One of
the subdata matrices can be formed by {U(1)

t } : 1× gp, where U(1)
t =

(Y [go
1 ]

2t−1,1, . . . , Y
[go

g ]
2t−1,p); the other by V(1)

t : 1×gp, where V(1)
t = (Y [go

1 ]
2t,1 , . . . ,

Y
[go

g ]
2t,p ), for t = 1, . . . , 59. In other words, the observed response vari-

ables from the 1st day to the 119th day are used as the “data”. After
that, each of the subdata matrices is used with Model–1 to find es-
timates of the hyperparameters. Moreover, “approximate” estimates
of the hyperparameters given all the observed response variables at
gauged sites are obtained by averaging each pair of the hyperparame-
ters estimated by the BSP using these two matrices respectively.

• Case 2: Predict the response variable at the (k − 1)th hour of

the 121st day, for k = 2, . . . , p.

Call the corresponding multivariate BSP model “Model–k”. One of
the subdata matrices can be formed by {U(k)

t } : 1× gp, where U(k)
t =

(Y [go
1 ]

2t−1,k, . . . , Y
[go

1 ]
2t−1,p, Y

[go
1 ]

2t,1 , . . . , Y
[go

1 ]
2t,k−1, . . . , Y

[go
g ]

2t−1,k, . . . , Y
[go

g ]
2t−1,p, Y

[go
g ]

2t,1 , . . . ,

Y
[go

g ]

2t,k−1); the other by {V(k)
t }, where V(k)

t = (Y [go
1 ]

2t,k , . . . , Y
[go

1 ]
2t,p , Y

[go
1 ]

2t+1,1, . . . ,

Y
[go

1 ]
2t+1,k−1, . . . , Y

[go
g ]

2t,k , . . . , Y
[go

g ]
2t,p , Y

[go
g ]

2t+1,1, . . . , Y
[go

g ]

2t+1,k−1). One can obtain es-
timates of the hyperparameters of Model–k in the same way as in Case

1.

The covariates, i.e., the weekdays, are constructed by starting from
“Monday∗” for the {U(k)

t } and “Tuesday∗” for the {V(k)
t }, k = 1, . . . , p,

where the “∗” has been added to signify that the beginning of the day has
been shifted successively by 0, 1, . . . , 23 hours, according to which hour of
day 121 is to be predicted. This weekday effect is removed from the {U(k)

t }s
and {V(k)

t }s, respectively, and the software, EnviRo.stat, used to implement
these 24 models.

Let Y = (Y[u],Y[g]) where Y[g] = (Y[gm]′,Y[go]′)′ and Y[u] : n×up, with
Y[gm] : m × gp and Y[go] : (n −m) × gp. The temporal prediction problem
needs the predictive posterior distribution of (Y[gm]|Y[go],H), m being the
temporal unit to be predicted. Specifically, m = 1 in the one–day–ahead
prediction at gauged sites.
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Let

Zβ
[g]
0 =

(
µ(1)

µ(2)

)
:

(
m× gp

(n−m)× gp

)

and

In + ZF−1Z′ =

(
A11 A12

A21 A22

)
:

(
m×m m× (n−m)

(n−m)×m (n−m)× (n−m)

)
.

Given all the estimated hyperparameters H = {F, β0,Ω,Λ1, δ1,Λ0, τ00,

H0, δ0}, the marginal posterior distribution is given by

Y[gm]|Y[go],H ∼ tm×gp(µ(u|g),Φ(u|g) ⊗Ψ(u|g), δ(u|g)), (5.1)

where

µ(u|g) = µ(1) + A12A−1
22 (Y[go] − µ(2)) (5.2)

Φ(u|g) =
δ1 − gp + 1

δ1 − gp + n−m + 1
(A11 −A12A−1

22 A21) (5.3)

Ψ(u|g) =
1

δ1 − gp + 1
{Λ1 ⊗Ω + (Y[go] − µ(2))

′A−1
22 (Y[go] − µ(2))}

(5.4)

δ(u|g) = δ1 − gp + n−m + 1 (5.5)

(Le & Zidek, 2006, p.160–161).
To obtain the one–step–ahead temporal prediction at the gauged sites,

one needs the predictive posterior distribution of the unobserved response
variable of interest, that is, the last “species” or “pollutant” in the multi-
variate response vector whose role is now being played by an hourly ozone
concentration. Two different predictive posterior distributions of the last
pollutant (i.e., the pth pollutant) are considered for Model–1 and Model–k,
k ∈ {2, . . . , p}. These two cases follow:

• For Model–1, Y[go] has the observed responses from day 1 to day 119,
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and Y[gm] can be written as

Y[gm] = ((Y [gm
1 ]

121,1, . . . , Y
[gm

g ]
121,p)

′
, . . . , (Y [go

1 ]
120,1, . . . , Y

[go
g ]

120,p)
′
)′,

with Y
[gm

1:g ]

121,1:p : 1× gp, the unobserved response vector of day 121 and

Y
[go

1:g ]

120,1:p : 1×gp, the observed response vector of day 120. Hence m = 2
and n = 121. The predictive posterior distribution of Y[gm] can be
obtained by using (5.2)–(5.5). To obtain the predictive distribution of
Y

[gm
1:g ]

121,1:p given Y
[go

1:g ]

1:119,1:p and Y
[go

1:g ]

120,1:p, one can decompose µ(u|g), Φ(u|g)

and Ψ(u|g) as follows:

µ(u|g) =

(
µ1r

µ2r

)
:

(
1× gp

1× gp

)

and

δ(u|g)Φ(u|g) =

(
B11 B12

B21 B22

)
:

(
1× 1 1× 1
1× 1 1× 1

)
.

Hence, the predictive posterior distribution of Y
[gm

1:g ]

121,1:p is given by

Y
[gm

1:g ]

121,1:p|Y
[go

1:g ]

120,1:p,Y
[go

1:g ]

1:119,1:p,H ∼ t1×gp(µ1r + B12B−1
22 (Y

[go
1:g ]

120,1:p − µ2r),

(B11 −B12B−1
22 B21)

δ(u|g) + 1
⊗Ψ(u|g)(Igp

+Ψ−1
(u|g)(Y

[go
1:g ]

120 − µ2r)′B−1
22 (Y

[go
1:g ]

120

−µ2r))). (5.6)

Let E1 : gp × g be a block diagonal matrix with the block ep : p × 1,

having pth diagonal element 1 and all others 0. At Gauged Site j ∈
{1, . . . , g}, the predictive distribution of the pth unobserved response
Y

[gm
j ]

121,p, that is, Y
[gm

1:g ]

121,1:pE1ej , also has a t–distribution:

Y
[gm

j ]

121,p|Y
[go

1:g ]

120,1:p,Y
[go

1:g ]

1:119,1:p,H ∼ tδ(u|g)+1(µ∗E1ej , φ
∗e′jE

′
1Ψ

∗E1ej),

(5.7)
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where µ∗ = µ1r+B12B−1
22 (Y

[go
1:g ]

120,1:p−µ2r), φ∗ = (B11−B12B−1
22 B21)/(δ(u|g)

+1) and Ψ∗ = Ψ(u|g)(Igp +Ψ−1
(u|g)(Y

[go
1:g ]

120,1:p−µ2r)′B−1
22 (Y

[go
1:g ]

120,1:p−µ2r)).

• For Model–k, k = 2, . . . , p, Y[go] has the observed responses from day
1 to day 119, while Y[gm] consists of k − 1 unobserved responses and
p− k + 1 observed ones at each gauged site. To predict the responses
one–day–ahead at ungauged sites in the field, one has m = 1 and
n = 120 in (5.2)–(5.5). Let E2j : gp × p be the matrix obtained by
stacking g (p × p) matrices, in which the jth matrix is Ip and others
are 0. At Gauged Site j ∈ {1, . . . , g}, we have

Y[gm]E2j |Y[go],H ∼ t1×p(µ(u|g)E2j ,Φ(u|g) ⊗E′2jΨ(u|g)E2j , δ(u|g)).

(5.8)

Notice that Y[gm]E2j is (Y
[go

j ]

n−1,k, . . . , Y
[go

j ]

n−1,p, Y
[gm

j ]

n,1 , . . . , Y
[gm

j ]

n,k−1). Let E3 :
p× p be such a matrix that its entries in the ith row and (p− i + 1)th

column are 1 while all others, 0, for i = 1, . . . , p. Multiplying Y[gm]E2j

by E3 reverses the order of the pollutants such that the response of
the last hour locating at the first position of the new response vector,
the response of the second last hour locating at the second position
of the new response vector, and so on. In other words, we obtain the
following new response vector: (Y

[gm
j ]

n,k−1, . . . , Y
[gm

j ]

n,1 , Y
[go

j ]

n−1,p, . . . , Y
[go

j ]

n−1,k).
That new response has the following multivariate t–distribution:

Y[gm]E2jE3|Y[go],H ∼ t1×p(µj ,Φ(u|g) ⊗Ψj , δ(u|g)), (5.9)

where µj = µ(u|g)E2jE3 and Ψj = E′3E
′
2jΨ(u|g)E2jE3. Decompose

Y[gm]E2jE3, µj and Ψj as follows:

Y[gm]E2jE3 = (T1c,T2c) : (1× (k − 1), 1× (p− k + 1)),

µj = (µ1c, µ2c) : (1× (k − 1), 1× (p− k + 1)),
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and

Ψj =

(
C11 C12

C21 C22

)
:

(
(k − 1)× (k − 1) (k − 1)× (p− k + 1)

(p− k + 1)× (k − 1) (p− k + 1)× (p− k + 1)

)
.

Hence the unobserved response variable T1c is also t–distributed:

T1c|T2c,Y[go],H ∼ t1×(k−1)(µ1c + (T2c − µ2c)C−1
22 C21,

δ(u|g)

δ(u|g) + p− k + 1

×Φ(u|g){1 + (δ(u|g)Φ(u|g))
−1(T2c − µ2c)C−1

22

×(T2c − µ2c)′} ⊗ (C11 −C12C−1
22 C21),

δ(u|g) + p− k + 1). (5.10)

The last “pollutant”, that is, the first entry of T1c, can be predicted
by multiplying T1c with a (k− 1)–dimensional vector E4, in which its
first entry is 1 and 0 otherwise. Consequently, the predictive posterior
distribution of Y

[gm
j ]

n,k−1 is given as follows:

Y
[gm

j ]

n,k−1|Y[go],Y
[go

j ]

n−1,k:p,H ∼ tδ(u|g)+p−k+1((µ1c + (T2c − µ2c)C−1
22 C21)E4,

δ(u|g)

δ(u|g) + p− k + 1
Φ(u|g){1

+(δ(u|g)Φ(u|g))
−1(T2c − µ2c)C−1

22

×(T2c − µ2c)′}E′4(C11 −C12C−1
22 C21)E4).

(5.11)

The corresponding predictive variance of the (k−1)th hour of the 121st

day at Gauged Site j is given by:

Var(Y
[gm

j ]

n,k−1)|Y[go],Y
[go

j ]

n−1,k:p,H) =
δ(u|g)

δ(u|g) + p− k − 1
Φ(u|g){1

+(δ(u|g)Φ(u|g))
−1(T2c − µ2c)C−1

22

×(T2c − µ2c)′}E′4(C11 −C12C−1
22

C21)E4.
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It is straightforward to construct the 95% pointwise predictive intervals
at the (k − 1)th hour of the 121st day at each gauged site from (5.11).

5.2 The DLM Approach

An alternative approach, DLM, can also be used for temporal prediction
and indeed would seem the obvious choice, it being an amalgamation of
state–space time series models. For the measurement and state equations of
the DLM

Yt = F′txt + νt νt ∼ N(0, σ2exp(−V/λ))
xt = xt−1 + ωt ωt ∼ N(0, σ2W)

with initial information: x0|D0 ∼ N(m0, σ
2
0C0), one can obtain the pos-

terior distribution of the state parameters at the last known time point,
T, that is, xT |y1:T , θ ∼ N(mT , σ2CT ), using the Kalman filter, a smooth-
ing method and the Metropolis–within–Gibbs sampling algorithm (details
in Chapter 2).

Given the distribution of the state parameters at the last time point,
T, the observed responses until time T, y1:T , and the model parameters,
θ = {λ, σ2, a1, a2}, the h–step ahead prediction is given by

yT+h|y1:T , θ ∼ N(F′t+hmT , σ2{F′t+h(CT + hW)Ft+h + exp(−V/λ)}),
(5.12)

for h ∈ N . Hence, T = 2880 and h = 1, . . . , 24 for the one–day ahead
prediction. For any fixed h, the predictive response, yT+h, can also be
obtained by the MCMC method. More specifically, at iteration j, suppose
we have updated the model parameters λ(j), σ2(j)

, a
(j)
1 and a

(j)
2 using the

FFBS algorithm. That is, one has

xT |y1:T , θ(j) ∼ N(mT
(j), σ2(j)CT

(j)).

Then, the predictive response at iteration j, yT+h
(j), can be drawn from
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(5.12), that is,

yT+h|y1:T , θ(j) ∼ N(Ft+h
(j)′mT

(j), σ2(j){Ft+h
(j)′(CT

(j) + hW(j))Ft+h
(j)

+exp(−V/λ(j))}).

Consequently, the predictive responses are obtained by the sample means of
{yT+h

(j) : j = 1, . . . , J} (J = 500;h = 1, . . . , 24). The empirical predictive
intervals at the 95% nominal level are obtained by the quantiles of these
samples.

5.3 NAIVE∗ Approach

The other alternative approach, NAIVE∗, helps us assess the one–day ahead
prediction performance of the multivariate BSP and DLM approaches. That
approach models the response variable by the grand mean, day effect and
hour effect. To be more specific, the response variable used in this approach
is the vectorized square–root ozone levels at each of the gauged sites. Using
the same notation as above, at each gauged site j ∈ {1, . . . , g}, the response
variable is Yj

1:n = (Y
[go

j ]

1,1 , . . . , Y
[go

j ]

1,p , . . . , Y
[go

j ]

n,1 , . . . , Y
[go

j ]
n,p )′ : 1×np, for n = 120

and p = 24. The design matrix X contains three columns: the first column
consists of 1s, building in long–term linear trend; the second for the days,
capturing day effect of the week, that is, Monday, Tuesday, etc.; and the last
for the hours, a substitute for day effect but giving more reasonable results.
In other words, its “design matrix” can be written as

X =




1 1 1
...

...
...

1 1 p
...

...
...

1 n 1
...

...
...

1 n p




: (np)× 3.
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Then our model is given by Y = Xβ + ε, where ε is the mean 0 Gaussian
process to preserve its great simplicity. The coefficient vector at Gauged Site
j, βj , is thus estimated by the least squared estimator, β̂j = (X′X)−1X′Yj

1:n.

The one–day ahead prediction at Gauged Site j is thus given by Ŷ
j
n+1 =

Xn+1β̂j , where Xn+1 : p× 3 as follows:

Xn+1 =




1 n + 1 1
...

...
...

1 n + 1 p


 .

Next the multivariate BSP approach is compared to the DLM and NAIVE∗

for one–day–ahead prediction at gauged sites in the Chicago area.

5.4 Results and Comparisons

Figures 5.1– 5.14 plot the temporal predictions of the square–root of ozone
levels on the 121st day by the multivariate BSP, univariate DLM and NAIVE∗

approaches, the 95% pointwise predictive intervals for that day by the multi-
variate BSP and DLM approaches, and the observations from 114th to 121st

days, at each of these 14 gauged sites. The multivariate BSP is much more
accurate than either the DLM or NAIVE∗ approaches. In fact, its predictive
performance is rather good at most gauged sites.

Table 5.1 presents the mean square predictive error (MSPE) of the pre-
dictive responses on the 121st day at each one of the 14 gauged sites using
the three approaches. At Gauged Site j, the MSPE of the prediction at hour
h can be computed by:

MSPEj =
24∑

h=1

(PREDj
h −OBSj

h)2,

where PREDj
h is the predictive response at hour h of the 121st day and

OBSj
h, the observed response at the same hour of the 121st day, at Gauged

Site j. The DLM has the poorest MSPE over all the gauged sites compared
with NAIVE∗ and the BSP. The NAIVE∗ approach is slightly better than
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Gauged Site MSPE(NAIVE∗) MSPE(DLM) MSPE(BSP)
1 0.52 9.38 0.50
2 0.96 7.38 0.40
3 1.93 4.66 0.40
4 1.59 4.24 0.49
5 2.81 2.60 3.00
6 0.68 2.31 0.74
7 0.51 4.19 0.22
8 1.44 7.48 1.01
9 1.60 7.01 0.59

10 0.44 5.50 0.50
11 0.83 9.25 0.49
12 0.75 3.41 0.45
13 1.71 12.27 0.73
14 2.44 5.61 1.09

Table 5.1: The mean square predictive error (MSPE) of the one–day ahead predic-
tion at the 14 gauged sites by the multivariate BSP, DLM, and NAIVE∗ approaches.
The BSP dominates in all but 3 cases where it essentially ties with one or another
of its competitors.

the BSP at Gauged Sites 5, 6, and 10. The BSP has the smallest MSPE
across most gauged sites among these three.

Figure 5.15 plots the length of the 95% pointwise predictive intervals by
the BSP at the 24 hours of the 121st day. Starting from the middle hours
of that day, i.e., 9 A.M., the predictive error bands tend to increase after
that until the last hour, 11 P.M., reflecting the increasing uncertainties due
to the fact that fewer responses are observed as time increases.

Figure 5.16 plots the length of the empirical 95% predictive intervals
by the DLM at the 24 hours of the 121st day. These lengths are close to
each other but have the wiggly periodic behaviour across all gauges sites, a
characteristic previously observed in Chapter 2. Though these lengths are
very close to each other, the DLM actually underestimates the predictive
variabilities at the gauged sites as seen in Figure 5.17 which plots the cover-
age probabilities of the DLM and BSP approaches, and also shows a slightly
overestimated predictive variance for the BSP, at the 95% nominal level.
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Moreover, the results in Section 5.1 can be straightforward generalized
to an arbitrary time point, not limiting to the case of 121 days of response
vectors in this chapter.

Therefore, we conclude that the multivariate BSP approach is more ac-
curate on the one–day ahead prediction at the gauged sites in the Chicago
area AQS 2000 database than both the NAIVE and DLM approaches.
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Figure 5.1: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 1.

5.5 Conclusion and Discussion

The temporal prediction of the ground–level ozone concentrations in the
Chicago’s hourly ozone field shows the success of the adjusted multivariate
BSP approach, comparing with two others: the DLM and NAIVE∗. This
adjusted approach can be generalized to any time point other than 121 in
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Figure 5.2: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 2.

the above analysis. That extension is straightforward and will be given in a
future work. Moreover, forecasting more hours will be feasible when more
data are available. This approach could provide a whole new approach to
univariate time series.

The potential problem with this adjusted approach is due to the loss of
the information when only a subset of the whole database is used. Further
extensions of the correlated response vector in the multivariate BSP mod-
elling need to be explored. One possible solution is to develop the dynamic
version of the multivariate BSP, the topic for the next chapters.
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Figure 5.3: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 3.
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Figure 5.4: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 4.
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Figure 5.5: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 5.
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Figure 5.6: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 6.

114



Chapter 5. Multivariate Bayesian Spatial Prediction and Its Temporal Prediction

0 50 100 150

0
5

10
15

Hours

O
3

Obs at 114:120
Obs at 121

BSP:Pred
BSP:95% PI
NAIVE:Pred
DLM:Pred
DLM:95% PI

Figure 5.7: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 7.
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Figure 5.8: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 8.
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Figure 5.9: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 9.
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Figure 5.10: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 10.
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Figure 5.11: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 11.
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Figure 5.12: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 12.
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Figure 5.13: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 13.
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Figure 5.14: The observed square–root of ozone concentrations (
√

ppb) from day
114 to day 121, the predicted values using the multivariate BSP, DLM and NAIVE∗

approaches, and the 95% pointwise predictive intervals using the multivariate BSP
and DLM approaches at Gauged Site 14.
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Figure 5.15: The width of the 95% pointwise predictive intervals of the one–day
ahead prediction at the 14 gauged sites using the multivariate BSP approach.
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Figure 5.16: The width of the 95% pointwise predictive intervals of the one–day
ahead prediction at the 14 gauged sites using the DLM approach.
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Figure 5.17: Boxplots of the coverage probabilities using the DLM and multivariate
BSP approaches at the 95% nominal level.
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Chapter 6

Bayesian Empirical

Orthogonal Function Method

This chapter contains some theoretical results relevant to the extension of
the BSP approach in next chapter. The idea is straightforward in that
we partition the spatial variation into long–term variation, and short–term
variation including measurement errors. We obtain what we call “Bayesian
(empirical orthogonal functions) EOFs” in this chapter and extend results
to incorporate the very flexible GIW prior to model the staircase patterned
data in Chapters 4–5.

Section 6.1 introduces empirical orthogonal functions (EOFs). Section
6.2 describes the classical EOFs obtained from spatio–temporal data and
discusses potential difficulties with this method. Section 6.3 illustrates an
alternative, corrected EOFs, for a known temporal covariance in the separa-
ble space–time covariance structure. Section 6.4 proposes a Bayesian EOF
method for a general Bayesian hierarchical model. Section 6.5 extends those
results to incorporate the GIW prior. Simulation Study 1 is presented in
Sections 6.2–6.3. Section 6.6 compares those three types of EOFs by Sim-
ulation Study 2. Section 6.7 summarizes the results and states conclusions
for this chapter.

6.1 Introduction

Over the years, empirical orthogonal functions (EOFs) have been used ex-
tensively for identifying spatial patterns for environmental processes. EOFs
implicitly assume that the samples consist of independent replicates of the
spatial fields. These have been widely used in astronomy, physics, clima-
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tology, and oceanography (see Hannachi et al. (2007) for a review on this
subject in atmospheric science).

EOFs deal with data anomalies, that is, deviations of the observed values
from their temporal mean, instead of the responses. These anomalies are
obtained by subtracting the time averages of the responses from the local
responses at each time point and site. More precisely, let Zi(t) represent the
response at site si and at time t, for i = 1, . . . , p and t = 1, . . . , n. Then the
anomaly at site si and time t is defined as

Yi(t) = Zi(t)− 1
n

n∑

t=1

Zi(t), (6.1)

for i = 1, . . . , p and t = 1, . . . , n.

Wikle (2002) describes EOFs as a commonly used spatio–temporal method
in Climatology. The method is widely used in spatial process analysis
to detect spatial patterns in a given field. For a continuous spatial pro-
cess observed at discrete time points, the EOFs represent components of a
Karhunen–Loève (KL) expansion; while in the discrete process, they are the
components of a Principal Component Analysis (PCA).

EOF and PCA differ from each other. EOF can be applied on any irreg-
ularly located monitoring stations to find both the time series and spatial
patterns. PCA can also be applied on any sites but only obtain the time
series or spatial patterns. The spatial pattern represent the mode of vari-
ability. The time series patterns, also called as the time series amplitudes,
reflect or characterize how the spatial patterns oscillate over time. The time
series amplitudes are often referred as the expansion coefficients or principle
components. In this thesis, we call the time series amplitudes as expansion
coefficients, in order to distinguish them from the principal components, the
term often used in PCA. Although both EOF and PCA can be applied on
any site, EOF might be inaccurate if it is constructed given unevenly located
sites.

In Climatology literature, some authors define EOF and PCA differently
but some not. We can use infinitely many orthonormal basis vectors to
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construct the EOF. However, the eigenvector basis is the only one that allows
the expansion coefficients having the PCA property, that is, the expansion
coefficients of the EOFs are uncorrelated (Björnsson and Venegas, 1997).

The KL expansion represents a stochastic process by a linear combina-
tion of an infinite number of orthogonal functions. In the KL expansion,
the coefficients for the orthogonal functions are random variables. The or-
thogonal functions are the eigenfunctions of the covariance function for this
process. For the anomalies data, suppose Yt = (Yt(s1), . . . , Yt(sp))′ : p × 1
represents the anomalies vector at t across all the spatial sites in the region.
Let Y = (Y1, . . . ,Yn) : p× n be the anomaly matrix.

Definition 6.1.1 (KL expansion) Consider the spatio–temporal process
{Z(s, t) : s ∈ D, t = 1, . . . , n}, where s represents for the spatial location
in the domain D = {s1, . . . , sp} that of interest while t represents a time
point. Assume E(Z(s, t)) = 0 and Cov(Z(si, t), Z(sj , t)) = C0(si, sj) for all
t. The KL expansion represents the covariance function as an infinite linear
combination of orthogonal functions, that is,

C0(u, v) =
∞∑

j=1

λjφj(u)φj(v), (6.2)

where {λj : j = 1, . . . ,∞} are the eigenvalues and {φj(.) : j = 1, . . . ,∞},
the orthogonal eigenfunctions.

For the complete set of orthonormal basis functions {φj(.) : j = 1, . . . ,∞},
the response can be represented as follows:

Z(s, t) =
∞∑

j=1

aj(t)φj(s), (6.3)

where Var(aj(t)) > Var(aj+1(t)) for j = 1, 2, . . . , and Cov(ai(t), aj(t)) = 0
for i 6= j. In discrete case, the KL expansion is simply obtained through the
PCA. Then {φj(s) : s ∈ D} is called the jth EOF and {aj(t) : t = 1, . . . , n},
the expansion coefficients corresponding to the jth EOF. In other words,
the KL expansion allows one to represent the process by an infinite set of
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separable orthonormal basis functions such that these orthonormal basis
functions are optimal in minimizing the mean square variance.

We next introduce the term of classical EOFs.

6.2 Classical EOFs

To find the principal spatial patterns in a spatial–temporal process, one can
use the classical EOFs 6. The spatial covariance matrix can be estimated
using the samples of observed anomalies.

In the geographical region of interest, zt(s) represents the univariate
response variable at site s and time t, for s ∈ {s1, . . . , sp} and t = 1, . . . , n.

Let Zt = (zt(s1), . . . , zt(sp))′ : p×1 be the response vector at time t. Assume
the matrix–variate response variable Z = (Z1, . . . ,Zn) : p× n that follows a
matrix–normal distribution with a separable covariance structure in space
and time, that is, Z ∼ Np×n(0,ΣS ⊗ΣT ), where ΣS : p × p represents the
spatial covariance matrix and ΣT : n × n, the temporal covariance matrix.
This separable covariance structure implies no space–time interaction in
spatial–temporal processes.

Based on these assumptions, the spatial covariance matrix can be esti-
mated by Σ̂S = 1

nYY′, where Y is the anomaly matrix defined in (6.1). The
spectral decomposition theorem implies the existence of a unique decompo-
sition for Σ̂S such that Σ̂S = Ψ̂Λ̂2Ψ̂′, where Λ̂2 = diag{λ̂2

1, . . . , λ̂
2
p} with

λ̂1 > . . . > λ̂p > 0 being the eigenvalues for ZZ′; each column of Ψ̂ is the
eigenvector corresponding to the associated eigenvalue. Hence, we represent
ΣS as

ΣS = ΨΛ2Ψ′

= (ΨΛ)(ΨΛ)′

= ΦΦ′, (6.4)

a form of the KL expansion. We then obtain the classical EOFs from Φ̂ =
6“Classical” EOFs are usual EOFs used in literature in which it ignores temporal

components.
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Ψ̂Λ̂.

However, the classical EOFs do not efficiently estimate the population
level counter parts in ΣS without temporal independence, an unrealistic as-
sumption in most cases. Moreover, this unrealistic assumption might provide
misleading information about the spatial pattern obtained by the classical
EOFs. In the following section, we will demonstrate this deficiency in clas-
sical EOFs through some simulation studies. Moreover, a potential problem
arises about how one can avoid the negative effects caused by correlated
samples, that is, temporally correlated sequences.

Next in Simulation Study 1, we show severe problems that classical EOFs
can cause in a separable space–time field with known EOF matrix. To do
this, we need to construct the orthogonal matrix O in the spectral decompo-
sition theorem. Gram–Schmidt’s process is a procedure to obtain an orthog-
onal basis. The known EOFs can be constructed using the Gram–Schmidt’s
process to have a specified diagonal matrix Λ and an orthonormal basis
function Φ. This construction starts with any set of given orthogonal vec-
tors, saying, O1, . . . ,Ok, for 1 ≤ k ≤ n − 1, and k ∈ Z. Lemma 6.2.1 gives
the details.

Lemma 6.2.1 Given the orthogonal vectors G1, . . . ,Gk, with Gj : p×1 for
j = 1, . . . , k, we obtain an orthogonal matrix G = (G1, . . . ,Gp) : p × p by
repeating steps (i)–(iii) for j = k + 1, . . . , p :

(i) Generate a realization yj from Np(0, Ip).

(ii) Fit the linear regression model:

yj = A0 +
j−1∑

i=1

AiGi + εi,

and obtain the estimated coefficients {Âi : i = 0, . . . , j − 1}.

(iii) Denote Gj to be the fitted residuals yj − Â0 −
∑j−1

i=1 ÂiGi such that
Gj ⊥ {G1, . . . ,Gj−1}.
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This lemma gives us the orthonormal basis function by normalizing the
generated orthogonal vectors G1, . . . ,Gp. We hereafter use O to represent
the orthonormal basis matrix using the Gram–Schmidt type expansion.
Since ΣS = OΛ2O′, we then obtain the spatial covariance function ΣS

using the above constructed EOFs.

Simulation study 1

The objective of this study is to compare three different types of EOFs
for a separable state–space process with known EOFs and known temporal
covariance matrix.

Simulated data

In this study, the spatial region is 18 × 18 grid locations, grid cell edges
being taken to be 6 km. The regular lattice–base grids have 324 grid lo-
cations. The spatial–temporal process over this lattice is assumed to be a
mean 0 process with a separable spatio–temporal covariance structure. Af-
ter constructing the EOFs matrix using the Gram–Schmidt’s method with
a known diagonal matrix, the spatial covariance function is formed by their
products as presented by the spectral decomposition theorem. The temporal
covariance function is simply a causal and invertible AR(1) process with the
variance parameter σ2

v and AR coefficient, φ. The autocorrelation function
(ACF) for the AR(1) process is given by

γ(h) =





σ2
v

1−φ2 h = 0
σ2

v
1−φ2 φ||h|| h ≥ 1.

In this example, we choose two orthogonal vectors G(1) and G(2) to con-
struct the EOFs using the Gram–Schmidt method. More specifically, for
p = 4q, q = 1, 2, . . . , G(i) is a p–dimensional vector in which its jth entry,
G

(i)
j , is 1 for j ∈ [1, p

2 ]; -1 for j ∈ [p
2 + 1, p]; and 0 otherwise. To motivate

development of our simulation model, we think of surface temperature as
our response of interest. This response would be strongly determined by lat-
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itude, high in summer in the northern hemisphere while low in the southern.
We choose G1 to represent that spatial pattern. We then choose G2 to rep-
resent a High–Low elevation spatial pattern such that G2 is a p–dimensional
vector by repeating (1√p/2,−1√p/2) 7 for

√
p times. The constructed orthog-

onal matrix given by these two orthogonal vectors, denoted by G, can be
obtained by applying the Gram–Schmidt method in Lemma 6.2.1.

The first four diagonal entries in the specified diagonal matrix Λ2 are
assumed to be 40, 20, 15, and 10. The remaining diagonal entries can be
constructed by a decreasing sequence such that their summation is 15 and
the minimum or last entry, around 0.023.

Figures 6.1 and 6.2 plot the contours for simulated data at t = 5 and
t = 28 in the region we study, respectively. These graphs show there may be
the North–South and High–Low spatial patterns in this field, respectively.
Moreover, this spatio–temporal field varies spatially and temporally.

To check the temporal variations in this simulated database, we ran-
domly select four grid locations and plot their histograms, ACFs and PACFs
in Figure 6.3. These graphs show a very strong autocorrelation in the time
series data of each of the selected four sites, as expected from the strong
AR(1) temporal process in the data.

Results and comparisons

We first compute the classical EOFs and compare them with the true EOFs.
Figure 6.4 plots the contours for the true EOFs. Clearly the first spatial
pattern is North–South spatial pattern and the second, High–Low elevation
spatial pattern, the principle determinants of surface temperature. Figure
6.5 plots the contours for the classical EOFs. Although it seems that classical
EOFs can also capture the first two types of spatial patterns, obviously the
estimates for the contours are far from the truth. For example, the values
for the first true EOF in the northern region is close to be 0.35, while for
the first classical EOF, close to be 0.6 at the northeastern region and 1.0,

the northwestern region. Same sort of things happen for the second true
7Here 1√p/2 represents the

√
p/2–dimensional vector of 1, and so as −1√p/2.
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Figure 6.1: Contour plot for the simulated data at day t = 5 in the 18 × 18 grid
locations. The AR coefficient in the simulated data is set to be φ = 0.9. (White=-
4.0; Black=4.0.)

and classical EOFs. We conclude that the classical EOFs fail to capture the
true spatial patterns in this field due to the field’s high autocorrelation.

The next section provides an alternative when the temporal covariance
matrix, ΣT , is known, a method leading to what we call “corrected” EOFs.

6.3 Corrected EOFs

This section presents an alternative to the classical EOFs of Section 6.2,
given a known temporal covariance matrix. We call the EOFs obtained
corrected EOFs, meaning that the temporal dependence structure has been
incorporated. Although assuming the temporal covariance ΣT to be known
is unrealistic, the analysis exposes the potentially serious problem that the
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Figure 6.2: Contour plot for the simulated data at day t = 28 in the 18 × 18
grid locations. The AR coefficient in the simulated data is set to be φ = 0.9.
(White=-4.0; Black=4.0.)

classical EOFs can cause.
Given the matrix–variate normal distribution for Y ∼ Np×n(0,ΣS⊗ΣT ),

we have Y∗ = YΣ−1/2
T ∼ Np×n(0,ΣS ⊗ In), by a standard property of the

matrix–variate normal distribution. It is then straightforward to estimate
ΣS using 1

n

∑n
t=1 Y∗

t (Y
∗
t )
′ = 1

nY∗(Y∗)′. In other words,

Σ̂S =
1
n
YΣ−1

T Y′, (6.5)

given the non–singular covariance matrix ΣT . The corrected EOFs are then
constructed using the spectral decomposition theorem, same as the classical
EOFs. To obtain unique EOFs, we restrict the eigenvectors to form the
orthonormal matrix that has positive elements in its first row.

We now revisit the example in Section 6.2 but obtain the corrected EOFs
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Figure 6.3: Histogram (first row), ACFs (second row) and PACFs (third row) for
the simulated data at four randomly selected sites in the region. The AR coefficient
in the simulated data is set to be φ = 0.9.

and compare them with the classical and true EOFs to see if the corrected
EOFs improve our knowledge about the principal spatial patterns in this
simulated database.

Simulation study 1 (revisited)

Figures 6.4–6.5 demonstrate the first two EOFs for true, classical and cor-
rected, respectively. The first two true EOFs seem to have an obvious spatial
pattern, seen in the corrected EOFs but not in the classical EOFs. The re-
sults demonstrate the potential danger in using the classical EOFs when the
spatio–temporal data are highly temporally correlated as well.

Table 6.1 represents the percentage of spatial variation for the first
10 EOFs by the true, classical, and corrected methods. The corrected
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Figure 6.4: Contour plots for the first two true EOF vectors: (a) – 1st EOF; and
(b) – 2nd EOF. (White=-1.7; Black=1.4.)

EOFs are much closer to the true values than the classical ones. Table
6.2 demonstrates the matrix discrepancies8 for the classical and corrected
EOFs against the true EOFs. Assuming the temporal covariance function
is known, the corrected EOFs are closer to the true EOFs than the classi-
cal ones. The matrix discrepancy between the true and corrected EOFs is
much smaller than that between the true and classical one. Moreover, the
corrected EOFs better characterize the first two spatial types in this field
than the classical EOFs do.

More generally, for an unknown temporal covariance structure, it is im-
possible to use the corrected EOFs to identify the principal spatial patterns

8The matrix distance between two matrices, A and B, is defined through the concept
of the inner product of these two matrices, that is, ||A − B|| = tr(AB′). The matrix

discrepancy between A and B is defined as
√

||A−B||
||B|| .
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Figure 6.5: Contour plots for the first two classical EOF vectors: (a) – 1st EOF;
and (b) – 2nd EOF. (White=-1.7; Black=1.4.)

in spatio–temporal fields. One may have interest to know whether we can
obtain an accurate estimate of the spatial covariance matrix based on the
observations so that the EOFs can better represent the principal spatial
patterns. Moreover, how can one take into account of uncertainties in the
estimates?

To help answer those questions, we next propose a new Bayesian version
of EOFs by adding a prior distribution for the spatial covariance matrix.

6.4 Bayesian EOFs

In practice, the corrected EOFs cannot be computed because of the unknown
temporal dependence structure for the spatial–temporal matrix–variate re-
sponse Z : p× n, where p is the total number of spatial locations in the do-
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Figure 6.6: Contour plots for the first two corrected EOF vectors: (a) – 1st EOF;
and (b) – 2nd EOF. (White=-1.7; Black=1.4.)

main that is of interest and n, the total number of time points. Henceforth,
Bayesian EOFs are proposed in this section as an alternative to classical
EOFs.

Bayesian EOFs: the underlying model

The Bayesian EOFs model we adopt here is given by

Z = µ⊗ 1′n + ΦX + ε, ε ∼ Np×n(0,ΣS ⊗Σε) (6.6)

and
X |θ ∼ Np×n(0, Ip ⊗ΣT ), (6.7)

where we assume both spatial and temporal covariance matrices ΣS and
ΣT have full rank, that is, nonsingular. Moreover, we deal with two cases
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Index of EOFs True Classical Corrected
1 40.000 40.833 39.507
2 20.000 20.230 20.178
3 15.000 15.890 15.072
4 10.000 9.165 10.267
5 0.023 0.544 0.189
6 0.024 0.519 0.183
7 0.024 0.481 0.178
8 0.024 0.434 0.178
9 0.024 0.431 0.173

10 0.024 0.405 0.171

Table 6.1: Percentage of spatial variation (%) for the first 10 EOFs by the true,
classical, and corrected methods (ρ = 0.9).

Matrix discrepancies
Classical v.s. True 4.347
Corrected v.s. True 0.137

Table 6.2: Matrix discrepancies for the classical and corrected EOFs against the
true EOFs.

for the temporal covariance matrix ΣT : (i) It is randomly distributed with
an inverted Wishart distribution; and (ii) It has a semi–parametric form,
that is, ΣT = σ2ρ(., θ), with known temporal correlation form for ρ(., .) but
unknown parameters σ2 and θ. We assume that the temporal correlation
matrix, ρ(., θ), decreases as the difference between two time points increases,
such that ρ(ti − tj , θ) → 1 as ti − tj → 0. In practice, we assume σ2 =
1 due to the non–identifiable property for the Kronecker product. The
semi–parametric form for ρ(., θ) is then estimable using the MCMC method.
For simplicity, we assume no small–scale spatial variation and measurement
errors, that is, no ε term in (6.6), deferring such refinements to future work.

In (6.6), Φ can be treated as a constant matrix for a known ΣS by the
Karhunen–Loeve (KL) expansion. Given the positive definite spatial covari-
ance function ΣS : p× p, we have the unitary orthogonal matrix O : p× p,

with its first row being positive, and diagonal matrix Λ = diag {λ1, . . . , λp} :
p × p, with λ2s being the eigenvalues for ΣS and λ1 > . . . > λp > 0, such
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that

Σ−1
S = OΛ−2O′.

Hence, we have the Karhunen–Loeve (KL) expansion as follows:

Σ−1
S = (λ−1

1 O1, . . . , λ−1
p Op)(λ−1

1 O1, . . . , λ−1
p Op)′

= (Φ1, . . . ,Φp)(Φ1, . . . ,Φp)′

=
p∑

j=1

ΦjΦj ′

= ΦΦ′,

where Φj = λ−1
j Oj , for j = 1, . . . , p, and Φ = (Φ1, . . . ,Φp) : p× p.

However, when ΣS is a random matrix, the EOFs represented by the
columns of Φ are also random. Moreover, the orthogonal matrix can be
treated as either constant or random in the KL expansion. The distribution
for the random orthogonal matrix has been obtained by James (1954a), as an
invariant uniform distribution on the Stiefel manifold (see Definition 6.4.2).
Moreover, he also obtained the independent distribution of the diagonal
entries in Λ2 in the KL expansion.

Then a Bayesian version of EOFs can be obtained either by the MCMC
method or through the empirical Bayes approach. The first level of a hier-
archical model places no restriction on the form of our Bayesian EOFs, and
so it is a nonparametric approach. When the prior for the purely spatial
covariance matrix, ΣS , has been determined, Φ can be obtained using the
KL expansion and Lemma 6.4.1 below.

Therefore, the Bayesian EOF model (6.6)–(6.7) is completed by specify-
ing prior distributions for the model parameters: p(µ), p(ΣT ) for Case (i) [or
p(θ) for Case (ii)] and p(ΣS). Lacking specific prior information, we assume
p(µ) ∝ 1 and Σ−1

S ∼ Wp(δS ,ΞS) with δS and ΞS being hyperparameters.
For Case (i), we assume Σ−1

T ∼ Wn(δT ,ΞT ). The collection of hyper-
parameters can be denoted by H1 = {δS , δT ,ΞS ,ΞT }. The joint posterior
distribution we are interested in is given by p(µ,ΣT ,ΣS |Y).
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For Case (ii), we assume θ ∼ Nk(θ0,Σ0). The collection of hyperpa-
rameters here can be denoted by H2 = {δS ,ΞS , θ0,Σ0}. The joint posterior
distribution we need for inference is then given by p(µ, θ,ΣS |Y).

In summary, we consider the following two Bayesian models to obtain
the Bayesian EOFs for each of the two cases under consideration in which
we assume no measurement error (εs):

(i) The Bayesian model is given by

Z = µ⊗ 1′n + ΦX (6.8)

X ∼ Np×n(0, Ip ⊗ΣT ) (6.9)

Φ = OΛ−1, (6.10)

where Σ−1
S = OΛ−2O′ by the above KL expansion. And the priors for

the model parameters are assumed mutually independent and given as
follows:

p(µ) ∝ 1 (6.11)

Σ−1
S ∼ Wp(δS ,ΞS) (6.12)

Σ−1
T ∼ Wn(δT ,ΞT ). (6.13)

(ii) The Bayesian model is given as in (6.8)–(6.10), but ΣT can be written
as ρ(., θ), where ρ(., .) is the known temporal correlation matrix, de-
creasing as the difference between any two time points increases, and
θ is an unknown parameter. The priors for µ and Σ−1

S are given in
(6.11)–(6.12), respectively, and they are mutually independent. Model
specification is completed with the prior for the temporal covariance
function given by:

θ ∼ Nk(θ0,Σ0). (6.14)

Notice that we assume both ΣS and ΣT are valid covariance matrices
and non–singular, that is, the rank for ΣS is p and for ΣT , n.
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Decomposition of Y ∼ Np×n(0,ΣS ⊗ In)

We first describe results from James (1954a), who discovers that the dis-
tribution of the mean 0, temporal independent random matrix Y [that is,
Y ∼ Np×n(0,ΣS ⊗ In)] can be uniquely decomposed into three indepen-
dent parts, specifically, one part being Wishart distributed, one part being
uniformly distributed on a Grassmann manifold and the last part being uni-
formly distributed on a Stiefel manifold, that is, an orthogonal group in this
setting. He constructs invariant measures on the orthogonal group (that
is, the Haar measure), the Grassmann and Stiefel manifolds. James also
finds the distribution of a non–central Wishart distribution using the Haar
measure (1954b) and the distribution of the latent roots for a covariance
matrix (1960). We now introduce some basic notation from James (1954a)
and Chikuse (2004).

Definition 6.4.1 The orthogonal group, O(n), is the set of all orthogonal
matrices with the operation of matrix multiplication.

Definition 6.4.2 The Stiefel manifold, Vk,n = {V : n× k;V′V = Ik}, is a
set of k (k ≤ n) orthonormal matrices in Rn.

Definition 6.4.3 The Grassmann manifold, Gk,n−k, is the set of all k–
dimensional hyperplanes in Rn that pass through the origin.

James sates that “. . . the Grassmann and Stiefel manifolds may be re-
garded as coset spaces of the orthogonal group” (1954, p.63), an important
property on their relationships. The main result from James has been sum-
marized in the following lemma.

Lemma 6.4.1 (James, 1945) Suppose Y = (y1, . . . ,yn) ∼ Np×n(0,ΣS ⊗
In). Then we have

Y = OLP, (6.15)

where O : p×p represents an orthogonal matrix that is uniformly distributed
over the Grassmann manifold, P : p × n, a semi–orthogonal matrix (i.e.,
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PP′ = Ip in this case) that is uniformly distributed over the Stiefel manifold
and L : p× p, a diagonal matrix with diagonal entries {l1, . . . , lp} such that
l21, . . . , l

2
p are the eigenvalues for YY′ with l1 > . . . > lp > 0.

Mardia and Khatri (1977) develop the exact and asymptotic distribu-
tions for the random matrix uniformly distributed on a Stiefel manifold.
They also discuss the matrix form of the von Mises–Fisher distribution on
a Stiefel manifold. We will not discuss this application of James in this
chapter but leave the construction of the posterior distributions on Stiefel
and Grassmann manifolds for future research.

Theoretical results

We present the related inference for Bayesian EOFs in following lemmas and
theorems. All proofs in this section are listed in Appendix C.1.

Lemma 6.4.1 and the KL expansion below provide the basis for the
theoretical results needed to obtain Bayesian EOFs. It leads to the prior
distribution as a special case when ΞS = Ip, as shown in following lemma.

Lemma 6.4.2 If Σ−1
S ∼ Wp(n, Ip) for some n ∈ Z+, by the KL expan-

sion and Lemma 6.4.1, we have that the λ−2’s are mutually independently
distributed with λ−2

j ∼ χ2
n, for j = 1, . . . , p, and O : p × p is uniformly

distributed on the Stiefel manifold.

Lemma 6.4.2 provides one way to sample the random matrix Σ−1
S from

its prior distribution Wp(δS , Ip).

Theorem 6.4.1 Consider the data matrix Y : p× n ∼ Np×n(0,ΣS ⊗ΣT ).
Given the nonsingular spatial and temporal covariance matrices ΣS and ΣT ,

let Y∗ = YΣ−1/2
T . Then Y∗ ∼ Np×n(0,ΣS ⊗ In). Consequently, Y∗ =

Σ1/2
S OLP, where O, L, and P are given in Lemma 6.4.1. The Bayesian

EOFs are then obtained as W = 1
nΣ1/2

S OL.

Theorem 6.4.2 Consider the data matrix Y : p× n ∼ Np×n(0,ΣS ⊗ΣT ).
Suppose the temporal covariance matrix ΣT is nonsingular and known. Then
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we have Y∗ = YΣ−1/2
T ∼ Np×n(0,ΣS ⊗ In). Assume Σ−1

S ∼ Wp(δS ,ΞS).
The posterior distribution for the spatial precision matrix Σ−1

S is given as
follows:

Σ−1
S |Y ∼ Wp(δo,Ξo), (6.16)

where δo = δS + n, and

Ξo = ΞS −ΞSY(Y′ΞSY + ΣT )−1Y′ΞS . (6.17)

The Bayesian EOFs can be obtained when ΣS is estimated or sampled from
its posterior distribution.

Consequently from Theorem 6.4.2, we can either obtain the estimates for
ΣS using an empirical method such as that of the Sampson–Guttorp (SG)
or sample it from its posterior distribution in (6.16). In other words, we can
either use empirical Bayes or hierarchical Bayesian methods to obtain the
estimates for the model parameters.

If the spatial covariance matrix were known, valid and nonsingular, we
would have a similar result for the posterior distribution of the temporal
covariance matrix, ΣT . The next theorem tells us its posterior distribution
if the prior for Σ−1

T is assumed to be Wishart distributed, that is, Case (i).

Theorem 6.4.3 Consider the data matrix Y : p× n ∼ Np×n(0,ΣS ⊗ΣT ).
Suppose the spatial covariance matrix ΣS is known, valid and nonsingular.
Assume the prior for Σ−1

T is Wn(δT ,ΞT ). Then the posterior distribution
for Σ−1

T is given by

Σ−1
T |Y ∼ Wn(δ∗,Ξ∗), (6.18)

where δ∗ = δT + p and

Ξ∗ = ΞT −ΞTY′(YΞTY′ + ΣS)−1YΞT . (6.19)

In Case (ii) where the temporal covariance matrix is assumed to have a
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known parametric form but unknown parameters, we can obtain the pos-
terior distribution for these parameters given a valid and known spatial
covariance matrix. This posterior distribution is given in the following the-
orem.

Theorem 6.4.4 Given the same condition as in Theorem 6.4.3 and the
fully Bayesian model in Case (ii) with the priors for θ in (6.14), the condi-
tional posterior distributions for θ are given as follows:

p(θ|Y) ∝ exp
{
−1

2

[
1
σ2

tr(V′Vρ(., θ)−1) + (θ − θ0)′Σ−1
0 (θ − θ0)

]}
,

(6.20)

where V = Σ−1/2
S Y.

In practice, both temporal and spatial covariance matrices are unknown,
and so conditions in Theorems 6.4.1 and 6.4.4 do not hold. Although the
nonsingularity condition for these two covariance matrices might be difficult
to verify due to the challenging numerical problems, we need the condition
to obtain the posterior samples for both matrices in this chapter. Future
research will be devoted to improve on the results.

To obtain posterior samples for both parameters in the MCMC frame-
work, we can either use a mixture of MCMC and empirical Bayes methods
or use pure MCMC runs. We will illustrate the algorithm for both cases
next. But the idea here is to obtain the conditional posterior samples for
µ, ΣS and ΣT subsequently. The empirical Bayes method will be used to
obtain the estimate for ΣS given the data matrix, µ, and ΣT . We use the
Gelman and Rubin R statistics as a device to check the convergence of the
Markov chains (Gelman et al., 2004, p. 296–297). The estimates for the
model parameters are then obtained as the mean of the posterior samples
after the burn–in period.

We next develop the posterior conditional distributions for the model
parameters for Cases (i) and (ii). The Bayesian EOFs can be obtained by
Theorem 6.4.1 in which the mean field, spatial and temporal covariance
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matrices are estimated from their posterior distributions or by the empirical
Bayes method.

Posterior conditional distributions

The posterior conditional distributions for µ, Σ−1
S , and Σ−1

T can be obtained
for Cases (i) and (ii) in the fully Bayesian framework. The proofs of the
theorems in this section are presented in Appendix C.1. We first present
the conditional posterior distributions for model parameters for Case (i) in
the following theorem.

Theorem 6.4.5 Given the Bayesian hierarchical model in (6.8)–(6.13), the
posterior conditional distributions for these model parameters are given as
follows:

(i) The conditional posterior distribution for µ is given by

µ|Z,ΣS ,ΣT ∼ Np(M, Σ∗ΣS) (6.21)

where Σ∗ = {tr(1′n1nΣ−1
T ) }−1 and M = ZΣ−1

T 1′nΣ∗.

(ii) The conditional posterior distribution for Σ−1
S is given by

Σ−1
S |Z, µ,ΣT ∼ Wp(δ1,Ξ1), (6.22)

where δ1 = δS + n,

Ξ1 = Ξs −ΞsY(Y′ΞSY + ΣT )−1Y′Ξs, (6.23)

and Y = Z− µ⊗ 1′n.

(iii) The conditional posterior distribution for Σ−1
T is given by

Σ−1
T |Z, µ,ΣS ∼ Wn(δ2,Ξ2), (6.24)

where δ2 = δT + p,

Ξ2 = ΞT −ΞTY′(YΞTY′ + ΣS)YΞT , (6.25)
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and Y = Z− µ⊗ 1′n.

In the same way, the posterior conditional distributions for the model
parameters for Case (ii) are obtained in the next theorem.

Theorem 6.4.6 Given the Bayesian hierarchical model in (6.8)–(6.12) and
(6.14), the posterior conditional distributions for µ and Σ−1

S are given in
Theorem 6.4.5. Let V = Σ−1/2

S (Z− µ⊗ 1′n). Moreover, the posterior condi-
tional distribution for θ is given by:

p(θ|Z, µ,ΣS) ∝ exp
{
−1

2

[
tr

(
VV′ρ(., θ)−1

)
+ (θ − θ0)′Σ−1

0 (θ − θ0)
]}

.

(6.26)

After obtaining the estimates for the spatial and temporal covariance
matrices, as well as other model parameters for both cases, the Bayesian
EOFs can then be obtained by Theorem 6.4.1, Lemma 6.4.1 and the KL
expansion.

Next we illustrate how the MCMC algorithm can be used to obtain the
posterior samples from the joint posterior distribution p(µ,Σ−1

S ,Σ−1
T |Z) and

p(µ,Σ−1
S , θ|Z) for Cases (i) and (ii), respectively.

MCMC algorithms

To obtain the posterior samples from the joint posterior distribution of
model parameters, µ,ΣS and ΣT (or θ), the MCMC algorithm is used to
draw samples from their posterior distributions. For Case (i), we use Gibbs
sampling method based on the full conditional distributions we obtained
before. For Case (ii), a Metropolis–within–Gibbs algorithm is used because
the posterior conditional distribution for θ does not have any closed form.

Algorithm 6.4.1 For Case (i), Gibbs sampling can be used to draw the
posterior samples from p(µ,ΣS ,ΣT |Z) :

1. Initialization: set

µ(1) = Z
row

,
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sample

Σ−1
S

(1) ∼ Wp(δS ,ΞS),

and

Σ−1
T

(1) ∼ Wn(δT ,ΞT ).

2. Given the (j − 1)th values, µ(j−1), Σ−1
S

(j−1)
, Σ−1

T
(j−1)

, and Z:

(1) Sample µ(j) from p(µ|Z,ΣS
(j−1),ΣT

(j−1)) from (6.21).

(2) Sample Σ−1
S

(j) from p(Σ−1
S |Z, µ(j),ΣT

(j−1)) from (6.22).

(3) Sample Σ−1
T

(j) from p(Σ−1
T |Z, µ(j),ΣS

(j)) from (6.24).

3. Repeat until convergence.

The Metropolis–within–Gibbs algorithm is omitted here because we present
a similar result in Chapter 2. In this section, we give the algorithm for a very
special case when the temporal process is assumed to be an AR(1) process.
Hence we have φ as the parameter that characterizes the AR(1) process.
Assume that φ ∼ N(φ0, σ

2
φ0

). Then the collection of hyperparameters can
be denoted by H = {φ0, σ

2
φ0

, δS ,ΞS}. Since there is no closed form for the
posterior conditional distribution in (6.26), the Metropolis–within–Gibbs
algorithm could then be used to draw posterior samples of interest.

The next section includes a straightforward extension on the Bayesian
EOFs results where its spatial covariance is assumed to have a GIW distri-
bution instead of IW (see Le and Zidek (2006), for example).

6.5 Extension to the Bayesian EOFs

We can extend the above results about Bayesian EOFs to incorporate the
GIW prior for the spatial covariance structure in such a way that the GIW
prior reflects some characteristics of the data matrix. Le & Zidek (1992–
2006) develop theoretical results for modelling spatio–temporal processes,
i.e., the BSP approach in Chapter 4.
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In such a Gaussian GIW framework, the spatial covariance matrix ΣS

can be estimated by the SG–method or Damian SG–method (Damian et al.,
2002). Therefore, the estimates for the ΣS can be updated at each iteration
in the MCMC sampling. This will be carried out in future work.

The next section includes two simulation examples that help assess the
performance for the Bayesian, classical and corrected EOFs.

6.6 Simulation Study 2

The Bayesian EOF models we consider above have a very general structure.
Note that ε in (6.6) represents small scale spatial variation or measurement
error. If ε is close to 0, or equivalently to a very small value for Σε, we
then have approximately Y = µ ⊗ 1′n + ΦX, where Φ’s columns are the
EOFs for ΣS and X|θ ∼ Np×n(0, Ip ⊗ΣT (θ)). If ΣT (θ) = In, then we have
the classical EOFs in Section 6.2. If ΣT (θ) 6= In but known, we then have
the corrected EOFs in Section 6.3. If ΣT (θ) is unknown, we can use the
Bayesian EOFs obtained in Section 6.4.

The objective in this example is to compare the three different types of
EOFs for a separable state–space process with known spatial and temporal
covariance matrices. To do that, we first simulate the matrix–variate data
set. We then compute these three EOFs and compare them with the true
EOFs by contour plots and the matrix discrepancies.

To briefly review these three types of EOFs, suppose Y : p×n represents
the anomaly matrix for p sites and n time points, and follows a multivariate
normal distribution Np×n(0,ΣS ⊗ΣT ). Recall that the classical EOFs es-
timate the sample spatial covariance matrix by 1

nYY′. Given the temporal
dependence structure, that is, the temporal covariance matrix, the corrected
EOFs estimate the sample spatial covariance matrix by YΣ−1

T Y′. Given the
priors for the spatial and temporal covariance matrix, the Bayesian EOFs
estimate the sample spatial covariance matrix in the hierarchical model by
means of the corresponding posterior mode.

We consider two cases in this section to assess the performance of the
EOFs for two different temporal dependence structures. For both cases, we
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assume a separable space time covariance structure, that is, an exponential
spatial covariance function and an AR(1) temporal covariance function. In
particular, the spatial covariance function is given by

(ΣS)ij = exp(−Vij/λ), (6.27)

where Vij is the Euclidean distance between si and sj , for i, j = 1, . . . , p and
λ, a scale parameter. The temporal covariance function between tk and tl

is given by σ2
vφ

2||tk−tl||, for tk, tl ∈ {1, . . . , T}. Note that |φ| < 1 indicates
a causal AR(1) process. If φ ' 0, then yt are approximately independent;
if φ ' 1, then {yt : t = 1, . . . , n} is a highly autocorrelated AR(1) process.
We consider Case (i), φ = 0.1, and Case (ii), φ = 0.9.

The geographical region in this simulation study is set to be [0.1, 1.0]×
[0.1, 1.0]. We select 100 grid points in this region to be the locations of
interest, i.e., p = 100. We then choose n = 120 time points at each of these
100 sites.

The initial settings for the separable space–time covariance functions are
given as follows: λ = 0.4, σ2

v = 1.0, and φ = 0.1 for Case (i), and 0.9 for
Case (ii).

We define Y (s, t) = Z(s, t)−µ̂(s), the anomaly at site s and time t, where
µ̂(s) = 1

n

∑n
t=1 Z(s, t). We obtain the classical, corrected, and Bayesian

EOFs using Y (s, t).
We now compare the corrected, classical and “true” EOFs in the these

two cases: (i) φ = 0.1, and (ii) φ = 0.9, respectively.

Simulated data

Suppose Y : p × n ∼ Np×n(0,ΣS ⊗ ΣT ). One way to generate the sim-
ulated data is by first simulating Y∗ = YΣT

1/2 = (y∗1, . . . ,y∗n). Thus,
y∗t ∼ Np(0,ΣS), independently for t = 1, . . . , n. We then generate Y by
Y∗ΣT

−1/2.

An alternative to obtain the simulated data uses James’s result and the
KL expansion. Given both ΣS and ΣT , we first illustrate the way to generate
the simulated data in any given regions. Given the spatial covariance matrix
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ΣS , the Karhunen–Loeve expansion gives the unique orthogonal matrix O :
p×p with its first row being positive and the unique diagonal matrix Λ2 : p×p

with its decreasing diagonal entries being the eigenvalues of ΣS , such that

ΣS = OΛ2O′

= (ΛO′)′ΛO′

= (λ1O(1), . . . , λpO(p))(λ1O(1), . . . , λpO(p))′

= (Φ(1), . . . ,Φ(p))(Φ(1), . . . ,Φ(p))′

=
p∑

j=1

Φ(j)(Φ(j))′

= ΦΦ′, (6.28)

where Φ = (Φ(1), . . . ,Φ(p)) : p× p and Φ(j) = λjO(j) for j = 1, . . . , p.

Given ΣT : n×n, the corresponding Karhunen–Loeve expansion is given
by

ΣT = PL2P′

=
p∑

j=1

Ψ(j)(Ψ(j))′

= ΨΨ′, (6.29)

where P : n × n represents the orthogonal matrix with its first row posi-
tive; L2 is a diagonal matrix with decreasing but positive diagonal entries
l21, . . . , l

2
n; Ψ = (Ψ(1), . . . ,Ψ(n)), and Ψ(i) = liP(i) for i = 1, . . . , n.

Consequently, if Y : p×n ∼ Np×n(0,ΣS⊗ΣT ), and Ξ ∼ Np×n(0, Ip⊗In),
then Y = ΦΞΨ′ where Φ and Ψ are given by (6.28) and (6.29), respectively.
Let Ξ∗ = ΞΨ′. Then Ξ∗ ∼ Np×n(0, Ip ⊗ΣT ), and Y = ΦΞ∗.

In short, the simulated data can be generated, for known spatial and
temporal covariance matrices, as follows:

(i) Uniquely obtain Φ and Ψ as in (6.28) and (6.29) for known ΣS and
ΣT , respectively.

(ii) Generate Ξ ∼ Np×n(0, Ip⊗In) by n samples independently distributed
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from the multivariate normal distribution Np(0, Ip).

(iii) Obtain the simulated data matrix Y : p× n by ΦΞΨ′.

Results for Case (i): ρ = 0.1

Table 6.3 demonstrates the percentage of the spatial variance of each spatial
pattern found by the EOFs against the total space variance. It shows that
these percentages for the true, classical or corrected EOFs are quite close to
each other. Table 6.4 presents the matrix discrepancies of the corrected or
classical EOFs to that of the true EOFs. These two matrix discrepancies are
close to each other but the classical one is slightly better than the corrected
one.

Index of EOFs True Classical Corrected
1 33.584 31.913 31.883
2 11.122 13.476 13.457
3 11.122 8.963 8.996
4 5.108 6.193 6.201
5 3.853 4.732 4.747
6 3.638 3.467 3.467
7 2.274 2.733 2.735
8 2.274 2.333 2.329
9 1.537 1.946 1.945

10 1.537 1.719 1.724

Table 6.3: Percentage of spatial variation (%) for the first 10 EOFs by the true,
classical, and corrected methods (ρ = 0.1).

Matrix discrepancies
Classical v.s. True 0.230
Corrected v.s. True 0.233

Table 6.4: Matrix discrepancies for the classical and corrected EOFs against the
true EOFs (ρ = 0.1).

Figures 6.7–6.9 plot the contours for the three types of EOFs. In Figure
6.7, the first EOF in (a) shows an ellipsoidal spatial pattern in this field,
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with its mode at the center of this region. The second EOF in (b) shows a
north–east to south–west shifting spatial pattern with the negative mode at
the north–east corner and the positive one at the south–west corner. The
third EOF in (c) shows an approximately opposite spatial pattern to that
in (b). The remaining three EOFs in (d)–(f) also represent certain spatial
patterns in this field. It shows the classical EOFs to be quite similar to the
corrected one due to the very small value of φ. Moreover, the ratio of matrix
discrepancy between the classical and true EOFs matrix is 0.25, while that
between the corrected and true ones, 0.25. It verifies our expectation that
both EOFs work quite well since the “true” data are approximately inde-
pendent samples across the overall locations. Classical EOFs are supposed
to capture the main types of spatial patterns in this case.
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Figure 6.7: Contour plots for the first 6 true EOFs (ρ = 0.1): (a) – 1st EOF;
(b) – 2nd EOF; (c) – 3rd EOF; (d) – 4th EOF; (e) – 5th EOF; and (f) – 6th EOF.
(White=-0.6; Black=0.9.)
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Figure 6.8: Contour plots for the first 6 classical EOFs (ρ = 0.1): (a) – 1st EOF;
(b) – 2nd EOF; (c) – 3rd EOF; (d) – 4th EOF; (e) – 5th EOF; and (f) – 6th EOF.
(White=-0.6; Black=0.9.)

Results for Case (ii): ρ = 0.9

Table 6.5 plots the percentages of the spatial variations for each of the
three types EOFs: true, classical, and corrected. This graph shows that the
corrected EOFs gives more accurate estimates on the majority diagonal ele-
ments of Λ in the KL expansion. Table 6.6 presents the matrix discrepancies
between the corrected and classical EOFs and the true EOFs. It shows that
the matrix discrepancy of the corrected EOFs against the true ones is much
smaller than that of the classical EOFs against the true ones, which implies
more accurate results of the corrected EOFs than those of the classical ones.

Figures 6.10–6.11 present the first six classical and corrected EOFs for
this case. Comparing them with Figure 6.7, it is obviously that the cor-
rected EOFs can estimate the main types of spatial patterns better than
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Figure 6.9: Contour plots for the first 6 corrected EOFs (ρ = 0.1): (a) – 1st EOF;
(b) – 2nd EOF; (c) – 3rd EOF; (d) – 4th EOF; (e) – 5th EOF; and (f) – 6th EOF.
(White=-0.6; Black=0.9.)

the classical ones. Moreover, the ratio of matrix discrepancy between the
classical and true EOFs matrix is 5.79, while that between the corrected and
true ones, 0.21. It shows that the classical EOFs are far from the “truth”
for the highly autocorrelated database.

6.7 Conclusions

We have proposed Bayesian EOF (BEOF) approach in this chapter and
show the corresponding theoretical results as well as the MCMC algorithm
to obtain the posterior samples of the model parameters. We have shown
that the corrected EOF method can be used to obtain better representation
of principal spatial patterns than the classical EOF method in two simula-
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Index of EOFs True Classical Corrected
1 33.584 33.572 37.702
2 11.122 20.789 11.868
3 11.122 9.660 11.005
4 5.108 7.835 6.204
5 3.853 4.341 4.344
6 3.638 3.302 3.405
7 2.274 2.870 2.038
8 2.274 2.287 1.910
9 1.537 1.746 1.521

10 1.537 1.583 1.460

Table 6.5: Percentage of spatial variation (%) for the first 10 EOFs by the true,
classical, and corrected methods (ρ = 0.9).

Matrix discrepancies
Classical v.s. True 4.978
Corrected v.s. True 0.332

Table 6.6: Matrix discrepancies for the classical and corrected EOFs against the
true EOFs (ρ = 0.9).

tion studies. From where, we conclude that the classical EOF may lead to
severe problems for a highly temporally correlated space–time process. The
corrected EOF greatly improves the performance of the classical EOF and
captures the principal spatial patterns better than the classical one. The
implementation of the BEOF method will be one future work, as well as the
comparisons among the BEOFs, corrected and classical EOFs.

Here notice that the BEOF is different than the Bayesian factor analysis
proposed by Aguilar and West (2000). In the Bayesian factor analysis they
defined, PCA is used for the time–varying ΣS . And MCMC algorithm has
to be used to draw posterior samples for the Bayesian factors, which is com-
putationally costly. We so extend the BEOF into an extension of the BSP
to model the univariate or multivariate responses in spatio–temporal fields,
which we call generalized Bayesian spatial prediction (GBSP) method.
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Figure 6.10: Contour plots for the first 6 classical EOFs (ρ = 0.9): (a) – 1st EOF;
(b) – 2nd EOF; (c) – 3rd EOF; (d) – 4th EOF; (e) – 5th EOF; and (f) – 6th EOF.
(White=-1.6; Black=2.2.)
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Figure 6.11: Contour plots for the first 6 corrected EOFs (ρ = 0.9): (a) – 1st EOF;
(b) – 2nd EOF; (c) – 3rd EOF; (d) – 4th EOF; (e) – 5th EOF; and (f) – 6th EOF.
(White=-1.6; Black=2.2.)
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Chapter 7

An Extension of the BSP:

Bayesian Spatio–Temporal

Models

This chapter proposes an extension of the BSP approach for modelling air
pollution data in large spatial–temporal domains, such as the AQS database
we discussed in Chapters 2 and 3. The motivation for this extension has
been addressed in previous studies. We extend the BSP approach because
of its computational efficiency and better model performance in spatial in-
terpolation and temporal prediction than those of the DLM. We integrate
the BSP into the DLM framework because the DLM has a fairly flexible
structure for temporal prediction at ungauged and gauged locations and
capability for handling the missing observations at gauged sites.

Our proposed model can deal with two types of covariates in this field:
time–varying but site invariant covariates and site–specific and time–varying
covariates. We decompose the underlying space–time processes into three
parts: a long–term spatial–temporal term, a short–term main spatial pat-
tern and a short–term spatial–temporal term. We also incorporate Bayesian
EOFs into the new model so we can model gridded data, such as the
MAQSIP (Multiscale Air Quality Simulation Platform) simulated data. We
also extend the univariate Bayesian spatio–temporal model to the multi-
variate case. Moreover, we summarize the MCMC method that allows us
to draw MC samples from the joint posterior distribution of model param-
eters. And henceforth, we are able to interpolate or predict the univariate
(or multivariate) pollutant(s) in large spatio–temporal domains.
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Section 7.1 introduces related research in this field. Section 7.2 proposes
a univariate Bayesian spatio–temporal model, an extension of the BSP ap-
proach, to model spatio–temporal processes over large domains. Section
7.3 discusses the relationships between our model and some others, such
as the DLM proposed by Huerta et al. (2004), the state–space model
(SSM) by Wikle and Cressie (1999), Gelfand et al. (2005), and Le–Zidek’s
approach (1992). Section 7.4 presents the multivariate Bayesian spatio–
temporal model. Section 7.5 demonstrates use of the MCMC algorithm to
draw samples from the joint posterior distribution of the model parameters.
Section 7.6 summarizes the advantages for the Bayesian spatio–temporal
models we propose in this chapter and the remaining future work for our
models.

7.1 Introduction

In large spatial–temporal domains, computational efficiency often emerges as
a major difficulty in modelling high–dimensional data. This computational
problem has been addressed by many approaches.

Mardia et al. (1998) propose the kriged Kalman filter (KKF) approach
in which the mean structure in the observation equation are formed by finite
common fields. However, in the discussion following Mardia et al.’s paper,
Cressie and Wikle (1998) criticize the KKF approach for its oversmoothing
predictor and lack of specific prior structure for some of the model parame-
ters, comparing with the SSM proposed by Wikle and Cressie (1999), a fully
hierarchical Bayesian approach. They use EOFs based on the orthogonal ba-
sis functions to capture the main spatial patterns in spatial–temporal fields
and so tackle the problem of the curse of dimensionality. However, Wikle
and Cressie’s SSM can only incorporate an AR(1) process, and so would
be inapplicable to more general structures of autocorrelated residuals after
removing the long–term spatial–temporal component from the observation
model.

Gelfand et al. (2005) develop a dynamic spatio–temporal model using the
linear coregionalization method (LMC) to incorporate different correlation
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structure for multivariate responses. However, their model is not applicable
to autocorrelated detrended residuals. A similar approach can also be seen in
Lee and Ghosh (2005). Johannesson et al. (2007) propose dynamic multi–
resolution spatial models (MRSM) to extend the MRSM and incorporate
dynamic temporal features. Moreover, the spatial domain considered in
their approach is recursively partitioned with a “tree–structured parent–
children relationship between cells (pixels) at adjacent resolution”. Lopes et
al. (2007) propose a spatial dynamic factor analysis to model the common
factors as a latent process with unknown finite dimension, much smaller
than the total number of sites. The forward–filtering–backward–sampling
method is then applied to the latent process to obtain the posterior samples
for state parameters in the latent process.

Other novel works related to geostatistics can be referred to Wacker-
nagel (1998). A fully Bayesian approach on kriging has been investigated
by Handcock and Stein (1993). They state the ordinary kriging can be
viewed as the Bayesian kriging under a non–informative prior for the mean.
In their approach, they incorporate the unknown covariance structure in
a Bayesian framework. The Bayesian kriging approach takes into account
more uncertainty on the unknown covariance structure and so is capable of
quantifying the performance of the estimated kriging predictor.

Le and Zidek developed their approach in accord with a specific set of
desiderata, one of which was computational feasibility. Moreover their ap-
plications were commonly made to relatively compact regions such as urban
areas. These two factors led them to use conventional EDA and time se-
ries approaches to initially remove regional temporal components by fitting
identical model parameters to all sites, making the standard errors of the
resulting estimates negligible. In one case where there method was employed
to cover a very large spatial domain (Fu et al., 2003) a spatial thin plate
spline was fitted over sites so, in effect, a different mean level µ(s) was sub-
tracted from each site’s series so as to center it. Thus in most cases, Le
and Zidek focus on modeling small scale variation. At the same time, even
though the large scale components were handled in a fairly ad hoc way, the
approach itself was very general and very flexible. Thus for example, it sub-
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sumes the approach of Wikle and Cressie (1999), albeit without the elegant
modeling foundations the latter provide and the substantive rationale they
give for it.

Our approach attempts to meet their desideratum of computational sim-
plicity while putting their prefiltering approach into a more formal hierar-
chical framework. That retains the advantages of their methodology. At the
same time, it extends the approach of Wikle and Cressie (1999) and includes
a number of other approaches for modelling space time processes. Thus it
provides a unifying Bayesian framework wherein computational strategies
can be developed once and for all. That in turn gives modellers much flexi-
bility.

Next we propose the extension of the BSP approach, that is, the uni-
variate and multivariate Bayesian spatio–temporal models.

7.2 Univariate Bayesian Spatio–temporal Model

We consider the case that the observations are measured at irregular loca-
tions in a large spatial domain. We propose this univariate Bayesian spatio–
temporal model to spatially interpolate and temporally predict the response
variables at those irregularly located gauged or ungauged sites. One fu-
ture implementation will be to predict ground–level ozone concentrations
over the eastern USA using the hourly ozone AQS database in Section 2.5.
Comparing it with Wikle and Cressie’s approach, our model decomposes
the spatial–temporal process into the following components: a long–term
dynamic spatio–temporal term, a short–term spatial patterns and a short–
term spatial temporal component. Note that Wikle and Cressie (1999) as-
sume that long–term spatial–temporal components are the averages over all
locations, and so they consider the response to be the detrended residuals.

Denote by Z(s, t) the observation at site s and time t. We model the
spatio–temporal fields by first removing all the linear and seasonal trends
across all regions in the domain that is of interest, that is, F′1(s, t)M(s, t).
The remaining detrended residuals are represented by Y (s, t). We then de-
compose Y (s, t) into two parts, ΦK(s)aK(t) – the remaining long–term spa-
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tial variation, and V (s, t) – the short–term spatial–temporal variation. In
our approach, this short–term spatial–temporal term can be modelled as a
BSP term in Le–Zidek’s approach, incorporated into a DLM framework.

We propose the following model in this section:

Z(s, t) = F′1(s, t)M(s, t) + Y (s, t) (7.1)

Y (s, t) = ΦK(s)aK(t) + V (s, t) (7.2)

V (s, t) = F′2(s, t)θ(s, t) + ν(s, t) (7.3)

and

M(s, t) = G1(s, t)M(s, t− 1) + η(s, t) (7.4)

aK(t) = H2taK(t− 1) + ξt (7.5)

θ(s, t) = G2(s, t)θ(s, t− 1) + ω(s, t). (7.6)

The above models can incorporate a fairly large class of cases, such as
systematic temporal components, regional level covariate effects, and local
level or site–specific covariate effects. In the coming subsections, we discuss
in particular the way to deal with different kinds of covariates in our model
and possible choices for the terms to illustrate the covariance structure at
the coarse level, that is, ΦK(s). Specifically, we consider two types of covari-
ates: Type I covariates are the regional level covariates, common over all
sites at any fixed time point, with a site–specific coefficient matrix; Type II
covariates are the local level covariates, site–specific and time–varying, with
a common coefficient vector across all sites at any fixed time point.

The vector form of the above proposed univariate Bayesian spatio–temporal
model can be written as follows:

Zt = F′1tMt + Yt (7.7)

Yt = ΦKaK(t) + Vt (7.8)

Vt = F′2tθt + νt (7.9)
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Mt = G1tMt−1 + ηt (7.10)

aK(t) = H2taK(t− 1) + ξt (7.11)

θt = G2tθt−1 + ωt, (7.12)

where Zt = (Z(s1, t), . . . , Z(sp, t))′ : p×1, F′1t = diag{F1(s1, t), . . . , F1(sp, t)},
Mt = (M(s1, t), . . . , M(sp, t))′, Yt = (Y (s1, t), . . . , Y (sp, t))′, ΦK = (ΦK(s1),
. . . ,ΦK(sp))′, Vt = (V (s1, t), . . . , V (sp, t))′, F′2t = diag{F2(s1, t), . . . ,
F2(sp, t)}, θt = (θ(s1, t), . . . , θ(sp, t))′, νt = (ν(s1, t), . . . , ν(sp, t))′, ηt =
(η(s1, t), . . . , η(sp, t))′, ξt = (ξ(s1, t), . . . , ξ(sp, t))′, ωt = (ω(s1, t), . . . , ω(sp, t))′

and Gjt = diag{Gj(s1, t), . . . , Gj(sp, t)} for j = 1, 2.

Our proposed univariate Bayesian spatio–temporal model is completed
by giving the following assumptions on the priors of model parameters:

ΣC = OCΛ−2
C O′

C (7.13)

Φ = OCΛ−1
C (7.14)

ΦK = ΦEK
p (7.15)

νt ∼ Np(0,ΣF ) (7.16)

ηt ∼ Nl1(0,W1) (7.17)

ξt ∼ NK(0,WK) (7.18)

ωt ∼ Nl2(0,W2) (7.19)

Σ−C ∼ Wp(ΞC , δC) (7.20)

Σ−F ∼ Wp(ΞF , δF ), (7.21)

where ΣC presents the covariance matrix for Y (s, t) at the coarse level and
henceforth Σ−C, the precision matrix; similarly, ΣF represents the covariance
matrix at the fine level and Σ−F, the precision matrix. Let EK

p : p ×K =
(ep,1, . . . , ep,K), where ep,j : p×1 represents the p–dimensional vector whose
jth entry is 1, the others, 0, for j = 1, . . . , K.

The initial information can be described as follows:

M0 ∼ N(mM
0 ,CM

0 ) (7.22)
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aK(0) ∼ N(ma
0,C

a
0) (7.23)

θ0 ∼ N(mθ
0,C

θ
0). (7.24)

In the coming subsections, we first discuss possible choices and models
for different types of covariates, along with the main spatial term contributed
by ΦK , and then obtain theoretical results for our proposed model.

7.2.1 Type I covariates

We can incorporate Type I covariates in our model, that is, the covariates are
common over sites at each fixed time point, for example, the month effect,
week day effect, and hourly effect we considered in Chapter 4. For these
types of covariate, we consider their coefficient matrix (unknown parameter
matrix) to be site–specific. In this subsection, we show how we deal with
this type of covariate as the first step in (7.1) and (7.4).

Suppose the data base has l1 Type I covariates in total. Let Z̆t =
(Z̆1(t), . . . , Z̆l1(t)) : 1 × l1 be the l1–dimension covariate vector at time t.

The corresponding coefficient matrix B̆ : l1 × p can also be written as B̆ =
(β̆(s1), . . . , β̆(sp))′, where β̆(si) = (β̆1(si), . . . , β̆l1(si)) is the l1–dimensional
coefficient column vector at site si for i = 1, . . . , p.

Let F′1(si, t) = Z̆t and M(si, t) = β̆(si). Then (7.1) is equivalent to
Z(si, t) = Z̆tβ̆(si) + Y (si, t). This shows our model to incorporate Type I
covariates.

7.2.2 Type II covariates

We now show how we can deal with Type II covariates in this subsection
using the model we proposed above, that is, site specific covariates varying
with time, for example, hourly temperatures, wind speeds and wind direc-
tions at each location. The corresponding coefficients of Type II covariates
are common over all sites at any fixed time point. We show this type of
covariates can be dealt with at steps (7.3) and (7.6), along with an AR(1)
autocorrelation structure for the detrended residuals V (si, t). Of course, the
case of other systematic temporal components can also be dealt with using
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a similar approach.
Suppose l2 Type II covariates all are of interest. Let Z̃t(si) = (Z̃1,t(si), . . . ,

Z̃l2,t(si)) be the l2–dimensional covariate vector at time t and location si, for
i = 1, . . . , p and t = 1, . . . , n. Then its corresponding coefficients are constant
across all sites at each fixed time point t, that is, β̃′t = (β̃1,t, . . . , β̃l2,t) : 1× l2.

Let F′1(si, t) = Z̃t(si) and M(si, t) = β̃t. Then (7.1) is equivalent to
Z(si, t) = Z̃t(si)β̃t + Y (si, t), demonstrating our model’s flexibility.

7.2.3 Possible choices for ΦK(s)

ΦK(s) can be chosen in various ways. For example, it could be formed from
polynomials. It can also be formed from the empirical orthogonal functions
as discussed in Chapter 6. We illustrate some possible choices for ΦK(s) in
this subsection.

The simplest case would be the polynomials. For example, ΦK(s) can
come from a polynomial in latitude and longitude, representing a linear
mean surface of the spatial–temporal field of Y (s, t) in the geographical
coordinates (Stroud et al., 2001). Of course, ΦK(s) can be constructed
using other polynomial basis functions, such as the quartic polynomials,
that is, fourth degree polynomials, used by Fuentes and Raftery (2005).

Or ΦK(s) could also be orthogonal basis functions. For example, it could
be orthogonal polynomials, orthonormal basis functions for cubic splines,
bicubic splines, wavelets, or empirical orthogonal functions. For the rea-
sons we stated before in Chapter 6, we emphasize EOF functions. Wikle
and Cressie (1999) estimate the EOF in their SSM, which could do here.
For unknown EOFs, we extend the Bayesian EOFs in Chapter 6 under the
univariate Bayesian spatio–temporal model. We will talk about this in the
coming subsection.

7.2.4 Predictive posterior distributions

We present theoretic results for the predictive posterior distribution of model
parameters used in our model. Moreover, we briefly summarize the idea of
implementing the BEOF in our model and the related theoretical results.
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Suppose ΣC denotes the coarse–level covariance matrix for Y (s, t). As-
sume ΣF is the fine–level covariance matrix for the deAR’d residuals, in-
cluded in the covariance matrix of ν(s, t).

The univariate Bayesian spatio–temporal model we proposed in (7.7)–
(7.12) can also be written as the following form:

Zt = F′tθ∗t + νt νt ∼ Np(0,ΣF)
θ∗t = Gtθ

∗
t−1 + ω∗t ω∗t ∼ Nl1+K+l2(0,W),

where F′t = (F′1t,Φ
K ,F′2t), θ∗t = (M′

t,a
K(t)′, θ′t)′, Gt = Block–diag{G1t,H2t,

G2t}, ω∗t = (η′t, ξ′t, ω′t)′, and W = Block–diag{W1,WK ,W2}.
Using standard results for the DLM and referring to Theorem A.2.1 in

Appendix A.2, we obtain the corresponding posterior distributions for the
state parameters, that is, θ∗t , given the observations until time t and the
coarse– and fine– level covariance matrices ΣC and ΣF, respectively, in the
following theorem.

Theorem 7.2.1 Given the coarse– and fine– level covariance matrices, ΣC

and ΣF, respectively, we obtain the following posterior distributions:

θ∗t−1|Z1:t−1,ΣF,ΣC ∼ Nl1+K+l2 [mt−1,Ct−1]
θ∗t |Z1:t−1,ΣF,ΣC ∼ Nl1+K+l2 [at−1,Rt−1]
Zt|Z1:t−1,ΣF,ΣC ∼ Np[ft,Qt]
θ∗t |Z1:t,ΣF,ΣC ∼ Nl1+K+l2 [mt,Ct],

where
at = Gtmt−1 Rt = GtCt−1G

′
t + W

ft = F′tat Qt = F′tRtFt + ΣF

et = Zt − ft At = RtFtQ
−1
t

mt = at + Atet Ct = Rt −AtQtA
′
t,

for t = 1, . . . , n.

Interest lies in the joint posterior distribution p(θ∗1:n,ΣC,ΣF|Z1:n). We
can write this joint posterior density as the product of p(θ∗1:n|ΣC,ΣF,Z1:n)
and p(ΣC,ΣF|Z1:n). By Theorem 7.2.1, the former posterior distribution can
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be obtained as follows:

p(θ∗1:n|ΣC,ΣF,Z1:n) =
n∏

t=1

p(θ∗t |ΣC,ΣF,Z1:t)p(θ∗0|ΣC,ΣF)

∝
n∏

t=1

|Qt|−1/2 exp

{
−1

2

n∑

t=1

(θ∗t −mt)′C−1
t (θ∗t −mt)

}
.

The latter is given by

p(ΣC,ΣF|Z1:n) ∝ p(Z1:n|ΣC,ΣF)p(ΣC)p(ΣF)

=
n∏

t=1

p(Zt|ΣC,ΣF,Z1:t−1)p(ΣC)p(ΣF)

∝
(

n∏

t=1

|Qt|
)−1/2

exp

{
−1

2

n∑

t=1

e′tQ
−1
t et

}
p(ΣC)p(ΣF),

where et and Qt are given in Theorem 7.2.1. Note that F′t can be viewed as
a function of ΣC, that is, F′t(ΣC) and so are both et and Qt.

Moreover, we obtain the following non–analytic form for the full condi-
tional posterior distributions of ΣC and ΣF :

p(ΣF|ΣC,Z1:n) ∝ p(ΣC,ΣF|Z1:n)

∝ p(ΣF)

(
n∏

t=1

|Qt|
)−1/2

exp

{
−1

2

n∑

t=1

e′tQ
−1
t et

}

∝ |ΣF|− δF +p

2

n∏

t=1

|F′tRtFt + ΣF|− 1
2 exp

{
−1

2

[
tr(ΞFΣF−1)

+
n∑

t=1

e′t(F
′
tRtFt + ΣF)−1et

]}
, (7.25)

and similarly,

p(ΣC|ΣF,Z1:n) ∝ |ΣC|− δC+p

2

n∏

t=1

|F′t(ΣC)RtFt(ΣC) + ΣF|− 1
2 exp

{
−1

2

×
[
tr(ΞCΣC−1) +

n∑

t=1

e′t(Σ
C)

(
F′t(Σ

C)RtFt(ΣC)
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+ΣF)−1 et(ΣC)
]}

.

(7.26)

These results give us a theoretical basis for making inferences based on
the joint posterior distribution of the model parameters using the MCMC
method. The way using the MCMC method will be addressed in Section
7.5.

7.3 The Univariate Bayesian Spatio–temporal

Model and Relationships with Others

Approaches

We talk about the flexibility of our univariate Bayesian spatio–temporal
model and its relationship with some others approaches.

7.3.1 Relationship with the DLM in Huerta et al. (2004)

The long–term spatial temporal term, F′1(s, t)M(s, t), is very general. It con-
tains the case of linear trends and seasonal trends. As a very simple example,
the linear trends can be incorporated into our model if we assume F′1(s, t) =
(1, t) and M(s, t)′ = (β0t, β1t). Another example is the DLM in Huerta et
al. (2004), a special case of our model. Assume F′1(t) = (1, S1t(a1), S2t(a2))
and M(s, t)′ = (βt, α1,s,t, α2,s,t). Then we obtain Z(s, t) = βt+S1t(a1)α1,s,t+
S2t(a2)α2,s,t) + Y (s, t), the DLM of Huerta et al. (2004).

7.3.2 Relationship with the SSM in Wikle & Cressie (1999)

Our model contains the special case of the model proposed in Wikle and
Cressie (1999), and so can treat the former as an extension of their model.
They remove the linear and seasonal trends before fitting their model, a
process incorporated by F′1(s, t)M(s, t) in our model. Assuming V (s, t) =
ν(s, t) + ε(s, t), and removing (7.3), (7.4) and (7.6), we obtain the Wikle–
Cressie model.
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Our model can incorporate more general structures for systematic tem-
poral components than Wikle and Cressie’s AR(1). To illustrate this gen-
erality, we show now an AR(2) process can be dealt with using our model.
This would make Wikle and Cressie’s model unsuitable for our purpose of
modelling hourly ozone concentrations’ fields, although it might work for
daily ozone concentrations.

Suppose we consider l1 Type I covariates in (7.3) and AR(2) structure
for the detrended residuals. In other words, we consider X(si, t) = V (si, t)−
ztβ(si) and W (si, t) = X(si, t) − φ1(si)X(si, t − 1) − φ2(si)X(si, t − 2). In
(7.3), let F′2(si, t) = (zt−φ1(si)zt−1−φ2(si)zt−2, φ1(si), φ2(si)) : 1× (l1 +2),
and θ(si, t)′ = (β(si)′, V (si, t− 1), V (si, t− 2)) : 1× (l1 + 2). We then obtain
V (si, t) = F ′

2(si, t)θ(si, t) + W (si, t). In (7.6), we further let

G2(si, t) =




Il1 0l1 0l1

z∗(si, t) φ1(si) φ2(si)
0′l1 1 0


 ,

where z∗(si, t) = zt−1 − φ1(si)zt−2 − φ2(si)zt−3. We so obtain (7.6) where
ω(si, t)′ = (0l1 , W (si, t − 1), 0). We have shown that our model can deal
with AR(2) autocorrelation structure for the detrended residuals. More
generally, we can show this dynamic linear modelling approach can actually
accommodate far more general time series structure, such as ARMA(p, q)
processes. However, Wikle and Cressie only consider the AR(1) process.
From that point of view, our approach can be viewed as an extension to
their well known model.

7.3.3 Relationship with the univariate SSM in Gelfand et

al. (2005)

We now show the relationship between our model and the univariate SSM
proposed by Gelfand et al. (2005). They deal with both types of covariates in
their model. Suppose F′1(s, t) = F′2(s, t), M(s, t) = βt, and θ(s, t) = β(s, t)
in our model. We then obtain the same mean function as Gelfend et al..
However, the main difference between their model and ours lays in the short–
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term or small–scale spatial–temporal term. In their approach, they assume
small–scale spatial–temporal term to be composed by two parts: a core-
gionalization spatial–temporal term and a measurement error component.
However, Gelfand et al.’s model cannot deal with autocorrelated detrended
residuals, and so is not applicable in our applications. Our model contains
more general structure than theirs, and we actually decompose the short–
term spatial–temporal term into two parts: the principal spatial pattern and
a local spatial–temporal pattern.

7.3.4 Relationship with the BSP model in Le and Zidek

(1992)

Our model also contains the Le–Zidek model as a special case. Le and Zidek
prefilter the linear and seasonal trends, as well as the highly autocorrelated
detrended residuals before fitting their model. This prefiltering step can
be incorporated through the term F′1(s, t)M(s, t) and part of F′2(s, t) in our
model. Removing (7.2), (7.4) and (7.5), we obtain the Le–Zidek BSP model.

Following (7.2), we can model the small spatial–temporal variation term
as Le and Zidek do in their book. Let W (s, t) = V (s, t) − Z̃(s, t)β(s, t)
and X(s, t) = W (s, t) − φiW (s, t − 1). For simplicity, assume β(s, t) = βt

and Z̃(s, t), the l2 dimensional site–specific covariates vector, for exam-
ple hourly temperatures or hourly wind speeds when the response vari-
ate is the hourly ozone concentrations in our study. We can write Wt =
(W (s1, t), . . . ,W (sp, t))′, and Z̃t = (Z̃(s1, t)′, . . . , Z̃(sp, t)′)′ : p × l2. We
then have Wt = Vt − Z̃tβt and Xt = Wt − diag(φ1, . . . , φp)Wt−1. Le
and Zidek then model X′

t in a hierarchical Bayesian framework such that
X′

t ∼ Np(ẑtB,ΣF), where ẑt represents a q–dimension covariate vector and
B : q × p, the coefficient matrix. At the second level, Le and Zidek model
B ∼ Np×q(B0,F−1⊗ΣF). Furthermore, they assume that ΣF ∼ W−1

p (Ψ, δ).
In our model, we also assume that βt = Hββt−1 + ωβ

t , where ωβ
t ∼

N(0,W2). We now have that

V (s, t) = (Z̃(s, t)Hβ − φiZ̃(s, t− 1), φi)(β′t−1, V (s, t− 1))′ + Z̃(s, t)ωβ
t
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+X(s, t)

= F′2(s, t)θ(s, t) + Z̃(s, t)ωβ
t + X(s, t), (7.27)

where F′2(s, t) = (Z̃(s, t)Hβ − φiZ̃(s, t − 1), φi) : 1 × (l2 + 1) and θ(s, t) =
(β′t−1, V (s, t− 1))′ : (1 + l2 × 1).

By the Le–Zidek’s modelling approach, we then have Vt = F′2tθt +
Z̃tω

β
t + Bẑt + τt, where τt ∼ N(0,ΣF). Hence we obtain νt = Z̃tω

β
t + τt ∼

N(0, Z̃tW2Z̃
′
t + ΣF). Note that this is a special case of our model.

7.4 A Multivariate Bayesian Spatio–Temporal

Model

We now extend our model to a multivariate case. Suppose m different pollu-
tants or species are measured in a spatio–temporal field. Let Zj(s, t) be the
jth pollutant at site s and time t, for j = 1, . . . , m, s ∈ {s1, . . . , sp}, and t =
1, . . . , n. Let Z(s,t) = (Z1(s, t), . . . , Zm(s, t))′ be the vector of observations
at site s and time t. Assume l1j type I covariates and l2j type II covariates
considered, for j = 1, . . . , m. Those covariates are represented by F1,j(s, t)′ :
1× l1j and F2,j(s, t)′ : 1× l2j , respectively. Write Fi(s, t)′ : m×∑m

j=1 lij as a
block diagonal matrix with diagonal entries {Fi,1(s, t)′, . . . ,Fi,m(s, t)′}, for
i = 1, 2. Let M(s, t) = (M1(s, t)′, . . . ,Mm(s, t)′)′ :

∑m
j=1 l1j×1 and θ(s, t) =

(θ1(s, t)′, . . . , θm(s, t)′)′ :
∑m

j=1 l2j×1. Assume we obtain the ΦKj

j : 1×Kj , for
j = 1, . . . , m, and the corresponding expansion coefficients aKj

j (t) : Kj × 1,
using the multivariate EOF analysis. Let Φ∗(s) = Block–diag{ΦK1

1 (s), . . . ,
ΦKm

m (s)} : m ×∑m
j=1 Kj , and a∗(t) = (aK1

1 (t), . . . ,aKm
m (t))′ :

∑m
j=1 Kj × 1.

We obtain the multivariate Bayesian spatio–temporal model as follows:

Z(s, t) = F′1(s, t)M(s, t) + Y(s, t) (7.28)

Y(s, t) = Φ∗(s)a∗(t) + V(s, t) (7.29)

V(s, t) = F′2(s, t)θ(s, t) + ν(s, t) (7.30)
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and

M(s, t) = G1(s, t)M(s, t− 1) + η(s, t) (7.31)

a∗(t) = H2ta∗(t− 1) + ξt (7.32)

θ(s, t) = G2(s, t)θ(s, t− 1) + ω(s, t), (7.33)

where Y(s, t) = (Y1(s, t), . . . , Ym(s, t))′ : m× 1, V(s, t) = (V1(s, t), . . . ,
Vm(s, t))′ : m × 1, ν(s, t) = (ν1(s, t), . . . , νm(s, t))′ : m × 1, and ω(s, t) =
(ω1(s, t), . . . , ωm(s, t))′ : m×1. We assume a separable space–time covariance
structure for the matrix–variate νt = (ν(s1, t), . . . , ν(sp, t)) : m× p, that is,

νt ∼ Nm×p(0,Ω⊗ΣF),

where Ω represents the correlation matrix between the pollutants and ΣF,

the covariance matrix between the spatial locations at the local– or fine–
scale level. We assume that the EOFs in Φ∗ estimate the covariance matrix,
that is, Ω⊗ΣC.

We also assume inverted Wishart priors for ΣF and ΣC, respectively. We
leave that extension to future work.

7.5 MCMC Algorithm on the Bayesian

Spatio–temporal Models

In this section, we discuss MCMC algorithms for sampling from the joint
posterior distributions of the model parameters for both univariate and mul-
tivariate spatial–temporal models. We do not present a simulation study or
application, pending completion of future work on implementation. Instead
we stop with a fairly clear statement of an approach that makes success
seem plausible in applications like that one presented earlier to the AQS
data, with hourly ozone concentrations over the entire USA and the whole
of one summer.

To make computation feasible, we can estimate the K using an ad hoc
method. Or we can implement the idea of Bayesian EOF Chapter 6 in this
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new proposed model, using block MCMC methods to draw samples from
the full conditional distributions of model parameters.

As we can see from the prediction posterior distribution for the univari-
ate Bayesian spatio–temporal model, the Metropolis–Hasting method is re-
quired to sample from the posterior distributions of the the fine– and coarse–
level covariance matrices. That allows the Generalized inverted Wishart
(GIW) prior to work at this stage. We leave this extension in future work.

We now summarize what we have obtained in this chapter. From the
predictive posterior distribution obtained in Section 7.2, we can use the
block MCMC method to draw samples from its joint posterior distribution.
In other words, we iteratively sample from p(ΣF|ΣC,Z1:n), p(ΣC|ΣF,Z1:n),
and p(θ∗1:n|ΣF,ΣC,Z1:n) according to (7.25), (7.26), and Theorem 7.2.1, re-
spectively.

Algorithm 7.5.1 (Metropolis–within–Gibbs algorithm)

1. Initialization: sample

Σ−F(1) ∼ W (ΞF, δF)

Σ−C(1) ∼ W (ΞC, δC)

θ∗1:n
(1) ∼ N(m0,C0).

2. Given the (j − 1)th values, Σ−F(j−1), Σ−C(j−1), θ∗1:n
(j−1) and the ob-

servations Z1:n :

(1) Use a Metropolis–Hasting step to sample Σ−F(j) from p(Σ−F|Σ−C,

θ∗1:n,Z1:n).

(2) Use a Metropolis–Hasting step to sample Σ−C(j) from p(Σ−C|Σ−F,

θ∗1:n,Z1:n).

(3) Sample θ∗1:n
(j) from p(θ∗1:n|Σ−C,Σ−F,Z1:n).

3. Repeat until convergence.

The implementation of the MCMC method to sample the model parame-
ters in our model will be left to future work. After obtaining the MC samples
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for the model parameters after the burn–in period, it is straightforward to
obtain the temporal prediction of the responses using the DLM approach.
The spatial interpolation problem can then be viewed as a missing data in
the DLM. The latter can be obtained by adding this MCMC block of missing
data in the above algorithm. We leave all the implementation of this model
to future wok.

7.6 Results and Conclusions

Our Bayesian spatio–temporal model is very flexible and powerful. It has
the following advantages:

1. The general structure of the unified Bayesian spatio–temporal model
allows us to remove the long–term systematic temporal variation, for
example, the linear trend, seasonal trends, covariate effects for both
types. For type I covariates, that is, the site–specific covariates, we
regress them on site–invariant but time–varying unknown coefficients,
an extension of the Le–Zidek’s approach. For type II covariates, that
is, time–varying covariates common over the entire domain, we regress
them on a site–specific and time–varying unknown coefficient matrix,
one removed at the process model in Le–Zidek’s approach.

2. We then decompose Y (s, t) into two parts: the principal local spatial
patterns and the remaining local spatial–temporal variation terms. In
this step, ΦK(s) can also be constructed using other basis functions,
such as orthogonal polynomials, thin spline plates, and bicubic spline
methods. However, the eigenvalue basis functions, that is, the basis
functions for the EOF, do provide a unique solution by the spectral
decomposition theorem. In other words, we can truncate the first K

EOFs to represent the main spatial patterns in the spatial–temporal
fields of Y (s, t), that is, the “detrended” residuals.

3. The remaining local spatial–temporal variation term is then modelled
as a BSP term because of the need for computational feasibility. The
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general structure of the systematic temporal components can then be
incorporated. From this point of view, we obtain an extension for the
SSM proposed by Wikle and Cressie (1999).

4. Our model allows us to incorporate two different scales of covariance
matrices, that is, coarse– and fine– scale levels of spatial covariance
matrices. At the coarse level, we truncate the EOFs using the Bayesian
EOF method in Chapter 6 to represent the coarse scale long–term
spatial patterns. At the fine level, the BSP term is used to represent
the local scale short–term spatial–temporal patterns.

5. Spatial interpolation and temporal prediction turn out to be straight-
forward using our model. Gaussian framework allows us to spatially
interpolate the responses at ungauged sites. The time evolution of the
dynamic models allows us to temporally predict the responses at the
gauged and ungauged sites.

Future work includes implementing that model to the real database or
simulation study, and an extension involving the GIW prior for the coarse–
and fine– scale covariance matrices.
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Future Work

This last chapter presents a summary of this thesis (Section 8.1) and pro-
posals for future work based on it (Section 8.2) as well as approaches to be
taken to complete that work.

8.1 Thesis Summary

We have implemented the Gaussian DLM proposed by Huerta et al. (2004)
to spatially interpolate ground–level ozone concentrations at one cluster of
monitoring stations in an AQS database (1995). A complete and tested
software package has been developed for this implementation. Theoretical
results have been developed regarding the predictive variance using the first–
order polynomial model. Those results explain the monotone behavior of the
coverage probabilities found from the results of spatial interpolation. More-
over, we demonstrate how to use discount factors in the DLM to improve
the predictive results and their accuracy. However, we find the approach
very computationally intensive so that it is not scalable to large space–time
domains.

We therefore explore a computational simpler alternative, the BSP ap-
proach, for spatially interpolating univariate and multivariate responses in
space–time domains. That alternative has been implemented for an AQS
database (2000). Moreover, we have found an extension to this approach
for temporal forecasting one–day–ahead ground–level ozone concentrations.
After comparing it with the DLM, we find that the latter cannot compete
with the BSP for either spatial interpolation or temporal prediction in terms
of mean squared prediction error (MSPE).

The BSP approach uses empirical Bayes steps to estimate some model
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parameters within the Bayesian framework. Although these steps simplify
computation the ad hoc approach would be seen as objectionable from a
purely Bayesian perspective and the model is not as flexible as the DLM.
To refine the BSP therefore, we put it into a DLM framework so that the
model is more flexible to update or predict the responses as new data come
on stream, one of the attractive features of dynamic models. Yet we preserve
its computational simplicity.

A Bayesian version of the EOF method, that is, the BEOF method, has
been proposed in this thesis. The BEOF method allows us to represent
the principal spatial patterns of spatial–temporal fields in a fully Bayesian
framework. We have demonstrated potentially severe problems with the
classical EOF method that seems to have been largely ignored. We have
compared the classical and corrected EOFs with true EOFs using the sim-
ulated database. Moreover, we have developed an MCMC algorithm for
sampling from the joint posterior distribution of model parameters. How-
ever, implementation of the BEOF approach on our existing database will
be left to future work.

Finally, we have proposed a unified approach to univariate and multivari-
ate spatio–temporal modelling within a fully hierarchical Bayesian frame-
work so that we can incorporate some interesting features of the BSP, DLM
and BEOF approaches. We have provided theoretical results on the joint
posterior distribution of model parameters and the corresponding MCMC
algorithm. Implementation of this model in data and simulated data will be
completed in future work.

8.2 Future Research Plan

We finally propose in the list below, future work based on this thesis as well
as possible directions for completing that work.

1. We can extend the DLM to the discount DLM and implement it on
a real database. This implementation helps us set the reasonable hy-
perpriors for some of the model parameters instead of fixing them in
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an ad–hoc way. We can also develop corresponding software for this
purpose.

2. We can extend the DLM to incorporate the dependence of model pa-
rameters. To do this, a further extension of the discount DLM is
needed so that the time–varying discount factors can be free of the
computational burden.

3. We will extend the one–day–ahead temporal prediction of ground–level
ozone concentrations using the BSP approach to arbitrary time points.

4. One interesting problem in the BSP approach is to deal with the mono-
tone data (double staircase) patterns in two directions. This is a really
difficult problem and a route to the solution remains to be found.

5. We can implement the BSP in multivariate cases where dependent but
unknown structure between the multivariate responses are considered.

6. Another future project for the BSP approach involves misaligned data.
This problem will be partially addressed when we integrate the BSP
into the DLM framework, so the model we considered in Chapter 7 will
be one possible choice. The DLM framework helps in the prediction
of missing data provided the rate of missingness is reasonable.

7. We will explore the choice of an optimal starting hour for making
one–day–ahead prediction.

8. The Bayesian EOF method needs to be applied to real as opposed
to simulated data so that we can find whether the Bayesian and cor-
rected EOFs can give seriously discrepant answers, a result that would
raise concerns about the appropriateness of classical EOFs. This im-
plementation is straightforward following the MCMC algorithm we
developed.

9. The extended BSP, i.e., the Bayesian spatio–temporal model, can be
implemented with either model output or measurements. By combin-
ing the two types of data over the entire network of US EPA moni-

179



Chapter 8. Future Work

toring sites, more accurate spatial predictions should be achievable for
ground–level ozone concentrations over a large spatio–temporal do-
main. This straightforward implementation of our theory follows from
our theoretical results and MCMC algorithm we have already devel-
oped. For example, we can combine physical model outputs with sta-
tistical ones, in which the MAQSIP (gridded) data, can be considered
at the regional or coarse level and the observations or measurements
at each monitoring station, at the local or fine level.

10. We can extend Bayesian spatio–temporal models to incorporate dif-
ferent prior beliefs for the model parameters, that is, the covariance
matrices regarding to different levels and blocks. This extension in-
cludes developing the corresponding theoretical results on predictive
and posterior distributions using the GIW prior on model parameters.

11. We can use MCMC sampling algorithm to sample a random covariance
matrix that follows a GIW prior distribution. This algorithm will help
us to spatially interpolate and temporally predict the responses using
the Bayesian spatio–termporal models in which the priors of covariance
matrices at both coarse and fine levels are GIWs.
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Appendix A

Additional Results for

Chapter 2

A.1 Additional Results for Section 2.6.1

The joint posterior distribution for x1:T , λ and σ2 is given by

p(x1:T , λ, σ2|y1:T ) = p(λ, σ2)p(xT |λ, σ2,y1:T )
T∏

t=1

p(xT−t|xT−t+1, λ, σ2,y1:T )

×
T∏

t=1

p(yt|λ, σ2,y1:t−1)

= p(x1:T |λ, σ2,y1:T )p(σ2|λ,y1:T )p(λ|yT ).

Suppose p(λ, σ2) = p(λ)p(σ2), that is, the priors for λ and σ2 are indepen-
dent with each other.

The joint posterior distribution for λ and σ2 can be written as follows:

p(λ, σ2|y1:T ) ∝ p(λ)p(σ2)(σ2)−nT/2
T∏

t=1

|Qt|−1/2 exp

{
− 1

2σ2

T∑

t=1

e′tQ
−1
t et

}
.

If the prior for σ2 is an inverse gamma distribution with shape parameter
α and scale parameter β, then the posterior distribution for σ2 is also an in-
verse gamma distribution with shape parameter α+ nT

2 and scale parameter
β + 1

2

∑T
t=1 e′tQ

−1
t et.

Hence, the posterior density for λ can be written as follows:

p(λ|y1:T ) =
p(λ, σ2|y1:T )
p(σ2|λ,y1:T )
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∝ p(λ)
T∏

t=1

|Qt|−1/2

[
β +

1
2

T∑

t=1

e′tQ
−1
t et

]−(α+nT/2)

.

Therefore, the posterior density for x1:T is given by

p(x1:T |λ, σ2,y1:T ) = p(xT |λ, σ2,y1:T )
T∏

t=1

p(xT−t|xT−t+1, λ, σ2,y1:T ).

A.2 Additional Results for Section 2.6.2

Theorem A.2.1 Under Models (2.14) - (2.15) and initial prior (2.18), for
any 1 ≤ t ≤ T, conditional on θ, we have

(i)

(xt−1|y1:t−1, θ) ∼ N [mt−1, σ
2Ct−1]

(xt|y1:t−1, θ) ∼ N [at, σ
2Rt]

(yt|y1:t−1, θ) ∼ N [ft, σ2Qt]
(xt|y1:t, θ) ∼ N [mt, σ

2Ct],

where

at = mt−1 Rt = Ct−1 + W

ft = F′tat Qt = F′tRtFt + Vλ

et = yt − ft At = RtFtQ
−1
t

mt = at + Atet Ct = Rt −AtQtA
′
t.

(ii) Define Bt = CtR
−1
t+1. For 0 ≤ k ≤ T − 1,

(xT−k|y1:T , θ) ∼ N [aT (−k), σ2RT (−k)], (A.1)

where

aT (−k) = mT−k + BT−k[aT (−k + 1)− aT−k+1]

RT (−k) = CT−k + BT−k[RT (−k + 1)−RT−k+1]B′
T−k,
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with aT (0) = mT , RT (0) = CT , aT−k(1) = aT−k+1, and RT−k(1) =
RT−k+1.

A.3 Additional Results for Section 2.6.4

The observation equation is given by

yt = 1′nβt + S1t(a1)α1t + S2t(a2)α2t + νt, νt ∼ N [0, σ2Σ(λ)],

where Σ(λ) = exp(−V/λ) and V denotes the distance matrix for the mon-
itoring sites s1, . . . , sn.

Given λ, σ2, xt (that is, βt, α1t and α2t) and yt, the posterior conditional
distribution for the constant phase parameters, a1 and a2, is given by

p(a1, a2|λ, σ2,xt,yt) ∝ p(yt|λ, σ2,xt, a1, a2)p(a1, a2)

∝ p(Mt|λ, σ2, βt, α1t, α2t, a1, a2)p(a1, a2),

where Mt = yt − 1′nβt − cos(πt
12)α1t − cos(πt

6 )α2t, for t = 1, . . . , T.

We consider the following two cases for the prior of a = (a1, a2)′ :

• Case (i) a standard reference prior: p(a) ∝ 1;

• Case (ii) a bivariate normal prior: a ∼ N(µ,Σ), where µ = (µ1, µ2)′

and Σ is a 2 by 2 covariance matrix.

Under Case (i), for fixed t = 1, . . . , T, let l1 = sin(πt
12)α1t, l2 = sin(πt

6 )α2t,

m = Mt and S = σ2Σ(λ). The posterior conditional distribution for the
phase parameter vector a is now given by

p(a1, a2|λ, σ2,xt,yt) ∝ p(Mt|λ, σ2,xt, a1, a2,xt, λ, σ2)p(a1, a2)

∝ exp{−1/2[Mt − a1 sin(
πt

12
)α1t − a2 sin(

πt

6
)α2t]′

×(σ2Σ(λ))−1[Mt − a1 sin(
πt

12
)α1t − a2 sin(

πt

6
)α2t]}

= exp{−1
2
(m− a1l1 − a2l2)′S−1(m− a1l1 − a2l2)}
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∝ exp{−1
2
(aΣ−1a′ − 2aΣ−1µ′)}

∝ exp{−1
2
[a′(l1, l2)′S−1(l1, l2)a− a′(l1, l2)′S−1m

−mS−1(l1, l2)a]}
∝ exp{−1

2
(a− µ)′Σ−1(a− µ)},

where

Σ−1 = (l1, l2)′S−1(l1, l2), (A.2)

µ = Σ(l1, l2)′S−1m. (A.3)

Note that equation (A.3) is equivalent to

Σ−1µ = (l1, l2)′S−1m. (A.4)

More specifically, we obtain the following elements in the mean vector
and covariance matrix for the posterior conditional distribution of the phase
parameter vector a.

Σ =

[
σ11 σ12

σ12 σ22

]
, (A.5)

∆−1 = (σ11σ22 − σ2
12)

−1 (A.6)

= (l′1S
−1l1)(l′2S

−1l2)− (l′1S
−1l2)2 (A.7)

σ11 = ∆(l′2S
−1l2) (A.8)

σ12 = −∆(l′1S
−1l2) (A.9)

σ22 = ∆(l′1S
−1l1) (A.10)

µ1 = σ11(l′1S
−1m) + σ12(l′2S

−1m) (A.11)

µ2 = σ12(l′1S
−1m) + σ22(l′2S

−1m) (A.12)

Therefore, we have the following conclusions for the conditional posterior
distribution of the phase parameter vector a.
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(i) If the prior for a is the standard reference prior, that is, p(a1, a2) ∝ 1,

we have (
a1

a2

|xt,yt, λ, σ2

)
∼ N

[(
µ1

µ2

)
,Σ

]
,

where µ1, µ2 and Σ can be formed in equations (A.5) - (A.12) or
equations (A.2) - (A.3).

(ii) If the prior for a is the bivariate normal distribution with mean vector
µ0 = (µ0

1, µ
0
2)
′ and covariance matrix

Σ0 =

(
σ0

11 σ0
12

σ0
12 σ0

22

)
,

we then have

p(a1, a2|λ, σ2,xt,yt) ∝ exp{−1
2
(a1 − µ1, a2 − µ2)′Σ−1(a1 − µ1,

a2 − µ2)} exp{−1
2
(a1 − µ0

1, a2 − µ0
2)
′(Σ0)−1

×(a1 − µ0
1, a2 − µ0

2)}
∝ exp{−1

2
(a1 − µ∗1, a2 − µ∗2)

′Σ∗−1(a1 − µ∗1,

a2 − µ∗2)},

where

Σ∗ = (Σ−1 + Σ0−1)−1 (A.13)

µ∗ = Σ∗(Σ−1µ + (Σ0)−1µ0). (A.14)

From (A.13) and (A.14), we have

Σ∗ = Σ−Σ(Σ + Σ0)−1Σ = Σ0(Σ + Σ0)−1Σ, (A.15)

and
µ∗ = Σ0(Σ + Σ0)−1µ + Σ(Σ + Σ0)−1µ0. (A.16)
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Hence, the posterior conditional distribution for the phase parameters
is given by (

a|λ, σ2,xt,yt

)
∼ N(µ∗,Σ∗),

where µ∗ and Σ∗ can be referred to equations (A.13)–(A.14), or (A.15)–
(A.16).

A.4 Additional Results for Sections 2.7.1 and

2.7.2

Given the values of the phase parameters, range and variance parameters,
and the observations until time t, the joint distribution of αs

1t, α1t is

(
αs

t

α1t

)
∼ N

[(
αs

1,t−1

α1,t−1

)
, σ2τ2

1Σ∗(λ1),

]

where

Σ∗(θ) = exp{−V∗/θ} =

[
Σ∗11(θ) Σ∗

12(θ)
Σ∗

21(θ) Σ∗
22(θ)

]
,

with Σ∗11(θ) a scalar, Σ∗
12(θ) a 1 by n vector, and Σ∗

22(θ) a n by n matrix.
We use V∗ to denote the new distance matrix for the unknown site s and
the monitoring stations s1, . . . , sn.

We then have the conditional posterior distribution of αs
1t as follows:

(αs
1t|αs

1,t−1, α1t, α1,t−1,yt, λ, σ2) ∼ N [αs
1,t−1 + Σ∗

12(λ1)Σ∗
22(λ1)−1(α1t −

α1,t−1), σ2τ2
1 (Σ∗11(λ1)−Σ∗

22(λ1)−1

×Σ∗
21(λ1))].

(A.17)

Similarly, the conditional posterior distribution for αs
2t is

(αs
2t|αs

2,t−1, α2t, α2,t−1,yt, λ, σ2) ∼ N [αs
2,t−1 + Σ∗

12(λ2)Σ∗
22(λ2)−1(α2t −

α2,t−1), σ2τ2
2 (Σ∗11(λ2)−Σ∗

22(λ2)−1
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×Σ∗
21(λ2))].

(A.18)

Using the observation equation as in Model (2.11), we have the condi-
tional predictive distribution for ys

t as follows:

(ys
t |yt, α

s
1t, α

s
2t, α1t, α2t, βt, λ, σ2) ∼ N [βt + S1t(a1)αs

1t + S2t(a2)αs
2t + Σ∗

12(λ)

×Σ∗
22(λ)−1(yt − 1nβt − S1t(a1)α1t

−S2t(a2)α2t), σ2(Σ∗11(λ)−Σ∗
12(λ)

×Σ∗
22(λ)−1Σ∗

12(λ))].

(A.19)
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Software for Chapter 3

We write the DLM software, GDLM.1.0, using the R and C interface. This
software can be freely downloaded from http://enviro.stat.ubc.ca/dlm/
GDLM.1.0.zip or http://enviro.stat.ubc.ca/dlm/GDLM.1.0.tar.gz for win-
dows or unix/linux systems, respectively. The instructions for installing
this package in windows and linux/unix is under the folder “INSTALL”.
This software requires the R software, R ≥ 2.2.0, and C compiler, that
is, MinGW-3.2.0-rc-3.exe. “FFBS” folder which contains the C codes for
the forward–filtering–backward–sampling method used in the MCMC algo-
rithm. Their header files are included under the folder “include”. “MAIN”
folder contains all the R functions for the models used in this chapter. A
real database example is written in the folder “DEMO” where the database
is located in the folder “DATA”. “OUTPUT” allows one to store the com-
putational output from the MCMC algorithm for making some graphical
comparisons. The basic information for this software has been summarized
in the “Readme” file.

Two packages in R, MASS and stats, are required in this software to fit
the DLM within Gaussian framework. We now illustrate several important
functions in “MAIN” used in this software.

(1) Function “forfun.c” is used as an R interface function with C. It gen-
erates two main components to compute the acceptance rate in the
Metropolis–within–Gibbs sampling. It has the following arguments:
lat, long, mcmc.data.matrix, lambda, a1, a2, gamma.vec, m.init, C.init
and BH. Here are the details for each of these arguments at the jth

iteration:

• “lat” presents the vector of latitudes at the gauged sites.
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• “long” presents the vector of longitude at the gauged sites.

• “mcmc.data.matrix” presents the MCMC complete data matrix
used at each iteration, that is, Y (j−1). By default, its columns
represent responses at each of the time points and rows for each
of the sites.

• “lambda” presents the range parameter, λ, in the DLM.

• “a1” presents the phase parameter corresponding to the 24 hour
periodicity.

• “a2” presents the phase parameter corresponding to the 12 hour
periodicity.

• “gamma.vec” presents fixed hyperparameters, that is, γ = (τ2
y , τ2

1 ,

λ1, τ
2
2 , λ2).

• “m.init” and “C.init” present the initial mean vector and co-
variance matrix for the state parameters, that is, m0 and C0,

respectively.

• “BH” presents the total number of hours included in each day.
By default, it is set to be 24.

This function has the following outputs:

• “quad” presents the summation of the quadratic quantities in
the log–likelihood of the joint posterior density for all the model
parameters, that is,

∑T
t=1 e′tQ

−1
t et.

• “ldet” presents the summation of the log of the determinant quan-
tities in the log–likelihood of the joint posterior density for λ, that
is,

∑T
t=1 log |Qt|.

• “quad.vec” presents the vector of the quadratic quantities calcu-
lated at each of the time points, that is, {e′tQ−1

t et : t = 1, . . . , T}.
• “ldet.vec” presents the vector of the logarithm of the determinant

quantities at each of the time points, that is, {log |Qt| : t =
1, . . . , T}.
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(2) Function “ffbs.c” is another R interface function with C. It calls a C
function in R, “DLMFFBS”, to generate the state parameters, xt, at
each MCMC iteration. This function contains the following arguments:

• “lat” presents the vector of latitudes at the gauged sites.

• “long” presents the vector of longitude at the gauged sites.

• “mcmc.data.matrix” presents the mcmc complete data matrix
used at each iteration, that is, Y(j−1). By default, its columns
represent responses at each of the time points and rows for each
of the sites.

• “lambda” presents the range parameter, λ, in the DLM.

• “sigma” presents the variance parameter, σ2, in the DLM.

• “a1” presents the phase parameter corresponding to the 24 hour
periodicity.

• “a2” presents the phase parameter corresponding to the 12 hour
periodicity.

• “gamma.vec” presents fixed hyperparameters, that is, γ = (τ2
y , τ2

1 ,

λ1, τ
2
2 , λ2).

• “m.init” and “C.init” present the initial mean vector and co-
variance matrix for the state parameters, that is, m0 and C0,

respectively.

• “BH” presents the total number of hours included in each day.
By default, it is set to be 24.

• “ctr” presents the current index for the iterations in the MCMC
algorithm, that is, j in this case.

This function has the following outputs:

• “quad” presents the summation of the quadratic quantities in
the log–likelihood of the joint posterior density for all the model
parameters, that is,

∑T
t=1 e′tQ

−1
t et.
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• “ldet” presents the summation of the log of the determinant quan-
tities in the log–likelihood of the joint posterior density for the
model parameters, that is,

∑T
t=1 log |Qt|.

(3) Function “GDLM” is an R function to implement the MCMC algo-
rithm for the DLM given by (2.14)–(2.15) in Chapter 2. This function
contains the following arguments:

• “srm.data” presents the initial data matrix for the MCMC algo-
rithm where the missing values are fitted by the spatial regression
method.

• “origin.data” presents the raw data matrix, including the missing
values. By default, its row represents the stations and columns,
the time points.

• “job” is a binary variable. “job=0” means this function will only
do the MCMC sampling; while “job=1” means this function will
do both the MCMC sampling and spatial interpolation at un-
gauged sites.

• “glat” presents the vector of latitude (in degree) at gauged sites.

• “glong” presents the vector of longitude (in degree) at gauged
sites.

• “uglat” presents the vector of latitude (in degree) at the ungauged
sites.

• “uglong” presents the vector of longitude (in degree) at ungauged
sites.

• “gamma.vec” presents fixed hyperparameters, that is, γ = (τ2
y , τ2

1 ,

λ1, τ
2
2 , λ2).

• “m.init” and “C.init” present the initial mean vector and co-
variance matrix for the state parameters, that is, m0 and C0,

respectively.

• “BH” presents the total number of hours included in each day.
By default, it is set to be 24.
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• “ITER” presents the total number of iterations used in the MCMC
sampling.

• “tuning.para” presents the fixed tuning parameter, τ2, for the
Metropolis–Hasting step.

• “alpha.init” and “beta.init” present the hyperprior for the vari-
ance parameter, σ2, that is, ασ and βσ, respectively.

• “eta.init” and “delta.init” present the hyperprior for the range
parameter, λ.

• “mu.phase.init” and “Sigma.phase.init” present the hyperprior
for the phase parameters, (a1, a2), that is, µ0 and Σ0, respectively.

• “output.direc.name” presents the directory name that the user
want to store the output.

This function has the following outputs:

• “lambda” presents the MC samples for the range parameter, λ.

• “sigma” presents the MC samples for the variance parameter, σ2.

• “phase.a1” and “phase.a2” present the MC samples for the phase
parameters, a1 and a2, respectively.

• “accept.ratio” presents the acceptance ratio for the range param-
eter, λ, in the Metropolis–Hasting step.

• “accept.index” presents the index of accepted iteration in the
Metropolis–Hasting step.

• “quad” presents the quadratic form at each of the iterations (only
λ = λ(j) and all the other parameters having their (j − 1)th iter-
ation value).

• “log.det” presents the logarithm of the determinant quantity at
each of the iterations (only λ = λ(j) and all the other parameters
having their (j − 1)th iteration value).

• “theta.mat” presents the sampling matrix of the state parame-
ters, x1:ITER, from the MCMC algorithm.
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(4) Function “GDLM.INIT” is an R function, having almost the same
settings as “GDLM”. The difference is that “GDLM.INIT” allows the
MCMC sampling to start from any given values for model parameters:
λ, σ2, a1 and a2. This function contains most arguments and same
output as that of “GDLM” except for the following four arguments in
the input:

• “lambda.init.value” presents the starting values for λ.

• “sigma.init.value” presents the starting values for σ2.

• “phase.a1.init.value” presents the starting values for a1.

• “phase.a2.init.value” presents the starting values for a2.

(5) Function “interpolate.fun” is an R function used to interpolate the re-
sponse variable at ungauged sites. It contains the following arguments:

• “srm.data” presents the initial data matrix for the MCMC algo-
rithm where the missing values are fitted by the spatial regression
method.

• “origin.data” presents the raw data matrix, including the missing
values. By default, its row represents the stations and columns,
the time points.

• “job” is a binary variable. “job=0” means this function will only
do the MCMC sampling; while “job=1” means this function will
do both the MCMC sampling and spatial interpolation at un-
gauged sites.

• “glat” presents the vector of latitude (in degree) at gauged sites.

• “glong” presents the vector of longitude (in degree) at gauged
sites.

• “uglat” presents the vector of latitude (in degree) at ungauged
sites.

• “uglong” presents the vector of longitude (in degree) at ungauged
sites.
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• “lambda.mcmc” presents the MCMC samples for the range pa-
rameter, λ.

• “sigma.mcmc” presents the MCMC samples for the variance pa-
rameter, σ2.

• “phase.a1.mcmc” presents the MCMC samples for the phase pa-
rameter, a1.

• “phase.a2.mcmc” presents the MCMC samples for the phase pa-
rameter, a2.

• “BURN.IN” presents the burn–in period setting for the MCMC
samples for the model parameters.

• “m.init” and “C.init” present the initial mean vector and co-
variance matrix for the state parameters, that is, m0 and C0,

respectively.

• “gamma.vec” presents fixed hyperparameters, that is, γ = (τ2
y , τ2

1 ,

λ1, τ
2
2 , λ2).

• “BH” presents the total number of hours included in each day.
By default, it is set to be 24.

The output of this function is the interpolated values for the response
variables at ungauged sites.
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Additional Results for

Chapter 6

C.1 Additional Results for Section 6.4

Definition C.1.1 Suppose the random matrix response X : r × q has a
matrix normal distribution, denoted by X ∼ Nr×q(M,C,Σ), where C : r ×
r > 0, and Σ : q× q > 0. Then the probability density function of X is given
by

p(X) = (2π)−rq/2|C|−q/2|Σ|−r/2 exp{−1
2
tr[(X−M)′C−1(X−M)Σ−1]}.

(C.1)

Definition C.1.2 Suppose the random matrix X : q× q is symmetric, pos-
itive definite and follows an inverted Wishart distribution with degrees of
freedom δ and scale matrix S. Then the probability density function of X is
given by

p(X) = k|X|−( δ
2
+q) exp

{
−1

2
tr

[
SX−1

]}
, (C.2)

where S is positive definite and

k−1 = 2qv/2πq(q−1)/4
q∏

j=1

Γ
(

v − j − 1
2

)
|S|−v/2,

with v = δ + q − 1.

Proof C.1.1 (Lemma 6.4.2) By the KL expansion and Lemma 6.4.1, we
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have Λ−2 = OΣ−1
S O′ and moreover, Λ−2 ∼ Wp(n, Ip). Hence, the {λ−2

j :
j = 1, . . . , p} are mutually independent and λ−2

j ∼ W1(n, 1), that is, χ2
n, for

j = 1, . . . , p. ¦

Proof C.1.2 (Theorem 6.4.1) Given Y : p×n ∼ Np×n(0,ΣS⊗ΣT ), denote
Y∗ to be YΣ−1/2

T . Consequently, Y∗ ∼ Np×n(0,ΣS⊗In). Similarly, we have
Σ−1/2

S Y∗ ∼ Np×n(0, Ip ⊗ In).
By Lemma 6.4.1, Σ−1/2

S Y∗ = OLP, where O represents an orthogonal
matrix that is uniformly distributed over the Grassmann manifold, P, an
orthogonal frame that is uniformly distributed over the Stiefel manifold, and
L, a diagonal matrix with entries {l1, . . . , lp} such that l21, . . . , l

2
p are the

eigenvalues for (Σ−1/2
S Y∗)(Σ−1/2

S Y∗)′. Hence, Y∗ = Σ−1/2
S OLP. Moreover,

since

E[(Y∗)(Y∗)′] = Σ1/2
S E[OL2O′]Σ1/2

S

= nΣS ,

the Bayesian EOFs can then be given by W = 1
nΣ1/2

S OL. ¦

Proof C.1.3 (Theorem 6.4.2) By Definition C.1.2, we have

p(Σ−1
S ) ∝ |ΣS |−(

δS
2

+p) exp{−1
2
tr(Ξ−1

S Σ−1
S )}.

Given ΣT , Y∗ = YΣ−1/2
T ∼ Np×n(0,ΣS⊗In). By Definition C.1.1, we have

p(Y∗|ΣS) ∝ |ΣS |−n/2 exp{−1
2
tr[Y∗(Y∗)′Σ−1

S ]}.

Then the posterior distribution for Σ−1
S given Y∗, that is, Y for known ΣT

is given as follows:

p(Σ−1
S |Y) ∝ p(Y∗|ΣS)p(Σ−1

S )

∝ |ΣS |−(
δS+n

2
+p) exp

{
−1

2
tr

[
(Ξ−1

S + Y∗(Y∗)′)Σ−1
S

]}
.
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In other words, Σ−1
S |Y ∼ Wp(δo,Ξo), where δo = δS + n and

Ξo = {Ξ−1
S + Y∗(Y∗)′}−1

= (Ξ−1
S + YΣ−1

T Y′)−1

= ΞS −ΞSY(Y′ΞSY + ΣT )−1Y′ΞS .

¦

Proof C.1.4 (Theorem 6.4.3) This theorem can be proved similarly as in
Proof C.1.3, and so omitted here. ¦

Proof C.1.5 (Theorem 6.4.4) Let V = Σ−1/2
S Y. Then V ∼ Np×n(0, Ip ⊗

ΣT ). Hence, we have

p(Y|ΣS , µ, θ) ∝ exp
{
−1

2
tr

[
V′Vρ(., θ)−1

]}
.

Given the prior for θ, Nk(θ,Σ0), the posterior conditional density for θ

can be represented by

p(θ|Y,ΣS , µ) ∝ p(Y|ΣS , µ, θ)p(θ)

∝ exp
{
−1

2

[
tr(VV′ρ(., θ)−1) + (θ − θ0)′Σ−1

0 (θ − θ0)
]}

.

¦

Proof C.1.6 (Theorem 6.4.5)

(i) Since
Z ∼ Np×n(µ⊗ 1′n,ΣS ⊗ΣT ),

and p(µ) ∝ 1, we have the posterior conditional distribution for µ as
follows:

p(µ|Z,ΣS ,ΣT ) ∝ p(Z|µ,ΣS ,ΣT )p(µ)

∝ exp{−1
2
tr[(µ⊗ 1′n − Z)Σ−1

T (µ⊗ 1′n − Z)′Σ−1
S ]}

∝ exp{−1
2
tr[(µ⊗ 1′n)Σ−1

T (µ⊗ 1′n)′Σ−1
S − (µ⊗ 1′n)
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×Σ−1
T Z′Σ−1

S − ZΣ−1
T (µ⊗ 1′n)′Σ−1

S ]}
= exp{−1

2
tr[(µµ′tr( 1′n1nΣ−1

T )− µ1nΣ−1
T Z′

−ZΣ−1
T 1′nµ′)Σ−1

S ]}
∝ exp{−1

2
tr[(µ−M)(Σ∗)−1(µ−M)′Σ−1

S ]},

where Σ∗ = {tr(1′n1nΣ−1
T ) }−1 and M = ZΣ−1

T 1′nΣ∗. Therefore, we
have

µ|Z,ΣS ,ΣT ∼ N1×p(M, Σ∗ ⊗ΣS),

that is, Np(M, Σ∗ΣS) since Σ∗ is a scalar.

(ii) Let Y = Z− µ⊗ 1′n. Consequently, we have YΣ−1/2
T ∼ Np×n(0,ΣS ⊗

In). By Theorem 6.4.2, the posterior distribution for Σ−1
S |Z,ΣT is

Wp(δo,Ξo), given by (6.16), where Y = Z− µ⊗ 1′n.

(iii) Similarly as in (ii), by Theorem 6.4.3 the posterior conditional distri-
bution for Σ−1

T |Z,ΣS is given by (6.18), where Y = Z− µ⊗ 1′n.

¦

Proof C.1.7 (Theorem 6.4.6) The proof for this theorem follows Theorem
6.4.4 but letting V = Σ−1/2

S (Z− µ⊗ 1′n). ¦
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