
BEYOND MUSIC SHARING: AN EVALUATION OF PEER-TO-

PEER DATA DISSEMINATION TECHNIQUES IN LARGE

SCIENTIFIC COLLABORATIONS

by

SAMER AL KISWANY

B.Sc. Jordan University of Science and Technology, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

December 2007

© Samer Al Kiswany, 2007

ABSTRACT
The avalanche of data from scientific instruments and the ensuing interest from

geographically distributed users to analyze and interpret it accentuates the need for efficient

data dissemination. An optimal data distribution scheme will find the delicate balance

between conflicting requirements of minimizing transfer times, minimizing the impact on

the network, and uniformly distributing load among participants. We identify several data

distribution techniques, some successfully employed by today's peer-to-peer networks:

staging, data partitioning, orthogonal bandwidth exploitation, and combinations of the

above. We use simulations to explore the performance of these techniques in contexts

similar to those used by today's data-centric scientific collaborations and derive several

recommendations for efficient data dissemination.

Our experimental results show that the peer-to-peer solutions that offer load balancing

and good fault tolerance properties and have embedded participation incentives lead to

unjustified costs in today's scientific data collaborations deployed on over-provisioned

network cores. However, as user communities grow and these deployments scale, peer-to-

peer data delivery mechanisms will likely outperform other techniques.

ii

TABLE OF CONTENTS

Abstract^ ii
Table of Contents ^iii
List of Tables^ v
List of Figures^ vi
Acknowledgments^ vii
Dedication ix
1. Introduction ^1

1.1. Contributions ^3
1.2. Summary of Findings ^4
1.3. Research Publications ^5
1.4. Thesis Structure ^5

2. Data in Scientific Collaborations ^7
3. Data Distribution: Solutions and Metrics^ 10

3.1. Classification of Approaches^ 10
3.1.1. Data Staging^ 11
3.1.2. Data Partitioning^ 12
3.1.3. Orthogonal Bandwidth Exploitation^ 12

3.2. Candidate Solutions for Evaluation^ 13
3.2.1. Logistical Multicast^ 14
3.2.2. Tree Based Application-Level Multicast^ 14
3.2.3. SPIDER^ 16
3.2.4. Bullet^ 17
3.2.5. BitTorrent^ 18

3.3. Success Metrics^ 19
4. Evaluation Approaches^ ...

4.1. Analytical Evaluation^ 21
4.2. Deployment-based Evaluation^ 22
4.3. Simulation-based Evaluation ^ 24

5. Simulating Data Dissemination^ 26
5.1. Simulator Design^ 26
5.2. Simulating Data Dissemination Techniques^ 28
5.3. The Scope of the Simulation Study^ 30
5.4. Simulator Evaluation^ 30

6. Simulation Results^ 34
6.1. Experimental Setup^ 34
6.2. Performance: File Transfer Time^ 35
6.3. Overheads: Network Effort^ 42
6.4. Load Balance^ 44
6.5. Fairness to Competing Traffic^ 46
6.6. The Effect of the Number of Peers in Bullet and BitTorrent^ 49

7. Summary^ 51

iii

8. References^ 53
Appendix A: ALM Tree Construction Algorithm^ 60
Appendix B: SPIDER Tree Construction Algorithm^ 61

iv

LIST OF TABLES

Table 5.1. The complexity of Bullet and BitTorrent protocol's modules^ 31

v

LIST OF FIGURES

^Figure 5.1. Simulation time for a 25 nodes topology and 1GB file 31

^

Figure 5.2. Simulation time for disseminating a 1 GB file 32

Figure 6.1. Number of destinations that have completed the file transfer for the

^

original LCG topology. 37

Figure 6.2. Number of destinations that have completed the file transfer for the

^

original EGEE topology 37

Figure 6.3. Number of destinations that have completed the file transfer for the

^

original GridPP topology 38

Figure 6.4. Time to finish the transfer to 50%, 90%, and all nodes for the LCG

^

topology — original and reduced core bandwidth 38

Figure 6.5. Time to finish the transfer to 50%, 90%, and all nodes for the EGEE

^

topology — original and reduced core bandwidth 39

Figure 6.6. Time to finish the transfer to 50%, 90%, and all nodes for the GridPP
topology — original and reduced core bandwidth^ 39

Figure 6.7. Number of destinations that have completed the file transfer with two

^

generated topologies 40

^

Figure 6.8. Overhead for each protocol on the LCG topology 43

Figure 6.9. Load balancing for ALM, BitTorrent and Bullet^ 45

Figure 6.10. Average link stress distribution of BitTorrent and Bullet over the LCG

^

topology 48

Figure 6.11. Maximum link stress distribution of BitTorrent and Bullet over the

^

LCG topology 49

Figure B.1. SPIDER tree construction algorithm^ 62

vi

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor, Dr. Matei Ripeanu. This work would not have

been possible without his guidance. His insight, support and enthusiasm are very much

appreciated.

I wish to acknowledge my collaborators Adriana Iamnitchi - at University of South

Florida (USF) and Sudharshan Vazhkudai at Oak Ridge National Laboratory (ORNL), for

their collaboration and helpful technical advice.

I would like to thank Sathish Gopalakrishnan for his effort in reviewing this work and

providing helpful comments and technical advice.

Sincere thanks go to my dear friend Enad Mahmoud, whom help and support was key in

passing the most critical moments in my graduate study Thanks also go to Rafed Al Masri,

Hani Khasawneh, and Mohammad Malkawi, for their friendship, and continues

encouragement.

I am grateful to the Networked Systems research group students, Elizeu Santos-Neto,

Abdullah Gharaibeh, Armin Bahramshahry, Hesam Ghasemi, and David Boen, for their

friendship, support, and insightful comments.

I wish also to acknowledge my teachers and constant supporters at the Computer

Engineering Department at Jordan University of Science and Technology (JUST). Special

thanks go to Professor Sameer Bataineh, Dr. Omar Al-jarrah, and Dr. Mohammad Al-

rousan, for their support and honest advice through my student life. Thanks also go to Dr.

Moad Mowafi, Dr. Fayez Idris, Dr. Fahed Awad, Dr. Ali Shatnawi, Dr. Abdulla Bataineh,

Dr. Taisir Eldos, and Dr. Saleh Abdel-hafeez.

vi i

Through my graduate study I faced exceptionally challenging situations; it was

impossible to continue my graduate study without the encouragement and support of few

people. First and foremost on this list are my parents, Ishaq and Nabilah, my wife, Dima,

and my brothers, Khaled and Bilal. Their unconditional love and confidence in my abilities

are deeply appreciated.

Last, but certainly not least, I am grateful to Dr. Deepa Kundur, and Dr. Scott Pike, at

Texas A&M University (TAMU), for their help and support through the hardest times in my

graduate study. Their help and patience are deeply appreciated.

viii

To 1?vty Father, Ishaq
Ily gllother, Nabifah
fly Wife, pima

ix

1. Introduction

Today's Grids provide the infrastructure that enables users to dynamically distribute and

share massive datasets. A growing number of instruments and observatories are generating

petabytes (10 15 bytes) of data that need to be analyzed by large, geographically dispersed

user communities, requesting now more than even efficient data-dissemination solutions.

Examples of data-intensive collaborations include the European Council for Nuclear

Research (CERN) Large Hadron Collider (LHC) experiment [1], neutron scattering at the

Spallation Neutron Source (SNS) [2], the DO experiment at Fermi National Accelerator

Laboratory or the Southern California Earthquake Center earthquake simulators —

TeraShake [3] and CyberShake [4]. Enabling the formation of these collaborative data

federations are ever increasing network capabilities including high-speed optical

interconnects (e.g., TeraGrid [5], LambdaGrid [6]) and optimized bulk transfer tools and

protocols (e.g., GridFTP [7], IBP [8]).

However, most data distribution strategies currently in place involve explicit data

movement through batch jobs [9, 10] that are seldom sympathetic to changing network

conditions, congestion and latency, and rarely exploit the collaborative nature [11] of

modern-day science.

At the same time, peer-to-peer file sharing and collaborative caching efficiently exploit

patterns in users' data-sharing behavior. For instance, one approach is to split files into

blocks and transfer them separately, possibly using different network paths, as in BitTorrent

[12]. Another approach is to exploit the orthogonal bandwidth that might be available

outside a traditional, source-rooted data-distribution tree [13]. Aforementioned techniques

1

offer several benefits such as increased throughput, good use of network resources, and

resilience in the face of link and node failures. Furthermore, such techniques have been

deployed [12] and studied [14, 15] in the context of peer-to-peer file sharing and

application-level multicast.

However, such techniques may not be directly adaptable to Grid settings because of the

different usage scenarios, workloads, or resource properties. For example, an important

usage scenario is the dynamic distribution of subsets of data available at one site to one or

many target locations for real-time analysis and visualization. This is, for example, the

processing mode for TeraBytes of National Aeronautics and Space Administration (NASA)

satellite hyperspectral data that need to be processed in near real time [16]. Another example

is the concurrent visualization approach in visualizing large simulations or experiments [17].

In this approach the intermediate results of large scale simulation are sent for online analysis

and visualization. Concurrent visualization has three main advantages: 1) it enables the

scientist to view the current state of the long running simulation and facilitates run time

monitoring and steering, 2) it allows higher temporal resolution since it obviates the storage

space requirement, 3) it is the only choice for some time critical systems like hurricane

tracking and forecasting. This approach is adopted in NASA supercomputer massively

parallel forecast model [17] often used to forecast the progress of hurricanes, consequently

online analysis and visualization of the simulation results is critical.

Two conflicting arguments compete for designing one-to-many delivery of large-size

scientific data over well provisioned networks. On one side, there is the intuition that well-

provisioned networks are sufficient for guaranteeing good data-delivery performance.

2

sophisticated algorithms (such as in peer-to-peer systems) that adapt to unstable or limited-

resource environments are superfluous and add unjustified overheads.

The flip side is the argument that advanced data dissemination systems are still required

as the high data volumes and the relatively large collaborations create contention and

bottlenecks on shared resources. Additionally, even if contention for shared resources is not

a serious concern, the question remains whether networks are over provisioned and thus

advanced data dissemination techniques induce unnecessary costs.

This debate motivates our study. We explore experimentally the solution space for

one-to-many large-scale data delivery via simulations with real-world parameters. We

consider solutions typically associated with peer-to-peer applications (such as BitTorrent

[12] or Bullet [13]) and evaluate them in the large data federations scenario. To this end, we

use three real topologies of production Grid testbeds in our simulations: LCG [18], EGEE

[19] and GridPP [20].

1.1. Contributions

The contribution of this study is threefold. First, this study quantitatively evaluates and

compares a set of representative data-delivery techniques applied to realistic grid

environments. The quantitative evaluation is then used to derive well-supported

recommendations for choosing data-dissemination solutions and for provisioning the Grid

network infrastructure. Further, our study contributes to a better understanding of the

performance tradeoffs in the data-dissemination space. To the best of our knowledge, this is

the first, head-to-head comparison of alternative data dissemination solutions using multiple

performance metrics: time to complete the dissemination of data, generated overhead, and

load balance.

3

Second, in addition to comparing the data dissemination solutions along multiple

success metrics, we provide, to the best of our knowledge, the first quantitative evaluation of

the fairness of these solutions and their impact on competing traffic. Our results show that

this impact can be significant and suggest that fairness should be an important factor when

choosing a dissemination solution and the right network management infrastructure.

Third, a byproduct of this study is a simulation framework that can be used to explore

optimal solutions for specific deployments and can be extended for new dissemination

solutions.

1.2. Summary of Findings

Data dissemination in science grids environments is characterized by relatively small

collaborations (tens to hundreds of participating sites), large data files to transfer, well-

provisioned networks, and collaborative participants.

Our simulation-based experimental investigation on seven solutions selected from a set

of successful Internet data delivery and peer-to-peer deployed systems shows the following:

First, the Grid deployments we studied are over-provisioned, which leaves little space for

the intelligent techniques to show their strength. Secondly, application-level schemes such

as BitTorrent, Bullet and application-level multicast perform best in terms of dissemination

time. However, they introduce high-traffic overheads. Thirdly, the naive solution of separate

data transfers from source to each destination performance drops dramatically when the

available bandwidth in the network core decreases. In such cases, adaptive peer-to-peer like

techniques that are able to exploit multiple paths existing in the physical topology can offer

good performance.

4

1.3. Research Publications

This work resulted in two refereed publications, and one journal submission. These

publications were written in collaboration with Adriana Iamnitchi, at University of South

Florida, and Sudharshan Vazhkudai, at Oak Ridge National Laboratory. The following is the

list of the three publications:

• Samer Al-Kiswany, Matei Ripeanu, Adriana Iamnitchi, and Sudharshan Vazhkudai,

"Beyond Music Sharing: An Evaluation of Peer-to-Peer Data Dissemination Techniques

in Large Scientific Collaborations", Submitted to the Journal of Grid Computing.

• Samer Al-Kiswany, Matei Ripeanu, Adriana Iamnitchi, and Sudharshan Vazhkudai,

"Are P2P Data-Dissemination Techniques Viable in Today's Data-Intensive Scientific

Collaborations?", The 13th International Euro-Par Conference, European Conference on

Parallel and Distributed Computing, August 28-31, 2007, Rennes, France. (acceptance

rate 89/333 = 27%)

• Samer Al-Kiswany and Matei Ripeanu, "A Simulation Study of Data Distribution

Strategies for Large-scale Scientific Data Collaborations", 20th IEEE Canadian

Conference on Electrical and Computer Engineering, Vancouver, BC, April 2007.

Despite the short publication period, this work is cited by two research projects: GridTorrent

[21] and scheduling data intensive bag of tasks [22], and been listed as a recommended

reading by a third research group [23].

1.4. Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 presents the data usage

characteristics of scientific collaborations and compares them with the assumptions of

5

peer-to-peer file-sharing systems. Chapter 3 surveys existing work on data dissemination

and describes in detail the dissemination schemes this study analyzes. Chapter 4 discusses

the different evaluation approaches for comparing a set of dissemination techniques, and

presents a survey of related work, Chapter 5 presents the design of our simulator and

Chapter 6 presents our evaluation results. We summarize our findings in Chapter 7.

6

2. Data in Scientific Collaborations

Three key differences make it difficult to predict the behavior of adaptive techniques

employed in peer-to-peer systems when applied to scientific data federations: scale of data,

data usage characteristics, and resource availability.

The scale of data poses unique challenges: scientific data access consists of transfer of

massive collections (TeraBytes), comprising of hundreds to thousands of GigaByte sized

files. For instance, of the more than one million files accessed in DO between January 2003

and May 2005, more than 5% are larger than 1GB and the mean file size is larger than

300MB [24]. This is more than 20 times larger than the 14MB average file size transferred

in the Kazaa network in 2002 as reported in [25], but within the same order of magnitude

with the files currently transferred by BitTorrent (mainly, movies and software

distributions): Bellissimo et al. [26] report an average file size of 600MB. Another example

is the TeraShake [27] earthquake simulations, A single simulation may generate 47 terabytes

of data that is analyzed and visualized using TeraGrid [5].

Usage of data in scientific communities is of a different intensity compared to other

communities. For example, the 561 scientists part of the DO project processed more than

5PB of data between January 2003 and May 2005, which translates to accessing more than

1.13 million distinct data files and a sustained data processing rate of 65MB/s [24].

Additionally, popularity distributions for scientific data are more uniform than in peer-to-

peer systems with a significant impact on caching effectiveness. For example, while in DO a

file is requested by at most 45 different users, a BitTorrent file can be requested by

thousands of users or more [26].

7

Another difference in data usage is co-usage: often, in scientific environments, files are

used in groups and not individually. Taking the high-energy physics project DO as a case

study again, each data analysis job accessed on average 108 files, with a maximum of more

than 20,000. The need for simultaneous access to multiple files stresses the problems

brought up by the large file size, requesting transfers of data collections in the order of TB.

For example, the largest ten datasets in the DO traces analyzed in [24] are between 11 and

62 TB.

Finally, resource availability in Grids poses smaller challenges than in peer-to-peer

networks. Computers stay connected for longer, with significantly lower churn rate and

higher availability due to hardware characteristics and software configurations.

At the same time, data federations are overlays built on top of well-provisioned

(sometimes over-provisioned) network links (e.g., TeraGrid) as opposed to the commercial

Internet. In particular, network cores are well provisioned, often with multiple Gbps links.

Yet another difference in resource availability is that in scientific collaborations

resource sharing is often enforced by out-of-band means, such as agreements between

institutions or between institutions and research funding agencies. For this reason,

mechanisms that enforce participation, such as the tit-for-tat scheme in BitTorrent, may

impose unnecessary overheads and may limit the overall system performance.

All these properties (huge size transfers, well provisioned networks, more stable

resources, cooperative environments) invite the question whether peer-to-peer data

distribution strategies will result in tangible gains on the well-endowed network

infrastructures on which today's Grids are deployed. A careful study is necessary to derive

8

recommendations for constructing and provisioning future testbeds and choosing efficient

dissemination approaches to support scientific collaborations.

9

3. Data Distribution: Solutions and Metrics

The naive solution for data dissemination is to set up an independent transfer channel

between each data source and destination pair. Although this technique is clearly not the

most efficient and overloads the data source, it is often adopted in current deployments [9].

A second well-understood solution is to use IP multicast. However, despite significant

efforts, IP multicast is not widely deployed as it requires new routing hardware, and faces

challenging problems providing reliability, congestion and flow control [28]. An additional

set of reasons for IP multicast's limited deployment is its limited support for group

management, including authorization for group creation, receiver authorization, and sender

authorization, distributed address allocation, and support for network management [29].

To provide an alternative, numerous research projects have explored data dissemination

solutions at the application level. This section provides a classification of data distribution

techniques (Section 3.1), details the representative techniques we have selected to explore in

depth in this thesis (Section 3.2), and presents the criteria over which data dissemination

solutions are typically evaluated (Section 3.3).

3.1. Classification of Approaches

This section identifies three broad categories of techniques used in application-level data

dissemination systems: data staging, data partitioning, and orthogonal bandwidth harnessing.

Existing data dissemination solutions often use combinations of these techniques. The rest of

this section describes these techniques in detail in the context of our target environment.

10

3.1.1. Data Staging

With data staging, participating nodes are used as intermediate storage points in the data

distribution solution. Such an approach is made feasible by the emergence of network

overlays. For instance, it is becoming increasingly common practice in the Internet

community for application-specific groups to build collaborative networks, replete with their

application-level routing infrastructure. This is based on the premise that sophisticated

applications are better aware of their resource needs, deadlines, and associated constraints

and can thus perform intelligent resource allocation and workload/data transfer scheduling.

In this vein, peer-to-peer file sharing systems can be viewed as data-sharing overlays with

sophisticated application-level routing performed on top of the traditional Internet [30].

Similarly, in scientific data-analysis communities, user collaboration patterns and

shared interest in data lead to a 'natural' way to structure an overlay. In data grids, data

staging is a trend encouraged by the increasing significance of application-level tuning of

large transfers. For instance, collaborating sites often gather intelligent routing information

through the use of Network Weather Service [31] or GridFTP probes [32]. Such information

is then used to make informed decisions regarding routes, such that data transfers can be

executed in an optimized fashion based on a delivery constraint schedule [33]. A logical

extension is thus to use the participating sites as intermediary data staging points for more

efficient dissemination.

Additionally, a data distribution infrastructure can include a set of intermediary,

strategically placed resources (as in logistical computing [34] [35]) to stage data. In this

thesis we study idealized version of logistical multicast [36] as the representative exponent

of this class of solutions. We simulate an idealized, optimal IP-level logistical multicast

11

infrastructure that includes infinite buffering capabilities associated with all the intermediate

routers. This idealization aims to quantify the maximum benefits data staging can offer

when used in isolation.

3.1.2. Data Partitioning

To add flexibility, various peer-to-peer data distribution solutions split files into blocks and

transfer these blocks independently (e.g., BitTorrent [12], Bullet [13], SPIDER [37] and

many other systems). Much like the aforementioned application-level routing, this approach

allows applications a greater degree of control over data distribution. Further, it enables

application-level error correction: for example, in the case of downloading a file from

multiple replicas, partitioning can be coupled with erasure coding to achieve fault tolerance.

Several of these techniques are used in production systems (e.g., Digital Fountain [38, 39]).

Partitioning techniques can have significant value in a data-grid collaboration setting.

For instance, there is a genuine need to provide application-level resilience when it comes to

data transfers. Bulk data movement in the Grid usually involves transfers of large files that

are required to be resilient in the face of failures such as network outages or security proxy

expiration. This prompted us to include two representative systems that use data partitioning

in our study: Bullet [13] an academia developed data dissemination solution and the widely

popular BitTorrent file sharing protocol [12].

3.1.3. Orthogonal Bandwidth Exploitation

Once a basic file partitioning mechanism is in place, it can then be used to exploit

orthogonal bandwidth. Thematic here is the use of alternate network paths to speed-up data

transfers. The reason is that, in many cases, the bandwidth available to a traditional source-

12

routed distribution tree can be augmented using additional 'orthogonal' network paths that

exist between its interior and leaf nodes.

This is the premise in a number of commercially deployed or academically designed

data distribution systems. Orthogonal bandwidth tapping relies on partitioning files into

blocks and, initially, sending each block to a different peer with the intent that peers would

then form pair-wise relationships and acquire from each other the data they are missing.

Such an approach works as a means both to exploit the residual bandwidth available at the

peer and, more importantly, to employ alternate network routes than would not have been

available in a single source distribution scenario. Many peer-to-peer networks owe much of

their success to such optimizations (e.g., BitTorrent).

Intuitively, it appears that what we described so far will offer commensurate gains when

applied to Grid data collaborations. However, several of these optimizations are designed to

work in a naturally competitive environment such as the Internet, where peers contend for

bandwidth. One question we address is how this intuition translates when the bandwidth is

plentiful, as is the case with modern data collaborations with heavily provisioned networks.

3.2. Candidate Solutions for Evaluation

For our experimental study, we selected previously proposed solutions from each of the

categories presented above. We also include other traditional, well-understood techniques as

a base for our comparison. The following subsections present a brief description for each of

the solutions we evaluate.

13

3.2.1. Logistical Multicast

Logistical multicast (LMT) [36] (as described earlier in Section 3.1.1), depends on the

logistical networking approach [34]. Logistical networking infrastructure incorporates

strategically placed nodes in an overlay to expedite data distribution; these strategically

placed nodes may serve as routers and switches in addition to providing storage services

[35]. Internet Backplane Protocol [8, 40] is the protocol that implements the storage service

primitives (for instance, allocating storage space, storing, and reading) that the applications

can use to access the logistical storage space. LMT [36] uses topology information to

construct a multicasting tree from a single source to multiple destinations using the

intermediate logistical nodes. The intermediate nodes are used to buffer and stage the data to

the destinations. The multicasting tree is described in a form of a schedule of data transfers

between the tree nodes. The topology information used in constructing the tree is gathered

by network measurement modules [41] or services already deployed in the system, for

instance bandwidth measurement between PlanetLab nodes [42, 43] .We evaluate an

idealized version of this approach: we assume that logistical storage is associated with each

router in our topologies, and that intermediary storage nodes have infinite storage capacity.

With these idealizations, the logistical multicast version we evaluate offers an upper bound

for the performance of data dissemination solutions based on source-rooted distribution

trees.

3.2.2. Tree Based Application-Level Multicast

Tree based application-level multicast (ALM) solutions organize participating nodes

into a source-rooted overlay tree used for data dissemination [44, 45]. Each node maintains

information about the other nodes in the tree it is connected to. Data routing algorithms are

14

trivial as data is simply passed down the tree structure. Since, in our case, participating

nodes are end-nodes with an interest in long-term data storage, recovering lost blocks and

flow control can be simply implemented for each tree branch.

What differentiates various ALM solutions is the algorithm used to build and maintain

the distribution tree. These algorithms can be classified based on multiple criteria: the

ownership of the participating resources, their approach to decentralization, their use of a

structured or unstructured overlay, and the performance metric that is optimized.

■ Resource ownership and infrastructure. Some systems rely on strategically placed

infrastructure proxies to support the construction of their data distribution trees

(Overcast [45], OMNI [46], application level SPIDER [37]), while others aim to

integrate end-nodes without infrastructure support (Narada [28], ALMI [44]).

■ Overlay structure. Some dissemination tree construction algorithms assume the

existence of a structured overlay substrate (e.g. CAN multicasting [47], Scribe [48],

SplitStream [49]).

■ Centralized vs. distributed tree construction. For small and medium scale systems

centralized tree construction and management algorithms based on full system view have

been designed (e.g., ALMI [44]). At the other end of the spectrum, systems based on

structured overlays are able to handle millions of nodes.

■ Optimization function. While some dissemination tree construction algorithms strive to

provide the highest possible bandwidth, other algorithms aim to minimize the resulting

overheads in terms of additional message delay or generated network traffic (e.g. Narada

[28], NICE [50], OMNI [46]), or try to load balance the dissemination effort between the

overlay nodes [49].

15

Recently, a number of studies have proposed data dissemination algorithms targeting the

Grid infrastructure. Grido [51], for example, builds a shortest-path-first tree based on a

virtual coordinates system that advise each node of its nearby neighbors. Another system,

Multicast Optimizing Bandwidth (MOB) [52], adopts a hierarchical approach; nodes are

organized into clusters, and intra-cluster transfers are preferred to inter-cluster transfers to

reduce overheads. The nodes exchange data within the cluster and between the clusters in a

BitTorrent like approach (see BitTorrent description in Section 3.2.5). MOB assumes that

clustering information is available and globally known to all the nodes.

For our evaluation we choose a centralized solution based on global topology view

(similar to ALMI [44]) appropriate for the scale we target and offering near optimal trees.

Our algorithm constructs a bandwidth-optimized ALM tree without assuming strategically

placed proxy nodes or the presence of a structured overlay substrate. The reason to choose a

bandwidth-optimized tree construction is that the data transfer time-to-finish is often

considered the main data dissemination success metric in our environment. Appendix A

presents in detail the tree construction heuristic and analyzes its complexity.

3.2.3. SPIDER

SPatial Indirection for Path Diversity for Expedited Replication (SPIDER) [37] offers a

set of heuristics that enables fast content distribution by building multiple source-rooted

trees (assuming global views). This way, SPIDER can exploit existing orthogonal

bandwidth. This technique can be used at the application as well as at lower network layers.

SPIDER builds a set of trees, and tries to maximize the aggregate bandwidth of all the

constructed trees. SPIDER builds one tree at a time in a non-greedy fashion. Meaning that

SPIDER does not try to maximize the constructed tree bandwidth as the case in single tree

16

construction algorithms and some multi-tree constructions algorithms (for instance, FPFR

[53] which is described next). In constructing a tree SPIDER tries to maximize the residual

bandwidth left for the other trees to be constructed. For this, the construction algorithm

selects from a set of candidates the link that leaves the maximum outgoing bandwidth for its

source node. Appendix B details the SPIDER tree construction algorithm.

A number of other algorithms are based on the same principle of building a set of

source-rooted trees to exploit the orthogonal bandwidth available. For example, Fast Parallel

File Replication (FPFR) tool [53] constructs multiple, source-rooted multicasting trees by

repeatedly using depth-first search to find a tree spanning all hosts. For each tree, bandwidth

as high as the bottleneck bandwidth is "reserved" on all links used in the tree. The search for

new trees continues until no more trees spanning all hosts can be found. The data to be

distributed is then multicast in fixed-size blocks using all trees found.

For our simulations, we consider a scenario where SPIDER algorithm is used at

network layer, which offers an upper bound for solutions based on multiple source-rooted

trees. Note that, in this case, when SPIDER is able to build only a single tree it is equivalent

to traditional IP-multicast.

3.2.4. Bullet

Bullet [13] offers a way to exploit orthogonal bandwidth by initially distributing

disjoint subsets of data on different paths of a distribution tree (we use the ALM-built tree

in this study). After this step, nodes pair up and exchange missing blocks to complete the

file distribution. Bullet also depends on the source rooted tree in exchanging the control

messages, more precisely, to aggregate fixed size node content summaries from leafs to the

source node. The source, in turn, distributes a random subset of these summaries in a fixed

17

size blocks down the tree. Peers use these summaries to discover the blocks they are

interested in at other peers in the system. Further, in the pairwaise exchange between peers,

the exchange initiator decides which blocks to send to the destination depending on the

summary of the destination node. This push-based solution generates duplicate traffic since

incomplete summaries at the initiator node lead to the possibility of transmitting duplicate

blocks to a destination.

3.2.5. BitTorrent

BitTorrent [12] is a popular data distribution scheme that exploits the upload bandwidth

of participating peers for efficient data dissemination. Participating nodes build transitory

pair-wise relationships and exchange missing file blocks. BitTorrent employs two main

algorithms in its operation: chocking, and rarest fist algorithms. The chocking algorithm

selects the set of peers to reciprocate with. The chocking algorithm keeps track of download

rate provided by other peers, and periodically selects a set of peers offering the highest

download rate to reciprocate with (send blocks to). Moreover, periodically it selects one peer

optimistically. This optimistic selection (unchocking) allows nodes to discover other peers,

and helps the new joining nodes to obtain their first blocks. The rarest first algorithm is a

simple algorithm for selecting the next block to download from the peers. Through this

approach the node will try to download first the block that is least replicated among its

neighbors. This approach minimizes the possibility of losing the rare blocks and tries to

uniformly distribute all the blocks for better performance.

BitTorrent assumes a non-cooperative environment and employs a tit-for-tat (through

the chocking algorithm) incentive mechanism to discourage free riders. Additionally, nodes

are selfish: each node selects its peers to minimize its own time to acquire content,

18

disregarding the overall efficiency of the data distribution operation. Consequently, a node

will serve data to the peers that serve back in return useful blocks at a high rate.

Other solutions. Finally, to offer a basis for comparison, we also simulate IP-multicast

and the naive approach of using independent transfers from the source to each destination.

3.3. Success Metrics

Multiple categories of success metrics can be defined for most data management problems.

The relative importance of these metrics is dependent on the application context. Thus, no

data distribution solution is optimal for all cases and a careful evaluation of various

techniques is required for choosing a solution appropriate for a specific application context

and deployment scenario. Performance objectives include:

■ Minimizing transfer times. Transfer time is often a key metric for data dissemination due

to the need to send all data to all destinations so that real-time processing at the end-sites

can progress smoothly [54]. The focus typically is on minimizing the average, median, N th

percentile, or the highest transfer time to destination.

■ Minimizing the overall impact on the network. For advanced, dynamic data dissemination

techniques that build sophisticated distribution trees and exploit all available network

routes, it is vital to evaluate their overall impact and their impact on bottleneck links. A

success metric tied to the network effort might involve minimizing the load on bottleneck

links, the amount of duplicate data transferred, or the aggregate network 'effort' (in

megabit x mile transferred) in the distribution tree.

■ Load balance. With the enlisting of end-nodes in the data dissemination effort, evenly

spreading the load among participants becomes an important goal. The load balance

19

metric evaluates how well each dissemination mechanism balances load among

participating nodes.

■ Fairness to other concurrent transfers may be an important concern depending on the

lower-layer network and the protocols used. Fairness is especially important considering

that most of today's networked applications are TCP friendly. In this case, since TCP

aims to provide a fair share of the available bandwidth to each data flow, using multiple

flows for a single application will strongly affect other concurrent applications operating

in a single flow mode.

20

4. Evaluation Approaches

Three different approaches are possible to evaluate the set protocols described in Section

3.2, namely: Analytical, deployment, and simulation. The next three sections detail these

approaches, and present a survey of related work.

4.1. Analytical Evaluation

The analytical approach tries first to create a model for the data dissemination it then

analyzes the model using mathematical theorems to prove the properties and estimates the

performance of the dissemination technique. The defined model should define: how the

nodes are connected, the nodes characteristics, and any dissemination technique specific

properties.

Different analytical models have been proposed to study different file distribution

protocols in real-life scenarios. Biersack et al. [55] analyze the performance of optimal

application-level tree file-distribution-algorithms as will as a parallel tree structure. In case

of a single tree the authors conclude that as the number (k) of children per node increases,

the percentage of the nodes uploading data decreases. This is because only one of k peers

will be uploading data, and interior node must upload the entire file k times. The analysis

also shows that the parallel trees algorithm outperforms the single tree algorithm. Through

their analysis, they assume simplifying assumptions that affect the accuracy of the results.

They assume a homogeneous network where all the nodes have the same upload and

download bandwidth, and the network core is over provisioned to sustain n.k concurrent

flows where n is the number of nodes and k is the number of peers per node.

21

Qiu and Srikant [56] present a fluid model of BitTorrent-like networks, in which they

confirm BitTorrnet scalability (that is the average download time is not dependent on the

node arrival rate), and that the rarest-first-policy is efficient in uniformly distributing the file

blocks.

For analytical studies however, as for any modeling exercise, the main tradeoff is

between the complexity of the model and its ability to capture all system details.

Consequently, it is often necessary to simplify, sometimes unrealistically, the model in order

to make the analysis computationally tractable. In a large dynamic system like a data

dissemination system it is unrealistic to assume a homogenous set of nodes, infinite capacity

network core, or to ignore the traffic competition in the network core. Without these

assumptions, on the other side, analytical models that accurately model heterogeneity,

physical network topologies, and network contention quickly become intractable.

4.2. Deployment-based Evaluation

The deployment approach depends on deploying the unmodified implementation of the

techniques under study on a testbed of comparable size and capabilities with the target

system. Considering this study, the deployment approach suggests setting up the candidate

techniques on a testbed like PlanetLab [42] and evaluate the performance of the techniques

under real workloads.

This approach is plausible since the reported results are result of unmodified technique

implementation on a real-life large-scale testbed. But this approach is not suitable for all the

success metrics we are interested into, mainly due to the presence of uncontrolled effects

found in such testbeds. Considering this project target success metrics presented in Section

3.3, it is impossible to fairly compare the performance of the candidate techniques on a

22

testbed like PlanetLab. This is because these solutions differ in the way they perform in the

presence of concurrent traffic. For instance, assume that we are interested in comparing two

protocols over a simple testbed of two nodes: source and destination. The first technique

opens a single data channel to the destination, while the second opens n data channels to the

destination. Given that most of these techniques and the other applications on the interne

use TCP or TCP-friendly protocol, the performance of these two techniques is not

comparable if there is a concurrent competing traffic between the two nodes. The reason is

that the second approach may perform better simply due opening n connections to the

destination, and hence being less fair in sharing the link bandwidth with other applications,

and not because of the technique's mechanisms.

To the best of our knowledge there is no deployment-based study that compares a set of

dissemination techniques. Instead, a number of measurement-based studies have been

conducted to evaluate the performance of deployed systems. These studies depend on log

files collected by a central server in the system, or on statistics collected by modified nodes

participating in the dissemination network.

Pouwelse et al. [57] present a measurement-based study of BitTorrent system. Their

measurement software is composed of two main components. The first component monitors

a selected tracker (The central repository server in BitTorrent dissemination network), its

mirrors and .torrent file servers (servers serving the exchanged-file metadata). The second

component tracks the nodes participating in a certain file exchange. While their study

confirmed BitTorrent ability to deal with flash crowds, the necessity for decentralizing the

tracker components in the system, and to add incentives for seeding, it does not present file-

23

distribution related measurements as average download time, load balancing, and network

stress.

Izal et al. [58] present a similar study. In their work, they analyze two log files for a

popular-file torrent; the first log file was generated by file tracker, while the second log file

was generated through running a peer node to participate in this same torrent. Their finding

confirms BitTorrent ability to scale well and to handle flash crowds in real life scenarios,

while providing reasonable download rate. However, this study is limited in scope. First, it

depends only on single tracker log file for a single file exchange. Second, the client log file

is generated through using a client connected to a 10Mb connection, which hinders the

generality of the results. Finally, due to the limited information found in log files, no results

are reported regarding load balancing between peers or protocol overhead.

4.3. Simulation-based Evaluation

The simulation approach like the analytical approach starts with modeling the target system.

Unlike the analytical approach the model in the simulation approach can capture the system

important details without worrying about how easy it is to analyze the model

mathematically. The amount of details modeled is affected by: the target success metrics, the

target accuracy level, and the amount of resources available for the simulation. At one end

of this approach lies the faithful simulation of the target technique, for instance using the

technique unmodified implementation in a packet level simulator like ns [59]. On the other

end lies the high level simulation of the technique, such as simulating the technique high

level data flow over a network of infinite capacity.

Few simulation studies attempt to compare different protocols. These studies generally

focus on the effect of protocol mechanisms and parameters on the protocol performance.

24

Bharambe et al. [15] study the effect of the BitTorrent different mechanisms on the system

performance. While their findings agree with our simulation results, their simplifying

assumptions leave some unanswered questions. For example, in their network model, the

authors model only the uplink and downlink links in the network without considering the

links in the core of the network. While this assumption could be justified by considering the

over provisioned connections found in most networks cores (so the bottleneck links are only

on the network edges), it is unclear if this is still the case with multiple flows sharing the

same limited number of core links. In addition, the study does not consider the protocol's

overhead, nor it addresses the issue of fairness to other competing traffic, which we believe

are key metrics to consider when selecting a protocol for scientific collaboration system.

While BitTorrent attracted researchers' attention due to its wide deployment, other data

dissemination systems have not attracted similar attention. In order to evaluate the

techniques above, we have built a simulator that works at the file-block level. We believe

that our simulator enables a first study to directly compare a multitude of dissemination

protocols. A detailed discussion of our model and simulation approach is presented in

Chapter 5.

25

5. Simulating Data Dissemination

In order to evaluate the techniques above, we have built a simulator that works at the

file-block level. This chapter presents the set of decisions that guided our simulator design

(Section 5.1), presents key details about simulating the techniques we chose to investigate

(Section 5.2), discusses the scope of our simulations (Section 5.3) and evaluates and

compares our simulator with similar simulators in the literature (Section 5.4).

5.1. Simulator Design

We have built a high-level simulator to investigate the performance of different data

distribution protocols. As for most simulators, the main tradeoff we face is between the

resource volume allocated to simulation and the fidelity of the simulation. At one end of the

possible design spectrum are packet-level simulators (such as ns [59]) and emulators (such

as ModelNet [60] or Emulab [61]): they require significant hardware resources but model

application performance faithfully by running unmodified application code and

simulating/emulating network transfers at the IP-packet level. At the other end of the

spectrum are high-level simulators that abstract the application transfer patterns and employ

only coarse network modeling [62]. For example, a commonly used approach is to model

the Internet as having limited capacity access links and infinite bandwidth at the core.

Another example is replacing packet-level simulation (computationally expensive as it

implies simulating each packet's propagation through a series of router queues and network

links) with flow-level simulation. This requires lower computational resources as the

characteristics of the network paths are computed once per data flow. Flow-level simulations

26

enabled simulating multicasting trees with hundreds of destinations without considerably

reducing the results accuracy [62].

Our simulator sits in between the two extremes above. At the application level the

granularity is file-block transfer, a natural choice since many of the data dissemination

schemes we investigate use file blocks as their data management unit. At the network

simulation level, while we do not simulate at the packet level, we do simulate link level

contention between application flows.

In addition, our simulator design and implementation is guided by the following set of

decisions:

■ Ignore control overheads. For our target scenario, i.e., distribution of large files, the

generated control traffic is orders of magnitude lower than useful payload. Similarly, the

additional delay incurred while waiting for control commands and synchronization on

control channels is minimal compared to actual data transfer delays, especially given that

that control messages overlap or are often piggybacked. As a result, we do not attempt to

estimate control channel overhead and do not model the delay it introduces.

■ Use of global views. Our simulator uses a global view of the system in order to hide

algorithmic details that are not relevant to our investigation. Thus, following our

high-level simulation objective, the simulator replaces decentralized configuration

algorithms (e.g., for building application-level dissemination trees) with their centralized

alternatives that use global views. As a consequence, the performance of centralized

versions we simulate using global views is an upper bound of the performance of original

distributed versions.

27

■ Isolated evaluation. The data dissemination solutions we compare put a different stress on

the network and, consequently, when evaluated in a competitive environment, may offer

better apparent performance simply by being more unfair to competing traffic. To

overcome this problem, and enable fair, head-to-head evaluation, we perform our

evaluation experiments in two steps. We first evaluate each dissemination solution in

isolation (Sections 6.2, 6.3, and 6.4) then we compare their impact on competing traffic

(Section 6.5).

5.2. Simulating Data Dissemination Techniques

We experiment with the four solutions for data dissemination described in Section 3.2:

application-level multicast (ALM), BitTorrent, Bullet, and logistical multicasting. To

provide intuition about their efficiency, we compare them with two base cases. First, we

consider the base case of IP-multicast distribution (and its improvement using SPIDER

heuristics). IP-multicast, although not guaranteed to always offer the minimal transfer times,

is optimal in terms of network usage and node load-balance. SPIDER tries to build multiple

IP multicast trees in order to optimally exploit the bandwidth through different paths from

the source to destinations; consequently, SPIDER performs identically to IP multicasting on

sparse topologies where it can build only one tree.

The second base case evaluates the naïve (yet popular) data dissemination solution

where the source sends a copy of the file separately to each node. For this case, the

simulator uses the best IP path to send data from the source to each destination.

For these solutions as well as for all tree-based solutions, the simulator analyses the

topology at hand, determines the routing paths and the flow contention at the physical link

level and estimates data transfer performance.

28

For the most complex protocols, Bullet and BitTorrent, the simulator models each block

transfer independently. This is necessary due to the non-deterministic nature of these data

dissemination solutions. The simulations use a default block size of 512 KB (as in deployed

BitTorrent systems [12, 63]). We experimented with multiple block sizes but since the block

size does not have a significant impact on performance, we do not include these results in

here.

The simulator is composed of three main modules: routing, peering, and block transfer.

As their names indicate, the routing module is responsible for running the routing protocol

for all internal nodes in the topology; the peering module is responsible for constructing

peering relationships between nodes according to the protocol specification; and, finally, the

block transfer module uses the information provided by the two other modules to transfer

the blocks between peers using the paths provided by the routing module while accounting

for link level contention. The peering module uses a global view: every node is fully

informed about the content of every other node, which slightly improves Bullet and

BitTorrent performance.

In more detail, after routing paths between nodes are selected (using a shortest path

algorithm), the simulation works in rounds for the two dissemination solutions that use

temporary peering between nodes, i.e., Bullet and BitTorrent: in each round, first, the

peering algorithm is executed, adding or deleting new pairs of nodes that exchange data. At

this stage, with these two pieces of information (the set of pairs of nodes exchanging data in

the next round and the routing paths between them), network contention is simulated on

each physical link and the number of blocks to be transferred between each pair of nodes is

found. Next, the set of blocks to be exchanged are selected, and finally the blocks are

29

simulated to propagate between the peers. Note that, while the routing module is invoked

only once at the beginning of the simulation, the peering and the block transfer modules are

invoked in every cycle, thus driving the overall simulation speed.

5.3. The Scope of the Simulation Study

In order to focus on the objectives of our study, we limit the axes over which we vary

parameters to the strictly required ones. This does not impact the validity of our results,

since we are making the same assumptions uniformly for all solutions we compare. As a

result:

■ Consistent to our controlled deployment environment assumption, we do not attempt to

quantify the impact of node and link volatility.

■ We do not quantify the impact of imperfect information (we compare instantiations of

algorithms that use global, complete system views where required).

■ We do not investigate the scalability of these schemes (though all have been shown to

work well at the scale of today's Grid deployments).

5.4. Simulator Evaluation

We designed our simulator with strong emphasis on accuracy and less on simulation

performance. This section presents the complexity of the simulation for the most compute

intensive strategies, evaluates the simulator performance in a practical setting, and compares

the simulator performance with that of other simulators used for similar studies.

The simulator for IP-multicasting, ALM, logistical multicasting, SPIDER and

independent transfers from the source to every node, simulates the high-level deterministic

30

-)4- Bullet
-0- BitTorrent

protocol behavior. Consequently it is less complex than BitTorrent and Bullet simulators,

which use block level simulation.

While Bullet and BitTorrent simulators use the same routing module, each has a

complex peering and block transfer module reflecting the protocol's characteristics. Since

these are the most complex protocols we simulate, they limit the size of the physical

topologies we can explore. Table 5.1 details the complexity of each module for these two

protocols.

Module Bullet BitTorrent

Routing O(E3 *L) O(E3 *L)

Peering O(E2 *B *Log(B)) O(E2 *B. Log(B)+E'3)

Block Transf. 0 (E*P *B) 0 (E*P2 +E*P*Log(N))

Table 5.1. Table 1. The complexity of Bullet and BitTorrent protocol's modules. Notations: E - the
number of end nodes; L - the number of links in the physical network topology; B - the number of
file-blocks; P - the number of peers per node.

1^2^4^8^16
Number of blocks (in thousands)

Figure 5.1. Simulation time for a 25 nodes topology and 1GB file.

31

3 00
—x— Bullet

-7;250 - —0— BitTorrent

*74200

150 -

Q
0
co100 -
0

25 lumber of ncgs 200

Figure 5.2. Simulation time for disseminating a 1 GB file (divided into 2000 blocks).

Table 5.1 shows that BitTorrent simulation has a higher complexity. This is a result of

the complex peering (tit-for-tat) and block selection (rarest-first) policies used. Figure 5.1

and Figure 5.2 present the time required to simulate data dissemination with Bullet and

BitTorrent.

To evaluate the simulator performance in real settings we generated a set of Waxman

topologies using BRITE [64] with different number of nodes and simulated the distribution

of 1 GB files with different number/size of blocks. All simulations were executed on a

system with an Intel P4@2.8 GHz processor and 1GB of memory.

The scale of our experiments is limited by the scale of BitTorrent and Bullet

simulations. The other simulated protocols are much faster: simulating one of these solutions

on topologies with few thousands end-nodes can be obtained in a few minutes. For

BitTorrent and Bullet the simulator can simulate the distribution of a file split into a few

thousands of blocks to few hundreds of nodes (a typical setting in today's scientific

collaboration systems) in few hours.

Although we have not focused on performance (e.g., we have used Python for the

simulator implementation), our simulator performs well compared to others described in

32

literature. For instance, Bharambe et al. [15] present results for simulating a network with

300 simultaneously active nodes and 100 MB file of 400 blocks, without incorporating

physical topologies and consequently not simulating network contention. Similarly,

Gkantsidis et al. [65] present a simulation results for a topology of 200 nodes and a file split

in 100 blocks. They use a simplified network topology model with infinite core capacity and

bandwidth constraints only on access links. Further their simulations are simplified by using

overlay topologies that are computed offline.

33

6. Simulation Results

This chapter presents the results of our comprehensive simulation study. We detail our

experimental setup in Section 6.1 and present simulation results that compare, along

multiple success metrics, the techniques we study. We present the data dissemination time in

Section 6.2, protocol overhead in Section 6.3, load balancing characteristics in Section 6.4,

and fairness to competing traffic in Section 6.5. Section 6.6 presents an experimental

validation of our choices of protocols parameters for Bullet and BitTorrent.

6.1. Experimental Setup

We use the physical network topologies of three real-world grid testbeds LCG [18], EGEE

[19] [66] and GridPP [20]. The LCG topology incorporates 121 sites connected through up

to 10Gbps core links. EGEE and GridPP are smaller and have similar characteristics to LCG

in terms of network core bandwidth and access link to core link bandwidth ratio.

Additionally, to increase the confidence in our results, we generated two other sets of

Waxman topologies using BRITE [64]. These two sets have the same number of

intermediate and end-nodes and constant overall bandwidth, but they differ in the density of

network links in the core. Comparing results on these two sets of topologies gives a more

direct measure of the degree to which various proposed protocols are effective in exploiting

network path diversity. The third generated set has a higher number of intermediate and end-

nodes (around 500 nodes total). As these additional experiments mainly validate our

simulation results, we do not provide their detailed description in here.

34

All simulations explore the performance of distributing a 1GB file over the different

topologies. Bullet and BitTorrent are configured to work with two and four peers,

respectively. We chose these configurations as they offer optimal performance in the

topologies we modeled in our experiments (details about how we reached this conclusion are

presented in Section 6.6).

6.2. Performance: File Transfer Time

As discussed in Section 3.3, depending on the application context, the performance focus

can be on minimizing the average, median, N th percentile, or the highest transfer time to

destination. To cover all these performance criteria, for each data dissemination technique

we present the evolution, in time, for the number of destinations that have completed the file

transfer.

Figure 6.1, Figure 6.2, and Figure 6.3 present this evolution for the original LCG, EGEE,

and GridPP topologies, respectively. Despite the different experimental results for these

topologies, the following observations are common:

■ IP-multicast and Logistical Multicast are the best solutions to deliver a file to the slowest

node as they optimally exploit the bandwidth on bottleneck links. Spider is not presented

here because it does not build more than one dissemination tree and thus it is, for these

three topologies, equivalent to IP-multicast.

■ Intermediate progress with IP-multicast. The explanation is that IP-multicast does not

include buffering at intermediate points in the network and limits its data distribution rate

to the rate of the bottleneck link.

■ Logistical Multicast is among the first to complete the file dissemination process and also

offers one of the best intermediate progress performance. This is a result of ability to store

35

data at intermediate routers as well as a result of the bandwidth distribution in these

topologies: the bottlenecks are the site access links and not the links at the core of the

network. As a result, Logistical Multicast is able to push the file fast through the core

routers that border the final access link and thus offer near optimal intermediate

distribution times.

■ Application-level multicast (ALM), Bullet and BitTorrent perform worse but comparable

to Logistical Multicast both in terms of finishing time as well as intermediate progress.

They are able to exploit the plentiful bandwidth at the core and their performance is

limited only by the access link capacity of various destination nodes.

■ As expected, the naive technique of distributing the file through independent streams to

each destination does not offer any performance advantage. Surprisingly, however, on

these over-provisioned networks, its performance is competitive with that of other

methods.

The surprisingly good performance of parallel independent transfers in these topologies

clearly indicates that the network core is over-provisioned. Even with all nodes pairing up

and exchanging data at the full speed of their access links, core links are far from being fully

used.

We are interested in exploring the performance of data dissemination techniques at

various core-to-access link capacity ratios for the following two reasons. First, if the core is

over-provisioned, we would like to understand how much bandwidth (and eventually cost)

can be saved by reducing the core capacity without significantly altering the data

dissemination performance. Second, we aim to understand whether independent transfers

perform similarly well when compared to the more sophisticated techniques under different

36

—A— Separate transf
—e— ALM
- IP-Multicast
—— Logistical MT
—6— BitTorrent

120
.110 -

N100 -
15 90
• 80
b

▪

70 -

-2 60 -a)
a. 50 -
Eo 40 -U

t 3° -
t 20 -

10 -
0

0^5^10^15^20^25^30^35^40^45^50^55^6,

Time (10s)

20 - Bullet
—&-- Separate transf
—e— ALM
—9-- IP-Multicast
—— Logistical MT
— 6— BitTorrent

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1

Time (10s)

network conditions. Stated otherwise, we aim to quantify the performance gains (in terms of

dissemination time) that complex data dissemination techniques offer when operating on

less-endowed infrastructures.

Figure 6.1. Number of destinations that have completed the file transfer for the original LCG

topology (Separate transfer technique finishes the transfer at 730s, not presented in the plot for better

readability).

Figure 6.2. Number of destinations that have completed the file transfer for the original EGEE

topology.

37

20

a)
rE
.= I

--.— Bullet
—a— Separate transf
—9— ALM
—9— IP-Multicast4'15

"CSa)
,'I p

....,
1.)

lino-o
=(...o
a)az 5

— — Logistical MT I^''..,
..

/A--a— BitTorrent

dilo

411111111POW/fe

E

E: cm o o o o 000 o zu,e.. oo oo E: 0
0

0^5^10^15^20^25^30^35^40^45^50^55 60 65 71
Time (s)

Figure 6.3. Number of destinations that have completed the file transfer for the original GridPP

topology.

With these two goals in mind we ran the same simulations on a set of hypothetical

topologies. These topologies are similar to the original LCG, EGEE and GridPP topologies

except that the bandwidth of the core links (the links between the core routers) is 1/2, 1/4,

1/8, 1/16 or 1/32 of the original core link bandwidth.

Figure 6.4, Figure 6.5, and Figure 6.6, present the time to complete the transfer to 90%

of the nodes (as well as to 50% and all nodes using the error bars) for the LCG, EGEE, and

GridPP topologies, respectively, with different core link bandwidth. We summarize our

observations below.

38

114g0^°P4nerg

Fie re40+4
"P go

'4500 -

0
0

e 400 -
rn
ti 300 -

51 600
4.4
2 500

0 400 -

<S,' 300 -
<1.)
V

El Logistical MT ^ Bullet
12 ALM^BitTorrent
12 IP-Multicast^Q Separate transf

g-200
8

100 -

1/2^1/4^1/8^1/16
Core link reduction ratio

• 800

Log1stical MT ^ Bullet
El ALM^El BitTorrent

IP-Multicast^C3 Separate transf

1700

g 600

1/2^1/4^1/8
^

1/16
^

1/32
Core links reduction ratio

Figure 6.4. Time to finish the transfer to 90% of the nodes for the original LCG topology and the

topology with reduced core bandwidth. The lower error bar indicates the time to complete the

transfer for 50% of the nodes while the top error bar indicates the time to complete the transfer for

the last node. Separate transfer's technique finishes in 2280 seconds on the topology with core

bandwidth reduced to 1/32 (not presented here for clarity).

Figure 6.5. Time to finish the transfer to 50%, 90%, and all nodes for the EGEE topology — original

and reduced core bandwidth.

39

600

500

ti

El Logistical MT ^ Bullet
El ALM^BitTorrent
53 IP-Multicast^El Separate transf

400 -
0

g 200 -
8
2 1 00 -

0

1/2^1/4^1/8^1/16
Core link reduction ratio

Figure 6.6. Time to finish the transfer to 50%, 90%, and all nodes for the GridPP topology — original

and reduced core bandwidth.

60

50 -

40 -

30 -

-8
*0 10

0

- BitTorrent sparse

-9- BitTorrent dense

- ALM sparse
—6r-- ALM dense

0 2 4 6 Krimig 2 14 16 18 20

Figure 6.7. Number of destinations that have completed the file transfer with two generated

topologies. The dense topology has four times more links in the core with four times less average

bandwidth per link.

Most importantly, we observe that the performance of the parallel independent-transfers

technique degrades much faster than the performance of any other technique when the

bandwidth in the core decreases. Additionally, the performance of the more sophisticated

dissemination schemes does not degrade significantly when reducing the core capacity. This

40

is testament to their ability to exploit orthogonal bandwidth. Furthermore, it is an indication

that similar performance can be obtained at lower network core budgets by employing

sophisticated data distribution techniques.

In addition, based on results obtained with reduced core capacity, we observe the

following. First, ALM and Logistical Multicast offer good intermediate progress, while their

completion time, limited by a bottleneck link, is similar to simple IP-multicast. Second, in

addition to offering good intermediate progress, Bullet and BitTorrent offer good

completion time by exploiting orthogonal bandwidth.

To further investigate the ability to exploit alternate network paths, we have generate

two sets of topologies in which the aggregate core bandwidth is maintained constant but the

number of core links is changed. Figure 6.7 compares the intermediate progress of the

BitTorrent and ALM protocols on these two topologies: the 'dense' topology has four times

more links in the core (and four times lower average core link bandwidth). As shown in

Figure 6.7, BitTorrent performance is better with more links in the core while ALM

performance slightly degrades. These results underline BitTorrent ability to exploit all

available transport capacity. Bullet shows similar behavior.

Summary. Three key conclusions can be derived from the above simulation results:

■ In the real Grid deployments analyzed, networks appear to be over-provisioned and, in

these conditions, even naïve algorithms perform well.

■ The group of application-level schemes such as Bullet, BitTorrent and, ALM are initially

within the same ballpark compared to others. Because Bullet and BitTorrent generate high

overheads (discussed in the next section), ALM performance starts to dominate for more

constrained cores. We note, however, that Bullet and BitTorrent have other additional

41

intrinsic properties (e.g., tolerance to node failures) that make them attractive in different

scenarios (e.g., high churn conditions specific to peer-to-peer systems).

■ Bullet and BitTorrent are more efficient in exploiting the orthogonal bandwidth available

between the participating nodes, being thus more capable to cope with different topologies

and adapt to dynamically changing workloads.

6.3. Overheads: Network Effort

A second important direction to compare data dissemination solutions is evaluating the

overhead they generate.

The traditionally used method to compare overheads for tree-based multicast solutions

is to compare maximum link stress (or link stress distributions); where link stress is defined

as the number of identical logical flows that traverse the link. However, this metric is

irrelevant for Bullet or BitTorrent as these protocols dynamically adjust their distribution

patterns and, therefore, link stress varies continuously during data dissemination.

For this reason, we propose a new metric to estimate overheads. We estimate the

volume of duplicate traffic that traverses each physical link and aggregate it over all links in

the testbed. While individual values of this metric are not relevant in themselves, they offer

interesting insights when comparing distinct protocols.

Figure 6.8 shows the generated traffic (labeled as useful or overhead) for each protocol

for the original LCG. We define as useful the data traffic that remains after excluding all

link-level packet duplicates. Note that the volume of useful traffic differs between the

protocols since different schemes map differently on the physical topology.

42

800

700 -

al 600 —
C.7
s"---4) 500 -

400 —

> 300 —

cri 200 —

75" 100 —
0

0

Bullet BitTorrent^IP-^ALM^Separate
Multicast^transfers

Figure 6.8. Overhead for each protocol on the LCG topology.

The following observations can be made based on Figure 6.8 (and can be generalized, as

there is little variance across various topologies). First, as expected, IP-layer solutions do not

generate any duplicates and thus are optimal in terms of total traffic.

Second, Bullet, BitTorrent and ALM require significantly higher network effort even

without considering the duplicates. This is the result of node pairing relationships in these

schemes that pay little consideration to the nodes location in the physical network topology.

In considering duplicate traffic, Bullet emerges as the largest bandwidth consumer. This

is because Bullet uses approximate representations of the set of blocks available at each

node and the upload decision is made at the sender node depending on the receiver content

summary. False negatives on the approximate data representations thus generate additional

traffic overhead. BitTorrent generates slightly smaller overheads as nodes employ exact

representations (bitmaps) to represent the set of blocks available locally.

ALM trees also introduce considerable overhead as the tree construction algorithm is

optimized for high-bandwidth dissemination and ignores nodes' location in the physical

topology.

43

Finally, one observation applies equally to all application level techniques studied: the

overhead grows with the size of the topology. For example, while for the EEGE topology

the ratio of duplicate traffic is between 43% (for BitTorrent) and 66% (for separate

transfers) it grows to 55% (for ALM) and 74% (for separate transfers) for the LCG

topology.

Summary. Application-level data dissemination solutions generate significant overheads

(the generated traffic volume is up to four times larger than that generated by optimal

IP-level solutions). The reason is that application-level techniques base their dissemination

decisions on application level metrics rather than on node topology location. Consequently,

traffic often does not use optimal network paths and the same block of data travels multiple

times the same physical link or is sent multiple times through the core through different

network paths.

6.4. Load Balance

Another metric to evaluate the performance of data dissemination schemes is load balance.

To this end, we estimate the volume of data processed (both received and sent) at each

end-node. Obviously, network-layer techniques (e.g., IP-multicast, SPIDER, logistical

multicast) that duplicate packets at routers or storage points inside the network, will offer

ideal load balance. Using these, each end-node will optimally receive/send a minimal

amount of data.

At the other end of the spectrum, sending data through independent connections directly

from the source will offer the worst load balance as the source load is directly proportional

to the number of destinations.

44

13

• • Bullet
x ALm
+ BitTorrent

11 -

0^20^40^60 ^by load) 100^120Rank (nodes ranked by load)

Figure 6.9. Load balancing for ALM, BitTorrent and Bullet. Nodes are ranked in decreasing order of

their load (LCG topology).

Figure 6.9 presents the load balancing performance of the remaining techniques: ALM,

BitTorrent, and Bullet for the LCG topology. For the other topologies the relative order of

these techniques in terms of load balance does not change, thus we do not present these

results here.

ALM has the worst load balance among the three solutions as it tends to increase the

load on the nodes with ample access-link bandwidth. Of the remaining two, BitTorrent

offers slightly better load balancing than Bullet due to its tit-for-tat mechanism that

implicitly aims to evenly spread data dissemination efforts.

Summary. Application-level solutions offer better load balance than the naive solution of

sending the data through separate channels from the source to each destination.

Additionally, BitTorrent offers the best load balance among application-level solutions.

45

6.5. Fairness to Competing Traffic

While all the application layer protocols we analyze use TCP or a TCP-friendly congestion

control scheme for data exchanges between each individual pair of nodes, they differ in their

impact on the network and on the competing traffic. The reason is that some of these

dissemination schemes generate a large number of network flows, sometimes mapped

randomly over the network topology, thus having the potential to intensely stress bottleneck

links and, consequently, impact the network flows generated by other applications. We are

not aware of any related work analyzing this impact, and implicitly the fairness of data

dissemination techniques.

Our evaluation of fairness is complicated by the fact that, unlike for unicast traffic, for

single-source-multiple-destinations traffic there is no commonly accepted fairness

definition. Even for IP-multicast, although fairness has been studied for many years [67],

there is still no general consensus on what should be the relative fairness between multicast

and unicast traffic.

In general, with multicast traffic, multiple bandwidth allocation policies are possible.

For example, on one side, at the individual physical link level, a multicast session might

deserve more bandwidth than a TCP connection as it serves multiple receivers. On the other

side, however, it is also reasonable to argue that a multicast session should not be given

more bandwidth than individual TCP connections, in order not to penalize competing TCP

connections that share a portion of the path with the multicast session.

Different data dissemination solutions that work at the application-layer do have

different impact on competing traffic. For example, at one end of the spectrum, a logistical

multicast scheme with intermediary storage nodes placed close to network routers will be

46

similar in impact to IP-multicast. At the other end of the spectrum, solutions that create a

distribution tree for each participating node have the highest impact on competing traffic.

For instance, in FastReplica [68], the source node divides the file into n equal blocks (where

n equals the number of participating nodes) and sends each block to one of the participating

nodes. After receiving the first block from the source, each node opens n-1 separate

channels and sends the block to every other participating node. This solution creates a

number (n-1) *(n-2) channels simultaneously and is clearly unfair to competing traffic.

From the possible set of metrics to estimate the impact of competing traffic we choose

link stress distribution. The higher the number of flows a data dissemination scheme maps

on a physical link, the higher its impact on competing traffic. This impact is non-negligible,

as Figure 6.10 presenting the average link stress distribution for the LGC topology shows.

In fact, the maximum link stress generated by Bullet and BitTorrent can be significantly

higher; as high as 70 on the LCG topology, as Figure 6.11 shows. This implies that if a

unicast transfer shares its bottleneck link with a link on which Bullet or BitTorrent generates

such stress, its allocated bandwidth is drastically reduced.

ALM tends to stress more the links around the nodes with high access link bandwidth,

since these nodes are favored to have many children nodes in the bandwidth optimized trees.

Similarly, the technique of sending the file from the source to each destination through

independent channels is the worst in terms of fairness to competing traffic since the

generated stress on the access link of the source is proportional with the number of

destinations

47

This is not a behavior particular to grids, of course. In fact, the generous network

provisioning in the topologies we analyze masks the problems raised by the lack of fairness.

However, we believe that presenting fairness metrics is germane to our evaluation.

Summary. While IP multicast offers ideal fairness, application-level solutions have a high

impact on competing traffic. Overall BitTorrent and Bullet are fairer than ALM, since our

ALM tree construction favors the nodes with high bandwidth leading to more connections

around these nodes.

Figure 6.10. Average link stress distribution of BitTorrent and Bullet over the LCG topology. The

plot presents average link stress for the most stressed 50 links.

48

80 ^
70 - 0

60 -
u, 50^•• Ptctim
B 40^AA

AA^
030

C01:0

GO^AAAAA

30 -^•• A•A
AA

0

•

0
AA

• Bullet Max
OBitTorrent Max
x ALM

20x •
AAAAAAAA; A: :•••...

10
)(')(*()4°(*()*°*°°(14)00*(>0.0000000000000000400$000044p<

0 ^

.4.2T3°14:1:111

0 5 10 15 20 25 30 35 40 45 50
Rank (links ranked by stress)

Figure 6.11. Maximum link stress distribution of BitTorrent and Bullet over the LCG topology. The

plot presents maximum link stress for the most stressed 50 links.

6.6. The Effect of the Number of Peers in Bullet and BitTorrent

The number of 'peering relationships' (i.e., the number of nodes each node exchanges data

with) is a configuration parameter specific for Bullet and BitTorrent. To understand and

make sure we configure these two protocols optimally for our environments we have

experimented with different configurations for the number of peering relationships.

We find that, for our topologies, configuring Bullet with two peers and BitTorrent with

four peers in EEGE and GridPP topologies (incidentally the default configurations for

BitTorrent deployments) and eight peers in LCG topology, provides the fastest data

dissemination. We note, however, that the differences in dissemination speed among

various configurations are minor compared to the differences among dissemination schemes.

The generated traffic volume remains constant for BitTorrent, while it linearly, and

non-trivially, increases with the number of peers for Bullet. This is a consequence of

exchanging probabilistic summaries in Bullet as opposed to accurate, though slightly larger,

summaries in BitTorrent. We estimate that, for large files, the additional control overhead

49

required to provide accurate summaries in Bullet will be entirely compensated by lower

duplicate traffic.

In terms of load balancing, the Bullet configuration with two peers provides the best

load balancing, while a larger than the default four peers (as in our experiments) would

improve load balancing for BitTorrent.

In terms of fairness to competing traffic, increasing the number of peers generally

results in reduced fairness on links around nodes with high access bandwidth, since these

nodes get data sooner in the replication process and serve more collaborating peers.

Summary. For our topologies, configuring Bullet with two peers and BitTorrent with four

peers in EEGE and GridPP topologies, and eight peers in LCG topology, provides the fastest

data dissemination. Increasing the number of peers provides better load balancing without

generating additional overheads. Additionally, increasing the number of peers in Bullet and

BitTorrent reduces fairness around the nodes with high access bandwidth, as these nodes

obtain the complete file first in the data dissemination process and continue to serve a large

number of nodes.

50

7. Summary

This study focuses on the problem of disseminating large data from one source to multiple

destinations in the context of today's science grids. Data dissemination in these

environments is characterized by relatively small collaborations (tens to hundreds of

participating sites), large data files to transfer, well-provisioned networks, and collaborative

participants.

The objective of this study was to provide an experimentally-supported answer to the

question: Given the characteristics of deployed grids, what benefits can peer-to-peer

solutions offer for one-to-many data dissemination?

Our simulation-based experimental investigation on seven solutions selected from a set

of successful Internet data delivery and peer-to-peer deployed systems shows the following:

■ Some of today's Grid testbeds are over-provisioned. In this case, the deployment is

scalable with the size of the user community, and peer-to-peer solutions that adapt to

dynamic and under-provisioned networks do not bring significant benefits. While they

improve load balancing, they add significant overheads and, more importantly, do not

offer significant improvements in terms of distribution time.

■ Application-level schemes such as BitTorrent, Bullet and application-level multicast

perform best in terms of dissemination time. However, they introduce high-traffic

overheads, even higher than independent parallel transfers. On the other hand, BitTorrent

and Bullet are designed to deal with dynamic environment conditions, a feature which

might be desirable in some scenarios.

■ The naive solution of separate data transfers from source to each destination yields

51

reasonable performance on well-provisioned networks but its performance drops

dramatically when the available bandwidth decreases. In such cases, adaptive peer-to-peer

like techniques that are able to exploit multiple paths existing in the physical topology can

offer good performance on a network that is less well provisioned.

To summarize, the peer-to-peer solutions that offer load balancing, adaptive data

dissemination, and participation incentives lead to unjustified costs in today's scientific data

collaborations deployed on over-provisioned network cores. However, as user communities

grow and these deployments scale (as already seen in the Open Science Grid [69], for

example) peer-to-peer data delivery mechanisms will outperform other techniques.

In any case, network provisioning has to progress hand-in-hand with improvements and

the adoption of intelligent, adaptive data dissemination techniques. In conjunction with

efficient data distribution techniques, appropriate network provisioning will not only save

costs while building/provisioning collaborations, but also derive optimal performance from

deployed networks.

52

References

1. LHC, The Large Hardon Collider, http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/ .

2002.

2. The Spallation Neutron Source. 2006.

3. TeraShake http://epicenterusc.edu/cmeportal/TeraShake.html . 2007.

4. CyberShake http://epicenterusc.edu/cmeportal/CyberShake.html . 2007.

5. Catlett, C., The TeraGrid: A Primer. 2002, www.teragrid.org .

6. Brown, M., Blueprint for the Future of High-Performance Networking. Communications of the

ACM (CACM), 2003. 46(11): p. 30-77.

7. Allcock, W., A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke. Protocols and Services for

Distributed Data-Intensive Science. in Advanced Computing and Analysis Techniques in

Physics Research (ACAT). 2000: AIP Conference Proceedings.

8. Bassi, A., M. Beck, T. Moore, J.S. Plank, M. Swany, R. Wolski, and G. Fagg, The Internet

Backplane Protocol: A Study in Resource Sharing. Future Generation Computing Systems,

2003. 19(4): p. 551-561.

9. Terekhov, I., R. Pordes, V. White, L. Lueking, L. Carpenter, H. Schellmant, J. Trumbo, S.

Veseli, M. Vranicar, and S. White. Distributed data access and resource management in the DO

SAM system. in IEEE International Symposium on High Performance Distributed Computing.

2001.

10. Wang, F., Q. Xin, B. Hong, S.A. Brandt, E.L. Miller, D.D.E. Long, and T.T. Mclarty. File

System Workload Analysis For Large Scientific Computing Applications. in NASA/IEEE

Conference on Mass Storage Systems and Technologies (MSST 2004). 2004.

11. Iamnitchi, A., M. Ripeanu, and I. Foster. Small-World File-Sharing Communities. in Infocom

2004. 2004. Hong Knog.

53

12. Cohen, B., BitTorrent web site: http://www.bittorrent.com . 2005.

13. Kostic, D., A. Rodriguez, J. Albrecht, and A. Vandat. Bullet: High Bandwidth Data

Dissemination Using an Overlay Mesh. in SOSP'03. 2003. Lake George, NY.

14. Guo, L., S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Measurements, Analysis and

modeling of BitTorrent-like systems. in ACM SIGCOMM Internet Measurement Conference.

2005. New Orleans, LA.

15. Bharambe, A.R., C. Herley, and V.N. Padmanabhan. Analysing and improving a BitTorrent

network's performance mechanisms. in The 25th Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2006). 2006. Barcelona, Spain.

16. Plaza, A., D. Valencia, J. Plaza, and P. Martinez, Commodity cluster-based parallel processing

of hyperspectral imagery. Journal of Parallel and Distributed Computing, 2006. 66(3): p. 345-

358.

17. Ellsworth, D., C. Henze, B. Green, P. Moran, and T. Sandstrom, Concurrent Visualization in a

Production Supercomputer Environment. EEE Transactions on Visualization and Computer

Graphics, 2006. 12(5): p. 997-1004.

18. Doyle, A.T. and C. Nicholson. Grid Data Management: Simulations of LCG 2008. in

Computing in High Energy and Nuclear Physics, CHEP '06. 2006. Mumbai, India.

19. Enabling Grids for E-sciencE Project. 2006.

20. Britton, D., A.J. Cass, P.E.L. Clarke, J.C. Coles, A.T. Doyle, N.I. Geddes, J.C. Gordon, R.W.L.

Jones, D.P. Kelsey, S.L. Lloyd, R.P. Middleton, S.E. Pearce, and D.R. Tovey. GridPP: Meeting

the Particle Physics Computing Challenge. in UK e-Science All Hands Conference. 2005.

21. Kaplan, A., G.C. Fox, and G.v. Laszewski. GridTorrent Framework: A High-performance Data

Transfer and Data Sharing Framework for Scientific Computing. in Workshop on Grid

Computing Portals and Science Gateways - Supercomputing '07. 2007. Reno Nevada.

54

22. Briquet, C., X. Dalem, S. Jodogne, and P.-A.d. Marneffe. Scheduling data-intensive bags of

tasks in P2P grids with bittorrent-enabled data distribution. in workshop on Use of P2P, GRID

and agents for the development of content networks - HPDC '07. 2007.

23. Chyouhwa Chen webpage - National Taiwan University of Science and Technology

http://cchenl.csie.ntustedu.tw/students/master2007.htm . 2007.

24. Iamnitchi, A., S. Doraimani, and G. Garzoglio. Filecules in High-Energy Physics:

Characteristics and Impact on Resource Management. in HPDC 2006. 2006. France.

25. Gummadi, K.P., R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, and J. Zahorjan. Measurement,

Modeling, and Analysis of a Peer-to-Peer File-Sharing Workload. in SOSP'03. 2003. Lake

George, NY.

26. Bellissimo, A., P. Shenoy, and B.N. Levine, Exploring the Use of BitTorrent as the Basis for a

Large Trace Repository, University of Massachuttes-Amherst.

27. Cui, Y., R. Moore, K. Olsen, A. Chourasia, P. Maechling, B. Minster, S. Day, Y. Hu, J. Zhu, A.

Majumdar, and T. Jordan. Enabling Very-Large Scale Earthquake Simulations on Parallel

Machines. in International Conference on Computational Science. 2007.

28. Chu, Y.-h., S.G. Rao, S. Seshan, and H. Zhang, A Case for End System Multicast. IEEE Journal

on Selected Areas in Communication (JSAC), Special Issue on Networking Support for

Multicast, 2002. 20(8).

29. Diot, C., B.N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, Deployment Issues for the IP

Multicast Service and Architecture. IEEE Network: Special Issue on Multicasting, 2000. 14(1).

30. Touch, J.D., Overlay Networks. Computer Networks, 2001.36(2001): p. 115-116.

31. Wolski, R., Forecasting Network Performance to Support Dynamic Scheduling Using the

Network Weather Service, in Proc. 6th IEEE Symp. on High Performance Distributed

Computing. 1997: Portland, Oregon.

55

32. Vazhkudai, S., J. Schopf, and I. Foster. Predicting the Performance of Wide-Area Data

Transfers. in 16th International Parallel and Distributed Processing Symposium (IPDPS 2002).

2002. Fort Lauderdale, FL.

33. Vazhkudai, S., S. Tuecke, and I. Foster. Replica Selection in the Globus Data Grid. in IEEE

International Conference on Cluster Computing and the Grid (CCGRID2001). 2001. Brisbane,

Australia.

34. Beck, M., T. Moore, J.S. Plank, and M. Swany. Logistical Networking: Sharing More Than the

Wires. in Active Middleware Services Workshop. 2000. Norwell, MA.

35. Plank, J.S., A. Bassi, M. Beck, T. Moore, D.M. Swany, and R. Wolski, Managing Data Storage

in the Network. IEEE Internet Computing, 2001.5(5): p. 50-58.

36. Zurawski, J., M. Swany, M. Beck, and Y. Ding. Logistical Multicast for Data Distribution. in

Workshop on Grids and Advanced Networks. 2005. Cardiff, UK.

37. Ganguly, S., A. Saxena, S. Bhatnagar, S. Banerjee, and R. Izmailov. Fast Replication in Content

Distribution Overlays. in IEEE INFOCOM. 2005. Miami, FL.

38. Byers, J.W., M. Luby, M. Mitzenmacher, and A. Rege. A Digital Fountain Approach to

Reliable Distribution of Bulk Data. in SIGCOM. 1998.

39. Byers, J., J. Considine, M. Mitzenmacher, and S. Rost. Informed Content Delivery Across

Adaptive Overlay Networks. in SIGCOMM2002. 2002. Pittsburg, PA.

40. Plank, J.S., M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski. The Internet Backplane

Protocol: Storage in the Network. in NetStore99: The Network Storage Symposium. 1999.

Seattle, WA.

41. Castro, R., M. Coates, M. Gadhiok, R. King, R. Nowak, E. Rombokas, and Y. Tsang, Maximum

likelihood network topology identification from edge-based unicast measurements. ACM

SIGMETRICS, 2002.

56

42. Chun, B., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman,

PlanetLab: An Overlay Testbed for Broad-Coverage Services. ACM Computer

Communications Review, 2003. 33(3).

43. Planetlab Iperf Data. httpidabberservices.planet-lab.org/php/iperf. 2007.

44. Pendarakis, D., S. Shi, D. Verma, and M. Waldvogel. ALMI: An Application Level Multicast

Infrastructure. in USITS'01. 2001.

45. Jannotti, J., D.K. Gifford, K.L. Johnson, M.F. Kaashoek, and J.W. O'Toole. Overcast: Reliable

Multicasting with an Overlay Network. in 4th Symposium on Operating Systems Design and

Implementation (OSDI 2000). 2000. San Diego, California.

46. Banerjee, S., C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller, OMNI: an efficient

overlay multicast infrastructure for real-time applications. Computer Networks: The

International Journal of Computer and Telecommunications Networking, 2006. 50(6).

47. Ratnasamy, S., M. Handley, R.M. Karp, and S. Shenker. Application-Level Multicast Using

Content-Addressable Networks. in Third International COST264 Workshop on Networked

Group Communication. 2001.

48. Castro, M., P. Druschel, A.-M. Kermarrec, and A. Rowstron, Scribe: A large-scale and

decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in

Communication (JSAC), 2002. 20(8).

49. Castro, M., P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. SplitStream:

High-Bandwidth Multicast in Cooperative Environments. in SOSP'03. 2003. Lake George, NY.

50. Banerjee, S., B. Bhattacharjee, and C. Kommareddy. Scalable Application Layer Multicast. in

SIGCOMM2002. 2002. Pittsburgh, PA.

51. Das, S., A. Nandan, M.G. Parker, G. Pau, and M. Gerla. Grido An Architecture for a Grid-based

Overlay Network. in International Conference on Quality of Service in Heterogeneous

Wired/Wireless Networks (QShine 2005). 2005. FL, USA.

57

52. Burger, M.d. and T. Kielmann. MOB: zero-configuration high-throughput multicasting for grid

applications. in 16th international symposium on High performance distributed computing

(HPDC). 2007. California, USA.

53. Izmailov, R. and S. Ganguly. Fast Parallel File Replication in Data Grid. in Future of Grid

Data Environments workshop, GGF - 10. 2004. Berlin, Germany.

54. Allen, M.S. and R. Wolski. The Livny and Plank-Beck Problems: Studies in Data Movement on

the Computational Grid. in SuperComputing 2003 (SC2003). 2003. Phoenix, Arizona.

55. Biersack, E.W., P. Rodriguez, and P. Felber. Performance analysis of peer-to-peer networks for

file distribution. in QofIS'04, Fifth International Workshop on Quality of Future Internet

Services. 2004.

56. Qiu, D. and R. Srikant. Modeling and Performance Analysis of BitTorrent-Like Peer-to-Peer

Networks. in ACM SIGCOMM 2004. Portland, OR, USA.

57. Pouwelse, J.A., P. Garbacki, D.H.J. Epema, and H.J. Sips. The Bittorrent P2P File-Sharing

System: Measurements and Analysis. in Int'l Workshop on Peer-to-Peer Systems (IPTPS). 2005.

58. Izal, M., G. Urvoy-Keller, E.W. Biersack, P. Felber, A.A. Hamra, and L. Garc'es-Erice.

Dissecting BitTorrent: Five Months in a Torrent's Lifetime. in PAM 2004.

59. The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/ . 2006.

60. Vandat, A., K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and D. Becker.

Scalability and Accuracy in a Large-Scale Network Emulator. in OSDI. 2002.

61. White, B., J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and

A. Joglekar. An Integrated Experimental Environment for Distributed Systems and Networks. in

OSDI. 2002. Boston, MA.

62. Huang, P., D. Estrin, and J. Heidemann. Enabling Large-scale simulations: selective abstraction

approach to the study of multicast protocols. in Proceedings of the IEEE International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems. 1998. Montreal, Canada.

58

63. Azureus, in http://azureus.sourceforge.net/. 2007.

64. Medina, A., A. Lakhina, I. Matta, and J. Byers. BRITE• An Approach to Universal Topology

Generation. in International Workshop on Modeling, Analysis and Simulation of Computer and

Telecommunications Systems- MASCOTS '01. 2001. Cincinnati, Ohio.

65. Gkantsidis, C. and P.R. Rodriguez. Network coding for large scale content distribution. in 24th

Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM

2005). 2005. Miami, FL.

66. Cameron, D.G., A.P. Millar, C. Nicholson, R. Carvajal-Schiaffino, K. Stockinger, and F. Zini,

Analysis of Scheduling and Replica Optimisation Strategies for Data Grids Using OptorSim.

Journal of Grid Computing, 2004. 2(1): p. 57-69.

67. Yang, Y.R. and S.S. Lam. Internet Multicast Congestion Control: A Survey. in ICT 2000. 2000.

Acapulco, Mexico.

68. Cherkasova, L. and J. Lee. FastReplica : Efficient Large File Distribution within Content

Delivery Networks. in Proceedings of the 4th USENIX Symposium on Internet Technologies and

Systems. 2003. Seattle, Washington.

69. Open Science Grid, http://www.opensciencegridorg/ . 2007.

59

Appendix A: ALM Tree Construction Algorithm

We designed an ALM tree construction algorithm using a global view of the nodes and the

topology. The ALM construction algorithm presented in the below starts with a tree

containing only the source node. Every cycle the algorithm selects the best child (the end

node that is reachable with the highest bandwidth) and adds it to the tree.

In the main while loop, we find the best child (the one with the highest bandwidth path)

for every node currently found in the tree through the procedure

FindBestChildNotlnTheTree(n), which finds the best child (if any) through building the

shortest path tree rooted at n on the physical topology.

After finding all best children for all the nodes currently in the tree, BestNode

procedure simply selects the one with the highest bandwidth. The new node is added to the

tree and the loop continues until all nodes are added to the tree.

The complexity of simple implementation of this approach is 0(n 3). It can be optimized

to run in 0(n(l+n)log n), where n is the number of nodes in the system, and 1 is the number

of links in the network.

Nodes E-{aII end nodes}
Tree <- {sourceNode}
Nodes E- nodes - {sourceNode}
While nodes *0

Candidates E-
For every node n ETree:

newCandidate=
FindBestChildNotInTheTree (n)

Candidates=Candidates
{newCandidate}

EndFor
newLeaf= BestNode(Candidates)
Tree = Tree u newLeaf
Nodes E-nodes - {newLeaf}

EndWhile

60

Appendix B: SPIDER Tree Construction Algorithm

Instead of trying to maximize the bandwidth of the constructed tree, SPIDER tree

construction algorithm tries to maximize the residual bandwidth after constructing the tree.

The residual bandwidth facilitates building more trees and exploiting perpendicular

bandwidth.

Figure B.1 lists the SPIDER tree construction algorithm. The algorithm starts by adding

the source (say node 0) to the list of nodes that have been added to the current tree (InTree).

Next, for each node k in the InTree list, the algorithm finds the maximum outgoing

bandwidth arc to nodes outside the InTree list. For each of node k already in the tree, the

algorithm computes the leftover outgoing bandwidth Ek, if its maximum outgoing edge is

added to the current tree. The edge which leaves the maximum outgoing bandwidth for its

source node is added to the tree and its destination node is added to the InTree list. These

steps are repeated until all nodes have been added to the tree. Then, the bandwidth on all

edges of the tree is reduced to the amount of bottleneck bandwidth. The algorithm is

executed on the remaining graph until no more trees are found.

61

Input:
N - Set of Nodes — S is the source
bdi - Bandwidth between all pairs id E N
E„ - Outgoing Access Capacity of n E N

Output:
T - Set of Trees

Algorithm:
1. T 0
2. Do
3. CurrentTree -4— 0
4. InTree 4- {S}
5. While InTree # N do
6. For each n E inTree do
7. M, 4- Edge with maxi
8. Ey, - {Bandwidth of Mr.}
9. End For
10. x 4— Node with maxj{Ri}
11. Currererree 4- CurrentTree U M,
12. InTree 4— InTree U {destination of MT}
13. End While
14. For each edge e in CurrentTree
15. b. 4— b. - {bottleneck in Curren
16. End For
17. T T U CurrentTree
18. End Do
19. Return. T

Figure B.1. SPIDER tree construction algorithm (source [37])

62

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71

