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ABSTRACT 

Self-paced Brain computer interface (SBCI) systems allow individuals with motor 
disabilities to use their brain signals to control devices, whenever they wish. These 
systems are required to identify the user’s “intentional control (IC)” commands and they 
must remain inactive during all periods in which users do not intend control (called “no 
control (NC)” periods).  

This dissertation addresses three issues related to the design of SBCI systems: 1) their 
presently high false positive (FP) rates, 2) the presence of artifacts and 3) the 
identification of a suitable evaluation metric.  

 To improve the performance of SBCI systems, the following  are proposed: 1) a method 
for the automatic user-customization of a 2-state SBCI system, 2) a two-stage feature 
reduction method for selecting wavelet coefficients extracted from movement-related 
potentials (MRP), 3) an SBCI system that classifies features extracted from three 
neurological phenomena: MRPs, changes in the power of the Mu and Beta rhythms; 4) a 
novel method that effectively combines methods developed in 2) and 3 ) and                    
5) generalizing the system developed in 3)  for detecting a right index finger flexion to 
detecting the right hand extension.  Results of these studies using actual movements show 
an average true positive (TP) rate of 56.2% at the FP rate of 0.14% for the finger flexion 
study and an average TP rate of 33.4% at the FP rate of 0.12% for the hand extension 
study. These FP results are significantly lower than those achieved in other SBCI 
systems, where FP rates vary between 1-10%. 

We also conduct a comprehensive survey of the BCI literature. We demonstrate that 
many BCI papers do not properly deal with artifacts. We show that the proposed BCI 
achieves a good performance of TP=51.8% and FP=0.4% in the presence of eye 
movement artifacts. Further tests of the performance of the proposed system in a pseudo-
online environment, shows an average TP rate =48.8% at the FP rate of 0.8%.  

Finally, we propose a framework for choosing a suitable evaluation metric for SBCI 
systems. This framework shows that Kappa coefficient is more suitable than other 
metrics in evaluating the performance during the model selection procedure.  
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CHAPTER 1 INTRODUCTION AND BACKGROUND 

 

 

1.1 Introduction and motivation 

Many physiological disorders such as Amyotrophic Lateral Sclerosis (ALS) or 

injuries such as high-level spinal cord injury can disrupt the communication path between 

the brain and the body.  People with severe motor disabilities may lose all voluntary 

muscle control, including eye movements. These people are forced to accept a reduced 

quality of life, resulting in dependence on caretakers and escalating social costs [1]. Most 

of the existing assistive technology devices for these patients are not possible because 

these devices are dependant on motor activities from specific parts of the body. 

Alternative control paradigms for these individuals are thus desirable. 

Over the last two decades, brain-computer interface (BCI) has emerged as a new 

frontier in assistive technology since it could provide an alternative communication 

channel between a user’s brain and the outside world [2](see Figure 1-1 for a high-level 

block diagram of a BCI system). Other terms that are also used in the literature for 

referring to a BCI system include: brain interface (BI), direct brain interface (DBI), and 

brain machine interface (BMI). A successful BCI design would enable people to control 

objects in their environment (such as a light switch in their room or television, 

wheelchairs, neural prosthesis and computers) by thought only.  This could be 

accomplished by measuring specific features of the user’s brain activity that relate to 

his/her intent to perform the control. This specific type of brain activity is termed a 

“neurological phenomenon”. As an example, when a particular movement such as right 

index finger flexion is performed, specific neurological phenomena that correspond to 
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that movement are generated. The corresponding neurological phenomena are then 

translated into signals that are eventually used to control devices [3].  

 

 
Figure 1-1. A BCI system allows users to control a device using their brain signals only. 

Currently, two different approaches are pursued in the design of BCI systems: 

synchronized and self-paced [4]. In the synchronized approach, which forms the 

traditional approach to the design of BCI systems, the user can only perform the control 

in certain time intervals that are specified by the system. While synchronized BCI 

systems can achieve high classification accuracy (>90%), their application is limited. 

This is because the user cannot perform the control at all times. Moreover, many of these 

systems assume that the user will exert an intentional control (IC) command during 

specified control periods. In other words they do not consider periods for which the user 

does not wish to exert control (called no control, NC, periods). As a result, they may 

become unstable during NC periods [3]. To address these shortcomings of synchronized 

BCI systems, the concept of self-paced BCI (SBCI) has been proposed.  An SBCI system 

is constantly available for a user to use, as it should be able to identify IC patterns from 

the NC periods. Figure 1-2 shows a typical example of a 2-state SBCI system that should 

recognize IC patterns generated as the result of right finger flexion from the NC states. 

The output of this SBCI system is ‘IC’ when the system detects an IC command and is 

“NC” at all other times. 
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Figure 1-2. A typical SBCI system that identifies an IC command related to the execution of right 
finger flexion 

The main aim of this thesis is to study the following three issues pertaining to 

SBCI systems:  

1.1.1 High false positive rates (FPR) 

The performance of SBCI systems is usually summarized by two measures: 1) the 

correct detection rate of IC commands (denoted as the true positive or TP rate), 2) the 

amount of false activations during NC periods (false positive or FP rate). At present, the 

performance of the SBCI technology is not high enough so that it can be used in a 

practical setting. While these systems can achieve an arguably good detection rate of 

TP>50%, their FP rates remain too high for practical applications (e.g., a false positive 

occurs every few seconds [5, 6]). For example, it has been argued that for an SBCI 

system that makes a decision every 
th

16
1 of a second, FP rates higher than 2% can cause 

excessive user frustration, since the SBCI system generates a false positive every 6.25 

seconds on average [5]. As another example, consider the self-paced control of lighting in 

a room using an SBCI system.  The system has two states: I (turn on/turn off the light) 
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and N (no control). Figure 1-3 (a) and Figure 1-3 (b) show the brain states of a user and 

the output of the SBCI system, respectively. As seen, the system generated an FP at the 

beginning of monitoring the brain signals. The user then attempted to compensate for this 

error by issuing an intentional control command. After a short period, the system 

generated a second false positive, and the user had to compensate for it again. Clearly, 

during this period, the user only managed to compensate for the errors generated by the 

system.  This process becomes frustrating when errors happen frequently and especially 

if the TP rate is not very high. Based on these arguments, it is clear that the ultimate value 

of this new technology will largely depend on the degree to which its performance can be 

improved, e.g., false positives shall occur no more than once per minute. 

 
Figure 1-3. High false positive rates can significantly impact the performance of an SBCI system, 
even if the TP rates are high. (a) Brain states of a user; (b) The output of the SBCI system. 

1.1.2 Presence of artifacts 

 A second factor that limits the application of SBCI systems is the presence of 

artifacts. Artifacts are unwanted signals that can degrade the performance of the system. 

If artifacts occur at the same time of the initiation of an IC command by the user, they 

may change the shape of a neurological phenomenon, and decrease the TP rate. If they 
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occur during the NC periods, they can generate false positives and increase the FP rate. 

Since some artifacts such as physiological artifacts (e.g., eye blinks) frequently occur, 

methods should be developed to effectively handle them. Unfortunately, most BCI 

systems do not handle artifacts at all (or at least efficiently). This is a serious drawback in 

online applications of BCI systems in general and SBCI systems in particular. 

1.1.3 Evaluation metrics 

Yet another important factor in the design of SBCI systems is the availability of a 

suitable “evaluation metric”. In synchronized BCI systems, the overall classification 

accuracy (OA) and the information transfer rate (ITR) are metrics that are widely used. 

They are also accepted by the research community as reliable measures for comparing the 

performances of different synchronized BCI systems. This is not the case for SBCIs. It is 

very difficult to compare the performances of different SBCI systems. A wide variety of 

metrics such as OA[7], HF-difference[8], the mutual information (and ITR) [9], Kappa 

[10], the area under the receiver operating characteristic (ROC) curve [10] , the TP rate at 

a fixed FP rate [5] and others have been proposed in the literature. However, no 

consensus yet exists amongst self-paced BCI researchers regarding which metric is more 

suitable for summarizing the performance and how a suitable evaluation metric should be 

chosen for a particular self-paced BCI systems [4]. 

Please note that the neurological phenomena generated as the results of attempted 

movements by able-bodied individuals are similar to those generated by individuals with 

motor disabilities, as discussed later in this section. For this reason, in this thesis, data 

collected from able-bodied individuals are used for the analysis. 

 Before we address the existing work in the literature related to the above topics, 

we first provide some background information about the operation of BCI systems. This 

is done in the next two sections.  

1.2  Functional model of a brain computer interface system 

Figure 1-4 shows a traditional BCI system in which a person controls a device in 

an operating environment (e.g., a powered wheelchair in a house) through a series of 
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functional components [11]. In this context, the user’s brain activity is used to generate 

IC commands that operate the BCI system. The user monitors the state of the device to 

determine the result of his/her control efforts.  
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Figure 1-4. Functional model of a BCI system.  Note the control display is optional.  

The building components of a BCI system (shown in Figure 1-4 ) have the 

following tasks: the electrodes placed on the head of the user record the brain signal (e.g., 

electroencephalography (EEG) signals from the scalp, electrocorticography (ECoG) 

signals from the brain or neuronal activity recorded using microelectrodes implanted in 

the brain). The ‘artifact processor’ block deals with artifacts in the EEG signals after the 

signals have been amplified. This block can either remove artifacts from the EEG signals 

or can simply mark some EEG epochs as artifact-contaminated. The ‘feature generator’ 

block transforms the resultant signals into feature values that relate to the underlying 

neurological phenomena employed by the user for control. For example, if the user is 

using the power of his/her Mu (8-12Hz) rhythm for the purpose of control, the feature 

generator could continually generate features relating to the power-spectral estimates of 

the user’s Mu rhythms. The feature generator generally consists of three components: the 

‘signal enhancement’, the ‘feature extraction’, and the ‘feature selection’ components, as 

shown in Figure 1-4. 

In some BCI designs, ‘signal enhancement’ or some of form of ‘pre-processing’ is 

performed to increase the signal-to-noise ratio of the brain signal(s) prior to extracting the 
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features. To reduce the dimensionality of the problem, it is desired to reduce the number 

of features and/or the number of EEG channels. ‘Feature selection’ could be performed 

after or at the feature extraction stage to reduce the number of features and/or EEG 

channels used. Ideally, the features that are meaningful or useful in the classification 

stage are identified and chosen, while others are omitted.  

The ‘feature translator’ block translates the features into logical control signals, 

e.g., 0 and 1 where 0 denotes NC and 1 denotes IC. The translation algorithm uses linear 

classification methods (e.g., linear discriminant analysis) or nonlinear ones (e.g., neural 

networks). As shown in Figure 1-4, a feature translator may consist of two components: 

‘feature classification’ and ‘post-processing’. The main aim of the feature classification 

component is to classify the features into logical control signals. Post-processing methods 

such as a moving average may be used after feature classification to reduce the number of 

activations of the system.  

The control interface translates the logical control signals from the feature 

translator into semantic control signals that are appropriate for the particular type of 

device used. Finally, the device controller translates the semantic control signals into 

physical control signals that are used by the device. For more detail refer to [3].  

In the next section, we provide a brief review of some of the work done in the 

literature. 

1.3 Background 

Since the introduction of the concept of BCI control in early 70’s (e.g., [12]), 

many BCI systems have been developed. Despite these efforts, many design issues 

remain under debate. In this section, we briefly review these design issues. 

1.3.1 Signal recording 

An activity in a normal human brain can generate various responses including 

electrical, magnetic, and metabolic responses. These signals can be detected by 

appropriate sensors and they can be used for controlling a BCI system. For example, 

brain activity can produce magnetic fields that can be recorded using 
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magentoencephalographic (MEG) activity.  Brain activity can also result in some 

metabolic consequences in terms of changes in the blood flow and metabolism. Imaging 

methods such as functional magnetic resonance imaging (fMRI) can image these 

activities. At present, because of the cost and physical dimensions, methods that measure 

the electrical activities of the brain are more favored [1]. 

There are various ways to record the electrical activities of the brain. Non-

invasive BCI approaches mostly use the EEG signals as the source of information. EEG 

signals are recorded by means of electrodes placed on the scalp. Invasive approaches, on 

the other hand, use electrocorticography (ECoG) signals recorded from the surface of the 

brain or action potentials of single neurons in the cerebral cortices, using implanted 

microelectrodes.  

 EEG signals have good temporal resolution, but their spatial resolution is not 

good compared to other recording technology methods [1]. A recent study showed that 

only 12% of published BCI studies use implanted electrodes, 5% use microelectrode 

arrays, and more than 80% use EEG signals [3]. The main reason is that the EEG 

recording equipment is commercially produced and their cost is lower than other brain 

signal recording technologies. Also, since no surgery is necessary for placing electrodes, 

more individuals are willing to participate in such BCI experiments.  

1.3.2 Choice of neurological phenomenon 

 Neurological phenomena are specific features of the brain activity that appear in 

the brain signals and can be used to control a BCI system. They are time-locked to a 

physical stimulus or to the cognitive responses of the brain. Neurological phenomena are 

characterized by their voltage amplitude, their latency which is related to the internal or 

external stimuli and their spatiotemporal distribution. Their amplitude is usually much 

smaller than the background EEG signal.  

The more common neurological phenomena in BCI systems are: 

 Changes in the brain rhythms (CBR) such as the Mu, and Beta rhythms related to 

a movement: Mu ([8-12] Hz) and Beta ([18-30] Hz) rhythms are frequency bands in the 

brain signals that are known to be suitable neurological phenomena for controlling BCI 
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systems. The reason is that they are closely associated with those cortical areas directly 

connected to normal motor channels of the brain. Voluntary movement results in a 

circumscribed desynchronization in the Mu and Beta bands that are localized close to the 

sensorimotor areas ([13, 14]). This desynchronization, termed “event-related 

desynchronization (ERD)”, starts about two seconds prior to the onset of movement [15]. 

The enhanced rhythmic activity following the movement is called “event-related 

synchronization (ERS)”.   The post-movement Beta ERS is found in the first second after 

the termination of a voluntary movement, when the Mu rhythm might still display a 

desynchronized pattern [15]. The Beta ERS is a relatively robust phenomenon and is 

found in nearly all users after a finger, hand, arm or foot movement (see Figure 1-5 (a) 

for an example of the Beta ERS) [16].  

Many research groups have developed BCI systems using the features extracted 

from the Mu and Beta rhythms. However, the works of two research groups are more 

prominent. Wolpaw and McFarland and their associates in Wadsworth Center have 

focused on developing such a CBR-based synchronized BCI system. Their proposed BCI 

system allows users to control the amplitude of Mu and Beta rhythms. This amplitude is 

then used to move a cursor on the computer screen [17-20]. Users of this system usually 

need training that may take up to a few weeks, but eventually they can achieve high 

accuracies (e.g., above 90%) [21]. The other research group, the Graz BCI, uses the ERD 

and the ERS of the Mu/Beta rhythms in the design of synchronized BCI systems[22-26]. 

Similar to the first group, after a few sessions of training, the users of the Graz BCI can 

also achieve high accuracies.  
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             (a)     (b) 

Figure 1-5. Two examples of neurological phenomena. (a) Changes in the power of Beta rhythms 
over time; (b) A movement-related potential. Vertical line shows the time of activation of the 
movement.  Note that these shapes are generated by averaging over many epochs. 

Movement related potentials (MRPs): Averaging the EEG data with respect to 

movement onset results in the generation of slow potentials called “movement-related 

potentials” (MRPs) [27]. MRPs start about 1.5–1 seconds before the onset of a particular 

movement and have bilateral distribution (see Figure 1-5 (b) for an example of an MRP) 

[27-31]. High-resolution EEG studies have modeled the main sources of MRPs arising in 

the supplementary motor area and the primary sensorimotor cortex [32, 33]. MRPs have 

been used for the neurological phenomenon in several BCI studies. These studies include 

the work that has been carried out by Mason and Birch’s research group [5, 7, 34-36], 

Muller and Blankertz et. Al [37, 38] as well as Yom-tov and Inbar [6, 39, 40] . 

 Other movement related activities (OMRAs): We categorized the movement-

related activities that do not belong to any of the preceding categories as OMRA. 

OMRAs are usually not restricted to a particular frequency band or scalp location and 

usually cover different frequency ranges. They may be a combination of specific and 

non-specific neurological phenomena. Levine and Huggins’ research group are amongst 

the prominent research groups that have used OMRAs related to different movements to 

design their ECoG-based BCI system. They recorded ECoG activity from patients with 

16-126 subdural electrodes prior to an epilepsy surgery. They have used topographically 

focused potentials associated with different movements to develop various 2-state self-

paced BCI designs [8, 41, 42]. 
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Slow cortical potentials (SCPs): SCPs are slow usually non-movement potential 

changes generated by the user. They reflect changes in the cortical polarization of the 

EEG, lasting from 300 ms up to several seconds [2, 43]. Birbaumer and his colleagues 

have developed a BCI system called “Thought Translation Device (TTD)” that uses an 

SCP as the source of control [44-47]. They have shown that patients with severe motor 

disabilities such as late-stage ALS can learn to control their SCPs and thus use TTD to 

communicate with the outside world.  

Cognitive tasks (CTs): Changes in the brain signals as a result of non-movement 

mental tasks (e.g., mental counting, solving a multiplication problem) are usually 

categorized as CTs [48]. The works of Milan et.al [49] and Anderson et. al [50] are 

amongst the prominent BCI research carried out using cognitive tasks. Millan et.al’s 

work involves using the mental tasks to control a mobile robot, while Anderson et.al have 

focused on the design of a multi-class BCI system that detects cognitive tasks associated 

with different tasks such as 3D object recognition, mental counting, etc [51, 52].  

P300: When infrequent or particularly significant auditory, visual or 

somatosensory stimuli are interspersed with frequent or routine stimuli, they evoke a 

positive peak at about 300 ms after the stimulus is received. This peak is called P300 [48, 

53]. Using this so-called “oddball” response, Donchin and his colleagues have used P300 

to build a successful BCI system [54, 55]. More recently, a number of studies have shown 

that P300-based control can be used as an alternative communication channel for people 

with spinal cord injury and ALS [56, 57]. Also, for individuals with visual impairments, 

solutions based on auditory or tactile stimuli have been proposed [58, 59].  

Visual evoked potentials (VEP): VEPs are small changes in the brain signal, 

generated in response to a visual stimulus such as flashing lights. They display properties 

whose characteristics depend on the type of the visual stimulus [48]. Many BCI systems 

use VEPs to control the BCI system including the works of Vidal [60], Sutter [61] and 

Middendorf [62]. 

Steady-State visual evoked potentials (SSVEP): If a visual stimulus is presented 

repetitively at a rate of 5-6 Hz or greater, a continuous oscillatory electrical response is 

elicited in the visual pathways. Such a response is termed SSVEP.  The distinction 
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between VEP and SSVEP depends on the repetition rate of the stimulation [63]. The 

works carried out by Gao’s research group are noticeable in this area [63-66].  

Multiple neurological phenomena (MNs): BCI systems based on multiple 

neurological phenomena use a combination of two or more of the above neurological 

phenomena for the purpose of control. We will review this category of BCI systems in 

more details later in this chapter.  

Activity of neural cells (ANC): Some BCI research groups have used 

microelectrode arrays to record the activity of single neurons in the motor cortex for the 

purpose of BCI control [67-73]. These BCI systems are usually based on reconstructing a 

movement from recorded spike trains. Experiments with monkeys have shown a 

relatively good ability of control in multiple directions in these systems [74]. Recently, 

there have been reports of a patient learning to use his neuronal activity to move a 

computer cursor to several directions using the ANCs [73]. These encouraging results 

provide hope for BCI control with multiple options and high accuracy. The downside is 

the invasive nature of the microelectrode implants, which may result in infection and side 

effects in the brain.   

The above neurological phenomena can be categorized in two groups based on the 

origin of the phenomenon in the brain. Those neurological phenomena generated as the 

result of cognitive responses of the brain are called endogenous.  The ones evoked by an 

external stimulus are called exogenous.  

BCI systems that use exogenous neurological phenomena, usually do not need 

any user training [54]. The downside of using these systems is that they require a constant 

commitment of one of sensory pathways to an external stimulus [75]. Furthermore, not 

all users may tolerate repetitive sensory stimulation. On the other hand, endogenous-

based BCI systems rely on the generation of a phenomenon that is more natural and is 

thus expected to cause the users less fatigue. This may be the reason why more than 80% 

of BCI studies use endogenous neurological phenomena to control BCI systems [3].  

To generate a suitable neurological phenomenon, endogenous-based BCI systems 

usually need user training. This training may take a long time, sometimes even up to few 

months. The use of complex signal processing schemes for detecting weak neurological 
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phenomena can greatly reduce or even eliminate the training process [76]. Another 

advantage of employing endogenous neurological phenomena is that it is possible to 

select and use a combination of some of them to improve the performance of the system.  

1.3.3 Timing of BCI control 

 So far most BCI researchers have focused their attention on “synchronized” 

control applications. In synchronized applications, a user can initiate a command only 

during specific times specified by the system (see Figure 1-6(a)). In these systems, the 

users are required to generate an intentional control (IC) command during the periods 

allowed by the BCI system. In the example shown in Figure 1-6 (a), the user should 

generate one of IC1 or IC2 commands during the control period (the control period is 

shown as a ‘box’).  

In contrast, in self-paced BCI system, a user does not need to be constantly 

engaged in initiating the control command. In these systems, the users only consciously 

control their state when they desire to control the device (see Figure 1-6(b)) [35].  In the 

example shown in Figure 1-6 (b), the user is in the no control (NC) state at all times, 

except for those periods when he/she initiates an IC command.  In the latter case, the 

system will be in an IC state. During NC periods, the user can be idle, thinking about a 

problem or performing any action other than attempting to control the device. This 

property of SBCI systems that allows them to support the presence of NC periods is 

called “NC support”. Whenever a BCI system involves control actions with periods of 

inaction, it needs to have NC support. 
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Figure 1-6. Synchronized vs. self-paced control. (a) In a synchronized BCI system, control can be 
done only in certain intervals specified by the system; (b) In a self-paced BCI system, the control is 
done at the user’s own pace. 

Synchronized BCI systems usually require the user to initiate an IC command 

during the control periods. In other words, during the control periods, the users are 

expected to be engaged with controlling the device. For this reason, they usually do not 

support the “NC” periods. In some cases, the output of the system might even become 

unstable if an IC command is not issued.  

In the next three sections, we briefly describe the literature related to this thesis. 

First, in Section 1.4, the previous work pertaining to the design of SBCI systems is 

discussed. In Section 1.5, we address the use of more than one neurological phenomenon 

as the control source. Then in Section 1.6, we address the previous work on handling 

artifacts in the design of SBCI systems. Finally in Section 1.7, we discuss the previous 

research related to evaluating the performance of SBCI systems. 

1.4 Design of self-paced BCI systems 

Self-paced BCI systems provide the user more freedom and more control 

flexibility. From the signal processing point of view, they are much more challenging to 

design compared to synchronized BCI systems.  The main reason is that there are many 
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types of NC states (e.g., idle, different mental tasks, etc.). As a result, an SBCI system 

should be able to handle various types of different NC signals, once the SBCI system is 

turned on.  For this reason, only a few BCI groups have pursued the design of self-paced 

BCI systems [7, 36, 40, 77, 78]. 

The concept of self-paced control started in early 90’s with the development of 

the outlier processing method (OPM), which aimed at detecting movement-related 

potentials (MRPs) in the EEG signals [36].  The results from this work were promising as 

true positive (TP) rates greater than 90% were achieved on a thumb movement task.  

However, its poor performance over NC epochs (FP rates ranging from 10% to 30%) 

restricted its use as a BCI system. 

To overcome the vulnerabilities of OPM, another SBCI system called the low 

frequency- asynchronous switch design (LF-ASD) was later proposed in 2000 by Mason 

and Birch [35] . Similar to OPM, LF-ASD is also designed to detect MRPs in the EEG 

signals. It uses features extracted from the 0.1- 4Hz band in six bipolar EEG channels 

recorded from F1- FC1, Fz- FCz, F2- FC2, FC1- C1, FCz-Cz and FC2- C2 on the scalp, 

sampled at 128 Hz. A detector that was a simplified version of the discrete wavelet 

transform was applied as the feature extractor and a 1-nearest neighbor (1-NN) classifier 

was used as the feature classifier.  By analyzing the EEG signals of five individuals, the 

features related to MRP (or IC) periods showed a definite difference from those in NC 

periods [35]. During the past few years, several changes have been applied to the 

structure of LF-ASD to improve its performance. These changes include the addition of 

an energy normalization transform [79], the addition of a debounce window as a post-

processing component to decrease the FP rate [5],  user-customization of the feature 

extractor’s parameter values[80], and adding the knowledge of the past paths of features 

[81].  

Despite these improvements, the performance of the LF-ASD is still not suitable 

for many practical applications. The most recent design of the LF-ASD achieves an 

average TP rate of 54.0 % at the false positive rate of 1%[82]. Since LF-ASD generates 

an output every 1/16th of a second, this is translated into, on average, one false positive 

every 6.25 seconds, while the detection rate of IC commands is less than 50%. For most 
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practical applications, generating such a high FP rate, may result in excessive user 

frustration.  

Another SBCI design, which improves upon the feature extractor of LF-ASD, is 

proposed by Yom-tov et.al[6]. The proposed method combines the LF-ASD feature 

extractor with a matched filter, resulting in a hybrid detector. This method also results in 

a high FP rate. For FP rates<2%, the TP rates are lower than 30%. This system generates 

an output every 1/25th of a second. An FP rate of 2% is translated into one false positive, 

every two seconds. As a result, the high amount of FPs limits the application of the 

proposed design.  

While the above studies are based on features extracted from EEG signals, 

researchers from the University of Michigan have focused on extracting features from 

ECoG signals [8, 41, 77, 83-85].  To detect IC commands, their designs either use the 

cross-correlation with a template [83] or the energy of wavelet packet transform [8]. In 

these studies, a threshold-based classifier is used for classifying the features. While these 

systems usually achieve TP>50%, their performance on NC epochs is not very clear. 

First, none of these studies has determined the number of NC epochs. Moreover, to 

quantify the false positives, a new metric called the false discovery rate (FDR, i.e., the 

percentage of total activations of the switch that were false) was used [86]. Since the 

number and the length of NC epochs is not determined in these studies, it is impossible to 

calculate the FP rate for these systems. In a recent study by this group, the reported FDR 

were in the range of 0% to 82% with 24 out of the 31 reported FDRs being higher than 

10% [8]. However, since the numbers of IC and NC epochs were not specifically 

determined, no comment can be made on the performance of these systems over NC data. 

Table 1-1 compares the TPR and FPRs achieved in selected SBCI studies. Please 

keep in mind that although a direct comparison is not possible, this table roughly shows 

the performances of some of the existing SBCI systems. The rows of this table show the 

different SBCI studies. The columns show the rate at which the system generates an 

output, TPR, and FPR, respectively. As shown, with the exception of the first study that 

uses ECoG signals, the rest of these studies, have low TPR for FPR<2%. Please note that, 
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given the rates at which that these SBCI systems generate outputs, these FP rates are 

translated into one false positive every few seconds on average.  

Table 1-1. Comparison of the TPR and FPR rates achieved in different SBCI studies. 

Paper\Study Frequency TPR(%) FPR(%) 

Graimann, et.al [8] 100 Up to 100% ? 

Mason and 

Birch[35] 

LF-ASD 

16 

<20% 

2 OPM <10% 

Mu-ASD* <10% 

  Yom-tov and Inbar[6]          25 30% 2 

Townsend et.al [87] ? <20% 2 

Bashashati, et.al [82] 16 54.0 1 

* Mu-ASD is a self-paced BCI system that uses Mu rhythms as the neurological phenomenon. 

 

A review of self-paced endogenous BCI studies shows that with the exception of 

one paper [8] (which will be discussed in more detail later in this section), all the 

proposed designs have relied on a single neurological phenomena. In the next Section, we 

bring evidence from the literature that supports the advantage of using the following three 

neurological phenomena (instead of only one) in a self-paced BCI system: MRPs, 

changes in the power of the Mu and Beta rhythms.  
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1.5 Use of multiple neurological phenomena in BCI systems 

1.5.1 Simultaneous application of MRPs and changes in the power of Mu/Beta 
rhythms 

A number of papers provide some evidence that MRPs and changes in the power 

of brain rhythms [usually characterized as the event-related desynchronization (ERD) and 

event-related synchronization (ERS)] provide complementary information for exploring  

the cognitive functions of the brain. In [88], the analysis of subdural EEG recordings 

from primary sensorimotor in epileptic patients showed that the amplitude of the ERD of 

the Alpha rhythm recorded from subdural areas was not always correlated with the 

corresponding MRPs. It is suggested in the same paper that these neurological 

phenomena represent different aspects of cortical motor processes. In [89], the ERD of 

the Alpha rhythm is not always detected in cortical sites generating MRPs. In [31], 

through a high-resolution EEG study, it is shown that MRPs and the ERD of the Mu 

rhythm provide complementary information on human brain responses accompanying the 

preparation and execution of a finger movement. Further evidence from the analysis of 

EEG signals [90, 91] and magnetoencephalography (MEG)[92-94] strengthens these 

findings. 

  There is also some evidence regarding the differences between the Mu and the 

Beta rhythms. Several papers show that the reactivities of the Mu and Beta rhythms 

related to the movement onset are different [95, 96]. Both the Mu and Beta rhythms 

desynchronize before the occurrence of a voluntary self-paced movement. However, after 

the movement, the ERD of the Mu rhythm is usually followed by a slow return to 

baseline (and sometimes by a slight synchronization), while the Beta rhythms 

synchronize rapidly after the movement onset [96]. 

This evidence from the literature shows that MRPs, Mu and Beta rhythms provide 

complementary information that can be used for improving the performance of BCI 

systems. In the next sub-section, we review the simultaneous use of these phenomena in 

the BCI literature.   
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1.5.2 Using multiple neurological phenomena in BCI systems 

The main advantage of using more than one neurological phenomenon at the same 

time is that more information is available for the BCI system to detect an IC command 

related to a particular movement. The downside is that as the size of the input data 

increases, the complexity of the pattern recognition algorithm increases as well.  

Although most BCI researchers use a single neurological phenomenon as the 

source of control, there have been reports of using multiple neurological phenomena in 

BCI systems [8, 76, 92, 97-99]. In  [92], the authors analyzed different combinations of 

1) features extracted from an early component of the MRP called Bereitschaftspotential 

(BP), 2) features extracted from the ERD of  neurological phenomena above 4Hz 

(through autoregressive modeling) and 3) features extracted from the common spatial 

patterns (CSP) features related to the ERD of Mu rhythms. The BCI system had to 

discriminate between left and right index finger movements. A linear discriminant 

analysis (LDA) classifier was used for classification. Different combination schemes 

were explored. The study showed that a certain combination of classifiers could result in 

a lower error rate than the case where a single classifier is used.  The results of combining 

the ERD of the Mu rhythm and the BP were not reported, although the authors mention 

that those results were slightly worse than the results obtained when all three neurological 

phenomena were used in the design of the BCI system. In [97], the authors applied a 

combination of microstate analysis and common spatial subspace decomposition to 

extract features belonging to three different frequency bands: Theta + Delta, Mu and 

Beta. MRPs were not treated as a separate neurological phenomenon. Instead, features 

were extracted from the frequency band covering both the Delta and Theta rhythms.  

These features were then used to discriminate between left and right hand movements. 

Using data of three participants, the proposed method achieved an average accuracy 

higher than 80%. In [100], the authors used the BP and the ERD of the brain rhythms in 

the 10 to 33 Hz frequency band (including both the Mu and Beta rhythms) to classify left 

vs. right finger movement. The features extracted from all neurological phenomena and 

from all EEG channels were then combined, the dimension of the feature vector was 

reduced and the final vector was classified using a perceptron neural network. The results 

showed classification accuracy of 84% on the test set. In [101], the authors used features 
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extracted from the BP and the ERD of the Mu rhythms for classifying the left and right 

index finger movements. It was shown that combining features results in decreasing the 

classification error for four out of five subjects whose data were studied. 

 The above studies all pertain to synchronized BCI systems. Only one SBCI 

system that uses multiple neurological phenomena has been reported so far [8].   In this 

study, the authors combined a number of neurological phenomena in order to design an 

ECoG-based SBCI system. Using a wavelet packet transform, ECoG signals were 

divided into 18 different frequency bands covering the range from 0 - 100 Hz. This range 

covered a wide range of neurological phenomena including Mu, Beta and Gamma 

rhythms, as well as other movement-related activities (OMRAs). Then for each band, 

wavelet-filtered signals were reconstructed. The wavelet filtered signals were then 

squared to achieve power values, and a genetic algorithm was applied to reduce the 

dimension of the feature space to one. Using a thresholding classifier, the test samples 

were classified as movement or no movement. As mentioned earlier in Table 1-1, the 

reported false discovery rates of this study were in the range of 0% to 82% with 24 out of 

the 31 reported FDRs being higher than 10%. This study, however, did not consider 

MRPs as one of the neurological phenomena. Instead it solely focused on detecting the 

power of different frequency bands. Furthermore, it extracted features from ECoG signals 

instead of EEG signals. As noted earlier in Section 1.3.1, recording ECoG signals needs 

surgery and it has an invasive nature. For this reason, this method of recording brain 

signals may not be fully accepted by the research community until the health-related 

issues are fully investigated.  

As we will discuss in Section 1.9, in this thesis we will design a new SBCI system 

that simultaneously uses information extracted from MRPs as well as changes in the 

power of the Mu and the Beta rhythms. To the best of our knowledge, this is the first time 

in the BCI literature that such a study is carried out in the context of self-paced BCI 

systems. 
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1.6 Artifacts in BCI systems 

Artifacts are undesirable potentials that contaminate brain signals and are mostly 

of non-cerebral origin. Unfortunately, they can modify the shape of a neurological 

phenomenon that drives a BCI system. They can also mistakenly result in an 

unintentional control of the device [102].  Therefore, there is a need to avoid, reject or 

remove artifacts from the recordings of brain signals.   

In an SBCI system, artifacts can impact the performance of the system in two 

ways: 1) by changing the shape of the neurological phenomenon during an IC period, 

they cause a decrease in the TP rate. 2) By mimicking the shape/properties of the 

neurological phenomenon during the NC periods, artifacts results in an increase in the FP 

rates.  

 
Figure 1-7. An example of how artifacts can affect the performance of an SBCI system. (a) The brain 
state of the user; (b) The periods when artifacts have occurred; (c) The output of the SBCI system 
(note: FP: false positive, TN: true negative, FN: false negative and TP: true positive).  

Figure 1-7 shows how this can happen. Figure 1-7 (a) shows the brain states of a 

user during a specific time frame. As seen, the user is in an NC state, however, at two 

time instants the user initiates an IC command. Figure 1-7 (b) shows the periods of EEG 

signals that are contaminated with artifacts. The term “ART” denotes “artifact-
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contaminated periods” and “NO” refers to the periods not contaminated with artifacts. 

The second period coincides with the first IC command. Figure 1-7 (c) shows the output 

of the SBCI system. The occurrence of the first artifact results in a false positive. The 

second artifact, results in masking the first IC command (a false negative or FN).  

Artifacts originate from non-physiological as well as physiological sources. Non-

physiological artifacts originate from outside the human body (such as 50/60 Hz power-

line noise or changes in electrode impedances), and are usually avoided by proper 

filtering, shielding, etc.  

Physiological artifacts arise from a variety of bodily activities. 

Electrocardiography (ECG) artifacts are caused by heart beats and may introduce a 

rhythmic activity into the EEG signal. Respiration can also cause artifacts by introducing 

a rhythmic activity that is synchronized with the body’s respiratory movements. Skin 

responses such as sweating may alter the impedance of electrodes and cause artifacts in 

the EEG signals [103]. The two physiological artifacts that have been most examined in 

BCI studies, however, are ocular (Electrooculography or EOG) and muscle 

(Electromyography or EMG) artifacts. 

EOG artifacts are generally high-amplitude patterns in the brain signal caused by 

blinking of the eyes, or low-frequency patterns caused by movements (such as rolling) of 

the eyes [104]. EOG activity has a wide frequency range, being maximal at frequencies 

below 4Hz, and is most prominent over the anterior head regions [105].  

EMG activity (movement of the head, body, jaw or tongue) can cause large 

disturbances in the brain signal. EMG activity has a wide frequency range, being 

maximal at frequencies higher than 30 Hz [104, 105].  Difficult tasks may cause an 

increase in EMG activity related to the movement of facial muscles [106, 107].  

Some studies have shown that EOG and EMG activities may generate artifacts 

that affect the neurological phenomena used in a BCI system [108, 109]. For example, 

[109] demonstrated that brain rhythms are contaminated with EMG artifacts during the 

early training sessions of their proposed BCI system that used Mu and Beta rhythms as 

sources of control.  
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 Physiological artifacts such as EOG and EMG artifacts are much more 

challenging to handle than non-physiological ones. Moreover, controlling them during 

the signal acquisition stage is not easy. There are different ways of handling artifacts in 

BCI systems.  In this Section, we briefly examine the reported methods for handling EOG 

and EMG artifacts, as these are among the most important sources of contamination in 

BCI systems.  

1.6.1 Artifact avoidance 

The first step in handling artifacts is to avoid their occurrence by issuing proper 

instructions to users. For example, users are instructed to avoid blinking or moving their 

bodies during the experiments. 

Instructing individuals to avoid generating artifacts during data collection has the 

advantage of being the least computationally demanding among the artifact handling 

methods, since it is assumed that no artifact is present in the signal (or that the presence 

of artifacts is minimal). However, it has several drawbacks. First, since many 

physiological signals, such as the heart beats, are involuntary, artifacts will always be 

present in brain signals. Even in the case of EOG and EMG activities, it is not easy to 

control eye and other movement activities during the process of data recording. Second, 

the occurrence of ocular and muscle activity during an online operation of any BCI 

system is not avoidable. Third, collecting sufficient amount of data without artifacts may 

be difficult, especially in cases where a user has a neurological disability [110]. Finally, 

avoiding artifacts may introduce an additional cognitive task for the individual. For 

example, it has been shown that refraining from eye blinking results in changes in the 

amplitude of some evoked potentials [111, 112].  

1.6.2 Artifact rejection  

Artifact rejection refers to the process of rejecting the trials affected by artifacts. It 

is perhaps the simplest way of dealing with brain signals contaminated with artifacts. It 

has some important advantages over the “artifact avoidance” approach. For example, it 

would be easier for individuals to participate in the experiments and perform the required 

tasks, especially those individuals with motor disabilities. Also, the “secondary” 
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cognitive task, resulting from an individual trying to avoid generating a particular artifact, 

will not be present in the EEG signal.  

”Artifact rejection” is usually done by visually inspecting the EEG or the artifact 

signals, or by using an automatic detection method [113].   

 Manual rejection 

Manual rejection of epochs contaminated with artifacts is a common practice in 

the BCI field. Trials are visually checked by an expert, and those that are contaminated 

with artifacts are removed from the analysis.  

Similar to “artifact avoidance”, manual rejection also has the advantage of not 

being computationally demanding, as it is assumed that a human expert has identified all 

the artifact-contaminated epochs and removed them from the analysis. On the other hand, 

there are many disadvantages in using “manual rejection”. First, “manual rejection” 

comes at the cost of intensive human labor, especially if the study involves a large 

number of individuals or a large amount of recorded data. Second, the process of 

selecting the artifact-free trials may become subjective. It has been argued that because of 

the selection bias, the sample trials that are artifact-free may not be representative of the 

entire population of the trials [113]. Third, in the case of offline analysis, the rejection of 

artifact-contaminated trials, may lead to a substantial loss of data. This may become a 

huge drawback, especially in the case of individuals with motor disabilities, where offline 

data recording is not as convenient as it is for able-bodied individuals. 

 Automatic rejection 

  In the “automatic rejection”, the BCI system automatically discards the epochs 

of brain signals that are contaminated with particular artifacts. This procedure is 

commonly carried out in offline investigations.  

Automatic rejection of epochs can be done in the following two ways: 

Rejection using the EOG (EMG) signal: When one of the characteristics of the 

EOG (EMG) signal in an epoch exceeds a pre-determined threshold, the epoch is 

considered as artifact-contaminated and is automatically rejected.  
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Rejection using the EEG signal:  This rejection methodology is similar to the 

above; only the EEG signal is used instead of the EOG (EMG) signal. This approach has 

the advantage of being independent of the EOG (EMG) signal, and is useful if the EOG 

(EMG) signal is not recorded during data collection. 

    An advantage of the “automatic rejection” approach over that of “manual 

rejection” is that it is less labor intensive. However, automatic rejection still suffers from 

loss of valuable data [114, 115].  In the case of EOG artifacts, the automatic rejection 

approach also does not allow the rejection of contaminated trials when the EOG 

amplitude is small [116, 117]. 

    Two issues need to be addressed for the BCI systems which reject artifacts: 

Because of the vast number of artifacts that exist in BCI systems (eye blinking, 

eye movements, movements of different parts of the body, breathing, etc.), not all the 

artifact-contaminated trials can be rejected. Usually only the epochs with a strong 

presence of artifacts are excluded from the analysis. Therefore, the so-called “clean” data 

are unfortunately not completely free of artifacts.   

The second issue is that the rejection of artifact-contaminated data during an 

offline analysis may generate “cleaner” data. However, for online real-time applications 

of a BCI system, this may pose a huge drawback. In online applications, artifacts are 

unavoidable. If artifacts are rejected during the offline analysis, the same rejection 

mechanism can be used to reject them during the online analysis. The only problem is 

that during the specific time periods when artifact-contaminated signals are rejected, the 

system is unreachable and cannot be used for controlling the device.   

1.6.3 Artifact removal 

Artifact removal is the process of identifying and removing artifacts from brain 

signals. An artifact-removal method should be able to remove the artifacts as well as keep 

the related neurological phenomenon intact. Common methods for removing the artifacts 

in EEG signals are linear filtering [118, 119], linear combination and regression [116], 

blind source separation [120], principal component analysis [121], wavelet transform 

[122] , nonlinear adaptive filtering [123]and source dipole analysis (SDA) [124].  
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A survey of all BCI studies published before January 2006 shows that most BCI 

papers do not report whether or not they have considered EMG and/or EOG artifacts in 

their analysis. This is an important issue, since offline analysis methods that do not 

account for physiological artifacts may probably face some problems when tested during 

an online study. As a result, it is important that BCI researchers pay more attention to this 

important issue and address the method that they have employed for handling artifacts.  

A number of BCI studies state that EMG activity will not be present in the EEG 

signal when the EEG signal is analyzed before a movement has occurred [125]. This 

argument may not be valid for BCI systems.  This is because peripheral changes such as 

EMG tension can affect the EEG signal, even though the amount by which the EEG 

signal is affected remains unclear [126]. It is pointed out in [126] that even when the 

individuals are very restricted, they still preserve motor control over some muscle groups. 

Although the activities of several muscle groups are monitored in BCI studies, there 

remain some muscles whose activities are not recorded.    

The BCI systems that employ “manual rejection” of EOG and EMG artifacts 

should also consider the fact that “manual rejection” is only a preliminary step in the 

design of a BCI system. “Manual rejection” can only be used for offline analysis. In order 

for a particular BCI system to work in an online fashion, a scheme for handling artifacts 

should be incorporated. Requesting the individuals to avoid artifacts should be only 

considered as a temporary solution. In a practical application, EMG and EOG artifacts do 

happen, so methods of handling these artifacts during an online experiment should be 

investigated.  

 One solution for handling artifacts, which is not explored well in the BCI studies, 

is to design a BCI that is robust in the presence of artifacts. If such a BCI is designed, 

then the need for having a method of handling artifacts will be minimized. Another 

solution that has not been explored well in the BCI literature, is that of using more than 

one neurological phenomenon may lead to increasing the robustness to the occurrence of 

artifacts[76]. Since EOG artifacts mostly affect the low-frequency components of the 

EEG signals, BCI systems that use low-frequency ERPs, such as MRP and SCP are 

mostly affected by EOG artifacts. EMG artifacts on the other hand, mainly affect the 
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high-frequency components of the EEG signals, hence BCI systems that use high-

frequency ERPs, such as Mu and Beta rhythms are mostly affected by EMG artifacts. 

Thus, it can be concluded that a BCI system that uses multiple neurological phenomena 

from whose frequency span both the low as well as the high frequency bands, may 

become more robust to the presence of artifacts.  

1.7 Evaluating the performance of SBCI systems 

Model selection is the process of finding or adjusting the model parameters for 

any classification problem. For BCI systems, model selection is a crucial part of the 

design.  This process may include selecting the features, the type of the feature extractor, 

the classifier, the EEG channels, the neurological phenomenon, the frequency band of 

interest, the values of the classifier’s parameters and the preprocessing and post-

processing components. As an example, to find the optimal set of features for a certain 

BCI, different sets of features are considered. For every set, the performance of the 

system is calculated and different performances are compared. The set of features that 

yields the best performance is then selected.  The performance of this best model can then 

be compared with those achieved by similar BCI systems (i.e., systems with the same 

experimental as well as evaluation protocols). Therefore, the performance of an SBCI 

must be evaluated in the following two cases, 1) during the model selection procedure 

and 2) when comparing the performance with other systems.  

The performance of a BCI with discrete states is usually summarized by a 

confusion matrix. The (i,j)  entry of this matrix represents the number of samples from 

class i that are classified as belonging to class j. A confusion matrix provides valuable 

information regarding how well each class is classified by the BCI system.  It is, 

however, not usually straightforward to compare different confusion matrices.  

Evaluation metrics are thus needed to summarize a confusion matrix into a single value. 

For classification problems with balanced datasets such as synchronized BCI systems 

(where )()()( 21 NClassprobClassprobClassprob    for an N-class problem), the 

overall classification accuracy (OA) is the most common evaluation metric presently 

used to summarize the performance [10]. The use of OA for problems with highly 
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imbalanced classes (e.g., )()( 21 ClassprobClassprob   for a two-class problem) is not 

satisfactory [127]. 

The choice of the evaluation metric is of great importance and is application-

dependent.  A poorly defined evaluation metric may guide the model selection procedure 

to a far-from-optimal model or it can lead to erroneous conclusions when comparing the 

performances of two SBCI systems. As a result, all the effort spent in the design of a 

sophisticated SBCI may be lost, simply because of the poor choice of the evaluation 

metric. Recently, the choice of OA as the default evaluation metric has been questioned, 

even in classification applications with balanced datasets. Specifically, it was shown that 

for many applications, the area under the receiver operating characteristic (AUC) can 

summarize the performance better than OA [128].     

Although OA is not suitable for classification problems with imbalanced classes, 

the choice of an alternative evaluation metric is not obvious. Several attempts have been 

made to define more suitable evaluation metrics for these problems. Examples of such 

evaluation metrics include weighted overall accuracy (WOA) [129], the use of receiver 

operating characteristic (ROC) curves and related measures such as area under the ROC 

(AUC) [130] and the Kappa coefficient [131]. In the SBCI literature, some of the 

evaluation metrics used include overall accuracy [7], HF-difference[8], mutual 

information (information transfer rate) [9], Kappa [10], AUC [10], the true positive rate 

(TPR) at a fixed false positive rate (FPR) [5] and 
FPR
TPR [132].Figure 1-8 shows the 

proposed evaluation metrics for synchronized and self-paced BCI systems. As seen, the 

number of proposed evaluation metrics is significantly higher for self-paced BCI systems 

than synchronized BCI systems.  
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Figure 1-8. Types of evaluation metrics used in synchronized and self-paced BCI systems. 

   OA shows the total number of test samples correctly classified by an SBCI 

system. It has been frequently used in evaluating many synchronized BCI systems [133-

135]. Its use in SBCIs, however, has so far been limited [7]. This is because, for an SBCI 

system, OA assigns a huge weight on the more frequent class (NC) and a very small 

weight on the less frequent classes (IC). This may lead to misleading conclusions about 

the performance of the system. 

The information transfer rate (ITR) has been specifically proposed for evaluating 

the performance of synchronized BCI systems [136]. This metric is proposed based on 

the similarities between an SBCI and a communication channel, and using Shannon’s 

communication theory. The rationale is that ITR measures the amount of information 

transferred between two reference points.  The output Y of an SBCI is the interpretation 

(information) of the current state of the brain, and Y conveys this information to the 

downstream components. It is thus argued in [136] that the amount of information in Y is 

a useful tool for comparing the results obtained from different synchronized BCI designs. 

It is also argued that ITR by itself is “not“a suitable single evaluation metric for an SBCI 

system. This is because of the unique nature of this metric having more than one 

maximum (see [137] for a detailed discussion).  
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Cohen’s Kappa coefficient is a measure of agreement between two estimators 

[138].  Since it considers chance agreements, it is regarded as a more robust measure than 

OA [10].  

The HF-difference is a newly proposed metric that summarizes the confusion 

matrix [85]. It is defined as the difference between the TP rate and the percentage of total 

activations that are incorrect (the false discovery rate (FDR)[86]). The advantage of using 

HF-difference is that it is sensitive to the ratio of FPs to the total number of detections. 

The downside of using the HF-difference is that it does not consider the length of NC 

periods.  

The 
FPR
TPR  is another evaluation metric that was recently proposed for 2-class 

SBCI systems [132, 139]. This metric gives more weight to cases with low FPRs. As a 

result, during the model tuning process, any model with a high FPR is assigned a low 

fitness, even though TPR might have a high value. The downside is that for FPR=0, the 

system cannot differentiate between confusion matrices with different TPRs.    

The receiver operating characteristics (ROC) curve is a popular metric for 

evaluating systems with imbalanced classes. The ROC curve depicts the relationship 

between TPR and FPR. Popular methods that use the ROC curve for measuring the 

performance employ one of the following two criteria 1) The area under the ROC curve 

(AUC) which is used as the fitness of the system [10]; 2) Defining a critical FPR value 

( CriticalFPR ) , and then using the value of the TP rate at CriticalFPR  as the fitness [5]. The 

advantage of using the ROC curve over previous metrics is that a whole range of 

solutions (in terms of a tradeoff between TPR and FPR) is provided. 

     One problem with using the ROC curve is that when it is plotted over the 

whole range of TPR and FPR, most SBCI systems produce a curve that is similar to a 

perfect ROC curve [4]. The other problem with using the ROC curve (and perhaps more 

important) is that it is computationally more demanding than other evaluation metrics. 

Several points need to be evaluated until a partial ROC curve that is accurate enough for 

estimating the AUC is drawn. Similarly, several points need to be calculated in order to 

obtain the value of TPR at CriticalFPR . Even if the ROC curve  is estimated using the more 
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computationally efficient algorithm as described in [128], it remains much more time 

consuming than the metrics described above as these only need the value of a single point 

to assess the performance.  When these metrics are used to evaluate the performance and 

select a model from thousands of confusion matrices during a model selection procedure, 

the computational burden becomes problematic. For these reasons, evaluation metrics 

that summarize the performance based on a single evaluation of a confusion matrix are 

more desirable during the model selection procedure. 

Each of these metrics has strengths and weaknesses [10], however, the published 

SBCI studies do not usually discuss why a particular evaluation metric is chosen for 

evaluating the performance.  This leads to the obvious conclusion that finding suitable 

evaluation metrics forms an important and a needed study for SBCI systems. This need 

has been emphasized in a recently published technical report on evaluating SBCI systems 

[4].  

1.8 Thesis contributions 

As discussed above, this thesis addresses three issues of importance to the designs 

of SBCI systems: 

1) Decreasing the false positive rates in SBCI systems. 

2) Handling artifacts in SBCI systems, and 

3) Evaluating the performance of SBCI systems. 

To address the high FP rates and the presence of artifacts, in Chapters 4, 5, 7, and 

Chapter 9, we propose and evaluate a new 2-state SBCI system that can distinguish an IC 

command related to a specific movement pattern from the NC state in EEG signals. In the 

design of this system, the main focus is to improve the performance over those of 

previous EEG-based SBCIs. To achieve this goal, we propose and investigate the 

simultaneous detection of three neurological phenomena to recognize IC commands. 

These three neurological phenomena are movement-related potentials (MRPs), changes 

in the power of Mu rhythms (CPMR) and changes in the power of Beta rhythms (CPBR). 

These neurological phenomena are known to be time-locked to the onset of movement, so 
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we postulated that detecting all of them at the same time improves the system’s 

performance. This is the first time in the BCI literature that the analysis of these 

neurological phenomena at the same time is proposed for detecting the IC commands.  A 

systematic approach for feature extraction, selection and classification for each 

neurological phenomenon is presented. We also propose a 2 –stage multiple classifier 

system (MCS) to efficiently combine the information extracted from these neurological 

phenomena.  

The performance of the proposed system is compared with those of other state-of-

the-art EEG-based SBCI systems. It is shown that the proposed method results in a 

superior performance. A theoretical analysis of the performance of the proposed SBCI is 

presented and it is shown that under certain conditions the proposed methodology can 

theoretically approach perfect classification accuracy.  

Since the proposed SBCI relies on detecting more than one neurological 

phenomenon at the same time, it is expected that its performance is robust in the presence 

of most artifacts. This is because artifacts are usually more prominent over a certain 

frequency band and do not affect other frequency bands as much. In Chapter 7, we show 

that the proposed SBCI has a good performance over periods contaminated with artifacts.  

Finally, in Chapter 8 a framework for comparing and selecting evaluation metrics 

for SBCI systems is also proposed. It is shown that this framework can be successfully 

applied to select from a number of available metrics, the evaluation metric that is most 

suitable for evaluating SBCI systems. The findings of this chapter are applied in Chapter 

9 to select the most suitable evaluation metric for evaluating the performance.  

The thesis provides a detailed description of our methods and results. The main 

contributions of this thesis fall into three categories as follows: 

1.8.1 Reducing high false positive rates 

1) Introducing the idea of using features from MRPs, CPMR and CPBR at the same 

time to detect the possible presence of IC commands.  

2) Developing a new SBCI system that extracts and classifies features extracted from 

the above neurological phenomena efficiently. A new two-stage multiple classifier 



 

 33

system (MCS) is proposed. At the first stage, an MCS is separately designed for each 

neurological phenomenon. At the second stage, another MCS combines the outputs of 

MCSs in the first stage. 

3) Studying the performance of the 2-stage MCS using the Linear Programming 

theory. 

4) Investigating of the performance of the proposed SBCI system on two datasets: 

one dataset related to the right finger flexion and the other dataset related to the right 

hand extension. It will be shown that the proposed SBCI system achieves error rates 

that are significantly lower than those of other state-of-the-art EEG-based SBCI 

systems. 

5) Comparing the use of monopolar and bipolar EEG electrodes for detecting right 

hand extension movements and demonstrating that bipolar electrodes provide 

superior results. 

6) Studying the effect of automatic user-customization in the performance of a state-

of the-art self-paced BCI system previously developed in the brain interface lab of the 

Neil Squire society. It will be demonstrated that automatic user customization 

significantly improves the performance compared to manual customization by an 

expert. 

1.8.2 Addressing artifacts in SBCI systems 

1) Presenting a detailed review of the methods that handle artifacts in BCI systems. 

Surprisingly, this review shows that most BCI systems do not address the presence of 

artifacts properly. 

2) Investigating the performance of the proposed SBCI system over periods 

contaminated with eye-blink artifacts. It will be shown that the system has a 

reasonably good performance over periods contaminated with large eye movement 

artifacts. 

3) Investigating the performance of the proposed SBCI system using the data from 

the session recorded few days after the data used for training the SBCI system. Again, 

it will be demonstrated that the proposed SBCI system achieves a good performance 

for three out of four participants whose data are studied.  
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4) Proposing an artifact monitoring system that detects large eye movement artifacts 

as well as EMG artifacts related to frontalis muscles at the same time.  

1.8.3 Finding a suitable evaluation metric for SBCI systems 

1) Proposing a framework for comparing the evaluation metrics during the model 

selection process in SBCI systems. 

2) Applying the proposed framework to a particular SBCI system and finding the 

most suitable evaluation metric. 

3) Demonstrating that the Kappa coefficient is the most suitable evaluation metric for 

the proposed SBCI system.  

1.9 Organization of the thesis 

The organization of this thesis is as follows: 

We first study the Low Frequency - Asynchronous Switch Design (the LF-ASD) 

in Chapter 2. The LF-ASD is a state-of-the-art EEG-based SBCI system that is used as 

the basis for performance comparison in some of the following chapters. It is thus 

reasonable that at the first stage of the research, the structure of LF-ASD as well as its 

performance are examined in detail.  

The parameter values of the feature generator of the LF-ASD have been usually 

determined by the designer based on trial and error. This process is suboptimal, 

subjective and time-consuming for the researchers. In Chapter 2, we propose the use of a 

genetic algorithm (GA) to automatically tune the parameter values of the feature 

generator of one of the designs of the LF-ASD.  The purpose of this study is 2-fold: 1) to 

automate the tuning process of the feature generator and 2) to improve the performance 

of the LF-ASD. Specifically, we are interested in finding an upper limit for the 

performance of this design of the LF-ASD. This could be a starting point for the next 

stage of the research as it would decide whether the current feature generator should be 

kept or if it should be replaced by a more powerful one. In Chapter 2, we show that only 

moderate improvements in the performance of the LF-ASD occur, after automatically 
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tuning the parameters of the feature generator. For this reason, the subsequent chapters, 

the use of the wavelet transform for extracting the features is explored. 

In Chapter 3, we study the use of the discrete wavelet transform (DWT) for 

extracting MRP features. The reason behind choosing DWT is 2-fold: 1) LF-ASD uses a 

transform for feature extraction that is a simplified version of the wavelet transform. We 

thus postulate that a more sophisticated version of this detector (i.e., the DWT) should be 

able to better extract features related to MRPs and 2) DWT provides both time as well as 

frequency information, so it can provide more information than the traditional frequency-

based approaches and can improve the performance [11]. The evidence from the BCI 

literature also supports this hypothesis [140, 141]. We compare two different variations 

of this design. The first is based on MRP features extracted from monopolar EEG 

channels and the other is based on MRP features extracted from bipolar EEG channels. 

We argue that the system based on the bipolar MRP features yields a superior 

performance.  

Parallel to the research carried out in Chapter 3, we carried out a second study 

which focused on a simple design of an SBCI system that is based on features extracted 

from three neurological phenomena: MRP, CPMR and CPBR. This study is carried out as 

a proof of concept to show that the combination of the three neurological phenomena 

discussed earlier in this chapter would improve the performance of the system. For this 

reason, we only applied simple feature extraction and classification methods (matched 

filtering and K-nearest neighbor classifier). A 2-stage multiple classifier system (MCS) is 

proposed to “fuse” the classification results attributed to each neurological phenomenon. 

Figure 1-9 shows the overall structure of the system studied in Chapter 4.  



 

 36

 
Figure 1-9. The overall schematic of the SBCI system developed and studied in Chapters 4, 5, 7, and 
9. 

In Chapter 5, we use the findings from Chapters 3 and 4 and propose an improved 

design. This design uses a new feature extraction method (a combination of stationary 

wavelet transform (SWT) followed by matched filtering) and proposes the use of a hybrid 

genetic algorithm (HGA) to simultaneously select the features, the parameter values of 

the classifiers and the combination method for the 2-stage MCS. We demonstrate that the 

new design achieves much lower FP rates than previous EEG-based SBCI systems, while 

it maintains a modest TP rate. These promising results facilitate the practical applications 

of the proposed SBCI system.  

In Chapters 6 and 7 we focus on artifacts in BCI systems in general and in the 

proposed SBCI system in particular. Artifacts are unwanted potentials that can change the 

shape of the neurological phenomena and thus decrease the system’s performance. As a 

result, handling artifacts is an important part in the design of BCI systems.  In Chapter 6 

artifacts in BCI literature are addressed. The results of this review study show that the 

BCI literature does not properly report artifacts handling. In other words, BCI researchers 

do not report whether or not they have considered the presence of artifacts. A large 

number of studies reject the artifact-contaminated periods either manually or 

automatically. We argue that a proper solution is to either efficiently remove artifacts or 

to design a BCI system whose performance is robust to the presence of artifacts.  

In Chapter 7 we further analyze the performance of the proposed SBCI. We first 

consider the performance over periods contaminated with eye-blink artifacts. Next, we 
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test the performance of the system on data collected in a session recorded after the 

sessions used for training and testing the performance of the system. In both cases, we 

demonstrate that our proposed system maintains its good performance in the presence of 

artifacts. These results also demonstrate that during online testing, the system does not 

need to reject periods marked with artifacts. This, in turn, greatly increases the periods 

during which the system is available for control.  

In Chapter 8, we address the critical issue of selecting a suitable evaluation metric 

in the design of SBCI systems. We revise and improve a framework that was proposed 

earlier for comparing the classification accuracy and the AUC metrics [128].  Our revised 

model can be used to compare various metrics as well as studying new metrics. It can 

also be used for selecting the metric(s) that is (are) most suitable for evaluating a certain 

classification system. We also analyze the application of the proposed framework to the 

field of SBCI systems. In particular, we consider four evaluation metrics: overall 

classification accuracy (OA),
FPR
TPR , Kappa’s coefficient, and HF-difference and compare 

their performances during the model selection procedure for a particular SBCI system. 

We demonstrate that some evaluation metrics such as Kappa and HF-difference are more 

suitable and some such as OA and 
FPR
TPR  are less suitable evaluation metrics for SBCI 

systems.  

In Chapters 2 to 8, the type of movement that was considered for the generation of 

IC commands was the index finger flexion. In order for the system to be generalized to 

more control options, its performance on new mental tasks (related to other types of 

movements) should also be investigated. It is also desired that the same system also 

performs well on other types of movements. In Chapter 9, we examine the performance 

of the SBCI system proposed in Chapter 5 on a new dataset. In this dataset, IC commands 

are generated by hand extension movements.  NC data are also recorded in a more 

engaging environment than those used in previous studies for training the system. It is 

demonstrated that our proposed design maintains a superior performance compared to 

other EEG-based SBCI designs in the literature. Secondly, electromyography (EMG) 

signals from frontalis muscles are recorded to rule out the activation of such muscles 
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during the movement executions. Furthermore, we use the framework developed in 

Chapter 8 to select the most suitable evaluation metric for the system. We conclude that 

Cohen’s Kappa coefficient is the most suitable evaluation metric for the model selection 

procedure of the proposed SBCI system. Finally, we compare the performance of 

monopolar and bipolar EEG electrode montages. This study shows that the bipolar 

montage generates more suitable features and thus a superior performance than the 

monopolar montage.   

In Chapter 10, we summarize the contributions of this thesis to the field of SBCI 

systems. We also present some of the potential research subjects that can immediately 

follow this research in this chapter. Figure 1-10 shows a summary of the organization of 

this thesis.  

In Appendix. A, we provide a copy of the approval from the Behavioral Research 

Ethics Board (BREB) of the University of British Columbia to conduct this study. In 

Appendix B, we use the linear programming theory to show how the proposed multiple 

classifier system could achieve perfect classification accuracy under certain conditions.  
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Figure 1-10. Outline of the thesis. 

Chapter 1:  
Introduction 

Design of a 2-state 
SBCI System with a 

low FP rate 

Analysis of the effect 
of artifacts in SBCI 

systems 

Finding a suitable 
evaluation metric for 

SBCI systems 

Chapter 2: Automatic 
user customization of 

the LF-ASD  

Chapter 3: Using 
DWT for extracting 
features from MRPs  

Chapter 4: Design of 
an SBCI using MRP, 

CPMR and CPBR 
features 

Chapter 5: 
Automating the 

design of an SBCI 
with low FP rates 

Chapter 9: Testing 
the performance of 
new movements; 
Comparison of 
monopolar and 

bipolar montages. 

Chapter 6: 
Comprehensive 

review of methods of 
handling artifacts in 

BCI systems 

Chapter 7: Testing 
the performance of the 
system developed in 

Chapter 5 over 
artifact-contaminated 

periods 

Chapter 8: Proposing 
a new framework for 
comparing evaluation 
metrics during model 

selection 

Chapter 9: Using the 
framework developed 
in Chapter 8 to find a 
suitable evaluation 
metric for an SBCI 

system. 

Chapter 10:  
Conclusions and 

directions for future 
works 



 

 40

1.10 References 

 

[1] T. Vaughan, W. J. Heetderks, L. J. Trejo, W. Z. Rymer, M. Wienrich, M. M. Moore, A. 
Kubler, B. H. Dobkin, N. Birbaumer, E. Donchin, E. W. Wolpaw and J. W. R, "Brain-
computer interface technology: a review of the second international meeting", IEEE Trans. 
Neural Syst. Rehab. Eng., vol. 11, no.2, pp. 94-109, 2003.  

[2] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller and T. M. Vaughan, "Brain-
computer interfaces for communication and control", Clin. Neurophysiol., vol. 113, no.6, pp. 
767-791, Jun.2002.  

[3] S. G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro and G. E. Birch, "A comprehensive 
survey of brain interface technology designs", Ann. Biomed. Eng., vol. 35, no.2, pp. 137-169, 
Feb.2007.  

[4] S. G. Mason, J. Kronegg, J. Huggins, M. Fatourechi and A. and Schloegl, "Evaluating  the 
performance of self-paced BCI technology”, Technical Report, available online: 
http://www.bci-info.tugraz.at/Research_Info/documents/articles/self_paced_tech_report-
2006-05-19.pdf, 2006. 

[5] J. F. Borisoff, S. G. Mason, A. Bashashati and G. E. Birch, "Brain-computer interface design 
for asynchronous control applications: improvements to the LF-ASD asynchronous brain 
switch", IEEE Trans. Biomed. Eng., vol. 51, no.6, pp. 985-992, Jun.2004.  

[6] E. Yom-Tov and G. F. Inbar, "Detection of Movement-Related Potentials from the Electro-
Encephalogram for possible use in a Brain-Computer Interface", Medical and Biological 
Engineering and Computing, vol. 41, no.1, pp. 85-93, Jan.2003.  

[7] G. E. Birch, Z. Bozorgzadeh and S. G. Mason, "Initial on-line evaluations of the LF-ASD 
brain-computer interface with able-bodied and spinal-cord subjects using imagined voluntary 
motor potentials", IEEE Trans. Neural Syst. Rehabil. Eng., vol. 10, no.4, pp. 219-224, 
Dec.2002.  

[8] B. Graimann, J. E. Huggins, S. P. Levine and G. Pfurtscheller, "Toward a direct brain 
interface based on human subdural recordings and wavelet-packet analysis", IEEE Trans. 
Biomed. Eng., vol. 51, no.6, pp. 954-962, Jun.2004.  

[9] J. Kronegg, s. Voloshynovskiy and P. Pun, "Analysis of bit rate definitions for brain-computer 
interfaces," in the Proc. Int. Conf. on Human-Computer Interaction (HCI'05), Las Vegas, 
Nevada, 2005. 

[10] A. Schlögl, J. Kronegg, J. Huggins and S. G. Mason, "Evaluation  criteria in BCI research," 
in Towards  Brain-Computer Interfacing (G. Dornhege, J. R. Millan, T. Hinterberger, D. 
McFarland and K. R. Muller, Eds.), MIT Press, 2007. 

[11] A. Bashashati, M. Fatourechi, R. K. Ward and G. E. Birch, "A survey of signal processing 
algorithms in brain-computer interfaces based on electrical brain signals", J. Neural Eng., 
vol. 4, no.2, pp. R32-57, Jun.2007.  

[12] J. J. Vidal, "Toward direct brain-computer communication", Annu. Rev. Biophys. Bioeng., 
vol. 2, pp. 157-180, 1973.  

[13] G. Pfurtscheller and A. Aranibar, "Event-related cortical desynchronization detected by 
power measurements of scalp EEG", Electroencephalogr. Clin. Neurophysiol., vol. 42, no.6, 
pp. 817-826, Jun.1977.  



 

 41

[14] L. Leocani, C. Toro, P. Manganotti, P. Zhuang and M. Hallett, "Event-related coherence and 
event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-
paced movements", Electroencephalogr. Clin. Neurophysiol., vol. 104, no.3, pp. 199-206, 
May.1997.  

[15] G. Pfurtscheller and F. H. Lopes da Silva, "Event-related EEG/MEG synchronization and 
desynchronization: basic principles", Clin. Neurophysiol., vol. 110, no.11, pp. 1842-1857, 
Nov.1999.  

[16] G. Pfurtscheller, K. Pichler-Zalaudek, B. Ortmayr, J. Diez and F. Reisecker, "Postmovement 
beta synchronization in patients with Parkinson's disease", J. Clin. Neurophysiol., vol. 15, 
no.3, pp. 243-250, May.1998.  

[17] D. J. McFarland, W. A. Sarnacki, T. M. Vaughan and J. R. Wolpaw, "Brain-computer 
interface (BCI) operation: signal and noise during early training sessions", Clin. 
Neurophysiol., vol. 116, no.1, pp. 56-62, Jan.2005.  

[18] J. R. Wolpaw and D. J. McFarland, "Control of a two-dimensional movement signal by a 
noninvasive brain-computer interface in humans", in Proc. Natl. Acad. Sci. U. S. A., vol. 101, 
no.51, pp. 17849-17854, Dec 21.2004.  

[19] J. R. Wolpaw and D. J. McFarland, "Multichannel EEG-based brain-computer 
communication", Electroencephalogr. Clin. Neurophysiol., vol. 90, no.6, pp. 444-449, 
Jun.1994.  

[20] D. J. McFarland, L. M. McCane and J. R. Wolpaw, "EEG-based communication and control: 
short-term role of feedback", IEEE Trans. Rehabil. Eng., vol. 6, no.1, pp. 7-11, Mar.1998.  

[21] L. A. Miner, D. McFarland and J. R. Wolpaw, "Answering Questions with an 
Electroencephalogram-Based Brain Computer Interface", Arch. Phys. Med. Rehabil., vol. 79, 
pp. 1029-1033, 1998.  

[22] G. R. Muller-Putz, R. Scherer, G. Pfurtscheller and R. Rupp, "EEG-based neuroprosthesis 
control: a step towards clinical practice", Neurosci. Lett., vol. 382, no.1-2, pp. 169-174, Jul 
2005.  

[23] G. Pfurtscheller, G. R. Müller-Putz, J. Pfurtscheller and R. Rupp, "EEG-Based 
Asynchronous BCI Controls Functional Electrical Stimulation in a Tetraplegic Patient", 
EURASIP Journal on Applied Signal Processing, vol. 2005, no.19, pp. 3152-3155, 2005.  

[24] G. Pfurtscheller, B. Graimann, J. E. Huggins and S. P. Levine, "Brain-computer 
communication based on the dynamics of brain oscillations", Suppl. Clin. Neurophysiol., vol. 
57, pp. 583-591, 2004.  

[25] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Obermaier 
and M. Pregenzer, "Current trends in Graz Brain-Computer Interface (BCI) Research", IEEE 
Trans. Rehab. Eng., vol. 8, no.2, pp. 216-219, Jun. 2000.  

[26] G. Pfurtscheller and C. Neuper, "Motor imagery and direct brain-computer communication", 
Proc. IEEE, vol. 89, no.7, pp. 1123-1134, 2001.  

[27] L. Deecke, B. Grozinger and H. H. Kornhuber, "Voluntary finger movement in man: 
cerebral potentials and theory", Biol. Cybern., vol. 23, no.2, pp. 99-119, Jul 14.1976.  

[28] H. Shibasaki, G. Barrett, E. Halliday and A. M. Halliday, "Components of the movement-
related cortical potential and their scalp topography", Electroencephalogr. Clin. 
Neurophysiol., vol. 49, no.3-4, pp. 213-226, Aug.1980.  



 

 42

[29] I. M. Tarkka and M. Hallett, "Cortical topography of premotor and motor potentials 
preceding self-paced, voluntary movement of dominant and non-dominant hands", 
Electroencephalogr. Clin. Neurophysiol., vol. 75, no.2, pp. 36-43, Feb.1990.  

[30] M. Hallett, "Movement-related cortical potentials", Electromyogr. Clin. Neurophysiol., vol. 
34, no.1, pp. 5-13, Jan-Feb.1994.  

[31] C. Babiloni, F. Carducci, F. Cincotti, P. M. Rossini, C. Neuper, G. Pfurtscheller and F. 
Babiloni, "Human movement-related potentials vs desynchronization of EEG alpha rhythm: a 
high-resolution EEG study", Neuroimage, vol. 10, no.6, pp. 658-665, Dec.1999.  

[32] A. Urbano, C. Babiloni, P. Onorati and F. Babiloni, "Human cortical activity related to 
unilateral movements. A high resolution EEG study", Neuroreport, vol. 8, no.1, pp. 203-206, 
Dec 20.1996.  

[33] A. Urbano, C. Babiloni, P. Onorati, F. Carducci, A. Ambrosini, L. Fattorini and F. Babiloni, 
"Responses of human primary sensorimotor and supplementary motor areas to internally 
triggered unilateral and simultaneous bilateral one-digit movements. A high-resolution EEG 
study", Eur. J. Neurosci., vol. 10, no.2, pp. 765-770, Feb.1998.  

[34] Z. Bozorgzadeh, G. E. Birch and S. G. Mason, "The LF-ASD brain computer interface: On-
line identification of imagined finger flexions in the spontaneous EEG of able-bodied 
subjects," in Proc. IEEE ICASSP’00,vol.6,pp. 2385-2388 , 2000.,  

[35] S. G. Mason and G. E. Birch, "A brain-controlled switch for asynchronous control 
applications", IEEE Trans. Biomed. Eng, vol. 47, no.10, pp. 1297-1307, Oct.2000.  

[36] G. E. Birch, P. D. Lawrence and R. D. Hare, "Single Trial Processing of Event Related 
Potentials Using Outlier Information", IEEE Trans. Biomed. Eng., vol. 40, no.1, pp. 59-73, 
1993.  

[37] B. Blankertz, G. Dornhege, C. SchÃ¤fer, R. Krepki, J. Kolmorgen, K. R. MÃ¼ller, V. 
Kunzmann, F. Losch and G. Curio, "Boosting bit rates and error detection for the 
classification of fast-paced motor commands based on single-trial EEG analysis," in IEEE 
Trans. Neural Sys. Rehab. Eng, vol.11, no.2, 2003,  

[38] G. Dornhege, B. Blankertz and G. Curio, "Speeding up classification of multi-channel brain-
computer interfaces: Common spatial patterns for slow cortical potentials," in Proc. 1st IEEE 
EMBS Int. Conf. on Neural Engineering,pp. 595-598. 2003,  

[39] E. Yom-Tov and G. F. Inbar, "Feature Selection for the Classification of Movements From 
Single Movement-Related Potentials", IEEE Trans. Neural Syst. Rehab. Eng., vol. 10, no.3, 
pp. 170-177, Sep.2002.  

[40] E. Yom-Tov and G. F. Inbar, "Selection of relevant features for classification of movements 
from single movement-related potentials using a genetic algorithm," in the Proc. 23rd  
IEEE/EMBS Int. Conf.,vol.2,pp. 1364-1366 , 2001.  

[41] S. P. Levine, J. E. Huggins, S. L. Bement, R. K. Kushwaha, L. A. Schuh, E. A. Passaro, M. 
M. Rohde and D. A. Ross, "Identification of Electrocorticogram Patterns as the Basis for a 
Direct Brain Interface", J Clinical Neurophysiol, vol. 16, no.5, pp. 439-447, Sep.1999.  

[42] J. E. Huggins, S. P. Levine, R. Kushwaha, S. L. Bement, L. A. Schuh and D. A. Ross, 
"Identification of cortical signal patterns related to human tongue protrusion," in pp. 670-672. 
1995. 



 

 43

[43] N. Neumann, A. Kubler, J. Kaiser, T. Hinterberger and N. Birbaumer, "Conscious perception 
of brain states: mental strategies for brain-computer communication", Neuropsychologia, vol. 
41, no.8, pp. 1028-1036, 2003.  

[44] T. Hinterberger, B. Wilhelm, J. Mellinger, B. Kotchoubey and N. Birbaumer, "A device for 
the detection of cognitive brain functions in completely paralyzed or unresponsive patients", 
IEEE Trans. Biomed. Eng., vol. 52, no.2, pp. 211-220, Feb.2005.  

[45] N. Birbaumer, "The thought-translation-device (TTD): Taming cognition for action", Brain 
Cogn., vol. 54, no.2, pp. 130-130, Mar.2004.  

[46] T. Hinterberger, S. Schmidt, N. Neumann, J. Mellinger, B. Blankertz, G. Curio and N. 
Birbaumer, "Brain-computer communication and slow cortical potentials", IEEE Trans. 
Biomed. Eng., vol. 51, no.6, pp. 1011-1018, Jun.2004.  

[47] N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. 
Iversen, B. Kotchoubey, N. Neumann and H. Flor, "The thought translation device (TTD) for 
completely paralyzed patients", IEEE Trans. Rehabil. Eng., vol. 8, no.2, pp. 190-193, 
Jun.2000.  

[48] A. Kubler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw and N. Birbaumer, "Brain-Computer 
Communication: Unlocking the Locked In", Psych Bulletin, vol. 127, no.3, pp. 358-375, 
May.2001.  

[49] J. d. R. Millan, J. Mourino, M. G. Marciani, F. Babiloni, F. Topani, I. Canale, J. Heikkonen 
and K. Kaski, "Adaptive brain interfaces for physically-disabled people," in Proc. IEEE 
EMBS Conf, vol.4,, pp. 2008-2011, 1998.  

[50] C. W. Anderson, S. V. Devulapalli and E. A. Stolz, "Signal Classification with Different 
Signal Representations", Neural Networks for Signal Processing, pp. 475-483, 1995.  

[51] D. Garrett, D. A. Peterson, C. W. Anderson and M. H. Thaut, "Comparison of linear, 
nonlinear, and feature selection methods for EEG signal classification", IEEE Trans. Neural 
Syst. Rehab. Eng., vol. 11, no.2, pp. 141-144, Jun. 2003.  

[52] C. W. Anderson, E. A. Stolz and S. Shamsunder, "Multivariate autoregressive models for 
classification of spontaneous electroencephalographic signals during mental tasks", IEEE 
Trans. Biomed. Eng., vol. 45, no.3, pp. 277-286, Mar.1998.  

[53] B. Z. Allison and J. A. Pineda, "ERPs evoked by different matrix sizes: Implications for a 
brain computer interface (BCI) system", IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, no.2, 
pp. 110-113, Jun.2003.  

[54] E. Donchin, K. M. Spencer and R. Wijesinghe, "The mental prosthesis: assessing the speed 
of a P300-based brain-computer interface", IEEE Trans. Rehabil. Eng., vol. 8, no.2, pp. 174-
179, Jun.2000.  

[55] L. A. Farwell and E. Donchin, "Talking off the top of your head: toward a mental prosthesis 
utilizing event-related brain potentials", Electroencephalogr. Clin. Neurophysiol., vol. 70, 
no.6, pp. 510-523, Dec.1988.  

[56] E. W. Sellers, A. Kubler and E. Donchin, "Brain-computer interface research at the 
University of South Florida Cognitive Psychophysiology Laboratory: the P300 Speller", 
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no.2, pp. 221-224, Jun.2006.  

[57] F. Piccione, F. Giorgi, P. Tonin, K. Priftis, S. Giove, S. Silvoni, G. Palmas and F. Beverina, 
"P300-based brain computer interface: reliability and performance in healthy and paralysed 
participants", Clin. Neurophysiol., vol. 117, no.3, pp. 531-537, Mar.2006.  



 

 44

[58] A. A. Glover, M. C. Onofrj, M. F. Ghilardi and I. Bodis-Wollner, "P300-like potentials in 
the normal monkey using classical conditioning and an auditory 'oddball' paradigm", 
Electroencephalogr. Clin. Neurophysiol., vol. 65, no.3, pp. 231-235, May.1986.  

[59] B. Roder, F. Rosler, E. Hennighausen and F. Nacker, "Event-related potentials during 
auditory and somatosensory discrimination in sighted and blind human subjects", Brain Res. 
Cogn. Brain Res., vol. 4, no.2, pp. 77-93, Sep.1996.  

[60] J. J. Vidal, "Real-Time Detection of Brain Events in EEG,"  Proc IEEE, vol. 65, pp. 633-
641, 1977.  

[61] E. E. Sutter, "The brain response interface: communication through visually-induced 
electrical brain responses", J Micro Comp App, vol. 15, pp. 31-45, 1992.  

[62] M. Middendorf, G. McMillan, G. Calhoun and K. S. Jones, "Brain-Computer Interfaces 
Based on the Steady-State Visual-Evoked Response", IEEE Trans. Rehab. Eng., vol. 8, no.2, 
pp. 211-214, Jun. 2000.  

[63] X. Gao, D. Xu, M. Cheng and S. Gao, "A BCI-based environmental controller for the 
motion-disabled", IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, no.2, pp. 137-140, Jun. 
2003.  

[64] Y. Wang, R. Wang, X. Gao and S. Gao, "Brain-computer interface based on the high-
frequency steady-state visual evoked potential," in the Proc. 1st  Int. Conf. in Neural Interface 
and Control, pp. 37-39, 2005.  

[65] Cheng Ming, Gao Xiaorong, Gao Shangkai and Wang Boliang, "Stimulation frequency 
extraction in SSVEP-based brain-computer interface," in in the Proc. 1st  Int. Conf. Neural 
Interface and Control, ,pp. 64-67. 2005,  

[66] Yijun Wang, Zhiguang Zhang, Xiaorong Gao and Shangkai Gao, "Lead selection for 
SSVEP-based brain-computer interface," in the Proc. 26th IEEE/EMBS Int. Conf.,vol.2,pp. 
4507-4510 , 2004.  

[67] J. K. Chapin, K. A. Moxon, R. S. Markowitz and M. A. Nicolelis, "Real-time control of a 
robot arm using simultaneously recorded neurons in the motor cortex", Nat. Neurosci., vol. 2, 
no.7, pp. 664-670, Jul.1999.  

[68] M. A. L. Nicolelis and J. K. Chapin, "Controlling robots with the mind", Sci. Am., vol. 287, 
no.4, pp. 46-53, Oct.2002.  

[69] J. T. Francis and J. K. Chapin, "Force field apparatus for investigating movement control in 
small animals", IEEE Trans. Biomed. Eng., vol. 51, no.6, pp. 963-965, Jun.2004.  

[70] S. Darmanjian, Sung Phil Kim, M. C. Nechyba, S. Morrison, J. Principe, J. Wessberg and M. 
A. L. Nicolelis, "Bimodal brain-machine interface for motor control of robotic prosthetic," in 
the Proc. IEEE Int. Conf. Intelligent Robots and Systems, vol.4,pp. 3612-3617 , 2003.  

[71] J. P. Donoghue, A. Nurmikko, G. Friehs and M. Black, "Development of neuromotor 
prostheses for humans", Suppl. Clin. Neurophysiol., vol. 57, pp. 592-606, 2004.  

[72] F. Wood, M. J. Black, C. Vargas-Irwin, M. Fellows and J. P. Donoghue, "On the variability 
of manual spike sorting", IEEE Trans. Biomed. Eng., vol. 51, no.6, pp. 912-918, Jun.2004.  

[73] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. 
Branner, D. Chen, R. D. Penn and J. P. Donoghue, "Neuronal ensemble control of prosthetic 
devices by a human with tetraplegia", Nature, vol. 442, no.7099, pp. 164-171, Jul 13.2006.  



 

 45

[74] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows and J. P. Donoghue, "Instant 
neural control of a movement signal", Nature, vol. 416, no.6877, pp. 141-142, Mar.2002.  

[75] T. M. Vaughan, J. R. Wolpaw and E. Donchin, "EEG-Based Communication: Prospects and 
Problems", IEEE Trans. Rehab. Eng., vol. 4, no.4, pp. 425-430, 1996.  

[76] G. Dornhege, B. Blankertz, G. Curio and K. R. Muller, "Boosting bit rates in noninvasive 
EEG single-trial classifications by feature combination and multiclass paradigms", IEEE 
Trans. Biomed. Eng., vol. 51, no.6, pp. 993-1002, Jun.2004.  

[77] B. Graimann, J. E. Huggins, A. Schlogl, S. P. Levine and G. Pfurtscheller, "Detection of 
movement-related desynchronization patterns in ongoing single-channel electrocorticogram", 
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, no.3, pp. 276-281, Sep.2003.  

[78] R. Scherer, G. R. Muller, C. Neuper, B. Graimann and G. Pfurtscheller, "An asynchronously 
controlled EEG-based virtual keyboard: improvement of the spelling rate", IEEE Trans. 
Biomed. Eng., vol. 51, no.6, pp. 979-984, Jun.2004.  

[79] Z. Yu, S. G. Mason and G. E. Birch, "Enhancing the performance of the LF-ASD brain-
computer interface," in in Proc. of the 2nd  Joint EMBS/BMES Conference, vol.3,pp. 2443-
2444, 2002.  

[80] A. Bashashati, M. Fatourechi, R. K. Ward and G. E. Birch, "User customization of the 
feature generator of an asynchronous brain interface", Ann. Biomed. Eng., vol. 34, no.6, pp. 
1051-1060, Jun.2006.  

[81] A. Bashashati, R. K. Ward and G. E. Birch, "A new design of the asynchronous brain 
computer interface using the knowledge of the path of features," in Proc.2nd  IEEE EMBS Int. 
Conf. on Neural Engineering,pp. 101-104. 2005.  

 [82] A. Bashashati, R. K. Ward and G. E. Birch, "Towards development of a 3-state self-paced 
brain computer interface", Computational Intelligence and Neuroscience, Vol.2007, pp.1-8, 
Oct. 2007.  

[83] J. E. Huggins, S. P. Levine, J. A. Fessler, W. M. Sowers, G. Pfurtscheller, B. Graimann, A. 
Schloegl, D. N. Minecan, R. K. Kushwaha, S. L. BeMent, O. Sagher and L. A. Schuh, 
"Electrocorticogram as the basis for a direct brain interface: Opportunities for improved 
detection accuracy," in Proc. 1st IEEE EMBS Int. Conf. on Neural Engineering,pp. 587-590. 
2003,  

[84] S. P. Levine, J. E. Huggins, S. L. Bement, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. 
A. Passaro, D. A. Ross, K. V. Elisevich and B. J. Smith, "A Direct Brain Interface Based on 
Event-Related Potentials", IEEE Trans. Rehab. Eng., vol. 8, no.2, pp. 180-185, Jun.2000.  

[85] J. E. Huggins, S. P. Levine, S. L. Bement, R. K. Kushwaha, L. A. Schuh, E. A. Passaro, M. 
M. Rohde, D. A. Ross, K. V. Elisevich and B. J. Smith, "Detection of Event-Related 
Potentials for Development of a Direct Brain Interface", J Clinical Neurophysiol, vol. 16, 
no.5, pp. 448-455, Sep.1999.  

[86] Y. Benjamini and Y. Hochberg, "Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing", Journal of the Royal Statistical Society.Series B 
(Methodological), vol. 57, no.1, pp. 289-300, 1995.  

[87] G. Townsend, B. Graimann and G. Pfurtscheller, "Continuous EEG classification during 
motor imagery--simulation of an asynchronous BCI", IEEE Trans. Neural Syst. Rehabil. 
Eng., vol. 12, no.2, pp. 258-265, Jun.2004.  



 

 46

 [88] C. Toro, G. Deuschl, R. Thatcher, S. Sato, C. Kufta and M. Hallett, "Event-related 
desynchronization and movement-related cortical potentials on the ECoG and EEG", 
Electroencephalogr. Clin. Neurophysiol., vol. 93, no.5, pp. 380-389, Oct.1994.  

[89] S. Arroyo, R. P. Lesser, B. Gordon, S. Uematsu, D. Jackson and R. Webber, "Functional 
significance of the mu rhythm of human cortex: an electrophysiologic study with subdural 
electrodes", Electroencephalogr. Clin. Neurophysiol., vol. 87, no.3, pp. 76-87, Sep.1993.  

[90] G. Pfurtscheller and A. Aranibar, "Evaluation of event-related desynchronization (ERD) 
preceding and following voluntary self-paced movement", Electroencephalogr. Clin. 
Neurophysiol., vol. 46, no.2, pp. 138-146, Feb.1979.  

[91] L. Defebvre, J. L. Bourriez, K. Dujardin, P. Derambure, A. Destee and J. D. Guieu, 
"Spatiotemporal study of Bereitschaftspotential and event-related desynchronization during 
voluntary movement in Parkinson's disease", Brain Topogr., vol. 6, no.3, pp. 237-244, 
Spring.1994.  

[92] K. R. Muller, G. Curio, B. Blankertz and G. Dornhege, "Combining features for BCI," in the 
Proc. Advances in Neural Inf. Proc. Systems (NIPS 02), vol.15,2003.  

[93] L. Narici, V. Pizzella, G. L. Romani, G. Torrioli, R. Traversa and P. M. Rossini, "Evoked 
alpha- and mu-rhythm in humans: a neuromagnetic study", Brain Res., vol. 520, no.1-2, pp. 
222-231, Jun 18.1990.  

[94] B. Feige, R. Kristeva-Feige, S. Rossi, V. Pizzella and P. M. Rossini, "Neuromagnetic study 
of movement-related changes in rhythmic brain activity", Brain Res., vol. 734, no.1-2, pp. 
252-260, Sep 23.1996.  

[95] G. Pfurtscheller, "Central beta rhythm during sensorimotor activities in man", 
Electroencephalogr. Clin. Neurophysiol., vol. 51, no.3, pp. 253-264, Mar.1981.  

[96] W. Szurhaj, P. Derambure, E. Labyt, F. Cassim, J. L. Bourriez, J. Isnard, J. D. Guieu and F. 
Mauguiere, "Basic mechanisms of central rhythms reactivity to preparation and execution of 
a voluntary movement: a stereoelectroencephalographic study", Clin. Neurophysiol., vol. 114, 
no.1, pp. 107-119, Jan.2003.  

[97] H. S. Liu, X. Gao, F. Yang and S. Gao, "Imagined hand movement identification based on 
spatio-temporal pattern recognition of EEG," in Proc. of the 1st  Joint EMBS/BMES 
Conference, pp. 599-602. 2003,  

 [98] B. D. Mensh, J. Werfel and H. S. Seung, "BCI Competition 2003--Data set Ia: combining 
gamma-band power with slow cortical potentials to improve single-trial classification of 
electroencephalographic signals", IEEE Trans. Biomed. Eng., vol. 51, no.6, pp. 1052-1056, 
Jun. 2004.  

[99] T. Hinterberger and G. Baier, "Parametric orchestral sonification of EEG in real time", 
Multimedia, IEEE, vol. 12, no.2, pp. 70-79, 2005.  

[100] Y. Wang, Z. Zhang, Y. Li, X. Gao, S. Gao and F. Yang, "BCI Competition 2003--Data set 
IV: an algorithm based on CSSD and FDA for classifying single-trial EEG", IEEE Trans. 
Biomed. Eng., vol. 51, no.6, pp. 1081-1086, Jun. 2004.  

[101] M. Krauledat, G. Dornhege, B. Blankertz, F. Losch, G. Curio and K. -. Muller, "Improving 
speed and accuracy of brain-computer interfaces using readiness potential features," in the 
Proc. 26th IEEE/EMBS Int. Conf.,vol.2,pp. 4511-4515 , 2004.  

[102] T. M. Vaughan, W. J. Heetderks, L. J. Trejo, W. Z. Rymer, M. Weinrich, M. M. Moore, A. 
Kubler, B. H. Dobkin, N. Birbaumer, E. Donchin, E. W. Wolpaw and J. R. Wolpaw, "Brain-



 

 47

computer interface technology: a review of the Second International Meeting", IEEE Trans. 
Neural Syst. Rehabil. Eng., vol. 11, no.2, pp. 94-109, Jun.2003.  

[103] J. S. Barlow, "Artifact processing (rejection and minimization) in EEG data processing", 
Handbook of Electroencephalography and Clinical Neurophysiology (Revised Series Ed.), 
Amsterdam: Elsevier, vol.2., pp.15–62, 1986. 

[104] P. Anderer, S. Roberts, A. Schlogl, G. Gruber, G. Klosch, W. Herrmann, P. Rappelsberger, 
O. Filz, M. J. Barbanoj, G. Dorffner and B. Saletu, "Artifact processing in computerized 
analysis of sleep EEG - a review", Neuropsychobiology, vol. 40, no.3, pp. 150-157, Sep.1999.  

[105] D. J. McFarland, L. M. McCane, S. V. David and J. R. Wolpaw, "Spatial filter selection for 
EEG-based communication", Electroencephalogr. Clin. Neurophysiol., vol. 103, no.3, pp. 
386-394, Sep.1997.  

[106] W. Waterink and A. van Boxtel, "Facial and jaw-elevator EMG activity in relation to 
changes in performance level during a sustained information processing task", Biol. Psychol., 
vol. 37, no.3, pp. 183-198, Jul.1994.  

[107] B. H. Cohen, R. J. Davidson, J. A. Senulis, C. D. Saron and D. R. Weisman, "Muscle 
tension patterns during auditory attention", Biol. Psychol., vol. 33, no.2-3, pp. 133-156, 
Jul.1992.  

[108] I. I. Goncharova, D. J. McFarland, T. M. Vaughan and J. R. Wolpaw, "EMG contamination 
of EEG: spectral and topographical characteristics", Clin. Neurophysiol., vol. 114, no.9, pp. 
1580-1593, Sep.2003.  

[109] D. J. McFarland, W. A. Sarnacki, T. M. Vaughan and J. R. Wolpaw, "Brain-computer 
interface (BCI) operation: signal and noise during early training sessions", Clin. 
Neurophysiol., vol. 116, no.1, pp. 56-62, Jan.2005.  

[110] R. N. Vigario, "Extraction of ocular artefacts from EEG using independent component 
analysis", Electroencephalography and Clinical Neurophysiology, vol. 103, no.3, pp. 395-
404, Sep. 1997.  

[111] R. Verleger, "The instruction to refrain from blinking affects auditory P3 and N1 
amplitudes", Electroencephalogr. Clin. Neurophysiol., vol. 78, no.3, pp. 240-251, Mar.1991.  

[112] C. J. Ochoa and J. Polich, "P300 and blink instructions", Clin. Neurophysiol., vol. 111, 
no.1, pp. 93-98, Jan.2000.  

[113] G. Gratton, "Dealing with artifacts: The EOG contamination of the event-reJated brain 
potential", Behavior Research Methods, Instruments, & Computers, vol. 30, no.1, pp. 44-53, 
1998.  

[114] H. Ramoser, J. Muller-Gerking and G. Pfurtscheller, "Optimal Spatial Filtering of Single 
Trial EEG During Imagined Hand Movement", IEEE Trans. Rehab. Eng., vol. 8, no.4, pp. 
441-446, Dec.2000.  

[115] J. Millan, M. Franze, J. Mourino, F. Cincotti and F. Babiloni, "Relevant EEG features for 
the classification of spontaneous motor-related tasks", Biol. Cybern., vol. 86, no.2, pp. 89-95, 
Feb.2002.  

[116] R. J. Croft and R. J. Barry, "Removal of ocular artifact from the EEG: a review", 
Neurophysiol. Clin., vol. 30, no.1, pp. 5-19, Feb.2000.  

[117] V. Rowland, "Cortical steady potential (direct current potential) in reinforcement and 
learning", Progress in Physiological Psychology, vol. 2, pp. 1–77, 1968.  



 

 48

[118] J. S. Barlow, "EMG artifact minimization during clinical EEG recordings by special analog 
filtering", Electroencephalogr. Clin. Neurophysiol., vol. 58, no.2, pp. 161-174, Aug.1984.  

[119] J. R. Ives and D. L. Schomer, "A 6-pole filter for improving the readability of muscle 
contaminated EEGs", Electroencephalogr. Clin. Neurophysiol., vol. 69, no.5, pp. 486-490, 
May.1988.  

[120] S. Choi, A. Cichocki, H. M. Park and S. Y. Lee, "Blind Source Separation and Independent 
Component Analysis: A Review",  Neural Information Processing-Letters and Review, vol. 
6, no.1, pp. 1–57, 2005.  

[121] T. D. Lagerlund, F. W. Sharbrough and N. E. Busacker, "Spatial filtering of multichannel 
electroencephalographic recordings  through principal component analysis by singular value 
decomposition", J. Clin. Neurophysiol., vol. 14, no.1, pp. 73-82, Jan.1997.  

[122] M. Browne and T. R. Cutmore, "Low-probability event-detection and separation via 
statistical wavelet  thresholding: an application to psychophysiological denoising", Clin. 
Neurophysiol., vol. 113, no.9, pp. 1403-1411, Sep.2002.  

[123] P. He, G. Wilson and C. Russell, "Removal of ocular artifacts from electro-encephalogram 
by adaptive filtering", Med. Biol. Eng. Comput., vol. 42, no.3, pp. 407-412, May.2004.  

[124] P. Berg and M. Scherg, "A multiple source approach to the correction of eye artifacts", 
Electroencephalogr. Clin. Neurophysiol., vol. 90, no.3, pp. 229-241, Mar.1994.  

[125] D. Burke, S. Kelly, P. de Chazal and R. Reilly, "A simultaneous filtering and feature 
extraction strategy for direct brain interfacing," in Proc. of the 2nd  Joint EMBS/BMES 
Conference,vol.1,pp. 279-280 , 2002. 

[126] A. Kuebler, B. Kotchoubey, H. P. Salzmann, N. Ghanayim, J. Perelmouter, V. Homberg 
and N. Birbaumer, "Self-regulation of slow cortical potentials in completely paralyzed human 
patients", Neurosci. Lett., vol. 252, no.3, pp. 171-174, Aug.1998.  

[127] F. Provost and T. Fawcett, "Robust Classification for Imprecise Environments", Mach. 
Learning, vol. 42, no.3, pp. 203-231, 2001.  

[128] J. Huang and C. X. Ling, "Using AUC and accuracy in evaluating learning algorithms", 
IEEE Trans. Knowled. Data Eng., vol. 17, no.3, pp. 299-310, 2005.  

[129] J. Zhu and T. Yao, "An evaluation of statistical spam filtering techniques", ACM 
Transactions on Asian Language Information Processing (TALIP), vol. 3, no.4, pp. 243-269, 
2004.  

[130] A. P. Bradley, "Use of the area under the ROC curve in the evaluation of machine learning 
algorithms", Pattern Recognit, vol. 30, no.7, pp. 1145-1159, 1997.  

[131] N. T. Choplin and D. C. Lundy, "The sensitivity and specificity of scanning laser 
polarimetry in the detection of glaucoma in a clinical setting", Ophthalmology, vol. 108, no.5, 
pp. 899-904, May.2001.  

[132] M. Fatourechi, G. E. Birch and R. K. Ward, "A self-paced brain interface system that uses 
movement related potentials and changes in the power of brain rhythms", J. Comput. 
Neurosci., vol.23, no.1, pp.21-37, Aug. 2007.   

[133] N. Yamawaki, C. Wilke, Z. Liu and B. He, "An enhanced time-frequency-spatial approach 
for motor imagery classification", IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no.2, pp. 
250-254, Jun.2006.  



 

 49

[134] A. Buttfield, P. W. Ferrez and R. Millan Jdel, "Towards a robust BCI: error potentials and 
online learning", IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no.2, pp. 164-168, 
Jun.2006.  

[135] G. R. Muller-Putz, R. Scherer, C. Neuper and G. Pfurtscheller, "Steady-state somatosensory 
evoked potentials: suitable brain signals for brain-computer interfaces?", IEEE Trans. Neural 
Syst. Rehabil. Eng., vol. 14, no.1, pp. 30-37, Mar.2006.  

[136] J. R. Wolpaw, D. McFarland and G. Pfurtscheller, "EEG-based Communication: Improved 
Accuracy by Reponse Verification", IEEE Trans. Rehab. Eng., vol. 6, no.3, pp. 326-333, 
1998.  

[137] M. Fatourechi, S. G. Mason, G. E. Birch and R. K. Ward, "Is information transfer rate a 
suitable performance measure for self-paced brain interface systems?" in Proc. IEEE Int. 
Symp. Signal Processing and Information Technology, pp. 212-216, 2006.  

[138] J. Cohen, "A coefficient of agreement for nominal scales", Educational and Psychological 
Measurement, vol. 20, no.1, pp. 37-46, 1960.  

[139] M. Fatourechi, G. E. Birch and R. K. Ward, "Applying a hybrid genetic algorithm in the 
design of a self-paced brain interface with a low false positive rate," in Proc. IEEE 
ICASSP’07,vol.4,pp. IV-1157; IV-1160, Apr. 2007.  

[140] V. Bostanov, "BCI Competition 2003--Data sets Ib and IIb: feature extraction from event-
related brain potentials with the continuous wavelet transform and the t-value scalogram", 
IEEE Trans. Biomed. Eng., vol. 51, no.6, pp. 1057-1061, Jun.2004.  

[141] L. Qin and B. He, "A wavelet-based time-frequency analysis approach for classification of 
motor imagery for brain-computer interface applications", J. Neural Eng., vol. 2, no.4, pp. 
65-72, Dec.2005.  

 

 



 

 50

CHAPTER 2 AUTOMATIC USER CUSTOMIZATION 
FOR IMPROVING THE PERFORMANCE OF A SELF-
PACED BRAIN COMPUTER INTERFACE SYSTEM1 

 

2.1 Introduction 

A self-paced brain computer interface (BCI) system allows individuals with 

severe motor disabilities to control objects in their environment using their brain signals 

only and at any time, i.e., at their own pace [1-11]. The output of a self-paced BCI system 

should only be activated when the user intends to control, and should remain inactive at 

all other times. Implementing such a BCI system is much more difficult than 

implementing a traditional synchronized BCI system, in which the user can only control a 

device at certain periods of time specified by the system [12].  

  BCI systems use specific features of a neurological phenomenon in the brain 

activity for the purpose of control. Various neurological phenomena can be used, 

including neural firing rates, changes in the Mu and Beta rhythms, movement-related 

potentials (MRPs), slow cortical potentials (SCPs) and P300. For a complete list of 

neurological phenomena used in BCI systems and pertinent references, please see [13]. In 

designing a feature extractor for a BCI system, an important factor that needs to be 

addressed is the variability in the chosen neurological phenomenon; i.e., the 

specifications of the neurological phenomenon may change from one user to another. For 

example, it has been shown that the Mu and Beta frequency bands [14] and the shape of 

an MRP [15] may vary from one user to another. As a result, if the features extractor does 

not extract user-specific features, the performance of the BCI system may degrade [16], 
                                                 
1 A version of this chapter has been published. Fatourechi, M., Bashashati, A., Birch, G.E. and Ward, R.K.  

“Automatic User Customization for Improving the Performance of an Asynchronous Brain Interface 
System”, Journal of Medical & Biological Engineering and Computing, Vol.44, No.12, Dec 2006, 
pp.1093-1104.  

 



 

 51

or even detect an incorrect pattern [15]. A successful BCI system must therefore select 

features that correctly characterize the underlying neurological phenomenon of the 

specific user. We call this process user customization of the feature extractor.  

Traditionally, BCI systems have not employed user customization for extracting 

features. Recent studies, however, showed that user customization of the feature extractor 

leads to improved performance for most users [5, 15-19]. User customization can be 

achieved either “manually” or “automatically”.  In the manual user customization, the 

neurological phenomenon of interest is visually inspected by a human expert (usually 

through inspecting the ensemble average of many single trials); this is then followed by 

the expert determining the parameter values of the feature extractor [15].  This 

customization process has two main advantages: it is relatively fast and it is not 

computationally demanding. Thus, when the total number of users and EEG channels is 

small and the signal-to-noise ratio (SNR) of the neurological phenomenon is sufficiently 

high, the manual approach can be used for customizing the parameter values.  

When the number of users grows, however, this process becomes increasingly 

time-consuming and exhausting.  The problem becomes more challenging when features 

are extracted from a large number of EEG channels, since many EEG channels (and not 

only one or two) need to be visually observed. If the SNR of the neurological 

phenomenon is low, visual estimation becomes subjective and inaccuracies are 

introduced in the estimates of the parameter values. Furthermore, if some kind of 

preprocessing that changes the shape of the neurological phenomenon of interest is 

employed, then this change should be considered in the design of the feature extractor. 

For these reasons, an automatic user customization algorithm is desired.  

In this Chapter, we employ automatic user customization of the feature extractor 

of a self-paced BCI system called the Low Frequency-Asynchronous Switch Design (the 

LF-ASD) [1]. The LF-ASD detects an Intentional Control (IC) command in the EEG 

signal. The IC command corresponds to an MRP pattern generated by the flexion of the 

right index finger. When the users are not in an IC state, they are said to be in a no-

control (NC) state. In an NC state, a user may be idle or perform some action other than 

trying to control the BCI system. We chose the LF-ASD for this study because of our 



 

 52

intimate knowledge of this BCI system. Also, the LF-ASD has been used as the basis for 

potential design improvements by other researchers [6], and it is one of the few BCI 

systems that has been successfully tested online [20].  

Because the shape of MRP patterns differs from one user to another, determining 

the specific design parameter values for each individual is expected to improve the 

performance of a BCI system. In [15] the parameter values of the feature extractor of the 

LF-ASD are estimated by a human expert (see Section 2.3 for details). It is shown that 

such user customization results in improved performance of the LF-ASD. There are some 

limitations, however, in the application of the proposed method. First, as mentioned 

above, the process can become very time–consuming, especially for a relatively large 

number of EEG channels, which is the case here (the LF-ASD uses 6 bipolar EEG 

channels). Second, the LF-ASD incorporates a pre-processing component that changes 

the shapes of MRPs. Third, the SNR of the MRPs is usually very low; this makes 

estimating the parameter values from the ensemble averages unreliable for some 

individuals [15].  

In this study, we propose the use of a genetic algorithm (GA) to automatically 

estimate the shape of MRPs for each user and thus user customize the parameter values 

of the LF-ASD. A GA is a heuristic search method that provides a framework for 

effectively sampling large search spaces [21]. GAs are designed based upon the genetic 

processes of biological organisms, which evolve over many generations according to the 

principles of natural selection and survival of the fittest. By mimicking this process, they 

are able to evolve solutions to real-world problems. They have been shown to be effective 

in optimization problems where a large-dimensional feature space is involved, especially 

when the optimization problem cannot be solved by analytical tools [21, 22]. Since in this 

study we plan to automatically estimate the shape of the MRP pattern for each EEG 

channel, and thus we are dealing with a high-dimensional parameter space, we employ 

GAs. The use of a GA for automatic user customization of the LF-ASD was also 

motivated by the results of our earlier work in [23]. There, we used a GA to automatically 

customize the parameter values of the post-processing component in the LF-ASD for two 

individuals. The improvements in performance of the two individuals studied, 

demonstrated the effectiveness of employing a GA.  
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This study demonstrates that automatic user customization of the LF-ASD results 

in statistically significant improvements in the performance over the BCI system whose 

design parameter values are user customized by a human expert [15]. This finding further 

supports existing evidence that automatic user customization leads to performance 

improvement in BCI systems. 

2.2 Background 

This section briefly reviews MRPs and the overall structure of the LF-ASD. 

MRPs are low-frequency potentials that start about 1-1.5 seconds before a movement. 

They have bilateral distribution and present maximum amplitude at the vertex [24-26]. 

An MRP is a robust phenomenon observed in the brain signal. It has been shown that 

there are similarities between the shapes of MRPs resulting from a real execution of a 

movement and those resulting from an attempt to perform a movement [1]. In some BCI 

systems, MRPs have thus been chosen as the neurological phenomenon, from which the 

presence of an IC command is extracted [1, 27-29] . An MRP consists of different 

components, such as Bereitschaftspotential, a motor potential (MP) , post-movement 

positive potential (PMPP), etc. [30]. Different BCI systems focus on the detection of 

different components. For example, in [31], Bereitschaftspotential are detected, whereas 

in [1], the whole MRP is detected. There are various methods for detecting the 

components of MRPs, such as using autoregressive parameters [27], wavelet transform 

[28]and Fourier transform [29]. One solution is to use a simple feature extractor that 

detects the peaks of MRPs , since the peaks are found to be robust over different 

individuals [1]. The LF-ASD system and its variations have used this idea for detecting 

MRP patterns [1, 15, 32].  

The block diagram of the LF-ASD [15, 32] is shown in Figure 2-1. This design 

uses features extracted from six bipolar EEG channels located on the sensorimotor 

cortex. After amplification and low-pass filtering using a low-pass, linear phase FIR filter 

with a 4 Hz cut-off frequency, all six EEG channels are normalized with an energy 

normalization transform (ENT) [33].  
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The ENT, (see Figure 2-1), normalizes the input energy and has been shown to 

result in a better class separation by increasing the difference between the means of the 

IC and NC features [32-34].  The output of the ENT is calculated using 
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where x(n) is the input EEG channel, WN  is the width of the ”sliding” window used to 

normalize x(n), and e(n) is the normalized EEG channel (the output of the ENT). The 

only design parameter of ENT is WN , i.e., the “normalization parameter”. Its value was 

originally determined through using an exhaustive search on the data collected from one 

individual. This value was then used for all other individuals [33].  
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Figure 2-1. Components of the LF-ASD system (from [32]). 

A specific feature generator is then applied to detect the presence of an MRP 

pattern in the single trial bipolar EEG signals [1]. Figure 2-2 shows the points used to 

calculate the features from a sample EEG signal at a particular point in time (t=n’). As 

shown in Figure 2-2,  each of the elemental features )'(nEi  and )'(nE j is defined as the 

difference in e(n) at two points in time, described by (2-2) and (2-3) below:  

               )'()'()'( nenenE iii                                              (2-2) 

               )'()'()'( jijij nenenE                                            (2-3) 
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Figure 2-2. Points selected by the feature generator when applied to a sample bipolar EEG signal. 

where )(ne is the ENT-normalized EEG signal. Throughout this Chapter, the above 

parameters ( jiji  ,,, ) are referred to as the “delay parameters” and are used to 

estimate the shape of a bipolar MRP. 

To emphasize the samples for which two large elemental features appear 

concurrently, compound features are defined by pairing the elemental features ( ji EE , ), 

as shown below: 

       
otherwise
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                         (2-4) 

For robustness, the compound features are maximized over a window as follows: 

      )'(),1'(),...,7'(),8'(max)'( ngngngngnG ijijijijij                    (2-5) 

Since there are six pairs of bipolar EEG channels, this procedure is repeated for 

each of these channels. Compound features of each of the six EEG signals then form a 6-

dimension feature vector. The Karhunen-Loève Transform (KLT) is used to reduce the 6-

dimensional feature space produced by the feature generator to a 2-dimensional 

space[35]. A 1-nearest neighbor (1-NN) classifier is used as the feature classifier.  The 

βj 

αj αi 
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codebook generation mechanism for the classifier is explained elsewhere [1].  Finally, a 

moving average and a debounce algorithm are employed to improve the classification 

accuracy of the system by reducing the number of false activations (for details, see [1, 

32]).  After training, the LF-ASD classifies the input patterns as one of two classes: NC 

or IC.  

2.3 Problem statement 

In designing the LF-ASD, the parameter values of the ENT and the feature 

generator must be estimated. The aim is to determine these estimates so that it is possible 

to detect MRP patterns in a single trial. The ENT has one parameter to be determined. 

This is the window size, WN. Its value should be estimated for each of the six EEG 

channels. The feature generator has four delay parameters ( jiji  ,,, ) for each of the 

six EEG channels, resulting in a total of 24 delay parameters whose values should be 

estimated. This means that, to detect the presence of an MRP pattern, the values of 30 

parameters should be determined. For the rest of this Chapter, we refer to these 30 

parameters as the “design parameters”. These parameters were originally estimated by a 

human expert from the ensemble average of MRP patterns for one individual and then 

were used for all subsequent individuals [1, 32]. As the MRP pattern related to a specific 

movement may differ from one individual to another, using the same design parameter 

values for all individuals may lead to erroneous results.  Therefore, the design parameter 

values should be estimated for each individual. The same argument applies to any BCI 

system that uses a user-dependant pattern for its IC state. 

When determining the design parameter values, two points should be considered. 

First, these values could not be determined using an exhaustive search approach. Without 

having an efficient automatic method, it is prohibitively time consuming to determine all 

parameter values simultaneously by using an exhaustive search method.  Second, an 

improper choice of design parameter values may lead the BCI system to detect an 

incorrect pattern in the EEG signal. This, in turn, degrades the performance of the system, 

since the detected pattern would not correspond to an MRP pattern as it may have 

resulted from a particular artifact.  
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To improve the performance of the LF-ASD, the ),( ji  delay parameter values 

were user customized by a human expert in [15]. The βi’s  and βj’s were set to 0, equal i  

and j  values were used for each of the six EEG channels and the size of the 

normalization window was fixed for all individuals and for all EEG channels. For each 

individual, the MRP pattern associated with the flexion of the right index finger was 

determined using the ensemble average of the MRP pattern. The delay parameter values 

were then estimated by visually inspecting the user’s ensemble average of the MRP 

patterns. The rationale behind using the ensemble average was that it enhanced the SNR, 

and that the resulting waveform better showed the desired pattern that the LF-ASD aimed 

at detecting. As for the normalization parameters, since no analytical method for 

estimating these values existed, the values found earlier in [33] by trial and error were 

used. The data of eight individuals were analyzed [15]. Improvements from 2.0% to 6.8% 

were reported for four individuals, but the results for the rest of the individuals did not 

improve [15].  

Although implementing the above customization approach seems straightforward, 

there were some problems associated with it. First, estimating the delay parameter values 

from the ensemble averages was not trivial. The number of available trials had a 

significant effect on the quality of the generated ensemble averages and ultimately on the 

estimated values of the delay parameters. For some individuals, there were a number of 

closely located peaks in the ensemble averages that made the estimation of the delay 

parameter values very difficult. As a result, several points had to be tested before the 

desired delay parameter values were estimated [15]. Also, the values of the normalization 

parameters and the delay parameters were not estimated simultaneously. Since the ENT 

was applied first, the delay parameter values were estimated subsequently. Thus, for each 

value of the normalization parameter of the ENT, the delay parameter values had to be 

estimated. Since no analytical method currently exists for estimating the normalization 

parameter values, the resulting estimates of the delay parameter values may not be 

reliable. Finally, the amount of improvement in the performance of the system found in 

[15] over that of the non-user customized system [32], was not as high as expected. This 
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is probably due to the fact that estimating the delay parameter values based on the 

ensemble averages does not guarantee optimal performance in single-trial analysis.  

To address these limitations, in the next section we propose the use of a GA to 

automatically user customize the design parameter values.  

2.4 Methods  

   In applying GAs to select the parameter values, each parameter of interest is 

first coded in the form of a randomly generated binary string. Each bit in this binary 

string is called a gene. The concatenation of all the binary strings forms a “chromosome”, 

and the set of “chromosomes” forms a “population”. Each chromosome is then evaluated 

and a fitness value assigned. For example, the fitness value can be the classification 

accuracy of the BCI system for a particular set of parameter values. The chromosomes 

are then combined using operators such as “selection”, “crossover” and “mutation” in 

order to generate new chromosomes. The “selection” operator selects a proportion of the 

existing population to breed a new generation. The selected chromosomes are usually the 

ones with higher fitness compared to other chromosomes in the population. After 

selection of the “fitter” chromosomes, a pair of "parent" chromosomes is selected for 

generating the “child” chromosomes. A child chromosome is a new solution that 

typically shares many of the characteristics of its "parents". The “crossover” operator 

ensures that this is the case by copying some of the genes of each parent to the child. The 

“mutation” operator is used to maintain genetic diversity from one generation of a 

population to the next.  This process is repeated until a new population of chromosomes 

is generated. It is expected that the population evolves gradually and that fitness improves 

over generations. This process is continued until some criteria for stopping the GA is met 

[21].  

The GA we apply for user customization has the following characteristics. Each 

chromosome consists of a concatenated binary version of 31 parameter values.  These 

parameters comprise the 30 design parameters previously stated and the “scale factor” 

parameter, which determines the operating point of the BCI system on the receiver 

operating characteristic (the ROC) curve. The ROC curve shows the relationship between 



 

 59

the true positive (TP) and the false positive (FP) results for each parameter configuration 

(for more details on scale factor and plotting ROC curve for the LF-ASD, see [32]). The 

function of the scale factor is explained below. 

The width of the normalization window was chosen to be from 0 to 1.5 seconds. 

The initial values of the delay parameters were visually estimated from the ensemble 

averages of the MRP patterns in the training data with the ENT removed from the system. 

For simplicity, the same initial delay values were chosen for all channels. The ranges for 

the delay parameter values were then chosen as follows (all numbers refer to sample 

numbers): 

Range of αi: [αi-est -32  to αi-est + 96] 

Range of αj: [αj-est -96  to αj-est + 32] 

Range of βi: [-32  to + 32] 

Range of βj: [-32  to + 32]                                                                               (2-6) 

where, αi-est  and αj-est are the approximate values of the delay parameters estimated  from 

the ensemble averages. These parameter ranges were chosen to cover the range over 

which the peaks, associated with the pattern shown in Figure 2-2, are expected to occur. 

Their values, thus, give an estimation of the shape of the MRP pattern.  The range of the 

scale factor (which determines the operating point on the ROC curve) was chosen as from 

0.1 to 4. Our experience has shown that this selection covers the range of the operating 

points on the ROC curve of the LF-ASD that should be at low FP rates [32]. 

Following an initial estimate of the delay parameter values, a suitable fitness 

function for the GA was chosen as follows.  A confusion matrix, shown in Table 2-1, was 

used to summarize the classification performance of a 2-state self-paced BCI system. In 

Table 2-1, the FP rate is the percentage of misclassifying a NC state as an IC state, the 

true negative (TN) rate is the percentage of correctly classifying an NC, the TP rate is the 

percentage of correctly classifying an IC and the false negative (FN) rate is the 

percentage of misclassifying an IC state as an NC state. A suitable fitness function for a 

self-paced BCI should be able to effectively summarize the confusion matrix. For a two-

state self-paced BCI system such as the LF-ASD, we have 
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FN(%) = 100 (%)- TP (%) 

and 

 TN(%) = 100 (%)- FP (%)                                             (2-7) 

Based on (2-7) , the fitness function needs to contain only TP and FP rates. One 

choice of a good fitness function can be one that maximizes the TP rate for a reasonably 

low fixed FP rate. This choice is based on our previous results, where it was found that an 

FP rate above 2% caused excessive frustration and distraction in users using a self-paced 

BCI system [32]. Thus, it is important to keep the FP rates below 2%. 

Table 2-1. The confusion matrix for a 2-state self-paced BCI system. 

       Actual Class 

Predicted Class 

IC NC 

IC  TP FN 

NC FP TN 

 

Our earlier attempts at calculating a suitable performance measure based on the 

confusion matrix were based on reporting the TP rate at a fixed FP rate (which was set at 

2%; see [32] for details). In order to achieve this, various points on the ROC curve were 

analyzed by varying the scale factor until a desired point, with an FP rate of 2%, was 

found.  Such an approach is undesired for calculating the fitness function because of the 

huge computational load involved. Currently, each evaluation of the fitness function, 

including training the classifier and evaluating the system on the validation set, takes 

about two minutes on a PC with a Pentium IV 2.8 GHz CPU and 512 MB of RAM. Since 

finding a specific point on the ROC curve requires several such evaluations, and this 

process should to be repeated for all chromosomes in the population, the computational 

load increases dramatically. To be more specific, if the time needed for each evaluation 

of the fitness function is denoted by sEvaluationT , and ChromosomeN evaluations are needed to 

find a specific point on the ROC curve, and the GA needs to evaluate 
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sEvaluationN chromosomes during its operation, the running time of the GA can be 

calculated as follows:  

sEvaluationChromosomesEvaluationGA TNNT                                                  (2-8)    

 Since 2sEvaluationT , and sEvaluationN is in the order of thousands (e.g., 5000),  it is 

evident that even for a small  ChromosomeN ,  GAT will become very large. For the same 

reason, using the area under the ROC curve is not practical at this stage, since several 

points on the ROC curve should be estimated for a single evaluation of the fitness 

function. Our final configuration incorporated the FP rate as a constraint in the fitness 

function. We defined the fitness function as follows:  

                 








%2if,1.0

%2if,
)(

FPTP
FPTP

Chromosomefitness            (2-9) 

where the TP and the FP rates are expressed in %. In (2-9), the TP rates remain intact 

only for FP values less than 2%. For FP>2%, we attenuated the fitness of these 

chromosomes dramatically in order to prevent the less fit chromosomes from becoming 

active members of the population. Although such chromosomes had high TP rates, they 

also had high FP rates, and were considered “unfit” from a practical point of view.  

The scale factor was added to the structure of the chromosome because of the 

expectation that the algorithm is able to find the value of the scale factor that yields the 

highest TP rate when %2FP . In [23], we showed that this was indeed the case. The 

GA was able to find the scale factor value yielding the highest TP rate for %2FP . 

The remaining operators of the GA were chosen as follows. Tournament-based 

selection (tournament size =3) was used as the selection operator. Uniform crossover 

(p=0.9) and uniform mutation (p=0.01) operators were used. The sizes of the initial 

population and of the population in the next generations were chosen as 200 and 100, 

respectively. We used random initialization for initializing the GA. The number of 

evaluations was set to 5000 and this criterion was used for the termination of the 

algorithm. If the improvement in the best solution was found to be less than 1% for more 

than 10 consecutive generations, before reaching the total number of evaluations the 
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algorithm was terminated. Because of the computational load involved, we did not tune 

the GA parameter values such as the mutation and crossover rates. 

2.5 Experimental results 

In this section, the performance of the proposed algorithm is evaluated using the 

data collected from eight individuals. Off-line data were collected from users positioned 

150 cm in front of a computer monitor. The EEG signals were recorded from six bipolar 

electrode pairs positioned over the users’ supplementary motor area and primary motor 

cortex at F1-FC1, Fz-FCz, F2-FC2, FC1-C1, FCz-Cz, and FC2-C2 in accordance with the 

International 10-20 System. Features extracted from these channels had been shown to 

provide more discriminant information for the separation of IC and NC features [1].  

Electrooculography (EOG) activity was measured as the potential difference between two 

electrodes, placed at the corner of and below the right eye. The ocular artifacts were 

automatically rejected when the difference between the EOG electrodes exceeded ±25 

µV. All signals were sampled at 128 Hz and referenced to the ear electrodes (see [1, 36] 

for details). 

Data from four individuals with a high-level spinal cord injury (location of injury 

between C4-5 and C6-7 on the spinal cord) and four able-bodied individuals were used in 

this study. The individuals with spinal cord injury were coded as SCI (spinal cord injury) 

individuals and the able-bodied individuals were coded as AB individuals. None of the 

individuals with spinal cord injury had residual sensation or motor function in their 

hands. The users’ descriptions are shown in Table 2-3. 

The data were collected from the users as they performed a guided task.  At each 

interval, a white circle of 2 cm diameter was displayed on the user’s monitor for ¼ 

second, prompting the user to attempt a movement. In response to this cue, the user had 

to attempt to flex his right index finger one second after the cue appeared. The 1-second 

delay was used to avoid visual evoked potential (VEP) effects from the cue, and the users 

were trained to estimate it.  The 1-second time after the cue is denoted by the “time of the 

expected attempted movement (TEM)”. Note that this is the time when the user is 

expected to attempt to perform the movement, and that this time may vary from one user 
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to another and from trial to trial. This task resulted in an attempted movement in 

individuals with spinal cord injury i.e., no physical finger movement, and an actual finger 

flexion in able-bodied individuals (see [36] for more details). For each user, an average of 

80 trials was collected every day over a period of 6 days.   

The data in the EEG signals were divided into segments, each of length equal to 

seven seconds.  A 7-second window was wide enough to contain an MRP pattern as well 

as NC periods. A training set, a validation set and a test set were then randomly generated 

for each user from these 7-second windows. The training set was used to train the 

classifier.  The validation set was used to select the optimal values of the design 

parameters using the proposed GA. The parameter values yielding the least error on the 

validation set were then selected. The performance of the system was evaluated using the 

test set. For each user, the epochs were randomly divided into five non-overlapping sets 

of equal size. The data in the first set were used for training, the data in sets two and three 

were used for estimating the parameters and the data in sets four and five were used for 

testing the performance of the selected model. The number of epochs in the training, 

validation and test sets for each user is reported in the fifth column of Table 2-3.  

The features in (2-4) were generated by moving the feature generator over epochs, 

each of a 7–second length. Since the EEG signal is filtered to frequencies below 4Hz, the 

feature generator was shifted by 0.0625 seconds (8 samples), resulting in a total of 112 

features in a 7-second epoch. 

To determine whether or not an IC command was detected by the system, we 

defined a sliding window around the TEM. The length of this window was 1.5 seconds 

(from 0.5 seconds before the TEM to 1 second after the TEM). If an MRP pattern was 

detected at any time within any such window, the output of the BCI system was 

activated. This method is similar to those used by other researchers [3, 6, 7].  False 

positives were assessed in the periods before the system cue appeared and after the user 

was expected to perform the movement. 

In [15], a 5-fold stratified cross-validation process was used to assess the 

performance of the LF-ASD. The trials in the training sets, validation sets and test sets 

were chosen randomly. The performance over different validation sets varied very little. 
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Thus, to save on computational time, we did not perform cross-validation over the 

different validation sets in this study, saving about 20% of the time needed for a 5-fold 

stratified cross-validation. 

Figure 2-3 shows the fitness of the best chromosome in each generation as a 

function of the generation number for two representative individuals (AB2 and SCI4). 

Figure 2-3 clearly shows the evolution of the fitness of the best chromosome as the GA 

explores the search space. Please note that in the early stages of the GA, the improvement 

rate of the fitness of the best chromosome is fast. As the population evolves, the rate of 

improvement drops. This is because in the early stages of the GA, the value of the scale 

factor is not properly chosen. The design parameter values are also far from optimal. As 

the population evolves, the GA is able to find the scale factor value that yields the highest 

TP rate for FP=2%. This in turn results in a significant improvement in the fitness. As the 

generation number increases, the scale factor value is more properly set. The rate of 

improvement thus drops. 

Table 2-2 summarizes the performance of the GA. In this table, the average 

fitness of the population, the fitness of the best chromosome and the fitness of the worst 

chromosome are reported for both initial and the final populations. As Table 2-2shows, 

the average fitness of the initial population is very low. This result may be due to the 

following reasons: 

(1) The parameter values are randomly selected and are far from optimal.  

(2) The scale factor value is not properly set. Many chromosomes in the 

population are thus assigned a fitness value equal to zero since their FP rates are above 

the threshold of FP=2% (see (2-9)).  
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Figure 2-3. The fitness of the best chromosomes as a function of the generation number for two 
representative individuals. a) AB2; b)  SCI4. 
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As the population evolves through generations, the GA is able to find the optimal 

value of the scale factor that yields the highest TP rates for FP=2%. Moreover, the choice 

of optimal parameter values leads to the generation of chromosomes with high fitness, 

resulting in an increased average fitness of the population. Since the GA found the 

suitable scale factor values for the chromosomes, the fitness of the weakest chromosome 

in the population is also dramatically increased.  

Table 2-2. Comparison of the fitness value of the initial and final populations (tested on the validation 
sets). 

 

The performance of the proposed “Automatically User Customized LF-ASD” 

system or ALF-ASD on the test sets is shown in Table 2-3 . We compared the 

performance of the ALF-ASD with that of the latest design of the LF-ASD whose 

parameter values tuned by a human expert [15]. The estimates of the delay parameter 

values in [15] are shown in Table 2-4.  We tested both designs on 10 different randomly 

User Initial population Final population 

Worst 

Fitness 

Mean 

Fitness 

Best 

Fitness 

Worst 

Fitness 

Mean 

Fitness 

Best 

Fitness 

AB1 0 13.45 63.75 76.79 76.90 77.65 

AB2 0 13.74 66.19 81.31 81.50 82.99 

AB3 0 6.33 54.55 78.03 79.22 80.65 

AB4 0 13.66 65.42 82.93 83.82 86.51 

SCI1 0 16.00 64.68 75.88 77.46 78.34 

SCI2 0 8.93 63.69 79.21 81.74 83.19 

SCI3 0 15.77 64.46 70.76 72.42 73.33 

SCI4 0 11.94 51.14 73.12 75.81 76.24 

Average 0 12.48 61.73 77.25 78.61 79.86 
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chosen datasets. The TP results were then averaged over 10 sets for a fixed FP rate of 

2%.  Table 2-3 shows the results of running both algorithms on the data of all individual. 

The numbers in parentheses show the standard deviations. The last column shows the 

difference in TP rate for each user as well as the significance levels of the results, found 

by applying a two-sample t-test. Before carrying out the t-test, the Levene's test for 

equality of variances was used to determine whether the estimates of means in the t-test 

should be equal or unequal [37]. The results of Levene’s test showed the homogeneity of 

the variances. 

As Table 2-3 shows, the average TP rate was increased to 67.78% from 61.13% 

achieved using the method described in [15]. Such an improvement was statistically 

significant for 5 users (p<0.01) and non-significant for the remaining three (p>0.05). The 

average improvement in the TP rate for individuals with spinal cord injury was more than 

that of able-bodied individuals. To be more specific, the average TP rate for individuals 

with spinal cord injury was increased to64.90% in the current study from 55.08% 

achieved using the customization by a human expert (an increase of 9.82%). As for able-

bodied users, the average TP rate was increased to 70.76% in the current study from 

67.17% achieved using the customization by a human expert (an increase of 3.58%).  

Interestingly, the standard deviations of the TP rate also dropped from those 

achieved using the customization by a human expert. For individuals with spinal cord 

injury, the standard deviation of the TP rate decreased to 4.58% from 12.32% achieved 

using the customization by a human expert; while for able-bodied users, the standard 

deviation fell to 2.76% from 3.39% achieved using the customization by a human expert. 

Overall the standard deviation of the TP rate was reduced to 4.65% compared to 10.57% 

achieved using the customization by a human expert. These findings indicate that as we 

remove the inaccuracies introduced as the result of estimating the design parameter 

values by a human expert, the performance of individuals gets closer to each other. In 

other words, these results indicate that if the parameter values of the feature generator are 

correctly determined, the inter-subject variability in terms of performance will decrease. 
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Table 2-3. TP rates of the LF-ASD and the ALF-ASD (FP=2%). 
 

User Disability 

Description 

Ag

e 

Gen

der 

Number of epochs LF-ASD 

(%) 

ALF-

ASD(%) 

Difference in 

the TP(%) Train Valid

ation 

Test 

AB1 N/A 56 M 128 256 256 65.5 

(3.6) 

70.0  

(1.9) 

4.5 

 (p<0.01) 

AB2 N/A 43 M 103 206 206 72.2 

(2.3) 

72.6  

(3.2) 

0.5 

 (p>0.05) 

AB3 N/A 31 F 133 266 266 66.2 

(1.4) 

67.5 

(3.2) 

1.2 

 (p>0.05) 

AB4 N/A 45 M 97 194 194 64.7 

(3.4) 

72.9 

 (3.8) 

8.2 

(p<0.005) 

Average- 

(AB 

users) 

N/A - - 115.2 

(17.9) 

230.5 

(35.8) 

230.5 

(35.8) 

67.2 

(3.4) 

70.8 

(2.8) 

3.6 

(p=0.07) 

SCI1 C4/5 (17 y2) 53 M 128 256 256 63.5 

(2.0) 

64.6 

 (3.5) 

1.1 

(p>0.05) 

SCI2 C4/5 (23 y) 56 M 103 206 206 66.0 

(4.4) 

70.6 

(2.6) 

4.5 

 (p<0.005) 

SCI3 C5/6 (4 y) 33 M 91 182 182 39.1 

(5.1) 

59.3  

(4.1) 

20.2 

 (p<0.0001) 

SCI4 C4/5 (5 y) 35 M 85 170 170 51.7 

(5.7) 

65.0 

 (5.3) 

13.3 

 (p<0.0001) 

Average 

(SCI ) 

- - - 101.7 

(19.0) 

203.5 

(38.1) 

203.5 

(38.1) 

55.1 

(12.3) 

 64.9 

(4.6) 

 

9.8 

(p=0.09) 

Overall 

Average 

- - - 108.5 217 217 61.1 

(10.6) 

67.8(4.6) 6.7 

(p=0.06) 

                                                 
2 Indicates number of years since injury. 
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Table 2-4. Delay parameter values used in the design of the LF-ASD based on the ensemble averages 
of the MRP patterns in the training data set. Note that βi  and βj are set to zero and that the same 
delay parameter values are used for the rest of the bipolar channels. The table is reproduced from 
[15]. 

User αi αj 
AB1 95 87 
AB2 83 114 
AB3 37 21 
AB4 128 43 
SCI1 112 99 
SCI2 95 53 
SCI3 39 64 
SCI4 89 69 

   

2.6 Discussion and conclusions 

An important issue in the design of many BCI systems is the correct detection of 

the IC pattern (if present) for each user. Since the shape of a neurological phenomenon 

varies to some extent from one individual to another, it is necessary to consider this 

variation in the design of BCI systems. As a result, adjusting the parameter values of the 

feature extractor (user customization of the feature generator of the BCI system) is 

necessary for each user. If such user customization is done visually by a human expert, 

the results may have a subjective bias and unreliable; the customization process also 

becomes time consuming and exhausting. An automatic method therefore needs to be 

developed to perform user customization without the interference of a human expert. 

In this Chapter, the effect of automatic user customization of the design parameter 

values of a self-paced BCI system was analyzed. More specifically, we proposed an 

automatic method for estimating the shape of an MRP used to drive the output of a self-

paced BCI. Since MRPs have been used as the neurological phenomenon in a number of 

BCI systems, an automatic algorithm to estimate their shape can be used as an effective 

feature extraction method in those systems. 

A  GA was implemented to user customize a self-paced BCI called the LF-ASD. 

The LF-ASD is one of the few self-paced BCI systems that have been successfully tested 

online [20] and has been used by other researchers as well [6]. In design of the LF-ASD, 
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estimates of the delay parameter values obtained from the ensemble averages may be far 

from optimal because of the noisy nature of the EEG signals, the presence of artifacts and 

the psychological factors of each user. In addition, no analytical method currently exists 

for estimating the normalization parameter values. Until recently, these have been 

estimated in an ad-hoc manner through an exhaustive search of possible values. 

Automatic customization resolves this problem, since it estimates the parameter values 

depending on their associated cost functions.  

We showed that by using a GA, the performance of the LF-ASD is improved to a 

great extent over the case where the design parameter values were estimated by a human 

expert [15]. This finding provides additional evidence that automatic user customization 

boosts the performance of a BCI system. Moreover, the designer is relieved from the 

cumbersome task of choosing the values of the feature extractor for each user. 

 One of the interesting findings of this Chapter is that the highest improvements 

were achieved in the performance of individuals with spinal cord injury when the delay 

parameter values were automatically customized. When the customization is done by a 

human expert, the highest improvements were achieved for able-bodied users [15]. 

However, the performance of individuals with spinal cord injury did not improve much. 

On the other hand, the results presented in Table 2-3 show that when the automatic user 

customization is used, the highest improvements were achieved for individuals with 

spinal cord injury. The average improvement in the TP rate was 3.58% for able-bodied 

users and 9.82% for individuals with spinal cord injury (resulting in the overall 

improvement of 6.68% (p=0.06)). This is probably due to the fact that individuals with 

spinal cord injury did not perform an actual movement, thus their MRP patterns were not 

as strong as those of able-bodied users. This resulted in noisier ensemble average MRP 

templates for the latter users, where visual estimation of the delay parameter values was 

not straightforward. The proposed automatic user customization method, however, deals 

with the optimization of the performance over single epochs and thus was able to find 

more suitable delay parameter values.  Because of the low number of users, these 

findings cannot be generalized. They do, however provide some preliminary evidence 

that automatic user customization is necessary for achieving acceptable BCI performance 

for individuals with spinal cord injury. 
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We also found that for every individual, the values of the delay parameters found 

by the GA differed from one channel to another. There are two reasons for this result. 

First, the spatial distribution of the measured EEG signals was taken into consideration. 

Since the spatial distribution differs from one channel to another, it is expected that the 

delay parameter values should also differ. The other reason is the presence of the ENT. 

The value chosen for each normalization parameter changes the shape of the resultant 

EEG signals to some extent. Thus, for every value of the normalization window, a new 

set of delay parameter values should be estimated to correctly detect the presence of a 

bipolar MRP pattern in the EEG signal. The design parameter values found by the GA 

also differed from one user to another, providing further evidence that user customization 

is necessary to achieve acceptable performance values.  

Comparison of the average results on test sets in Table 2-2 and Table 2-3 shows a 

drop of 12.05% in the performance. This drop in the performance indicates that the use of 

more sophisticated classifiers may be beneficial. For example, a support vector machines 

(SVM) can be used as a classifier, since not only it minimizes the empirical risk (the 

training error), it minimizes the confidence error as well (the test error) [38]. 

Future work includes finding better cost functions. Such a study has not been well 

explored in self-paced BCI systems. Finding better cost functions that can summarize the 

confusion matrix more effectively, is especially desired in optimization problems. Future 

work should also include online testing of the ALF-ASD. Specifically we shall 

investigate the performance of the ALF-ASD over time. Since the literature indicates that 

the shapes of MRPs may change from one day to another, a method that locally tunes the 

parameter values of the feature generator ahead of each session should be developed.  
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CHAPTER 3 APPLICATION OF A HYBRID WAVELET 
FEATURE SELECTION METHOD IN THE DESIGN OF A 
SELF-PACED BRAIN COMPUTER INTERFACE SYSTEM3 

 

 

3.1 Background 

A successful brain computer interface (BCI) system enables individuals with 

severe motor disabilities to control object in their environment (such as a light switch, a 

neural prosthesis or a computer) by using only their brain signals. Such a system 

measures specific features of a person’s brain signal that relate to his or her intent to 

affect control, and then translates them into control signals that are used to control a 

device [1, 2]. 

Brain computer interface systems are implemented in two ways: system-paced 

(synchronized) or self-paced (asynchronous). In system-paced BCI systems, a user can 

initiate a command only during certain periods specified by the system. In a self-paced 

BCI system, users can affect the output of the BCI system whenever they want, by 

intentionally changing their brain state.  The state in which a user is intentionally 

attempting to control a device is called an intentional control (IC) state. At other times, 

users are said to be in a no-control (NC) state, where they may be idle, thinking about a 

problem, or performing some action other than trying to control the device[3, 4]. To 

operate in this paradigm, BCI systems should be designed to respond only when the user 

is in an IC state and to remain inactive when the user is in an NC state. So far, only a few 

BCI systems (e.g. [3, 5-10]) have been specifically designed and tested for self-paced 

                                                 
3 A version of this chapter has been published. Fatourechi, M., Birch, G. E., and Ward, R. K., "Application 

of a Hybrid Wavelet Feature Selection Method in the Design of a Self-paced Brain Interface System", 
Journal of NeuroEngineering and Rehabilitation, Vol.4, No.1, Apr 2007. 
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control applications. But as recognized in [2], self-paced BCI systems deserve more 

attention. 

The discrete wavelet transform (DWT) can be used as a powerful feature 

extraction tool to extract time-frequency features similar in shape to that of a particular 

wavelet function. It therefore has an advantage over other feature extraction methods that 

operate in only one domain, such as the Fourier transform, or autoregressive modeling.   

The DWT has been extensively applied in the analysis of event-related potential 

(ERP) because of its ability to effectively explore both the time and frequency 

information of these signals [11, 12]. It has also been successfully used to generate 

wavelet features in BCI systems. In [13], DWT was employed in the design of a 

synchronized BCI system that used wavelet coefficients extracted from slow cortical 

potentials (SCPs) as well as other ERPs. This system performed better than other designs 

that used EEG time series and a mixed filtering method. In [14], the energies of various 

frequency bands decomposed by a wavelet packet transform (18 frequency bands in total) 

were used as features in detecting different movement patterns in a self-paced BCI 

system. These features were linearly combined to generate a single feature, with 

coefficients of the linear mapping determined by a genetic algorithm (GA). In [15], a 

custom-made wavelet function was employed in two different studies: the detection of 

P300 in a single EEG channel, and the detection of the Bereitschaftspotential from two 

EEG channels. In [16], a weighted linear combination of all available wavelet 

coefficients (15 in total) extracted from a single EEG channel was used to detect P300 

patterns.  To estimate weights for each feature in the linear combination, a neural network 

was employed. Finally, in [17], investigators applied DWT to extract the 0-4Hz 

component of the EEG signal in a P300-based BCI system. Based on the above 

encouraging results, in this study we explore applying DWT to extract movement-related 

potential (MRP) features for driving a self-paced BCI system. 

Although the above BCI studies provide promising evidence that DWT can be 

employed to extract features in BCI systems, two main issues still need to be addressed. 

First, studies that used discrete wavelet coefficients as features (rather than wavelet-

filtered EEG signals), used only one or two EEG channels. In these cases, the resulting 
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dimensionality of the space does not pose a serious problem, since it is not very large. 

Having a BCI system that uses data recorded from only one or two electrodes seems very 

appealing, since the setup is fast and uses less hardware/software infrastructure. Most of 

the above-mentioned papers, however, achieved a relatively high degree of classification 

error when only one or two EEG channels were used.  For example, in [16], the reported 

error rates were relatively high (nearly 40% error). In [17], where wavelet-filtered EEG 

signals were used, the system did not perform well (30% misclassification).  For the only 

self-paced BCI system that has applied wavelet coefficients so far [14] ,  false discovery 

rates (the percentage of hits that were not true positives) varied up to 67% , however, the 

authors did not indicate the number of NC epochs used in their study, so critical 

commentary on the performance of their BCI system cannot be made. The invasiveness 

of the recording technology of the BCI system in [14] is also an important issue that 

needs to be considered. 

The above observations strongly motivate the use of additional EEG electrodes in 

BCI systems. With signals recorded from multiple channels, we can explore spatial 

information, which is expected to yield improvements in classification performance. 

 Another issue that must be addressed when using DWT to extract features in BCI 

systems is the feature selection procedure. That is, how many features should be selected 

and how should they be selected? In [13], all of the 64 wavelet features used for 

classification were extracted from only one EEG channel. In [15], because of the 

computational limitations affecting the classifier, only a number of top wavelet features 

(ranked by the amount of discriminability) were selected. None of the above-mentioned 

approaches yielded best results (since the feature selection process used was necessarily 

not optimal). Using all features does not necessarily provide the best results, because 

some of the less discriminant features may degrade the classifier’s performance [18]. On 

the other hand, using only few features that have the highest rank (and filtering out the 

rest of features) does not necessarily lead to the optimal classification performance, since 

there is no guarantee that using only top-ranked features leads to the best classifier 

performance [19].  
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Based on the related literature review, we postulate that the information extracted 

from multiple- electrode signals is necessary for achieving acceptable performance. This 

in turn leads us to the high dimensionality problem of the feature space; since the feature 

space dimension is directly affected by the number of electrodes used as well as by the 

number of features per EEG signal. Since not all the wavelet coefficients provide 

discriminatory information between the output classes, we postulate that features that 

better discriminate between the output classes need to be selected to obtain better 

classification performance. A mechanism for selecting the most discriminating features is 

thus needed. 

Wrapper methods, such as GAs, use the classifier’s performance to evaluate a 

particular feature vector. They provide a good solution for finding the features that work 

well together by choosing the ones that lead to better classifier performance [20]. The 

downside of using wrapper methods is time inefficiency. As the dimension of the search 

space increases, it becomes harder for a wrapper method to find a suitable subset of 

features that lead to a high performance.  

In order to benefit from the advantages of both filter and wrapper methods, we 

decided to employ a hybrid approach. Features carrying the least discriminative 

information about the output classes were filtered out first. Then a wrapper method was 

applied to the reduced feature space to find the features that work well together, i.e., the 

combination that leads to the best classification performance. We used mutual 

information (MI) in the filtering stage. Mutual information is a powerful tool for ranking 

features based on the amount of discriminative information each carries [21]. We then 

applied a GA in a wrapper approach to select the features that lead to the best 

classification performance. Genetic algorithms are heuristic methods that can effectively 

sample large search spaces [22]. They are implemented based on the principles of 

evolutionary biology, and evolve over many generations. By mimicking this process, 

GAs are able to evolve solutions to real-world problems. They have been shown to be 

useful tools in automatically customizing many practical systems [22, 23]. 

We used a support vector machine (SVM) to classify the selected features into 

one of two classes: no control (NC) or intentional control (IC). The results of this study 
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show that applying the proposed approach to the offline data collected from four able-

bodied individuals yields low false positive (FP) rates at a reasonably high true positive 

(TP) rate. We also examine the spatial distribution of the selected features. We show that 

this distribution varies considerably from one individual to another. This finding shows 

the importance of user customization of BCI systems. 

3.2 Data collection 

People with severe motor disabilities cannot physically execute certain 

movements such as a finger flexion, but they are usually able to attempt it. Several 

studies have shown that recordings of brain signals obtained from attempted and real 

movements for able-bodied individuals bear many similarities [14, 24-29]. Based on 

these studies, both attempted and executed movements have been shown to activate 

similar cortical areas and to generate similar movement patterns. This evidence enables 

us to base our analysis on the data of able-bodied individuals, who actually execute a 

particular movement. It is then possible to detect the occurrence of the control command 

by analyzing signals such as electromyography (EMG) signal or the output of an actual 

switch. Such signals can be used to label the brain signals and to evaluate the 

performance of a BCI.  The data analysis of individuals with motor disabilities was thus 

left to future studies. 

The data of four (three male and one female) able-bodied individuals were used in 

this study. All individuals were right-handed and between 31 and 56 years old. They had 

all signed consent forms prior to participation in the experiment. 

Individuals were positioned 150 cm in front of a computer monitor. The EEG 

signals were recorded from 13 monopolar electrodes positioned over the individuals’ 

supplementary motor area and primary motor cortex (according to the International 10-20 

System at F1, Fz, F2, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2 and C4 locations). 

Electrooculography (EOG) activity was measured as the potential difference between two 

electrodes, placed at the corner of and below the right eye. An ocular artifact was 

considered present when the difference between the EOG electrodes exceeded ±25 µV. 

All signals were sampled at 128 Hz and referenced to ear electrodes (see [30] for details 



 

 80

of the data recording). The recorded signals were then saved on the computer and 

converted to bipolar EEG signals by calculating the difference between the adjacent EEG 

channels. This procedure was used since it has been shown that bipolar electrodes 

generate more discriminating MRP features than monopolar electrodes do [3]. This 

conversion generated  the following 18 bipolar EEG channels: F1-FC1, F1-Fz , F2-Fz, F2-

FC2 , FC3-FC1, FC3-C3, FC1-FCz, FC1-C1, FCz-FC2, C1-Cz, C2-C4 , FC2-FC4 , FC4-C4 , 

FC2-C2 , FCz-Cz , C3-C1 , Cz-C2 and Fz-FCz . 

Data were collected from individuals as they performed the following guided task.  

At each interval, a white, 2cm diameter circle was displayed on the individual’s monitor 

for ¼ second, prompting the individual to attempt a movement. In response to this cue, 

the user had to perform a right index finger flexion one second after the cue appeared.  

The 1-second delay was used to avoid visual evoked potential (VEP) effects caused by 

the cue (see [31] for more details). For each individual, an average of 80 IC epochs were 

collected every day over a period of 5 days.   

An IC epoch consisted of data collected over an interval containing the movement 

onset (measured as the finger switch activation) if no artifact was detected in that 

particular interval. The interval starts at tstart seconds before movement onset and ends at 

tfinish seconds after it. There were limitations in choosing the total length of (tstart+ tfinish). 

If the length of (tstart+ tfinish) increases, more artifacts may be present in an IC epoch.  As a 

result, the number of training epochs that are artifact-free based on the criterion used to 

reject ocular artifacts will be reduced. If the length of (tstart+ tfinish) is too short, a poor 

exploration of potential features results.  Since a simple finger flexion MRP usually starts 

about 1.5 seconds before the movement and returns back to the normal baseline around 1 

second after the movement [32], data obtained from 1.5 seconds before to 1.0 second 

after the movement onset were analyzed (i.e., tstart=1.5 seconds and tfinish =1.0 second). 

NC epochs were selected as follows. A window of width (tstart+ tfinish) seconds 

was considered (tstart=1.5 seconds and tfinish =1.0 second). To extract NC epochs, the 

window was shifted over each EEG signal recorded during NC sessions by a step of 16 

samples (0.1250 sec).Wavelet coefficients were extracted for each epoch that did not 

contain artifacts.  
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3.3  Method 

The overall structure of the proposed scheme is shown in Figure 3-1. EEG signals 

were checked for the presence of EOG artifacts. The contaminated epochs were rejected, 

as explained in Section 3.2.  

 
Figure 3-1. The overall structure of the proposed hybrid method for extracting MRP features. 

The continuous wavelet transform (CWT) is defined as the convolution of the 

signal x(t) with the wavelet functions )(, tba , where  )(, tba is the dilated and shifted 

version of the wavelet function )(t and is defined as follows: 

)(.1)(, a
bt

a
tba


                                                                                   (3-1) 

where  a and b are the scale and translation parameters, respectively. The CWT maps a 

signal of one independent variable t into a function of two independent variables a, b. 

This procedure is redundant and not efficient for algorithmic implementations. Therefore, 

it is more practical to define the wavelet transform at a discrete scale a and a discrete 

time b by choosing the set of parameters (such a transform is called a discrete wavelet 

transform, or DWT), such that 

kba j
kj

j
j .2,2 ,

    (j, k are integers)                                                           (3-2) 

The contracted versions of the wavelet function will match the high-frequency 

components of the original signal and the dilated versions will match the low-frequency 

oscillations. Then by correlating the original signal with the wavelet functions of 

different sizes, the details of the signal at different scales are obtained. The resulting 

correlation features can be arranged in a hierarchical scheme called multi-resolution 

decomposition [33] which separates the signal into “details” at different frequency bands 

and a coarser representation of the signal called an “approximation”. 



 

 82

In this study, the rbio3.3 wavelet from the B-spline family was chosen as the 

wavelet function because it has some similarities with the shape of the classic bipolar 

MRP pattern.  Using a 5-level decomposition method resulted in wavelet coefficients 

corresponding to the following frequency bands (the sampling frequency was 128 Hz): 

[32-64], [16-32], [8-16], [4-8], [2-4], and [0-2] Hz. 

Based on the previous findings in [3], which showed that MRP features are 

mostly located in the frequency range below 4Hz , only the lowest frequency bands (i.e., 

0-2Hz and 2-4Hz) were considered for further analysis of MRPs. Even with this reduced 

feature space, the resulting feature space dimension (Nfeatures), which is the product of the 

number of electrodes (Nelectrodes) and the number of wavelet features per EEG signal 

(Nwavelet). That is, waveletelectrodesfeatures NNN  remained very high. Thus, a feature 

selection procedure had to be used that could select the features that lead to optimal 

classification performance. This procedure should specify the selected EEG channels as 

well as the features selected per channel. 

We devised a hybrid feature selection algorithm to meet these requirements. 

Mutual information (MI) was employed in the filtering stage and a GA was then used to 

select the optimal set of features.  

Although MI has been used elsewhere to filter out the less informative features 

[21, 34], it is not usually successful at finding features that lead to optimal classification 

performance. This is because when there are more than three feature dimensions, the 

calculation of MI is computationally demanding, and impossible for large feature spaces 

(since the calculation of MI requires the joint probability of features in a high dimension) 

[21, 34]. Thus, MI was only used in our algorithm to discard the least informative features 

based on the amount of information that each feature carries regarding the output classes. 

The MI between the input feature vector X and the output classes Y was 

calculated as follows: 

)()(),( XYYYX HHI                        (3-3) 
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where 





M

j
jj yPyPH

1
2 )(log).()Y(                                         (3-4) 


 


N

i

M

j
ijiji xyPxyPxPH

1 1
2 )(log).().()( XY                                                (3-5) 





N

i
ijij xyPxPyP

1
)().()(                                    (3-6) 

In these formulae,  I represents the mutual information between X and  Y, where 

X= {xi},  (i = 1,2,3,..., N) and Y= {yj}, ( j = 1,2,3,..., M) , N  is the number of input states 

and M is the number of outputs states (M=N=2, since the input and output can only take 

two values: IC and NC),P(xi ) is  the probability of occurrence of an input state xi , P(yj) is 

the probability of the output class yj when the input is unknown, and )( ij xyP is the 

probability of the output class  yj when the input state xi is known. 

For each individual, the wavelet coefficient (feature) values corresponding to all 

the training set data were calculated. Then, using histograms with 10 bins each, the 

probability function of each feature was estimated and its mutual information with each 

of the output classes was calculated. The values of MI were calculated for all Nfeatures 

features and then ranked in descending order. The top L features were then selected. In 

this study, we arbitrarily chose L=50 to avoid having a feature space with a very high 

dimension.  

After reducing the dimension of the feature space, a GA was used to select a 

subset of m features from the top L features. To represent each possible combination of 

features, a binary chromosome of length L was defined. The bit i of the binary 

chromosome specified whether or not the feature i was selected by the GA. A value of 

“1” indicated the presence of feature i and a value of “0” indicated its absence in a 

chromosome.  

An important decision in the design of a GA is the definition of a proper fitness 

function. In the proposed design, a suitable fitness function should consider at least three 
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objectives: maximizing the TP rate, minimizing the FP rate and minimizing the number 

of features selected by the hybrid feature selection procedure.  

The classification performance of a 2-state, self-paced BCI system is usually 

determined by a confusion matrix, as shown in Table 3-1. In Table 3-1, the FP rate is the 

percentage of instances for which an NC epoch is misclassified as an IC epoch, the true 

negative (TN) rate is the percentage of NC epochs being correctly classified, the true 

positive (TP) rate is the percentage of IC epochs being correctly classified and the false 

negative (FN) rate is the percentage of misclassifying an IC epoch as an NC epoch. The 

fitness function should summarize this confusion matrix.  For a 2-state self-paced BCI 

system, we have 

(%)(%)100(%) TPFN                         (3-7) 

and 

(%)(%)100(%) FPTN                                                                                  (3-8) 

Table 3-1. The confusion matrix for a 2-state self-paced BCI system. 

                    Predicted Class 

Actual Class 

IC NC 

IC TP FN 

NC FP TN 

 

Based on 3-7) and 3-8), only TP rates (TPR) and FP rates (FPR) need to be 

included in the fitness function. One example of a fitness function is a function that 

maximizes the  
FPR
TPR  ratio.   In this paper, the following objective function was used: 












%20,
)(
)(

%20,0
)(

TPR
ZFPR
ZTPR
TPR

Zf          (3-9) 
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where Z is a chromosome and f is the fitness function. This fitness function gives a higher 

fitness level to chromosomes that generate a higher 
FPR
TPR  ratio.  We also postulated that 

TP rates below 20% were too low for the successful operation of a self-paced BCI system 

(since they correspond to detection of less than one IC out of every five IC states, which 

may lead to user frustration, even though the FP rates might be very low). Such 

chromosomes were considered “unfit” and were assigned a “0” fitness value. 

Next, a lexicographic approach was applied for multi-objective optimization of 

the GA population [23]. Very briefly, in this approach, the objectives were ranked 

according to the priorities assigned to them prior to optimization. The objective with the 

highest priority was used first for comparing the members of the population. In our case, 

the average of 
FPR
TPR  over the validation sets was first selected as the objective function 

with the highest priority. The chromosomes were then ranked in a single-objective 

fashion. Any ties were resolved by comparing the relevant chromosomes again with 

respect to objectives that were assigned lower priority. The other three objectives were 

chosen as (1) the average of FP rate over the validation sets, (2) the average of TP rate 

over the validation set, and (3) the number of features, resulting in four objectives per 

chromosome in the GA population. The 2nd and 3rd objectives were ordered such that for 

two chromosomes with the same 
FPR
TPR  ratio, the one with the lower FP rate was 

considered to be the fit chromosome.  

    The remaining operators of the GA were tournament-based selection 

(tournament size =3), uniform crossover and uniform mutation. The sizes of the initial 

population and the population in the next generations were chosen as 100 and 50, 

respectively. We used random initialization to initialize the GA. Elitism was used to keep 

the best performing chromosome of each population in the subsequent populations. 

   The number of evaluations was set to 2000. If the improvement in the 
FPR
TPR  

ratio of the best solution was found to be less than 1% for more than 10 consecutive 
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generations, the algorithm was terminated.  Because of the computational load, tuning the 

GA parameter values (such as the mutation and crossover rates) was not performed. 

A support vector machine (SVM) that uses kernel-based learning was chosen to 

classify each chromosome in the GA population. In kernel-based learning, all of the 

beneficial properties of linear classification methods, such as simplicity, are maintained, 

but the overall classification is nonlinear in the input space, since the feature and input 

spaces are nonlinearly related [35]. Another reason for selecting a SVM as a classifier is 

that SVMs not only minimize the empirical risk (training error), they also minimize the 

confidence error (test error) [36]. We used the LIBSVM software [37], which has also 

been used in other BCI papers [38, 39]. 

     The evaluation process was as follows. For each individual, IC and NC epochs 

were randomized and divided into training, validation and test sets.  The training set was 

used to train the classifier, and the validation set was used to select the best set of 

features. The configuration yielding the best results on the validation set in the multi-

objective sense mentioned above was selected, and the performance of the system 

calculated on the test set was reported. We used a five-fold nested cross-validation for 

evaluating the performance of the system. For each outer cross-validation set, 20% of the 

data were used for testing and the rest were used for training and model selection 

(selection of optimal subset of features). In order to select the models, the datasets were 

further divided into five folds. For each fold, 80% of the data were used for training the 

classifier and 20% were used for model selection.  

    To deal with the problem of unbalanced training sets (there were at least 20 

times more NC epochs than IC epochs), the size of the NC training feature set was 

reduced to be the same as the size of the training IC feature sets. This was done by 

randomly selecting epochs from the NC training set. 

3.4 Results 

   In this section, we present the offline analysis of the data of the four individuals 

described in Section 3.2. We performed a search on the classifier’s parameters during the 

model selection. Our findings showed that a 5th degree polynomial kernel function 
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performed better than other kernel functions studied (linear, polynomial with a degree 

other than 5 (3, 4, 6 and 7) and RBF kernel). 

    Since a five-fold nested cross-validation was used for the performance 

evaluation, the results were averaged over five runs of the outer validation sets. The 

columns 1 to 5 of  Table 3-2 show the individual identification number, the average TP 

rate on the test sets, the average FP rate on the test sets, the average 
FPR
TPR ratio and the 

average number of features selected by the hybrid feature selection process. The latest 

performance results of another state-of-the art self-paced BCI system (the LF-ASD) [40], 

applied to the data of individuals AB1 to AB4 are presented in columns 6 to 9 of Table 

3-2.  The numbers in parentheses are the standard deviations. As Table 3-2 shows, our 

proposed design achieved low FP rates for three of the four individuals (individuals AB1, 

AB2 and AB4) for a relatively high TP rate. For individual AB3, the TPR results on the 

test sets were low (although the FP rates remained less than 4%).  

Table 3-2. Comparison of the average TP, average FP rates, average 
FPR
TPR

 and the average number 

of features. 

 
 
 

Individual 
ID 

Test Set 
(Current Study) 

Number 
of 

features 
(Current 

Study) 

Test Set 
([[40]]) 

Number of 
Features 
([[40]]) 

 
 

TPR FPR 
FPR
TPR  

TPR FPR 
FPR
TPR  

AB1 68.0 
(4.8) 

1.0 
(0.3) 

68.0 30.6 
(1.1) 

67.8 
(1.4) 

2.0 33.9 6 

AB2 73.3 
(2.6) 

1.4 
(0.4) 

52.4 29.2 
(3.3) 

74.0 
(1.7) 

2.0 37.0 6 

AB3 33.1 
(14.0) 

3.9 
(1.0) 

8.5 23.4 
(2.4) 

64.0 
(1.3) 

2.0 32.0 6 

AB4 56.1 
(4.9) 

1.4 
(0.7) 

40.0 27.0 
(2.8) 

73.1 
(1.8) 

2.0 36.6 6 

Average 57.4 1.9 30.2 27.5 69.7 2.0 34.9 6 
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   Next, the spatial distributions of the selected features were examined.   The 

average number of selected features per channel is shown in Table 3-3. The numbers in 

parentheses show the standard deviation over five runs of outer cross-validation. Figure 

3-2 to Figure 3-5 show the number of selected features per channel for all individuals 

after applying the hybrid selection method (averaged over the number of cross-validation  

Table 3-3. The average number of selected features per channel after applying the hybrid feature 
selection algorithm. 

Individual ID 

Channel 
AB1 AB2 AB3 AB4 

F1-FC1 3.6 (1.1) 3  (1.2) 1.8 (0.8) 3 (0.7) 

F1-Fz 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 3.4 (0.5) 

F2-Fz 0.0 (0.0) 1.6 (0.9) 0.4 (0.5) 0.0 (0.0) 

F2-FC2 0.2 (0.4) 2 (0.7) 0.8 (0.8) 0.4 (0.5) 

FC3-FC1 1.0 (0.0) 1.0 (0.0) 1.6 (0.9) 0.0 (0.0) 

FC3-C3 1 (0.71) 3.0 (0.0) 2.4 (1.14) 1.6 (0.5) 

FC1-FCz 0.0 (0.0) 1.0 (0.0) 0.6 (0.5) 1.2 (0.84) 

FC1-C1 4.6 (0.5) 2.8 (0.4) 0.0 (0.0) 1.2 (0.4) 

FCz-FC2 0.0 (0.0) 2.2 (0.4) 0.6 (0.5) 0.0 (0.0) 

C1-Cz 1.6 (0.5) 0.4 (0.5) 3.6 (1.1) 1.2 (0.4) 

C2-C4 0.6 (0.5) 2.2 (0.4) 4.4 (0.9) 2.6 (0.9) 

FC2-FC4 4.2 (0.4) 1.6 (0.9) 2.2 (1.1) 3.4 (1.1) 

FC4-C4 3.2 (0.45) 2 (1.0) 1.8 (0.8) 4.4 (0.5) 

FC2-C2 2.0(0.0) 2.2 (0.4) 0.6 (0.5) 2.2 (0.4) 

FCz-Cz 1.6 (0.9) 0.6 (0.5) 0.2 (0.4) 0.8 (0.4) 

C3-C1 1 (0.7) 2.0 (0.0) 2.0 (0.0) 0.0 (0.0) 

Cz-C2 3.8 (0.4) 0.0 (0).0 0.0 (0.0) 0.6 (0.5) 

Fz-FCz 2.2 (1.3) 1.6 (0.5) 0.4 (0.5) 1.0 (0.7) 
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sets). The low standard deviation obtained for all cases shows the robustness of the 

proposed method over different runs of the algorithm.     

3.5 Discussion and conclusions 

Discrete wavelet transform (DWT) is a useful feature extraction tool since it 

explores the time as well as the frequency information of the signal. Although DWT has 

been employed to some degree of success in a number of synchronized BCI systems, 

there remain some limitations in its application to self-paced BCI systems (in terms of the 

large size of the feature space).  

Brain computer interface systems that use DWT features have mostly employed 

only one or two channels (perhaps due to the large dimensionality of the feature space or 

to limitations imposed by the experimental protocol). To simultaneously explore the 

wavelet coefficients (features) of BCIs with more channels (so as to explore the spatial 

information) and to avoid the problems associated with the resultant large feature space, a 

two-stage (hybrid) feature selection algorithm is proposed. The first stage uses mutual 

information (MI) to discard the least informative features. In the second stage, a genetic 

algorithm (GA) selects those remaining features that lead to better system performance in 

the sense of meeting multiple objectives. 

In our study, the features selected per channel varied considerably from one 

individual to another, as shown in Figure 3-2 to Figure 3-5. For example, for individual 

AB1, more features were selected from channels FC1-C1, F1-FC1, Fz-FCz, FC4-C4, FC2-

FC4 and Cz-C2, while for individual AB4, more features were selected from channels 

FC4-C4, FC2-FC4, F1-Fz, C2-C4, F1-FC1, and FC2-C2.  These results support the hypothesis 

that proper channel selection for every individual is necessary to obtain superior 

performance.  
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Figure 3-2. Spatial distribution of the average number of selected features for AB1. 

 
Figure 3-3. Spatial distribution of the average number of selected features for AB2. 



 

 91

 
Figure 3-4. Spatial distribution of the average number of selected features for AB3. 

 
Figure 3-5. Spatial distribution of the average number of selected features for AB4. 
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Another finding from Figure 3-2 to Figure 3-5 is that the relevant features for 

each individual were unique. These findings are in contrast to an earlier study done by 

our group that empirically determined six pairs of electrodes for all individuals (channels 

F1-FC1,  F2-FC2 , FC1-C1,  FC2-C2 , FCz-Cz , and Fz-FCz) [3]. Our findings in this regard 

are not surprising. The evidence from the literature supports the hypothesis that there is a 

significant amount of inter-subject variability in terms of generating MRP patterns [41]. 

The literature also shows that the selected features are not necessarily located in the 

standard frequency bands or on specific scalp locations, and that the set of selected 

features differs from individual to individual [42]. These studies support the notion that a 

customized BCI system should be designed for each individual.  

Table 3-3 shows that for each individual, a number of bipolar channels were not 

selected by the feature selection process (such as channel F1-Fz for individuals AB1, AB2 

and AB3, and channel FC3-FC1 for individual AB4). These results indicate that these 

channels can be eliminated from the analysis in future studies. Moreover, Table 3-3 and 

Figure 3-2 to Figure 3-5 show that the degree of contribution to the classification 

performance varies from one channel to another. These results indicate that a channel 

elimination methodology could be incorporated into the proposed method to further 

decrease the number of channels used for the operation of the system. Such an approach 

would rank the channels according to the number of selected features. It would then 

repeatedly eliminate the channel with the lowest contribution to fitness until the 

performance drops below a certain threshold (recursive elimination of channels). 

Systematic elimination of channels can lead to a faster setup of the system as well as 

decreased computational time. This could be part of future research works aimed at 

moving towards a more practical system.   

It should be mentioned that it is difficult to directly compare the results of our 

study with other BCI studies. This is because the user population (whether or not 

individuals are able-bodied), the experimental protocols, the evaluation protocol and the 

neurological phenomenon differ from one study to another. In addition, the degree of 

training individuals receive before participating in a BCI experiment, vary among studies. 



 

 93

We can, however, compare our current results with the latest design of a state-of-

the-art self-paced BCI system called the low frequency–asynchronous switch design (the 

LF-ASD) [40]. Both studies use the same individuals, the same experimental protocol, 

the same EEG data and similar evaluation protocol.  

 The LF-ASD (originally reported in [3] and later modified as reported in [40]) 

uses a feature extractor with a shape similar to a wavelet function, and extracts features 

from six bipolar EEG channels. The Karhunen-Loève Transform (KLT) is used to reduce 

the 6-dimensional feature space produced by the feature generator to a 2-dimensional 

space. A 1-NN classifier is used as the feature classifier.  A moving average and a 

debounce algorithm are employed to improve the performance of the system by reducing 

the number of false activations. The parameter values of the system were estimated by an 

expert (for details, see [3, 30, 40]).  The latest performance results of the LF-ASD [40], 

applied to the data of individuals AB1 to AB4 are presented in columns 6 to 9 of Table 

3-2.  As can be seen from the table, our proposed system has resulted in an increased 

FPR
TPR ratio for all individuals (with the exception of individual AB3) . Specifically, the 

FPR
TPR ratio increased from 33.9 to 67.7 for individual AB1 (relative improvement of 99.5 

%), from 37.0 to 52.4 for individual AB2 (relative improvement of 41.6%), and from 

36.5 to 39.8 for individual AB4 (relative improvement of 8.9%). These results show that 

our proposed approach improved the performance of most individuals compared with the 

latest design of the LF-ASD. The degree of improvements in the 
FPR
TPR  ratio, however, is 

not statistically significant ( 05.0p ), so tests on the data of more individuals are needed 

to further substantiate this improvement. Note that the improved performance was 

achieved at the expense of using more features (please see columns 6 and 9 in Table 3-2).  

The relatively poor results obtained for individual AB3 may be partly related to 

our choice of wavelet function. Note that the wavelet function chosen for this study was 

based on the similarities between the chosen wavelet function and a typical bipolar MRP 

ensemble average pattern. However, there is substantial inter-subject variability in the 

shape of MRPs, especially in single trials [40]. It is expected that by analyzing a more 
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diverse family of wavelet functions, a different wavelet function might be chosen for 

each individual that would produce superior results. 

As mentioned in Section 3.3, we designated the number of features chosen by the 

MI to be L=50. Fewer features would have sped up the process of feature selection at the 

second stage, but might have resulted in a lower fitness value. To test this possibility, we 

compared the fitness of the best subset of features (see Table 3-2) with that of all features 

for individual AB1 (see Figure 3-6). In this figure, the thick line shows the fitness of the 

best configuration (calculated from Table 3-2). The thin line shows the fitness of the 

classifier as a function of the number of top features. We began by training and testing 

the classifier using only the feature with the highest MI score, and then calculated the 

fitness. Then we added features one at a time (according to their MI scores) and trained 

and tested the classifier using the new set of features. This process was repeated until we 

reached L=50. Although the fitness of the classifier increased as more features were 

added, it stayed well below the optimal value achieved by the GA. These results indicate 

that a lower L (especially when only limited top features are used for training the 

classifier) does not necessarily lead to better performance.        

A useful area to explore is the automation of the classifier. Currently, the feature 

selection procedure is automated but the selection of other parameters, such as those of 

the classifier, is carried out through cross-validation. Incorporating these parameters into 

the automation process would relieve the designer from the tiresome process of selecting 

the classifier’s parameter values, while potentially yielding better classification results. 

Expanding the current results to continuous signals and ultimately online testing are also 

worthwhile topics for future work.  

These results should be considered as preliminary results in the development of a 

self-paced brain computer interface system with a low FP rate. Our future work will also 

include testing of the proposed system on a larger pool of individuals to further 

investigate its usability. 
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Figure 3-6. Comparison of the fitness of the best chromosome vs. other subset of features. 
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CHAPTER 4 A SELF-PACED BRAIN COMPUTER 
INTERFACE SYSTEM THAT USES MOVEMENT 
RELATED POTENTIALS IN CHANGES IN THE POWER 
OF BRAIN RHYTHMS4 

 

4.1 Introduction 

In a brain computer interface (BCI) system, specific features of a person’s brain 

signal relating to his/her intent are used to generate a control command that 

controls/actuates a device (see Figure 4-1 for a functional model of a BCI system). 
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Figure 4-1. Functional model of a BCI system (adapted from [1]).  

BCI designs are implemented in two ways: synchronized (system-paced) or 

asynchronous (self-paced). In synchronized BCI systems, a user can initiate a command 

                                                 
4 A version of this chapter has been published. Fatourechi, M., Birch, G. E., and Ward, R. K., “A Self-
paced Brain Interface System that Uses Movement Related Potentials and Changes in the Power of 
Brain Rhythms", Journal of Computational Neuroscience, Vol.23, No.1, pp.21-37, Aug 2007.   
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only during certain periods specified by the system.  It is assumed that a user only intends 

some control action during these specified times. Figure 4-2(a) shows a synchronized 

BCI system that can detect two intentional control (IC) commands (IC1 and IC2).  

In a self-paced BCI (SBCI) system, users can affect the BCI transducer’s output 

whenever they want, by intentionally changing their brain state.  The state in which a user 

is intentionally attempting to control a BCI transducer is called an IC state. At other 

times, users are said to be in a no-control (NC) state, where they may be idle or 

performing some action other than trying to control the BCI transducer [2, 3]. To operate 

in this paradigm, BCI transducers are designed to respond only when a user is in an IC 

state and to remain inactive when a user is in an NC state. Figure 4-2(b) shows the output 

of an SBCI system.  

 
Figure 4-2. Synchronized vs. SBCI systems. (a) In a synchronized BCI system control is only possible 
during System Ready periods; (b) In an SBCI system, the system continuously accepts the input 
signals. 

So far, only a few BCI transducers (e.g., [2, 4-9]) have been specifically designed 

and tested for self-paced control applications. But as recognized in [10], the SBCI 

systems deserve more attention. 

In this chapter, we focus on the issue of improving the performance of an SBCI 

system.  A two-state SBCI system should be able to discriminate an IC command from an 

NC state. The performance of this system is usually evaluated through two metrics: a true 

positive (TP) rate and a false positive (FP) rate. An FP rate is the percentage of 

incorrectly classifying NC periods as IC periods, and a TP rate is the percentage of 

IC1 IC1 IC2 
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correctly classifying IC periods.  The FP rates of current SBCI systems are still very high 

for practical applications. The main reason is the very noisy nature of the brain’s 

electrical signals, which makes correct detection of patterns associated with control 

commands very difficult.  Nevertheless, it is crucial to keep the FP rate as low as possible 

in order to prevent user frustration.  

We propose the use of multiple neurological phenomena as sources of control to 

improve the performance of an SBCI system (in terms of increasing the 
FPR
TPR ratio).  The 

proposed SBCI system uses features extracted from three neurological phenomena: 

movement-related potentials (MRP), changes in the power of Mu rhythms (CPMR) and 

changes in the power of Beta rhythms (CPBR). The main rationale behind using these 

three neurological phenomena is that they are time-locked to movement onset [11, 12]. 

Thus, when a movement happens, it is expected that all three will be present. As a result, 

we postulate that a detector that considers the simultaneous occurrence of these 

phenomena should be more robust to the presence of transient non-control related 

changes in the brain signals (which may affect the performance of an SBCI system) than 

those that just look at one of the above-mentioned neurological phenomena.  

Increasing the number of neurological phenomena considered from one to three 

has the disadvantage of increasing the dimension of the feature space. When there are 

restrictions on the number of sample sizes, the training data are likely to fall in a very 

small fraction of the sample space. This will limit the generalization property of the 

classifier [13].To address this issue, we developed a new algorithm to reduce the 

dimensionality of the feature space. The proposed algorithm uses a two-stage multiple-

classifier system (MCS) to classify the brain signals. We use the spatial information to 

develop the first stage of the MCS and the information from the neurological phenomena 

to develop the second stage of the MCS. The use of an MCS allows us to design a strong 

classifier by using an ensemble of “weak” classifiers. The evidence from the literature 

shows that in many cases this approach yields superior results over those of the best 

individual classifier [14, 15]and in some cases over those of a single powerful classifier 

[16-18].  For a BCI system, where the number of training IC patterns is usually limited, 

using an MCS provides us with a great opportunity to explore more features.  
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The proposed system showed superior performance to that of a simpler approach 

whereby all the features were combined into a single feature vector and then classified 

into IC or NC classes. Its performance was also found to be superior to that of an MCS 

that was based on the spatial information of a single neurological phenomenon.  

To maximize performance of the proposed design, we employ a user-customized 

approach. It is well known that the spatiotemporal characteristics of a particular 

neurological phenomenon change from one individual to another [19-21]. As a result, 

customizing the BCI system for each user is very important in achieving consistently 

good results in all users. The improvements in the performance for users after employing 

user-customization (e.g., [7, 22-25]) further emphasize the importance of such 

customization. 

In order to reduce the inter-subject variability of neurological phenomena in the 

proposed BCI design, a genetic algorithm was implemented to select the set of EEG 

channels that resulted in the best classification accuracy for each MCS. The results 

showed that the configuration of EEG channels leading to optimal performance varies 

from one user to another. 

In the next section, we discuss the neurological phenomena under consideration 

and provide evidence from the literature that their combination would be useful in the 

design of an SBCI system.     

4.2       Background 

4.2.1 Neurological phenomenon background 

It is known that an internally paced movement generates the following responses 

in the EEG signal: a movement-related potential (MRP), an event-related 

desynchronization (ERD) and an event-related synchronization (ERS). The MRP on the 

one hand and the ERD and ERS on the other are different responses of neural structures 

in the brain [26]. 

Averaging EEG data with respect to movement onset results in the generation of  

typical slow potentials, “movement-related potentials” (MRPs), from background 
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oscillatory electrical activity [27]. MRPs start about 1.5–1 seconds before the onset of a 

particular movement and have bilateral distribution [12, 27-30]. High-resolution EEG 

studies have modeled the main sources of MRPs arising in the supplementary motor area 

and the primary sensorimotor cortex [31, 32]. 

Voluntary movement results in a circumscribed desynchronization in the Mu and 

Beta bands, localized close to the sensorimotor areas ([33, 34]). This desynchronization, 

termed as “event-related desynchronization” (ERD),   starts about 2 seconds prior to the 

onset of movement [26].  

The enhanced rhythmic activity following the movement is called “event-related 

synchronization” (ERS).   The post-movement Beta ERS is found in the first second after 

the termination of a voluntary movement, when the Mu rhythm still displays a 

desynchronized pattern [26]. The Beta ERS is a relatively robust phenomenon and is 

found in nearly all individuals after a finger, hand, arm or foot movement [35].  

A number of papers provide some evidence that MRPs and changes in the power 

of brain rhythms (usually characterized as ERD and ERS) provide complementary 

information for exploration of the cognitive functions of the brain. It is suggested that 

MRPs can be considered as a series of transient post-synaptic responses of main 

pyramidal neurons triggered as a result of a specific event [26]. The same paper also 

states that the ERD and ERS phenomena can be viewed as being generated by changes in 

one or more parameters that control oscillations in neural networks. In [36], analysis of 

subdural EEG recordings from primary sensorimotor in epileptic patients showed that the 

amplitude of the ERD of the Alpha rhythm recorded from subdural areas was not always 

correlated with corresponding MRPs. It is suggested in the same paper that these 

neurological phenomena represent different aspects of cortical motor processes. In [37], 

the ERD of the Alpha rhythm is not always detected in cortical sites generating MRPs. In 

[12], through a high-resolution EEG study, it is shown that MRPs and the ERD of the 

Alpha rhythm provide complementary information on human brain responses 

accompanying the preparation and execution of a finger movement. Further evidence 

from the analysis of EEG signals [38, 39] and magnetoencephalography (MEG) [18, 40, 

41] strengthens these findings. 
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There is also some evidence regarding the differences between Mu and Beta 

rhythms. Several papers show that the reactivities of the Mu and Beta rhythms related to 

the movement onset are different [20, 42]. Both the Mu and Beta rhythms desynchronize 

before a voluntary self-paced movement. However, after the movement, the ERD of the 

Mu rhythm is followed by a slow return to baseline (and sometimes by a slight 

synchronization), while the Beta rhythms synchronize rapidly after the movement onset 

[20].  

4.2.2 Multiple neurological phenomena in BCI systems 

Although most BCI researchers use a single neurological phenomenon as the 

source of control, there have been reports of using multiple neurological phenomena in 

BCI systems [11, 18, 43-46].  

In  [18], the authors analyzed combinations of features extracted from an early 

component of the MRP called Bereitschaftspotential (BP), features extracted from the 

ERD of  neurological phenomena above 4Hz (through AR modeling) and features 

extracted from the common spatial patterns (CSP) features related to the ERD of the Mu 

rhythms. The BCI system had to discriminate between left and right index finger 

movements. A linear discriminant analysis (LDA) classifier was used for classification. 

Different combination schemes were explored. The study showed that a certain 

combination of classifiers could result in a lower error rate than the case where a single 

classifier  is used.  The results of combining the ERD of the Mu rhythm and the BP were 

not reported, although the authors mention that those results were slightly worse than the 

results obtained when all three neurological phenomena were used in the design of the 

BCI system. In [43], the authors applied a combination of microstate analysis and 

common spatial subspace decomposition to extract features belonging to three different 

frequency bands: Theta + Delta, Mu and Beta. The MRPs were not regarded as a separate 

neurological phenomenon. Instead, the features were extracted from the frequency band 

covering both the Delta and Theta rhythms.  These features were then used to 

discriminate between left and right hand movements. In [47], the authors used the BP and 

the ERD of the brain rhythms from 10 to 33 Hz (including both the Mu and Beta 

rhythms) to classify left vs. right finger movement. The features extracted from all 
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neurological phenomena and all channels were then combined, the dimension of the 

feature vector was reduced and the final vector was classified using a perceptron neural 

network. The results showed classification accuracy of 84% on the test set, but the 

amount of contribution of each neurological phenomenon is not exactly known. In [48], 

the authors used features extracted from the BP and the ERD of the Mu rhythms for 

classifying the left and right index finger movements.  

 The above studies all pertain to synchronized BCI systems. To the best of our 

knowledge, only one SBCI system that uses multiple neurological phenomena has been 

reported so far [44]. In [44], the authors studied combining a number of neurological 

phenomena in order to design an ECoG-based SBCI system. Using a wavelet packet, the 

ECoG signal was divided into 18 different frequency bands covering a range from 0 - 100 

Hz. This range covered a wide range of neurological phenomena including the Mu, Beta 

and Gamma rhythms, as well as other movement-related activities. Then for each band, 

wavelet-filtered signals were reconstructed. The wavelet filtered signals were then 

squared to achieve power values, and a genetic algorithm applied to reduce the dimension 

of the feature space to one. Using a thresholding classifier, the test samples were 

classified as movement or no movement. 

Aside from the different signal processing approach, there are the following 

neurological phenomena-related differences between our proposed approach and that 

proposed in [44]: 

1) While [44] focuses on the power of signals in a wide range of frequency bands, 

including the Theta,  Beta , Mu and Gamma rhythms among others, our approach 

focuses on three specific neurological phenomena: MRPs, and changes in the 

power of the Mu and Beta rhythms.  

2) In [44], the power in the Delta rhythms was used as one of the features. In this 

chapter, we intend to detect the shape of the MRP pattern in the ongoing EEG 

signal.  

3) In [44], the contribution of each neurological phenomenon is not evident. Only 

the most significant features (those with the largest weight) were highlighted. In 
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our study, we specifically show which neurological phenomena are present in the 

design of the proposed user-customized SBCI system. 

 4) In [44], only the powers of signals at different frequency bands were used as 

features, while in this chapter, we are interested in detecting the time course of 

three distinct neurological phenomena.  

4.3 Data collection 

People with severe motor disabilities cannot physically execute a movement such 

as a finger flexion, but they are usually able to attempt a movement execution (by 

thinking that they are executing it). Several studies have shown that the EEG recordings 

obtained from attempted and real movements for able-bodied individuals bear many 

similarities [49-52]. These studies demonstrated that attempted and executed movements 

both result in the activation of similar cortical areas and generation of similar patterns. 

This evidence enables us to take the initial steps towards the development of an SBCI 

system, using the data recorded from able-bodied individuals. A similar rationale can be 

found in the design of other SBCI systems when the data of able-bodied individuals were 

employed [53, 54].  By using the data of able-bodied individuals, it is then possible to 

detect the occurrence (if any) of a control command by analyzing signals such as the 

electromyography (EMG) or the output of an actual switch. The signals can be used for 

labeling the brain signals and to evaluate the system’s performance.  The data analysis of 

individuals with motor disabilities was left to future studies. 

The data of four able-bodied individuals (three males and one female) were used 

in this study. All individuals were right-handed and between 31 and 56 years old. They 

had all signed consent forms prior to participation in the experiment. 

    The individuals were positioned 150 cm in front of a computer monitor. The 

EEG signals were recorded from 13 monopolar electrodes positioned according to the 

International 10-20 System at F1,Fz,F2,FC3,FC1,FCz,FC2,FC4,C3,C1,Cz,C2and C4 

locations. The cutoff frequency of the amplifier was set at 30Hz. Electrooculography 

(EOG) activity was measured as the potential difference between two electrodes, placed 

at the corner of and below the right eye. The ocular artifact was detected when the 
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difference between the EOG electrodes exceeded ±25 µV. All signals were sampled at 

128 Hz and referenced to the ear electrodes (see [55] for details of the data recording). 

The recorded signals were then saved on a computer for further analysis.  

   The individuals performed a guided task.  At each interval, a white circle of 

2cm diameter was displayed on the user’s monitor for ¼ second, prompting the users to 

attempt a movement. In response to this cue, the user had to perform a right index finger 

flexion one second after the cue appeared.  The 1-second delay was used to avoid visual 

evoked potential (VEP) effects caused by the cue. This is the time that the user is 

expected to attempt the movement, but this time may vary from one user to another and 

from one movement attempt to another (see [56] for more details). For each individual, 

we used an average of 80 trials per day, over a period of 5 days.   

An IC trial consisted of data collected from –tstart seconds before to tfinish seconds 

after the movement onset (measured as the finger switch activation), if no EOG artifact 

was detected in that particular interval. There were limitations in choosing the total length 

of (tstart+tfinish). As the length of (tstart+tfinish) increases, IC periods have a higher 

probability of getting contaminated by the artifacts. As a result, the number of training 

trials that are not affected by artifacts will be reduced. On the other hand, if the length of 

(tstart+tfinish) is too short, it results in a poor exploration of potential features.  Since MRP 

and the changes in the power of Mu/Beta rhythms usually occur from approximately  

tstart=1 before and last up to tfinish=2 seconds after the movement, the data from 1 second 

before to 2 seconds after the activation of the finger switch was collected and marked as 

an IC trial. 

 NC sessions were recorded as follows: During NC sessions, the user was asked to 

count the number of times that a white ball bounced off the screen. As a result, the NC 

sessions contained attentive as well as non-attentive NC data. Each NC session was lasted 

approximately three minutes and during each recording day, up to 2 of such NC sessions 

were recorded. The NC periods were then selected as follows: a window of width 

(tstart+tfinish) seconds was considered. This window was slid over EEG signals collected 

during NC sessions by a step of 16 samples (0.1250 sec). For each window where 

artifacts were not detected, features were extracted (see Figure 4-3). Please note that 
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although the evidence from the literature suggests the Beta ERS occurs in the first second 

after the movement (which was confirmed in this chapter that by analyzing the averages 

of the of Beta rhythms over the trials in the training set), tfinish=2 seconds was chosen 

because the return of the power of the Mu rhythm to the baseline activity usually takes a 

much longer time. In this chapter, we didn’t study the optimal (or at least a sub-optimal) 

choice for tstart and tfinish. This research is left to future work. 

 
Figure 4-3. NC periods are generated by shifting a window over NC datasets. 

4.4 Methods 

 To analyze the information extracted from the different neurological phenomena, 

we carried out two separate studies. In the first study (“Study 1”), the features extracted 

from all the neurological phenomena were combined into a single feature vector and then 

the best subset of features (that led to optimal performance) was selected (see Figure 

4-4). In the second study (“Study 2”), the classification was performed using a two-stage 

multiple classifier system (MCS).    
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In the first stage of the proposed system, each neurological phenomenon is 

classified separately. The dimension of each feature space for each classifier is then one-

third of the original feature space. For each neurological phenomenon, an MCS that uses 

the spatial information obtained from the multi-channel EEG signals is designed. This 

approach further reduces the dimension of the feature space for each classifier in the 

MCS by a factor proportional to the number of EEG channels (as explained later in this 

section). The output of each MCS in the first stage, is a classification label for the input 

pattern that can be either an “IC” (coded as logical “1”) or an “NC” (coded as logical 

“0”).   In the second stage, another MCS combines the outputs of the three MCSs 

designed separately for each neurological phenomenon and generates the final 

classification label for the input signal (see Figure 4-5).  The details of the signal 

processing blocks will be explained in the rest of this section. 

 
Figure 4-4. The overall structure of the SBCI system implemented in Study 1. 
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Figure 4-5. The overall structure of the two-stage MCS implemented in Study 2. 

4.4.1 Feature extraction 

We have employed matched filtering to extract the features of the three 

neurological phenomena.  It has been stated elsewhere that the best analyzing function for 

an event-related potential (ERP) is the one that matches that event as closely as possible 

in the temporal shape [57]. Matched filtering is known to be a simple yet useful tool for 

measuring the similarities between two sequences. A linear matched filter provides the 

maximum signal-to-noise power ratio at its output for a given template. In this chapter, 
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matched filtering is performed through cross-covariance. One of the sequences was the 

template signal (obtained by ensemble averaging of the trials in the training set, as will be 

explained later).The other sequence was a single-trial sequence.  

  Our rationale for creating a template of the neurological phenomena based on the 

averages of the neurological phenomena of interest is similar to that in clinical studies. In 

clinical studies, averaging methods are widely used in the study of ERPs. The general 

assumption is that ERPs are time-locked to movement onset, while the ongoing EEG 

activity acts as additive noise. The averaging procedure thus enhances the signal-to-noise 

ratio (SNR) of the template. Below, we describe the process of creating the (see Figure 

4-6).  

 Creating MRP templates 

First, the EEG signals were filtered using a low-pass, linear-phase 32-point FIR 

filter with a 4 Hz cut-off frequency. The selection of 4Hz as the cutoff frequency was 

based on previous studies, which showed that MRPs have features mostly located in the 

frequency range below 4Hz [2]. We refer to this filter as filterMRP. Next, the intentional 

control (IC) periods were extracted (as explained in Section 4.3), and the IC periods in 

the training session were averaged. This process was repeated for all EEG channels.  

 Creating CPMR and CPBR templates 

In the literature, a reference interval is defined some seconds before the 

occurrence of the movement in order to describe the ERD and the ERS. The ERD is then 

defined as the percentage of power decrease and the ERS is defined as the percentage of 

power increase with respect to the power of the signal in the reference interval [58]. 

However, it has been shown that such an approach may yield misleading results 

depending on the value of the reference signal’s power [59]. In order to consider this 

referencing issue, we did not calculate the ERD or ERS templates as suggested in [26] 
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Figure 4-6. The process of generating templates. 

(which are dependent on the value of the power signal in a reference interval). Instead we 

focused on the time courses of the power of the Mu and Beta rhythms themselves, as 

recommended and successfully applied in [59]. For the rest of this chapter, we use the 

terminology “changes in the power of the Mu rhythms” (CPMR) and “changes in the 

power of the Beta rhythms” (CPBR) to refer to these neurological phenomena.  
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         The CPMR and CPBR templates were calculated as follows. All signals 

were band-pass filtered. For the Mu rhythms, the band-pass was chosen from 8 to 12Hz. 

For the Beta rhythms, the band-pass was chosen from 18 to 26Hz . Both filters were 

linear-phase 32-point FIR filters. The amplitudes of the samples were then squared to 

obtain the power samples. The resulting power signals were then low-pass filtered with a 

linear-phase 32-point FIR filter called filterPower. The cutoff frequency of the filter was 

selected as 4 Hz.  This filtering stage ensured that a smooth shape was obtained for the 

power templates.  The power templates in the training sets were then averaged over the 

available trials. The power at time instant j was calculated as follows: 





L

i
ijj x

L
P

1

2)(1                        (4-1) 

where Pj is the j-th power sample of the template, L is the total number of IC periods in 

the training set and xij is the j-th sample of the i-th trial of the band-pass filtered data. This 

process was repeated for all EEG channels.  

Cross-covariance 

The cross-covariance between two stationary sequences is calculated as follows:     

 )))((()( 
  ynmxmxy YXEnC                       (4-2) 

where nX and nY are stationary random processes and E  is the expected value operator. 

In our analysis, one of the sequences is the IC template for a particular channel and the 

other sequence is a single-trial sequence. After calculating )(nC xy for each trial, the 

following was extracted: 

]0625.0,0625.0[)),(max(  finishstartfinishstartxyi ttttnnCF                (4-3) 

When applying “matched filtering” between a template and a test sequence, the 

two sequences must be aligned. If the two sequences are not aligned, there is a possibility 

that the particular movement pattern is not detected. This issue was resolved in (4-3) by 

calculating the maximum of the cross-correlogram over a window of length 16 samples 

( 8
1 th of a second) instead of calculating it using a single epoch. Please note that in order 
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to generate the NC periods, a window was slid over the NC datasets by  the amount of 

shift, which was 8
1 th of a second . 

4.4.2 Feature classifier 

 K-nearest neighbor classifier 

We used a K-nearest neighbor (KNN) classifier for classification. The LVQ3 

learning algorithm [60] was used to create the codebook vectors for each class. Prior to 

applying the LVQ3 learning algorithm, K-means was used for forming the initial clusters.  

Since the number of generated NC features was much larger than the number of IC 

features, not all NC features were used. The number of NC features was reduced to the same 

number as that of IC features by randomly choosing from the NC periods available in each 

training set. However, the number of NC features in the validation or test sets was not reduced.  

Prior to classification, each feature if was normalized according to the following 

equations: 
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                                  (4-4) 

where ijf is the j-th value of feature i, iAVERAGEf  is the average of feature i, iSTDf  is the 

standard deviation of feature i, edijNormalizf is the normalized value of ijf and P is the total 

number of NC and IC values available in the training set for feature if . 
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 Multiple classifier systems 

As mentioned in the beginning of this section, in the second study a two-stage 

MCS that combines the information extracted from different neurological phenomena 

was used. Although an MCS seems to be an efficient tool to classify the spatial 

information in BCI systems, its application so far has been limited.  In [61], an MCS is 

used to decrease the bias of the neural network classifiers with respect to the initial 

conditions. In [62], the individual EEG channels were ranked according to their 

classification accuracy. Starting with the channel with the best accuracy, channels were 

added to the MCS until no improvement in accuracy was achieved. In [63], the authors 

used different combination strategies to combine the information in different channels in 

an ECoG-based SBCI system. No channel selection was performed.  

As will be explained later, in our study, we propose a different approach that not 

only chooses classifiers with higher accuracies, but also the ones that are diverse. We use 

both the spatial information of channels and the presence of different neurological 

phenomena as the sources of control to create a diverse set of classifiers.  

In Study 2, each neurological phenomenon is first classified separately. For each 

neurological phenomenon, a K-NN classifier (see Section 4.4.2) is designed for each 

EEG channel. Then the outputs of those classifiers are combined using an MCS to 

generate the output label corresponding to that neurological phenomenon. A genetic 

algorithm (GA) is used to select the best combination of channels for each neurological 

phenomenon. The selected channels then participate in a majority voting scheme to 

generate the final classification label for that particular neurological phenomenon. Once 

an individual MCS is designed for each neurological phenomenon, the outputs of MCSs 

(the  classification labels) are combined using a second MCS, as shown in Figure 4-5.  

There are various methods to combine the outputs of these expert systems.  To 

determine the proper output combination scheme, one needs to make a compromise 

between the number of true positives and the number of false positives. Since having a 

low FP rate is very important in the design of SBCI systems, we considered having a very 

low probability of misclassifying NC periods at the expense of having a higher 
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probability of missing IC commands. This rationale has formed the overall structure of 

the second-stage MCS shown in Figure 4-5.  

We explored the following configurations for this classifier: 

1. Configuration 1- Combined MRP and CPBR -based classifiers: In this 

configuration, only the outputs of MCSs using MRP and CPBR are combined. The output 

of the second stage MCS is then calculated as the product of the outputs of each of these 

classifiers: 

][*][][ 21 nOnOnO MCSMCSFinal               (4-5)    

where ][nOFinal  is the output of the second-stage MCS at the time instant n, ][1 nOMCS is 

the output of the first MCS at the time instant n and ][2 nOMCS  is the output of the second 

MCS at the time instant n. Using the product rule, we can ensure that the output of the 

second-stage MCS is activated only when both the MRP-based and CPBR-based MCSs 

detect the presence of movement in the pattern.  

2. Configuration 2- Combined MRP and CPMR -based classifiers: In this 

configuration, only the outputs of MCSs based on MRP and CPMR are combined, using 

(4-5). 

3. Configuration 3- Combined CPMR and CPBR -based classifiers: In this 

configuration, only the outputs of MCSs based on CPMR and CPBR are combined, using 

(4-5). 

4. Configuration 4- Combined outputs of all classifiers according to the majority 

voting scheme: In this scheme, the outputs of all three classifiers are combined according 

to the following equation: 
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where ][nOFinal is the output of the second-stage MCS at time instant n and ][nOMCSi is the 

output of the ith MCS at that time instant. 
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5. Configuration 5- Combined outputs of all classifiers according to the product 

scheme: In this scheme, the outputs of all three classifiers are combined according to the 

following equation. 





3

1

])[(][
i

MCSiMeta nOnO                       (4-7) 

where ][nOFinal is the output of the second-stage MCS at time instant n, ][nOMCSi is the 

output of the ith MCS at the same time instant  and  is the product operator. 

4.4.3 Feature selection  

In both studies, a genetic algorithm (GA) is used for feature selection. GAs are 

heuristic methods that provide a framework for effectively sampling large search spaces 

[64]. They are based upon the genetic processes of biological organisms, which evolve 

over many generations according to the principles of natural selection and survival of the 

fittest. By mimicking this process, GAs are able to evolve solutions to real-world 

problems and have been shown to be useful tools in automatically customizing many 

practical systems [64, 65]. 

In applying  GA’s to select features, the features of interest are first coded in the 

form of a set of randomly generated binary numbers (that can be either “0” or “1”, with a 

“1” indicating the presence of a feature and a “0” indicating the absence of a feature in 

the binary string. Each set of the binary strings is called a “chromosome” and the set of 

“chromosomes” forms a “population”. The classifier then classifies the features specified 

by the chromosome. The classification accuracy of the classifier is then used to provide 

the fitness value of that particular chromosome. The chromosomes are then combined 

using operators such as selection, crossover and mutation in order to generate new 

chromosomes. This recombination process results in the production of a new generation. 

It is expected that the population evolves gradually and the fitness improves over 

generations. This process is continued until some criteria for stopping the GA is met [64].  

In Study 1, a GA was used to select a subset of  q features from the total available 

3N features (where N is the number of EEG channels). Then a K-NN classifier, as 
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described in sub-section 4.4.2, was trained using the selected feature vector. In Study 2, 

for each neurological phenomenon, a K-NN classifier was designed for each EEG 

channel. For each neurological phenomenon, a GA was then used to select amongst all 

classifiers (each classifier corresponds to one EEG channel) those that when combined 

gave the best performance using a majority voting scheme. The outputs of the MCSs 

developed for the three neurological phenomena were then combined through the method 

described in sub-section 4.4.2. 

To develop a suitable fitness function for the GA, the criteria considered were 

maximizing the TP rate, minimizing the FP rate and minimizing the complexity of the 

system (measured here by the number of features).    Four objective functions were 

defined so as to achieve these goals.  The first objective function was defined to combine 

the TP and FP rates: 
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 In (4-8), x is a chromosome and f is the objective function. This objective 

function assigns a higher rank to chromosomes that yield higher TP rates and lower FP 

rates. We also postulated that TP rates below 20% (which can be translated to the correct 

detection less than one out of five control attempts) would be too low for the successful 

operation of an SBCI system (even though their FP rates might also be very low), so they 

were considered “unfit”. This objective function was selected as the highest-priority 

objective function in the optimization of the system.  

 The second objective was the average of the FP rate over the validation sets. The 

third objective was the average of the TP rate over the validation sets and the fourth 

objective was the number of features, respectively, resulting in four objectives per 

chromosome. 

A lexicographic approach was then used for optimizing the multi-objective fitness 

function [65]. The objectives were ranked according to their priorities. The average of 

FPR
TPR  over the validation sets was selected as the objective function with the highest 
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priority. The chromosomes were then ranked in a single-objective fashion. Any ties were 

resolved by comparing the relevant chromosomes again with respect to the second, third 

and fourth objectives. The orders of the second and 3rd objective were chosen such that 

for two chromosomes with the same 
FPR
TPR  ratio (the same value for the first objective 

function), the chromosome with the lower FP rate is considered more fit than the other 

chromosome.  

  The operators of the GA were tournament-based selection (tournament size =3) , 

uniform crossover and uniform mutation. The size of the initial population and of the 

population in the next generations was chosen as 100 and 50, respectively. We used 

random initialization for initializing the GA. The best chromosome of each population 

was retained in the subsequent population. 

 For Study 1, the number of evaluations was set to 5000. For Study 2 the number 

of evaluations was set to 1500, since for each individual neurological phenomenon we 

were dealing with a smaller feature space compared with that in “Study 1”. If the 

improvement in the best solution was found to be less than 1% for more than 10 

consecutive generations, the algorithm was terminated.  

4.4.4 Performance evaluation 

The IC and NC datasets were each randomized and divided into training, 

validation and test sets.   The training set was used for training the classifiers and the 

validation set was used to select those channels whose combination led to the best 

performance of the system. The configuration that yielded the best average performance 

on the validation set was selected and using the test sets, the results of classification were 

reported. We used a 5-fold nested cross-validation for evaluating the performance of the 

system, since in self-paced BI designs the number of labeled IC epochs are limited 

compared to the complexity of the data. It has been argued that using a fixed split of data 

into training, validation and test sets is not robust.  It is thus recommended that when 

sufficient computing resources are available, a nested cross-validation should be 

performed [66]. The inner cross-validation is used for model selection (feature selection, 

in our case) and the outer cross-validation is used to estimate the generalization error.  
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For each outer cross- validation set (test set), 20% of the data were used as the test 

set and the rest were used for training and model validation. In order to select the models, 

the datasets were further divided into five folds themselves. For each fold, 80% of the 

data were used for generating a template to be used for cross-correlation, and 20% were 

used for model validation.  

  The value of K in the K-NN classifiers, the number of codebooks and the 

parameters’ values for the LVQ learning algorithm were all determined through parallel 

runs of the algorithm on a cluster of computers for different parameters’ values.  

4.5 Results 

The results of Study 1 (averaged over 5 outer cross-validation sets) are presented 

in Table 4-1. The numbers in parenthesis show the standard deviation.  The method 

employed in Study 1 resulted in an average TP rate of 60.91% and an average FP rate of 

4.63% for the four individuals. Although the average TP rate can be considered as 

acceptable (corresponding to the average detection of 6 out of every 10 IC commands), 

the average FP rate is too high for most practical applications since it results in a false 

activation in almost every three seconds. This is because as the system is designed so that 

it generates an output every 8
1  of a second (see sub-section 4.4.1).  

  The findings of Study 2 are presented in Table 4-2 to Table 4-6. In Table 4-2, the 

system’s performance on the validation sets for each neurological phenomenon is shown. 

For all individuals, the average FP rates were simply too high for any practical 

application. Although the MRP-based classifier was able to detect more than half of the 

IC commands, the CPMR-based and CPBR-based classifiers were successful in detecting 

one out of four IC commands.  
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Table 4-1. The average TP and FP rates (%) for Study 1 (the numbers in parenthesis show the 
standard deviation). 

Individual Test 

TPR  FPR  

FPR
TPR

 

AB1 47.0 
 (12.0) 

1.6 
(1.3) 

28.5 

AB2 60.9 
 (10.9) 

2.8 
(0.4) 

21.8 

AB3 80.9 
 (7.0) 

11.5 
 (4.5) 

7.0 

AB4 54.9 
 (11.7) 

2.6 
(0.5) 

21.0 

Average 60.9 4.6 13.2 

 

Table 4-2. The average TP and FP rates (%) for each neurological phenomenon in Study 2 (the 
numbers in parenthesis show the standard deviation). 

  
 

Individual 

Validation - MRP Validation- CPMR Validation- CPBR 

TPR
 

FPR
 FPR

TPR
 TPR  FPR  

FPR
TPR

 TPR  FPR
 FPR

TPR
 

AB1 54.9 
(1.8) 

3.0 
(0.1) 18.3 21.2 

(1.1) 
2.6 

(0.5) 8.11 24.0 
(4.3) 

1.1 
(0.5) 22.3 

AB2 49.8 
(1.1) 

4.6 
(0.7) 10.8 21.6 

(1.6) 
4.3 

(0.9) 5.1 31.2 
(6.3) 

2.6 
(0.9) 11.9 

AB3 46.2 
(6.6) 

5.9 
(1.3) 7.8 22.4 

(3.1) 
8.0 

(1.5) 2.8 23.4 
(3.9) 

2.4 
(0.6) 9.6 

AB4 59.9 
(5.6) 

6.9 
(1.1) 8.7 25.1 

(6.6) 
2.7 

(0.9) 9.2 27.1 
(2.4) 

5.2 
(5.6) 5.2 

Average 52.7 5.1 10.3 22.6 4.4 5.1 26.4 2.8 5.5 

 

 Table 4-3 to Table 4-6 show the average of the TP and FP rates and their ratios 

over the inner validation sets (called Validation in the tables) and the outer validation sets 

(called Test in the tables) for all five configurations described in Section 4.4.2. The 

numbers in parenthesis are the standard deviations calculated over 5 outer validation sets. 
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The classification accuracy obtained using the validation sets are also reported. This is 

because the validation set determines the choice of the best configuration. For each 

individual, the configuration highlighted in BOLD&ITALICS was the one that yielded 

the highest average of the 
FPR
TPR  rates and also, it had an average of TPR>20% over the 

“inner validation sets”. 

As seen from Table 4-3 to Table 4-6, the configuration that resulted in a superior 

performance for each individual was subject-dependent, i.e., not always the same as those 

of the other individuals. Table 4-3 shows that for user AB1, the combination of all three 

neurological phenomena through majority voting (Configuration 4) resulted in the highest 

FPR
TPR  rate (with average TPR>20%.). Although the TP rate showed an average detection 

of one out of four IC commands, the average FP rate was 0.13%, corresponding to a true 

negative rate of 99.9%. This FP value is 15.4 times smaller than the FP value (for the 

same user) achieved in a previous study by our group [55]. However, a direct comparison 

is not possible because of the difference in the experimental designs. 

  For users AB2 and AB3, Configuration 1 (the combination of MRP-based and 

CPBR-based classifiers) resulted in superior performance. More specifically, for AB2, an 

FP rate of 0.3% (corresponding to TN=99.7%) was achieved for a TP rate of 25.5% (see 

Table 4-4). As seen in Table 4-5, for user AB3, an FP rate of 1.1% (corresponding to 

TN=98.9%) was achieved at TP=36.7% (corresponding to the detection of one out of 

three IC commands).  

Table 4-6 shows that for user AB4, the combination of the MRP-based and 

CPMR-based classifiers (Configuration 2) resulted in superior performance (TP=21.4% 

and TN=99.6%). However, the achieved performance was very close to that of the 

combination of MRP-based and CPBR-based classifiers, with TP=24.7% and TN=99.5%.  

  For all individuals, the combination of CPMR-based and CPBR-based classifiers 

(Configuration 3) resulted in poor 
FPR
TPR  ratios. This finding suggests that in this study, 
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the presence of an MRP was necessary for the relatively successful operation of the BCI 

system. 

    Figure 4-7 shows the average number of selected features per channel for each 

individual.  As can be seen, there is a great amount of inter-subject variability in terms of 

EEG channels selected in the best configuration. 
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Figure 4-7. The spatial distribution of the selected features for individuals in Study 2. (a) User AB1; 
(b) User AB2; (c) User AB3; and (d) User AB4. 

Table 4-3. The average TP and FP rates (%) for User AB1 in Study 2 (the numbers in parenthesis 
show the standard deviation). 

 

Configuration 

 
Validation 

 
Test 

TPR  FPR  

FPR
TPR

 
TPR  FPR  

FPR
TPR

 

Configuration1 24.3 
(2.00) 

0.4 
(0.1) 

59.1 26.4 
(6.6) 

0.4 
(0.1) 

68.3 

Configuration2 25.2 
(3.0) 

0.3 
(0.1) 

72.8 25.1 
(9.3) 

0.4 
(0.2) 

57.4 

Configuration3 16.1 
(0.8) 

0.7 
(0.1) 

23.3 16.1 
(5.1) 

0.6 
(0.3) 

26.0 

Configuration4 27.9 
(2.8) 

0.2 
(0.1) 

131.9 26.0 
(9.5) 

0.1 
(0.1) 

202.0 

Configuration5 11.4 
(1.6) 

0.0 
(0.0) 

297.3 10.3 
(5.0) 

0.0 
(0.1) 

200.7 
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Table 4-4.The average TP and FP rates (%) for User AB2 in Study 2 (the numbers in parenthesis 
show the standard deviation). 

 

Configuration 

 
Validation 

 
Test 

TPR  FPR  
FPR
TPR

 TPR  FPR  
FPR
TPR

 

Configuration1 25.2 
(2.2) 

0.3 
(0.1) 83.9 25.2 

(5.7) 
0.3 

(0.1) 85.3 

Configuration2 27.4 
(2.2) 

1.2 
(0.2) 22.7 27.0 

(7.9) 
1.3 

(0.5) 21.0 

Configuration3 22.3 
(1.9) 

1.1 
(0.2) 19.9 23.5 

(6.8) 
1.5 

(0.2) 16.1 

Configuration4 32.5 
(2.6) 

0.7 
(0.2) 45.2 27.0 

(3.9) 
0.3 

(0.1) 97.7 

Configuration5 17.1 
(3.0) 

0.1 
(0.0) 192.8 16.1 

(6.8) 
0.2 

(0.1) 101.9 

 

Table 4-5. The average TP and FP rates (%) for User AB3 in Study 2 (the numbers in parenthesis 
show the standard deviation). 

 

Configuration 

 
Validation 

 
Test 

TPR  FPR  

FPR
TPR

 
TPR  FPR  

FPR
TPR

 

Configuration1 34.9 
(5.5) 

1.0 
(0.1) 

33.5 36.7 
(3.7) 

1.1 
(0.4) 

33.4 

Configuration2 20.3 
(4.5) 

1.4 
(0.3) 

14.7 16.0 
(4.1) 

1.2 
(0.7) 

13.2 

Configuration3 21.5 
(3.1) 

1.9 
(0.3) 

11.3 18.3 
(8.3) 

2.0 
(0.6) 

9.3 

Configuration4 27.9 
(1.3) 

1.3 
(0.1) 

21.7 31.3 
(13.5) 

3.4 
(4.0) 

9.3 

Configuration5 12.7 
(3.8) 

0.2 
(0.1) 

64.8 16.8 
(5.9) 

0.2 
(0.1) 

85.5 
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Table 4-6. The average TP and FP rates  (%) for User AB4 in Study 2 (the numbers in parenthesis 
show the standard deviation). 

 

Configuration 

 
Validation 

 
Test 

TPR  FPR  

FPR
TPR

 
TPR  FPR  

FPR
TPR

 

Configuration1 23.2 
(2.4) 

0.6 
(0.1) 

41.7 24.7 
(8.7) 

0.5 
(0.5) 

46.9 

Configuration2 22.2 
(3.3) 

0.4 
(0.1) 

54.6 21.4 
(6.2) 

0.4 
(0.3) 

50.2 

Configuration3 18.4 
(1.8) 

1.3 
(0.1) 

14.0 16.5 
(6.9) 

1.4 
(0.6) 

11.9 

Configuration4 32.5 
(4.8) 

0.9 
(0.2) 

35.0 31.9 
(9.0) 

1.1 
(0.3) 

27.6 

Configuration5 13.9 
(2.6) 

0.1 
(0.1) 

101.1 13.0 
(0.5) 

0.1 
(0.1) 

103.5 

4.6 Discussion 

In this chapter, we used the spatiotemporal information extracted from different 

neurological phenomena to design a new SBCI system. Our main rationale was to 

achieve low FP rates at an acceptable TP rate. The results presented in Table 4-1 to Table 

4-6 and in Figure 4-7  led us to the following interesting observations.  

4.6.1 Observations on the BCI designs based on a single neurological phenomenon 

When only one neurological phenomenon was used in the design of the SBCI 

system, the FP rates (even when calculated on the validation sets) were simply too high, 

especially for the case of CPMR and CPBR where the TP rates were also relatively low 

(see Table 4-2). The finding that each of the CPBR and CPMR by itself is not suitable for 

a successful operation of an SBCI is not surprising. It was reported in [26]that the ERD 

of the Mu rhythms is not equally strong in all individuals. Control that is solely based on 

the Mu rhythms might even fail if the intervals between consecutive periods are too short 

to allow for proper synchronization. For example, in [25, 67], the results of three 

individuals had to be excluded from further analysis, because the pre-analysis showed 

very poor error rates. Moreover, an SBCI system based on the application of Mu rhythms 

had shown poor performance [2].  
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4.6.2 Observations on Study 1 

In Study 1, all the features were combined into a single feature vector. As seen in 

Table 4-1 and Table 4-2, the results obtained in Study 1 show improvements over 

systems based on a single neurological phenomenon. However, perhaps with the 

exception of User AB1 (who had an FP rate of 1.65%) the FP rates for all other users still 

remained high (2.6, 2.8 and 11.5%). FP rates higher than 2% are simply too high, as they 

cause excessive user frustration [55].  

4.6.3 Observations on Study 2 

 Table 4-3 to Table 4-6 show that when only MRPs were included in the structure 

of the two-stage MCS, an acceptable performance was achieved.  

 Table 4-3 to Table 4-6 show that the selection of the best configuration is subject-

dependent in the sense that the configuration leading to superior performance is 

different for different users. Further evidence from the literature strengthens this 

observation. For example, in [50], it was shown that for better classification 

between left and right movements, the Mu rhythms were the best to use for one 

user, the Beta rhythms were more suitable for another user, while for the third 

user, both rhythms were suitable. This strongly suggests that the amount of 

discriminatory information is subject-dependent.  

 Figure 4-7 clearly shows that not all EEG channels are necessarily needed for the 

successful operation of the BCI system.  The use of fewer channels will certainly 

lead to faster setup of the system.  

Moreover, as shown in Figure 4-7, the spatial distribution of the selected features 

is different for different users. These results imply that it is necessary to develop a user-

customized BCI system for each user.  

4.6.4 Statistical analysis 

A two-way analysis of variance (ANOVA) was carried out to compare the results 

of Study 1 and Study 2. The results achieved in Study 1 were compared with the results 

of the best Configuration for each user in Study 2. The independent variables were 
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“Individual “ and “Study” and 
FPR
TPR  was the dependant variable. The results showed a 

significant main effect of Individual ( 001.0p ), a significant main effect of Study 

( 0005.0p ) and a marginally significant effect of the interaction of both ( 062.0p ). 

ANOVA confirms that the proposed method in Study 2 results in a superior performance 

compared to the more conventional scheme implemented in Study 1.  

To further check the configuration effect, we conducted a two-way ANOVA on 

the results. “Individual” and “Configuration” were used as independent variables and the 

performance (expressed as
FPR
TPR ) was used as the dependent variable. “Configuration 5” 

was not included in this analysis, because it resulted in low TP rates, thus making its 

application very limited. The ANOVA results revealed a significant main effect of 

“Individual” ( 410p ),a significant main effect of  “Configuration”( 410p ) and a 

significant interaction of both ( 410p ). Further analysis showed that Configuration 1 

(the combination of MRP and CPBR) resulted in a superior performance than 

Configuration 3 (the combination of CPMR and CPBR) with 05.0p . Similarly, we 

compared the performance of Configuration 2 (the combination of MRP and CPMR) vs. 

Configuration 3. Although the average 
FPR
TPR  for Configuration 2 was higher with that of 

Configuration 3, the amount of improvement was not statistically significant ( 05.0p ).  

Furthermore, Configuration 1 resulted in a higher 
FPR
TPR  ratio compared to 

Configuration 2. However, these results were not statistically significant ( 05.0p ), so 

future work should further explore this issue in order to determine whether or not the 

combination of MRP and CPBR is indeed superior to the combination of MRP and 

CPMR.  

The combination of all three neurological phenomena through majority voting 

(Configuration 4)  resulted in a statistically significant superior performance in terms of 

FPR
TPR  compared to Configurations 2 and 3 ( 05.0p ). However, compared to that of 
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Configuration 1 the improvements in the performance were not statistically significant 

( 05.0p ). 

  We also carried out a more detailed analysis on Configuration 5 . A two-way 

ANOVA with “FPR” as the dependent variable and “Configuration” and “Individual” as 

independent variables, showed that this Configuration achieved the lowest false positive 

rates compared to other Configurations  ( 05.0p ) with average true negative rate of 

99.9%. However, the true positive rates were also the lowest amongst all the 

configurations ( 05.0p ) with an average TP rate of 14.1%. This low FP rate was 

achieved because this “conservative” configuration generated an IC control command 

only when MRP, CPBR and CPMR were all detected simultaneously. It is expected, 

however, if more powerful feature extraction schemes are used, the TP performance of 

this configuration would improve and still benefit from the very low FP performance.       

  It is difficult to directly compare the results of our study with those of other 

SBCI studies, as the type of participants in the experiments (whether of not they are able-

bodied), the recording equipment, recording protocols, classification protocols, the 

neurological phenomena considered, and even the evaluation methods differ from study 

to study. One crucial difference between this study and many other SBCI studies is that 

here the TP rate is only considered at the time of movement. However, in other studies, 

any detection, from x seconds before to y seconds after the movement trigger is 

considered as a TP [55, 68], since the exact time of movement was not known. On the 

other hand, since in our studies, the time of movement was known with a good 

approximation, we only considered the IC periods collected at the time of movement.  

Since this study is based on the use of executed movements, the results should be 

considered as preliminary steps toward the development of an SBCI system. This is 

because although the evidence from the literature supports the similarities between 

executed and attempted movements (see Section 4.3 ), there are also some important 

differences between them. For example the negative potential shift before the movement 

onset is of smaller amplitude in the imagined movements compared to executed 

movements [69]. Also the reafferent feedback after the movement offset is missing in the 
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imagined movements [53]. Future studies should then extend the obtained results to 

individuals with motor disabilities.  

Future work should also study extension of the proposed method to continuous 

classification of the EEG signals. The definition of a debounce window [55], for 

example, may lead to a lower FP rate when the proposed algorithm is tested on the 

continuous classification of EEG signals.  

Although the GA was used to automatically select the channels, the values of the 

classifiers’ parameters were found using cross-validation. This procedure is obviously 

suboptimal, as it is computationally demanding. Currently none of the SBCI designs have 

studied simultaneous optimization of both feature selection and parameter selection 

procedures. Another part of our future work will thus examine development of a fully 

automated user-customized self-paced BCI system.  

 Future work would also involve studying more complex feature extraction and 

feature classification strategies. For example, the wavelet transform could form a suitable 

candidate for exploring different neurological phenomena because it allows for 

simultaneous analysis of both time and frequency features. On the other hand, more 

complex classifiers, such as support vector machines (SVMs), have recently been 

successfully applied to a number of BCI systems. The application of these tools is 

certainly worthwhile exploring. In this chapter, we only considered binary outputs for the 

classifiers. To increase the performance, future work could also explore continuous 

outputs. To minimize the presence of other cognitive tasks, future work will also include 

testing the proposed BCI system in a complete self-paced environment (without the 

presence of any preparation cue). 
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CHAPTER 5 A SELF-PACED BRAIN COMPUTER 
INTERFACE SYSTEM WITH A LOW FALSE POSITIVE 
RATE5 

 

5.1 Introduction 

Self-paced brain computer interface (SBCI) systems allow individuals to control a 

device or an object using their brain signals only, and at their own pace, i.e., whenever 

they wish. This is unlike the traditional synchronized approach, where the user is only 

able to control the device during periods specified by the system [1]. 

The performance of SBCIs is usually determined via two objective functions:(1) 

the true positive (TP) rate, i.e., the rate at which the SBCI detects intentional control (IC) 

commands sent by the user, and (2) the false positive (FP) rate, i.e., the rate of false 

detections by the system when the user does not intend control. The latter periods are 

called No Control (NC) periods. 

Currently, the performance of EEG-based SBCIs is not suitable for most practical 

applications.  For example, the latest variation of an SBCI design, called the low 

frequency – asynchronous switch design (the LF-ASD) generates a false positive every 6 

seconds on average (with average TP rate= 41.1%) [2]. Such frequent false activations 

may cause user frustration and limit the application of the system. In this Chapter, we 

focus on improving the performance of SBCI systems in terms of decreasing the FP rate 

so that the system is more suitable for practical applications. There are several ways of 

improving the performance of EEG-based SBCIs. These include the use of sophisticated 

signal processing schemes; exploring the spatial, temporal and frequency-related 

                                                 
5 A version of this chapter has been submitted for publication. Fatourechi, M., Birch, G. E., Ward, R. K., 

“A Self-paced Brain Interface System with a Low False Positive Rate”, Journal of Neural Engineering, 
vol.5, 2008, pp.9-23. 
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information of the EEG signal; and taking advantage of the information provided by 

different control sources (neurological phenomena) of the brain (see [3] for a review of 

current neurological phenomenon used in BCI systems).  

   To improve the performance of SBCIs, the simultaneous use of three 

neurological phenomena as sources of control has been recently proposed [4].  These 

phenomena consisted of movement-related potentials (MRP) [5-7], changes in the power 

of Mu rhythms (CPMR) and changes in the power of Beta rhythms (CPBR) [8, 9]. The 

main rationale behind using these specific neurological phenomena is that they are time-

locked to the onset of a movement. Thus, when a movement occurs, they are expected to 

be present in the EEG. A number of papers provide some evidence that these MRP and 

changes in the Mu rhythms provide complementary information to explore the cognitive 

functions of the brain [7, 10-14].  There is also some evidence regarding the differences 

between the Mu and Beta rhythms [15, 16]. See [4] for more details.  

In [4], an EEG-based SBCI is proposed that uses information extracted from these 

three neurological phenomena and achieves low FP rates. One feature is extracted for 

each phenomenon in each EEG channel, resulting in the generation of three features per 

channel.  Each feature is extracted by matched filtering (MF) the signal with a template 

of the corresponding neurological phenomenon (created through averaging the IC 

epochs). Each feature is classified using a K-nearest neighbor (K-NN) classifier. 

Increasing the number of neurological phenomena from one to three has the disadvantage 

of tripling the dimensionality of the feature space. To reduce the dimensionality of the 

feature space, therefore, a new algorithm is developed in [4] that uses a two-stage 

multiple classifier system (MCS) to classify the features. An MCS forms a strong 

classifier by using an ensemble of “weak” classifiers. For an SBCI, the number of 

training IC patterns is usually limited. Therefore, the proposed two-stage MCS allows the 

system to examine a large number of features, thus exploring as much information as 

possible. To reduce the dimensionality of the feature space, a genetic algorithm (GA) is 

used to select a subset of features that yield near optimal performance. For simplicity, the 

parameter values of all classifiers are assumed to be the same and are selected through an 

exhaustive search. The proposed system is shown to achieve low FP rates (an average FP 

rate, FPR, of 0.49% for four individuals). The TP rate, however, is also low (the average 
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TP rate, TPR, is 27.33%). To improve the performance of the system, we notice that it 

has a total of 3N classifiers, where N is the number of EEG channels. In [4], it is assumed 

that the parameters of all classifiers have the same value. The parameter values are then 

found using an exhaustive search. This process is clearly suboptimal. Furthermore, 

because of the computational complexity involved, the corresponding MCS for each 

neurological phenomenon is designed separately. For each MCS, a separate GA is 

employed to select the features that produce the best performance. A better design would 

be to have the process of feature selection carried out simultaneously for all three MCSs.  

In this Chapter, we introduce improvements to this system to boost its 

performance. A method that uses a stationary wavelet transform (SWT) and matched 

filtering is developed for feature extraction. Support vector machines (SVMs) are used 

for classification because they have the advantage of minimizing the empirical risk (the 

training error), as well as the confidence error (the test error) [17]. We also used bipolar 

EEG signals instead of monopolar EEG signals as in [4]. This is done by first recording 

the EEG signals in a monopolar fashion (e.g., electrodes F1 and FC1, referenced to ear 

electrodes). Then the bipolar EEG signals are generated by calculating the differences 

between each adjacent pairs of EEG electrodes (e.g., F1-FC1 in the above 

example).Bipolar signals were calculated because it has been shown that bipolar EEG 

signals may result in the generation of more discriminant wavelet features (extracted 

from MRPs) than when monopolar EEG signals are used [18]. Since using bipolar EEG 

signals leads to an increase in the number of EEG signals, the dimensionality of the 

feature space as well as the number of classifier parameters whose values need to be 

estimated increases. A hybrid genetic algorithm (HGA) is proposed to automate the 

design process of the improved SBCI. The HGA simultaneously selects the features, 

estimates the classifiers’ parameters and chooses how the outputs of MCSs developed for 

each neurological phenomenon, should be combined together. Analysis of the data 

obtained from four able-bodied individuals (coded as AB1 to AB4) showed that the 

improved SBCI performs significantly better than previous SBCIs.        
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5.2 Methods 

The structure of the improved SBCI is shown in Figure 5-1. For each neurological 

phenomenon in every EEG signal (there are N EEG signals in total), features are 

extracted using an SWT. To reduce the dimensionality of the wavelet feature space, we 

propose the use of a matched filter. For each neurological phenomenon in an EEG 

channel, an SVM is designed (resulting in a total of 3N classifiers). The output of each 

SVM is a logical state ‘1’, when an IC pattern is detected and is ‘0’ in other cases. For 

each neurological phenomenon, an MCS classifies the outputs of N SVMs using the 

majority voting rule. A 2nd-stage MCS uses the outputs of the three MCSs to decide the 

outputs of which MCSs should be combined together and how this combination shall be 

done.  An HGA is employed to simultaneously find (1) the subset of features, (2) the 

parameter values for each SVM and (3) the configuration of the three MCSs that leads to 

near optimal performance (defined as the 
FPR
TPR ratio). In the rest of this section, we 

describe the details of the components of this two-stage MCS.  

5.2.1 Feature extraction 

The discrete wavelet transform (DWT) is a powerful tool for extracting time-

frequency features. It has been extensively applied in the analysis of event-related 

potentials (ERPs) [19, 20], as well as in the design of BCI systems [21-25].  

The DWT is defined as the convolution of the signal x(t) with wavelet functions 

)(, tba , where  )(, tba is the dilated and shifted version of the wavelet function )(t and 

is defined as follows: 

)(.1)(, a
bt

a
tba


                                                             (5-1) 

where  a and b are the scale and translation parameters, respectively. The DWT thus 

maps a signal of one independent variable t into a function of two independent variables 

a, b, such that 

kba j
kj

j
j .2,2 ,

   (j, k are integers)                (5-2) 
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Figure 5-1. The overall structure of the improved SBCI incorporating three neurological phenomena. 

The contracted versions of the wavelet function will match the high-frequency 

components of the original signal and the dilated versions will match the low-frequency 

oscillations. Then by correlating the original signal with the wavelet functions of 

different sizes, the details of the signal at different scales are obtained. The resulting 

correlation features can be arranged in a hierarchical scheme called multi-resolution 

decomposition [26] which separates the signal into “details” at different frequency bands 

and a coarser representation of the signal called an “approximation”. See [26] more 

details. 

DWT, however, is shift-variant, and the values of wavelet coefficients may vary 

even with small shifts in time [27]. Therefore, we propose using the shift-invariant 

stationary wavelet transform (SWT) to detect the neurological phenomenon of interest. 
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An SWT resolves the shift-variancy problem associated with the DWT by eliminating the 

downsampling operator from the multi-resolution analysis [28]. We first describe 

application of the SWT to extract features from MRPs and then discuss feature extraction 

from CPMR and CPBR. 

Consider the set of all training data consisting of  ICN  IC commands. Suppose 

that each of the training epochs is decomposed using a wavelet function )(t . If the 

wavelet coefficients are to be used as features, the number of features becomes:  

SamplesLevelFeatures NNN  )1(                            (5-3) 

where FeaturesN  , LevelN and SamplesN  denote the total number of wavelet features per EEG 

signal, the number of decomposition levels and the number of samples per epoch, 

respectively. It is apparent that the size of the feature space becomes very large, even for 

a small number of EEG signals.   To reduce the dimensionality of the feature space, we 

propose using a matched filter. A linear matched filter is known to be a simple yet useful 

tool for measuring the similarities between two sequences. Assuming that pkjc ,, and 

pkjd ,,  are the approximation and detail coefficients at scale j and translation k of  the pth 

epoch in the training set of the IC commands,  the averages of the approximation and 

detail coefficients at scale j and translation k ( kjc ,


 , kjd ,


) are:  




 ICN
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,,, .1                                   (5-4) 
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   The approximation template at scale j ( jTemplateC ) and the detail template at 

scale j ( jTemplateD ) are then obtained using the following formulae:  

),...,2,1,,...,2,1(},{ SamplesLevel NkNjkjj cTemplateC 


                                  (5-6) 

){ ,...,2,1,,...,2,1(}, SamplesLevel NkNjkjj dTemplateD 



                     (5-7) 
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  Let ),...,2,1and,,...,2,1,,...,2,1(}{ ,,, NpNkNjcC SamplesLevelpkjpj   be the 

set of all approximation coefficients at scale j of the pth epoch. The cross-covariance 

between jTemplateC and pjC , is then calculated as follows: 

 )))((()( ,,





jj CnmpjTemplateCmjpj CTemplateCEnXCOR        (5-8) 

where E  is the expected value operator. After calculating )(, nXCOR pj for each epoch, the 

following features, representing the maximum of the cross-correlogram over a period of 

0.125 seconds, are extracted [4]: 

]0625.0,0625.0[where)],([ ,,  finishstartfinishstartpjnpj ttttnnXCORMaxF         (5-9) 

where (tfinish -tstart) is the length of the epoch, and tfinish and tstart show the start and finish 

of an epoch as discussed in detail in Section 5.3. Figure 5-2 demonstrates an example of 

this feature extraction method, assuming that the length of the epoch and the template are 

both  tfinish -tstart = 2  seconds (the duration of the cross-covariance signal will thus be four 

seconds). The feature extractor considers a window of width 0.125 seconds around the 

middle point of the cross-correlogram (i.e., at time t= tfinish -tstart= 2 seconds). This 

window covers from 0625.0
2
125.0

1 t  seconds before to 0625.0
2
125.0

2 t  after      

t = 2 seconds. The maximum value in (5-9) is then calculated over this window with 

width of 0.125 seconds, because MRPs lie in frequencies below 4 Hz [18], and the 

sampling rate is 128Hz. Features are then generated by sliding a window over the EEG 

signal by shifts of 0.125 seconds.  

Apart from the above features, the following features are also extracted: 

))(( ,,, pjpjpj FnXCORtT                                  (5-10) 

where t is the time operator. This feature provides information about the time instant 

when the maximum of the cross-correlogram occurs. Similar formulae can be obtained 

for the detail coefficients as well as for the features extracted from the NC epochs. This 

process is repeated for all EEG channels. We select the features belonging to the coarsest 
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approximation and detail levels. As a result, four MRP features are generated for each 

EEG channel. 

 
Figure 5-2. An example of how features are extracted using the proposed cross-covariance method. 

For the CPMR and CPBR phenomena, all epochs are band-pass filtered before 

feature extraction. For CPMR, the band pass is chosen from 8 to 12Hz. For CPBR, 

because of the relatively wide range of the Beta rhythms, a user-customized band pass is 

chosen for each individual, as explained below.   Both filters are linear phase 32-point 

FIR filters. The amplitudes of the bandpass-filtered signals are squared to obtain the 

power values. The SWT is then applied and the wavelet coefficients of the power signals 

are calculated. The rest of the feature extraction process is similar to that used for MRPs 

and it yields four CPMR features and four CPBR features for each EEG channel. 

The choice of the proper wavelet function.  In the analysis of ERPs, the wavelet 

function is usually chosen solely based on the similarity between the neurological 

phenomenon and the shape of the wavelet function [21, 29, 30].   The downside of this 
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approach is that the choice of wavelet function may become subjective. Moreover, it has 

been shown that the shape of the neurological phenomenon may vary from one individual 

to another[31]. As a result, to achieve better performance, this process needs to be carried 

out separately for each individual. Even if a separate wavelet function is chosen for each 

individual,  the use of a single wavelet function for all channels may not be optimal 

because the amount of information varies from one EEG channel to another. For each 

individual, and for each neurological phenomenon in each EEG channel, a Fisher ratio is 

defined, as follows[32]: 

 
),...,2,1;,...,2,1;,...,2,1;3,2,1(

),,,(),,,(
)),,,(),,,((

),,,( 22

2

ctionsWaveletFunFeatures

NCIC

NCIC
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srqpsrqp

srqpsrqpsrqpC









        (5-11) 

where ),,,( srqpIC  and ),,,( srqpNC  are the means and ),,,(2 srqpIC  and ),,,(2 srqpNC  

are the variances of the IC and NC classes for feature r of neurological phenomenon  p 

and for channel q extracted using wavelet function s . For each channel q and 

neurological phenomenon p, the wavelet function that achieves the following objective is 

chosen for that particular pair: 

),...,2,1,3,2,1()],,,([(, NqpsrqpCMax sr                  (5-12) 

The wavelet functions are selected from a pool of Daubechies, Biorthogonal, 

Symlet and Coiflet wavelet functions (46 wavelet functions in total). Some of these 

wavelet functions were chosen because of their similarities with the shape of neurological 

phenomena. As an example, in [22] Symlet wavelets were found to be suitable for the 

analysis of the event-related desynchronization of the brain rhythms. Similarly, in [21], 

Daubechies wavelets were chosen for the analysis of event-related potentials. 

Biorthogonal wavelets also carry resemblance to the shape of bipolar MRPs. However, as 

stated earlier, we used an automatic method for selecting the type of wavelet functions to 

minimize the subjectivity in the choice of wavelet functions. Features are normalized 

prior to the calculation of the Fisher ratios. 

The choice of the proper CPBR frequency band. Because of the wide range of 

the Beta rhythms, and to select more discriminant features for CPBR, (5-11) is calculated 
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for seven frequency bands: [14-18], [18-22], [22-26], [26-30], [18-26], [22-30] and      

[14-30] Hz. Each frequency band is analyzed separately. The averages of the Fisher ratios 

are compared, and the frequency band that results in the highest average is selected. The 

reason different Beta frequency bands were considered for this study was to find user-

specific frequency bands that resulted in more discriminant features (based on the 

Fisher’s ratio). Please note that although some of the frequency bands described above 

are covered by other frequencies (e.g., ]2622[1 f  is covered by ]2618[2 f ), this 

does not mean that features extracted from f2  are necessarily more discriminant. This is 

because if the feature extracted from frequency band ]2218[3 f  do not provide 

discriminant information, adding 3f  to 1f  may even result in decreasing the amount of 

discriminancy between the classes. 

5.2.2 Feature classification 

   The features for each neurological phenomenon in an EEG channel are 

classified as an IC or NC state using an SVM classifier. For each neurological 

phenomenon, the classifiers’ outputs are combined using an MCS. Prior to classification, 

outliers were removed as follows. Suppose the Mahalanobis distance for a feature vector 

with K variables, ],...,,[ 21 Kxxxx  with an assumed central point ],...,,[ 21 Kµ is 

defined as 

TMahal )()(),( 1 µxµxµx                                 (5-13) 

where  is the covariance matrix evaluated from the data. The outliers are then removed 

using the following algorithm [33, 34]: 

1. Round p. If there exists x  such that ),( µxMahal , let 

  ),( µxx MahalFS . Retain only the points in FS. The value of   was chosen such 

that the training samples that were further than 4 standard deviations from the mean, were 

considered as outliers [35]. 

2. Repeat until the above condition is not met. 
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After applying this algorithm, the maximum percentage of features recognized as 

outliers was 3% for NC features and 1% for IC features. 

 Support vector machines (SVMs)  

A total of N3  SVM classifiers are used for each individual. Kernel-based 

learning combines the beneficial properties of the linear classification methods, such as 

simplicity, but since the feature and input spaces are nonlinearly related the overall 

classification is nonlinear in the input space [36]. We used the LIBSVM software for 

implementing the SVMs [37], and a Gaussian kernel as the kernel function. The 

classifier’s performance depends on the regularization parameter C and the bandwidth 

 of the kernel. Since there are N3  classifiers, N3  values had to be estimated for each 

parameter. The output of each SVM is a binary label that indicates if the input pattern 

belongs to an IC or an NC class. 

 Multiple classifier systems (MCSs) 

For each neurological phenomenon, an MCS with a majority voting rule classifies 

the binary outputs of the SVMs (there are N SVMs for each neurological phenomenon). 

In the case of “even” number of classifiers and if both classes have equal number of 

votes, the more-frequent class (NC) is chosen as the label for the input pattern. The 

outputs of the three MCSs are then combined using a 2nd-stage MCS as shown in Figure 

5-1. This MCS can have five configurations for combining the outputs of the three MCSs 

as follows: (1) Configuration 1- uses the AND rule to combine the binary outputs of 

MCS1 and MCS2 related to MRP and CPBR, respectively. The default class is an NC 

(the logical state ‘0’), unless both MCS1 and MCS2 identify an IC command (the logical 

state ‘1’);  (2) Configuration 2- uses the AND rule to combine the binary outputs of 

MCS1 and MCS3 that are related to MRP and CPMR, respectively; (3) Configuration 3- 

the AND rule is  used to combine the binary outputs of MCS2 and MCS3 related to MRP 

and CPBR, respectively; (4) Configuration 4- the outputs of all three MCSs are combined 

according to the majority voting rule; (5) Configuration 5 - the AND rule is used to 

combine the outputs of all MCSs. The choice of the best configuration is done by an 

HGA as explained in the next section. 
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5.2.3 Hybrid genetic algorithm (HGA) 

  A hybrid genetic algorithm (HGA) is designed so it (1) selects the best features; 

(2) determines the values of the classifiers’ parameters; and (3) selects the best of the five 

MCS configurations described in Section 5.2.2. In applying genetic algorithms to 

optimize the performance of the system, each parameter of interest is first coded in the 

form of a randomly generated binary string. Each bit in this binary string is called a gene. 

The concatenation of all the binary strings forms a “chromosome”, and the set of 

“chromosomes” forms a “population”. Each chromosome is then evaluated and a fitness 

value assigned. The chromosomes are then combined using operators such as “selection”, 

“crossover” and “mutation to generate new chromosomes. The “selection” operator 

selects a proportion of the existing population to breed a new generation. The selected 

chromosomes are usually the ones with higher fitness compared to other chromosomes in 

the population. After selection of the “fitter” chromosomes, a pair of "parent" 

chromosomes is selected for generating the “child” chromosomes. A child chromosome 

is a new solution that typically shares many of the characteristics of its "parents". The 

“crossover” operator ensures that this is the case by copying some of the genes of each 

parent to the child. The “mutation” operator is used to maintain genetic diversity from 

one generation of a population to the next.  This process is repeated until a new 

population of chromosomes is generated. It is expected that the population evolves 

gradually and that fitness improves over generations. This process is continued until 

some criteria for stopping the GA is met [38].  

To represent each possible combination of features, a binary chromosome of 

length ChromosomeL  is defined (see Figure 5-3(a)). Bit i of the first Nfeatures  bits of the binary 

chromosome specifies whether or not feature i is selected by the HGA. A value of “1” 

indicates the presence of feature i and a value of “0” indicates its absence in the 

chromosome. The second part of the chromosome is used to select the parameter values 

of the classifiers. For each of the N3  SVM classifiers, two parameter values need to be 

determined: the regularization parameter C and the bandwidth of the Gaussian kernel 

( ). A portion of the chromosome with length 8 bits is used for the two parameter values 

(see Figure 5-3(b)). The first four bits are used to represent the value of C and the second 
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half is used to represent the value of σ. Exponentially growing sequences are used for C 

and σ, i.e., their values vary from 82 to 72 . 

 

 
Figure 5-3.  (a) The structure of a chromosome; (b) Representation of the parameter values for each 
SVM in a chromosome. 

For each chromosome, a local exhaustive search is then carried out to find the 

best of the five configurations in the 2nd-stage MCS. Suppose x denotes a model in Figure 

5-1.  

In order to add a larger weight to solutions with lower false activation rates, the 

objective function for the HGA is defined as in (5-14). 
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where FA (false activations) is the percentage of NC epochs that are affected by one ore 

more false detections. The main difference between the FA and FP rate is that multiple 

FPs in an epoch are counted as one FA. The values of T1 and T2 in (5-14)  are selected as 
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50% and 80%, respectively, for all individuals except  for user AB3. Please note that 

currently there is no consensus amongst BCI researchers, as what is the acceptable 

threshold for the performance of a BCI system (this is especially the case for SBCI 

systems).For this study, the value of T1 was chosen as 50%, for two reasons: first, we 

wanted to prevent the solutions with low TP rates that also had low FA rates to become 

dominant in the population. An example of such solution is the one with TPR=20%, 

FAR=1%. In this example, although the FAR is very low, the TPR is also low 

(corresponding to the successful identification of only one out of 5 IC commands). 

Second, we postulated that the value of  T1=50% will be a reasonable  minimum 

requirement for the TP rate, as it corresponds to the identification of one out of every two 

IC commands on average (please note that IC commands should be separated from the 

periods of No Control) . Any configuration that resulted in the average TP rate of less 

than T1=50% was then penalized with a zero fitness value. The value of T2=80% was 

chosen, as it has been stated that (at least for synchronized BCI systems) accuracies 

above 70% are considered to be acceptable [39, 40]. We thus chose the value of T2=80% 

and none of the solutions whose performances yield %80TPR were penalized. The 

solutions whose fitness lies between these two extremes were penalized according to the 

formula described by (5-14). For user AB3, the value of T1 resulted in the generation of 

chromosomes with high FAR values. For this individual, the values of T1 and T2 were 

chosen as 33% and 50%, respectively. The “mean” operator was applied over the inner-

validation sets (see Section 5.3). 

We implemented a lexicographic approach for sorting the chromosomes in the 

HGA population [41]. In this approach, the chromosomes are compared and ranked 

according to the values of )(1 xf  in (5-14). Any ties were resolved by comparing the 

relevant chromosomes again with respect to another objective. If there is also a tie, a 3rd 

objective function is used for comparison and so on. A total of six objective functions 

were used as follows (in the order of priorities): 

))](Var())([mean(:2 xFARxFARMinf x                                    (5-15) 

]
))(Var(
))(mean([:3 xTPR

xTPRMaxf x                          (5-16) 
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))](Var())(([:4 xFPRxFPRmeanMinf x                    (5-17) 

))]([(:5 xNMinf x                        (5-18) 

))]([(:6 xNMinf Featuresx             (5-19) 

where NFeatures is the number of features. The “mean” operator is applied over the results 

obtained from the inner-validation sets (see Section 5.3).   

The remaining operators of the HGA are tournament-based selection (tournament 

size =3), uniform crossover (p=0.9) and uniform mutation (p=0.01). The sizes of the 

initial population and the rest of the populations are chosen as 200 and 100, respectively. 

The HGA is randomized initially. Elitism is used to keep the best performing 

chromosome of each population in the subsequent populations. The number of 

evaluations is set to 5000. If for more than 10 consecutive generations, the improvement 

in the first objective of the best solution was found to be less than 1%, the algorithm is 

terminated.   

5.3 Experimental results 

In this section, the results of the experimental analysis of the data of four able-

bodied individuals are presented and the results are compared to those reported in 

previous BCI studies. A theoretical analysis of the performance of the proposed two-

stage MCS is addressed in Appendix B. 

5.3.1 Data collection and evaluation 

The data of three male and one female able-bodied individual (denoted as users 

AB1 to AB4) were used in this study. The individuals were right-handed and between 31 

and 56 years old. They had signed consent forms prior to participation in the experiment. 

The data were collected as users performed a guided right index finger flexion 

movement. The EEG signals were recorded from 13 monopolar electrodes positioned 

over the F1,Fz,F2,FC3,FC1,FCz,FC2,FC4,C3,C1,Cz,C2 and C4 locations according to the 

International 10-20 System. The cutoff frequency of the amplifier was set at 30 Hz. An 

ocular artifact was detected when the difference between the electrooculugram (EOG) 
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electrodes (placed at the corner of and below the right eye) exceeded ±25 µV. This 

threshold was determined during data recording and by carefully monitoring the recorded 

EOG activity during the calibration stage. It was chosen such that most of the prominent 

eye movement activities were captured (see [42] for details). All signals were sampled at 

128 Hz and referenced to linked ears. 

The recorded signals were converted to bipolar EEG signals, since it has been 

shown that bipolar EEG signals may result in the generation of more discriminant 

wavelet features for MRPs compared to the case where monopolar EEG signals are used 

[18]. The conversion was carried out by calculating the difference between adjacent EEG 

channels, and resulted in the following 18 bipolar EEG signals: F1-FC1, F1-Fz , F2-Fz, F2-

FC2 , FC3-FC1, FC3-C3, FC1-FCz, FC1-C1, FCz-FC2, C1-Cz, C2-C4 , FC2-FC4 , FC4-C4 , 

FC2-C2 , FCz-Cz , C3-C1 , Cz-C2 and Fz-FCz .  For each individual, an average of 80 IC 

epochs was collected every day over a period of 5 days.  Table 5-1 shows the timetable of 

recording the data for all individuals. For each individual, “Day 1” was considered as the 

origin date, and the dates when the rest of the data were collected, were numbered 

relative to “Day1”. 

An IC epoch consisted of data collected over an interval containing the onset of 

movement (measured as the switch activation) as long as no artifact was detected in that 

particular interval. The interval started at tstart= -1 second, i.e., 1 second before the onset 

of movement, and ended at  tfinish , i.e., 1 second after the onset of movement.  

Table 5-1. The time schedule of recording the data 

User IDs 1st session 2nd session 3rd session 4th session 5th session 

AB1 1 3 5 8 10 

AB2 1 3 4 8 9 

AB3 1 2 4 8 9 

AB4 1 3 5 8 10 
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As mentioned in the Introduction, an SBCI should differentiate between IC and 

NC epochs (in contrast to synchronized BCI systems that need to differentiate different 

IC commands from each other). For this reason, the data in NC sessions are also needed 

to represent the epochs that the user did NOT intend to control. During an NC session, 

users were asked to count the number of times that a white ball bounced off the monitor’s 

screen. The NC sessions thus contained attentive as well as non-attentive NC data. Each 

NC session lasted approximately two minutes and during each recording day, up to two 

such NC sessions were recorded. The NC epochs were selected as follows: a window of 

width (tfinish -tstart) seconds was slid over each EEG signal collected during an NC session 

by a step of 16 time samples (0.1250 sec), resulting in 8 classifier decisions per second. 

For each 1-second window that artifacts were not detected, features were extracted.  

The method of calculating the TP rate is shown in Figure 5-4. In Figure 5-4(a), a 

sample EEG signal and in Figure 5-4(b) the output of the physical switch are shown. As 

stated earlier, data (from 1 second before to 1 second after a decision point) are used for 

classification. Assuming the system has no processing delay and the SBCI system has the 

ideal detection rate, the output of the SBCI system should be as demonstrated in Figure 

5-4(c). In other words, the IC command should be detected one second after pressing the 

switch. Although, the exact timing of the switch activation is known, the neurological 

phenomena may not be completely time-locked to the switch activation. As a result, we 

have also considered any activation in the time range [-0.125, +.125] seconds around the 

expected activation of the switch as a true positive (see Figure 5-4(c)). The rest of 

activations were treated as false activations. 
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Figure 5-4. Method of calculating the TP rate; (a) EEG Signal; (b) Output of the finger switch; (c) 
Output of the SBCI. 

5.3.2 Results 

A 5-level SWT decomposition resulted in the generation of wavelet coefficients 

in the following frequency bands: [32-64], [16-32], [8-16], [4-8], [2-4], and [0-2] Hz. For 

all neurological phenomena, the features were calculated for the lowest approximation 

and detail levels (which are attributed to the [0-2] and [2-4] Hz frequency bands, 

respectively). For users AB1 to AB4, the selected CPBR frequency bands were [22-30], 

[14-30], [22-30] and [14-18] Hz, respectively (see Section 5.2.1 for details).  Although 

the selected frequency bands resulted in more discriminant features compared to features 

selected from other frequency bands, the results were not necessarily 

significant )05.0( p . This observation was consistent among all individuals.  

We used a nested cross-validation to analyze the performance of the SBCI. The 

inner cross-validation set was used for selecting the best chromosome and the outer 

cross-validation set was used to test the performance.  For each outer cross-validation set, 

20% of the data were used for testing and the rest were used for training. The training 
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datasets were further divided into five folds. For each fold, 80% of the data were used for 

training the SVM and 20% were used for choosing the best chromosome.  

The test results are shown in Table 5-2. The first row shows the selected 

configuration for the two-stage MCS. For users AB1 and AB4 , the combination of MRP 

and CPBR led to superior results (Configuration 1), while for users AB2 and AB3, the 

combination of all three neurological phenomena using the AND rule was the best 

configuration (Configuration 5).  The next three rows in Table 5-2 show the total number 

of selected bipolar signals, the number of selected channel-neurological phenomenon 

combinations (please note that there are three neurological phenomena and 18 bipolar 

EEG signals, resulting in a total of 54318  EEG channel-neurological phenomena 

combinations) and the total number of selected features (averaged over the five outer 

validation sets). The last three rows show the average of the TP, FA and FP rates on the  

Table 5-2. The performance results for the proposed SBCI system. 

 AB1 AB2 AB3 AB4 

Selected Configuration 1 5 5 1 

Average Number of 

Selected Bipolar Channels 

18 18 18 18 

Average Number of Selected Channel-

Neurological Phenomenon Combinations 

32.8 

(1.8) 

50.8 

(2.2) 

50.8 

(1.5) 

34.4 

 (1.5) 

Average  Number of Selected Features 71.0 

(5.7) 

112.0 

(3.8) 

119.0 

(8.3) 

81.4 

(5.3) 

Average TP  58.6 

(8.6) 

64.2 

(7.5) 

46.9 

(10.4) 

55.1 

(5.3) 

Average FA  1.2 

(1.1) 

0.2 

(0.3) 

2.3 

(1.4) 

0.8 

(0.8) 

Average FP  0.1 

(0.1) 

0.0 

(0.0) 

0.3 

(0.2) 

0.1 

(0.1) 
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five outer cross-validation test sets. The numbers in parentheses show the standard 

deviations. These results indicate that the proposed SBCI achieves a very low FP rate at a 

modest TP rate. In the next section, we will show that these results are significantly better 

than those of previous related SBCI systems.  

5.4 Discussion and conclusions 

It is theoretically possible to design a multiple classifier system such that very 

good classification accuracy can be obtained (see Appendix .A). This can be achieved 

even if the performance of individual classifiers is only slightly better than chance. To 

achieve high performance, the classifiers need to be diverse. In this Chapter, we explored 

the information from three neurological phenomena (movement-related potentials and 

changes in the power of Mu and Beta rhythms) and EEG channel locations to create 

diverse classifiers. A hybrid genetic algorithm (HGA) was designed to maximize the 

performance under the computational constraints (i.e., time and computational resources). 

The proposed design is denoted as SBCIFully-Automated, as in this design, features, parameter 

values of classifiers and the method of classifier combination have all been automatically 

determined.   

    We showed that the proposed SBCI achieves low FP rates at a modest TP rate. 

To our knowledge this is the first time that such low FP rate has been reported for a 

modest TP rate in an EEG-based SBCI. This brings the design of a practical EEG-based 

SBCI system with low false positive rate closer to the reality.   

It is, however, difficult to directly compare the result of this study with those of 

other SBCI studies. This is because the recording protocol, the neurological phenomena 

used, the decision rate and the evaluation methodology vary amongst different studies. 

Furthermore, the method of labeling the output samples varies between different SBCI 

studies. This difficulty in comparing SBCI systems has been discussed in detail in a 

technical report recently published by researchers from leading research laboratories in 

the field of SBCI systems [43]. 

   We compared the results of SBCIFully-Automated with those of SBCISemi-Automated as 

reported in [4]. Both studies use similar experimental paradigms (we denote the latter 
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design as  SBCISemi-Automated as in this design, only feature extraction was automated for 

each neurological phenomenon.). The performance of both studies is summarized in 

Table 5-3. A two-way analysis of variance (ANOVA) using “User” and “Study” as 

independent variables shows that the TP rate increases from 27.1% to 56.2% ( 510p ) 

in  SBCIFully-Automated  and the average FP rate decrease from 0.5% to 0.1% ( 510p ).  

These results indicate that  SBCIFully-Automated  achieves a superior performance compared 

to  SBCISemi-Automated. 

Table 5-3. Comparison of the performance results. 

 

 

User 

IDs 

 

Results obtained  

in  SBCIFully-Automated 

 

Results obtained 

 in SBCISemi-Automated 

 

 

Results obtained 

 in  LFASDUser-Customized 

 

 

Results obtained  

 in  LFASDPath 

 

TPR 

 

FPR 

 

 

FPR
TPR

 

 

TPR 

 

FPR 

 

 

FPR
TPR

 

 

TPR 

 

FPR 

 

 

FPR
TPR

 

 

TP

R 

 

FPR 

 

 

FPR
TPR

 

AB1 58.6 0.1 390.9 26.0 

(9.5) 

0.1 

(0.1) 

200 <10.0 0.2 <50.0 42.7 1.0 42.7 

AB2 64.2 0.0 3256.8 25.2 

(5.7) 

0.3 

(0.1) 

87.0 <10.0 0.2 <50.0 47.6 1.0 47.6 

AB3 46.9 0.3 167.5 36.7 

(3.7) 

1.1 

(0.4) 

33.30 <8.0 0.2 <40.0 45.8 1.0 45.8 

AB4 55.1 0.1 458.8 21.4 

(6.2) 

0.4 

(0.4) 

49.80 ? 0.2 ? 28.3 1.0 28.3 

Mean 56.2 0.1 401.3 27.3 0.5 55.8 <10.0* 0.2 <50.0* 41.1 1.0 41.1 

*Average over the data of three individuals. 
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Compared to the SBCISemi-Automated, the performance of the SBCI was improved 

because of:  

1) Automation of the design: In [4], the classifier parameter values and the structure of 

the 2nd-stage classifier were not automatically determined. The proposed method in this 

Chapter achieves full automation by reformulating the chromosomes and incorporating 

these parameters in the structure of each chromosome. We have proposed a hybrid GA 

for this automation process. 

2) New feature extraction method: We have proposed a new feature extraction method 

that applies a stationary wavelet transform (SWT) as a pre-processing stage and matched 

filtering (MF) for the final feature extraction stage. We also proposed a criterion for the 

automatic selection of the wavelet function (which is usually done subjectively by the 

designer). However, this improvement comes at the expense of increased system 

complexity.  

The LF-ASD is another state-of-the-art SBCI, previously developed by the brain 

interface laboratory of the Neil Squire society [18]. During the past few years, different 

variations of the LF-ASD have been proposed by the members of our research group [2, 

31, 44] as well as by others [45]. The LF-ASD uses features extracted from six bipolar 

EEG channels to distinguish an IC command (if present) from the background NC states. 

In Table 5-3, we also compare our results with those of two of the latest variations of the 

LF-ASD.  In the first variation (denoted as LFASDUser-Customized), the effects of user-

customization of the system’s parameter values by an expert are studied [31] . In the 

second (denoted as LFASDPath ), the knowledge of the path of features is used to improve 

the performance[2]. Both papers focused on improving the TP rate at a fixed FP rate.  

As shown in Table 5-3, the TP rates of LFASDUser-Customized  drop below 10% for 

FP rates equal to or below 0.2%. The values of TP rates at 0.2% were estimated from the 

receiver operating characteristic (ROC) curves plotted in[31]. Since the ROC curves for 

able-bodied individuals were not available in [2], we used the reported TPR results for 
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FPR=1%. The results in Table 5-3 show the improvement achieved in terms of 
FPR
TPR  

rates. As seen from this table, for low FP rates, SBCIFully-Automated  achieves higher TP 

rates than both the  LFASDUser-Customized  and  LFASDPath . A t-test between the 

performance obtained by  SBCIFully-Automated  and those achieved by  LFASDPath  shows 

that the TP rates in  SBCIFully-Automated  are higher ( 02.0p ), while the FP rates are lower 

( 0p ). The same comparison with the results obtained for FPR=0.2% in  LFASDUser-

Customized  shows a highly significant improvements in the TP rates ( 510p ), while the  

decrease in FP rates is not statistically significant (p=0.16).  

 The results in Table 5-3 also show that  SBCIFully-Automated  has an average of 1.11 

FPs every 100 seconds. The original design of the LF-ASD had an average of one FP 

every six seconds [44] and the improved design had an average of one FP every 12 

seconds[2]). Thus, SBCIFully-Automated  is able to recognize a longer period of an NC state 

without having a false activation.     

 Although the results in Table 5-3 show that SBCIFully-Automated achieved a superior 

performance compared to the rest of SBCIs examined in this study, the results also 

indicate a great deal of inter-subject variability in terms of performance. As an example, 

the TP and FP rate for user AB2 were 64.2% and 0.0%, respectively, while the values 

obtained for user AB3 were TPR=46.9% and 0.3%, respectively. One reason that can be 

stated for this is the variability of the quality of the neurological phenomenon from one 

individual to another. For example, when the IC epochs of user AB2 were averaged, very 

distinct MRP patterns emerged, however, for user AB3, the MRP patterns were less 

pronounced (see the discussion in [31] for the variability of MRPs amongst different 

individuals). An interesting area that needs further exploration is to see how the qualities 

of the neurological phenomena will improve after individuals get more training. This is 

left to future studies. 

One concern in BCI studies is the effect of artifacts on the performance of the 

system. Particularly, systems that use slow potentials such as MRP, may be vulnerable to 

the presence of eye movement artifacts. One advantage of our proposed system is that it 

uses three neurological phenomena each belonging to a different frequency band. While 
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eye movements are mostly low frequency components that may affect MRPs, their effect 

on the changes in the power of Mu and Beta rhythms is much less significant. Since our 

system depends on observing movement-related patterns in more than one neurological 

phenomenon when detecting an IC pattern, it is thus more robust to the presence of 

artifacts. Nevertheless, when detecting EOG artifacts using a threhsolding scheme, 

smaller EOG artifacts may not be detected. Thus in our future studies, we plan to explore 

the use of more sophisticated artifact-removal methods such as Independent Component 

Analysis (ICA) to improve the artifact monitoring system. 

Another research area that needs further attention is the choice of a suitable 

evaluation metric for SBCIs. The evaluation of the performance of any SBCI system 

greatly depends on the evaluation metric used. Currently there is no consensus amongst 

BCI researchers as to which performance metric summarizes the performance of a given 

SBCI more efficiently [43]. As an example, although in a number of SBCI papers, 

receiver operating characteristic (ROC) curve and the area under ROC (AUC) have been 

used for evaluating the performance, the suitability of this metric in the field of SBCI was 

recently questioned. This is because when the ROC curve is plotted over the whole range 

of the (TPR, FPR) domain, the solution looks like a perfect answer, which is usually not 

the case [43].Future research in this area can result in the generation and selection of 

more suitable cost functions that guide the model search procedure more efficiently. 

 Table 5-2 also shows that in SBCIFully-Automated , almost all bipolar channels are 

selected. The use of fewer EEG channels is preferable, since it reduces the complicity of 

the feature space and may also hasten setup of the data recording. Future work explores 

decreasing the number of bipolar EEG channels used by the SBCIFully-Automated.  

Scale-up is another important issue that is part of our future research. Scaling can 

be done in two stages. In stage one, the system detects IC commands (using the proposed 

method). In the second stage, a second detector differentiates different IC patterns (e.g., 

related to left/right movements) from each other. This approach has been successfully 

implemented by another research group [46]. 

 This study is based on the use of executed movements. Future studies investigate 

the performance of the proposed SBCI system during attempted (imagined) movements 
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performed by able-bodied individuals. After that, the performance will be evaluated using 

the data of individuals with motor disabilities. Online testing of the performance of our 

system is also part of the future works.  
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CHAPTER 6 EMG AND EOG ARTIFACTS IN BRAIN 
COMPUTER INTERFACE SYSTEMS: A SURVEY6 

 

6.1 Introduction 

A brain computer interface (BCI) system provides a communication channel between a 

user’s brain and a device the user intends to control. A successful BCI system enables a person to 

control some aspects of his or her environment (such as lights in the room, a television, a neural 

prosthesis or a computer) by analyzing his or her brain signals (see Figure 6-1). Specific features 

of the user’s brain activity (or “neurological phenomenon”) that relate to their intent to control a 

device are measured. These features are then translated to control commands that are used to 

control the device.  
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Figure 6-1. The functional model of a BCI system depicting its principle functional components. 

Artifacts are undesired signals that can introduce significant changes in brain 

signals and ultimately affect the neurological phenomenon. Artifacts are attributed either 

                                                 
6 A version of this chapter has been published. Fatourechi, M., Bashashati, A., Ward, R. K., and Birch, G. 

E., "EOG and EMG Artifacts in Brain Interface Systems: a Survey", Clinical Neurophysiology, Vol.118, 
No.3, Mar 2007, pp.480-494 (Invited Paper). 
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to non-physiological sources (such as 50/60 Hz power-line noise, changes in electrode 

impedances, etc.) or physiological sources, such as potentials introduced by eye or body 

movements. Although BCI researchers usually take necessary precautions for handling 

non-physiological artifacts, physiological artifacts, especially those generated by eye or 

body movements, remain a significant problem in the design of BCI systems. 

In this paper, artifacts caused by eye movements (electrooculography [EOG] 

artifacts) or muscle movements (electromyography [EMG] artifacts) are reviewed in the 

context of BCI systems.  The aim of the current study is to find out how the BCI 

community has addressed EMG and EOG artifacts and what outstanding issues still 

remain. This review is part of a broader attempt to review the field of BCI systems using 

the framework proposed in [1, 2].  

In Section 6.2, we briefly address the current neurological phenomena used in the 

BCI literature and their associated artifacts.  In Section 6.3, we address the existing 

methods for handling these artifacts, with special focus on EOG and EMG artifacts. In 

Section 6.4, we present a review of artifact handling methods in the BCI literature. 

Discussion and conclusions are presented in Section 6.5.  

6.2 Current neurological phenomena and associated artifacts 

 

In this section, we briefly review the current neurological phenomena in BCI 

systems and their associated artifacts. 

6.2.1 Current neurological phenomena 

Although several strategies exist for sensing the brain signal used for direct 

communication between the brain and a computer, not all such strategies have been 

extensively explored. For example, applications of BCI systems based on functional 

magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) are currently 

limited,  as such systems are large, expensive, and require a magnetically shielded 

environment [3]. 
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The electrical signals of the brain provide suitable representations of the sources 

of the control signals used in BCI systems. The technology needed for recording the 

brain’s electrical signals can be relatively cheap, especially when these signals are 

recorded from the scalp. Brain signals typically have fast responses and co-vary with 

cognitive processes [4]. Hence, the focus of this paper is on the neurological phenomena 

embedded in the electrical signals of the brain. Our survey showed that artifacts related to 

direct cortical recording (DCR), which uses microelectrodes that penetrate the brain, have 

not yet been addressed in the BCI literature. Since this paper is a review study, no critical 

commentary will be given on artifacts in DCR-based systems. Rather, we focus on BCI 

systems that use recordings from the surface of the scalp (electroencephalography [EEG]) 

or from the surface of the brain (electrocorticography [ECoG]) for recording brain 

activity.  

The current neurological phenomena in EEG/ECoG-based BCI systems are as 

follows: 

 Changes in the Brain Rhythms such as Mu, Beta and Gamma rhythms related to a 

movement (CBR): A voluntary movement results in a circumscribed 

desynchronization in the Mu and lower Beta bands [4-8]. This desynchronization 

starts in the contralateral rolandic region about two seconds prior to the onset of a 

movement, and becomes bilaterally symmetrical immediately before execution of 

movement [9]. After a voluntary movement, the power in the brain rhythms as 

well as the amplitude of gamma rhythms increases.  

 Movement related potentials (MRPs): MRPs are low-frequency potentials that 

start about 1- 1.5 seconds before a movement. They have bilateral distribution and 

present maximum amplitude at the vertex [10-12]. 

 Other movement related activities (OMRAs): The movement-related activities 

that do not belong to any of the preceding categories are categorized as OMRA. 

They are usually not restricted to a particular frequency band or scalp location and 

usually cover different frequency ranges. They may be a combination of specific 

and non-specific neurological phenomena.  
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 Slow cortical potentials (SCPs): SCPs are slow non-movement potential changes 

generated by the individual. They reflect changes in the cortical polarization of 

the EEG, lasting from 300 ms up to several seconds. Functionally, a SCP reflects 

a threshold regularization mechanism for local excitory mobilization [13, 14]. 

 Cognitive tasks (CTs): Changes in the brain signals as a result of non-movement 

mental tasks (e.g., mental counting, solving a multiplication problem) are 

categorized as CTs [4]. 

 P300: Infrequent or particularly significant auditory, visual or somatosensory 

stimuli, when interspersed with frequent or routine stimuli, typically evoke a 

positive peak at about 300 ms after the stimulus is received. This peak is called 

P300 [4, 15]. 

 Visual evoked potentials (VEP): VEPs are small changes in the brain signal, 

generated in response to a visual stimulus such as flashing lights. They display 

properties whose characteristic depends on the type of the visual stimulus [4].  

 Steady-State visual evoked potentials (SSVEP): If a visual stimulus is presented 

repetitively at a rate of 5-6 Hz or greater, a continuous oscillatory electrical 

response is elicited in the visual pathways. Such a response is termed SSVEP.  

The distinction between VEP and SSVEP depends on the repetition rate of the 

stimulation [16]. 

 Auditory evoked potentials (AEPs): AEPs are small electrical activity changes 

that are generated in response to an auditory stimulus (such as clicks or tones). 

 Somatosensory evoked potentials (SSEPs): SSEPs are potentials generated in 

response to the stimulation of somatic sensation. 

 Multiple neurological phenomena (MNs): BCI systems based on multiple 

neurological phenomena use a combination of two or more of the above-

mentioned neurological phenomena. 

Each neurological phenomenon has unique spatiotemporal characteristics. This 

fact should be taken into consideration when addressing the presence of artifacts, as a 

particular neurological phenomenon may be more vulnerable to the presence of certain 

artifacts.  
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6.2.2 Artifacts in BCI systems 

Artifacts are undesirable potentials that contaminate brain signals, and are mostly 

of non-cerebral origin. Unfortunately, they can modify the shape of a neurological 

phenomenon used to drive a BCI system. Thus, even cerebral potentials may sometimes 

be considered as artifacts. For example, in an MRP-based BCI system, a visual evoked 

potential (VEP) is considered as an artifact. Visual alpha rhythms can also appear as 

artifacts in a Mu-based BCI system [17].  One problem with such artifacts is that they 

could mistakenly result in controlling the device [3].  Therefore, there is a need to avoid, 

reject or remove artifacts from recordings of brain signals.   

Artifacts originate from non-physiological as well as physiological sources. Non-

physiological artifacts originate from outside the human body (such as 50/60 Hz power-

line noise or changes in electrode impedances), and are usually avoided by proper 

filtering, shielding, etc. For reviews of non-physiological artifacts and the methods of 

avoiding, rejecting or removing them, the reader can refer to biomedical books [7, 18, 

19]. 

Physiological artifacts arise from a variety of bodily activities. 

Electrocardiography (ECG) artifacts are caused by heart beats and may introduce a 

rhythmic activity into the EEG signal. Respiration can also cause artifacts by introducing 

a rhythmic activity that is synchronized with the body’s respiratory movements. Skin 

responses such as sweating may alter the impedance of electrodes and cause artifacts in 

the EEG signals [20]. The two physiological artifacts that have been most examined in 

BCI studies, however, are ocular (EOG) and muscle (EMG) artifacts. 

EOG artifacts are generally high-amplitude patterns in the brain signal caused by 

blinking of the eyes, or low-frequency patterns caused by movements (such as rolling) of 

the eyes [21]. EOG activity has a wide frequency range, being maximal at frequencies 

below 4Hz, and is most prominent over the anterior head regions [17].  

EMG activity (movement of the head, body, jaw or tongue) can cause large 

disturbances in the brain signal. EMG activity has a wide frequency range, being 

maximal at frequencies higher than 30 Hz [17, 21].  Difficult tasks may cause an increase 

in EMG activity related to the movement of facial muscles [22, 23].  
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A number of studies have shown that EOG and EMG activities may generate 

artifacts that affect the neurological phenomena used in a BCI system [24, 25]. For 

example, [25] demonstrated that brain rhythms are contaminated with EMG artifacts 

during the early training sessions of a BCI system that used Mu and Beta rhythms as 

sources of control.  

 Physiological artifacts such as EOG and EMG artifacts are much more 

challenging to handle than non-physiological ones. Moreover, controlling them during 

signal acquisition is not easy. There are different ways of handling artifacts in BCI 

systems.  In Section 3, we examine the reported methods for handling EOG and EMG 

artifacts, as they are among the most important sources of contamination in BCI systems.  

6.3 Methods of handling artifacts 

In this section, we briefly address methods of handling artifacts. Our focus 

throughout this section will be on EOG and EMG artifacts.  

6.3.1 Artifact avoidance 

The first step in handling artifacts is to avoid their occurrence by issuing proper 

instructions to users. For example, users are instructed to avoid blinking or moving their 

body during the experiments. 

Instructing individuals to avoid generating artifacts during data collection has the 

advantage of being the least computationally demanding among the artifact handling 

methods, since it is assumed that no artifact is present in the signal (or that the presence 

of artifacts is minimal). However, it has several drawbacks. First, since many 

physiological signals, such as the heart beats, are involuntary, artifacts will always be 

present in brain signals. Even in the case of EOG and EMG activities, it is not easy to 

control eye and other movement activities during the process of data recording. Second, 

the occurrence of ocular and muscle activity during an online operation of any BCI 

system is not avoidable. Third, the collection of a sufficient amount of data without 

artifacts may be difficult, especially in cases where a user has a neurological disability 

[26]. Finally, avoiding artifacts may introduce an additional cognitive task for the 
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individual. For example, it has been shown that refraining from eye blinking results in 

changes in the amplitude of some evoked potentials [27, 28].  

6.3.2 Artifact rejection  

Artifact rejection refers to the process of rejecting the trials affected by artifacts. It 

is perhaps the simplest way of dealing with brain signals contaminated with artifacts. It 

has some important advantages over the “artifact avoidance” approach. For example, it 

would be easier for individuals to participate in the experiments and perform the required 

tasks, especially those individuals with motor disabilities. Also, the “secondary” 

cognitive task, resulting from an individual trying to avoid generating a particular artifact, 

will not be present in the EEG signal.  

”Artifact rejection” is usually done by visually inspecting the EEG or the artifact 

signals, or by using an automatic detection method [29].   

 Manual rejection 

Manual rejection of epochs contaminated with artifacts is a common practice in 

the BCI field. Trials are visually checked by an expert, and those that are contaminated 

with artifacts are removed from the analysis.  

Similar to “artifact avoidance”, manual rejection also has the advantage of not 

being computationally demanding, as it is assumed that a human expert has identified all 

the artifact-contaminated epochs and removed them from the analysis. On the other hand, 

there are many disadvantages in using “manual rejection”. First, “manual rejection” 

comes at the cost of intensive human labor, especially if the study involves a large 

number of individuals or a large amount of recorded data. Second, the process of 

selecting the artifact-free trials may become subjective. It has been argued that because of 

the selection bias, the sample trials that are artifact-free may not be representative of the 

entire population of the trials [29]. Third, in the case of offline analysis, the rejection of 

artifact-contaminated trials, may lead to a substantial loss of data. This may become a 

huge drawback, especially in the case of subjects with motor disabilities, where offline 

data recording is not as convenient as it is for able-bodied individuals. 



 

 174

 Automatic rejection 

  In the “automatic rejection”, the BCI system automatically discards the epochs 

of brain signals that are contaminated with particular artifacts. This procedure is 

commonly carried out in offline investigations.  

Automatic rejection of epochs can be done in the following two ways: 

Rejection using the EOG (EMG) signal: When one of the characteristics of the EOG 

(EMG) signal in an epoch exceeds a pre-determined threshold, the epoch is considered as artifact-

contaminated and is automatically rejected.  

Rejection using the EEG signal:  This rejection methodology is similar to the above; 

only the EEG signal is used instead of the EOG (EMG) signal. This approach has the advantage 

of being independent of the EOG (EMG) signal, and is useful if the EOG (EMG) signal is not 

recorded during data collection. 

An advantage of the “automatic rejection” approach over that of “manual 

rejection” is that it is less labor intensive. However, automatic rejection still suffers from 

sampling bias and loss of valuable data [30, 31].  In the case of EOG artifacts, the 

automatic rejection approach also does not allow the rejection of contaminated trials 

when EOG amplitude is small [32, 33]. 

Two issues need to be addressed for the BCI systems that reject artifacts: 

1) Because of the vast number of artifacts that exist in BCI systems (eye blinking, 

eye movements, movements of different parts of the body, breathing, etc.), not all the 

artifact-contaminated trials can be rejected. Usually only the epochs with a strong 

presence of artifacts are excluded from the analysis. Therefore, the so-called “clean” data 

are unfortunately not free of artifacts.   

2) The rejection of artifact-contaminated data during an offline analysis may 

generate “cleaner” data, however for online real-time applications of a BCI system, this 

may pose a huge drawback. In online applications, artifacts are unavoidable. If artifacts 

are rejected during the offline analysis, the same rejection mechanism can be used to 

reject them during the online analysis. The only problem is that during the specific time 

periods when artifact-contaminated signals are rejected, the system is unreachable and 
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cannot be used for controlling the device. On the other hand, if artifacts are rejected 

during the offline analysis and the design of the BCI system is not robust to artifacts, 

false responses may occur in an online application due to the presence of artifacts.  

6.3.3 Artifact removal 

Artifact removal is the process of identifying and removing artifacts from brain signals. 

An artifact-removal method should be able to remove the artifacts as well as keep the related 

neurological phenomenon intact. Common methods for removing the artifacts in EEG signals are 

as follows. 

 Linear filtering 

Linear filtering is useful for removing artifacts located in certain frequency bands 

that do not overlap with those of the neurological phenomena of interest [34, 35]. For 

example, low-pass filtering can be used to remove EMG artifacts and high-pass filtering 

can be used to remove EOG artifacts. Linear filtering was commonly used in early 

clinical studies to remove artifacts in EEG signals [36, 37].    

The advantage of using filtering is its simplicity. Also the information from the 

EOG signal is not needed to remove the artifacts. This method, however, fails when the 

neurological phenomenon of interest and the EMG or EOG artifacts overlap or lie in the 

same frequency band [38]. A look at the frequency range of neurological phenomena 

used in BCI systems unfortunately shows that this is usually the case. As a result, a 

simple filtering approach cannot remove EMG or EOG artifacts without removing a 

portion of the neurological phenomenon. More specifically, since EOG artifacts generally 

consist of low-frequency components, using a high-pass filter will remove most of the 

artifacts.  Such methods are successful to some extent in BCI systems that use features 

extracted from high-frequency components of the EEG (e.g., Mu and Beta rhythm). 

However, for BCI systems that depend on low-frequency neurological phenomena (such 

as MRPs), these methods are not as desirable, since these neurological phenomena may 

lie in the same frequency range as that of the EOG artifacts.  

In the case of removing EMG artifacts from EEG signals, filtering specific 

frequency bands of the EEG can be used to reduce the EMG activity. Since artifacts 
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generated by EMG activity generally consist of high-frequency components, using a low-

pass filter may remove most of these artifacts.  Again, such methods may be successful to 

some extent for BCI systems that rely on low-frequency components (e.g., MRPs), but 

they cannot be effective for BCI systems that use neurological phenomena with high-

frequency content (such as Beta rhythms).  

 Linear combination and regression 

Using a linear combination of the EOG-contaminated EEG signal and the EOG 

signal is the most common technique for removing ocular artifacts from EEG signals 

[32]. The linear combination technique is based on the following model [29]: 

)(.)()( tEOGKtEEGtEEG i
ac

i
nc                                 (6-1)    

where )(tEEGi
ac is the EOG-contaminated EEG signal of channel i, )(tEEGi

nc  is the non-

contaminated EEG signal of channel i , )(tEOG  is the EOG signal and K is an unknown 

constant. 

Based on the model in (6-1), a fraction of the EOG signal(s) should be subtracted 

from )(tEEGi
ac  to generate )(tEEGi

nc . The question then is how to estimate the value of K.  

A popular method that aims at minimizing the effect of noise on the estimates employs 

linear regression using least square criterion to estimate the value of K [39].  

A question as arises as to whether the value of K should be calculated separately 

for each type of EOG artifact [29] and for the different frequencies of a particular EOG 

artifact [40]. Both cases have been discussed extensively in the literature, but some 

papers have shown that similar results are obtained by the standard linear regression 

method [32]. 

 One problem with using the above linear combination and regression approach is 

that the EOG signal to be subtracted from the EEG signal is also contaminated with the 

EEG signal. However, subtracting the EOG signal may also remove part of the EEG 

signal. Nevertheless, [41] argues in favor of using correction methods over rejection 

methods. 
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This problem becomes more challenging for EMG artifacts, since they have no 

reference channels [20] and applying regression using signals from multiple muscle 

groups requires multiple reference channels [42]. The papers use regression techniques 

for the removal of head-movement artifacts (Bayliss and Ballard ,1999;Bayliss and 

Ballard ,2000a;Bayliss and Ballard ,2000b), but they do not explain how this was done. 

The validity of the results is also not verified.    

 Blind source separation (BSS) 

BSS techniques separate the EEG signals into components that “build” the EEG 

signals. They identify the components that are attributed to artifacts and reconstruct the 

EEG signal without these components (for a review, see [43]). Among the BSS methods, 

Independent Component Analysis (ICA) is more widely used. ICA is a method that 

blindly separates mixtures of independent source signals, forcing the components to be 

independent. It has been widely applied to remove ocular artifacts from EEG signals [44-

46]. Preliminary studies have shown that ICA increases the strength of motor-related 

signal components in the Mu rhythms, and is thus useful for removing artifacts in BCI 

systems [47].   

 Although BSS methods have been used to remove EOG artifacts in EEG clinical 

studies, only a few studies have used BSS methods to remove EMG artifacts [42, 48, 49].  

One advantage of using BSS methods such as ICA is that they do not rely on the 

availability of reference artifacts for separating the artifacts from the EOG signals[36]. 

One disadvantage of ICA, along with other BSS techniques, is that they usually need 

prior visual inspection to identify artifact components [45, 46]. However, some automatic 

methods have been proposed [50-52]. 

 Principal component analysis (PCA) 

PCA uses the eigenvectors of the covariance matrix of the signal to transform the 

data to a new coordinate system and to find the projection of the input data with greater 

variances. The components of the signal are then extracted by projecting the signal onto 
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the eigenvectors. PCA has been shown to be an effective method for removing ocular 

artifacts from EEG signals [53-55]. 

One advantage of PCA is the requirement that artifacts are uncorrelated with the 

EEG signal. This is a weaker requirement than the independency requirement of ICA. On 

the other hand, it has been shown that PCA cannot completely separate eye-movement 

artifacts from the EEG signal, especially when they have comparable amplitudes [53]. 

PCA also does not necessarily decompose similar EEG features into the same 

components when applied to different epochs [53]. 

 Other methods 

Other methods have also been proposed for removing artifacts from EEG signals 

in clinical studies with varying degrees of success. Examples include the wavelet 

transform [56, 57], nonlinear adaptive filtering [58, 59] and source dipole analysis (SDA) 

[60]. However, their application in BCI systems has so far been limited. 

6.4 Literature survey 

In this section, we review how artifacts are addressed in the BCI literature. Since 

it is expected that proper measures for avoiding non-physiological artifacts were taken 

during the BCI experiments, the focus in this section will be on EMG and EOG artifacts. 

These are the physiological artifacts that have been addressed in detail in the BCI 

literature.  

The following criteria were used for selecting the papers reviewed in this study:  

 Since the focus of this paper concerns the design and evaluation of BCI systems, a 

study that does not include a BCI transducer (i.e., a BCI transducer with the 

general structure depicted in Figure 6-1) is not considered. In searching the 

literature, the keywords “brain interface”, “brain-computer interface”, “brain-

machine interface”, “direct brain interface”, “direct brain connection”, “direct 

neural control” and “brain-actuated control” were used. 

 Only papers published in English in refereed international journals or conference 

proceedings prior to January 2006 were considered for the analysis.  
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 Only BCI systems that use neurological phenomena embedded in the EEG or 

ECoG signals were chosen for this study (approximately 250 papers). 

   For each neurological phenomenon, we grouped the artifacts into one of five 

categories: “Not Mentioned”, “No Rejection/Removal”, “Manual Rejection”, “Automatic 

Rejection” and “Automatic Removal”. The “Not Mentioned” category signifies cases 

where the authors did not explicitly mention whether or not they dealt with EMG or EOG 

artifacts in their BCI designs. “No Rejection/Removal” refers to cases where the authors 

acknowledged the presence of artifacts in their data, but did not apply any method to 

handle them.  

   Table 6-1 lists the methods of handling EOG and EMG artifacts. Each 

neurological phenomenon is highlighted by a gray color. The white rows below each 

neurological phenomenon show the artifacts, methods of handling them and the 

bibliography. For each of the artifact handling categories and for each of the neurological 

phenomena (or groups of them),  Figure 6-2 and Figure 6-3 show the number of 

published papers on how EMG and EOG artifacts were handled, respectively. Table 6-2 

and Table 6-3 identify the methods used for the automatic rejection of EOG and EMG 

artifacts (along with references). Table 6-4 and Table 6-5 list the methods used for the 

automatic removal of EOG and EMG artifacts (along with references). 
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Figure 6-2.  The number of papers published on different methods of handling EOG artifacts in BCI 
studies. 
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Figure 6-3. The number of papers published on different methods of handling EMG artifacts in BCI 
studies. 
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Table 6-1. Methods of handling artifacts in BCI literature 

 

Neurological phenomenon 

CBR 
Artifact Method Bibliography 

 

 

 

 

 

 

 

EOG 

Not mentioned [17, 25, 61-105] 

No Rejection/Removal [106-110] 

Manual Rejection  [30, 31, 111-119] 

Automatic Rejection 
 

[120-123] 

Automatic Removal [124-127] 

 

 

 

 

 

 

 

 

EMG 

Not mentioned [17, 61-72, 74-85, 88-90, 92, 94-100, 102, 103, 105, 116, 125] 

No Rejection/Removal [25, 93, 101, 106-110] 

Manual Rejection [30, 31, 73, 86, 87, 91, 104, 111-115, 117-119] 

Automatic Rejection [120-123] 

Automatic Removal [124, 126, 127] 

MRP 

EOG 

Not mentioned  [128-132] 
No Rejection/Removal [108, 133-135] 

Manual Rejection [136] 
Automatic Rejection [123, 137-144] 

EMG 

Not mentioned  [128-132, 135, 137-144] 
No Rejection/Removal [108, 133, 134] 

Manual Rejection [136] 
Automatic Rejection [123] 

OMRA 

EOG 

Not Mentioned [69, 71, 92, 95, 96, 99, 145-169] 

No Rejection/Removal [106, 170, 171] 

Manual Rejection [111, 171-177] 

Automatic Rejection [178, 179] 

Automatic Removal [125, 126, 180] 

EMG 

Not Mentioned [69, 71, 92, 95, 99, 125, 145-169, 176-178, 180] 

No Rejection/Removal [96, 106, 170, 171] 

Manual Rejection [111, 171-175] 

Auto rejection [179] 

Automatic Removal [126] 

SCP 
EOG Not Mentioned [181-183] 
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Neurological phenomenon 
Manual Rejection [151] 

Automatic Rejection [184-186] 

Automatic Removal [13, 151, 184-195] 

EMG 

Not Mentioned [13, 151, 181-183, 186-195] 

Manual Rejection [151] 

Automatic Rejection [184, 185] 

CT 

 
EOG 

Not mentioned  [196-205] 
No Rejection/Removal [206, 207] 

Manual Rejection  [173, 208, 209] 
Automatic Rejection [210-214]  
Automatic Removal [215, 216] 

EMG 
 
 

Not mentioned [196-205, 208, 211, 213-216] 
No Rejection/Removal [206, 207] 

Manual Rejection [173, 209] 

Automatic Rejection [210, 212] 

MN(CBR and MRP) 
EOG Not mentioned [217] 

No Rejection/Removal [108, 218, 219] 

EMG Not mentioned [217] 
No Rejection/Removal [108, 218, 219] 

MN(CBR and OMRA) 
EOG Not mentioned [153, 211, 220-222] 
EMG Not mentioned [153, 211, 220-222] 

MN(CBR,MRP, and OMRA) 
EOG No Rejection/Removal [223] 
EMG No Rejection/Removal [223] 

MN ( CBR and SCP) 
EOG Not mentioned [224] 

Automatic Removal [225] 
EMG Not mentioned [224, 225] 

MN(CBR and CT) 
 
 

EOG 

Not mentioned [226-229] 
No Rejection/Removal [230-233] 
Automatic Rejection [234] 

 
EMG 

Not mentioned [227-229] 
No Rejection/Removal [230-234] 

Manual Rejection [226] 
MN(OMRA and CT) 

 
EOG 

Not mentioned  [235-241] 
No Rejection/Removal [233] 

Manual Rejection [242] 
Automatic Rejection [234, 243-245] 

EMG 

Not mentioned [235-241, 245] 
No Rejection/Removal [233, 234] 

Manual rejection [242] 
Automatic Rejection [243, 244]  

MN(CBR, OMRA and CT) 
 

EOG Automatic Removal [246] 

 
EMG Not mentioned [246] 

P300 

EOG 
Not Mentioned [130, 181, 247-255] 

Automatic Rejection [256, 257] 
Automatic Removal [258-265] 
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Neurological phenomenon 

EMG 

Not mentioned [130, 181, 247-256, 258, 259, 262, 264, 265] 
Automatic Rejection 

 
[257] 

 
Automatic Removal [260, 261, 263] 

VEP 

EOG 
Not mentioned [266-268] 

No Rejection/Removal [269] 
Automatic Rejection [270, 271] 

EMG 
Not mentioned [267, 268, 270] 

No Rejection/Removal [269] 
Automatic Rejection [266, 271] 

SSVEP 

EOG 

Not mentioned [16, 272-280] 
No Rejection/Removal [281] 

Manual Rejection [282] 
Automatic Rejection [283, 284] 

EMG Not mentioned [16, 272-275, 277-284] 
No Rejection/Removal [276] 

AEP 
EOG Not mentioned [267] 

Manual Rejection [285] 

EMG Not mentioned [267] 
Manual Rejection [285] 

SSEP 
EOG No Rejection/Removal [286] 
EMG No Rejection/Removal [286] 

 

 

Table 6-2. Methods of automatic EOG rejection in BCI studies. 

 
Neurological 
phenomenon Rejection method Bibliography 

CBR 
Threshold on EEG Amplitude [120, 121] 

Threshold on  EEG Power Spectra [122] 
Not mentioned [123] 

MRP Threshold on  EOG amplitude [137-144] 
Not mentioned [123] 

OMRA Threshold on EOG Amplitude [178, 179] 
SCP Threshold on the Amplitude of(EOG-EEG) [184-186] 

CT 
Threshold on EOG Amplitude [211, 214] 

Not mentioned [210, 212, 213] 

CT and OMRA 

Threshold on EEG power [243, 244] 

Threshold on  EEG Amplitude [245] 
 

Not mentioned [234] 
CT and CBR Not mentioned [234] 

P300 Threshold on  EOG Amplitude [256] 
Not mentioned [257] 

VEP Threshold on EOG Amplitude [270] 
Threshold on EEG amplitude [271] 

SSVEP Threshold on EOG Amplitude [283, 284] 
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Table 6-3. Methods of automatic EMG rejection in BCI studies. 

 
Neurological 
phenomenon Rejection method Bibliography 

CBR 
Threshold on  EEG Amplitude [120, 121] 

Threshold on EEG Power [122] 
Not mentioned [123] 

MRP Not mentioned [123] 
OMRA Threshold on EMG amplitude [179] 

SCP Threshold on EEG Amplitude [184, 185] 
CT Not mentioned [210, 212] 

CT and OMRA Threshold on EEG power [243, 244] 
P300 Not mentioned [257] 
VEP Threshold on EEG Amplitude [266, 271] 

 

Table 6-4.Methods of automatic EOG removal in BCI studies. 

 
Neurological 
phenomenon Removal method Bibliography 

CBR 

Filter (no details) [124] 
Neural adaptive filter [125] 

PCA [126] 
ICA [127] 

OMRA 
Linear Combination and Regression [180] 

Neural adaptive filter [125] 
PCA [126] 

SCP Linear Combination and Regression [13, 184-195] 

CT 
Linear Combination and Regression [215] 

ICA [216] 

CT , CBR and 
OMRA Adaptive noise canceling using neural networks [246] 

SCP and CBR Linear Combination and Regression [225] 

P300 
Not mentioned [265] 

Blind Source Separation [259] 
Linear Combination and Regression [258-264] 
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Table 6-5. Methods of automatic EMG removal in BCI studies. 

 
Neurological 
phenomenon Removal method Bibliography 

CBR 
Filter (no details) [124] 

PCA [126] 
ICA [127] 

OMRA PCA [126] 
P300 Linear Combination and Regression [260, 261, 263] 

 
 

Based on the results presented in Table 6-1 to Table 6-5 and Figure 6-2 and 

Figure 6-3, the following observations about the methods of handling artifacts in BCI 

systems were made: 

6.4.1 EOG artifacts 

1. More than half (53.7%) of the BCI studies considered, do not mention whether 

or not they handle EOG artifacts, 10.0% do not remove EOG artifacts, 10.4% manually 

reject them, 13.5% use an automatic rejection method and 12.4% use an automatic 

removal method to handle EOG artifacts. 

2. Among the 13.5% of the studies that used automatic EOG artifact rejection 

methods, nearly half (45.7%) reject trials when the EOG amplitude reaches a certain pre-

defined threshold, 14.3% employ this rejection strategy but use the EEG amplitude 

instead of the EOG amplitude for rejecting the contaminated trials, 22.9% do not mention 

the rejection method and 17.1% use other EOG rejection methods. 

3. Among the 12.4% of the studies that use EOG artifact removal methods, 

around 69.7% use a linear method of combination of EEG and EOG signals, 9.1% use 

BSS techniques, 6.1% use PCA, 3.0% use linear filtering methods , 9.1% use other EOG 

removal methods and one paper does not mention the details of its automatic artifact 

removal method.  

6.4.2 EMG artifacts 

1. Approximately 67.6% of the BCI studies considered, do not mention whether 

or not they handle EMG artifacts, 12.1% do not remove EMG artifacts, 10.9% manually 



 

 186

remove them, 6.2% use automatic rejection methods and 3.2% use an automatic method 

for removal of EMG artifacts. 

2. Among the 6.2% of the papers that use EMG artifact rejection, close to half 

(43.8%) reject trials when the EEG amplitude reaches a certain pre-defined threshold, 

6.2% employ this rejection strategy but use the EMG amplitude instead of the EEG 

amplitude, 18.7% reject trials when the EEG power reaches a certain threshold, and the 

rest (31.2%) do not specify their rejection method. 

3. Only seven of all studies reviewed, use an automatic method for removal of 

EMG artifacts. Two papers use PCA, one uses ICA, one uses linear filtering and three 

papers use regression. 

6.5 Discussion and conclusions 

In this paper, we have addressed EOG and EMG artifacts associated with 

neurological phenomena in EEG/ECoG-based brain computer interface (BCI) systems. 

We have also discussed the common methods of handling them in BCI systems and we 

presented a detailed review as to how BCI studies have addressed this issue. 

Our survey of the BCI studies (published until January 2006) shows that most 

BCI papers do not report whether or not they considered EMG and/or EOG artifacts in 

their analysis. The number of studies that do not report these artifacts in their systems is 

higher for EMG artifacts (65.9%) compared with EOG artifacts (55.6%). This is an 

important issue, since offline analysis methods that do not account for physiological 

artifacts may probably face some problems when tested during an online study. As a 

result, it is important that BCI researchers pay more attention to this very important issue 

and address the method that they have employed for handling artifacts.  

A number of BCI studies state that EMG activity will not be present in the EEG 

signal when the EEG signal is analyzed before a movement has occurred [165]. This 

argument may not be valid for BCI systems.  This is because peripheral changes such as 

EMG tension can affect the EEG signal, even though the amount by which the EEG 

signal is affected remains unclear [192]. It is pointed out in [192] that even when the 

individuals are very restricted, they still preserve motor control over some muscle groups. 
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Although the activities of several muscle groups are monitored in BCI studies, there 

remain some muscles whose activities are not recorded.    

The BCI systems that employ “manual rejection” of EOG and EMG artifacts 

should also consider the fact that “manual rejection” is only a preliminary step in the 

design of a BCI system. “Manual rejection” can only be used for offline analysis. In order 

for a particular BCI system to be able to work in an online fashion, a scheme for handling 

artifacts should be incorporated. Requesting the individuals to avoid artifacts should be 

only considered as a temporary solution. In a practical application, EMG and EOG 

artifacts do happen, so methods of handling these artifacts during an online experiment 

should be investigated.  

 One solution for handling artifacts, which is not explored well in the BCI studies, 

is to design a BCI that is robust in the presence of artifacts. If such a BCI is designed, 

then the need for having a method of handling artifacts will be minimized. Our literature 

survey showed that 10.0% of BCI papers reported that they did not remove or reject EOG 

artifacts, and 12.1% did not reject EMG artifacts. Although one reason for not 

removing/rejecting these artifacts may be that these BCI designs are robust to them, the 

performance of such BCI systems when contaminated by artifacts is not well explored in 

the BCI literature. Future work for such BCI systems should also include the analysis of 

the robustness of the performance of the method in the presence of artifacts.  

Another solution that has not been explored well in the BCI literature is that of 

using more than one neurological phenomenon may lead to increasing the robustness to 

the occurrence of artifacts [218]. Since EOG artifacts mostly affect the low-frequency 

components of the EEG signals, BCI systems that use low-frequency ERPs, such as MRP 

and SCP are mostly affected by EOG artifacts. EMG artifacts on the other hand, mainly 

affect the high-frequency components of the EEG signals, hence BCI systems that use 

high-frequency ERPs, such as Mu and Beta rhythms are mostly affected. Thus, it can be 

concluded that a BCI system that uses multiple neurological phenomena from both low 

and high frequency bands, may become more robust to the presence of artifacts. This 

promising research area has remained unexplored but it needs attention and further 

research. 
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Whatever solution is proposed for handling the artifacts, it is necessary to show 

that the proposed BCI system can work well in an online manner and it is not the artifacts 

that are controlling the BCI system. Recently, this issue concerning in whether or not a 

few particular BCI systems, an artifact (and not the neurological phenomenon) is the 

source of control in the BCI system has been discussed [25, 287] .  

Finally, the comparison between different artifact removal methods is not 

straightforward because it is generally not clear what a correct EEG waveform should 

look like. It is therefore important to note that no analytical method for validating artifact 

removal algorithms is available at this time [32].  This means that to validate a certain 

artifact removal method, visual inspection of the cleaned signal is used. Development of 

criteria for validation of artifact removal methods is thus clearly necessary and need to be 

explored in the future studies.  
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CHAPTER 7 PERFORMANCE OF A SELF-PACED 
BRAIN COMPUTER INTERFACE ON DATA 
CONTAMINATED WITH EYE BLINKS AND ON DATA 
RECORDED IN SUBSEQUENT SESSIONS7 

 

7.1 Introduction  

A brain computer interface (BCI) system allows individuals to control devices 

using their brain signals only. A self-paced BCI (SBCI) allows such control to be done at 

the user’s own pace, i.e., at any time he/she chooses. This is unlike traditional 

synchronized BCI systems where users are only allowed to control the system at certain 

time intervals.  This makes the design of SBCI systems more challenging than 

synchronized BCI systems. Of particular interests in this study are periods for which the 

user’s control signals are contaminated with physiological artifacts.  

Physiological artifacts are undesired potentials that contaminate EEG signals. 

These artifacts can modify the shape of a neurological phenomenon that drives a BCI 

system. As a result, artifacts may prevent an SBCI system from correctly recognizing a 

control command or they may results in the system identifying an artifact-related pattern 

as an intentional control command (resulting in a false activation). The two physiological 

artifacts that have been examined most in BCI studies are electrooculogram (EOG) and 

electromyogram (EMG) artifacts. A number of studies have shown that EOG and EMG 

activities may generate artifacts that affect the neurological phenomena used in a BCI [1, 

2]. These artifacts are often involuntary, and controlling them during signal acquisition is 

not easy. Therefore, there is a need to avoid, reject or remove them from the EEG signals.   

                                                 
7 A version of this chapter has been submitted for publication. Fatourechi, M., Birch, G.E., Ward, R.K., 

“Performance of a Self-paced Brain Computer Interface on Data Contaminated with Eye Blinks and on 
Data Recorded in Subsequent Sessions”, submitted. 
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Many BCI studies do not report the performance of BCIs had data contaminated 

with artifacts are used [3-8]. In some studies, data contaminated with artifacts are rejected 

either manually by a human expert [9-12] or by using an automatic method [13-16]. One 

shortcoming of automatically rejecting artifacts is that the periods for which the system is 

not available for control greatly increases. This is because physiological artifacts such as 

eye blinks happen frequently, and consequently, many epochs are removed by the artifact 

detection method. The SBCI system is thus not available for control during those periods. 

Only a few studies have reported the use of an automatic method for removing artifacts 

[17-19]. See [20] for a detailed review.  

An alternative approach to removing artifacts from EEG signals is to design a 

BCI system that is robust in the presence of artifacts. In that case, the presence of artifacts 

would not affect the output of the BCI system. The latter approach has not yet received 

much attention in the BCI literature. One solution to increasing the robustness of an SBCI 

in the presence of artifacts is for it to simultaneously detect more than one neurological 

phenomenon. Every neurological phenomenon has its own spatiotemporal characteristics 

that are more prominent in a particular frequency band.  A neurological phenomenon is 

expected to be robust to artifacts whose frequency contents are concentrated in frequency 

bands other than that of the neurological phenomenon. As an example, consider 

movement-related potentials (MRPs). MRPs have low frequency contents < 4 Hz [15], 

while muscle artifacts usually lie within frequency bands > 10 Hz [1, 21]. It is thus 

possible to design an MRP-based SBCI system with robust performance in the presence 

of muscle artifacts. Similarly, Mu and Beta rhythms cover frequencies above 8 Hz, while 

eye movement artifacts such as eye blinks mostly affect lower frequency components of 

EEG signals. As a result, BCI systems based on Mu and Beta rhythms are expected to 

have a robust performance in the presence of EOG artifacts. Based on these arguments, 

we postulate that an SBCI system that simultaneously uses features extracted from MRPs 

and changes in the power of Mu/Beta rhythms should be more robust in the presence of 

muscle and EOG artifacts. To test this hypothesis, we examine the performance of the 

system proposed in [22]. This SBCI system uses features extracted from three 

neurological phenomena ( movement-related potentials (MRPs), changes in the power of 
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Mu rhythms (CPMR) and changes in the power of Beta rhythms(CPBR)) to distinguish 

between intentional control (IC) commands and No Control (NC) EEG segments.  

In [22], a threshold-based detector was used to mark any epoch with EOG 

amplitude above 25 µV as “an epoch contaminated with eye blinks”. The amplitude was 

measured as the difference between two electrodes, one placed at the eye level and the 

other below the right eye. The amplitude was conservatively determined after a careful 

review of the bipolar EOG signals. The performance of the system was tested on data of 

four able-bodied participants. Using these data, an average TP rate of 56.2% was 

achieved while the average FP rate was 0.1%. However, only epochs that were not 

contaminated with eye blink artifacts were used for evaluating the performance.  

To test the performance of the system during periods contaminated with artifacts, 

two studies are carried out in this paper. In the first study, we evaluate the performance of 

the system on epochs that were originally marked as contaminated with eye-blink 

artifacts. It should also be noted that no artifact rejection method based on a threhsolding 

scheme is perfect. This is because the artifact detector may fail to detect artifacts with 

amplitudes lower than the set threshold. The artifact detector we used in [22] (and which 

has also been used in our previous studies [15, 23, 24]) is no exception.  

For this reason, we carry a second study where the performance of the system is 

tested on data recorded in “subsequent sessions”. In [22], we studied the performance of 

the SBCI on data collected in five sessions carried using a cross-validation method. For 

each participant, data were recorded in sessions held on separate days and were collected 

over a period of approximately 12 days. We reserved the data collected on the last day for 

the present study.  These data, denoted the data recorded in “subsequent sessions”, were 

recorded one to six days after the data in the first 5 sessions were recorded. No part of the 

subsequent sessions data was used in the training of the system, so it can be regarded as a 

complete “blind” test set. To test the performance, all epochs, whether or not 

contaminated with artifacts, are considered in this study.  

In the next section, the SBCI system, the data collection and the evaluation 

method are discussed briefly. 
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7.2 Methods 

7.2.1 Self-paced brain computer interface design 

The structure of the SBCI is shown in Figure 7-1. The system uses features 

extracted from N=18 bipolar EEG signals. For each neurological phenomenon and every 

EEG channel, features are extracted using a stationary wavelet transform (SWT) with a 5-

level decomposition. Feature extraction from Mu and Beta bands involves bandpass 

filtering and squaring the sample values before applying SWT so that power values are 

calculated. To reduce the dimensionality of the wavelet feature space, matched filtering 

(using the cross-covariance function) with a template is performed. The template is 

created for each neurological phenomenon and for each EEG channel, by averaging the 

data in the training epochs. After calculating the cross-covariance for each epoch, the 

features representing the maximum of the cross-correlogram over a period of 0.125 

seconds as well as the time this maximum occurred are extracted (see Figure 7-2). This 

process is only carried out for the lowest approximation and detail level of the SWT 

decomposition. For each neurological phenomenon and for each EEG channel, a support 

vector machine (SVM) is designed (resulting in a total of 3N classifiers). The output of 

each SVM is a logical state ‘1’ when an IC pattern is detected and is ‘0’ in other cases. 

For each neurological phenomenon, a multiple classifier system (MCS) classifies the 

outputs of N SVMs using the majority voting rule. A 2nd-stage MCS combines the 

outputs of the three MCSs (each MCS is attributed to one neurological phenomenon) to 

generate the final classification label.  A hybrid genetic algorithm (HGA) is then 

employed. This algorithm simultaneously finds (1) the subset of features, (2) the 

parameter values for each SVM and (3) the configuration of combining the three MCSs 

that leads to near optimal performance (measured as the 
FPR
TPR ratio). Please see [22], for 

more details. 
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Figure 7-1. The overall structure of the improved SBCI 

7.2.2 Data collection 

The data were collected from four right-handed (three males and one female) 

able-bodied participants between 31 and 56 years old. They had all signed consent forms 

prior to participation in the experiment. The EEG signals were recorded from 13 

monopolar EEG channels (according to the International 10-20 system at 

F1,Fz,F2,FC3,FC1,FCz, FC2,FC4,C3,C1,Cz,C2 and C4 locations) and were  sampled at 128 

Hz.  The signals were then converted to bipolar EEG signals since such electrodes are 

more likely to generate more discriminant MRP features than monopolar electrodes [15]. 

The conversion was carried out by calculating the difference between adjacent EEG 

channels and resulted in the generation of the following 18 bipolar EEG: F1-FC1, F1-Fz , 

F2-Fz, F2-FC2 , FC3-FC1, FC3-C3, FC1-FCz, FC1-C1, FCz-FC2, C1-Cz, C2-C4, FC2-FC4 , 

FC4-C4 , FC2-C2 , FCz-Cz , C3-C1 , Cz-C2 and Fz-FCz . 
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Figure 7-2. An example of extracting the maximum of the cross-correlogram using the proposed 
cross-covariance method. 

During the experiment, the participants performed a right index finger flexion. 

Epochs of the IC type consisted of data collected over an interval containing the onset of 

movement (measured as the finger switch activation).  The interval started at tstart= -1 

second, i.e., 1 second before the onset of movement, and ended at  tfinish = 1, i.e., 1 second 

after the onset of movement. For each participant, an average of 80 IC epochs was 

collected over a period of 6 different days.  Table 7-1 shows the timetable of recording 

the data for all participants. For each participant, “Day 1” was considered as the origin 

date, and the dates when the rest of the data were collected, were numbered relative to 

“Day1”. 
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Table 7-1. The time schedule of recording the data. For each participant, Day 1 is the first day that a 
participant attended the experiments. The rest of days are numbered with respect to Day 1 of that 
particular participant. 

Participant ID 
1st 

session 

2nd 

session 

3rd 

session 

4th 

session 

5th 

session 

6th 

session 

AB1 Day 1 Day 3 Day 5 Day 8 Day 10 Day 12 

AB2 Day 1 Day 3 Day 4 Day 8 Day 9 Day 10 

AB3 Day 1 Day 2 Day 4 Day 8 Day 9 Day 15 

AB4 Day 1 Day 3 Day 5 Day 8 Day 10 Day 12 

 

An SBCI should differentiate between IC and NC epochs. For this reason, data in 

NC sessions are also needed to represent the epochs during which the user did NOT 

intend to control. During an NC session, participants were asked to count the number of 

times that a white ball bounced off the monitor’s screen. The NC sessions thus contained 

attentive as well as non-attentive NC data. Each NC session lasted approximately two 

minutes. During each recording day, up to two such NC sessions were recorded. The NC 

segments were selected as follows: a window of width (tfinish -tstart) seconds was slid over 

each EEG signal collected during an NC session by a step of 16 time samples (0.1250 

sec). For each NC epoch, features were extracted and classified by the SBCI. This 

resulted in 8 classification decisions per second by the system. For each 1-second 

window where artifacts were not detected, features were extracted for training the SBCI 

system. The IC and NC epochs for which the EOG activity exceeded a pre-defined 

threshold (±25 µV) were marked as contaminated with eye-blink artifacts and were not 

used in the training process. 

7.2.3 Evaluation 

A five-fold nested cross-validation was used to evaluate the performance of the 

system. The inner cross-validation set was used for model selection and the outer cross-

validation set was used to estimate the generalization error. For each outer cross- 
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validation set, 20% of the data were used for testing and the rest were used for training 

and model validation. In order to select the models, the datasets were further divided into 

five folds. For each fold, 80% of the data were used for training the classifier and 20% 

were used for model validation.  

The method of calculating the TP rate is shown in Figure 7-3. In Figure 7-3(a), a 

sample EEG signal and in Figure 7-3(b), the output of the physical switch are shown. As 

stated earlier, data from 1 second before to 1 second after a decision point is used for 

classification. Assuming the system has no processing delay and the SBCI system has the 

ideal detection rate, the output of the SBCI system should be as demonstrated in Figure 

7-3(c). In other words, the IC command is initiated by the system one second after 

pressing the switch. Although, the exact timing of the switch activation is known, the 

neurological phenomena may not be completely time-locked to the switch activation. As 

a result, we also considered any activation in the time range [-0.125, +.125] seconds 

around the expected activation of the switch as a true positive (see Figure 7-3 (c)). The 

rest of activations were treated as false activations.  

 

Figure 7-3. Method of calculating the TP rate; (a) EEG Signal; (b) Output of the hand switch; (c) 
Output of the SBCI. 
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7.3 Results 

7.3.1 Analysis of SBCI performance on artifact-contaminated data 

Table 7-2 shows the averages of the TP and FP rates for both non-contaminated 

and artifact-contaminated data. The averages are calculated over five outer validation 

sets. The numbers in parentheses show the standard deviations.  

Table 7-2. Comparison of the average test results on artifact-contaminated and non-contaminated 
data. The averages are calculated over 5 outer validation sets. The numbers in the parentheses 
indicate standard deviations.  

Participant ID 

Test on non-contaminated data Test on contaminated data 

TPR (%) FPR (%) TPR (%) FPR (%) 

AB1 58.6(8.6) 0.1(0.1) 47.7(7.9) 0.5(0.3) 

AB2 64.2 (7.5) 0.0 (0.0) 51.0 (4.0) 0.1 (0.0) 

AB3 46.9 (10.4) 0.3 (0.2) 43.7 (4.8) 0.7 (0.2) 

AB4 55.0 (5.3) 0.1 (0.1) 64.7 (5.7) 0.4 (0.1) 

Mean 56.2 (7.2) 0.1 (0.1) 51.8 (9.1) 0.4 (0.1) 

 

To examine the effect of artifact-contamination on the performance, we carried 

out a two-way analysis of variance (ANOVA). First, the “TP rate” was considered as the 

dependant variable and “Participant” and “Artifact Contamination” were considered as 

the independent variables. As for “Artifact Contamination”, there were two cases: 

“contaminated” and “non-contaminated”. ANOVA showed a highly significant main 

effect of “Participant” (p<0.001). The main effect of “Artifact Contamination” was not 

significant (p>0.05). The average TP rate over all participants was 56.2% for non-

contaminated data and 51.8% for artifact-contaminated data. The average TP rate thus 
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decreased only by 4.4% when the system’s performance was tested using artifact-

contaminated data. 

Next, the “FP rate” was considered as the dependant variable and “Participant” 

and “Artifact-Contamination” were considered as the independent variables. ANOVA 

showed a highly significant main effect of “Participant” ( 410p ), and a highly 

significant main effect of “Artifact Contamination” ( 410p ). The effect of the 

interaction of both was not significant (p>0.1). The average of FP rates for all four 

participants for non-contaminated test sets was 0.1% and 0.4% for artifact-contaminated 

data.  As a result, the average FP rate of the system was increased only by 0.3% for 

contaminated data.  

7.3.2 Test on data recorded in subsequent sessions 

In [22] and in Section 7.3.1 , we studied the performance of the system on data 

collected in the first five sessions using a nested cross-validation method. We reserved 

the data recorded on the last (sixth) session for this study and denoted them as data 

recorded in “subsequent sessions”. For participants AB1, AB2, AB3, and AB4, the 

“subsequent sessions” data were respectively recorded on days 2, 1, 6 and 2 after 

recording the data used for designing the system (see Table 7-1).  

The “subsequent session” data can be considered as a complete blind test set, as 

no part of these data was used for designing the system. Furthermore, all epochs of the 

“subsequent session” data (whether or not contaminated with artifacts) were used in the 

present study.  

The performance of the SBCI when tested on the “subsequent session” data is 

reported in Table 7-3. The columns represent the TP and FP rates and the rows represent 

the participant IDs. Two sets of NC data were considered: the NC data collected during 

the NC sessions, i.e. during the two-minute sessions where movements were not 

performed, and the NC data collected during the sessions where intentional movements 

were performed. For the latter data, the NC data were collected for epochs not between 

movement attempts.  
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The TPR and FPR results of the system calculated using data recorded in the first 

five days are also reported in Table 7-3. Please note that these values are the combined 

results of both artifact-contaminated and non-contaminated data. In [22], the five-fold 

nested cross-validation analysis resulted in five different sets of features and classifier 

parameter values for each participant. The results in Table 7-3 are thus shown after 

averaging over the five outer cross-validation sets for each participant. The numbers in 

parenthesis are the standard deviations.  

Table 7-3. Comparison of the average results using data recorded in the first five sessions with those 
using data recorded in subsequent sessions. The averages are calculated over 5 outer validation sets. 
The numbers in the parentheses indicate standard deviations. 

 

Participant IDs 

Combined test results on  

the first five session 
Test results on the 6th session 

TPR(%) FPR(%) TPR(%) FPR(%) 

AB1 50.3(8.0) 0.5(0.2) 62.9(8.8) 0.3(0.2) 

AB2 55.0(5.0) 0.1(0.0) 46.3(5.1) 0.1(0.1) 

AB3 44.2(5.7) 0.7(0.2) 46.6(6.0) 0.8(0.2) 

AB4 61.2(5.3) 0.4(0.1) 39.7(8.0) 1.8(1.0) 

Mean 52.7(7.2) 0.4(0.2) 48.8(9.9) 0.8(0.7) 

 

To further examine the performance of the SBCI, we carried out a two-way 

ANOVA study. First, the “TP rate” was considered as the dependant variable and 

“Participant” and “Session” were considered as the independent variables. As for 

“Session”, there were two values: “Current” and “Subsequent”. We compared the TP 

rates attributed to classifying epochs in the “Current” test set with those attributed to 

classifying the epochs in “Subsequent sessions”.  ANOVA showed a significant main 

effect of “Participant” (p<0.01), but it did not show a significant main effect of  
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“Session” (p>0.05). The average TP rate on the current test sets was 52.7%, and the 

average TP rate on the data in “Subsequent sessions” was 48.8%.  

Next, we compared the FP rates on the “Current” test sets, with the FP rates of the 

data labeled “Subsequent sessions”.  ANOVA showed a highly significant main effect of 

“Participant” ( 410p ), a significant main effect of “Session” (p<0.01) and a highly 

significant effect of the interaction of both ( 410p ). The average FP rate on the 

“Current” test sets was 0.4% and 0.8% on the data in a “Subsequent session”.  

Please note that the average TP rate over participants AB1 to AB3 was 49.8% for 

the first 5 sessions vs., 51.9% for the 6th session, while the average FP rate was 0.4% for 

these 3 participants for both conditions. These results show that with the exception of 

AB4, the system did maintain its performance when tested with the new data sets.  

We plot the output of the SBCI system for two participants to show that the 

detection of an IC command did coincide with the onset of the movement (see Figure 

7-4). In order to have a clearer picture, the output is plotted for a small representative 

time duration (around 20-30 seconds). The onset of movement is plotted as a solid line 

and the output of the SBCI is plotted as a diamond. For one participant (AB1), TP and 

FN are also shown (see Figure 7-4 (a)). Please note that the x-axis represents seconds. 

These results indicate that the SBCI does indeed detect the IC command, since the SBCI 

detects the pattern around the time of activation of the switch. 

  We have also shown the output of the SBCI during NC sessions for a 

representative user (AB1). For clarity, the output of the SBCI system is plotted as a solid 

line (see Figure 7-4 (c)). Please note that here the x-axis shows minutes and not seconds. 

These plots show that the system is able to maintain an NC state for a long period of NC 

data. This is a noteworthy advantage as relatively high FP rates are known to be 

frustrating to users [23]. 
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                                                           (a) 

 

 
                                                          (b) 
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                                                          (c) 

Figure 7-4. The SBCI output during periods when finger movements were executed for a) Participant 
AB1; b) Participant AB2; and c) The output of the SBCI during NC sessions when movements did 
not occur for Participant AB1. 

7.3.3 The effect of adding a debounce component  

As discussed in Section 7.3.2, when the system was tested on subsequent sessions, 

its performance deteriorated for participant AB4. To decrease the FP rate, some studies 

have suggested the use of post-processing such as introducing the concept of refractory 

periods [25] or a debounce component [23]. In this section, we examine the effect of 

adding a debounce component to the output of the SBCI.  

   Debouncing the output of an BCI system in a manner similar to that of  

debouncing physical switches has been shown to improve the FP rate [23]. The debounce 

component continuously monitors the output. After an activation is detected (i.e., a 

change in state from 0 to 1), the output is automatically set to the logical state ‘1’ (IC) for 

one sample. However, if a debounce window is present, then the output is forced to stay 

at ‘0’ (NC) for a period of dbT samples, where dbT  is the length of the debounce window 

in time samples. The function of a debounce component is demonstrated in Figure 7-5. 

Figure 7-5(a) shows the output of the switch. There is one activation towards the end of 

the window shown in this figure. The points marked by a black circle show the time 
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samples. Please note that the time between two consecutive decisions (black circles) by 

the SBCI system is 0.125 seconds, as the SBCI makes 8 decisions per second [22].Now 

consider the output of the SBCI as shown in Figure 7-5 (b). There are many FPs, even 

though the system was able to correctly detect the IC command. Figure 7-5 (c) shows the 

output of the system when a debounce component with a length of 2dbT  time samples 

is added to the system. As can be seen, some FPs are blocked by the debounce 

component. As the length of the debounce window increases to 4dbT  time samples 

(Figure 7-5 (d)) the number of FPs sharply drops. However, as Figure 7-5 (e) shows, 

when the length of the debounce window is 8dbT  time samples, the presence of an 

earlier FP activation forces the output of the SBCI to have the logical value of ‘0’ for 8 

samples. Thus, the TP activation at the end of this epoch is unfortunately no longer 

detected. Figure 7-5 clearly shows that a tradeoff exists in choosing the length of the 

debounce window.   

We have calculated the performance of the SBCI system when the debounce 

component is added. Figure 7-6 (a) to Figure 7-6 (d) show the TPR, FPR and 
FPR
TPR rates 

for all participants, respectively,  as a function of the length of the debounce window (in 

seconds). Figure 7-6(e) shows the average plot for all participants. Please note that as the 

scales of TPR, FPR and 
FPR
TPR  are different; we had to re-scale the FPR and 

FPR
TPR  so that 

all plots can be shown in the same graph. As these figures show, as the length of the 

debounce window goes from 0 to 1 sample (0.125 seconds), a drop occurs in both TP and 

FP rates (especially a larger drop in the FP rates). As a result, the 
FPR
TPR  ratio increases 

for all participants. These results indicate that a very small debounce window 

( 125.0dbT  seconds) had a positive effect on the performance of the SBCI system. 

However, a further increase in the length of the debounce component did not increase the 

FPR
TPR  ratio by more than the value achieved by 1dbT  output time sample (or 0.125 

seconds). This is with the exception of participant AB4, where a larger debounce window 

improved performance. Thus, we conclude that in this study a minimal debounce window 
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yielded superior results for most participants, but a customized debounce window would 

further improve the performance of some individuals.   

 

 
Figure 7-5. The operation of a debounce component. 
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(a)

 
                                                       (b) 
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(c ) 

 
                                                      (d) 
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                                                         ( e) 

Figure 7-6. The TP rate, FP rate and the 
FPR
TPR

 ratio as a function of the length of the debounce 

window for (a) Participant AB1; (b) Participant (AB2); (c ) Participant AB3; (d) Participant (AB4); 
(e) Averages of all four participants.   

7.4    Discussion  

In this paper, we carry out two studies to further explore the performance of an 

SBCI system described in [22]. Specifically, we have analyzed its performance on data 

contaminated with eye-blink artifacts and on data recorded in subsequent sessions. 

Furthermore, we analyzed the effect of adding a debounce component to the output of the 

system.  

 The results of our analysis show that the average TP rate did not show much 

change when eye blinks artifacts were removed or were present in the test set.  The fact 

that the average TP rate dropped only by 4.4% when artifact-contaminated data were 

used (from 56.2% to 51.8%) shows further evidence that eye blink artifacts do not have a 
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great impact on the detection capability of this system. This robustness in the 

performance can be attributed to the use of matched filtering with a template but mainly 

the use of three neurological phenomena for detecting the intentional control pattern.  

Although the average  FP rate was  increased from 0.1% to 0.4%, the resultant 

values remained lower than  the FP rates of some of the recently developed EEG-based 

SBCI systems with the same amount (or higher) output rates, and with relatively the same 

TP rate [23, 24, 26-28]. This means that on average this SBCI system generates lower 

error rates compared to these systems.  This change in the FP rate is a trade-off as the 

system is now available for use at all times, i.e., even when artifacts such as eye blinks 

occur. While the SBCI system in [22] has a better performance, it is only available during 

certain time intervals when eye blinks do not occur. Thus, by accepting a moderate 

decrease in the performance, the system becomes available for control at all times.  

It should also be noted that the performance of three participants did not change 

much when tested on the data of subsequent session (see Table 7-3). This forms 

preliminary evidence that the system’s performance is robust given the fact that event-

related potentials (ERPs) may change with time [29-31]. As for participant AB4, we have 

observed many false positives between successive movement attempts (see Fig.7 (a)), but 

during NC sessions the FP rate was very low (i.e., FP<0.1%. see Fig. 7(b)). We suspect 

the reason why the system had so many FPs between different IC commands is due to the 

fact that NC data between movement attempts were not used for training the system.. 

These observations raise the issue of what kind of NC data should be used for optimally 

training an SBCI system. This investigation is left for future studies. 
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(a) 

 

 
(b) 

Figure 7-7. The output of the SBCI during periods when finger movements were executed for 
participant AB4; (b) the output of the SBCI during NC sessions when movements did not occur for 
participant AB4. 
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Adding a debounce component results in a decrease in the FP rates, since it masks 

multiple consecutive FPs. Our study showed that a small debounce window is needed for 

most participants for improving the performance. The optimal size of this debounce 

window (which was found to be only one output sample) indicates that there were 

occasions that the system mistakenly identified two consecutive NC epochs as  IC. By 

adding a debounce window, multiple consecutive FPs are treated as one, thus the FP rate 

decreases.  There are two problems with using a larger debounce window. First, if the 

width of the debounce window is relatively large (e.g., 2 seconds, as recommended in 

[23]), and if an FP occurs closely prior to an IC command, the IC command is blocked by 

the debounce component. The TP rate of the system thus drops (see Figure 7-5(e)). 

Second, as the width of the debounce window increases, periods for which the SBCI 

system becomes unavailable grow (see Figure 7-5 (d) and Figure 7-5 (e)). This limits the 

practicality of the SBCI, as there will be long periods in which the system is not 

available. Our analysis also shows that for the proposed SBCI, using a very short duration 

of debounce window improves its performance in general. Larger debounce windows, 

however, might be needed for particular individuals with higher FP rates that occur in a 

short time frame (e.g., participant AB4, see Figure 7-7(a)).  
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CHAPTER 8 SELECTION OF A SUITABLE 
EVALUATION METRIC FOR A SELF-PACED BRAIN 
COMPUTER INTERFACE SYSTEM8  

 

8.1 Introduction       

  Brain computer interface (BCI) systems allow individuals with severe motor 

disabilities to communicate with the outside world using their brain signals only. A self-

paced BCI (SBCI) is a BCI system that facilitates this communication at the users’ own 

pace, i.e., at any time they wish to do so [1]. An SBCI classifies each epoch in the user’s 

EEG signals as either containing a pattern associated with an intentional control (IC) 

command or belonging to a no control (NC) state. 

   Model selection (or model tuning/validation) is the process of finding or 

adjusting the model parameters for any classification problem. For BCI systems, model 

selection is a crucial part of the design.  This process may include selecting the features, 

the type of the feature extractor, the classifier, the EEG channels, the neurological 

phenomenon, the frequency band of interest, the values of the classifier’s parameters and 

the preprocessing and post-processing components. As an example, to find the optimal 

set of features for a certain BCI, different sets of features are considered. For every set, 

the performance of the system is calculated and different performances are compared. 

The set of features that yields the best performance is then selected.  The performance of 

this best model can then be compared with those achieved by similar BCI systems (i.e., 

systems with the same experimental as well as evaluation protocols). Therefore, the 

performance of an SBCI must be evaluated in the following two cases, 1) during the 

model selection procedure and 2) when comparing the performance with other systems.  

                                                 
8 A version of this chapter has been submitted for publication. Fatourechi, M., Mason, S. G., Ward, R.K., 

and Birch, G. E., “A New Framework for Comparing Metrics Used in Pattern Classification Problems 
with Large Test Samples”, submitted. 
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The performance of a BCI with discrete states is usually summarized by a 

confusion matrix. The (i,j)  entry of this matrix represents the number of samples from 

class i that are classified as belonging to class j. Figure 8-1(a) shows an example of a 

confusion matrix for a BCI. This system is of the balanced datasets type, i.e., the 

probability of occurrence of the first class is comparable to that of the second class. A 

typical example of such system is a “synchronized” BCI system with two IC classes, e.g., 

classifying right and left index finger flexions. In Figure 8-1, the total number of test 

samples of 1ICClass and 2ICClass are 87 and 92, respectively. Out of 87 samples that 

belong to 1ICClass , 76 test samples are correctly classified as 1ICClass  and 11 of them are 

misclassified as 2ICClass . Similarly, 84 out of 92 test samples that belong to 2ICClass  are 

correctly classified as 2ICClass , however, eight samples are misclassified as 1ICClass .  

A confusion matrix provides valuable information regarding how well each class 

is classified by the BCI system.  It is, however, not usually straightforward to compare 

different confusion matrices.  Evaluation metrics are thus needed to summarize a 

confusion matrix into a single value.  As an example, in Figure 8-1.(a), the overall 

classification accuracy (OA) can be used to summarize the confusion matrix, as follows:       

%39.89
179

7684
samples test ofnumber  Total

classifiedcorrectly  samples test ofnumber  Total



OA  

For classification problems with balanced datasets such as synchronized BCI 

systems (where )()()( 21 NClassprobClassprobClassprob    for an N-class 

problem), OA is the most common evaluation metric presently used to summarize the 

performance [2]. 
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(a) 

 
(b) 

 
(c)  

Figure 8-1. a) An example of a confusion matrix for a balanced dataset; b) An example of a confusion 
matrix for an imbalanced dataset; c) A second example of a confusion matrix for an imbalanced 
dataset. 

The use of OA for problems with highly imbalanced classes (e.g., 

)()( 21 ClassprobClassprob   for a two-class problem) is not satisfactory [3]. An 

example of such systems is an SBCI system which must detect infrequent IC patterns 

amongst the more frequent NC epochs. To illustrate why OA is an inadequate metric for 

such applications, consider the two examples of an SBCI system shown in Figure 1 (b) 

and Figure 1 (c). Suppose in these examples, 999.0)( NCClassp  and there are 999 test 
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samples from NCClass  and only one test sample from ICClass  available for testing the 

performance.  In the case shown in Figure 8-1.(b), the SBCI system correctly classifies 

998 out of 999 test samples of the NC class ( NCClass ). It also correctly classifies the only 

test sample in the IC class ( ICClass ), yielding %9.99OA . Now consider the example 

shown in Figure 8-1(c). The SBCI correctly classifies all the 999 test samples that belong 

to NCClass , but it misclassified the only ICClass test sample. Again, %9.99OA . The 

difference is that the high value of OA is not representative of the true performance of the 

classification problem, since its performance in detecting ICClass  is 0%.  

The choice of the evaluation metric is thus of great importance and is application-

dependent. A poorly defined evaluation metric (such as OA illustrated in the above 

example) may guide the model selection procedure to a far-from-optimal model or it can 

lead to erroneous conclusions when comparing the performances of two SBCI systems. 

As a result, all the effort spent in the design of a sophisticated SBCI may become in vain, 

simply because of the poor choice of the evaluation metric. Recently, the choice of OA as 

the default evaluation metric has been questioned, even in classification applications with 

balanced datasets. Specifically, it was shown that for many applications, the area under 

the receiver operating characteristic (AUC) can summarize the performance better than 

OA [4].     

Although OA is not suitable for classification problems with imbalanced classes, 

the choice of an alternative evaluation metric is not obvious. Several attempts have been 

made to define more suitable evaluation metrics for these problems. Examples of such 

evaluation metrics include weighted overall accuracy (WOA) [5], the use of receiver 

operating characteristic (ROC) curves and related measures such as area under the ROC 

(AUC) [6], and Kappa coefficient [7]. In the SBCI literature, some of the evaluation 

metrics used include overall accuracy [8], HF-difference[9], mutual information 

(information transfer rate) [10], Kappa [2], AUC [2], the true positive rate (TPR) at a 

fixed false positive rate (FPR) [11] and 
FPR
TPR [12]. Each of these metrics have strengths 

and weaknesses [2], however, SBCI studies do not usually discuss why a particular 

evaluation metric is chosen for the evaluation of the performance.  This leads to the 
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obvious conclusion that the study of finding suitable evaluation metrics is important for 

SBCI systems. This need has been emphasized in a recently published technical report on 

evaluating SBCI systems [13].  

Comparing evaluation metrics is not easy. Consider the case where two evaluation 

metrics are proposed to summarize two confusion matrices for an SBCI system. As 

sometimes happens, one evaluation metric yields the conclusion that the confusion matrix 

A is better than the confusion matrix B, while according to the second metric, the 

opposite case is concluded. This uncertainty causes a problem, as it is unclear which 

metric should be used to summarize the performance. As a result, a test measure is 

needed for comparing evaluation metrics. 

Comparing two metrics should be carried out directly, i.e., without the need of a 

3rd metric. In other words, if two evaluation metrics f and g are to be compared, and if a 

third evaluation metric h is to be used for this comparison, then the validity of the 

conclusion depends on how valid the third evaluation metric is. Besides, if the evaluation 

metric h  is a good evaluation metric, why do we need to introduce f and g ?  

The aim of this study is to discover a general solution for comparing the 

evaluation metrics that are or could be used for SBCI systems. The proposed solution 

expands the method in [4] which directly compares evaluation metrics. In [4], two 

comparison measures [the degree of consistency (DoC) and the degree of discriminancy 

(DoD)] are defined. Briefly, DoC examines the degree of consistency between two 

metrics in evaluating the performance of a classification problem. If two metrics are 

found to be consistent with each other, then DoD is applied to find if one metric is better 

than the other in discriminating the performance. In [4], DoC and DoD were applied to 

compare OA and AUC. The conclusion was that AUC is superior to OA.  See [4, 14] for 

more details. In this study, we expand the framework proposed in [4] so that 

 1) It is applicable to other evaluation metrics. We introduce a new measure, 

named as the “degree of suitability” (DoS) to calculate how suitable an evaluation metric 

is in summarizing the performance of a classification problem. 
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 2) It can evaluate classification problems with large test samples (independent of 

whether the class distribution is balanced or imbalanced).  

3) It can facilitate the model selection/tuning procedure.  

 To calculate the DoC and DoD values, we introduce the idea of dividing the [true 

positive rate (TPR), false positive rate (FPR)] domain into sub-regions and using a grid-

based approach. This framework is used to compare selected evaluation metrics in the 

field of SBCI system (see Section 8.4 for more discussion on the performance metrics 

studied in this paper). We examine which of these evaluation metrics (if any) is better 

than others in summarizing the confusion matrix of a particular SBCI. The best 

evaluation metric can then be chosen as the most suitable one for evaluating the 

performance of that SBCI. We also examine the effect of class ratio (ratio of NC class to 

IC class) in comparing metrics. We show that the number of test samples as well as the 

ratio of test samples are important in reaching the proper conclusion. 

8.2 Problem statement  

Consider a classifier designed for classifying M  classes. Suppose the number of 

test samples for 1Class  is 1N , the number of test samples for 2Class  is 2N , and so on. If 

TotalN is the total number of test samples, then, 


 


M

i

M

j
ij

M

i
iTotal NNN

1 11

           (8-1) 

where ijN  is the number of  test samples in iClass classified as jClass ),...,2,1,( Mji  . 

The performance of the classification problem can be represented by the following 

MM   confusion matrix:   
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    An evaluation metric ),...,f( 11 MMNN  summarizes the confusion matrix 

described by (8-2) by a single evaluation metric (i.e., by a single value). In the rest of this 

section, we describe the framework proposed by [4] for comparing evaluation metrics 

and we address how to modify and generalize the framework so that it could be applied to 

SBCI systems. 

     When comparing two evaluation metrics, these metrics should be as consistent 

with each other as possible. For example, let )f(a and )f(b be the values by which metric 

f summarizes confusion matrices a and b .  If )f()f( ba  , then for metric g to be 

consistent with metric f ,  g  should reach the same conclusion (i.e., )g()g( ba  ). The 

degree of consistency between f and g, DoC(f,g), counts the number of times when both 

metrics reach the same conclusion that )f()f( ba   as well as )()( bgag  .  If for a 

certain application, DoC yields a reasonable consistency between both metrics (i.e., 

5.0g)DoC(f,  as explained later in this paper), then g)DoD(f, , the degree of 

discriminancy of f over g, is applied to measure how much f is better than g in 

discriminating between the performances. If 5.0g)DoC(f,   and 1g)DoD(f,   , it can 

then be stated that metric f  is a better measure for that application than metric g [4].  

Before stating the problem of concern of this study, we need to define three terms 

that will be used throughout the paper: (TPR, FPR) Domain, Fitness Landscape, and 

Moving on the (TPR,FPR) domain. Please note that in this paper, for simplicity of 

presentation we only use the notation for the 2-class SBCI system, however, the 

definitions and notations can be easily generalized to an L-class SBCI system. 

Assume the “NC” class is the class with the frequently occurring test samples and 

the “IC” class is the class with the seldom occurring test samples.   We denote NCN  and 

ICN  as the number of test samples in the majority (negative) class and minority (positive) 

class, respectively. Thus, 
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NCICTotal NNN             (8-3) 

Let NTP, NFP, NTN and NFN  respectively denote the number of test samples that the 

SBCI has decided as true positive(TP), false positive (FP),  true negative (TN), and  false 

negative (FN) cases. Then the 22  confusion matrix is 







TNRFPR
FNRTPR

where: 

IC

TP

N
NTPR                                              (8-4) 

IC

FN

N
N

FNR                                                              (8-5)   

NC

FP

N
NFPR                                        (8-6) 

NC

TN

N
N

TNR                                                               (8-7) 

If NCN  and ICN   are known, FNR and TNR can then be directly computed from 

TPR and FPR. An evaluation metric can then summarize the confusion matrix using the 

TPR and FPR values only.    

Definition of (TPR, FPR) domain: consider a 2D space, where one axis denotes 

TPR and the other axis denotes FPR. We call this domain the (TPR,FPR) domain (see 

Figure 8-2). 

Definition of fitness landscape: If an evaluation metric f is defined over the 

(TPR,FPR) domain, then the plot of FPR)f(TPR,  is  a 3D surface that we refer to it as 

the fitness landscape. For specific NCN  and ICN  values, Figure 8-2 shows the fitness 

landscape of 
Total

TNTP

N
NN

OA


  as a function of TPR and FPR. Thus for every (TPR,FPR) 

point, the fitness landscape of the evaluation metric denotes the value of the evaluation 

metric at that point.  

Moving on the (TPR, FPR) domain: We denote a transition path from point        

A= (TPR1,FPR1)  to point B=  (TPR2,FPR2) as a move on the (TPR,FPR) domain. 
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Figure 8-2. A sample fitness landscape for a classification problem with two classes. 

   To expand the framework in [4] to the more general case, the following points 

should be considered: 

1) Suitability of an evaluation metric: It is necessary that we first investigate if an 

evaluation metric is indeed suitable for summarizing the performance.  In [4], two well-

known metrics (OA and AUC) are compared under the assumption that both metrics are 

suitable evaluation metrics for the applications examined. This assumption, however, 

may not be applicable to a different metric. Thus, as an initial step it is necessary to 

investigate whether or not the new evaluation metric is suitable for evaluating the 

problem at hand. We propose a new measure called the degree of suitability (DoS) for 

this purpose. Once a metric is determined as suitable, it can then be compared with other 

suitable evaluation metrics. 
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2) Expansion to classification problems with large test samples (including 

classification problems with highly imbalanced datasets): To calculate the values of DoC 

and DoD introduced in the framework proposed in [4] the classification label result of 

every test sample is needed. As shown in [4] , if the number of test samples goes beyond 

20 , the number of calculations needed for measuring DoC and DoD becomes extremely 

large, this makes this approach infeasible. Even if the proposed framework uses all the 

possible configurations of the confusion matrix (instead of all the possible classification 

labels), it still becomes computationally demanding when the number of test samples is 

large. This is especially the case for classification problems with highly imbalanced 

classes such as in SBCI systems. A more general approach is therefore needed for testing 

the performance of such real-world applications. We propose applying a grid that 

subsamples the (TPR,FPR) domain so that only representative confusion matrices  are 

used for comparing the evaluation metrics. From the computational point of view, the 

calculation of comparison metrics such as DoC and DoD using this approach becomes 

less demanding.  

3) Considering different regions on the (TPR, FPR) domain:  When evaluating 

two evaluation metrics for model tuning, it is important to consider how to select the 

region(s) of the (TPR,FPR) domain  over which the comparison of evaluation metrics is 

made. For example, consider the case where we move from a point with a very low TPR 

and a very high FPR to another nearby point (i.e., a point with also a very low TPR and a 

very high FPR value). In this case, we may not care much if the metrics are consistent 

with each other or if one is more discriminant than the other. Now consider the case 

where we move from a point with a low TPR and a high FPR to a point with a high TPR 

and a low FPR. In this case we like both metrics to be as consistent with each other as 

much as possible. We also wish to know if one metric is more discriminant than the 

other, and hence is more suitable for guiding the model towards better solutions. In this 

study, we propose a new weighting scheme to emphasize that the comparisons carried 

over the different regions in the (TPR, FPR) domain can have different degrees of 

importance. We also generalize the definitions of DoC and DoD so that they are more 

suitable for comparing the evaluation metrics during model tuning.  

In the next Section, the framework for comparing evaluation metrics is proposed. 
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8.3 A framework for comparing evaluation metrics 

Before describing our proposed framework, we need to introduce another 

definition, the Desired Region of OPeration (DROP). For every SBCI system, the ideal 

goal is to achieve the perfect classification accuracy (in the 2-class example, this is 

TPR=100%, and FPR=0%). Since this ideal performance is difficult to achieve, more 

relaxed goals in terms of classification performance are set.  For example, these goals can 

be determined using the designer’s expertise or the knowledge in the published material. 

For a 2-class SBCI, these goals correspond to regions on the (TPR, FPR) domain, where 

TPR is above a certain pre-defined value and FPR is below another pre-defined threshold. 

We refer to such a region as the Desired Region of Operation (DROP). In the example 

shown in Figure 8-3, region 1 is defined by ThresholdTPRTPR   and ThresholdFPRFPR  . 

ThresholdTPR  usually has a much higher value than the ThresholdFPR  .  

 
Figure 8-3. An example of dividing the (TPR,FPR) domain into regions. Different movements on the 
(TPR, FPR) space may be associated with different weights. Note that the numbers on each axis 
denote (%). 

Please note that depending on the problem statement, the (TPR, FPR) domain 

outside the DROP, 2 ,may also be sub-divided into smaller sub- regions (see Figure 8-4 
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for some examples). However, in this study we focus on the example shown in Figure 

8-3.  

 
Figure 8-4. Two examples of more complex break-down of the (TPR, FPR) domain with more 
complex partition and weighting schemes. 

In the rest of this section, we present our proposed framework for comparing 

evaluation metrics. For simplicity, the formulae and discussion are written for a 2-class 

SBCI with two regions on the (TPR, FPR) domain. The first region is DROP and the 

other region contains the points outside DROP. 

We first introduce “Degree of Suitability” (DoS) of an evaluation metric. Then we 

evolve DoC and DoD notions so that they can be applied for model tuning of 

classification problems with large test samples.  

8.3.1 Suitability of an evaluation metric  

 If the number of variables contained in an evaluation metric f is low, the first step 

in investigating the suitability of f in evaluating an SBCI system is to visualize f. This is 

done by plotting the fitness landscape of f.  This step visually demonstrates the 

characteristics of the evaluation metric. For example, it reveals if the values of the 

evaluation metric increase,  as the performance of the model move closer to the more 

desirable points on the (TPR,FPR) domain and if  its values decrease as the performance 

of the model gets closer to the less desirable points. In brief, visualization shows the 

distribution of the fitness landscape as a function of TPR and FPR. 
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 This approach, while beneficial for the 2-dimensional (TPR, FPR) domain, 

cannot be used for the general case, as the L-dimension domain cannot be visualized. 

Accordingly, another approach which can be used in the general case should be defined. 

In the rest of this sub-section, we will focus on developing this approach. 

We argue that if an evaluation metric attains its higher values inside the DROP 

region, it is logical to consider it as a suitable metric. In the general case, if the (TPR, 

FPR) domain is divided into K regions, then the evaluation metric should have higher 

values over the regions where it is more desirable to operate in.  

To investigate if an evaluation metric indeed has higher values for points located 

inside the DROP region, we now define the degree of suitability (DoS) of an evaluation 

metric. In what follows, the definitions related to  an SBCI system with two classes will 

be presented, however, they can be easily generalized to the  L-class problem. 

Definition 1: Degree of suitability ( DoS )  

Let 1  and 2  be two non-overlapping sets defined over the (TPR, FPR) domain 

 such that 21    (see Figure 3). Let 1  be the DROP region. As a result, 1 is 

more desirable to operate in than 2 .  Let f be an evaluation metric defined over , and 

let ),( 11 FPRTPRx   be an arbitrary point in 1  and ),( 22 FPRTPRy   an arbitrary point 

in 2 . The fitnesses of points x  and y  are )f(x and )f(y , respectively. Let A and B 

represent all the ),( yx  pairs such that  )f()f(,,),( 21 yxyxyxA       and   

 )()(,,),( 21 yfxfyxyxB   . Then DoS(f) is defined as follows: 

BA
A


DoS(f) , i.e., )1DoS0(                           (8-8) 

where A measures the number of elements (the cardinality )of the set A.  

DoS specifies the degree to which the evaluation metric yields higher values to 

points located inside the DROP region than to points outside this region. It is desirable 

that the resultant value of DoS be as close to unity as possible. Once an evaluation metric 

is determined as suitable, it can be compared with other suitable evaluation metrics. 
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During model tuning, it is desired that the evaluation metric guides the model 

tuning procedure towards the global optimum (or at least towards the DROP region). For 

example, in Figure 8-3, it is usually desired that the model tuning algorithm moves from 

points d or c towards a or b. Once the (TPR,FPR) point reaches DROP, it is also 

important that it keeps moving towards the global optimum (e.g., from point a to point b 

in Figure 8-3). It should be noted that moving from a to b may not be as desirable as 

moving from d to a. Likewise, outside the DROP region, it is important that the model 

tuning procedure does not stall and moves towards DROP (e.g., from point d towards 

point c). Unfortunately, it is not always straightforward to determine if a particular move 

on the fitness landscape is a good or a bad one. This is especially the case when there 

exist local minima/ maxima on the fitness landscape, since moving away from a local 

minimum or a local maximum might be considered as a good move, only if  it guides the 

algorithm towards a better point in the (TPR,FPR) domain. We can, however, define 

some guidelines for comparing two metrics. These guidelines are addressed in the next 

sub-section.  

8.3.2 Guidelines for comparing two evaluation metrics  

It is important to consider the following guidelines when comparing different 

evaluation metrics: 

1) A metric should generally attain a higher value for (TPR, FPR) points inside a 

region with higher importance (e.g., DROP) than for points located in a region with less 

importance. Referring to Figure 8-3, consider evaluation metrics f and g . Assuming that  

a, and b lie inside the DROP region, and  c, and d lie outside it. Then it is desirable that f 

and g be such that 

).g()g(),g()g(),g()g(),g()g(
),f()f(),f()f(),f()f(),f()f(

dbcbdaca
dbcbdaca



 

2)To compare f and g, it is important that both metrics behave in a similar 

fashion, when moving from any arbitrary point to another arbitrary point. It is desirable 

that both metrics move in the same direction and, if metric f increases, metric g increases 
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as well, i.e., )()()()( cgagcfaf  . If the metrics are not consistent, it would be 

very difficult to draw any conclusion regarding their relative performance.  

3) It is preferable that the evaluation metric can differentiate between two points 

lying in the same region. During the model tuning procedure, this will guide the search to 

move from one point to another and prevents it from getting stuck in the same area.  This 

also means that the evaluation metric can differentiate between the performances of 

different classification problems that are under examination. As a result, if the value of 

metric f changes when moving from point a to point b and the value of g does not, then 

from the point of view of comparing f and g, metric f is preferred to metric g [4], as f is 

more discriminant. This argument, however, may not be valid when comparing a model 

from one region to another model from a different region, as explained later in this 

section. 

4) When moving from one region to another, the metric that yields a higher value 

for a point inside the region with a higher degree of importance is preferable to the metric 

that yields a lower value, even if the latter can better discriminate between the two points. 

As an example, in Figure 8-3, if 0.95)g(and,0.96)g(,80)f(,10)f(  caca , 

although metric f better separates the two points,  metric g is more suitable since it 

assigns a higher fitness to the point located inside DROP.  

5) As mentioned in Section 8.2, the comparison between two evaluation metrics 

depends on the location where the comparison is made. As an example, we may prefer 

that two metrics are more consistent over points belonging to a certain region than over 

points belonging to another region.   This implies that a weighting scheme must be used. 

The weighting can be done in different ways. It can be discrete (as is shown in Figure 

8-3) or there can be continuous weights as shown in Figure 8-4. 

Based on these observations, we now modify the notions of DoC and DoD  

(defined in [4]) for our problem description.   

8.3.3 Degree of consistency (DoC)  

The consistency between two evaluation metrics f and g is defined in [4]as 

follows:  If according to metric f, a point a on the (TPR, FPR) domain is better than a 
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point b, then metric g should not yield that point b is better than point a. If this 

observation is true for all points on the (TPR, FPR) domain, we can state that metrics f 

and g are strictly consistent with each other [4].  

Unfortunately, this is not always true. There are many examples for which metric 

f increases as we move from point a to point b and at the same time, metric g decreases or 

remains unchanged. Accordingly, a stochastic version of this definition is proposed in 

[4]. 

The original definition of DoC [4] does not consider the cases for which f or g 

have equal values for both points a and b (i.e., when )f()f( ba   and )g()g( ba  ). Thus, 

using the guidelines from discussed earlier in this section, the definition of DoC can be 

improved for our problem description as follows: 

 Definition 2: Degree of consistency ( DoC ) 

Let 1  and 2  be two non-overlapping sets defined over the (TPR, FPR) domain 

 such that 21    (see Figure 8-3). Let f and g  be two evaluation metrics and x  

and y be two arbitrary points in  .  We define the following sets: 

 1))g()sign(g())f()sign((f(,,),(),(  yxyxyxyxR jiji  )2,1,( ji      (8-9) 

 )g()g(),f()f(,,),(' ),( yxyxyxyxR jiji    for )2,1,( ji                (8-10) 

 1))g()sign(g())f()sign((f(,,),(),(  yxyxyxyxS jiji  )2,1,( ji    (8-11)  

 )g()g(),f()f()g()g(),f()f(,,),(' ),( yxyxoryxyxyxyxS jiji    

                       for )2,1,( ji             (8-12) 

),(),(),(
" ' jijiji RRR                    (8-13) 

),(),(),(
" ' jijiji SSS                                      (8-14) 

 yxyxyxL jiji  ,,),(),(           for )2,1,( ji          (8-15) 
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),( jiL  is used for normalizing the sets of ),( yx  pairs defined by (8-13) and (8-14). 

This normalization decreases the degree to which the degree of consistency is dependent 

on the number of points located in region )2,1( ii  . 

Let ),(
"

jiWR  and ),(
"

jiWS be non-negative weights associated with  ),(
"

jiR  and 

),(
"

jiS . Using (8-9) to (8-15), g)DoC(f,  is defined as follows: 
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"  jiWSWR jiji    (8-16)  

Please note that if the restriction ji   is added when calculating (8-16), the 

comparison between any two regions is carried out only once. 

DoC forms an enhanced definition of that in [4]. It compares two metrics based 

on the number of times they consistently recognize an arbitrary point x on the (TPR, 

FPR) domain to be better than another point y. DoC also incorporates a weighting scheme 

which is useful when comparing two metrics. For example, during model selection, the 

metrics are more consistent over certain regions (e.g., when moving towards the DROP 

region from another region), but not as important when moving between or within other 

regions. The values of ),(
"

jiWR  and ),(
"

jiWS  are application-dependent and are chosen 

according to how the (TPR, FPR) domain is divided and the relative importance assigned 

to each region.   

Lemma 1- If two metrics f and g defined over the domain    are consistent with 

each other, then  5.0g)DoC(f,  . 

Proof- If two metrics f and g are consistent with each other, then we have: 
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In this case, it can easily be deducted from (8-17) that 1DoC5.0  LS .  
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The closer DoC is to ‘1’ , the more consistent are the two metrics.                          

If 0.
2

1

1
),(

2

1
),(

"
),(

"   




i
ji

j
jiji LSWS , the two metrics are strictly consistent and 1DoC  .  

If 5.0DoC  , it is possible to determine which metric is more suitable. If 5.0DoC  , this 

framework cannot be used for comparing evaluation metrics. 

8.3.4 The Degree of discriminancy (DoD)   

Let 1  and 2   be two non-overlapping sets defined over the (TPR, FPR) domain 

 such that 21   . Let 1  be the DROP region. 1 is thus more desirable to 

operate in than 2 .   Let f and g be two evaluation metrics and x and y be two arbitrary 

points in  .  We then define the following sets: 
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 )g()g(and),f()f(,,),(),(
' yxyxyxyxU jiji   ,for )(),2,1,( jiji        (8-19) 
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)(),2,1,( jiji  (8-20)           

 )()(and),()(,,),(),(
' yfxfygxgyxyxV jiji   ,for )(),2,1,( jiji    (8-21) 

UUU                          (8-22) 

VVV                          (8-23)         

   Let ),( jiUW   and ),( jiVW  be non-negative weights associated with  ),( jiU   and 

),( jiV  . Using (8-18) till (8-23), g)DoD(f, is defined as follows: 
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Please note that the restriction ji   is added in calculating (8-24), so that the 

comparison between any two regions is carried out only once.  

Lemma 2- Consider two metrics f and g defined over domain    . If metric f is 

more discriminant than metric g, then 1g)DoD(f,   . 

Proof- If f is more discriminant than g, then: 

1
),(

2

1

2

1
),(),(

1
),(

2

1

2

1
),(),(



 



 
     ji

i j
jijiji

i j
jiji LVVWLUUW      (8-25)                    

From (8-24), it is easy to conclude that 1g)DoD(f,  . 

g)DoD(f, not only captures the cases where one metric fails to differentiate 

between two points but the other one does not, but also gives a higher score to a metric 

that yields higher values for the points located in a region with more importance.  

8.3.5 Comparison of two evaluation metrics   

The following definition determines if metric f is superior to metric g : 

Definition 4: -  Let 1  and 2   be two non-overlapping sets defined over the 

(TPR, FPR) domain  such that 21   . Let f and g  be two evaluation metrics 

defined on the domain .   If 5.0g)DoC(f,   and 1g)DoD(f,  , then metric f  is said to 

be superior to metric g  on the domain  . 

It is evident that the higher the values of g)DoC(f, and g)DoD(f, , the stronger 

our confidence will be regarding the superiority of metric f over metric g.  

8.3.6 Using sub-sampling grids for calculating the comparison measures   

The most reliable approach for comparing two evaluation metrics is to generate 

all the possible classification outcomes in a confusion matrix and then calculate the DoS, 

DoC and DoD measures using all the points on the (TPR,FPR) domain. As an example, 

consider a case where the number of IC test samples is 10 and the number of NC test 

samples is 100. The number of TPs can thus vary between 0 and 10 and the number of  
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  Figure 8-5. An example of using grids on the (TPR, FPR) domain. 

FPs can vary between 0 and 100. As a result, there are 111110111   points on the 

(TPR, FPR)   domain   corresponding  to  111110111   confusion  matrices.   For the 

calculation of DoC and DoD, all these points should be compared with each other, so 

roughly 000,617  comparison should be made in order to calculate the DoC or DoD 

measures.  For the case when the number of test samples is large, calculating these 

measures becomes computationally demanding. We thus propose the use of sub-sampling 

grids to decrease the number of computations. In this approach, the (TPR, FPR) domain 

is evenly divided into smaller grids (see Figure 8-5 for a typical example). The number of 

nodes can be determined based on the available computational resources. The DoC and 

DoD values (equations (8-16) and (8-24)) are then calculated for the points belonging to 

each point located on the grid, instead of calculating them for each point generated by the 

confusion matrix. For example in the above example, we can use every other sample for 

calculating DoC and DoD. As the result, the values of TP will be 0,2,…,10 and the values 

of FP will be 0,2,4,…,100. Accordingly, (TPR, FPR) domain now has 306516  nodes 

(instead of 1111 points in the first example). The number of calculations thus becomes to 

be 46,600, which is more than 13 times smaller than the original case. If the results from 

TPR 

FPR 

0% 

100% 
0% 

100% 

DROP 
( 1 ) 

2  
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both approaches are consistent with each other, the second approach is more desirable as 

it is computationally more efficient.  

To further demonstrate that the grid-based approach significantly reduces the 

number of comparisons needed (especially for calculating DoC and DoD), suppose we 

denote the number of points in the   by ntspoiN and the number of points in the grid by 

nodesN . Since calculating DoC and DoD involves comparing every two points on the grid, 

then the number of comparisons needed to obtain the g)DoC(f, or g)DoD(f, values is: 

2
)1.( 

 nodesnodes
Grid

NNN                     (8-26) 

The number of comparisons needed to calculate g)DoC(f, or g)DoD(f, values for 

every point in   is: 

2
)1.( 

 ntspointspoi
NonGrid

NN
N                               (8-27) 

Let the ratio of the number of confusion matrix configurations to the number of 

nodes be defined: 

nodes

ntspoi

N
N

K             (8-28)    

Using (8-26) to (8-28), the ratio of the number of calculations in the non-grid approach to 

the grid approach is calculated as follows:  

)1(
)1.(

)1.(

2
)1.(

2
)1.(

2 








 nodes
nodesnodes

nodesnodes

nodesnodes

ntspointspoi

Grid

NonGrid NK
NN
KNKN

NN

NN

N
N

         (8-29) 

If 1K , then the non-grid approach needs to calculate 2K comparisons more 

than the grid approach. This suggests that if the resolution of the grid-based approach is 

coarser than the resolution of the (TPR, FPR) domain (which is usually the case), then 

much less computations is required. As a simple example, consider the case, where 
223 10,10,10  nodesICNC NNN . The number of possible values for the confusion 
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matrix is then calculated as 510 ICNCntspoi NNN . As a result, 610
Grid

NonGrid

N
N

. The 

grid-based approach thus reduces the number of calculations significantly.  

In the next section, we briefly review the metrics that will be compared in this 

study using the proposed framework.  

8.4 Selected evaluation metrics in SBCIs 

In this Section, we describe some of the current evaluation metrics in SBCI 

systems (for a more detailed discussion see[2]). For simplicity, in the rest of this Section, 

we focus on SBCI systems with only two classes. Let NTP, NFP, NTN and NFN  respectively 

denote the number of epochs an SBCI system has determined as to belong to the true 

positive(TP), false positive (FP),  true negative (TN), and  false negative (FN) cases. 

Then the confusion matrix is represented as 








TNFN

FPTP

NN
NN

 and TPR, FPR, TNR and FNR 

are defined as in equations (8-4) to (8-7). 

If ICN  and NCN  are known, FNR and TNR can be directly computed from TPR 

and FPR only. The evaluation metric can thus summarize the confusion matrix using TPR 

and FPR values only. We now briefly review selected evaluation metrics used in SBCI 

systems. It should be noted that evaluation metrics described in Sections 8.4.1 to 8.4.3 

below, are used for synchronized as well as self-paced BCI systems. However, metrics 

described Sections 8.4.4 to 8.4.6 have been mostly used for SBCI systems. 

8.4.1 Overall accuracy (OA) 

OA shows the total number of test samples correctly classified by an SBCI 

system. For a 2-class SBCI, OA is calculated as follows: 

NCIC

TPTN

NN
NN

OA



         (8-30) 

 OA has been frequently used in evaluating many synchronized BCI systems [15-

17]. Its use in SBCIs, however, has so far been limited [8]. This is because, for an SBCI 

system, OA assigns a huge weight on the more frequent class (NC) and a very small 
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weight on the less frequent classes (IC). This may lead to misleading conclusions about 

the performance of the system, as shown by the examples in the Introduction. 

Nevertheless, since in general OA is the most obvious evaluation metric for classification 

problems, it is thus investigated in this paper. 

8.4.2 Information transfer rate (mutual information) 

The information transfer rate (ITR) has been specifically proposed for evaluating 

the performance of synchronized BCI systems [18]. Based on the similarities between an 

SBCI and a communication channel, [18] used Shannon’s communication theory and 

proposed this metric. The rationale is as follows: ITR measures the amount of 

information transferred between two reference points.  The output Y of an SBCI is the 

interpretation (information) of the current state of the brain, and Y conveys this 

information to downstream components. It was thus argued in [18] that the amount of 

information in Y is a useful tool for comparing the results obtained from different 

synchronized BCI designs.  

The original ITR formula has some shortcomings that make it unsuitable for SBCI 

systems [19].  Based on Shannon’s theorem, a more complex formula for the calculation 

of ITR is proposed in [20] and [10]. It is shown that the proposed measure yielded a 

better estimation of ITR for several synchronized BCI systems than the definition 

proposed in [18]. Later, the ITR of an SBCI with two states is calculated and analyzed in 

details [19]. It is argued that ITR by itself is “not” a suitable single evaluation metric for 

an SBCI system. This is because of the unique nature of this metric that has more than 

one maximum (see [19] for a detailed discussion). ITR (or mutual information) is thus 

not considered as an evaluation metric in this paper.  

8.4.3 Kappa 

Cohen’s Kappa coefficient is a measure of agreement between two estimators 

[21].  Since it considers chance agreements, it is regarded as a more robust measure than 

OA [2]. Kappa’s coefficient is calculated as [21]: 
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 where ep  is the chance agreement and is defined as follows: 
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                                 (8-32)

 Here, iN:  is the sum of the elements in the i-th column and  :iN is the sum of the 

elements in the i-th row in the confusion matrix.  

8.4.4 HF-difference  

The HF-difference is a newly proposed metric that summarizes the confusion 

matrix [22]. It is defined as  

%;% FHHF                                                        (8-33) 

where F% is the percentage of total activations that are incorrect (false discovery rate 

[23]) and H% is the percentage of the total number of IC commands that are correctly 

detected by the system (TPR=
IC

TP

N
N

 or Hit rate). F is calculated as follows: 

FPTP

FP

NN
N

F


                     (8-34) 

 The advantage of using HF-difference is that it is sensitive to the ratio of FPs to 

the total number of detections. The downside of using the HF-difference is that no 

information about the length of NC periods has been incorporated in calculating (8-33).  

8.4.5 
FPR
TPR ratio 

The 
FPR
TPR  is another evaluation metric that was recently proposed for 2-class 

SBCI systems [12, 24]. This metric gives more weight to cases with low FPRs. As a 

result, during the model tuning process, any model with a high FPR is assigned a low 
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fitness, even though TPR might have a high value. The downside is that for FPR=0, the 

system cannot differentiate between confusion matrices with different TPRs.    

8.4.6 ROC curve and related metrics 

The receiver operating characteristics (ROC) curve is a popular metric for 

evaluating systems with imbalanced classes. The ROC curve depicts the relationship 

between TPR and FPR. Popular methods that use the ROC curve for measuring the 

performance employ one of the following two criteria 1) The area under the ROC curve 

(AUC) which is used as the fitness of the system [2]; 2) Defining a critical FPR value 

( CriticalFPR ) , and then using the value of the TP rate at CriticalFPR  as the fitness [11]. The 

advantage of using the ROC curve over previous metrics is that a whole range of 

solutions (in terms of a tradeoff between TPR and FPR) is provided. 

One problem with using the ROC curve is that when it is plotted over the whole 

range of TPR and FPR, most SBCI systems produce a curve that is similar to a perfect 

ROC curve [13]. One solution is to restrict the ROC curve to a small region 

corresponding to low FPRs. The other problem (and perhaps more important) with using 

the ROC curve is that it is computationally more demanding than other evaluation 

metrics. Several points need to be evaluated until a partial ROC curve that is accurate 

enough for estimating the AUC is drawn. Similarly, several points need to be calculated 

in order to obtain the value of TPR at CriticalFPR . Even if ROC is estimated using the 

more computationally efficient algorithm as described in[4], it remains much more time 

consuming than the metrics described above as these only need the value of a single point 

to assess the performance.  When these metrics are used to evaluate the performance and 

select a model from thousands of confusion matrices during a model selection procedure, 

the computational burden becomes problematic.  For these reasons, evaluation metrics 

that summarize the performance based on a single evaluation of a confusion matrix are 

more desirable and are thus considered in this study. 
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8.5 Simulations  

In this section, we use the framework described in Section 8.3 to compare 

selected evaluation metrics employed in evaluating SBCI systems. The aim is to analyze 

and find which (if any) of these metrics is more suitable for an SBCI system. The 

evaluation metrics studied here are: overall accuracy (OA) [8], Kappa [2], HF- difference 

[22] and 
FPR
TPR  [12].  

8.5.1 Application  

Consider an SBCI system with two output states: IC and NC. We consider three 

values for the number of IC epochs ( ICN = 10, 50, or 100). As for the NC class, we 

assume that NCN , the number of NC epochs,  varies between  100  to  500  in a step of 

100. Thus, 501 
IC

NC

N
N

. 

The (TPR,FPR) domain is divided into two regions: a) the DROP region, 

formulated as  %2and%,50),(1  FPRTPRFPRTPR  and b) the rest of the 

(TPR,FPR) domain, formulated as  %2or%,50),(2  FPRTPRFPRTPR . The 

reason the DROP region was chosen as above is because the solutions found in a 

previous SBCI study lied in this region [11].  

8.5.2 Results   

 Applying a grid to the (TPR,FAR) domain 

When using the finest grid resolution, the resolution is )1,1(
NCIC NN

. This is the 

case when all the possible configurations of the confusion matrix are studied. We studied 

10 different resolutions for comparing the evaluation metric. The resolutions varied 

between )1,1(
NCIC NN

 to )10,10(
NCIC NN

with a step of 1. If the results obtained by using 

different resolutions are consistent, then coarser resolutions can be used to approximate 
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the values of DoS, DoC and DoD. The most suitable evaluation metric can thus be 

selected with less number of computations.  

 Calculating DoS 

DoS values are shown in Table 8-1. The columns denote the evaluation metric. 

For each evaluation metric, three sub-columns are presented: Res1 stands for the finest 

resolution when all the possible combinations of the confusion matrix are calculated. 

Mean stands for the average resolution, i.e., over the 10 considered resolutions. Finally, 

Res10 stands for the coarsest resolution, i.e., when one out of every 10 points is used for 

calculating DoS. The rows show different NIC and NNC configurations (15 configurations 

in total). 

As seen from Table 8-1, all metrics have DoS>0.9. Especially when the classes 

are imbalanced (except for the case where NIC=100 and NNC=100), DoS>0.98. This 

shows that the points inside the defined DROP region have higher fitness values 

compared to the points located in the other region. Furthermore, comparing the results 

obtained from Res1 with the average of other resolutions and even with the coarsest 

resolution shows a high degree of consistency. Since by decreasing the resolution, the 

amount of computational complexity significantly decreases, these findings are very 

important. To be more specific, by using the coarsest resolution, we could reach the same 

conclusion as with using the highest resolution. However, the amount of computation will 

be significantly less.  
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Table 8-1.  DoS results for the evaluation metrics studied in this paper. Res1 stands for the finest 
resolution, Mean stands for the average of 10 resolution values and Res10 stands for the coarsest 
resolution.  
 
 

 OA HF 

FPR
TPR

 
Kappa 

Res
1 

Mean Res
10 

Res
1 

Mean Res
10 

Res
1 

Mean Res
10 

Res
1 

Mean Res
10 

NIC
= 
10 

 NNC= 
100 

1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

NNC= 
200 

1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

NNC 
=300 

1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

NNC= 
400 

1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

NNC 
=500 

1.00 1.00 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
NIC
= 
50 

 NNC= 
100 

0.98 0.98 0.98 0.97 0.98 0.97 0.99 0.98 0.97 0.98 0.98 0.98 

NNC 
=200 

0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.98 0.99 0.99 0.99 

NNC= 
300 

0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 

NNC 
=400 

1.00 1.00 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 

NNC 
=500 

1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 

 
NIC
= 

100 

 NNC= 
100 

0.96 0.96 0.95 0.95 0.95 0.94 0.99 0.98 0.97 0.96 0.96 0.95 

NNC= 
200 

0.98 0.98 0.97 0.97 0.98 0.97 1.00 0.99 0.98 0.98 0.98 0.97 

NNC 
=300 

0.99 0.99 0.98 0.98 0.98 0.98 1.00 0.99 0.99 0.98 0.98 0.98 

NNC= 
400 

0.99 0.99 0.99 0.99 0.99 0.98 1.00 0.99 0.99 0.99 0.99 0.98 

NNC= 
500 

0.99 0.99 0.99 0.99 0.99 0.98 1.00 0.99 0.99 0.99 0.99 0.99 

Av
e. 

- 0.99 0.99 0.99 0.98 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 

     

 Calculating DoC and DoD 

DoC and DoD are calculated next. As discussed in the previous discussion, the 

different movements on the (TPR,FPR) domain can be associated with different weights 

(see equations (8-16) and (8-24)). In this section, we also examine the relative importance 

of moving from the DROP region to the other region that contains the points outside the 

DROP region. Four weighting cases are considered for equations (8-16) to (8-24). In 

these cases, we have increased the importance of moving between the DROP and the 

region outside the DROP. The cases considered are as follows: 
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Case 1 : 
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VUSR WWWW ,Case 2: 
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Case3: 
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1100
1001""""

VUSR WWWW (8-35) 

 The DoC results for Case 1 are shown in Table 8-2 and Table 8-3. The columns 

show the DoC values.  For each column, three sub-columns are presented similar to Table 

8-1 Res1 stands for the finest resolution; Mean stands for the average resolution over the 

10 resolutions that were studied and Res10 stands for the coarsest resolution. Rows show 

different NIC and NNC configurations (15 configurations in total).  

Based on these tables, the following observations can be made (please note that 

we have presented our observations based on the pair-wise comparison of metrics): 

1 ) OA vs. HF: As seen from Table 8-2 , both metrics are consistent with each 

other and  75.0),( OAHFDoC  for all cases and for all resolutions studied. Especially 

when the number of IC samples is large enough to allow lower resolution 

analysis, 85.0),( OAHFDoC .  

The analysis of the DoD results is more complex. When the number of IC 

samples is low (NIC=10), the results from different resolutions are highly inconsistent (see 

Table 8-4). This may be due to the fact that a low number of IC epochs yields highly 

variable results, especially when the resolution is low. On the other hand, when the 

number of IC epochs grows, HF consistently outperforms OA, with DOD(OA,HF)<0.5 

for most resolutions studied here (see Table 8-4). Based on these arguments, for the cases 

studied here, HF is preferable to OA.  
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Table 8-2.  The DoC results for the evaluation metrics studied in this paper (the first three 
comparisons). Res1, Mean and Res10 stand for the finest resolution, the average of 10 resolution 
values and the coarsest resolution, respectively.  

 

 
DoC(OA,HF) DoC(OA, 

FPR
TPR

) DoC(OA,Kappa) 

Res1 Mean Res10 Res1 Mean Res10 Res1 Mean Res10 

NIC=10 

NNC=100 0.84 0.79 0.76 0.79 0.69 0.68 0.89 0.88 0.86 

NNC=200 0.82 0.78 0.75 0.83 0.72 0.67 0.87 0.87 0.87 

NNC=300 0.81 0.78 0.75 0.85 0.75 0.67 0.87 0.87 0.87 

NNC=400 0.80 0.79 0.75 0.87 0.78 0.67 0.87 0.88 0.87 

NNC=500 0.79 0.80 0.80 0.87 0.81 0.78 0.87 0.88 0.89 

Mean 0.81 0.79 0.76 0.84 0.75 0.69 0.87 0.88 0.87 

NIC=50 

NNC=100 0.90 0.90 0.89 0.80 0.64 0.61 0.95 0.95 0.94 

NNC=200 0.88 0.88 0.87 0.81 0.67 0.60 0.93 0.92 0.92 

NNC=300 0.87 0.86 0.86 0.81 0.71 0.60 0.92 0.91 0.91 

NNC=400 0.86 0.85 0.86 0.82 0.75 0.60 0.91 0.90 0.91 

NNC=500 0.86 0.83 0.82 0.82 0.79 0.77 0.91 0.89 0.87 

Mean 0.87 0.86 0.86 0.81 0.71 0.63 0.92 0.91 0.91 

NIC= 

100 

NNC=100 0.94 0.94 0.93 0.81 0.64 0.59 1.00 1.00 1.00 

NNC=200 0.91 0.91 0.90 0.82 0.68 0.60 0.96 0.95 0.95 

NNC=300 0.89 0.89 0.89 0.81 0.71 0.59 0.94 0.94 0.94 

NNC=400 0.88 0.88 0.88 0.81 0.75 0.59 0.93 0.92 0.93 

NNC=500 0.88 0.86 0.86 0.81 0.78 0.77 0.93 0.91 0.90 

Mean 0.90 0.89 0.89 0.81 0.71 0.63 0.95 0.94 0.94 

Overall Mean 0.86 0.85 0.84 0.82 0.73 0.65 0.92 0.91 0.91 
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Table 8-3.  The DoC results for the evaluation metrics studied in this paper (the last three 
comparisons). Res1, Mean and Res10 stand for the finest resolution, the average of 10 resolution 
values and the coarsest resolution, respectively. 

 
 

DoC(HF,
FPR
TPR

) DoC(HF,Kappa) DoC(
FPR
TPR

,Kappa) 

Res1 Mean Res10 Res1 Mean Res10 Res1 Mean Res10 

NIC=10 NNC=100 0.83 0.91 1.00 0.94 0.91 0.88 0.86 0.82 0.83 

NNC=200 0.86 0.93 1.00 0.93 0.91 0.88 0.90 0.85 0.83 

NNC=300 0.87 0.94 1.00 0.93 0.91 0.88 0.92 0.88 0.83 

NNC=400 0.87 0.94 1.00 0.92 0.91 0.88 0.93 0.89 0.83 

NNC=500 0.87 0.95 1.00 0.92 0.91 0.90 0.94 0.91 0.89 

Mean(std) 
0.86 0.93 1.00 0.93 0.91 0.88 0.91 0.87 0.84 

NIC=50 NNC=100 0.81 0.66 0.63 0.94 0.95 0.95 0.83 0.67 0.64 

NNC=200 0.83 0.71 0.65 0.94 0.94 0.95 0.85 0.73 0.66 

NNC=300 0.84 0.76 0.66 0.94 0.94 0.95 0.87 0.78 0.67 

NNC=400 0.84 0.80 0.66 0.94 0.93 0.95 0.88 0.82 0.68 

NNC=500 0.84 0.84 0.82 0.93 0.93 0.95 0.88 0.86 0.85 

Mean (std) 0.83 0.75 0.68 0.94 0.94 0.95 0.86 0.77 0.70 

NIC= 

100 

NNC=100 0.79 0.63 0.58 0.94 0.94 0.93 0.81 0.63 0.58 

NNC=200 0.82 0.69 0.61 0.95 0.95 0.95 0.84 0.70 0.62 

NNC=300 0.83 0.73 0.61 0.94 0.94 0.95 0.85 0.75 0.63 

NNC=400 0.83 0.78 0.61 0.94 0.94 0.95 0.86 0.80 0.64 

NNC=500 0.83 0.82 0.81 0.94 0.93 0.93 0.86 0.84 0.82 

Mean  0.82 0.73 0.64 0.94 0.94 0.94 0.84 0.75 0.66 

Overall Mean  0.84 0.81 0.78 0.94 0.93 0.92 0.87 0.80 0.73 
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Table 8-4.  The DoD results for the evaluation metrics studied in this paper (the first three 
comparisons). Res1, Mean and Res10 stand for the finest resolution, the average of 10 resolution 
values and the coarsest resolution, respectively. 

 

 
DoD(OA,HF) DoD(OA, 

FPR
TPR

) DoD(OA,Kappa) 

Res1 Mean Res10 Res1 Mean Res10 Res1 Mean Res10 

NIC=10 NNC=100 0.09 4.22 5.00 1.14 8.52 5.00 0.00 0.06 0.10 

NNC=200 0.09 7.98 10.00 0.55 11.35 10.00 0.00 0.03 0.05 

NNC=300 0.12 11.01 15.00 0.36 11.23 15.00 0.00 0.02 0.03 

NNC=400 0.15 14.68 20.00 0.38 14.91 20.00 0.00 0.01 0.03 

NNC=500 0.20 18.38 25.00 0.30 18.59 25.00 0.00 0.01 0.02 

Mean(std) 0.13 11.25 15.00 0.55 12.92 15.00 0.00 0.02 0.05 

NIC=50 NNC=100 0.02 0.24 0.41 3.29 19.18 13.27 0.01 0.08 0.14 

NNC=200 0.02 0.37 0.72 1.22 19.75 22.09 0.01 0.03 0.07 

NNC=300 0.02 0.43 1.05 0.63 15.73 31.23 0.00 0.02 0.06 

NNC=400 0.02 0.35 1.38 0.43 9.64 40.55 0.00 0.01 0.03 

NNC=500 0.02 0.10 0.20 0.29 1.22 1.55 0.00 0.00 0.00 

Mean (std) 0.02 0.30 0.75 1.17 13.10 21.74 0.00 0.03 0.06 

NIC= 

100 

NNC=100 0.03 0.10 0.20 5.37 24.66 18.07 1.00 1.00 1.00 

NNC=200 0.02 0.12 0.25 2.04 23.36 26.70 0.01 0.04 0.08 

NNC=300 0.02 0.13 0.33 1.06 18.73 36.41 0.01 0.02 0.06 

NNC=400 0.02 0.11 0.41 0.70 11.76 46.90 0.01 0.01 0.04 

NNC=500 0.01 0.05 0.12 0.47 2.05 2.57 0.01 0.00 0.01 

Mean  0.02 0.10 0.26 1.93 16.11 26.13 0.21 0.22 0.24 

Overall Mean  0.06 3.88 5.34 1.22 14.05 20.96 0.07 0.09 0.11 
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Table 8-5.  The DoD results for the evaluation metrics studied in this paper (the last three 
comparisons). Res1, Mean and Res10 stand for the finest resolution, the average of 10 resolution 
values and the coarsest resolution, respectively. 

 
DoD(

FPR
TPR

,HF) DoD(HF,Kappa) DoD(
FPR
TPR

,Kappa) 

Res1 Mean Res10 Res1 Mean Res10 Res1 Mean Res10 

NIC=10 NNC=100 0.07 0.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00 

NNC=200 0.06 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

NNC=300 0.12 0.02 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

NNC=400 0.15 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

NNC=500 0.33 0.03 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mean(std) 0.13 
0.15 0.01 1.00 0.00 0.00 0.00 0.00 0.00 

NIC=50 NNC=100 0.01 0.00 0.00 0.14 0.21 0.21 0.01 0.00 0.00 

NNC=200 0.02 0.00 0.00 0.07 0.06 0.06 0.01 0.00 0.00 

NNC=300 0.03 0.00 0.00 0.06 0.03 0.04 0.01 0.00 0.00 

NNC=400 0.03 0.00 0.00 0.03 0.01 0.01 0.01 0.00 0.00 

NNC=500 0.04 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 

Mean (std) 0.02 0.03 0.00 0.00 0.06 0.07 0.07 0.01 0.00 

NIC= 

100 

NNC=100 0.02 0.00 0.01 36.23 14.10 4.96 0.19 0.06 0.06 

NNC=200 0.02 0.00 0.00 0.19 0.22 0.24 0.01 0.00 0.00 

NNC=300 0.03 0.00 0.00 0.26 0.16 0.14 0.02 0.00 0.00 

NNC=400 0.03 0.00 0.00 0.16 0.08 0.07 0.02 0.00 0.00 

NNC=500 0.04 0.00 0.07 0.20 0.06 0.02 0.03 0.01 0.00 

Mean  0.02 0.03 0.00 0.02 7.41 2.92 1.09 0.05 0.02 

Overall Mean  0.06 0.07 0.01 0.34 2.49 1.00 0.38 0.02 0.01 
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Table 8-6 .  The effect of weights on average values of DoC.  

 

 Case 1 Case2 Case 3 Case 4 

DoC(OA,HF) 

Res1 0.86 0.96 0.98 0.99 

Mean 0.85 0.96 0.98 0.99 

Res10 0.84 0.96 0.98 0.99 

DoC(OA, 
FPR
TPR

) 

Res1 0.81 0.94 0.98 0.98 

Mean 0.71 0.91 0.97 0.97 

Res10 0.65 0.89 0.96 0.97 

DoC(OA,Kappa) 

Res1 0.91 0.97 0.99 0.99 

Mean 0.91 0.98 0.99 0.99 

Res10 0.91 0.98 0.99 0.99 

DoC(HF, 
FPR
TPR ) 

Res1 0.83 0.94 0.97 0.98 

Mean 0.80 0.93 0.97 0.97 

Res10 0.78 0.92 0.96 0.97 

DoC(HF,Kappa) 

Res1 0.94 0.98 0.99 0.99 

Mean 0.93 0.98 0.99 0.99 

Res10 0.92 0.98 0.99 0.99 

DoC(
FPR
TPR ,Kappa) 

Res1 0.86 0.95 0.98 0.98 

Mean 0.79 0.93 0.97 0.97 

Res10 0.73 0.91 0.96 0.97 
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Table 8-7.  The effect of weights on average values of DoD.  

 

 Case 1 Case2 Case 3 Case 4 

DoD(OA,HF) 

Res1 0.10 0.14 0.33 0.56 

Mean 4.31 4.34 4.47 4.62 

Res10 5.34 5.43 5.78 6.15 

DoD(OA, 
FPR
TPR

) 

Res1 1.83 1.61 1.23 1.05 

Mean 15.47 13.73 10.49 8.89 

Res10 20.96 18.54 13.89 11.52 

DoD(OA,Kappa) 

Res1 0.07 0.09 0.18 0.29 

Mean 0.09 0.12 0.27 0.45 

Res10 0.11 0.17 0.43 0.76 

DoD(
FPR
TPR

,HF) 

Res1 0.01 0.05 0.23 0.41 

Mean 0.00 0.01 0.04 0.05 

Res10 0.00 0.01 0.05 0.10 

DoD(HF,Kappa) 

Res1 2.03 0.43 0.25 0.24 

Mean 0.83 0.33 0.27 0.32 

Res10 0.38 0.19 0.16 0.19 

DoD(
FPR
TPR ,Kappa) 

Res1 0.01 0.05 0.18 0.33 

Mean 0.00 0.02 0.06 0.11 

Res10 0.00 0.01 0.05 0.08 

 

2) OA vs. 
FPR
TPR :  Based on the results in Table 8-2, both metrics are consistent 

with each other (DoC(OA, 
FPR
TPR )>0.6 for all the cases studied). However, the 

consistency between these metrics is lower than what was achieved between OA and HF. 
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In other words, OA is more consistent with HF than it is with
FPR
TPR .  However, note that 

for finer resolutions, DoC(OA, 
FPR
TPR ) increases above the 0.8 level. This important 

observation shows that, based on coarse resolutions, one cannot make a general statement 

as to “how much” two metrics are consistent with each other. Only a general statement 

about whether or not the two metrics are consistent with each other can be made. The 

DoD(OA, 
FPR
TPR ) from Table 8-4 shows that the amount DoD of one metric over another 

depends on the values of NIC and NNC. Although most of the results (especially from the 

coarser resolutions) indicate that OA is a better option, a general statement cannot be 

made. We thus conclude that depending on the values of NIC and NNC , the superior metric 

should be determined. 

3) OA vs. Kappa: OA and Kappa have a high DoC for all the cases studied here 

(see Table 8-2). This is not surprising. According to (8-31), A, the definition of Kappa 

depends on the definition of OA. Table 8-4 shows that with the exception of the balanced 

case (where  1
IC

NC

N
N ), Kappa is more discriminant than OA and is thus more suitable.  

4) HF vs. 
FPR
TPR : DoC(HF, 

FPR
TPR ) is above the 0.6 level for all the cases studied 

here, so both metrics are consistent with  each other. As Table 8-5 shows, HF is more 

discriminant than 
FPR
TPR  and is thus considered as more suitable.  

5) HF vs. Kappa: HF and Kappa are consistent with each other with 

DoC(HF,Kappa)>0.85 for most cases studied (see Table 8-3). As shown in Table 8-5, 

with the exception of the balanced case (where  1
IC

NC

N
N ), in all other cases Kappa is 

found to be more discriminant and thus more suitable than HF.  
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6) Kappa vs. 
FPR
TPR : These metrics are consistent with each other with DoC>0.58 

as shown in Table 8-5. For all cases studied here, Table 8-5 demonstrates that 

DoD(
FPR
TPR ,Kappa)>>1, and thus Kappa is found superior than

FPR
TPR . 

Overall, the performances of Kappa and HF was superior and those of OA and 

FPR
TPR were inferior in directing the model selection algorithm on the (TPR,FPR) domain. 

This argument does not hold for all NCN  and ICN  values, although the results indicate 

that for a particular
IC

NC

N
N , the most suitable evaluation metric can be selected from a pool 

of available evaluation metrics.  

As seen from Table 8-6, when the weights of moving between the DROP region 

and the region outside the DROP increases (from Case 1 to Case 4), DoC significantly 

increases for all cases. This observation indicates that these metrics are more consistent 

with each other when moving from the DROP region to the other region and vice versa. 

Similarly the value of DoD changes as the weights of moving between the two regions 

increase (from Case 1 to Case 4 in Table 8-7). Again, this indicates that when it comes to 

comparisons between two regions, DoD can significantly vary. This is especially the case 

for
FPR
TPR . While this metric did not perform very well in general, it performed much 

better when moving from one region to another. This is demonstrated by observing the 

increase in the DoD value of 
FPR
TPR  compared to the other three metrics in Table 8-7. 

     In all the cases studied, the DoC values were consistently above the 0.5 

threshold, no matter which resolution was used. However, the DoD results were less 

consistent. We have plotted the percentage of consistency between different resolutions 

in Figure 8-6. For ALL the cases studied here, this figure shows how many times 

Resolution i and Resolution j reached the same conclusion about DoD (only the results of 

Case 1 are presented here). As seen from this figure, there is a high correlation here. This 

indicates that instead of using high resolutions, lower resolutions can also be used. This 
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results in significant savings in simulation time. As an example, going from Resolution 1 

to Resolution 2 results in approximately 1234   times less computation and going 

from Resolution 1 to Resolution 3 results in reducing the amount of computation by a 

factor of 7289  . 
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Figure 8-6. Consistency between different resolutions in reaching the same conclusion for the cases 
studied here. The chart attributes to DoD results.    

8.6 Discussion and conclusions  

Model tuning is a crucial step in the design of most classification algorithms. The 

results, however, depend on the evaluation metric used. As argued in the Introduction 

section, finding a suitable evaluation metric is not always easy, especially for 

classification algorithms with highly imbalanced classes such as in self-paced brain 

computer interface (SBCI) systems. A poorly chosen evaluation metric may mislead the 

model tuning procedure. Determining a suitable evaluation metric is thus of great 
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importance, but until recently it has been very difficult to compare the different 

performances of different evaluation metrics. 

This paper addresses the problem of finding the most suitable metric from a given 

set of metrics. We first propose a framework for comparing evaluation metrics that are or 

could be used for classification problems with a large number of test samples. To 

decrease the computational complexity, a sub-sampling grid-based approach is then 

proposed. As a case study, we apply the proposed framework to compare four evaluation 

metrics defined for SBCI systems.  

Based on the results presented in Section 8.5.2, it can be concluded that in finding 

a suitable evaluation metric, the number of available positive and negative samples (and 

their ratios) may impact the outcome of whether a particular evaluation metric is 

preferred over another. Depending on the requirement of the problem statement, the 

number of available test samples of each class and their ratios, must be taken into 

consideration when choosing a metric that can guide the solution to the DROP region. 

However, in most cases studied here, Kappa and HF outperformed OA and 
FPR
TPR .  

Weights can be used to increase the relative importance of moving from the 

DROP to another region containing the points outside the DROP. They form a strong tool 

for analyzing how well an evaluation metric behaves when moving between different 

regions in the (TPR,FPR) domain. The results in Table 8-6 and Table 8-7 show that as the 

weights assigned to moves between the two regions increase, DoC, the degree of 

consistency, between the metrics significantly increases as well. This observation shows 

that when comparing evaluation metrics over different regions, the performance of all 

metrics was highly consistent with each other. 

From the computational point of view, the proposed framework is more efficient 

than the original framework in [4], as explained in Section8.3. This is an important 

advantage, especially when exploring classification problems with highly imbalanced 

classes, i.e., where the number of test samples in one class is significantly larger than 

those in the other class.  
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An important part of using the proposed framework is that of determining the 

DROP region. Very few SBCI studies have determined their classification goal, or the 

DROP region [24, 25]. We suggest the following approaches for defining DROP: 1) 

Using previous knowledge: if some knowledge exists that a particular TPR and FPR are 

suitable for the operation a particular SBCI system, DROP can be defined using this 

knowledge. 2) Simulated experiments can be carried out with test pilots to find the DROP 

region that the users find acceptable. 3) The results published in previous studies can be 

considered as a starting point for future research. Those results can be used to determine 

as the DROP region. Since the knowledge referred to in approach (1) is usually not 

readily available and approach (2) needs conducting an extensive research, we propose 

the use of approach (3) for determining the DROP region. 

The main focus of this paper has been on choosing metrics for model tuning. The 

same principles can be applied when comparing the performance of different 

classification problems. Suppose algorithm A achieves a performance equal to x using 

evaluation metric f and algorithm B achieves a performance equal to y using evaluation 

metric g. By using DoC we can examine whether both metrics are consistent. If they are, 

DoD can be used to determine which evaluation metric is better than the other. 

The proposed framework does not only apply to SBCI systems, it can also be 

applied to other classification problems with discrete states and a large number of test 

samples. Imbalanced dataset frequently arise in many other real-world situations 

including fraud detection [3], event classification in high energy physics [26], rare 

diagnosis such as thyroid diseases [27], and detection of oil spills in satellite radar images 

[28]. The proposed framework is expected to aid the researchers to choose a more 

suitable evaluation metric for the validation procedure. It should also be stressed that the 

proposed framework can be used for comparing evaluation metrics in any classification 

problem with a large number of test samples, i.e., independent of the class ratios. 
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CHAPTER 9 NEW STUDIES ON THE DESIGN OF A 2-
STATE SELF-PACED BRAIN COMPUTER INTERFACE 
SYSTEM WITH A LOW FALSE ACTIVATION RATE9 

 

9.1 Introduction 

Brain-computer interface (BCI) systems provide an alternative communication 

channel for individuals with severe motor disabilities. A BCI system bypasses the 

traditional sensorimotor pathways and uses the brain signals to control objects (see [1, 2] 

for reviews of BCI systems).  

Most of the current BCI systems are designed such that they can only be activated 

during certain periods specified by the system. These types of BCI systems are called 

synchronized BCI systems. Their main characteristic is that they require constant user 

attention during the control periods, i.e., the periods when they are activated. As a result, 

these systems can not usually handle the “no control (NC)” state of the user, i.e., when 

the user does not intend to control (i.e., activate the system). In contrast, self-paced BCI 

(SBCI) systems are BCI systems that allow the user to perform a control action whenever 

he or she desires. These systems should thus be able to distinguish an intentional control 

(IC) command from the NC states. Please see [1, 3-5] for more information on 

synchronized and self-paced BCI systems. 

While SBCI systems allow the users to have more freedom as to when to control 

the system, from the pattern recognition point of view, they create a much more 

challenging design problem compared to synchronized BCI systems. On one hand, an 

SBCI system should be able to recognize IC commands and thus should have a 

                                                 
9 A version of this chapter will be submitted for Publication. Fatourechi, M., Ward, R.K., and Birch, G. E., 

“New studies on the design of a 2-state self-paced brain computer interface system with a low false 
positive rate”, submitted. 
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reasonably high true positive rate, TPR. On the other hand, the system should not be 

activated during NC periods and should generate very low false positive (FP) activations. 

A review of current SBCI systems demonstrates that most of these designs achieve 

modest TP rates, but their FP rates (FPR) are unfortunately too high for many practical 

applications [5-13]. The main reason is that SBCI systems generate an output at a 

relatively high rate, which is usually higher than 10Hz as in [6, 8, 14]. This translates into 

a false positive activation every few seconds, even when the FP rate is low 

(e.g., %2FPR  as in [11, 15]). As an example, the most recent design of an SBCI 

system called the low frequency- asynchronous switch design (LF-ASD) achieves an 

average TPR of 41% at the false positive rate of 1% [16]. Since LF-ASD generates an 

output every 1/16th of a second, this FP rate translates into one false positive every 6.25 

seconds. For many applications, such a high FPR can result in user frustration, especially 

if the TP rate is not very high. 

In [17], we proposed a new SBCI system, which achieved a low FP rate (average 

FP rate was 0.1%), at a modest TP rate (average TP rate was 56.2%). Since the system 

generated an output every 1/8th of a second, this error rate results in a false activation 

roughly every “two minutes”. This is much lower than those reported in previous EEG-

based SBCI systems. Because of the good performance of this system, in this Chapter, we 

examine its performance when used under more general situation. First, we investigate if 

the system can be generalized to detect patterns related to another IC command, besides 

that of a right index finger flexion movement.  The ability of an SBCI system to detect 

more IC commands provides the users with more control options. For example, during a 

“menu selection” application, one IC command can be used to control the movement of 

the selection box, while the other can be used to actually make the selection.  Second, the 

performance of the system is investigated during periods for which the user is engaged 

with other mental activities, i.e, the system is investigated with NC data that are more 

engaging than those of previous studies. NC data in SBCI studies have usually been 

recorded over periods during which users are in an “idle” state. Examples of these data 

are those recorded between two successive movement attempts by a user or during some 

periods over which the user is not performing any particular task [11, 15]. In real-life 

applications, however, the user of an SBCI system may be engaged with any mental NC 
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activity when not controlling a device. Many such activities are of an engaging nature, 

i.e., the activity may require attention and mental activities other than that attributed to 

controlling the SBCI system. These activities may unfortunately generate patterns that 

can generate false positives in the system. As an example, studies have shown that 

“attention” can block the Mu rhythm. This can result in the generation of an event-related 

desynchronization in the Mu rhythm, similar to the one generated as the result of a 

movement intended to control a device [5]. Based on these discussions, it is necessary 

that the performance of the system is also tested with “engaging NC data”, e.g., data 

collected when the user is engaged with mental activities that require a higher level of 

thinking. Because of the more engaging nature of such NC data,  we expect that the 

performance of the system would deteriorate. However, in this Chapter, we show that  the 

system’s good performance is maintained even when NC data of engaging nature are 

used.  

In this Chapter, we study the performance of the system using data related to the 

right hand extension movement .The data were recorded in a self-paced fashion but under 

a more engaging environment than those used in previous studies. The data were 

recorded as participants were playing a Tetris-like game.  The NC data were collected as 

the users were mentally engaged with the game, as explained in more details in the next 

section. To improve the performance of the system, we carried out the following:  

1) Implementing a better artifact monitoring system: Artifacts are unwanted 

potentials that can degrade the system’s performance. For this study, a new artifact 

monitoring system that monitors the eye movement activities as well as the movements 

of the frontalis muscles was built. The aim is to ensure that the system is not activated by 

eye blinks or the movements of the frontalis muscles. In our previous studies, only eye 

movement activities were monitored while recording the data. Because MRPs and eye 

blink activities share the same frequency bands, this monitoring scheme may have been 

good enough for some of our earlier SBCI designs which only relied on the detection of 

the MRP neurological phenomenon [5, 6, 11, 15, 18]. A better artifact monitoring scheme 

is however needed for a system that uses neurological phenomena whose frequency 

bands are different from that of MRPs, as is the case with the system under investigation 

here. Such monitoring is necessary to ensure that the source of the control initiates from 
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the brain and not from the peripheral muscles such as the eye or facial muscles. Evidence 

from the literature shows that muscle activities from the arm and leg muscles are not 

concurrent with EEG-based communication [19], so we these types of artifacts were not 

studied here. However, the effects of facial muscles need to be investigated more 

thoroughly, as they are closer to the locations where EEG electrodes are placed.  

2) More suitable evaluation metric for model selection: Selecting a suitable 

evaluation metric for SBCI systems during the model selection procedure is still an issue 

under debate. Various metrics such as the overall classification accuracy[6], HF-

difference[20], the mutual information (information transfer rate) [21], Kappa [22], the 

area under the receiver operating characteristics (ROC) curve [22] , the TP rate at a fixed 

FP rate [11] have been proposed. SBCI researchers, however, have yet to agree as to 

which evaluation metric is more suitable for evaluating a particular SBCI application. In 

Chapter 8, we proposed a new framework for selecting an evaluation metric for an SBCI 

system during the model selection procedure. Given a number of evaluation metrics, this 

framework can help the designer choose the most suitable one for the specific application 

considered. In this paper, we apply this framework to choose a suitable metric for 

summarizing the performance during the model selection procedure. 

3) More suitable referencing method: The choice of a suitable referencing 

method can affect the quality of EEG signals used for control. In the BCI literature, 

different montages have been proposed to effectively extract the “localized” EEG activity 

and thus provide suitable means of control. The proposed referencing methods include 

monopolar, bipolar, common average reference (CAR), small and large Laplacian [23-

25]. Thus, a number of studies that compare different referencing methods have been 

discussed in the literature [23, 24]. 

In the previous studies of our group, two different referencing methods have been 

used: monopolar (referenced to common ear electrodes) and bipolar. Given the relatively 

low number of EEG channels used in these studies, these two montages seemed to be 

more suitable than others. Some evidence from our previous research suggests that MRP 

features extracted from bipolar EEG signals are more suitable than monopolar EEG 

signals for the purpose of SBCI control [5, 18]. However, a specific study has not been 
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conducted yet to compare these two referencing methods.  In this paper, we compare the 

performance of the SBCI system based on monopolar and bipolar montages during the 

classification of IC and NC epochs. The aim is to determine if the bipolar montage is 

indeed superior to the monopolar montage as suggested by earlier indications.  

In the next section, the experimental paradigm used for data recording is 

described in detail.   

9.2 Experimental paradigm 

9.2.1 Data recording 

Five right-handed individuals (four males and one female) between 20 and 30 

years old (mean 26 years) participated in this study.  These individuals were denoted by 

AB1 to AB5 (AB stands for able-bodied). The study consisted of two sessions, each 

session was of two hours duration. All the participants signed consent forms prior to the 

beginning of the experiment. This study has been approved by the Behavioral Research 

Ethics Board (BREB) of the University of British Columbia.   

EEG data were collected from the participants while they played a version of a 

game called PowerWord [26]. This game has a similar structure as Tetris, a falling puzzle 

video game. In Tetris, shapes composed of 4-square blocks fall down on the playing 

field. The object of the game is that users should move or rotate these blocks to make a 

horizontal line of blocks without gaps. If such line is created, it disappears and any blocks 

that rest above this line (if any) would fall down. PowerWord has the same structure as of 

Tetris, however, instead of cubes, letters fall down. The aim is to make meaningful words 

by moving the letters to the right position.  At the start of each run, the first four rows of 

the playing field were randomly filled by letters. The playing field consists of six 

columns and 12 rows. This means that at the time of initialization, at most 24 letters 

would have been randomly placed on the playing field. A letter then starts falling down 

from the upper-left corner of the playing field. It takes 4.5 seconds as a letter moves from 

one row to another. The user’s task is to move the letters to the right position such that 

after falling down, the letter constitutes a meaningful word with the letters that have 

already been in the playing field. In order for a combination of letters to be recognized as 
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a word, it should have 3, 4, 5 or 6 letters and should be meaningful. A local database is 

used for searching and identifying the meaningful words. After a word is recognized by 

the system, it appears on the right hand column and a score in the form of (number of 

letters in the created word-2)  10 is given to the user. The letters constituting that word 

would then disappear from the playing field. The user’s task is to create as many words 

as possible in a 5-minute period. No timer was shown on the playing field so as to 

eliminate any possible source of anxiety. The participants were assured repeatedly that 

their performance is not evaluated against other users. Instead, they were asked to solely 

focus on the game and perform the required movements.  

Once a letter appeared on the screen, the participants had to first think and decide 

the location the letter should be moved to. When the user decided on this location, then 

he/she was asked to solely focus on moving the letter to the desired position. This was 

done by activating a custom-made hand switch. The switch was made such that in the rest 

position, it was deactivated, but as soon as the user extended his/her right hand, the 

switch became activated. The participants were asked to avoid pressing the switch 

successively. Instead, after each movement, they were asked to wait until the letter goes 

down for at least one row before they made their subsequent movement attempt (if 

needed). The interval between two successive movement attempts was chosen to be 4.5 

seconds, to ensure that the neurological phenomena related to any two successive 

movements do not overlap. The individuals were asked to avoid blinking or moving other 

parts of their body, when they activated the switch. After moving a specific letter to its 

desired location, the user was free to perform other mental tasks including thinking about 

where to place the next letter (the next letter is displayed in a column on the right hand 

side of the playing field). 

We collected NC data in two ways. First, we analyzed the periods between two 

successive movement (IC) attempts and selected the NC data as the periods that were not 

contaminated with artifacts. These data mostly involved the periods when the user was 

thinking about creating a word with the next letter. We also recorded up to two separate 

NC recordings during each session. Each NC recording lasted about three minutes. 

During an NC recording, the user was asked to watch a movie of the game as played by 
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another user. The user was asked to follow the game and think about the locations he/she 

would have moved the letters to, had he/she was playing the game.  

EEG data were collected from 13 monopolar electrodes positioned over the 

primary sensory motor cortex and supplementary motor area, references to linked ear 

electrodes. The electrodes were placed according to the International 10-20 system at F1, 

Fz, F2, FC3, FC1, FCz, FC2, FC4,C3, C1, Cz, C2 and C4 locations.  EOG signals were 

recorded by measuring the activity of both eyes. Two electrodes were placed at the corner 

and below each eye. The EOG activity of each eye was measured as the difference 

between these two electrodes. EMG activity was measured as the difference between two 

electrodes placed on the forehead above the right eye. The first electrode was placed 

about 1 cm above the eyebrows and the second one was placed 3 cm above the first 

electrode (as recommended in [27] ). All signals were sampled at 256 Hz.   

After the recorded signals were stored on the hard disk of a personal computer, 

they were converted to bipolar EEG signals. The conversion was carried out by 

calculating the difference between adjacent EEG channels and resulted in the following 

18 bipolar EEG signals: F1-FC1, F1-Fz , F2-Fz, F2-FC2 , FC3-FC1, FC3-C3, FC1-FCz, FC1-

C1, FCz-FC2, C1-Cz, C2-C4 , FC2-FC4 , FC4-C4 , FC2-C2 , FCz-Cz , C3-C1 , Cz-C2 and Fz-

FCz .   

9.2.2 Artifact monitoring 

EOG signals were first low-pass filtered to the [0, 5] frequency band using a 32-

point linear-phase FIR filter. The eye blinks were detected when the difference between 

the electrodes around an eye exceeded a certain threshold. This threshold was determined 

separately for each participant and it was determined after careful examination of the data 

segments which contained eye blinks.  

EMG artifacts from the frontalis muscles were detected using a procedure similar 

to the one suggested in [28]. The EMG signal was first filtered so it lies between [5,100] 

Hz. The root mean square (RMS) of the signal was calculated after applying an averaging 

sliding window of 25 ms width.  In order to detect an EMG activation, the level of noise 

should first be estimated. This was done by treating the baseline EMG activity as 
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stochastic noise. The average RMS value of the EMG in the first 5 seconds of each 

recording was then calculated and the value of the noise level was estimated as three 

standard deviations from the mean value. If in an epoch, the amplitude of the EMG signal 

exceeded this value for a minimum of 20 ms, that epoch was marked as contaminated 

with EMG artifacts. We tested the performance of this detector as follows.  The 

participants were asked to slightly raise their eyebrows at certain intervals specified by 

the monitoring system. The amount of raising the eyebrow was demonstrated to each 

participant by the experimenter before the experiment. Overall, raising eyebrows created 

distinct patterns in the EMG as well as EEG signals. The proposed detector was then 

applied to the data and it was able to successfully detect the periods when the users raised 

their frontalis muscles.  

The outputs of EMG and EOG artifact detectors were then combined using an 

“AND” operator. Any artifact-contaminated period was removed from the analysis.  

9.3 System design methods 

9.3.1 Generating the IC and NC data 

An epoch was considered to be an intentional control (IC) if the data collected 

over the epoch’s time interval contained the onset of a movement, i.e., a hand switch was 

activated and no artifact was detected during that epoch. The interval started at tstart= -1 

second, i.e., 1 second before the onset of movement, and ended at  tfinish =1, i.e., 1 second 

after the onset of movement.  

NC data were selected from the NC recordings as well as the EEG data between 

IC attempts. NC epochs were formed of 1-second segments as follows: a window of 

width (tfinish -tstart) seconds was slid over each EEG signal by a step of 8 time samples 

(i.e., every 0.0625 sec), resulting in 16 classification decisions per second. If no artifacts 

were detected within that 1-second window, then that window was declared to be an NC 

epoch.  

The structure of the SBCI is shown in Figure 9-1 (please refer to [17] for more 

information about this system).  
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Figure 9-1. The overall structure of the SBCI (from [17]). The dashed lines show the parts of the 
system whose values are determined by the hybrid genetic algorithm (HGA). 

9.3.2 Feature extraction 

We first describe the feature extraction method for MRPs, followed by the 

method for feature extraction for Changes in the Power of the Mu Rhythms (CPMR) and 

Changes in the Power of the Beta Rhythms (CPBR). For each neurological phenomenon 

in each of N EEG signal, features are extracted using the stationary wavelet transform 

(SWT). A 6-level SWT decomposition resulted in the generation of wavelet coefficients 

in the following frequency bands: [64-128], [32-64], [16-32], [8-16], [4-8], [2-4], and    

[0-2] Hz.  

Suppose pkjc ,, and pkjd ,,  are the approximation and detail coefficients at scale j 

and translation k of  the pth epoch in the training set of the IC commands.  The averages 

of the approximation and detail coefficients at scale j and translation k ( kjc ,


 , kjd ,


) are:  
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    The approximation template at scale j ( jTemplateC ) and the detail template at 

scale j ( jTemplateD )  are then obtained using the following formulae:  

),...,2,1,,...,2,1(},{ SamplesLevel NkNjkjj cTemplateC 


                                  (9-3) 

),...,2,1,,...,2,1(},{ SamplesLevel NkNjkjj dTemplateD 


                       (9-4) 

  Let ),...,2,1and,,...,2,1,,...,2,1(}{ ,,, NpNkNjcC SamplesLevelpkjpj   be the 

set of all approximation coefficients at scale j of the pth epoch. The cross-covariance 

between jTemplateC and pjC , is then calculated as follows: 

 )))((()( ,,





jj CnmpjTemplateCmjpj CTemplateCEnXCOR       (9-5) 

where E  is the expected value operator. After calculating )(, nXCOR pj for each epoch, the 

following features, representing the maximum of the cross-correlogram over a period of 

0.125 seconds, are extracted: 

]0625.0,0625.0[)],([ ,,  finishstartfinishstartpjnpj ttttnnXCORMaxF   (9-6)        

where (tfinish -tstart) is the length of the epoch, and tfinish and tstart show the start and finish 

of an epoch. Figure 9-2 demonstrates an example of this feature extraction method, 

assuming that the length of the epoch and the template are both  tfinish -tstart = 2  seconds 

(the duration of the cross-covariance signal will thus be four seconds). The feature 

extractor considers a window of width 0.0625 seconds around the middle point of the 

cross-correlogram (i.e., at time t= tfinish -tstart= 2 seconds). This window covers the time 

from 0625.0
2
125.0

1 t  seconds before to 0625.0
2
125.0

2 t  after  t = 2 seconds. 

The maximum value in (9-6) is then calculated over this window with width of 0.125 



 

 286

seconds,. Features are then generated by sliding a window over the EEG signal in steps of 

0.125 seconds (see Figure 9-2).  

 
Figure 9-2. An example of how features are extracted using the proposed cross-covariance method. 

Apart from the above features, the following features are also extracted: 

))(( ,,, pjpjpj FnXCORtT                        (9-7) 

where t is the time operator. This feature provides information about the time instant 

when the maximum of the cross-correlogram occurs. Similar formulae can be obtained 

for the detail coefficients and for the features extracted from the NC epochs. This process 

is repeated for all EEG channels. Because MRPs are of low-frequency nature, we select 

the features belonging to the coarsest approximation and detail levels. As a result,  four 

MRP features are generated for each EEG channel. 

To extract features related to the CPMR and CPBR, EEG signals are band-pass 

filtered before feature extraction. For CPMR, the band pass is chosen from 8 to 12Hz and 

for CPBR, the band-pass is chosen as 22 Hz to 30 Hz. Both filters are linear phase 32-
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point FIR filters. The amplitudes of the bandpass-filtered signals are squared to obtain 

their power values. SWT is then applied and the wavelet coefficients of the power signals 

are calculated. The rest of the feature extraction process is similar to that used for MRPs 

and it yields four CPMR features and four CPBR features for each EEG channel. 

The wavelet function for each neurological phenomenon and for each EEG 

channel is selected from a pool of Daubechies, Biorthogonal, Symlet and Coiflet wavelet 

functions (46 wavelet functions in total). This is done by calculating the Fisher ratios for 

each channel. Please refer to [17] for more details.  

9.3.3 Feature classification  

The features for each neurological phenomenon in an EEG channel are classified 

as an IC or NC state using a support vector machine (SVM) classifier. Prior to 

classification, outliers were removed as follows. Suppose the Mahalanobis distance for a 

feature vector with K variables, ],...,,[ 21 Kxxxx  with an assumed central 

point ],...,,[ 21 Kµ is defined as 

TMahal )()(),( 1 µxµxµx                                   (9-8) 

where  is the covariance matrix evaluated from the data. The outliers are then removed 

using the following algorithm [29, 30]: 

1. Round p. If there exists x  such that ),( µxMahal , 

let   ),( µxx MahalFS . Retain only the points in FS. The value of   was chosen 

such that all training samples further than 4 standard deviations from the mean were 

considered as outliers[31]. 

2. Repeat until the above condition is not met. 

After applying this algorithm, the maximum percentage of features recognized as 

outliers was  1% for both  IC and NC features. 

The proposed configuration resulted in a total of 3N classifiers. The output of 

each SVM is a logical state ‘1’, when an IC pattern is detected and is ‘0’ in other cases. 

We use the LIBSVM software for implementing the SVMs [32] and a Gaussian kernel 
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for the kernel function. The classifier’s performance depends on the regularization 

parameter C and the bandwidth  of the kernel. Since there are N3  classifiers, N3  

values had to be estimated for each parameter. The method of determining these values is 

described later in this section.  

9.3.4 Multiple classifier system 

For each neurological phenomenon, a multiple classifier system (MCS) with a 

majority voting rule classifies the binary outputs of the SVMs (there are N SVMs for 

each neurological phenomenon). In the case the number of classifiers was even and if 

both classes have equal number of votes, the more-frequent class (NC) is chosen as the 

label for the input pattern. The outputs of the three MCSs are then combined using a 2nd-

stage MCS as shown in Figure 9-1. This MCS can have the following five configurations 

for combining the outputs of the three MCSs: (1) Configuration 1: the AND rule is used 

to combine the binary outputs of MCS1 and MCS2 related to MRP and CPBR, 

respectively. The default class is an NC (the logical state ‘0’), unless both MCS1 and 

MCS2 identify an IC command (the logical state ‘1’);  (2) Configuration 2: the AND rule 

is used to combine the binary outputs of MCS1 and MCS3 that are related to MRP and 

CPMR, respectively; (3) Configuration 3: the AND rule is used to combine the binary 

outputs of MCS2 and MCS3 related to MRP and CPBR, respectively; (4) Configuration 

4: the outputs of all three MCSs are combined according to the majority voting rule; (5) 

Configuration 5 : the AND rule is used to combine the outputs of all MCSs. The choice 

of the best configuration is done during the model selection procedure as explained later 

in this section. 

9.3.5 Calculating the TPs and FPs 

The method of calculating the TP rate is shown in Figure 9-3. In Figure 9-3(a), a 

sample EEG signal and in Figure 9-3(b) the output of the physical switch are shown. As 

stated earlier, data from one second before to one second after a decision point are used 

for classification. Assuming the system has no processing delay and the SBCI system has 

the ideal detection rate, the output of the SBCI system should be as demonstrated in 

Figure 9-3(c). In other words, the IC command should be detected one second after 
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pressing the switch. Although, the exact timing of the switch activation is known, the 

neurological phenomena may not be completely time-locked to the switch activation. As 

a result, we also consider any activation in the time range [-0.125, +0.125] seconds 

around the expected activation of the switch as a true positive activation (see Figure 

9-3(c)). Any activation in the NC epochs is considered as a false positive one. 

 
Figure 9-3. Method of calculating the TP rate; (a) EEG Signal; (b) Output of the finger switch; (c) 
Output of the SBCI. 

9.3.6 Metric selection for model evaluation  

The choice of the evaluation metric for summarizing the performance of SBCI 

systems has been under debate by BCI researchers. In synchronized BCI systems, the 

Overall classification Accuracy (OA) and the Information Transfer Rate (ITR) are widely 

used metrics for comparing the performance of synchronized BCI systems. This is not the 

case with self-paced BCI systems, though. It is very difficult to compare the performance 

of different self-paced BCI systems, as a wide variety of metrics such as OA[6], HF-

difference[20], mutual information (information transfer rate) [21], Kappa [22], area 

under the Receiver Operating Characteristic (ROC) curve [22] , the TP rate at a fixed FP 
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rate [11] among others have been proposed in the literature. Currently, no consensus 

exists amongst SBCI researchers as to which metric is more suitable for summarizing the 

performance and how a suitable evaluation metric should be chosen for a particular SBCI 

system [3]. 

In this chapter, we apply the framework in Chapter 8 to find the most suitable 

evaluation metric for the model selection procedure. Consider a 2D space, where one axis 

denotes TPR and the other axis denotes FPR. We call this domain the (TPR,FPR) 

domain. To apply the framework proposed in Chapter 8, first a desired region of 

operation (termed as DROP) is defined on the (TPR,FPR) domain. This region defines 

the area we desire the BCI system to operate in. In other words, the model selection 

procedure should guide the model of the system to this region (see Figure 9-4 for a 

demonstration). Next, we compare the performances of K evaluation metrics to determine 

which is the most suitable in summarizing the performance of the model. The following 

measures should then be calculated for this purpose (for the mathematical definitions and 

the formulae pertained to this sub-section, please refer to Chapter 8): 

Degree of Suitability (DoS): This metric determines if an evaluation metric yields 

higher values for the points inside the desired region of operation (DROP) region 

compared to the points outside the DROP region. The values of DoS vary between 0 and 

1 where ‘0’ means that all points inside DROP have lower values compared to the points 

outside DROP. A value of “1” indicates the opposite case. It is thus desirable that 

evaluation metrics have DoS values close to unity. 

After calculating DoS, the evaluation metrics that are found to be suitable, can be 

compared using the following two measures: 

Degree of Consistency (DoC):  When moving on the (TPR,FPR) domain, this 

measure determines how consistent two metrics are with each other. In other words, 

when moving from an arbitrary point a to an arbitrary point b on the (TPR,FPR) domain, 



 

 291

 
Figure 9-4. An example of dividing the (TPR,FPR) domain into regions. Different movements on the 
(TPR, FPR) space may be associated with different weights. Note that the numbers on each axis 
denote (%). 

 DoC indicates whether the changes in the values of the evaluation metrics are in the 

same direction or not. The values of DoC vary between 0 to1. The value of 1 means that 

both metrics vary in the same direction while a value of “0” means that the metrics vary 

in opposite directions. In order for two metrics to be considered as consistent with each 

other, it is desired that DoC>0.5 [33]. If 5.0DoC  , then this framework cannot be used 

for comparing the evaluation metrics. However, based on our previous simulations in 

Chapter 8 and the simulations in this paper, DoC values between of all metrics tried in 

SBCI systems were higher than 0.5. 

Degree of Discriminancy (DoD): Once two metrics are found to be consistent 

with each other (DoC> 0.5), DoD is applied in order to measure how discriminant one 

metric is over the other. This is done by calculating if one metric is better than the other 

in guiding the model selection procedure towards DROP. In order for a metric f to be 

more discriminant than metric g, it is desired that 1),( gfDoD  and vice versa [33]. 
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Let f and g  be two evaluation metrics defined on the (TPR,FPR) domain.   

If 5.0g)DoC(f,   and 1g)DoD(f,  , then metric f  is said to be superior to metric g  on 

the (TPR,FPR) domain. In this Chapter, we use this framework to select amongst many 

metrics the most suitable one. 

9.3.7 Model selection 

A hybrid genetic algorithm (HGA) is designed to guide the model selection 

procedure towards the DROP area. In other words, the HGA performs the following 

tasks:  1) it selects the features; 2) determines the values of the classifiers’ parameters; 

and  3) selects the best of the five MCS configurations described in the previous sub-

sections.  

To represent each possible combination of features, a binary chromosome of 

length ChromosomeL  is defined. Bit i of the first Nfeatures bits of the binary chromosome 

specifies whether or not feature i is selected by HGA. A value of “1” indicates the 

presence of feature i and a value of “0” indicates its absence in the chromosome. The 

second part of the chromosome is used to select the parameter values of the classifiers. 

For each of the N3  SVM classifiers, two parameter values need to be determined: the 

regularization parameter C and the bandwidth of the Gaussian kernel ( ). A portion of 

the chromosome with length 8 bits is used for the two parameter values. The first four 

bits are used to represent the value of C and the second half is used to represent the value 

of . Exponentially growing sequences are used for C and , i.e., their values vary from 
82 to 72 . For each chromosome, a local search is then carried out to find the best of the 

five configurations in the 2nd-stage MCS.  

The operators of HGA are selected as follows: tournament-based selection 

(tournament size =3), uniform crossover (p=0.9) and uniform mutation (p=0.01). The 

sizes of the initial population and the rest of the populations are chosen as 200 and 100, 

respectively. HGA is randomized initially. Elitism is used to keep the best performing 

chromosome of each population in the subsequent populations. The number of 

evaluations is set to 5000. If for more than 10 consecutive generations, the improvement 
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in the fitness of the best solution was found to be less than 1%, the algorithm is 

terminated.  We discuss the choice of the fitness function in the next Section. 

9.3.8 Evaluation 

A nested cross-validation was used to analyze the performance of the SBCI 

system. The inner cross-validation set was used for selecting the best chromosome and 

the outer cross-validation set was used to test the performance.   For each outer cross-

validation set, 20% of the data were used for testing and the rest were used for training. 

The training datasets were further divided into five folds. For each fold, 80% of the data 

were used for training the SVM and 20% were used for choosing the best chromosome.  

9.3.9 Using ROC curves for summarizing the performance on test sets 

A receiver operating characteristic (ROC) curve depicts the relationship between 

TPR and FPR and thus provides a tradeoff between TPR and FPR. One problem with 

using the ROC curve is that when it is plotted over the whole range of TPR and FPR, 

most SBCI systems produce a curve that is similar to a perfect ROC curve [3]. In this 

study, we propose a new form of the ROC curve for SBCI systems. We define the false 

activation rate (FAR) as the ratio (percentage) of 1-second NC epochs that contain at 

least one false positive decision to the total of number of 1-second NC epochs [18]. For 

example, FAR of x% shows that false positive decisions occurred in x different seconds 

in every 100 seconds of NC data on average.  In the proposed ROC curve, the x-axis is  

the “partial FAR(%)”, i.e., only values of FAR% that are within the acceptable operating 

range of the system. The y-axis is to the same as the traditional ROC curve, i.e., TPR 

values are plotted. One advantage of this new ROC plot over the traditional ROC plot is 

that the interpretation of false positive values is more easily apparent. Please note that in 

the traditional ROC curves, TPR values are plotted vs. FPR. Since the rate at which the 

system generates an output is not considered in the ROC plot, it is not evident whether 

the reported values of TPR at a particular FPR are meaningful. For example, from the 

practical point of view, a TPR of 50% at an FPR of 1% can be meaningless, if the system 

generates 100 outputs per second, i.e., at the rate of 100Hz. This is because this system 

generates one false positive decision every second. So even though the FPR value is low, 
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this does not generate a useful SBCI system. On the other hand, the use of FAR as the x-

axis is meaningful as it clearly shows the percentage of false positives as well as “how 

frequently” false positive decisions have occurred.  

ROC plots were created as follows: as described earlier, each MCS consists of L 

classifiers, each representing the results of classifications from one classifier 

corresponding to a particular EEG channel. Thus, for the monopolar montage, each MCS 

consists of 13 classifiers and for the bipolar montage each MCS consists of 18 classifiers. 

Since one MCS is designed for each neurological phenomenon, there are three MCSs in 

total. The final classification label of each MCS, as discussed earlier, depends on the 

majority voting of the individual classifiers in that MCS. For example in an MCS with 13 

classifiers, at least 7 votes are needed to label an input pattern as class “IC” or else it is 

labeled as class “NC”. The main rational is that after training the classifier, IC epochs get 

the majority number of votes compared to NC epochs. The ROC curve can thus be 

plotted by changing the number of votes from the “majority voting” to “every number of 

votes”. In other words, the values of TPR and FAR are calculated when the number of 

votes that are necessary for labeling an epoch as an IC varies from “1” vote to L votes in 

step of 1. For each specific number of votes, TPR and FAR values are calculated and then 

the results are plotted. It is apparent that when the threshold is set to “1” vote, most 

outputs are labeled as “IC”, since only one vote out of all L votes is necessary to label an 

epoch as IC. In contrast, when the threshold is set at L, all classifiers should label the 

input pattern as “IC’s”. It is thus expected that only few patterns (if any) will be labeled 

as IC. The rest of the cases fall between these two extremes.  

9.4 Results 

In this section, we present the results of this study. First, the results of applying 

the framework to select a suitable evaluation metric is presented. Then the ROC  curves 

for all participants are presented and the results from monopolar and bipolar montages 

are compared.  
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9.4.1 Choosing the evaluation metric for model selection 

We considered four evaluation metrics which have been proposed in the literature 

for the evaluation of SBCI systems.: Overall Accuracy (OA) [6], Kappa [22], HF-

difference [20]and  
FPR
TPR  [17, 34]. We defined DROP as %50TPR and %1FPR . 

These values were chosen based on the results obtained in the previous studies of our 

research group [35]. After applying the proposed framework, all four metrics were found 

to yield high DoS values ( 1DoS ). The value of DoC between all metrics was also 

found to be above 0.8, so all metrics were highly consistent with each other. After 

calculating DoD, the Kappa coefficient was found to be the most discriminant amongst 

the four metrics with 1),(),(),(  OAKappaDoD
FPR
TPRKappaDoDHFKappaDoD . 

Thus, the Kappa coefficient was chosen as the evaluation metric for this study.  

The Kappa coefficient is a measure of agreement between two estimators [36] and 

is calculated as follows: 
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 Here, iN:  is the sum of the elements in the i-th column and  :iN is the sum of the 

elements in the i-th row in the confusion matrix.  

9.4.2 Performance of the system 

The ROC curves of all participants are shown in Figure 9-5. The plots are 

averaged over the outer validation sets and thus each represents the average of 5 plots.  

As seen for AB1 , AB2 and AB4, the bipolar montage resulted in a superior performance 

compared to the monopolar montage. In contrast, for AB3, the performances of both 
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montages were the same and below the average. Participant AB5, was the only one where 

monopolar montage outperformed the bipolar montage for most FAR values. 

 

 
(a)                                                                                                                 

                                                                 
 (b) 
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                                                                               (c ) 

                   
                                  (d )  
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                                                                        (e) 

                              Figure 9-5. ROC plots for (a) AB1; (b)AB2;(c)AB3;(d) AB4;(e)AB5. 

Table 9-1 compares TPR of monopolar and bipolar montages for different false 

activation rates. The 2nd column thus shows the average length of NC data  between false 

positives (in seconds). The numbers in the table show the TPR values of each participant 

for a specific montage and a specific FAR. The numbers in parentheses are the standard 

deviations The results are averaged over the 5 outer validation sets. 

Figure 9-5 and Table 9-1 show that as we move from higher FAR values of 16% 

towards FAR=5%, the bipolar montage keeps modest TPR values. For the case of 

monopolar montage, the TP rate drops to 24.6%, corresponding to the detection of one 

out of every 4 IC commands. For FAR =2% (corresponding to an average of one false 

positive activation every 50 seconds), the bipolar montage can still detect 33.4% of the IC 

commands on average. However, the performance of the monopolar montage drops 

below 20%. When FAR =1 % (corresponding to an average of false positive activation 

every 100 seconds), the bipolar montage still recognizes one out of four IC commands on 

average, while for the case of monopolar montage, the TPR corresponds to the detection 

of one out of 10 IC commands, which is very low. Overall, the bipolar montage 

outperformed the monopolar montage for all FAR values studied. 
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Table 9-1. Comparison of the TP rates of monopolar and bipolar montages for different false 
activation rates. The numbers  in parentheses show the standard deviations. 

 

 TP Rate 

FAR 
(%) 

Average 
length 

between 
false 

positives 

Referencin
g AB1 AB2 AB3 AB4 AB5 Average 

16 6.25 
Monopolar 23.3 

(5.2) 
62.1 
(7.6) 

37.1 
(7.7) 

48.9 
(4.1) 

44.4 
(12.4) 

43.2 
(14.4) 

Bipolar 77.7 
(3.4) 

80.5 
(6.8) 

34.1 
(8.3) 

68.6 
(4.3) 

35.1 
(9.8) 

59.2 
(22.9) 

10 10 
Monopolar 17.4 

(5.2) 
53.2 
(7.2) 

30.7 
(8.0) 

42.4 
(5.0) 

31.0 
(15.3) 

34.9 
(13.5) 

Bipolar 74.3 
(4.3) 

73.9 
(8.3) 

25.8 
(6.8) 

59.0 
(2.0) 

30.2 
(10.3) 

52.6 
(23.4) 

5 20 
Monopolar 11.3 

(5.7) 
35.2 
(6.8) 

19.9 
(5.9) 

35.7 
(6.0) 

20.7 
(14.3) 

24.6 
(10.6) 

Bipolar 70.9 
(4.7) 

65.5 
(9.6) 

15.5 
(3.5) 

44.1 
(2.7) 

19.2 
(14.7) 

43.0 
(25.5) 

2 50 
Monopolar 5.8 

(3.5) 
19.5 
(8.6) 

12.6 
(4.9) 

22.9 
(10.2) 

13.7 
(10.5) 

14.9 
(6.6) 

Bipolar 62.0 
(6.4) 

55.1 
(12.1) 

8.3 
(2.7) 

27.4 
(5.7) 

14.2 
(11.9) 

33.4 
(24.1) 

1 100 
Monopolar 3.1 

(2.5) 
14.7 
(7.9) 

7.1 
(4.4) 

15.6 
(9.6) 

12.2 
(9.0) 

10.5 
(5.3) 

Bipolar 56.4 
(7.8) 

47.1 
(14.8) 

5.1 
(2.0) 

19.7 
(8.7) 

9.7 
(9.0) 

27.6 
(22.9) 

9.5 Discussion and future work 

9.5.1 Discussion 

In this paper, we carried out a new study using the SBCI system we had 

previously proposed in [17]. First, we trained the system using data recorded from a new 

type of movement (hand extension vs. the traditional finger flexion previously used in 

[15, 17, 18, 34]).  Our aim was to study if the system would perform well on a new type 

of movement as it did on the right index finger flexion. This is a necessary step towards 

generalizing the system to more IC commands. Secondly, we recorded NC signals in a 

self-paced environment (compared to the cue-based recording that was done in our 

previous studies). For that, we used more engaging NC data (along with IC data) to train 
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and evaluate the performance of the system. Since online tests may involve periods that 

require the user’s attention, but do not involve an initiation of control by him, this part of 

the study forms an important step towards running online tests on the system. We also 

applied a better artifact monitoring system that does not only monitor the activities of 

eyes, but also those of the frontalis muscles as well. To find a suitable evaluation metric 

for the model selection procedure, we also applied the framework proposed in Chapter 8. 

This is the first time in the SBCI literature, that the choice of the evaluation metric is 

quantitatively justified. Finally, we compared the performances of the monopolar and 

bipolar montages. Although using the bipolar montage in our proposed scheme requires 

more computational effort than the monopolar montage, however, from the performance 

point of view, this is justified. As shown in Figure 9-5 and Table 9-1, for different FAR 

values, the bipolar montage outperformed the monopolar montage by a wide margin.  

It is difficult to compare the results obtained from this paper directly with those 

obtained from previous SBCI studies. Various reasons can be cited for this. The protocols 

for conducting the experiments, gathering IC and NC epochs, evaluating the 

performance, type of movement, the neurological phenomena used , and the number of 

participants vary significantly amongst the studies. For this reason, most SBCI papers 

simply compare the results with their previous work. Having said that, in Table 1-1, we 

report a summary of the results obtained in various EEG-based SBCI studies.  Please 

keep in mind that although a direct comparison is not possible, this table roughly hints at 

the relative performance of different SBCI systems. The rows of this table show different 

SBCI studies. The columns show the rate at which the system generates an output, TPR, 

FPR and FAR rates, respectively. Please note that studies 1,2, and 3 reported high TPR 

values for high FPR values using the ROC curve. However, in order to make a fair 

comparison, the TPR values had to be estimated for low FPR values from the ROC plots 

in these papers. 

Study 1 (the first three rows in Table 1-1) compares three 2-state SBCI 

designs[5],   the  low frequency –asynchronous switch design (LF-ASD), another SBCI 

system that uses Mu rhythms (“Mu-ASD”) and a third SBCI system termed “Outlier 

Processing Method” (OPM)[7]. All three systems generated outputs at the rate of 16Hz 

and TPR values were based on FPR of 2%. This is because in another study on an SBCI 
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with a similar decision rate, FPR higher than 2% were found to be irritating for the users 

[6].   

Study 2 examines some modifications in the design of LF-ASD and proposes a 

new Hybrid LF-ASD [13]. The 3rd study proposes two separate 2-state SBCI designs 

[37]. One design is based on the detection of the right index finger movement and the 

other design is based on the detection of the left index finger movement.  The following 

row refers to the results of the 4th study involving automation of the feature extractor of 

the LF-ASD [15] .The results were obtained from a table in [15] that reported TPR at a 

fixed FPR of 2%. 

The 5th row presents the results of a 3-state SBCI system recently proposed by our 

research group [35]. The design identified IC commands related to right and left hand 

extension movements. This is done by implementing a 2-stage classification scheme. In 

the first stage, IC classes were separated from the NC class and in the second stage, the 

IC classes were classified into IC1 and IC2. The results pertaining to the classification of 

IC state from NC state were reported and the TPR values were reported at a fixed FPR of 

1%. 

The 6th study refers to the results of the SBCI system used in the current study, 

when originally applied to the data collected from the right index finger flexion 

movements [17]. The final study shows the results obtained in this paper. 

Please note that in studies 1 to 5, when the FP rates are low (e.g., less than 0.5 %), 

the TP rates are very low as well. As a result, from a practical point of view, the 

application of these systems is limited. In contrast, the system we proposed in[17] and 

further investigated its performance here, has a good performance even for low FP rates. 

The results of Study 7 indicate that for three participants (AB1, AB2 and AB4), an 

average TP rate higher than 50% can be obtained even for FAR=5%. These results 

further demonstrate that our proposed design can achieve very low FP rates at moderate 

TP rates. They also mirror our previous findings in [17] that showed modest TP rates of 
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Table 9-2. Comparison of the TPR and FAR rates achieved in different SBCI studies. 

Study Paper 

Frequency 

(Number of 

classifier’s decisions 

per second) 

TPR(%) FPR(%) FAR(%) 

Study 1 [5] 

LF-ASD 16 

 

 

 

<20% 

2 33 OPM <10% 

Mu-ASD <10% 

Study 2 [13] 25 30% 2 25 

Study 3 [37] ? <20% 2 ? 

Study 4 [15] 16 67.8 2 33 

Study 5 [35] 16 54.0 1 16 

Study 6 [17] 8 56.2 0.14 1.2 

Study 7 Current study 16 33.4 0.12 2 

 

56.2% at FAR=1.2%. Although a direct comparison between our study and those 

reported in Table 9-1 is not totally valid, the results from this table show that our 

proposed SBCI system generates far less false positives compared to other EEG-based 

SBCI systems, at a modest TP rate. This is an important step in moving towards the 

online implementation of SBCI systems.  

The only study, whose results outperformed the results obtained in this study, was 

the one we conducted using the same SBCI system earlier on finger flexion movements 

[17]. We believe the drop in the performance is due to the use of more engaging NC data 

in this study compared to [17]. As mentioned earlier, the “NC” term is applied to any 
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epoch that does not contain an IC attempt. Obviously, a long range of activities including 

being idle, thinking about a problem, doing mental calculations, watching an event, 

amongst others can all be categorized as NC. The question is that given the engaging 

nature of some of these tasks (such as thinking about a problem), what are their effects on 

EEG signals? In other words, would it be possible that they also generate patterns that are 

similar to those of neurological phenomena and thus affect the performance of the 

system? If this is the case, what is the extent of this effect? The evidence from our earlier 

research supports the hypothesis that more engaging NC data may result in 

desynchronization in the Mu and Beta rhythms, which would in turn affect the 

performance of the system [5]. In other words, we believe the decrease in the average 

performance of the system compared to [17] can be due to the more engaging nature of 

NC data used in this study compared to those used in our previous studies. Even though 

more engaging data were used, the performances of 3 participants (AB1, AB2 and AB4) 

are still comparable to the average performance achieved in [17]. More specifically, in 

the case of AB1, the proposed SBCI achieved a TPR=56.4% at FAR=1%, while for AB2, 

it achieved a TPR of 47.1% at FAR=1%. For AB4, the TPR results for FAR=1% are 

relatively low (the average TPR is 19.7%). However, when moving to FAR=5%, the 

average TPR rises to 44.1%.  

As shown in the previous Section, the performances of AB3 and AB5 were worse 

than the other three participants. We believe the reasons for the below-the-average 

performance of these individuals are as follows. During the experiments, we observed 

that AB3 was less enthusiastic than the others and thus was less engaged with the 

experiment. Changes in the neurological phenomena of this individual from Session 1 to 

Session 2 may also have contributed to the poor performance. To further explore this 

hypothesis, we have plotted the averages of MRP patterns of a selected EEG channel 

(channel C1) for AB1 to AB4 in Figure 9-6. As seen, while for AB1, AB2, and AB4 the 

averages are fairly consistent between both sessions, this was not the case for AB3. These 

changes in the neurological phenomena could thus have contributed to the poor 

performance of the system on the data of this individual. AB5 was engaged in the 

experiment, however, this participant only attended in one session (the orientation 

session). The amount of data collected for AB5 was thus significantly less than the other 
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four participants. The lower amount of data might have resulted in the poor training of 

the SBCI system and thus the below average performance for this individual. 

 

 
                                                       (a) 

 
                                                           (b) 
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                                                       (c) 

 
                                                                      (d) 

Figure 9-6. Average MRPs for Channel C1 over two sessions. (a) participant AB1; (b)participant 
AB2 ; (c) participant AB3; (d) participant AB4;. 

9.5.2 Future works 

A review of BCI literature shows that while many synchronized BCI systems 

have been tested online [38-41], only couple of SBCI studies have been conducted 

online[12, 42]. In other words, besides the above studies, almost all other SBCI designs 

have been tested in an offline fashion. The reason for conducting offline analysis in SBCI 

systems is that their FP rates are still very high. While from the pattern recognition point 

of view, offline SBCI designs can achieve very high classification accuracies, from the 
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practical point of view, they need further improvements until their FP rates become very 

low (especially when using the engaging NC data). Synchronized BCI systems, on the 

other hand, do not deal with NC data, as users can only control the device in certain 

periods determined by the system. Moreover, if the users of synchronized BCI systems 

are in NC state during the control periods, it is not evident how the output of the SBCI 

system can handle the NC state. Below, we will examine the performance of online SBCI 

studies in more details.  

In [42], an SBCI system with three IC states is implemented. The system 

identifies patterns related to the right hand, left hand and foot movements and the 

resultant IC commands are used to control a virtual keyboard. While the system can be 

operated in a self-paced manner, i.e., the user does not need to wait for the system’s cue 

to initiate the control, its performance on NC data was not evaluated. The users of this 

system were continuously engaged in controlling the virtual keyboard, so it is not known 

how well this system could perform on NC data (especially engaging NC data). 

In [12], another online experiment was conducted using the LF-ASD SBCI 

system. Two able-bodied and two individuals with spinal-cord injury (SCI) participated 

in this experiment that consisted of two sessions. The experiment involved changing the 

direction of a center ball in a “pong” style display. The users were asked to use a sip and 

puff switch to report the classification errors. While this SBCI system considered NC 

states, the NC epochs were mostly collected between different IC attempts and in a 

relatively non-engaging environment. Even though less engaging NC data were used, the 

FP rates for the two sessions varied  between 2-3% for one able-bodied (AB) participant 

(TP rate varied between 72.0% and 81.2% ) and varied between 1-1.5% for the other 

participant (TP rate for this participant was between 69.6% and 77.3%). Interestingly, 

when NC data related to reporting the classification errors by the users were added to the 

analysis, the FP rate was increased by 0.4% (Session 1) and 0.3% (Session 2) for the first 

AB participant and was increased by 0.9% (Session 1) and 0.8% (Session 2) for the 

second AB participant. These observations provide further evidence that more engaging 

environments may further decrease the performance of an SBCI system. For individuals 

with spinal cord injury (SCI), the average TPR was below 45%, since higher TP rates 

were associated with FP rates in the range of 2-3% and resulted in the fatigue and user 
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frustration. The FP rates of both SCI participants were, however, lower compared to able-

bodied individuals. For the first SCI participant, the FP rate varied between 0.7 -1% and 

for the other participant, it varied between 0.1 and 0.5%. Similar to able-bodied subjects, 

FP rates were increased during the NC data associated with using the sip and puff switch. 

The amount of increase was 0.1-0.2% for the first SCI participant and 0.2-0.3% for the 

second participant.  

As seen, online tests of SBCI systems have been conducted under very specific 

conditions so far. In other words, either NC data were eliminated from the analysis [42] 

or less engaging NC data that resulted in relatively high FP rates for high TP rates were 

used [12]. Based on these discussions, SBCI researchers still needs to focus on further 

improving the performance, before the system is ready for online experiments. This is 

especially the case when engaging NC data are used. 

Since our proposed SBCI system has resulted in much lower false positives 

compared to other EEG-based SBCI systems (as demonstrated in the last two rows in 

Table 9-2), for future research we propose the following studies before the system is 

tested online: 

1) As noted above, more analysis using NC data is necessary to ensure that the 

SBCI system performs well in different (and perhaps more engaging) NC environments. 

Our future work will thus explore NC data in more detail. Different NC data shall be 

recorded and the performance of the system once trained and tested using different NC 

data will be investigated. This would be a very important step towards developing 

practical SBCI systems. 

2) Our studies so far were based on the actual execution of movements. This is 

because the evidence from the literature shows that motor imagery or attempted 

movements can modify the neuronal activity in the primary sensorimotor cortex areas 

very similarly to what is observed from the execution of real movements [43, 44]. Based 

on this view, the main difference between the real and attempted movements is that in the 

latter case, the execution of the movement is blocked at some cortico-spinal level [45]. 

Before the system can be tested online, another study is needed to demonstrate the 

performance for attempted movements. 
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3) Some research groups have shown the importance of user training in improving 

the performance of a BCI system [42]. These findings indicate that user training can 

further improve the performance of our proposed SBCI design. This training can be 

especially useful in the cases of AB3 and AB5, whose performances were lower 

compared to the other participants in the experiment.  

4) Finding a proper application for testing the performance is another necessary 

step. As the results from Table 9-1 show, the system managed to maintain a good 

performance on the data of AB1, AB2 and AB4 even for %5FAR . For AB3 and AB5, 

the error rates are higher, so a completely self-paced environment would result in 

multiple false activations and thus user frustration. As a result, the test environment 

implemented for these two individuals may need more constraints than the environment 

implemented for other participants. Future studies should thus involve finding “proper” 

test applications for different individuals.  
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CHAPTER 10 SUMMARY AND CONCLUSIONS 

 
 

10.1 Summary  

This research was motivated by key shortcomings in the design of self-paced 

brain computer interface systems (SBCI) systems. SBCI systems are assistive technology 

devices that allow users to control objects in their environment using their brain signals 

only and at their own pace. This is done by measuring specific features of the brain signal 

that pertain to intentional control (IC) commands issued by the user. As an example, 

when a user attempts to perform a specific movement such as flexion of the index finger, 

a desynchronization in the power of the Mu ([8-12Hz]) and the Beta ([18-30Hz]) rhythms 

of the EEG signals occur. Since the duration of these phenomena are time-locked to the 

time of an IC command, they can be used for detecting the initiation of control by the 

user. 

In Chapter 1, we identified three research areas that need to be addressed in the 

design of SBCI systems: 1) Current SBCI systems have high false positive rates that 

make them unsuitable for most practical applications, even though they may obtain high 

true positive rates. As an example, the latest design of an SBCI system developed in our 

lab achieves average true positive rate of 73.4% at the false positive rate of 1% [1]. 

However, the performance of the system deteriorates for very low FP rates [2, 3].  , 2) 

Most BCI systems do not address the presence of physiological artifacts adequately. As a 

result, the performance of BCI systems might be vulnerable in the presence of artifacts; 

3) Researchers in the field of SBCI have not decided on the choice of a suitable 

evaluation metric yet. Although several evaluation metrics have been proposed, SBCI 
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researchers have not yet agreed on how to choose a suitable evaluation metric for their 

specific application. 

 The goal of this thesis is to devise an SBCI system that achieves considerably 

lower false positives than other SBCI systems. This system should also achieve good 

performance in the presence of artifacts such as eye blinks that can change the shape of 

the neurological phenomena. Finally a suitable performance metric for evaluating the 

system’s performance needs to be developed.  

We summarize the findings of this thesis according to each chapter as follows: 

10.1.1 Chapter 2: Improving the performance of LF-ASD by automatic user-

customization 

In order to gain some insight into the operation of SBCI systems, we first 

analyzed and improved the performance of a state-of-the-art SBCI system. This system, 

called the low frequency – asynchronous switch design (LF-ASD), was previously 

developed in the brain interface laboratory of the Neil Squire society in 2001. It detects 

bipolar movement-related potential (MRP) patterns from six bipolar EEG electrodes. 

Since then, it has been subject to several improvements and different versions of it are 

implemented. In Chapter 2, we automatically user customized the feature generator of 

one of the most recent versions of the LF-ASD. For each user of this system, 31 

parameter values had to be specified. These parameter values were originally determined 

by trial and error and we argued that this procedure is clearly sub-optimal. We proposed 

the use of a genetic algorithm for tuning the parameter values of the system. The system’s 

performance was tested using the data attributed to the right index finger flexion (the 

same data are used as the basis of analysis in Chapter 3s, 4, 5 and 7). The contributions of 

this research can be summarized as follows: 

1) Offline analysis of the data of eight individuals revealed that automatic user 

customization improves the true positive (TP) rate of the system by an average of 

6.7% over that whose customization was carried out by a human expert (at a fixed 

FP rate of 2%). In other words, automatic user-customization leads to 
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improvements in the performance compared to the non user-customized LF-ASD 

and the LF-ASD version that was user customized by an expert.  

2) It was shown that by using automatic user-customization, the performance of 

the individuals with spinal cord injury (SCI) improved more than that of able-

bodied individuals. In the case of individuals with SCI, the average improvement 

in the TP rate was 9.8% compared to 3.6% that was achieved for able-bodied 

individuals.  This is because the averages of MRPs for individuals with SCI were 

weaker than those of able-bodied people, so it was more difficult for a human 

expert to estimate the parameter values using the ensemble averages of MRPs.  

3) The automation procedure relieves the designer of the cumbersome task of 

tuning the parameter values for each user. Especially since LF-ASD uses an 

energy normalization transform (ENT) that changes the shapes of MRPs, this 

automation method is necessary.  

4) The results show great variations in the parameter values from one individual 

to another. These results emphasize the importance of user-customizing the 

feature generator in SBCI systems.  

5) The proposed method also provides an upper threshold on the performance of 

that particular LF-ASD design. In other words, to achieve better performance for 

LF-ASD, some changes in its structure must be done. For this reason, subsequent 

studies of our research group on LF-ASD have mostly focused on changing its 

structure so as to obtain superior performance [3, 4].  

10.1.2 Chapter 3: Using DWT to extract features 

In Chapter 3, we explored the use of discrete wavelet transform (DWT) as the 

feature extractor to replace the user-customized detector in LF-ASD. Since the wavelet 

transform explores both time and frequency information, is expected to be a more 

suitable feature extractor than those which work in the time or frequency domain only. 

Using DWT coefficients as features, however, has one disadvantage: the size of the 

feature space increases dramatically. As a result, given the low number of test samples 

from the IC class, a method for handling the large size feature space should be 

implemented. The contributions of this research are as follows: 
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1)We proposed the use of a 2-stage hybrid feature selection algorithm to solve the 

high-dimensionality problem. In the first stage, mutual information between the 

input features and the output classes is used to remove the less informative 

features, while in the second stage, a genetic algorithm is used to select the 

features that yield high performances. The proposed method was then tested on 

the data of four able-bodied individuals. 

 2) The performance of the system was tested using the features extracted from 13 

monopolar EEG signals and from 18 bipolar EEG signals.  The bipolar EEG 

signals were mathematically calculated as the voltage differences between two 

adjacent monopolar EEG electrodes. During our tests, the performance of the 

system based on monopolar features was weak and it resulted in high false 

positive rates. However, the system based on bipolar features achieved a 

performance that was superior to that of LF-ASD in three out of four individuals 

whose data were studied. 

3) It was shown that the location of the selected features for each EEG channel 

varied considerably from one individual to another.  These results support the 

hypothesis that obtaining superior performance depends on the proper channel 

selection for every individual. 

4)The main deficiency in using DWT as a feature extractor is that it is shift 

variant. In other words, decisions should be made in very short time intervals if 

the IC pattern is to be correctly identified during online experiments. From the 

computational point of view, this is an important shortcoming of using DWT as 

feature extractor in an SBCI system. A solution to this problem is proposed in 

Chapter 5. 

10.1.3 Chapter 4: Using three neurological phenomena as the source of control 

In Chapter 4, we discussed another research direction to improve the performance 

of SBCI systems. We proposed the idea of using three neurological phenomena (MRPs, 

CPMR and CPBR) instead of only one. Our rationale was as follows: extracting features 

from more than one neurological phenomenon increases the amount of information 

contained in the system. Thus, the performance of such an SBCI should be higher than 
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those that extract features from a single phenomenon. We also cited evidence from the 

literature as to why combining these neurological phenomena is suitable for improving 

the performance of an SBCI system. The summary of this research are as follows: 

 1) We proposed the idea of combining features extracted from three specific 

neurological phenomena (MRPs, CPMR and CPBR) for the first time in the BCI 

literature.  

2) By using features from three neurological phenomena (instead of using features 

from one neurological phenomenon as done in many BCI studies), the size of the 

feature space greatly increases. We thus proposed a 2-stage multiple-classifier 

system (MCS) to effectively combine the features extracted from the above 

neurological phenomena. First, features extracted from each EEG channel and 

each neurological phenomenon were classified separately. Then, in the first stage 

of the proposed MCS, three MCSs combined the outputs of classifiers for each 

neurological phenomenon. In the second stage, another MCS combined the 

outputs of the MCSs developed in the first stage. By implementing this 2-stage 

MCS, we achieved a strong classifier, although each of the participant classifiers 

was weak. We showed that the proposed scheme achieved low FP rates 

(FPR<1%) for three out of four individuals whose data were studied. However, 

the TP rates were relatively low, as they corresponded to the detection of one out 

of every four IC commands on average.  The low FP rates were promising and 

they indicated that with better pattern recognition schemes, a superior 

performance can be achieved.  

3) We demonstrated that the MCS that was designed in the first stage for 

classifying MRP features was always selected in the final configuration. In other 

words, the presence of MRP was necessary in achieving a good performance. 

However, the choice of the other MCS depended on the individual whose data 

were studied and it varied from one person to another.  

4) Again, it was shown that the selected EEG channels varied from one individual 

to another. Also for each person, there were a number of EEG channels that were 

not selected during the analysis, so they could be omitted during the future 
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research. This will speed up the preparation process of these individuals in future 

studies. 

10.1.4 Chapter 5:  Design of an automated SBCI system with low FP rates 

To achieve better TP rates at very low FP rates, in Chapter 5, we proposed am 

improved design for SBCI systems. This was done by combining the ideas presented in 

Chapters 3 and 4 to design an SBCI with low FP rates at modest TP rates.  In this chapter, 

we accomplished the following: 

1) We propose a new feature extraction method. This feature extractor uses a 

stationary wavelet transform (SWT) followed by matched filtering with a 

template. For each neurological phenomenon and for each EEG channel, we 

extract new features for each of the two lowest frequency bands: the maximum 

cross-covariance at the center of the correlogram and the time this maximum has 

occurred. As a result, a total of 12N features are extracted where N is the number 

of EEG channels.  

2) Similar to Chapter 4, for each EEG channel and for each neurological 

phenomenon, a classifier was designed. In total, 3N classifiers were implemented. 

We chose support vector machines (SVMs) , not only because they minimize the 

empirical risk (training error), but they can also minimize the confidence error 

(test error).Similar to the one proposed in Chapter 4, a 2-stage MCS that 

combines the outputs of the classifiers and generate the final classification label of 

the input pattern was implemented. A hybrid genetic algorithm (HGA) was 

proposed to automate the design process of the improved SBCI. The HGA 

simultaneously selects the features, estimates the classifiers’ parameters and 

chooses how the outputs of MCSs developed for each neurological phenomenon, 

should be combined together. 

3) The value of calculated FP rates depends on the rate by which the system 

generates an output. In order to remove this dependency, we proposed the notion 

of the false activation rate (FAR). FAR is the percentage of 1-second NC epochs 

that have at least one false positive. As seen, this definition does not depend on 
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the output rate of the system and is thus more meaningful than the traditional FP 

rate definition. 

 4) Analysis of the data obtained from four able-bodied individuals showed that 

the improved SBCI performs significantly better than previous ones. In other 

words, while the average TP rates are above 50%, the proposed SBCI system 

produced far less FAR than other EEG-based SBCI systems. 

5) The results also showed that using either the combination of MRP and CPBR-

based classifiers or the “AND” configuration of all three MCSs results in a 

performance that is better than those of other configurations studied (e.g., 

majority voting of all three MCSs). However, the choice of the configuration 

varied from one individual to another.  

6) We also provide a theoretical analysis of the performance of the MCS in 

Appendix A. Using the linear programming theory, it was shown that even if the 

performance of each classifier is not high, the overall performance can still 

approach the perfect classification accuracy by using the proposed hybrid MCS 

method (assuming that the classifiers are sufficiently diverse). 

10.1.5 Chapter 6: Analysis of the effect of artifacts in BCI systems 

In this chapter, we provided a detailed review of artifacts in SBCI systems. The 

summary of this chapter is as follows: 

1) A detailed survey of the methods of handling artifacts in BCI systems was 

carried out. We reviewed how different BCI research groups have handled EOG 

and EMG artifacts in their proposed designs. This survey showed that the 

majority of BCI systems did not properly report if they have handled artifacts. 

This would cause a serious drawback when these systems are applied in an online 

fashion, as it is not evident how these systems would perform when artifacts 

occur.  

2) We suggested two solutions for the proper handling of artifacts: the SBCI 

researchers should either design efficient artifact-removal methods or SBCI 

systems that are robust to the presence of artifacts.   
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10.1.6 Chapter 7: Analysis of the performance of the proposed SBCI on artifact-

contaminated data 

The performance of BCI systems are usually reported on data not contaminated 

by artifacts. This is not a totally realistic approach, specifically if a BCI system is to be 

used in an online environment. In this chapter, we analyzed the performance of the SBCI 

system proposed in Chapter 5 when datasets contaminated with artifacts were used. 

Although EOG and EMG artifacts have a large frequency range, they are more prominent 

over certain frequency bands.  We postulated that the proposed SBCI should have a good 

performance when artifact-contaminated data are used. This is because the proposed 

system uses features extracted from three neurological phenomena that belong to 

different frequency bands.  The summary of this chapter is as follows: 

1) We studied the performance of the proposed SBCI system over the data 

contaminated with EOG artifacts. It was shown that the performance of the 

proposed SBCI slightly deteriorates, but remains superior to those achieved by 

other SBCI systems. Furthermore, the advantage of including the artifact-

contaminated epochs in the analysis is that the system is available for control at 

all times.  

2)We studied the performance of the system over data from a session recorded a 

few days after recording the data used in training the system (called the data in “a 

subsequent session”). The importance of this study is to analyze how the system 

performs using pseudo-online data. No part of the data (including those with 

artifacts) was rejected in this analysis. The results show that the proposed SBCI 

system still achieves a good performance on these datasets, although no tuning in 

its parameter values was performed.  

3) We also studied the effect of adding a debounce component as a post-

processing component. A debounce component reduces consecutive false 

activations from activating the system repeatedly. It was shown that a very small 

debounce window was needed to increase the performance of the proposed SBCI 

system. In other words, the number of consecutive false activations in the 
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proposed SBCI was less than those of LF-ASD whose window size was much 

larger. 

10.1.7 Chapter 8: A framework for evaluating the performance of SBCI systems 

The issue of how to evaluate SBCI systems remains an unresolved one. Several 

evaluation metrics have been proposed, but no consensus yet exists amongst researchers 

as to how best select a suitable evaluation metric for a particular SBCI.  In this chapter, 

we address this issue. In particular the contributions of this chapter are: 

1) The definitions of the degree of consistency (DoC) and degree of 

discriminancy (DoD) measures proposed in [5] were modified so as to they are 

applicable to pattern recognition problems with a large number of test samples. 

These measures can be used to select the most suitable evaluation metric given a 

number of evaluation metrics for a particular classification problem. 

2) We proposed a new measure, the degree of suitability (DoS), to calculate how 

suitable an evaluation metric is in summarizing the performance of a 

classification problem.  

3) To decrease the number of calculations needed in estimating the above 

measures, we proposed the idea of grid-based computing. 

4) We applied the proposed framework to a particular SBCI system and 

demonstrated that metrics such as Kappa and HF-difference outperform OA 

(overall accuracy) and 
FPR
TPR  in guiding the model selection procedure to a desired 

region of operation. 

10.1.8 Chapter 9: Applying the proposed SBCI with hand extension data 

In order for an SBCI system to be generalized to detect different types of IC states 

IC states, it should be able to detect new types of mental tasks. In this chapter, we tested 

and analyzed the performance of the SBCI proposed in Chapter 5 using data collected 

from performing hand movement extensions, instead of finger flexion, the movement the 

system was originally designed to detect. The findings of this research are: 
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1) A new artifact monitoring system was proposed. This system monitors the 

activities of eye movements, and those of the frontalis muscle movements.  This 

monitoring system was specially built so that eye blinks and activities of frontalis 

muscles do not control the SBCI system. 

2) We studied the performance of the proposed SBCI system over data related to 

hand extension movements. These data also contained more periods of engaging 

NC data compared to previous studies. Despite the presence of the latter data, the 

SBCI system still achieved a superior performance compared to those achieved by 

the traditional SBCI systems. The performances of three out of the five 

individuals who participated in the experiments, were especially good and much 

higher than the other two individuals. 

 3) We used the framework developed in Chapter 8 to determine which 

performance measure is more suitable for the model selection procedure. The 

Kappa coefficient was found to be as a suitable evaluation metric for summarizing 

the performance of this system. 

4) We compared the performance of monopolar and bipolar montages and showed 

that the bipolar montage results in superior performances to those of the 

monopolar montage.   

10.2 Summary of contributions 

The main contributions of this thesis fall under three main topics and are 

summarized as follows: 

10.2.1 Reducing high false positive rates 

1) Introducing the idea of using features from three specific neurological 

phenomena (MRPs, CPMR and CPBR) to detect the possible presence of IC 

commands in an SBCI system.  

2) Developing a new SBCI system that extracts and classifies features extracted 

from three neurological phenomena (MRPs, CPMR and CPBR) efficiently. For 

this purpose, a new two-stage multiple classifier system (MCS) as well as a 
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hybrid genetic algorithm (HGA) are proposed to effectively deal with the large 

dimensionality of the input feature space. It was shown that the proposed method 

can yield very low FP rates compared to other state-of-the-art EEG-based SBCI 

systems. 

3) Proposing a new feature extraction method that consists of a stationary wavelet 

transform followed by a matched filter. This method was applied to significantly 

reduce the dimension of the wavelet feature space. Two new types of features, the 

maximum of the cross correlogram over a certain period and the time that this 

maximum has occurred are extracted. The contributions discussed above can also 

be used in order to improve the classification accuracy of synchronized BCI 

systems. 

4) Using the linear programming theory, it was shown that an MCS can 

theoretically achieve high 
FPR
TPR  values, even though the performance of 

individual classifiers is low.  

5) We showed that the proposed algorithm can detect different types of 

movements and thus it has the potential to generalize to more IC commands. This 

was done by analyzing the performance of the proposed SBCI system on two 

datasets: one dataset related to the right finger flexion and the other dataset related 

to the right hand extension.  

6) We demonstrated the superiority of using bipolar EEG channels to monopolar 

EEG channels. To do this, we compared the performances of the systems 

developed using monopolar and bipolar EEG signals during the detection of right 

hand extension movements.  

7) We showed that automatic user-customization results in improvements in the 

performance of this SBCI system, especially in the case of individuals with 

spinal-cord injury. This was carried out by analyzing the effect of automatic user-

customization in the performance of the LF-ASD SBCI system. Similar automatic 

customization can be applied to the feature extractor of other BCI system in order 

to further improve their performances.   
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10.2.2 Addressing artifacts in SBCI systems 

1) We presented a detailed review of the methods that handle artifacts in BCI 

systems. We showed that the majority of the BCI papers do not report if they have 

considered artifacts during their analysis. We argued that since physiological 

artifacts occur frequently, these systems may face problems during the online 

implementations. 

2) We investigated the performance of our proposed SBCI system in Chapter 5 

over periods contaminated with eye-blink artifacts. We showed that although the 

performance of the system deteriorates slightly, the performance is still much 

higher than other EEG-based SBCI systems. The advantage of considering 

artifact-contaminated periods during the analysis is that the system is available for 

control during all times. This study highlights the importance of designing BCI 

systems that are robust to the presence of artifacts. 

3) We investigated the performance of our proposed SBCI system in Chapter 5 in 

a pseudo – online fashion, where no part of the data has been rejected. In other 

words, the SBCI system was available for control at all times. This was done 

using the data from sessions recorded in later dates than the data used for training 

the system were recorded. This analysis is very close to online testing of the 

performance of the system. The only difference is that in our analysis, users do 

not receive any feedback on their actions. 

4) We also implemented an artifact monitoring system that not only considers eye 

blink artifacts (similar to the one built in the previous studies of our group), it also 

considers the EMG artifacts related to frontalis muscles as well. This artifact 

monitoring system can be implemented for other BCI systems in order to ensure 

that artifacts such as EOG and EMG are not used to control the BCI system. 

10.2.3 Finding a suitable evaluation metric for SBCI systems 

1) Proposing a framework for comparing the evaluation metrics during the model 

selection process in SBCI systems. This framework can successfully find a 

suitable evaluation metric given a number of evaluation metrics. Furthermore, the 
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proposed framework can be applied to any classification problem with 

imbalanced datasets. 

2) Applying the proposed framework to our proposed SBCI system and 

determining the Kappa coefficient as the most suitable evaluation metric. 

10.3 Future research directions 

There are a number of studies that can be followed as an extension to this thesis. 

We have summarized them in this section: 

1) With the exception of Chapter 2, all the research in this thesis has been 

conducted using executed movements. While strong evidence from the literature 

supports the similarity between attempted movements and real movements, a 

study is needed to verify the performance of the proposed SBCI on attempted 

movements.  

2) Additional experiments should be carried out to determine the sensitivity to the 

design steps and the parameter values used. As an example, an interesting 

research area would be to study the effect of different penalty functions in the 

design of an SBCI system (e.g., Eq 2.9 in Chapter 2). 

3) Currently, not much research has been concluded to find out what the 

acceptable performance of a particular SBCI application is. This is an important 

research issue, as determining the pre-defined goals of an SBCI system helps the 

researchers to decide if the results are suitable or not. A study that determines 

such performance thresholds for different applications is thus of great value for 

SBCI researchers. 

4) The studies reported in this thesis have all been conducted offline. Such 

analysis is necessary to evaluate the performance of the system prior to online 

tests. A study is therefore needed to examine the performance of the proposed 

SBCI in online experiments. For this purpose, a suitable test environment should 

be developed so that false positives do no cause user frustration. The evidence 

that we have provided in Chapter 7 indicate that the proposed design can be used 

in the near future in an online testing environment. 
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5) Although the performance of the system was tested using different types of NC 

data, further tests are also needed to further investigate the performance of the 

system during other types of NC periods. These tests may include periods when 

users are engaged in various tasks such as talking, daydreaming, performing 

different types of mental tasks, etc.  

6) The designs presented in this thesis identified one type of IC command from an 

NC state. For future studies, we would like to give more control power to the 

users, so that they can send different types of IC commands. Thus the proposed 

SBCI should be able to identify different IC states (related to different types of 

movements) from each other as well as from NC states. We have already shown 

in this thesis that the SBCI system proposed in Chapter 5 can detect right index 

finger flexion and right hand extension movements. Future work should focus on 

distinguishing these IC commands from each other. Also, it is of interest to study 

the performance of the system on new types of movements.  

7) In these studies we did not evaluate the performance of the system over a  long 

time period. A study that analyzed the performance of the system over long 

periods (examples months) is thus of great interest. Since neurological 

phenomena may change over time, an adaptation algorithm may be needed to tune 

the parameter values of the system. Also is of interest is to study the effect of 

training the participants in improving the performance of the system. 

8) In this thesis, we studied artifacts related to eye blinks and frontalis muscle 

movements. Future work should also analyze the performance of the system on 

other types of artifacts including eye rolling, saccades, chewing and swallowing 

as they can also affect the performance of the system. 

9) The application of artifact-removal methods such as independent component 

analysis (ICA) in removing artifacts and possibly improving the performance of 

the system should also be investigated as a part of future studies. 

10) The framework proposed in Chapter 8 can also be extended to multi-objective 

evaluation metrics. It would be of interest to find out if a multi-objective 

evaluation metric can outperform single objective evaluation metrics. 
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APPENDIX B- THEORETICAL ANALYSIS OF THE 
PROPOSED SBCI 

The majority of studies that theoretically analyzed the combinations of classifiers 

have made some assumption about the independency of classifiers (for more details, see 

[1-3]). In this Appendix, the performance of the proposed SBCI is analyzed theoretically 

using the framework developed in [3, 4]. This theoretical framework applies linear 

programming to determine the lower and higher bounds of performance of an MCS, but it 

does not make any assumption about the independence of classifiers. For simplicity, we 

focus on the upper and lower bounds of the fitness function formulated as a 
FPR
TPR  ratio.  

To obtain these bounds, the maximum and minimum of the TP and FP rates of the two-

stage MCS are determined by linear programming.  

B.1. Formulating the problem 

Let ndStageMCS2  denote the second-stage MCS that combines the outputs of the 

MCSs in the first stage. The first-stage MCSs are denoted by KMCSMCSMCS ,...,, 21 , 

where K is the number of MCSs in the first stage (in the proposed SBCI, M is 2 or 3). To 

calculate the maximum and minimum of the 
FPR
TPR , we represent the classification labels 

generated by all K classifiers with a binary string. Let ),( Kjbit be such a bit string that 

denotes the K bit binary expansion of j. Each classifier is represented by a bit in ),( Kjbit . 

A value of “0” indicates that the classifier didn’t correctly classify an IC command (a 

FN) and a value of “1” indicates that the classifier correctly identified an IC command (a 

TP). We use the convention that if there are K classifiers KMCSMCSMCS ,...,, 21 , 1MCS is 

the least significant bit (LSB) and KMCS is the most significant bit (MSB). Let 

 TKxxx )12(10 ,...,,x  be the vector of joint probabilities of the correct detection of an IC 
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command. Since for K classifiers, there are K2 possible combination of correct/incorrect 

classifiers, vector x will be of length K2 . This combination of the classifier can be shown 

using a Venn diagram, as in Figure B.1. In this figure, x0 shows the percentage of IC 

commands that all MCSs failed to correctly identify, and x1 shows the percentage of IC 

commands that the first classifier (MCS1) correctly identified  but that the rest of the 

classifiers (MCS2 and MCS3) could not correctly identify, and so on.   

 
Figure B1. The Venn diagram for three MCSs. 

B.2. Constraints 

Let )(xSBCITP  represent the probability of the correct classification of the IC 

commands in the proposed SBCI. We wish to find the values of x that yield the 

maximum and the minimum of )(xSBCITP . The constraints of this optimization problem 

are as follows: 

1. The values xi are  non-negative and are smaller than 1: 

)12(,...,1,0,10  K
i ix                                (B.1) 

2. The sum of the joint probabilities is 1: 
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3. The sum of the joint probabilities for which classifier r  could correctly identify 

an IC command  must equal pr, the normalized TP rate of the classifier r. Or, 

mathematically, 

dxA eq             (B.3) 

where d is the vector of the normalized TP rates of the classifier, as represented below: 

T
Kppp ],...,,[d 21             (B.4) 

Kj
N
TP

p
IC

j
j ,...,2,1           (B.5) 

NIC is the number of IC commands and jTP  is the TP rate of the jth classifier, 

and eqA is a kK 2 matrix, whose thr row corresponds to the thr classifier. eqA  is defined 

as follows: 

 TKeq b,...,b,bA 21                         (B.6) 

where  Kb,...,b,b 21 are bit strings of length K2  and can be calculated as follows: 
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B.3. Objective functions 

Let )(f )( iSBITP  denote the entry at ith position in )(xSBITP . We can then define the 

following fitness function for the two-stage MCS (Configurations 1-3 and 5 in Chapter 5) 

as follows. 
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where N1 is the number of ones in bit(i,K)  and N0 is the number of zeros in bit(i,K) and 

pIC is the probability of the IC state, calculated as follows: 

Total

IC
IC N

N
P              (B.9) 

where NIC is the number of IC epochs and NTotal is the total number of epochs. NTotal is 

calculated as follows: 

NCICTotal NNN                      (B.10) 

 Eq. (B.8) implies that only when all the classifiers participating in the two-stage 

MCS correctly identify an IC command, the output of the two-stage MCS will be “1”. If 

all of them fail to recognize an IC command, the output is zero. In other cases, the 

decision is made based on the probability of the IC state. It can be seen that as N0 

increases, the SBCI has a higher probability of generating an FN. When pIC  is 

sufficiently (e.g., pIC <.01), and N0 is sufficiently large, 00 N
ICp ,and )(f SBITP  will take a 

form of an AND operator, as described in Chapter 5, For Configuration 4 in Chapter 5, 

(B.8) becomes 
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Similarly, by applying the following replacements in Eqs. (B.1)-(B.11), the 

optimization problem for the NC state can be formulated: 
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As can be seen, the formulation is the same as that for the TP rate. The main 

difference is in the formulation of (B.8). Here, because of the high probability of pNC 

(e.g., 99.0NCp ), the number of elements closer to “1” grows compared to the 

optimization problem for the TP rate.  Similar formulations for each of the MCSs in the 
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first stage can be developed. The only difference will be in the case when the number of 

classifiers is even. In this case, the function f for the case of TP is formulated as 
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In the case of a tie and for a relatively large N0, the probability of correct 

identification of an IC command will be close to zero. The opposite case is true for NC 

trials. 

B.4. Results 

Figure B.2 depicts the TNMax and TNMin values of the SBCI as functions of the TN 

rates of the individual MCSs in the first stage (for simplicity, it is assumed that all 

individual MCSs have the same TN rates). The optimal values are found by maximizing 

and minimizing the TP and TN values using linear programming. The value of PNC is 

estimated from the experimental protocol (described in Chapter 5) to be 99.0NCP . 

Figure B2 (a) shows that even for MCSs with high FP rates (e.g., 20%<FP<50%), it is 

theoretically possible that the proposed SBCI will achieve low FP rates. For FP<10%, the 

FP rate can theoretically approach zero.  

Figure B2(b) shows the TPMax and TPMin values. It is assumed that all individual 

MCSs have the same TP rate. As Figure B3(a) shows, the theoretically low FP rate of the 

SBCI comes at the expense of a lower TP rate.   Assuming all MCSs have the same TP 

and FP rates, the 
FPR
TPR  of the SBCI can be demonstrated graphically. Figure B4 shows 

the 
FPR
TPR  of an individual MCS. Figures B3(b) and B3(c) show the min(

FPR
TPR ) and 

max(
FPR
TPR ) of the SBCI, respectively for two MCSs in the first stage. Similar figures 

were obtained for three MCSs in the first stage.   As Figure B3(c) shows the proposed 
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SBCI can theoretically have a much higher 
FPR
TPR  than that of an individual MCS ( Figure 

B3(a)).  
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Figure B2. (a) TNMax and TNMin for two and three MCSs; (b) TPMax and TPMin for two and three 
MCSs. 
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Figure B3. (a) 
FPR
TPR

for an individual MCS ; (b)  Min(
FPR
TPR

) of the two-stage MCS (for two MCSs 

in the first stage); (c)  Max(
FPR
TPR

) of the two-stage MCS (for two MCSs in the first stage).  
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