Anisotropic Adaptation: Metrics and Meshes
by

Douglas Pagnutti

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science
in
The Faculty of Graduate Studies

(Mechanical Engineering)

The University of British Columbia
February 20, 2008
© Douglas Pagnutti 2008

Abstract

We present a method for anisotropic mesh refinement to high-order numerical solutions. We
accomplish this by assigning metrics to vertices that approximate the error in that region.
To choose values for each metric, we first reconstruct an error equation from the leading
order terms of the Taylor expansion. Then, we use a Fourier approximation to choose the
metric associated with that vertex. After assigning a metric to each vertex, we refine the
mesh anisotropically using three mesh operations. The three mesh operations we use are
swapping to maximize quality, inserting at approximate circumcenters to decrease cell size,
and verter removal to eliminate small edges. Because there are no guarantees on the results
of these modification tools, we use them iteratively to produce a quasi-optimal mesh. We
present examples demonstrating that our anisotropic refinement algorithm improves solution
accuracy for both second and third order solutions compared with uniform refinement and
isotropic refinement. We also analyze the effect of using second derivatives for refining third

order solutions.

ii

Contents

Abstract e ii
Contents e iii
List of Tables e vi
List of Figures vii
Acknowledgments Lo ix
Dedicationo X
Co-Authorship Statement xi
Introduction 1
Computational Fluid Dynamics 0o 1
Local Reconstruction and Error Estimation 6
Communicating the Anisotropy and Creating an Anisotropic Mesh 10
The Anisotropic Mesh Adaptation Loop 12

A Generalized Framework for High Order Anisotropic Mesh Adaptation 14
Introduction 14

Error Estimation 16

iii

Contents

Calculating the Metric 18
Results 24
Subsonic inviscid flow around an airfoil. 26

Transonic Inviscid flow around an airfoil. (I just wrote this subsection so

there are some holes and lack-of-flow problems) 28

Subsonic laminar flow around an airfoil 0000 30
Conclusions e e 35
Delaunay-Based Anisotropic Mesh Refinement 38
Introduction L 38
Metric spaces L e 39
Quality Measures oL o e e e 41
Mesh operationso 43
SWappingo e e 43

Vertex Insertion 44

Vertex Removal oo 46
Boundary Protectiono L 47
Algorithm o 48
Results e 50
Conclusions and Future Improvements 57
Conclusions L 59
SUIMMATY . . . v v v b et e e e e e e e e e e e 59
Results o e 60
Recommendations L0 L 61

v

Contents

Bibliography

List of Tables

1 Comparison of drag, lift, and separation point for NACA 0012 airfoil: Mach =
0.5, Re=15000, a=0. e

31

vi

List of Figures

10

11

12

13

14

Mustration of the CFD process with Adaptive Loop.

The error and associated Fourier approximation.
Error contours and d(z,y)® contours.
NACA 0012: Initial mesh with 197 Vertices.
NACA-0012 subsonic inviscid flow: comparisons of drag and lift coefficients
Inviscid Subsonic flow around NACA 0012: Mach =0.5, a =0.
Lift Convergence for NACA 0012: Mach 0.8, « =1.25°.

3rd order Mach number profiles on adapted mesh and uniform mesh for

NACA 0012: Mach 0.8, a =1.25°
Pressure distribution on upper surface of NACA 0012:Mach 0.8, o = 1.25°. .

Anisotropic vs. Isotropic drag and lift convergence for NACA 0012 airfoil:
Mach =0.5, Re=5000, a =0.

Anisotropic vs. Isotropic separation point convergence for NACA 0012 airfoil:

Mach =0.5, Re=5000, a=0. e

Comparison of anisotropic and isotropic third order Mach profile for NACA
0012 airfoil: Mach =0.5, Re=5000, « =0.

Comparing lift and drag convergence for NACA 0012 airfoil: Mach = 0.5,
Re=5000, « =0. e

Triangle aspect ratios from 3rd order and 2nd order metrics at leading edge

of NACA 0012 airfoil: Mach = 0.5, Re =5000, =0.

31

32

32

33

vii

List of Figures

15

16

17

18

19

20

21

22

23

24

25

The quality space used to evaluate triangles in the mesh.
Testing for Empty Circumcircles in the Metric Space

Finding an approximate circumcenter of triangle T1 by constructing the vir-

tual mesho
Isotropic, modified diametral lens for curved boundary
Expected Triangle aspect ratios given the metric from Equation 19.

A square mesh being recursively refined according to the metric defined by

Equation 19. L
Mesh from Figure 20e viewed with different axis scalings.
NACA 0012, Mach=0.5, Re=5000, 197 Vertices
Intermediate Meshes and Solutions: NACA 0012, Mach—=0.5, Re=5000 . . .
Close up view of the stagnation point of the finest mesh in Figure 23 a.

Sample Quality Distribution During Refinement and Coarsening

viii

Acknowledgments

First and foremost I'd like to thank my supervisor, Dr. Carl Ollivier-Gooch, whose time
and patience was invaluable from inception to completion of this thesis. I'd also like to
thank my lab-mates Chris, Serge and Amir. Without your help with my numerous coding
problems, chances are I'd never have finished. I consider myself exceptionally lucky to have

worked with all three of you.

I’d also like to thank my wife Danielle, for enduring so many countless delays and providing
a limitless supply of love and support. You not only helped me throughout my degree, but

made sure the whole process was enjoyable.

Finally I’d like to thank my family for their endless encouragement. It always helps to have

your own personal cheering squad.

X

Dedication

To my mom, whose strength has been an inspiration.

Co-Authorship Statement

All of the research and data analysis contained within this thesis were accomplished by
Douglas Pagnutti. The manuscript presentation was also done by Douglas Pagnutti with

significant contributions from Dr. Carl Ollivier-Gooch.

xi

Introduction

Partial differential equations (PDEs) are one of the most useful tools by which we describe
our environment. These equations, that relate functions and their derivatives, allow sci-
entists and engineers to model how things behave and thus better predict how they will
behave in the future. Unfortunately, predicting such behaviour requires not just deriving
the governing equations, but also solving them accurately and efficiently. For some PDEs, it
is possible to derive analytic solutions that are easy to use and infinitely accurate. In other
cases, it may be possible to approximate the solution (or key properties of the solution)
with simple curves and then to choose parameters for those curves based on experimental
analysis. This second method, however, has significant limitations in terms of accuracy and
cost. A third method of solving PDEs — and one which has risen in popularity due to
increasing computer power — is numerical analysis. The key to numerical analysis is to
break up a large and complicated problem into many small, simple problems that can be
processed through a computer. While such methods have recently seen dramatic improve-
ments in efficiency, there is still a strong desire in industry for numerical analysis software

that can produce more accurate solutions more quickly.

Computational Fluid Dynamics

One particular set of PDEs that is a focus of numerical analysis is those governing fluid
behaviour. These PDEs are often too difficult for analytic solutions and the dynamic and
multi-scale nature of the solutions can make experimental analysis difficult and costly. Be-
cause of this, an entire field of study has been created to produce numerical solution for

problems involving fluids. This field of study is referred to as computational fluid dynamics

Introduction

Mesh Adaptive Loop
Generation
Input Parameters Mesh Numerical
Tesselation of Solution
Governing Equations esselation o i i
Problem Cg}eo(rlnetry Problem Domain PICCC—VYISS)
Boundary Conditions Approximation to
Desired Accuracy the Solution
Solver

Figure 1: Tlustration of the CFD process with Adaptive Loop.

(CFD).

The goal of CFD is simple: to produce accurate solutions in short amounts of time. This
thesis contributes to that goal by combining two recent developments in CFD: anisotropic

mesh adaptation and high-order accurate methods (of order greater than two).

The CFD process can be thought of as an interaction between three objects: the problem
model, the mesh, and the numerical approximation. These three objects are illustrated by
the boxes in Figure 1. To generate a solution, the standard approach is to model the problem,
create a mesh for the modeled domain, and then approximate the modeled equations on the

mesh. These are illustrated by the Mesh Generation and Solver arrows of Figure 1.

The first step in generating a CFD solution, and that which should require the most user
input, is to specify the problem being solved. At a minimum, this includes the governing
equations, the problem geometry and the boundary conditions. While this seems relatively
straightforward, it is often the first source of error in CFD, especially for flows that involve
complex physical phenomena such as turbulence and combustion. Examination of these
sources of error is well beyond the scope of this thesis and so we will assume that the goal
of CFD is strictly to solve the modeled problem. By making this assumption, we can treat
solution error independently from modeling error. Ultimately, it should be the engineer’s

goal to correctly model the problem and the CFD program’s goal to provide an accurate

Introduction

solution for that model.

Since infinite accuracy in infinitesimally small time is not yet possible, some further infor-
mation must be given to determine how accurate the solution should be or how long it will
take to compute. Currently, the most common way of doing this is to specify how finely
the problem domain should be divided, or in other words, how small the elements of the
mesh should be. The more a domain is divided, and thus the finer the mesh, the more
accurate a solution should be and the more time that solution will take to compute. While
this relationship between cell size and solution accuracy is generally true, it cannot provide
a quantifiable measure of accuracy since local differences in element shape and size can
dramatically change the solution. One approach for overcoming this difficulty is to repeat
the problem with increasingly fine meshes until the variation from one solution to another
is within acceptable tolerance. This is very inefficient and time consuming and one of the

reasons why automated adaptive meshing shows so much promise.

Once the geometry and mesh cell size have been specified, the next step in generating
CFD solutions is to create a mesh on which the solution is to be approximated. From an
engineer’s perspective, this is arguably one of the most frustrating and least understood
parts of generating CFD solutions. It can also be very time consuming since it may require
a large amount of user input. Essentially, a mesh is nothing more than a tessellation of the
problem domain with shapes that can be recognized by the solver. There are generally two
different types of meshes: structured and unstructured. Structured meshes consist of cells
whose relation to one another, or connectivity, is implied by their numbering. For example,
in structured meshes, cell (i,) is always topologically to the left of cell (i+1, j). Conversely,
unstructured meshes require connectivity to be declared explicitly. The implicit connectivity
of structured meshes allows for easier processing by the solver but it places restrictions on
the topology of the mesh. Because unstructured meshes do not have this restriction, they
are much better suited to meshing arbitrary geometries. This makes unstructured meshes

more widely applicable and potentially reduces the amount of time and effort required by

Introduction

the user to produce an acceptable mesh.

As mentioned earlier, the size and shape of cells in the mesh can have a dramatic effect
on solution accuracy. For solutions that are isotropic, it is generally preferable to have
cells that are also isotropic (ideally, equilateral) and whose size is such that the error per
cell is equidistributed. That is why the majority of mesh generation software tends to
focus on creating cells with unitary aspect ratios and varying length scales. When the
solution is anisotropic, however, the desired cell size and shape is less obvious. Rippa [34]
concluded that, for linear interpolation of smooth functions, triangles should be long in
directions where the magnitude of the second directional derivative is small and thin where
the magnitude of the second directional derivative is large. It is intuitive that there should
be analogous results for higher order interpolations. In Chapter , we combine size and
quality measures to define a quality space for the cells of our mesh. Because there is no
consensus on which specific triangle measure is preferable!, our quality space is created from
widely-used measures that are suited to our meshing approach: triangle circumradius and
minimum edge length. Our hypothesis is that triangles within certain bounds in this quality

space will produce more accurate solutions.

The final step in generating CFD solutions, and the most computationally intensive part,
is performing the actual approximation. To do this, the governing equations are first dis-
cretized, typically using one of three common approaches: finite differences, finite elements,
or finite volumes. While all of these methods can be analyzed using Taylor expansions of
the solution, and are therefore compatible with the results in Chapter , it is still important

to recognize the differences between the three methods.

One discretization method is the finite-difference method. This method discretizes equations

by replacing the differential operator of the PDE with an equivalent difference operator. For

0 f(w+h}1—f(

example, if L(f) = % = limy,_, x), then an appropriate difference operator would

be L(f) = w where h is now a finite value. If we assume that f(x) is known at

'For a list of triangle quality measures, and their asymptotic behaviour, see [32].

Introduction

a series of discrete locations f(x + h), then we can approximate the solution at f(x) using

the difference formulation of the original PDEs.

Finite-element discretizations are similar to finite-difference ones in the sense that the so-
lution f is assumed to be known at a discrete set of locations in the mesh. The solution
between these locations fapp is then assumed to be a polynomial of a certain degree. Since
this polynomial does not necessarily satisfy the partial differential equations £(f) = 0, there
will be some error termed the residual £(fapp) = 0. By convolving this residual with a set
of weight functions, it is possible to choose polynomial coefficients that will minimize the

residual and thus better approximate the actual solution.

Finite-volume discretizations are arguably the type of discretization with which engineers
are most comfortable because it is identical to the control volume approach used to analyze
thermodynamic and fluid dynamic systems. Instead of trying to calculate quantities at
specific locations within a system, the average of those quantities is calculated by summing
fluxes at the boundaries and applying them to the conservation form of the PDEs. To
produce a finite-volume approximation for a set of PDEs, each cell in the mesh is considered
its own control volume and the average of the solution within every cell is assumed to be
known. Then, the flux through each cell boundary is approximated and used to update the

cell average. This type of discretization is used throughout this thesis.

After discretizing the equations, it is then necessary to update the solution until either a
desired time is reached or the solution no longer changes between iterations. For steady-state
problems, when the solution no longer changes it is said to be converged. As the number of
cells in a mesh increases, the required time to reach convergence likewise increases. Further
complicating matters, some discretizations are only stable if the solution is advanced slowly,

and this can dramatically increase computation time.

To address these instabilities, researchers have developed more complicated discretizations
that take into account convection within the PDEs. For example, Roe’s scheme [36] de-

composes fluxes into pieces that are associated with certain physical characteristics and

Introduction

then only uses the cells that are upwind for each piece; this upwinding prevents aphysical

propagation of information and improves stability.

Another way of improving stability, especially for steady-state problems, is through implicit
time-stepping. This is done by assuming the solution is known at the current iteration as
well as at a future iteration in surrounding cells. By doing this for every cell, we can create
a large linear system that will generally be stable for larger time steps (assuming the spatial
discretization is stable). While this allows for a converged solution to be found in fewer
iterations, it produces a large linear system that can be very costly to solve. Fortunately,
there have been many advances in numerical linear algebra that accelerate this process.
Methods like GMRES [38] have been shown to substantially reduce computation time [23].
These linear algebra techniques are important to our work because the efficacy of these
matrix acceleration methods is largely dependent on how well conditioned the matrix is.
This matrix conditioning (a function of the eigensystem of the matrix) is highly dependent
on the shape and connectivity of the cells in the mesh. Using a mesh with highly anisotropic
cells that vary in shape and size may reduce (or improve) the effect of matrix acceleration
methods. Although matrix conditioning is not explicitly discussed in this thesis, this is
clearly one of the issues that must be addressed before anisotropic adaptation is more

widely accepted in the CFD community.

Local Reconstruction and Error Estimation

All solution-based adaptation is based on the concept that the ideal mesh is one which
equidistributes the error. However, without knowing the exact solution, it is impossible to
know the exact error. The error must therefore be estimated from the approximate solution.
Researchers typically use one of three main approaches to error estimation: interpolation-

based, adjoint-based, and feature-based error estimation.

The error estimator that we use in Chapter is based on the interpolation of the solution

between known values. Regardless of whether the solver is finite-difference, finite-volume

6

Introduction

or finite-element, the general approach for CFD is to assume that the solution is known
exactly at a set of locations and then to use those values to interpolate the solution at some
other location. The exact way that this is done may vary, but nearly all solvers use Taylor

expansions in one form or another.? We can illustrate this with a one dimensional example.

Assume we know a solution f(x) has an infinite Taylor expansion with a finite radius of

convergence in the neighbourhood of some location a

1d'f ;
flz Z 7! de —a)

For a p order solver, we would approximate this infinite sum using only terms up to degree

p—1

fla +Z LS) a

7! de

The difference between the actual solution fegge¢(7) and our approximation fapproz () is

therefore
— 1d'f ;
fezact (%) — fapproz(z) = Z Ty (a)(x —a)
i=p

As the difference between x and a decreases, the difference between the exact solution and
our approximation is

1dPf
p| dxP

fezact(®) — fapproz(r) = ———(a)(x — a)f

Thus, if we were to use the known quantities at a to approximate the solution a small
distance of h away, the error in that approximation would depend on both h and p.

1dvf

E h N ——
rox(h.p) ~ 5

(a)(h)?

In finite-volume solvers, this approximation is used to determine the flux at cell boundaries

2Some solvers rely on other expansions, such as the Fourier series, however those solvers are in the
minority and are not discussed in this thesis.

Introduction

and from that an update to the average solution within the cell. For steady-state problems,
when the solution is converged, the error can be directly related to the size h that separates
the approximation points as well as the order p of the solver. If the mesh spacing h is
decreased everywhere, then the accuracy of the solution should increase by a factor of h?.
Hence the solution is order p accurate. Unfortunately, for most problems of interest, the
pth derivatives of f can vary greatly throughout the mesh. This leads to approximations
that are more accurate in some locations than in others. Consequently, decreasing h where
the p derivatives are high improves the solution much more than the same decrease in other

areas.

This is the principle behind interpolation-based refinement. If the pth derivatives are some-
how reconstructed, then an error distribution can be approximated. When the mesh is
refined, instead of uniformly decreasing h, elements of the mesh can be sized to match the
error distribution. Ideally, this would increase the accuracy of the solver, in the sense of
minimizing the solution error for a given number of unknowns. Most research into adaptive
anisotropic refinement has been for second order solvers. In this case, the interpolation error

can be related to the Hessian H. In two dimensions,

?f 0%f
H— Ox2 Oz0y

0*f 9°f

dzdy Oy?

If this matrix is positive-definite and invertible, then the ideal cell can be found by linearly
transforming an isotropic cell by H~!. This is roughly the approach used by [8, 10, 12, 13,
15]. For third order solvers and higher, the derivatives can be grouped into a higher rank
tensor; however, the shape of the ideal cell in these cases is unclear. Previous to the current
thesis, no papers have been published that extend interpolation based refinement to higher

order solvers and this is the principal focus of Chapter .

Unfortunately, even if the mesh perfectly equidistributes the interpolation-error estimate, p

order accuracy would rarely be achieved. This is primarily due to the presence of convected

Introduction

error. Interpolation based error estimation assumes that the solution at surrounding loca-
tions are all exact and thus the only source of error comes from the higher-order terms of
the Taylor expansion. However, if the values used in the Taylor approximation themselves
contain error, that error will be passed on to the interpolated value which will in turn af-
fect other Taylor expansion terms and so on. The net result is that small errors from one
location of the mesh can have a big effect in locations that are relatively far away. This
is particularly a problem for PDEs that contain strong convective terms such as the Euler

equations where a strong feature like a shock might be refined in the wrong location.

An approach that several research groups (including, for example, [41, 3, 40, 42]) have
used to address this issue is adjoint-based error estimation. Adjoint-based error estimation
involves solving both the primal PDEs as well as the adjoint PDEs. Then, the error in
a functional is directly related to local residual errors through the adjoint variables. This
provides a more accurate analysis of where the functional is most affected by errors in the
solution and hence a solid basis for where the mesh should be refined. Choosing a functional
is both an advantage and a disadvantage for using this method. For situations where the
only desired output is the functional, adjoint-based methods are ideal because they do not
refine areas of the mesh where the solution has no effect on that functional. For example, if
the only component of the solution analyzed is drag on an airfoil, then the meshes created by
adjoint-based refinement will provide better drag predictions than other meshes of similar
size. However, if that same mesh is used to predict lift, or any other component of the
solution, it may not provide sufficient accuracy. Another disadvantage of this method is

that solving the adjoint problem can be complicated and time consuming.

The third error estimator that some researchers use is feature-based error estimation (an
excellent example of this is [18]). Feature-based error estimation explicitly detects and ana-
lyzes flow features and refines the mesh according to those flow features. This process relies
on a priori knowledge of what the solution will be composed of (shocks, wakes, boundary

layers, etc...) as well as a reliable feature-detection system. The advantage of explicitly de-

Introduction

tecting features is that it allows for more specific refinement criteria such as orthogonality
in the boundary layers, vertex alignment with shocks and other mesh adaptations. Unfortu-
nately, the feature detectors must be created and tuned for each particular problem and the
actual refinement criteria are much more heuristic; for example, it is unclear how much one
feature should be refined relative to another. Another drawback is that feature detection
is often based on the same local parameters that interpolation-based error measures use.
That means that convected error is ignored and it is possible to detect features in the wrong

location.

We have chosen to base our error estimation on the local reconstruction error for a number
of reasons. First, since this error measure relates directly to the order of the discretization,
the extension to high-order solutions is intuitive. Second, local error estimation is relatively
cheap compared to adjoint-based error estimation. Finally, current adjoint methods provide
an ideal size distribution for cells but not an ideal shape distribution and so researchers
such as Venditti and Darmofal [42] rely on local error reconstruction to define the local

anisotropy.

Communicating the Anisotropy and Creating an Anisotropic

Mesh

Once the desired anisotropy has been defined, it is necessary to communicate that anisotropy
to the meshing program and create an anisotropic mesh. The most standard method of
defining anisotropy is through a metric [6, 7]. A metric is a function that defines a scalar
distance between points in a domain. Like the standard distance measure in Cartesian
space, metric functions are required to be positive-definite, symmetric and they must also
satisfy the triangle inequality. This type of function is ideal for creating meshes because
geometric properties based on lengths have equivalent properties according to the metric

function. In particular, most research groups use the family of metrics created by linearly

10

Introduction

transforming the standard Cartesian distance measure, see [16, 15, 8] among others. We
also use these types of metrics by assigning a symmetric positive-definite matrix to each

vertex. The choice of these matrices is discussed in Chapter .

Unfortunately, variations in the error also require variations in the metric and this is where
researchers have developed different approaches. The key problem with a varying metric
is that, even though the metric is valid point-wise, it may no longer globally satisfy the
triangle inequality. Courty et al. [12] linearly interpolate the metric and deal with the
triangle inequality heuristically. Others, such as Labelle and Shewchuk [16] assume the
metric is only valid within the Voronoi cell of each vertex. This leads to very complicated
Voronoi diagrams that require certain restrictions on the metric in order for the Voronoi

diagram to dualize to a valid triangulation.

As part of the anisotropic meshing approach in Chapter , we have chosen to approximate
the metric for the interior of triangles using the average metric from the three vertices.
For triangle edges, we average the length that would be calculated from the two triangles.
These simple approximations allows for quick estimates of triangle quality while imposing

no restrictions on metric variation.

After the metric is defined, it is necessary to create a mesh that is roughly isotropic when
measured by the metric. To create two-dimensional isotropic unstructured meshes, there

are three principal approaches: quad-tree, advancing-front, and Delaunay meshing.

Quad-tree meshing [43, 9] discretizes the domain by first creating a square that contains the
entire domain. Then, that square is recursively split until all the squares satisfy some as-
signed size property and the boundary is suitably discretized. The difficulty with anisotropic
quad-tree meshing is that the previously-mentioned squares must somehow be divided into

rectangles with varying aspect ratios and directions.

In the advancing front method [17], the meshing procedure begins with a set of seed vertices
(usually along the boundaries) connected into a closed loop called a front. Then, a decision

is made as to where to insert the next vertex so that it will create a high quality triangle.

11

Introduction

The front is thus updated, and the process repeats. The main drawback of this method
is that when different meshing fronts meet, some heuristic approach is required to unify
the fronts without creating poor-quality triangles. For anisotropic adaptation, this method
requires removing large tracts of the mesh and then re-meshing these areas according to the

metric.

The meshing approach that we have modified for anisotropy in Chapter is Delaunay mesh-
ing. A Delaunay triangulation of vertices is a triangulation where the interior of every
triangle’s circumcircle is empty. This triangulation always exists, and is equivalent in two
dimensions to the triangulation that maximizes the minimum angle in the mesh. Delaunay
mesh refinement takes a pre-existing Delaunay triangulation of vertices and then inserts
vertices at the circumcenter of any triangle with a small angle or a large circumradius.
By repeatedly inserting vertices at circumcenters it is possible to create meshes with guar-
anteed quality. The exact guarantee depends on how the boundaries are handled, but in
general, the smallest angle in the mesh is somewhere around thirty degrees[11, 37, 39, 28|.
The reason that Delaunay meshing extends well to anisotropic meshing is because of its
simple approach of choosing the ideal location to insert a vertex given a valid mesh. If the
insertion location is chosen to produce anisotropic triangles according to the metric, then
a high-quality anisotropic mesh can be created without any expensive local maximization

routines.

The Anisotropic Mesh Adaptation Loop

Good error estimation and fast, high-quality anisotropic meshing algorithms are the two
key ingredients for successful anisotropic mesh adaptation. Essentially, anisotropic adaptive
meshing is similar to adding a feedback loop within a control system. In particular, we are
trying to minimize an error function by controlling the mesh. What makes this problem so
difficult is that the error function isn’t necessarily known, and the mesh has an enormous

number of dependent variables.

12

Introduction

Despite the complications, this feedback loop can improve the effectiveness of CFD in several
ways. Ideally, users are not required to spend inordinate amounts of time trying to create
meshes that may or may not be well-suited to the problem. Furthermore, automatically
created meshes provide higher accuracy with fewer cells than the isotropic, uniform meshes.
Ultimately, increasing the number of cells with each adaptation instead of converging the
mesh and solution with a fixed number of cells allows CFD users to gage whether or not
the solution is converging to an infinitely-fine mesh solution and thus better estimate the

overall accuracy of the solver.

In Chapter we examine the first difficulty in adaptive anisotropic mesh adaptation: esti-
mating error and converting it to a form that can be used by the mesh generator. It is here
that the added difficulties of adapting to higher-order solutions and multi-variable problems
are solved. The former by taking a Fourier transform of an estimated error function, and

the latter by choosing a standard norm of the variables.

In Chapter we use the metric derived in Chapter to refine a pre-existing mesh so that
it appears isotropic when measured by the metric. The approach we use is to define a
quality space based on approximate circumradii and minimum edge lengths as measured by
the metric. Then, vertices are inserted at approximate circumcenters for triangles whose
circumradii are above a certain bounds and vertices are removed for edges that are too
small. Several of these insertion and removal iterations are performed on the mesh, leaving

the vast majority of triangles within the desired quality bounds.

These two chapters deal with incredibly different aspects of CFD and thus warrant individual
attention. However, the two Chapters are also strongly coupled because it is useless to have
anisotropic error estimation without being able to create anisotropic meshes. Likewise, high-
quality anisotropic meshes cannot be created without first defining what that anisotropy
should be. It is the combination of these two articles, and hence this thesis, that provides
the complete view of two-dimensional anisotropic mesh adaptation and how it can be used

to improve CFD.

13

A Generalized Framework for High

Order Anisotropic Mesh Adaptation

Introduction

There is, in general, an inverse relationship between the accuracy of CFD solutions and the
time required to produce them. Increases in computational resources may have significantly
improved this relationship, but there is still a strong desire in industry for more efficient
CFD. Consequently, researchers have developed a variety of improvements to the CFD

process. Two such improvements are anisotropic adaptation and higher-order methods.

The first improvement, anisotropic adaptation, is the process of using the solution on an
initial mesh to produce a better, anisotropic mesh. Since the new mesh is better suited to
the solution, the accuracy should increase. If the cycle is repeated, the mesh should converge
to one which is optimal for the problem being examined. There are multiple advantages to
adding this feedback loop in a CFD algorithm. First, it significantly reduces the dependence
of the final solution on the mesh and should thus increase confidence in the results. Second,
to achieve the same accuracy on a uniformly refined grid might require so many cells that
the computation becomes unfeasible. Another advantage, and one which should not be
overlooked, is that creating a mesh is often the most frustrating and user-intensive part of

CFD. By automating this process, we substantially increase the usability of CFD programs.

The second improvement, high-order methods, are another recent improvement to CFD.
Most current CFD code creates a piecewise linear reconstruction of the solution. If the
solution is smooth, the accuracy of that reconstruction is proportional to the size of the mesh

squared. By using higher order polynomials to reconstruct the solution, we can increase the

14

A Generalized Framework for High Order Anisotropic Mesh Adaptation

order of accuracy. For example, if the solution is reconstructed with a quadratic polynomial,
the accuracy will be proportional to the size of the mesh cells cubed (third-order). While
this incurs an increase in computational cost per cell, the increase in order of accuracy

means that far fewer cells are required and there is a potential net gain in efficiency.

Combining these two improvements is a non-trivial task. The most common approach to
anisotropic adaptation is to refine based on the Hessian of a solution variable[8, 10, 12, 13,
15]. The reasoning for this is that the error on a piece-wise linear interpolation of a smooth
function is bounded by a quadratic term involving the second derivatives (the Hessian) of
the function. When higher-order interpolation is used, as it is with higher-order methods,
this reasoning is no longer valid. At the time of writing, we are the only authors to extend

Hessian-based anisotropic refinement to higher order methods.

To accomplish this, we first model the local error with a polynomial from the Taylor ex-
pansion. This polynomial is then used to construct a metric function through a Fourier
transform. By taking this approach, our metric derivation can be applied to any order

reconstruction and any number of variables.

We begin this article by first examining how the local error can be approximated using Taylor
expansions, and how this compares to other methods of error estimation. Then we show how
an appropriate metric function can be chosen irrespective of the number of variables and
the order of the error. We then show the benefits of this metric function for three different
two dimensional flows over a simple airfoil. The first test case compares adapted refinement
and uniform refinement for second and third order solutions of subsonic inviscid flow. The
second test case examines how the metric performs in the presence of discontinuities in
the solution. The third and final test case examines the benefits of anisotropic adaptation
versus isotropic adaptation for viscous flow. This final test case is also used to examine the

differences between second and third order metrics for third order solutions.

15

A Generalized Framework for High Order Anisotropic Mesh Adaptation

Error Estimation

Analytic a priori error analysis for CFD solvers — whether finite volume, finite element,
or finite difference — is based on Taylor series analysis. While the details differ between
families of schemes, in all cases the analysis assumes the solution to the PDE(s) has a valid,
converging Taylor expansion at every point in the domain. If the scheme is of order p, we
approximate the solution f(z) around some location a by the Taylor expansion terms up to
degree p— 1. For example, in a one-dimensional, third order scheme, we would approximate
f(x) around a as

2
F@) = F@) + D (a)a —a) + 3 S (@)@~ a)? (1)

The difference between the exact function feyact(2) and the approximate function fapp ()
is therefore the remaining terms from the Taylor expansion. Continuing the example in
Equation 1,

1d3f

fexact(z) — fapp(z) = 31 dud

(a)(z = a) + ;7 (@) (@ —a)" + ... 2)

For small areas around a, the leading term in this error is a polynomial of degree p and only

p. We exploit this characteristic in our error indicator.

The accuracy of the solver depends on how well it can evaluate f(z) at some other location,
say b. The consequence of this is that, if the distance between points in the mesh scales
with h, the error in the solution should scale with h”. This is illustrated by continuing the

example in Equation 2,

1 d3f

fexact(b) — fapp(b) =~ ﬁﬁ(a)(b —a)?
d3
Error(h) = %d—x‘é(a)hg (3)

In practice, solvers combine these approximations at a large number of discrete points

to approximate the overall solution f(x). While the precise way in which this is done

16

A Generalized Framework for High Order Anisotropic Mesh Adaptation

varies from one solver to another, any Taylor-based scheme will have an error analogous to
Equation 3. The generality of this derivation is one of the principal reasons engineers use
this type of error estimation. However, other methods for estimating error exist, including

adjoint methods and feature-based methods.

When we derived the reconstruction error, we assumed that fapp(a) was known exactly.
This assumption is not necessarily true, and any errors in the calculation of fapp(a) will be
convected to the solution at b. Since this process is repeated from cell to cell small errors
can be convected and cause large errors far away from their source. Adjoint-based error
measures [3, 41| attempt to capture this convected error. To do this, they solve both the
original PDEs and the adjoint PDEs for some desired functional. These two solutions can
then be compared to determine where that functional is most dependent on the solution
and thus refine the mesh accordingly. The advantage of this error measure is that it gives
a much more global estimate of the error, which is especially important for PDEs with
substantial convection components. Unfortunately, solving the adjoint PDEs can be a very
time consuming process. The meshes that are created by this method are also strongly
dependent on the chosen functional. If, for example, a mesh is created to increase the
accuracy of the aerodynamic drag, it might have a less accurate prediction of lift than an

mesh optimized for lift accuracy.

Another method of estimating error, feature-based error estimation [18], explicitly detects
and analyzes flow features. Mesh refinement is then done to resolve those flow features
according to some pre-defined set of rules. This is especially useful for imposing more
strict mesh refinement criteria such as mesh orthogonality in boundary layers and vertex
alignment with shocks. Unfortunately, this method has much less of a theoretical basis for
how one flow feature should be refined relative to another and the feature detectors must

be tuned for each type of flow.

While both of these methods have their respective advantages and disadvantages, we have

chosen to focus on local reconstruction error because it provides an error measure that is

17

A Generalized Framework for High Order Anisotropic Mesh Adaptation

directly dependent on the solution vector instead of a particular functional. This is also the

approach used by the majority of researchers [8, 10, 13, 12, 15].

Other sources of error such as modeling error and numerical roundoff error are not addressed
in this paper. It is assumed that the desired solution is the solution to the modeled problem,
which may differ from the actual problem. In this way modeling error can be addressed
independently. Also, numerical roundoff error is assumed to be much smaller than the

previously described sources of error and so we will neglect it.

Calculating the Metric

A Metric is a function d : X x X — R such that it satisfies the following conditions

d(a,b) > 0 < a#b
d(a,a) = 0
d(a,b) = d(b,a)

d(a,c) < d(a,b)+d(b,c) (4)

More simply put, a metric defines the distance between points in a way similar to the stan-
dard Cartesian distance metric dgq(a,b) = \/m . Because of these properties,
any geometry that can be defined in terms of distances has equivalent properties according
to the metric. The metric that we use for anisotropic adaptation, d,y;(a,b), is an invertible

linear transformation L of the standard distance measure dg q(a,b).

dgtq(a,b) = /(a—b)T(a—D)
dani(a,8) = /(Lla—1)" (L(a — b))
dani(a.b) = /(@ —b(LTL)(a — b)

dani(a.b) = y/(a—b)TM(a—b) (5)

18

A Generalized Framework for High Order Anisotropic Mesh Adaptation

The metric d,y;(a,b) can thus be defined by the symmetric positive definite matrix M =

LTL.

To calculate the values of M from Equation 5 for a solution of order p we first assume that
the error is equal to the p degree terms of the Taylor expansion, as discussed in Section .
Also, it is intuitive to assume that errors which are positive are equivalent to errors which
are negative. Therefore the error measure is modified to be the absolute value of the p
order polynomial from the Taylor expansion. For example, the error for a function f(x,y)
at a distance (Ax,Ay) from the reference point of the Taylor series expansion in a two-

dimensional, third order solution is

i

1 Ld’f
6 da3

Err(Az, Ay) ~ 6 dif

d3 d3
(A0 + 5T (A0P(By) + 5 T a8 + 5 T h)

N =

1
2

For solutions with multiple variables, it is necessary to take a scalar measure of the individual
variable errors. Our approach is to use one of the standard vector norms. Another method
of joining error variables is the concept of maximum contained error-ellipse as proposed
by Huang[15]. However, it is unclear how this should be constructed for more than two
variables and it is significantly more complicated to compute. For the remainder of this

paper we will use the L; norm, or the average of the polynomials?.

Using the previously stated assumptions, we can therefore write a general equation for the

error of a p order solution in d dimensions, with n variables over a vector (Axq, ..., Axy).

EI‘I‘(AZL’L...,AI'C[) ~ %Z|P7;(A$1,A$2,.-.,Al‘d)| (6)
i=1

where P; is a polynomial with terms of degree p and only p. We then re-write Equation 6

in d dimensional spherical coordinates.

Err(Ar, 61, ...,0q-1) = (Ar)? f(01, ...,04-1) (7)

3When running the test cases in Section , Ly and L., norms were found to refine almost exclusively
based on flow velocity (ideal for drag predictions) whereas the L; norm better accounted for pressure (and
better predicted lift).

19

A Generalized Framework for High Order Anisotropic Mesh Adaptation

We can always factor out (Ar)? in this equation because all the terms of each polynomial P;
are of degree p. In general, f(01,6s,...,64_1) is a complicated, piece-wise smooth function
that captures the anisotropy of the error. We also perform a similar procedure for the metric

function from Equation 5.

ATy, ... Arg) = (A, ... Azg) M (Axy, ..., Ag) (8)

Re-writing in d dimensional spherical coordinates

d(Ar, A0y, ..., A04_1) = (Ar)\/g(01,02,....,00_1) (9)

If we consider an edge of length Ar, then the error for a p order solution will be proportional
to (Ar)P. This should also be the case when Ar is measured in the metric. This ensures the
metric length and error will have the same scaling as Ar changes. Thus we want to choose
d such that

(d(Ar,Aby,...,A04_1))" = Err(Ar, 01, ...,04_1) (10)

Combining equations 7, 9 and 10,

((Ar)\/g(ﬁl, Oy, .. ad_l))”

~ 9(91, 92, vy Hd—l)

(Ar)pf(ela 027 ceey Hd—l)

(f(01,02,...,04-1))

Q

iSAINY

2
If we choose values of M such that g(61,02,...,04-1) = (f(01,...,04_1))? then the metric is
a good approximation to the error. Because f and g are both functions of an angle 6, we
will use Fourier series to find an appropriate g. Repeating Equation 9 for two dimensions

using the metric d,,;(z,y) from Equation 5.

dani(170) = g(e)

9(0) = dani(1, 9)2

20

A Generalized Framework for High Order Anisotropic Mesh Adaptation

g(0) = (sinf,cosf)T M(sin6, cos)

g(0) = M, sin? 0 + 2M; 2 sinf cos @ + M o cos? 6
1 1
g(0) = 3 (M1 + Mso) + 3 (Mi1 — Ma3) cos 20 + M o sin 20

If we also do a Fourier transform of f(6) around the unit circle we get

2 1
(f(@))zz’ = §a0+a10050+blsin0+agcos29+bgsin29+...

1 27

a; = — f(0) cosi6db
m™Jo
1 21

by = — f(0)sinifdo (11)
m™Jo

Now, the original polynomials P; from Equation 6 that are summed to find f are all either
symmetric or all antisymmetric in z and y. When we write the Li-norm of the P; in polar
coordinates, this gives a function f (6) that is periodic with period 7, not 27; this is clearly
illustrated in Figure 2. This in turn implies that the odd terms in the Fourier series (most

importantly a; and b;) must be zero.We can therefore write
2
(f(6))r =~ a, + ag cos 20 + bg sin 260 (12)

The error in this approximation is related to the higher, rapidly-converging even-frequency

terms of the Fourier expansion. If we set the coefficients of M as follows

1
M, = 30 + as
Mio=My1 = by
1
ngg = §CLO — as (13)

2
we have a good approximation of g(8) to (f(#))? and hence a good approximation of our
metric to the estimated error. For M to be positive definite (as required by the metric),

the Fourier approximation must also be positive definite. Unfortunately, a function which

21

A Generalized Framework for High Order Anisotropic Mesh Adaptation

Approximation at r=1

T T
Error Function

Fourier Approximation -------

Figure 2: The error and associated Fourier approximation.

Error and Metric Contours

1.5 T T T T T
1L Error _
Metric -------
05 _
> 0+]
_05 - -
_1 — -
15 | | | | |

Figure 3: Error contours and d(x,%)? contours.

2
is positive semi-definite such as (f(#))» will not necessarily have a positive definite Fourier
transform. To address this, we add the restriction that %ao > (a2)2 + (b2)2 by instead
having ap = max <a0,2 (az)® + (b2)2>. This ensures and the metric M will always be

positive definite.

As an example, assume that the variables v and v have the following third derivatives and

that the solution is 3rd order (p = 3):

22

A Generalized Framework for High Order Anisotropic Mesh Adaptation

93 93 93 93
dz3 | 0z2y | Ozy3 | 0y3

w| -4 | -20 | -16 2

v| 6 10 2 -10

Then, by Equation 6, the error at a distance (z,y) away is

—22% — 102%y — 8wy? + %—3‘ + |23 + bay + xy® — 29|
2

Error(x,y) = (14)

The Fourier coefficients from Equation 12 can then be calculated by numerically integrating

Equation 14 around a unit circle. This gives
(£(0))F ~ (3.224) + (0.07636) cos 26 + (0.8473) sin 26

A comparison of the Fourier approximation and the actual error measure around a unit
circle in Figure 2 demonstrates the validity of this approximation. By Equation 13, the

matrix that will be used in the metric is

1.688 0.8473
0.8473 1.536

Substituting into our metric from Equation 8

1
d(z,y) = (1.6882> + 1.69462y + 1.536y7)>

Our hypothesis was that d(z,y)® would be a good approximation to Error(x,y). Comparing
the same contour values in Figure 3 illustrates that our hypothesis was indeed correct. We

have therefore chosen a metric that approximates our error measure.

One aspect of generating the error measure that hasn’t been addressed is computing the
order p derivatives. This is not a trivial task, especially for schemes of order of accuracy

higher than two. However, a solver such as ANSLib[27] which can generate fourth-order

23

A Generalized Framework for High Order Anisotropic Mesh Adaptation

solutions must already contain the algorithms necessary for reconstructing the third deriva-
tives.* While reconstructing the derivatives and numerically integrating the error function
for every cell requires computation time, we have found that in comparison with overall

solution time, the cost is minor.

The process of determining Fourier coefficients also has the bonus of providing an intuitive
control over the approximated error. Limits on ag control the average error for each cell,
and limits on 1/ (az)? + (b2)?control how much that error is allowed to vary within the cell
(and thus anisotropy). It would also be logical to smooth the metric (if desired) based on

these coefficients. However, we do not examine this in the following test cases.

Results

We present several test cases to demonstrate the effect of using our metric in an anisotropic
adaptation cycle. We compare these results for both second and third order solutions with
those using uniform refinement. All solutions are computed using the vertex-centered Finite-
Volume solver described in [27]. This solver uses Ly reconstruction [4, 29], Roe’s scheme [36],
and Newton-GMRES for rapid convergence [20, 22]. For viscous flows, the viscous terms
are discritized as described in [29]. To create anisotropic meshes from the calculated metric,

we use the anisotropic meshing modifications to GRUMMP [26] proposed in [30].

For all three cases, we start with the initial mesh shown in Figure 4. This mesh is the
Delaunay triangulation produced by GRUMMP without any refinement parameters. The
far-field boundary is a circle of radius 100 chords centered at the leading edge of the airfoil.
We have chosen to use this mesh because it is requires the least user input and is obviously
ill-suited to all three test cases. Furthermore, by choosing a large boundary, we hope to

negate some of the errors that can be generated from boundary placement.

4For details on how this is done for finite volume solvers, see papers by Barth and Frederickson[4] as well
as Ollivier-Gooch and Van Altena[29].

24

A Generalized Framework for High Order Anisotropic Mesh Adaptation

(b) Closeup view of intial mesh

Figure 4: NACA 0012: Initial mesh with 197 Vertices.

25

A Generalized Framework for High Order Anisotropic Mesh Adaptation

Third Order Drag Third Order Lift
0.1 T 0.1 T
Anisotropic Adaptation —+— Anisotropic Adaptation —+—
Uniform Refinement ---x--- Uniform Refinement ---x---
0.01 | E
k= = 0.01 | E
€
S 0001 F 102
@ £
s 8
9 1e-04 | 41 =
a = 0001 F E
1e-05 E
16-06 : : 1e-04 : —
100 1000 10000 100000 100 1000 10000 100000
Number of Vertices Number of Vertices
Second Order Drag Second Order Lift
0.1 T 0.1 T
Anisotropic Adaptation —+— Anisotropic Adaptation —+—
Uniform Refinement ---x--- X Uniform Refinement ---x---
0.01 4
= = 001 E
g]
o =
8 0.001 £ 4 3]
7 S
o =
S = 0001 F E
1e-04 El

1e-05 L L 1e-04 L L
100 1000 10000 100000 100 1000 10000 100000

Number of Vertices Number of Vertices

Figure 5: NACA-0012 subsonic inviscid flow: comparisons of drag and lift coefficients

Subsonic inviscid flow around an airfoil.

The first test case is inviscid flow over the NACA-0012 airfoil. Theoretically, both the drag
and lift coefficients should approach zero. However, due to the asymmetry of the mesh, this
is rarely the case. Figure 5 compares drag and lift coefficients for both second and third order
solutions. The uniform meshes used for comparison are created by incrementally increasing
the refinement parameter in GRUMMP. In all four cases, the solution on the finest mesh
was more accurate with anisotropic refinement than without. For drag predictions, and in
particular for third order solutions, our refinement algorithm produced a noticeable increase
in convergence order throughout the refinement process. Convergence of lift to zero with
refinement is poor in all cases, because this quantity depends heavily on mesh symmetry,

which doesn’t improve nearly as rapidly as cell size decreases.

It is obvious in Figure 6 that the uniformly refined mesh fails to sufficiently resolve the
trailing edge of the airfoil. While the second and third order meshes are very similar, close

inspection reveals slight differences at the leading and trailing edges of the airfoil. For the

26

A Generalized Framework for High Order Anisotropic Mesh Adaptation

3rd Order Solution

Pressure
0.650 0700 0750 0800 0850

=

)

puvis!
2
T
)

EET T

i
SRS
ROt
NEUE,

=1
)

W7
2
ey

pavy
i

2y
PN

R
s
vl
a4y

gl
i

E e T
By Lt CrAR A
SHIE 5
i YR TE oo
RS e
A A
e A ARy
et B S e

v

rafl!
YA,
B

AV

AR AT A

%

[

(a) Pressure distribution from third order solution (N Vertices)
and uniformly refined mesh (N Vertices).

o
AN
A A/ DRy
A " Pt
ol T Sy
B NAVA S e A e A
AR DT

¢
L

;

)

A
oo

T
R
7

&

TS

¥

P vat s
ol

T
TS vy
T A
o

s
et

.
o
S
)
s
YS!

7:1

(e
.1
Tt

=
ol

)
s

.
5
%
AT
gt
et
FariTes:

!

S
"A"' '
ok

LAt

Pk

Eardy

20
T

i

A

éuﬂ

3

Tl A AN Py

T AR
L ATATARDY =S
;v;mh

e
"y

Ea
R
Kk

N7y
I
o

LA
A
o,
=
e
;\
o

Oy
R
KA
SRR
4!15""

L
7]

oo
AT T
AT
5

7
!%
o
ks
A
Frs
74

™

N

FaYy
S

iy

¥
AN
7
=
Rpod
AT
A
O,
bt
A

Iy Pk
ik
0

I
Bl

(b) Final Meshes: Third Order (top; N
Order (bottom; N Vertices).

<
@
=
a8
Q
@
2]
2
I
=]
o,
[95)
@
a
o
=]
o,

5

o F“%";{ﬁ AN [3rd-4 Mesh VAN
s N AN
X OO
' s el
VAVave,

5 ok
7 A
R

7
ﬂ«gggm{%‘m%'ﬁ;‘ur
(c) Leading Edge (top half: (d) Trailing Edge (top half:

L
KPP
AR val
A M rav %y
third order; bottom half: third order; bottom half:
second order) second order)

Figure 6: Inviscid Subsonic flow around NACA 0012: Mach = 0.5, « = 0.

A Generalized Framework for High Order Anisotropic Mesh Adaptation

a4 * I I i " 2nd Order Aldapied'#”
0.44 I - 2nd Order Uniform ---x--—- 7
[3rd Order Adapted ------
I 3rd Order Uniform —-a--
0.42 - Venditti and Darmofal (0.344) -~~~ .
5 Lo
£ 04Ff i
(0]
o
O
£ 038 -
0.36 - _
0.34 ——
100 100000

Number of Vertices

Figure 7: Lift Convergence for NACA 0012: Mach 0.8, oo = 1.25°.

second order solution, high second derivatives of pressure parallel to the boundary produce
anisotropic cells at the leading edge in the second order mesh but not in the third order
mesh. At the trailing edge of the third order mesh, convection of entropy produced at the
trailing edge (an artificial result of the point singularity) may produce the slight anisotropy.
Since second order schemes dissipate entropy faster than third order schemes, the second

order mesh is more uniform at the trailing edge.

Transonic Inviscid flow around an airfoil. (I just wrote this subsection so

there are some holes and lack-of-flow problems)

Earlier in the derivation of our metric, we assumed that the underlying solution was smooth.
This assumption is necessary for showing the validity of using Taylor expansions. Unfor-
tunately, not all solutions of interest are actually smooth. In particular, for transonic and
supersonic flows, discontinuities (or shocks) can appear in the solution. At these shocks,
our error estimate is no longer valid. This does not mean, however, that our metric cannot
be used for solutions in the presence of discontinuities. To illustrate this, we have exam-
ined Mach 0.8 flow over the NACA 0012 airfoil with an angle of attack of 1.25°. To avoid

over-refining the discontinuities, we have limited our error measure from Equation 7 such

28

[
\

)

wll)
g

AV,

A Generalized Framework for High Order Anisotropic Mesh Adaptation

T

)
S ASRHA
ﬁwﬁww_nm,v :
A

] .
EPAY NG it
ﬁ«ﬁiﬂ.@mﬁdﬁ«f
< £

RN
Ry
)
R

i

VIS,

4]

7 ’

AV
Aw.

=l

]

‘Sﬁrﬂvb
DA
YAl
ot

29

/3

Aﬁn

4‘-
s
S

",

v

Figure 8: 3rd order Mach number profiles on adapted mesh and uniform mesh for NACA

0012: Mach 0.8, a = 1.25°

A Generalized Framework for High Order Anisotropic Mesh Adaptation

Pressure Distribution at Upper Shock
02 T T T T T

-0.2

'"AGARD.dat’
3rd Order -------
2nd Order -------- i

-0.6

Pressure

_-1 2 | | ‘ | | |
0.5 0.55 0.6 0.65 0.7 0.75 0.8

Chord Length

Figure 9: Pressure distribution on upper surface of NACA 0012:Mach 0.8, @ = 1.25°.

that Err(1,6) < 1 x 103. This number is chosen to bound the error measure at the shock
without dramatically affecting other areas of the solution. In the future, this bound should

be based on a statistical distribution of error instead of a somewhat arbitrary constant.

Using the above modifications, the results for both second and third order anisotropic adap-
tation are dramatically improved over uniform refinement. A comparison of third order ve-
locity profiles is shown in Figure 8 In fact, without adapted refinement, the lift coefficients
in Figure 9 do not appear to converge towards the solution of Venditti and Darmofal[41].
To show the accuracy of our second order and third order results, we have compared the
pressure distribution on the upper surface of the airfoil with data from [1]. Not only does
the shock apear in relatively the same location, but the shocks that we computed are ex-

trememly sharp and have very little overshoot.

Subsonic laminar flow around an airfoil

Inviscid flows do not generally have high levels of anisotropy, other than possibly at shocks,
so to better demonstrate the advantages of anisotropic meshing we will examine viscous

subsonic flow around the NACA 0012 airfoil (Re = 5000, M = 0.5, a = 0°). Our results for

30

A Generalized Framework for High Order Anisotropic Mesh Adaptation

Method Final Mesh Size | Cpp | Cpy | CL | 2%
3rd Order Anisotropic 15464 0.0225 | 0.0323 | 0.00004 | 0.811
3rd Order Isotropic 15682 0.0227 | 0.0342 | 0.00414 | 0.910
3rd Order Solution / 2nd Order Metric 20635 0.0224 | 0.0323 | 0.000487 | 0.805
2nd Order Anisotropic 20187 0.0226 | 0.0323 | 0.000114 | 0.795
2nd Order Isotropic 20642 0.0224 | 0.0332 | 0.0095 | 0.834
ARC2D 320 x 128 cells | 0.0221 | 0.0321 - 0.824
Mavriplis [19] 320 x 64 cells | 0.0229 | 0.0332 - 0.814
Radespiel [33] 512 x128 cells | 0.0224 | 0.0330 - 0.814
Table 1: Comparison of drag, lift, and separation point for NACA 0012 airfoil: Mach = 0.5,

Re = 5000, a = 0.

3rd Order Results

0.05 = T T T T T
i Anisotropic ---+---
(% Isotropic
0.04 +i B
\i X x Viscous Drag (0.0322)
. R B ;
& 003 [/ W T
£ S i g Pressure Drag (0.0225)
[} = = K- t
8 0.02 [i
F
0.01 1 . . -
"+\ // \;%\\ X - e Lift(0)
O s 1 kel e N 1 | 1 1 n
0 2000 4000 6000 8000 10000 12000 14000 16000
of Vertices
2nd Order Results
0.05 T T T T
Anisotropic ---+---
Isotropic -
fan « Viscous Drag (0.0322)
" 4 B S e X
< ' ' i
2
o
& e Pressure Drag (0.0225)
o ! -
O \.
0.01 i x 4
\ . Lift (O
0 1 I e e [1
0 5000 10000 15000 20000 25000

Figure 10: Anisotropic vs.
Mach = 0.5, Re = 5000, o = 0.

of Vertices

Isotropic drag and lift convergence for NACA 0012 airfoil:

31

A Generalized Framework for High Order Anisotropic Mesh Adaptation

2nd Order Separation Point

3rd Order Separation Point
100 —=

PR T T T 100 PA® T > T T : .
S oWl g W)
<] A | S ¥ _
5 9 Jf", Anisotropic -~ g % -g “
S P Isotropic - b P
A -;L !] £ 9 o } Anisotropic --—+--- x|
: A £ o | Isotropic -
5 [£ X
nc; 85 & |\ Mo 4 ﬂé 85 | ! |
o VT X 5 .
g e [® PR L e .
] T e — R R |
3 &
75 1 1 1 1 75 1 1 | |) . .
0 5000 10000 15000 20000 25000 0 2000 4000 6000 8000 10000 12000 14000 16000
of Vertices

of Vertices

Figure 11: Anisotropic vs. Isotropic separation point convergence for NACA 0012 airfoil
Mach = 0.5, Re = 5000, o = 0.

Figure 12: Comparison of anisotropic and isotropic third order Mach profile for NACA 0012
airfoil: Mach = 0.5, Re = 5000, a = 0.

32

A Generalized Framework for High Order Anisotropic Mesh Adaptation

Pressure Drag Convergence

0.026

i 3rd Order —+—
~ 0.0255 X 2nd Order ---x---
& § Mixed Order ------

g 0025 i
S 0025t '.: .
g 0024 i
a :
o 0.0235 | i
>
é 0.023 | .
& 0.0225 4

0-022 1 1 1 1

0 5000 10000 15000 20000 25000
of Vertices
Viscous Drag Convergence

0.035 - T T T

: 3rd Order —+—

) 2nd Order ---x---
£ 00345) Mixed Order ------ 7|
o :

5 0.034 B
[e}
o
? 0.0335 - R
a
3 0.033 - .
Q
2
> 0.0325 - —
0032 1 1 1 1
0 5000 10000 15000 20000 25000
of Vertices
Lift (Convergence to 0)
10 F T T g
[3rd Order ——]
1F x---x 2nd Order ---x---]
F Mixed Order ------
- 0.1 F]
=]
k9] L]
L 0.01 E
T []
O 0.001 .
= te04 b .
1e-05 | .
1e-06 L——uiii il]
100 1000 10000 100000

of Vertices

Figure 13: Comparing lift and drag convergence for NACA 0012 airfoil: Mach = 0.5,
Re = 5000, a = 0.

33

A Generalized Framework for High Order Anisotropic Mesh Adaptation

3rd Derivatives
Metfric

Aspect Rafia
200

15.2
10.5
5.75

1.00

2nd Derivatives
Metric

Figure 14: Triangle aspect ratios from 3rd order and 2nd order metrics at leading edge of
NACA 0012 airfoil: Mach = 0.5, Re = 5000, o = 0.

second and third order solutions with various metric parameters are presented in Table 1
along with other published results for the same set of parameters. Both the second and
third order solutions are clearly converging to similar values, and those values lie within the

range of published results.

To show the benefits of anisotropic meshing over isotropic meshing, we set the as and bo
Fourier coefficients from Equation 12 to zero. This allows the metric to vary in size but
not shape. Figure 10 shows that by doing this, the convergence is dramatically reduced
in both second and third order solutions for all three functionals. Nowhere is this more
apparent than in the convergence of separation point in Figure 11 where the isotropic
solutions separate much later than expected. The most noticeable difference in solutions
between the anisotropic and isotropic meshes is the much more diffused wake as illustrated

in Figure 12.

Dompierre et al.[2] suggest that Hessian based refinement should be suitable for high-order
solutions even though the second derivatives are already resolved. To test this theory, we
used our 2nd order metric to refine for a third order solution. The resulting convergence

plots are shown in Figure 13. It does appear that there might be some benefit to using

34

A Generalized Framework for High Order Anisotropic Mesh Adaptation

the third order metric for third order solutions, particularly in viscous drag convergence.
However, there is not a significant enough difference between the two results to be conclusive.
The only qualitative difference between the mesh generated by the 2nd order metric and
the third order metric is that the third order metric is much more isotropic at the leading
edge of the airfoil. This is shown in Figure 14. After the leading edge, both meshes become
very anisotropic in the boundary layer and have roughly the same size distribution. More
precise meshing would be necessary to examine what effect the different metrics have on the

solution accuracy.

Conclusions

We have presented a general framework for anisotropically refining unstructured meshes.
Our approach is designed to be sufficiently general to allow refinement for solvers of any order
and any number of dependent variables. The basis behind our approach is to approximate
the local reconstruction error with Taylor expansions and then use Fourier transforms to
choose an appropriate metric function. The metric can then, in turn, be used to refine the

mesh and improve the solution.

We have shown through several test cases that this refinement procedure improves solution
accuracy better than uniform mesh refinement. We have also shown that for both second
and third order viscous solutions, anisotropic refinement produces much better convergence

and is therefore more efficient than isotropic refinement.

The differences between our second order and third order solutions are more difficult to
interpret. In general, the third order solutions were more accurate than the second order
solutions, but it remains unclear whether that warrants the additional computational cost.
Our results are also inconclusive as to whether or not it is acceptable to use a metric based

on second derivatives for third order solutions.

While our metric is designed to work for problems of any dimension, we have only tested it

35

A Generalized Framework for High Order Anisotropic Mesh Adaptation

for two dimensional flow. This is due to current limitations of three-dimensional anisotropic
meshing. Examining the effect of this refinement approach for higher-order three-dimensional

solutions is an item for future work.

Another potential improvement would be to combine our metric with adjoint-based error
estimation. Venditti and Darmofal [41, 42] clearly demonstrated that adjoint based-methods
provide greater accuracy for the chosen functional than Hessian based methods. It is likely
that this remains the case for higher-order methods as well. Combining adjoint based
adaptation with our local shape definition seems an intuitive extension, especially for highly
anisotropic solutions. This would still leave the problem of choosing the proper functional,

which is often but not always obvious for engineering applications.

One problem with our method is that id does not provide a quantitative estimate of solution
error. as with [3, 41, 42, 13]. Instead, we repeatedly refine our mesh so as to estimate error
by convergence. Ultimately, we would like to have a better error estimate at each stage of
the refinement process. Essentially, this would combine the two approaches and allow for

better user control.

Ultimately, the goal of our work is to allow for fast, accurate solutions to CFD problems
with a minimum amount of input from the user. While we have shown that more accurate
solutions can be generated, it is not yet clear whether or not this approach is indeed faster.
Even without examining user input, it is very difficult to compare solution time on a uni-
formly refined mesh with solution time for an adapted mesh, primarily because of the added
complexity of choosing when to refine the mesh and by how much. An added complexity
with anisotropic meshing is that its effect on matrix conditioning, and by extension matrix

acceleration methods, is unclear.

Overall, there still remains insufficient data to determine whether or not our method for
anisotropic adaptation will truly improve the efficiency of CFD solvers. What we have done
is to provide a simple and effective way of combining two previously uncombined develop-

ments: high order methods with anisotropic adaptation. Hopefully, as further research is

36

A Generalized Framework for High Order Anisotropic Mesh Adaptation

done into improving high-order CFD solvers and anisotropic mesh generators, the advan-
tages of combining the two will also significantly increase. If so, there is no doubt that high

order anisotropic adaptation will soon be commonplace among commercial CFD code.

37

Delaunay-Based Anisotropic Mesh

Refinement

Introduction

Numerical solution of PDEs is an important analysis tool for scientists and engineers. Ide-
ally, such numerical software should require only specifying the physics, geometry, and
boundary conditions of the problem and then produce a solution of a certain accuracy.
Unfortunately, assessing and minimizing discretization error is a non-trivial task, requiring
time consuming mesh dependence analysis or computation of solutions on meshes that are
much finer than the required solution accuracy dictates. Mesh adaptation seeks to auto-
mate this process by first computing the solution on a coarse mesh and then successively
refining the mesh so that each mesh is more nearly optimal for the solution being computed.
Unstructured meshes are well-suited for adaptation because they can be modified locally
much more easily than structured meshes, which have a fixed topology. In this paper, we
present an anisotropic extension of an existing Delaunay adaptation scheme [5, 44] and we
show that it is possible to produce high quality anisotropic meshes without costly local

maximization routines.

We have chosen to use Delaunay methods because Delaunay mesh refinement can easily be
used to insert new vertices into a valid mesh. Delaunay methods therefore extend more
naturally to anisotropic mesh refinement then Quad-Tree or Advancing Front methods.
Shewchuck and Labelle [16] have developed a theoretically sound extension of guaranteed-
quality Delaunay meshing by constructing anisotropic Voronoi diagrams and then dualizing

to a Delaunay triangulation. Unfortunately, these anisotropic Voronoi diagrams can be

38

Delaunay-Based Anisotropic Mesh Refinement

difficult to generate, and the dualization to a valid triangulation requires restrictions on

metric smoothness.

Alternatively, there are other more heuristic methods for generating anisotropic meshes
that rely on local optimization algorithms. Dompierre et al.[13] suggest splitting edges
with length® above a threshold, removing nodes with all edge lengths below a threshold,
and swapping edges and moving nodes to equidistribute length. New edges are assigned
lengths based on an interpolated error estimate from the background mesh. Buscaglia and
Dari[8] take this a step further by testing a large set of potential operations on a sub-
mesh and then selecting the one that most increases quality according to an error estimate
on a background mesh; this approach can produce excellent meshes, but at a high cost.
Our algorithm combines the heuristic nature of these two approaches with some of the
attributes of isotropic Delaunay meshing. This gives us two principle advantages over the
other heuristic methods. First, we do not rely on moving vertices and so metric information
can be easily retained without storing and referencing the original mesh. Second, because of
an improved choice of where to insert vertices, our algorithm produces quality anisotropic

meshes without costly local maximization routines.

To explain our algorithm we will first examine metric spaces and how they can be used for
anisotropic meshing. Then, we will create a quality measure for our anisotropic mesh and
modify several existing mesh operations to increase that quality measure. Finally, we will

show that this process leads to meshes that are well suited to the desired metric.

Metric spaces

Before defining what a quality anisotropic mesh is, we must first define the desired cell sizes
and shapes. To do this, we use a function called a metric. Essentially, a metric is a way of

defining distance between two points. The exact requirement of a metric for a vector space

5The term error is used in the cited paper, however the metric length can be defined as equivalent to the
error and so we will use the term length to be consistent with usage later in the paper.

39

Delaunay-Based Anisotropic Mesh Refinement

X is that d : X x X — R is a metric iff the following conditions are satisfied for every

z,y,z2 € X.

dlz,y) > 0 <= z#y
dz,z) = 0
d(z,y) = d(y,z)

d(z,z) < d(z,y)+d(y,z2)

For uniform isotropic meshing, the metric is the standard distance measure ||z — y||. More
complicated metrics allow for distance to be measured differently depending on orientation,
thus introducing anisotropy. In particular, the metric most commonly used in anisotropic
meshing can be found by linearly transforming the standard distance measure djg,(x,y)

into one which is anisotropic d,;(x,y) as follows

digo(z,y) = VVTV
dani(z,y) = A/ (TV)T(TV)

dopi(z,y) = VI(TTTV

Where V = 2 —y and T is an invertible linear transformation. Since a triangle is perfectly
defined by the lengths of its sides, any triangle quality measure used in isotropic meshing has
an equivalent triangle when measured by the metric. For example, if a triangle’s edges have
metric lengths (a, b, c) then the area A and circumradius R of a triangle can be calculated

by the following formulas

A = i\/(a%—b—l—c)(—a—l—b—i—c)(a—b—i—c)(a—l—b—c)

abe
4A

40

Delaunay-Based Anisotropic Mesh Refinement

Although we use the linear transformation metric throughout the article, our algorithm is

based purely on vertex spacing and could be adapted to use any metric.

For most problems of interest, different metrics must be used in different areas of the domain.
This is the principle difficulty faced by anisotropic meshing algorithms because even if the
metric function is valid at a specific point, the interpolated metric space between any two
points might not be valid. We deal with this problem by defining the metric discretely at
vertices. When refining the mesh, we measure the length of each triangle’s edge according
to the average metric of the three vertices. This provides a good estimate of how big that
triangle is and whether or not it requires insertion. If a vertex is inserted, the metric at
that vertex is assigned based on a linear interpolation from the three vertices of the triangle
in which it was inserted. Alternatively, when coarsening the mesh we estimate the length
of each edge by first calculating what that length is according to the two adjacent triangles
and then averaging those lengths. These two definitions give unique triangle quality and

edge length measures which can then be used for mesh improvement operations.

Quality Measures

There are a staggering number of triangle quality measures used to determine how good
the elements of a mesh are. Since no one has adequately proven that one quality measure
is superior for every numerical solver, we have chosen to use the quality measure that best
suits the approach we have taken. Miller, Talmor and Teng [21] pointed out that the most
natural quality measure for Delaunay refinement is the ratio of circumradius to shortest

edge. We will therefore define a quality space

1 3
31 31 0.658 1.140
2\/Ades 2\/Ades VAdes vV Ades
where liiy is the length of the shortest edge, R is the circumradius, and A j.4 is the desired

area. For a uniform isotropic mesh, the ideal triangle is an equilateral triangle with area

41

Delaunay-Based Anisotropic Mesh Refinement

Ades = ‘ﬁ,—f where Ag is the total area of the domain) and N, is the number of triangles;
this triangle has (£,7) = (1, 1) for our chosen constants. We use this same concept to choose
Ages in Equation 16. To estimate the area Ag of the domain (2 in the metric space, we sum
the area of individual triangles. Then, the ideal area A, is found by dividing the total area
Agq by the number of triangles IV, and a desired refinement ratio 7, so that A j.q = :‘T‘i. The
equilateral triangle with this area would be located at (§3eq,7des) = (1,1) in the quality

space.

Having defined the perfect triangle, we must now define what range of triangle qualities
are considered acceptable. To accomplish this, we define a value 7 such that triangles with
£ <1—7ormn>1+4 7 are considered bad. To ensure shape quality, we restrict 7 to so
that we have a lower bound on the minimum angle of the triangle, which can be written as

l“% = 28in Opjy- Eliminating 1, and R in favour of £ and 7, we have

&v3
n

= 2sinfyin

and so for the corner point (1 — 7,1+ 7) in Figure 15,

1—7 2
= ——si Hmin 17
i+r 3 (17)

3 — 2v/3 sin Oppin
3 4+ 2v/3sin Oppin

So choosing 6,y is equivalent to choosing 7. Chew’s uniform isotropic Delaunay refinement
algorithm[11] produces triangles whose angles are all greater than thirty degrees so we have
chosen to use this as the target angle giving 7 = 2 — /3 = 0.2679. An illustration of the

quality space is found in Figure 15.

42

Delaunay-Based Anisotropic Mesh Refinement

Minimum
Angle
/

Equilateral
Triangles

n=¢

1+t

/| Quality
/| Bounding
Box

1.1

Equilateral Triangle
With Desired Area

e .
Figure 15: The quality space used to evaluate triangles in the mesh.

Mesh operations

There are three principal operations that our algorithm uses to improve the quality distribu-
tion of triangles in the mesh. The first two operations, edge swapping and point insertion,
are similar to their isotropic Delaunay equivalents with modifications to account for the
metric space. The last operation, vertex removal, is done simply to remove the smallest

edges in the mesh.

Swapping

The first and simplest operation is edge swapping. For isotropic Delaunay meshing algo-
rithms, edge swapping is used to ensure that the interior of every triangle’s circumcircle
is empty of vertices. For our discrete representation of the metric, this is not necessarily
possible. Furthermore, whenever an edge is swapped, the metric used to examine the new
triangles can differ from the metric of the old triangles, possibly reversing the swapping
decision. Both of these problems are solved using a heuristic approach. Instead of swapping
for cells with non-empty circumcircles, we instead swap to maximize the minimum quality
ratio £/n for each pair of adjacent triangles. For an isotropic metric, this is equivalent to
maximizing the minimum angle, which produces a Delaunay triangulation. To determine

which configuration does this, we calculate (£,7n) explicitly for both the current triangles

43

Delaunay-Based Anisotropic Mesh Refinement

and the triangles that would be formed if the edge were swapped. Note that our metric
definition is dependant on which vertices are connected and so swapping an edge effectively
changes the metric. Because of this, a Delaunay triangulation cannot be found by simply

mapping the local vertex locations to the metric space.

After swapping, we check whether the resulting triangles are Delaunay in the metric space.
The reason we do this is that Delaunay insertion is only valid when the interior of every
circumcircle is empty. There are no guarantees that swapping will produce such a trian-
gulation in our metric space, so we must identify non-Delaunay triangles so that we can
handle them heuristically during insertion. Before we can check whether or not the edge is
Delaunay in the metric space, we must scale one of the triangles so that the shared edge is
the same length for both triangles. At this point, the relative locations of the four vertices
are known in a pseudo-metric space. Then, we test whether or not the circumcircles of each
triangle are empty. Because the Delaunay property is independent of size, it does not matter
which triangle gets scaled. In Figure 16, the triangles T1 and T2 are first transformed to
have the lengths assigned by their respective metrics. Then T2 is scaled by a/d so that the

edges can be aligned and the circumcircles tested.

Vertex Insertion

The second mesh modification operation that we use is vertex insertion. In isotropic De-
launay refinement, vertices are inserted for triangles with large circumradii or poor shape.
After insertion, the resulting triangles have smaller circumradii, and no edge smaller than
the original circumradius is created. In our anisotropic adaptation, we hope for similar
behaviour by inserting at an approximate circumcenter. We find this approximate circum-
center by creating a virtual sub-mesh around the initial triangle. To construct this virtual
sub-mesh, we first transform the initial triangle to one with lengths as described by the
metric. Then, we calculate that triangle’s circumcenter and build the virtual sub-mesh one

triangle at a time until the circumcenter lies within it. Since the metric length of a shared

44

Delaunay-Based Anisotropic Mesh Refinement

—
d
Triangles to be tested e
f
Triangles with lengths
measured by the average
metric of the three vertices
9

Triangle T2 is scaled to match

triangle T1 The triangles are tested

for empty circumcircles

Figure 16: Testing for Empty Circumcircles in the Metric Space

edge is not the same for both triangles, a scaling factor is again required. This is similar to
the Delaunay test procedure done for edge swapping. In Figure 17 Triangle T1 is chosen for
insertion and the circumcenter is calculated in the virtual space. Then, Triangles T2 and
T4 are appropriately scaled so that the virtual sub-mesh contains T1’s circumcenter. Once
that insertion location is chosen in the virtual sub-mesh, it is linearly transformed back
to the real mesh so that it has the same barycentric coordinates in both the real and the
virtual triangle. The new vertex is inserted with the most simple connectivity and swap-
ping is performed recursively. The desired effect of each insertion is to decrease circumradii
without dramatically reducing the quality of the local triangles. Unfortunately, due to the

discrete nature of the metric, there are some cases where this approach fails.

The first degenerate case occurs when the circumcircle of the triangle we wish to eliminate
by insertion is not empty in the virtual mesh. When this occurs, we instead split the longest
edge of that triangle. There is theoretically no limit on the minimum edge that this operation
will create. To address this, we smooth the new vertex to maximize the minimum angle in

the virtual mesh, resulting in a much better insertion location. A similar approach is used

45

Delaunay-Based Anisotropic Mesh Refinement

-4~

Actual Mesh

Virtual Triangles

X — circumcenter

Tl
—
T2
x—Insertion Location

Virtual Sub—mesh Actual Mesh

Figure 17: Finding an approximate circumcenter of triangle T1 by constructing the virtual
mesh

in other anisotropic refinement algorithms [2, 8]. In our algorithm, however, optimization
is only required for degenerate cases, which are a small fraction of the total number of

insertions.%

The second degenerate case occurs when inserting the new vertex does not affect the triangle
for which it was inserted. In other words, insertion did not reduce the largest circumradius
in the mesh. This happens most often when there is large difference in metric size between
triangles. Currently, insertion is simply repeated for the original triangle. Since that triangle
will no longer have an empty circumcircle, refinement will split the longest edge and then

locally optimize the location.

Vertex Removal

The final operation that we use to improve the mesh is coarsening. Coarsening is not a

natural component of Delaunay meshing so there are no standard isotropic techniques to

5The exact percentage of degenerate cases is entirely dependent on how the metric varies within the
mesh. Experience has shown that degeneracy in 5-10% of insertions is typical for the metric we used.

46

Delaunay-Based Anisotropic Mesh Refinement

apply on the virtual mesh. Instead, we know that removing vertices increases edge lengths
in the mesh. Thus, removing a vertex that is part of the smallest edge will always increase
the minimum edge. To remove a vertex, we first swap edges until there are only three
edges incident on that vertex and combine the three incident triangles to form one triangle
when the vertex is removed. The edges are then swapped recursively in the same manner
described in Section . Coarsening is the only operation that can destroy metric information.

Because of this, repeated refinement and coarsening tend to smooth the metric.

Boundary Protection

A key element of Delaunay meshing is boundary treatment. While the previous discussion of
point insertion assumed that the circumcenter lies within the domain, that is not necessarily
true. For cases when the circumcenter lies outside the domain or across a boundary, the
virtual mesh cannot be completely constructed. When this happens, the boundary edge
which terminated the virtual mesh is split. For cases where the circumcenter of a triangle
lies inside the domain, but near the boundary, there are no constraints on the circumradius
of the new triangle formed. To address this problem, we adapt the boundary protection
proposed by Shewchuk[39]. That is, we disallow any insertion within the diametral lens of a
boundary segment and instead split that boundary segment. For an anisotropic mesh, the
diametral lens is approximated by transforming any potential boundary triangle using the

average metric of the two boundary vertices.

A further complication with boundaries is that any curvature of the boundary must be
preserved throughout refinement. If the curvature of the boundary is not preserved, then
the geometry will not be converging to the modeled geometry, thus introducing unnecessary
modeling error. This is also very important for high-order solutions because correct curved
boundary representation is essential to achieving high order accuracy. Ollivier-Gooch and
Boivin[5] solved this problem for isotropic meshes by limiting the curvature of the boundary

discretization and thus enforcing that the diametral lens lie outside the boundary curve.

47

Delaunay-Based Anisotropic Mesh Refinement

Offset
Diametral Lense

e

Boundary
Curve

B
/
’

Diametral Lense

Boundary Offset Boundary Offset

Figure 18: Isotropic, modified diametral lens for curved boundary

This is a much more difficult task when the metric is allowed to vary along the boundary
edge because the measured curvature changes depending on what metric is used. Instead we
rely again on heuristics: expansion of the diametral lens and encroachment checking before

boundary insertion.

First, we expand the diametral lens to better account for the curvature. To do this, we first
calculate the vertical offset between the linear boundary segment and the actual curved
boundary. Then, we elongate the diametral lens of the segment by the same offset. An
isotropic example of this is shown in Figure 18. Again, for the anisotropic metric, we

perform this procedure based on the average metric of the two boundary vertices .

As with similar approaches in isotropic meshing, making this adjustment still does not
guarantee that new vertices will be inserted within the domain or that splitting a boundary
curve will produce good quality triangles. To remedy this, whenever a boundary edge is split,
any vertex that encroaches on the new edges in the virtual mesh must be removed. Together,
these methods ensure that the refined meshes will respect the boundary discretization and

that no overly-flat triangles will be created along the boundary.

Algorithm

We apply the following algorithm to produce quality anisotropic meshes that match an

arbitrary metric and have a prescribed maximum number of vertices.

48

Delaunay-Based Anisotropic Mesh Refinement

. Assign a metric to each vertex.

. Sum the anisotropic area of each triangle and calculate Agjo4 and thus (§,n) for every

triangle.

. Remove any interior vertices that encroach on a boundary segment according to the

metric.

. Recursively swap edges to minimize the ratio n/¢. If this does not result in an

anisotropic Delaunay triangulation, mark offending edges as being non-Delaunay.

. Insert vertices for triangles with n > (1 4 7) until the maximum number of vertices is
reached or there are no more triangles with large circumradii. Assign metrics to new
vertices based on a linear interpolation from the three vertices of the triangle in which
the vertex was inserted. If a face used in constructing the virtual mesh is marked
as non-Delaunay, then the treatment for non-empty circumcircles from Section is

applied.

. Remove vertices for edges with £ < (1 — 7) until there are no more small edges or
sufficiently many triangles with large n are created. Limiting how many large triangles
can be created is an effective way of reducing the overlap between refinement and
coarsening. If this limit is a fraction of the number of vertices inserted in the previous
refinement step then it adds a guarantee of termination irrespective of how many

iterations are allowed.

. Repeat the process of inserting and removing vertices until all triangles are within the
acceptable tolerance, no more vertices can be removed, or a fixed number of iterations

are performed. For quality meshes, the final process must always be mesh refinement.

49

Delaunay-Based Anisotropic Mesh Refinement

1:100

100:

100:1 100

100:1

Figure 19: Expected Triangle aspect ratios given the metric from Equation 19.

Results

To demonstrate our algorithm’s ability to create anisotropic meshes from a metric, the

metric d(27,23)(x,y) defined by Equation 19 is assigned at every vertex.

i) = /(2 —)M (G2 — 1)

a O
M(z,y) =
0 b
1x10* 0475 <z < 0.525
a =
1 Elsewhere
1x10* 0<z<0.05
b = (19)

1 Elsewhere

This metric should produce a mesh with distinct anisotropic regions. To simulate the
adaptive procedure, we first assign the analytic metric to vertices of a very coarse mesh and
then refine the mesh so that the metric-based area per triangle is approximately halved.
Then, the vertices of the new mesh are again assigned the metric from Equation 19. We
repeat this process four times to produce a mesh that is approximately sixteen times more
refined then the original mesh and well representative of the analytic metric. The meshes

produced from one iteration to the other are shown in Figure 20. To demonstrate that the

50

Delaunay-Based Anisotropic Mesh Refinement

1 1
0.8 08
06 06
> >
0.4 04
0.2 02
0 L P - P - T I 0 fAZAV)
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
X X

(a) Initial Isotropic Mesh (37(b) First Refinement (117 Ver-

Vertices) tices)
1 1
08 0.8
06 0.6
> >
04} 0.4
0.2 02
0 0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
X X

(c) Second Refinement (364 Tri-(d) Third Refinement (985 Ver-

angles) tices)
1
0.8;
06>
-
04}
02|
00 0.2 0.4 0.6 0.8 1
X
(e) Fourth Refinement (2423
Vertices)

Figure 20: A square mesh being recursively refined according to the metric defined by
Equation 19.

ol

Delaunay-Based Anisotropic Mesh Refinement

0.06-

| | i

AVaY)®

%)

7

S
AY,va

IS
VAYAV,Y
RVAVAVAV
o

vy

XX

K
AN
VA%
K
s
25
X
2y

N
KA

A
V’V

4
ERaY
S
RISKEX

XIS

ERRLS
: Xk
<)

XOR
} /)

A
)

s —
AR — 0.04

Z
3
5
o
X7

R
KON e ——— —

ARRRAT———— L

R T —————

NS e ——

o

AV
53
RO

°
o
R
5
AN
X
S
)
X!
£X
5
s
K
S

v
2
28
X
KoLy
SRRk
ALY

Q
5
KON
20
éV
&
0x
)
N
-
e
X

5
5

KR RIS i
PR R R RIORERIS ST i
RN O 0.03k=m1
A R e '

VarAVans
0.51 0.52 0.

T
1.5

L
5 5] 3 =g =] 3

(c) 100:1 Axis Scaling

Figure 21: Mesh from Figure 20e viewed with different axis scalings.

Delaunay-Based Anisotropic Mesh Refinement

(a) Mesh with 407 Vertices (b) Flow Speed

Figure 22: NACA 0012, Mach=0.5, Re=5000, 197 Vertices

mesh achieved the desired anisotropy we can view the mesh around the point (0.525,0.1)
with different axis scalings. It is obvious in Figure 21 that the mesh has achieved the desired

anisotropy because the mesh appears isotropic when certain regions are scaled accordingly.

For a more practical example, and one involving curved boundaries, we examine lami-
nar flow around the NACA-0012 airfoil. To compute the solution on each mesh, we use a
second-order, vertex-centered finite-volume solver. This solver uses least-squares reconstruc-
tion [29], Roe’s scheme [35], and Newton-GMRES for rapid convergence [20, 24]. Viscous
terms are discritized as described in [29]. To calculate the metric between adaptation loops,
we use the reconstruction error metric proposed in [31]. The initial mesh, shown in Fig-
ure 22a, is constructed using the isotropic mesh generator in GRUMMP [5, 26, 25]. This
mesh is obviously ill-suited to computing viscous flow around the airfoil since refinement
is done based only on boundary curvature. The asymmetry of the resulting solution in
Figure 22b is evidence of how poor the mesh is. After choosing a metric based on this
solution, we create a new mesh that should be better suited to the flow solution. We repeat
this process for the three intermediate meshes in Figure 23 and the solution is improved
with each successive refinement. After only four iterations of anisotropic refinement, the
solution is dramatically improved. The final mesh and solution are illustrated in Figure 23.

Close inspection of the stagnation point in Figure 24 shows that cell elements are small and

53

Delaunay-Based Anisotropic Mesh Refinement

Mach

000 0150 0300 0450 0600

2

=

7.
g
S
v.
)

7
N
S

| \V

64

/
d

)

o

Sl
_ (%r

;‘f
K

%)

5

N

N

AN
AR
aan)

ST, |
OO é’é ?
<[

¥,
X

sk
[
=
X

g

A '
oy 4
b

AN
%’#‘! Vép‘l

Ay

X i

RN
m{:@,«m{‘@%ﬂ
DAL

ROROTNNIR
e

(c) 20137 Vertices

Figure 23: Intermediate Meshes and Solutions: NACA 0012, Mach=0.5, Re=5000

o4

Delaunay-Based Anisotropic Mesh Refinement

S
N

K
7

\/

D
N
X

NN

‘
&
R

i
S

NN

.

0.015 K]

=
N

N\
RN

7

D
1%
VAN
O/
b
A
OS]
X
S
NN

=
S,
N
N

N

S
S

2

=

W,

S
S
S
=
N

X
ISVl
7> »4,‘,”!/,4,,
AN DR
P SRR
» W

+0.005

v..»’f;,ﬁ =

T
=
SIS

A%
G
%
K
N
<A N
i
KX\

K
VAN

N

K

VAY:
%y
=y

VA

TER
N
KN
%
s
DK
KA

Ay
N
1Y
X
5
]

2

-0.005

Figure 24: Close up view of the stagnation point of the finest mesh in Figure 23 a.

isotropic around the stagnation point and then they quickly become highly anisotropic as
the boundary layer develops. Since the metric in this case is based on the Hessian of the

flow variables, this is exactly the type of mesh that one would expect.

For each mesh adaptation, there is an inner series of refinement and coarsening loops that
aim to improve the final mesh. To illustrate the effect of these inner iterations on the
quality of the mesh, we have shown the distribution of the triangles within the quality space
in Figure 25 for the intermediate mesh created in Figure 23a. It is obvious from the change
between distributions a and b in Figure 25 that the initial refinement step is very effective
at concentrating triangles within the the desired area. Unfortunately, it also produces many
small edges and some poor angles. After coarsening is performed in Figure 25¢, most of
the triangles with small edges are removed but some triangles with very large circumradii
are created. Those small edges that do remain are all located in regions of high boundary
curvature. The next refinement again eliminates the large circumradii triangles without
creating many small edges. The final two passes of coarsening and refinement have very

little net impact on the quality of the mesh. While the final mesh contains some triangles

95

Delaunay-Based Anisotropic Mesh Refinement

25 1.4
12 | q
0f g
.
L]
15 ,
0.8 [B
-
0.6 [B
.
.
04 i
.
g +
Triangles ~ + 02 +]
s
.
10 15 20 25 0 0.2 0.4 0.6 0.8 1 1.2 1.4
3 3
(a) Initial Mesh
7 14
6 * 4 12| g
.
5t B 1h B
.
4t + R 08 i
-
3 — 0.6 [B
24" g 04 | B
.
.
!
1 M Triangles + 4 02k Triangles + B
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 7 0 0.2 0.4 0.6 0.8 1 1.2 1.4
3 3
(c) First Coarsening Pass (d) Second Refinement Pass
14 .
+
2L .]
.
12 | q
L]
15 B
0.8 [B
-
L]
0.6 [B
04 B
05 B
Triangles + 02k Triangles + B
0 ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4

(e) Second Coarsening Pass

3

(f) Final Refinement Pass

Figure 25: Sample Quality Distribution During Refinement and Coarsening

56

Delaunay-Based Anisotropic Mesh Refinement

outside the desired bounds, this is inevitable for a general geometry and metric.

Conclusions and Future Improvements

We have presented a method for anisotropic mesh refinement that produces high quality
meshes without expensive local optimization routines. We have done this by assigning met-
rics to vertices and then defining triangle quality based on approximate lengths. The three
mesh modification tools we used are swapping to maximize quality, inserting at approxi-
mate circumcenters to decrease circumradii, and removing vertices to eliminate small edges.
Because there are no guarantees on the results of these modification tools, we use them
iteratively to produce an optimal mesh. We have presented examples demonstrating that
our algorithm produces meshes that are well adapted to the prescribed metric. When we
combine this anisotropic adaptation with an effective metric estimator, we can recursively
improve CFD solutions without the enormous increase in computation cost associated with

uniform refinement.

There are also several improvements to our algorithm that could be implemented in the
future. For example, we have stated that local mesh optimization is generally an expensive
procedure. However, experience with isotropic meshing in GRUMMP has shown that if
the mesh is already of high quality, local optimization-based smoothing can be a fast and
effective way of further improving the mesh [14]. It is therefore our belief that the most
efficient way of creating high-quality anisotropic meshes would be to insert and remove
vertices according to our algorithm and then perform a limited number of passes over the
mesh using local optimization. Since the mesh is already of high quality, many fewer passes
over the mesh would be required to maximize the quality then if local optimization was the

principle tool for mesh improvement.

Another potential improvement to our algorithm is a modification of the desired quality
bounds in areas near boundaries with small features. The isotropic approach is to assign

length scales based on the boundary geometry[39]. A similar approach might work for

o7

Delaunay-Based Anisotropic Mesh Refinement

anisotropic meshing by decreasing the area of the desired equilateral triangle used in the
calculation for (§ag,7deg) in Figure 15. This would likely reduce the number of instances
where vertex removal creates poor quality triangles and thus it should reduce the need for

repeated vertex insertion and removal iterations.

Finally, our meshing algorithm produces some small angle triangles that could be improved
by further insertion. This would result in smaller triangles than desired, but the improve-
ment in triangle quality might be worth the extra computation cost associate with more
triangles. A final pass of quality-based refinement seems a likely way of addressing this

problem.

Although many two dimensional meshing algorithms proclaim a straightforward extension to
three dimensions, experience in three-dimensional isotropic meshing shows that this is rarely
the case. However, since our algorithm is based on an heuristic adaptation to Delaunay
meshing, it might be possible to apply the same general procedure in three dimensions and

still produce quality meshes. This would be an ideal focus of future work.

58

Conclusions

Summary

In order to improve the accuracy of CFD solutions relative to the time required to generate
those solutions, we have developed a method of refining meshes to equidistribute error. This
method involves two separate but essential steps: creating a metric (Chapter) and then

meshing the geometry based on that metric (Chapter).

To create the metric on which the refinement is based, we first estimate the error based
on local reconstruction. That is, we assume that the error at each vertex is equal to the
higher-order terms of the Taylor expansion. This requires reconstructing the un-resolved
derivatives and then combining them according to some norm of the variables. We then
evaluate this error estimate along a unit circle and calculate the first three even Fourier
coefficients. Since we can choose matrix values such that the metric will have the same

Fourier coefficients our metric will be a good approximation to the error measure.

Once the metric has been chosen for each vertex, we then refine our mesh so as to be uniform
according to the metric. All of our meshing operations are based on a definition of quality
that involves both the circumradius and minimum edge length according to the metric. The
most simple operation, swapping, is done if it increases the quality of the worst triangle. For
triangles that have large circumradii, we insert vertices at approximate circumcenters. This
is very similar to the Delaunay approach for isotropic meshing. For triangles with small
edges, we remove a vertex from that edge, thereby eliminating small edges. By repeatedly
inserting and removing vertices, we are able to create high-quality meshes without costly

minimization routines.

99

Conclusions

Results

By examining the flow around the NACA 0012 airfoil with several different parameters, we
were able to demonstrate the benefits of anisotropic adaptation for both second and third

order solutions.

In all the cases examined, the benefit of adaptive meshing over uniform refinement was
obvious. That’s because even for the finest uniform meshes that we used, some of the flow
features are insufficiently resolved. In particular, the boundary discretization that we chose
requires very little refinement at the trailing edge relative to the leading edge of the airfoil.
Since resolution at the trailing edge is important to most flow solutions, the meshes that we
created by uniform refinement are ill suited to the resulting flows. Similarly, by choosing a
large farfield boundary, our uniformly adapted mesh had many cells in areas with virtually
constant solution. Both of these problems are resolved by refining based on reconstruction

error.

Our adaptive refinement algorithm is designed to equidistribute error between cells but
also within each cell. This is accomplished by choosing a metric that is anisotropic and
from that creating anisotropic cells. For inviscid flows, most error is isotropic and thus
allowing for anisotropy had no noticeable effect on solution accuracy. For viscous flows,
however, the presence of boundary layers leads to extremely anisotropic errors. By compar-
ing anisotropic refinement with isotropic refinement for these flows, we were able to show
that using anisotropic cells can dramatically increase solution efficiency. This is especially

important when considering the separation point.

Because the reconstruction error is necessarily different depending on the order of the recon-
struction, we hypothesized that high-order solutions require adaptation based on higher or-
der derivatives. However, our results for third order solutions showed that refinement based
on third derivatives is not convincingly better than refinement based on second derivatives.
We believe this is due to the fact that regions with high third derivatives in general also

have high second derivatives. Between errors in reconstructing the derivatives and approxi-

60

Conclusions

mations made in creating the meshes, the difference between the different order derivatives
appears to be insignificant. While there exist trivial examples, such as the sine wave, where
third order solutions should not be refined based on second order derivatives. Our com-
parison of metrics based on second and third order derivatives for third order solutions are

inconclusive.

For every mesh that we adapted, our algorithm was able to create high quality anisotropi-
cally adapted meshes. This was done very quickly because the only two mesh operations we
used were adding vertices in some regions and deleting some in others. This is much cheaper
computationally than the local quality maximization algorithms that are more commonly

applied.

Recommendations

We claim to have developed a method of anisotropic adaptation that can be applied to any
Taylor-based CFD algorithm, however, we have only tested this approach for two dimen-
sional finite volume, compressible flow around the NACA-0012 airfoil. Before the generality
of our approach can be properly demonstrated, there remain a gamut of simulations to
be performed. This would include using other solvers, other PDEs and more complicated

geometries.

Eventually, the goal of this work is to show that accurate solutions can be generated faster
using mesh adaptation rather than computing on a single fine mesh, no quantitative discus-
sion of computation time is given in this thesis. This is because factors such as optimizing
the adaptive cycle and the code itself require further analysis. In particular, the metrics used
throughout the work were computed using a fully converged solution. Ait-Ali-Yahia et al.
[2] explicitly say that full convergence is not required to generate improved meshes. There-
fore, much computation time could be saved by determining when a sufficient convergence
is reached for creating the metric. Another issue with computation time is that current

incompatibility between the solver and the mesh generator prevents direct bit-wise object

61

Conclusions

transfer from one program to the other. Instead, we are required to repeatedly read and
write both the mesh and metric between programs. Having mesh modification done within
the solver would substantially decrease computation time. Finally, there is a third issue of
how much to refine the mesh between solutions. We have arbitrarily chosen to double the
mesh density between iterations. If the metric is not very accurate, this could be too big a
step between iterations and could negatively effect mesh optimality. If the metric (and the
interpolation of that metric) is very precise, then perhaps a larger step would still produce
optimal meshes and thus fewer steps would be required. All of these factors are essential to
the efficiency of anisotropic adaptation and require analysis before our algorithms could be

commercially applicable.

We have defined our metric so that it applies to any order solution, with any number of
variables, in any dimension. While this general extension is theoretically sound, we have
only tested it for second and third order solutions with four variables in two dimensions.
The reasons for this are a lack of support in our solver for fifth order reconstructions, as
well as the absence of high quality three dimensional anisotropic mesh generators. Future
work should aim to create these structures so that the general applicability of this method
can be better demonstrated. Furthermore, solver modifications such as turbulence modeling
and slope limiting are bound to have an effect on the calculated metric and likewise the
anisotropy of the mesh will influence the effectiveness of those modifications. A thorough

analysis of these relations is also a useful avenue for further research.

With respect to mesh refinement, there are many minor improvements to the algorithm
that could potentially increase the quality of the resulting mesh. This includes better
support for small boundary features as well as a local optimization algorithm to be used
after all the points have been inserted. As with most heuristic methods, there are several
parameters in our meshing algorithm that can be tweaked for improved performance for
a particular type of problem. In particular, the rate at which the metric is smoothed

during swapping could dramatically change the resulting mesh even though the quality is

62

Conclusions

still considered high. Proper analysis of this parameter would also require examining how
beneficial smooth variation in cell size and shape is to the accuracy and efficiency of the
solutions produced. Another parameter which affects the resulting mesh, and how long it
takes to generate it, is the ratio of how many new large circumradius triangles can be created
during a coarsening loop. Increasing this number improves the final measured quality of
the mesh but decreasing it reduces the time required to create the mesh and also reduces
the overall number of vertices removed. This also relates to the smoothing of the metric

because removing vertices potentially removes metric information.

While the list of future work is large, both the metric computation and the mesh refinement
algorithms are new approaches and show promise for future development. In particular, the
idea that anisotropic adaptation can be applied to higher order solutions may contribute
to the debate over whether or not high-order solvers are truly beneficial for most CFD
applications. Regardless, there is no doubt that the advantages of anisotropic adaptation
and high-order methods can be successfully combined and this paper contains a simple and

effective way of doing so.

63

Bibliography

[1]

2]

3]

[4]

5]

[6]

AGARD Fluid Dynamics Panel. Test Cases for Inviscid Flow Field Methods. AGARD
Advisory Report AR-211, AGARD, May 1985.

D. Ait-Ali-Yahia, G. Baruzzi, W. G. Habashi, M. Fortin, J. Dompierre, and M. G.
Vallet. Anisotropic mesh adaptation: towards user-independent, mesh-independent and

solver-independent CFD. Part II: Structured grids. International Journal for Numerical

Methods in Fluids, 39(8):657-673, July 2002.

R. Balasubramanian and J.C. Newman III. Comparison of adjoint-based and feature-
based grid adaptation for functional outputs. International Journal for Numerical

Methods in Fluids, 53:1541-1569, 2007.

Timothy J. Barth and Paul O. Frederickson. Higher order solution of the Euler equa-
tions on unstructured grids using quadratic reconstruction. ATAA paper 90-0013, Jan-

uary 1990.

Charles Boivin and Carl F. Ollivier-Gooch. Guaranteed-quality triangular mesh genera-
tion for domains with curved boundaries. International Journal for Numerical Methods

in Engineering, 55(10):1185-1213, December 2002.

Houman Borouchaki, Paul Louis George, Frederic Hecht, Patrick Laug, and Eric Saltel.
Delaunay mesh generation governed by metric specifications. part 1: Algorithms. Finite

Element Analysis and Design, 25:61-83, 1997.

64

Bibliography

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Houman Borouchaki, Paul Louis George, and Bijan Mohammadi. Delaunay mesh
generation governed by metric specifications. part 2: Applications. Finite Element

Analysis and Design, 25:85-109, 1997.

Gustavo C. Buscaglia and Enzo A. Dari. Anisotropic mesh optimization and its ap-

plication in adaptivity. International Journal for Numerical Methods in Engineering,

40:4119-4136, 1997.

A. Bykat. Automatic generation of triangular grid: I - subdivision of a general polygon
into convex subregions. ii - triangulation of convex polygons. International Journal for

Numerical Methods in Engineering, 10(6):1329-1342, 1976.

M.J. Castro-Diaz, F.Hecht, B. Mohammadi, and O.Pironneau. Anisotropic unstruc-
tured mesh adaptation for flow simulations. International Journal for Numerical Meth-

ods in Fluids, 25:475-291, 1997.

L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR-89-983,

Dept. of Computer Science, Cornell University, 1989.

Francois Courty, David Leservoisier, Paul-Louis George, and Alain Dervieux. Continous

metrics and mesh adaptation. Applied Numerical Mathematics, 56:117-145, 2006.

J. Dompierre, M. G. Vallet, Y. Bourgault, M. Fortin, and W. G. Habashi. Anisotropic
mesh adaptation: towards user-independent, mesh-independent and solver-independent
CFED. Part III. Unstructured meshes. International Journal for Numerical Methods in

Fluids, 39(8):675-702, July 2002.

Lori A. Freitag and Carl F. Ollivier-Gooch. Tetrahedral mesh improvement using
swapping and smoothing. International Journal for Numerical Methods in Engineering,

40(21):3979-4002, 1997.

Weizhang Huang. Mathematical principles of anisotropic mesh adaptation. Communi-

cations in Computational Physics, 1(2):276-310, 2006.

65

Bibliography

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Francgois Labelle and Jonathan Richard Shewchuk. Anisotropic voronoi diagrams and
guaranteed-quality anisotropic mesh generation. In Proceedings of the Nineteenth An-
nual Symposium on Computational Geometry, pages 191-200. Association for Comput-

ing Machinery, 2003.

S. H. Lo. A new mesh generation scheme for arbitrary planar domains. International

Journal for Numerical Methods in Engineering, 21:1403-1426, 1985.

D. L. Marcum and Kelly P. Gaither. Solution adaptive unstructured grid generation
using pseudo-pattern recognition techniques. In Proceedings of the Thirteenth AIAA

Computational Fluid Dynamics Conference, July 1997. ATAA 97-1860.

Dimitri Mavriplis and Antony Jameson. Multigrid solution of the two-dimensional
Euler equations on unstructured triangular meshes. AIAA paper 87-0353, January

1987.

Krzysztof Michalak and Carl Ollivier-Gooch. Matrix-explicit GMRES for a higher-
order accurate inviscid compressible flow solver. In Proceedings of the Eighteenth AIAA

Computational Fluid Dynamics Conference, 2007.

Gary L. Miller, Dafna Talmor, and Shang-Hua Teng. Optimal coarsening of unstruc-
tured meshes. Journal of Algorithms, 31(1):29-65, 1999.

Amir Nejat. A Higher-Order Accurate Unstructured Finite Volume Newton-Krylov
Algorithm for Inviscid Compressible Flows. PhD thesis, University of British Columbia,

Department of Mechanical Engineering, 2007.

Amir Nejat and Carl Ollivier-Gooch. On preconditioning of Newton-GMRES algorithm
for a higher-order accurate unstructured solver. In Proceedings of the Fourteenth Annual

Conference of the Computational Fluid Dynamics Society of Canada. cfdsc, 2006.

66

Bibliography

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Amir Nejat and Carl Ollivier-Gooch. A high-order accurate unstructured finite volume

newton-krylov algorithm for inviscid compressible flows. Journal of Computational

Physics, 227(4):2592-2609, 2008.

Carl F. Ollivier-Gooch. An unstructured mesh improvement toolkit with application

to mesh improvement, generation and (de-)refinement. ATAA 98-0218, January 1998.

Carl F. Ollivier-Gooch. GRUMMP — Generation and Refinement of Unstructured,
Mixed-element Meshes in Parallel. http://tetra.mech.ubc.ca/GRUMMP, 1998-2005.

Carl F. Ollivier-Gooch. ANSLib: A scientific computing toolkit supporting rapid nu-
merical solution of practically any PDE. In Proceedings of the Eighth Annual Con-
ference of the Computational Fluid Dynamics Society of Canada, pages 21-28. Société
canadienne de CFD / CFD Society of Canada, June 2000.

Carl F. Ollivier-Gooch and Charles Boivin. Improved cell size and grading in guaranteed
quality triangular and tetrahedral meshes. In Proceedings of the Ninth International

Meshing Roundtable, pages 43-54. Sandia National Laboratories, October 2000.

Carl F. Ollivier-Gooch and Michael Van Altena. A high-order accurate unstructured
mesh finite-volume scheme for the advection-diffusion equation. Journal of Computa-

tional Physics, 181(2):729-752, 2002.

Doug Pagnutti and Carl Ollivier-Gooch. Delaunay-based anisotropic mesh refinement.

Computer Methods in Applied Mechanics and Engineering, Submitted, 2008.

Doug Pagnutti and Carl Ollivier-Gooch. A generalized framework for high order
anisotropic mesh adaptation. Computer Methods in Applied Mechanics and Engineer-

ing, Submitted, 2008.

Phillipe Pebay and Timothy J. Baker. Analysis of triangle quality measures. Mathe-

matics of Computation, 72:1817-1839, 2003.

67

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

R. Radespiel. A cell-vertex multigrid method for the Navier-Stokes equations. NASA

TM-101557, 1989.

Shmuel Rippa. Long and thin triangles can be good for linear interpolation. SIAM
Journal on Numerical Analysis, 29(1):257-270, February 1992.

P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.

Journal of Computational Physics, 43:357-372, 1981.

P. L. Roe. Characteristic-based schemes for the Euler equations. In Annual Review of

Fluid Mechanics, volume 18, pages 337-365. Annuals Reviews, Inc., 1986.

J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh genera-

tion. Journal of Algorithms, 18(3):548-585, May 1995.

Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical

Computing, 7(3):856-869, July 1986.

Jonathan R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis, School of

Computer Science, Carnegie Mellon University, May 1997.

D. A. Venditti and D. L. Darmofal. Adjoint error estimation and grid adaptation for
functional outputs: Application to quasi-one-dimensional flow. Journal of Computa-

tional Physics, 164(1):204-227, October 2000.

D. A. Venditti and D. L. Darmofal. Grid adaptation for functional outputs: Application
to two-dimensional inviscid flows. Journal of Computational Physics, 175(1):40-69,

February 2002.

D. A. Venditti and D. L. Darmofal. Grid adaptation for functional outputs: Application

to two-dimensional viscous flows. Journal of Computational Physics, 187:22-46, 2003.

M.A. Yerry and M.S. Shephard. A modified quadtree approach to finite element mesh

generation. IEEE Computer Graphics and Applications, 3:39-46, 1983.

68

Bibliography

[44] Pengtao Yue, Chunfeng Zhou, James J. Feng, Carl F. Ollivier-Gooch, and Howard H.
Hu. Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite

elements with adaptive meshing. Journal of Computational Physics, 219:47-67, 2006.

69

