
Combing Measurements With
Deterministic Model Outputs:

Predicting Ground-Level Ozone
by

Zhong Liu

B.Sc., The University of Science and Technology of China, 2001
M.Sc., The National University of Singapore, 2003

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

The Faculty of Graduate Studies

(Statistics)

The University Of British Columbia

Dec, 2007

© Zhong Liu 2007



Abstract

The main topic of this thesis is how to combine model outputs from determin-

istic models with measurements from monitoring stations for air pollutants

or other meteorological variables. We consider two different approaches to

address this particular problem.

The first approach is by using the Bayesian Melding (BM) model proposed

by Fuentes and Raftery (2005). We successfully implement this model and

conduct several simulation studies to examine the performance of this model

in different scenarios. We also apply the melding model to the ozone data

to show the importance of using the Bayesian melding model to calibrate

the model outputs. That is, to adjust the model outputs for the prediction

of measurements. Due to the Bayesian framework of the melding model,

we can extend it to incorporate other components such as ensemble models,

reversible jump MCMC for variable selection.

However, the BM model is purely a spatial model and we generally have to

deal with space-time dataset in practice. The deficiency of the BM approach

leads us to a second approach, an alternative to the BM model, which is a

linear mixed model (different from most linear mixed models, the random
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effects being spatially correlated) with temporally and spatially correlated

residuals. We assume the spatial and temporal correlation are separable and

use an AR process to model the temporal correlation. We also develop a

multivariate version of this model.

Both the melding model and linear mixed model are Bayesian hierarchical

models, which can better estimate the uncertainties of the estimates and

predictions.
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Chapter 1

Introduction

Deterministic models have been widely used in scientific research because

they have a number of advantages. First and foremost they, unlike statistical

models, do incorporate prior knowledge about the underlying processes. The

deterministic models usually are made of a series of differential equations

with boundary conditions. Since the boundary conditions and inputs of

the deterministic models are adjustable, they enable scenario analysis under

hypothetical changes to an existing regime, say as a result of abatement

strategies. They enable computer experiments to be run when it is not

feasible to make the phenomenon they represent happen in real life due to

ethical or other constraints. Such experiments can enable the study of input

- output relationships and possibly suggest optimal control settings for use in

the real phenomenon they represent. One of the most important features of

the deterministic models is that repeated runs yield the same outputs with

fixed input. That is why they are called "deterministic". Unlike statistical

models, they do attempt to capture the fundamental dynamic processes that

govern the phenomenon of interest. The complexity of the equations that

describe such dynamics can render analytic solution impossible and force the
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use of numerical models, typically with lots of complicated computer code

and slow running times.

In this thesis, we are interested in the deterministic models used in cli-

mate and environmental studies, one example being the RCM (Regional

Climate Model) described in Caya et al. (1995). Another example, the

MAQSIP (Multiscale Air Quality Simulation Platform) model is described

in Odman and Ingram (1996). The chemical transport model (CTM) called

GEOS-CHEM (Goddard Earth Observing System-Chemistry), which mod-

els hourly ozone fields, is suggested in the current review of NAAQS (Na-

tional Ambient Air Quality Standards) as a method for estimating ozone's

policy relevant background (PRB) level (Garner et al. (2005)). More de-

tails about the various versions of GEOS-CHEM models can be found at

http://www-as.harvard.edu/chemistry/trop/geos/ . The PRB level, a base-

line for the NAAQS, is the ozone concentration that would obtain if there

were no anthropogenic sources of ozone in North America. The PRB can-

not be measured but has to be modeled because even remote areas in North

America is polluted by ozone which drifts from other places. For example,

the monthly maximal hourly ozone concentration level in the Yellowstone

national park (WY) is over 50 ppbv (parts per billion by volume) in most

months from 1998 to 2001 (Figure 3-25a in Garner et al. (2005)). This ozone

concentration level is not low even compared with urban areas. In the EPA

report Garner et al. (2005), the current deterministic models estimate the

PRB level is 15-35 ppbv. Moreover the deterministic models can generate
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useful byproducts such as estimates of the fraction of the ozone field from

the vertical transport from the stratospheric ozone to the troposphere. From

now on, we also refer the deterministic model outputs as model outputs for

simplicity.

Deterministic models simulate the ozone air pollution on grid cells with

certain resolutions. However, the measurements are obtained at each moni-

toring station over the space. So we cannot compare the model outputs with

the measurements directly. Nevertheless, we can examine whether there is

correlation between model outputs and the local measurements. If there is

such correlation, we can use statistical models to combine the measurements

with model outputs to achieve better prediction. In addition, we can also

calibrate deterministic model outputs for predicting the ozone concentration

levels

Edwards (1967) and Speed (1983) have started studying the deterministic

model outputs by using statistical model. Sacks et al. (1989) approximate

the experiment outputs with stochastic processes and choose input values

to optimize some functions of the outputs. Poole and Raftery (2000) use a

Bayesian model to combine different priors for the input to better evaluate the

uncertainties of the model outputs. Ramsay et al. (2007) use non-parametric

methods to estimate the parameters of differential equations in a determin-

istic models. However, the complexity of the deterministic models such as

MAQSIP sometimes may stop us working on those differential equations di-

rectly. So we simply treat the deterministic models as black boxes. We
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only focus on the model outputs without learning details of the differential

equations in those deterministic models.

Kasibhatla and Chameides (2000); Hogrefe et al. (2001b,a) study deter-

ministic model outputs in meteorological and environmental science contexts

by using traditional scatter plots and least squares analysis of measurements

and modeling outputs; moreover they examining the correlation between

measurements from monitoring stations and deterministic modeling output.

Guttorp and Walden (1987) address these issues within a statistical frame-

work. Of particular interest is the work of Fuentes et al. (2003) and Fuentes

and Raftery (2002, 2005), in which the Bayesian melding (BM) model is used

to combine measurements and modeling output while respecting their intrin-

sic differences. The combination highlights the discrepancies and similarities

between the values. The BM model can be used to predict the phenomenon

of interest and calibrate the deterministic models by using both measure-

ments and modeling output. Note that the terminology "Bayesian melding"

was first proposed by Poole and Raftery (2000). To avoid confusion, from

now on in this thesis, the Bayesian melding (BM) model specifically refers

to the model proposed by Fuentes and Raftery (2005). Another Bayesian

model is proposed by Sanso and Guenni (2002) who like Fuentes and Raftery

(2005), postulate a "true underlying process" but it is specifically concerned

with rainfall and uses a truncated model for the relationship between the

true underlying process and the data. Berliner (2003); Wikle and Berliner

(2005) also talk about how to use Bayesian models to combine information
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from different sources. The BM model is built on a Bayesian framework,

which enables us to combine measurements and modeling outputs from more

than one deterministic models. This extension of the BM model to include

model outputs from more than one deterministic models is of interest because

usually an ensemble of deterministic models is used in weather forecasting.

Raftery et al. (2005) uses a Bayesian model averaging approach to combine

model outputs from deterministic models in different initial conditions to give

a more accurate weather forecast. The Bayesian ensemble melding (BEM)

model can provide an alternative to that approach.

Although the BM model can be used to combine measurements with

model outputs, it was designed as a spatial model which cannot handle the

temporal correlation appearing in most environmental or climatic data. The

ozone data used by Kasibhatla and Chameides (2000) have the hourly mea-

surements and model outputs of the ozone concentration level in eastern and

central USA, which has very strong temporal auto-correlation. It is desir-

able to find an alternative which are spatial-temporal models. Wikle and

Cressie (1999); Wikle and Royle (1999); Wikle et al. (2001); Wikle (2001)

has proposed spatial-temporal models based on various approaches such as

dynamic kalman filter, kernel-based spectral analysis or Bayesian hierarchi-

cal model. Guillas et al. (2006) provides a simple but powerful regression

approach which enables us to analyze the data with temporal correlation.

We first extend this regression approach to a more mathematically rigorous

Bayesian spatial-temporal model. Then we extend this Bayesian spatial-
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temporal model further to a multivariate model.

The rest of the thesis is organized as follows. Chapter 2 gives the BM

model specifications. Then Chapter 3 presents the MCMC algorithm to fit

the BM model. As an byproduct, we develop the R code needed to imple-

ment the BM model under different scenarios. We also include a description

of the code in Chapter 3. We test the BM model with a comprehensive

simulation study in Chapter 4. In the simulation study, we investigate the

prediction and calibration performance of the BM model in various scenar-

ios. As an alternative to the BM model, Chapter 5 and Chapter 6 present

the Bayesian spatial-temporal models in univariate and multivariate cases.

Chapter 7 summarizes all the forecast and spatial prediction results for the

BM model and univariate/multivariate Bayesian spatial-temporal models.

Chapter 8 specifically discusses how we calibrate the deterministic models

by using the BM and Bayesian spatial-temporal models. The data source for

the analyses in Chapter 7 and 8 are the ozone data used by Kasibhatla and

Chameides (2000). Chapter 9 presents an application for the BEM model of

the temperature data used by Raftery et al. (2005). Chapter 10 presents a

dynamic BEM model which extends the BEM to a spatial-temporal model.

This thesis concludes with Chapter 11 in which we discuss some future re-

search topics in assessing or calibrating deterministic models used in climatic

or environmental studies.
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Chapter 2

Spatial Covariance and Melding

Model

This chapter first presents some background knowledge of the stationary and

non-stationary spatial covariance structure. Then it presents the specifica-

tions of the BM model proposed by Fuentes and Raftery (2005); Fuentes et

al. (2003); Fuentes and Raftery (2002).

2.1 Definition and Estimation of The

Variogram

Suppose we have a real-valued random process {Z(s) : s E D}, which is

observed at locations {s i : i = 1, ..., n} over a geographic region D c Rd , d

being a positive integer. The random process {Z} is defined as second order

7



stationary if it satisfies for all s

E(Z (s + h) — Z(s)) = 0,

Var(Z(s + h)) = Var(Z(s)),

Cov(Z(s + h), Z(s)) = C(h),

where C(•) is a covariance function. In other words, the correlation between

responses at two locations depends only on their degree of separation. In

addition, the first and second order moments of the random process Z(s)

are the same for all s. Furthermore, if C(h) = C (Ilk), where IA I is the

length of h, the covariance function C(.) is called isotropic. Another very

important quantity used in spatial statistics, the variogram, is related to the

spatial covariance between two locations. We have

Var(Z(s + h) — Z(s)) = -y(h),

7(h) being known as the variogram.

The classical estimator of the variogram proposed by Matheron (1962) is

obtained by using the method of moments. The estimator is

1 7(h)^ (z(si) — z(si ))2, I N(h)

(2.1)

where the sum is over N(h) = { (i, i) h — 5 < ps i — s j i < h} and IN(h)1
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is the number of distinct elements in N(h ). Although unbiased, this clas-

sical estimator is highly affected by outliers due to the squared term in the

summation. Hawkins and Cressie (1984) presented a more robust estimator

;11(h) ,  I N(h)1E N (h)1 Z (5^Z(8,011/214

0.457 + 0.494 (2.2)

From our definition of the variogram, it is clear that 7(0) = 0. However,

more generally 7(h) T > 0 maybe allowed as h ---+ 0, in which case r is

the called nugget effect by Matheron (1962). One of the sources of the nugget

effect is measurement error and commonly measurements are assumed to be

the ground truth Z(s) plus some measurement error. The book by Cressie

(1993) gives more details about the nugget effect.

The covariance function only needs to ensure the covariance matrix it gen-

erates is positive definite and symmetric. In the book Stein (1999), Bochner's

theorem specifies that the positive definite covariance functions are those

which are Fourier transforms of non-negative Borel measures. One com-

monly used covariance function proposed by Matern (1960) has the following

form:

Co (d) = 2,_ lar (v ) (2 1/ 1/ 2 1(11/PYIG(2v 1/2 4 1 /P),

d being the distance between any two locations. For convenience, we let

9 = (a, p, v). Here a, the sill parameter, represents the variance of random

process Z(s) while p, the range parameter, determines how fast the corre-

lation decreases when distance d increases and v, the smoothing parameter

9



controls the smoothness of the covariance function. is the modified Bessel

function of type III as described by Abramowitz and Stegun (1972). Matern

covariance functions have the advantage of flexibility. Certain choices of the

smoothing parameter v reduce it to simple well known covariance functions.

For example, vs = 1/2 gives the so-called exponential covariance function,

C 0 (d) = 
1 a exp(-1d1/p) if 1 di > 0;

if Id! = O.
(2.3)

The nugget parameter is T. It is obvious that the covariance functions de-

fined above are only suitable for stationary random fields because we assume

the covariance C0 (d) is only a function of the distance d. However, in many

cases, it is not reasonable to assume second order stationarity. In recent years,

the non-stationarity problem has received a substantial amount of attention.

One of the earliest and most important papers is due to Sampson and Gut-

torp (1992), who obtain a semi- parametric estimate of the non-stationary

spatial covariance function by transforming the original geographical map

into another, the deformed plane. However that deformation method relies

on repeated measurements to give an empirical estimate of the variogram, a

serious limitation in the context of geostatistics, for example, where typically

just one realization of a space - time process is available. Haas (1995, 1998)

circumvents that problem with a moving windows method as does Higdon

et al. (1999) with a convolution approach although these methods may re-

quire data from a large number of monitoring sites to be effective. Other

10



non-stationary papers include Paciorek and Schervish (2004); Nychka et al.

(2002); Paciorek and Schervish (2006). The paper of Gelfand et al. (2004)

considers the non-stationarity problem for a multivariate case. Fuentes and

Smith (2001) propose a class of non-stationary spatial models used in Fuentes

et al. (2003), Fuentes and Raftery (2002), Fuentes and Raftery (2005). This

approach's appeal derives not only from its circumvention of the need for

replicate measurements but as well, from its simple intuitive, easy to under-

stand formulation as well as the ease with which it can be implemented. More

details about the convolution approach are presented in the next section.

2.2 A Class of Non-stationary Spatial

Models

Calder and Cressie (2006) gives an excellent summary of the convolution-

based spatial models which become more popular recently because of its

flexibility. Yaglom (1987) stated that a stationary spatial process {Z(s)}

can be written as

Z(s) = f K (s , u)W (du),^(2.4)
Rd

where K(s, u) is a kernel function satisfying f K2 (s, u) < M < Do and W(.)

is a Brownian motion. The covariance function of the process {Z(s)} is

C (Z (s 1 ) , Z (22)) = f K (s 1 , u)K (s2 , u)du.
Rd

11



To represent a non-stationary spatial process, we can modify 2.4 by either

assuming the kernel function K(s, u) or the Brownian motion process W(.)

depending on location s. Higdon et al. (1999) use the convolution approach

with a spatially dependent kernel function to represent non-stationary pro-

cess. That is,

Z (s) = f K 8 (2 , u)W (du),
Rd

(2.5)

whose covariance function is

C(Z(si), Z (s2)) = f 
d
 K 81(si, u)K 8 2 (.92, u)du.

R

Higdon et al. (1999) use Gaussian kernel function so that the resulting non-

stationary process has a Gaussian covariance function.

Departing from Higdon et al. (1999), Fuentes and Smith (2001) assume

the kernel function is constant and convolves stationary process as opposed

to Brownian motion process. This section shows how we can use the ap-

proach of Fuentes and Smith (2001) to model the non-stationary process in

detail. This approach assumes the existence at a number of locations of un-

observable, independent, stationary random processes that need not have any

physical meaning. Their existence only helps us to construct the observable

non-stationary process so they do not need to have any physical meaning.

The observed non-stationary process is represented as a weighted average or

convolution of these latent processes. Each latent random process has its

own covariance parameters which vary from one latent process (location) to

12



another. The weight attached to each of the stationary processes in the rep-

resentation of the observed non-stationary process depends on its location.

So the covariance of the process between any two locations depends not only

on their distance d but also on their locations. The rest of this section gives

a detailed account of the non-stationary model of Fuentes and Smith (2001).

We include it to enable us to introduce the detailed MCMC algorithm used

to fit this model in Section 3.2.

Suppose the latent stationary processes are Z, i = 1, • • •, K, with

Cov(Z(s), Z3 (s)) = 0 for i^j. Then the observed process Z(s) can be

expressed as

Z (S) = Ezi (s),(s),
i=, i = 1

w2 =11

in which w z is the weight attached to stationary process Z. The above

equation can be extended to an integral by replacing the weight with a kernel

function as follows:

Z(x) = f K(x — s)Z9( 8)(x)ds,

where K(X — s) is a kernel function. So, the weight of latent process Ze (s )

depends on the location difference vector between x and s. The spatial

covariance parameter vector of the latent stationary process {4 8)} is 9(s)

depending on its center location s. That is why these latent stationary

processes are called "locally stationary".
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Since the covariance between Ze(8) (x l ) and Zo ( 8) (x 2 ) is

Cov (Ze( 8)(x l ), Zo( 8)(x2)) = Ce( 8)(x l — x2),

the covariance between Z(x l ) and Z(x 2 ) in the non-stationary process Z can

be expressed as a convolution of the local covariance Ce(,)(xi — x2):

C(Z (x i ), Z(x2)) = f K(xi — s)K(x 2 — s)Co(8)(xi — x2)ds.^(2.6)

The process {Z(x)} is non-stationary because the covariance between Z(x i )

and Z(x 2 ) depends on the locations x 1 and x2 .

The kernel function can be any of the form K(u) = 1+-2 K0 (3-1',), K0 being

any non-negative function with integral 1. Fuentes and Raftery (2005) use

the following kernel function

3
Ko(u) = 4(1 — u21)+71 ( 1 — uP+,

with u = (u 1 , u2 ) and in general, a+ = max{0, a} for any scalar valued

quantity a. This kernel function is chosen because it is easy to compute and

it has a compact support. However, other kernel functions can be used as

well. The choice of kernel function is not as important as the bandwidth

parameter h, which can be any positive scalar valued quantity subject to

certain restrictions explained later in this section. Also in Section 4.4, a

simulation is carried out to examine the effect of different choices of the

14



bandwidth h on prediction and parameter estimation.

Our choice of the kernel function implies that for a given pair of locations

x 1 and x 2 , only the local stationary process whose center location s is within

circles with origins x 1 , x2 and radius h will have an effect on their covariance.

In the paper by Fuentes and Smith (2001), the integral (2.6) is approxi-

mated by an average. First, the center locations sm , m = 1,• • •, M of those

latent stationary processes are chosen as points on a regular grid over the

map. The kernel integral (2.6) is then replaced by

M

CM(x1, x2 ; 9) = m-i E K(x, - .577,)K-(x2 - 8,72)c, ( 8,, ) (xi - x2). (2.7)
m=.1

In the non-stationary model, the parameter 9 of the latent stationary pro-

cesses is a function of its center location s. This function can be smooth but

instead Fuentes and Smith (2001) assume an additive "ANOVA" (analysis

of variance) type model for 9 in terms of center locations s. The stationary

points are points of a regular grid over the map. For example, for the ex-

ponential covariance function, with just two parameters, the sill a and the
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range p, the "ANOVA" forms would be:

o-i, = a + r i^ci^Ei,3^1, • •

= a + ri + + E;,9 =^• •, n2

— (a, rl, • • ,^• •, cri,)
^

(2.8)

Ap =^••,rn'i,ci,• • 7 c712)

rsi NIVN(0, E(70-, no-))

MVN(0, E(rp , 71p )).

In the above model, n 1 and n2 are the numbers of points in the horizontal

and vertical directions respectively. As well, 7- 2 and c3 are main effects of

center location's longitude and latitude on a. The main effects of the center

location's longitude and latitude on p are 7.: and c'3 . In statistics,a design

matrix is a matrix that is used in certain statistical models such as ANOVA

model. It contains indicator variables (ones and zeros) that indicates the

group membership. The design matrix for sill a has a dimension of (n 1 x

n2 ) x (1 + n i + n2). The elements in the first column of the matrix are all 1.

For columns k E [2, n i + 1], only the elements from rows 1 E [(k — 2) x ni +

1, (k — 1) x n i l are 1. For columns k E + 2, n i + n2], only the elements

from rows 1 E [(k — n 1 — 1) x n 1 + 1, (k — n i ) x n i ] are 1. All the other

elements in the design matrix are 0.

In this hierarchical model, a and p might well have normal prior distri-

butions. Then the hyper-parameters would be r i , ri , c3 , c; and y0., 77,, rp , 77,.
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This "ANOVA" model is flexible because it does not assume a parametric

function of a and p over the space. However, the normality assumption of

a and p could be a problem because these two parameters should always

be positive. An alternative is to model them with log-normal distributions

which ensure cr's and p's are positive. Section 3.2 explores an algorithm for

fitting this non-stationary model.

2.3 Kriging

Kriging is a celebrated geostatistical approach to spatial interpolation in the

point-referenced data setting, a name given to it by Matheron (1963) in

honor of D.G. Krige, a South African mining engineer. Kriging, the best

linear unbiased predictor (BLUP), weights the available observations in ac-

cordance with the distance between the locations where they are made and

that of the response to be interpolated. These BLUP weights are obtained

by minimizing the variance of the interpolation error assuming the spatial

covariance is stationary and known. Given measurements of a random field

Y = (Y(s i ),..., Y(s,,))T at locations (s i , • • •, sn ), the question is how to

predict the random variable Y at a new site s o . The simplest Kriging ap-

proach, ordinary Kriging, assumes E(Y, o) = = i = 1, •, n. The

interpolated value at s o is

Y* (so) =^wiY ( s,) ,
i=r 1
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tv, being the weight of Y(s,) subject to the constraint E in 1 wi = 1. Obvi-

ously, Y*(s o ) is an unbiased estimator of Y(8 0 ). So, to minimize the MSE

(mean square error) of Y*(2 0 ), we only need to minimize its variance,

2
aE = E [(Y* (s o ) — Y (so)) 2 ]

n

= —7(80 — so) — E^wituf-y(si—si)-1- 2 Ewe-y(8,—s.).

Besides ordinary Kriging, universal Kriging assumes the mean of the process

depends on other variables such as the coordinates. Co-Kriging is a multi-

variate extension of Kriging. In practice. , the spatial covariance function is

estimated empirically by (2.1) or (2.2). Its simplicity and ease of computa-

tion has made Kriging very flexible and hence a valuable tool in situations

where it is applicable. The Kriging method is available in the R package

"geoR" developed by Ribeiro and Diggle (2001), that we use to implement

the method in our simulation studies and data analyses later in this thesis.

2.4 Bayesian Melding Model

Although Kriging is easy to implement, Kriging relies on a known variogram

to compute its weights, those estimated parameters as fixed. So the true un-

certainty in interpolation is underestimated. The simulation study in Section

4.1 demonstrates that disadvantage.

More importantly, grid cell data from a deterministic model will be on
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coarser scales of resolution than the micro scale on which measurements are

made. For example, the deterministic AQM studied in this thesis output its

hourly ozone concentration data at a resolution 6 x 6 km 2 . The mismatch of

scales leads to a need to re-calibrate the simulated data when combining it

with the data for interpolation. While this could be done in an ad hoc fashion

with Kriging, it is not designed to deal with that issue in a fundamental way.

In contrast to Kriging, the BM model, developed and studied by Fuentes

and Raftery (2005), Fuentes et al. (2003), as well as Fuentes and Raftery

(2002), is designed to do that. It combines measurements and deterministic

model outputs in a Bayesian framework that enables calibration of determin-

istic model outputs and spatial prediction including interpolation.

BM model links processes with responses on mismatched scales through

an underlying true process {Z(s) : s E RD } called the "truth", D being the

dimension of the domain. If the location s only has longitude and latitude

then D = 2, while if the location also has altitude then D = 3. The un-

derlying true (latent) process, being unobservable, must itself be estimated.

Denote the measurement process by {2(s) : s E and the determin-

istic model output process by {2(B)}, B being the grid cell. To match

Z(s), we also hypothesize the existence of deterministic model output pro-

cess {Z(s) : s E V} based on locations s. Of course, the purely conceptual

process {2(s)} does not actually exist. Its purpose: to link the model out-

put with the truth at the micro- scale, thereby enabling its representation as

an integral of {Z(s)}. The truth thus serves as the common basis for both
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processes {Z(s)} and {2(s)}.

The Bayesian, model has the following mathematical form:

2(s) = Z(s) + e(s)

Z(s) = ,u(s) + €(s)

Z(B) = T-3 -1 fB Z(s)ds

2(s) = a(s) + b(s)Z(s) + 8(s)

(B) =^fB a(s)ds + if13-1 - fB^113b(s)Z(s)ds + 1 fB 8(s)ds

it(s) = X(s)0.^ (2.9)

In the above model, the measurements error and model output error are inde-

pendent of each other. The measurement errors, e(s), are independent and

identically distributed, having a normal distribution N(0, cr e2 ). The model

output errors, 8(s), are independent and identically distributed with a nor-

mal distribution N(0, ag). The spatially correlated residuals, €(s), have zero

mean and covariance matrix E(0), where 0 is the covariance parameter vec-

tor. The number of locations is rt. Z(B) and (B) are integrals of Z(s)

and 2(s) over grid cell B. We only observe realizations of process 2(.9) and

Z(B) at measured stations and grid cells for model outputs.

The mean of the true underlying process is ,u(s) = X(s)/3, where X(s)

is a function of the coordinates at location s and is the corresponding

coefficient vector. We use polynomial function although other functions can

also be used. The polynomial function can have degree such as 1, 2 up to 3 as
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necessary. The covariance matrix E (0) is constructed with some covariance

functions having a parameters vector 0. (See the previous section for a

detailed discussion of covariance functions in stationary and non-stationary

cases.) Throughout this thesis, we use the exponential covariance function

(2.3). However, the software we have developed and provided can use either

the Matern, Gaussian or exponential covariance function. In BM model (2.9),

measurement 2(s) is modeled as the truth Z(s) plus measurement error e(s)

and model output Z(s), as Z(s) times a multiplicative calibration parameter

b(s) plus additive calibration parameter a(s) and random error 6(s).

In general, we can assume that the calibration parameters are functions of

the location of s, namely b(s) and a(s) in the model specification, to take into

account their variability with respect to locations. For simplicity, we assume

a and b are constants throughout the rest of this chapter for derivation and

in the simulation study. But later in the data analysis, we assume a is a

function of the coordinates of the location s and b still remains constant.

The reason to keep b constant is that a varies over space much more than b.

Fuentes and Raftery (2005) suggest and we use a Monte Carlo method

to approximate the integrals in model (2.9). For example, we could sample

L points 81,B, • • • , sL,B within grid cell B. From now on, we call these points

"sampling points" to distinguish them from stations. Then, Z(B) can be ap-

proximated by the average of the values of process evaluated at the sampling
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points within B:

( 2.10)
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Chapter 3

Implementation of the Bayesian

Melding Model

This chapter presents the details of how to fit the BM model (2.9) by using the

Gibbs sampling algorithm proposed by Gelfand and Smith (1990). First, we

consider the BM model with stationary spatial covariance structure, then we

show how to fit the model with non-stationary spatial covariance structure.

We also include an extension to the model (2.9) to combine measurements

with model outputs from an ensemble of deterministic models. This chap-

ter also presents how to incorporate reversible jump MCMC into the BM

model. Finally, we give a description of the R package we have developed to

implement the BM model in different scenarios.

3.1 Bayesian Melding in Stationary Case

The Bayesian paradigm primarily seeks the posterior distribution of all the

unknowns given the data as a description of their uncertainty. These un-

knowns include the random error variances (r', tea, coefficient vector /3, the
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true underlying process Z, calibration parameters a, b and covariance param-

eter vector 0. We use vector Z to stand for realizations of the true underlying

process at the stations and sampling points within grid cells. If we have n

stations and m grid cells, the dimension of Z is n + m x L. The dimensions

of the measurements Z and model outputs Z are n and m respectively. Let

H = {X, Z , Z} represent all the data, where X is the covariate matrix in

model (2.9).

By using the above notation, the joint distribution of all the unknowns

and available data can be decomposed as follows:

p(2 , Z , Z , 13, 0, a, b,

= p(k I Z, oDp(Z I Z, a, b, ol)p(Z l e 3 , 0)p(c4, al, Q, 0)

(1/ E1^AOZ)43E2^— a — bA l Z)cl) E 3 (Z — X 13 )P(anP(01)P(13 )A(201))

Note that given Z, Z and Z are independent. In (3.1), 1. E (µ) stands for the

multivariate normal density with mean vector ea and covariance matrix E.

We take the components of (0, 0, ae2 , (7,2 ) to have independent prior distribu-

tions, that is, p(o- , ate,

are

0) = P(a e2 )P(a c2 )P(0)P(0 )^The matrices A o and Al

1^... 0 0^... 0

Ao =
0^. . .^1 0^. . .^0

/ nx(mL+n)
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and
/

Al =
0^. ..^0^1- 1

L

          

0 . .^0^0^...^0•
1^1
L^• • L / mx(mL+n)

In matrix A o the first n columns form an identity matrix and all other ele-

ments are all zero. In matrix A 1 , the elements in row i are -If from column

n + 1 + (i — 1) x L to n + 1 + i x L and all other elements are all zero.

We get (3.1) by using the approximation (2.10). E 1 = o-e2 / is the covariance

matrix of measurement error vector e = [e(s i ), • • •,e(s,i )] T, E2 = ov- , the

covariance matrix of 6 = [S(B i ), • • • , 6. (B,,)1 T and E3 = E(6), the covariance

matrix of Z while I is the identity matrix.

The density of the joint conditional distribution for (Z, Z, z 0, 0, a, b, a 2 , al)

is

p(k, Z, Z1 a, 0, a, b, ae2 , al)

a exp H [( k — iloZ) T ET 1 (k — ADZ)

+ (k — a — bA1Z)T E21 ^— a — bA i Z)

+ (Z — it)T EV (Z — ea)] 1

= exp {--1 [—ZT (A r-oc ET i k + bATE2 1 (Z — a) + E 1 /./,)

(ZTE -1-1 A0 + b(Z — a)EVA i + itTEV) Z

+ ZT (ATEi-1 A0 + b2ATEVA 1 + E l ) Z] 1 + C,^(3.2)
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where it = X/3 is the mean vector of Z and C has the other terms without

Z.

As is well known, the normal prior distribution is conjugate to the normal

sampling distribution. The full conditional distribution of Z conditional on

all the other unknown parameters and available data is also a normal with

mean vector ft and variance matrix E. So, the full conditional distribution

of Z must be

p (Z113, 9, a 2 , 0-1, a, b, cx exp --1
2

rzTt-1Z - .^(3.3)

But what are and E ? By matching the terms containing Z and ZT

in (3.3) and (3.2), we identify the required ft and E for the full conditional

distribution of Z as the following:

Z 1(13, 0, a , , a, b, H)^MVN (f t);

---1E^(A0TETiA0 b2 A rriE2-1A1 Ev );

= E (A'cr,E'k + bATE2 1 (2 — a) + EVA) •
^(3.4)

If the prior for 0 were p(/3) MVN(0 0 , F), then we could claim the full

conditional distribution of /3 would be

01(0, Z, other parameters) ti NVN(Bb, B),^(3.5)

where .13-^x --r and b = X TE3 1 Z + F -1 /3 0 . The proof of
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that claim now follows.

Given E3 1 and Z, 13 is independent of other parameters. So the full

conditional distribution of /3 is

PAZ, E3) a P(ZIO, E3 1 )P( 3 )
1

a exp{— [(z — XO) TE3 1 (Z — X0) + ( 3— 00) 1T -1 (3 — 00)]}-

We can find the mean and variance of p(01Z , EA) by an approach of Lindley

and Smith (1972); Smith (1973).

For the exponential covariance function, the two components a and p

of 0 are independent with inverse gamma and gamma prior distributions

respectively. The inverse gamma distribution has the density function,

1^1̂ e-vo,x)
p(x; a, 7) = r(a ),-ya xa-Fi^,

a > 0 and 7 > 0 being the shape and scale parameters, respectively.

The full conditional posterior density function of 0, given the other vari-

ables and the data is

1p(010, Z) a p(0)1E 3 0 exp [- 2( z — X 0)TE -3-1 (Z — X13)] ,^(3.6)

where p(0) is the prior density for 0. In general, we have E3 = a g(p, C),

where C is the Euclidean distance matrix between the stations and sampling

points and g(•) is the spatial correlation function. Then the full conditional
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distribution of 0 can be written as

1
p(0 113, Z) P(6 )P(P)1 0-9(p,C)1 -1 exp

2
(Z — X13)T(ag(p,C)) 1 (Z — X 0)1.

(3.7)

From (3.7) the conjugacy of the inverse gamma as a's prior becomes

apparent. With an exponential correlation structure, the spatial correlation

matrix is g(p, C) = exp(—C/p) and so (3.7) can be written as

^p(010 , Z) a p(p)a-' 1'12 1e-ci^exp^+^— X fi)T(e -c ) -1 (Z — X 13))] .

Thus the full conditional distribution of a also has an inverse gamma with

parameter

= + n/2

1^( ry ± 
2  

( Z^c
)

xf3) ,(e_,
P 1 (Z X M) - .

However p does not have a standard full conditional distribution, forcing us

to use Metropolis-Hasting algorithm proposed by Hastings (1970) to sample

p from (3.7) with a fixed.

If ae2 and a have inverse gamma priors with parameters (shape=a l ,scale=1/A 1 )

and (shape=a2 ,scale=1/A2 ) respectively, the full conditional distributions of
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a and 01 become

ol I (a, b, Z , Z) N IG (shape = a l + m/2, scale = (A 1 + -1 A) -1 )
2

^

with A = (Z - a - bA 1 Z) T(Z - a -^Z) and

cr l(Z Z2 ) ti IG (shape = a2 + n/2, scale = (A 2 + -1 7) 1 )

with -y = (Z - Ao2) T(2 - A0 Z).

Letting the prior for a, b be

7 a )

ti MVN(0, F)

yields the full conditional distribution of the calibration parameters a, b as

a
, A 1 Z , E2 ti MVN(BC, B),

where

B =
(A i Z)T 

(E2)' 
( 1, 

A i Z) + F - 1

and

C =
^)T 

(E2)' 
( 1,

^
) +F 1 0,

We define 1 to be an column vector having the same dimension as Z.

(3.8)
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3.2 Bayesian Melding in Non-stationary

Case

The previous section presents the full conditional distributions of all the

parameters for a stationary true underlying process distribution. The full

conditional distributions are the same for the non-stationary case except for

the spatial covariance parameters (a and p). In model (2.8), the priors for the

"main-effects" (a, r z , c3 and a', r:, c31 ) are independent multivariate normal

distributions with means tto. and ttp .

Fuentes and Smith (2001) propose the non-stationary model (2.8) without

giving much detail about fitting the model. In this section, we derive the full

conditional distribution of a, pa , To- and 77, . For that purpose we let Y be

the design matrix in model (2.8). The parameters associated with the sill

include a, pc., To and r7,, while those associated with the range include p,

Pp, Tp and n. Because the full conditional distribution of the parameters

associated with the sill are analogous to those associated with the ranges,

we only give the derivation of the full conditional distributions of parameters

associated with the former. In that derivation, H represents all the other

parameters as well as the available data. The full conditional distribution of

a is the following:

P (0- 111) a I E^IE (7, ,^exp^[(Z — X 0) TE(cr, p) -1 (Z )(0)] }

exp{— 1
^

1-ta)TE(70-,71ff)-1(cT^120-)1},
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where E (cr, p), the spatial covariance matrix of Z and E(7-,, 77,) is the spatial

covariance of the vector a for the latent stationary processes. In the non-

stationary case, the full conditional distribution of o is no longer a standard

distribution, necessitating use of the Metropolis-Hasting algorithm to update

o as a block.

Since p& has a normal prior with mean 00. and variance matrix Fu , its

full conditional distribution is

MVN(Bb, B)

B -1 = YTE (ra , 77,) -1 Y + F; 1

b = YTE(r, , ff)-1v + F; 1 a..

The full conditional distribution of Ta is

p(7,1Z , 77,) oc^715)1E(T, , ?MI -12 exp [— 2 (cr — Yi.c,)TE (To-, 7/0-)' (cr — 17 /25 )] .

Our Gibbs sampling algorithm must include Metropolis-Hasting steps to sam-

ple from the full conditional distributions whenever they cannot be specified

in a closed form.

3.3 MCMC Algorithm

To sample from the posterior distribution of the parameters in the BM model

(2.9), we use the Gibbs sampling algorithm proposed by Gelfand and Smith
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(1990) as implemented by Fuentes and Raftery (2005). First, we choose some

arbitrary initial values for 0, 0 as e ( ' ) , 13 (1) . Then, the Gibbs sampling is

implemented in the following three stages.

• Stage 1: Given all the other parameters and the available data, real-

izations of the true underlying process {Z(s)} are updated at n stations

and L sampling points within each of the m grid cells. In this stage, a

random sample of Z is generated by using (3.4).

• Stage 2: First 0 = (a, p) is updated given /3 and Z obtained in Stage 1.

Second, given 0 and Z is updated by (3.5). Updating /3 and a is easy

because their full conditional distributions are multivariate normal and

inverse gamma respectively. However, the full conditional distribution

of p does not have a closed form, so we have to use Metropolis-Hasting

algorithm to update it.

• Stage 3: In this stage, cr 2 , .(7,1 and a, b are easily updated given all the

other parameters since their full conditional distributions are either

normal or inverse gamma. So, it is easy to update them.

The above Gibbs sampling algorithm is nearly identical for the stationary

and non-stationary cases, the only difference being in the updating of 0 in

Stage 2.

32



3.4 Spatial Prediction

This section indicates how the BM model can be used to predict realizations

of the underlying process at unmonitored sites using the available data.

Denote by Zu , realizations of the true underlying process at the unmon-

itored sites of interest. Finding the interpolation procedure entails finding

the posterior distribution of Zu lZg , Z9 being realizations of the true under-

lying process at monitoring stations and sampling points within grid cells.

Observe that E(Z9 ) =µ9 and E(Zu) = p,„. Thus the conditional mean and

variance of Zu I Zg , /3, 0 are

E(Zu l Zi 9 , 0,0) = mu + E ug E9 1 (Z9 — mg), and

Var(Zu Z g, 0) = E u — Eug E9 1 E9u .

The covariance matrix of Zu is E„ and the covariance matrix between Zu

and Z9 is E. Let Egu denote the transpose of E". In the BM model

(2.9), we have Z(s) = Z(s) + e(s). So, the conditional mean and variance of

ku lZ9 ,0, 9 are

E(ku jZ g ,^= tzu Eug E l (Z g^0, and

Var(Zu lZg , 113,^= E u — E u9 E 9 1 E9u

in which the dimension of the identity matrix I is the number of stations to

be predicted.
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The marginal distribution of ku lk, Z is

P(kulk ,^= f P(zulcb)P(014 2)4,^(3.9)

in which di stands for all the other parameters such as Z9, and 0 that can

be approximated by

p(k,, I Zg ) p(kuiz9,o2),

where c/) i (i = 1, • •, n) is the i-th MCMC sample of all the parameters.

3.5 Extension to Ensembles

Previous sections consider the problem of combining measurements from

monitoring sites made with a single instrument with output from just one

deterministic model. In fact, the BM model can be extended to combine

data from ensembles of measuring instruments and of deterministic models.

For simplicity we consider the case of just a single measuring instrument and

multiple deterministic models although the extension to incorporate multiple

measuring instruments will be obvious.

To extend model (2.9), suppose k „, • • •, kp are output from an ensemble of

p deterministic models. To ensure a non-singular spatial covariance matrix,

suppose no overlap between the monitoring sites and sampling points within

each grid cell for all the different deterministic models. For simplicity, we
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assume the number of sampling points within each grid cell is the same, L,

for all the deterministic models although extension to differing numbers is

straightforward. We also assume each deterministic model has model outputs

on m grid cells. Then the dimension of Z is n+p x m x L. As in (3.1), the

joint posterior distribution can be decomposed as follows:

P(k l 2 11 • • • 1 2p7Z,1, 0 7^ • •. 7 bp, Cre2 011 • • . 1 °1,7)

= p(21 Z, (7,) H p(2 i 1Z, ai , bi , o-L)p(Z 10 , 0)p(o-e2 , o-L, • • • , aa,p, 0, 9)
i=i

= CI3 E0 (k — Z0) H (DE i ( — ai — biA i Z)p(aL)(1)E (e)(Z — X 0)P(ae)P( 0)P( 3 )•
i= 1

Deterministic model i has calibration parameters a i and bi , model output

error variance parameter as i. The covariance matrix of measurement error

e is E 0 = o-e2 I and the covariance matrix of the model output error vector S i

of the i-th deterministic model is E i = al i /. The dimension of matrix A o is

n x (n +p x m x L) and that of matrix A i (i = 1, • • •,p) is m x (n±pxmx L).

The first n columns of matrix Ao form an identity matrix and the remaining

elements are all 0. Row j of matrix A i (i = 1, • • • ,p) has elements ± from

columnn+1+(i-1)xmxL+(j-1)xL ton+1+(i-1)xmxL+jxL

and all other elements are zero.

The density of the conditional distribution of (Z, Z 1 , • • •, Zp , Z) given
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(Q7 07 ai, • ap,^• • bp, Cre2 , 41 , • • .1 qp) iS

P( k , 21, • • •^Z)10, 0, al, • ", ap , 14, •^bp, cre2 , (IL, • • •, °1,p)
exp - 

2
-1 [(Z - A0Z) ET 1 (Z - A0 Z)

T+ E (2 i — ai - biA jZ)Ei 1 (Zi a, - biA i Z)

• (Z -^E-1 (Z - /1)]

= exp^[-ZT (A rd'EVZ biATE;- 1 (2, — ai ) + E -1p
i=i

)

(ZTEVA 0 +^bi (2 i — ai )ET 1 Ai + itTE -1 Z
i=-1

(^
P

+ ZT ATET 1 iii ±^14Al'ET 1 A i + E -1 Z + C,
i= 1

(3.10)

p, and E being the mean and variance of Z, C, the other terms without Z

Like (3.4), the full conditional distribution of Z is the following.

Z I other parameters and all data^E)

E 1 = (2410'E cT 1 A0 +^bi2 iqET 1 A i + E -1 )
i=1

=^E biATET1( — ai ) + E -1 /.1,) .
i=i
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The prior distribution of (ai , bi ), i^1, • • •,p, is

ai 
ti MVN (0 „ F).

Their full conditional distribution is

(
ai
^lki, z, Ei ,-, MVN (BC , B),

bi

where

(
B =^(Ei)-1 ( 1,

(Aj Z)T
+ F 1

and

C
1T )

(E1) -1^,
(A i Z)T

Zi + FT 10 i .

3.6 Reversible Jump MCMC

Previous sections assume a known degree in the polynomial representing the

mean function ,u,(s) X(s)O. In other words, the coefficient vector has

known dimension. Green (1995) proposes the reversible jump MCMC to

allow the dimension of to be an unknown parameter. For the BM model,

we let k be /3's dimension and rik = (O•, 0). The reversible jump MCMC

allows k to vary, while the dimension of all other parameters are fixed. The
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objective: to sample from the joint posterior distribution of k and Tik , that

is, p(k,nk idata). To achieve that, we first find the full joint conditional

distribution of k and rik . Given Z, that full conditional distribution is

P(k, 97kIZ) oc p(Z, 71k, k) = P(Z1k, 71k)P( 71k1k)P(k),

p(k) being the prior distribution of the dimension k and p(77k (k), the prior

distribution of nk given k. Suppose initially the dimension of /3 is p > 0).

Then the next iteration has two possible outcomes for k: increase the dimen-

sion by one (a "birth") or decrease it by one (a "death"). The probability

of a "birth" or "death" is 1/2. The jump scheme can be quite arbitrarily

but we make the above choice because we favor "birth" or "death" equally.

After choosing either "birth" or "death", we accept/reject the jump with

probability a/(1 — a), the specification of a, being explained below. If we

reject the jump, then we stay with the current dimension p; otherwise, the

dimension k will be either p +1 or p — 1. In the same iteration, the next

step updates the parameters ri given k as in the fixed dimensional case. By

using the formulas provided in Green (1995), the acceptance probabilities of

"birth" and "death" are the following.

• "Birth". To jump from the previous dimension k = p to a new dimen-

sion k* = p +1, we need to propose one extra coefficient 137E,,, for one

extra covariate. That extra coefficient/3 7Lew is proposed by a proposal

distribution with density q(•). Because Aien, is proposed independently
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of other coefficients the Jacobian of transforming from )3 to 13* is 1.

So, the new coefficient vector is 13* = (13, and the acceptance

probability of k* = p + 1 is

p(klp(O*Ik*)p(ZIk* , )3*) 
 1-a = minfl, puopolop(zik, o)q(Nne.)

• "Death". To jump from the previous dimension k = p to a new dimen-

sion k* = p — 1, we need to delete one coefficient from the coefficient

vector. We choose to delete the last coefficient of the vector /3. The

reason is that we arrange the covariates from lower order of the coor-

dinates to higher order and usually the higher order of the coordinates

are more likely to be insignificant than lower ones. Again, the Jacobin

is 1 and the acceptance probability of k* = p — 1 is

a = min{ 1, P(e)P(0 * le)P(Z k * , 0*)q(4)
 }.P(k)P(31k)P(ZIk, )3 )

After choosing dimension k, we update all other parameters by using Gibbs

sampling as in the fixed dimension case. In Section 4.3, we conduct a simu-

lation to see how well the reversible jump MCMC works when incorporated

into the BM model.

The discussion above shows how to use the reversible jump MCMC al-

gorithm to choose the dimension of /3. That algorithm can also be used to

choose the dimension of coefficients of the additive calibration a(s). If we
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let a(s) = Y(s)p a , Y (s) being the polynomial function of the coordinate

at location s, then we can use reversible jump MCMC to choose the dimen-

sion of coefficients O a . The detailed algorithm is very similar to the above

when reversible jump MCMC is applied to choose the dimension of 0. The

current software does not include the reversible jump MCMC to choose the

dimension of coefficients O a , but we are planning to incorporate that into the

software in the near future.

3.7 Bayesian Melding Model Software

We wrote a BM model program in R, developed by the R Development Core

Team (2006). The R program is online at

http://enviro.stat.ubc.ca/melding/meldingcode.zip . The code for the sta-

tionary BM model is in the directory "mcmc" and the code for stationary

BM model incorporating the reversible jump MCMC is in the directory "rjm-

cmc". The code for the non-stationary BM model will be available online

soon.

The subdirectory "debug" in directory "mcmc" is used to debug the R

programs. That directory includes the file "simudata.s" simulating the mea-

surements and model output, "mcmc.s", the main function to implement the

MCMC algorithm, "update.s", various functions to sample parameters from

their full conditional distributions. The description of the main function

"melding" in file "mcmc.s" is the following.
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Dependence: R>2.3.0 and packages "MASS".

Usage: melding(ml,m2,nm,sam.sloc,sam.slocl,ton,burnin,zhat,Zbtilde,degree,cov.model)

Arguments:

• nm: number of sampling points in each grid cell of the model output.

• sam.sloc: coordinates of the sampling points and the monitoring sta-

tions. It should be a (m2 x nm + ml) x 2 matrix. The first m2 x nm

rows are the coordinates of the sampling points in grid cells. The last

ml rows are the coordinates of the monitoring stations.

• sam.slocl: coordinates of the unmonitored stations where the measure-

ments are to be predicted.

• ton: number of MCMC iterations in the Gibbs sampling.

• burnin: the "burn-in" period of the Gibbs sampling.

• zhat: the measurements vector.

• Zbtilde: the model output vector.

• degree: degree of the polynomial function f(-) for the mean p(s) =

f(s)fi and the following options are allowed:

0 the mean is assumed constant across space.

1 the mean is assumed to be a first order polynomial on the coor-

dinates: p(s) = Qo + /30 1 + 13282.
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2 the mean is assumed to be a second order polynomial on the

coordinates: A(s) = Oo + 91s1 + 02.52 + 03s2 Q4s2 + beta5 s 1 s2 .

• cov.model: a string with the name of the correlation function. The

options are one of the following three functions:

"exponential": exp(—d1 p), d is the distance and rho is the range

parameter.

"Gaussian": exp(—d2 /p), d is the distance and rho is the range

parameter.

"Matern": [(2" — 1)r(v)] -1 (dIp)"IG(dlp). v is the smoothing pa-

rameter and Ku (.) denotes the modified Bessel function of the third

kind of order v.

The function "melding" will return a list of the following objects:

• "beta.est": posterior mean of the coefficient vector Q.

• "beta.est.sd": posterior standard deviation of the coefficient vector 0.

• "theta.est": posterior mean of the spatial correlation vector 9.

• "theta.est.sd": posterior standard deviation of the spatial correlation

vector O.

• "prediction": posterior mean of the spatial prediction.

• "pred.q1": 5% quantile of the posterior distribution of the spatial pre-

diction.
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• "pred.q2": 95% quantile of the posterior distribution of the spatial

prediction.

• "ab.est": posterior mean of the additive and multiplicative parameters

a and b.

• "ab.est.sd": posterior standard deviation of the additive and multi-

plicative parameters a and b.

• "sigmae.est": posterior mean of the measurement error variance pa-

rameter ol.

• "sigmae.est.sd": posterior standard deviation of the measurement error

variance parameter ol.

• "sigmad.est": posterior mean of the model output error variance pa-

rameter 01.

• "sigmad.est.sd": posterior standard deviation of the model output error

variance parameter cd .

The description of various functions in file "update.s" is the following.

• "updatebeta(...)" : generate MCMC sample from the full conditional

distribution of 0. The arguments of this function include

y: the realizations of the true underlying process {Z(s)} at moni-

tored stations and sampling points within grid cells.
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x: the covariate matrix at monitored stations and sampling points

within grid cells.

prior.mean: prior mean of the coefficient vector f3.

prior.var.solve: inverse of the prior variance matrix of the coefficient

vector 0.

sigma.solve: inverse of the spatial covariance matrix of true under-

lying process {Z}.

• "updatetheta(...)" : generate MCMC sample from the full conditional

distribution of 0.The arguments of this function include

diff: the residuals of the true underlying process.

theta: the values of the covariance parameters theta from the pre-

vious MCMC iteration.

Distance: the Euclidean distance matrix between all the locations

including monitored stations and sampling points within grid cells.

n: number of monitored stations and sampling points within grid

cells.

cov.model: one of the three possible choices for the covariance func-

tion: "exponential", "Gaussian" and "matern".

• "updatesigma(...)": generate MCMC sample from the full conditional

distribution of o and er'. The arguments of this function include

zhat: the measurements vector.
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Zbtilde: the model output vector.

nm: number of sampling points in each grid cell of the model out-

put; n: number of monitored stations and sampling points within grid

cells; m2: number of grid cells.

a: additive bias parameter a; b: multiplicative bias parameter b.

A2: matrix A l as described in Section 3.1.

• "updateab(...)":generate MCMC sample from the full conditional dis-

tribution of a and b. The arguments of this function include

Zbtilde: same as in the function "updatesigma(...)". ,y,abO,fb.solve,nm,m2,A2.

sigmad: the output error variance parameter 4.
y: same as in the function "updatesigma(...)".

n,m2,A2: same as in the function updatesigma(...).

• "updaters(...)": generate MCMC sample from the full conditional dis-

tribution of Z. The arguments of this function include

X: the covariate matrix at monitored stations and sampling points

within grid cells.

zhat, Zbtilde, nm,m2: same as in the function "updatesigma(...)".

sigmad, sigmae: the output error variance parameter 0-1 and mea-

surement error variance parameter o -,2 .
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sigma3.solve: inverse of the spatial covariance matrix of true un-

derlying process {Z}.

Reversible Jump MCMC is used to do the variable selection in a Bayesian

framework. It is functioning similar to the step-wise regression in classical

framework. All the functions in "update.s" are the same as in the BM model

described above. In the function "rjmelding(...)", we do not specify the

"degree", which is estimated by the reversible jump MCMC. The function

"rjmeding(...)" only returns the dimension of the coefficient in the mean

of underlying true process. More details of the software can be found in Liu

(2007).
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Chapter 4

Testing the Bayesian Melding

Model

This chapter presents an extensive simulation study of the BM model under

a variety of scenarios that assess the method while checking the R code devel-

oped. We begin with the stationary BM model, one deterministic model and

one measuring instrument. Then we move on to the case with an ensemble

of deterministic models. We include a simulation study that incorporates a

reversible jump MCMC into the BM model. In addition, studies are devoted

to several other issues such as how the estimation of covariance parameters

can be improved by better monitored site layouts and the effect of choosing

bandwidth h in non-stationary BM model.

4.1 A Single Deterministic Model

This simulation, which assumes a stationary true underlying process, has two

purposes. First, it validates the MCMC algorithm for implementing the BM

model. Second, it compares the predictions of Kriging with those of the BM
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model.

Simulation Settings

In the simulation, we have 20 monitored sites and 100 un-monitored sites

whose responses are to be predicted. The number of available grid cells

increases from 0 to 50 through the sequence: 0, 2, 10, 20, 30, 50. To reduce

our computational burden, we only have one sampling point within each

grid cell. The coordinates of the available/unavailable stations and sampling

points within grid cells are generated uniformly on [-5, 5] x [-5, 5]. Figure

4.1 depicts the locations of sites (monitored and un-monitored) and sampling

points. For each combination of sites and sampling points, we generate 50

independent dataset of the measurements and model outputs according to

the BM model (2.9).

The measurements generated at the 100 unmeasured stations will not be

used in the MCMC prediction but left for validation. As the number of grid

cells increases, we investigate changes in prediction accuracy and coverage

probability for different prediction intervals at various credibility levels (95%,

90%, 80%, 70%, 60%, 40%).

In BM 2.9, we let the mean of the true underlying process be

E [Z(s)] = P(s) = A) + r(31s1 + /3282,^(4.1)

s 1 , s2 being the coordinates of location s. We assume {Z(s)} has an expo-
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nential covariance structure. At the same time, we give 13 a prior normal

distribution with mean 0 0 = (1, 1, 1) and diagonal covariance matrix with

diagonal elements (100, 100, 100). The covariance parameters a and p have

independent prior distributions; a has an inverse gamma prior distribution

with shape = 2, scale = 0.2, while p has a gamma prior distribution with

shape = 3.5, scale = 2. The calibration parameters a and b have indepen-

dent normal prior distributions with means kta = 0, /..tb = 1 and variances

aa2 = 100, 0-1 100. The random variables 01 and a have identical and

independent inverse gamma distributions with shape = 3 and scale = 0.1.

Using the MCMC algorithm to sample from the joint posterior distribu-

tion of all parameters, we take 1000 Gibbs sampling iterations (the first 100

being for "burn-in"), which is enough to ensure convergence as shown in Fig-

ure 4.3 and Figure 4.4. That is fortunate since computational times are long

and necessity for a longer series of iterations would have greatly limited the

scope of our simulation study. The software used in our study is available

online (http://enviro.stat.ubc.ca/melding/meldingcode.zip) to enable inde-

pendent verification of our findings.

Simulation Results

Tables 4.1, 4.2 and 4.3 present estimation results for the parameters. Ta-

ble 4.4 presents the SSPE (sum of squared prediction errors) for the 100

unmeasured stations. Our results lead to the following over observations.
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Figure 4.1: Locations of 120 (20 monitored, 100 to be predicted) sites and
points sampled from up to 50 grid cells. Monitored sites (s), sites with
responses to be predicted: +, 1: the first 2 points from grid cells, 2: 3-10
points, 3: 11-20 points, 4: 21-30 points, 5: 31-50 points.

• The estimation of a, b and /3 are very close to their true values.

• Based on Figure 4.2, which shows the true underlying process values

versus the BM prediction in the case of 50 grid cells, we can see the

BM predictions are quite close to the true values.

• The estimates of the covariance parameters 9 = (a, p) are reasonably

good. However, the range parameter p proves much more difficult to

estimate than the sill parameter a. The posterior distribution in Figure
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4.5 shows p to be widely dispersed.

• Table 4.4 reveals a significant variation in the SSPE from one simulated

dataset to another.

• Table 4.4 shows that adding more grid cells decreases the average SSPE

for the BM model. The average is computed over 50 independent

dataset. In each, the SSPE does not necessarily decrease in a monotonic

fashion as the number of cells increases. However, variation from the

non-decreasing pattern in the SSPE may just be due to the sampling

variation between the generated dataset. Table 4.5 shows the SSPE

obtained by using the true values of the parameters in the predictor.

In spite of that advantage, the SSPE for even this predictor does not

always decrease monotonically as the number of grid cells increases.

(See dataset 4, and 6, for example.)

• Table 4.6 shows that the empirical coverage probability for the BM pre-

dictor comes close to the nominal level when we have a reasonably large

number of cells (at least 10). However that is not the case when we

have just 0 or 2 cells, not surprising given the paucity of data in those

situations. Kriging's coverage probability turns out to be much smaller

than that for the BM predictor even when no simulated data are avail-

able from the deterministic model (so that the two methods compete

"head-on"). That result would be anticipated since, as is well known,

Kriging underestimates the uncertainty in its spatial predictions.
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• Figures 4.3, 4.4 and 4.5 show the MCMC samples from posterior distri-

butions of a, b, 0, a and p in the case of 50 grid cells. From these three

figures, we can see the Markov chain converges after a few iterations.

Table 4.1: Estimates of a and b with different numbers of model outputs

available. The true values are a = 5.0 and b = 2.5. Columns 2-5 are the

averages of the posterior means and standard deviations. The averages are

computed over the 50 dataset generated in the simulation study. Since this

table is for the estimates of parameters a and b, there is no unit associated

to the numbers in this table. Each of these parameters is a scalar.

Number of cells a sd b sd
2 5.61 4.14 2.49 0.22

10 5.11 1.40 2.50 0.09

20 5.24 1.02 2.50 0.08

30 5.12 0.82 2.50 0.07

50 5.15 0.63 2.50 0.06

Improving Covariance Parameter Estimates

Table 4.3 shows that although the posterior mean of p gets closer to the true

value as the number of grid cells increases from 0 to 50, the posterior stan-

dard deviation remains relatively large even with 50 grid cells. That may

well be due to insufficient sampling points in close proximity to one another.

In other words, we do not have enough information about the small scale

process variability needed to accurately estimate the variogram. To explore

52



Table 4.2: Estimates of the coefficients /3 = (/30 , /31 , /32 ) with different num-

bers of model outputs available. The true values are 0 0 = 2.50, 0 1 = 2.90

and /32 = 3.20. Columns 2-7 are the averages of posterior means and stan-

dard deviations. The averages are computed over the 50 dataset generated

in the simulation study. Since this table is for the estimates of parameters

/30 , • • /32 , there is no unit associated to the numbers in this table. Each of

these parameters is a scalar.

Number of cells ,87.0 sd (31 sd

0 2.35 0.46 2.89 0.12

2 2.13 0.75 2.88 0.13

10 2.11 0.77 2.88 0.13

20 2.09 0.80 2.89 0.13

30 2.03 0.82 2.88 0.13

50 2.03 0.83 2.88 0.13

/42 sd

3.12 0.12

3.11 0.14

3.11 0.14

3.12 0.14

3.12 0.14

3.12 0.14

that conjecture, we carry out a small simulation study with 20 monitoring

sites and 50 sampling points in grid cells as in the previous simulation. How-

ever, in contrast to the previous case, we concentrate 25 sampling points in a

very small region given by [-0.05, 0.05] x [-0.05, 0.05]. Except for that vari-

ation, we generate these data in precisely the same way as in the previous

simulation. Table 4.7 shows the results for the estimators of the covariance

parameters. From that table, we can see that the standard error of estimator

for p is reduced significantly compared with the result in Table 4.3, thereby

adding support to our conjecture.
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Table 4.3: Estimates of the covariance parameters in 0 = (a, p) with different

numbers of model outputs available. The true values are a = 1.50, p = 5.00.

Columns 2-5 are the averages of posterior means and standard deviations.

The averages are computed over the 50 dataset generated in the simulation

study. Since this table is for the estimates of parameters a and p, there is

no unit associated to the numbers in this table. Each of these parameters is

a scalar.

Number of cells Q sd p sd

0 1.42 0.26 1.36 1.46

2 1.54 0.31 2.41 2.22

10 1.52 0.35 2.98 2.01

20 1.53 0.33 3.61 2.03

30 1.54 0.33 4.41 2.17

50 1.52 0.27 5.34 2.32

Conclusions

Our simulation results point to strengths and weaknesses in the BM model.

Strengths:

• The BM model can estimate the calibration parameters of the model

output very well, given a reasonable number of monitoring sites and

grid cells.

• In general, increasing the number of grid cells improves spatial predic-

tion accuracy at un-monitored sites.

• Estimates of the coefficients of the process mean are very good.
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Figure 4.2: Spatial predictions for 100 un-monitored sites by using BM model
in the case of 50 grid cells.

• The BM predictor gives much more realistic estimates of the prediction

uncertainty than does the classical Kriging approach.

Weaknesses:

• The BM model does not estimate the covariance parameters (o and p)

well in terms of their standard errors unless an appreciable number of

sampling points are very close to one another. (As seen seen from the

previous section, forcing a number of such points into close proximity

does decrease their standard errors substantially).

55



ro

Gibbs sampling iteration

0
^

200
^

400
^

600
^

800
^

1000

Gibbs sampling iteration

Figure 4.3: MCMC Gibbs samplers of the additive and multiplicative cali-
bration parameters, a and b, respectively, in the case of 50 grid cells.

• The current BM model (2.9) does not include temporal information.

For the ozone pollution data studied by Kasibhatla and Chameides

(2000), both the real measurements and model output are hourly data,

which are temporally correlated. Extending the BM model to embrace

random space - time fields would be desirable, as it would enable po-

tentially great strength to be borrowed across time as well as space.

One of such extensions is the dynamic BEM model we present later in

Chapter 10.
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Gibbs sampling iteration

Gibbs sampling iteration

Gibbs sampling iteration

Figure 4.4: MCMC Gibbs samplers of coefficients 0 in the case of 50 grid
cells.

• The computational burden imposed by the BM model limits its prac-

ticality. That burden stems from the need to invert a large dimen-

sional spatial covariance matrices three times in each Gibbs sampling

iteration. For example, 20 monitoring sites and 100 grid cells with

4 sampling points in each leads to a spatial covariance matrix with

20 + 100 x 4 = 420 rows and columns. MCMC does not provide a

"free Bayesian lunch" as might naively be suggested by its very elegant

theory.
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Figure 4.5: MCMC Gibbs samplers of covariance parameters 0 = (a, p) in
the case of 50 grid cells.

4.2 Ensemble Studies

Simulation settings

This section presents a simulation study illustrating the use of BEM model

to combine measurements with model outputs from more than one determin-

istic models. To make this simulation study closer to the real life case, we

used locations from a dataset studied by Kasibhatla and Chameides (2000);

Hogrefe et al. (2001b,a). There, measurements come from monitoring sites

("stations") and modeling output from deterministic models. In fact, we use
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Figure 4.6: MCMC Gibbs samplers of error variance 01 and o-e2 in the case
of 50 grid cells.

only a subset of these stations and grid cells in our simulation, with 50 mon-

itored sites treated as stations and 100 un-monitored sites. For simplicity

we assume only two deterministic models in our simulation study yielding

output in 20 grid cells and each of them has two sampling points. Figure 4.7

shows the locations of the sites (monitored/unmonitored) and the sampling

points within grid cells.

The mean of the true underlying random process Z is a polynomial func-
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Figure 4.7: Locations of 150 sites (50 monitored, 100 to be predicted) and
20 grid cells. Stations: A; sites with sites to be predicted: +; grid cells:
rectangles. Each grid cell has two sampling points in it. The x-axis is the
longitude in degrees, y-axis, the latitude in degrees.

tion of the coordinates:

E [Z(s)] = /-t(s) = N +131s1 + 02,52 + /334 + 044 + 058182,

s 1 and s2 being the coordinates at generated location s. This second degree

polynomial mean function of the coordinates is one degree higher then the

mean function (4.1) used in the previous simulation. This more complicated

choice permits us to see how well the BEM model works no matter how
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complicated the mean function.

In this simulation, we generate 15 independent datasets. Initially we

tried 1000 iterations of the MCMC algorithm but found it failed to converge.

Much better results obtained after we extended the number of iterations to

10,000 with a "burn-in" period of 1000. In the case of ensemble deterministic

models, there are more parameters in the BEM model. The complexity of

BEM model requires a much longer Markov chain to reach convergence.

Simulation Results

Table 4.8 gives the estimated values for the parameters and Table 4.9, the

SSPE (sum of squared prediction errors) for the 100 unmonitored stations.

These results, suggest the following conclusions.

• Estimates of the additive and multiplicative biases for both determin-

istic models are quite accurate (Table 4.8).

• The estimate of the sill parameter a is very close to the true value

while that of the range parameter p is not. However, the true value

does lie within its 90% credibility interval.

• Estimates of o- 5,2 is reasonably accurate. However, the estimate of al, i

exceeds the true value by quite a margin.

• The BEM model gives better predictions than Kriging, measured by

SSPE, because the calibration parameters are estimated very well,
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meaning in effect, that the model output helps to achieve better pre-

diction.

In summary, the BEM model seems to work quite well when we have more

than one deterministic model although the estimate of ag i is not very close

to the true value.

4.3 Reversible jumps: the stationary case

This simulation involves 20 stations and 50 grid cells. Each grid cell has

only one sampling point to reduce the computation burden. All stations

(monitoring sites) as well as sampling points are generated uniformly on

[-5, 5] x [-5, 5]. The mean function of the underlying true process is

E [Z(s)] = P(s) = /3o + /31s1 + 32s2 +,33s1 * s2

with true parameters = (1.3, 1.2, 0.5, 0.3). The true parameters of the

exponential covariance function are a = 1.5 and p = 5.0. The calibration

parameters are a = 5.0 and b = 2.5. The variances of the measurement

error and model output error are cre2 = 0.25 and 01 0.25 respectively. We

simulate 15 independent dataset in total.

Figure 4.8 shows the MCMC plot and histogram of the dimension k.

Table 4.10 shows the estimation results. They lead us to make the following

observations.
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• The Markov chain for k converges to the true dimension k = 4 (Figure

4.8).

• The estimates of )3 are averaged over all the MCMC iterations in which

)(3 has dimension of 4 and that the estimates are close to the true value

of 13.

• The true values of various parameters are within the Bayesian credible

intervals except for those of ol and 4.

   

Gibbs sampling iterations

                

4
^

5^ 6

dimension of beta

 

7

 

Figure 4.8: The upper plot: the dimension k of the coefficient )3, as a func-
tion of the number of MCMC iterations. The lower plot: histogram of the
posterior MCMC samples of k.
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4.4 Bayesian Melding in Non-stationarity

Case

In Equation (2.6) the bandwidth h has to be chosen to represent the non-

stationary process by convolution of latent stationary processes. A minimal

requirement for h: ensure the positive definiteness of the covariance matrix.

Yet if h is small then two locations will have no point, around which sta-

tionary processes center, between them, the covariance between these two

locations will be zero. So, if h is too small then too many zeros will appear

in the covariance matrix of the non-stationary process, resulting in numerical

problems when this covariance matrix is inverted to evaluate the likelihood

of the non-stationary process.

On the other hand, if h is too big, the covariance between two locations

could also be too small because the kernel function is too flat and M in

(2.7) is not big enough. In practice M cannot be chosen too big because

of the computational burden. This simulation studies the effect of varying

h. Primary interests focuses on spatial prediction error as well as on the

accuracy of the a and b estimates.

Table 4.11 and 4.12 present the prediction and estimation results. They

show that as long as h is not too small, both the SSPE and estimates of

a and b are not much different. However, when the chosen h is too big,

say, more than twice the true bandwidth used to simulate the data, the

SSPE is much bigger. Also, the standard error of estimators of a and b are
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much bigger with small h (40% of the true h ) than the estimators with a

bigger h. If h is chosen too small, say, less than half of the true bandwidth

used to simulated the data, even the MCMC algorithm will "crash" because

the covariance matrix becomes singular. So as a conservative strategy, we

recommend choosing a large h. Large in this can mean half of the distance

between two points located at the far ends of the diagonal line across the

region. That choice of h is less likely to produce a row or column full of zeros

in the spatial covariance matrix, leaving it more numerically stable.
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Table 4.4: SSPE (Sum of squared prediction errors) of Kriging and the BM
model with different number of grid cells. Since the data is simulated, there
is no unit associated to the numbers in this table.

Dataset Kriing Ocells 2 cells 10 cells 20 cells 30 cells 50 cells
1 116.03 74.11 74.21 75.83 61.75 56.67 71.86
2 104.50 42.16 42.73 40.57 40.60 41.17 39.46
3 223.32 104.80 115.60 107.57 94.54 88.72 78.28
4 119.76 78.73 76.37 73.50 73.48 69.00 63.57
5 182.26 80.53 90.61 72.47 73.20 69.82 62.21
6 135.59 59.63 64.79 52.65 52.60 53.14 51.06
7 150.89 68.86 68.71 70.23 68.27 67.88 67.92
8 127.38 92.14 90.36 94.48 86.12 89.74 79.00
9 115.09 65.81 59.11 62.19 57.87 60.31 56.87
10 121.31 120.22 117.87 106.56 103.36 91.41 82.43
11 107.19 56.38 67.78 57.15 54.68 55.63 51.33
12 172.63 100.56 96.47 96.12 93.62 89.37 86.77
13 140.90 71.37 70.93 69.01 63.82 62.55 56.94
14 194.51 126.80 134.38 134.74 120.24 123.25 104.89
15 181.34 92.89 89.98 83.47 84.37 83.54 78.83
16 257.84 151.52 141.73 129.46 118.79 105.07 95.62
17 141.69 81.64 80.08 77.18 73.68 72.90 57.69
18 170.47 90.68 89.63 91.66 84.61 79.97 73.82
19 113.81 73.24 74.97 74.34 69.21 67.39 66.16
20 99.03 83.48 85.73 82.64 80.42 79.52 73.01
21 249.37 163.09 147.83 156.51 141.12 131.03 105.89
22 138.46 85.70 95.09 81.80 79.31 72.60 64.44
23 138.66 82.25 73.79 81.62 69.68 68.94 61.82
24 110.81 76.74 75.58 79.02 81.83 81.40 69.30
25 110.84 92.90 98.19 88.23 84.67 82.00 76.09
26 162.32 112.48 114.98 110.75 102.47 91.22 85.60
27 203.55 112.85 113.07 116.73 123.22 112.19 105.84
28 138.53 72.54 74.38 73.53 69.50 68.60 66.67
29 117.12 82.46 82.15 101.03 75.22 74.61 69.97
30 152.81 135.98 133.59 122.34 117.14 93.48 72.49
31 157.05 117.43 117.13 107.43 106.66 105.21 92.00
32 140.36 101.53 100.57 93.45 88.29 93.38 88.65
33 142.60 103.28 101.85 104.96 106.54 111.43 107.54
34 102.68 93.99 86.41 88.18 74.78 77.84 67.23
35 153.52 80.53 78.76 75.80 74.19 76.07 70.82
36 171.43 75.52 73.94 70.59 65.64 63.30 52.16
37 105.98 85.41 85.17 79.46 72.99 78.09 66.47
38 144.45 62.95 71.70 63.52 68.56 66.12 60.56
39 257.85 173.02 170.12 163.96 179.29 154.24 132.83
40 158.86 123.88 119.54 109.30 95.47 91.86 104.50
41 145.30 93.46 100.74 101.24 94.68 84.76 65.31
42 128.23 72.57 73.41 73.23 69.72 67.10 65.88
43 193.23 80.03 83.14 82.81 82.26 80.17 75.48
44 130.01 72.40 72.02 74.59 74.97 70.93 67.97
45 112.00 79.34 80.79 72.00 76.52 67.87 81.12
46 168.65 121.84 95.57 91.42 86.39 91.86 76.49
47 213.19 137.96 139.81 122.81 122.18 112.25 93.99
48 100.05 84.13 74.76 76.80 68.59 65.79 63.60
49 136.49 70.64 74.48 66.42 62.05 66.89 54.86
50 113.47 110.61 92.53 89.05 85.96 79.55 73.53

mean 149.47 93.46 92.66 89.41 85.10 81.76 74.74
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Table 4.5: The SSPE when the true values of the parameters (a, b, Q , 0) are
used. That is, we use the conditional mean of the unavailable measurements
based on the available measurements to predict at the 100 unavailable sta-
tions. Since the data is simulated, there is no unit associated to the numbers
in this table.

Dataset 2 cells 10 cells 20 cells 30 cells 50 cells
1 71.45 67.06 58.71 43.00 43.47
2 40.87 44.22 40.07 41.19 38.79
3 91.50 89.48 83.86 78.88 59.20
4 66.72 62.83 62.69 55.20 56.90
5 82.61 61.58 61.24 61.48 45.55
6 53.37 52.38 49.85 49.16 51.02
7 80.49 78.99 72.17 65.16 62.48
8 75.61 78.63 66.16 67.84 64.87
9 52.14 51.78 50.65 54.46 56.31

10 74.02 71.02 58.54 50.27 44.31
11 59.88 55.76 48.13 46.95 48.71
12 95.59 94.42 75.94 67.41 59.28
13 63.23 61.81 57.52 52.86 55.63
14 91.40 86.96 85.65 69.78 54.15
15 87.79 90.01 85.94 81.63 62.36
16 57.62 56.83 54.90 50.70 44.47
17 66.08 67.89 58.25 60.47 45.96
18 85.65 81.95 61.91 61.83 50.13
19 70.43 72.75 65.97 57.36 48.66
20 77.18 66.47 61.21 56.51 51.70
21 105.28 99.17 103.48 71.71 54.18
22 72.46 75.67 59.15 62.64 53.83
23 53.52 52.24 46.91 48.51 47.59
24 72.67 68.45 64.94 67.81 45.60
25 77.12 68.43 68.92 59.51 60.16
26 89.49 84.16 70.41 68.56 50.87
27 112.37 103.01 72.94 72.33 54.01
28 69.11 58.72 60.26 60.95 56.24
29 63.89 65.79 54.27 52.92 55.52
30 69.43 62.33 59.45 45.74 43.89
31 94.46 89.88 83.92 80.52 74.34
32 80.29 56.97 57.68 47.16 47.38
33 94.49 84.18 86.67 53.36 48.66
34 73.97 62.18 54.61 53.44 45.64
35 77.03 68.71 62.90 65.48 55.35
36 49.02 48.34 45.57 40.47 39.14
37 57.07 56.01 52.06 51.31 54.31
38 54.79 53.17 55.68 58.89 43.27
39 107.22 84.85 67.01 71.63 72.91
40 79.55 75.74 65.22 66.18 57.71
41 93.32 93.24 52.51 54.55 44.87
42 60.07 64.15 59.39 50.81 45.13
43 71.83 74.13 73.27 68.45 51.47
44 71.14 71.26 71.38 64.28 61.59
45 69.84 57.97 54.07 52.08 48.51
46 69.84 61.69 67.31 75.64 70.61
47 78.45 71.75 70.10 56.13 56.87
48 65.29 56.04 45.04 43.28 38.92
49 60.39 55.84 51.19 43.97 42.54
50 80.41 75.18 64.94 58.50 47.76

mean 74.35 69.84 63.21 58.78 52.26
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Table 4.6: Coverage probability of the credible interval for the simulation
study in Section 4.1, with 20 monitored sites and up to 50 grid cells to
predict 100 un-monitored sites. The first column is the nominal coverage
probability of the credible interval.

kriging 0 cell 2 cells 10 cells 20 cells 30 cells 50 cells
95% 37.60% 68.50% 91.98% 94.40% 94.48% 97.23% 95.38%
90% 32.70% 59.68% 84.78% 89.42% 88.22% 86.00% 91.90%
80% 26.32% 49.84% 73.04% 79.58% 78.88% 76.48% 80.76%
70% 21.86% 40.64% 62.04% 70.88% 68.26% 66.28% 71.92%
60% 18.64% 33.50% 52.70% 57.78% 56.24% 55.48% 59.66%
40% 12.22% 22.92% 34.86% 39.00% 38.96% 36.78% 40.72%

Table 4.7: Estimates are based on 20 monitored sites and 50 sampling points.
There are 25 sampling points in close proximity to one another. The averages
are computed over 50 dataset. True values are a = 1.50 and p = 5.00.
Since this table is for the estimates of parameters a and p, there is no unit
associated to the numbers in this table.

averaged posterior mean averaged posterior sd
a^0.97^0.25
P^4.69^ 0.76
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Table 4.8: Parameter estimates in the simulation study of ensembles of de-

terministic models in Section 4.2. Columns 3-4 give the averages of posterior

means and standard deviations for az , b„ i = 1, 2, the calibration parame-

ters of the model output for two deterministic models. ao, i and a6,2 are the

variances of two model output error processes. The averages are computed

over 15 dataset. Since this table is for the estimates of parameters, there is

no unit associated to the numbers in this table. Each of these parameters is

a scalar.

Parameters True value mean sd
a l 5.00 4.94 0.48
b i 2.50 2.50 0.02
a2 4.00 4.00 0.68
b2 3.40 3.39 0.03
Q 1.50 1.51 0.28
P 5.00 6.73 0.91

,80 2.50 1.98 0.59
/31 2.90 2.92 0.17
,32 3.20 3.20 0.16
03 0.80 0.80 0.03
04 1.10 1.11 0.03
05 1.30 0.31 0.03
ae 0.25 0.33 0.13

0-(5,1 0.25 0.24 0.46
Q (5,2 0.25 4.51 0.91
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Table 4.9: SSPE of the BM model and Kriging in the simulation of multi-

deterministic models. We have 50 monitored sites and 100 unmonitored ones.

There are 20 grid cells each of them having two sampling points inside. Since

the data is simulated, there is no unit associated to the numbers in this table.

Dataset Kriging BM
1 42.57 33.13
2 74.07 70.99
3 85.39 59.90
4 56.63 48.59
5 81.75 45.36
6 81.91 73.19
7 56.64 55.89
8 55.31 48.74
9 85.39 56.79

10 72.93 57.10
11 60.41 49.30
12 65.04 59.70
13 97.69 50.43
14 62.23 60.55
15 60.79 41.45

mean 69.25 54.07
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Table 4.10: Estimates in the stationary case using reversible jump BM model.

Both the "estimates" and "standard error" are averages obtained from 15

independent dataset. Since this table is for the estimates of parameters, there

is no unit associated to the numbers in this table. Each of these parameters

is a scalar.

Parameters True value Estimate Standard Error
k 4 4.079 0.41
a l 5.00 5.32 0.52
b 1 2.50 2.45 0.07
a 1.50 1.10 0.27
P 5.00 4.94 0.67

i30 1.30 0.96 0.74
A. 1.20 1.06 0.49
02 0.50 0.51 0.10
03 0.30 0.32 0.04

2Up

d(5
0.25
0.25

0.39
4.52

0.06
0.83
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Table 4.11: SSPEs with different choices of h in non-stationary BM model.
Columns 2-6 give the SSPEs for different ratios of the true bandwidth gener-
ating the data over the chosen bandwidth in the non-stationary BM model.
Since the data is simulated, there is no unit associated to the numbers in
this table.

dataset 1.67 1.33 1.00 0.50 0.40
1 7.99 7.74 8.09 8.89 10.73
2 3.39 3.01 2.92 3.26 5.71
3 3.50 3.78 7.40 2.59 4.63
4 4.30 3.60 3.26 3.28 4.24
5 4.11 4.79 4.44 5.18 17.33
6 2.04 4.01 2.18 3.61 2.71
7 3.87 3.87 5.12 4.19 5.58
8 6.15 6.13 7.70 6.40 8.36
9 2.90 3.04 2.49 5.09 18.33

10 4.63 5.94 4.96 7.03 6.68
11 2.49 3.15 3.27 5.11 3.08
12 3.29 2.40 2.56 5.09 7.56
13 4.13 4.40 5.46 5.07 3.50
14 3.27 3.49 3.81 2.90 7.70
15 7.45 7.26 7.87 7.04 6.26

mean 4.23 4.44 4.77 4.98 7.49
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Table 4.12: Estimates of a and b for varying values of h in non-stationary
BM model. Columns 2-5 give the averages of posterior means and standard
deviations. The averages are computed over the 15 datasets generated in the
simulation study. The true values are a = 5.00 and b = 2.50. Since this table
is for the estimates of parameters, there is no unit associated to the numbers
in this table. Each of these parameters is a scalar.

(true h)/(chosen h) a sd b sd
1.67 5.04 0.33 2.49 0.05
1.33 5.03 0.32 2.49 0.05
1.00 5.01 0.31 2.49 0.05
0.50 5.00 0.30 2.50 0.05
0.40 5.51 1.23 2.72 0.58
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Chapter 5

A New Univariate

Spatial-Temporal Model

The BM model cannot deal with temporal correlation in the data. To provide

an alternative to the BM model, we consider a regression model. The rest

of this chapter is organized as follows. Section 5.1 reviews a two-step linear

regression model, Section 5.2 presents an ad-hoc extension of the two-step

linear regression model. Based on the favorable results seen in Section 5.2,

Section 5.3 develops more rigorously a spatial-temporal model in a Bayesian

framework. The data analysis results and conclusions are in Section 7.3.

5.1 Two-Step Linear Regression

This section reviews the two-step linear regression model proposed by Guillas

et al. (2006). The strong linear correlation between the hourly measurements

and model output at each station makes such a model seem natural. Figure

5.1 shows those correlations to be bigger than 0.5 at most stations, pointing

to a linear relationship between the measurements and model outputs.
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The first model in the two-step linear regression procedure proposed by

Guillas et al. (2006) relates the measurements, {0(t)}, to the model outputs

{M(t)} by

= c+aM(t)+ Nt, t= 1,2, •,T^(5.1)

with autocorrelated residuals

Nt = PNt--1 + et.^ (5. 2)

g

‘9,

O

O

0.2 0.3^04^05^06^07 08

Pearson's correlation coefficients between measurements and model output

Figure 5.1: Histogram of Pearson's correlation coefficients between hourly
measurements and model output for the 78 stations.

The residuals for the autocorrelation model in turn satisfy the following
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{ 1 if t mod 12 = i;
m i (t)

0 iftmod12 ^ i.

linear regression model:

11

et =
^aimz (t)^Et,^ (5.3)

i=0

i = 0, • •^11.

The models (5.1), (5.2) and (5.3) are the same for all stations, while the

coefficients are station specific. Both the measurements and model outputs

are at the hourly level of temporal resolution and thus they have a strong

auto-regressive structure.

{Xt } is an AR(p) process if for every t

Xt = C
^

PiXt-i + Et,

where e t ti N(0, (7,2 ) independently and identically. The autoregssive pa-

rameters are p i , • •, pp . Many authors omit constant c for simplicity. Some

constraints are necessary on the values of the parameters of this model in or-

der that the model remains stationary. For example, processes in the AR(1)

model with 'p i ' > 1 are not stationary. Assuming the {N t } have an AR(1)

autoregressive structure provides computational simplicity at the possible

expense of realism. We also have tried an AR(2) structure for the {Nt }

but the forecast results do not improve, leading us to use AR(1) throughout
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this thesis. Following Guillas et al. (2006), we first fit model (5.1) by using

generalized least squares as proposed by Box et al. (1994), N(t) being an

AR(1) process. If the model output captures the temporal structure of the

measurements very well then model (5.1) would be enough. However, most

of the time, the measurements will still have some temporal structure that

the model output fails to capture. That is to say, the residuals {e t } will have

non-zero means. So, the second step is to fit model (5.3). The covariates in

this model are indicator functions of the 12 hours. We also tried indicator

functions of the 24 hours, but the forecast results do not improve. So, in

favor of fewer parameters, we choose indicator functions of the 12 hours. For

the residuals of the AR(1) process {Nt}, Et r N(0, (7) independently and

identically.

Models (5.1-5.3) are fitted sequentially and independently. These two

models can then be used to forecast the measurements. Suppose at each

station, the training data are measurements and model output for times t =1

to T. For times t = T +1, • • •, T +T', only the model output is available and

the goal is to forecast the measurement during that future time period. To

do so, models (5.1-5.3) are fitted to obtain estimators 6, a, 1), = 1, • • • , 12.

The forecast of Ot is then the following

O t = a + etMt +
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where
1 1

it = pit-i +^d-rni (t)^ (5.4)

t =T + 1, • •,T +T'

Although the two-step regression above is easy to implement, it has two

disadvantages. First, it does not include any spatial correlation between

stations. We fit models (5.1-5.3) at each station independently. Thus we

can only forecast the measurement for stations that have measurements in

the past, after estimating the requisite coefficients. In other words, it cannot

borrow strength across space to forecast future values of stations without

past data by exploiting data from neighbors with a past. Second, the two-

step regression procedure only gives point forecasts without any indication

of their uncertainties.

To address the first disadvantage of the two-step regression, we first con-

sider a simple but ad-hoc approach which Kriges parameter estimates (Ct,

and di ) across space to get values for them at stations without measurements.

After affirming the value of our ad-hoc approach, we address the second dis-

advantage by extending it to a Bayesian spatial-temporal model. The latter

has better Bayesian credentials than the former but that comes at the price

of greater complexity. The credible predictive intervals of the forecast and

spatial prediction can then be obtained from their MCMC posterior samples

at considerable computation cost.
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5.2 Two-step linear regression with Kriging

This section presents an ad-hoc approach which is able to not only forecast

the measurements but also spatially predict the measurements at those lo-

cations without historic measurements. First, we fit models (5.1) and (5.3)

at the stations with measurements. Then the estimates of parameters a, c

and a z , i = 0, • • •, 11, are interpolated at locations without measurements

by Kriging as described in Section (2.3). We uses the exponential function

(2.3) to model the spatial covariance. More complex choices of the spatial

covariance function will be considered in future work.

At the locations without measurements but with model output, we have

the Kriging interpolated values of the parameters a, c and az , i = 0, • • •,11.

Then we can plug these parameters into Formula (5.4) to obtain spatial

predictions of the measurements.

5.3 A Bayesian Hierarchical

Spatial-Temporal Model

The ad-hoc approach in the previous section is "self-contradictory" because

it first fits models (5.1-5.3) to get estimates for {a i l ignoring their spatial

correlation. But then it uses Kriging to interpolate the estimated param-

eter values at the locations without measurements assuming parameters at

different stations are spatially correlated.
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Another disadvantage of the ad-hoc approach is that it fails to provide

measures of the uncertainties associated with the forecasts or predictions.

Kassteele et al. (2006) use a similar two-step regression model to interpolate

PM10 concentrations over western Europe.

In this paper, the authors first fit a linear regression model with PM10

as the response, modeling output and other explanatory variables as covari-

ates. Then the residuals are interpolated using Kriging. The approach in

Kassteele et al. (2006) has the same weakness as the ad-hoc approach pre-

sented in the previous section. That is, it assumes the residuals are spatially

independent to fit the model by using ordinary least square method and then

uses Kriging to interpolate the residuals at other locations. Moreover, the

model used in Kassteele et al. (2006) does not include temporal correlation

because the data are yearly averages of PM10 concentrations that do not

have much temporal correlation. Hence, strictly speaking, both the ad-hoc

approach in the previous section and that of Kassteele et al. (2006) do not

yield spatial-temporal models. This section presents a Bayesian hierarchi-

cal spatial-temporal model that assumes parameters at different stations in

models (5.1) and (5.3) are spatially correlated Gaussian processes.

For the Bayesian spatial-temporal model has the following mathematical
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form:

-= a8 C8M8,t N8,t

N8,t = PN8,t-1^2(1,8Z1,t^72,8Z2,t^' • • + 712,8Z12,t^C8,t

a = (a i , • • cta ) T ti MVN(pa , Ea )

c = (c1, • • •, cm)" N MVN(1 1 , Ec)

= (71,i, • • •,71,n) T

'712 = (712,1, •^712,n) T^MVN(/.6712 , E712 )

(€14, • • •,€,,,,t) T V MVN(0, E E ) independently and identically

times t = 1, • • •, T, and

sites s = si, • • •,sn

= (Pa, • • •, Pa)T

1-tc = (te, • • ',1-tc) r

Ea = aa2 exp(—D/A a )

E, = o-c2 exp(—D/A,)

Eli = (772 exp(—D/A ), i = 1, • • •, 12

= (P-y, • • •,/-172) T, i = 1, • •^12

E E = cre2 exp(—D/A,),^ (5.5)

n being the number of monitoring sites, T, the number of hours and D, the
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Euclidean distance matrix between stations. Vectors pa , p c and E7, have

dimension n. In model (5.5), s denotes location and t, time. The time-

related covariates at time t are Zi , t = 0 except for t mod 12 = i where

Zi ,t = 1, i = 1, • .12. These time-related covariates are the same as the

indicator functions m, (t) in (5.3). At each time t, the residuals at different

locations are also spatially correlated. The spatial correlation is isotropic

and specified by an exponential correlation function. At each location s, the

residuals f 8 , t form an AR(1) time series with mean 0.

We make the following assumptions for this Bayesian spatial-temporal

model.

• The measurements and model output are linearly related.

• The autoregressive parameter p is constant across stations. Section

11.2 has more discussion about this assumption.

• The temporal-spatial correlation is separable. For a process {Z(s,

its temporal-spatial is separable if the correlation can be written as

product of spatial and temporal correlation functions. That is, the

temporal correlation does not change over space and the spatial corre-

lation remains the same over time. Section 11.2 discuss future work to

release this assumption.

• The spatial correlation between measurements at different stations can

be explained by the model output and the spatial correlation between
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the coefficients and residuals. Section 7.3 justifies this assumption in

our data analysis.

We use the Gibbs sampling algorithm proposed by Gelfand and Smith

(1990) to fit the Bayesian spatial-temporal model (5.5). The key to make

Gibbs sampling work efficiently is to write model (5.5) in matrix form, that

is

0= Aa+Mc+N

RN = 7 1 Z1+ • + -y i2 Z + E

a N MVN(/-ta , Ea)

c ti MVN(p c , E c )

-yi ti MVN(iz,yi ,^i = 1,•12

E ti MVN(0, IT-1 0 Ee),
^ (5.6)

IT-1 being an identity matrix with dimension (T — 1) x (T — 1) and E f is

the spatial covariance matrix of residuals f,, t across space at each time t.

The measurement vector is denoted as 0 = (01,1, • • •,01,n, • • •, OT,1, •

• , OT,TO T and the vector N, as N = (N1,1,• •^• •, NT,1, • • • NT,Th) T. The

measurements are arranged first in the order of locations and then in the

order of time. So, the measurements from different locations at the same

time are next to each other. That is how we get the Kronecker product

structure for the variance matrix of residuals E in model (5.6). The matrix
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form of the model output is

0

0 • • • Ml,n

Mt, 1 • 0

M = 0

0 Mt,n

MT,1 0

0

0 • • - MT,n nTxn

In the matrix M, the rows from (t —1) x n + 1 to t x n form a diagonal

matrix of dimension n x n for t =1,• • •,T. The elements in each diagonal

matrix are the measurements from different locations at time t. The matrix
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A has the same structure as M. We have

0^1

A =
^1 ^0

0

^\ 0^l j 
nTxn

In the matrix A, the rows from (t — 1) x n + 1 to t x n form an identity

matrix of dimension n x n for t = 1, • • •, T.

The matrix R has dimensions n(T — 1) x nT. At each row i, i = 1, •

•, n(T — 1), the element at column i is —p and the element at column i + n

is 1. All the other elements in the matrix R are 0.
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The matrix Z 1 is

1^...

• • .

0 ■
o

0^... 1

1 0

.Z1 = 0

0 1

0^... 0

• . 0

\0^
• • • n(T-1)xn

This matrix has dimensions n(T — 1) x n. The rows from (t — 1) x n + 1

to t x n (t =1,- • -,T) form an identity matrix of dimension n x n only for

t mod 12 = 1. All the other elements in the matrix R are 0. The matrices

Z (i = 2 • • 12) have the same dimensions as matrix Z 1 . For matrix Z,

(i = 2 12), the rows from (t — 1) x n + 1 to t x n (t = 1,• •, T) form

an identity matrix of dimension 77, x n only for t mod 12 = i. All the other

elements in the matrix R are 0.

Let N = 0 — Aa — Mc and F = 2_, 17i Z 2 . Then the density of
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c = RN is the following:

p(Ola, c, R, EE) a IEE E T21

1
eXP

2 
[R(0 - Aa - Mc) -^(IT_i 0 E r ) -1- [R(0 - Aa - Mc) - 1]) .

(5.7)

The inferences about the parameters, forecasts and predictions are based

on their Markov Chain Monte Carlo (MCMC) samples generated by the

Gibbs sampling algorithm. That algorithm as implemented is iterative. First,

we choose some arbitrary initial values for all the parameters. Then, in

each iteration of the algorithm, the parameters are updated by generating a

random sample from their conditional distributions given the data and other

parameter values from the previous iteration. For computational efficiency,

each of the parameter vectors a, c and -y l , • • -y i is updated as a block. For

completeness, we list the conditional distributions for each of the parameters

from (5.8) to (5.16) .

The prior and full conditional distributions of a are

P(aitta, Ea) ti MVN (Pa, Ea)

P(ailia, Ea, M, A, R, E E ) N MVN(t.ta' , Ea)

Ea =^+ ATRT(/T_ i E f ) -i RA] 1

a = Ea [AT RT('. T_i 0 E E ) - .17(0 - Mc)

-ATRT(IT_ i ® EE) -1 F + Ea l Pa] •
^(5.8)
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The prior and full conditional distributions of c are

p(c! p, e , Ec) ti MVN(p,,, E c )

Ec, M, M, R, E E ) ti MVN^E c )

E ic = [E;- ' + MTRVT_i ® E E ) -1RM] 1

pc = Ec [MTRVT_i ® E,) -1 R(0 - Aa)

-MTRVT-i 0 + . (5.9)

The prior and full conditional distributions of^i = 1, • • •, 12, are

P(7i1I-t7o EN) "' MVN(FIN , E-yi )

p(-yi^, EN , M, A, R, f ) ti MVN Gu i7i ,

Eli =^ZT(iT-1 EE)-1Z2ri

= E7.[ZiVT-1 EE)-1 (R(0 - Aa - Mc)

-F + (5.10)

The prior and full conditional distributions of pa are both univariate
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normal distributions with the following forms:

gttalao, fo)^N(ao, fo)

P(/ualao, fo, Ea, a)^N(ao, to)

fo = [fcT i + 21 TE 1 1] -1

ao = fo [aTE: 1 1 + 1TEI, l ot] ,^(5.11)

1 being a vector of dimension n with all the elements are 1, f o and f,'3 , the

prior and conditional variance of p a . The full conditional distributions of pc ,

(i = 1, • • •, 12) are almost same as (5.11) only replacing a, Ea with c, E,

and -y a , KT, correspondingly.

The prior and full conditional distributions of a, are both inverse gamma

distributions with the following forms:

p (o.a2 1 a , 0 )^(aa2 ) ,_1 exp ( ^1  )
,(7?,

P(cja2 ia, ,(3, a, Aa, [la)^(cja2 ) -ai^exp
Cr?4

n
a = a + 

2

= [1/Q + -12j- (a — a ) T (exp(—D/Aa )) -1 (a — p a )]^(5.12)

We cannot find a conjugate prior for the parameter A a , so its conditional
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distribution does not have a closed form. However, we have

p(Aa la, p a , a) cx lexp(—D/A a )1 -1

expf- -1
 
 (a — tia ) T (exp(—D/) a )) 1 (a — ita )}.^(5.13)

To obtain a random sample from the above distribution of A,„ we have to

use the Metropolis-Hasting algorithm proposed by Metropolis et al. (1953)

and Hastings (1970). The conditional distributions of a c2 , A, and o-721 ,A.-yi

(i = 1, • • •, 12) are very similar to cr a2 and 'a . We only need to replace a, Pa

with c, pt, and y2 , Ec ya correspondingly in (5.12) and (5.13).

The prior and conditional distributions of al are both inverse gamma

distributions with the following forms:

i30")

P( 2 I a, , C, AE, i-tc)^(cr,2 )^exP^
/31

Gr^/3^
G1)

n(T — 1)
a = a +

2

1(3 = [11 + (etT(exP(—D/AE))-1et)
=2

1

1
P(CF a, /3) CX (C4) -a-1 eXp

(5.14)

Et being the residuals vector at different locations at time t. As with )a ,

we use Metropolis-Hastings algorithm to obtain a random sample of A f . We
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have

P(Aflo",^icx lexP( — DIAE)I -1

  

1 r(etT(exP( — DIAE) i et)}.t=1 (5.15)

To update p, its ordinary least square (OLS) estimate given other param-

eters is used instead of a random sample from its conditional distribution.

We do this in part for computational simplicity. Finding a conjugate prior

for p is very difficult while finding its ordinary least square estimation is very

easy. The main reason is that the variance of the conditional distribution

of p is small enough to be treated as zero because of the large sample size

n x (T — 1). The OLS estimate of p is

v■T^v■2
2 v 8 5t^Laj=i i,t7i,S)NS,t-1

=^
L—dt=
^2

Et=2
(5.16)

where N is the matrix form of N in model (5.6) and 234 = 0 except for t

mod 12 = j where 2i , t = 1.

At each iteration in Gibbs sampling, the forecast or prediction is obtained

in an iterative way. The forecast or prediction is

O t = a, + c8 M t + Nt
12

N t = pN t _ i +
^

72,8Zi,t + Et
i=1

Et is a random sample generated from MVN(0, E E ),^(5.17)
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M t being the vector of measurements from all the stations at time t, bdc t ,

the residuals at time t, O t the forecast or prediction at time t. At those

stations where the historic measurements are available up to time T, a t ,
t = T + I,. • -,T + T' are the forecasts. At those stations where there is no

historic measurement, a t , t = 1,• • •, T are the predictions. The parameters

at those stations without measurements can be spatially predicted by the

parameter values at stations with measurement. Finally, the credible interval

of the forecast or prediction is obtained by taking the quantiles of all their

MCMC samples.
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Chapter 6

Multivariate Spatial-Temporal

Model

Both the BM model in Chapter 2 and the Bayesian spatial-temporal model

in Chapter 5 are univariate models. That is, the responses in these models

are univariate variables. However, in practice, the monitoring stations can

record the concentration levels of more than one pollutant. It is also possible

for the deterministic models to generate multivariate outputs. For example,

Grimit and Mass (2002) describe the University of Washington mesoscale

short-range ensemble forecasting system over the Pacific Northwest. This

system can generate temperature and sea surface level pressure at the same

time.

The multivariate regression problem has been studied extensively by Brown

and Zidek (1982); van der Merwe and Zidek (1980); Brown and Zidek (1980);

Cripps et al. (2003), etc. In geo-statistics, a well known tool for interpolating

a multivariate spatial process is the so-called co-Kriging approach described

by Wackernagel (1998). Co-Kriging is a multivariate extension of the Kriging

approach. However, like Kriging, co-Kriging is purely a spatial model which
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cannot handle the temporal correlation in a fundamental way. The more

recent literature of multivariate pollutant prediction includes Mardia and

Goodall (1993); Brown et al. (1994); Le and Zidek (1997); Sun et al. (1998);

Zidek et al. (2000); Schmidt and Gelfand (2003); Gelfand et al. (2004). The

related chapters in the books by Le and Zidek (2006); Banerjee et al. (2003)

provide excellent summaries of various multivariate models used in the spa-

tial statistics. However, many of multivariate models proposed before assume

the responses are temporally independent. In some cases, this assumption is

valid because the data has been monthly or yearly averaged so there is not

much temporal correlation left. In other cases, some preliminary analysis has

been done to remove the temporal correlation before using the multivariate

models. This chapter presents a multivariate model which is an extension of

the univariate spatial-temporal model proposed in Chapter 5. It incorporates

both spatial and temporal correlation. This multivariate model is built in a

Bayesian framework in order to evaluate the uncertainty of the forecasts and

spatial predictions. The rest of this chapter is organized as follows. Section

6.1 presents the details of the multivariate spatial-temporal model. Section

6.2 presents the MCMC algorithm to fit this multivariate spatial-temporal

model.
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6.1 Multivariate Spatial-Temporal Model

This section presents the model specifications and full conditional distribu-

tions of all the parameters needed to implement the MCMC algorithm. At

time t and station s, the model has the following form:

084 = /3 8 M 8,t + N8,t

1•7 8 , t = pN8,t-i+'78 Z8,t+ C 8 ,t

t =1,• • •T

8 =1,• • .n

E8,t ti MVN(0, E,) independently and identically,^(6.1)

08 , t : q x 1 being the measurements vector of q pollutants and M a , t : (p +

1) x 1, the vector of intercept term and p model outputs for q pollutants.

It is not necessary that p = q. The covariate Z,, t is a vector of dimension

m, which can include m other variables helping to forecast or predict the

measurements. For example, Z can include temperature which is helpful

to forecast or predict the ozone concentration levels. The matrix E, is the

covariance matrix of q pollutants, the so-called co-regionalization matrix in

geo-statistics. The auto-regression coefficient matrix p is of dimensions q x q.

The coefficients O s and ye at each location s are matrices of dimensions

q x (p + 1) and q x m respectively. Each element of the matrix /3 and -y,
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are spatially correlated across stations. That is, we have

(13i,j,1 1 
..

.7 0i, )T ti MVN(A0,i,j, Es,i,i)

= aQ, i ,7 exp( — D/A0,i,9)

= 1 7 • • • 7 ql j = °I • • • 7 P

("Y i,j,17^i,j,n)T r". MVN(A-y ,i,j7

=^exp(—D/),i,j)

i = 1, • • •,q, j = 1, • • •,m.^ (6.2)

Spatial processes {0, 0 , 8 } (i = 1, • • •, q, j = 0, • • •,p) and {-y2 ,3 , 8 } (i = 1, • • •, q,

j =1,- • • , m) are assumed to have exponential spatial correlation functions.

However, these spatial processes, 0, 0 , 8 1 and 0,0 , 8 1), have independent prior

distributions. We use the Gibbs sampling algorithm to fit models (6.1) and

(6.2). We write model (6.1) in a matrix form to make the MCMC algorithm

more efficient. The matrix form is the following:

0 = M f3 + N

RN=-yZ+c

c ti MVN(O, I E E), (6.3)

the dimension of identity matrix I being n(T — 1) x n(T — 1) , the mea-

surements vector 0, formed by stacking vectors O t (t = 1, • • -,T). In other

words, Ot = (01,1,/7 • • •, q,l,t1 • • 7 °1,01 • • • 0q,k,t1 01,n,t7 • • 0q,n,t)T, which
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includes the measurements of q pollutants for n stations at time t. In model

(6.3), we have the coefficients vectors

=^• •^01,0,n,^'7 13i,3,11 • • - 1^' • i3q,p,11 ' ' ' 1 13q,p,n) T and

= (71,1,i, • • • 71,1,n, • • • ,^• • • , 7i,7 ,n , • • • N , m , 1 • • • , 'yq,m,n ) T. The coefficient

= 1, q, j = 1, • • • , p, k = 1, • • -,n ) is the effect of j-th model

output on the i-th measurement at station k and f3i ,o , k is the intercept of the

i-th measurement at station k. In principle, we can arrange the elements of

vectors Q and y in arbitrary orders. The reason to have the specific ordering

above is that we can easily write the covariance matrix of the coefficients

and 7 in a block diagonal form shown later in the next section. In model

(6.3), the model output M is matrix of dimension nqT x nq(p + 1). The

covariate matrix Z is of dimensions nqT x nqm. The matrix of measure-

ment M is formed by stacking the matrices M t , t = 1, • • • ,T by rows. Each

matrix M t is of dimensions nq x nq(p + 1) and it is formed by stacking the

matrices m i , i = 1, • •, n by rows, m i being a diagonal block matrix of

dimensions q x nq(p + 1). The row vectors on the diagonal of matrix m 1

is (Mo,i,t, 0 •^0,^0 • • 0, • • , Mp, 1,t 0 • • 0 ) M0,1,t = 1 corresponding

to the intercept, M1,1,t• • • •• p , i , 1 , p covariates at station 1 at time t. The

matrix Z has the same structure as M except that its dimensions are of

nq (T — 1) x nqm.
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The density function of 0 is the following:

p(010 ,-y, R, EE) oc II 0 Ed -1

exp ( 1
--

2 
[R(0 — M/3) — ZIT (I E -1 ) [R(0 — M 1 3) — Z-y])(6.4)

6.2 MCMC Algorithm

To use the Gibbs sampling algorithm, we first need to derive the full con-

ditional distributions of all the parameters. The likelihood function of the

parameters 13, y , E and p is (6.4). The prior and full conditional distribu-

tions of are the following:

p(13 µQ, Ep) MVN(po , Ep)

p(Olizo , Ep, R, 0, Z, E,, 7) MVN(i4, E t3' )

[Efii mTRT(/ E i) R,A4-] 1

p is = Ep [E iVp is + MTRT(I 0^(RO — Z-y)] .

The prior mean po is formed by stacking vectors

= (up,,,j , • • •„up,,o )T, i = 1, • •,q and j = 0, • • • , p. The n elements

in vector µo, , ,3 are identical because we assume the prior mean of A o is

the same at each station. The prior variance of [3 is Ep = diag(E 04 ,0 , • •

•, E0 ,,,j , • • •, Ej, q ,p ). Each matrix Eo, i0 is the spatial covariance matrix of

vector 63, 04 , • • •, 020 , 7,), that is, the coefficients ,32 ,3 at different stations.
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Because the spatial processes of coefficients )32 ,3 are independent of each other

so E0 is a diagonal block matrix of p x (p + 1) blocks.

The prior and full conditional distributions of -y are the following:

P(7111 y , E-y)^MVN(u-r , E-y)

p(-y1/17 , E7 , R, O, Z , EE, -y) MVN(pt7, E7)

Ely = [E; 1 + zT(I Ei)z] -1

µy =E7 [E.:y-1417 + ZT(/ E l )R(0 — M /3)] .

The prior mean and variance of^have the same structure as those of 00 .

The only difference is that the dimension of the coefficient matrix -y k at each

station k is of q x m but the dimensions of 13 k is q x (p + 1).

A q x q positive definite matrix W is said to have a Wishart distribution

with v degrees of freedom if its density function is of the form

f (W) = [2v0Fq (v /2)] 1 Litirv/2 1Wr-q -1 exp [—tr(A -1 W)/2]

Fq (t)^rq(q-1)/41171F[t — (i — 1)/2]

r(x) = Z
oo 

tx-l e-tdt.^ (6.5)

for any positive q x q matrix A, tr(A -1 W) being the trace of matrix A -1 W.

Let W = E -1 stands for the precision matrix in the density function
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(6.4). The prior and full conditional distributions of W are

p(W) ,-, Wishart(A, v)

p(We) --, Wishart(A', v')

A' = (A -1 + "éTë) -1

7; = v + n(T — 1).^ (6.6)

The n(T —1) x q matrix -6 is formed by stacking row vectors e B , t , t = 2, • • •, T

and s = 1, • • •, n. Each residuals vector e 8 , t is of dimension q.

To update the auto-regression coefficient matrix p, we use ordinary least

squares estimation instead of sampling from its full conditional distribution.

In Gibbs sampling algorithm, iteratively update each parameter block by

its full conditional distributions derived as above in this section. At each

iteration in Gibbs sampling, the forecast or prediction is obtained in an

iterative way. The forecast or prediction is

O,„ t = 0 8 m ,,t + N s,t

1 V 8,t = PN 8 3t-i + 68,t

c a ,t is a random sample generated from MVN(0, E E ).^(6.7)

At those stations where the historic measurements are available up to time

T, O 8 , t , t = T + 1, • • -,T + T' are the forecasts. At those stations where

there is no historic measurements, O 8 , t , t = 1, • • •, T are the predictions.

100



The parameters at those stations without measurements can be spatially

predicted by the parameter values at stations with measurements. Finally,

the credible interval of the forecast or prediction is obtained by taking the

quantiles of all their MCMC samples. Section 7.4 presents an application of

the Bayesian multivariate spatial-temporal model and demonstrates its use.
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Chapter 7

Forecasting and Spatial

Prediction

One of the important purposes of deterministic models is to predict the phe-

nomena they represent. This chapter first presents spatial prediction results

for BM described in Chapter 2. Then it continues to explore the making

of such predictions and forecasts by the spatial-temporal model proposed in

Chapter 5. In the rest of this chapter, we use the term "prediction" to refer

to spatial prediction, while "forecast" refers to future responses.

7.1 Bayesian Melding Model Prediction

The data comes from two sources: regional surface ozone concentration mea-

surements and model outputs from a deterministic model AQM (air quality

model), a non-hydrostatic version of the MAQSIP (Multiscale Air Quality

Simulation Platform) model. This AQM system has been described in detail

by Wheeler and Houyoux (1998). The AQM model output is based on grid

cells with resolution 6 x 6 km 2 . The measurements are from the Air Quality
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System (AQS) monitoring network. Both the measurements and model out-

puts are hourly concentrations starting from May 15 to September 11, 1995

over a 120-day period. The dataset represents 375 monitoring stations in the

AQS network and 307 grid cells in the AQM output. The measurements and

model outputs are based on different supports, that is, measurements are

based on point values while model outputs are grid cell averages over space.

In addition, the model outputs are based on the UTC (Coordinated Univer-

sal Time) time standard, the measurements on local time. Ignoring this time

difference would result in poor correlation between measurements and model

outputs. The next section shows the necessity to adjust this discrepancy.

This dataset has been analyzed by Kasibhatla and Chameides (2000),

Hogrefe et al. (2001b) as well as Hogrefe et al. (2001a). The first paper

compares the Pearson correlation coefficients between quantiles (10th, 25th,

50th, 75th and 90th) of the measurements and AQM model outputs for daily

average data. The latter two papers also analyze the correlation between

measurements and model outputs, but after decomposing the hourly time

series into sub-series on different time scales. They reach similar conclusions,

that the AQM model output represents the measurement better at longer

time scales.

However in estimating the correlation between measurements and model

output, the above analysis ignores the temporal and spatial correlation in

the data, thus leaving some uncertainty about their validity. Moreover cor-

relation analysis does not help in the assessment of the model calibration
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(additive and multiplicative) since the correlation is by definition invariant

under the transformation of measurement scales. Finally our interest lies not

merely in the degree of linear association between measurements and model

outputs measured by the correlation, but rather in predicting the ozone level

at unmonitored locations. These factors motivate a new data analysis using

the BM.

Preliminary data analysis

The previous section points out that the measurements are based on local

time while the model outputs are based on GMT (Greenwich Mean Time).

So we adjusted the model outputs to the local time. The dataset has 119

days after the adjustment. Figure 7.1 shows the linear relationship between

the measurements and model outputs.

The measurement series, unlike that for the model outputs, have missing

values. For example, all the measurements from station 550730005 (in Wis-

consin state) are missing. To deal with the missing values, we first choose

those stations that have no more than 100 hours of missing measurements.

Second, we use the 24 hour mean to fill in the missing values. For example,

if the missing values occur at 1000, then we use the average of the available

values at 1000 every day to fill in these missing values. After adjusting for

different time standards and ignoring the stations with more than 100 miss-

ing measurements, we have measurements at 81 stations and model outputs
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Figure 7.1: Scatter plots and Pearson correlations between measurements of
station #290470003 and model outputs for cell #1847. The y-axis stands
for the model outputs of grid cell #1847 and the x-axis stands for the mea-
surements at station #290470003. The station #290470003 is inside grid
cell #1847. Observe that the correlation between measurements and model
outputs is 0.7.
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on 375 grid cells of 2856 hours (119 days). In these 375 grid cells, there are 78

grid cells which contain one and only one station. To enable us understand

better the role of model-to-measurement correlation in spatial prediction,

from now on the data always will focus on the 78 grid cells with 78 stations

inside the grid cells. Although the measurements and model outputs are

available during the 119 day period, we only focus on the 30 days of July,

when the ozone concentration is at a high level due to high temperatures.

The ozone concentration level at night and early in the morning is much

lower than during the day. Figure 7.2 shows the 24 side-by-side hourly box

plots of measured ozone levels at station #10731005 and simulated ozone lev-

els at grid cell #3529. The station #10731005 is inside grid cell #3529. Both

the observed and simulated ozone level are at a peak during the 8 hours from

1000 to 1700. Figure 7.3 shows the histograms of the model-to-measurement

correlation at all 24 hours and at the 8 hours. Based on Figures 7.2 and 7.3,

we focus on the analysis of 8-hour measurements and model outputs, since

otherwise the two data sources are quite dissimilar. Moreover, little interest

obtains in the hours outside that period. From now on, the 8-hour average

measurements or model outputs is also referred to as the "daily average".

We apply BM to analyze the hourly, daily and weekly average ozone concen-

tration levels for the selected 8-hour time period. Kasibhatla and Chameides

(2000); Fiore et al. (2003, 2004) focus their analysis on similar daily average

data. In particular, Fiore et al. (2003) use the empirical orthogonal function

(EOF) method, a principal component analysis (PCA), to compare the first
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two principal components of the measurement and model outputs.

The simulated ozone levels at the 78 grid cells and measurements at

48 stations are used to fit the BM model (2.9). The measurements at the

remaining 30 stations are used as validation data. These 30 stations are

called "un-monitoring" sites from now on. Figure 7.4 maps the grid cells

and monitoring/un-monitoring sites. For locations s i and 82 , we use the Eu-

clidean distance of their longitude and latitude to define the distance between

them as the following:

dist(s 1 , s 2 ) = V(‘ 8 1,1 — S2,1) 2 + (S1,2 — s2,2) 2, (7.1)

s 1 , 1 and s2 , 1 being the longitudes of location s 1 , s 1 , 2 and s2 , 2 , the latitudes of

location 8 2 . In fact, the more accurate formula to calculate the distance in

km between two locations is the following:

dist(s i , s2 ) = 111.21 x V(s 1 ,1 — 824) 2 + cos 2 (s1,2/57.3)(81,2 — s2,2) 2 . (7.2)

The distances calculated from Equations (7.1) and (7.2) are not proportional

because of the cosine term in Equation (7.2). However, the relative errors

of the distances between the 78 stations we have is small. Figure 7.5 shows

that about 90% of the relative errors are within 10%. Another reason for us

to use the Equation (7.1) to define the distance between stations is for the

usage of Kriging in R package "geoR" by Ribeiro and Diggle (2001). That

package define the distance by using Equations (7.1). To compare the results
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of Kriging and other approaches, we stick to that definition of the distance

from now on.

We compare the results of spatial prediction between two competing ap-

proaches: BM and Kriging. In fact, we have two different versions of Kriging:

Kriging using measurements and Kriging using model outputs. The RMSPE

(root mean square prediction error) measures the predictive performance. At

time t, which could be hour, day or week, we define the RMSPE by

RMSPE =^(0i — Oi ) 2 , (7.3)

n being the number of un-monitoring sites to be predicted, 0„ the measure-

ment at station i and O i , the prediction.

Analysis of Hourly Data

For the 30 days from July 1 to July 30, 1995, we have 240 hourly measure-

ments and model outputs at the daily 8-hour time period (1000-1700) selected

for analysis. We apply the BM model and Kriging to each hour separately.

For brevity, we list the average RMSPE for the BM model and Kriging in

Table 7.1. The averages are computed over the 240 hours. Figure 7.6 shows

the plot of the RMSPE difference between the BM model and Kriging using

only measurements versus the correlation between measurements and model

outputs over space. We offer the following observations about the analysis
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Figure 7.4: Locations of 48 available stations, 78 grid cells and 30 unavailable
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in degrees.
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Figure 7.5: Cumulative plots of the relative errors in percentages between
the distance using formula 7.1 and formula 7.2.
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of hourly data.

• Table 7.1 shows that on average, the BM predictor has the smallest

RMSPE among all the competitive prediction approaches.

• The BM predictor seems marginally better than Kriging using only

the measurements. The RMSPE for the BM predictor is 15.82 and

for Kriging using measurements, 16.36. As shown in the next section,

the BM predictor does much better than that version of Kriging in the

analysis of daily average data.

• Kriging using model outputs has the biggest RMSPE, pointing to the

desirability of calibrating the model outputs.

• Figure 7.6 shows that in general, for spatial prediction, BM more likely

outperforms Kriging using measurements when the correlation between

measurements and model outputs is big. Note there is one hour at

which the BM prediction is much worse than Kriging. The reason is

that the estimation of variance by BM is huge at that hour. This also

reveals some instability of BM with the hourly data, which maybe one

of the reasons that Fuentes and Raftery (2005) use the weekly average

data in their analysis.

• The coverage probability of BM's 90% predictive interval is 86.72%,

which is fairly good.
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Analysis of 8-hour Daily Average Data

This section presents our analysis of daily 8-hour (1000-1700) measurements

and model outputs averages. We would make the following observations

about our analysis of daily average data.

• Table 7.2 shows that for daily averages, the BM model has the smallest

RMSPE among all competitive prediction approaches. The RMSPE of

the BM model is smaller than Kriging using measurements on 18 out

of the 30 days. The average RMSPE for Kriging using model outputs

is the biggest, showing the need to calibrate the model outputs.

• Figure 7.7 confirms the intuitively plausible result that in general the

prediction performance of the BM model improves as the correlation

between measurements and model outputs increases. When the corre-

lation exceeds 0.6, the BM model performs substantially better than

Kriging on most days.

• In implementing BM, we assume the additive calibration parameter

a(s) is a polynomial function of the coordinates at location s, that

is a(s) = f (8)0 a . We use the reversible jump MCMC to choose the

degree of the polynomial function. The reversible jump MCMC can

sample the dimension of O a from its posterior distribution. Section

3.6 describes this reversible jump MCMC in detail. For all 30 days,

the posterior distribution of O a ranges between 1 to 3. So, we can
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assume a(s) is a linear function of the coordinates at location s, that

is, a(s) = ao +a i s i +a2 s 2 , s 1 and s 2 being the longitude and latitude in

degrees at location s. By assuming a is a linear function coordinates at

location s, we get a smaller RMSPE than by assuming a is a constant

across the space.

• In BM (2.9), we assume that the multiplicative calibration parameter

b is constant across stations. The more realistic this assumption, the

better will be the BM predictor's performance against Kriging. In the

dataset, each station is located in a grid cell, so the model outputs for

that grid cell can be treated as the model output at the station inside

the grid cell. Thus, at each grid cell B, we can plausibly estimate b by

-(B) — et(B)
b(B)  „  (7.4)

Z (B)

where 2(B) = fB 2(s)ds is the integral of {2(s)} over the grid cell B.

Because we only have one sampling point in each grid cell, this integral

is just 2(s), that is, the measurement at the station inside grid cell

B. After obtaining b(B) from the above formula, we can compute the

sampling variance of {b(B)} and the absolute mean difference of {b(B)}

between grid cells having measured or unmeasured stations. Figure 7.8

and Figure 7.9 show plots of (Kriging RMSPE - BM RMSPE) versus

Var(b) and the absolute mean difference for b, respectively, for the 30

days in July. From these plots we can see that the BM prediction is
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better than Kriging when Var(b) and the absolute mean difference of b

are small. This finding is expected because the BM prediction is better

when the model assumptions are more justified.

• The coverage probability of the 90% credible for the BM prediction is

87.33%, which is fairly good.

Analysis of weekly Average Data

Fuentes and Raftery (2005) analyze weekly average SO 2 measurements and

model outputs in USA. The available/unavailable stations and grid cells used

in the analysis of weekly average data is the same as in the analysis of daily

average data. However, with averages over longer time scales, the predictions

of both the BM model and Kriging are expected to improve because of better

normality of the data distribution and smaller variation of the average data

over the longer time scale. The improvement of the BM prediction also lies

in the better performance of deterministic model for the longer time scale as

noted by Kasibhatla and Chameides (2000); Hogrefe et al. (2001b,a). Table

7.3 presents that the RMSPE of the BM model , Kriging with only measure-

ments, Kriging with measurement plus model outputs without calibration,

Kriging with only model outputs without calibration. We have the following

findings from the analysis of weekly average data.

• Table 7.3 shows that the BM model achieves the smallest RMSPE in
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Table 7.1: Average RMSPE of hourly ozone predictions at 30 stations. Col-

umn 1: RMSPE for BM model. Column 2: RMSPE for Kriging using mea-

surements. Column 3: RMSPE for Kriging using model outputs. The unit

of the numbers in this table is ppbv.
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Figure 7.8: Daily RMSPE difference between Kriging with measurements
and the BM model versus the variance of b (defined by formula (7.4) ) across
space. Points above the plotted horizontal line represented victory for the
BM model. Notice the supremacy of the BM model when the variance of b
over space is small.
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Table 7.2: RMSPE (root mean square prediction error) for predicting daily
average of ozone levels at 30 stations. Column 1: days. Column 2: RMSPE
for BM model. Column 3: RMSPE for Kriging with measurements. Column
4: RMSPE for Kriging with model outputs. The number with * is the
smallest number in each row. The unit of the numbers from column 2 to 4
in this table is ppbv.

day BM Kriging 1 Kriging 2
1 14.50 13.98 13.91*
2 8.99 8.58* 12.86
3 11.43 8.71* 11.84
4 13.53 12.19* 15.51
5 13.65 10.63* 15.59
6 14.43 11.69* 16.54
7 13.59 13.04* 13.54
8 11.73* 11.82 12.89
9 17.86 14.11 15.99
10 15.14 9.43 12.76
11 11.59 15.60 11.32
12 15.30* 16.24 15.30
13 14.14* 19.61 15.16
14 15.61* 22.67 17.99
15 18.55 21.06 18.45*
16 17.95 19.36 17.60*
17 11.37* 14.14 11.70
18 13.67 16.84 11.65*
19 6.98 * 11.54 10.51
20 12.84* 14.03 15.45
21 17.44 16.61* 17.33
22 9.48* 11.88 12.54
23 10.04* 11.65 8.65
24 9.60* 9.37 11.99
25 11.76* 12.90 21.11
26 17.55* 18.11 19.03
27 12.26* 15.94 14.95
28 14.31* 18.33 18.07
29 13.49 12.63* 19.10
30 12.41* 14.66 14.26

mean 13.37* 14.24 14.79
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week 2 and week 4. On average over all 4 weeks, the BM model has

smallest RMSPE.

• As expected, the RMSPE for all the predictors are smaller than RMSPE

in the analysis of daily average data.

• the BM's 90% predictive interval has a reasonably good coverage prob-

ability of 91.67%.

• The RMSPE for BM in Tables 7.1, 7.2 and 7.3 tells us that BM's

predictor improves as the averaging time scale increases. This agrees

with the findings in Kasibhatla and Chameides (2000); Hogrefe et al.

(2001a), that is, the model outputs represents the measurements better

on larger time scales.

7.2 Summary and Conclusions

Previous sections present the details of the BM model and the MCMC al-

gorithm used to fit the model. We have also conducted a comprehensive

simulation and applied BM to the ozone data in different time scales.

We see that the BM model has its strengths and weakness. Its strengths

are the following.

• The novel method connects the measurement process with the model

outputs process by assuming the existence of an underlying process.
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Table 7.3: RMSPE (root mean square prediction error) for predicting weekly

average of ozone levels at 30 stations. Column 1: days. Column 2: RMSPE

for BM model. Column 3: RMSPE for Kriging with measurements. Column

4: RMSPE for Kriging with model outputs. The number with * is the

smallest number in each row. The unit of the numbers from column 2 to 4

in this table is ppbv.

week BM Kriging 1 Kriging 2

1 9.43 7.98* 13.77

2 9.72* 11.22 10.51

3 10.32 10.21 9.83*

4 8.08* 11.76 12.71

mean 9.38* 10.29 11.71
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This approach addresses the difference-in-support problem in a funda-

mental way.

• the BM model can do a variety of things such as predict unmeasured re-

sponses, assessing deterministic model outputs, detecting spatial trends

and estimating spatial correlation.

• The model better estimates prediction uncertainty than the classical

approach, Kriging. In our data analysis, the coverage probability of

the BM's predictive interval is reasonably close to the nominal level.

• Its Bayesian framework makes the BM model relatively easy to extend

to incorporate other things like ensembles, the reversible jump MCMC

and non-stationary spatial correlation.

However, the BM model also has some weakness as following.

• The computational price is high. By sampling points within grid cells,

the dimension of the spatial correlation matrix can be very big even

with a modest number of grid cells. Inverting the spatial covariance

matrix three times in each MCMC iteration takes a lot of computation

time.

• the BM model does not yet cover space-time processes and hence it

cannot "borrow strength" over time. Ozone data are recorded hourly,

which obviously has strong periodicity and strong auto-correlation.

The main challenge to create a "space-time" BM model lies in the
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computation burden. With temporal correlation, the space-time corre-

lation matrix will be huge and hence more likely to be ill-conditioned.

Inverting such a matrix will be both difficult and computationally ex-

pensive. However, the dynamic BEM model we present later in Chpater

10 provides a simple extension to a 'space-time" BM model.

• the BM model's normality assumption poses a problem. For the mea-

surements, a transformation maybe used to validate that assumption.

However, with the model outputs data, non-linear transformations can-

not be used since the model outputs is represented by such an integral

of the true process.

• The locations of sampling points within grid cells change because of

the random sampling scheme. Because the mean of the underlying

process depends on its geographical coordinates in general (like univer-

sal Kriging), the prediction result have some variation every time the

BM model is used for the same data.

Finally, we offer the following observations.

• Where some of the stations are within grid cells, it would seem better

to use them instead of sampling points within the grid cells to reduce

the dimension of the spatial correlation matrix.

• The meaning of the concept of a "true underlying process" seems un-

clear since it is merely a conceptual construct rather than a physically

meaningful process. Thus its may will be criticized.
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• We assume the underlying process mean to be a polynomial function

of the geographical coordinates, which may not be enough if other

variable such as temperature also affects the ozone level. We can side-

step the assumption of a true underlying process by regressing the

measurements on the model outputs directly.

7.3 Spatial-temporal Model Prediction and

Forecasting

In previous sections of this chapter, we have used the BM to predict hourly

ozone concentrations and found that its predictions are only marginally bet-

ter than Kriging. Moreover, the hourly data has strong auto-regression struc-

ture which is totally ignored in BM. This section presents a new analysis of

the hourly data by using the Bayesian spatial-temporal model proposed in

Chapter 5. We still use the hourly measurements and model outputs from

the same 78 stations and grid cells as in the previous section. By our selec-

tion, each grid cell has one and only one station inside. We use the first 240

hours of measurements and model outputs at 15 stations as training data.

Then we forecast the ozone concentration levels in the next 240 hours for the

15 stations and also predict the first 240 hours' ozone concentration levels at

the remaining 63 stations. To forecast and spatially predict the ozone con-

centration levels, we use both the ad-hoc approach and the Bayesian spatial-

temporal model proposed in Section 5.2 and Section 5.3. The comparison
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between the ad-hoc approach and the Bayesian spatial-temporal model will

be summarized in this section.

As a preliminary step, we use the two-step regression procedure. Figure

7.10 shows the auto-correlation function (ACF) and partial auto-correlation

function (PACF) of the residuals Et at only one station. It is clear that

the residuals are temporally independent. The ACF and PACF plots of

the residuals at other stations show similar results. So the AR(1) temporal

structure seems appropriate to model the process 1\18 , t in model 5.5.

To fit the Bayesian spatial-temporal model (5.6), we use 500 iterations of

Gibbs sampling algorithm and the first 50 iterations for the "burn-in" period.

Figure 7.11 shows the time series plots of the posterior MCMC samples for

some parameters as examples. From that plot, we can see the Markov Chains

converge after the "burn-in" period. We use the root mean square forecast

error (RMSFE) and root mean square prediction error (RMSPE) to evaluate

accuracy of the forecasts or predictions, the smaller RMSFE or RMSPE, the

better the forecast or prediction. We define RMSPE in (7.3). At each station

location s, RMSFE is defined as

(7.5)

08 , t being the real measurement at time t and O B , t , the forecast or prediction.

Table 7.4 presents estimation results for some of the parameters in model

(5.5). Most of the estimates differ significantly from 0 except a 2 , the spatial
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variance of the process a. Table 7.4 shows the posterior standard deviations

of A, to be much smaller than those of A u and A,. As stated in Section 4.1, the

range parameter of the spatial process is usually difficult to estimate. That is

why the posterior standard deviations are large for A a and A. However, for

AE , we have independent replicates of the residual process {6 3 } over 239 hours

in this data analysis, and thereby see a reduction in the posterior standard

deviations of A,. The RMSFE of the forecasts by three approaches, Bayesian

spatial-temporal model (5.5), the ad-hoc approach in Section (5.2) and the

model outputs are in Table 7.5. As an example, Figure 7.12 shows the plot

of measurements versus the forecast by the Bayesian spatial-temporal model

for one station. We also tried to use AR(2) for Ara ,t in model (5.5). The

estimation of the second auto-regression coefficient is as small as 0.025 and

the standard error of that estimation is 0.013. So the second auto-regression

coefficient is not significant. This shows that AR(1) is enough for NB , t , which

in agreement with our preliminary analysis. In additional, the predictions

and forecasts become a little worse if we change from AR(1) to AR(2). So

for this data analysis, AR(1) is more appropriate than AR(2) for N8 , t .

The spatial predictor predicts the ozone concentration levels during the

first 240 hours at the 63 sites that have only model outputs but no historic

measurements. The four predictions include the Bayesian spatial-temporal

model, the ad-hoc approach, Kriging, and the model outputs. By Kriging,

we mean using the Kriging approach to interpolate the measurements at the

63 sites repeatedly for every hour. So the Kriging approach does not use
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the model outputs. Tables 7.6 and 7.7 present the RMSPE of these four

approaches. As an example, Figure 7.13 shows the plot of measurements

versus the spatial predictions using the Bayesian spatial-temporal model at

one site.

The Bayesian spatial-temporal model yields credible predictive intervals

for the forecasts and predictions through the quantiles of the MCMC sam-

ples of the forecasts and predictions. The coverage probability of the credible

interval is defined as the proportion of the true measurements that are fore-

cast or predicted, falling in the respective credible intervals. The coverage

probabilities of the 90% credible intervals for the forecasts and predictions

are 90.00% and 94.69% respectively.

Based on the above forecast and spatial prediction results, we have the

following conclusions.

• The two-step linear regression procedure can only forecast the measure-

ments. The Kriging approach can only spatially predict the measure-

ments. Both the ad-hoc approach and the Bayesian spatial-temporal

model can both forecast and spatially predict the measurements at the

same time. From Figure 7.12 and Figure 7.13, we can see that the fore-

cast and prediction from the Bayesian spatial-temporal model track the

real measurements much better than the model outputs.

• Tables 7.5, 7.6 and 7.7 show that in averaging over the stations, the

Bayesian spatial-temporal model gives the smallest RMSFE and RM-
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SPE among all the competitive approaches for forecasting and spa-

tially prediction. For forecasting, the mean RMSFE of the Bayesian

spatial-temporal model is about 16% smaller than the forecasts from

the model outputs. The RMSFE of the ad-hoc approach is slightly

bigger than the Bayesian spatial-temporal model. In prediction, not

surprisingly, Kriging has the biggest RMSPE because we have interpo-

lated 63 sites using measurements from only 15 stations. The RMSPE

of the Bayesian spatial-temporal model is about 12% smaller than the

ad-hoc approach and the model output. So, using model (5.5) to cal-

ibrate the model outputs seems worthwhile for achieving better fore-

casts and predictions. The coverage probabilities of the intervals for

the Bayesian spatial-temporal model are fairly well calibrated, meaning

the uncertainties in the forecasts and predictions are characterized for

quite well.

• Although in averaging over the sites, the Bayesian spatial-temporal

model achieves the smallest RMSFE and RMSPE, it is also marginally

better than the ad-hoc approach in forecasting albeit at significant cost

in computational time and parsimony judging from the number of pa-

rameters. Table 7.5 shows that the Bayesian spatial-temporal model

has smaller RMSFE than ad-hoc approach at 9 out 15 stations. Table

7.6 and 7.7 show that the Bayesian spatial-temporal model has smaller

RMSFE than ad-hoc approach at 46 out 63 stations. So, recogniz-

ing the cost stated above, the major benefit of the Bayesian spatial-
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temporal model lies in the higher quality of spatial predictions and in

its well calibrated credible predictive intervals.

• Table 7.4 shows the posterior mean of the auto-regressive parameter

p to be as big as 0.91, which suggests strong auto-regression in the

residuals {Nt }.

• At time t, the residuals vector over space is e t and the normalized resid-

uals vector is e t , = E E 2 e t . Figure 7.14 shows the empirical spatial cor-

relation for the normalized residuals from the Bayesian spatial-temporal

model 5.5 in relationship to inter-site distance. We can see that except

for few pairs of stations, the normalized residuals do not have much

spatial correlation. There are only two pairs of stations whose normal-

ized residuals still have spatial correlation higher than 0.5. The reason

could be the similar temporal pattern of the normalized residuals which

are not captured by the spatial-temporal model.

7.4 Multivariate Spatial-temporal Model

Prediction and Forecast

This section presents the results of applying the multivariate spatial-temporal

model (6.1) and (6.2) to the ozone pollution data described in Section 7.1.

We use the measurements and model outputs from the same 78 stations

and grid cells as in Section 7.3. We have 119 days of hourly measurements
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and model outputs. On each day, we take the 8-hour day time average of

measurements and model outputs from 1000 to 1700 and the night time

average from the rest hours. On each day, we have the day- and nighttime

averages of measurements as bivariate responses. The day- and nighttime

averages of model outputs are the covariates M in model (6.1). We use the

data for the first 80 days at 15 stations to fit the the multivariate spatial-

temporal model. Then we forecast the measurements in the next 39 days at

the 15 stations and spatially predict the measurements at the remaining 63

sites for the first 80 days. In model (6.1), we assume the residuals {N.,„ t } at

each site form an AR(1) process which has a non-zero mean with covariates

{Z 8 ,t }. In the application of univariate model (5.5), the covariates {Z s ,t } are

indicator functions to include the 12-hour periodicity of the measurements.

However, the day- and nighttime average measurements are on a daily scale

and they do not have such strong periodicity as the hourly measurements. We

have used indicator functions as in Section 5.1 to include the 7-day periodicity

of the measurements. However, the forecasts or predictions are not improved.

So we just assume -y 8 = 0 in model (6.1) when we do the data analysis. We

still include the covariate matrix Z in the multivariate model (6.1) for the

completeness and flexibility of the model. We evaluate the forecast and

prediction results by RMSPE and RMSFE defined by (7.3) and 7.5. Table

7.8 presents the estimation results for the parameters !to , p and E. An

alternative to using the multivariate model (6.1 is to apply the univariate

model (5.5) to the day- and nighttime average data separately. To illustrate
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the benefit of the multivariate model, we compare the RMSFE and RMSPE

of these two approaches. Table 7.9 presents the comparison results.

Table 7.8 and Table 7.9 lead us to the following conclusions.

• The posterior mean of /204 ,2 is significantly different from 0. This shows

the model outputs are helpful in predicting and forecasting daytime

measurements.

• The posterior means of /1,3,2 , 2 and itt3,2 , 3 are not significantly different

from 0 because the ozone levels at night are much lower than the day-

time. This shows the nighttime measurements are much more difficult

to predict or forecast from the model outputs.

• The posterior mean of E 1 , 1 is much larger than E2,2• In other words,

the variation of daytime measurements are much larger than the night-

time measurements. This is not surprising to us because the ozone

concentration levels are much higher at the daytime.

• The coefficients of the auto-regressive matrix p are significantly dif-

ferent from 0. However, the auto-regression is not as strong as in the

univariate case. The estimation of the auto-regressive parameter in

univariate case is 0.91 while in multivariate case the parameters are no

larger than 0.45. The reason is that the measurements are on an hourly

scale in the univariate analysis but are daily averages in multivariate

analysis.

138



• Table 7.9 shows that the multivariate model forecasts and predictions

have smaller RMSPE and RMSFE than the univariate models for both

day- and nighttime measurements. So it is worth using multivariate

spatial-temporal model (6.1) to achieve better forecasts and predic-

tions of the day- and nighttime measurements for daily measurement

aggregates.

• The coverage probabilities for 90% prediction and forecast credible in-

tervals are 84.73% and 83.93% respectively. This shows the uncertain-

ties of the predictions and forecasts are taken into account reasonably

well by the model.
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Table 7.4: Posterior means and standard deviations of parameters a l , • • •, a 5 ,

C17 • • • 7 c5, QE, Ae) Aal Cra2 7 017 Act and p. Since this table is for the estimates of

parameters, there is no unit associated to the numbers in this table. Each of

these parameters is a scalar.

mean sd mean sd
a l 16.57 2.81 a2 16.67 2.83
c i 0.38 0.07 c2 0.38 0.06
o 48.09 1.15 a3 20.62 3.89
A, 0.35 0.03 c3 0.35 0.06
Aa 4.70 2.41 a4 19.73 3.40
a2 33.00 27.4 c4 0.37 0.07
cfc 0.33 0.13 a5 17.48 2.92
P 0.91 0.004 c5 0.62 0.08
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Table 7.5: The first column gives the indeces of 15 stations where the first 240
hours' measurements are available. The second, third and forth columns are
the RMSFE (square root of the mean square forecast error) of the next 240
hours' measurements fore-casted by the Bayesian spatial-temporal model,
ad-hoc approach and model outputs. The number followed by * indicates
the approach that has the smallest RMSFE in that row. The unit of the
numbers from column 2 to 4 in this table is ppbv.

station spatial-temporal ad-hoc model outputs
1 21.51* 21.51* 26.30
2 19.70* 20.99 31.13
3 13.73 12.02* 16.29
4 18.16 16.69* 20.06
5 15.61* 17.21 14.36
6 14.54 10.51* 16.51
7 19.33* 22.12 26.90
8 19.91 19.30* 18.98
9 14.08 13.67* 16.74
10 11.28* 12.57 11.58
11 12.04* 12.70 16.64
12 15.37 15.09* 15.89
13 10.95* 12.20 15.04
14 12.57* 14.32 14.66
15 14.71* 15.63 17.51

mean 15.57* 15.77 18.57
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Table 7.6: RMSPE at ungauged sites 1-35. Column 2: Bayesian spatial-
temporal model; column 3: ad-hoc approach; column 4: model outputs;
column 5: Kriging with measurements. The number followed by * indicates
the approach that has the smallest RMSPE in each row. The unit of the
numbers from column 2 to 5 in this table is ppbv.

site spatial-temporal ad-hoc model Kriging
1 16.16 13.08* 16.32 16.51
2 11.68* 12.07 13.48 17.05
3 13.19 * 13.91 13.38 24.15
4 16.17* 17.08 22.65 19.17
5 14.63* 29.98 19.59 43.40
6 14.17 18.15 11.85* 40.89
7 12.59 * 12.98 14.55 22.80
8 12.90* 13.62 17.35 23.10
9 16.91* 17.28 21.85 27.81

10 14.74 16.26 13.31* 31.90
11 15.31 16.07 11.49* 35.59
12 15.82 17.94 15.02* 29.32
13 15.33 20.35 11.77* 36.71
14 12.75* 15.37 16.46 20.84
15 12.62 11.49* 15.05 16.70
16 14.71 12.91* 14.24 17.11
17 19.49 18.77 18.35* 19.14
18 11.35* 15.76 16.15 23.07
19 16.44 14.29* 14.76 18.33
20 15.83 14.15* 15.38 17.70
21 12.85 13.06 12.65* 18.79
22 11.66 10.26 * 11.21 14.83
23 15.56 16.25 16.11 10.38*
24 9.44* 10.75 14.17 19.64
25 15.08* 15.93 15.47 24.78
26 14.08 13.40 13.33* 25.74
27 11.41* 19.10 15.94 27.33
28 12.42* 12.94 14.97 26.94
29 16.00 * 19.17 18.02 32.11
30 12.45* 18.70 13.94 32.67
31 19.24 17.84* 21.82 25.94
32 14.22* 21.61 16.28 34.19
33 14.04* 22.79 16.47 32.95
34 14.91* 15.29 15.39 27.05
35 12.40 14.76 10.86* 24.43
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Table 7.7: RMSPE at ungauged sites 36-63. Column 2: Bayesian spatial-
temporal model; column 3: ad-hoc approach; column 4: model outputs;
column 5: Kriging with measurements. The number followed by * indicates
the approach that has the smallest RMSPE in each row. The unit of the
numbers from column 2 to 5 in this table is ppbv.

site spatial-temporal ad-hoc model Kriging
36 13.65* 22.56 16.01 35.43
37 14.29* 23.24 18.30 33.09
38 12.71 12.52* 13.91 26.54
39 18.22* 21.30 24.27 20.20
40 13.75* 14.86 18.99 16.91
41 13.80* 14.49 20.00 16.57
42 13.93* 14.72 18.46 18.77
43 19.59 14.66* 19.99 26.53
44 19.39 14.28* 17.69 23.84
45 15.12 15.07 17.79 14.22*
46 13.54* 14.35 13.75 31.88
47 13.40* 13.80 15.21 28.34
48 16.18 15.54* 18.91 19.62
49 15.02* 20.88 19.65 25.71
50 12.39* 15.35 13.42 13.38
51 11.24* 11.48 12.86 14.31
52 11.78* 12.60 16.20 13.79
53 17.99 18.07 19.14 16.47*
54 13.04* 12.77 18.63 13.77
55 15.08* 15.47 17.42 15.31
56 11.98* 17.61 18.32 21.02
57 13.98* 19.41 20.09 25.79
58 14.70* 19.02 17.01 25.05
59 11.01* 17.40 18.97 23.48
60 10.00* 13.34 18.36 18.03
61 14.23* 14.32 16.15 19.83
62 22.87 18.49 24.94 14.62*
63 17.97 15.48* 15.92 19.99

mean 14.43* 16.13 16.50 23.36
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Table 7.8: Posterior mean and standard deviations of the parameters pm
p and E. tio,i,i and /10,2,1 are the means of intercepts; /10,1,2 and N3,1,3,
the mean of coefficients of day- and nighttime model outputs of the daytime
measurements; ,us, 2 , 2 and i.to, 2 ,3 , the mean of coefficients of day- and nighttime
model outputs on the nighttime measurements. Since this table is for the
estimates of parameters, there is no unit associated to the numbers in this
table. Each of these parameters is a scalar.

mean sd mean sd
it0,14 17.82 3.72 pi,' 0.45 0.01
Af3,1,2 0.41 0.09 P1,2 0.22 0.01
11,8,1,3 0.20 0.09 P2,1 0.17 0.02
/113,2,1 17.54 1.27 P2,2 0.25 0.01
P0,2,2 0.05 0.10 E1,1 131.89 -
/20,2,3 0.11 0.10 E1,2 10.33 -
E2,1 10.33 E2,2 50.37 -

Table 7.9: Average of RMSPE and RMSFE for Bayesian multivariate spatial-
temporal model (6.1) (columns 2 and 4) and univariate spatial-temporal
model (5.5) (columns 3 and 5). The average of RMSPE is over 63 sites
and the average of RMSFE is over 15 stations. The unit of the numbers in
this table is ppbv.

RMSPE RMSFE
multivariate univariate multivariate univariate

daytime
nighttime

16.78
12.51

18.10
14.19

14.44
9.69

15.91
9.71
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Chapter 8

Calibration of Deterministic

models

Chapter 1 describes the ozone's policy relevant background (PRB) level and

why it cannot be measured. That difficulty forces use of deterministic model

output to infer the PRB level. However, that output needs to be calibrated to

ensure the deterministic model output represents the PRB level. Calibration

needs to be based on the measurements. This chapter explains how we

can use the BM model (2.9) and Bayesian spatial-temporal model (5.5) to

calibrate deterministic models and it presents an example involving model

outputs of ozone concentrations.

As in Chapter 7, we focus on the 8-hour daytime average measurements

and model outputs for 78 grid cells and stations during the 30 days from July

1 to July 30, 1995. The calibrated model output at grid cell B by using BM

model is

(2(B) 1B La(s)ds) /b.^(8.1)

The multiplicative calibration parameter b is assumed constant across space
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and a(s) = ac, + aisi + a2s2 while s 1 and s2 are the longitude and latitude

of location s. Fuentes and Raftery (2005) plug-in the posterior mean of a(s)

and b into (8.1) to obtain the calibrated model output.

Departing the plug-in approach used by Fuentes and Raftery (2005), we

calibrate the model output using the BM model directly. In each iteration of

the Gibbs sampling, we use formula (8.1) to calculate the calibrated model

output, so that we get the empirical distribution needed for calibration. The

calibrated model output by using the Bayesian spatial-temporal model is

a + c2(B). (8.2)

To illustrate the benefit of calibrating the model output, we compare in

Table 8.1 the RMSPE for the calibrated and uncalibrated model outputs

for the 30 days on which our study focuses. As the daily data analysis in

Section 7.1. The data available is the measurements at 48 stations and model

outputs at all the 78 grid cells. The calibrated model output at the remaining

30 stations are used to predict the measurements there. As an example,

Figure 8.1 shows the plot of the measurements versus the uncalibrated and

calibrated model output for day 1. Both the BM and Bayesian spatial-

temporal models calibrated model outputs are included in that plot. Figure

8.2 shows the scatter plots of BM model calibrated model outputs versus

uncalibrated model outputs and Figure 8.3 shows scatter plots of Bayesian

spatial-temporal model calibrated model outputs versus uncalibrated model
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outputs. From the calibration results for the model output, we have the

following conclusions.

• Figure 8.2 and 8.3 reveal marked differences between calibrated and

uncalibrated model outputs because many points deviate from the solid

line with intercept 0 and slope 1.

• Table 8.1 shows that on average the Bayesian spatial-temporal model

calibrated model outputs have the smallest RMSPE than the uncali-

brated ones and BM calibrated model outputs also have smaller RM-

SPE than uncalibrated ones. After calibration, the mean RMSPE has

been reduced by 16.07% for BM model, 21.48% for Bayesian spatial-

temporal model. Out of all the 30 days, both BM and Bayesian spatial-

temporal model calibrated model outputs have smaller RMSPEs than

uncalibrated ones for 25 days. So it is beneficial to calibrate the model

outputs by using either BM or Bayesian spatial-temporal model.

• Figure 8.1 shows that both BM and Bayesian spatial-temporal cali-

brated model outputs are closer to the measurements than the uncali-

brated ones at most stations.

• Figure 8.4 shows the histograms of posterior means of calibration pa-

rameters ao , al, a2 and b in the 30 days. The posterior means of b range

from 0.9 to 2.0 in most of the days.
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Table 8.1: RMSPE of uncalibrated and calibrated model outputs for the pre-
diction of measurements at the 30 stations. column 1: day 1-30; column 2:
RMSPE of uncalibrated model output; column 3: RMSPE of BM calibrated
model output; column 4: RMSPE of Bayesian spatial-temporal model cali-
brated model output; The number with a * indicates the "winner" in that
row. The unit of the numbers from column 2 to 4 in this table is ppbv.

Day model output BM spatial-temporal
1 20.43 16.54 13.39*
2 19.88 10.89* 12.17
3 10.41 7.60* 8.78
4 14.82 13.79 12.00*
5 22.72 16.05 15.94*
6 23.67 15.09 14.02*
7 16.14 13.75 13.12*
8 15.36 14.42 11.30*
9 14.66 14.61* 15.06
10 12.23 11.19* 12.42
11 12.96 10.01 9.78*
12 17.41 16.19 15.00*
13 15.07 18.45 15.25*
14 20.83 15.77* 22.28
15 23.19 20.14* 22.79
16 16.49 17.28 16.22*
17 15.68 11.47 11.09*
18 15.89 15.35 13.83*
19 10.30 10.44 7.29*
20 14.20 11.59* 13.14
21 19.78 26.13 14.37*
22 17.96 11.07 8.98*
23 12.29 11.37 8.29*
24 15.87 10.02 9.53*
25 22.67 12.35* 13.92
26 18.41 14.06 * 14.12
27 16.59 9.99* 10.80
28 19.70 18.75 13.15*
29 13.44 11.33* 15.92
30 15.06 17.41 11.69*

mean 16.80 14.10 13.19*
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Figure 8.2: Scatter plots of uncalibrated model outputs versus BM calibrated
model outputs. The solid lines have intercept 0 and slope 1. The plots are for
days 2, 7, 8 and 26 from the upper left to the lower right corner in left-to-right
sequence.
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cept 0 and slope 1. The plots are for days 2, 7, 8 and 26 from the upper left
to the lower right in left-to-right sequence.
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Chapter 9

Application of the Bayesian

Ensemble Melding Model

This chapter presents the results of applying the BEM model to combine

measurements and model outputs from an ensemble of deterministic models.

Section 3.5 gives a technical introduction to the BEM model. Later in this

chapter, we present the additional detailed modifications needed for a partic-

ular application we address. Section 9.1 introduces the intended application

and Section 9.2 presents the results and conclusions.

9.1 Data Description

Recently, people have paid attention not only to the weather forecast but also

to the uncertainties of the forecast. Uncertainty is already a well established

concept in statistical community. For example, by using a linear regression

model, statisticians not only predict the response based on the available data

but they also give a predictive interval for the predicted value. Raftery et

al. (2005) propose an idea to probabilistic forecasting and they have already
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set up a website (http://probcast.com/)  to give such probabilistic forecast

for the Pacific Northwest area. In Bayesian models, it is straightforward to

use the MCMC samples from the posterior predictive distribution to give a

probabilistic forecast. In this section, we give an example of using the BEM

model to combine measurements with model outputs from more than one

deterministic models to give spatial predictions and their credible intervals.

For this purpose, we downloaded data from the MURI project website

(http://www.stat.washington.edu/MURI/) . This dataset includes measure-

ments and model output of the sea level temperature in the Pacific Northwest

area. The time of the measurements and model outputs are available at 102

non-consecutive hours during January-June 2000. The model outputs are

generated by the University of Washington mesoscale short-range ensemble

system for the Pacific Northwest, which has been described by Grimit and

Mass (2002). This system is a five-member multi-analysis ensemble consist-

ing of different runs of the fifth generation Pennsylvania State University

National Center for Atmospheric Research Mesoscale model (MM5). Each

run of the MM5 model is made with different initial conditions. The raw

deterministic model output are available on grid cells. However, preliminary

analysis has been done to interpolate the model outputs to the locations of

monitoring stations. So for this dataset, each station has one measurement

and five "aligned" model outputs for the temperature. Raftery et al. (2005)

modeled this dataset by using Bayesian model averaging of the five model

outputs to make the 48-hour ahead forecast of the temperature. Here we
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model the same dataset by using ensemble BM for future comparison.

The number of monitoring stations varies from 311 to 650 at different

hours. For each hour, we first calculate the Pearson correlation coefficients

between measurement and each of the five model outputs over space. Thus,

we have 102 correlation coefficients for each of the five initial conditions.

Figure 9.1 shows the histograms of these correlation coefficients. Clearly

the correlation coefficients are larger than 0.7 at most hours. The strong

correlation makes the application of the BEM model a reasonable choice to

combine the measurements and model outputs.

9.2 Data Analysis

In our study, the number of stations varies from hour-to-hour and we choose a

subset of 150 stations which have measurements and model outputs available

at each hour. We use the BEM model to combine measurements from 30

stations and model outputs for all 150 stations to predict the temperature at

the remaining 120 stations. We apply the BEM model to the measurements

and model output at each hour repeatedly. Unlike the ozone data analyzed

in Section 7.1, the model outputs of temperature are available at locations

after interpolation and the data file we have does not have the coordinates of

the grid cells' vertexes. So in this analysis, we no longer have the concept of

grid cells and the conditional distribution (3.10) therefore needs some small

modifications. Assume that we have m stations in total and measurements
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Figure 9.1: Histograms of 102 hours' Pearson's correlation coefficients be-
tween measurement and model output over space. Panels 1-5 are the his-
tograms for model output from five different MM5 initial conditions.

are available at n stations, a subset of the m stations. However, the model

outputs are available at all m stations. Vector Z is the realization of the

true underlying process at the m stations, vectors ki (i = 1, • • 5), the

realizations of the model output process from i-th deterministic model at the

m stations, and vector Z, the realization of the measurement process at the

n stations. Similar to but different from (3.10), the conditional distribution

of (Z, Z 1 , • •, Zp, Z) given (0, 0, a l , • • •, aP, b 1 , • • •, bp , cre2 , ag, 1 , • • • , ag,p) is the

following.

156



p(2 ,^Z)1/3, 0, al, • • •, ap , b1, • •7 bp, Cre2 1 41, • • .7 4,p)

01 exp^
2

{--1 [(Z — A0 Z) E iT 1^— A0 Z)

P^T
+ E (2 i _ , _ biz) ET i (k i —a i — bi Z)

i=i

+ (Z — ii.)T E -1 (Z — p,)]

= exp — 1 —ZT 4, E 0 1 2 +^liTET l k i + E -l ett
i=i

(kTEVA0 +^bi kiET 1 + itTE -1 Z
i=i

P
+ ZT E1 1 +^14E771 + E -1 Z

i-i

where p = 5 and Ao is defined as

1^...^0^0^...^0

A 0 =

\0^. . .^1^0^...^0

The first n columns of A o form an identity matrix and the rest elements of

Ao 's are 0.

(9.1)
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The prior distribution of (a i , b i ), i = 1, • • •,p, is

/ a
ti MVN(0 F).

b

The full conditional distribution of (a i , bi ) is

ai)
bi
^IZi,Z, E i ti MVN(BC, B),

where

 

1T

ZT

B =

 

and

( 1T=
ZT

1, 2, + Fi 1 1 i ,

where E z is a diagonal matrix with dimensions m x m. The diagonal elements

are ,5, the variance of model output error of deterministic model i.

We first assume each additive calibration parameter a is a linear function

of the coordinates of location s, that is, we have

a5 = a() + a 1 s 1 + a2s2,

s 1 and s2 being the longitude and latitude of location s. However, after

fitting the BEM model, we discovered that the coefficients a l and a2 are
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not significant. So we assume both the calibration parameters a and b are

constants across space. However, the calibration parameters still differ for

the different deterministic models. That is, we have five sets of parameters a

and b. Figure 9.2 and Figure 9.3 show the histograms of the posterior mean

of a and b for different models. Each histogram shows the posterior mean

of a and b for 102 hours. To predict the temperature at the 120 stations,

we have three competitive purely spatial approaches: BEM, Kriging with

measurements and averaging of the five model outputs. Figure 9.4 shows the

histogram of the RMSPE of these three approaches over the 102 hours. The

above analysis leads us to the following findings.

• The mean RMSPEs of three prediction approaches over 102 hours are

2.98 (BEM), 3.00 (averaging the five model output with equal weights)

and 4.10 (Kriging with measurement). The BEM model has the small-

est mean RMSPE while the Kriging has the largest. Over the 102

hours, the BEM model achieves smaller RMSPE than Kriging at each

of 77 hours. The coverage probability of the BEM's 90% credible in-

tervals for the prediction is 82%, which although reasonable, suggests

the BEM slightly underestimate the uncertainties of predictions.

• In Kriging, we use the measurements at only 30 stations to predict 120

stations. So, it is not surprising that Kriging does not predict the mea-

surements very well given the sparsity of the available data. Although

the mean RMSPEs between BEM and model averaging outputs is very
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close, Figure 9.4 shows that the distribution of BEM RMSPEs is more

left skewed than of RMSPEs from simply averaging model outputs.

Also BEM can estimate the calibration parameters for each of the five

models.

• Figure 9.3 and 9.2 show that the posterior means of bi are in the in-

terval [0.9, 1.05] and [0, 20] respectively for most hours. The range of

the measurements is from 250 to 313 ppbv. So overall, even without

calibration, the model outputs represent the measurement very well.

This coincides with the strong correlation between measurement and

model outputs shown in Figure 9.1.

• Figure 9.5 presents a plot of the RMSPE difference between Kriging

and the BEM model versus the mean correlation coefficient between

measurement and model output. The mean correlation coefficient is

defined as the mean of five correlation coefficients between measure-

ment and five model output. The plot shows that the stronger the

correlation between measurement and model outputs, the better meld-

ing's predictions compared with Kriging.

To summarize, the BEM model gives the best spatial prediction measured

by RMSPE. The BEM model also reflects prediction uncertainty reasonably

well. So, with a small number of measurements but a large number of model

outputs, we can combine the measurements and model outputs to achieve

better spatial prediction. The model outputs help in prediction because of
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the strong correlations between measurement and model output.
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Figure 9.2: Histograms of posterior mean of a. Panels 1-5 are the histograms
of a for model output from five different MM5 initial conditions.
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Figure 9.3: Histograms of posterior mean of b. Panels 1-5 are the histograms
of b for model output from five different MM5 initial conditions.
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Figure 9.4: RMSPE histograms of predictions by BEM, model averaging with
equal weight and Kriging with measurements only.
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Figure 9.5: The x-axis represents the mean correlation coefficients between
measurement and model output, i.e. the mean of the five correlation coeffi-
cients between the measurement and five model outputs.
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Chapter 10

Dynamic Bayesian Ensemble

Melding Model

Both the BM model in Section 2.4 and its extension, the BEM model in

Section 3.5 are purely spatial models. So we need to extend them to spatial-

temporal models. In some cases, a simple extension is available without the

complexities involved in characterizing the temporal structure such as in AR

or dynamical linear models. Section 10.1 presents a decision-making problem

and its solution. Section 10.2 present a DBEM (dynamic Bayesian ensemble

melding ) model which can forecast the future with historic data by using

the solution of that decision-making problem.

10.1 DeGroot's problem

Bayarri and DeGroot (1989) propose a decision making model to combine

opinions from different experts. The idea for this model originally derives

from a problem in the book by DeGroot (1970). We present our proof of

DeGroot's problem and later show how to construct a dynamic BEM model
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by using its conclusion.

Theorem 10.1.1 (DeGroot's theorem) Each of the K experts has his/her

own prior distribution for a certain parameter W, and let 7ri be the prior

distribution which expert i assigns to W . The executive forms his/her opinion

about W from the opinion of the K experts and that his/her prior for W is

an weighted average of the 7ri . So, the executive's prior for W is

r(w) =^Gi7Ti (w)
^(xi = 1, cE i > 0.

i= 1
^

i=1

Furthermore, the K experts and the executive observe together the value of

a random variable X whose conditional distribution when W = w is f (.1w).

The posterior distribution of the executive will again be a weighted average

of the posterior for the K experts.

Proof The posterior for expert i is

ri*(wlx) = 7ri(w)f(x1w) 
Pi (x)

where pi (x) is the marginal distribution for expert i, that is, pi (x) = f f (x1w)R-i(w)dw .
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The posterior for the executive is therefore

7* (w1x) =
ir (w)f(x(w) 

p(x)

ai 7ri(w)f (xlw) 
p(x)

aipi(X) it (ID) f (x1 w)
p(x)^pi(x)

(w x)•^ (10.1)
i=1

Here pi (x) is the marginal distribution for expert i, that is, pi (x) = f f (x (w)7r, (w)dw

The marginal distribution for the executive is p(x) = E zi(± 1 f a, f (x1w) (w)dw

So, the posterior for the executive is again a weighted average of posteriors

(wjx), i = I, . • • K) for the K experts. The updated weight for expert i

after observing X = x is = ce,p,(x) I p(x). The updated weight for each

expert depends on his/her marginal distribution of X.

10.2 Dynamic Bayesian Ensemble Melding

forecast

Forecasting ozone concentration levels in urban areas has become more and

more important for public health reasons such as the safety of people like

asthmatics. The forecasts can be on various time scales such as hourly or

daily. The rest of this section presents how to construct a DBEM model for
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hourly forecast. However, the same mode can also be used to forecast the

average daily ozone concentration levels.

For the BEM model, we have hourly measurements Z and model outputs

• •, 2 from p deterministic models, the true underlying process Z and

parameters a l , • • •, ap , b 1 , • •, bp , /3, 9, fie,^•, aL. As in DeGroot's

problem, the parameter is W^(a l , • • • , ap,b1, • • • , bp, 0, 0 , ae2 1 4,11 • • • 7 ag,p) .

The measurements Z across space at each hour is the X in the DeGroot's

problem.

We use the first K hours' measurements and model outputs to fit the BEM

model, from which we obtain the posterior distributions of the parameter

W for each of the K hours. These K posterior distributions will be prior

distributions for W for the next hour. So we have 7; .°) (w), • • •ornw)

as in DeGroot's problem. We take the weights a, (i = 1, • • • , K) of the

prior distributions to be equal to 1/K. Suppose we have K + 1 hourly

measurements and K + 2 hourly model outputs. The goal is to forecast the

measurement at hour K + 2. After observing the measurements at K + 1

hour, we obtain the updated distributions 71-1) (w) (i = 1, K) and their

corresponding weights a i l) . So both the K distributions for W and their

weights change dynamically after the measurements become available every

hour. The predictive distribution of measurements at hour K + 2 is the

following:

P(kK+21 D ) = f a i( 1) f K +21W, ZK+2, • • • ,--p,17 (1) (W)dW , (10.2)
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where D stands for all the measurements and model outputs available.

The likelihood function for W is f (Z1W, Z 1 , • • •, kp). To use the con-

clusion from DeGroot's problem, we have to derive this likelihood function.

We know from that Z and Z 1 i • • kp have independent normal distributions

given W and Z. Those normal distributions are the following:

kl(z, w) ti mvN(A0 z, 0- 2i)

2 i 1(z,^MVN(ai1 b iA jZ,o-LI)^(10.3)

i = 1,- • •,p.

The matrix A 0 and A 1 , • • •, Ap are the same as in the BEM model. To

derive the conditional distribution f(k1W, Z 1 , • • •, Zr ), we need to obtain

the joint distribution of f(Z, Z 1 , • • •, kp (w), which is a multivariate normal

distribution. For simplicity, we suppress the conditional notation (.1W) in

the following equations.
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E(2) = E(E(21Z)) =

^

Var(Z)^Var(ELIZffl E(Var( 2 1Z)))

Var(A0 Z) +o-9-

A 0 Eifor + cr./

E(2i) = E(E(2 i 1Z)) = ail + b i Aip

^

Var(2 i )^Var(E(2iI2))) E(Var( 2i1Z)))

Var(a i l + b i .A i Z) +4/

= 14A j EAT+ (4 ,i/

^

Cov(Z, 2 i )^E(E(k2ThilZ)) — E(k)E(2D

bi A 0 EAT

cov(2 i ,^= E(E(iTi";1z)) — E(2 i )E(2D

=

1 < i<j<p. (10.4)

Then the joint distribution of (Z, Z 1 i • • •, 2p ) given W is the following:

/ Z \

21

ZP

MVN(/./.,
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where
/ Ao p

a 1 1 + biAitz

\ tip Jap i bpAp ti

and

z-,01

El0 E11

We have too = Var(k), E 11 = Var(2) and t oi = Cov(k, Z). Vector Z is

formed by stacking 2 1 , • • Z, column by column.

Then the conditional distribution of (klk i ,^kp,vv) is multivariate

normal with mean

1f-to + tooti-1

and variance E 00 — EolEil Eio•

Unfortunately, we do not have closed forms for either l3, or 7r 2 1) (w) so we

have to approximate them by a Monte Carlo method, so further work will be

needed to implement this DBEM model. However, the Monte Carlo approx-

imation and the implementation of this model will present some challenges.

/1 1
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Chapter 11

Discussion and Future Work

This chapter presents some discussion and potential future work. Section

11.1 discusses the BM model (2.9) and Section 11.2 presents some future

work extending the Bayesian spatial-temporal model (5.5).

11.1 Bayesian Melding Model

The melding model proposed by Fuentes and Raftery (2005) as well as

Fuentes et al. (2003) assumes the existence of a true underlying process

which serves as a basis on which to "meld" the measurement and model

output processes. This melding approach is a novel idea and in some sense

it can deal with the fact that measurements and model output processes

have different supports. However this true underlying process also presents

some challenges. First, it makes the model complicated and computationally

expensive. When we first consider to extend the BM model into a spatial-

temporal one, we think of a approach similar to the DLM (dynamic linear

model) used by West and Harrison (1997) and Huerta et al. (2004). DLM

assumes the coefficients in a linear model dynamically evolving over time.
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For example, we can assume at time t, the coefficient O t IO t_ i N( t3t_ 1 , E).

Because the coefficients are correlated over time, so the response is also cor-

related over time. However, the assumption of this true underlying process

presents an obstacle to the extension of the BM model into a dynamic BM

which incorporates the temporal correlation. Second, it is difficult to ex-

tend the univariate melding model into a multivariate one. For example, we

cannot use the approach of Schmidt and Gelfand (2003) who propose a corn-

putationally efficient co-regionalization approach. It seems that the biggest

benefit of this true underlying process is to address the differential supports

issue presented by measurements and model outputs. But in fact, even me-

teorological and environmental work often uses some preliminary analysis

to interpolate the model output onto monitoring sites and then treat the

interpolates as point based data. Examples include Kasibhatla and Chamei-

des (2000); Hogrefe et al. (2001b,a); Fiore et al. (2003, 2004). If we really

can ignore the differential supports issue, then the regression approach seems

more appealing and easier to implement. In that approach, the responses are

the measurements from the monitoring sites and the covariate is the model

output interpolated to those sites or to other locations.

Of course we have unequal numbers of model outputs and measurements,

leading to a standard missing value problem. We either have missing re-

sponses or covariates.

In the melding model (2.9), we assume the mean of the true underlying

process is a function of only the coordinates. However, we know that other
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variables have effects on the pollutant although we do not have their infor-

mation available in our application. These variables include temperature,

humidity, wind speed and so on. Without the information provided by these

variables, the variance of the spatial residuals c(s) in model (2.9) can be large

and predictions based on the true underlying process could be in question.

However, when we regress measurements on the model outputs, at least part

of that information is captured by in the model outputs. So the resulting

residuals reflect only the part that model output fails to capture.

The regression model discussed above has the following form:

(s) = a(s) + bZ(s) + €(s). (11.1)

In the above model, the residuals e(s) are spatially correlated with covariance

matrix E constructed by correlation functions such as Matern, Gaussian

or exponential. This linear model (11.1) is much easier to fit with fewer

parameters and without the true underlying process. Moreover, it is not

difficult to extend the model (11.1) to incorporate multivariate response and

temporal correlation.

For multivariate model, we can borrow the idea from Schmidt and Gelfand

(2003). They decompose the multivariate model into several independent

univariate models. This decomposition enables the computation to be se-

quential and less time consuming. In order to extend the model (11.1) to

incorporate temporal correlation, we have two potential options. The first
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choice is to use DLM. The other choice is to assume the residuals c(s) are

correlated over time. We can assume AR or even ARMA (Auto-regressive

moving average) model for the residuals over time t. If we use the dynamic

linear model, the resulting spatial-temporal is easy to fit because most of the

theory and results for the dynamic linear model can be applied here directly.

By using the second option, the covariance matrix of residuals €(8, t) is a

Kronecker product of spatial covariance matrix and the temporal covariance

matrix. This complicated Kronecker product of two matrices may present

some computational challenges. The above two options are both based on

the assumption that the spatial and temporal correlation are separable. That

is, at each time t, the spatial correlation remains the same and at each sta-

tion s, the temporal correlation remains the same or at least have the same

structure.

11.2 Bayesian Spatial-Temporal Model

The Bayesian spatial-temporal model 5.5 has a number of limitations.

• The coefficients a, c, 7 vary over space but remain constant over time.

Raftery et al. (2005) also make this observation about their Bayesian

averaging model and they investigate how long the historic period

should be for fitting their model. For the sake of forecasting, we should

use the most recent historic data but we also need a reasonably long pe-

riod to have enough data to fit the model. As discussed in Section 11.1,
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one possible solution is to use the DLM by allowing the coefficients to

evolve in time.

• The temporal and spatial correlation may or may not be separable.

Gneiting (2002) discusses a class of non-separable but stationary co-

variance functions for space-time data. It is possible to incorporate

this class of non-separable functions into the model 5.5. Another way

to model the non-separable spatial-temporal correlation is to let the

autoregressive parameter p in model 5.5 vary over space. Similar to

the coefficients a, c, y, we can also assume p at different stations are

spatially correlated. The autoregressive coefficients are always in the

interval (-1, 1), so we can use truncated normal distributions to model

them. That is, for autoregressive coefficient at n locations, we have

(Pi, • • •, — cNIVNitp, Ep) -1- [- 1 < pi, • • •,Pri < 1 ],

where I stands for the indicator function. That is, this indicator is 1

if all the p's at n locations all in the interval (-1, 1), otherwise it is 0.

The normalize constant c makes sure the integral of the multivariate

normal density function to be 1.

• Model 5.5 assumes the spatially correlated residuals are stationary.

This assumption of stationarity could be relaxed by fitting a non-

stationary model, say using the celebrated Sampson-Guttorp (SAG)

method of Sampson and Guttorp (1992). The main idea is that we
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can first fit the two-step linear regression model (5.1), (5.2) and (5.3).

Then we apply the Sampson-Guttorp method to the spatial covariance

for the fitted residuals to transform the coordinates from the original

geographical plane (G-plane) to the deformed plane (D-plane). After

the transformation, we can use the new coordinates of the D-plane

and fit the Bayesian spatial-temporal model 5.5 over again with the

help of the estimated SG covariance. We can also incorporate other

non-stationary process modeling approaches into the spatial-temporal

model. We have already listed some reference for such approaches at

the end of Section 2.1 and beginning of Section 2.2.
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