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Abstract 

 
Identification and characterization of regions influencing the precise spatial and 

temporal expression of genes is critical to our understanding of gene regulatory networks. 

Connecting transcription factors to the cis-regulatory elements that they bind and regulate 

remains a challenging problem in computational biology. The rapid accumulation of 

whole genome sequences and genome-wide expression data, and advances in alignment 

algorithms and motif-finding methods, provide opportunities to tackle the important task 

of dissecting how genes are regulated.  

Genes exhibiting similar expression profiles are often regulated by common 

transcription factors. We developed a method for identifying statistically over-

represented regulatory motifs in the promoters of co-expressed genes using weight matrix 

models representing the specificity of known factors. Application of our methods to yeast 

fermenting in grape must revealed elements that play important roles in utilizing carbon 

sources. Extension of the method to metazoan genomes via incorporation of comparative 

sequence analysis facilitated identification of functionally relevant binding sites for sets 

of tissue-specific genes, and for genes showing similar expression in large-scale 

expression profiling studies. Further extensions address alternative promoters for human 

genes and coordinated binding of multiple transcription factors to cis-regulatory modules.  

Sequence conservation reveals segments of genes of potential interest, but the 

degree of sequence divergence among human genes and their orthologous sequences 

varies widely. Genes with a small number of well-distinguished, highly conserved non-

coding elements proximal to the transcription start site may be well-suited for targeted 

laboratory promoter characterization studies. We developed a “regulatory resolution” 
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score to prioritize lists of genes for laboratory gene regulation studies based on the 

conservation profile of their promoters. Additionally, genome-wide comparisons of 

vertebrate genomes have revealed surprisingly large numbers of highly conserved non-

coding elements (HCNEs) that cluster nearby to genes associated with transcription and 

development. To further our understanding of the genomic organization of regulatory 

regions, we developed methods to identify HCNEs in insects. We find that HCNEs in 

insects have similar function and organization as their vertebrate counterparts. Our data 

suggests that microsynteny in insects has been retained to keep large arrays of HCNEs 

intact, forming genomic regulatory blocks that surround the key developmental genes 

they regulate.  
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Chapter 1: Introduction 

 

1.1 Background and significance 

Gene expression in eukaryotes is a highly regulated process. Diverse mechanisms 

have evolved to ensure that genes are expressed at the right time, in the appropriate 

tissues and under specific conditions. This is critically important for processes such as 

development that require precise spatial and temporal expression of genes for the 

differentiation of cell types, body patterning and organ development. In addition, rapid 

modulation of gene expression levels allows cells to respond dynamically to changing 

environments. A growing body of literature provides evidence that gene regulation plays 

key roles in many human diseases: the transcription factors TCF7L2 and PTF1A, as well 

as microsatellite polymorphisms upstream of the insulin gene, have been linked to 

diabetes (1-3), NRF2 has been associated with asthma (4), PPARγ has been linked with 

obesity (5), and a number of noncoding single nucleotide polymorphisms (SNPs) of the 

CCR5 cis-regulatory region have been shown to modulate the transmission and 

progression of acquired immunodeficiency syndrome (AIDS) (6-8). With the abundance 

of reports linking regulatory polymorphisms to genetic diseases and susceptibility, 

combined with a wide variety of model organism studies demonstrating dramatic 

phenotypic consequences arising from mutations in transcription factor genes (9;10), it is 

tempting to speculate that disruptions in gene regulatory programs may be amongst the 

most important contributors to diseases.  

Much of our understanding of the fundamental properties of living cells – how 

they grow and divide, how they regulate the expression of their genetic information, and 
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how they use and store energy – have been made possible through studies of simple and 

tractable model organisms. In fact, the first major breakthrough in characterizing the 

regulatory dynamics of a system was achieved by studying lactose catabolism in the 

bacterium Escherichia coli (11). The utility of model organisms is reflected in the 

considerable number of genes conserved in evolution from yeast to man: 46% of 

Saccharomyces cerevisiae, 43% of Caenorhabditis elegans, 61% of Drosophila 

melanogaster, and up to 99% of mouse genes have a human homolog (12;13). Studies of 

complex eukaryotes like yeasts, nematodes, flies, fishes, mice and humans, each a 

representative of the diversity of life, have been instrumental in improving our 

understanding of how genes are regulated. Yeast research, in particular, has paved the 

way via technological innovations such as two-hybrid analysis, high-throughput protein 

purification and localization, gene expression profiling, protein arrays, and genome-wide 

chromatin immunoprecipitation (ChIP). This work, in turn, has provided insights into 

how DNA binding proteins, DNA sequence elements, components of the transcriptional 

machinery, chromatin structure, and signaling pathways combine in the circuitry of gene 

regulation. Studies in fruit flies and worms have made particularly important 

contributions to the understanding of developmental processes and morphology in 

metazoans. Likewise, homology between human and mouse genes allows genetics 

researchers to identify disruptions in certain genes in the mouse that result in phenotypes 

that closely resemble human diseases. Thus, the availability of the genome sequences for 

these model organisms, as well as for other species, provides broad opportunities to begin 

the complex task of unraveling the regulatory controls of gene activity. 
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1.2 Structure of eukaryotic regulatory regions 

In a simplified model of eukaryotic transcriptional regulation, the basal 

transcription factors bind to the transcription start site (TSS) to recruit and stabilize RNA 

Polymerase II at the promoter (Figure 1.1). Precise control over the initiation of 

transcription is further aided by binding of sequence-specific transcription factors to their 

cognate transcription factor binding sites (TFBSs) within enhancer sequences, which can 

occur immediately upstream of the gene’s TSS, within introns, or at distal locations of up 

to hundreds of kilobases upstream or downstream from the gene. Adding to the 

complexity is that transcription factors appear to operate cooperatively in modules, with 

enhancers typically containing binding sites for multiple proteins that work together to 

regulate gene expression. At a higher level, transcriptional regulation is tightly linked to 

chromatin structure. DNA is packaged into nucleosomes, which limits the accessibility of 

nucleosomal DNA to transcription factors. Proteins involved in histone acetylation and 

nucleosome remodeling alter the nucleosome structure, allowing transcription factors to 

gain access and bind to the DNA. The following sections discuss the complexities of 

eukaryotic gene regulation in more detail. 

1.2.1 The core promoter 

The core promoter is responsible for guiding RNA polymerase II to the correct 

TSS of a gene. It includes canonical sequence features that can extend ~35 bp upstream 

and/or downstream of the transcription initiation site, and that are sufficient for 

recognition by the basal transcription machinery - the minimal complement of factors that 

are essential to reconstitute accurate transcription in vitro from an isolated core promoter. 

The majority of core promoter elements identified thus far serve as recognition sites for 
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subunits of the basal transcription factor TFIID, which contains the TATA-binding 

protein (TBP) and several TBP-associated factors (TAFs) (14). 

 
 

 

Figure 1.1 Regulation of transcription. 

An increasingly complex model of transcriptional regulation has emerged in which genes are 
regulated by the interplay of DNA-binding transcription factors and co-activators, which in turn are 
subject to regulation by chromatin. Courtesy of (15) with kind permission from Springer Science and 
Business Media. 
 

 

The best known of the core promoter elements is the A/T-rich TATA-box, located 

25-30 bp upstream of the TSS of metazoan genes. A stable preinitiation complex can 

form in vitro on TATA-dependent core promoters following association with the TATA-

binding protein. Although the majority of early studies of core promoters revealed the 

presence of a TATA-box, the percentage of TATA-driven transcription is less than 

previously believed; an estimated 36% of Drosophila genes and 32% of human genes 
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contain this element (16;17). Analysis of human and mouse promoters indicates that 

TATA-box-containing promoters are highly conserved across species and are commonly 

associated with tissue-specific genes (18). 

The initiator (Inr) refers to a conserved sequence element that encompasses the 

TSS and is composed, in part, of a purine at the TSS (+1) and a pyrimidine at the -1 

position (14). It is functionally similar to the TATA-box, and can direct accurate 

transcription independently or in conjunction with other core promoter elements, 

including the TATA-box and the downstream promoter element (DPE). The DPE is 

located ~30bp downstream of the start site and is recognized by two distinct TAFs. In 

Drosophila, 36% of predicted Inr elements are associated with a TATA-box, 12% are 

associated with a DPE, and a further 6% are predicted to function independently (17). 

Though it’s unclear how many mammalian core promoters rely on the Inr element, the 

presence of CG, TG or CA dinucleotides at the TSS is associated with greater 

transcriptional activity (18).  

 A computational approach to identify over-represented motifs within a set of 

~2000 Drosophila core promoters led to the discovery of additional sequence elements 

that may be important for initiation of transcription (19). Of note is the motif 10 element 

(MTE), which was later shown to promote transcription by RNA polymerase II when 

located precisely at positions +18 to +27 (20). MTE requires the Inr. It functions 

independently of the TATA-box and DPE, but can also work synergistically with the 

TATA-box or the DPE, increasing transcription when added to a heterologous core 

promoter. Also of note is the combination of motif 1 and motif 6 (M1/M6). M1 tends to 

occur close to the TSS, and there a marked spatial preference for M6 to be located 20 bp 
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upstream of M1. In addition, there exists a bias against co-occurrence of M1 with the Inr 

and M6 with the TATA-box, suggesting that the M1/M6 combination may serve as an 

alternative to the TATA/Inr module (17). 

 The variability of core promoter architecture suggests that core promoters are 

active contributors to combinatorial gene regulation. Several hypotheses have been 

proposed to account for the observed diversity, including functional equivalence of core 

promoter modules, recognition of the core promoters by different proteins to regulate 

subsets of genes, or selective communication of core promoter elements with distal 

enhancer regions and specific transcription factors (reviewed by (21)). 

1.2.2 Complexities in promoter architecture 

Recent data revealed that the majority of mammalian promoters do not initiate 

transcription at a single, well-defined site but rather at multiple alternative initiation sites 

spread across a region (18). For clarity, this is conceptually different from alternative 

promoters described below, in which core promoters are separated by clear genomic 

space. Promoters with diffuse regions of initiation are strongly associated with CpG 

islands1, and in 90% of cases, transcription is initiated independently of a TATA-box. In 

contrast, TATA-boxes are significantly over-represented in promoters showing sharp 

TSSs, separating mammalian promoters into two classes. Genes that are ubiquitously 

expressed tend to be regulated by promoters with CpG islands and broad TSSs, while 

TATA-box promoters are associated with tissue-specific genes and tend to be highly 

                                                 
1 CpG islands are long stretches of DNA with a high GC content and where CpG dinucleotides occur at 
significantly higher levels than is typical for the genome as a whole (22). CpG dinucleotides generally 
occur infrequently in vertebrate DNA unless there is selective pressure to retain them, or a region is 
preferentially not methylated. This is because methylation of cytosine in CG dinucleotides often results in 
converstion to TG dinucleotides by spontaneous deamination. 
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conserved across species (18). The methylation status of CpG islands has been correlated 

with transcriptional activity with the promoters of inactive genes being methylated to 

suppress their expression while lack of methylation in these regions promotes 

accessibility to regulatory proteins (23). 

Alternative promoters are an important mechanism by which diversity and 

flexibility in gene expression patterns can be generated. Transcripts that differ in their 5’ 

ends can produce transcripts varying in turnover rates and translation efficiencies, as well 

as protein products with different amino-terminal regions depending on tissue type and 

developmental stage. Estimates of alternative promoter usage based on CAGE tags 

suggest that 58% of protein-coding transcriptional units have multiple alternative 

promoters (18). Such diversity in the location of transcription initiation sites poses 

significant challenges to delineating regulatory sequences. 

1.2.3 Enhancers 

Enhancers are key regulatory elements in higher eukaryotes that activate gene 

expression from distal locations, in some instances up to a megabase from their target 

genes (24). This long-range activation is independent of enhancer orientation on DNA as 

well as their position upstream or downstream of the promoter (25). Although the term 

“enhancers” emphasizes their interactions with transcriptional activators, enhancer 

elements are also found to interact with transcriptional repressors, resulting in repression 

of their target genes. A gene can be regulated by multiple enhancers, each acting as a 

regulatory module that executes a function that is a subfraction of the overall combined 

regulatory function (26). The activities of individual enhancers are often restricted to 

specific cell types, specific stages of development and/or environmental conditions. Thus, 
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enhancers integrate environmental and developmental information to regulate the 

expression of an individual gene in a biologically appropriate manner. 

 The current model of enhancer action is based primarily on the concept of 

“recruitment”, in which transcriptional activators bind to distal locations, recruit 

chromatin modifying complexes to the gene, and/or bring the transcriptional machinery 

to the transcription initiation site (27). Several models have been proposed to explain 

enhancer action over long genomic distances, including (i) DNA looping to bring 

enhancer-bound activators into close proximity to proteins at the promoter, (ii) tracking 

along the DNA from the enhancer, which acts as a loading platform for transcriptional 

activators, and (iii) spreading-looping, whereby activators induce cooperative binding of 

proteins to several closely spaced sites in the intervening region, resulting in a series of 

small loops between the enhancer and promoter (reviewed in (28)).  

The binding of activators and repressors to enhancers is mediated by specific 

contacts with certain combinations of TFBSs. In metazoan genomes, the number of sites 

ranges from four to eight, with the average value near five (26). TFBSs are usually short 

sequence motifs (between 5-15 bps) and are frequently degenerate. The degeneracy, 

though beneficial in that it allows for modulation of the levels of transcription based on 

the strength of binding, makes the prediction of TFBSs extremely challenging.  

1.2.4 Chromatin structure and its effects on gene regulation 

All of the above-mentioned interactions necessary for regulating transcription 

take place within the context of chromatin, wherein dynamic structural characteristics 

play an important role in gene regulation. The basic repeating structural unit of chromatin 

is the nucleosome, composed of ~146 bp of DNA wrapped around an octamer of histone 
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proteins comprised of two copies each of histones H2A, H2B, H3 and H4. Packaging of 

promoter DNA in nucleosomes inhibits transcription (29;30). Changes in nucleosome 

structure accompany transcriptional activation, as shown by the conversion of promoter 

DNA from a nuclease-resistant to a nuclease-accessible (“hypersensitive”) state upon 

transcriptional activation. A genome-wide study of nucleosome occupancy showed that 

nucleosomes are depleted from active regulatory elements throughout the yeast genome 

in vivo, and that the level of nucleosome occupancy is inversely proportional to the 

transcription initiation rate at the promoter (31).  

Changes in chromatin structure are affected by methylation of DNA (associated 

with gene repression), modifications of specific lysine residues in histone proteins, as 

well as preferential use of particular histone variants. Epigenetic studies have shown that 

specific post-translational modifications to histone tails influence the structure of the 

nucleosome and its interactions with DNA and regulatory proteins, leading to the 

“histone code” hypothesis (32). Recent genome-wide studies of chromatin structure show 

that active promoters are associated with H3-lysine-9 (H3K9), H3K14 and H4 

acetylation, and transcriptional activity appears to increase with an increasing gradient of 

H3K4 mono-, di- and trimethylation, with H3K4me3 marking active promoters 

exclusively. In contrast, trimethylation of H3K27 localizes to the promoters of repressed 

genes and plays an important role in long-term gene silencing. Repressive methylation is 

mediated via interactions with the Polycomb group (PcG) proteins, comprised of 

Polycomb repressive complex 1 (PRC1) and the ESC-E(Z) complex. Evidence shows that 

the latter complex specifically methylates H3K27, which in turn, facilitates binding of 

PRC1 to maintain the silent state of target genes (33).  
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Chromatin modifications are also associated with restricting the effects of long-

range enhancers to specific promoters via the action of sequences called insulators. 

Insulators can block the effects of enhancers in a position-specific manner or form 

chromatin boundaries through repressive chromatin modifications (34). 

1.2.5 Current strategies for improving our understanding of gene regulation 

The layers of complexity inherent in regulating the transcription of genes pose 

significant challenges to researchers hoping to gain a better understanding of this process. 

To provide an infrastructure to study the functional landscape encoded in the human 

genome, the Encyclopedia of DNA Elements (ENCODE) Project was initiated in 2003 by 

an international consortium of researchers (35). The pilot phase of the project focused on 

30 megabases (1%) of the human genome, and has not only demonstrated that the 

complexity is far greater than previously believed, but has also driven major experimental 

and computational technological advances for detecting and characterizing genomic 

features (36). Classical experimental procedures and high-throughput approaches for 

studying gene regulation will be the focus of the following section.  

1.3. Laboratory-based methods for regulatory region identification 

Numerous laboratory procedures exist for identifying potential regulatory 

sequences. Methods for characterizing and implicating a sequence element in regulating 

expression typically involve searching for evidence of (i) activation or repression of a 

reporter gene and/or (ii) binding of a transcription factor to the DNA sequence of interest. 

High-throughput methods that demarcate the 5’ ends of genes also contribute to an 

improved understanding of gene regulation because the regions surrounding TSSs are 
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known to contain gene regulatory elements (18). It is important to note that the results 

from these methods depict regulation at a static point in time, and that the overall picture 

of gene regulation may look quite different depending on the cell type and developmental 

stage in which the experiment is performed. 

1.3.1 Reporter constructs 

Reporter genes are used to assay for the ability of a particular sequence or 

promoter to drive expression via the action of a trans-acting protein. To act as a reporter, 

the gene must induce a measurable phenotype, such as the commonly used reporters 

green fluorescent protein (GFP), which glows under UV light, and luciferase, an enzyme 

that catalyzes a reaction with luciferin to produce light. Other frequently used reporters 

include the lacZ gene, whose protein product cleaves X-gal to produce a dark blue 

precipitate, and chloramphenicol acetyltransferase (CAT), which confers resistance to the 

antibiotic choramphenicol. Creation of a reporter construct involves placing the reporter 

gene under the control of the putative regulatory region, i.e. the promoter or predicted 

enhancer, and then quantitatively measuring the activity of the gene product. Once the 

ability of a region to modulate expression has been confirmed, mutagenesis studies using 

reporter constructs can further delineate sequence elements required for regulation. As 

mentioned previously, multiple cis-regulatory modules may direct subsets of the overall 

pattern of expression for a gene. To test the combined action of multiple enhancers, DNA 

minipromoters containing selected combinations of cis-regulatory modules can be 

constructed. 
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1.3.2 DNA binding assays 

DNA binding can be detected using a binding assay, such as an electrophoretic-

mobility shift assay (EMSA) or chromatin immunoprecipitation experiments (ChIP). 

EMSA detects protein-DNA complexes that exhibit impeded movement compared to 

unbound DNA when subjected to gel electrophoresis. An antibody that recognizes a 

transcription factor of interest can be used to form even larger complexes that are 

“supershifted”, facilitating unambiguous identification of the bound protein.  

ChIP assays are designed to detect binding of proteins to endogenous chromatin, 

thus identifying protein-DNA interactions that occur in vivo. In this method, the 

transcription factors are cross-linked to the chromatin to which they are bound by 

formaldehyde treatment. After the cells have been lysed and the DNA sheared or 

enzymatically digested, an antibody specific for the protein in question is used to 

immunoprecipitate the protein-DNA complexes. The DNA from the isolated protein-

DNA fraction is purified and amplified by the Polymerase Chain Reaction (PCR) to 

identify the sequence that is bound by the transcription factor.  

The conventional ChIP method has been extended to a high-throughput assay by 

combining ChIP with DNA microarrays (37;38). Referred to as ChIP-on-chip or ChIP-

chip, the method allows for efficient identification of protein-DNA interactions on a 

genome-wide scale. After immunoprecipitation, purification and amplification of the 

bound sequences, the DNA is fluorescently labeled and hybridized to DNA microarrays 

that contain probes covering the genomic regions of interest. A control DNA sample 

labeled with a different fluorescent dye is also hybridized to the array, with the result that 

DNA array elements corresponding to the genomic binding sites for the protein are 
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identified as those that display significantly stronger fluorescence signal in the ChIP 

DNA channel than the control.  

1.3.3 In vitro selection 

SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is an in 

vitro system that identifies double-stranded oligonucleotides that bind the protein of 

interest from a random pool of sequences (39). In this case, after incubation of the 

transcription factor with a randomly generated pool of oligonucleotides, formed 

complexes are purified by immunoprecipitation, and the bound DNA is amplified by 

PCR. This DNA is then used in further rounds of binding, immunoprecipitation, and 

amplification, until specific binding is detectable. The resulting high affinity sequences 

are often referred to as aptamers. While these sequences reflect the strongest binding sites 

or consensus, the method can be overly-specific, missing important weaker sites that may 

contribute to modulating expression. 

1.3.4 Transcript profiling to locate proximal promoters 

Advances in sequencing and expression profiling techniques have led to the 

development of high-throughput technologies for efficient measurement of transcript 

abundance on a genome-wide scale. A number of these technologies, such as cap analysis 

of gene expression (CAGE) (40) and 5’-end serial analysis of gene expression (5’ SAGE) 

(41;42), are designed to identify sequence tags corresponding to the 5’ ends of mRNA 

transcripts at the cap sites, and facilitate the delineation of proximal promoter regions and 

potential regulatory sequences. In both methods, linkers are attached to the 5’ ends of 

full-length enriched cDNAs to introduce a recognition site for the class II restriction 
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endonuclease MmeI, which cleaves the first 20 bp of the cDNA. After amplification, the 

sequence tags are concatenated for high-throughput sequencing.  

The above-mentioned methods provide base pair resolution of the expression 

profiles of TSSs compared to conventional microarrays, which profile transcript 

expression without distinguishing between alternate 5’ ends. More recently, high density 

tiling arrays have been used to profile transcribed regions (43;44). This technology, 

combined with the rapid amplification of cDNA ends (RACE), can determine the start 

and termination positions of coding and noncoding RNAs (43). Expressed sequence tags 

(EST) and full-length cDNA sequences can also be used to characterize the 5’ ends of 

transcripts and identify putative proximal promoter regions (45); however these methods 

are less reliable than direct sequencing of 5’ cap-trapped cDNAs.  

1.4 Computational methods for regulatory element prediction 

1.4.1 Repositories of gene regulatory information 

Computational biologists rely heavily on reference data collections of regulatory 

sequences to produce models of transcription factor binding specificity. However, much 

of the experimental data linking transcription factors to target sequences is dispersed in a 

haphazard manner among disparate sources (Table 1.1). Two widely accessed databases 

housing transcription factor motif models are JASPAR (46) and TRANSFAC (47). 

JASPAR, a repository of high quality motif models, has low coverage of human 

transcription factors, while TRANSFAC, a central tool for bioinformatics, is subject to 

commercial funding and certain restrictions. In recent years, efforts have been made to 

create a unified, open access resource to house literature-curated regulatory regions and  



 15 

Table 1.1 Selected resources for gene regulatory information 

Name Description 

ABS (48) Database of annotated regulatory binding sites from orthologous human, mouse 
and rat promoters. 

DBTSS (49) Database of transcriptional start sites based on experimentally determined 5’-
end sequences of full-length cDNAs. Additionally, it contains predicted TFBSs 
and conservation information. 

Drosophila DNase I 
Footprint Database (50) 

Systematic curation and genome annotation of 1,365 DNase I footprints for D. 

melanogaster. 
EDGEdb (51) C. elegans differential gene expression database contains regulatory element, 

transcription factor, protein-DNA and protein-protein interaction, and gene 
expression information. 

EPD (52) Eukaryotic promoter database is an annotated non-redundant collection of 
eukaryotic POL II promoters with experimentally determined TSSs. It includes 
both conventional, targeted studies of individual genes as well as large-scale 
annotation projects. 

ERTargetDB (53) Estrogen receptor target database integrates information from ChIP-chip 
experiments and promoter sequence conservation. 

Hardison Lab Compilation of data useful in comparative genomics and in erythroid gene 
regulation studies (http://www.bx.psu.edu/~ross/dataset/DatasetHome.html). 

JASPAR (54) High quality transcription factor binding profile database. 
LSPD Liver specific gene promoter database (http://rulai.cshl.edu/LSPD/). 
MPromDb (55) Mammalian promoter database is an integrated database containing 

experimentally supported annotation of TSSs, cis-regulatory elements, CpG 
islands and ChIP-chip experiments. 

MTIR Summary of published information on muscle-specific transcriptional regulation 
(http://www.cbil.upenn.edu/MTIR/HomePage.html).  

ooTFD (56;57) Object-oriented transcription factor database that contains literature-derived 
transcription factor binding information. 

Oreganno (58) Open regulatory annotation database is an open database for the curation of 
known regulatory elements from scientific literature. 

REDfly (59) Regulatory element database for Drosophila seeks to include all experimentally 
verified fly cis-regulatory modules and TFBSs, along with their DNA sequence, 
their associated genes, and the expression patterns they direct. 

SCPD (60) Promoter database for the yeast Saccharomyces cerevisiae contains 
experimentally mapped TFBSs and transcriptional start sites, as well as binding 
affinity and expression data where available. 

TRANSFAC (47) Eukaryotic transcription factors, their genomic binding sites and DNA binding 
profiles. 

TRED (61) Transcriptional regulatory element database contains genome-wide human, 
mouse and rat promoter annotation, derived from a combination of automation 
and curation, as well as curated transcription factor binding and regulation 
information. 

TRRD (62) Transcription regulatory regions database contains experimentally confirmed 
information on structural and functional organization of transcription regulatory 
regions of eukaryotic genes. 

VISTA Enhancer 
Browser (63) 

Experimental data for conserved noncoding human sequences that have been 
tested for tissue-specific enhancer activity in transgenic mice.  

Yeast Regulatory Map 
(64;65) 

A regulatory map of the yeast genome based on motifs derived from genome-
wide chromatin immunoprecipitation data for 203 transcription factors 
(http://fraenkel.mit.edu/Harbison/).  
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TFBSs. This has led to the creation of the ORegAnno database, which additionally 

contains the locations of genetic variations known to alter TFBSs (58), and PAZAR, 

which allows individual catalogues of regulatory sequences to be maintained and 

disseminated separately within a larger “information mall” schema (66). The success of 

community-based resources is highly dependent on the community to import, annotate 

and maintain their regulatory sequence collections, thus enabling computational 

biologists to harness the power of multiple, well-curated and updated regulatory sequence 

data sets. 

1.4.2 Computational identification of TFBSs 

Identifying the locations of binding sites for a characterized transcription factor 

requires modeling of the binding affinity of the protein. Construction of a model of 

transcription factor binding affinity is dependent on the availability of multiple known 

target sequences for the transcription factor of interest. The sequences are aligned to 

detect the key features that are recognized by the transcription factor, i.e. which residues 

are conserved and which residues are variable. In the simplest form, the binding site is 

modeled using a consensus sequence, which assigns a letter to represent the nucleotide 

position in each column. While providing more information than a single sequence, the 

consensus does not model the distribution of nucleotides in each position, and results in a 

net loss of information. Searching with the consensus leads to under-representation of 

true sites. 

Most commonly, however, motifs are modeled using matrix-based profiles that 

provide quantitative descriptions of known binding sites for the transcription factor of 

interest (67). Useful matrices produce scores that directly correlate with the binding 
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energies between the transcription factor and the binding site (68). The matrix-based 

approach assumes that the nucleotide occurrence at each position contributes 

independently to the binding, such that the total energy of the interaction is the sum of the 

energies of the individual contacts. This does likely not reflect the true biological 

characteristics of binding sites (69;70). In the best cases, where a large amount of high 

quality binding information is available, higher order models can offer slight 

improvements (70;71).  

The first step in the construction of a matrix model involves enumerating the 

number of occurrences of each nucleotide at each position in the multiple sequence 

alignment to create a position frequency matrix (PFM) (Figure 1.2). The PFM is 

transformed to a position weight matrix (PWM) using Equations 1 and 2, which 

normalize the counts based on the total number of binding site sequences, considers the 

genomic nucleotide distribution, and converts the matrix to a log-scale for efficient 

computational analysis:  
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where fb,i is the count of base b at position i, N is the total number of sites, and s(b) is the 

pseudocount correction that is optionally applied to small samples of binding sites.  
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Figure 1.2 Construction of quantitative models for transcription factor binding specificity 

An aligned set of TFBSs can be converted into a position frequency matrix (PFM) that quantitatively 
describes the alignment by enumerating the frequency of each nucleotide in each column. A graphical 
display (a “logo”) of a binding profile can be generated that displays the binding preferences in 
proportion to the strength of the pattern at each position. The values in a PFM are converted to a log-
scale for simplified arithmetic in scoring potential sites in a representation referred to as a position 
weight matrix (PWM). 
 

To search a sequence for potential binding sites, the PWM is slid along the sequence and 

a quantitative score at each position is computed as the sum of the PWM values for each 

nucleotide in the site. 

Sometimes, although the precise locations of TFBSs are unknown, there is 

evidence to suggest that target sites for a factor of interest reside within longer stretches 

of DNA. This is the case for target sequences derived from ChIP-chip experiments or co-

expression analysis. Matrix-based binding models for motifs can be generated from sets 
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of related sequences using probabilistic pattern discovery algorithms, under the 

expectation that functional binding sites will provide sufficient signal to be detected as 

over-represented patterns when compared to background sequences. Probabilistic 

methods are fast and produce quantitative binding profiles. Examples include 

expectation maximization (EM) (72;73) and Gibbs sampling (74). A full presentation of 

pattern discovery procedures is beyond the scope of this thesis but the interested reader 

can refer to a plethora of review articles (75-79). 

The application of weight matrix models to predict TFBSs in metazoan genomes 

suffers from significant limitations in practice. Binding sites are typically short and 

degenerate, and are likely to occur with high frequency in large genomes. Also, DNA is 

packaged into chromatin in the nucleus, which prevents transcription factors from 

accessing and binding non-functional sites (80). Consequently, although scores produced 

by TFBS models show high correlation with binding affinity, and 95% of potential HNF-

1 binding sites predicted by a profile were indeed bound by the protein in vitro (81), the 

correlation between predictions and functional sites in vivo is poor (82). Thus, motif 

models in isolation are insufficient to discriminate functional sites, and additional 

information is needed to reduce false positives.  

The specificity of cis-regulatory element prediction can be enhanced by 

incorporating combinatorial patterns of DNA motifs into search algorithms. This 

approach is motivated by cooperative interactions that have been observed between 

transcription factors and clustered binding sites or cis-regulatory modules (CRMs) 

(26;83;84). Rule-based models define motifs, interactions and spacing requirements for 

CRMs based on studies of composite response elements (26;85;86). Often there is 
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insufficient data to establish rules for regulatory architecture; more flexible approaches 

have been developed to identify clusters of predicted sites enriched in a set of sequences, 

sometimes incorporating conservation analysis to further improve their specificity (87-

92). 

1.5 Conservation analysis for the identification of regulatory regions 

Phylogenetic footprinting of orthologous sequences from organisms at appropriate 

evolutionary distances has emerged as a powerful tool for enhancing the specificity of 

TFBS predictions (93). The underlying expectation is that selective pressure causes 

regulatory elements to evolve at a slower rate than the non-functional surrounding 

sequences. Therefore, highly constrained noncoding regions among a set of orthologous 

sequences are considered excellent candidates as regulatory elements. Phylogenetic 

footprinting of human and mouse sequences increases specificity by eliminating ~80% of 

noncoding sequence (94); approximately 70% of functional binding sites can be detected 

in conserved regions of human-mouse alignments (94;95). Thus, although using 

conservation limits our ability to detect binding sites that have evolved in a species-

specific manner or those subject to turnover (95-97), there is much to be gained from the 

dramatic reduction in noise. 

Determining the appropriate evolutionary distance to identify functionally 

constrained regions can be a major challenge as rates of sequence changes vary widely 

across a genome. Thus, one cannot make global statements about the optimal pair of 

genomes appropriate for comparison. Comparisons of human and mouse sequences 

comprise the bulk of comparative genomic studies (93;98-100), but successful examples 

also exist for comparisons of human sequence with chicken (101) or pufferfish (102). 
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Many stringently constrained noncoding sequences act as developmental enhancers in 

gain-of-function assays (24;103). 

1.5.1 Algorithms for multi-species sequence alignments 

The rapid accumulation of metazoan genome sequences has facilitated the 

development of new algorithms to deal with multi-species sequence comparisons. 

Numerous multiple sequence alignment methods have been developed, most of which 

progressively construct a multiple alignment by successive applications of a pairwise 

alignment algorithm (104-106). Alignments produced by different multiple sequence 

alignment methods are consistent on a large-scale, but show significant discrepancies at 

the nucleotide level in terms of small genomic rearrangements, sensitivity (sequence 

coverage) and specificity (alignment accuracy) (107).  

1.5.2 Identifying and measuring evolutionary constraint 

Equally as important as generating alignments is identifying and measuring 

evolutionary constraint. A variety of approaches have been developed that take both the 

sequence alignment and a species distance tree as input, and return quantitative scores 

that assign a level of constraint to a genomic position or small window within the species 

of interest. For example, PhastCons uses a two-state phylogenetic hidden Markov model 

(phylo-HMM) to calculate the probability of being in the conserved state for every 

alignable base in the reference genome. The states are based on phylogenetic models 

representing the average rate of substitution in conserved and nonconserved sequences 

(108). The free parameters of the model are estimated using maximum likelihood. 
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Alternatively, “multi-species conserved sequences” (MCS) can be used to 

measure evolutionary constraint (109). In the binomial-based MCS approach, the relative 

contribution of each species’ sequence is weighted by its baseline neutral substitution rate 

(relative to the reference genome) such that conserved sequences from more diverged 

species make a greater relative contribution to the conservation score than those from less 

diverged species The weighting is calculated as the cumulative binomial probability of 

detecting the observed number of base identities in each 25-base window, given the 

neutral substitution rate calculated using four-fold degenerate positions. An alternative 

parsimony-based MCS score measures conservation within each column of the multi-

sequence alignment using a phylogenetic parsimony score that reflects the minimal 

number of substitutions needed along the branches of an established phylogenetic tree to 

account for the observed bases. A 
p-value associated with the derived parsimony score is 

calculated under a continuous-time Markov model of neutral evolution, and converted to 

a conservation score such that higher scores reflect higher conservation. 

Other established measures of constraint include GERP and “composite 

alignability.” GERP estimates evolutionary rates for individual alignment columns and 

compares them with a tree describing the neutral substitution rates relating the species 

under consideration (110). It identifies candidate constrained elements by annotating 

those regions that exhibit fewer than expected substitutions. Composite alignability is 

computed as the average of the pairwise alignabilities weighted by branch length to the 

reference genome, where alignability is computed as the fraction of bases in the reference 

sequence aligning to another species, regardless of whether the aligned base is a match, 
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mismatch or gap (111). Composite alignability reflects conservation of a region between 

two species but does not necessarily mean that the region is subject to purifying selection. 

 Results from the ENCODE Pilot Project (36) demonstrate that binomial-based 

MCS scores select for only a very highly constrained subset of regulatory elements and 

miss many other regions that are under constraint. However, the sliding window approach 

used by this method is less sensitive to many of the smaller elements identified by 

PhastCons and GERP, and is also less prone to annotate isolated and short sequences that 

are highly similar between the reference and distantly related species that may be 

alignment artifacts (107). PhastCons scores perform well at discriminating specific 

promoters (defined as having validated activity in 1-5 of 16 cell lines assayed), while 

“composite alignability” performs best for ubiquitous promoters and putative 

transcriptional regulatory regions derived from the ENCODE protein occupancy and 

chromatin modification data (111).  

While many regulatory sequences are constrained through evolution, conservation 

alone is not sufficient to differentiate regulatory sequences from other functional regions 

such as coding exons and noncoding RNA genes. Regulatory Potential (RP) scores 

attempt to combine evolutionary constraint within alignments between human and rodent 

sequences with features characteristic of known regulatory regions (112;113). The 

method uses a fifth order hidden Markov model (HMM) based on the frequencies of short 

alignment patterns in regulatory regions to distinguish regulatory DNA from neutral sites, 

with the idea that short, absolutely conserved segments are more representative of RP 

than third position variable coding sequences or freely evolving neutral sequences. 

Evaluation of MCS, phastCons and RP scores showed that all three methods correctly 
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identify 50%-60% of the CRMs in the well-studied HBB gene complex, with the RP 

performing better than the conservation measures (114). 

1.5.3 Highly conserved noncoding elements in metazoan genomes 

Comparisons of the human genome against the genomes of multiple vertebrate 

species have revealed an abundance of highly conserved noncoding DNA elements 

(HCNEs) that appear to have been “frozen” throughout vertebrate development (115;116). 

Though the exact number of such elements varies depending on the precise definition of 

similarity and the genomes used in the comparison, HCNEs are consistently found in 

clusters near genes encoding transcription factors and key regulators of development 

(103;115;116). They constitute an interesting class of genetic elements that have thus far 

been primarily implicated as enhancers of transcription (24;103;117-119), and to a lesser 

extent, as noncoding RNAs or regions that form RNA secondary structures important for 

post-transcriptional processing (108;109;120). The emerging model of HCNE enhancer 

function is that arrays of HCNEs define regions of regulatory inputs of their target genes, 

and that the full complement of those inputs results in the actual expression pattern of the 

genes (121;122).  

The extreme levels of sequence conservation in HCNEs led many to speculate 

that these regions are necessary and crucial for proper development and viability. 

However, deletions of large genomic regions containing numerous HCNEs had no 

appreciable phenotype (123). Even more remarkable is that knockout mice lacking some 

of the most conserved HCNEs – “ultraconserved elements” spanning 200 bp or more that 

are identical in alignments of human, mouse and rat sequences (116) – were viable and 

fertile with no ill effects in terms of growth, longevity, pathology and metabolism, 
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suggesting that extreme sequence constraint does not necessarily reflect crucial functions 

required for viability (124). Furthermore, introduction of two separate 16 bp insertions 

into a HCNE within an ancient conserved enhancer, Dc2, located near the dachshund 

gene, did not cause any detectable modification of its in vivo activity (125). The authors 

suggest that HCNEs are tolerant of change, and suggest that purifying selection may not 

be as strong as previously predicted or that some unknown property also constrains this 

HCNE sequence. 

The few studies that have investigated HCNEs in other organisms show that they 

mirror some of the properties of vertebrate HCNEs. HCNEs in worms and insects 

frequently reside near developmental regulatory genes and show similar base 

composition with vertebrate HCNEs (108;126). The fraction of the genome within 

HCNEs increases with increasing genome size and biological complexity, so that while 

most conserved bases in vertebrates and insects apparently do not code for proteins, most 

in worms and yeasts do. This suggests elaborate mechanisms for gene regulation via 

noncoding sequences in complex eukaryotes (108).  

Determination of the evolutionary forces that have given rise to HCNEs is an 

active area of research. Some HCNEs have clear repetitive origins, and are likely to be 

mobile element instances exapted into putative cis-regulatory roles (127;128). Analyses 

of single nucleotide polymorphism (SNP) allele frequencies within human and fly 

HCNEs argue that HCNEs are maintained by purifying selection, and are not simply 

regions of the genome with extremely low mutation rates as predicted by the mutation 

cold spot hypothesis (129-131). 
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1.6 Thesis overview and chapter objectives 

The maturation of genomics technologies for sequencing and expression profiling, 

as well as improvements in motif discovery and alignment algorithms, creates new 

opportunities to gain insight into the regulatory programs of eukaryotic cells. We 

hypothesize that the analysis of sequence conservation and predicted transcription factor 

target sequences can provide functional insights into the regulatory mechanisms active in 

a cell or tissue. The work traverses multiple species, providing both species-specific 

predictions and allowing for inferences about pathways and processes that have been 

conserved through evolution. The research is geared towards producing both 

bioinformatics approaches and specific software to be used by the research community to 

generate testable hypotheses and motivate specific experiments for the study of 

transcriptional regulation.  

Gene expression profiling studies identify sets of genes with similar patterns of 

expression in diverse biological contexts. Based on the assumption that subsets of co-

expressed genes are also co-regulated, we tested the hypothesis that underlying regulatory 

networks could be determined from co-expression data via identification of statistically 

over-represented regulatory motifs. At the time, several studies had successfully linked 

co-expression to regulation for sets of yeast genes using this approach (reviewed in 

(132;133)). However, the more complex mechanisms for transcriptional regulation 

employed by metazoans, including long-range regulation and synergistic control via 

multiple transcription factors, as well as far greater proportions of noncoding sequence, 

pose significant challenges. Thus, when I began this research, few resources existed to 

adequately address the regulatory analysis of co-expressed human genes in a systematic 
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and user-friendly way. Available methods limited their analysis to short upstream regions 

of related human genes (ranging from 600 bp to 1200 bp) to reduce noise (134-136), 

potentially missing important enhancer elements that can reside thousands of bases from 

the TSS. A number of studies had showed that functional binding sites could be identified 

in long stretches of upstream sequence using conservation between human and mouse to 

filter noise (94;137;138). We endeavored to extend these methods to all human genes and 

to create a system for identifying over-represented, evolutionary conserved motifs in sets 

of human genes. In Chapter 2 (as published in (139)), we describe oPOSSUM, an 

integrated platform that combines a pre-computed database of predicted, evolutionarily 

conserved TFBSs, derived from phylogenetic footprinting and mature motif identification 

tools, with statistical methods to assess enrichment of regulatory sites within sets of 

biologically linked genes. oPOSSUM’s user-friendly interface, robust implementation 

and use of two statistical frameworks for assessing over-representation make it an 

important contribution to this active research area. 

High-throughput alignment of orthologous human and mouse sequences presented 

some challenges during the development of oPOSSUM. We had defined a single TSS for 

each human and mouse gene based on the 5’-end of the first exon of each gene, but the 

presence of multiple alternative promoters led to alignment failures when 5’-most exons 

differed between species. To address this shortcoming, we developed an approach to map 

the locations of alternative TSSs and identify multiple corresponding promoter regions in 

the alignments (Chapter 3, as published in (140)). Our goal was to improve the 

percentage of successfully aligned orthologs, and we hypothesized that the incorporation 

of alternative conserved promoters could improve the motif signal within a set of gene 
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sequences. Further advances included developing regulatory analysis platforms for yeast 

and nematode sequences, and extending oPOSSUM to identify enriched CRMs via 

analysis of combinations of clustered binding sites (141). 

In Chapter 4 (as published in (142)), we demonstrate the use of applied genomics 

technologies and bioinformatics to make predictions about regulatory pathways and to 

generate testable hypotheses. Despite a multitude of studies describing yeast stress 

responses, few have examined the complex mechanisms employed by S. cerevisiae to 

cope with changing nutritional status and increasing ethanol concentration during long-

term alcoholic fermentation in natural grape must. The objective of this work was to use 

gene expression profiling, as well as functional annotations and motif over-representation, 

to make novel discoveries of genes and pathways that enable yeast cells to adapt and 

survive in such a hostile environment. As a large fraction of stress-responsive genes 

remain uncharacterized, we hypothesized that they are only activated under conditions 

not typically tested in the laboratory.  

Once a group of genes is identified as having interesting expression or regulation 

properties in a genomics study, the next challenge is laboratory validation. The laboratory 

research is a bottleneck in that the studies are slow and labour intensive. We observed 

that manual selection of candidate genes for synthetic promoter design and reporter gene 

assays follows several general guidelines, one of which is the evaluation of conserved 

regions in the vicinity of TSSs that may act as regulatory sequences. Our extensive use of 

phylogenetic footprinting highlighted diverse levels of conservation in the promoters of 

different genes, which suggested a mechanism by which we can prioritize gene 

candidates in an automated way. In Chapter 5 (manuscript in preparation), we explore a 



 29 

scoring procedure, based on features of gene conservation profiles from multi-species 

sequence alignments, to rank genes and their candidate regulatory regions for targeted 

laboratory-based gene regulation experiments.  

In Chapter 6 (as published in (143)), we investigate patterns of extreme sequence 

conservation among insect genomes. HCNEs in vertebrates have been implicated as long-

range enhancers of gene expression, particularly for developmental regulators 

(103;115;116;125), and we hypothesized that this might be a common feature of 

metazoan genomes. The objective of this work was to identify HCNEs in the insect 

lineage, and to investigate their genomic organization and functional roles. In particular, 

we wished to find evidence for the role and mechanism of HCNEs in gene regulation. 

This thesis, which addresses a broad spectrum of computational genomics studies 

and resources, contributes to the analysis and understanding of eukaryotic gene regulation. 

The common thread unifying these chapters is the use of sequence analysis combined 

with large-scale genomics data to decipher potential regulatory mechanisms, and each 

chapter makes an independent contribution towards achieving this goal. 



 30 

1.7 References 

 1.  Kennedy,G.C., German,M.S. and Rutter,W.J. (1995) The minisatellite in the 
diabetes susceptibility locus IDDM2 regulates insulin transcription. Nat.Genet., 9, 
293-298. 

 2.  Grant,S.F., Thorleifsson,G., Reynisdottir,I., Benediktsson,R., Manolescu,A., 
Sainz,J., Helgason,A., Stefansson,H., Emilsson,V., Helgadottir,A. et al. (2006) 
Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 
diabetes. Nat.Genet., 38, 320-323. 

 3.  Sellick,G.S., Barker,K.T., Stolte-Dijkstra,I., Fleischmann,C., Coleman,R.J., 
Garrett,C., Gloyn,A.L., Edghill,E.L., Hattersley,A.T., Wellauer,P.K. et al. (2004) 
Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat.Genet., 36, 
1301-1305. 

 4.  Li,N. and Nel,A.E. (2006) Role of the Nrf2-mediated signaling pathway as a 
negative regulator of inflammation: implications for the impact of particulate 
pollutants on asthma. Antioxid.Redox.Signal., 8, 88-98. 

 5.  Meirhaeghe,A., Fajas,L., Helbecque,N., Cottel,D., Lebel,P., Dallongeville,J., 
Deeb,S., Auwerx,J. and Amouyel,P. (1998) A genetic polymorphism of the 
peroxisome proliferator-activated receptor gamma gene influences plasma leptin 
levels in obese humans. Hum.Mol.Genet., 7, 435-440. 

 6.  Bream,J.H., Young,H.A., Rice,N., Martin,M.P., Smith,M.W., Carrington,M. and 
O'Brien,S.J. (1999) CCR5 promoter alleles and specific DNA binding factors. 
Science, 284, 223. 

 7.  Martin,M.P., Dean,M., Smith,M.W., Winkler,C., Gerrard,B., Michael,N.L., 
Lee,B., Doms,R.W., Margolick,J., Buchbinder,S. et al. (1998) Genetic 
acceleration of AIDS progression by a promoter variant of CCR5. Science, 282, 
1907-1911. 

 8.  McDermott,D.H., Zimmerman,P.A., Guignard,F., Kleeberger,C.A., Leitman,S.F. 
and Murphy,P.M. (1998) CCR5 promoter polymorphism and HIV-1 disease 
progression. Multicenter AIDS Cohort Study (MACS). Lancet, 352, 866-870. 

 9.  Look,A.T. (1997) Oncogenic transcription factors in the human acute leukemias. 
Science, 278, 1059-1064. 

 10.  Lee,J., Ahnn,J. and Bae,S.C. (2004) Homologs of RUNX and CBF beta/PEBP2 
beta in C. elegans. Oncogene, 23, 4346-4352. 

 11.  Jacob,F. and Monod,J. (1961) Genetic regulatory mechanisms in the synthesis of 
proteins. J.Mol.Biol., 3, 318-356. 



 31 

 12.  Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C., Baldwin,J., 
Devon,K., Dewar,K., Doyle,M., FitzHugh,W. et al. (2001) Initial sequencing and 
analysis of the human genome. Nature, 409, 860-921. 

 13.  Waterston,R.H., Lindblad-Toh,K., Birney,E., Rogers,J., Abril,J.F., Agarwal,P., 
Agarwala,R., Ainscough,R., Alexandersson,M., An,P. et al. (2002) Initial 
sequencing and comparative analysis of the mouse genome. Nature, 420, 520-562. 

 14.  Smale,S.T. and Kadonaga,J.T. (2003) The RNA polymerase II core promoter. 
Annu.Rev.Biochem., 72, 449-479. 

 15.  Wasserman,W.W. and Krivan,W. (2003) In silico identification of metazoan 
transcriptional regulatory regions. Naturwissenschaften, 90, 156-166. 

 16.  Suzuki,Y., Tsunoda,T., Sese,J., Taira,H., Mizushima-Sugano,J., Hata,H., Ota,T., 
Isogai,T., Tanaka,T., Nakamura,Y. et al. (2001) Identification and 
characterization of the potential promoter regions of 1031 kinds of human genes. 
Genome Res., 11, 677-684. 

 17.  Ohler,U. (2006) Identification of core promoter modules in Drosophila and their 
application in accurate transcription start site prediction. Nucleic Acids Res., 34, 
5943-5950. 

 18.  Carninci,P., Sandelin,A., Lenhard,B., Katayama,S., Shimokawa,K., Ponjavic,J., 
Semple,C.A., Taylor,M.S., Engstrom,P.G., Frith,M.C. et al. (2006) Genome-wide 
analysis of mammalian promoter architecture and evolution. Nat.Genet., 38, 626-
635. 

 19.  Ohler,U., Liao,G.C., Niemann,H. and Rubin,G.M. (2002) Computational analysis 
of core promoters in the Drosophila genome. Genome Biol., 3, RESEARCH0087. 

 20.  Lim,C.Y., Santoso,B., Boulay,T., Dong,E., Ohler,U. and Kadonaga,J.T. (2004) 
The MTE, a new core promoter element for transcription by RNA polymerase II. 
Genes Dev., 18, 1606-1617. 

 21.  Smale,S.T. (2001) Core promoters: active contributors to combinatorial gene 
regulation. Genes Dev., 15, 2503-2508. 

 22.  Bird,A.P., Taggart,M.H., Nicholls,R.D. and Higgs,D.R. (1987) Non-methylated 
CpG-rich islands at the human alpha-globin locus: implications for evolution of 
the alpha-globin pseudogene. EMBO J., 6, 999-1004. 

 23.  Cross,S.H. and Bird,A.P. (1995) CpG islands and genes. Curr.Opin.Genet.Dev., 5, 
309-314. 

 24.  Nobrega,M.A., Ovcharenko,I., Afzal,V. and Rubin,E.M. (2003) Scanning human 
gene deserts for long-range enhancers. Science, 302, 413. 



 32 

 25.  Banerji,J., Rusconi,S. and Schaffner,W. (1981) Expression of a beta-globin gene 
is enhanced by remote SV40 DNA sequences. Cell, 27, 299-308. 

 26.  Arnone,M.I. and Davidson,E.H. (1997) The hardwiring of development: 
organization and function of genomic regulatory systems. Development, 124, 
1851-1864. 

 27.  Ptashne,M. and Gann,A. (1997) Transcriptional activation by recruitment. Nature, 
386, 569-577. 

 28.  Bondarenko,V.A., Liu,Y.V., Jiang,Y.I. and Studitsky,V.M. (2003) 
Communication over a large distance: enhancers and insulators. Biochem.Cell 

Biol., 81, 241-251. 

 29.  Knezetic,J.A. and Luse,D.S. (1986) The presence of nucleosomes on a DNA 
template prevents initiation by RNA polymerase II in vitro. Cell, 45, 95-104. 

 30.  Han,M. and Grunstein,M. (1988) Nucleosome loss activates yeast downstream 
promoters in vivo. Cell, 55, 1137-1145. 

 31.  Lee,C.K., Shibata,Y., Rao,B., Strahl,B.D. and Lieb,J.D. (2004) Evidence for 
nucleosome depletion at active regulatory regions genome-wide. Nat.Genet., 36, 
900-905. 

 32.  Strahl,B.D. and Allis,C.D. (2000) The language of covalent histone modifications. 
Nature, 403, 41-45. 

 33.  Cao,R., Wang,L., Wang,H., Xia,L., Erdjument-Bromage,H., Tempst,P., Jones,R.S. 
and Zhang,Y. (2002) Role of histone H3 lysine 27 methylation in Polycomb-
group silencing. Science, 298, 1039-1043. 

 34.  Bell,A.C., West,A.G. and Felsenfeld,G. (2001) Insulators and boundaries: 
versatile regulatory elements in the eukaryotic genome. Science, 291, 447-450. 

 35.  ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA 
Elements) Project. Science, 306, 636-640. 

 36.  Birney,E., Stamatoyannopoulos,J.A., Dutta,A., Guigo,R., Gingeras,T.R., 
Margulies,E.H., Weng,Z., Snyder,M., Dermitzakis,E.T., Thurman,R.E. et al. 
(2007) Identification and analysis of functional elements in 1% of the human 
genome by the ENCODE pilot project. Nature, 447, 799-816. 

 37.  Wu,J., Smith,L.T., Plass,C. and Huang,T.H. (2006) ChIP-chip comes of age for 
genome-wide functional analysis. Cancer Res., 66, 6899-6902. 

 38.  Bulyk,M.L. (2006) DNA microarray technologies for measuring protein-DNA 
interactions. Curr.Opin.Biotechnol., 17, 422-430. 



 33 

 39.  Pollock,R. and Treisman,R. (1990) A sensitive method for the determination of 
protein-DNA binding specificities. Nucleic Acids Res., 18, 6197-6204. 

 40.  Shiraki,T., Kondo,S., Katayama,S., Waki,K., Kasukawa,T., Kawaji,H., 
Kodzius,R., Watahiki,A., Nakamura,M., Arakawa,T. et al. (2003) Cap analysis 
gene expression for high-throughput analysis of transcriptional starting point and 
identification of promoter usage. Proc.Natl.Acad.Sci.U.S.A, 100, 15776-15781. 

 41.  Wei,C.L., Ng,P., Chiu,K.P., Wong,C.H., Ang,C.C., Lipovich,L., Liu,E.T. and 
Ruan,Y. (2004) 5' Long serial analysis of gene expression (LongSAGE) and 3' 
LongSAGE for transcriptome characterization and genome annotation. 
Proc.Natl.Acad.Sci.U.S.A, 101, 11701-11706. 

 42.  Hashimoto,S., Suzuki,Y., Kasai,Y., Morohoshi,K., Yamada,T., Sese,J., 
Morishita,S., Sugano,S. and Matsushima,K. (2004) 5'-end SAGE for the analysis 
of transcriptional start sites. Nat.Biotechnol., 22, 1146-1149. 

 43.  Kapranov,P., Drenkow,J., Cheng,J., Long,J., Helt,G., Dike,S. and Gingeras,T.R. 
(2005) Examples of the complex architecture of the human transcriptome revealed 
by RACE and high-density tiling arrays. Genome Res., 15, 987-997. 

 44.  Cheng,J., Kapranov,P., Drenkow,J., Dike,S., Brubaker,S., Patel,S., Long,J., 
Stern,D., Tammana,H., Helt,G. et al. (2005) Transcriptional maps of 10 human 
chromosomes at 5-nucleotide resolution. Science, 308, 1149-1154. 

 45.  Halees,A.S., Leyfer,D. and Weng,Z. (2003) PromoSer: A large-scale mammalian 
promoter and transcription start site identification service. Nucleic Acids Res., 31, 
3554-3559. 

 46.  Sandelin,A., Alkema,W., Engstrom,P., Wasserman,W.W. and Lenhard,B. (2004) 
JASPAR: an open-access database for eukaryotic transcription factor binding 
profiles. Nucleic Acids Res., 32, D91-D94. 

 47.  Wingender,E., Dietze,P., Karas,H. and Knuppel,R. (1996) TRANSFAC: a 
database on transcription factors and their DNA binding sites. Nucleic Acids Res., 
24, 238-241. 

 48.  Blanco,E., Farre,D., Alba,M.M., Messeguer,X. and Guigo,R. (2006) ABS: a 
database of Annotated regulatory Binding Sites from orthologous promoters. 
Nucleic Acids Res., 34, D63-D67. 

 49.  Suzuki,Y., Yamashita,R., Nakai,K. and Sugano,S. (2002) DBTSS: DataBase of 
human Transcriptional Start Sites and full-length cDNAs. Nucleic Acids Res., 30, 
328-331. 

 50.  Bergman,C.M., Carlson,J.W. and Celniker,S.E. (2005) Drosophila DNase I 
footprint database: a systematic genome annotation of transcription factor binding 
sites in the fruitfly, Drosophila melanogaster. Bioinformatics., 21, 1747-1749. 



 34 

 51.  Barrasa,M.I., Vaglio,P., Cavasino,F., Jacotot,L. and Walhout,A.J. (2007) 
EDGEdb: a transcription factor-DNA interaction database for the analysis of C. 
elegans differential gene expression. BMC.Genomics, 8, 21. 

 52.  Schmid,C.D., Perier,R., Praz,V. and Bucher,P. (2006) EPD in its twentieth year: 
towards complete promoter coverage of selected model organisms. Nucleic Acids 

Res., 34, D82-D85. 

 53.  Jin,V.X., Sun,H., Pohar,T.T., Liyanarachchi,S., Palaniswamy,S.K., Huang,T.H. 
and Davuluri,R.V. (2005) ERTargetDB: an integral information resource of 
transcription regulation of estrogen receptor target genes. J.Mol.Endocrinol., 35, 
225-230. 

 54.  Vlieghe,D., Sandelin,A., De Bleser,P.J., Vleminckx,K., Wasserman,W.W., van 
Roy,F. and Lenhard,B. (2006) A new generation of JASPAR, the open-access 
repository for transcription factor binding site profiles. Nucleic Acids Res., 34, 
D95-D97. 

 55.  Sun,H., Palaniswamy,S.K., Pohar,T.T., Jin,V.X., Huang,T.H. and Davuluri,R.V. 
(2006) MPromDb: an integrated resource for annotation and visualization of 
mammalian gene promoters and ChIP-chip experimental data. Nucleic Acids Res., 
34, D98-103. 

 56.  Ghosh,D. (1990) A relational database of transcription factors. Nucleic Acids Res., 
18, 1749-1756. 

 57.  Ghosh,D. (2000) Object-oriented transcription factors database (ooTFD). Nucleic 

Acids Res., 28, 308-310. 

 58.  Montgomery,S.B., Griffith,O.L., Sleumer,M.C., Bergman,C.M., Bilenky,M., 
Pleasance,E.D., Prychyna,Y., Zhang,X. and Jones,S.J. (2006) ORegAnno: an 
open access database and curation system for literature-derived promoters, 
transcription factor binding sites and regulatory variation. Bioinformatics, 22, 
637-640. 

 59.  Gallo,S.M., Li,L., Hu,Z. and Halfon,M.S. (2006) REDfly: a Regulatory Element 
Database for Drosophila. Bioinformatics, 22, 381-383. 

 60.  Zhu,J. and Zhang,M.Q. (1999) SCPD: a promoter database of the yeast 
Saccharomyces cerevisiae. Bioinformatics., 15, 607-611. 

 61.  Zhao,F., Xuan,Z., Liu,L. and Zhang,M.Q. (2005) TRED: a Transcriptional 
Regulatory Element Database and a platform for in silico gene regulation studies. 
Nucleic Acids Res., 33, D103-D107. 

 62.  Kolchanov,N.A., Ignatieva,E.V., Ananko,E.A., Podkolodnaya,O.A., 
Stepanenko,I.L., Merkulova,T.I., Pozdnyakov,M.A., Podkolodny,N.L., 



 35 

Naumochkin,A.N. and Romashchenko,A.G. (2002) Transcription Regulatory 
Regions Database (TRRD): its status in 2002. Nucleic Acids Res., 30, 312-317. 

 63.  Visel,A., Minovitsky,S., Dubchak,I. and Pennacchio,L.A. (2007) VISTA 
Enhancer Browser--a database of tissue-specific human enhancers. Nucleic Acids 

Res., 35, D88-D92. 

 64.  Harbison,C.T., Gordon,D.B., Lee,T.I., Rinaldi,N.J., Macisaac,K.D., Danford,T.W., 
Hannett,N.M., Tagne,J.B., Reynolds,D.B., Yoo,J. et al. (2004) Transcriptional 
regulatory code of a eukaryotic genome. Nature, 431, 99-104. 

 65.  Macisaac,K.D., Wang,T., Gordon,D.B., Gifford,D.K., Stormo,G.D. and 
Fraenkel,E. (2006) An improved map of conserved regulatory sites for 
Saccharomyces cerevisiae. BMC.Bioinformatics, 7, 113. 

 66.  Portales-Casamar,E., Kirov,S., Lim,J., Lithwick,S., Swanson,M.I., Ticoll,A., 
Snoddy,J. and Wasserman,W.W. (2007) PAZAR: a framework for collection and 
dissemination of cis-regulatory sequence annotation. Genome Biol., 8, R207. 

 67.  Stormo,G.D. (2000) DNA binding sites: representation and discovery. 
Bioinformatics., 16, 16-23. 

 68.  Stormo,G.D. and Fields,D.S. (1998) Specificity, free energy and information 
content in protein-DNA interactions. Trends Biochem.Sci., 23, 109-113. 

 69.  Man,T.K. and Stormo,G.D. (2001) Non-independence of Mnt repressor-operator 
interaction determined by a new quantitative multiple fluorescence relative 
affinity (QuMFRA) assay. Nucleic Acids Res., 29, 2471-2478. 

 70.  Bulyk,M.L., Johnson,P.L. and Church,G.M. (2002) Nucleotides of transcription 
factor binding sites exert interdependent effects on the binding affinities of 
transcription factors. Nucleic Acids Res., 30, 1255-1261. 

 71.  Benos,P.V., Bulyk,M.L. and Stormo,G.D. (2002) Additivity in protein-DNA 
interactions: how good an approximation is it? Nucleic Acids Res., 30, 4442-4451. 

 72.  Bailey,T.L. and Elkan,C. (1994) Fitting a mixture model by expectation 
maximization to discover motifs in biopolymers. 
Proc.Int.Conf.Intell.Syst.Mol.Biol., 2, 28-36. 

 73.  Lawrence,C.E. and Reilly,A.A. (1990) An expectation maximization (EM) 
algorithm for the identification and characterization of common sites in unaligned 
biopolymer sequences. Proteins, 7, 41-51. 

 74.  Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F. and 
Wootton,J.C. (1993) Detecting subtle sequence signals: a Gibbs sampling strategy 
for multiple alignment. Science, 262, 208-214. 



 36 

 75.  GuhaThakurta,D. (2006) Computational identification of transcriptional 
regulatory elements in DNA sequence. Nucleic Acids Res., 34, 3585-3598. 

 76.  Das,M.K. and Dai,H.K. (2007) A survey of DNA motif finding algorithms. 
BMC.Bioinformatics, 8 Suppl 7, S21. 

 77.  D'haeseleer,P. (2006) How does DNA sequence motif discovery work? 
Nat.Biotechnol., 24, 959-961. 

 78.  Wei,W. and Yu,X.D. (2007) Comparative analysis of regulatory motif discovery 
tools for transcription factor binding sites. Genomics Proteomics.Bioinformatics, 
5, 131-142. 

 79.  Tompa,M., Li,N., Bailey,T.L., Church,G.M., De Moor,B., Eskin,E., Favorov,A.V., 
Frith,M.C., Fu,Y., Kent,W.J. et al. (2005) Assessing computational tools for the 
discovery of transcription factor binding sites. Nat.Biotechnol., 23, 137-144. 

 80.  Mellor,J. (2005) The dynamics of chromatin remodeling at promoters. Mol.Cell, 
19, 147-157. 

 81.  Tronche,F., Ringeisen,F., Blumenfeld,M., Yaniv,M. and Pontoglio,M. (1997) 
Analysis of the distribution of binding sites for a tissue-specific transcription 
factor in the vertebrate genome. J.Mol.Biol., 266, 231-245. 

 82.  Wasserman,W.W. and Sandelin,A. (2004) Applied bioinformatics for the 
identification of regulatory elements. Nat.Rev.Genet., 5, 276-287. 

 83.  Yuh,C.H., Bolouri,H. and Davidson,E.H. (2001) Cis-regulatory logic in the 
endo16 gene: switching from a specification to a differentiation mode of control. 
Development, 128, 617-629. 

 84.  Pearce,D., Matsui,W., Miner,J.N. and Yamamoto,K.R. (1998) Glucocorticoid 
receptor transcriptional activity determined by spacing of receptor and 
nonreceptor DNA sites. J.Biol.Chem., 273, 30081-30085. 

 85.  Fickett,J.W. (1996) Coordinate positioning of MEF2 and myogenin binding sites. 
Gene, 172, GC19-GC32. 

 86.  Kel,A.E., Kel-Margoulis,O.V., Farnham,P.J., Bartley,S.M., Wingender,E. and 
Zhang,M.Q. (2001) Computer-assisted identification of cell cycle-related genes: 
new targets for E2F transcription factors. J.Mol.Biol., 309, 99-120. 

 87.  Johansson,O., Alkema,W., Wasserman,W.W. and Lagergren,J. (2003) 
Identification of functional clusters of transcription factor binding motifs in 
genome sequences: the MSCAN algorithm. Bioinformatics., 19 Suppl 1, I169-
I176. 



 37 

 88.  Wasserman,W.W. and Fickett,J.W. (1998) Identification of regulatory regions 
which confer muscle-specific gene expression. J.Mol.Biol., 278, 167-181. 

 89.  Krivan,W. and Wasserman,W.W. (2001) A predictive model for regulatory 
sequences directing liver-specific transcription. Genome Res., 11, 1559-1566. 

 90.  Frith,M.C., Hansen,U. and Weng,Z. (2001) Detection of cis-element clusters in 
higher eukaryotic DNA. Bioinformatics, 17, 878-889. 

 91.  Berman,B.P., Nibu,Y., Pfeiffer,B.D., Tomancak,P., Celniker,S.E., Levine,M., 
Rubin,G.M. and Eisen,M.B. (2002) Exploiting transcription factor binding site 
clustering to identify cis-regulatory modules involved in pattern formation in the 
Drosophila genome. Proc.Natl.Acad.Sci.U.S.A, 99, 757-762. 

 92.  Halfon,M.S., Grad,Y., Church,G.M. and Michelson,A.M. (2002) Computation-
based discovery of related transcriptional regulatory modules and motifs using an 
experimentally validated combinatorial model. Genome Res., 12, 1019-1028. 

 93.  Wasserman,W.W., Palumbo,M., Thompson,W., Fickett,J.W. and Lawrence,C.E. 
(2000) Human-mouse genome comparisons to locate regulatory sites. Nat.Genet., 
26, 225-228. 

 94.  Lenhard,B., Sandelin,A., Mendoza,L., Engstrom,P., Jareborg,N. and 
Wasserman,W.W. (2003) Identification of conserved regulatory elements by 
comparative genome analysis. J.Biol., 2, 13. 

 95.  Dermitzakis,E.T. and Clark,A.G. (2002) Evolution of transcription factor binding 
sites in Mammalian gene regulatory regions: conservation and turnover. 
Mol.Biol.Evol., 19, 1114-1121. 

 96.  Moses,A.M., Pollard,D.A., Nix,D.A., Iyer,V.N., Li,X.Y., Biggin,M.D. and 
Eisen,M.B. (2006) Large-scale turnover of functional transcription factor binding 
sites in Drosophila. PLoS.Comput.Biol., 2, e130. 

 97.  Doniger,S.W. and Fay,J.C. (2007) Frequent gain and loss of functional 
transcription factor binding sites. PLoS.Comput.Biol., 3, e99. 

 98.  Sauer,T., Shelest,E. and Wingender,E. (2006) Evaluating phylogenetic 
footprinting for human-rodent comparisons. Bioinformatics, 22, 430-437. 

 99.  Levy,S., Hannenhalli,S. and Workman,C. (2001) Enrichment of regulatory signals 
in conserved non-coding genomic sequence. Bioinformatics., 17, 871-877. 

 100.  Hardison,R.C., Oeltjen,J. and Miller,W. (1997) Long human-mouse sequence 
alignments reveal novel regulatory elements: a reason to sequence the mouse 
genome. Genome Res., 7, 959-966. 



 38 

 101.  Uchikawa,M., Takemoto,T., Kamachi,Y. and Kondoh,H. (2004) Efficient 
identification of regulatory sequences in the chicken genome by a powerful 
combination of embryo electroporation and genome comparison. Mech.Dev., 121, 
1145-1158. 

 102.  Ahituv,N., Rubin,E.M. and Nobrega,M.A. (2004) Exploiting human--fish genome 
comparisons for deciphering gene regulation. Hum.Mol.Genet., 13 Spec No 2, 
R261-R266. 

 103.  Woolfe,A., Goodson,M., Goode,D.K., Snell,P., McEwen,G.K., Vavouri,T., 
Smith,S.F., North,P., Callaway,H., Kelly,K. et al. (2005) Highly conserved non-
coding sequences are associated with vertebrate development. PLoS.Biol., 3, e7. 

 104.  Blanchette,M., Kent,W.J., Riemer,C., Elnitski,L., Smit,A.F., Roskin,K.M., 
Baertsch,R., Rosenbloom,K., Clawson,H., Green,E.D. et al. (2004) Aligning 
multiple genomic sequences with the threaded blockset aligner. Genome Res., 14, 
708-715. 

 105.  Bray,N. and Pachter,L. (2004) MAVID: constrained ancestral alignment of 
multiple sequences. Genome Res., 14, 693-699. 

 106.  Brudno,M., Do,C.B., Cooper,G.M., Kim,M.F., Davydov,E., Green,E.D., Sidow,A. 
and Batzoglou,S. (2003) LAGAN and Multi-LAGAN: efficient tools for large-
scale multiple alignment of genomic DNA. Genome Res., 13, 721-731. 

 107.  Margulies,E.H., Cooper,G.M., Asimenos,G., Thomas,D.J., Dewey,C.N., Siepel,A., 
Birney,E., Keefe,D., Schwartz,A.S., Hou,M. et al. (2007) Analyses of deep 
mammalian sequence alignments and constraint predictions for 1% of the human 
genome. Genome Res., 17, 760-774. 

 108.  Siepel,A., Bejerano,G., Pedersen,J.S., Hinrichs,A.S., Hou,M., Rosenbloom,K., 
Clawson,H., Spieth,J., Hillier,L.W., Richards,S. et al. (2005) Evolutionarily 
conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res., 
15, 1034-1050. 

 109.  Margulies,E.H., Blanchette,M., Haussler,D. and Green,E.D. (2003) Identification 
and characterization of multi-species conserved sequences. Genome Res., 13, 
2507-2518. 

 110.  Cooper,G.M., Stone,E.A., Asimenos,G., Green,E.D., Batzoglou,S. and Sidow,A. 
(2005) Distribution and intensity of constraint in mammalian genomic sequence. 
Genome Res., 15, 901-913. 

 111.  King,D.C., Taylor,J., Zhang,Y., Cheng,Y., Lawson,H.A., Martin,J., 
Chiaromonte,F., Miller,W. and Hardison,R.C. (2007) Finding cis-regulatory 
elements using comparative genomics: some lessons from ENCODE data. 
Genome Res., 17, 775-786. 



 39 

 112.  Elnitski,L., Hardison,R.C., Li,J., Yang,S., Kolbe,D., Eswara,P., O'Connor,M.J., 
Schwartz,S., Miller,W. and Chiaromonte,F. (2003) Distinguishing regulatory 
DNA from neutral sites. Genome Res., 13, 64-72. 

 113.  Kolbe,D., Taylor,J., Elnitski,L., Eswara,P., Li,J., Miller,W., Hardison,R. and 
Chiaromonte,F. (2004) Regulatory potential scores from genome-wide three-way 
alignments of human, mouse, and rat. Genome Res., 14, 700-707. 

 114.  King,D.C., Taylor,J., Elnitski,L., Chiaromonte,F., Miller,W. and Hardison,R.C. 
(2005) Evaluation of regulatory potential and conservation scores for detecting 
cis-regulatory modules in aligned mammalian genome sequences. Genome Res., 
15, 1051-1060. 

 115.  Sandelin,A., Bailey,P., Bruce,S., Engstrom,P.G., Klos,J.M., Wasserman,W.W., 
Ericson,J. and Lenhard,B. (2004) Arrays of ultraconserved non-coding regions 
span the loci of key developmental genes in vertebrate genomes. BMC.Genomics, 
5, 99. 

 116.  Bejerano,G., Pheasant,M., Makunin,I., Stephen,S., Kent,W.J., Mattick,J.S. and 
Haussler,D. (2004) Ultraconserved elements in the human genome. Science, 304, 
1321-1325. 

 117.  Boffelli,D., McAuliffe,J., Ovcharenko,D., Lewis,K.D., Ovcharenko,I., Pachter,L. 
and Rubin,E.M. (2003) Phylogenetic shadowing of primate sequences to find 
functional regions of the human genome. Science, 299, 1391-1394. 

 118.  Spitz,F., Gonzalez,F. and Duboule,D. (2003) A global control region defines a 
chromosomal regulatory landscape containing the HoxD cluster. Cell, 113, 405-
417. 

 119.  Pennacchio,L.A., Ahituv,N., Moses,A.M., Prabhakar,S., Nobrega,M.A., 
Shoukry,M., Minovitsky,S., Dubchak,I., Holt,A., Lewis,K.D. et al. (2006) In vivo 
enhancer analysis of human conserved non-coding sequences. Nature, 444, 499-
502. 

 120.  Bejerano,G., Haussler,D. and Blanchette,M. (2004) Into the heart of darkness: 
large-scale clustering of human non-coding DNA. Bioinformatics., 20 Suppl 1, 
I40-I48. 

 121.  Calle-Mustienes,E., Feijoo,C.G., Manzanares,M., Tena,J.J., Rodriguez-Seguel,E., 
Letizia,A., Allende,M.L. and Gomez-Skarmeta,J.L. (2005) A functional survey of 
the enhancer activity of conserved non-coding sequences from vertebrate Iroquois 
cluster gene deserts. Genome Res., 15, 1061-1072. 

 122.  Kimura-Yoshida,C., Kitajima,K., Oda-Ishii,I., Tian,E., Suzuki,M., Yamamoto,M., 
Suzuki,T., Kobayashi,M., Aizawa,S. and Matsuo,I. (2004) Characterization of the 
pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic 
mechanisms for vertebrate head specification. Development, 131, 57-71. 



 40 

 123.  Nobrega,M.A., Zhu,Y., Plajzer-Frick,I., Afzal,V. and Rubin,E.M. (2004) 
Megabase deletions of gene deserts result in viable mice. Nature, 431, 988-993. 

 124.  Ahituv,N., Zhu,Y., Visel,A., Holt,A., Afzal,V., Pennacchio,L.A. and Rubin,E.M. 
(2007) Deletion of ultraconserved elements yields viable mice. PLoS.Biol., 5, 
e234. 

 125.  Poulin,F., Nobrega,M.A., Plajzer-Frick,I., Holt,A., Afzal,V., Rubin,E.M. and 
Pennacchio,L.A. (2005) In vivo characterization of a vertebrate ultraconserved 
enhancer. Genomics, 85, 774-781. 

 126.  Vavouri,T., Walter,K., Gilks,W.R., Lehner,B. and Elgar,G. (2007) Parallel 
evolution of conserved non-coding elements that target a common set of 
developmental regulatory genes from worms to humans. Genome Biol., 8, R15. 

 127.  Lowe,C.B., Bejerano,G. and Haussler,D. (2007) Thousands of human mobile 
element fragments undergo strong purifying selection near developmental genes. 
Proc.Natl.Acad.Sci.U.S.A, 104, 8005-8010. 

 128.  Bejerano,G., Lowe,C.B., Ahituv,N., King,B., Siepel,A., Salama,S.R., Rubin,E.M., 
Kent,W.J. and Haussler,D. (2006) A distal enhancer and an ultraconserved exon 
are derived from a novel retroposon. Nature, 441, 87-90. 

 129.  Casillas,S., Barbadilla,A. and Bergman,C.M. (2007) Purifying selection maintains 
highly conserved noncoding sequences in Drosophila. Mol.Biol.Evol., 24, 2222-
2234. 

 130.  Drake,J.A., Bird,C., Nemesh,J., Thomas,D.J., Newton-Cheh,C., Reymond,A., 
Excoffier,L., Attar,H., Antonarakis,S.E., Dermitzakis,E.T. et al. (2006) 
Conserved noncoding sequences are selectively constrained and not mutation cold 
spots. Nat.Genet., 38, 223-227. 

 131.  Katzman,S., Kern,A.D., Bejerano,G., Fewell,G., Fulton,L., Wilson,R.K., 
Salama,S.R. and Haussler,D. (2007) Human genome ultraconserved elements are 
ultraselected. Science, 317, 915. 

 132.  Li,H. and Wang,W. (2003) Dissecting the transcription networks of a cell using 
computational genomics. Curr.Opin.Genet.Dev., 13, 611-616. 

 133.  Futcher,B. (2002) Transcriptional regulatory networks and the yeast cell cycle. 
Curr.Opin.Cell Biol., 14, 676-683. 

 134.  Elkon,R., Linhart,C., Sharan,R., Shamir,R. and Shiloh,Y. (2003) Genome-wide in 
silico identification of transcriptional regulators controlling the cell cycle in 
human cells. Genome Res., 13, 773-780. 

 135.  Zheng,J., Wu,J. and Sun,Z. (2003) An approach to identify over-represented cis-
elements in related sequences. Nucleic Acids Res., 31, 1995-2005. 



 41 

 136.  Sharan,R., Ovcharenko,I., Ben Hur,A. and Karp,R.M. (2003) CREME: a 
framework for identifying cis-regulatory modules in human-mouse conserved 
segments. Bioinformatics., 19 Suppl 1, i283-i291. 

 137.  Dieterich,C., Wang,H., Rateitschak,K., Luz,H. and Vingron,M. (2003) CORG: a 
database for COmparative Regulatory Genomics. Nucleic Acids Res., 31, 55-57. 

 138.  Loots,G.G., Ovcharenko,I., Pachter,L., Dubchak,I. and Rubin,E.M. (2002) rVista 
for comparative sequence-based discovery of functional transcription factor 
binding sites. Genome Res., 12, 832-839. 

 139.  Ho Sui,S.J., Mortimer,J.R., Arenillas,D.J., Brumm,J., Walsh,C.J., Kennedy,B.P. 
and Wasserman,W.W. (2005) oPOSSUM: identification of over-represented 
transcription factor binding sites in co-expressed genes. Nucleic Acids Res., 33, 
3154-3164. 

 140.  Ho Sui,S.J., Fulton,D.L., Arenillas,D.J., Kwon,A.T. and Wasserman,W.W. (2007) 
oPOSSUM: integrated tools for analysis of regulatory motif over-representation. 
Nucleic Acids Res., 35, W245-W252. 

 141.  Huang, S. S., Fulton, D. L., Arenillas, D. J., Perco, P., Ho Sui, S. J., Mortimer, J. 
R., and Wasserman, W. W. (2006) Identification of over-represented 
combinations of transcription factor binding sites in sets of co-expressed genes. In 
Advances in Bioinformatics and Computational Biology. Imperial College Press, 
London, UK, Vol. 3, pp 247-256. 

 142.  Marks, V.D., Ho Sui, S.J., Erasmus, D., van der Merwe, G.K., Brumm, J., 
Wasserman, W.W., Bryan, J. and van Vuuren, H.J.J. (2008). Dynamics of the 
yeast transcriptome during wine fermentation reveals a novel fermentation stress 
response. FEMS Yeast Res., 8, 35-52. 

 143.  Engstrom,P.G., Ho Sui,S.J., Drivenes,O., Becker,T.S. and Lenhard,B. (2007) 
Genomic regulatory blocks underlie extensive microsynteny conservation in 
insects. Genome Res., 17, 1898-1908. 

 
 
 
 
 

 



 42 

Chapter 2: oPOSSUM: Identification of Over-represented 

Transcription Factor Binding Sites in Sets of Co-expressed Genes 
2
 

2.1 Introduction 

 
DNA microarrays profile patterns of gene expression changes on a genome-wide 

scale, elucidating sets of genes coordinately expressed under specific conditions. Recent 

improvements in bioinformatics methods for the analysis of sequences regulating 

transcription have made it possible to elucidate potential factors involved in key 

regulatory networks underlying a transcriptional response. The enumeration of such 

networks, by identifying genes with similar patterns of expression and shared cis-

regulatory motifs, is crucial to advancing our understanding of biological pathways and 

processes.  

Transcriptional regulation of gene expression is a tightly controlled process that 

involves the synchronized binding of trans-acting transcription factors (TFs) to numerous 

binding sites (TFBS) in the regions surrounding a gene’s transcription start site, as well 

as to enhancer regions that mediate gene activation from distal locations. The binding 

specificities of TFs to their cognate DNA binding motifs are typically modeled using 

position specific scoring matrices (PSSMs) (1), which are constructed from alignments of 

binding site sequences that have been characterized experimentally or identified in high-

throughput protein-DNA binding assays (2;3). These PSSMs are catalogued in databases 

such as TRANSFAC (4) and JASPAR (5). The use of PSSMs to detect individual 

                                                 
2 A version of this chapter has been published. Ho Sui, S.J., Mortimer, J.R., Arenillas, D.J., Brumm, J., 
Walsh, C.J., Kennedy, B.P. and Wasserman W.W. (2005) oPOSSUM: Identification of over-represented 
transcription factor binding sites in co-expressed genes. Nucleic Acids Research. 33(10):3154-64. 
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TFBSs is well-established (6). However, application of these models typically yields a 

large number of false positive predictions due to the short, degenerate nature of TFBS 

motifs. For example, a 6 bp long motif has about a 1 in 4000 chance of occurring at 

random; while tolerance of ambiguity at just one highly variable position can raise the 

prediction rate to 1 in 1000. 

Dramatic improvements in the specificity of TFBS prediction are attained by 

limiting the search space to regions of conserved, noncoding DNA using a comparative 

genomics approach known as phylogenetic footprinting (7-10). Based on the assumption 

that functional DNA sequences are subject to greater selective pressure, and therefore, are 

conserved across moderately diverged organisms, comparison of sequences from 

orthologous genes can highlight functional noncoding DNA, providing clues to where 

regulatory sequences may be located. Phylogenetic footprinting eliminates, on average, 

80% of sequence (11), and estimates have placed the proportion of TFBSs occurring 

within conserved regions when comparing human and mouse sequences at approximately 

70% (11;12). Thus, while the use of phylogenetic footprinting limits our ability to detect 

binding sites that have evolved in a species-specific manner, the drastic reduction in noise 

increases specificity, and far outweighs the decrease in sensitivity. 

Even with the improved performance conferred by phylogenetic footprinting, 

most predicted TFBSs are non-functional. By incorporating gene expression data into the 

analysis procedures, we should improve capacity to discriminate functional binding sites 

from potential false positive matches. This paper describes a new method, oPOSSUM, 

which identifies statistically over-represented, conserved TFBSs in the promoters of co-

expressed genes. Based on the assumption that some subset of the co-expressed genes is 
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co-regulated by one or more common TFs, we reason that the observed number of 

binding sites for those TFs should be greater than would be expected by chance. 

oPOSSUM integrates a pre-computed database of predicted, conserved TFBSs, derived 

from phylogenetic footprinting and TFBS detection algorithms, with statistical methods 

for calculating over-representation (Figure 2.1). 

 

 
 

Figure 2.1 The oPOSSUM system for identifying over-represented TFBSs in sets of co-expressed 
genes 

The system is built upon a database of conserved TFBSs for human-mouse orthologs, derived from an 
analysis pipeline that combines phylogenetic footprinting with TFBS identification using the JASPAR 
library of PSSMs. Given a set of human or mouse genes, the pipeline (1) retrieves the genomic DNA 
sequence for the human and mouse genes plus 5000 bp of upstream sequence, (2) performs an 
alignment of the orthologous sequences and extracts noncoding DNA subsequences that are conserved 
above a predefined threshold, (3) searches the subsequences for matches to TFBS profiles contained in 
JASPAR, and (4) stores the results in the oPOSSUM database. Upon querying the web-based interface 
with a list of co-expressed genes, oPOSSUM retrieves the TFBS counts for each gene in the list and 
computes two statistics (Z-score, Fisher exact test) to measure over-representation of TFBSs in the set 
relative to a background comprised of all genes in the oPOSSUM database. 
 

1. Automated sequence 
retrieval from Ensembl 

2. Phylogenetic footprinting 
using ORCA 

3. Detection of TFBS using 
JASPAR PSSMs 

4. Database of predicted, 
evolutionarily conserved 

TFBSs 
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Ranked list of over-represented 
transcription factor binding sites 

Regulatory Analysis Pipeline Web-based Interface 
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The oPOSSUM system was validated using curated regulatory region collections 

for genes expressed in a tissue-specific manner, and published targets of the nuclear 

factor NF-κB. oPOSSUM was then applied to two published transcript profiling data sets, 

as well as to a new analysis of expression addressing NF-κB inhibition. The results 

demonstrate that oPOSSUM is able to identify the TFs expected to mediate changes in 

gene expression through the detection of over-represented TFBSs. Simulations using 

random sampling gave low false positive rates and revealed tolerance for some noise in 

the gene sets. 

2.2 Methods 

2.2.1 Automated retrieval of human-mouse orthologs  

The Ensembl software system (13) provides a flexible bioinformatics framework 

to retrieve sequences and annotations for genes from multiple organisms. Sets of 

orthologous human and mouse genes are available via EnsMART, a computationally 

convenient interface to genome annotations. To avoid aligning paralogs (genes which 

have diverged due to gene duplication in a common ancestor), human genes mapping to 

more than one mouse gene (and vice versa) are filtered to obtain a set of one-to-one 

orthologous pairs. For each human-mouse orthologous pair, repeat masked sequences are 

retrieved encompassing the region 5000 bp upstream of the annotated transcription start 

site (TSS) to either the 3’ end of the gene or, in the case of long genes, 50000 bp 

downstream of the TSS. For genes with multiple annotated TSSs, the 5’-most TSS is 

selected. 
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2.2.2 Phylogenetic footprinting 

Orthologous sequences are aligned using ORCA (Arenillas and Wasserman, 

unpublished), a pairwise global progressive alignment algorithm similar to LAGAN (14). 

ORCA first identifies short segments of high similarity between orthologous genes by 

performing a local BLASTN alignment using the Bl2Seq algorithm (Version 2.2.5) (15), 

and then aligns the regions between such segments through the more time-consuming 

Needleman-Wunsch algorithm (NW) (16) to obtain an overall global alignment of the 

two sequences. The process is recursive; regions that are too long to align using NW are 

re-aligned with BLASTN using less stringent parameters. The process comes to a halt 

when either the regions are short enough to perform NW successfully (the product of the 

input sequence lengths does not exceed 100 MB), or the minimum BLASTN word size of 

7 has been reached. The first iteration of BLASTN was performed using the following 

parameters: penalty for a nucleotide mismatch = -7; expectation value = 0.10; word size = 

15; default values were used for the remaining parameters. For each subsequent run of 

BLASTN, the nucleotide mismatch score was incremented by 2 and the word size was 

decremented by 4. NW global alignments used a match score =3; mismatch score = -1; 

gap open penalty = 20; and gap extension penalty = 0. 

Three dynamically selected and progressively more stringent conservation 

thresholds are applied. Specifically, each alignment is scanned using a 100 bp sliding 

window, the percent sequence identity within each window is calculated, and the top 10%, 

20%, and 30% of all windows (excluding those overlapping a coding region) are retained. 

Minimum identity thresholds of 70%, 65% and 60% are required for the high, medium 

and low conservation levels, respectively. The use of dynamically computed thresholds 
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versus fixed sequence identity cutoffs is motivated by the variable rates of evolution for 

each gene in each genome.  

2.2.3 Detection of TF binding sites 

The conserved noncoding regions of the promoters are searched for matches to all 

TFBS profiles in the JASPAR database with information content greater than eight bits, 

using the TFBS suite of Perl modules for regulatory sequence analysis (17). Excluding 

low information content profiles (a measure of the specificity of predictions) eliminates 

spurious hits. A predicted binding site for a given TF model is reported if the site occurs 

in both the human and mouse sequences above a threshold PSSM score of 75%, and at 

equivalent positions in the alignment. Overlapping sites for the same TF are filtered such 

that only the highest scoring is kept. The location, score, orientation, and local sequence 

conservation level of each TFBS match in the human and mouse genes are stored in the 

oPOSSUM database. 

2.2.4 Discovery of over-represented binding sites 

Two statistical measures were calculated to determine which, if any, TFBS were 

over-represented in the set of promoters for co-expressed genes. These represent two 

distinct models for counting the occurrences of binding sites. 

Z-score calculation for determining TFBS that occur more frequently than 

expected. The z-score uses a simple binomial distribution model to compare the rate of 

occurrence of a TFBS in the set of co-expressed genes to the expected rate estimated 

from the pre-computed background set.  
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For a given TFBS, let the random variable X denote the number of predicted 

binding site nucleotides in the conserved noncoding regions of the co-expressed gene set. 

Let B be the number of predicted binding site nucleotides in the conserved noncoding 

regions of the background set. Using a binomial model with n events, where n is the total 

number of nucleotides examined (i.e. the total number of nucleotides in the conserved 

noncoding regions) from the co-expressed genes, and N is the total number of nucleotides 

examined from the background gene set, then the expected value of X is BC=µ , where 

C = n/N (i.e. the ratio of sample sizes). Then, taking p = B/N as the probability of success, 

the standard deviation is given by p)np(=σ −1 .  

Now, let x be the observed number of binding site nucleotides in the conserved 

noncoding regions of the co-expressed genes. By applying the Central Limit Theorem 

and using the normal approximation to the binomial distribution with a continuity 

correction, the Z-score is calculated as 
σ

µx
=z

0.5−−
. Thus the Z-score indicates a 

significant difference in the rate of occurrence of sites, and is particularly good for 

detecting increased prevalence of common sites. 

One-tailed Fisher exact probability for determining TFBSs that occur in a 

significant number of the co-expressed genes. In contrast to the Z-score, the one-tailed 

Fisher exact probability compares the proportion of co-expressed genes containing a 

particular TFBS to the proportion of the background set that contains the site to 

determine the probability of a non-random association between the co-expressed gene set 

and the TFBS of interest. It is calculated using the hyper-geometric probability 

distribution that describes sampling without replacement from a finite population 

consisting of two types of elements (18). Therefore, the number of times a TFBS occurs 
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in the promoter of an individual gene is disregarded, and instead, the TFBS is considered 

as either present or absent. A significant value for the Fisher exact probability indicates 

that there are a significant proportion of genes that contain the site, and is particularly 

good for rare TFBSs. Fisher exact probabilities were calculated using the R Statistics 

package (http://www.r-project.org).  

2.2.5 NF-κB microarray experiment 

A list of genes differentially expressed during interruption of the NF-κB pathway 

by a specific NF-κB inhibitor was obtained from an unpublished microarray experiment. 

Appendix 1 Table S1 contains sufficient information to reproduce or challenge the in 

silico promoter analysis described in this text. The design of the experiment is briefly 

described here. Human umbilical vein endothelial cells (HUVEC) in the treatment 

condition were pre-treated with 10 µM of NF-κB inhibitor, followed by stimulation of the 

NF-κB signaling pathway with 0.1 ng/mL IL-1B one hour later (t=0 hours). A second 

sample of the same culture was treated with 0.1 ng/mL IL-1B only at t=0. A third sample 

received only vehicle treatment (0.33% dimethyl sulfoxide) at t=0. From each condition, 

total RNA was isolated at 6 hours using the RNeasy midi kit (Qiagen, USA). The entire 

paradigm was repeated three times on separate batches of HUVEC, generating nine 

samples. Equal amounts of RNA were pooled from the three IL-1B treated samples, as 

the control channel. Each sample, i.e. the three inhibitor treated, the three vehicle treated, 

and the pool of IL-1B treatment alone, was split in two and labeled with either the Cy3 or 

Cy5 fluorescent dye (Agilent, USA). Using a two-color microarray system, the labeled 

cDNA from treatment and control conditions was hybridized to an oligonucleotide 

microarray representing 23000 human genes (Agilent, USA) as follows: i) Three 
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replicates of individual vehicle treated samples vs. pool of IL1B samples, and ii) three 

replicates of pool of IL1B samples vs. individual IL1B + NF-κB inhibitor treated samples, 

iii) same as i with fluors reversed, iv) same as ii with fluors reversed. After quantification 

of the raw data, normalization and combination of the technical, fluor-reversed replicates 

using the Rosetta Resolver® (version 3.0) gene-expression-data-analysis system (19), an 

error-weighted ANOVA analysis was performed across replicates in the two groups. 

Biological replicates were then combined using the Rosetta Resolver® (version 3.0) error 

model. 

For our analysis we focused on a list of 508 sequences showing significantly 

decreased levels of expression in inhibitor-treated cells, defined by an ANOVA p-value ≤ 

0.01, an error-model p-value ≤ 0.01 and a fold-change ≥ 1.3. The 508 sequences were 

mapped to 326 unique Ensembl gene IDs by identifying gene models from Ensembl V19 

(build 34a) which overlapped with the probe sequences. The down-regulated genes were 

submitted for analysis by oPOSSUM.  

2.2.6 Simulations using random sampling 

To estimate the false positive rate, we tested oPOSSUM on randomly generated 

subsets of genes from the oPOSSUM database to determine how frequently TFBSs are 

identified as over-represented by chance, and to assess the validity of the selected Z-score 

and Fisher p-value cutoffs of 10 and 0.01, respectively. We created 100 independent sets, 

each containing 15 genes. These were submitted to oPOSSUM, and the number of TFBSs 

significantly over-represented during each trial was counted. The number of trials that 

generated significant TFBSs over 100 independent trials gives us a measure of the false 

positive rate. We repeated this process for gene lists of 50, 100 and 200 randomly 
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selected genes to see what, if any, effect the number of genes in the list has on the false 

positive rate. 

Next we investigated the amount of noise oPOSSUM can tolerate by adding 

increasing numbers of randomly selected genes from the oPOSSUM database to our 

reference gene sets. For the muscle- and liver-specific gene sets, we added 5, 10, 15, 20, 

25, 30, 40, 50, 75, and 100 randomly selected genes, and submitted them to oPOSSUM. 

Additional increments of 150 and 300 genes were tested for the larger set of NF-κB target 

genes. This process was repeated 100 times for each noise level. The average Z-scores 

and Fisher p-values for the Mef-2, HNF-1 and NF-κB TFBS profiles over 100 

independent trials for each noise level were recorded.  

2.2.7 Parameter selection for validation studies 

 
For all of the analyses presented in this study, we examined the promoter region 

encompassing 5000 bp upstream and 5000 bp downstream of the TSS, used the highest 

conservation level to extract conserved, noncoding regions (top 10% of conserved 

regions with a minimum of 70% sequence identity), and required a PSSM score greater 

than 85% for predicted binding sites, using only the vertebrate-specific PSSMs in 

JASPAR. 

2.3 Results 

 
The oPOSSUM database was constructed from an initial set of 14083 orthologs 

from human and mouse, obtained by selecting only “one-to- one” human-mouse 

orthologs from Ensembl (13). Of these, 4921 (34.9%) of the ortholog sequence pairs 

failed to produce reasonable alignments of the promoter regions, due largely to an 
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inability to reconcile transcription start site positions as a result of alternative promoter 

usage by orthologs, and to a lesser degree, as a consequence of low nucleotide sequence 

similarity between assigned orthologous gene pairs, genes within genes, and transcription 

start sites located within exons of upstream genes on the opposite strand. Attempts to 

align a subset of the failed promoter pairs using the LAGAN algorithm produced similar 

results (not shown). An additional 456 (3.2%) ortholog pairs successfully aligned but did 

not contain conserved, noncoding regions (minimum of 100 bp with greater than 60% 

identity) in the target region spanning from 5000 bp upstream of the transcription start 

site (TSS) to 5000 bp downstream of the TSS. Of the remaining 8706 genes with 

conserved promoters, 8698 contained matches to one or more TFBS profiles (PSSM 

cutoff of 75%), producing 2.4x106, 3.3x106 and 4.1x106 conserved predicted binding sites 

at the high, medium and low conservation levels, respectively (See Methods). 

2.3.1 Validation using reference gene sets 

 
The muscle and liver regulatory region collections catalogue experimentally 

verified TFBSs that confer muscle- and liver-specific gene expression, respectively 

(20;21). We searched the literature for additional experimentally verified sites in human 

and mouse, adding 8 liver-specific and 5 muscle-specific promoters to these collections 

(available at http://www.cisreg.ca/tjkwon/). In addition to these tissue-specific genes, we 

compiled a list of 61 known targets of the nuclear factor NF-κB (22). We used these 

reference sets to assess oPOSSUM’s ability to discriminate functionally relevant TFBSs 

and to empirically determine appropriate thresholds for our scoring measures.  

oPOSSUM calculates two statistical measures for binding site over-representation, 

one at the gene level (Fisher exact test) and the other based on the ratio of TFBSs to 
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nucleotides (Z-score). Figure 2.2 shows the correlation between the scores for each 

reference set. Clearly, scores for the majority of TFBSs cluster at the bottom right corner 

of the graph for all reference sets, with Z-scores ranging from -10 to 10 and Fisher p-

values ranging from 0.02 to 1. For each reference set, we also ranked the top ten binding 

sites, ordered by Z-score, along with associated Fisher p-values (Table 2.1). In each case, 

the TFs were further investigated for experimentally verified evidence in the given tissue 

or system. 

Muscle-specific regulatory region collection. Studies of skeletal muscle 

expression have revealed five primary classes of TFs that contribute to skeletal muscle-

specific expression: Myf (MyoD), Mef-2, SRF, TEF-1, and Sp-1 (21). Submission of the 

25 genes of human, mouse or rat origin in the muscle regulatory collection resulted in 14 

pairs of orthologs being analyzed. oPOSSUM ranked SRF, TEF-1, Mef-2 and Myf as the 

top four most significant profiles (Table 2.1A). In fact, all of these TFs had Fisher p-

values less than 0.01 and with the exception of Myf, had Z-scores greater than 10, 

considerably higher than for all other TFs (Figure 2.2). Sp-1 was ranked tenth but without 

sufficiently convincing scores to discriminate it from the remainder of the TFBSs (Figure 

2.2); this is not surprising given that it is a ubiquitous activator of numerous genes in the 

human genome (23). 

Liver-specific regulatory region collection. Based on a collection of genes 

expressed either exclusively in liver hepatocytes or in a small number of tissues including 

liver hepatocytes, previous studies have found that hepatocyte-specific gene expression 

can be governed by the combined action of four primary TFs: HNF-1, HNF-3, HNF-4, 

and c/EBP (20). (There are additional regulatory programs that are controlled 
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independently of these factors in hepatocytes.) Using this established list of 22 genes, we 

were able to analyze 11 orthologous gene pairs. Predicted HNF-1 sites were the most 

significantly over-represented TFBSs in the promoters of genes from the liver collection 

using both the Z-score and Fisher measures (Table 2.1B). In fact, with a Z-score of 32.5, 

which is almost three times greater than the next most significant TFBS profile from 

JASPAR, and a Fisher p-value of 1.5e-04, HNF-1 clearly segregates from the remaining 

TFBS profiles in this reference set (Figure 2.2). c/EBP ranked third, but was not 

sufficiently over-represented to exceed the significance cutoffs of 10 and 0.01 for the Z-

score and Fisher measures, respectively. 

 

-20

-10

0

10

20

30

40

1.0E-09 1.0E-07 1.0E-05 1.0E-03 1.0E-01

Fisher p-value

Z
-s

c
o

re

Muscle

Liver

NF-κB

Z-score cutoff

Fisher cutoff

p65
c-Rel

p50NF-κB

HNF-1

SRF

TEF-1 MEF2

FREAC-2

Myf cEBP

SP1
HNF-3β

 

Figure 2.2 Relationship between the Fisher p-values and Z-scores for the muscle, liver and NF-
kappaB reference sets 

Based on the distribution of scores for the reference sets, a Z-score cutoff of 10 and a Fisher p-value 
cutoff of 0.01 were empirically selected as threshold levels to be used for testing. TFBSs that have 
functional relevance are labeled. 
 

 



 55 

Table 2.1 Statistically over-represented TF binding sites in reference gene sets 

A. Muscle-specific (25 input; 14 analyzed) 

 Rank Z-score Fisher p-value 
SRF * 1 35.93 3.93E-04 
TEF-1 * 2 15.84 5.48E-05 
MEF-2 * 3 15.26 2.77E-04 
Myf * 4 8.585 9.81E-03 
S8 5 8.168 1.49E-01 
Yin-Yang 6 6.396 6.79E-02 
RORalfa-2 7 5.697 8.70E-02 
deltaEF1 8 5.514 9.76E-03 
Nkx 9 5.492 1.17E-01 
SP1 * 10 4.671 6.34E-02 

B. Liver-specific (22 input; 11 analyzed) 
 Rank Z-score Fisher p-value 
HNF-1 * 1 32.46 1.51E-04 
FREAC-2 2 11.46 7.68E-03 
cEBP * 3 8.477 2.29E-01 
FREAC-4 4 7.522 1.86E-01 
c-FOS 5 6.286 2.73E-02 
HLF 6 5.454 4.20E-02 
Chop-cEBP 7 5.313 7.93E-02 
SRY 8 5.000 1.78E-01 
Tal1beta-E47S 9 4.338 6.30E-01 
Hen-1 10 3.117 5.19E-01 
C. Known NF-κB targets (61 input; 33 analyzed) 
 Rank Z-score Fisher p-value 
p65 * 1 35.60 1.18E-09 
c-REL * 2 33.14 5.94E-08 
p50 * 3 27.62 5.74E-07 
NF-kappaB * 4 27.00 1.62E-07 
SPI-B 5 13.92 1.92E-02 
Irf-2 6 12.88 8.69E-02 
NRF-2 7 6.468 1.22E-01 
Evi-1 8 5.959 2.04E-01 
Elk-1 9 4.912 2.49E-01 
MZF_5-13 10 4.908 1.06E-01 
 
TF binding sites detected by oPOSSUM with the top ten mostly highly ranked Z-scores or with Fisher 
p-value < 0.01. * TFs with experimentally-verified sites in the reference sets. The number of genes 
used as input and the number of genes analyzed by oPOSSUM (i.e. genes that have an unambiguous 
mouse ortholog) are shown in brackets. See Methods for how the Z-score and Fisher p-values were 
calculated. 
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Known NF-κB target genes. The NF-κB/Rel family of TFs, which includes 

RELA (p65), NF-κB1 (p50;p105), NF-κB2 (p52, p100), c-REL, and RELB, plays a 

central role in regulating the immune response (24). oPOSSUM was applied to a set of 61  

known NF-κB-regulated genes (22), which include a large number of cytokines and 

immunoreceptors, and to a lesser extent, antigen presentation proteins, cell adhesion 

molecules, acute phase proteins, stress response genes, and TFs. Of the 61 human genes 

submitted to oPOSSUM, 33 were mapped to mouse orthologs and subsequently analyzed.  

The NF-κB, c-REL, p65, and p50 binding sites, which are all members of the NF-κB-

family of TFs, ranked as the top four most over-represented TFBSs, using either the Z-

score or Fisher p-values (Table 2.1C). Figure 2.2 shows that they were indeed the only 

TFBSs with significant scores discriminating them from other sites, with Z-scores as high 

as 35.6 and Fisher p-values as low as 1.2e-09.  

 Based on the results obtained from the three reference gene sets, we decided 

empirically to use a Z-score cutoff of 10 and Fisher p-value cutoff of 0.01 to identify 

TFBSs for each of our test sets.  

2.3.2 Application to transcript profiling data 

The reference collections used above are curated sets of genes. In contrast, high-

throughput transcript profiling studies typically produce clusters of hundreds of co-

expressed genes, of which only a small subset is likely to be co-regulated by a given 

factor. We assessed oPOSSUM’s performance on three sets of genes derived from 

transcript profiling experiments, and report the results in Table 2.2. For each set of co-

expressed genes, we list the top ten over-represented TFBSs, as determined by the Z-

score, as well as any additional TFBSs with significant Fisher p-values (p<0.01). 



 57 

Table 2.2 Statistically over-represented TFBSs in gene expression data sets 

A. c-Myc-induced Genes (53 input; 30 analyzed) 

 TF Class Rank Z-score Fisher No. Genes 
Myc-Max * bHLH-ZIP 1 32.41 1.17E-04 7 
ARNT bHLH 2 23.82 1.56E-04 12 
Max  bHLH-ZIP 3 21.89 7.40E-03 9 
SP1 ZN-FINGER, C2H2 4 20.90 2.04E-02 14 
USF bHLH-ZIP 5 17.01 2.39E-02 10 
MZF_1-4 ZN-FINGER, C2H2 6 14.96 1.35E-01 20 
Staf ZN-FINGER, C2H2 7 11.12 7.59E-02 2 
Ahr-ARNT bHLH 8 10.87 2.05E-01  12 
SAP-1 ETS 9 10.41 2.57E-03 9 
n-MYC bHLH-ZIP 10 9.821 4.71E-01  11 

B. c-Fos-induced Genes (150 input; 98 analyzed) 
 TF Class Rank Z-score Fisher No. Genes 
c-FOS * bZIP 1 11.01 2.94E-02 40 
CREB bZIP 2 8.728 2.45E-01 11 
SP1 ZN-FINGER, C2H2 3 8.015 1.14E-02 38 
E2F Unknown † 4 3.995 1.12E-01 15 
Myc-Max bHLH-ZIP 5 3.898 3.21E-01 5 
HLF bZIP 6 3.249 1.84E-01 10 
Pbx HOMEO 7 2.878 1.38E-01 6 
FREAC-2 FORKHEAD 8 1.763 6.35E-02 20 
HLF bZIP 9 1.632 3.32E-02 32 
Myc-Max bHLH-ZIP 10 1.314 5.53E-01 12 
C. Genes Down-regulated by the NF-κB inhibitor (326 input; 170 analyzed) 
 TF Class Rank Z-score Fisher No. Genes 
p65 * REL 1 27.73 7.78E-11 46 
NF-kappaB * REL 2 24.11 8.76E-08 49 
c-REL * REL 3 21.31 3.76E-07 58 
p50 * REL 4 15.60 9.71E-05 19 
Irf-2 TRP-CLUSTER 5 13.30 1.30E-02  3 
Irf-1 TRP-CLUSTER 6 12.59 1.50E-03 22 
SPI-B ETS 7 12.45 9.06E-04 117 
FREAC-4 FORKHEAD 8 11.05 2.55E-04 71 
SRY HMG 9 10.52 2.81E-04 85 
Pbx HOMEO 10 9.79 8.58E-02  10 
Sox-5 HMG 12 9.00 2.50E-04 72 
cEBP bZIP 13 8.26 2.63E-04 44 
c-FOS bZIP 14 7.52 2.70E-03 71 
HFH-2 FORKHEAD 15 7.36 1.68E-03 46 
Nkx HOMEO 16 6.74 4.57E-03 106 
HNF-3beta FORKHEAD 28 2.77 4.70E-03  46 
deltaEF1 HMG 40 1.38 1.16E-03 149 
TF binding sites detected by oPOSSUM with the top ten mostly highly ranked Z-scores or with 
Fisher p-value < 0.01. * TFs over-expressed or inhibited in gene expression studies. The number of 
genes used as input and the number of genes analyzed by oPOSSUM (i.e. genes that have an 
unambiguous mouse ortholog) are shown in brackets. † Although E2F is annotated as “unknown” in 
the JASPAR database, it is structurally defined as a member of the “winged helix” class of proteins. 
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c-Myc SAGE experiment. The c-Myc transcription factor, which dimerizes with 

the Max protein, is a key regulator of cell proliferation, differentiation and apoptosis 

(25;26). Using serial analysis of gene expression (SAGE), Menssen and Hermeking 

identified 216 different SAGE tags corresponding to unique mRNAs that were induced 

after adenoviral expression of c-Myc in human umbilical vein endothelial cells (HUVEC) 

(26). The induction of 53 genes was confirmed using microarray analysis and RT-PCR. 

We analyzed the 53 genes with oPOSSUM and found that the binding sites of Myc-Max 

heterodimers are indeed the most significantly over-represented (Table 2.2A); Myc-Max 

sites were identified in seven of the genes. Matches to the binding profile for 

homogeneous Max dimers, c-Myc’s interacting partner, were also highly over-

represented (present in nine genes, giving a high Z-score of 21.9). The binding profile for 

a related protein, n-Myc, ranked amongst the top ten most over-represented profiles. 

c-Fos microarray experiment. In a study examining the role of transcriptional 

repression in oncogenesis, Ordway et al. used microarrays to compare the gene 

expression profile of 208F fibroblasts transformed by c-Fos against the profiles for the 

parental 208F rat fibroblast cell line (27). We mapped the list of 252 induced genes to 

150 human orthologs, which were submitted to oPOSSUM. As expected, the c-Fos TFBS 

was ranked as the most over-represented TFBS in the promoters of the induced genes, 

with a Z-score of 11.0 and a Fisher p-value of 2.9E-02 (Table 2.2B). c-Fos sites were 

identified in 40 of the co-expressed genes. 

NF-κB microarray experiment. In HUVEC cells, interleukin 1B treatment 

precipitates an inflammatory response observable as an induction of mRNA expression. 

This response can be modulated by the inhibition of the NF-κB signaling pathway (28). 
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We assessed oPOSSUM’s performance on 326 genes that showed decreased levels of 

expression in interleukin-1B-stimulated HUVEC cells treated with an NF-κB inhibitor as 

compared to IL-1B-stimulated HUVEC cells. Binding sites for the NF-κB/Rel family of 

TFs were the most over-represented (present in approximately 50 genes) in the inhibitor- 

modulated genes (Table 2.2C). Other over-represented TFBSs included the immune- 

related genes Irf-1, Irf-2 and SPI-B. 

2.3.3 Specificity assessment 

 
Based on the reference gene sets and expression data, oPOSSUM successfully 

identifies TFBSs that play a functional role in the regulation of sets of co-expressed genes. 

In the majority of cases, a Z-score greater than 10 and a Fisher p-value less than 0.01 

effectively discriminated the known sites within each set of reference genes. To assess 

how many of the over-represented TFBSs may be expected by chance and ascertain if the 

qualitatively observed thresholds are appropriate, we tested oPOSSUM on randomly 

generated subsets of genes from the oPOSSUM database. 

In Figure 2.3 we show the percentage of trials that produced TFBS predictions for 

random sets of genes, providing a measure of the false positive rate. For a set of 15 genes, 

using the Z-score alone, 23% of the trials produced one false positive prediction, 19% 

produced two false positives, and so forth, for an overall false positive rate of 66%. Using 

only the Fisher exact test for a set of 15 genes, we obtain an overall false positive rate of 

28 %. Thus, when used in isolation, each of the scoring measures result in surprisingly 

high false positive rates (average of 63% for the Z-score and 31% for the Fisher test), 

which are dramatically reduced by combining the scores. By applying both the Z-score 

and the Fisher p-value cutoffs to the randomly selected sets, we observed an average false 
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positive rate of 15%. The specificity when using the combination of scores (Z&F) 

appears consistent across gene sets of different sizes. Thus, with sets as large as 100-200 

genes, which is typical of clustered expression data, ~86% of the time no spurious results 

are observed. 
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Figure 2.3 Percentage of trials that produced false positive (FP) predictions 
Sets containing 15, 50, 100, and 200 randomly selected genes were generated and submitted to 
oPOSSUM (100 trials each). Each segment of the bar represents the percentage of trials where n 
TFBSs were over-represented by chance using the Z-score and Fisher p-value cutoffs. Symbols: Z = 
Z-score>10; F = Fisher<0.01; Z&F = Z-score>10 and Fisher<0.01. 
 

2.3.4 Noise tolerance 

 
Next we performed simulations to investigate the amount of noise oPOSSUM can 

tolerate. To do this, we added from 5 to 300 randomly selected genes to the reference 
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gene sets, and applied oPOSSUM to determine what proportion of the sets could be noise 

before losing our ability to elucidate the TFBSs mediating tissue-specific and pathway-

specific expression. We considered the Mef-2, HNF-1 and NF-κB binding site profiles to 

be representative of each set, and plotted their average Z-scores and Fisher p-values over  
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Figure 2.4 Noise tolerance  

Increasing numbers of randomly selected genes were added to the muscle, liver and NF-κB reference 
sets to assess the effect of noise on (A) the Z-score and (B) Fisher exact probability statistical 
measures. The amount of noise is represented as the fraction of all genes in the set that were 
randomly selected. Average Z-scores and Fisher p-values for Mef-2, HNF-1 and NF-κB over 100 
trials for each noise level are shown to represent the muscle, liver and NF-κB reference sets, 
respectively. Suggested cutoffs for the Z-score and Fisher p-value are shown by the dotted red lines. 
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100 trials against the proportion of noise in the set. The muscle, liver and NF-κB data sets 

can tolerate up to 60% of the gene list being noise using the Z-score (Figure 2.4A) and up 

to 50% using the Fisher p-value (Figure 2.4B). There is significant variation in the degree 

of noise tolerance amongst the three sets of genes: the NF-κB set is able to tolerate up to 

80% of the set being noise versus only 50% for the muscle set. Figure 2.4 shows that the 

Z-score decreases linearly and the Fisher p-value increases logarithmically with 

increasing noise for all three sets of genes. 

2.3.5 Web implementation 

 
The approach described for the detection of over-represented conserved TFBSs in 

sets of co-expressed genes has been implemented as a flexible, user-friendly website 

available from www.cisreg.ca. The implementation allows for analysis in default and 

custom modes. In the default mode, conserved human and mouse TFBS counts have been 

pre-calculated and stored using combinations of pre-defined values for the following 

three parameters: (i) the amount of sequence relative to the TSS to be included in the 

analysis, (ii) the level of interspecies conservation required, and (iii) the PSSM score 

required for a hit to be reported (Table 2.3).  

 

Table 2.3 Predefined values for phylogenetic footprinting and TFBS detection available in 
oPOSSUM’s default mode 
Level Conservation † PSSM Score Promoter Region ‡ 

1 Top 30th percentile (minimum 60%) 75% -5000 to +5000 
2 Top 20th percentile (minimum 65%) 80% -2000 to +2000 
3 Top 10th percentile (minimum 70%) 85% -2000 to 0 
 
† Conservation thresholds based on percentiles are determined by first calculating the amount of 
sequence identity for all windows of size 100 bp, removing coding regions, and then finding the value 
above which the top x% of scores reside. 
‡ Relative to the transcription start site 
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Users simply select a pre-defined set of parameters, select a set of TFBS to be 

included in the analysis, and submit a list of gene identifiers (Ensembl, GenBank, RefSeq, 

or LocusLink are presently supported) for analysis. oPOSSUM retrieves the TFBS hits 

matching the specified criteria for each gene in the list, calculates a Fisher exact 

probability and Z-score for the classes of TFBSs found in the set of genes, and returns 

ranked lists of TFBSs for each statistical test (Figure 2.5A). This operation is fast (less 

than 30 seconds for each of the reference sets) due to the pre-calculation of background 

frequencies. Pop-up windows for each TFBS display the genes in which the site has been 

located, as well as the site’s co-ordinates and score (Figure 2.5B). Furthermore, the 

TFBSs are linked to the JASPAR database for easy access to information regarding the 

binding site profiles.  

In the custom mode, users are not restricted to the pre-defined parameter values 

for the PSSM score and promoter region, and are given the option to supply user-

definedbackground sets. Users might be motivated to introduce their own background 

sets if there is prior biological evidence linking sequence composition to expression in 

the tissue or condition studied. The customization option provides users with more 

control, and results in more variable processing speeds depending on the size of the 

background set and the parameters selected.  

2.3.6 The oPOSSUM application programming interface (API) 

 
The oPOSSUM API, based on a set of object-oriented Perl modules, provides an 

interface to the oPOSSUM database and defines data objects for facilitating statistical 

(Fisher and Z-score) analysis. A set of modules at the top level of the API tree model 

each of the data objects in the oPOSSUM database. Briefly, the current version of the 
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Figure 2.5 The oPOSSUM result report for the identification of over-represented TFBSs in sets of co-
expressed genes 
(A) Results report showing the selected parameters, genes included and excluded in the analysis, and 
summary tables containing the Fisher exact probability scores and Z-scores for each TFBS (only the 
first few results are shown for each statistical test in this figure). (B) Pop-up window displaying genes 
that contain a particular TFBS (in this case, Mef-2), as well as the site locations and scores. 

 (A) (B) 
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API includes modules for connecting and retrieving gene indices, orthologous gene pairs, 

conserved region information, TFBS matches, and other types of data from the 

oPOSSUM database, running the Z-score and Fisher analyses, and storing the input and 

output from these analysis modules. The API with accompanying documentation is 

available through the oPOSSUM website. 

2.4 Discussion 

 
 Regulatory analysis of the promoters of co-expressed genes can give rise to 

hypotheses about the factors, TFBSs, and putative pathways involved in generating the 

observed expression patterns. Our integrated approach to regulatory analysis incorporates 

public data sources, cross-species conservation and complementary statistical methods to 

identify over-represented motifs. We validate the method using updated reference sets of 

muscle-specific and liver-specific regulatory regions, and a new set of NF-κB-regulated 

genes. We demonstrate the utility of this technique for analyzing experimental data with 

three independent gene expression studies. We show the robustness of this method 

through computationally assessed rates of false-positives and noise tolerance. The 

procedure has been implemented as a user-friendly, flexible website called oPOSSUM 

and as a Perl API. In short, we illustrate herein that oPOSSUM is a novel, validated, 

useful, robust, user-friendly means for analysts to explore potential regulatory 

mechanisms in their expression experiments. 

2.4.1 Performance 

 
In the case of the muscle regulatory collection, oPOSSUM ranked four of the five 

documented TFBSs as the four most over-represented sites. In fact, the only three profiles 
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to surpass the specified Z-score and Fisher p-value cutoffs were those for the muscle-

specific TFs SRF, TEF-1, and Mef-2. Similar results were obtained for the extended liver 

regulatory collection, which contains genes with experimentally verified HNF1/3/4 and 

c/EBP binding sites. oPOSSUM analysis resulted in two over-represented TFBSs, 

including the top-ranked HNF-1, followed by forkhead related activator 2 (FREAC-2), a 

member of the forkhead box family of eukaryotic DNA binding proteins, which includes 

FREAC-2, FREAC-4, HNF-3β, and HNF-4. c/EBP, though not considered significantly 

over-represented based on our empirical cutoffs, ranked third. The JASPAR database 

does not currently contain a binding profile for HNF-4, and so this TF could not be 

included in the analysis. The liver set illustrates how the absence of high-quality PSSM 

profiles to model all TFs in the human genome represents a key limitation to this method 

for the entire field.  

Application of oPOSSUM to a set of known targets of NF-κB resulted in all four 

NF-κB-related profiles ranking at the top of the list of over-represented TFBS profiles, 

with markedly significant scores. Within the ranked list, though not exceeding the 

thresholds, we observed other immune response-related TFBS profiles. For example, the 

interferon regulatory factors Irf-1 and Irf-2 (ranked #8 and #6, respectively) are known 

regulators of the host defense in response to viral infection or cytokine stimulation; they 

regulate interferon (IFN) and IFN-inducible genes, and also form interactions with SPI-1 

and SPI-B (ranked #5) to induce the activity of various cytokines (29-31). It is worth 

noting that the default threshold values are simply suggestions and less conservative 

cutoffs may yield valuable insights as well.  
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While the system behaved well for the validation collections, we desired to assess 

the utility for the analysis of larger, more heterogeneous experimental data. In each of the 

two published gene expression data sets, derived from the ectopic expression of c-Myc 

and c-Fos respectively, oPOSSUM clearly and appropriately ranked the corresponding 

TFBSs as being the most significantly over-represented. Further evidence of 

oPOSSUM’s utility in analyzing gene expression data was presented by applying 

oPOSSUM to a set of genes that showed decreased expression in an experiment 

examining the effect of a known inhibitor of the NF-κB signaling pathway. This set of 

genes is distinct from the NF-κB reference set in that the experiment examines an 

interleukin-induced immune-response in a cellular system, and potentially contains a 

large number of mRNAs that are independent of NF-κB signaling. Still, oPOSSUM 

identified the NF-κB binding sites (NF-κB, c-REL, p50, p65) as being significantly over-

represented, as well as the same TFs involved in the immune response that were 

identified in the NF-κB test set (Irf1, Irf2, SPI-B). Taken together, the three experimental 

analyses illustrate the power of promoter sequence analysis to identify the TFs governing 

gene expression changes observed in heterogeneous microarray and SAGE data. 

2.4.2 Challenges 

 
A common problem for promoter analysis is circularity. Binding sites that have 

been experimentally verified in genes are used to construct binding site profiles, which in 

turn, are used to search for binding sites in sets containing the original genes. In this 

study, the Mef-2, SRF, c-REL, p50, p65, Myc-Max, and c-Fos binding site profiles were 

constructed based on SELEX experiments, in which in vitro binding experiments are 

used to isolate suitable binding sites for a particular TF from random oligonucleotides (2). 
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Thus, we can be sure that at least for the SELEX-based profiles, we have avoided any 

circularity. 

At present, a key limitation to the oPOSSUM analysis is the scarcity of annotated 

binding site profiles. JASPAR, the underlying database supporting oPOSSUM, contains 

111 high-quality binding site profiles representing 25 structural classes. When analyzing 

expression data sets, it is worth keeping in mind that although the TF mediating the 

observed response may not be present in the sparse JASPAR database, it is possible that a 

TF that recognizes a similar motif may be identified as being over-represented. For 

example, looking at the results for the c-Myc experiment in Table 2.2A, it is evident that 

the over-represented TFBSs we observe are predominately bound by TFs containing the 

basic helix-loop-helix (bHLH) domain, and in particular, by TFs within the bHLH-ZIP 

(basic helix-loop-helix / leucine zipper) structural class. In fact, four of the five TFs in 

JASPAR that belong to the bHLH-ZIP class rank amongst the top ten profiles. This is 

also true for the NF-κB-related data sets where we see a clear over-representation of TFs 

belonging to the Rel class of TFs (Tables 2.1C and 2.2C). It is important to consider 

whether a match may be indicative of a member of a structural class, rather than the 

specific profiled TF. A major challenge, however, is that zinc-finger proteins make up the 

largest class of TF proteins, comprising ~47% of the estimated 1445 TFs identified in 

mammalian genomes (32). Cys2-His2 zinc-fingers are the most versatile of the DNA-

recognition domains, and variations in amino acid sequence enable them to bind to a 

diverse range of DNA sequences. In addition, zing-finger proteins in mammalian 

genomes use multiple, tandem fingers to interact with arrays of subsites, providing a 

degree of modularity and exceptional adaptability (33). JASPAR currently contains only 
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17 zinc-finger binding profiles. We will continue our ongoing efforts to expand the 

JASPAR collection and incorporate new information as it becomes available. 

Analysis of the false positive rates using random sampling revealed that, when 

used in isolation, the Z-score and Fisher tests result in high false positive rates that can be 

reduced by combining the two scoring measures. While it’s true that applying a multiple 

testing correction could possibly improve performance for the Fisher measure, the Z-

scores we obtain are extremely large, such that a correction for the one hundred or so 

TFBS profiles being tested has negligible impact on the Z-score results. Instead, we have 

opted to empirically derive threshold cutoffs based on our reference data. Furthermore, 

our experience with oPOSSUM suggests that it is the ranks of the binding site profiles 

rather than the specific values of the scores that are indicative of functionally relevant 

TFBSs. For these reasons, and in light of the binding similarities within factor families, 

we have abstained from making a Bonferroni correction to adjust for multiple testing. In 

the future, we may introduce an option for users to make this adjustment that is based on 

an improved statistical model. 

2.4.3 Utility 

 
oPOSSUM is the first integrated, web-based tool for analyzing sets of co-

expressed genes that incorporates cross-species comparisons, PSSM-based promoter 

motif detection, and statistical methods for the identification of over-represented TFBSs 

with a pre-computed database. Other resources are available for detecting and visualizing 

binding sites within the conserved regions of human genes (Consite (11), rVISTA (34), 

dbTSS (35), CONREAL (36), CORG (37)), as well as for identifying statistically over-

represented motifs in the promoters of related sequences (Clover (38), OTFBS (39), 
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PRIMA (40). Other comparable tools that integrate all of these approaches include the 

Toucan workbench for regulatory sequence analysis (41), CONFAC (42), and CRÈME 

(43). Unlike Toucan, oPOSSUM employs a pre-computed database of conserved TFBSs, 

eliminating the need for long processing times involved in retrieving sequences, 

performing alignments, and detecting motifs via PSSMs. Furthermore, the use of two 

complementary statistical tests to determine over-represented TFBSs is unique to 

oPOSSUM, and attempts to address the inherent problems involved in analyzing 

conserved regions of promoters for TFBSs, which include variation in conservation 

properties from one orthologous gene pair to another and multiple occurrences of a 

particular TFBS in the promoter of a single gene. 

2.5 Conclusions 

The oPOSSUM system is under continued development. As new information 

accumulates, we intend to expand the orthology mapping, increase the number of TFBS 

profiles supported in JASPAR, include the option for users to specify alternative 

promoters (TSSs), and improve the over-representation analysis. We believe that this 

approach to regulatory analysis will be helpful to researchers hoping to elucidate 

transcriptional pathways from gene expression data. 
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Chapter 3: Integrated Tools for Analysis of Regulatory Motif Over-

representation 
3
 

3.1 Introduction 

Functional genomics research often generates lists of genes with observed 

common properties, such as coordinated expression. For many studies, a key challenge is 

the generation of relevant and testable hypotheses about the regulatory networks and 

pathways that underlie observed co-expression. Our strategy for elucidating regulatory 

mechanisms identifies over-represented sequence motifs that are present in the upstream 

regulatory regions of genes. The motifs may represent transcription factor binding sites 

(TFBSs) that have a role in regulating expression. 

oPOSSUM (1) and oPOSSUM2 (2) were developed to identify over-represented, 

predicted TFBSs and combinations of predicted TFBSs, respectively, in sets of human 

and mouse genes. The user inputs a list of related genes, selects the TFBS profile set to 

be included in the analysis, and the algorithm determines which, if any, predicted TFBSs 

occur in the promoters of the set of input genes more often than would be expected by 

chance. Both analytic approaches rely on a database of aligned, orthologous human and 

mouse sequences, and the delineation of conserved regions within which TFBS 

predictions are analyzed. While the approach does not explicitly address uncharacterized 

transcription factors (TFs), the effective coverage is broadened by the fact that members 

within certain structural families of TFs can exhibit similarities in binding specificity. 

                                                 
3 A version of this chapter has been published. Ho Sui, S.J., Fulton, D.L., Arenillas, D.J., Kwok, A.T. and 
Wasserman, W.W. (2007). oPOSSUM: Integrated tools for analysis of regulatory motif over-representation. 
Nucleic Acids Research. 35 Web Server Issue:W245-52. 
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While intra-class similarity is not always the case, as exemplified by the zinc-finger 

family of TFs (3), the observation holds true for many TF families (4;5).  

Here we describe the new release of the oPOSSUM system, which integrates the 

two previously developed applications, and has been expanded to accommodate new 

species (yeast and worms). It also includes new methods for orthology assignment, 

transcription start site (TSS) determination, and sequence alignment. 

3.2 Methods 

3.2.1 Over-representation analysis 

oPOSSUM single site analysis (SSA). The oPOSSUM system for identifying 

over-represented TFBSs in sets of co-expressed genes first focused on single site analysis 

(1). Two scores were developed to assess over-representation, one at the TFBS 

occurrence level and the other at the gene level. The Z-score, based on the normal 

approximation to the binomial distribution, indicates how far and in what direction the 

number of TFBS occurrences deviates from the background distribution's mean. The 

second score, the Fisher exact test, indicates if the proportion of genes containing the 

TFBS is greater than would be expected by chance. TFBS predictions situated within 

overlapping alternative promoters are counted only once when calculating over-

representation in human and mouse genes. For C. elegans genes in operons, TFBS 

predictions in the upstream region of the first gene in the operon apply to all genes in 

the operon. 

oPOSSUM combination site analysis (CSA). TFBSs do not act in isolation to 

initiate the transcription process. Transcriptional regulation can be viewed as mediated by 



 77 

arrays of cis-regulatory sequences, termed cis-regulatory modules (CRMs), which are 

bound by multiple TFs. In oPOSSUM2, Huang et al. (2006) (2) address the detection of 

over-represented sets of TFBSs in the promoters of a set of co-expressed genes. In brief, 

the method reduces combinatorial complexity through an initial clustering step, which 

partitions similar TFBS profiles into groups, herein denoted TFBS classes, along with an 

analysis step to determine a TFBS class representative profile for each TFBS class, which 

are used to detect over-represented.sets of TFBS classes. Since each distinct, over-

represented set of detected TFBS classes, herein described as a TFBS class combination, 

implicates the over-representation of one or more underlying TFBS profile-specific 

combinations, each of these TFBS class combinations is expanded to all possible TFBS 

profile-specific combinations (for the indicated classes) and then all combinations are 

analyzed for over-representation. Furthermore, given that CRMs can contain locally 

dense clusters of TFBSs, the system also provides for the specification of an inter-binding 

site distance (IBSD) constraint to confine the number of TFBS combinations that are 

investigated. A scoring scheme, adopted from the Fisher exact test, utilizes two sets of 

TFBS (class or profile-specific) combination counts to compare the degree of their over-

representation: 1) the number found in the promoters of the co-expressed gene set versus 

2) the number found in the promoters of genes in a background set (all genes in the 

database). TFBS combinations occurring in multiple alternative gene promoter regions 

are counted only once. 

3.2.2 Species-specific Databases 

In addition to enhancements to the human/mouse oPOSSUM database, we 

introduce new species databases for studies of over-represented TFBSs in yeast and 
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worms. While the SSA over-representation analysis remains the same for all species, 

differences in gene structure require that the construction of the underlying databases be 

particular to each species.  

Human/mouse. Ambiguities in ortholog assignments and the definition of TSS 

positions are major challenges when performing alignments for a large proportion of 

human and mouse genes. We have expanded the human/mouse database through (i) the 

discrimination of potential orthologs from predicted paralogs based on upstream 

sequence similarity (Figure 3.1), and (ii) the delineation of alternative promoters for 

human and mouse genes (Figure 3.2) to address the alignment failure observed in 

previous database builds.  

 

 

Figure 3.1 Determination of one-to-one orthologs for human and mouse genes  
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Starting with an initial set of homologs downloaded from EnsEMBL v41 (6), all 

homologs annotated as “one2one” are extracted. To select the closest putative ortholog 

pairs from homologs with “one2many” or “many2many” relationships, we check for 

upstream conservation using the whole-genome human-mouse alignments (7). We re-

annotate unambiguously aligned homologs (i.e. where the region 5000 bp upstream of the 

human TSS maps to a single region mouse net alignment) as putative one-to-one 

orthologs, adding 195 gene pairs to our set, and bringing the total number of orthologs to 

15162 (Figure 3.1). 

The original release of oPOSSUM had the drawback that only 65% of human 

genes could be reliably aligned to its mouse ortholog (8). Closer inspection revealed that 

the large majority of alignment failures could be attributed to alternative promoter usage 

between human and mouse genes. To improve our alignments, we determine putative 

alternative transcription start sites (TSSs) for the human and mouse genes (Figure 3.2). 

For each gene, the entire repertoire of transcripts from both EnsEMBL core genes and 

EST genes are retrieved. Transcripts derived from EnsEMBL EST gene annotations are 

henceforth referred to as “lower confidence” transcripts. The TSSs for all transcripts are 

recorded, followed by a clustering step such that TSSs within 500 bp of one another are 

merged to form a transcriptional start region (TSR). This step is motivated by 

observations that genes with CpG island-associated promoters often have broad 

distributions of TSSs (9). For each TSR containing a transcript annotated as “known” or 

“novel”, we accept the TSR as is. For TSRs based solely on EST gene transcripts, we 

require additional evidence for transcription initiation. Cap analysis of gene expression 

(CAGE) (10) is a high-throughput method used to measure expression levels by counting 
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large amounts of sequenced capped 5' ends of transcripts, termed CAGE tags. The 5’-

capping method facilitates accurate mapping of TSRs. We require that lower confidence 

TSRs contain a minimum of 5 CAGE tags to be accepted. 

 

 

 

Figure 3.2 Identification of transcription start regions (TSRs) using a combination of Ensembl 
annotations and CAGE data 
Identification of transcription start regions (TSRs) using a combination of EnsEMBL annotations and 
CAGE data. To improve our alignments, we determine putative alternative TSSs for the human and 
mouse genes. For each gene, the entire repertoire of transcripts from both EnsEMBL core genes and 
EST genes are retrieved. The TSSs for all transcripts are recorded, followed by a clustering step such 
that TSSs within 500 bp of one another are merged to form a transcriptional start region (TSR). For 
each TSR containing a transcript annotated as “known” or “novel”, we accept the TSR as is. For TSRs 
based solely on EST gene transcripts, we require a minimum of 5 CAGE tags as evidence for 
transcription initiation. 
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For each human/mouse orthologous pair, we determine the coordinates of the 

longest region from the UCSC genome alignments (7) spanning all transcripts plus an 

additional 10 kb of upstream sequence. The orthologous sequences are retrieved and re-

aligned using ORCA, a pairwise global progressive alignment algorithm (described in 

(1)) to optimally align short, conserved blocks within longer global alignments. If 

possible, TSRs from human and mouse are paired in the alignment. We apply three 

dynamically computed and progressively more stringent conservation thresholds 

corresponding to the top 10%, 20%, and 30% of all 100 bp noncoding windows, each 

with a minimum percent identity of 70%, 65%, and 60%, respectively.  

C. elegans/C. briggsae. To facilitate transcriptional regulatory analysis of the 

numerous gene expression studies performed in C. elegans, we have implemented a 

worm version of oPOSSUM. While the database structure and pipeline procedure are 

very similar to that used for the human/mouse database, there are small modifications that 

allow for mapping of genes to their operons, as defined by Blumenthal et al. (11). In 

addition, nucleotide identity thresholds for conserved regions were reduced to 60%, 55%, 

and 50% for the top 10%, 20%, and 30% of noncoding windows, respectively, to account 

for the greater sequence divergence between C. elegans and C. briggsae compared to 

human and mouse. The set of orthologs for C. elegans and C. briggsae is defined by one-

to-one InParanoid clusters (12) from WormBase (WS160) (13). After filtering 

overlapping genes, 10592 orthologous gene pairs (of which, 2140 genes are in operons) 

remain for alignment. Alignments are performed on the orthologous gene sequences plus 

2 kb of upstream sequence (relative to the start codon) for C. elegans, and 4 kb of 

upstream sequence for C. briggsae. Annotations are not as mature for C. briggsae, and 
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the longer upstream region aids in the alignment of the worm promoter sequences. 

Alternative promoters have not been considered in this first version; however, should 

CAGE data or other reliable means for annotating TSSs in worms become available, 

efforts will certainly be made to include them. Of the 10592 worm orthologs, 9331 (88%) 

successfully align. 

Yeast. The analysis of yeast promoters is simplified by the more compact nature 

of the yeast genome. This characteristic diminishes the requirement for comparative 

methods to reduce the search space and noise inherent in larger genomes. Computational 

methods using S. cerevisiae sequences alone have successfully been used to identify 

regulatory elements associated with known sets of related genes (14;15). We opted to 

exclude phylogenetic footprinting for yeast, and instead, select promoter sequences 

corresponding to the 5' untranslated region 1000 bp immediately upstream of the start 

codon of each open reading frame (ORF). Note that for all applications, users have the 

option to further restrict the search space if they wish. The sequences were downloaded 

from the Saccharomyces Genome Database (16).  

3.2.3 Transcription Factor Binding Site Prediction 

 
For the metazoan species, we search for matches to TFBS profiles contained in 

the JASPAR CORE and JASPAR PhyloFACTS database collections (17;18). 

Additionally, we include a set of profiles compiled for C. elegans TFs from literature 

review for Worm SSA (http://www.cisreg.ca/oPOSSUM/data/). Binding sites are 

predicted for the sequences using the TFBS suite of Perl modules for regulatory 

sequence analysis (19). A predicted binding site for a given TF model is reported if the 

site occurs in the promoters of both orthologs above a threshold PSSM score of 70% 
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and at equivalent positions in the alignment. Overlapping sites for the same TF are 

filtered such that only the highest scoring motif is kept. The genomic location, profile 

score, motif orientation, and local sequence conservation level of each TFBS match in 

orthologous genes are stored in the respective species databases. For S. cerevisiae, we 

compiled a collection of yeast-specific TFBS motifs from both the Yeast Regulatory 

Sequence Analysis (YRSA) system (20) and the literature 

(http://www.cisreg.ca/oPOSSUM/data), and record the genomic location, profile score 

and motif orientation for each prediction.  

3.3 Results 

Each oPOSSUM component was validated on sets of reference genes. The results 

of all validations are available at http://cisreg.ca/oPOSSUM/data/. Below we describe a 

single validation for each system.  

3.3.1 Human SSA  

The human/mouse database was expanded by discriminating potential orthologs 

from predicted paralogs based on upstream sequence similarity (Figure 3.1), and using 

multiple alternative promoters for human and mouse genes (Figure 3.2). While the 

inclusion of promoter comparisons for candidate ortholog assignment may be 

controversial, the impact is marginal as less than 1.3% of gene pairs were derived from 

this approach. This brings the total number of orthologs to 15162. Despite improvements 

in EnsEMBL’s ortholog prediction, this is only 1079 more orthologs than were present in 

our previous database build. Based on the small incremental increases in mapped 
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orthologs, we may be nearing the upper bound for the number of genes in human and 

mouse that are truly orthologous and detectable by sequence conservation.  

Approximately one quarter of genes have multiple TSRs based on our procedure 

(Appendix 2 Figure S1). This observation is consistent with a report that 18–20% of 

protein-coding genes use alternative promoters (21), but is much less than the reported 

58% of protein-coding transcriptional units with two or more alternative promoters based 

on the presence of nonoverlapping CAGE tag clusters (22). Of the 15162 orthologous 

gene pairs supplied as input to the oPOSSUM pipeline, 5121 (99.7 %) successfully align, 

and 15027 (99.1%) have non-exonic conserved regions above 60% nucleotide identity. 

This is a significant improvement over the previous version of oPOSSUM (1). 

Wonsey and Follettie performed a microarray analysis of genes that are 

transcriptionally regulated by FoxM1, a member of the forkhead family of TFs, using BT-

20 cells that had been transfected with FoxM1 siRNA (21). They identified a set of 27 

genes that were specifically regulated in cells transfected with FoxM1 siRNA. The 27 

Affymetrix UG144A identifiers were mapped to 27 EnsEMBL gene identifiers and 

submitted to Human SSA with default parameters. Of these, 22 genes had a unique 

mouse ortholog and were used in the oPOSSUM analysis. While a specific profile for 

FoxM1 is not present in JASPAR CORE, other members of the forkhead family were 

ranked in the top ten highest scoring TFBS profiles (Table 3.1). There is also a known 

association between HNF4, the highest scoring TFBS profile, and the forkhead TF, 

FOXO1 in the regulation of gluconeogenic gene expression in hepatocytes (22), which 

may explain the over-representation of the HNF4 profile.  
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We previously identified over-represented Fos binding sites in a set of genes 

induced after transformation by c-Fos in rat fibroblast cells (1;23). We analyzed 160 

orthologous genes from the original list of 252 induced genes. This is a notable 

improvement over the previous version where only 98 genes were included in the 

oPOSSUM analysis. The Fos TFBS profile ranked second in the list of over-represented 

TFBSs (Table 3.2). Inspection of the results using the JASPAR PhyloFACTS profiles 

with default parameters illustrates how inclusion of this new set of profiles provides 

 

 

Table 3.1 Validation of the human FoxM1-regulated gene cluster  
JASPAR 

CORE TF Class IC 

Target 

gene hits 

Background 

TFBS rate 

Target 

TFBS rate Z-score 

Fisher  

P-value 

HNF4 
Nuclear 
Receptor 

9.62 13 0.0054 0.0085 7.19 2.64E-02 

Fos bZIP 10.67 15 0.0111 0.0146 5.72 4.29E-01 
Pbx Homeo 14.64 5 0.0019 0.0033 5.57 3.10E-01 
FOXI1 Forkhead 13.18 16 0.0153 0.0186 4.49 9.05E-02 

RORA1 
Nuclear 
Receptor 

17.42 4 0.0020 0.0029 3.54 5.04E-01 

TAL1-TCF3 bHLH 14.07 12 0.0052 0.0066 3.30 5.88E-02 

Staf 
Zn-Finger, 
C2H2 

17.54 3 0.0014 0.0021 3.16 3.03E-01 

Foxa2 Forkhead 12.43 13 0.0152 0.0174 3.04 4.83E-01 
Foxd3 Forkhead 12.94 13 0.0172 0.0194 2.93 5.27E-01 
TEAD TEA 15.67 6 0.0028 0.0037 2.850 4.70E-01 

 

Table 3.2 Validation of the c-Fos-regulated gene cluster  
JASPAR 

CORE TF Class IC 

Target 

gene hits 

Background 

TFBS rate 

Target 

TFBS rate Z-score 

Fisher  

P-value 

RREB1 Zn-Finger, C2H2 22.29 3 0.0001 0.0003 10.19 6.12E-02 
Fos bZIP 10.67 60 0.0044 0.0058 9.49 2.99E-01 
RORA1 Nuclear Receptor 17.43 13 0.0006 0.0010 8.49 3.27E-02 
SP1 Zn-Finger, C2H2 9.72 54 0.0046 0.0057 6.59 1.07E-01 
NR3C1 Nuclear Receptor 14.75 5 0.0003 0.0005 6.03 1.37E-01 

 

JASPAR 

PhyloFACTS  

Similar 

To IC 

Target 

gene hits 

Background 

TFBS rate 

Target 

TFBS rate Z-score 

Fisher  

P-value 

TGANTCA AP-1 12.06 46 0.0011 0.0023 18.05 1.40E-04 
GGGYGTGNY - 14.18 82 0.0059 0.0083 15.64 4.98E-02 
TGASTMAGC NF-E2 16.60 43 0.0013 0.0024 15.64 1.19E-03 
GGARNTKYCCA - 17.13 44 0.0016 0.0026 12.54 1.11E-03 
GGGAGGRR MAZ 14.00 111 0.0171 0.0202 11.98 3.16E-01 
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additional, meaningful information. The highest ranked PhyloFACTS motif (TGANTCA) 

is noted by JASPAR as being most similar to the binding profile for AP-1, and the third 

highest scoring motif (TGASTMAGC) is most similar to the bZIP TF NF-E2. AP-1 

complexes are comprised of Fos and Jun proteins, and the structurally related NF-E2 and 

AP-1 TFs bind similar sequence motifs (24).  

3.3.2 Human CSA 

The combination site analysis was validated on a set of mouse skeletal muscle 

genes comprised of the union of the results of the microarray studies of Moran et al. (25)  

and Tomczak et al. (26). To avoid circularity, we removed muscle-specific genes used to 

generate the JASPAR binding site profiles for Mef-2, Myf, Sp-1, SRF, and Tef. Binding 

sites for these factors occur in clusters in cis-regulatory modules that contribute to 

skeletal muscle-specific expression (27). Table 3.3 lists the top five over-represented 

pairwise TFBS combinations for this set of genes, along with the JASPAR class each TF 

profile clustered to, and the Fisher score obtained for each pair. The five most over-

represented pairs of TFBS profiles include combinations of Mef-2, SRF and Sp-1. 

 

 
Table 3.3 Validation of skeletal muscle genes identified by Moran et al. and Tomzcak et al. 

TF name  

(Class ID) TF class name 

TF name  

(Class ID) TF class name Score 

MEF2A (class 4) MADS Myf (class 22) bHLH 1.65E-06 

MEF2A (class 4) MADS ZNF42_1-4 (class 25) Zn-finger, C2H2 4.24E-06 

Myf (class 22) bHLH SRF (class 1) MADS 2.52E-05 

SP1 (class (31) Zn-finger, C2H2 SRF (class 1) MADS 2.68E-05 

Agamous (class 1) MADS MEF2A (class 4) MADS 7.63E-05 
 

The inclusion of alternative promoters provides notable improvements in the 

Human SSA and Human CSA analyses. The same data sets were used to validate our 
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previous and current human oPOSSUM analyses systems. Demarcation of additional 

promoter boundaries increases the signal in the discovery process, improving the signal 

for both over-represented single TFBSs and combinations of TFBSs in the gene sets 

analyzed.  

3.3.3 Worm SSA 

Worm SSA was tested on a set of well-characterized nematode muscle genes (28). 

Analysis of 1000 bp of upstream sequence, using the top 10% of conserved regions 

(minimum of 60% sequence identity), a matrix match threshold of 80% and the worm 

profiles, identified the putative muscle1 motif with a Z-score of 20.6 and a Fisher score 

less than 0.01 (Table 3.4). This is, however, somewhat circular, given that 19 of the 41 

input genes were used to generate the putative muscle-specific worm profiles. Analysis 

using the JASPAR CORE profiles ranked SP1 and Su(H) within the top ten scoring 

profiles (Appendix 2 Table S2). Studies in Xenopus and Drosophila provide evidence 

that MyoD triggers Notch signaling through Su(H) for muscle determination (29;30). 

Although SP1 has been implicated in muscle CRMs, it is a general transcription factor 

involved in the expression of many different genes and binds to GC-rich motifs. 

 

Table 3.4 Validation of worm skeletal muscle genes using worm profiles 

Worm 

Profile Status IC 

Target 

gene hits  

Background 

TFBS rate  

Target 

TFBS rate  Z-score 

Fisher P-

value 

Muscle1  Putative  11.34 5 0.0023 0.0054 8.01 1.89E-02 
Muscle3  Putative  16.67 4 0.0035 0.0038 0.61 3.66E-01 
Muscle2  Putative  11.97 2 0.0018 0.0018 -0.22 3.97E-01 
LIN-14  Putative  9.13 10 0.0154 0.0127 -2.79 4.00E-01 
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3.3.4 Yeast SSA 

The yeast CLB2 gene cluster is comprised of 32 genes whose pattern of 

expression peaks at late G2/early M phase of the cell cycle. Transcription of these genes 

is regulated by two TFs: FKH, which is a component of the TF SFF, and MCM1, a 

member of the early cell cycle box (ECB) binding complex. Analysis of 500 bp of 

upstream sequence using a matrix match threshold of 85% ranked ECB, MCM1 and 

FKH1 in the top five scoring TFBS profiles (Table 3.5), which is consistent with the 

literature (31). 

 
Table 3.5 Validation of the yeast CLB2 gene cluster  

Yeast 

Profile TF Class IC 

Target 

gene hits 

Background 

TFBS rate 

Target 

TFBS rate Z-score 

Fisher  

P-value 

ECB Unclassified 16.65 13 0.0019 0.0131 32.87 8.68E-09 
MCM1 MADS 9.15 10 0.0073 0.0165 13.71 1.08E-02 
FKH1 Forkhead 13.28 30 0.0305 0.0473 12.26 4.05E-02 
CCA Unclassified 16.93 3 0.0017 0.0040 7.08 2.02E-01 
LYS14 C6_Zinc finger 17.02 6 0.0030 0.0053 5.20 9.41E-02 

 

3.4 Discussion 

The four oPOSSUM systems, Human SSA, Human CSA, Worm SSA, and Yeast 

SSA, have been integrated into a use-friendly website at www.cisreg.ca/oPOSSUM. We 

recommend that users of the system begin with the SSA to quickly identify TFBSs that 

may be relevant to their input data sets. For sets of human and mouse genes, this can be 

followed with the CSA, which takes longer to process, but which can provide insights 

into TFBSs that may be acting in concert to regulate the set of genes.  

The web implementation allows for analysis in default and custom modes. Default 

mode processing is faster as TFBS counts have been pre-calculated and stored for 
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predefined conservation levels, matrix match thresholds and promoter lengths. In either 

mode, the user is required to select a species and to enter a list of gene identifiers 

(EnsEMBL, RefSeq, HGNC and Entrez Gene are supported for human). A number of 

options are available to specify the TFBS profile set to be used in the analysis. Finally, 

the conservation level, matrix match threshold and the promoter length can be varied. In 

the custom mode, users may define their own background set, which provides users with 

more control, but results in more variable processing speeds depending on the size of the 

background set and the parameters selected.  

Upon submission, oPOSSUM SSA generates a summary of the input parameters, 

and produces a single table that ranks the over-represented TFBSs by descending Z-score. 

The table may be sorted by TF name, TF class, supergroup, information content (IC), Z-

score and Fisher score (Figure 3.3A). Pop-up windows linked to each TFBS foreground 

count display the genes in which the putative site is located, the promoter region(s) for 

each gene, as well as the TFBS’s co-ordinates and score (Figure 3.3B). TFBSs that occur 

in overlapping promoter regions are marked by an asterisk and highlighted in yellow. The 

TF names are linked to the JASPAR database for easy access to information regarding 

the binding site profiles. The output for oPOSSUM CSA is similar, providing (i) a ranked 

list of over-represented TFBS class combinations, and (ii) a list of the most significant 

TFBS combinations (found in the set of expanded top-ranked class combinations).  

Based on the underlying assumption of the statistics employed that DNA 

sequences are randomly generated, there is little reason to accept the calculated scores as 

accurate reflections of significance. Instead, as suggested in the original published 

description of the oPOSSUM algorithm, we recommend that the scores are best used as  
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Figure 3.3 oPOSSUM output 
(A) A screenshot of the output of the oPOSSUM Human SSA analysis, which ranks over-represented 
TFBS profiles by Z-score. The arrows allow the user to sort and re-order the results by Fisher p-value, 
TF name, TF class, TF supergroup, or TF profile information content (IC). Each TF name links to a 
pop-up window displaying the TFBS profile information. (B) Pop-up window displaying genes that 
contain a particular TFBS (in this case, SRF), as well as the promoter coordinates associated with each 
gene, and the motif locations and scores. Sites in overlapping alternative promoters are highlighted for 
emphasis. Such sites are only counted once in the statistical analysis.  
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rankings rather than significance measures. For this reason, a multiple testing correction 

is not applied as it does not alter the relative ranks. Empirically, we determined that 

TFBS profiles with Z-scores equal to or exceeding 10 and Fisher scores less than or equal 

to 0.01 facilitate the identification of relevant TFBSs for our sets of reference genes (1). 

However, these are relatively stringent thresholds, and we encourage users to examine the 

scores of top-ranked TFBS profiles before applying any cutoffs. 

We provide a consistent display for all four systems. However, there are slight 

differences between the systems, such as different parameters for selection on the input 

pages which are relevant for each species database and system. Also, due to the longer 

processing times required to compute combinations of TFBSs, Human CSA queues the 

analysis request on the server and emails the completed results to the user. 

Lastly, plant and insect matrices are available for inclusion in the analysis based 

on the observation that members of the same structural family of TFs often bind to 

similar sequences. The MADS family of TFs is an excellent example of conservation of 

binding domains between plants and vertebrates (32;33), and there are numerous 

examples of conservation of binding domains across vertebrates, flies and worms. Thus, 

in cases where a profile for the TF of interest is not available in the database, oPOSSUM 

can still provide insights into the underlying regulation by suggesting a particular TF 

family that may be involved. 

3.5 Conclusions 

 
The oPOSSUM system is under continued development. Efforts are underway to 

allow users to submit custom TF profiles to be included in the analysis. An improved 
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search method for nuclear hormone receptors, which typically contain two half sites 

separated by a variable length spacer, has been developed and will be included in a future 

release. We will continue to add TFBS profiles as they become available, with an 

emphasis on expanding the repertoire of worm TFBS profiles. We believe the oPOSSUM 

web server is and will continue to be a useful resource for researchers attempting to move 

from observed co-expression to infer mechanisms of co-regulation. 
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Chapter 4: Dynamics of the Yeast Transcriptome During Wine 

Fermentation Reveals a Novel Fermentation Stress Response 
4
 

4.1 Introduction 

Strains of Saccharomyces cerevisiae are industrially important due to extensive 

use in baking, brewing, wine-making and in the production of fuel ethanol. S. cerevisiae 

has complex regulatory networks to sense, respond, and adapt to changing environments, 

but the regulation of metabolic pathways and mechanisms for adapting to the extreme 

conditions in industrial processes, such as fermentation, have not been well studied. In 

the natural environment of grape must fermentation, S. cerevisiae is subject to high 

osmotic pressure, hypoxia, high concentrations of sugar and low nitrogen levels. In 

addition, as the fermentation progresses, ethanol levels can reach 16% (v/v); in standard 

laboratory media the ethanol concentration never exceeds 1% (v/v). During fermentation, 

stationary phase growth is reached within approximately 48 hours, but the yeast actively 

ferments and then survives for months in wine. Many of the 1253 genes that have not 

been characterized (1) may well play an important role during the later adaptive stages of 

fermentation.  

Perturbation of environmental conditions has led to the identification of a 

multitude of stress responses (see (2) for a review). While numerous genomics studies 

have addressed specific responses, a few studies have examined the common components 

of generalized environmental stress. Large-scale transcriptome analyses of short-term 

                                                 
4 A version of this chapter has been published. Marks, V.D.*, Ho Sui, S.J.*, Erasmus, D., van der Merwe, 
G.K., Brumm, J., Wasserman, W.W., Bryan, J. and van Vuuren, H.J.J. (2008). Dynamics of the yeast 
transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Research. 
8(1):35-52. * Joint first authors. 
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responses have identified the ~868 gene ”environmental stress response” (ESR) (3) and 

the ~499 gene ”common environmental response” (CER) (4) which overlap by ~337 

genes (Appendix 3 Figure S1; all numbers approximate due to changing gene annotations 

over time). Functions of genes induced by stresses in both studies include carbohydrate 

metabolism, protein degradation, response to reactive oxygen species, protein folding, 

and genes with stress response elements (STREs) in their promoters. Repressed genes 

include those involved in translation and protein synthesis, cytoplasmic ribosomal 

proteins, tRNA synthesis, and translation. Both the ESR and CER studies identified many 

genes with unknown functions that respond to stress. 

In contrast to the transient stress responses, S. cerevisiae is capable of making 

adaptive changes to grow both aerobically or anaerobically depending on environmental 

conditions. In the presence of glucose at concentrations that exceed 0.5% (w/v), the yeast 

will ferment regardless of the presence of oxygen. Genes involved in respiratory 

metabolism and gluconeogenesis can also be regulated by carbon source (5). When 

glucose is depleted, the cells undergo a diauxic shift and respire ethanol produced during 

fermentation (6). During the transition, the transcriptional repressor Mig1p is exported 

from the nucleus to the cytoplasm. Mig1p is a key regulator of carbon catabolite 

repression; the nuclear export of Mig1p results in derepression of genes required for the 

utilization of alternative carbon sources (7;8). The exact mechanism of signal 

transduction in response to glucose is not entirely understood. Furthermore, little is 

known about how yeast metabolizes carbon when both glucose and ethanol are in excess.  

The incorporation of transcript profiling technologies into enology research has 

led to a series of observations about gene expression during the early stages of 
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fermentation. Several publications have demonstrated a dramatic change in gene 

expression patterns during the transition to stationary growth (9-11). Differences in gene 

expression patterns between commercial strains of wine yeast revealed a common pattern 

of stress response between wine strains at the beginning of vinification (12;13). 

Rossignol et al. explored the genomic expression patterns of S. cerevisiae during a three-

day fermentation in a synthetic medium (14). In this latter study, stationary phase 

changes were noted, along with the observation of a plentitude of stress response 

processes being active. To identify how S. cerevisiae responds adaptively to long-term 

environmental stresses present during grape must fermentation, the yeast transcriptome 

was profiled over a period of 15 days.  

4.2 Methods 

 

4.2.1 Strains, media and growth conditions 

An industrial wine strain of S. cerevisiae, Vin13 (Anchor Yeast, South Africa), 

was used. The yeast was inoculated into 1 L filter sterilized Riesling grape juice (15) with 

a final cell count of 4 x 106 /ml. The grape juice contained 214 g/L sugar (equimolar 

amounts of glucose and fructose), 70 mg/ L ammonia, and 140 mg/L free α-amino 

nitrogen (15). Incubation was stationary at 20 °C without the addition of oxygen. 

Fermentations were conducted in triplicate and cells were harvested from fermentations 

after 0.5 %, 2 %, 3.5 %, 7 %, and 10 % (v/v) ethanol was produced. 

4.2.2 Analysis of fermenting wine  

Enzymatic kits were used to determine glucose and fructose concentrations 

according to manufacturer’s instructions (Roche Molecular Biochemicals, Laval, QC). 
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Ethanol was measured by HPLC as described previously (16). Water activity was 

measured using an Aqualab Series 3 water activity meter (Decagon Devices, Pullmann, 

WA). All measurements were done in triplicate. 

4.2.3 Microarray analysis  

Total RNA was extracted, and isolation of mRNA and cDNA synthesis were done 

according to Causton, et al. (4). Double stranded cDNA purification, cRNA synthesis and 

fragmentation were done according to Marks et al. (15). Affymetrix Yeast Genome S98 

Chips were used (Affymetrix, Santa Clara, CA). Preparation of hybridization solution, 

hybridization, and washing, staining and scanning of yeast arrays were done as described 

by the manufacturer (Eukaryotic Arrays GeneChip Expression Analysis and Technical 

Manual, Affymetrix, Santa Clara, CA). Washing and staining were done as previously 

described Marks et al. (15). 

4.2.4 Analyses of gene expression data  

Feature intensities from Affymetrix S98 chips were pre-processed using the 

robust multi-array average procedure (17) to obtain probe-set-summarized, normalized 

gene expression data. Of the 9335 probesets, 6299 probesets were retained that map to 

verified, uncharacterized or dubious ORFs from the Saccharomyces Genome Database 

(SGD) (18). Differences in gene expression patterns between commercial wine yeast 

strains at the beginning of vinification are well characterized (12;13) and the first two 

time points were not included in the analysis. However, data obtained for these two time 

points were deposited in ArrayExpress (GSE8536). Therefore, for each of the 6299 

probesets, the primary data consist of three independent biological replicates at each of 
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five time points (the ethanol concentrations of 0.5 %, 2 %, 3.5 %, 7 %, and 10 % (v/v) 

were nominally coded as 24, 48, 60, 120, and 340 hours, respectively). For the purposes 

of temporal modeling, the predictor t was defined as the logarithm of the sampling time 

(in hours), centered around the associated log-time midpoint. The 15 expression 

measurements for any probeset g were summarized with this quadratic polynomial: 

Yg(t) = β0g + β1gt + β2gt
2
 + εg(t). 

The intercept β0g captures the overall expression level, whereas the more interesting pair 

of temporal parameters (β1g, β2g) provides a probeset-specific summary of the expression 

change observed during fermentation (see Figure 4.1); the linear term β1g reflects a 

general trend (e.g. up vs. down) and the quadratic term reflects overall shape (e.g. 

concave vs. convex). 

A statistical test for differential expression was conducted with the null 

hypothesis of (β1g, β2g) = (0,0). The p-values from this F-test were converted to q-values 

(19) and the estimated proportion of null genes was ~10%. We classified a probeset as 

differentially expressed if it had a q-value of 0.001 or less and a predicted fold-change of 

2 or more at at least one fermentation time point, based on the model. 

The temporal parameters (β1g, β2g) were used as the input features for supervised 

clustering (20), in order to identify groups of genes with similar temporal trends. The 

clusters were anchored by 20 genes, selected to span the observed (β1g, β2g) values. A 

probeset was assigned to cluster k if the squared Euclidean distance to cluster anchor k 

was smaller than that to any other anchor. All analysis was conducted within the R 

statistical software environment (21) and relied on the libraries affy (22;23) and qvalue 

(24). The analyzed data set is available online at http://www.cisreg.ca/shosui/FSR/. 
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4.2.5 Functional enrichment of genes in clusters 

Frequency of individual Gene Ontology (GO) annotation terms was used as a 

basis to assess biological significance of the gene expression data (25). Owing to the fact 

that the vast majority of GO terms are associated with very few genes (i.e. most terms are 

highly specific), a truncated version of the GO database was used. The truncated GO 

database consisted of 475 terms, selected for being associated with more than 10 genes. 

The level, or number of parents in the branching GO hierarchy, was also used as a tool in 

the analysis. The association between the clusters and GO terms was studied using 

contingency tables. The chi-square statistic (and its conventional p-value) was used to 

summarize evidence for enrichment or depletion of genes having a functional annotation 

within gene clusters. 

4.2.6 Identification of regulatory elements over-represented in gene clusters 

Promoter sequences corresponding to the 5' untranslated region 500 base pairs 

upstream of the initial ATG for each open reading frame (ORF) were downloaded from 

SGD. A collection of yeast-specific transcription factor binding site (TFBS) motifs was 

compiled from the Yeast Regulatory Sequence Analysis (YRSA) system (26) and from 

the literature (http://www.cisreg.ca/shosui/FSR/). Patterns matching the set of 44 TFBS 

weight matrix profiles in the collection were found using the TFBS suite of Perl 

regulatory analysis modules (27). The locations and scores for hits with matrix match 

scores exceeding 80% of the normalized score range were noted. For each of the clusters, 

and two “combined clusters” comprising clusters 1-6 and clusters 18-20, we calculated 

two statistical measures, a Z-score and Fisher exact probability to determine which, if any, 
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of the TFBSs were over-represented in the gene clusters relative to a background set 

comprised of all yeast promoter sequences (28).  

The Z-score measures how frequently a particular TFBS occurs in the promoters 

of co-expressed genes in a cluster and compares it to the frequency of occurrence in the 

background set, determining over-representation of the motif at the nucleotide level. 

Briefly, 
σ

µx
=z

0.5−−
, where x is the observed number of binding site nucleotides for a 

given TFBS in the co-expressed set, µ  is the expected number of binding site nucleotides 

based on the background sequences, and σ is the standard deviation. The score is based 

on the normal approximation to the binomial distribution. 

In contrast, the Fisher exact probability compares the proportion of genes in a 

cluster that contain a particular TFBS to the proportion of genes in the background that 

contain the TFBS, determining over-representation at the gene level. The Fisher's exact 

test computes the probability, given the observed marginal frequencies, of obtaining 

exactly the frequencies observed and any configuration more extreme (29). 

4.3 Results 

 

4.3.1 Clustering of genes based on temporal expression profiles 

To investigate how yeast adapts to the harsh conditions during the fermentation of 

grape must, genome-wide transcription was assayed at five time points during alcoholic 

fermentation. Correlation coefficients for the biological replicates at individual time 

points ranged from 0.9575 to 0.9950. The full data set is available at 

http://www.cisreg.ca/shosui/FSR.  
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For each gene, the temporal trend throughout the fermentation process was 

summarized with two parameter values that describe the overall change and shape of the 

expression profile. A seeded clustering algorithm was applied in order to group the genes 

around the expression patterns exhibited by 20 genes whose temporal trends span the 

range of patterns observed across the entire transcriptome (Figure 4.1). For each gene, a 

test was conducted for temporal trend, based on the null hypothesis that the true 

expression pattern is a flat line (i.e., no change at any time), and these gene-specific p-

values were converted to q-values to control the false discovery rate (19;30). 

Differentially expressed genes were identified as genes having a q-value less than 0.001 

and exhibiting a minimum of two-fold change in expression at one or more time points 

during fermentation. Therefore, the definition of differential expression requires a 

statistically significant temporal trend as well as an expression change that is large in 

absolute magnitude. There were 2550 genes that met these criteria, which corresponds to 

42% of the yeast genome (Table 4.1). Induction of 1123 genes was sustained until the 

end of fermentation (clusters 1-10), while 1279 genes were repressed (clusters 14-20). 

The expression of 148 genes was transiently induced and returned to steady state levels 

by the final time point (clusters 11 and 12) (Figure 4.1). The expression of 1876 genes 

was unaffected (cluster 13, Figure 4.1). 

4.3.2 The fermentation stress response  

Under enological conditions, the yeast cell is exposed to changing nutrient 

concentrations and diverse forms of stress. S. cerevisiae responds transcriptionally to 

stress by general and/or stimuli-specific response mechanisms. In contrast to the transient 

responses observed in laboratory studies (3;4), sustained global changes in transcript  
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Table 4.1 Summary of gene counts 
Statistically 

significant temporal 

trend 

(q-value ≤ 0.001) 

Minimum of two-fold 

change between any 

two time points  

(FC ≥ 2) 

Differentially 

expressed  

(q-value ≤ 0.001 and 

FC ≥ 2) 

 Cluster  Genes Count Proportion Count Proportion Count Proportion 

Sustained 

response 

(Minimum of 

two-fold change 

at final time 

point) 

Strength of long-

term response 

(Smallest final 

expression 

change for the 

cluster) 

Description of the 

Response 

1 5 5 1.00 5 1.00 5 1.00 5 22.73 Sustained induction 

2 8 8 1.00 8 1.00 8 1.00 8 13.62 Sustained induction 

3 11 11 1.00 11 1.00 11 1.00 11 20.03 Sustained induction 

4 63 63 1.00 63 1.00 63 1.00 63 4.83 Sustained induction 

5 37 37 1.00 37 1.00 37 1.00 37 4.03 Sustained induction 

6 100 100 1.00 100 1.00 100 1.00 100 4.38 Sustained induction 

7 356 337 0.95 350 0.98 331 0.93 350 1.87 Sustained induction 

8 345 307 0.89 250 0.72 239 0.69 191 1.11 Sustained induction 

9 336 239 0.71 190 0.57 162 0.48 114 1.37 Sustained induction 

10 182 178 0.98 182 1.00 178 0.98 132 1.43 Sustained induction 

11 50 48 0.96 50 1.00 48 0.96 3 1.01 Transient induction 

12 538 285 0.53 121 0.22 100 0.19 0 1.00 Transient induction 

13 1876 161 0.09 1 0.00 0 0.00 0 1.00 No change 

14 311 222 0.71 177 0.57 157 0.50 131 1.01 Sustained repression 

15 372 311 0.84 241 0.65 226 0.61 137 1.36 Sustained repression 

16 1123 760 0.68 473 0.42 450 0.40 473 1.33 Sustained repression 

17 62 61 0.98 62 1.00 61 0.98 60 1.97 Sustained repression 

18 368 366 0.99 368 1.00 366 0.99 368 3.45 Sustained repression 

19 7 7 1.00 7 1.00 7 1.00 7 4.61 Sustained repression 

20 41 41 1.00 41 1.00 41 1.00 41 8.66 Sustained repression 

Simple Total 6191 3547 0.57 2737 0.44 2590 0.42 2231   

Unique Total 6088 3493 0.57 2688 0.44 2549 0.42 2186   

 
Genes in the FSR are shaded in green. As some genes occur in multiple clusters, we provide the total number of unique genes in the data set in addition to 
a simple total of the counts in each cluster 
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Figure 4.1 Clustering of genes based on temporal expression profiles 
Clustering of genes based on temporal expression profiles. The centre graph shows the entire 
transcriptome plotted with the coefficients calculated from the expression model. The clusters are 
anchored by the genes numbered in black. The temporal expression of these genes is displayed in the 
20 line graphs on the periphery. The dotted lines indicate two-fold change in expression levels. The 
number of genes in each cluster is indicated in the cluster. 
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abundance were observed for the duration of the fermentation process (15 days) 

indicating an adaptive response to fermentation stress (Table 4.2). The differentially 

expressed genes in clusters 1-6, i.e. genes exhibiting sustained and dramatic induction 

that persists until the final time point (Table 4.2), are defined as fermentation stress 

response (FSR) genes. Genes that are down-regulated are excluded from the FSR as they 

are primarily involved in protein biosynthesis and ribosomal processing, functions known 

to be repressed under stress and in the stationary growth phase. A list of the 223 FSR 

genes is shown in Table 4.2. These genes show a four-fold or more change in expression 

at some point during fermentation. 

Within the 223 FSR genes, 20% overlap with the transient global stress responses 

characterized in the ESR or CER (Figure 4.2, Table 4.2). A further 18% overlap with 

genes that respond to stress related to osmotic pressure, nitrogen depletion, ethanol 

increase, and oxidative stress (Table 4.2). For comparison, more than half (55%) of the 

repressed genes in clusters 18-20 overlap with the ESR or CER (Appendix 3 Figure S1). 

 

Figure 4.2 Fermentation stress response 

Fermentation Stress Response. Venn diagram showing the number of genes associated with two well-
known transcriptionally characterized stress responses. ESR – Genes induced in the Environmental 
Stress Response (4); CER- Genes induced in the Common Environmental Response (5); FSR – 
Fermentation Stress Response genes. Refer also to Appendix 3 Figure S1. 
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Table 4.2 Fermentation Stress Response Genes  
The overlap with other stress responses is shown: (1) environmental stress response (ESR), (2) 
common environmental response (CER), (3) salt/sorbital-induced osmotic stress, (4) sugar-induced 
osmotic stress, (5) short-term ethanol stress, (6) genes involved in nitrogen limitation, and (7) genes 
involved in oxidative stress. Boldface indicates genes that have unknown biological process. An 
asterisk (*) adjacent to the GO term indicates that the gene product has more than one associated GO 
term, and only the term most commonly used for annotation is shown. Cl. refers to the cluster number. 
 

Other Response 

Cl. Gene 

Maximum 

Fold 

Change GO Biological Process 

ORF 

Status 1 2 3 4 5 6 7 

1 HSP30 80.11 response to stress V    x x   

1 GAC1 44.21 meiosis* V        

1 GAT1 29.10 transcription initiation from RNA polymerase II 
promoter* 

V    x  x  

1 CSR2 24.68 cell wall organization and biogenesis* V    x    

1 MCH5 22.73 riboflavin transport V        

2 CYB2 68.30 electron transport V   x x    

2 INO1 39.14 inositol metabolic process V        

2 PHM8 28.99 biological process unknown V x x x x    

2 PUT4 27.37 proline catabolic process* V   x x    

2 HSP26 24.45 response to stress* V x x x x x   

2 MEP2 24.36 pseudohyphal growth* V        

2 SPI1 23.51 biological process unknown V x x x x    

2 SHC1 20.00 sporulation (sensu Fungi)* V    x    

3 YMR244W 32.27 biological process unknown U        

3 IRC8 32.13 biological process unknown U        

3 YJL150W 31.22 biological process unknown D        

3 YOL047C 29.44 biological process unknown U        

3 MBR1 27.90 aerobic respiration V x       

3 YDL068W 26.56 biological process unknown D        

3 YOR318C 25.51 biological process unknown D        

3 SPS1 24.93 protein amino acid phosphorylation* V        

3 RDH54 23.27 meiotic recombination* V        

3 PES4 21.96 biological process unknown V        

3 APJ1 20.03 biological process unknown V    x x   

4 RPI1 19.20 thiamin biosynthetic process* V        

4 PUT1 19.06 glutamate biosynthetic process* V x       

4 RSB1 18.74 response to toxin* V    x    

4 HPA2 18.35 histone acetylation V    x    

4 MFA1 17.69 pheromone-dependent signal transduction during 
conjugation with cellular fusion 

V        

4 SUE1 17.68 protein catabolic process V x       

4 ATG1 17.61 autophagy* V x   x    

4 YFR017C 17.51 biological process unknown U  x x x    

4 VHS1 16.06 protein amino acid phosphorylation* V    x    

4 GAP1 15.99 amino acid transport* V        

4 PDR15 15.85 transport V  x      

4 YLR168C 15.83 biological process unknown U        

4 YBR284W 15.70 telomere maintenance U        

4 VHR1 14.77 regulation of transcription from RNA polymerase 
II promoter* 

U        
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Other Response 

Cl. Gene 

Maximum 

Fold 

Change GO Biological Process 

ORF 

Status 1 2 3 4 5 6 7 

4 AGX1 14.62 glycine biosynthetic process, by transamination of 
glyoxylate 

V  x  x    

4 GSC2 13.38 cell wall organization and biogenesis* V    x    

4 STR3 12.50 methionine biosynthetic process V        

4 RIM8 11.21 meiosis* V    x    

4 YBL065W 11.15 biological process unknown D    x    

4 ACS1 10.79 histone acetylation* V        

4 JID1 10.41 biological process unknown V        

4 YLL020C 10.18 biological process unknown D x       

4 HXT6 9.76 hexose transport V        

4 YKL071W 9.71 biological process unknown U    x    

4 DAL80 9.43 transcription* V      x  

4 PTR2 8.62 peptide transport* V        

4 TSL1 8.11 response to stress* V x x x x x   

4 PIN3 7.88 actin cytoskeleton organization and biogenesis V    x    

4 DOT6 7.81 regulation of transcription from RNA polymerase 
II promoter* 

V        

4 QNQ1 7.69 biological process unknown U x       

4 PDE1 7.65 cAMP-mediated signaling V x   x  x  

4 GSY2 7.58 glycogen biosynthetic process V x x x     

4 UPS1 7.57 mitochondrial protein processing V        

4 YBR085C-A 7.52 biological process unknown U        

4 YCR061W 7.50 regulation of cell size U x x x     

4 YER158C 7.43 biological process unknown U x       

4 RGT1 7.26 glucose metabolic process* V        

4 CRC1 7.16 fatty acid metabolic process V        

4 IRC9 7.11 biological process unknown D x       

4 DIA3 7.07 pseudohyphal growth* V        

4 GPX1 6.71 response to oxidative stress V x      x 

4 YNL194C 6.63 sporulation (sensu Fungi) V x  x x    

4 CTA1 6.48 OX and reactive OX species metabolic process* V    x   x 

4 MOD5 6.27 tRNA modification V        

4 ATG8 6.25 protein targeting to vacuole* V x x  x x   

4 HSP78 6.24 response to stress* V x x  x x   

4 VID24 6.22 vesicle-mediated transport* V        

4 TPO4 6.11 polyamine transport V  x      

4 YLL056C 5.97 response to toxin U        

4 SSD1 5.87 response to drug* V        

4 YIR016W 5.85 biological process unknown U   x     

4 AVT4 5.80 amino acid export from vacuole V        

4 MGA1 5.78 filamentous growth V    x    

4 SSE2 5.66 protein folding* V x x x x    

4 HXT7 5.55 hexose transport V        

4 YMR244C-

A 

5.54 biological process unknown U        

4 KRE1 5.51 cell wall organization and biogenesis V        

4 IRC15 5.42 biological process unknown U        

4 YOR1 5.16 telomere maintenance* V        

4 OPY2 5.11 cell cycle arrest in response to pheromone* V        
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Other Response 

Cl. Gene 

Maximum 

Fold 

Change GO Biological Process 

ORF 

Status 1 2 3 4 5 6 7 

4 YMR253C 5.10 biological process unknown U x       

4 MRP8 4.88 translation V x  x x    

4 VBA2 4.83 basic amino acid transport V        

5 MTR4 21.43 ribosome biogenesis and assembly* V        

5 DIP5 19.61 amino acid transport V        

5 PLB3 14.78 phosphatidylserine catabolic process* V        

5 YJL149W 14.43 biological process unknown U   x     

5 BTN2 12.82 retrograde transport, endosome to Golgi* V  x  x    

5 MUD1 12.72 nuclear mRNA splicing, via spliceosome V        

5 ADR1 12.61 transcription* V        

5 YDR042C 12.49 biological process unknown U        

5 ULP2 11.21 mitotic spindle checkpoint* V        

5 YBR099C 10.95 biological process unknown D        

5 YDL012C 10.54 biological process unknown U        

5 URN1 10.40 biological process unknown U        

5 PHO80 9.88 telomere maintenance* V        

5 HAP1 9.63 positive regulation of transcription from RNA 
polymerase II promoter* 

V        

5 SNG1 9.58 response to drug V        

5 SRT1 9.43 protein amino acid glycosylation V        

5 MKS1 9.30 regulation of nitrogen utilization* V        

5 SLD2 8.98 DNA strand elongation during DNA replication V        

5 HRP1 8.45 mRNA cleavage* V        

5 NRD1 8.36 transcription termination from Pol II promoter, 
RNA polymerase(A)-independent 

V        

5 CHS1 8.35 cytokinesis, completion of separation* V    x    

5 SIS1 7.59 protein folding* V        

5 ISA1 7.58 telomere maintenance* V        

5 AQR1 7.14 drug transport* V        

5 VID27 7.09 biological process unknown V        

5 RCL1 6.63 ribosome biogenesis and assembly* V        

5 ECM3 6.32 cell wall organization and biogenesis V        

5 YML089C 6.29 biological process unknown D        

5 MPC54 6.28 spore wall assembly (sensu Fungi) V        

5 YOR378W 5.79 biological process unknown U        

5 TOR2 5.78 ribosome biogenesis and assembly* V        

5 DST1 5.66 RNA elongation from RNA polymerase II 
promoter* 

V        

5 STE5 5.60 invasive growth (sensu Saccharomyces)* V        

5 YGL041C 5.25 biological process unknown D        

5 SRC1 5.08 mitotic sister chromatid segregation V        

5 SSY5 5.02 protein processing* V        

5 STU1 4.93 microtubule nucleation V        

6 TPO2 17.87 polyamine transport V        

6 MUP3 17.09 amino acid transport V  x      

6 NRG1 16.02 regulation of transcription from RNA polymerase 
II promoter* 

V        

6 ARG82 14.69 response to drug* V        
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Other Response 

Cl. Gene 

Maximum 

Fold 

Change GO Biological Process 

ORF 

Status 1 2 3 4 5 6 7 

6 RTS3 14.44 protein amino acid dephosphorylation U    x    

6 HRK1 14.38 cell ion homeostasis V        

6 IRC20 12.40 biological process unknown U    x    

6 GIP2 11.83 protein amino acid dephosphorylation* V   x  x   

6 YKL070W 11.82 response to toxin U        

6 GAT2 11.58 transcription V x       

6 SAP155 11.45 G1/S transition of mitotic cell cycle V        

6 PMC1 11.16 calcium ion homeostasis* V x x      

6 XBP1 10.83 response to stress V x x  x    

6 MEP1 10.78 nitrogen utilization* V        

6 YIL066W-A 10.30 biological process unknown D        

6 PKH2 10.15 protein amino acid phosphorylation* V        

6 YMR102C 9.70 biological process unknown U        

6 YDL010W 9.37 biological process unknown U        

6 SWI1 9.31 regulation of transcription from RNA polymerase 
II promoter* 

V        

6 GIS1 9.12 spore wall assembly (sensu Fungi)* V x       

6 YGR146C 9.09 biological process unknown U   x x    

6 YJL144W 8.99 response to desiccation U x   x    

6 RPN4 8.77 telomere maintenance* V   x  x   

6 YIL152W 8.51 biological process unknown U        

6 TPO1 8.35 polyamine transport V        

6 YLR194C 8.28 chitin- and beta-glucan-containing cell wall 
organization and biogenesis 

U    x    

6 FRT1 8.25 response to stress U        

6 KNS1 8.25 protein amino acid phosphorylation V x x      

6 YDR186C 7.77 biological process unknown U        

6 AHC1 7.72 histone acetylation V   x     

6 SKN7 7.62 response to oxidative stress* V       x 

6 MET4 7.62 positive regulation of transcription from RNA 
polymerase II promoter* 

V        

6 PDR5 7.58 response to drug* V        

6 YPL230W 7.51 biological process unknown U x       

6 YLL020C 7.41 biological process unknown D x       

6 TOS3 7.39 protein amino acid phosphorylation* V    x    

6 ZEO1 7.32 telomere maintenance* V        

6 MUB1 7.23 regulation of cell budding V        

6 RIM15 6.99 protein amino acid phosphorylation* V      x x 

6 ROG3 6.91 biological process unknown U        

6 HAC1 6.88 regulation of transcription from RNA polymerase 
II promoter* 

V        

6 KTR2 6.87 protein amino acid N-linked glycosylation* V    x    

6 FLO10 6.82 flocculation via cell wall protein-carbohydrate 
interaction 

V        

6 OPI9 6.67 biological process unknown D        

6 SKS1 6.58 protein amino acid phosphorylation* V        

6 YPL136W 6.53 biological process unknown D        

6 TPO3 6.52 polyamine transport V        

6 SUR1 6.39 sphingolipid biosynthetic process* V        
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Other Response 

Cl. Gene 

Maximum 

Fold 

Change GO Biological Process 

ORF 

Status 1 2 3 4 5 6 7 

6 ISF1 6.36 aerobic respiration V x   x    

6 MPH1 6.19 DNA repair V        

6 YOL036W 6.10 biological process unknown U        

6 YNL144C 6.07 biological process unknown U        

6 NAB6 6.04 RNA metabolic process U        

6 AFG3 6.01 translation* V        

6 PGA1 6.00 secretory pathway U        

6 YOR390W 5.99 biological process unknown U        

6 SPG1 5.97 biological process unknown U    x    

6 MCH1 5.91 transport V  x      

6 YML116W-

A 

5.91 biological process unknown D        

6 SSL2 5.86 transcription from RNA polymerase II promoter* V        

6 FSP2 5.85 biological process unknown V        

6 EDC2 5.83 deadenylation-dependent decapping V x x x     

6 OSW2 5.75 spore wall assembly (sensu Fungi) U    x    

6 PSR2 5.74 response to stress V        

6 PSK1 5.66 protein amino acid phosphorylation* V        

6 YAK1 5.51 protein amino acid phosphorylation V x  x x  x  

6 OAF1 5.49 peroxisome organization and biogenesis* V        

6 PDR1 5.47 response to drug* V    x    

6 GPI18 5.38 GPI anchor biosynthetic process U        

6 SNQ2 5.37 response to drug* V       x 

6 IXR1 5.34 DNA repair V        

6 MDN1 5.27 rRNA processing* V        

6 YLR297W 5.26 biological process unknown U        

6 PAU21 5.17 biological process unknown U        

6 YER093C-A 5.17 biological process unknown U        

6 RAD54 5.17 chromatin remodeling* V        

6 RAD7 5.16 nucleotide-excision repair, DNA damage 
recognition 

U        

6 UBC8 5.01 protein monoubiquitination* V x x  x x   

6 VPS72 5.01 protein targeting to vacuole* V        

6 MGR1 5.00 mitochondrial genome maintenance U    x    

6 YOR152C 5.00 biological process unknown U x       

6 TSC11 4.99 cell wall organization and biogenesis* V        

6 ISU1 4.97 iron ion homeostasis* V        

6 YMR252C 4.96 biological process unknown U        

6 BUL1 4.96 mitochondrion inheritance* V      x  

6 RPO21 4.81 transcription from RNA polymerase II promoter V        

6 SPG5 4.80 biological process unknown U   x x    

6 KSP1 4.78 protein amino acid phosphorylation V        

6 INP1 4.77 peroxisome inheritance U        

6 LEE1 4.75 biological process unknown V x       

6 PEP12 4.75 Golgi to vacuole transport V  x  x    

6 YPS3 4.75 chitin- and beta-glucan-containing cell wall 
organization and biogenesis* 

V     x   

6 YMR085W 4.62 biological process unknown U        

6 YML081W 4.59 biological process unknown U        
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Other Response 

Cl. Gene 

Maximum 

Fold 

Change GO Biological Process 

ORF 

Status 1 2 3 4 5 6 7 

6 PTK1 4.56 polyamine transport V        

6 YIL067C 4.55 biological process unknown U        

6 YMR291W 4.53 biological process unknown U x x x     

6 ASG1 4.43 biological process unknown U        

6 ATO3 4.41 nitrogen utilization* V        

6 SRX1 4.41 response to oxidative stress V    x   x 

 

 

Of the FSR genes, 28% lack a GO biological process annotation – they are 

uncharacterized. Of those that are characterized, more than half are associated with 

cellular and metabolic processes that facilitate the adaptation of the yeast to the 

continuously changing nutrient environment and the consequences thereof. Specifically, 

examination of the GO biological processes for these genes reveals that prevalent 

functional associations include transport (18%), organelle organization and biogenesis 

(15%), protein modification processes (13%), RNA metabolic processes (12%), response 

to stress (11%), and transcription (11%) (Figure 4.3).  

4.3.3 Over-representation of functional annotations 

Genes in the 20 clusters were tested for biased association with a subset of GO 

biological process terms and for predicted transcription factor binding sites within 

promoter regions. The fifty GO terms with the most biased over-representation in one or 

more clusters were identified, and the enrichment or depletion of genes belonging to 

these particular GO terms was plotted in Figure 4.4. We observe enrichment of terms 

associated with cellular respiration amongst genes displaying transient induction trends in 

clusters 10 and 11. Consistent with changes in cell growth and metabolism, protein  
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metabolism and ribosomal biogenesis are enriched in genes displaying prolonged and 

dramatic repression. Among the FSR genes, nitrogen utilization is prevalent.  
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Figure 4.3 Functional annotations of genes in the FSR using biological process GO Slim Terms from 
SGD 
Functional annotations of genes in the FSR using biological process GO Slim Terms from SGD. The 
distribution of terms for the rest of the yeast genome is shown for comparison.  
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Figure 4.4 Heat map of the association of GO terms to clusters 

White represents depletion and enrichment increases with darker squares (based on the chi-square 
statistic). 
 

4.3.4 Statistical enrichment of predicted transcription factor binding sites 

Statistically enriched transcription factor binding sites (TFBSs) were ranked using 

Z-scores; the enrichment was then further evaluated with Fisher exact probabilities to 

determine enrichment of the sites at the gene level (28). Table 4.3 shows the ten highest 

ranking predicted binding sites among promoters of the FSR genes. A full listing of 

scores for each of the 20 clusters is available in Appendix 3 Table S2. Binding sites for 

Mig1p and Adr1p, as well as the carbon source responsive element (CSRE) bound by 

Cat8p are over-represented in the FSR genes (Table 4.3). 
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Table 4.3 Highest ranked transcription factor binding site motifs for FSR genes 

Rank 
TFBS 

Motif 
Functional Annotation Z-score 

Fisher 

Score 

Genes 

Containing 

Site 

Logo 

1 ADR1P 
Carbohydrate metabolism, 

glucose repression 
19.33 8.21E-02 166 

 

2 PDR3 * 
Chemical agent resistance; 

detoxification 
18.35 7.26E-04 65 

 

3 STRE * Stress response element 17.82 7.57E-04 48 

 

4 CSRE * 
Carbon source responsive 
element; gluconeogenesis 

14.81 1.40E-03 136 

 

5 UASPHR 
DNA repair; DNA damage 

response 13.78 4.60E-02 189 

 

6 LEU3 * Amino acid biosynthesis 11.74 9.74E-04 47 

 

7 MIG1c * 
Carbohydrate metabolism; 

glucose repression 
11.70 4.37E-03 132 

 

8 MIG1b 
Carbohydrate metabolism; 

glucose repression 
10.53 6.29E-02 73 

9 UME6 * 

Amino acid metabolism; 
nitrogen metabolism, 
mitotic cycle and cell 

cycle control 

10.20 8.75E-03 114 

10 CAR1_r Nitrogen metabolism 8.38 1.23E-01 114 

 
 
* TF motifs with Z-score > 10 and Fisher scores < 0.01. This combination of empirically-derived 
thresholds has been used to discriminate relevant binding sites in reference sets of genes while 
reducing the false positive rate to less than 10% in simulations using random promoter sequences (29). 
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4.3.5 Entry into stationary growth 

To test the hypothesis that nitrogen limitation is responsible for yeast cells 

entering into stationary phase during fermentation, fermentations that contained 

increasing concentrations of di-ammonium phosphate (DAP) were conducted. Yeast 

growth, nitrogen utilization, and ethanol production were monitored. Surprisingly, yeast 

cells entered into stationary phase at the same time point in all the fermentations, 

independent of nitrogen or carbon depletion (Figure 4.5). However, the common factor in 

all instances was an ethanol concentration of ~2.0 % (v/v). No further growth occurred 

after 50 hours when the ethanol concentration reached ~ 5.0% (v/v), despite the fact that 

nitrogen was in excess. After 32 hours, the ammonium concentration in the control grape 

must, and must supplemented with 300, 600 or 900 mg/L DAP, was 0, 63, 262 and 480 

mg/L, respectively. The free alpha amino nitrogen content was 13, 23, 39 and 59 mg/L, 

respectively. This experiment was repeated in yeast nitrogen base (Difco) containing 

21.4% sugars (equimolar amounts of glucose and fructose); nitrogen was adjusted with 

DAP to 191, 300, 600, or 900 mg/L. Yeast cells entered stationary phase after 48 hours 

when the ethanol concentration reached ~2% (v/v) (data not shown). 

4.4 Discussion 

Numerous studies have investigated the response of yeast to stress, mostly under 

laboratory growth conditions. In contrast, long-term alcoholic fermentation represents a 

more complex set of conditions, which accounts for the distinctive response observed in 

the FSR. Analysis of the genes that respond during alcoholic fermentation reveals the 

activation of several overlapping responses, such as osmotic stress, glucose repression, 

hypoxia/anoxia, nutrient depletion, and increasing ethanol concentrations. 
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Figure 4.5 Growth of Vin14 in Riesling grape juice containing either 191 mg/L N, 300 mg/L N, 600 
mg/L N or 900 mg/L N 

Nitrogen content of Riesling grape juice containing 191 mg/L N was adjusted to either 300 mg/L N, 
600 mg/L N, or 900 mg/L N using di-ammoniumphosphate . ADY of Vin13 was inoculated to 3 x 106 
cells/mL in 250 mL Kimax bottles fitted with vapour locks containing 200 mL Riesling grape juice. 
Ethanol concentrations (% v/v) are indicated on the graph.  
 
 
 

4.4.1 Fermentation of grape must induces a novel and adaptive response 

The stress response of a single industrial wine yeast strain, Vin13, in fermenting 

Riesling grape must was examined; 40% of the yeast genome significantly changed 

expression levels to mediate long-term adaptation to fermenting grape must. Among the 

genes that changed expression levels, 223 FSR genes were identified that are 

permanently induced at various points during fermentation. Approximately 62% of the 

FSR form a unique subset of genes that have not previously been implicated in the ESR, 

CER or selected short-term studies of osmotic pressure, ethanol stress, oxidative stress or 

nitrogen depletion (Table 4.2). Of the FSR genes, 28% lack a GO biological process 

annotation. Those that are characterized appear to play roles in transport, organelle 
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organization and biogenesis, RNA metabolism, transcription, and response to stress 

(Figure 4.3). The large set of transport-related proteins are primarily involved in glucose 

uptake, nitrogen regulation, vacuolar function (important for growth under ethanol stress 

(31)) and detoxification, reflecting the integrated response to nutrients in the environment, 

multiple stresses, and toxins produced during vinification.  

It must be noted that the composition of grape musts can vary significantly with 

respect to the sugar concentration, and lipid, nitrogen and vitamin compositions and 

concentrations. The transcriptional response of other industrial wine yeast strains in 

different grape musts should therefore be investigated to determine whether any 

additional FSR genes exist.  

4.4.2 Attenuated glucose repression  

S. cerevisiae can grow oxidatively on many non-fermentative carbon sources such 

as pyruvate, lactate, acetate, and ethanol. These compounds are oxidized in the citric acid 

cycle and ATP is generated by reoxidation of reduced co-enzymes in the mitochondrial 

electron transport system by oxidative phosphorylation. Several genes needed for 

oxidative energy metabolism, mitochondrial function and the catabolism of non-

fermentable carbon sources are repressed by high concentrations of glucose (32;33). 

At the onset of fermentation, the sugar concentration in the grape must was 

21.4 % (w/v) (equimolar amounts of glucose and fructose). These data show an increase 

in expression of multiple glucose repressed genes, indicating a partial attenuation of 

classic glucose repression during fermentation. Young et al. identified 40 of the most 

highly glucose repressed genes based on expression ratios from derepressed versus 

repressed growth conditions (34). Twenty-two of these genes are up-regulated during 
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fermentation (Appendix 3 Table S3). Furthermore, genes involved in mitochondrial 

respiration/oxidative phosphorylation (Appendix 3 Table S4), hypoxic genes involved in 

heme, sterol and unsaturated fatty acid biosynthesis (Appendix 3 Table S5), and genes 

associated with oxidative stress (Appendix 3 Table S6) were all induced during 

fermentation while the glucose concentration in the media should still be repressive. 

Several genes annotated to “carbohydrate metabolism” in clusters 9 and 10 (Appendix 3 

Table S7) are reported to be glucose repressed (5;35;36); many of these genes are 

involved in glycolysis and gluconeogenesis. The induction of numerous glucose-

repressed and oxygen-regulated genes indicates that cellular respiration may not be fully 

repressed during fermentation.  

The regulators Mig1p, Adr1p and Cat8p play pivotal roles in the transcription of 

glucose repressed genes. Mig1p binds to promoter sequences and represses the 

expression of many genes in yeast cells growing in high concentrations of glucose. 

Conversely, Cat8p and Adr1p encode carbon source-responsive transcription factors 

shown to activate the expression of genes for metabolism of non-fermentative carbon 

sources when glucose is depleted (5). Statistically enriched TFBSs in the promoters of 

FSR genes were ranked using Z-scores; the enrichment was then further evaluated with 

Fisher exact probabilities to determine enrichment of the sites at the gene level. Binding 

sites for Mig1p and Adr1p, as well as the carbon source responsive element (CSRE) 

bound by Cat8p ranked among the ten most abundant TFBS motifs in the FSR genes 

(Table 4.3), lending further support to the hypothesis that glucose repression is not fully 

functional over the course of fermentation.  
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The HXK2 gene is highly expressed during growth on glucose (37). Hxk2p is 

involved in both hexose phosphorylation and the regulation of glucose repression (38;39). 

Hxk2p interacts with Mig1p to form a complex located in the nucleus that mediates 

glucose repression (40). Deletion of HXK2 leads to expression of a number of genes 

normally subject to carbon catabolite repression (41). Our data showed that HXK2 

expression was down-regulated 18-fold during fermentation. The significant down-

regulation of HXK2 expression during fermentation of grape must, may, therefore, 

contribute to the expression of genes that are normally repressed by glucose.  

4.4.3 Proposed models for alleviation of glucose repression 

A number of explanations are proposed for the observed attenuation of glucose 

repression. Firstly, there could be genetic differences between the industrial yeast strain 

used (Vin13) and laboratory strains, resulting in an altered response to glucose. There is 

no evidence to suggest this is the case as Vin13 has been shown to respond comparably to 

laboratory strains to osmotic stress and nitrogen catabolite repression (15;16). Secondly, 

stress, particularly increasing ethanol concentration, could disrupt the structure of 

membranes affecting membrane-bound glucose sensors and/or alter protein structure of 

other proteins involved in the signaling. Thirdly, the increase in expression of glucose 

repressed genes might be due to the activation of the retrograde response pathway. 

Because active dry yeast is prepared in a highly aerobic environment, the yeast cells 

contain large numbers of respiratory-efficient mitochondria at inoculation. Prolonged 

fermentative metabolism and aging of the cells would cause mitochondrial dysfunction, 

potentially inducing the retrograde response. This is unlikely as no peroxisomal PEX 

genes were induced. Fourthly, a yet unidentified ethanol-sensing mechanism that 
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functions in the presence of excess glucose might exist. Finally, HXK2 is significantly 

dwn-regulated (18-fold), and may contribute to relieving glucose repression during wine 

fermentations (38-41). The down-regulation of HXK2 may also be partially responsible 

for stuck alcoholic wine fermentations. 

The most noticeable change during wine fermentation is the decrease in 

fermentable sugars and the accompanied rapid increase in ethanol concentration. 

Ethanol’s dual role as a stressor to the cell and potential carbon source during respiration 

which may follow fermentation, along with the results, suggests that the yeast cell has 

adapted a unique mechanism to respond to the presence of ethanol independent of the 

glucose concentration. The response of yeast to ethanol is not detected in classic 

laboratory studies because low concentrations of glucose (2% w/v) will yield low 

concentrations of ethanol < 1% (v/v). To further complicate matters, oxygen is limiting 

during grape must fermentations, thereby preventing the effective utilization of ethanol as 

a carbon source. Furthermore, down-regulation of HXK2 expression is not observed 

during short-term laboratory fermentations. It is likely that glucose repression is 

alleviated in response to both ethanol and oxygen in the environment, and limited or no 

Hxk2p. 

4.4.4 Ethanol as a regulator of fermentation 

The main product of fermentation is ethanol, and wines contain as much as 16% 

(v/v) of this compound. Ethanol inhibits yeast growth and viability as it negatively affects 

membrane integrity as well as intracellular and membrane-related processes (42-46). 

Ethanol, at concentrations affecting growth and fermentation rates (3-10% (v/v)), causes 

potent activation of the plasma membrane H+-ATPase – a probable mechanism to 
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regulate the yeast cell’s internal pH (47). Although ethanol is the main stress factor 

during fermentation, relatively little is known of its effect on the transcriptome and 

proteome of yeast.  

The short-term response of a laboratory strain of S. cerevisiae to a 7% (v/v) 

ethanol spike during early exponential phase was investigated by global expression 

analysis (42). The yeast responded by increasing expression of genes involved in energy 

metabolism, stress response, protein trafficking, and ionic homeostasis. Comparison with 

the Alexandre data set reveals that 41 ethanol stress genes were induced during 

fermentation; included within the overlapping genes are the heat shock genes HSP104¸ 

HSP26, HSP30, HSP42, HSP78¸ SSA1, SSA4 and SSE1, and the ethanol stress gene 

GRE3. Other ethanol stress genes that were not activated in the general response in our 

study included HSP12, GPD1, ALD2, HSP82, HOR2 and DAK1. Ten short term ethanol 

stress genes are present in FSR, comprising 5% of the FSR (Table 4.2). 

A genome-wide screen of the yeast deletion collection for ethanol-sensitive 

mutants on complex medium supplemented with 2% glucose and 6% ethanol identified 

46 mutants with impaired growth (31). Genes that were required for growth included 

those involved in the general stress pathway, cell integrity pathway, vacuolar function 

and mitochondrial function. Two of these (BEM2, SIT4) exhibited slow growth when 

further tested in fermentations supplemented with 20% glucose. None of the identified 

genes are part of the FSR; eight were induced in clusters 7-12 and ten were repressed in 

clusters 15-20. However, other genes with similar functional profiles are present in the 

FSR, such as genes involved in vacuolar transport and mitochondrial function (Table 4.2), 

suggesting the activation of these pathways to regulate the response to ethanol. 
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4.4.5 Osmotic stress 

The high sugar concentration (21.4 % w/v) in the Riesling grape must is a source 

of osmotic stress to the yeast cell. This stress is partially relieved during fermentation due 

to the conversion of sugar to ethanol and CO2, as evidenced by an increase in water 

activity from an initial value of 0.965 to 0.987 at the last sampling point when ethanol is 

approximately 10% (v/v). The osmo-regulatory response of S. cerevisiae results in the 

enhanced production and intracellular accumulation of glycerol as the main compatible 

solute to counter-balance osmotic pressure (48). This is mediated by the High Osmolarity 

Glycerol (HOG) pathway (49). Genes induced by high salt or high sorbitol were 

compared to the genes in this data set; a total of 104 of 186 genes induced by high 

salt/sorbitol (50) were induced during the course of fermentation; 22 of these genes were 

present in the FSR (Table 4.2).  

Analysis of gene expression patterns in a wine yeast strain subjected to 40 % 

(w/v) sugar stress identified 589 genes with altered expression patterns (16). It was found 

that 232 of the sugar-induced stress genes are also induced during fermentation; 50 of 

these are in the FSR (Table 4.2). Osmotic stress-responding genes, based on the union of 

the Rep et al. (50) and Erasmus et al. (16) data sets, comprise 27% of the FSR, indicating 

that osmotic stress plays a role in the FSR.  

4.4.6 Nature of the signal for entry into stationary growth 

Entry into stationary phase is common to adverse conditions and is reflected by 

the dramatic reduction of ribosome biogenesis (51-55). Consistently, the majority of 

repressed genes are preferentially annotated to ribosome biogenesis and assembly (Figure 

4.3). Analysis of TFBS motifs in repressed genes shows enrichment of the RRPE 
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(ribosomal RNA processing element), PAC (Polymerase A and C) and RAP1 (repressor 

activating protein 1) motifs (Appendix 3 Table S2). These motifs are conserved within 

the promoters of many genes implicated in cell growth and ribosome synthesis (56-60). 

Under laboratory conditions (i.e. low concentrations of fermentable carbon 

sources such as glucose that is present at 2% in standard media), yeast cells enter diauxic 

growth when glucose is depleted and subsequently enter into stationary phase when 

ethanol is depleted (6;61). Carbon sources never become depleted during vinification, 

and carbon depletion, therefore, cannot be responsible for entry of yeast cells into 

stationary phase during fermentation. Nitrogen sources, however, can become limiting 

during fermentation and is the main cause of problematic fermentations.  

The data shows that yeast cells in fermenting grape musts enter stationary phase 

as early as 32 hours after inoculation when glucose is in excess and the ethanol 

concentration is ~ 2.0 % v/v (Figure 4.5). This is consistent with reports by Rossignol et 

al. (14). In fermentations containing different concentrations of nitrogen, the yeast cells 

entered into stationary phase at the same time point, i.e. when the ethanol concentration 

was ~2.0 % (v/v), independent of nitrogen or carbon depletion (Figure 4.5). Despite 

excess nitrogen, no further growth was observed after 50 hours when the ethanol 

concentration reached ~ 5.0% (v/v). Similar results were obtained in Yeast Nitrogen Base 

(Difco) containing 21.4% sugars (equimolar amounts of glucose and fructose). Ethanol 

produced during fermentation thus seems to be the trigger for entry into stationary phase.  

4.5 Conclusions  

Wine fermentations subject yeast to a barrage of stressors, including osmotic 

pressure, hypoxia, nitrogen depletion, and increasing ethanol concentrations. Global 
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genomic expression patterns over the duration of fermentation revealed an integrated 

compendium of stress responses as well as a novel long-term adaptive response, which 

we refer to as a FSR. Approximately 28% of FSR genes have not yet been characterized. 

FSR genes exhibit sustained and dramatic induction under fermentation conditions and 

further studies will be required to elucidate their roles during wine making conditions that 

differ considerably from standard laboratory conditions. These results suggest that 

ethanol acts as a signal that activates a hitherto unidentified ethanol signal transduction 

pathway regulating genes in the FSR. The identification and characterization of 

regulatory circuits that govern the FSR will provide insight into the remarkable ability of 

S. cerevisiae to flourish and ferment grape must and then survive the hostile environment 

of wine for months. A concerted study of yeast during wine fermentation will also lead to 

annotation of many of the orphan genes in the FSR. We cannot, however, exclude the 

possibility that fermentation of different grape musts that vary in composition might 

reveal more FSR genes. Finally, our results indicate that contrary to previous reports, 

growth arrest of yeast cells was not due to depletion of carbon or nitrogen in fermenting 

grape must; ethanol seems to be the trigger for entry into stationary phase. This data 

suggests that studies restricted to standard laboratory conditions are inadequate to 

understand the regulation of yeast metabolism in industrial fermentations, and the 

regulatory role of ethanol during wine fermentation should be explored.  
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Chapter 5: Ranking Candidate Genes for Promoter Construct Design 
5
 

5.1 Introduction 

Gene therapy is an experimental technique that uses genes to treat or prevent 

disease. Strategies include replacing a nonfunctional gene that causes disease with a 

functioning copy of the gene, inactivating or repairing a mutated gene that is functioning 

incorrectly, or introducing a new gene into the body to help fight a disease. Gene therapy 

holds promise for many diseases, with the majority of clinical trials to date focused on 

cancer, inherited monogenic diseases and cardiovascular disease (1). Despite preclinical 

success, clinical trials have highlighted significant challenges, such as problems 

integrating therapeutic DNA into the genome and the risk of an immune response. 

Another major challenge is to deliver and express genes in the appropriate cells without 

harming non-target cells (2). One approach, called “transcriptional targeting”, uses 

promoters that drive expression of the gene in a tissue- or tumour-specific manner, and 

has potential to improve the safety and efficacy of gene therapy (3). Transcriptional 

targeting requires (i) the identification of genes selectively expressed in the cell type of 

interest, and (ii) the identification of DNA regulatory sequences that direct the expression 

of those genes. The former is readily addressed using results from gene expression 

profiling studies. However, isolating tissue-specific regulatory sequences to construct a 

targeted promoter is more difficult.  

Comparative sequence analysis can delineate potential regulatory regions from 

alignments of orthologous sequences from organisms separated by varying evolutionary 

                                                 
5 A version of this chapter will be submitted for publication. Ho Sui, S.J., Portales-Casamar, E. and 
Wasserman W.W. Ranking Candidate Genes for Promoter Construct Design. 
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distances. Termed “phylogenetic footprinting,” the expectation is that orthologous 

sequences that serve a function common to the species being considered will have 

accumulated fewer changes relative to neutral DNA, and can therefore be detected as 

conserved regions in alignments. Sequence comparisons of individual genes and long 

genomic regions have confirmed that conserved noncoding sequences between related 

species do, indeed, harbour regulatory elements (4-7). Some regulatory regions have been 

conserved through long periods of evolution, as is the case for enhancers regulating key 

developmental processes in vertebrates (7-10). 

Many algorithms exist to detect conservation within pairwise alignments of 

sequences (11-14), as well as across alignments of sequences from multiple species (15-

19). Conservation within pairwise alignments is determined using defined sequence 

identity thresholds, while algorithms that identify multi-species conserved sequences 

consider both evolutionary distance and phylogenetic relationships (15;16). PhastCons, 

one commonly used approach for detecting multi-species sequence conservation, uses a 

phylogenetic hidden Markov model to estimate a likelihood that a particular sequence is 

among the most highly conserved in a genome, allowing for mutation rate variation in 

different lineages (15). Features other than degree of constraint can discriminate 

regulatory regions from neutral DNA – regulatory potential (RP) scores measure the 

similarity of patterns in an alignment to those in experimentally defined regulatory 

regions (20;21). Both PhastCons and RP have been successful at identifying cis-

regulatory elements in human promoters (6;22). Additionally, regulatory potential 

searches for regions of human-rodent alignments that show patterns characteristic of 

experimentally verified regulatory regions. 
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Based on whole-genome comparisons of multiple vertebrate species, numerous 

regulatory elements have been predicted to exist in the human genome (23;24). 

Conservation of noncoding sequence, however, is insufficient to prove regulatory 

function. Instead, the functional characterization of a sequence as an enhancer or 

repressor element requires a reporter gene assay or similar laboratory study. Constructing 

a reporter system involves placing the putative regulatory sequence upstream of a 

reporter gene, such as green fluorescent protein (GFP), luciferase or lacZ, which mediates 

a measurable change in expression due to the action of the sequence. The most 

convincing evidence for enhancer activity is derived from in vivo reporter assays that 

make use of transgenic animals (8;25). As these experiments are costly, slow and 

laborious, most confirmatory studies to date have been performed in cell culture. 

Several groups have now begun the important task of characterizing potential 

regulatory sequences on a larger scale. Woolfe et al. used a rapid in vivo assay system in 

zebrafish embryos to confirm tissue-specific enhancer activity for 23 of 25 noncoding 

regions highly conserved between human and the pufferfish, Fugu rubripes (10). 

Pennacchio et al. characterized the in vivo enhancer activity of 167 extremely conserved 

sequences using transgenic mouse enhancer assays, and reported that 45% functioned 

reproducibly as tissue-specific enhancers during embryonic development (8). High-

throughput luciferase-based transient transfection assays in human cultured cell lines 

validated 25% of 163 regulatory region predictions based on ChIP-on-chip (chromatin 

immunoprecipitation combined with genomic microarrays) data (26), as well as 91% of 

152 predicted promoters located directly upstream of full-length cDNA transcripts (27). 

Based on the work of Bronson et al. (28), Farhadi et al. used single-copy reporter 
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constructs in transgenic mice to evaluate the regulatory significance of conserved 

noncoding MBP sequences (29). The Pleiades Promoter Project (www.pleiades.org) is 

using a similar approach to generate and test conserved noncoding regions from human 

and mouse orthologs for their ability to drive tissue-specific expression in transgenic 

mice.  

Starting from a list of 2780 genes identified as being selectively expressed in 

brain (De Souza et al, manuscript in preparation), the end goal of the Pleiades Promoter 

Project is to generate 220 fully characterized, human DNA MiniPromoters (less than 4 

kb) to drive gene expression in defined brain regions of therapeutic interest for diseases 

such as Alzheimers and Parkinsons (30). The gene selection for MiniPromoter design is 

performed on a gene-by-gene basis. After evaluating the literature reporting known 

regulatory sequences for the gene of interest, curators examine the gene in a genome 

browser, such as the UCSC Genome Browser (31), seeking features that aid the design of 

a promoter construct. These include a well-defined transcription start site (TSS), defined 

boundaries for the promoter region (determined by examining the location of upstream, 

downstream and overlapping genes, as well as the length of the gene), and the presence 

of highly conserved noncoding sequences within the defined region that can be 

incorporated in the promoter-reporter construct. Genes that contain a small number of 

easily distinguished, highly conserved noncoding regions proximal to their TSSs are 

favourable candidates for MiniPromoter design, compared to genes that have evolved 

slowly or genes for which the noncoding sequence has diverged beyond our ability to 

detect conservation. Slowly evolving genes contain many blocks of conserved noncoding 

sequences that span the entire promoter, requiring a prohibitively larger number of 
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experiments to decipher their regulation, while phylogenetic footprinting of highly 

diverged genes provides little insight into where regulatory regions may reside. Manual 

curation of each gene candidate for promoter construct design is slow and tedious, and 

therefore, a method to rapidly rank genes would be of utility. Here we describe the 

development of a "regulatory resolution score" to prioritize candidate genes and guide 

promoter construct design based on conservation profiles. The score is intended to reflect 

human perception of what constitutes a good candidate gene for further study of 

regulatory function in the laboratory. 

5.2 Methods 

5.2.1 Identification of the boundaries for analysis 

For each gene in the Ensembl human genome database (version 46) (32), we 

define the transcription start site (TSS) as the start position of the 5’-most exon annotated 

for the gene. We then determine the boundaries of the region to be analyzed relative to 

the TSS as follows. In most cases, the upstream boundary is defined as the start/end 

position of the upstream gene (depending on the upstream gene’s orientation). If the 

upstream gene is very close, i.e. less than 1 kb from the start site of the gene of interest, 

we extend the analysis to introns of the upstream gene located within 10 kb of the TSS. In 

most cases, the downstream boundary is the end of the gene of interest. However, if the 

gene is long, intronic regions within 30 kb downstream of the TSS are used. If the gene is 

short, we extend the analysis to the downstream boundary to 2 kb from the TSS of the 

gene of interest. 
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5.2.2 Nonexonic conserved regions 

PhastCons scores and PhastCons conserved elements computed from comparisons 

of 17-way vertebrate multi-species alignments (15) were downloaded from the UCSC 

Genome Browser database (31). Only PhastCons conserved elements that are both 20 bp 

or longer and non-overlapping with annotated human mRNAs or Ensembl human gene 

annotations, are retained for analysis. PhastCons conserved elements residing within 100 

bp from one another are chained together (excluding the intervening regions), and 

considered part of a single longer conserved region. 

5.2.3 Score definition 

Genes containing only a few well-defined regions predicted by conservation 

analysis to function as regulatory inputs make the easiest targets for promoter construct 

design. To facilitate rapid ranking of genes for promoter construct design based on their 

conservation profiles, we define a raw regulatory resolution score as:  

 















 −

=
∑

210

)(
log

n

bcl

scoreraw n  

 
where l is the length of the conserved region, c is the “conservation level” of the 

conserved region (i.e. the mean phastCons score for the conserved region), b is the 

baseline conservation level (i.e. the mean phastCons score for the entire region analyzed) 

and n is the number of conserved regions. Thus, for each conserved region, we consider 

the amount of conserved sequence, how well-distinguished the region is from the 

background, and penalize genes with many conserved regions.  
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After computing the raw score, we normalize it to obtain a value between 0 and 1 

using the following formula:  

scorerawscoreraw
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The resulting normalized score is henceforth referred to as the “regulatory resolution 

score” or simply, the “score.” 

5.2.4 Manual promoter interpretation 

Promoters for 317 genes were manually assessed for the Pleiades Project.  

Suitability for promoter construct design was annotated based on a number of gene 

features, including (i) published literature describing experimentally defined regulatory 

sequences for the gene of interest, (ii) the location of the transcription start points, (iii) 

the boundaries of analysis, i.e. the amount of noncoding sequence to be analyzed 

upstream and downstream of the gene of interest, and (iv) the number and qualitative 

conservation level of conserved regions located proximal to the TSS within the defined 

boundaries. The 317 genes were assigned to one of five classes describing their suitability 

for MiniPromoter design: (1) No (not suitable), (2) Unfavourable, (3) OK (fair), (4) 

Favourable, and (5) Yes (good candidate).  

 
5.3 Results 

5.3.1 Genome-wide distribution of regulatory resolution scores 

Regulatory resolution scores were computed for all Ensembl human genes (Figure 

5.1). Of 22298 genes tested, 2411 did not contain any conserved PhastCons elements 
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(Figure 5.1B), and we therefore, could not compute regulatory resolution scores for these 

genes. The distribution of scores is slightly skewed to the left, with a median score of 

0.34 and a mean score of 0.36 (Figure 5.1A). Genes with up to 5 conserved regions 

receive higher scores (Figure 5.1C), with the top 20th percentile having an average of 2.2 

conserved regions per gene. High scores are also preferentially assigned to genes with 

less than 1000 bp of conserved nonexonic nucleotides (Figure 5.1D), with an average of 

330 bp of conserved sequence per gene for genes scoring within the top 20th percentile. 

5.3.2 Features of genes with the highest, average and lowest regulatory resolution 

The ADCK5 locus was assigned the highest regulatory resolution score due to the 

presence of a single, fairly long (1277 bp), very highly conserved region within the 

upstream intergenic region (Figure 5.2A). Two smaller conserved regions directly 

upstream of ADCK5 in the “17-Way Most Cons” track are excluded from the analysis. 

The larger of the two overlaps with human mRNAs, while the smaller conserved element 

is only 10 bp long (Figure 5.2A). The low baseline conservation level across the entire 

region further contributed to the high score. ADCK5 encodes a putative protein kinase 

whose function is not yet clear (33). Characterization of the large conserved region 

upstream of this gene could provide clues to its function.  

The ELOVL3 locus (Figure 5.2B) encodes a long-chain fatty acid elongase found 

in liver, skin, and brown adipose tissues (34). In terms of its regulatory resolution score, 

ELOVL3 is an example of an average gene, receiving the mean score of 0.35 for four 

small, fairly conserved nonexonic regions containing a total of 186 bp of sequence within 

the boundaries of the analysis. 

The lowest scoring gene, NR4A3, encodes a member of the steroid-thyroid  
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 Min 1st Qu. Median Mean 3rd Qu. Max NA’s 
Score 0.00 0.25 0.34 0.36 0.45 1.00 2411 

 

 
 
Figure 5.1 Genome-wide distribution of regulatory resolution scores 
(A) Histogram of scores. (B) Summary statistics showing the score by quartiles (Qu.), as well as the 
median and mean score. (C) Boxplot showing the distribution of the number of conserved regions by 
score intervals. (D) Boxplot showing the distribution of the number of conserved bases by score 
intervals. The boxes in both boxplots are drawn with widths proportional to the square-roots of the 
number of observations in the groups. 
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Figure 5.2 Genes with (A) the highest, (B) average and (C) the lowest regulatory resolution scores 
Each screenshot from the UCSC Genome Browser displays: conserved nonexonic (CNE) conserved 
elements used in the analysis (see Methods); UCSC gene predictions based on RefSeq, GenBank and 
UniProt data (31); transcripts for Ensembl genes based on mRNA and protein evidence (32); a dense 
display of human mRNAs from GenBank (37); CpG islands defined as regions with ≥50% GC content, 
≥200 bp in length, and an observed CG to expected CG ratio ≥ 0.6; evolutionary conservation in 17 
vertebrates, including mammalian, amphibian, bird and fish species, based on Multiz alignments (19) 
and PhastCons scores (15); and predictions of conserved elements produced by the PhastCons 
program (17-way Most Cons). 

A. ADCK5: 1277 conserved bases in 1 conserved region. Score = 1.00 

B. ELOVL3: 186 conserved bases in 4 conserved regions. Score = 0.35 
 

C. NR4A3: 9281 conserved bases in 90 conserved regions. Score = 0.00 
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hormone-retinoid receptor superfamily, and may act as a transcriptional activator (35). 

NR4A3 owes its low score to the presence of 90 small conserved regions, containing a 

total of 9281 bp of nonexonic sequence, that are distributed across the entire locus 

(Figure 5.2C). The NR4A proteins are among the most evolutionarily ancient nuclear 

receptors (36). The majority of the NR4A3 locus is conserved, and the conservation 

profile reveals few insights into the location of potential regulatory regions for targeted 

promoter construct design. 

5.3.3 Regulatory resolution scores capture aspects of the manual curation process 

One of the major goals of the Pleiades Promoter Project is to identify genes 

selectively expressed in specific brain regions and to annotate their regulatory sequences 

(30). Data curators manually assessed 317 genes and assigned them to one of five classes 

describing their suitability for promoter construct design (see Methods). The number of 

curated genes in each category is shown in Table 5.1. The regulatory resolution is a major 

contributor to the manual classification. However, the availability of laboratory studies 

describing experimentally determined regulatory regions could promote a poorly resolved 

gene to a better class. Likewise, multiple promoters could result in a lower score for a 

well-resolved gene.  

 
Table 5.1 Number of genes in each Pleiades promoter assessment class 
Manual assessment No Unfavourable OK Favourable Yes Total 

Number of genes 41 42 85 105 44 317 
 

We compared the regulatory resolution scores for the 317 genes to their curated 

classifications, and plotted the distribution of scores within each category (Figure 5.3A). 

Though the distributions overlap among the different classes, in general, the scores 
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increase as the promoter classification becomes more favourable (Figure 5.3B). This 

indicates that the regulatory resolution scores are capable of capturing and automating 

some aspects of the manual curation procedure. The increases in scores from the “No” 

category to the “Favourable” and “Yes” categories are significant (p < 1e-05 in both 

cases; Wilcoxon test), as are the increases in scores from the “Unfavourable” to the 

“Favourable” and “Yes” categories (p < 0.01 in both cases; Wilcoxon test). Surprisingly, 

there was little difference in scores between the “Unfavourable” and “OK” categories. 

Of the initial set of 2780 genes, 62 have been approved by the Pleiades Curation 

Team for MiniPromoter design (57/62 were included in the 317 curated gene set) (Table 

5.2). Regulatory resolution scores for the approved genes are higher than the 255 genes 

remaining from the curated set (p = 6.3e-04; Wilcoxon test).  

 

 
Figure 5.3 Application of regulatory resolution scores to manually curated promoters 
(A) Boxplot showing the score distribution for genes in manually curated promoter classes describing 
the suitability for MiniPromoter design: (1) No, (2) Unfavourable, (3) OK, (4) Favourable, and (5) 
Yes. The boxes in the boxplot are drawn with widths proportional to the square-roots of the number of 
observations in the groups. (B) Mean and median scores versus the manual promoter assessment.  

 

A B 
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Table 5.2 Pleiades Promoter Project genes approved for MiniPromoter design 

Gene Description Score 

Manual 

Assessment 

ADORA2A Adenosine A2a receptor 0.52 3 
ATP6V1C2 vacuolar H+ ATPase C2 isoform b 0.41 4 
AVP arginine vasopressin 0.65 5 
C8orf46 RIKEN mouse cDNA 3110035E14 gene, mRNA 0.31 4 
CARTPT Cocaine- and amphetamine-regulated transcript protein 

precursor 
0.29 3 

CCKBR Gastrin/cholecystokinin type B receptor 0.33 4 
CCL27 Small inducible cytokine A27 precursor 0.32 3 
CD68 Macrosialin precursor 0.40 5 
CLDN5 Claudin 5 0.47 4 
CRH Corticoliberin precursor 0.32 5 
CRLF1 cytokine receptor-like factor 1 0.30 5 
CX3CR1 CX3C chemokine receptor 1 0.30 4 
DBH dopamine beta hydroxylase 0.38 5 
DCX Doublecortin 0.13 4 
DDC dopa decarboxylase 0.66 4 
DRD1 dopamine receptor D1 (mouse dopamine receptor D1A) 0.50 5 
FEV FEV (ETS oncogene family) 0.40 4 
FEZF2 zinc finger protein 312 0.27 5 
FIBCD1 fibrinogen C domain containing 1 0.23 3 
GABRA6 gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 6 0.21 5 
GAL Galanin 0.61 5 
GCHFR GTP cyclohydrolase I feedback regulator 0.48 5 
GFAP Glial fibrillary acidic protein, astrocyte 0.24 5 
GPR88 G-protein coupled receptor 88 0.52 4 
GPX3 glutathione peroxidase 3 0.42 4 
GRP gastrin releasing peptide 0.32 N/A 
HAP1 huntington-associated protein 1 0.41 N/A 
HBEGF heparin-binding EGF-like growth factor 0.19 4 
HCRT Hypocretin 0.69 4 
HSPA12B Heat shock 70kD protein 12B 0.35 4 
HTR1A 5-hydroxytryptamine 1A receptor (5-HT-1A) (Serotonin 

receptor 1A) 
0.26 N/A 

ICMT isoprenylcysteine carboxyl methyltransferase 0.46 3 
LCT Lactase-phlorizin hydrolase precursor 0.40 3 
MKI67 Antigen KI-67 0.33 4 
NR2E1 Orphan nuclear receptor NR2E1 0.25 3 
NTSR1 neurotensin receptor 1 0.36 4 
OLIG1 oligodendrocyte transcription factor 1 0.49 4 
OXT Oxytocin-neurophysin 1 precursor 0.51 5 
PCP2 Purkinje cell protein 2 (L7) 0.48 N/A 
PITX3 Pituitary homeobox 3 0.37 5 
PKP2 plakophilin 2 0.16 4 
POGZ Pogo transposable element with ZNF domain 0.15 3 
RAMP3 receptor (calcitonin) activity modifying protein 3 0.59 3 
RGS16 regulator of G-protein signaling 16 0.54 5 
RLBP1L2 retinaldehyde binding protein 1-like 2 0.20 4 
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Gene Description Score 

Manual 

Assessment 

S100B S100 protein, beta polypeptide, neural 0.37 4 

SLC6A2 
solute carrier family 6 (neurotransmitter transporter, 
noradrenalin), member 2 0.28 4 

SLC6A3 
solute carrier family 6 (neurotransmitter transporter, 
dopamine), member 3 0.42 N/A 

SLC6A4 
solute carrier family 6 (neurotransmitter transporter, serotonin), 
member 4 0.23 4 

SLC6A5 
solute carrier family 6 (neurotransmitter transporter, glycine), 
member 5 0.27 4 

SLC7A5 Solute carrier family 7, member 5 0.47 4 
SLITRK6 SLIT and NTRK-like protein 6 precursor 0.39 3 
STX1A syntaxin 1A (brain) 0.25 3 
TAC1 tachykinin 1 0.33 5 
TAC3 tachykinin 2 (Mouse Tac2) 0.44 5 
TBR1 T-box brain gene 1 0.37 5 
THY1 Thy-1 membrane glycoprotein precursor 0.36 5 
TNNT1 Troponin T, slow skeletal muscle 0.31 4 
TRH thyrotropin releasing hormone 0.44 4 
UGT8 UDP galactosyltransferase 8A 0.26 4 
VIM Vimentin 0.30 4 
VIP vasoactive intestinal polypeptide 0.35 4 

 
 

5.4 Discussion 

A major goal of the Pleiades Promoter Project is to develop and characterize 220 

human DNA MiniPromoters to be used as tools to drive expression in defined brain 

regions. The selection process requires time-consuming and laborious analysis of 

candidate gene sequences. Thus, we developed a regulatory resolution score to rapidly 

rank genes selectively expressed in brain based on their conservation profiles, effectively 

guiding the promoter design process towards those genes that are more likely to produce 

favourable results. We have demonstrated that the defined regulatory resolution score, 

when applied to PhastCons conserved regions from 17-way vertebrate multi-species 

comparisons, reflects aspects of the manual curation procedure, with higher scores being 

assigned to genes judged as favourable candidates by the Pleiades team. Large-scale 
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screens of gene regulatory function are becoming increasingly prevalent, and methods 

that rapidly rank gene candidates for experimental validation are needed. 

Evaluation of the regulatory resolutions scores revealed that the n2 term in the 

denominator is punitive, and as a result, most of the highest scoring genes contain less 

than five conserved regions. However, it should be noted that the chaining of PhastCons 

conserved elements residing within 100 bp of each other reduces the impact of this 

penalty. A less conservative score using the term nn  in the denominator was also 

evaluated. Though it had some effect on the relative ranks of candidate genes, the greatest 

impact on ranks was on genes with scores in the 25th to 75th percentiles (data not shown). 

As is the case for most bioinformatics approaches, a number of parameters have 

been arbitrarily selected, including setting the boundaries for analysis, the minimal size of 

PhastCons conserved elements, and the separation distance used in chaining. These 

parameters can be varied depending on the goals of each project and the experimental 

system being used to verify regulatory function. For the Pleiades Promoter Project, we 

wished to obtain a few short regions to create MiniPromoter DNA constructs to be tested 

in transgenic mice, and that could later be used in adenovirus vectors for gene therapy. 

However, a project focused on long-range enhancers would require analysis of more 

upstream and downstream sequence. Conserved regions separated by larger intervening 

sequences could be chained if bacterial artificial chromosome (BAC) transgenic 

constructs are used; BACs can accommodate DNA inserts of up to 300 kb, allowing 

distal regulatory sequences located tens or hundreds of kilobases away to be included 

(38). Though we chose to use the PhastCons scores to measure evolutionary constraint, 

there is no reason why other conservation measures could not be used, including defined 
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sequence identity thresholds for pairwise alignments of promoter regions or multiple 

conserved sequence (MCS) scores (16). 

Access to a regulatory resolution score will have utility for numerous projects 

aimed at investigating gene regulation. There are also open research questions that can be 

explored. Pattern discovery algorithms are used to identify motifs over-represented in a 

set of sequences relative to a background model. The expectation is that some of the 

discovered motifs function as transcription factor binding sites. MEME (Multiple EM for 

Motif Elicitation) allows sequences to be weighted so that each sequence contributes to 

the resulting motifs in proportion to its weight (39). One could weight sequences by their 

regulatory resolution scores such that promoter regions containing a few highly 

conserved regions contribute to the pattern discovery process to a greater degree. Along 

the same lines, using oPOSSUM (40), it would be interesting to see whether the signal in 

motif over-representation analysis is stronger for the more well-resolved subset of genes 

in a co-expressed set of genes. Regulatory resolution scores could be helpful in 

prioritizing lists of predicted cis-regulatory modules (CRMs) to test for enhancer function, 

as the vast majority of computational approaches for the discovery of CRMs result in 

large numbers of predictions, sometimes predicting modules for hundreds of genes (41-

44). Finally, it would be interesting to see whether expression pattern is related to 

regulatory resolution. 

5.5 Conclusions 

 Genome-scale projects often generate long lists of candidate genes that require 

experimental validation. Motivated by the Pleiades Promoter Project, we developed a 

score to facilitate rapid ranking of genes for in vivo enhancer assays, and managed to 
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capture some aspects of the manual curation procedure employed by the Pleiades 

Curation Team. The score is a prioritization procedure, and manual efforts are still 

required to design the MiniPromoter constructs to be tested in transgenic mice. Its utility 

lies in its ability to provide a starting point and guide the MiniPromoter design process. 
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Chapter 6: Genomic Regulatory Blocks Underlie Extensive 

Microsynteny Conservation Among Insects 
6
 

6.1 Introduction 

Long-range cis-regulation in vertebrates has recently been the focus of much 

attention, driven by the genome wide discovery of highly conserved noncoding elements 

(HCNEs) found to span the loci of developmental regulatory genes. After a series of 

observations of high levels of conservation of individual developmental enhancers, 

whole-genome comparisons revealed an abundance of HCNEs that tend to cluster along 

chromosomes. The clusters most often coincide with genes encoding developmental and 

differentiation-related transcription factors. Many HCNEs have been characterized as 

long-range enhancers, first in studies of individual genes (1-4), followed by systematic 

studies in zebrafish, Xenopus and mouse (5-8). Genome-wide analyses of HCNE 

sequences have detected several over-represented motifs that are believed to be 

associated with context-specific enhancer activity (9;10). 

The emerging model is that an array of HCNEs defines a region of regulatory 

inputs of its target gene(s), and that the full complement of those inputs results in the 

actual expression pattern of the gene (2;5;6;8). It is plausible to speculate that the genes 

with the most complex spatiotemporal expression should have more complex regulatory 

inputs. This is in full agreement with the finding that the targets of the most elaborate 

                                                 
6 A version of this chapter has been published. Engström, P.G., Ho Sui, S.J., Drivenes, Ø., Becker, T.S., 
Lenhard, B. (2007). Genomic regulatory blocks underlie extensive microsynteny conservation among 
insects. Genome Research. 17:1898-1908. 
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arrays of HCNEs are genes encoding developmental regulators and genes for proteins 

that regulate axonal guidance and related processes in the central nervous system (11). 

Many HCNE arrays span large gene-free regions – so-called gene deserts – 

around their target genes (12). However, very often the regions spanned by HCNEs 

contain genes whose biological functions and expression patterns are unrelated to those 

of the presumptive target genes. These unrelated genes, which we refer to as bystander 

genes, are independent of the regulatory input of HCNE arrays, but the pressure to 

maintain HCNE arrays have kept bystander and target genes together for hundreds of 

millions of years (13). We termed the HCNE-spanned regions containing such genes 

genomic regulatory blocks (GRBs), and found GRBs to correspond to the longest regions 

of conserved gene order across vertebrate genomes. In this paper, we use the term 

microsynteny conservation to denote the preservation of close proximity among genes 

through evolution, and we refer to chromosomal regions that have been largely 

maintained in evolution as synteny blocks (14;15). 

The fruit fly Drosophila melanogaster (Dmel) has been used for a century as a 

model organism for studies of genetics, animal development, behavior and many other 

aspects of biology. It is remarkable that most developmental regulatory genes in the fly 

have conserved orthologs in vertebrates, often with analogous functions (16), and that 

many of these genes are associated with HCNEs in both fly and vertebrates (17;18). 

Although insect HCNEs have not been studied as extensively as vertebrate HCNEs, the 

trends described are similar, strongly suggesting that most HCNEs function as 

developmental regulatory elements in vertebrates and insects alike. In both insect and 

vertebrate genomes, most bases that are conserved above neutral evolution rates appear to 
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be noncoding (19). More than 20,000 intronic and intergenic elements are perfectly 

conserved over at least 50 bp between Dmel and the closely related D. pseudoobscura 

(Dpse), and are most abundant in the vicinity of developmental transcription factor genes 

(17). A recent search for HCNEs conserved between Dmel and the more distantly related 

D. virilis (Dvir) revealed several elements that coincide with characterized developmental 

enhancers (20). 

Regions of conserved microsynteny have been found between Dmel and the 

malaria mosquito Anopheles gambiae (Agam) though these organisms diverged about 250 

million years ago (15). A recent comparison of twelve insect genomes demonstrated 

microsynteny conservation among more distantly related insects (21). This comparison 

also showed that the distribution of insect synteny block lengths is incompatible with a 

model where genes have been randomly shuffled in evolution, and would be better 

explained by the existence of rearrangement hotspots - regions that have been shuffled 

more than others in evolution. The same trend has been observed in comparisons of 

mammalian genomes (14;22;23). In vertebrates, conserved microsynteny can at least in 

part be explained by the occurrence of GRBs (13).  

In this study, we present evidence for the existence of GRBs in insects and their 

functional equivalence to those in vertebrates. We have identified 6779 HCNEs shared 

among five different Drosophila species, demonstrating that fly genomes contain an 

extensive core repertoire of HCNEs. We show that an equivalent organization can be 

observed in orthologous mosquito loci through comparisons of the genome sequences of 

Anopheles gambiae and Aëdes aegypti, and that the maintenance of HCNE clusters is 

likely to underlie preservation of microsynteny between flies and mosquitoes. The 
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regions of HCNE arrays and microsynteny conservation also contain unrelated genes, 

probably in a similar way to bystander genes in vertebrate GRBs (13). We provide 

genome-wide evidence that these genes generally differ from target genes in their type of 

core promoter – which might for the first time explain on a genome-wide level why 

bystander genes do not specifically respond to long-range regulation in the region. 

Finally, we report a striking correspondence between Polycomb binding regions and 

several Drosophila GRBs, and discuss the occurrence of GRBs as an ancient and 

fundamental feature of metazoan genomes. 

6.2 Methods 

6.2.1 Sequences and annotations 

We used the following genome assemblies: Dmel release 4 (Berkeley Drosophila 

Genome Project); Dpse release 1.03 (Baylor HGSC); Dana, Dvir and Dmoj Aug. 2005 

(Agencourt); Agam MOZ2 (The International Anopheles Genome Project); Aaeg AaegL1 

(The Broad Institute and TIGR) and A. mellifera Amel_2.0 (Baylor HGSC). We obtained 

Aaeg sequences from Ensembl (24), and the other genome sequences, pairwise chained 

BLASTZ alignments between them, and annotations from the UCSC Genome Browser 

Database (25). We used FlyBase v. 4.3 gene and CDS annotations (26) and Dmel GO 

annotations (rev. 1.93) from www.geneontology.org. 

6.2.2 HCNE Detection 

We identified elements highly conserved among flies by scanning pairwise 

BLASTZ net whole-genome alignments (22) between Dmel and each of the other four 

Drosophila species for regions with at least 98% identity over 50 alignment columns. 
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Highly conserved elements were merged if they overlapped on the Dmel assembly. We 

discarded elements whose Dmel coordinates overlapped with any exon in FlyBase 4.3 

genes, RefSeq genes, Dmel cDNA sequences from Genbank or GENSCAN predictions. 

Remaining elements from each pairwise comparison were intersected based on their 

Dmel coordinates, to obtain elements conserved among all five species. Such elements 

spanning at least 50 bp of Dmel sequence were considered fly HCNEs. To detect 

mosquito HCNEs at selected Agam loci, we identified homologous Aaeg contigs by 

inspecting translated BLAT alignments in Ensembl v. 42-43 (24). We aligned Agam and 

Aaeg sequences with Shuffle-LAGAN v. 2.0 (27) with default settings and used the 

resulting alignments to identify HCNEs as described for flies above, but using a lower 

identity threshold (80%) and removing elements that overlapped exons by comparing 

with the following UCSC Genome Browser database annotations on the Agam assembly: 

Ensembl genes, Agam cDNAs from Genbank, aligned Dmel proteins and GENSCAN 

predictions. To assess conservation of Drosophila HCNEs in Agam, we used a BLASTZ 

net alignment from Dmel to Agam. 

6.2.3 Computation of feature densities and density peak detection 

For images of loci, we computed HCNE densities by a sliding-window approach 

to provide easily interpreted density values. For genome-wide detection of density peaks, 

we required smoothed curves and therefore used the density function in R (http://www.R-

project.org) with a Gaussian kernel and the indicated bandwidths (30,000 unless stated) 

to compute one density value every kb. We detected peaks by searching for density 

values that were higher than a threshold value and their five preceding and five following 

values along the chromosome arm.  
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6.2.4 Identification of synteny blocks and RA sequence among flies 

To identify synteny blocks, we made extensive use of the utilities and C library 

functions in the UCSC Genome Browser source package 

(http://genome.ucsc.edu/FAQ/FAQlicense). Starting from pairwise chained BLASTZ 

alignments (chains) between the Dmel genome and each of the four other genomes, we 

constructed pairwise net alignments (nets) by running the program chainNet with option 

–minSpace=1. chainNet filters a set of chains to retain only the best alignment for each 

position in one of the genomes (22). The chainNet algorithm tends to prioritize large 

chains and therefore its output is suitable for identifying synteny blocks. For each of the 

four pairwise genome comparisons, we constructed two sets of nets (one from the 

perspective of each genome), and used them to filter the chains into a set of reciprocal-

best chains (rb-chains) that only contain alignment columns included in the nets for both 

genomes. To find the bases in the Dmel sequence that were aligned in a reciprocal-best 

manner in all four pairwise genome comparisons (RA sequence), we identified the Dmel 

bases that were in ungapped blocks (i.e. were aligned to some base) in all four sets of rb-

chains. We constructed pairwise synteny blocks from rb-chains in three steps: (1) Rb-

chains were split at gaps that spanned nets if, within the gap, nets for either genome 

contained at least 10 kb in ungapped blocks. We used nets to split rb-chains because they 

include alignments that are not reciprocal-best, thus allowing us to capture synteny 

breaks caused, for example, by species-specific duplications. Only rb-chains that 

contained ≥10 kb in ungapped blocks after this step were retained. (2) We classified 

regions spanned by multiple (nested) rb-chains as being outside synteny blocks, and 

truncated nested rb-chains accordingly. Again, rb-chains containing <10 kb in ungapped 
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blocks were discarded. (3) To avoid artificial synteny breaks due to failure to link 

scaffolds together in any of the non-Dmel assemblies, we joined rb-chains that were 

nearest neighbors along the same Dmel chromosome arm, but on different scaffolds in the 

non-Dmel assembly, unless the gap between the rb-chains in either genome contained 

nets with at least 10 kb of sequence in ungapped blocks (i.e. the same criterion as used to 

split chains in step 2 above). The set of rb-chains after this third step constituted our 

pairwise synteny blocks. Although joining of chains may overestimate synteny in 

pairwise comparisons, any such effects should be minimal after pairwise synteny blocks 

are intersected into 5-way synteny blocks. We created 5-way synteny blocks by 

intersecting the sets of pairwise synteny blocks based on their coordinates on the Dmel 

assembly: any two Dmel bases were assigned to the same 5-way synteny block if and 

only if they were part of the same synteny block in each of the pairwise comparisons. We 

discarded 5-way synteny blocks that did not contain at least 10 kb in ungapped 

alignments across all pairwise synteny blocks. 

6.2.5 Analysis of extent of Dmel-Agam synteny 

To identify Dmel-Agam synteny blocks, we first computed reciprocal-best 

BLASTZ net alignments between Dmel and Agam as described for fly comparisons 

above. We then constructed a graph where two alignments (nodes) were connected if they 

were separated by ≤100 kb in both genomes (not considering strand, to allow local 

inversions within synteny blocks). We then considered each connected component in the 

graph to be one synteny block. The threshold of 100 kb is arbitrary; we tested several 

values in the range 0-300 kb with similar results. Considering all protein-coding FlyBase 

genes, we assigned a gene to a synteny block if that gene had a transcript with at least 
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25% of its CDS aligned to the syntenic Agam locus. Genes that belonged to multiple 

blocks according to this rule were excluded. 

6.2.6 Core promoter analysis 

We assigned a McPromoter prediction (28) to a FlyBase transcript if it was within 

250 bp upstream of the annotated start site of the transcript or within the noncoding part 

of its first exon. In rare cases where multiple promoter predictions satisfied these criteria, 

the prediction closest to the annotated start site was chosen. For illustrated loci, core 

promoter assignments to genes were reviewed and changed if available transcript data 

motivated modifications to FlyBase gene models. 

6.2.7 Expression analysis 

To assign expression values to genes, we processed FlyBase gene models as 

follows. Because the expression signals from the tiling array study (29) are not strand-

specific, we masked parts of exons that overlapped exons on the other genomic strand. 

We disregard any gene that had more than half of its total exon sequence masked. For 

each remaining gene i, we computed its maximum transfrag coverage cmaxi as maxj(cij), 

where cij is the number of unmasked exon bases covered by transfrags for gene i at time 

point j. Any gene i with cmaxi larger or equal to 70% of its unmasked exon sequence was 

considered expressed [a similar criterion was used in the original analysis of the data 

(29)]; other genes were assigned an expression value of 0 for all time points. If two 

expressed genes (annotated on the same strand) shared unmasked exon sequence, only 

the gene with highest cmax was considered further; we were not interested in comparing 

expression profiles between genes that share the same transcriptional unit. Each retained 



 160 

gene was then, for each time point, assigned an expression value equal to the median 

signal over its unmasked exon sequence. Only genes that showed at least a twofold 

difference in expression values between some time points were used in comparisons of 

expression profiles. 

6.3 Results 

We identified HCNEs in pairwise alignments between the euchromatic genome 

sequences of D. melanogaster (Dmel) and four other Drosophila species - D. ananassae 

(Dana), D. pseudoobscura (Dpse), D. virilis (Dvir), and D. mojavensis (Dmoj) - selected 

based on the state of their genome assemblies, availability of whole-genome sequence 

alignments to Dmel and phylogenetic relationships (Appendix 4 Figure S1). We required 

HCNEs to be conserved at 98% identity over at least 50 bp in all four pairwise 

comparisons. To focus on elements that are most likely to function in regulation of 

transcription, we discarded elements that partially or entirely overlapped exons 

(8;9;17;30). There were 6779 HCNEs, with a median size of 59 bp and a maximum of 

157 bp. Consistent with earlier observations for flies (17), nematodes (18) and vertebrates 

(12;30), we found regions of high HCNE-density to be strongly enriched for genes 

encoding developmental transcriptional regulators (Appendix 4 Table S1). 

6.3.1 Highly conserved noncoding elements are enriched in large synteny blocks 

To study the distribution of HCNEs with respect to regions of microsynteny, we 

identified synteny blocks conserved among all five fly genomes as described in Methods. 

None of the four species that we compared to Dmel has a finished genome assembly. 

Nevertheless, our results indicate that reliable synteny blocks can be constructed because 
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most of the sequence is in very large scaffolds. Although the synteny blocks included few 

scaffolds, they spanned 76% of the Dmel euchromatic sequence (Supplemental Table S2). 

We distinguish between the span of a synteny block, which we define as the entire 

genomic region between the extreme borders of the block, and its coverage, meaning the 

reciprocally aligned, syntenic bases in the block. Of the HCNEs, 94% were entirely 

spanned by synteny blocks, and 86% had at least 98% of their sequence covered by 

synteny blocks. We wished to compare the coverage of HCNE sequence by synteny 

blocks to the coverage of coding sequence (CDS) while controlling for the fact that the 

latter is less conserved overall. We therefore identified the bases in the Dmel sequence 

that were aligned in a reciprocal-best manner in all four pairwise genome comparisons 

[reciprocally-best aligned (RA) sequence], and measured the fraction of them that was 

covered by synteny blocks. Remarkably, 90% of RA-HCNE sequence was covered by 

synteny blocks, compared to only 75% of RA-CDS. RA-HCNE sequence was enriched in 

large synteny blocks compared to RA-CDS (Figure 6.1A). 

6.3.2 HCNE arrays are centrally positioned in large synteny blocks that span 

multiple genes 

We identified 164 peaks of HCNE density on Dmel chromosomes 2, 3 and X by 

first using a Gaussian kernel to compute local HCNE density at positions spaced 1 kb 

throughout the euchromatic sequence, and then locating peaks in the resulting density 

distribution. Many peaks of HCNE density are contained within single synteny blocks 

and are centrally positioned within those blocks (Figure 1B and C and Appendix 4 Figure 

S2). Only 5/164 HCNE density peaks were located outside synteny blocks. In contrast, 

RA-CDS density tends to peak near synteny breaks, confirming that the lower HCNE  
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Figure 6.1 HCNE arrays are centrally positioned in large synteny blocks 

(A) RA-HCNE sequence is enriched in large synteny blocks compared to RA-CDS. Dashed lines 
show the distributions when sequence not covered by any synteny block is excluded. (B) HCNE 
density, RA-CDS density and synteny blocks on Dmel chromosome arm 2L. Synteny blocks (green 
boxes with black borders) are shown between the density curves and in the in the area under them. 
Density peaks were detected above a threshold (gray line) set to cover 80% of the area under the 
density curve for the chromosome arm. In the magnified section, HCNE density peaks are labeled 
with inferred regulatory target genes located in the same synteny block as the HCNE density peak. (C) 
Line histogram of position of density peaks within synteny blocks. For each density peak that was 
located within a synteny block, we computed the distance between the peak and the synteny break 
closest to it, and scaled the distances to [0, 0.5] by dividing with synteny block size. Dashed lines 
show distributions from 10,000 randomizations where synteny blocks were ordered independently of 
density peaks (Appendix 4 Figure S3). (D) Histogram of median distance in each of the 10,000 
randomizations. Arrows indicate medians for the non-randomized data, and one-sided p-values 
indicate the fraction of randomizations having equal or more extreme medians. 
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density in these regions is unlikely to be caused by variations in alignment quality (Figure 

1B and C and Appendix 4 Figure S2). We confirmed the statistical significance of these 

trends by permutation tests (Figure 1D) and found the trends to persist across a wide 

range of parameter settings (Appendix 4 Figures S3 and S4). RA-CDS density peaks 

were most frequent in small synteny blocks (Appendix 4 Figure S3). This trend is 

consistent with the above findings, but can also partially be explained by variability in 

intron size between genes. The frequency of HCNE density peaks per sequence length 

increased with synteny block size and nearly all synteny blocks that contained a large 

HCNE density peak also contained multiple genes (Appendix 4 Figure S3). These 

findings strongly suggest that large regions containing multiple genes have maintained 

microsynteny in order to preserve arrays of HCNEs.  

6.3.3 HCNE-associated genes are in large blocks of conserved microsynteny between 

fly and mosquito 

The ct locus (Figure 6.2A) is one of the more extreme examples of the genome-

wide trends described above. This synteny block contains the highest HCNE density peak 

on the Dmel X chromosome (Appendix 4 Figure S2) and HCNE densities are high 

throughout most of the block. The block is flanked by regions of higher gene density than 

within the block. The ct gene encodes the homeodomain protein Cut, which regulates 

cell-fate decisions in multiple lineages (31). ct has been maintained in microsynteny with 

at least nine other genes (underlined in Figure 6.2A) throughout the five Drosophila 

genomes investigated here. There is little evidence of a functional relationship between ct 

and any of these nine genes: five are unannotated, and the remaining four encode a 

sarcoplasmic calcium-binding protein (CBP), a putative protein phosphatase (CG15035), 
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a putative Na+/solute symporter (CG9657) and a putative forkhead transcription factor 

(CHES-1-like). CHES-1-like may have a regulatory role, but its function is unknown. ct 

has been maintained in microsynteny with four genes (CBP, CheA7a, CG9657 and 

CG15478) between Dmel and Agam. Strikingly, these genes delimit roughly the same 

Dmel region as the five-way fly synteny block: the region spanned by the HCNE-cluster 

(Figure 6.2A). 

 

 

 

Figure 6.2 Genes associated with HCNE arrays tend to be in large fly-mosquito synteny blocks 
(A,B) Examples of synteny blocks. Gaps within synteny blocks are colored yellow. Green lines 
connect genes in conserved microsynteny between Dmel and Agam. Microsynteny conservation 
between Dmel and Agam was determined by examining chained BLASTZ and tBLASTn alignments 
in the UCSC Genome Browser (32). Sometimes only parts of genes could be matched (e.g. in the case 
of ct). Aaeg contigs aligned to the Agam assembly are shown with regions having ≥ 50% identity over 
50 bp in black and other regions in yellow. HCNE densities were computed as the fraction of bases in 
HCNEs in sliding windows of 40 kb. The UCSC Genome Browser was used in making the images. 
(A) The ct locus in Dmel (upper panel) and Agam (lower panel). ct and nine other genes (underlined) 
show strong evidence of being in conserved microsynteny among the five flies. The orange line 
indicates a noncoding BLASTZ match between Dmel and Agam and hints at the location of the first ct 
exon in Agam. Comparison of HCNE density curves also supports that the first ct exon in Agam is in 
the area indicated by the orange line. Supporting a common origin of the HCNE clusters at the ct loci 
in flies and mosquitoes, the HCNE density curves have similar shapes. Two density peaks are visible 
in both organisms: one between CG9657 and ct, and the other within the borders of ct. The 
developmental transcriptional regulator brk (33) is centrally positioned in an adjacent synteny block. 
CG9650, which dominates a neighboring HCNE-rich synteny block, is expressed in developing CNS 
and PNS and encodes a putative C2H2 zinc finger protein (34). (B) The tailup (tup) locus in Dmel 
(upper panel) and Agam (lower panel). tup is in conserved microsynteny with CG18397 among the 
five flies, Agam and Aaeg. tup encodes a homeodomain transcription factor involved in development 
(35). CG18397 is predicted to encode a protein with an AMP-dependent synthetase and ligase domain. 
In both flies and mosquitoes, HCNEs are found throughout the synteny block. Some HCNEs are 
within introns of tup and CG18397. This, combined with the lack of evidence for a functional 
relationship between the two genes, indicates that they have been kept in proximity in order to 
maintain the HCNE array. (C) For each gene that we could assign to a synteny block, we measured the 
span of its synteny block excluding the region spanned by the gene itself (in order to control for 
differences in gene size). Each curve shows the cumulative distribution of synteny block span, 
measured in Dmel bp, around genes in a particular category. Categories were defined from GO 
biological process annotation and HCNE density. The category “any biological process” contains all 
genes annotated with a GO biological process term other than “biological process unknown”. Genes in 
HCNE-dense regions overlap a 40 kb region where at least 1% (400 bp) of the sequence is in HCNEs. 
Numbers within parenthesis indicate the number of genes annotated to the indicated process and 
assigned to a single synteny block. 
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To investigate whether maintained fly-mosquito microsynteny at the ct locus 

could be explained by a selective pressure to keep the HCNE-cluster intact, we searched 

for HCNEs conserved between Agam and the yellow fever mosquito Aëdes aegypti (Aeg) 

at the ct locus in mosquitoes. Indeed, there is a distinct island of mosquito-specific 

HCNEs confined to the region of the fly-mosquito synteny block (Figure 6.2A). The 

picture is similar at several other loci, including the locus of the homeodomain 

transcription factor gene tailup (tup, Figure 6.2B; see also Appendix 4 Figures S5-S7). 

Curiously, few noncoding elements are highly conserved between flies and mosquitoes 

(17). Only 612/6779 (9%) of our Drosophila HCNEs are at least partially aligned to the 

Agam sequence in a precomputed whole-genome alignment and only 264 (4%) are 

aligned with at least 30 base identities. The examples presented here suggest that, while 

many elements may have diverged beyond our ability to align them, the selective 

pressure to maintain their clusters has resulted in microsynteny conservation, which is 

detectable because protein-coding sequences align between Drosophila and Anopheles.  

To quantitatively assess whether genes regulated by HCNE arrays are more likely 

to be in large regions of microsynteny between Dmel and Agam, we constructed synteny 

blocks between the two genomes, using a more relaxed approach than among the 

Drosophila because of the large evolutionary distance between flies and mosquitoes (see 

Methods). We then measured the span of Dmel-Agam synteny blocks around Dmel genes 

from several categories, including genes in HCNE-dense regions and genes annotated 

with Gene Ontology (GO) biological process terms that have been found to be associated 

with genes spanned by HCNE arrays (GO terms “multicellular organismal development” 

and “regulation of transcription, DNA-dependent”; see Appendix 4 Table S1 and (17). 
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There was a tendency for genes in the HCNE-related categories to be within more 

extensive blocks of synteny than other types of genes (Figure 6.2C). To better pinpoint 

the genes that are targets of HCNE arrays, we intersected the HCNE-related categories. 

Genes that were located in HCNE-dense regions, annotated to be involved in 

development, and annotated as transcriptional regulators were within significantly larger 

synteny blocks than genes from any of the non-HCNE related categories (p < 10-7 in 

pairwise one-tailed Kolmogorov-Smirnov tests against each of the categories “cellular 

protein metabolic process”, “cell organization and biogenesis”, “transport”, “signal 

transduction” and “any biological process”). 

6.3.4 HCNE-associated genes have specific types of core promoters 

Data from this and earlier work suggests a model where insect and vertebrate 

HCNEs arrays represent clusters of enhancers that specify expression programs for only a 

small subset of the genes that they span. How enhancer activity is specifically directed 

towards certain genes at HCNE-spanned loci is unknown. It has been demonstrated that 

enhancers can selectively target certain promoters (36;37) and that this selectivity may be 

facilitated by the occurrence of different core promoter types (38;39). A recent 

investigation of core promoters in Dmel classified them into five major types based on 

motif-content: TATA box followed by initiator (TATA/Inr), initiator followed by 

downstream promoter element (Inr/DPE), Motif 6 followed by Motif 1 (Motif 1/6), DNA 

replication element (DRE), and promoters containing only initiator, but none of the other 

elements (Inr only) (28). Based on these observations, the author designed a program 

(McPromoter) that predicts core promoters in the Dmel genome with high accuracy and 

classifies them as one of the five types. 
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Hypothesizing that enhancers in HCNE arrays may target specific genes within 

“striking distance” on the basis of their core promoter architecture, we used the genome-

wide McPromoter predictions to investigate core promoter properties of likely target 

genes. Of 81 developmental transcriptional regulators located in HCNE-dense regions, 56 

have a promoter prediction close to one or more annotated transcription start sites. Of 

these 56 genes, 53 (95%) are associated with a prediction of a type containing an Inr-

motif (Inr only, Inr/DPE or TATA/Inr; see also Table 6.1). For comparison, only 2251 

(39%) of all 5824 genes assigned a promoter prediction have a prediction with an Inr-

motif. The enrichment is strongest for genes with Inr only core promoters (p = 0.005, 

compared to Inr/DPE enrichment, by Fisher’s exact test). For examples of genes with 

different core promoter types, see Figures 6.2, 6.4 and 6.5, where gene models are 

colored according to associated promoter predictions (see also Appendix 4 Figures S5, S6, 

S8 and S9). 

 
Table 6.1 Core promoter classification of Dmel genes 
Core 

promoter 

class 

All protein-

coding genes  

Transcriptional 

regulators
a
 

Developmental 

genes
b
 

Genes in 

HCNE-

dense 

regions
c
 

Developmental 

transcriptional 

regulators in 

HCNE-dense 

regions 

1. Inr only 439 (8%) 72 (17%) 138 (16%) 44 (20%) 24 (43%) 
2. Inr/DPE 784 (13%) 75 (17%) 196 (23%) 60 (28%) 18 (32%) 
3. DRE 2162 (37%) 140 (32%) 250 (29%) 34 (16%) 3 (5%) 
4. Motif 1/6 1553 (27%) 105 (24%) 194 (23%) 39 (18%) 2 (4%) 
5. TATA/Inr 1110 (19%) 73 (17%) 149 (18%) 54 (25%) 14 (25%) 
Class 1,2 or 5 2251 (39%) 204 (47%) 453 (53%) 150 (69%) 53 (95%) 
Any class 5824 434 849 217 56 
Total 13733 768 1383 684 81 
Genes were counted in more than one promoter category if they had had different types of core 
promoter predictions for different alternative start sites. Percentages are relative to the number of 
classified genes. 
aProtein-coding genes annotated with GO term GO:0006355 (regulation of transcription, DNA-
dependent). 
bProtein-coding genes annotated with GO term GO:0007275 (multicellular organismal development). 
cProtein-coding genes overlapping a 40 kb region where at least 1% (400 bp) of the sequence is 
covered by HCNEs. 
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To explore the association between core promoter types and gene functions, we 

performed a systematic search for enrichment of different GO annotations within each of 

the five core promoter classes (Figure 6.3A and Appendix 4 Table S3). Consistent with 

the above results, we found enrichment for transcription factors among genes with Inr-

only core promoters (p<10-10) and enrichment for genes involved in developmental 

processes among genes with Inr-only core promoters (p<10-13) and genes with Inr/DPE 

core promoters (p<10-9). The latter gene set is also enriched for genes involved in ion 

transport (p<10-4) and cell adhesion (p<10-5). On the other hand, the set of genes with 

DRE core promoters is enriched for housekeeping functions (translation, p<0.001) and 

mitochondrial proteins (p<10-4). Genes with Motif 1/6 promoters showed a particular 

enrichment for RNA polymerase II components (p<0.01), which also perform a 

housekeeping function. Although the set of genes with TATA/Inr core promoters appears 

to share some of the trends observed for Inr-only and Inr/DPE promoters, these trends are 

not statistically significant for the TATA/Inr-regulated genes, which instead are enriched 

for genes encoding proteins with more specialized, tissue-specific functions, such as 

cuticle constituents (p<10-23), odorant binding proteins (p<0.01) and defense-related 

proteins (p<0.01). This finding is in agreement with results from mammals, where genes 

with TATA box core promoters tend to be expressed in tissue-specific contexts (40). All 

p-values were adjusted for multiple testing using Bonferroni method (see also Appendix 

4 Table S3). 

To explore gene expression correlations among genes with different core 

promoter types, we used a published tiling array dataset consisting of gene expression 

measurements across the Dmel genome at twelve time points during the 24 hours of  
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Figure 6.3 Associations between core promoter types and gene functions 
(A) Bars show the fraction of genes in each core promoter category that are annotated with indicated 
GO terms. All GO terms shown are significantly associated with a core promoter category at 
Bonferroni-adjusted p<0.01 (see also Appendix 4 Table S3). 
(B) Violin plots (boxplots with added kernel density curves) show distributions of Pearson correlation 
coefficients for expression correlations between randomly selected gene pairs taken from pairs of core 
promoter categories indicated by colored rectangles below the plots. High correlations are frequent 
between genes with DRE core promoters and genes with Motif 1/6 core promoters, as well as among 
genes within each of those categories. Each distribution is based on a sample of 1000 randomly 
selected gene pairs. Genes were not compared against themselves. 
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embryonic development (29). Consistent with a housekeeping nature of genes with DRE 

or Motif 1/6 core promoters, we found that randomly selected gene pairs from these sets 

often have highly correlated expression profiles, unlike gene pairs from the other sets 

(Figure 6.3B). Genes in these two promoter categories also have the highest detection 

rates: 1423 (66%) of 2162 genes with DRE promoters and 1031 (66%) of 1553 genes 

with Motif 1/6 promoters were detected as expressed at some time point. Genes with 

TATA/Inr promoters have the lowest detection rate (46%; significantly different from 

genes with DRE or Motif 1/6 promoters: p<10-15, chi-square test), consistent with more 

specialized roles for genes with TATA/Inr promoters. 

6.3.5 HCNE arrays mark regulatory domains maintained in evolution 

While the data presented here suggest that the need to maintain HCNE clusters is 

a major reason for microsynteny conservation in insects, other reasons for microsynteny 

conservation exist. A genome-wide comparison of Dmel-Dpse synteny blocks to changes 

in gene expression throughout the Dmel life cycle suggested that microsynteny is 

preserved at some loci in order to maintain co-regulation of neighboring genes (Stolc et al. 

2004; see also erratum at http://bussemaker.bio.columbia.edu/papers/Science2004/). 

Figure 6.4 shows two loci that are likely to be under dual pressures to maintain HCNE 

arrays and co-regulated genes. Each of these loci contains two co-expressed and 

paralogous developmental regulatory genes (elB/noc, H15/mid), spanned by a HCNE 

cluster that delimits roughly the same genomic region as its surrounding synteny block, 

suggesting that these loci constitute genomic regulatory blocks with dual targets for some 

of the enhancer activity likely contained in their HCNEs. Further evidence for the 

existence of large regulatory domains in Drosophila genomes comes from genome-wide 
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mapping of Polycomb binding sites in embryonic cell lines, where Polycomb was found 

to bind large regions, preferentially around developmental regulators (49;50). Similar 

findings have been reported for human embryonic stem cells, where the Polycomb 

repressive complex 2 subunit SUZ12 shows a strong tendency to bind across 

developmental transcription factor genes and around HCNEs (51). We inspected the 

Dmel Polycomb binding regions determined by Tolhuis et al. (49) and noted an  

 

 

Figure 6.4 HCNE-clusters spanning co-regulated genes and boundary agreement among synteny 
blocks, HCNE clusters and Polycomb binding regions 

Gene models are colored by predicted core promoter type as in Figure 2. Only selected genes are 
labeled. 
(A) The paralogous zinc finger genes elB and noc, implicated in tracheal and appendage development, 
have different, but partially overlapping, spatial expression patterns during embryonic development 
(41), and are co-expressed in larval leg and wing discs (42). Among the five flies, elB and noc are in 
conserved microsynteny with a tRNA gene and at least three protein-coding genes (underlined), which 
have no evidence of being functionally related to elB or noc: pburs encodes a subunit of the hormone 
bursicon required for wing expansion and associated cuticle changes after flies emerge from pupae 
(43); CG3474 is predicted to encode a cuticle component; CG4218 is predicted to encode a protein of 
unknown function. (B) The paralogous T-box genes H15 and mid are involved in regulation of heart 
development and have similar spatial expression patterns during embryonic development (44;45). 
They are in conserved microsynteny with four other genes (underlined) among the five flies: 
CG12512, predicted to encode a protein with an AMP-dependent synthetase and ligase domain; 
nompC, encoding a mechanosensory transduction channel (46); and two genes of unknown function. 
The developmental regulators vri (47) and tomb (48) are centrally positioned in neighboring synteny 
blocks. Two transcript isoforms are shown for tkv because it has two major transcription start sites 
with different types of core promoter predictions. 
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association with HCNEs, as expected. Tolhuis et al. interrogated ~30% of the Dmel 

genome, and found that 10% of the interrogated sequence corresponds to large Polycomb 

binding regions (Pc domains). HCNE sequence is more than two-fold enriched in these 

Pc domains: 114 kb of the sequence interrogated by Tolhuis et al. corresponds to HCNEs, 

and 23% of this HCNE sequence is within Pc domains. The association of HCNEs with 

Pc domains is significant (p < 10-5; Wilcoxon test) when one compares the density of 

HCNEs in Pc domains to the density of HCNEs in regions randomly sampled from the 

part of the genome interrogated by Tolhuis et al. and with similar size distribution as the 

Pc domains. Interestingly, we also found a very good agreement between the boundaries 

of synteny blocks, HCNE clusters and Pc domains at a number of loci, including the three 

shown in Figs. 6.2B and 6.4 (see also Appendix 4 Figures S8 and S9). These examples 

indicate that synteny blocks, HCNE clusters and Polycomb binding regions can 

independently pinpoint the same large regulatory domains in insect genomes, suggesting 

that they reveal different aspects of the same evolutionarily conserved regulatory 

mechanism. 

6.4 Discussion 

6.4.1 Experimental evidence for long-range regulation and GRBs in Drosophila  

Genomic regulatory blocks (GRBs) are regions containing long-range regulatory 

elements that have been interlocked in cis with their target genes as well as unrelated 

genes (13). We show here that this concept also applies to insect genomes. In the 

zebrafish genome, GRBs were discovered through enhancer detection events where the 

reporter insertion was close to or in a bystander gene, yet recapitulated the expression 
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pattern of the target gene further away (13). Since enhancer detection has been performed 

extensively in Drosophila, we searched for examples of such insertions near bystander 

genes in the literature. Such insertions can be used to support the notion that regulatory 

elements form GRBs and thereby conserve microsynteny. The most striking example we 

found is the E32 enhancer detection line, which represents an insertion in the 5’ 

untranslated region of out at first (37). The insertion replicates part of the expression 

pattern of decapentaplegic (dpp), a developmental regulatory gene located 33 kb away. 

The region between dpp and the insertion contains a gene desert with HCNEs (Figure 

6.5) corresponding to known enhancers and a nonessential gene (Slh) with an unrelated 

expression pattern (37). We consider this a typical example of a GRB in Drosophila. At 

the loci of developmental regulators teashirt, engrailed and u-shaped, insertions confirm 

that regulatory information is present at large distances from target genes, but do not 

directly show that this information is present inside bystander genes (52). Notably, dpp, 

teashirt, engrailed and a gene desert with insertions upstream of u-shaped all coincide 

with Polycomb binding regions determined at high resolution (49) (Figure 6.5 and 

Appendix 4 Figures S8 and S9). We conclude that, although it is commonly accepted that 

enhancer detection insertions in Drosophila reproduce the expression pattern of the 

nearest gene, these examples show that there are exceptions, in agreement with our 

enhancer detection results in zebrafish and in agreement with the notion that GRBs occur 

in both insects and vertebrates (13). 

6.4.2 Regulatory HCNE arrays are a fundamental feature of metazoan genomes 

Most target genes in Drosophila GRBs appear to be developmental regulatory 

genes that have well-conserved vertebrate orthologs spanned by equivalent arrays of  
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Figure 6.5 The E32 enhancer trap insertion at the Dmel decapentaplegic (dpp) locus 

Gene models are colored by predicted core promoter type as in Figure 2. Two transcript isoforms are 
shown for dpp because this gene has different core promoter predictions for two of its major 
transcription start sites (other dpp start sites are not shown, see (53). The HCNE-spanned gene desert 
downstream of dpp contains several conserved enhancers that specify dpp expression in imaginal discs 
(37). Although the neighboring, divergently transcribed genes SLY1 homologous (Slh) and out at first 
(oaf) are insensitive to the array of dpp enhancers and have different expression patterns, the enhancer 
trap insertion E32, inserted into the 5’-untranslated region of oaf (arrow), reproduces part of the dpp 
expression pattern in imaginal discs (37). Five other genes (underlined) are in conserved microsynteny 
with dpp, Slh and oaf among the investigated flies. 
 
 
HCNEs (12). In addition to noncoding conservation and the types of genes they contain, 

other parallels between GRBs in insects and vertebrates are evident. They often harbor 

relatively long regions devoid of genes (gene deserts) (54), and are characterized by 

microsynteny conserved deep in evolution (13). Our demonstration of similarly organized 

HCNE arrays at orthologous Drosophila and Anopheles loci (where gene order has been 

partially preserved) reveals that microsynteny conservation, while constrained by 

regulatory elements, can outlive the sequence conservation of those elements. 

The match between synteny blocks, HCNE arrays, and experimentally determined 

Polycomb binding regions in Drosophila is striking and supports the notion that these 

features are signatures of GRBs. In vertebrates, Polycomb group proteins are also 

preferentially found at the loci of developmental regulatory genes (51;55), were shown to 

bind to evolutionarily conserved CpG islands that overlap large portions of 
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developmental regulatory genes (56), and directly control CpG methylation (57). Even 

though insects do not have genome methylation or CpG islands, one can speculate that 

Polycomb binding regions in Drosophila are functionally equivalent to conserved CpG 

islands in mammals. At present, it is unknown whether those regions in insects have any 

specific sequence properties analogous to CpG islands. 

Together with a recent demonstration of the presence of HCNE clusters in 

nematode genomes of the genus Caenorhabditis (18), our findings indicate that arrays of 

HCNEs are central to developmental regulation of most, if not all, Metazoa. The 

association of HCNEs with orthologous genes among nematodes, insects and vertebrates 

(13;18) suggests that long-range regulation and clusters/arrays of HCNEs are an ancient 

property of metazoan genomes. The role of HCNEs in constraining microsynteny has not 

yet been explored beyond vertebrates and insects, however. 

6.4.3 Responsiveness of genes to long-range enhancers  

The apparent unresponsiveness of bystander genes to long-range enhancers in 

GRBs remains mysterious. Distance does not seem to be crucial for enhancer action 

(58;59). In the study mentioned above (37), the Drosophila gene out at first does not 

normally react to dpp enhancers but did so after exchanging its promoter with a dpp 

promoter. Thus, one explanation for enhancer specificity could be differential 

responsiveness of core promoters to enhancers (60). In mammals, different types of core 

promoters have been clearly shown to be related to different modes of regulation (40). In 

Drosophila, a recent study classified many known promoter regions into a number of 

different subtypes according to the principal motif (or combinations thereof) they contain 

(28). In this work we have shown that this classification discriminates between 
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developmental genes (Inr with or without DPE), housekeeping genes (DRE or Motif1/6) 

and tissue-specific genes (TATA). Based on these results, we speculate that it is the Inr-

type of promoters without TATA boxes that are most likely to respond to long-range 

regulation. Indeed, inspection of dozens of Drosophila GRBs strongly supports the 

hypothesis that non-responsive bystander genes, with expression patterns unrelated to the 

target gene in the same region, have core promoters of the DRE or Motif1/6 types. In this 

way, Ohler's classification of Drosophila core promoters is more powerful than that for 

vertebrate promoters made by Carninci et al. (40); in vertebrates, we still do not know the 

fundamental difference between core promoters for housekeeping and developmental 

regulatory genes, which both seem to have CpG island core promoters, most without 

TATA-boxes and with "broad"-type transcription start regions. 

While borders of GRBs can be identified as synteny block boundaries by 

comparative genomics, it is still unclear how the cellular machinery recognizes those 

borders. Some regulatory domains are known to be delimited by insulator elements, 

which bind proteins that block the reach of enhancers or inhibit the spread of repressed 

chromatin (61). Recent studies have revealed an abundance of putative insulator elements 

bound by the enhancer-blocking protein CTCF in mammalian genomes, and predicted a 

similar number of binding sites in Tetraodon (62;63). Human CTCF is functionally 

conserved in Drosophila, where several other enhancer-blocking proteins also are known 

(64). It will be interesting to see whether insulator elements are present at the borders of 

vertebrate and Drosophila GRBs. 
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6.5 Conclusions 

The evidence presented in this paper establishes GRBs as a fundamental property 

of metazoan genomes. The long distances of regulatory elements from their 

developmental regulatory target genes will have to be taken into account in future studies 

of these genes and their regulatory networks. Additionally, these findings provide 

guidelines for designing enhancer trap experiments and their interpretation, including an 

informed choice of core promoter type for enhancer trap constructs. 
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Chapter 7: Discussion and Conclusions 

 In the past few years, tremendous progress has been made in the computational 

analysis of gene regulation. Much of this progress has been driven by the rapid 

accumulation of diverse data, including multiple genome sequences, large-scale gene 

expression data, and in vivo binding information from ChIP-chip experiments. New 

computational tools have been developed to process and utilize the different types of data, 

helping researchers to extract biologically relevant information from complex data that 

often contains a great deal of noise. This thesis describes novel strategies for deciphering 

the mechanisms by which genes are regulated via computational analysis. The 

predominant goal has been to integrate large-scale genomic data sets, comparative 

sequence analysis and motif detection. This work additionally generates novel hypotheses 

regarding the use and interpretation of biological data and bioinformatics tools. From 

yeast to fly to worms to humans, this work spans a wide range of organisms yet remains 

focused on improving our understanding of how regulatory networks can modulate gene 

expression. 

7.1 Human/mouse regulation studies 

A major biological hypothesis is that co-expression can be linked to regulation 

through the analysis of over-represented transcription factor binding sites, predicting 

transcriptional networks that are activated in various contexts. While success has been 

demonstrated in simple eukaryotes such as yeast (1;2), the human genome presents a 

greater challenge. Of the ~3 billion base pairs that make up the human genome, only 

1.5% is estimated to code for protein (3), leaving a vast amount of sequence to search for 
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short, modular cis-regulatory elements. Furthermore, algorithms for detecting regulatory 

motifs based on weight-matrix models predict many binding sites that are readily bound 

in vitro but have no functional role in vivo (4). This necessitates using additional 

information to guide the search for cis-regulatory elements. The oPOSSUM system for 

identification of over-represented transcription factor binding sites (Chapter 2) was 

developed with the principle aim of integrating evolutionary conservation with motif 

discovery to reduce the search space to regions more likely to be functional. oPOSSUM 

is one of the first tools to address over-representation of conserved regulatory motifs for 

sets of human genes. Its major contributions lie in providing access to a database of 

conserved predicted transcription factor binding sites for human and mouse (both through 

a user-friendly web-based interface and an application programming interface (API) for 

more advanced users), statistical methods based on clearly stated models, and its robust 

implementation. oPOSSUM has been well-received by the research community, and has 

been used to generate novel hypotheses about regulatory mechanisms that may play roles 

in human diseases (5;6). 

Cross-species comparisons in higher eukaryotes have been used throughout this 

thesis to delineate potential regulatory regions. A major contribution is the development 

of methods to analyze pairwise conservation and identify conserved noncoding sequences 

in human and mouse sequences. Aligning the orthologous gene sequences to identify 

conserved promoters is nontrivial as many genes contain multiple alternative 

transcription start sites to generate diversity and direct temporal- and tissue-specific 

processes. We hypothesized that by using whole-genome alignments and CAGE 

transcript data, we could resolve orthologous alternative promoters for inclusion in 
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oPOSSUM, thereby increasing the signal for relevant motifs in sets of biologically 

related genes. We attained improvements in motif over-representation analysis with the 

inclusion of the alternative promoter data over using a single start site despite a parallel 

increase in noise (Chapter 3).  

Phylogenetic footprinting, which aims to characterize the genomic locations of 

cis-regulatory elements, does not tell us the functions of the cis-elements. The necessary 

functional characterization requires costly and time-consuming experimental assays. To 

minimize the validation time, we hypothesized that features of a gene’s conservation 

profiles could be used to prioritize candidate genes with predicted cis-elements for 

promoter-reporter gene studies (Chapter 5). The goal was to capture and automate aspects 

of the manual promoter assessment procedure used in the Pleiades Promoter Project 

(www.pleiades.org), in which researchers are generating and characterizing regulatory 

regions that drive expression to defined brain regions (8). The regulatory resolution 

scores correlated with subjective manual assessments of candidate genes, but because 

additional information such as literature-derived regulatory information and the number 

of TSSs were not incorporated, regulatory resolution scores within in each manual 

category showed considerable variation.  

7.2 Regulation in model organisms 

Research on model organisms has led to a wealth of knowledge about 

mechanisms of inheritance and animal development, as well as providing insight into 

gene function and core biological processes. After the discovery of surprisingly large 

numbers of highly conserved noncoding elements (HCNEs) associated with key 

development processes in vertebrates (9;10), we hypothesized that similar genetic 
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elements exist in other metazoan genomes. To address this, we used multi-species 

alignments to conduct studies of HCNEs in insects and examined their genomic 

organization and functional roles (Chapter 6). We concluded that insect HNCEs cluster 

nearby to genes involved in development and transcription like their vertebrate 

counterparts. A primary result was the observation that arrays of HCNEs in insects are 

maintained in microsynteny with their regulatory targets as well as bystander genes, like 

the genomic regulatory blocks (GRBs) observed in vertebrates (11). We showed an 

association between the boundaries of GRBs and polycomb binding domains, which are 

epigenetically modified regions involved in gene silencing, to support the hypothesis that 

GRBs correspond to regulatory domains. Furthermore, we suggested a mechanism for 

long-range enhancer-promoter specificity through the recognition of different core 

promoter architectures for developmental regulators. This work motivates continued 

study of HCNEs as enhancers in insects, while other studies in insects suggest roles for 

highly conserved elements (in coding and noncoding regions) in mRNA splicing or as 

microRNAs (7;12;13).  

Although important aspects of cell/tissue development are conserved between 

mammals and the distant model organisms (flies and/or worms), long evolutionary 

distances have largely precluded computational inference of human regulatory 

mechanisms based on binding sites in model organism genes. As a first step towards a 

method for long-distance mapping of regulatory programs for key development processes, 

we developed a worm-specific version of oPOSSUM (Chapter 3). Our attempt to apply 

methods from human/mouse comparisons to orthologous C. elegans and C. briggsae 

sequences highlighted new challenges and limitations. The evolutionary divergence 
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among the nematode species (80-110 million years (14)) appears to be too great for the 

standard alignment-based approach used for human and mouse, and several known 

binding sites in our reference sets could not be detected. A similar problem was 

encountered by GuhaThakurta et al. when searching for novel muscle-specific regulatory 

elements in C. elegans (15). Despite this challenge, many regulatory motifs in C. elegans 

are also present in the promoters of their C. briggsae orthologs, indicating that they are 

functionally conserved in the nematodes (15;16). We are currently exploring modified 

versions of the oPOSSUM system that compare the predicted binding sites in C. elegans 

sequences with orthologous pairs of gene sequences from the more similar C. briggsae 

and C. remanei genomes (17). A further limitation of computational regulatory analysis 

in worm is the lack of available TFBS profiles for C. elegans TFs. This need is likely to 

be addressed in the near future by the modENCODE Project (www.modencode.org) 

which, as part of its mission to identify all of the sequence-based functional elements in 

popular model organisms, aims to map transcription factor binding sites in the C. elegans 

and D. melanogaster genomes using ChIP-chip and ChIP-sequencing technologies.  

This thesis additionally presents hypotheses about gene regulatory networks 

present in the yeast Saccharomyces cerevisiae. Together with the Wine Research Centre 

at UBC, we used applied genomics and bioinformatics technologies to study long-term 

yeast fermentation in grape must. A major biological result was the identification of a 

novel stress response activated during fermentation, and the characterization of that 

response using over-representation of functional annotations and regulatory motif 

predictions (Chapter 4). Our findings suggest roles for 62 uncharacterized genes in stress; 

indeed, one gene has since been implicated in ethanol tolerance and a second in 
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regulating osmotic pressure (Hennie van Vuuren, personal communication). Because 

yeast genes are separated by short intergenic regions that are on average about 500 bp 

(18), we did not make use of evolutionary conservation in the regulatory motif over-

representation analysis. However, seven Saccharomyces genomes are now available 

(19;20), and investigating the evolution of the identified stress regulatory elements is an 

intriguing future direction. 

7.3 Limitations of conservation analysis 

Although conservation has provided us with a great deal of insight into gene 

regulatory mechanisms through the delineation of potential regulatory sequences, it is 

unlikely to be able to identify all functionally important elements, even with the 

accumulation of new genomes. Conservation is useful for detecting regulation that has 

been retained through evolution, but it provides only limited insight into changes that 

impact gene regulation in a species-specific manner. The choice of species for 

comparison influences our ability to identify functional regulatory motifs using 

phylogenetic footprinting, as does the choice of algorithm due to differences in alignment 

accuracy (21) and transcription factor binding site evolution.  

Transcription factor binding sites are subject to less stringent selection compared 

to protein-coding regions. This is because binding site turnover, where new binding sites 

arise from random mutations to replace the function of lost sites, can easily occur given 

the short length of the sites and the degeneracy of transcription factor binding (22;23). In 

addition, new binding sites can arise following transposition of mobile elements (24;25). 

The even-skipped enhancer system S2E is a well-studied example where substantial 

divergence among four Drosophila species has occurred at the sequence level, including 
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large insertions and deletions in the spacers between known binding sites, single 

nucleotide substitutions in binding sites, and gains and losses of binding sites for 

important activators; yet despite these differences, function, defined in terms of the 

expression pattern of its target gene, remains highly conserved (26;27). Evidence is 

accumulating for widespread evolutionary turnover of transcription factor binding sites 

(23;28-30), as well as for transcription start positions (31). The loss and gain of binding 

sites and transcription start positions likely contributes to species-specific changes in 

gene expression. Alignment algorithms that take into account the more flexible 

architecture of regulatory sequences have emerged that use binding site predictions to 

anchor and guide alignment (32) or incorporate models of binding site evolution into the 

alignment process (33). Despite this, it is evident that for a large number of 

transcriptional regulatory elements, conservation analysis is insufficient and additional 

information is needed.  

7.4 Future directions for gene regulation studies 

A major bottleneck for improving our understanding of human gene regulation is 

experimental validation of the functions of computationally predicted regulatory 

sequences. Only a few data sets exist for which the cis-regulatory elements/modules are 

well-characterized. The muscle regulatory region collection (34), for example, is used 

time and time again to judge the performance of motif discovery methods, making the 

majority of predictions difficult to assess and, at times, leading to overtraining. Thus, we 

are in dire need of new data. Though a number of groups have begun large-scale 

enhancer validation experiments (35-39), generating appropriate data to test new 

computational gene regulation approaches also requires experimental determination of 
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the regulatory elements within enhancers, as well as the transcription factors that bind to 

them. ChIP-chip data from the pilot phase of the ENCODE Project has elucidated a small 

fraction of the in vivo binding site locations for human transcription factors (40), and 

more data is expected in time as the project scales to the whole genome. Additionally, 

experiments investigating epigenetic modifications have illuminated the role of histone 

modifications in regulating gene expression, and have potential for delineation of 

functional regulatory domains (41;42). 

The vast majority of gene regulation studies represent “the view from the 

genome” (43). They attempt to model all of the information encoded into the regulatory 

DNA, and describe the organization of cis-regulatory systems in terms of every 

interaction that can occur under any circumstance. However, diverse data is accumulating 

describing regulatory events in specific cell types and at specific developmental time 

points (40), so that we can now begin to model regulatory networks in a more dynamic 

manner, i.e. using “the view from the nucleus” (43). Most computational approaches to 

identify regulatory mechanisms to date take advantage of DNA sequence information and 

RNA expression levels, but few utilize information on protein sequences, chromatin 

properties and the three-dimensional structure and position of transcription factors. 

Protein data can be used to enhance our understanding of transcription factor binding 

specificity, linking transcription factors to the sites they regulate. Chromatin modification 

data can be used, much like sequence conservation data was applied in this thesis, to 

indicate those regions more likely to serve as regulatory sequences for a cell in a specific 

environment. Increased understanding of the three dimensional properties of transcription 

factors, including both the protein structure and the spatial position of proteins in the 
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nucleus, will allow computational biologists to move beyond DNA sequences to generate 

predictive models of the nucleus. 

At this time, computational analysis of a well-designed experiment with direct 

modulation of transcription factor activity can identify regulatory programs or regulons 

active in a specific type of cell in a specific condition. With the growing arsenal of 

experimental data and more integrative analysis methods, it may soon become feasible 

for computational approaches to make predictive models for the regulation of each gene 

within the larger regulon. 
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Appendices 

 

Appendix 1 

Supplemental Table S1 for Chapter 2 of this thesis is available online.  
 
http://nar.oxfordjournals.org/content/vol33/issue10/images/data/3154/DC1/gki624.txt 
Microarray expression data for genes with significantly reduced expression levels in 
HUVEC cells stimulated with IL-1B in the presence of an inhibitor of the NF-kappaB 
signaling pathway.  
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Appendix 2 

Table S1 shows the distribution of transcription start regions for human and 

mouse genes based on Ensembl and CAGE annotations. We indicate how many genes 

(and what percentage of genes, in brackets) are supported by CAGE evidence. As 

expected, far more TSRs from known transcripts are supported by CAGE tags compared 

to TSRs derived from putative EST gene transcripts (52% versus 6% for human; 62% 

versus 9% for mouse). For our analysis, we consider all TSRs derived from known or 

novel transcripts in the core EnsEMBL annotation, as well as those TSRs derived from 

putative EST gene transcripts with CAGE support. Thus, we have 20349 TSRs 

(18497+790+1061) and 20059 TSRs (16757+739+2563) for human and mouse genes, 

respectively, with an average of 1.3 TSRs per gene. Approximately one quarter of genes 

have multiple TSRs based on our procedure (Figure S1).  

 

Table S1. Distribution of transcription start regions for human and mouse genes 

Human Known Novel Putative * Totals 

Transcription start regions 18497 790 18548 37835 
TSRs with ≥ 5 CAGE tags 9561 (52%) 255 (32%) 1061 (6%) 10877 (29%) 
Mouse  Known Novel Putative * Totals 

Transcription start regions 16757 739 27976 45472 
TSRs with ≥ 5 CAGE tags 10455 (62%) 132 (18%) 2563 (9%) 13150 (29%) 

 
* Derived from EnsEMBL EST Genes 
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Figure S1. Number of TSRs per gene. 
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Table S2. oPOSSUM Worm SSA Results using JASPAR CORE TFBS profiles  

JASPAR 

CORE TF TF Class 

TF 

Supergroup 

Background 

gene hits  

Background 

gene non-

hits  

Target 

gene hits  

Target 

gene non-

hits  

Background 

TFBS rate  

Target 

TFBS rate  Z-score 

Fisher 

score 

SP1 
ZN-FINGER, 
C2H2 vertebrate 448 10144 5 29 0.0026 0.0127 15.72 1.38E-02 

SU_h * 
IPT/TIG 
domain insect 64 10528 2 32 0.0005 0.0051 15.36 1.88E-02 

GAMYB 
TRP-
CLUSTER plant 1333 9259 9 25 0.0085 0.0238 13.25 2.21E-02 

TCF1 HOMEO vertebrate 101 10491 2 32 0.0007 0.0045 10.66 4.27E-02 

ZNF42_5-13 
ZN-FINGER, 
C2H2 vertebrate 825 9767 7 27 0.005 0.0143 10.42 1.46E-02 

Dof2 
ZN-FINGER, 
DOF plant 3447 7145 13 21 0.0194 0.0362 9.616 2.95E-01 

PBF 
ZN-FINGER, 
DOF plant 3444 7148 14 20 0.0164 0.0318 9.587 1.85E-01 

MNB1A 
ZN-FINGER, 
DOF plant 3444 7148 14 20 0.0164 0.0318 9.587 1.85E-01 

HMG-1 HMG plant 3556 7036 12 22 0.0308 0.0515 9.472 4.80E-01 
Agamous MADS plant 1151 9441 6 28 0.0078 0.0175 8.698 1.59E-01 

 
Results are ordered by Z-score and the following parameters were used: Conservation level - Top 30% of conserved regions; Matrix match threshold - 
80%. 
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Appendix 3 

This appendix contains Supplemental Tables S2-S7 and Supplemental Figures S1 

for Chapter 4 of this thesis. Supplemental Table S1 is in a separate document (tab-

delimited file) available online at http://www.cisreg.ca/shosui/FSR/Sup_1.txt. 

 
 

 

Figure S1. Comparison of characterized stress responses.  
Venn diagram showing the number of induced or repressed genes in fermentation that are associated 
with transcriptionally characterized stress responses. Environmental Stress Response (ESR), Common 
Environmental Response (CER), Fermentation Stress Response (FSR). 
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Table S2. Enrichment of regulatory motifs by cluster. 

Cl. Rank PWM 

TFBS 

Name 

Tg 

rate 

Bg 

rate 

Z-

score 

Tg 

hits 

Tg 

non-

hits 

Bg 

hits 

Bg non-

hits Fisher 

1 1 MY0044 PDS 0.036 0.014 9.15 4 1 2834 3839 1.08E-01 

 2 MY0011 LEU3 0.013 0.003 8.35 2 3 887 5786 1.35E-01 

 3 MY0042 UME6 0.026 0.013 5.78 3 2 2873 3800 3.72E-01 

 4 MY0041 MIG1c 0.029 0.017 4.67 4 1 3357 3316 1.92E-01 

 5 MY0030 MIG1b 0.019 0.011 4.20 2 3 1863 4810 4.29E-01 

 6 MY0009 HAP2_3_4 0.024 0.014 4.15 4 1 3432 3241 2.06E-01 

 7 MY0035 SWI5 0.029 0.018 4.01 3 2 3512 3161 5.49E-01 

 8 MY0026 RLM1 0.022 0.014 3.11 3 2 2194 4479 2.03E-01 

 9 MY0015 MIG1a 0.005 0.002 2.95 1 4 529 6144 3.39E-01 

 10 MY0018 PDR3 0.010 0.006 2.60 2 3 1332 5341 2.62E-01 

2 1 MY0025 STRE 0.018 0.004 14.53 5 3 901 5772 1.78E-03 

 2 MY0029 ADR1P 0.042 0.022 8.88 7 1 4687 1986 2.60E-01 

 3 MY0011 LEU3 0.011 0.003 8.24 3 5 887 5786 7.88E-02 

 4 MY0028 XBP1 0.174 0.137 6.74 8 0 6654 19 9.77E-01 

 5 MY0042 UME6 0.025 0.013 6.44 5 3 2873 3800 2.25E-01 

 6 MY0038 GCR1 0.039 0.025 5.56 7 1 6113 560 8.59E-01 

 7 MY0006 ECB 0.015 0.008 5.44 3 5 1426 5247 2.34E-01 

 8 MY0037 UASPHR 0.057 0.041 5.06 7 1 5368 1305 5.17E-01 

 9 MY0004 CCA 0.016 0.010 4.11 3 5 1721 4952 3.42E-01 

 10 MY0032 SCB 0.067 0.052 4.06 8 0 6511 162 8.22E-01 

3 1 MY0016 OAF1 0.004 0.001 8.06 1 10 124 6549 1.88E-01 

 2 MY0004 CCA 0.018 0.010 5.96 6 5 1721 4952 3.99E-02 

 3 MY0037 UASPHR 0.055 0.041 5.02 10 1 5368 1305 3.36E-01 

 4 MY0043 GATA 0.096 0.079 4.54 11 0 6651 22 9.64E-01 

 5 MY0001 ABF1 0.022 0.015 4.38 6 5 3471 3202 5.55E-01 

 6 MY0008 GCN4 0.020 0.015 3.30 8 3 3436 3237 1.34E-01 

 7 MY0010 HSE 0.012 0.008 2.79 5 6 1850 4823 1.63E-01 

 8 MY0028 XBP1 0.148 0.137 2.39 11 0 6654 19 9.69E-01 

 9 MY0021 REB1 0.009 0.007 1.91 2 9 1940 4733 8.74E-01 

 10 MY0040 FKH1 0.074 0.068 1.69 11 0 6485 188 7.30E-01 

4 1 MY0029 ADR1P 0.036 0.022 17.80 51 12 4687 1986 3.92E-02 

 2 MY0005 CSRE 0.030 0.017 16.74 46 17 3395 3278 3.00E-04 

 3 MY0025 STRE 0.010 0.004 16.58 19 44 901 5772 5.05E-04 

 4 MY0018 PDR3 0.012 0.006 14.97 20 43 1332 5341 1.89E-02 

 5 MY0016 OAF1 0.003 0.001 12.18 4 59 124 6549 3.13E-02 

 6 MY0042 UME6 0.020 0.013 11.21 34 29 2873 3800 5.40E-02 

 7 MY0030 MIG1b 0.016 0.011 10.09 24 39 1863 4810 5.25E-02 

 8 MY0041 MIG1c 0.023 0.017 8.06 37 26 3357 3316 1.14E-01 

 9 MY0039 CAR1_r 0.016 0.012 6.31 35 28 3147 3526 1.15E-01 

 10 MY0020 RAP1 0.025 0.020 6.20 42 21 4214 2459 3.32E-01 
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Cl. Rank PWM 

TFBS 

Name 

Tg 

rate 

Bg 

rate 

Z-

score 

Tg 

hits 

Tg 

non-

hits 

Bg 

hits 

Bg non-

hits Fisher 

5 1 MY0018 PDR3 0.012 0.006 12.39 15 22 1332 5341 3.41E-03 

 2 MY0013 MCB 0.013 0.008 8.31 18 19 2085 4588 2.04E-02 

 3 MY0020 RAP1 0.027 0.020 5.79 28 9 4214 2459 7.72E-02 

 4 MY0004 CCA 0.013 0.010 4.75 13 24 1721 4952 1.35E-01 

 5 MY0037 UASPHR 0.047 0.041 4.32 28 9 5368 1305 8.27E-01 

 6 MY0035 SWI5 0.022 0.018 4.18 23 14 3512 3161 1.60E-01 

 7 MY0036 TBP 0.120 0.111 3.84 37 0 6655 18 9.05E-01 

 8 MY0032 SCB 0.057 0.052 3.06 36 1 6511 162 7.74E-01 

 9 MY0040 FKH1 0.074 0.068 3.04 35 2 6485 188 9.14E-01 

 10 MY0029 ADR1P 0.025 0.022 2.92 27 10 4687 1986 4.37E-01 

6 1 MY0037 UASPHR 0.053 0.041 13.28 88 11 5368 1305 1.90E-02 

 2 MY0029 ADR1P 0.029 0.022 11.34 73 26 4687 1986 2.62E-01 

 3 MY0015 MIG1a 0.004 0.002 10.37 12 87 529 6144 9.49E-02 

 4 MY0028 XBP1 0.152 0.137 9.87 99 0 6654 19 7.56E-01 

 5 MY0011 LEU3 0.006 0.003 9.80 24 75 887 5786 2.48E-03 

 6 MY0025 STRE 0.006 0.004 9.63 19 80 901 5772 7.24E-02 

 7 MY0041 MIG1c 0.022 0.017 8.71 63 36 3357 3316 5.46E-03 

 8 MY0005 CSRE 0.022 0.017 8.52 60 39 3395 3278 3.39E-02 

 9 MY0018 PDR3 0.008 0.006 8.39 25 74 1332 5341 1.21E-01 

 10 MY0039 CAR1_r 0.015 0.012 7.19 52 47 3147 3526 1.69E-01 

7 1 MY0025 STRE 0.006 0.004 17.35 70 257 901 5772 9.06E-05 

 2 MY0029 ADR1P 0.027 0.022 15.40 249 78 4687 1986 1.19E-02 

 3 MY0030 MIG1b 0.013 0.011 11.28 105 222 1863 4810 5.80E-02 

 4 MY0018 PDR3 0.008 0.006 11.08 81 246 1332 5341 2.23E-02 

 5 MY0016 OAF1 0.002 0.001 10.90 12 315 124 6549 2.48E-02 

 6 MY0005 CSRE 0.021 0.017 10.88 176 151 3395 3278 1.63E-01 

 7 MY0039 CAR1_r 0.015 0.012 9.76 176 151 3147 3526 1.08E-02 

 8 MY0044 PDS 0.017 0.014 8.92 151 176 2834 3839 1.03E-01 

 9 MY0042 UME6 0.016 0.013 8.82 155 172 2873 3800 6.82E-02 

 10 MY0041 MIG1c 0.019 0.017 8.54 177 150 3357 3316 9.80E-02 

8 1 MY0040 FKH1 0.078 0.068 14.45 237 1 6485 188 9.61E-03 

 2 MY0026 RLM1 0.017 0.014 9.16 89 149 2194 4479 8.39E-02 

 3 MY0021 REB1 0.009 0.007 6.69 85 153 1940 4733 1.74E-02 

 4 MY0018 PDR3 0.007 0.006 5.76 54 184 1332 5341 1.71E-01 

 5 MY0003 CBF1 0.006 0.005 5.28 51 187 1209 5464 1.14E-01 

 6 MY0010 HSE 0.010 0.008 4.48 69 169 1850 4823 3.58E-01 

 7 MY0024 STE12 0.020 0.019 4.40 140 98 3790 2883 2.91E-01 

 8 MY0028 XBP1 0.141 0.137 3.75 238 0 6654 19 5.13E-01 

 9 MY0036 TBP 0.115 0.111 3.64 238 0 6655 18 5.32E-01 

 10 MY0037 UASPHR 0.043 0.041 3.49 190 48 5368 1305 6.30E-01 
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Cl. Rank PWM 

TFBS 

Name 

Tg 

rate 

Bg 

rate 

Z-

score 

Tg 

hits 

Tg 

non-

hits 

Bg 

hits 

Bg non-

hits Fisher 

9 1 MY0007 GAL4 0.001 0.000 20.69 3 155 28 6645 3.40E-02 

 2 MY0026 RLM1 0.018 0.014 8.59 67 91 2194 4479 8.37E-03 

 3 MY0025 STRE 0.005 0.004 7.59 33 125 901 5772 7.50E-03 

 4 MY0009 HAP2_3_4 0.017 0.014 7.36 90 68 3432 3241 9.76E-02 

 5 MY0044 PDS 0.018 0.014 7.31 86 72 2834 3839 1.83E-03 

 6 MY0042 UME6 0.016 0.013 7.05 81 77 2873 3800 2.44E-02 

 7 MY0005 CSRE 0.021 0.017 6.80 86 72 3395 3278 2.11E-01 

 8 MY0030 MIG1b 0.013 0.011 6.14 52 106 1863 4810 9.96E-02 

 9 MY0029 ADR1P 0.025 0.022 5.92 114 44 4687 1986 3.36E-01 

 10 MY0012 LYS14 0.016 0.014 5.92 69 89 2601 4072 1.33E-01 

10 1 MY0025 STRE 0.007 0.004 13.50 41 133 901 5772 2.86E-04 

 2 MY0016 OAF1 0.002 0.001 12.22 7 167 124 6549 4.89E-02 

 3 MY0044 PDS 0.019 0.014 12.19 93 81 2834 3839 2.58E-03 

 4 MY0029 ADR1P 0.027 0.022 12.07 134 40 4687 1986 3.01E-02 

 5 MY0039 CAR1_r 0.016 0.012 12.01 102 72 3147 3526 1.79E-03 

 6 MY0042 UME6 0.016 0.013 6.56 83 91 2873 3800 1.26E-01 

 7 MY0011 LEU3 0.004 0.003 5.34 30 144 887 5786 8.44E-02 

 8 MY0018 PDR3 0.007 0.006 5.24 44 130 1332 5341 5.39E-02 

 9 MY0007 GAL4 0.001 0.000 5.13 2 172 28 6645 1.76E-01 

 10 MY0038 GCR1 0.027 0.025 4.30 162 12 6113 560 2.95E-01 

11 1 MY0007 GAL4 0.002 0.000 15.65 2 46 28 6645 1.91E-02 

 2 MY0005 CSRE 0.025 0.017 9.02 34 14 3395 3278 4.09E-03 

 3 MY0002 AFT1 0.014 0.009 8.04 22 26 1818 4855 4.58E-03 

 4 MY0009 HAP2_3_4 0.020 0.014 7.29 32 16 3432 3241 2.42E-02 

 5 MY0029 ADR1P 0.028 0.022 6.92 39 9 4687 1986 6.18E-02 

 6 MY0025 STRE 0.007 0.004 6.82 12 36 901 5772 2.39E-02 

 7 MY0030 MIG1b 0.015 0.011 6.38 18 30 1863 4810 9.70E-02 

 8 MY0017 PAC 0.015 0.011 6.06 29 19 2785 3888 7.16E-03 

 9 MY0034 ROX1 0.028 0.024 3.85 34 14 4212 2461 1.70E-01 

 10 MY0044 PDS 0.017 0.014 3.08 22 26 2834 3839 3.71E-01 

12 1 MY0044 PDS 0.020 0.014 9.70 56 42 2834 3839 2.59E-03 

 2 MY0007 GAL4 0.001 0.000 9.34 2 96 28 6645 6.94E-02 

 3 MY0005 CSRE 0.023 0.017 9.14 60 38 3395 3278 2.63E-02 

 4 MY0019 PHO4 0.003 0.002 8.35 11 87 379 6294 2.47E-02 

 5 MY0011 LEU3 0.005 0.003 6.91 19 79 887 5786 5.88E-02 

 6 MY0014 MET31_32 0.006 0.004 6.13 21 77 1162 5511   

 7 MY0029 ADR1P 0.024 0.022 4.29 75 23 4687 1986 1.05E-01 

 8 MY0012 LYS14 0.016 0.014 4.04 42 56 2601 4072 2.48E-01 

 9 MY0016 OAF1 0.001 0.001 3.91 3 95 124 6549 2.79E-01 

 10 MY0030 MIG1b 0.012 0.011 2.80 33 65 1863 4810 1.27E-01 

13 (0 genes differentially expressed)                 
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Cl. Rank PWM 

TFBS 

Name 

Tg 

rate 

Bg 

rate 

Z-

score 

Tg 

hits 

Tg 

non-

hits 

Bg 

hits 

Bg non-

hits Fisher 

14 1 MY0010 HSE 0.012 0.008 11.11 57 97 1850 4823 8.29E-03 

 2 MY0032 SCB 0.060 0.052 10.40 151 3 6511 162 4.86E-01 

 3 MY0012 LYS14 0.017 0.014 8.10 75 79 2601 4072 9.64E-03 

 4 MY0023 RRPE 0.040 0.035 8.06 136 18 5417 1256 1.27E-02 

 5 MY0028 XBP1 0.146 0.137 6.78 154 0 6654 19 6.48E-01 

 6 MY0034 ROX1 0.028 0.024 6.66 105 49 4212 2461 1.14E-01 

 7 MY0033 PHO2 0.112 0.106 4.97 8 146 379 6294 6.52E-01 

 8 MY0030 MIG1b 0.012 0.011 4.87 47 107 1863 4810 2.65E-01 

 9 MY0004 CCA 0.011 0.010 4.76 45 109 1721 4952 1.92E-01 

 10 MY0037 UASPHR 0.044 0.041 3.59 132 22 5368 1305 5.91E-02 

15 1 MY0016 OAF1 0.002 0.001 11.02 8 215 124 6549 6.37E-02 

 2 MY0031 MCM1 0.090 0.083 9.20 189 34 5576 1097 3.58E-01 

 3 MY0037 UASPHR 0.045 0.041 6.31 182 41 5368 1305 3.69E-01 

 4 MY0023 RRPE 0.038 0.035 6.08 187 36 5417 1256 1.79E-01 

 5 MY0012 LYS14 0.016 0.014 6.06 101 122 2601 4072 3.43E-02 

 6 MY0014 MET31_32 0.005 0.004 6.01 50 173 1162 5511 3.55E-02 

 7 MY0033 PHO2 0.111 0.106 5.08 222 1 6662 11 9.44E-01 

 8 MY0036 TBP 0.115 0.111 4.14 223 0 6655 18 5.53E-01 

 9 MY0003 CBF1 0.005 0.005 3.44 47 176 1209 5464 1.50E-01 

 10 MY0001 ABF1 0.016 0.015 3.18 123 100 3471 3202 1.96E-01 

16 1 MY0023 RRPE 0.041 0.035 15.94 400 45 5417 1256 6.65E-07 

 2 MY0022 RPN4 0.009 0.007 11.69 160 285 1914 4759 7.85E-04 

 3 MY0033 PHO2 0.113 0.106 11.16 444 1 6662 11 8.30E-01 

 4 MY0031 MCM1 0.088 0.083 10.00 379 66 5576 1097 2.07E-01 

 5 MY0017 PAC 0.013 0.011 9.93 213 232 2785 3888 6.63E-03 

 6 MY0034 ROX1 0.027 0.024 8.39 304 141 4212 2461 1.51E-02 

 7 MY0024 STE12 0.021 0.019 7.32 264 181 3790 2883 1.60E-01 

 8 MY0032 SCB 0.055 0.052 6.22 440 5 6511 162 4.52E-02 

 9 MY0036 TBP 0.114 0.111 4.53 445 0 6655 18 3.12E-01 

 10 MY0003 CBF1 0.005 0.005 4.31 87 358 1209 5464 2.42E-01 

17 1 MY0011 LEU3 0.007 0.003 11.62 17 44 887 5786 2.12E-03 

 2 MY0023 RRPE 0.046 0.035 11.09 56 5 5417 1256 1.85E-02 

 3 MY0012 LYS14 0.020 0.014 9.94 33 28 2601 4072 1.22E-02 

 4 MY0031 MCM1 0.096 0.083 8.49 51 10 5576 1097 5.80E-01 

 5 MY0018 PDR3 0.009 0.006 8.23 17 44 1332 5341 8.80E-02 

 6 MY0009 HAP2_3_4 0.019 0.014 7.87 38 23 3432 3241 5.86E-02 

 7 MY0034 ROX1 0.030 0.024 6.95 47 14 4212 2461 1.51E-02 

 8 MY0004 CCA 0.012 0.010 4.49 19 42 1721 4952 2.08E-01 

 9 MY0043 GATA 0.086 0.079 4.35 60 1 6651 22 9.82E-01 

 10 MY0040 FKH1 0.072 0.068 3.11 60 1 6485 188 4.85E-01 
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Cl. Rank PWM 

TFBS 

Name 

Tg 

rate 

Bg 

rate 

Z-

score 

Tg 

hits 

Tg 

non-

hits 

Bg 

hits 

Bg non-

hits Fisher 

18 1 MY0023 RRPE 0.044 0.035 23.54 332 33 5417 1256 2.93E-07 

 2 MY0020 RAP1 0.025 0.020 14.88 259 106 4214 2459 1.33E-03 

 3 MY0017 PAC 0.014 0.011 13.21 187 178 2785 3888 2.31E-04 

 4 MY0024 STE12 0.022 0.019 10.60 222 143 3790 2883 7.19E-02 

 5 MY0004 CCA 0.012 0.010 9.65 113 252 1721 4952 1.78E-02 

 6 MY0033 PHO2 0.111 0.106 6.86 365 0 6662 11 5.56E-01 

 7 MY0006 ECB 0.009 0.008 6.29 92 273 1426 5247 4.93E-02 

 8 MY0002 AFT1 0.011 0.009 5.16 114 251 1818 4855 5.58E-02 

 9 MY0021 REB1 0.008 0.007 5.07 122 243 1940 4733 4.39E-02 

 10 MY0032 SCB 0.054 0.052 3.44 357 8 6511 162 4.76E-01 

19 1 MY0005 CSRE 0.041 0.017 10.70 6 1 3395 3278 6.86E-02 

 2 MY0030 MIG1b 0.027 0.011 9.79 5 2 1863 4810 2.11E-02 

 3 MY0041 MIG1c 0.034 0.017 8.09 6 1 3357 3316 6.47E-02 

 4 MY0002 AFT1 0.017 0.009 4.70 3 4 1818 4855 2.92E-01 

 5 MY0014 MET31_32 0.009 0.004 4.58 2 5 1162 5511 3.52E-01 

 6 MY0023 RRPE 0.046 0.035 3.55 6 1 5417 1256 6.09E-01 

 7 MY0019 PHO4 0.004 0.002 3.34 1 6 379 6294 3.36E-01 

 8 MY0012 LYS14 0.020 0.014 3.20 3 4 2601 4072 5.58E-01 

 9 MY0032 SCB 0.064 0.052 3.13 7 0 6511 162 8.42E-01 

 10 MY0029 ADR1P 0.027 0.022 2.36 7 0 4687 1986 8.45E-02 

20 1 MY0020 RAP1 0.036 0.020 17.02 34 7 4214 2459 5.09E-03 

 2 MY0023 RRPE 0.053 0.035 15.21 38 3 5417 1256 3.67E-02 

 3 MY0002 AFT1 0.017 0.009 11.49 16 25 1818 4855 6.87E-02 

 4 MY0042 UME6 0.018 0.013 6.98 22 19 2873 3800 1.14E-01 

 5 MY0024 STE12 0.024 0.019 6.32 28 13 3790 2883 9.15E-02 

 6 MY0004 CCA 0.013 0.010 5.30 16 25 1721 4952 4.41E-02 

 7 MY0035 SWI5 0.023 0.018 5.20 27 14 3512 3161 6.15E-02 

 8 MY0032 SCB 0.059 0.052 4.51 41 0 6511 162 3.66E-01 

 9 MY0001 ABF1 0.017 0.015 3.56 26 15 3471 3202 9.63E-02 

 10 MY0018 PDR3 0.007 0.006 2.23 10 31 1332 5341 2.95E-01 

1-6 1 MY0029 ADR1P 0.030 0.022 19.33 166 56 4687 1986 8.21E-02 

 2 MY0018 PDR3 0.010 0.006 18.35 65 157 1332 5341 7.26E-04 

 3 MY0025 STRE 0.007 0.004 17.82 48 174 901 5772 7.57E-04 

 4 MY0005 CSRE 0.023 0.017 14.81 136 86 3395 3278 1.40E-03 

 5 MY0037 UASPHR 0.049 0.041 13.78 189 33 5368 1305 4.60E-02 

 6 MY0011 LEU3 0.005 0.003 11.74 47 175 887 5786 9.74E-04 

 7 MY0041 MIG1c 0.021 0.017 11.70 132 90 3357 3316 4.37E-03 

 8 MY0030 MIG1b 0.014 0.011 10.53 73 149 1863 4810 6.29E-02 

 9 MY0042 UME6 0.017 0.013 10.20 114 108 2873 3800 8.75E-03 

 10 MY0039 CAR1_r 0.015 0.012 8.38 114 108 3147 3526 1.23E-01 
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Cl. Rank PWM 

TFBS 

Name 

Tg 

rate 

Bg 

rate 

Z-

score 

Tg 

hits 

Tg 

non-

hits 

Bg 

hits 

Bg non-

hits Fisher 

7-10 1 MY0025 STRE 0.006 0.004 18.76 172 720 901 5772 4.60E-06 

 2 MY0029 ADR1P 0.025 0.022 16.29 652 240 4687 1986 4.21E-02 

 3 MY0044 PDS 0.017 0.014 13.26 426 466 2834 3839 1.58E-03 

 4 MY0039 CAR1_r 0.014 0.012 12.61 473 419 3147 3526 5.63E-04 

 5 MY0016 OAF1 0.001 0.001 11.27 26 866 124 6549 2.73E-02 

 6 MY0018 PDR3 0.007 0.006 10.62 204 688 1332 5341 2.47E-02 

 7 MY0005 CSRE 0.019 0.017 10.50 473 419 3395 3278 1.21E-01 

 8 MY0030 MIG1b 0.012 0.011 9.88 272 620 1863 4810 5.95E-02 

 9 MY0042 UME6 0.015 0.013 9.87 408 484 2873 3800 6.91E-02 

 10 MY0026 RLM1 0.016 0.014 9.16 320 572 2194 4479 4.09E-02 

11-12 1 MY0007 GAL4 0.001 0.000 16.75 4 142 28 6645 4.55E-03 

 2 MY0005 CSRE 0.024 0.017 12.67 94 52 3395 3278 7.68E-04 

 3 MY0044 PDS 0.019 0.014 9.73 77 69 2834 3839 8.54E-03 

 4 MY0029 ADR1P 0.026 0.022 7.50 114 32 4687 1986 2.26E-02 

 5 MY0011 LEU3 0.005 0.003 6.85 28 118 887 5786 3.04E-02 

 6 MY0030 MIG1b 0.013 0.011 5.97 51 95 1863 4810 4.02E-02 

 7 MY0019 PHO4 0.003 0.002 5.74 13 133 379 6294 7.62E-02 

 8 MY0002 AFT1 0.011 0.009 4.86 49 97 1818 4855 5.69E-02 

 9 MY0025 STRE 0.005 0.004 4.33 26 120 901 5772 8.72E-02 

 10 MY0009 HAP2_3_4 0.016 0.014 3.63 79 67 3432 3241 2.89E-01 

14-17 1 MY0023 RRPE 0.040 0.035 20.66 776 104 5417 1256 7.18E-08 

 2 MY0031 MCM1 0.089 0.083 15.36 745 135 5576 1097 2.19E-01 

 3 MY0033 PHO2 0.112 0.106 13.04 878 2 6662 11 8.14E-01 

 4 MY0034 ROX1 0.027 0.024 10.76 588 292 4212 2461 1.72E-02 

 5 MY0017 PAC 0.012 0.011 8.55 404 476 2785 3888 1.03E-02 

 6 MY0032 SCB 0.055 0.052 8.07 867 13 6511 162 4.43E-02 

 7 MY0012 LYS14 0.015 0.014 7.61 379 501 2601 4072 1.10E-02 

 8 MY0036 TBP 0.114 0.111 5.15 879 1 6655 18 3.33E-01 

 9 MY0022 RPN4 0.008 0.007 5.14 275 605 1914 4759 6.27E-02 

 10 MY0004 CCA 0.010 0.010 4.53 234 646 1721 4952 3.18E-01 

18-20 1 MY0023 RRPE 0.045 0.035 27.48 364 36 5417 1256 7.51E-08 

 2 MY0020 RAP1 0.026 0.020 19.48 283 117 4214 2459 1.12E-03 

 3 MY0017 PAC 0.014 0.011 12.48 202 198 2785 3888 3.67E-04 

 4 MY0024 STE12 0.022 0.019 12.01 247 153 3790 2883 2.88E-02 

 5 MY0004 CCA 0.012 0.010 10.75 126 274 1721 4952 7.57E-03 

 6 MY0002 AFT1 0.011 0.009 9.21 125 275 1818 4855 4.72E-02 

 7 MY0033 PHO2 0.111 0.106 6.91 400 0 6662 11 5.27E-01 

 8 MY0032 SCB 0.055 0.052 5.10 392 8 6511 162 3.70E-01 

 9 MY0021 REB1 0.008 0.007 4.61 133 267 1940 4733 4.33E-02 

 10 MY0005 CSRE 0.018 0.017 2.83 211 189 3395 3278 2.49E-01 
 
TFBS profiles with Z-scores ≥ 10 and Fisher scores ≤ 0.01 are highlighted in boldface. Abbreviations: 
Cl. – cluster; Tg – target; Bg – background 
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Table S3. Glucose repressed genes induced during fermentation 
Forty most highly glucose repressed genes (Young et al., 2003). Genes in the FSR are shaded in green. 
An asterisk (*) indicates glucose repressed genes (as reviewed by Schuller, 2003).  
Gene Cluster Max. FC DE Gene Cluster Max. FC DE 

ACS1 4 10.79 TRUE FOX2 10 3.49 TRUE 
CTA1 4 6.48 TRUE IDP2* 10 3.45 TRUE 
YPR151C 4 17.68 TRUE FBP1* 10 4.11 TRUE 
ATO3 6 4.41 TRUE YNL195C 10 4.42 TRUE 
SPG1 6 5.97 TRUE FUN34 10 5.33 TRUE 
REG2 7 3.20 TRUE POT1 11 3.82 TRUE 
ICL1 7 2.26 FALSE YAT1 13 1.17 FALSE 
SPS100 7 3.38 TRUE YEL008W 13 1.06 FALSE 
PCK1 7 3.26 TRUE YER024W 13 1.07 FALSE 
FDH1 7 3.89 TRUE YGR067C 13 1.33 FALSE 
YPR150W 7 2.11 TRUE YGR243W 13 1.11 FALSE 
ADY2 8 2.88 TRUE GUT1 13 1.30 FALSE 
DMC1 8 2.05 TRUE BOP2 13 1.38 FALSE 
YKL187C 8 1.79 FALSE YMR206W 13 1.11 FALSE 
YMR107W 8 3.53 TRUE PDH1 13 1.40 FALSE 
CIT3 8 2.18 TRUE ICL2 13 1.10 FALSE 
JEN1 9 2.47 TRUE YIL057C 14 2.01 TRUE 
IDP3 9 1.66 FALSE YNL013C 14 1.50 FALSE 
FDH2 9 1.62 FALSE SFC1 16 1.64 FALSE 
POX1 10 3.78 TRUE YLR126C 16 1.57 TRUE 
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Table S4. Induced genes involved in mitochondrial respiration/oxidative phosphorylation. 
FSR genes are highlighted in green. 
Gene Cluster Max. FC Gene Cluster Max. FC Gene Cluster Max. FC 

CYB2 2 68.30 COX5A* 10 9.21 PET9 11 5.69 
MBR1 3 27.90 CYC1* 10 8.97 QCR2* 11 5.35 
HAP1 5 9.63 PET10 10 8.06 ATP20 11 4.24 
ISF1 6 6.36 RIP1 10 7.46 COX6* 11 4.14 
COX23 7 3.28 CYT1 10 6.96 ATP3 11 3.86 
IDH1 7 2.22 CYC7 10 6.27 COX8* 11 3.52 
NCA2 8 3.51 COX7* 10 5.65 ATP2 11 2.96 
IDH2 8 2.65 QCR6* 10 5.24 ATP7 11 2.91 
CIT3 8 2.18 QCR9* 10 5.15 ETR1 11 2.85 
MDL2 8 2.12 COR1 10 4.90 MCR1 11 2.81 
SDH1 9 2.77 SDH4* 10 4.76 ATP1 12 2.77 
ATP18 9 2.59 DLD1* 10 4.11 RSM24 12 2.66 
COX14 9 2.52 NDI1* 10 3.92 SDH3 12 2.63 
ATP15 9 2.50 QCR8* 10 3.83 SHY1 12 2.62 
COX16 9 2.20 SDH2* 10 3.52 COX9 12 2.62 
CIT1* 9 2.20 QCR7* 10 3.36 LSC1 12 2.55 
KGD2 9 2.09 STF1 10 3.03 TAZ1 12 2.34 
COQ9 9 2.09 PET100 10 3.02 MDH1 12 2.32 
QCR10* 10 18.42 AAC1 10 3.00 YJL045W 12 2.20 
INH1 10 12.71 KGD1* 10 2.97 CYB5 12 2.20 
COX13* 10 9.41 COX4* 11 7.05 COQ5 12 2.10 

 

 

Table S5. Induced genes involved in sterol biosynthesis 
Gene Cluster Max. FC Gene Cluster Max. FC 

ATG26 7 3.10 ERG13 11 3.08 
PDR16 7 3.01 MCR1 11 2.81 
ARE1 8 2.40 CYB5 12 2.20 
ECM22 8 2.02 ERG1 12 2.35 
UPC2 8 4.00 ERG8 12 2.74 
ERG5 9 2.59 ERG9 12 2.18 
YEH1 9 2.50 IDI1 12 2.31 
HMG1 10 2.89    
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Table S6. Induced genes involved in oxidative stress 
FSR genes are highlighted in green. 
Gene Cluster Max. FC Gene Cluster Max. FC 

CTA1 4 6.48 PRX1 10 4.64 
GPX1 4 6.71 TRX3 10 5.47 
RIM15 6 6.99 CTT1 11 10.73 
SKN7 6 7.62 MCR1 11 2.81 
SNQ2 6 5.37 MXR1 11 3.13 
SRX1 6 4.41 SOD2 11 6.90 
GSH1 7 3.85 GRX2 12 2.58 
SCH9 7 4.07 SOD1 12 2.49 
ZWF1 7 3.37 TSA2 12 2.07 
YAP1 8 2.77    
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Table S7. Induced genes annotated to carbohydrate metabolic process. 
Genes in the FSR are shaded in green. An asterisk (*) indicates glucose repressed genes (as reviewed 
by Schuller, 2003). 

Gene Cluster 

Maximum 

Fold 

Change Gene Cluster 

Maximum 

Fold 

Change Gene Cluster 

Maximum 

Fold 

Change 

GAC1 1 44.21 TPS1 7 3.16 DLD1* 10 4.11 
INO1 2 39.14 TPS2 7 3.79 FBP1* 10 4.11 
SHC1 2 20.00 ZWF1 7 3.37 FYV10 10 2.74 
GSC2 4 13.38 AAT1 8 2.46 UGA2 10 3.38 
GSY2 4 7.58 CIT3 8 2.18 GND2 10 4.02 
RGT1 4 7.26 IDH2 8 2.65 HAP4* 10 4.10 
TSL1 4 8.11 KNH1 8 2.57 IDP2* 10 3.45 
VID24 4 6.22 PSK2 8 2.30 KGD1* 10 2.97 
ADR1 5 12.61 STD1 8 2.22 NTH2 10 4.06 
GIP2 6 11.83 AMS1 9 2.65 PGM2 10 3.48 
NRG1 6 16.02 CIT1* 9 2.20 PIG2 10 3.88 
PSK1 6 5.66 GAL1* 9 2.16 SDH2* 10 3.52 
TOS3 6 7.39 GAL4* 9 2.34 SDH4* 10 4.76 
UBC8 6 5.01 GAL80* 9 2.42 TKL2 10 4.19 
ATH1 7 3.59 GID7 9 2.52 YJR096W 10 6.18 
FBP26 7 4.23 KGD2 9 2.09 GRE3 11 2.97 
GID8 7 3.91 KRE9 9 2.23 SOL4 11 6.24 
GLC8 7 2.40 MLS1* 9 2.65 GCY1 12 2.64 
GLK1 7 2.78 PFK27* 9 2.60 GLO4 12 2.17 
GUT2 7 3.60 RMD5 9 2.76 LSC1 12 2.55 
IDH1 7 2.22 SDH1* 9 2.77 MDH1 12 2.32 
IMP2' 7 2.90 SGA1 9 2.35 MDH2 12 2.35 
KRE6 7 3.65 VID30 9 2.10 PCL10 12 2.09 
NTH1 7 2.91 GLC3 10 8.16 PCL7 12 2.26 
PCK1 7 3.26 GDB1 10 5.94 SDH3 12 2.63 
PFK26 7 3.41 ACN9 10 5.59    
SGA1 7 2.32 BMH2 10 2.91    
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Appendix 4 

This appendix contains Supplemental Tables S1-2 and Supplemental Figures S1-7 

for Chapter 6 of this thesis. Supplemental Table S3 is in a separate document (Excel 

workbook) available online at 

http://www.genome.org/content/vol0/issue2007/images/data/gr.6669607/DC2/Engstrom_

TableS3.xls.  

 
 

 
Figure S1. Phylogenetic tree of Drosophila species. 
Shown are Drosophila species for which whole-genome alignments to D. melanogaster 

were available in the UCSC Genome Browser Database (http://genome.ucsc.edu) at the 
time of this study. The species used in this study are shown in red. Although the remote 
phylogenetic position of D. grimshawi suggests that including that organism would have 
been informative, we chose not to because its genome assembly appeared to be in an early state 
(25,052 scaffolds compared to at most 13,772 scaffolds for any of the included 
species; see Supplemental Table S2). Adapted from the figure at http://rana.lbl.gov/drosophila/.  
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Table S1. Overlap with HCNE-dense regions for selected gene categories 

Gene category 

Number of genes 

overlapping HCNE-
dense regions 

a
 

Total amount of gene 

sequence within 
HCNE-dense regions 

b
 

generation of precursor metabolites and energy 
(GO:0006091) 

14/491 (2.85%) 29k/2056k (1.40%) 

cellular protein metabolic process (GO:0044267) 77/2030 (3.79%) 334k/11549k (2.90%) 

cell organization and biogenesis (GO:0016043) 76/1680 (4.52%) 775k/15021k (5.16%) 
transport (GO:0006810) 69/1517 (4.55%) 185k/10115k (1.83%) 

signal transduction (GO:0007165) 83/1338 (6.20%) 876k/15800k (5.54%) 
multicellular organismal development 
(GO:0007275) 

133/1380 (9.64%) 1829k/18544k (9.86%) 

regulation of transcription, DNA-dependent 
(GO:0006355) 

103/768 (13.41%) 1385k/7736k (17.90%) 
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multicellular organismal development 
(GO:0007275) AND regulation of transcription, 
DNA-dependent (GO:0006355) 

81/334 (24.25%) 1234k/5313k (23.22%) 

All genes 684/13733 (4.98%) 4001k/67464k (5.93%) 
 

a Ratio between number of genes overlapping HCNE-dense regions and the total number of genes in 
the category. b Ratio between amount of gene sequence covered by HCNE-dense regions and the total 
amount of sequence spanned by genes in the category. HCNE-dense regions were identified by sliding 
a 40 kb window across the genome in steps of 1 kb and reporting windows for which at least 1% (400 
bp) of the sequence was covered by HCNEs. Overlapping HCNE-dense windows were merged, 
resulting in 421 HCNE-dense regions covering a total of 13.5 Mb (11.41% of the investigated 
sequence). 
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Table S2. Properties of pairwise and 5-way synteny blocks among Dmel and four other 
Drosophila species  
 Pairwise synteny blocks between Dmel and indicated query 

species 
 Dana Dpse Dvir Dmoj 

Five-way 
synteny 
blocks 

Number of synteny blocks 627 814 920 923 899 
Number of query sequences 
included 30 / 13,772 

scaffolds 

16 / 16 ultra-
scaffolds 
26 / 2649 

scaffolds+contigs 

24 / 
13,562 

scaffolds 

11 / 6843 
scaffolds 

n.c. 

Number of query sequence 
fusions a 

11 5 7 3 n.c. 

Amount of query sequence 
spanned 

114 Mb 
(49%) 

120 Mb (85%) 
131 Mb 
(63%) 

134 Mb 
(69%) 

n.c. 

Amount of Dmel sequence 
spanned 

111 Mb 
(94%) 

110 Mb (93%) 
107 Mb 
(90%) 

105 Mb 
(89%) 

90 Mb 
(76%) 

Number of Dmel genes 
spanned b 

12863 
(94%) 

12434 (91%) 
11690 
(85%) 

11451 
(83%) 

8958 
(65%) 

Number of Dmel genes 
covered c  

11631 
(85%) 

10685 (78%) 
9531 

(69%) 
9279 

(68%) 
6308 

(46%) 
n.c., not calculated 
a To avoid artificial synteny breaks due to scaffold breaks in the assembly, our algorithm for synteny 
block construction includes a step for fusing scaffolds that, when combined, show colinearity with the 
Dmel sequence (see Methods).  
b We considered a gene to be spanned by a synteny block if at least 90% of its total CDS were within 
the extreme borders of the block on the Dmel genome. 
c We considered a gene to be covered by a synteny block if the block contained aligned sequence for at 
least 60% the gene’s total CDS. 
 
 

None of the four species that we compared to Dmel has a finished genome 

assembly. Dana appears to have the most fragmented assembly, consisting of 13,772 

scaffolds. Nevertheless, our results indicate that reliable synteny blocks can be 

constructed because most of the sequence is in very large scaffolds. Although the 

pairwise synteny blocks included few scaffolds (e.g., 30 Dana scaffolds were included), 

they spanned more than 89% of the Dmel euchromatic sequence. As expected, the 

number of synteny blocks increased with evolutionary distance between Dmel and the 

compared species (consistent with an accumulation of rearrangements over evolutionary 

time). Notably, for Dvir and Dmoj, which are equidistant from Dmel, we obtained nearly 

identical synteny block counts. Not unexpectedly, the span of synteny blocks over the 

Dmel sequence and over gene annotations on that sequence decreased with increasing 

evolutionary distance to the compared species. 
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Figure S2 Densities of reciprocally aligned coding sequences (RA-CDS) and HCNES across the 
Dmel genome. See the legend for Figure 6.1 where chromosome arm 2L is depicted. 
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Figure S3. HCNE density peaks tend to be centrally located in large synteny blocks that contain 
multiple genes. 
See also Figure 6.1. 
(A) Randomization strategy. Nonsyntenic regions were excised and the order of synteny blocks was 
randomized, while the positions of peaks were maintained. (B) Effects of varying the bandwidth for 
density computation and threshold for peak detection. Symbols connected by dashed lines represent 
medians over 10 randomizations. The trend for HCNE density peaks to be centrally positioned within 
synteny blocks persisted at all parameter settings. The trend for RA-CDS peaks to be positioned close 
to synteny breaks disappeared at high density computation bandwidths, which appear too high for a 
relevant comparison with synteny blocks (Supplemental Figure S4). Unless otherwise noted, results 
presented in this paper were obtained with a bandwidth of 30,000 and threshold of 0.8. (C) The 
frequency of HCNE density peaks per sequence length increases with synteny block size. Based on 
their span in the Dmel genome, the synteny blocks on Dmel chromosomes 2, 3 and X were grouped 
into six groups of 149-150 blocks each. For each group, the range of synteny block spans and their 
total span are indicated on the x-axis. The y-value for each group shows the ratio between the total 
number of peaks and the total number of bases spanned by the synteny blocks in the group. (D) 
Histogram of number of genes covered by synteny blocks that span HCNE density peaks. Out of all 
136 synteny blocks that spanned a HCNE density peak, 120 (88%) also covered multiple genes. As in 
Table 1, we considered a gene to be covered by a synteny block if the block contained aligned 
sequence for at least 60% the gene’s total CDS. 
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Figure S4. Examples of HCNE and RA-CDS density curves computed with different bandwidths. 
Shown is the D. melanogaster genomic region around the homothorax (hth) gene. 
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Figure S5. The grn locus in Dmel (upper panel), compared to a wider region in Agam 

(lower panel). 
Notation as in Figure 6.2. grn and five other protein-coding genes (underlined) show strong evidence 
of being in conserved microsynteny among the five investigated flies. No functional relationship has 
been described between any of these genes, although both grn and ada2b have regulatory functions in 
development (Brown and Castelli-Gair Hombria, 2000, Development 127:4867; Qi et al., 2004, Mol 

Cell Biol, 24:8080). Between Dmel and Agam, grn has been maintained in microsynteny with two 
downstream genes. The HCNE density peak over the grn ortholog in Agam is the largest within the 
850 kb region examined. Note the elevated gene density around the right border of the synteny block 
in Dmel. 
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Figure S6. The hth locus in Dmel. 
Notation as in Figure 2. The developmental regulatory homeobox gene homothorax (hth) occupies one 
of the most HCNE-dense synteny blocks in the Dmel genome. Its human orthologs MEIS1 and MEIS2 

are surrounded by an exceptional number of noncoding elements conserved across vertebrates 
(Sandelin et al., 2004, BMC Genomics 5:99). Dmel hth is in conserved microsynteny with at least nine 
other genes (underlined) among the five investigated flies. Six of these genes encode protein of 
diverse classes: Irp-1B, an iron regulatory protein uniformly expressed during development 
(Muckenthaler et al., 1998, Eur J Biochem 254:230); Rrp46, a component of the RNA-processing 
exosome (Graham et al., 2006, Mol Biol Cell 17:1399); Cyp12e1, a cytochrome P450 protein; 
CG6465, a putative peptidase; CG14688, a putative phytanoyl-CoA dioxygenase; and Skeletor, a 
chromosomal protein that relocalizes during mitosis (Walker et al., 2000, J Cell Biol 151:1401). The 
remaining three genes are unannotated. The function of an additional protein expressed from the 
CG14681/skeletor transcriptional unit is unknown (Walker et al., 2000). Micro-RNA 318, which was 
cloned from adult flies (Aravin et al., 2003, Dev Cell, 5:337), aligns to the hth locus in all five flies, 
but at different locations relative to irp-1b, indicating that local rearrangements have occurred at the 
edge of the synteny block. hth is the only gene in the synteny block known to have a key regulatory 
role in development. hth is in conserved microsynteny with the gene Rrp46 among flies, mosquitoes, 
bees and beetles, although there is no evidence for a functional relationship between hth and Rrp46, 
which encodes a component of the RNA-processing exosome (Graham et al., 2006). In Dmel the two 
genes are separated by a region of 95 kb that is HCNE-dense and gene-sparse, containing only four 
genes, all of which are in conserved microsynteny with hth among the investigated flies. Similarly, the 
honeybee (Apis mellifera) orthologs of hth and Rrp46 are separated by a gene-sparse ~130 kb region 
(devoid of matches to known Dmel proteins in the UCSC Genome Browser). In Agam and the beetle 
Tribolium castaneum, the intervening regions also appear to be gene-free, but are smaller (~8 kb and 
~10 kb, respectively; estimated from alignments of Dmel transcripts to the 2005-10-11 version of the 
T. castaneum assembly, using the BLAST interface at the Baylor HGSC website, 
www.hgsc.bcm.tmc.edu). In Aaeg, there appears to be a gene desert of at least 45 kb downstream of 
hth. (Since this gene desert is at the end of a supercontig, we could not determine whether hth and 
Rrp46 are linked in Aaeg.) 
 

 

Taken together, these data suggest that a regulatory region is present downstream of hth 

in many insect species, underlies microsynteny conservation of multiple fly genes, but has been 

extensively modified in evolution and possibly lost in some insect species, including Agam. 

Consistent with the variations among insects in the size of the region separating hth and Rrp46, 
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regulatory sequences appear to have diverged greatly at the mosquito hth locus. Little noncoding 

sequence is highly conserved between the hth loci of Agam and Aaeg: using the same detection 

criteria as for the ct, tup and grn loci shown in Figure 2 and Supplemental Figure S5, we only 

found three HCNEs within hth introns and none in the region between hth and Rrp46. We 

reasoned that closer sequence comparisons may be required to detect the regulatory elements at 

the mosquito hth locus, so we compared the Aaeg supercontig harboring the locus to trace reads 

from the genome of Culex pipiens, which is more closely related to Aaeg than Agam. Indeed, the 

introns of Aaeg hth contain numerous elements conserved in Culex at higher levels than most 

surrounding exons (Supplemental Figure S7), confirming that HCNEs are abundant at the hth 

locus in both flies and mosquitoes. 
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Figure S7. Elements at the Aaeg hth locus conserved in Culex pipiens 

The entire supercontig1.597 from assembly AaegL1 is shown. Conserved elements that overlap 
Vectorbase transcripts or matches of Dmel proteins to the supercontig are colored red. Conserved 
elements that by at least half of their length overlap repeats (annotated in Ensembl 43) are colored 
cyan. Remanining conserved elements are colored black. 
 
To identify conserved elements, we downloaded the September 2006 release of Culex pipiens shotgun 
sequencing trace reads from Vectorbase (http://www.vectorbase.org) and searched them for matches 
to supercontig1.597, using blastn (Altschul et al., 1992, Nucleic Acids Res 25:3389) with default 
search parameters (but setting option -b to 100000 so that all alignments with a bit-score above 70 
were included in the output). Blast alignments with a bit-score above 70 were then searched for 
regions with identity above a threshold value (in the range 85% - 100%, as indicated in the figure) 
over 50 alignment columns. Conserved elements were merged if they overlapped on the Aaeg 

supercontig. The bit-score threshold of 70 that we used should be sufficiently low to retain all blast 
alignments containing elements conserved at 95% identity over 50 columns, but may exclude some 
conserved at 85-90% identity. 
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Figure S8. Enhancer trap insertions described by Hayashi et al. 
Arrows indicate locations of enhancer trap insertions, and are labeled with strain number and 
expression pattern as described by Hayashi et al. (2002, Genesis 34:58). Gene models are colored by 
predicted core promoter type as in Figure 2. 
(A) Insertion 731 is about 44 kb upstream of engrailed (en) and expressed in the posterior 
compartment of imaginal discs, similar to en (reviewed by Hidalgo, 1996, Trends Genet 12:1). On the 
contrary, the neighboring gene toutatis (tou) is expressed ubiquitously in wing imaginal discs (Vanolst 
et al., 2005, Development 132:4327). Insertion 934 has a similar expression pattern as insertion 731 
although the two insertions are about 40 kb apart. We failed to find flanking sequence for insertion 
934 in any database, and could therefore not determine its orientation and exact position; the dashed 
arrow indicates its approximate position based on Figure 2 in Hayashi et al. (2002). (B) Insertion 22 is 
about 33 kb upstream of u-shaped (ush), on the opposite strand, and captures the expression pattern of 
ush in imaginal disks, but not in the embryo. Insertion 5133 is about 50 bp upstream of ush, on the 
same strand, and has an embryonic expression pattern similar to that of ush (Fosset et al., 2000, PNAS 

97:7348). 
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Figure S9. Enhancer trap insertions around Dmel genes teashirt (tsh) and tiptop (tio) 
Arrows indicate locations of enhancer trap insertions in the same orientation as tsh and tio (arrows 
above panel) and the reverse orientation (arrows below panel), and are labeled with strain number and 
annotated embryonic expression pattern from GETDB (http://flymap.lab.nic.gac.jp). Gene models are 
colored by predicted core promoter type as in Figure 2. Insertions 103, 3001 and 514 are all within 
300 bp of the annotated transcription start site for tsh. Insertion 2364 is about 10 kb downstream of tsh 

on the opposite strand. Consistent with the expression annotation for these insertions, tsh is expressed 
in the part of the trunk of the embryo that gives rise to the central nervous system (CNS) and 
epidermis, and in some other regions, including part of the visceral mesoderm around the midgut 
(Fasano et al., 1991, Cell 64:63). Insertion 6209 is about 350 bp upstream of tio. Insertions 706, 707 
and 1547 are all about 200 bp downstream of tio. tio is expressed in parts of the embryonic CNS 
(Laugier et al., 2005, Dev Biol 283:446), consistent with the expression annotation for the surrounding 
insertions. For this figure, we combined the tio and CR33987 gene models from FlyBase, because 
CR33987 appears to contain the sequence for the first exon of tio. 
 
 


