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Abstract

Regression models with a scalar response and a functional predictor have

been extensively studied. One approach is to approximate the functional

predictor using basis function or eigenfunction expansions. In the expansion,

the coefficient vector can either be fixed or random. The random coefficient

vector is also known as random effects and thus the regression models are

in a mixed effects framework.

The random effects provide a model for the within individual covariance

of the observations. But it also introduces an additional parameter into

the model, the covariance matrix of the random effects. This additional

parameter complicates the covariance matrix of the observations. Possibly,

the covariance parameters of the model are not identifiable.

We study identifiability in normal linear mixed effects models. We derive

necessary and sufficient conditions of identifiability, particularly, conditions

of identifiability for the regression models with a scalar response and a func-

tional predictor using random effects.

We study the regression model using the eigenfunction expansion ap-

proach with random effects. We assume the random effects have a general

covariance matrix and the observed values of the predictor are contaminated

with measurement error. We propose methods of inference for the regression

model’s functional coefficient.

As an application of the model, we analyze a biological data set to in-

vestigate the dependence of a mouse’s wheel running distance on its body

mass trajectory.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Statement of Co-Authorship . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Summary of the biology experiment . . . . . . . . . . . . . . 1

1.2 Review of smoothing methods . . . . . . . . . . . . . . . . . 2

1.3 Functional regression models . . . . . . . . . . . . . . . . . . 5

1.4 Introduction to the thesis work . . . . . . . . . . . . . . . . . 9

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Identifiability discussion of linear mixed effects models . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Simple sufficient conditions of identifiability . . . . . . . . . 16

2.4 Sufficient conditions of identifiability for a structured Σε . . 17

2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



Table of Contents

3 Linear mixed models for measurement error in functional

regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . 29

3.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Initial estimates of parameters other than µ and β0 . 32

3.3.2 Updating Σ(t)
x . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Updating σ
2(t)
ε . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Updating β(t) and σ2(t) . . . . . . . . . . . . . . . . . 36

3.4 Inference for β . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Hypothesis testing for β . . . . . . . . . . . . . . . . 38

3.5 Model assumption checking . . . . . . . . . . . . . . . . . . . 43

3.6 Model application . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 Choosing the basis functions . . . . . . . . . . . . . . 44

3.6.2 Data description . . . . . . . . . . . . . . . . . . . . . 45

3.6.3 Choice of basis functions . . . . . . . . . . . . . . . . 45

3.6.4 Estimation and residual analysis . . . . . . . . . . . . 46

3.6.5 Inference for β(·) . . . . . . . . . . . . . . . . . . . . 47

3.6.6 Inference for βs − βc . . . . . . . . . . . . . . . . . . 48

3.7 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.1 Two stage estimate . . . . . . . . . . . . . . . . . . . 49

3.7.2 One sample comparison . . . . . . . . . . . . . . . . . 50

3.7.3 Two sample comparison . . . . . . . . . . . . . . . . . 51

3.7.4 Edge effect discussion in one-sample MSE comparison 52

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Dependence of average lifetime wheel-running on body mass

ontogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iv



Table of Contents

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions and future plan . . . . . . . . . . . . . . . . . . . 98

5.1 Models with correlated individuals . . . . . . . . . . . . . . . 98

5.2 Proposing models with a functional response . . . . . . . . . 101

5.2.1 Models of a functional response . . . . . . . . . . . . 101

5.2.2 Outline of the model study . . . . . . . . . . . . . . . 103

5.2.3 Literature review . . . . . . . . . . . . . . . . . . . . 104

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendices

A Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 107

A.1 Proof of Corollary 2.4.1 . . . . . . . . . . . . . . . . . . . . . 107

A.2 Proof of Corollary 2.4.2 . . . . . . . . . . . . . . . . . . . . . 108

B Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 110

B.1 Definition of the first differential . . . . . . . . . . . . . . . . 110

B.2 Definition of the second differential . . . . . . . . . . . . . . 113

B.3 Matrix algebraic and differential rules . . . . . . . . . . . . . 115

B.4 Calculations in Section 3.3.2 . . . . . . . . . . . . . . . . . . 116

B.5 Calculations in Section 3.3.4 . . . . . . . . . . . . . . . . . . 118

v



List of Tables

3.1 P-values of the test Ho : β(t) = 0, for all t ∈ [−1, 60] in each

group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 P-values of the test Ho : βs(t) = βc(t), for all t ∈ [−1, 60],

within each gender. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 P-values of the test Ho : β(t) = 0, for all t ∈ [−1, 60], using

test statistic Uf . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 P-values of the test Ho : βs(t) = βc(t), for all t ∈ [−1, 60],

using test statistic Uf . . . . . . . . . . . . . . . . . . . . . . . 87

vi



List of Figures

3.1 Plots of log body mass versus week for the four groups of

laboratory mice. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Histogram of the response: averaged wheel running from weeks

5 to 60 for the four groups of laboratory mice. . . . . . . . . 56

3.3 Plots of the proportion of cumulative variance of the centered

log body mass explained by the first ten principal components

of the four groups of mice, after the individual average log

body mass has been removed. . . . . . . . . . . . . . . . . . 57

3.4 The constant function and the first three smoothed eigenfunc-

tions of the covariance of centered log body mass of the four

groups of mice, calculated as described in Section 3.6.3. . . . 58

3.5 Residual plots of the fit of the Yi = averaged wheel running

of the four groups of mice. . . . . . . . . . . . . . . . . . . . 59

3.6 Plots of residuals of Yi = averaged wheel runining in the male

control group of mice before and after removing the outlier. 60

3.7 Plots of β̂ and its standard errors computed from the Hessian

matrix (solid) and from the bootstrap (dash-dot) for the four

groups of mice, as described in Section 3.4. . . . . . . . . . . 61

3.8 Comparing the permuted values of the generalized likelihood

ratio statistic Ul with the Wald statistic Uw for four groups

of mice. The equivalence of Ul and Uw were observed in Ta-

ble 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Plots of β̂s− β̂c and the standard errors of the difference com-

puted from the Hessian matrix (solid) and from the bootstrap

(dash-dot) for both genders. . . . . . . . . . . . . . . . . . . 63

vii



List of Figures

3.10 MSE of the estimate of β for each γ value in one sample

simulation as described in Section 3.7.2. Compare the ECME

method with the two stage method. . . . . . . . . . . . . . . 64

3.11 Proportion of times Ho is rejected using level α = 0.01, where

Ho : β(t) = 0, for all t ∈ [−1, 60] in one sample simulation as

described in Section 3.7.2. Two test statistics are considered,

Uw and Uf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.12 Proportion of times Ho is rejected using level α = 0.05, where

Ho : β(t) = 0, for all t ∈ [−1, 60] in one sample simulation as

described in Section 3.7.2. Two test statistics are considered,

Uw and Uf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.13 MSE of the estimate of βs for each γ value in two sample

simulation as described in Section 3.7.3. Compare the ECME

method with the two stage method. . . . . . . . . . . . . . . 67

3.14 MSE of the estimate of βc for each γ value in two sample

simulation as described in Section 3.7.3. Compare the ECME

method with the two stage method. . . . . . . . . . . . . . . 68

3.15 MSE of the estimate of βs−βc for each γ value in two sample

simulation as described in Section 3.7.3. Compare the ECME

method with the two stage method. . . . . . . . . . . . . . . 69

3.16 Proportion of times Ho is rejected using level α = 0.01, where

Ho : βs = βc, for all t ∈ [−1, 60] in two sample simulation as

described in Section 3.7.3. Four test statistics are considered

Ul, Uw, Ue and Uf . . . . . . . . . . . . . . . . . . . . . . . . 70

3.17 Proportion of times Ho is rejected using level α = 0.05, where

Ho : βs = βc, for all t ∈ [−1, 60] in two sample simulation as

described in Section 3.7.3. Four test statistics are considered

Ul, Uw, Ue and Uf . . . . . . . . . . . . . . . . . . . . . . . . 71

3.18 MSE of the estimate of β for each γ value using truncated log

body mass as described in Section 3.7.4. Compare the ECME

method with the two stage method. . . . . . . . . . . . . . . 72

viii



List of Figures

4.1 Plots of log body mass versus week for the four groups of

laboratory mice. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Histogram of the response: averaged wheel running from weeks

5 to 60 for the four groups of laboratory mice. . . . . . . . . 89

4.3 Plots of the proportion of cumulative variance of the centered

log body mass explained by the first ten principal components

for four groups of mice, after the individual average log body

mass has been removed. . . . . . . . . . . . . . . . . . . . . . 90

4.4 The constant function and the first three smoothed eigen-

functions of the covariance of centered log body mass of four

group. The four groups’ functions are together in one panel.

The eigenfunctions are calculated as described in Section 4.3. 91

4.5 Plots of β̂ and its standard errors computed from the Hes-

sian matrix (solid) and from the bootstrap (dash-dot) for four

groups of mice. Standard errors are calculated as described

in Section 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Plots of the covariances between the average wheel running

and the log body mass trajectory at week j, j = −1, . . . , 60,

for four groups of mice. Solid lines are the covariance from the

model and dash-dot lines are the pointwise sample covariances

between average wheel running and log body mass. For the

calculation, refer to Heckmand and Wang (2007). . . . . . . 93

4.7 Plots of β̂s−β̂c, the difference between the selection β̂ and the

control β̂, and the standard errors of the difference computed

from the Hessian matrix (solid) and from the bootstrap (dash-

dot) for both genders. . . . . . . . . . . . . . . . . . . . . . . 94

ix



Acknowledgements

For the completion of this thesis, I would like very much to express my

heartfelt gratitude to my supervisor Professor Nancy Heckman for all her

invaluable advice and guidance, endless patience, kindness and encourage-

ment during the mentor period in the Department of Statistics of University

of British Columbia. I have learned many things from her, particularly re-

garding academic research and analytical writing. I truly appreciate all the

time and effort she has spent in helping me to solve the problems encoun-

tered even when she is in the midst of her work.

I would also like to express my sincere gratitude and appreciation to

my committee members, namely Professors Gustafson, Paul and Wu, Lang

(alphabetically) for their precious advice and help in my thesis.

Special thanks to Professor Patrick Carter for providing us the biological

data and the biological background of the thesis work.

Thank you to all faculty, staff and graduate students in the Department

of Statistics, University of British Columbia, for making my stay here such

an enriching experience.

x



Statement of Co-Authorship

The thesis is finished under the supervision of my supervisor, Professor

Nancy Heckman.

Chapter 2 is completed with the help of Professor Heckman.

Chapter 3 is co-authored with Professor Nancy Heckman. My main

contributions are the derivation of the model parameter estimation in Sec-

tion 3.3 and the model diagnostics in Section 3.5. I conduct the programming

work of the data analysis and the simulation studies.

Chapter 4 is co-authored with Professor Patrick Carter, School of Bio-

logical Sciences, Washington State University. Professor Carter conducted

the biological experiment and provided us the data. Professor Carter also

gives a detailed description of the experiment and the biological background.

We describes the statistical method and carry out the data analysis.

xi



Chapter 1

Introduction

This thesis work is motivated by a biology experiment involving data on

individuals, data that can be considered as scalar responses depending on

function-valued predictors. In the thesis, we provide a functional regression

approach to study the biology problem of interest. In this introductory

section, we first give a brief summary of the experiment and then a review

of smoothing methods in functional data analysis. We give a literature

review of the functional regression model followed by a description of our

approach.

1.1 Summary of the biology experiment

Professor Patrick Carter of the School of Biological Sciences of Washington

State University conducted an experiment on house mice (Mus domesticus)

selectively bred for increased voluntary wheel-running exercise. Details of

the experiment are described in Morgan, Garland and Carter, 2003. In

summary, mice were divided into four groups according to gender and the

two treatments “selection” and “control”. The selection group mice were

from lines bred with selection being on high wheel-running activity at age

eight weeks. Control mice were from lines bred at random. Body mass and

wheel running activity were recorded for each mouse for sixty two consec-

utive weeks, indexed from −1 to 60, except for weeks 34, 38, 39, 50. The

research interest is to know how body mass and wheel running are related

and if the relationship depends on the treatment.

Unfortunately, the wheel running distance data have many missing val-

ues and are very noisy. In addition, the wheels were cleaned every four

weeks, which resulted in spikes in wheel-running activity every fourth week.

1



Chapter 1. Introduction

One way to eliminate the problem is to average the wheel running distance

over weeks and use the averaged value in the analysis. After this averaging, a

scalar is obtained. We treat the averaged wheel running as the response and

the body mass trajectory as the predictor. We can build a regression model

to study the dependence of the averaged wheel running on the body mass.

To make use of the functional form of the body mass, we use a functional

regression model approach. More details of this model are in Section 1.3. In

the next section, we give a review of smoothing methods which can be used

to study the body mass trajectories. Some of these methods will be used in

Section 1.3.

1.2 Review of smoothing methods

One can view a body mass trajectory as a process which can be described

as a continuous function of time. Though the measurements of the trajec-

tory are made at a finite discrete set of points, the trajectory lies in an

infinite dimensional parameter space. This functional type of data is the

study object of a statistics branch, namely functional data analysis. For a

reference, please see Ramsay and Silverman (2005). In this section, we give

a brief summary of some popular smoothing methods to study functional

data. Ruppert, Wand and Carroll (2003) give a detailed summary of these

methods. These methods can be applied to study the body mass trajectories

of the mice. To further investigate the relationship between the body mass

and the averaged wheel running, an additional method needs to be used.

First, we consider analyzing data on one individual. Fix the ith individ-

ual and let Zi(·) denote its trajectory. Let tij denote Zi’s jth observational

point and let zij denote its observed value at that time. Data collected on

this individual are the tij ’s and the zij ’s, j = 1, . . . , ni. The dependence of

zij on tij through the function Zi is written as

zij = Zi(tij) + εij, j = 1, . . . , ni. (1.1)

where εij represents an error, either measurement error or modelling error,

2



Chapter 1. Introduction

with mean zero. Estimating Zi from the zij’s is often refered to as nonpara-

metric regression, since the function Zi is only assumed to be “smooth”.

One may view zij as the perturbed Zi at time tij.

One of the popular methods to estimate Zi is local polynomial smooth-

ing. See Fan and Gijbels (1996) for details. Let K be a symmetric positive

function with K(t) decreasing as |t| increases. Let h > 0 be the smoothing

parameter which is usually refered to as the “bandwidth”. To estimate Zi(t)

by a local polynomial of degree p, we minimize

n∑

j=1

[zj − β0 − β1(tj − t) − . . .− βp(tj − t)p]2K

(
tj − t

h

)

to obtain (β̂0, β̂1, . . . , β̂p). The estimate of Zi(t) is then Ẑi(t) = β̂0. Com-

pared with other smoothing methods, one advantage of local polynomial

smoothing is its simpler theoretical analysis which has allowed greater in-

sight into its asymptotic properties.

Another popular smoothing method uses spline basis functions to model

the function Zi. A spline function with degree q is defined on an interval.

One first divides the interval into subintervals by breakpoints, called knots.

On each subinterval, the spline function is a polynomial of degree q. On the

entire interval, the function has q−1 continous derivatives. For a discussion

of spline functions, please see Ramsay and Silverman (2005) p. 47. A

popular choice of spline basis functions is the B-spline basis. In general, let

φ1,. . .,φK be the spline basis functions and assume that Zi can be modelled

as

Zi(t) ∼
K∑

k=1

xikφk(t) ≡ φ(t)′xi, xi ≡ (xi1, . . . , xiK)′. (1.2)

It thus follows from (1.1) that

zij =
K∑

k=1

xikφk(tij) + εij ≡ φ(tij)
′xi + εij , j = 1, . . . , ni. (1.3)

3



Chapter 1. Introduction

One way to estimate the unknown coefficient vector xi is via minimizing

ni∑

j=1

[
zij − φ(tij)

′xi
]2
. (1.4)

To use the spline basis functions, one must specify the number and the

location of “knots”. This is not a simple task. Improper choice of knots

may result in overfitting or underfitting the data. One strategy to overcome

this problem is to use many knots, but to penalize to prevent overfitting. In

this approach, called penalized splines, we minimize a penalized version of

(1.4) to estimate xi. That is, we minimize

ni∑

j=1

[
zij − φ(tij)

′xi
]2

+ λx′
iPxi, (1.5)

where λ is a smoothing parameter and P is a penalty matrix. For examples

of P and how to choose λ using the method of cross validation, please see

Ramsay and Silverman (2005) p. 94.

Interestingly, there is a close connection between the penalized smooth-

ing estimate of Zi(t) using basis functions and the best linear unbiased pre-

dictor (BLUP) of Zi(t) in a random effects model framework. Intuitively,

consider the vector coefficient xi in (1.3) being random and having a covari-

ance matrix Σx. Under a normality assumption of the xi and the εij ’s, the

log likelihood function of the zij ’s and xi can be written in a form similar to

(1.5), up to constant. The smoothing parameter λ is related to the variance

of εij and the penalty matrix P is in the same position as the inverse of Σx.

For more discussion on the BLUP, see Robinson (1991).

The random effects view of penalized splines is particularly useful when

analyzing data from N individuals: the zij’s, j = 1, . . . , ni, i = 1, . . . , N . We

model each zij as in (1.3), with the random effects xi’s assumed indepen-

dently and identically distributed with covariance matrix Σx. The random

effects induce a covariance structure on the zij ’s that provides a reasonable,

yet flexible model for within subject dependence. The parameter Σx is to

be estimated using all the zij ’s. Standard methods to fit random effects or

4



Chapter 1. Introduction

mixed models (containing both random and fixed effects) can thus be used.

For a reference, see McCulloch and Searle (2001). Rice and Wu (2001) use

a B-spline basis in (1.3) and use the EM algorithm to estimate the model

parameters. The authors also calculate the best linear unbiased predictor of

each individual trajectory.

1.3 Functional regression models

Some ideas and methods in functional data analysis can be viewed as exten-

sions of those in classical statistics. One of the extensions is the functional

regression model with a scalar response and a functional predictor. This

model can be used to study the dependence of the averaged wheel running

on the body mass trajectory. In this section, we introduce the functional

regression model and sketch the methods to study this model. Among the

rich literature on this topic, we select those papers most relevant to our

approach.

Let Yi be the averaged wheel running of the ith individual. Referring

to (1.1), we view Zi as the predictor while zij is the perturbed value of Zi

at time tij. Data collected on N individuals are Yi and zij, j = 1, . . . , ni,

i = 1, . . . , N . The functional regression model is

Yi = β0 +

∫
β(t)Zi(t)dt+ ei. (1.6)

The unknown functional coefficient β(·) measures the dependence of the

scalar response Yi on the predictor Zi and is of primary interest. Usually it

is assumed that the function β is smooth.

The functional regression model (1.6) is loosely related to ordinary mul-

tiple regression in that the integral replaces the summation. The ordinary

multiple linear regression model for a fixed individual uses “covariates”

Zi(ti1), . . . , Zi(tini
). and models Yi as

Yi = β0 +
∑

j

βjZi(tij) + ei.

5



Chapter 1. Introduction

In our case, where the Zi(tij)’s are unobserved, we are essentially carrying

out multiple regression with covariates measured with error. Note that the

βj ’s do not depend on i. Thus, to use all individuals in this model, the Zi’s

have to be measured at the same time points to obtain the zij ’s, i.e. tij = tj

and ni = n. When individuals are measured at different sets of time points

or have different number of observations, it is not clear how to apply the

multiple regression model. Another problem with multiple regression is that

for large values of n, the high-dimensional vector of parameters, β, may be

hard to estimate.

The functional model (1.6) can easily accommodate the case when dif-

ferent time points are observed for different individuals. And exploiting the

continuity of β and the Zi’s allows us to reduce the number of parameters

used. In the literature, there are several approaches to calculate the integral
∫
β(t)Zi(t)dt and to estimate β. In the remainder of this section, we give a

summary of some of these approaches and focus on those closest to ours.

One approach uses a discretized version of the integral and estimates β

by minimizing a penalized version of the residual sum of squares. Cardot,

Crambes, Kneip and Sarda (2007) assumed that data were observed at the

same n equally spaced time points, i.e. ni ≡ n, tij = tj and tj − tj−1 = 1/n

for all j = 2, . . . , n. Cardot et al. considered model (1.6) but without the

intercept β0, i.e. the model

Yi =

∫
β(t)Zi(t)dt+ ei.

The authors discretized the integral
∫
β(t)Zi(t)dt using a grid of t values

equal to the tj’s and wrote

Yi =
1

n

n∑

j=1

β(tj)Zi(tj) + ei.

Let Zi = (Zi1, . . . , Zin)′, zi = (zi1, . . . , zin)′ and β = (β(t1), . . . , β(tn))′. The

authors used a Total Least Squares method to estimate β and predict Zi as

6



Chapter 1. Introduction

the solutions of the minimization problem

min
β∈<n,Zi∈<n

{
1

N

N∑

i=1

[(
Yi −

1

n
Z′

iβ

)2

+
1

n
||zi − Zi||2

]
+
λ

n
β′Pβ

}
,

where λ is a smoothing parameter and P is a penalty matrix. Unfortunately,

it is not clear how to apply this approach directly when individuals are

measured at different sets of time points.

Another approach uses basis functions to approximate the Zi’s and β.

In this basis expansion approach, individuals can be measured at different

time points and they don’t need to have the same number of observations.

This approach approximates the Zi’s as in (1.2) and similarly approximates

β using basis functions, ψ1, . . . , ψJ , as

β(t) =
J∑

j=1

βjψj(t) ≡ β′ψ(t), β = (β1, . . . , βJ)′. (1.7)

An advantage of expansions (1.2) and (1.7) is that they reduce the infinite

dimensional functional uncertainty into finite dimensional unknowns which

are conveniently handled by vectors. Estimating β(·) thus reduces to esti-

mating the coefficient vector β. We also notice that using (1.2) and (1.7),

the integral
∫
β(t)Zi(t)dt in (1.6) can be written as

∫
β(t)Zi(t)dt = β′Txi, where T[j, k] =

∫
ψj(t)φk(t)dt. (1.8)

In this approach, the xi’s in (1.2) can be assumed to be fixed or random.

When the xi’s are assumed random, they are usually modelled as described

at the end of Section 1.2. That is, they are assumed independently and

identically distributed with a normal distribution with covariance matrix Σx.

This assumption contributes to the construction of the likelihood function

of the data, the (Yi, zij)’s. The vector β is estimated by maximizing the log

likelihood or a penalized log likelihood.

In the following, we give brief summaries of three statistical papers and a

book chapter that use a basis expansion approach. In expansions (1.2) and

7



Chapter 1. Introduction

(1.7), the φk’s and ψj’s are usually chosen to be splines, although this is not

necessary. For instance, the φk’s can be equal to the principal component

functions of the Zi’s.

James (2002), James and Silverman (2005) and Müller (2005) considered

more general models. In the following, we describe their approaches with

an emphasis on studying model (1.6).

James (2002) used φk’s in (1.3) equal to a basis for natural cubic splines

and also considered ψ = φ in (1.7). The Zi’s were subject to error, and so

the data were the perturbed zij ’s, given in (1.3). The xi’s were multivariate

normal and β was estimated by maximizing the log likelihood. With xi’s

as the missing data and the {(zij , j = 1, . . . , ni), Yi}’s as the observed data,

the author used the EM algorithm to estimate unknown parameters.

James and Silverman (2005) used φk’s in (1.3) equal to the estimated

principal component functions of the Zij ’s and used ψj ’s equal to cubic

spline basis functions. The coefficient vector’s, the xi’s, were taken to be

fixed. When the Zi’s were observed without error, the authors estimated

β by maximizing the log likelihood of the (Yi, Zij)’s subject to a penalty

term which penalized β’s that have
∫
β(t)f(t)dt big when Var(

∫
Z(t)f(t)dt)

is small. When the zij ’s were observed, the log likelihood was modified to

include the measurement error and a penalty term was added to ensure the

smooth fits of the Zi’s.

Müller (2005) used the idea of Karhunen-Loève expansion of the Zi pro-

cess to estimate the φk’s and the corresponding xi’s. In this approach,

the φk’s in (1.3) are equal to the first K estimated eigenfunctions of the

Zi process. The xi’s are random and have diagonal covariance matrix, and

Müller assumes that the estimated xi’s have diagonal covariance matrix too.

Müller’s method of estimating can be separated into two parts where the

xi’s are estimated in the first part and β is estimated in the second part. A

detailed description of Müller’s method is provided in Chapter 3.

Ramsay and Silverman (2005, Chapter 15) first calculated Ẑi(·) by fitting

the zij ’s using least squares and a fairly large number of basis functions.

They then estimated β by minimizing a penalized residual sum of squares

8



Chapter 1. Introduction

which was defined as

N∑

i=1

[
Yi − β0 −

∫
β(t)Zi(t)dt

]2
+ λβ′Pβ.

This method is implemented in the R library fda (Ramsay, Wickham and

Graves, 2007).

1.4 Introduction to the thesis work

In (1.3), when the xi’s are random, the distribution of the observed vector

(zi1, . . . , zini
) will not, in general, be identifiable. This concern motivates

our work in Chapter 2. Assuming the xi’s random introduces an additional

parameter Σx into the model. This additional parameter complicates the

covariance matrix of the zij’s and the variance of the Yi’s. Possibly, the

covariance/variance parameters of the model are not identifiable.

In Chapter 2, we study identifiability in normal linear mixed effects mod-

els. We derive necessary and sufficient conditions of identifiability, including

conditions of identifiability for the scalar response and functional predictor

mixed effects model.

In Chapter 3 of the thesis, we study model (1.6) assuming the observed

Zi’s are contaminated with measurement error. We use principal component

functions to expand Zi in (1.2) and use the same functions to expand β in

(1.7). This choice of basis functions can fit the Zi’s well with K fairly

small. An added benefit of this eigenfunction approach is that we focus on

“estimable directions” of β. We assume that xi in (1.3) is a normal random

vector with a general covariance matrix Σx.

In Chapter 3, we implement the ECME (Expectation/Conditional Max-

imization Either) algorithm of Liu and Rubin (1994) to estimate the model

parameters. We consider Hessian matrix based and boot-strapped standard

errors of the estimate of β. We propose a new integrated t-statistic for hy-

pothesis testing involving β(·). Expressions of the residuals of the model

fit are derived and we discuss model diagnostics based on the analysis of

residuals.

9



Chapter 1. Introduction

In Chapter 4, we apply our model to analyze a biological data set, pro-

viding a detailed biological background.

Chapter 5 summarizes the thesis work and discusses possible future re-

search directions.
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Chapter 2

Identifiability discussion of

linear mixed effects models

2.1 Introduction

Mixed effects models have moved beyond the original simple models, becom-

ing more complicated, containing more parameters. However, two different

sets of parameters producing the same covariance matrix for the observa-

tions may cause problems for parameter estimation and for inference. In

principle, parameter identifiability is the first thing that should be verified

when building a model. As Demidenko (2004, p.118) states, “identifiabil-

ity may be viewed as a necessary property for the adequacy of a statistical

model”.

We study identifiability in normal linear mixed effects models. In the

next section, we define the classical mixed effects model and show that in

an unrestricted form and a specific restricted form, the model is not identifi-

able. Sections 2.3 and 2.4 give sufficient conditions to identify parameters in

various models. In Section 2.5 we discuss identifiability of extended models.

2.2 Motivation

In this section, we give the definition of nonidentifiability. Then we introduce

the general unrestricted classical linear mixed effects model and give two

models that are nonidentifiable.

Definition 2.2.1 Let y be the vector of observable random variables with

0A version of this chapter will be submitted for publication. Author: Wang, W.
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Chapter 2. Identifiability discussion of linear mixed effects models

distribution function Pθ where θ is in the parameter space Θ. This proba-

bility model for y is not identifiable if and only if there exist θ,θ∗ ∈ Θ, with

θ 6= θ∗ and Pθ = Pθ∗.

Throughout the paper, we assume all random variables follow normal dis-

tributions. As the normal distribution is uniquely characterized by its first

two moments, identifiability of a normal distribution function then reduces

to the identifiability of its mean vector and covariance matrix (Demidenko,

2004, Proposition 10, p.118).

In the standard linear mixed effects model, y is the observable random

vector of length n and X and Z are known, non-random design matrices

with dimensions n × p, n > p and n × q, n > q respectively. We assume

throughout that both X and Z have full column rank. Then

y = Xβ + Zu + ε,

u ∼ N(0,Σu), ε ∼ N(0,Σε), u independent of ε. (2.1)

The random effects vector u and the error vector ε are unobservable. This

model has been studied and applied by, for instance, McCulloch and Searle

(2001).

Unknown parameters in the model are (β,θ), where β ∈ B ⊆ <p, θ =

(Σε,Σu) ∈ Θ̃ ⊆ Θ = the set of all (Σε,Σu) with Σε, n × n, and Σu,

q × q, both symmetric and positive definite. Throughout the paper, we

assume that β and θ do not have common elements, i.e. we assume that

(β,θ) ∈ B ⊗ Θ̃. We also assume that Σε and Σu do not have common

elements. That is, we sometimes assume that Θ̃ = Θ̃ε ⊗ Θ̃u where Θ̃ε ⊆
Θε and Θ̃u ⊆ Θu, and Θε contains all n × n positive definite symmetric

matrices and Θu contains all q×q positive definite symmetric matrices. We

take as our operating definition of identifiability the ability to identify the

parameters β, Σε and Σu.

The linear mixed effects model has become popular in the analysis of

longitudinal and functional data. For instance, the response of individual

i at time t can be modelled as
∑
αjφj(t) +

∑
uikψk(t) plus error, where

14



Chapter 2. Identifiability discussion of linear mixed effects models

the αj ’s are fixed population effects and the uik’s are individual-specific

random effects. The inclusion of random effects allows us to realistically

model covariance within an individual. Taking φj ’s and ψk’s equal to B-

splines allows us to flexibly model a wide variety of responses. In addition,

if we allow some of the αj ’s to be random but with a very specific covariance

structure, then the resulting best linear unbiased predictors of the αj ’s are

computationally equivalent to the parameter estimates in a smoothing spline

fit or a penalized B-spline fit. See Verbyla (1999) or Ruppert, Wand and

Carroll (2003).

The parameter vector β is always identifiable since Ey = Xβ and X is of

full column rank. So to study identifiability in the normal model, it suffices

to study the covariance matrix of y, Σy = ZΣuZ
′ +Σε, to see when Σε and

Σu are identifiable. Thus, nonidentifiability of model (2.1) with parameter

space B⊗ Θ̃ is equivalent to the existence of θ,θ∗ ∈ Θ̃, with θ 6= θ∗ giving

the same Σy, i.e.

ZΣuZ
′ + Σε = ZΣ∗

uZ
′ + Σε

∗. (2.2)

In Example 2.2.1 below, we show that the unrestricted model where

Θ̃ = Θ is nonidentifiable. A similar argument shows that the restricted

model in Example 2.2.2 below is not identifiable. Example 2.2.2 uses the

covariance structure assumed for the random effects in the penalized Bspline

method. Thus, when using penalized Bsplines, one cannot assume a general

form for Σε.

Example 2.2.1

Suppose we place no further restrictions on Θ. Then the model is not

identifiable. To see this, let (Σε,Σu) ∈ Θ and 0 < a < 1. Then Σ∗
u =

(1 − a)Σu and Σε
∗ = Σε + aZΣuZ

′. So Σε
∗ and Σ∗

u satisfy (2.2) and

(Σε
∗,Σ∗

u) ∈ Θ.

Example 2.2.2

Suppose that Θ = Θε ⊗ Θ̃u where Θ̃u contains all matrices of the form

σ2R where R is positive definite and known, and σ2 > 0. To see that this
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Chapter 2. Identifiability discussion of linear mixed effects models

model is not identifiable, use the same argument as in Example 2.2.1 and

note that the constructed Σ∗
u is in Θ̃u if Σu is in Θ̃u.

In practice, one usually assumes a more specific structure for Σε, such

as Σε = σ2
ε I. Restrictions may lead to identifiability, and such restrictions

and their effects on identifiability will be discussed in the next two sections.

2.3 Simple sufficient conditions of identifiability

In this section, we find sufficient conditions of identifiability of model (2.1)

assuming Θ̃ = Θ.

A further examination of (2.2) gives us the following sufficient conditions.

Clearly, if Σu is known, then ZΣuZ
′ is known, and so Σε is completely

determined.

If Σε is known, then the model is identifiable. To see this, consider (2.2)

with Σε = Σε
∗. It follows that ZΣuZ

′ = ZΣ∗
uZ

′ and so Σu = Σ∗
u since Z is

of full column rank.

If ZΣuZ
′Σε

−1 = K, where K is known and K+ I is of full column rank,

then the model is identifiable. Suppose by way of contradiction the model is

not identifiable. Then (2.2) holds for (Σu,Σε) 6= (Σ∗
u,Σε

∗) both in Θ̃ with,

by assumption, ZΣuZ
′ = KΣε and ZΣ∗

uZ
′ = KΣε

∗. Substituting these

expressions into (2.2) yields

KΣε + Σε = KΣε
∗ + Σε

∗,

that is,

(K + I)(Σε −Σε
∗) = 0.

Since K + I is of full rank, we must have Σε = Σε
∗. But, as shown in the

previous paragraph, this implies that Σu = Σ∗
u.

The last condition is similar to a common condition for identifiabililty

in simple linear regression models with measurement errors. The model

assumes

yi = β0 + β1xi + εi, εi ∼ (0, σ2
ε ),
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Chapter 2. Identifiability discussion of linear mixed effects models

where xi is observed with error having variance σ2
u. The response yi then

has variance σ2
u +σ2

ε . One of the common conditions of model identifiability

is to assume the ratio σ2
u/σ

2
ε is known. The inverse Σε

−1 appearing in our

last condition could be viewed as multivariate version of “denominator”.

If there are any supplementary data, we may then be able to find an

estimate of Σu, Σε or K and we can treat this estimate as the true value.

The sufficient conditions for identifiability can then be satisfied.

2.4 Sufficient conditions of identifiability for a

structured Σε

As we observed from Examples 2.2.1 and 2.2.2, the model is not identifiable

even if we restrict Σu to be a scalar multiple of a known matrix. In this

section, we study the effect of putting restrictions on Σε. In Theorem 2.4.1

below, we give a necessary and sufficient condition of nonidentifiability, a

condition that relies mainly on the design matrix Z via HZ = Z(Z′Z)−1Z′.

The theorem leads to four corollaries: Corollaries 2.4.1 and 2.4.2 give nec-

essary and sufficient conditions for identifiability when Σε arises from an

exchangeable covariance structure or is diagonal. Corollary 2.4.3 states an

easily checked condition on Σε that guarantees identifiability of the model.

That corollary is then applied to two commonly used error structures. Us-

ing Corollary 2.4.4, we can generalize a known identifiability result, giving

a shorter proof under weaker conditions.

Theorem 2.4.1 Let Θ̃ ⊆ Θ and define HZ = Z(Z′Z)−1Z′. Then model

(2.1) with parameter space B⊗ Θ̃ is nonidentifiable if and only if there exist

(Σε,Σu) ∈ Θ̃ and (Σε
∗,Σ∗

u) ∈ Θ̃, with Σε
∗ 6= Σε such that

HZ [Σε −Σε
∗] = Σε −Σε

∗, (2.3)

and

Σ∗
u = Σu + (Z′Z)−1Z′ [Σε −Σε

∗]Z(Z′Z)−1. (2.4)
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Proof :

Nonidentifiability of the model is equivalent to the existence of (Σε,Σu) and

(Σε
∗,Σ∗

u) in Θ̃, not equal, satisfying (2.2). Note that this is equivalent to

having (Σε,Σu) and (Σε
∗,Σ∗

u) in Θ̃ with Σε
∗ 6= Σε satisfying

Z(Σu −Σ∗
u)Z′ = Σε

∗ −Σε. (2.5)

Suppose the model is nonidentifiable. We premultiply (2.5) by Z′, post-

multiply it by Z and then pre- and postmultiply by (Z′Z)−1 to get

Σu −Σ∗
u = (Z′Z)−1Z′ [Σε

∗ −Σε]Z(Z′Z)−1. (2.6)

This gives (2.4). To derive (2.3), premultiply (2.6) by Z, postmultiply (2.6)

by Z′ to get

Z(Σu −Σ∗
u)Z′ = HZ [Σε

∗ −Σε]HZ (2.7)

which, by (2.5), is the same as

Σε −Σε
∗ = HZ [Σε −Σε

∗]HZ. (2.8)

Premultiplying (2.8) by the idempotent matrix HZ gives

HZ [Σε −Σε
∗] = HZ [Σε −Σε

∗]HZ.

Substituting (2.8) into the right side of the above yields (2.3).

To prove the converse, we want to show that (2.3) and (2.4) lead to (2.5).

It is clear from (2.4) that (2.7) holds. If we can show that (2.8) holds then

we are done since substituting (2.8) into the right side of (2.7) yields (2.5).

To show (2.8), from (2.3) and the symmetry of Σε −Σε
∗, we see that

HZ[Σε −Σε
∗] = [Σε −Σε

∗]HZ.

Premultiplying the above identity by the idempotent matrix HZ gives HZ[Σε−
Σε

∗] = HZ[Σε−Σε
∗]HZ. Substituting (2.3) for the left side of the equation,

we see that (2.8) holds. 2
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The proofs of the next two corollaries are in Appendix A.

Corollary 2.4.1 Let 1 be an n-vector with each element being one. Suppose

that the distribution of ε1, . . . , εn is exchangeable, that is, the covariance

matrix of ε is of the form σ2 [(1 − ρ)I + ρJ] where J = 11′. Let Θ̃ε =

{Σε = σ2 [(1 − ρ)I + ρJ] , σ2 > 0, −1/(n − 1) < ρ < 1}. Suppose the

matrix Z satisfies 1′Z 6= 0 and rank(Z) = q with 1 ≤ q < n − 1. Suppose

the parameter space is B⊗ Θ̃ε⊗Θu. Then model (2.1) is identifiable if and

only if HZJ 6= J.

Comments. The condition HZJ = J means the sum of the elements of

each row of HZ is equal to one, and this is an easy condition to check. For

the case that q = 1, i.e. Z is a column vector (z1, . . . , zn)′ where
∑
zi 6= 0,

HZ =




z2
1

s2
z

z1z2
s2
z

· · · z1zn

s2
z

...
...

znz1
s2
z

znz2
s2
z

· · · z2
n

s2
z


 , where s2z =

∑
z2
i .

The model is identifiable if and only if Z is not a constant vector.

When q = 2, suppose we have the usual simple linear regression model

with centered covariates:

Z =




1 z1
...

...

1 zn


 , with

∑
zi = 0. (2.9)

Then

HZ =




1
n +

z2
1

s2
z

1
n + z1z2

s2
z

· · · 1
n + z1zn

s2
z

...
...

1
n + znz1

s2
z

1
n + znz2

s2
z

· · · 1
n + z2

n

s2
z


 .

and each row of HZ sums to one. Thus unfortunately, the model is not iden-

tifiable under this Z combined with the exchangable covariance structure.

Corollary 2.4.2 Suppose that Θ̃ε equals the collection of all diagonal pos-

itive definite n × n matrices. Then model (2.1) with parameter space B ⊗
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Θ̃ε ⊗Θu is identifiable if and only none of the diagonal elements of HZ is

equal to one.

Comments. Again, the condition on HZ is easy to check. Consider the

case q = 1. As we have seen, diagonal elements of HZ equal z2
i /
∑
z2
j ,

i = 1, . . . , n. Therefore, the model is identifiable if and only if Z does not

have n− 1 zero elements. Consider q = 2 with Z as in (2.9). The model is

identifiable provided, for all i, (1/n)+z2
i /
∑
z2
j doesn’t equal 1. So typically,

the model is identifiable.

The following corollary provides a sufficient condition for identifiability,

a condition that can sometimes be easily checked. Consider (2.3). Note that

the rank of HZ(Σε − Σε
∗) is at most q, since the rank of HZ is q. Thus,

for (2.3) to hold, we must be able to find some Σε and Σε
∗ with the rank of

Σε −Σε
∗ less than or equal to q. This proves the following.

Corollary 2.4.3 Suppose that Θ̃ ⊆ Θ. Then model (2.1) with parameter

space B × Θ̃ is identifiable if rank(Σε − Σε
∗) > q for all Σε, Σε

∗ in the

parameter space.

Now we apply Corollary 2.4.3 to show model identifiability under the

“multiple of a known positive definite matrix” and the “MA(1)” covariance

structures respectively in next two examples.

Example 2.4.1 Multiple of a known positive definite matrix

Fix R, symmetric and positive definite, and suppose (Σε,Σu) ∈ Θ̃ implies

that Σε = σ2R, some σ2 > 0. Consider Σε = σ2R and Σε
∗ = σ∗2R,

σ∗2 6= σ2. Clearly Σε −Σε
∗ = (σ2 −σ∗2)R is invertible, and so is of rank n,

which we have assumed is greater than q. Thus, the model is identifiable.

To show the model in Example 2.4.2 below is identifiable, we need the

following lemma which is a result in (Graybill, 1983, p.285)

Lemma 2.4.1 Let T be the n × n Toeplitz matrix with ones on the two

parallel subdiagonals and zeroes elsewhere. Given two scalars a0 and a1, the
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eigenvalues of the n× n matrix C = a0I + a1T are

µi = a0 + 2|a1| cos
iπ

n+ 1
, i = 1, . . . , n.

Example 2.4.2 MA(1)

Suppose that n−1 > q. Let the components of ε have the MA(1) covariance

structure, i.e. of the form σ2(I + ρT). Let Θ̃ε = {Σε = σ2(I + ρT), σ2 >

0, |ρ| < 1/2} and suppose (Σε,Σu) ∈ Θ̃ implies that Σε ∈ Θ̃ε.

Let Σε and Σε
∗ ∈ Θ̃ε. By Lemma 2.4.1, the eigenvalues of the difference

matrix Σε −Σε
∗ = (σ2 − σ∗2)I + (σ2ρ− σ∗2ρ∗)T are

λi = (σ2 − σ∗2) + 2
∣∣∣σ2ρ− σ∗2ρ∗

∣∣∣ cos iπ

n+ 1
, i = 1, . . . , n.

Given any (σ2, ρ) and (σ∗2, ρ∗), with (σ2, ρ) 6= (σ∗2, ρ∗), the number of zero

λi’s is at most one. Hence, the rank of the difference matrix is greater than

or equal to n − 1. Therefore, model (2.1) is identifiable under this MA(1)

covariance structure.

In longitudinal or functional data analysis, usually there are N individ-

uals with the ith individual modelled as in (2.1):

yi = Xiβ + Ziui + εi,

ui ∼ N(0,Σu), εi ∼ N(0,Σεi),

(Σu,Σεi) ∈ Θu ⊗ Θ̃
i
ε, ui and εi independent. (2.10)

Statistical inference is normally based on the joint model, the model of

these N individuals. The following corollary gives sufficient conditions for

identifiability of the joint model. The intuition behind the result is that, if

we can identify Σu from one individual, then we can identify all of the Σεi’s.

Corollary 2.4.4 If an individual model (2.10) is identifiable, then the joint

model is identifiable.
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Proof:

We notice each individual model (2.10) shares a common parameter, the

covariance matrix Σu. If one individual model uniquely determines Σu and

its Σεi, the identified Σu will then yield identifiability of all the individual

Σεi’s since, if ZiΣuZ
′
i + εi = ZiΣuZ

′
i + ε∗i , clearly εi = ε∗i . Therefore, the

joint model is identifiable. 2

Corollary 2.4.4 reduces the verification of a joint model’s identifiability

to the individuals’. For instance, if the i-th individual model has Zi of

full column rank and Σεi = σ2
ε Ini

, where ni is the length of yi, then this

individual model is identifiable by Corollary 2.4.1 and thus so is the joint

model. Note that the other individual models can still have their Zj’s not

of full column rank.

Demidenko (2004, Chapters 2 & 3) studies the joint model but assumes

the covariance matrix of εi is σ2Ini
. Suppose each Zi is of dimension ni × q.

Demidenko shows that the joint model is identifiable if at least one matrix

Zi is of full column rank and
∑N

i=1(ni − q) > 0. Using our argument in

the previous paragraph, the condition
∑N

i=1(ni − q) > 0 can be dropped.

Furthermore, our result can be applied to more general Σε’s.

2.5 Extensions

In this section, we discuss identifiability of a model in functional regression

for a functional predictor y(·) and a scalar response w. We derive a necessary

and sufficient condition of nonidentifiability for this model.

We model y(t) as
∑

j αjφj(t) +
∑

k ukψk(t) plus error, with the φj ’s

and ψk’s known, the αj’s unknown and the uk’s unknown and random.

The dependence of the response w on y is modelled through an unknown

functional coefficient, β: w = β0+
∫
β(t) [y(t)−E(y(t))] dt+η where η is mean

0 normal noise. Thus, for appropriately defined ρ and with u = (u1, . . . , uq)
′,

we can write

w = β0 + ρ′u + η,

β0 ∈ <, ρ ∈ <q unknown , η ∼ (0, σ2
η) independent of u. (2.11)
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The predictor y is observed at a sequence of discretized points and the

observed values are contained in the vector y, which then follows model

(2.1). James (2002), Müller (2005) and Heckman and Wang (2007) consider

this modelling of y and w and propose different approaches to estimate the

functional coefficient, β.

We assume model (2.1) and (2.11). For our purpose of identifiability

discussion here, we consider the unknown parameters to be (β0,β) and θ =

(Σε,Σu, σ
2
η ,ρ). We suppose that (β0,β) ∈ B ⊆ < ⊗ <p and that θ ∈ Θ̃ ⊆

Θ = Θε⊗Θu ⊗<+ ⊗<q where Θε and Θu are as before and <+ is the set

of positive real numbers.

To study identifiability, we must study the distribution of the random

vector (y′, w). We see that E(y) = Xβ, E(w) = β0 and (y′, w)′ has covari-

ance matrix

Σ =

(
ZΣuZ

′ + Σε ZΣuρ

ρ′ΣuZ
′ ρ′Σuρ+ σ2

η

)
.

We know the parameter β is identifiable if the matrix X is of full column

rank. The identifiability of β0 is also clear. So we focus on identifying the

covariance parameters θ.

Our discussion in Section 2.2 suggests the unrestricted model won’t be

identifiable. In fact, we can construct an example following Example 2.2.1

to show the existence of nonidentical θ and θ∗ both in Θ such that (2.2)

holds and

ZΣuρ = ZΣ∗
uρ

∗, (2.12)

ρ′Σuρ+ σ2
η = ρ∗′Σ∗

uρ
∗ + σ∗η

2. (2.13)

Example 2.5.1 Example 2.2.1 continued.

Let 0 < a < 1, Σ∗
u and Σε

∗ be as in Example 2.2.1, and let ρ∗ = ρ/(1 − a)

and σ∗η
2 = σ2

η − aρ′Σuρ/(1 − a). It is not hard to see (2.12) and (2.13) are

satisfied. If, in addition, we restrict a < σ2
η/(σ

2
η + ρ′Σuρ), we see that σ∗η

2

is positive.

The following theorem gives a necessary and sufficient condition of non-
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identifiability.

Theorem 2.5.1 Let Θ̃ε ⊆ Θε, let Θ̃ = Θ̃ε ⊗ Θu ⊗ <+ ⊗ <q. and define

HZ = Z(Z′Z)−1Z′. Then model (2.1) and (2.11) with parameter space B⊗Θ̃

is nonidentifiable if and only if there exist (Σε,Σu, σ
2
η ,ρ) and (Σε

∗,Σ∗
u, σ

∗
η
2,ρ∗)

both in Θ̃, with Σε
∗ 6= Σε such that the following hold

(a) HZ [Σε −Σε
∗] = Σε −Σε

∗,

(b) Σ∗
u = Σu + (Z′Z)−1Z′ [Σε −Σε

∗]Z(Z′Z)−1,

(c) ρ∗ = Σ∗
u
−1

Σuρ,

(d) σ∗η
2 = σ2

η + ρ′Σu(Σ−1
u −Σ∗

u
−1)Σuρ.

Proof:

Nonidentifiability of the model is equivalent to the existence of nonidentical

θ and θ∗ in Θ̃, satisfying (2.2), (2.12) and (2.13).

First suppose that (2.2), (2.12) and (2.13) hold for some θ 6= θ∗. By

the argument given in Theorem 2.4.1, (2.2) implies that (a) and (b) hold.

Since Z is of full column rank, (2.12) yields (c). Substituting (c) into (2.13)

yields (d). We easily see that, if θ 6= θ∗ and if (a) through (d) hold, then

Σε 6= Σε
∗.

Now suppose that conditions (a) through (d) hold for some Σε 6= Σε
∗.

Again, by the argument given in Theorem 2.4.1, (2.2) holds. We easily see

that (2.12) and (2.13) also hold. 2
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Chapter 3

Linear mixed models for

measurement error in

functional regression

3.1 Introduction

Regression models with a functional predictor Z(·) and a scalar response Y

have been extensively studied (see, eg, Ramsay and Silverman, 2005, and

references therein). For individual i, the dependence of Yi on Zi is modelled

as

Yi = β0 +

∫ b

a
β(t)

[
Zi(t) − E(Zi(t))

]
dt+ ei. (3.1)

The goal is to estimate β.

Data are collected from N independent individuals, with data on in-

dividual i, i = 1, . . . , N , being Yi, Zij ≡ Zi(tij), j = 1, . . . , ni. If the Zi

processes are observed with error, then our data on individual i are Yi and

zij , j = 1, . . . , ni, with

zij = Zi(tij) + εij, Cov(εi1, . . . , εini
) = Σεi

. (3.2)

Here, we consider data where the Zij’s are observed with error which

could be measurement error or modelling error, and we model the function

Zi using random effects with a set of basis functions φ1, . . . , φK . In our

0A version of this chapter will be submitted for publication. Authors: Heckman, N.

and Wang, W.
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Chapter 3. Linear mixed models for measurement error in functional regression

estimation process, we approximate Zi(·) as

Zi(t) = µ(t) +
K∑

k=1

xikφk(t), (3.3)

where µ is an arbitrary function and xi ≡ (xi1, . . . , xiK)′ are independent

and normally distributed with mean vector 0 and covariance matrix Σx.

This approach was taken by James (2002), Müller (2005) and James

and Silverman (2005) for data with and without measurement error. James

used φk’s equal to a basis for natural cubic splines and also used this ba-

sis for modelling µ. James’s approach is similar to that described in Sec-

tion 3.3. However, we implement a faster algorithm, the ECME (Expecta-

tion/Conditional Maximization Either) algorithm in Liu and Rubin (1994),

and consider Hessian matrix based and boot-strapped standard errors.

Müller used φk’s equal to the first K estimated eigenfunctions of the

Zi process. Müller’s approach can be separated into two parts: the first

part uses only the zij ’s to determine µ, the φk’s and the xij ’s. The second

part incorporates the Yi’s to estimate β0 and β. The first part uses the

PACE method (principal analysis through conditional expectation) of Yao,

Müller and Wang (2005). In PACE, Yao et al. smooth the observed zij ’s to

obtain an estimate µ̂ of µ and then centre the data by subtracting µ̂. Next

the authors smooth the centred data to estimate the covariance function

of the Zi’s and then estimate the first K eigenfunctions and eigenvalues

of the estimated covariance function. Denote these estimates by φ1, . . . , φK

and λ̂1, . . . , λ̂K . Let x̂ik be the best linear unbiased estimate of individual i’s

kth PC score, x̂ik = E(xik|zi1, . . . , zini
), calculated assuming normality, (3.2)

with Σεi
= σ2I and (3.3) with Σx = diag(λ̂1, . . . , λ̂K). The second part of

Müller’s methodology involves regressing Yi on x̂i1, . . . , x̂iK to estimate βk =
∫
β(t) φk(t) dt and then setting β̂(t) =

∑
β̂kφk(t). Müller justifies the use

of this regression by showing that E(Yi|zij , j = 1, . . . , ni) = β0 +
∑∞

1 βkxik,

for the true PC scores xik calculated with the true eigenfunctions.

Müller’s approach has a big computational advantage over James’s (2002),

in that it can fit the Zi’s well with K fairly small. An added benefit of
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this eigenfunction approach is that we focus on “estimable directions” of β.

For instance, consider the extreme case where Zi can be written exactly as

Zi(t) = µ(t)+
∑K

1 xikφk(t). So Zi has no variability in directions orthogonal

to the φk’s. Since
∫
β(t)[Zi(t) − E(Zi(t))] dt =

∑K
1 xik

∫
β(t) φk(t) dt, we

can only hope to estimate
∫
β(t) φk(t) dt, k = 1, . . . ,K. We cannot esti-

mate
∫
β(t) f(t) dt for f orthogonal to the φk’s. This issue was noted by

James and Silverman (2005) who handled it by adding a penalty term which

penalizes β’s that have
∫
β(t)f(t)dt big when Var(

∫
Z(t)f(t)dt) is small.

Müller’s approach has the disadvantage that it does not fully use the Yi’s:

the xik’s in (3.3) are estimated using only the zij ’s. Clearly, the Yi’s also

provide information about the xik’s if there is a relationship between Yi and

Zi, that is, if β 6= 0. As James and Silverman (2005) note “It is an interesting

feature of this problem that the responses provide additional information

in the estimation of the Zi’s”. Also, Müller’s calculation, that E(Yi|zij , j =

1, . . . , ni) = β0+
∑∞

1 βkxik does not hold if the eigenvalues or eigenfunctions

are incorrect. In particular, the calculation relies on Cov(xij, xik) = 0 for

j 6= k.

We consider a hybrid approach. Like Müller, we use φ1, . . . , φK equal

to the first K estimated eigenfunctions of the Zi process. Thus we not only

improve on James’s choice of φk’s but also focus on “estimable directions” of

β. We then treat these φk’s as fixed and known in our analysis. We use all

of the data, the Yi’s and the zij ’s, to estimate the xik’s and we do not place

any restrictions on Σx. Thus we improve on Müller’s procedure, where the

xik’s are estimated using only the zij ’s, and Σx is assumed diagonal and is

estimated completely by the eigenanalysis of the zij ’s.

Our detailed parameter estimation procedure using the ECME algorithm

is in Section 3.3. In this work, we also propose test statistics for hypothesis

testing of β(·). In Section 3.4.1, we consider testing the nullity of the function

β, i.e. testing Ho : β(t) = 0, for all t ∈ [a, b]. In the two sample situation,

we consider testing the equality of a selection βs and a control βc, i.e. testing

Ho : βs(t) = βc(t), for all t ∈ [a, b]. We propose a new integrated t-statistic

and three test statistics that are more standard. In Section 3.5, we derive

expressions of the residuals of the model fit and discuss model diagnostics
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based on the analysis of residuals. In Section 3.6.2, we apply the model

to analyze a biological data set. In Section 3.7, via a simulation study,

we compare our ECME estimate of β to a modification of Müller’s (2005)

two-stage estimate and we also study the performance of the different test

statistics. Our detailed calculations to derive the ECME estimates are in

Appendix B.

3.2 Notation and Preliminaries

Before we fit the model, we introduce some notation and carry out prelim-

inary calculations. In this section and the next, we suppose that the φk’s

are fixed and known. In practice, however, we will estimate them from an

eigenanalysis of the zij ’s.

For ease, assume ni ≡ n and tij = tj . Suppose that (3.1), (3.2) and

(3.3) above hold. Let Zi = (Zi1, . . . , Zin)′, µ = (µ(t1), . . . , µ(tn))′, εi =

(εi1, . . . , εin)′ represent errors and zi = (zi1, . . . , zin)′ be the observed values.

Write

zi = Zi + εi ≡ µ+ Axi + εi, (3.4)

where xi
i.i.d.∼ N(0,Σx), Ajk = φk(tj), j = 1, . . . , n, k = 1, . . . ,K,

εi
i.i.d.∼ N(0, σ2

ε R), R known, symmetric and positive definite,

{x1, . . . ,xn} independent of {ε1, . . . , εn}.

If R is known, then the model is identifiable (Wang, 2007). However, if σ2
εR

is unknown, then the model is not identifiable (Wang, 2007). Wang also

discusses model identifiability under other assumptions on the covariance

matrix of εi.

We choose a basis for β and write

β(t) =
J∑

j=1

βjψj(t) ≡ β′ψ(t).
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Typically, we will take J = K and ψj = φj , but will write for the general

case. Thus we can write

Yi = β0 + β′Txi + ei, where Tjk =

∫ b

a
ψj(t) φk(t) dt and ei ∼ N(0, σ2).

(3.5)

We easily see that zi,xi and Yi are jointly multivariate normal with

E(zi) = µ, E(Yi) = β0, E(xi) = 0,

and

Var(Yi) ≡ σ2
Y = β′TΣxT

′β + σ2, Cov(zi) ≡ Σz = AΣxA
′ + σ2

εR,

Cov(zi, Yi) ≡ Σz,Y = AΣxT
′β, Cov

(
zi,x

′
i

)
≡ Σz,x = AΣx

and Cov
(
Yi,x

′
i

)
≡ ΣY,x = β′TΣx. (3.6)

Let Wi = (z′i, Yi)
′ be the ith subject’s observation and let µW denote E(Wi).

Let

C =

(
A

β′T

)
(3.7)

and Σd be a block diagonal matrix as

Σd = diag(σ2
εR, σ

2). (3.8)

Then

Cov(Wi) ≡ ΣW = CΣxC
′ + Σd (3.9)

and the log-likelihood of the observed data is

ΛN = −N
2

ln det
(
CΣxC

′ + Σd

)
−1

2

N∑

i=1

(Wi−µW )′
(
CΣxC

′ + Σd

)−1
(Wi−µW )

up to an additive constant term. Unknown model parameters are θ =

(µ, β0,Σx, σ
2
ε ,β, σ

2). Directly maximizing ΛN over θ does not give us closed

forms of the parameter estimates except for µ and β0. So we need to rely
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on iterative numerical methods to find the estimates. We will elaborate on

these methods in the next section.

3.3 Parameter estimation

In this section, we use the ECME (Expectation/Conditional Maximization

Either) algorithm (Liu and Rubin, 1994) to estimate the model parameters

in θ.

In this balanced design, the MLEs of µ and β0 are z̄ and Ȳ respectively.

So throughout we take

µ(t) = µ̂ = z̄ and β
(t)
0 = β̂0 = Ȳ and so µ

(t)
W = W̄, t = 0, 1, . . . .

We estimate the other parameters iteratively and sequentially. Given

θ(t), the parameter estimates at iteration t, we update one component of

θ(t) at a time, holding the other components fixed. We treat (zi, Yi,xi), i =

1, . . . , N, as the complete data. We update σ
2(t)
ε by finding its EM estimate.

That is, we find its estimate by maximizing the conditional expected com-

plete data log-likelihood function, where we condition on the observed data.

The other components of θ(t) are updated by maximizing ΛN directly.

Throughout our ECME procedure in Sections 3.3.2-3.3.4, we make the

following assumptions.

(a) A is of full column rank;

(b) T is of full row rank;

(c) there exists no u and v such that, for all i = 1, . . . , n, zi = u + v′xi;

(d) there exists no v such, for all i = 1, . . . , n, Yi = Ȳ + v′(zi − z̄).

The restrictions on A and T are easily satisfied. Assumption (b) requires

J , the number of the ψj basis functions to be no larger than K, the number

of the φk basis functions. Typically, we will take J = K and ψj = φj .

Assumptions (c) and (d) are common for data where there is noise. We
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notice assumption (a) implies that the matrix C defined in (3.7) is also of

full column rank.

3.3.1 Initial estimates of parameters other than µ and β0

We choose the initial estimates as follows.

We take β(0) to be a vector of zeroes. If this were the true value of β,

then we could simply estimate σ2 by the sample variance of the Yi’s. To

account for the fact that β may not be zero and thus the sample variance of

the Yi’s would overestimate σ2, we take σ2(0) equal to 0.6 times the sample

variance of the Yi’s.

The values of Σ(0)
x and σ

2(0)
ε are based on the penalized eigenanalysis of

the zi’s sample covariance matrix described in Section 3.6.1. These initial

estimates are sensible if R is the identity matrix, but can still be used if

R is not the identity. Roughly, the eigenanalysis in Section 3.6.1 partitions

the variability of the zi’s into two parts: variability from the Zi process and

variability from the noise. Let λ1, . . . , λn denote the calculated eigenvalues

and suppose the largest K sufficiently describe the variability in the zi’s.

So we will use K eigenfunctions. A reasonable first estimate of Σx is Σ(0)
x

diagonal with entries λ1, . . . , λK . We take σ
2(0)
ε equal to

∑n
K+1 λk/(n−K),

explaining the remaining variability in the zij ’s.

Clearly, under assumptions (a)-(d), we can force σ2(0) and σ
2(0)
ε to be

positive and Σ(0)
x > 0. Given θ(t), we update Σx, σ2

ε , β, and σ2, as described

below.

3.3.2 Updating Σ(t)
x

We update Σ(t)
x by maximizing ΛN over Σx while keeping the other pa-

rameters fixed. Let SW =
∑N

i=1(Wi − W̄)(Wi − W̄)′/N. We show that if

σ2(t) and σ
2(t)
ε are positive and if SW −Σ

(t)
d > 0, then our update Σ(t+1)

x is

positive definite and using it in the log likelihood instead of Σ(t)
x increases

the log likelihood.

With detailed derivation in Section B.4, differentiating ΛN with respect
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to Σx and equating to zero yields the first order condition

C′Σ−1
W C = C′Σ−1

W SW Σ−1
W C. (3.10)

Here, C depends on β(t) and ΣW = CΣxC
′ + Σ

(t)
d from (3.9). Equation

(3.10) holds provided ΣW is invertible at the critical value of Σx. Since we

assume that σ2(t) and σ
2(t)
ε are positive, Σ

(t)
d is positive definite. So ΣW will

be invertible provided Σx is non-negative definite.

We now solve (3.10) for Σx, first deriving two useful identities, (3.11)

and (3.12). For ease, we drop the hats and superscript t’s on the parameter

estimates that are being held fixed, that is, on µ̂W , σ
2(t)
ε ,β(t), and σ2(t).

Direct multiplication and some manipulation of the left hand side of the

following shows that

(
C′Σ−1

d C
)
×
[(

C′Σ−1
d C

)−1
+ Σx

]
C′Σ−1

W = C′Σ−1
d .

Solving this for CΣ−1
W yields

C′Σ−1
W =

[(
C′Σ−1

d C
)−1

+ Σx

]−1 (
C′Σ−1

d C
)−1

C′Σ−1
d . (3.11)

Postmultiplying both sides of identity (3.11) by C yields

C′Σ−1
W C =

((
C′Σ−1

d C
)−1

+ Σx

)−1

. (3.12)

Substituting (3.11) into the right side of (3.10) and (3.12) into the left side

of (3.10) yields (
C′Σ−1

d C
)−1

+ Σx = F SW F′,

where F =
(
C′Σ−1

d C
)−1

C′Σ−1
d . Note that F is of full row rank. Thus, the

critical point is

Σ̂x = F SW F′ −
(
C′Σ−1

d C
)−1

= F (SW −Σd)F
′, (3.13)

which is strictly positive definite. And so, clearly we have ΣW invertible at
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the critical point.

To see that the updated Σ̂x leads to an increase in ΛN , we show that

the Hessian matrix, H(Σx) evaluated at Σ̂x is negative definite. The ijth

element of H(Σx) is the second order partial derivative of ΛN with respect

to the ith and jth elements of the vectorized Σx. From calculations in

Section B.4, we have

H(Σ̂x) = −(N/2)
(
D̂⊗ D̂

)
, where D̂ = C′Σ̂

−1
W C, (3.14)

which is clearly negative definite.

3.3.3 Updating σ2(t)
ε

We update σ
2(t)
ε , holding all other parameter estimates fixed, using one E-

step and one M-step of the EM algorithm. We show that if σ2(t) and σ
2(t)
ε

are positive and if Σ(t)
x > 0, then our update σ

2(t+1)
ε is positive. Increase

of the log likelihood after updating σ
2(t)
ε by σ

2(t+1)
ε is guaranteed by the

property of the EM algorithm.

Recall (zi, Yi,xi), i = 1, . . . , N , are our complete data and Wi ≡ (z′i, Yi)
′,

i = 1, . . . , N , are the observed data. In conditional expectations, we let “ · ”
stand for the observed data. Abusing notation slightly, we let f denote a

generic density function with the exact meaning clear from the arguments.

The E-Step of the EM algorithm calculates E
θ

(t)

(∑N
i=1 ln f(zi, Yi,xi) | ·

)

and the M-step maximizes this conditional expectation over σ2
ε to obtain

σ
2(t+1)
ε . By the conditional independence of zi and Yi given xi,

ln f(zi, Yi,xi) ≡ ln f(zi|xi) + ln f(yi|xi) + ln f(xi).

Since only ln f(zi|xi) contains σ2
ε , we can ignore the last two terms and

obtain σ
2(t+1)
ε via maximizing E

θ
(t)

(∑N
i=1 ln f(zi|xi) | ·

)
over σ2

ε .

From (3.4), we first get

N∑

i=1

ln f(zi|xi) = −N
2

ln(det σ2
εR)− 1

2σ2
ε

N∑

i=1

(zi−µ−Axi)
′R−1(zi−µ−Axi).
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Following (3.6), we have

Cov(Wi,xi) = CΣx (3.15)

which then leads to the conditional mean and covariance of xi given Wi as

E[xi|Wi] ≡ µxi|Wi
= ΣxC

′Σ−1
W (Wi − µW ), (3.16)

Cov[xi|Wi] ≡ Σx|W = Σx −ΣxC
′Σ−1

W CΣx. (3.17)

Let

s̃ =
N∑

i=1

(zi − µ̂−Aµ
(t)
xi|Wi

)′R−1(zi − µ̂−Aµ
(t)
xi|Wi

).

Routine calculations yield

E
θ

(t)

(
N∑

i=1

ln f(zi|xi)|·
)

= −N
2

ln(detR)−nN
2

lnσ2
ε−

1

2σ2
ε

[
s̃+Ntr(R−1AΣ

(t)
x|WA′)

]
.

Differentiating this conditional mean with respect to σ2
ε and equating the

derivative to zero yields

σ2(t+1)
ε =

1

nN
s̃+

1

n
tr[R−1AΣ

(t)
x|WA′]. (3.18)

We show the update σ
2(t+1)
ε is positive in the following. The first term in

σ
2(t+1)
ε is positive, by assumption (c) and the fact that R is positive definite.

The second term is nonnegative by the following argument.

Using the famous matrix identity

(VΣV′ + Σ0)
−1 = Σ−1

0 −Σ−1
0 V

(
Σ−1 + V′Σ−1

0 V
)−1

V′Σ−1
0

provided the matrix orders properly defined, we see that

Σ
(t)
x|W =

(
Σ(t)

x

−1
+ C(t)′Σ

(t)
d

−1
C(t)

)−1

which is positive definite. Given Σ
(t)
x|W > 0, assumption (a) then implies
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that AΣ
(t)
x|WA′ ≥ 0. Together with the fact that R > 0, the second term in

(3.18) is thus nonnegative.

3.3.4 Updating β(t) and σ2(t)

The updates of β(t) and σ2(t) maximize ΛN over β and σ2, holding the other

parameters fixed. Suppose that σ
2(t)
ε > 0 and Σ(t)

x > 0. We find unique

critical points, β̂ and σ̂2, and show that they increase the log likelihood

provided σ̂2 > 0.

Note that log f(yi, zi) = log f(yi|zi) + log f(zi), that log f(zi) doesn’t

depend on β or σ2. We also note given zi, yi is normal with mean

E(Yi|zi) ≡ β0 + β′G(zi − µ),

and variance

σ2
Y |z ≡ Var(Yi|zi) = β′Kβ + σ2 (3.19)

where

G = TΣxA
′Σ−1

z (3.20)

and

K = TΣxT
′ −TΣxA

′Σ−1
z AΣxT

′.

Therefore, to maximize ΛN with respect to β and σ2, we maximize

Λ̃N = −N
2

ln(β′Kβ + σ2) − 1

2(β′Kβ + σ2)

N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2
.(3.21)

With detailed derivation in Section B.5, equating ∂Λ̃N/∂β and ∂Λ̃N/∂σ
2 to

zero yields respectively

1

β′Kβ + σ2

N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)
G(zi − µ) = 0 (3.22)
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1

(β′Kβ + σ2)2

[
N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2 −N(β′Kβ + σ2)

]
= 0.

(3.23)

Note that G is of full row rank because of the following two observations.

First, T is of full row rank by assumption (b). Second, the matrix Σz =

Σ(t)
x + σ

2(t)
ε R is invertible since it is positive definite.

Let

M = G

N∑

i=1

(zi − µ)(zi − µ)′G′.

Then, by assumption (c), M is positive definite.

Solving (3.22) for β and (3.23) for σ2 gives

β(t+1) = β̂ = M−1G

N∑

i=1

(zi − µ)(Yi − β0)

σ2(t+1) = σ̂2 =
1

N

N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2 − β′Kβ. (3.24)

Unfortunately, we are not guaranteed that σ̂2 is positive. However, in

all of our data analyses and simulation studies, the final estimate of σ2 was

always positive.

Again, to check if the update increases Λ̃N , we show that the Hessian

matrix is negative definite. We notice that (3.24) implies

σ̂2
Y |z ≡ β̂′

Kβ̂ + σ̂2 =
1

N

N∑

i=1

(
Yi − β0 − β̂

′
G(zi − µ)

)2
, (3.25)

which is positive by assumption (d). With detailed calculation in Sec-

tion B.5, the Hessian matrix HΛ̃(β, σ2) when evaluated at β̂ and σ̂2 equals

HΛ̃(β̂, σ̂2) = − N

(σ̂2
Y |z)

2


 2Kβ̂β̂

′
K +

σ̂2
Y |z

N M Kβ̂

β̂
′
K 1

2


 . (3.26)

It follows that HΛ̃(β̂, σ̂2) < 0 by the following argument. Let x1 ∈ <J and
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x2 ∈ < with at least one of x1 or x2 non-zero. Direct calculation yields

(x′
1, x2) HΛN (β̂, σ̂2)

(
x1

x2

)

= − N

(σ̂2
Y |z)

2

[(
x2√

2
+

√
2x′

1Kβ̂

)2

+
σ̂2

Y |z

N
x′

1Mx1

]
< 0.

3.4 Inference for β

Given the estimate β̂ of β, we estimate the function β by β̂ = β̂
′
ψ. If the

covariance matrix of β̂ is Σβ, then the covariance function of β̂, denoted Vβ,

is

Vβ(s, t) = Cov(β̂
′
ψ(s), β̂

′
ψ(t)) = ψ(s)′Σβψ(t).

We base inference for β on β̂ and an estimate of Σβ.

We estimate Σβ in two ways, using bootstrap by resampling the observed

Wi’s with replacement or using the observed Hessian matrix HΛ̃N (β̂, σ̂2)

defined in (3.26). We take Σ̂β as the K ×K upper corner of the inverse of

−HΛ̃N (β̂, σ̂2). In doing this, we are treating the other parameters as known,

ignoring the variability introduced by estimating them. Thus, we expect that

we may underestimate Vβ(t, t), while we don’t anticipate underestimation

with the bootstrap estimate. However, the Hessian-based estimate is very

fast to compute.

3.4.1 Hypothesis testing for β

Testing that β ≡ 0

To determine if Yi depends on Zi(·) we test

Ho : β(t) = 0, for all t ∈ [a, b].

We consider three test statistics.
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The first test statistic is the generalized likelihood ratio statistic

Ul = sup
β = 0

ΛN − supΛN .

The unrestricted supremum of ΛN is achieved at the ECME estimates de-

scribed in Section 3.3. We can also use the ECME procedure to calculate

the first supremum. To obtain the first supremum, we observe under the

restriction β = 0, zi and Yi are independent, with zi ∼ N(µ,AΣxA
′+σ2

εR)

and Yi ∼ N(β0, σ
2). Thus µ̂ = z̄, β̂0 = Ȳ and σ̂2 =

∑
(Yi − Ȳ )2/N . We

then calculate Σ(t)
x and σ

2(t)
ε by an ECME method treating these estimates

of µ, β̂ and σ2 as known. We update Σx by maximizing ΛN directly while

holding σ2
ε fixed. We update σ2

ε by finding its EM estimate σ
2(t+1)
ε while

holding Σx fixed. We iterate untill convergence occurs.

The second statistic considered is Wald’s test statistic using β̂, the vector

of estimated basis coefficients:

Uw = β̂
′
Σ̂

−1
β β̂.

It is interesting to note that this test statistic can be re-written in terms of

a vector of function evaluations of β̂. To see this, let t∗i , i = 1, . . . , n∗, be a

sequence of time points, let β̃ be the vector containing the values of β̂ at

the t∗i ’s, and let Σ
β̃

be β̃’s covariance matrix. The Wald test statistic based

on β̃ is β̃
′
Σ̂

+
β̃ β̃, where Σ̂

+
β̃ is the Moore-Penrose inverse of an estimate of

Σ
β̃
. We now argue that, under mild conditions on the t∗i ’s, β̃

′
Σ̂

+
β̃ β̃ = Uw.

Define the n∗ × J matrix Ψ as Ψij = ψj(t
∗
i ) and suppose that Ψ is of full

column rank. Since β̃ = Ψβ̂, Σ
β̃

= ΨΣβΨ′ and thus it is natural to take

Σ̂
β̃

= ΨΣ̂βΨ′. Since Σ̂
+
β̃ = Ψ+′Σ̂

−1
β Ψ+ and Ψ+Ψ = I, β̃

′
Σ̂

+
β̃ β̃ = Uw.

The third statistic is the integrated t-statistic

Uf =

∫ b

a

β̂2(t)

V̂β(t, t)
dt.

To calculate the null distribution of a test statistic, and thus calcu-

late a p-value, we use a permutation type method, one that does not rely

39



Chapter 3. Linear mixed models for measurement error in functional regression

on distributional assumptions. Under the null hypothesis that β(t) ≡ 0

for all t ∈ [a, b], Yi and zi are independent. Therefore the joint distribu-

tion of (zi, Yi) is the same as that of (zi, Yi′) where i′ is chosen at random

from {1, . . . , N}. To simulate the null distribution of a test statistic, we

make Q new data sets via permuting the Yi’s: the qth data set is simply

{z1, Yi1 , . . . , zN , YiN } where i1, . . . , iN is a random permutation of 1, . . . , N .

The p-value is then calculated as the proportion of the resulting Q statistic

values larger than the original observed value.

Testing equality of two β’s

Often we want to know if the β’s governing Y ’s and Z’s in two different

groups are equal. To denote group membership, we use the superscript “s”

or “c” to indicate the “selection” or “control” group respectively. We have

data collected independently from the two groups and we want to test

Ho : βs(t) = βc(t), for all t ∈ [a, b].

We consider four test statistics. We assume that the selection and control

log-likelihoods, Λs
Ns and Λc

Nc , each have the same expressions as in (3.21)

but with possibly different parameter values, superscripted by s or c.

The first test statistic is from a likelihood ratio test

Ul = sup
βs = βc

{Λs
Ns + Λc

Nc} − sup{Λs
Ns + Λc

Nc}

= sup
βs = βc

{Λs
Ns + Λc

Nc} − supΛs
Ns − supΛc

Nc .

Each of the last two suprema is calculated separately, using the ECME

estimates from Section 3.3.

We can also apply this ECME procedure to calculate the first supremum.

Under the restriction βs = βc, Λs
Ns and Λc

Nc have a common parameter

β ≡ βs = βc. Following the same argument as in Section 3.3, we have

µc(t) = z̄c, µs(t) = z̄s, β
c(t)
0 = Ȳ c and β

s(t)
0 = Ȳ s.
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To update each of Σ
c(t)
x and Σ

s(t)
x , we follow the steps outlined in Sec-

tion 3.3.2. To update each of σ
c2(t)
ε and σ

s2(t)
ε , we follow the steps outlined

in Section 3.3.3.

To update β(t), σs2(t) and σc2(t), we proceed as in Section 3.3.4, but with

some modification for our updating of β(t).

To describe the procedure to update β(t), σs2(t) and σc2(t), define Λ̃s
Ns

and Λ̃c
Nc in a manner analagous to Λ̃N in (3.21). By an argument similar to

that in Section 3.3.4, we must find β, σs2 and σc2 to maximize Λ̃s
Ns + Λ̃c

Nc .

Differentiating Λ̃s
Ns + Λ̃c

Nc with respect to σs2 and σc2 and setting equal to

zero yields equations analagous to the equation for σ2(t+1) in (3.24).

Unfortunately, differentiating Λ̃s
Ns + Λ̃c

Nc with respect to β and setting

equal to zero yields an intractable equation. So we modify our calculation

of β, but retain the above-described updates for σs2 and σc2. Instead of

maximizing Λ̃s
Ns + Λ̃c

Nc with respect to β we maximize ˜̃Λ
s

Ns + ˜̃Λ
c

Nc with

respect to β, where the ˜̃Λ’s are defined as follows. First consider the term

β′Ksβ + σs2. Calculate the matrix Ks using Σs(t+1)
x and σ

s2(t+1)
ε . Take

β = β(t) and σs2 = σs2(t). Then the resulting expression for β ′Ksβ + σs2,

which we denote σ
s2(t)
Y |z , no longer contains the parameters β and σs2. Let

˜̃Λ
s

Ns = −N
s

2
ln(σ

s2(t)
Y |z ) − 1

2σ
s2(t)
Y |z

∑(
Y s

i − βs
0 − β′Gs(zs

i − µs)
)2
.

Define σ
c2(t)
Y |z and ˜̃Λ

c

Nc similarly.

Differentiating ˜̃Λ
s

Ns + ˜̃Λ
c

Nc with respect to β and setting equal to zero

yields the update

β(t+1) =


 1

σ
s2(t)
Y |z

Ms +
1

σ
c2(t)
Y |z

Mc




−1


 1

σ
s2(t)
Y |z

Gs
∑

(zs
i − µs)(Y s

i − βs
0) +

1

σ
c2(t)
Y |z

Gc
∑

(zc
i − µc)(Y c

i − βc
0)


 .
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where

Ms = Gs
∑

(zs
i − µs)(zs

i − µs)′Gs′

and Mc is defined similarly.

To define the two sample Wald’s statistic Uw, let β̂
s

be the estimate of

βs with estimated covariance matrix Σ̂
s
β and define β̂

c
and Σ̂

c
β similarly.

The two sample statistic is

Uw = (β̂
s − β̂c

)′
(
Σ̂βs + Σ̂βc

)−1
(β̂s − β̂c).

We consider a two sample statistic based on function evaluations, rather

than on basis coefficients, recalling the notation in Section 3.4.1. Let β̃
s

=

Ψsβ̂
s
be the vector of function evaluations of β̂s at a sequence of time points.

Let Σ̂
s
β̃ = ΨsΣ̂

s
βΨs′ be the estimate of β̃

s
’s covariance matrix. Similarly

define β̃
c

and Σ̂
c
β̃. The two sample Wald test statistic based on β̃

s
and β̃

c

is

Ue = (β̃
s − β̃c

)′
(
Σ̂

β̃
s + Σ̂

β̃
c

)+
(β̃

s − β̃c
).

In Section 3.4.1, the one sample situation, we argued that we needn’t use the

function evaluation statistic Ue as it is equivalent to the Wald test statistic

Uw under mild conditions. In the two sample situation here, however, the

two sample Uw and Ue may not agree unless Ψs = Ψc and both of them are

of full column rank.

To define the two sample integrated t-statistic Uf , let V̂βs(s, t) = ψs(s)′Σ̂
s
βψ

s(t)

be the estimate of the covariance function of β̂s and define V̂βc(s, t) similarly.

The two sample Uf is

Uf =

∫
[β̂s(t) − β̂c(t)]2

V̂βs(t, t) + V̂βc(t, t)
dt.

Again, we use the permutation method to calculate the null distribution

of the test statistics and thus the p-values. Under the null hypothesis that

βs(t) = βc(t) for all t ∈ [a, b], the dependence of Yi on zi is identical in

both groups. We generate Q “data sets” from the original data set, data

sets that follow the null hypothesis. To construct the qth “data set”, we
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randomly split the N s +N c individuals into two groups of size N s and N c

and calculate the resulting test statistic. We use the empirical distribution

of the obtained Q test statistic values to approximate the null distribution

of our statistic. The p-value is then calculated as the proportion of the Q

statistic values larger than the original observed value.

3.5 Model assumption checking

After fitting the model, we need to check if the model assumptions are satis-

fied. Our model diagnostics rely on the analysis of residuals. In this section,

we derive expressions of the fitted values for Wi and for the residuals. Fitted

values and residuals for zi and Yi are then obtained as components. We can

then plot the residuals to check model assumptions and to look for outliers

and influential points.

To simplify notation, unknown parameters below stand for their esti-

mates. Using model (3.4) and (3.5), we base our fitted values Ŵi on the

BLUP of the random effects xi, µxi|Wi
in (3.16),

Ŵi = µW + Cµxi|Wi

= µW + CΣxC
′Σ−1

W (Wi − µW )

Recall the expression of ΣW in (3.9). We get

CΣxC
′Σ−1

W =
(
CΣxC

′ + Σd −Σd

)
Σ−1

W = I−ΣdΣ
−1
W

and thus

Ŵi =
(
I−ΣdΣ

−1
W

)
Wi + ΣdΣ

−1
W µW .

It then follows

ri = Wi − Ŵi = ΣdΣ
−1
W (Wi − µW ).

The last element of Ŵi gives the fitted value of Yi and the last element of

ri gives the Yi residual. As we focus on modelling the dependence of Yi on
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Zi, plotting residuals against fitted values of Yi is useful to detect outliers

or influential points of the model fit.

3.6 Model application

In this section, we analyze a biological data set using our model. First we

give a general description of how to choose the basis functions φ1, . . . , φK .

Then we conduct the data analysis.

3.6.1 Choosing the basis functions

We choose the basis functions, the φk’s, as functions that give good approxi-

mations to Zi(·): we choose them as the first few estimated eigenfunctions of

the Zi process. To do so, we apply a smoothed principle component analysis

to the observed zi’s, penalizing an approximation of the second derivative

of the eigenfunction. Let Σ̂ be the sample covariance matrix of the zi’s. We

find a sequence of orthogonal vectors ṽj ∈ Rn to maximize

v′
jΣ̂vj

v′
jvj + λv′

jD
′Dvj

,

where λ is the smoothing parameter and Dvj calculates second divided

differences of the vector vj . The (n− 2)×n matrix D depends on t1, . . . , tn

and is defined to differentiate quadratic functions exactly. That is, if vj[i] =

a+ bti + ct2i , then (Dvj)[i] = 2c. Given λ, the vectors ṽj are eigenvectors of

the matrix G−1/2Σ̂G−1/2, where G = I+λD′D. The approach is similar to

Ramsay and Silverman’s (2005) but we don’t use basis function expansions

of the Zi.

Choice of λ can be done by cross-validation, but for simplicity here, we

select λ by examining the smoothness of the resulting ṽj’s. In the data

analysis, we chose λ = 100.
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3.6.2 Data description

Data were provided by Patrick Carter, School of Biological Sciences, Wash-

ington State University, and are described in Morgan et al, 2003. Data

are from mice divided into four groups according to gender and the two

treatments “selection” and “control”. The selection group mice were bred

over 16 generations, with selection being on high wheel-running activity at

age eight weeks. Control mice were bred at random. In the final generation,

body mass and wheel running activity were recorded for each mouse for sixty

two consecutive weeks, indexed from −1 to 60, except for weeks 34, 38, 39,

50. The research interest is to know how body mass and wheel running are

related and if the relationship depends on the treatment.

The wheel running distance data have many missing values and are very

noisy. In addition, the wheels were cleaned every four weeks, and so we see

spikes in wheel-running activity every fourth week. So in our analysis, we

average the nonmissing wheel running distances over weeks 5 to 60 and use

this average as the response Y . The predictor Z(·) is the log transformed

body mass. We want to know if any of the groups have β non-zero and if

there is any difference between the selection βs and the control βc within

each gender.

Plots of the observed zi’s and histograms of the Yi’s in each group are

in Figures 3.1 and 3.2 respectively. We see that log body mass is roughly

monotone with a high rate of increase in weeks −1 to 4. The log body mass

in the males is more variable than that in the females.

3.6.3 Choice of basis functions

A smoothed eigenanalysis in each of the four groups yielded a first eigen-

function that was close to constant, indicating that the biggest source of

variability in log body mass in each group was overall size of the mouse.

Since a constant eigenfunction is biologically meaningful, we forced our first

basis function to be constant and, within each group, calculated the remain-

ing functions via a smoothed eigenanalysis on the centered log body mass
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as follows. We let

z̄i =
1

58

60∑

k=−1
k 6=34,38,39,50

zik

be the ith mouse’s average log body mass and

zij − z̄i j = −1, . . . , 60, j 6= 34, 38, 39, 50

the ith mouse’s centered log body masses. Within each group, we calcu-

lated the sample covariance matrix of the centered log body mass vectors.

We then applied the smoothed eigenanalysis to this covariance matrix. Fig-

ure 3.3 shows the proportion of cumulative variance explained by the first

ten principal components of this analysis in each group. The variance ex-

plained by the constant function was 85% in the male selection group, 72%

in the male control group, 70% in the female selection group and 63% in the

female control group. Figure 3.4 shows the constant function and the first

three eigenfunctions for each group. They are displayed one by one with

the four groups’ functions together in one panel. There we see the three

smoothed eigenfunctions are very similar in the four groups.

Figure 3.3 suggests that, if we choose the first three smoothed eigen-

functions in each group, we will capture about 90% of the variability of the

log body mass trajectories, beyond the variability captured by the constant

function. We will use a constant function plus these three eigenfunctions in

our analysis.

3.6.4 Estimation and residual analysis

Before proceeding with inference, we study residuals of our fits to see if there

are any outliers.

We fit the model (3.4) and (3.5) within each group, using R = I, and

choose the same basis functions for β as for the log body mass, calculated in

Section 3.6.3. Within each group, we plot the Yi residuals against the fitted

Yi’s to detect outliers as outlined in Section 3.5. Residual plots of each

group are in Figure 3.5. In the control males, we see an outlier at the left
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side. This outlier may be influential in the estimation of β. So we remove

this outlier and refit the model to the male control group. The first panel of

Figure 3.6 is the same as the plot in the second panel of Figure 3.5, showing

the outlier in the control males. The second panel of Figure 3.6 shows the

residual plot of the fit after removing the outlier. There we see no new

outliers. We remove the one outlier in the control males in our subsequent

analyses.

3.6.5 Inference for β(·)

In each of the four groups, we estimated β and calculated standard errors

from both the Hessian matrix and the bootstrap, as described in Section 3.4.

These are shown in Figure 3.7.

To determine if β(t) = 0 for all t ∈ [−1, 60], we can study the plots in

Figure 3.7 and we can conduct a formal hypothesis test. From the plots in

Figure 3.7, we see that, except for the female control group, all groups show

a region where the zero line is not within one standard error of β̂. This

suggests that, within these groups, perhaps there may be a dependence of

averaged wheel running on log body mass.

We conduct a hypothesis test of Ho : β(t) = 0 for all t ∈ [−1, 60] in each

group using the test statistics in Section 3.4.1. We compute the standard

errors using the Hessian matrix (3.26). The results are in Table 3.1 below.

The last three columns contain the permutation p-values of Ul, Uw and

Uf , computed by using 500 permutations. The second column gives the

observed value of the test statistic Ul and the next column gives the p-value

of Ul based on the fact that negative twice the log-likehood ratio statistic is

asymptotically chi-squared distributed with 4 degrees of freedom.

From the Table, we see that, in selected and control males, average

wheel-running depends on the log body mass trajectories. However, there

is insufficient evidence to make this claim in the other three groups.

We observe that the p-values of Ul and Uw are identical. We plot the

permuted values of Ul and Uw in Figure 3.8 and see that Ul is an increasing

function of Uw. This may be due to the normality assumption in the model.
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3.6.6 Inference for βs − βc

Within each gender, we want to compare the selection β(·) with the control

β(·). Figure 3.9 shows the pointwise difference between the selection β̂ and

the control β̂ together with the standard errors computed from the Hessian

matrix and from the bootstrap. For both males and females, the region

within one standard error of β̂s − β̂c contains much of the zero line, which

suggests we can’t distinguish between the selection β and the control β.

Table 3.2 gives results of the test Ho : βs(t) = βc(t), for all t ∈ [−1, 60]

in each gender. The last three columns contain the permutation p-values of

Ul, Uw and Uf , computed by using 500 permutations. The second column

gives the observed value of the test statistic Ul and the next column gives

the p-value of Ul based on the fact that negative twice the log-likehood ratio

statistic is asymptotically chi-squared distributed with 4 degrees of freedom.

Given the results, we can not reject Ho in either gender. That is, within

each gender, there is no evidence of a difference between the selected group

and the control group in terms of average wheel running’s dependence on

log body mass.

In conclusion, we find a strong dependence of average wheel running on

the log body mass in the selected males and control males. We don’t have

enough evidence to distinguish the difference between the selected group

and the control group in terms of average wheel running’s dependence on

log body mass in either gender.

3.7 Simulation study

In the simulation study, we compare the pointwise mean squared errors

of our ECME estimate of β with those of a modified version of the two

stage estimate proposed by Müller (2005). We also compare the power of

the test statistics proposed in Section 3.4.1 for one-sample and two-sample

comparisons.

We will see that, in terms of mean squared error, in the one-sample case,

both the ECME estimate and the two stage estimate suffer from an edge
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effect. In Section 3.7.4, we look into this edge effect further. The ECME

estimate typically has slightly smaller MSE than the two stage estimate,

with the improvement in MSE being more noticeable as the dependence of

Y on Z increases. In the two-sample case, the two methods are comparable.

For testing, in the one-sample case, there is little difference in power

between the two statistics considered. In the two sample case, the integrated

t-statistic has more power to distinguish the difference between β s and βc.

In the one-sample comparison in Section 3.7.2, we simulate data using

parameter values estimated from the male selection group data analyzed in

Section 3.6.2. In the two-sample comparison in Section 3.7.3, we simulate

selection group data using estimates from the male selection group data and

the control group data using estimates from the male control group data

without the outlier.

3.7.1 Two stage estimate

Recall from Section 3.1 that the calculation of Müller’s (2005) estimate of

β had two parts. The first part ignored the yi’s and only used the zi’s to

predict the underlying xi’s. The second part of the analysis was essentially

a linear regression of the yi’s on the predicted xi’s. We would like to study

this procedure’s ability to estimate β. We suspect that ignoring the yi’s in

the first part of the procedure will lead to poorer estimation of β.

To study this in a way that is comparable to our over-all methodology, we

slightly modify the Müller’s method. We use linear mixed effects methodol-

ogy to predict the xi’s from the zi’s. Specifically, we first use our smoothed

principal components analysis of the zi’s to determine basis functions, the

φk’s, see (3.3). We then construct the matrix T and fit model (3.4) using the

EM algorithm. Laird (1982) gave an elaboration on the EM computation

in linear mixed models. We use the resulting estimated covariances of the

xi’s and εi’s to calculate our predictors, the BLUPs of xi given zi, that is,

to calculate E(xi|zi). For the second part of the analysis, we find the least

squares estimate of β according to the regression model

Yi = β0 + E(x′
i|zi)T

′β + ei.
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In our fit of (3.4), we force Σx to be diagonal. This is in keeping with

Müller, and stems from the fact that the components of the xi’s are principal

component scores.

The main difference between our approach and Müller’s is in the way we

estimate the required variances and covariances for calculating the BLUPs.

We use a linear mixed effects model based on eigenfunctions. Müller used

a smoothing method to directly estimate the components of the covariance

structure.

3.7.2 One sample comparison

We simulate data based on parameter and eigenfunction estimates from the

data analysis of the male selection group in Section 3.6.2. Let µs,Σs
x, σ

s2
ε , σ

s2, β0
s,

βs and βs(t) = ψ(t)′βs denote these estimates and let As be the matrix con-

structed from the basis functions, evaluated at the same tj’s as in the data

analysis.

We simulate the unperturbed predictor Zi according to a multivariate

normal N (µs,AsΣs
xA

s′) and let the observed zi be Zi plus N(0, σs2
ε I) noise.

We consider four possible β functions to describe the relationship between

Yi and Zi:

Yi = β0
s +

∫ 60

−1
β(t)

[
Zi(t) − Z̄i(t)

]
dt+ ei.

The integral is calculated using the R function “sintegral” and we simulate

ei from N(0, σs2). We take β = γβs with γ = 0, 2/3, 4/3 or 2. When γ = 0,

Yi does not depend on Zi. When γ = 2, the dependence is large. Recall

in our data analysis in Section 3.6.2, we found that βs was significantly

different from zero. Thus, for each value of γ, we can generate an observed

data set (zi, Y
γ
i ), i = 1, . . . , 39.

We first compare our estimate of β with the two stage estimate. We run

100 simulations and the MSE of the estimate β̂ is calculated as

100∑

1

(
β̂(t) − β(t))2

)
/100
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at each observation point t. The results are in Figure 3.10 where the first

panel shows the pattern of the true β’s, the next two panels show the point-

wise MSE’s of our two estimates of β and the last panel shows the differences

of these pointwise MSE’s. In the plots, the MSE’s increase as γ increases

and both estimates of β have high MSE’s for t’s at the edges. The MSE’s

of both methods are much worse at the left hand edge, probably due to the

sharp decrease of the true β and the sharp increase in log body mass before

week 10. The ECME method seems to be more affected by this edge. We

will give a further study of this edge effect in Section 3.7.4. However, in the

last panel we see that overall, the ECME estimate has a smaller MSE, with

the superiority of ECME increasing as γ increases.

Therefore, if there is a significant dependence of Yi on zi through β, the

ECME method of estimate is preferred.

To test Ho : β(t) = 0, for all t ∈ [−1, 60], we use the test statistics

Uw and Uf with standard errors calculated using the Hessian matrix (3.26)

as described in Section 3.4. For each data set, we run 300 permutations to

calculate the p-values. We simulate 100 data sets for each value of γ and

choose levels α = 0.01 and α = 0.05. Figure 3.11 and Figure 3.12 summarize

the proportion of times Ho was rejected using Uw and Uf but with different

levels: α = 0.01 and α = 0.05 respectively. As expected, the powers increase

as γ increases. There is little difference in power between the two statistics.

3.7.3 Two sample comparison

To simulate data from two independent samples, we choose model param-

eters using the male selection group data and the male control group data

analysed in Section 3.6.2. We simulate data for the selection group and, sep-

arately, for the control group using the same methodology as in Section 3.7.2

but with different true β’s.

Let βs and βc be the estimates of β from the original male selection group

and male control group data. Let β̄ = (βs + βc)/2 and ∆β = (βs − βc)/2.

In the simulation study we set the β of the selection group to β̄ + γ∆β and

that of the control group to β̄ − γ∆β with γ = (0, 2/3, 4/3, 2). Thus, the
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difference between the selection and control β is 2γ∆β = γ(βs − βc).

To estimate βs and βc, we fit the selection data and control data sepa-

rately. For each value of γ we simulate 100 data sets and calculate the MSE

as in Section 3.7.2 in each group. Figures 3.13 and 3.14 show the MSE’s of

the two estimates in each group respectively. The pattern of the two MSE’s

are similar to their counterparts in Figure 3.10.

We calculate the MSE of the estimate βs − βc as

100∑

1

(
β̂s(t) − β̂c(t) − βs(t) + βc(t))2

)
/100

at each observation point t. Figure 3.15 shows the results. The patterns of

the two MSE’s are similar to their counterparts in Figure 3.10. The MSE’s

of the two estimates are comparable but in general the MSE of the ECME

estimate is smaller.

To test Ho : βs(t) = βc(t), for all t ∈ [−1, 60], we compare the four

test statistics, Ul, Uw, Ue and Uf , with standard errors calculated using

the Hessian matrix (3.26). For each data set, we run 300 permutations to

calculate the p-values. We simulate 100 data sets for each value of γ and

choose levels α = 0.01 and α = 0.05. Figures 3.16 and 3.17 show the power

of the four test statistics with levels 0.01 and 0.05 respectively. The statistic

Uf is the most powerful, especially when γ is large, but Uf and Uw are

comparable.

3.7.4 Edge effect discussion in one-sample MSE comparison

In Figure 3.10, we see that the MSE’s of the ECME estimate of β are much

worse at the left hand edge than the MSE’s of the two stage estimate. We

suspect this is probably due to the sharp decrease of the true β before week

10 as shown at the first panel of Figure 3.10, and the large increase in log

body mass in that same period. In this section, we exclude the early weeks’

data from our analysis.

To determine the various parameter values to use in a new simulation,

we re-analyze the male selection group data but with zi containing log body
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mass values a week 5 rather than at week −1. After obtaining the new

parameter estimates, we simulate data in the same way as in Section 3.7.2.

The simulation analysis result is in Figure 3.18. The edge effect still exists

but this time the MSE’s of ECME and the two stage method are comparable

at the edges.
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Group Observed Ul Asymptotic p-Ul p-Ul p-Uw p-Uf

Male selected 13.723 0.008 0.008 0.008 0.008

Male control 10.940 0.027 0.044 0.044 0.034

Female selected 9.095 0.059 0.082 0.082 0.264

Female control 3.280 0.512 0.568 0.568 0.656

Table 3.1: P-values of the test Ho : β(t) = 0, for all t ∈ [−1, 60] in each
group.

Gender Observed Ul Asymptotic p-Ul p-Ul p-Uw p-Ue p-Uf

Male 11.919 0.018 0.364 0.356 0.532 0.110

Female 5.852 0.210 0.564 0.568 0.884 0.444

Table 3.2: P-values of the test Ho : βs(t) = βc(t), for all t ∈ [−1, 60], within
each gender.
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Figure 3.1: Plots of log body mass versus week for the four groups of labo-
ratory mice.
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body mass explained by the first ten principal components of the four groups
of mice, after the individual average log body mass has been removed.
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Figure 3.4: The constant function and the first three smoothed eigenfunc-
tions of the covariance of centered log body mass of the four groups of mice,
calculated as described in Section 3.6.3.
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Figure 3.5: Residual plots of the fit of the Yi = averaged wheel running of
the four groups of mice.
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Figure 3.6: Plots of residuals of Yi = averaged wheel runining in the male
control group of mice before and after removing the outlier.

60



Chapter 3. Linear mixed models for measurement error in functional regression

0 10 20 30 40 50 60

−
60

−
20

0
20

40

Male Selected

Week

β̂(
t)

0 10 20 30 40 50 60

−
60

−
20

0
20

40

Male Control

Week

β̂(
t)

0 10 20 30 40 50 60

−
60

−
20

0
20

40

Female Selected

Week

β̂(
t)

0 10 20 30 40 50 60

−
60

−
20

0
20

40

Female Control

Week

β̂(
t)
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as described in Section 3.4.
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Figure 3.8: Comparing the permuted values of the generalized likelihood
ratio statistic Ul with the Wald statistic Uw for four groups of mice. The
equivalence of Ul and Uw were observed in Table 3.1.
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Figure 3.10: MSE of the estimate of β for each γ value in one sample
simulation as described in Section 3.7.2. Compare the ECME method with
the two stage method.
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Ho : β(t) = 0, for all t ∈ [−1, 60] in one sample simulation as described in
Section 3.7.2. Two test statistics are considered, Uw and Uf .
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Figure 3.12: Proportion of times Ho is rejected using level α = 0.05, where
Ho : β(t) = 0, for all t ∈ [−1, 60] in one sample simulation as described in
Section 3.7.2. Two test statistics are considered, Uw and Uf .
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Figure 3.13: MSE of the estimate of βs for each γ value in two sample
simulation as described in Section 3.7.3. Compare the ECME method with
the two stage method.
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Figure 3.14: MSE of the estimate of βc for each γ value in two sample
simulation as described in Section 3.7.3. Compare the ECME method with
the two stage method.
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Figure 3.15: MSE of the estimate of βs − βc for each γ value in two sample
simulation as described in Section 3.7.3. Compare the ECME method with
the two stage method.
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Ho : βs = βc, for all t ∈ [−1, 60] in two sample simulation as described in
Section 3.7.3. Four test statistics are considered Ul, Uw, Ue and Uf .
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Figure 3.17: Proportion of times Ho is rejected using level α = 0.05, where
Ho : βs = βc, for all t ∈ [−1, 60] in two sample simulation as described in
Section 3.7.3. Four test statistics are considered Ul, Uw, Ue and Uf .
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Chapter 4

Dependence of average

lifetime wheel-running on

body mass ontogeny

4.1 Introduction

In natural populations of animals, strong correlations between large body

size and increased Darwinian fitness are frequently measured: large body

size is related to increased fecundity, reduced predation and, in general, an

increased ability to survive in a given environment (Sogard 1997, Hone and

Benton 2005). Variation in body mass is also associated with variation in

a number of physiological traits, including metabolic rate and heart mass,

and much effort has been expended understanding allometric relationships

in animals (Garland and Carter, 1994, and references therein). Body mass

has even been shown to impact mutation rates in nuclear and mitochondrial

DNA (Gillooly et al., 2005; Estabrook et al., 2007). Body mass is also

associated with locomotor performance; however, these relationships are

complex. Body mass is positively correlated with home range area and

daily movement distances in wild populations of mammals (Garland 1983),

but negatively correlated with laboratory measures of voluntary activity

(Dewsbery 1980).

Replicate lines of mice which have been selected for high levels of vol-

untary wheel running activity are a powerful model system with which to

0A version of this chapter will be submitted for publication. Authors: Carter, P. A.,

Heckman, N. and Wang, W.
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investigate the relationships between body mass and voluntary locomotor

activity (Garland 2003). After 10 generations of selection, mice selected

for high voluntary wheel running activity at 8 weeks of age ran significantly

more than their unselected controls; however, body mass at the age at which

wheel running was measured and selected was not a significant predictor of

the amount of wheel running nor was it significantly different between se-

lected and control mice (Swallow et al. 1998). A subsequent study, 14

generations after selection, examined wheel running and body mass in this

system of mice after 8 weeks of access to running wheels (Swallow et al.,

1999). Three major results emerged from this study. First, body mass and

wheel running share a negative genetic correlation of −.50; selected mice

were significantly lighter at maturity than control mice. Second, this result

is not mediated solely through wheel running activity; the difference in body

mass persisted even in mice without wheel access, and in mice with wheel ac-

cess even when total wheel running was statistically removed. Third, access

to running wheels did result in a decrease in body mass, but this decrease

was only about a third of the decrease caused by selection.

A detailed study on body mass and wheel running ontogenies in the 16th

generation of this system of mice was conducted by Morgan et al (2003).

This experiment utilized 320 mice, half from the selected lines and half from

the control lines; half of each of these groups were given lifetime access to

running wheels while the other half did not have wheel access. Morgan et al

(2003) compared the ontogenetic trajectories of the different experimental

groups using repeated measures analysis and identified several interesting

results. First, both the position and shape of the wheel running trajectory

had responded to selection on wheel running at 8 weeks of age; selected mice

ran more across the trajectory and showed a steeper decline in activity at

older ages than control mice. This correlated response of the wheel run-

ning ontogeny to early-age selection on wheel running indicates a positive

genetic covariance between wheel running at younger ages and wheel run-

ning at older ages, with the covariance declining as age increases. Second,

the position but not the shape of the body mass trajectory had responded

to selection, regardless of access to running wheels; selected mice with and
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without wheel access were significantly lighter than their counterpart con-

trol mice across all ages. This result indicates a negative response of the

body mass ontogeny to selection on early-age wheel running and hence a

negative genetic covariance between wheel running at 8 weeks of age and

body mass across ontogeny; in addition, it indicates strong positive genetic

covariances among body masses at different ages. Finally, the analysis of

the wheel running trajectory revealed that age-specific body mass was a

significant covariate for age-specific wheel running; smaller individuals ran

more at each age than did larger individuals.

The fact that Swallow et al. (1999) measured a negative genetic covari-

ance between age-specific wheel running and body mass and that Morgan

et al. (2003) showed that body mass is a significant covariate for wheel run-

ning at each age, with smaller mice running more than larger mice, raises

the question of whether wheel running through ontogeny explicitly depends

on the body mass trajectory. Given that body mass at each age was a sig-

nificant covariate for wheel running at that age, we hypothesized that wheel

running is significantly dependent on the body mass trajectory. In addi-

tion, given the age-specific negative genetic covariance between body mass

and wheel running, we can ask whether this dependence has evolved in re-

sponse to early-age selection on wheel running. We hypothesize that this

dependence has evolved such that we will measure quantitative differences

between the selected and control mice in the dependence of wheel running

on the body mass trajectory.

To test these hypotheses, we will generally take a function-valued ap-

proach. In essence, we regress average wheel running on the log body mass

trajectory. We then test if the “regression coefficients” are zero within each

group and if they are equal between two groups. To model the log body

mass trajectory, we use basis functions with expansion coefficients modeled

as random effects.
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4.2 Methods

Experiments were performed on house mice (Mus domesticus) from the 16th

generation of a selective-breeding experiment for increased voluntary wheel-

running exercise (Swallow et al. 1998; Garland 2003). The selection experi-

ment comprises four selection and four control lines; each line is propagated

with 10 breeding pairs that contribute one male and one female to the next

generation, with the condition that siblings are not mated. Breeders are

chosen either randomly with respect to wheel running (control lines) or se-

lectively, within family, as the mice that run the most revolutions on days

five and six of six days of wheel exposure administered at eight weeks of

age (selection lines). The individuals in this report are the offspring of the

generation 15 breeders for generation 16 of the selection experiment. Five

breeding pairs from each of the eight lines were remated to produce second

litters at Washington State University. Details of this design are presented

in Morgan et al (2003). Briefly, pups were weaned at 21 days of age and

placed in treatment groups at 28 + / − 3 days of age in the animal care

facility at Washington State University. Four males and four females from

each family were used, with half designated for the active treatment and

half designated for the sedentary treatment. Each activity group thus con-

tained two females and two males from each of the five families within each

of the eight lines, for a total of 160 individuals per activity group, i.e., 320

individuals in the aging colony. Mice in the active treatment group were

placed individually in cages with a 11.75 cm radius running wheel and elec-

tronic wheel-revolution counter built into the cage-top. The mouse thus had

the option of voluntarily getting into the wheel and running, or of remain-

ing in the cage and not running. On the same day, sedentary mice were

placed individually in standard rodent cages. Photoperiod was 12 : 12 h,

and water was available ad libitum. Mice were provided excess food weekly

(Harland Teklad rodent diet W8604) and apparent food consumption was

determined by weighing food hoppers. This measure does not account for

possible variation in food wasting, as when mice shred food pellets and allow

fragments to drop in the litter. A study of food wasting at generation 10
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found no significant differences between selection and control lines, but sig-

nificant variation among the replicate lines within selection group (Koteja

et al. 2003). Additionally, once a week each animal was weighed and its

weekly wheel revolutions downloaded from the counter device. Cages were

cleaned weekly and running wheels were cleaned monthly. Extra sibs from

all 40 families were placed in similar housing and were used as sentinels to

monitor the colony monthly for the presence of specific pathogen exposure.

At 24 months post start date, a sentinel tested positive for MHV exposure,

presumably from a barrier breakdown. No other sentinels tested positive.

No treatment was initiated for the virus. Subsequent necropsied mice were

monitored specifically for the presence of diseased liver tissue. None were

observed to have contracted hepatitis (necropsies performed by LAR veteri-

narians at WSU).

Before carrying out any analysis, we eliminate line effects in log body

mass and wheel-running by subtracting out line means within each group

(selection and control) and gender. Suppose individual i is in line k of

the selection group and is female. We replace individual i’s log body mass

with original log body mass minus line k’s average plus the selection group

average. The line k average and the selection group average only involve

females. Similarly, we do this for the wheel-running.

Let Zi(·) be the ith mouse’s log body mass trajectory. We study how

Zi(·) affects Yi, the averaged wheel running response over weeks 5 to 60. We

use average wheel-running since the wheel running distance data have many

missing values and are very noisy. In addition, since the running wheels

were cleaned every four weeks, we see spikes in wheel-running activity every

fourth week.

In the following, we describe our model for the dependence of wheel-

running on log body mass. This dependence is parameterized through an

unknown function β. We estimate β and provide standard errors. We also

test the null hypothesis that β = 0 (no dependence of wheel-running on log

body mass) and test that two groups have the same β’s. We use permutation

type methods to calculate the p-values. For more details of the statistical

methodology, see Heckman and Wang (2007).
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We model Zi using random effects with a set of basis functions φ1, . . . , φK

as

Zi(t) = µ(t) +
K∑

k=1

xikφk(t),

where µ is a smooth unknown function. The random effects xi ≡ (xi1, . . . , xiK)′

are assumed normally distributed as N(0,Σx). The log body mass trajec-

tory Zi is observed with error at a sequence of weeks, with the observed

value of Zi at week j equal to zij ≡ Zi(j) + εij. The εij ’s are independent

and normally distributed with mean 0 and variance σ2
ε . Let zi contain the

observed values of the zij’s. We can then write

zi = µ+ Axi + εi,

µ = (µ(−1), . . . , µ(60))′, Ajk = φk(j), εi = (εi1, . . . , εin)′.

The dependence of Yi on Zi(·) is reflected through the unknown function

β(·) as

Yi = β0 +

∫ 60

−1
β(t)

[
Zi(t) − E(Zi(t))

]
dt+ ei,

where ei is an error term distributed as N(0, σ2). The functional parameter

β is of primary interest and can be viewed as a generalization of the con-

ventional multiple regression coefficient vector. Choosing a basis for β (for

ease, the same as for the Zi(·)), we approximate β as

β(t) =
K∑

k=1

βkφk(t).

Together with our modelling of Zi(·), we can write the model of Yi as

Yi = β0 + β′Txi + ei,

β = (β1, . . . , βK)′, Tjk =

∫ 60

−1
φj(t) φk(t) dt.

The goal is to use information of the observed data, the zi’s and Yi’s, to

estimate the coefficient vector β.
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Before estimating β along with the other unknown parameters in the

model, we must first estimate the basis functions, the φk’s. We apply a

smoothed eigenanalysis to the zij ’s, penalizing an approximation of the sec-

ond derivative of the eigenfunction. We choose the amount of smoothing by

eye. A detailed description of choosing the eigenfunctions is provided in Sec-

tion 4.3. Treating the estimated φk’s as fixed and known, we then estimate

the model parameters via maximum likelihood. We use an iterative numer-

ical method, an implementation of the ECME (Expectation/Conditional

Maximization Either) algorithm of Liu and Rubin (1994). Obtaining the

estimate β̂, our estimate of β(t) is β̂(t) =
∑K

k=1 β̂kφk(t). We estimate the

covariance matrix of β̂ by both a Hessian matrix based method and a boot-

strapped method. Using the estimated covariance matrix, we can estimate

the variance of β̂(t), and thus make inference for β.

To determine if Yi depends on Zi(·), we test

Ho : β(t) = 0, for all t ∈ [−1, 60]

via an integrated t-statistic

Uf =

∫ 60

−1

β̂2(t)

v̂ar(β̂(t))
dt.

To calculate the null distribution of Uf , and thus calculate a p-value, we

use a permutation type method, one that does not rely on distributional

assumptions. Under the null hypothesis that β(t) ≡ 0 for all t ∈ [−1, 60],

Yi and zi are independent. Therefore the joint distribution of (zi, Yi) is the

same as that of (zi, Yi′) where i′ is chosen at random from {1, . . . , N} and

N is the number of individuals. To simulate the null distribution of Uf ,

we make Q = 500 new data sets via permuting the Yi’s: the qth data set

is simply {z1, Yi1 , . . . , zN , YiN } where i1, . . . , iN is a random permutation of

1, . . . , N . The p-value is then calculated as the proportion of the resulting

Q statistic values larger than the original observed value.

Consider the two-sample problem where there are observations indepen-

dently from a selection group and from a control group. To see if the β’s
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governing the Y ’s and Z’s in the selection group and the control are equal,

we test

Ho : βs(t) = βc(t), for all t ∈ [−1, 60],

where the superscript “s” or “c” indicates the group membership, “selection”

or “control” respectively. To test Ho, we use the two sample test statistic

Uf =

∫
[β̂s(t) − β̂c(t)]2

v̂ar(β̂s(t)) + v̂ar(β̂c(t))
dt.

Again, we use a permutation method to calculate the null distribution of

the two sample Uf and thus the p-values. Under the null hypothesis that

βs(t) = βc(t) for all t ∈ [−1, 60], the dependence of Yi on zi is identical in

both groups. We generate Q = 500 “data sets” from the original data set,

data sets that follow the null hypothesis. To construct the qth “data set”,

we randomly split the N s +N c individuals into two groups of size N s and

N c and calculate the resulting Uf . We use the empirical distribution of the

obtained Q test statistic values to approximate the null distribution of our

statistic. The p-value is then calculated as the proportion of the Q statistic

values larger than the original observed value.

The use of function-valued traits in evolutionary biology was first pro-

posed by Kirkpatrick and Heckman (1989). The methodology has found

applications in animal breeding, via basis function expansions with random

coefficients. See Meyer (2005) and references therein.

4.3 Results

The body mass trajectories for each experimental group are presented in

Figure 4.1. For all four groups, body mass is a roughly monotone increasing

function of age, with the highest rate of increase from ages −1 to 4 weeks.

The body mass trajectories of males, both selected and control, are more

variable than those of the females. Histograms of average wheel running

from ages 5 to 60 are presented in Figure 4.2; within each sex, selected mice

ran more than control mice and females ran more than males (Morgan et
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al., 2003). In order to determine a few functions which adequately describe

the body mass trajectories, a smoothed eigenanalysis of the trajectories

was conducted. This smoothed eigenanalysis yielded a first eigenfunction

that was close constant, indicating that the biggest source of variability in

body mass was overall size of the mouse. Since a constant eigenfunction is

biologically meaningful, the first basis function was forced to be constant

and the remaining functions calculated via a smoothed eigenanalysis on the

trajectories, centered as follows. Let

z̄i =
1

58

60∑

k=−1
k 6=34,38,39,50

zik

be the ith mouses average body mass. We apply a smoothed eigenanalysis

to the sample covariance matrix of the centered body mass

zij − z̄i j = −1, . . . , 60, j 6= 34, 38, 39, 50.

Using the constant as the first eigenfunction, we found that the corre-

sponding first principal component, overall size, accounts for 85% of the

variability in the male selection group, 72% in the male control group, 70%

in the female selection group and 63% in the female control group. Fig-

ure 4.3 shows the proportion of cumulative variance explained by the next

ten principal components in each group after removing the variability of

the first principal component. The first three smoothed eigenfunctions in

each group capture about 90% of the remaining variability of the body mass

trajectories so these three eigenfunctions plus the constant function will be

used in the subsequent analyses. Figure 4.4 shows each of these four leading

eigenfunctions; the functions of the four experimental groups are presented

together in each panel. Clearly the smoothed eigenfunctions are very similar

among the four experimental groups.

We model the mean of the averaged wheel running as

E(Y ) = β0 +

∫
β(t)[Z(t) − EZ(t)]dt,
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where Z(t) is the logarithm of body mass at age t. Since the observed body

mass curves are somewhat rougher than one would expect, we model the

observed log body mass at age t as Z(t) plus error. To estimate β(·), we

approximate both β(·) and Z(·) using basis function expansions. The basis

functions used are the estimated eigenfunctions. To model within individual

variability in body mass, we use a random effects model, that is, we assume

that the coefficients in each individuals Z(·) expansion are random. We then

estimate all parameters by maximum likelihood.

The β̂ is estimated for each group from the smoothed eigenfunctions.

These β̂’s are presented in Figure 4.5. Both the male selection and control

groups show regions of β̂ that are non-overlapping with the 0 line and for-

mal testing shows that β̂ is significantly different from 0 for both selected

and control males (Figure 4.5; Table 4.1; p = 0.008 and 0.034, respectively).

Hence in male selection and control mice average wheel running significantly

depends on body mass trajectory. Interestingly, β̂ for the selection males is

positive at very young ages, then negative just prior to 10 weeks, positive

again at middle age and then negative or not different from 0 at older ages.

For females, β̂ overlaps 0 and the results of the formal testing are not signif-

icant for either selection or control groups (Figure 4.5; p = 0.264 and 0.656,

respectively). Hence for all females, there is no evidence that average wheel

running depends on the body mass trajectory.

Figure 4.6 shows both the pointwise estimates and the model estimates

of the covariance between average wheel running and body mass trajectory

for all four experimental groups. The general shapes of both estimates are

similar to each other and they are similar to the shapes of the curves seen

for the β̂ estimates in Figure 4.5. For instance, in each group except for the

female control, at the first few ages the covariance between average wheel-

running and log body mass is large. Correspondingly, at these ages each

β̂ is also large, where we believe that average wheel running is positively

dependent on log body mass.

The β̂ for selection and control mice were compared within each gender

to test for the evolution of the relationship of body mass trajectory and

average wheel running (Figure 4.7). No significant differences were detected
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between selected and control mice in either gender (Table 4.2); no evolution

of the dependence of wheel running on body mass trajectory in response to

selection on age-specific wheel running can be detected.

4.4 Discussion

As hypothesized, both male selected and control mice showed a significant

dependence of wheel running on the body mass ontogeny. This result gen-

erally fits those of Swallow et al. (1999), who measured a negative genetic

correlation of −0.5 between wheel running and body mass, and Morgan et

al. (2003) who measured a negative correlated response of the body mass on-

togeny to selection on early-age wheel running. However, the analyses used

herein have revealed complexity that was not identified in the two previous

studies: both previous studies showed clear negative relationships between

body mass and wheel running, whereas we have shown that the relationship

is sometimes negative and sometimes positive, depending on age. As can be

seen in Figures 4.5 and 4.6, body mass has a positive effect on wheel running

at young and some middle ages, with a negative effect at some younger ages

and at older ages. Interestingly Swallow et al. (1999) conducted their study

at the younger ages (˜ weeks 8 to 15) when the relationship is negative, and

although Morgan et al. (2003) clearly showed a negative genetic covariance

between the body mass ontogeny and early-age wheel running, that does not

preclude the phenotypic covariance from being at times positive. Hence our

results do not disagree with those of the earlier studies but rather elucidate

complexity that the earlier studies were not able to identify.

A significant dependence of wheel running on the body mass trajectory

was not identified in females. Different results in males and females is not

surprising in the context of this model system of mice, in which males and

females have differed in traits as diverse as wheel running itself (Swallow et

al., 1998) and longevity (Bronikowski et al., 2006). On the other hand, the

lack of a measurable difference in females may be caused by a lack of power.

Given that Morgan et al. (2003) showed a negative correlated response

of the wheel running trajectory to selection on early age body mass, we
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had hypothesized that the dependence of body mass on the wheel running

trajectory would have evolved and hence be different between selected and

control mice. However, no such differences were identified. Hence we can not

demonstrate any evolution of the dependence of wheel running on body mass

trajectory. Several reasons may explain this. First, it is possible that the

dependence is evolving, just slowly, and that a similar study conducted on a

later generation would reveal differences between selected and control mice.

Second, the dependence of wheel running on body mass may be constrained

by genetic covariances between wheel running and body mass, effectively

making it difficult to alter the dependence. Such a constraint could be

identified by detailed quantitative genetic analyses of the wheel running

and body mass trajectories (Kingsolver et al., 2001). Third, the inability

to demonstrate any evolution dependence of wheel running on body mass

trajectory could simply be because of a lack of power.

Developing powerful yet flexible statistical techniques to analyze data

sets with a large number of observations on each individual is a challenge.

We often do not have enough degrees of freedom to carry out a “usual”

regression analysis, modelling Yi = β0+
∑
βjZ(tj)+eij : for our data, within

one group we have around 40 individuals and 58 values of βj . The function-

valued approach effectively reduces the number of parameters in the model.

Using eigenfunctions as basis functions has allowed us to fit our data using

only β0 and 4 βj ’s. Griswold, Gomulkiewicz and Heckman (2007) have found

via simulation that basis-function type techniques are more powerful than

traditional ones. Although they have considered a slightly different problem,

applicable to a comparision of log body mass trajectories of two groups, one

would expect their results to hold qualitatively for the problem considered

here. The statistics methodology was developed by Heckman and Wang

(2007), with this its first application. Here we see its benefits: the method

has exposed patterns in dependence that were previously unknown. The

method allows full use of information from all individuals, through the use

of random effects modelling. And by using a function-valued approach, we

can handle large number of observations per individual.
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Group p-value

Male selected 0.008
Male control 0.034
Female selected 0.264
Female control 0.656

Table 4.1: P-values of the test Ho : β(t) = 0, for all t ∈ [−1, 60], using test
statistic Uf .

Gender p-value

Male 0.110

Female 0.444

Table 4.2: P-values of the test Ho : βs(t) = βc(t), for all t ∈ [−1, 60], using
test statistic Uf .

87



Chapter 4. Dependence of average lifetime wheel-running on body mass ontogeny

0 10 20 30 40 50 60

2.
0

2.
5

3.
0

3.
5

Male Selected

Week

Lo
g 

bo
dy

 M
as

s

0 10 20 30 40 50 60

2.
0

2.
5

3.
0

3.
5

Male Control

Week

Lo
g 

bo
dy

 M
as

s

0 10 20 30 40 50 60

2.
0

2.
5

3.
0

3.
5

Female Selected

Week

Lo
g 

bo
dy

 M
as

s

0 10 20 30 40 50 60

2.
0

2.
5

3.
0

3.
5

Female Control

Week

Lo
g 

bo
dy

 M
as

s

Figure 4.1: Plots of log body mass versus week for the four groups of labo-
ratory mice.
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Figure 4.2: Histogram of the response: averaged wheel running from weeks
5 to 60 for the four groups of laboratory mice.
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Figure 4.3: Plots of the proportion of cumulative variance of the centered log
body mass explained by the first ten principal components for four groups
of mice, after the individual average log body mass has been removed.
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Figure 4.4: The constant function and the first three smoothed eigenfunc-
tions of the covariance of centered log body mass of four group. The four
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91



Chapter 4. Dependence of average lifetime wheel-running on body mass ontogeny

0 10 20 30 40 50 60

−
60

−
20

0
20

40

Male Selected

Week

β̂(
t)

0 10 20 30 40 50 60

−
60

−
20

0
20

40

Male Control

Week

β̂(
t)

0 10 20 30 40 50 60

−
60

−
20

0
20

40

Female Selected

Week

β̂(
t)

0 10 20 30 40 50 60

−
60

−
20

0
20

40

Female Control

Week

β̂(
t)
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Standard errors are calculated as described in Section 4.2.
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the log body mass trajectory at week j, j = −1, . . . , 60, for four groups of
mice. Solid lines are the covariance from the model and dash-dot lines are
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Chapter 5

Conclusions and future plan

In the thesis, we study identifiability of linear mixed effects models in Chap-

ter 2. Particularly in Section 2.5, we give necessary and sufficient conditions

for identifiability of a model used in functional data analysis. The model is

our study object in Chapter 3. There we show how to use the ECME al-

gorithm to estimate the model parameters, develop statistics for hypothesis

testing of the functional coefficient β and derive expressions of the resid-

uals to check for outliers or influential points. We also apply the model

to analyze a biological data set in Section 3.6. Chapter 4 provides a de-

tailed background of the biological experiment, a description of the data,

and biological interpretations of our analysis.

In this chapter, we give possible directions for future research. In Sec-

tion 5.1, we adjust our Chapter 3 to account for correlated individuals. In

Section 5.2, we consider generalizing our Chapter 3 model from a scalar

response to a functional response.

5.1 Models with correlated individuals

In Chapter 4, we apply our model (3.4) and (3.5) to analyze a biological data

set. Specifically, the observed ith mouse’s log body mass, zi, is modelled as

zi = µ+ Axi + εi (5.1)

and the ith mouse’s average wheel running, Yi, is modelled as

Yi = β0 + β′Txi + ei. (5.2)
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We assume the random effects, the xi’s, are independent across individuals.

However, in the biological experiment, mice may come from the same fam-

ily and thus traits may be genetically correlated. This fact would lead to

correlations among the random effects, the xi’s. Clearly, our independence

model assumption is then violated and we should take the dependence of

individuals into consideration. In this section, we show how to handle this

family correlation more directly, by adjusting our model to account for this

dependence.

In the experiment, two mice came from the same family. Let the sub-

script i index the family and the subscript k = 1 or 2 differentiate the two

family members. Models of the ikth mouse’s log body mass and average

wheel running are respectively

zik = µ+ Axik + εik, (5.3)

Yik = β0 + β′Txik + eik, k = 1, 2. (5.4)

We still assume that Cov(xi1) = Σx = Cov(xi2) but, in the ith family, xi1

and xi2 are correlated as

Cov(xi1,xi2) = αΣx, (5.5)

where α is a known constant. The constant, α, comes from genetic theory

(see, for instance, Heckman, 2003). We still assume the measurement errors

are independent of the random effects and are independent across individuals

as

εik
i.i.d.∼ N(0, σ2

ε R), eik
i.i.d.∼ N(0, σ2),

(x11,x12), (x21,x22), . . . , (xN1,xN2),

ε11, ε12, . . . , εN1, εN2, e11, e12, . . . , eN1, eN2 are mutually independent.

The model (5.3) and (5.4) now includes the dependence between the two

family members. In the following, we give another expression of the model,

dropping the subscript k.
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We first group each family’s information together. Let

zi =

(
zi1

zi2

)
, yi =

(
Yi1

Yi2

)
, xi =

(
xi1

xi2

)
, εi =

(
εi1

εi2

)
, and ei =

(
ei1

ei2

)
.

To write a model for the ith family, let

µ̃ =

(
µ

µ

)
, β̃0 =

(
β0

β0

)
, Ã =

(
A 0

0 A

)
, and β̃′T =

(
β′T 0

0 β′T

)
.

From (5.3) and (5.4), our model for the ith family is

zi = µ̃+ Ãxi + εi, (5.6)

yi = β̃0 + β̃′Txi + ei. (5.7)

To derive the covariances of the (z′i,y
′
i), we let ΣAx = AΣxA

′, ΣA,β =

AΣxT
′β and Σβ,x = β′TΣxT

′β. From (5.5), it is not hard to see the

following holds,

Cov(zi) =

(
ΣAx + Σε αΣAx

αΣAx ΣAx + Σε

)
,

Cov(zi,yi) =

(
ΣA,β αΣA,β

αΣA,β ΣA,β

)
,

Cov(yi) =

(
Σβ,x + σ2 αΣβ,x

αΣβ,x Σβ,x + σ2

)
.

Model (5.6) and (5.7) uses individuals’ family information together and

the correlation between family members is reflected in the model’s covari-

ance structure. To estimate the model parameters, we can use the ECME

algorithm. But we may need to modify the algorithm as the model covari-

ance structure is not in a simple form.
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5.2 Proposing models with a functional response

In Chapter 3, we applied our model to analyze the mouse wheel running

data set. In the experiment, the wheel running distances were observed

every week for 60 consecutive weeks. We took the averaged wheel running

distance as a scalar response, averaged to reduce nuisance effects in the

wheel running. However, we would like to consider the entire wheel-running

trajectory as a response and to study its dependence on the log body mass

trajectory. In this section, we introduce a model which generalizes a scalar

response to a functional response. We give an outline of the plan to study the

model. Finally, we give a literature review of current work on this functional

response and predictor model.

5.2.1 Models of a functional response

Recall our modelling of the scalar response Yi is

Yi = β0 +

∫ b

a
β(s) [Zi(s) − E(Zi(s))] ds+ ei.

Now we have a functional response Yi indexed by t. Replacing the univariate

β(·) function with a bivariate β(·, ·), we consider generalizing the scalar

response model to accomodate the functional response as

Yi(t) = α(t) +

∫ b

a
β(t, s)

[
Zi(s) − E(Zi(s))

]
ds+ ei(t). (5.8)

We consider a tensor-product expansion of β(·, ·) using basis functions, ϕ1,

. . ., ϕJ and ψ1, . . ., ψL, as

β(t, s) =
J∑

j=1

L∑

l=1

bjlϕj(t)ψl(s) ≡ ϕ(t)′Bψ(s), B[j, l] = bjl. (5.9)

The modelling of the predictor Zi remains the same as

Zi(s) = µ(s) +
K∑

k=1

xikφk(s) ≡ µ(s) + φ(s)′xi,
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µ smooth, xi ≡ (xi1, . . . , xiK)′
i.i.d.∼ N(0,Σx).

Thus we can write

Yi(t) = α(t) +ϕ(t)′BTxi + ei(t),

Tlk =

∫ b

a
ψl(s) φk(s) ds ≡

∫
ψ(s)φ(s)′ds. (5.10)

Both the Zi and Yi are observed at a sequence of discrete time points.

Typically, we assume the observed Zi are perturbed with measurement er-

rors. Let εij represent the measurement error of Zi at time sij, j = 1, . . . , ni.

Let zij be the contaminated observed value as

zij = Zi(sij) + εij ≡ µ(sij) + φ(sij)
′xi + εij . (5.11)

Let µ = (µ(si1), . . . , µ(sini
))′, εi = (εi1, . . . , εini

)′ represent errors and zi =

(zi1, . . . , zini
)′ be the observed values. Write

zi = µ+ Axi + εi,

Ajk = φk(sj), j = 1, . . . , ni, k = 1, . . . ,K,

εi ∼ N(0,Σεi),

x1, . . . ,xn, ε1, . . . , εn are mutually independent. (5.12)

Suppose the process Yi is observed at a sequence of discrete time points

(t1, . . . , tmi
). Let α = (α(t1), . . . , α(tmi

))′, ei = (ei(t1), . . . , ei(tmi
))′ repre-

sent errors and yi = (yi(t1), . . . , yi(tmi
))′ ≡ (yi1, . . . , yimi

)′ be the observed

values. We then write

yi = α+ ΦBTxi + ei, Φij = ϕj(ti),

ei independent of both xi and εi,

ei ∼ N(0,Σei
),

x1, . . . ,xn, ε1, . . . , εn, e1, . . . , en are mutually independent. (5.13)
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The data available are the observed yi’s and the zi’s and the unknown

parameter of most interest is B. We then use (5.12) and (5.13) as our model

of the functional response and the functional predictor for data analysis.

5.2.2 Outline of the model study

We initiate our plan to study the model (5.12) and (5.13) in this section. The

steps basically follow those in Chapter 3: model identifiability, parameter

estimation, hypothesis testing and model diagnostics. Throughout, the basis

functions are assumed known and fixed. We give a discussion of the choice

of basis functions at the end.

In Section 2.5 we gave conditions of model identifiability for the scalar

response model. We can use similar methods to study identifiability of this

functional response model with covariance parameters now {Σx,Σεi,Σei
, i =

1, . . . , N}. New results will be needed to guarantee the model identifiability

with restrictions on the Σεi’s and the Σei
’s.

After identifying the model parameters, we can proceed to estimate the

unknown parameters using an ECME algorithm assuming the basis functions

known and fixed. The parameter of most interest is the matrix B in (5.9).

After obtaining the estimate, similar approaches using the Hessian matrix

or bootstrap can be applied to get the standard errors of B̂. For hypothesis

testing of β, it may be of interest to know if, at certain fixed t point, β(t, ·) is

zero or not. So the statistics developed in Section 4.4 can also be used to test

the hypothesis Ho : β(t, s) = 0 for all s ∈ [a, b] when t is fixed. After fitting

the model, residuals of the fit of yi can be obtained based on the BLUP of

the random effects xi. However, for each individual, the fitted value and the

residual of yi now are vectors, not scalars. Appropriate methods for residual

analysis need to be proposed.

The ϕj ’s and ψl’s basis functions for β and the φk’s for Zi can be chosen

using an eigenanalysis approach. As in the scalar response case, we apply

an eigenanalysis to the observed zij’s, and take φ1, . . . , φK as the first K

estimated eigenfunctions. We take L = K and ψk = φk to determine one

set of the basis functions of β(·, ·) in (5.9), the set of basis functions that
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appear in the integral T in (5.10). The other set of basis functions, the ϕj ’s,

can be chosen as the estimated eigenfunctions of the Yi process.

An alternative to the use of a tensor-product expansion of β is to consider

using bivariate basis function expansions. Let the ζl’s be bivariate basis

functions. We can approximate β as

β(s, t) =
L∑

l=1

βlζl(s, t) ≡ ζ(s, t)′β.

But we also need to consider what basis functions to choose.

5.2.3 Literature review

There are two research results closest to our work on the functional response

and functional predictor model.

Ramsay and Silverman (2005, chapter 16) study a slight modification of

model (5.8)

yi(t) = α(t) +

∫
β(t, s) Zi(s) ds+ ei(t).

Besides using the tensor-product expansion of β as in (5.9), the authors

expand α using the ϕj ’s as

α(t) =
J1∑

j=1

αlϕj(t) ≡ ϕ(t)′α.

Assuming the Zi’s are observed without error, the authors estimate α and

B by minimizing the integrated residual sum of squares, which is

N∑

i=1

∫ [
yi(t) −ϕ(t)′α−

∫
Zi(s)ψ(s)′Bϕ(t)ds

]2
dt.

Yao, Müller and Wang (2005) consider (5.8) with the Zi process observed

with error. They use φk’s equal to the eigenfunctions of the Zi covariance

function in (5.11). The random effects xi has a diagonal covariance matrix

with elements σ2
k’s being the eigenvalues of the Zi covariance function. The

errors εij are assumed to be i.i.d. with mean zero and variance σ2
ε .
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Yao et al. carry out an eigenanalysis of the Yi’s covariance function,

with resulting eigenfunctions equal to the ψl’s and corresponding eigenval-

ues equal to the σ2
l ’s. They expand the observed yik, contaminated with

measurement errors, as

yik = µY (tik) +
L∑

l=1

uilψl(tik) + eik,

µY smooth, Euil = 0, Eu2
il = σ2

l , Euiluil′ = 0, l 6= l′.

eik
i.i.d.∼ (0, σ2

e ), independent of the u′ils. (5.14)

Let C(s, t) denote the two-dimensional scatterplot smoothed cross-covariance

surface Cov(Z(s), Y (t)) of the zij ’s and yik’s. The authors estimate β as

β̂(s, t) =
K∑

k=1

L∑

l=1

σkl

σ2
k

φk(s)ψl(t),

where σkl is calculated as

σkl =

∫ ∫
φk(s) C(s, t) ψl(t) ds dt.

Similarities between our modelling and Yao et al’s are that the coefficient

vector xi in the expansion of the Zi is random and the Zi’s are observed

with measurement error. However, Yao et al’s xi has a diagonal covariance

structure while our covariance matrix of the xi, Σx, can be more general. We

use both the zi’s and the yi’s information to estimate Σx and other model

parameters. In Yao et al., variance elements σ2
k’s of the xi and variance of

the error εij , σ
2
ε , are estimated completely by the zi’s. Similarly, the σ2

l ’s of

the ui and σ2
e of the eik are estimated completely using the yi’s.
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Appendix A

Appendix to Chapter 2

A.1 Proof of Corollary 2.4.1

To prove it, we use the following result from Graybill, 1983, p.206.

Lemma A.1.1 Given two scalars a and b, the characteristic equation of the

matrix C = (a− b)I + bJ in λ is

(a+ (n− 1)b− λ) (a− b− λ)n−1,

and hence n− 1 characteristic roots are equal to a− b and one root is equal

to a+ (n− 1)b.

Proof :

To prove the corollary, we use Theorem 2.4.1 and a proof by contradiction.

First suppose that the model is identifiable and suppose, by way of

contradiction, HZJ = J. Fix Σε ∈ Θ̃ε. Let s > 1, σ∗2 = sσ2 and

ρ∗ = (ρ − 1)/s + 1. It is not hard to check −1/(n − 1) < ρ∗ < 1. De-

fine Σε
∗ = σ∗2 [(1 − ρ∗)I + ρ∗J]. Then Σε − Σε

∗ = (σ2 − σ∗2)J and, since

HZJ = J, it is clear that (2.3) is satisfied. We now show that, for any

Σu ∈ Θu, there exists s∗ > 1 so that Σ∗
u defined as in (2.4) is positive defi-

nite whenever 1 < s < s∗. This will show that the model is not identifiable,

which contradicts our assumption. Plugging Σε − Σε
∗ = (σ2 − σ∗2)J into

(2.4) yields

Σ∗
u = Σu + σ2(1 − s)(Z′Z)−1Z′JZ(Z′Z)−1. (A.1)

By assumption 1′Z 6= 0 and Z is of full column rank, the matrix (Z′Z)−1Z′JZ(Z′Z)−1

is non-negative definite and of rank one since J = 11′. Let λ be its non-

zero and thus the largest eigenvalue of (Z′Z)−1Z′JZ(Z′Z)−1. Let λm be the
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smallest eigenvalue of the matrix Σu, and let s∗ = λm/(λσ
2) + 1. For any

x ∈ <q, x 6= 0, x′Σ∗
ux > 0 by the following argument.

x′Σ∗
ux = x′Σux + σ2(1 − s)x′(Z′Z)−1Z′JZ(Z′Z)−1x

≥ λmx′x + σ2(1 − s)λx′x

> 0

Now suppose that HZJ 6= J and suppose, by contradiction, that the

model is not identifiable. Then, by Theorem 2.4.1, there exist nonidentical

Σε and Σε
∗ satisfying (2.3) and, since the rank of HZ is q, the rank of

Σε −Σε
∗ is at most q. We have

Σε −Σε
∗ =

[
(σ2 − σ∗2) − (σ2ρ− σ∗2ρ∗)

]
I + (σ2ρ− σ∗2ρ∗)J.

By Lemma A.1.1, the eigenvalues of Σε−Σε
∗ are (σ2−σ∗2)− (σ2ρ−σ∗2ρ∗),

which is of multiplicity n − 1 and (σ2 − σ∗2) + (n − 1)(σ2ρ − σ∗2ρ∗), of

multiplicity 1. Since Σε −Σε
∗ is not the zero matrix, all of the eigenvalues

cannot be equal to 0: we must either have no eigenvalues equal to 0, one

eigenvalue equal to 0, or n − 1 eigenvalues equal to 0. In order to have

rank(Σε − Σε
∗) ≤ q, the n − 1 multiple eigenvalues have to be zero since

1 ≤ q < n − 1 by assumption. That is, σ2 − σ∗2 = σ2ρ − σ∗2ρ∗ and so

Σε − Σε
∗ = (σ2 − σ∗2)J. But plugging this into (2.3) yields HZJ = J,

contradicting our assumption.

2

A.2 Proof of Corollary 2.4.2

Proof :

We first note a fact about the matrix HZ. Since HZ is symmetric and

idempotent,

HZ[k, k] =
∑

l

(HZ[k, l])2 = (HZ[k, k])2 +
∑

l 6=k

(HZ[k, l])2 .
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Thus, if HZ[k, k] = 1, then HZ[k, i] = HZ[i, k] = 0 for all i 6= k.

To prove the corollary, we use Theorem 2.4.1 and a proof by contradic-

tion.

First suppose that the model is identifiable and suppose, by way of

contradiction, a diagonal element of HZ is equal to 1. Without loss of

generality, we assume HZ[1, 1] = 1. Then by our observation, HZ[1, i] =

HZ[i, 1] = 0 for all i 6= 1. Fix Σε = diag{σ2
1 , . . . , σ

2
n} ∈ Θ̃ε. Let σ∗21 satisfy

0 < σ∗1
2 < σ2

1 and define Σε
∗ = diag{σ∗12, σ2

2 , . . . , σ
2
n}. Then Σε − Σε

∗ =

diag{σ2
1−σ∗12, 0, . . . , 0}. It is not hard to check that (2.3) is satisfied. Clearly,

for any Σu ∈ Θu, Σ∗
u defined as in (2.4) is also in Θu. Thus, the model is

not identifiable, which contradicts our assumption.

Now suppose that no diagonal element of HZ is equal to one and sup-

pose, by contradiction, that the model is not identifiable. Then there exists

nonidentical diagonal matrices, Σε and Σε
∗, satisfying (2.3). As Σε 6= Σε

∗,

at least one of the diagonal elements of Σε − Σε
∗ is not zero. Suppose the

k-th diagonal element is not zero. By (2.3), the k-th diagonal element of

HZ must be one, contradicting our assumption. 2
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Appendix to Chapter 3

In this appendix, we provide the calculations in Sections 3.3.2 and 3.3.4

where we find the updates of Σx and {β, σ2} in the ECME procedure.

In Section B.4, we derive the first order condition (3.10) and the Hessian

matrix (3.14) of Section 3.3.2 where we maximize the log-likelihood ΛN over

Σx while holding the other parameters fixed.. In Section B.5, we derive the

first order conditions (3.22) and (3.23), and the Hessian matrix (3.26) of Sec-

tion 3.3.4 where we maximize Λ̃N over {β, σ2} holding the other parameters

fixed.

We use the tool of matrix differential calculus, calculating first differen-

tials to obtain the first order conditions and second differentials to obtain

the Hessian matrices. The book by Magnus and Neudecker (1988) gives

an elegant description on this subject. In Sections B.1-B.3, we follow the

book to introduce some definitions and provide some background, mainly

from Part Two of the book. We keep the same notation as in the book.

Throughout this section, chapters and page numbers all refer to (Magnus

and Neudecker, 1988).

B.1 Definition of the first differential

We first give the definition of the first differential for a vector function (a

vector valued function with a vector argument). We show that the function’s

first differential is connected with its Jacobian matrix. We then give an

extension of the definition to a matrix function (a matrix valued function

with a matrix argument) and show how to identify the Jacobian matrix from

the first differential.
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Definition B.1.1 Let f : S → <m be a function defined on a set S in <n.

Let c be an interior point of S, and let B(c; r) be an n-ball lying in S centred

at c of radius r. If there exists a real m× n matrix A, depending on c but

not on u, such that

f(c + u) = f(c) + A(c)u + rc(u)

for all u ∈ <n with ||u|| < r and

lim
u→0

rc(u)

||u|| = 0,

then the function f is said to be differentiable at c; the m× n matrix A(c)

is then called the first derivative of f at c, and the m× 1 vector

df(c;u) = A(c)u,

which is a linear function of u, is called the first differential of f at c (with

increment u). If f is differentiable at every point of an open subset E of S,

we say f is differentiable on E.

After calculating the first differential, we identify the Jacobian matrix

as follows. Let Df be the m × n Jacobian matrix of f whose ijth element

is Djfi: the partial derivative of the ith component function fi of f with

respect to the jth coordinate. The First Identification Theorem (p.87) states

that the first derivative A(c) is Df(c) when f is differentiable at c.

To extend the definition of a vector function to a matrix function with a

matrix argument is straightforward using the vec operator. The vec operator

transforms a matrix into a vector by stacking the columns of the matrix one

underneath the other.

Recall the norm of a real matrix X is defined by

||X|| = (trX′X)1/2.

111



Appendix B. Appendix to Chapter 3

Let <n×q contains all the real n × q matrices. Define a ball B(C; r) with

center C and radius r in <n×q by

B(C; r) = {X : X ∈ <n×q, ||X −C|| < r}.

Let F : S → <m×p be a matrix function defined on a set S in <n×q. That

is, F maps an n × q matrix into an m × p matrix F(X). We consider the

the vector function f : vec S → <m×p defined by

f(vec X) = vec F(X)

and the following gives the definition of the first differential of F.

Definition B.1.2 Let F : S → <m×p be a matrix function defined on a set

S in <n×q. Let C be an interior point of S and let B(C; r) ⊂ S be a ball

with center C and radius r. If there exists RC and a real (mp)×(nq) matrix

A, depending on C but not on U, such that

vecF(C + U) = vecF(C) + A(C)vecU + vecRC(U)

for all U ∈ <n×q with ||U|| < r and

lim
U→0

RC(U)

||U|| = 0,

then the function F is said to be differentiable at C. Let

dF(C;U) = A(C)vecU.

Although this is a vector of length (mp), it can be formed into a matrix of

dimension m× p, in the usual natural way. This m× p matrix dF(C;U) is

called the first differential of F at C with increment U and the (mp) × (nq)

matrix A(C) is called the first derivative of F at C.

From the definition, it is clear that the differential of F and f are related

by

vec dF(C;U) = df(vecC; vecU).
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The Jacobian matrix of F at C is defined as

DF(C) = Df(vecC).

This is an (mp) × (nq) matrix, whose ijth element is the partial derivative

of the ith component of vecF(X) with respect to the jth element of vecX,

evaluated at X = C. The First Identification Theorem for matrix functions

(p.96) states that if F is differentiable at C, then

vec dF(C;U) = DF(C)vecU.

So we can calculate the differential of F to identify its Jacobian matrix.

B.2 Definition of the second differential

We first introduce the definition of twice differentiable on which the defini-

tion second differential is based. The definitions are restricted to real valued

functions as in our calculations we only need to consider second differentials

of real valued functions. Then we connect the Hessian matrix with the sec-

ond differential. As in the first differential case, we give an extension of the

definition to a real valued function with a matrix argument and also show

how to identify the Hessian matrix from the second differential.

Definition B.2.1 Let f : S → < be a real valued function defined on a set

S in <n, and let c be an interior point of S. If f is differentiable in some

n-ball B(c) and each of the partial derivatives Djf is differentiable at c,

then we say that f is twice differentiable at c. If f is twice differentiable at

every point of an open subset E of S, we say f is twice differentiable on E.

The following is the definition of the second differential.

Definition B.2.2 Let f : S → < be twice differentiable at an interior point

c of S ⊂ <n. Let B(c) be an n-ball lying in S such that f is differentiable

at every point in B(c), and let g : B(c) → < be defined by the equation

g(x) = df(x;u).
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Then the differential of g at c with increment u, i.e. dg(c;u), is called the

second differential of f at c (with increment u), and is denoted by d2f(c;u).

To calculate the second differential of f , by the definition, we just need to

calculate the differential of the first differential of f , i.e.

d2f = d(df).

We have seen that the Jacobian matrix can be identified from the first

differential. Similarly, we can identify the Hessian matrix from the second

differential. The Second Identification Theorem (p.107) states that if f is

twice differentiable at c, then

d2f(c;u) = u′ (Hf(c))u,

where Hf(c) is the n × n symmetric Hessian matrix of f at c with (i, j)

entry equal to ∂2f(c)/(∂ci∂cj). Therefore, once we have calculated the

second differential, the Hessian matrix is obtainable.

Similarly as in Section B.1, the extension of the second differential from

vector functions to matrix functions is straightforward using the vec opera-

tor. As we only consider real valued functions, we restrict the extension to

a real valued function with a matrix argument.

We follow the notation in the definition of the first differential of matrix

functions. Let the domain of f be S ⊆ <n×q and let C be an interior point

of S. Let B(C; r) ⊂ S be a ball with center C and radius r and let U

be a point in <n×q with ||U|| < r, so that C + U ∈ B(C; r). The second

differential of f at C is then defined as

d2f(C;U) = d2f(vecC; vecU).

The Second Identification Theorem for matrix functions (p.115) says if f is

twice differentiable at C, then

d2f(C;U) = (vecU)′ Hf(C) vecU,
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where Hf(C) is the nq×nq symmetric Hessian matrix of f at C defined as

Hf(C) ≡Hf(vecC).

That is, the ijth element of Hf(C) is the second order derivative of f with

respect to the ith and jth element of vecX where X ∈ S, evaluated at C.

B.3 Matrix algebraic and differential rules

In this section, we list the matrix algebraic and differential rules (chap.8)

which will be used without specific reference in our derivations. In the

following, we let A, B, C and D denote constant matrices, u denote a

vector function and U and V denote matrix functions. We let ⊗ stand for

the Kronecker product. The rules are the following.

• tr(AB) = tr(BA), provided AB is square.

• tr(A′B) = (vecA)′vecB.

• tr(ABCD) = (vecD)′(A ⊗ C′)(vecB′), provided ABCD is defined

and square.

• dA = 0.

• dAU = AdU.

• d(U + V) = dU + dV.

• d(UV) = (dU)V + U(dV).

• d(U′) = (dU)′.

• d (ln detU) = trU−1(dU).

• d (U−1) = −U−1(dU)U−1.

• d (trU) = tr (dU).

• d(vecU) = vec (dU).

• d(u′Au) = u′(A + A′)du = (du)′(A + A′)u.
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B.4 Calculations in Section 3.3.2

Recall the observed data log-likehood has the expression

ΛN = −N
2

ln det
(
CΣxC

′ + Σd

)
−1

2

N∑

i=1

(Wi−µW )′
(
CΣxC

′ + Σd

)−1
(Wi−µW ).

We want to maximize it over Σx while holding the other parameters fixed.

In this section, holding the other parameters fixed, we calculate the first

differential of ΛN to obtain the first order condition (3.10) and calculate the

second differential to obtain the Hessian matrix in (3.14).

As we treat Σx as the only unknown parameter, it immediately follows

from the expression of ΣW in (3.9)

dΣW = CdΣxC
′. (B.1)

In our derivation, we will use the shorter notation dΣW before we reach

(3.10) or (3.14). We have

dΛN = −N
2

d (lnΣW ) − 1

2

N∑

i=1

(Wi − µW )′
(
d Σ−1

W

)
(Wi −µW )

= −N
2

tr
[
Σ−1

W dΣW

]
+

1

2

N∑

i=1

(Wi − µW )′Σ−1
W (d ΣW )Σ−1

W (Wi −µW )

= −N
2

tr
[
Σ−1

W dΣW

]
+

1

2
tr

[
Σ−1

W

N∑

i=1

(Wi − µW )(Wi − µW )′Σ−1
W (d ΣW )

]

= −N
2

tr
[
Σ−1

W (ΣW − SW )Σ−1
W (dΣW )

]
(B.2)

Recalling (B.1), we now have

dΛN = −N
2

tr
[
C′Σ−1

W (ΣW − SW )Σ−1
W CdΣx

]
.

By the First Identification Theorem for matrix functions mentioned in Sec-
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tion B.1, we obtain the Jacobian matrix of ΛN at Σx as

D ΛN (Σx) = vec
{
C′Σ−1

W (ΣW − SW )Σ−1
W C

}
.

Equating it to zero yields

C′Σ−1
W (ΣW − SW )Σ−1

W C = 0

which is equivalent to the first order condition (3.10).

Next we calculate d2ΛN to identify the Hessian matrix in (3.14). Starting

from (B.2), we have

d2ΛN = −N
2

tr
[
(dΣ−1

W )(ΣW − SW )Σ−1
W (dΣW )

]
− N

2
tr
[
Σ−1

W d(ΣW − SW )Σ−1
W (dΣW )

]

−N
2

tr
[
Σ−1

W (ΣW − SW )dΣ−1
W (dΣW )

]

=
N

2
tr
[
Σ−1

W (dΣW )Σ−1
W (ΣW − SW )Σ−1

W (dΣW )
]
− N

2
tr
[
Σ−1

W (dΣW )Σ−1
W (dΣW )

]

+
N

2
tr
[
Σ−1

W (ΣW − SW )Σ−1
W (dΣW )Σ−1

W (dΣW )
]
.

The first term and the last term at the right hand side are equal, and so

they can be combined into one term

Ntr
[
Σ−1

W (dΣW )Σ−1
W (ΣW − SW )Σ−1

W (dΣW )
]
.

Then

d2ΛN = Ntr

[
Σ−1

W (dΣW )Σ−1
W (

1

2
ΣW − SW )Σ−1

W (dΣW )

]

Recall (B.1). Right hand side of the above

= Ntr

[
Σ−1

W CdΣxC
′Σ−1

W (
1

2
ΣW − SW )Σ−1

W CdΣxC
′
]

= Ntr

[
C′Σ−1

W CdΣxC
′Σ−1

W (
1

2
ΣW − SW )Σ−1

W CdΣx

]

= N(vec dΣx)′
[
C′Σ−1

W C⊗C′Σ−1
W (

1

2
ΣW − SW )Σ−1

W C

]
vec(dΣx).
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When evaluated at the critical point Σ̂x which satisfies the first order con-

dition (3.10), d2ΛN is then

−N
2

(vec dΣx)′
[
C′Σ̂

−1
W C⊗C′Σ̂

−1
W C

]
vec(dΣx).

By the Second Identification Theorem for matrix functions mentioned in

Section B.2, we have at Σ̂x the Hessian matrix is equal to

H(Σ̂x) = −(N/2)
(
D̂⊗ D̂

)
, where D̂ = C′Σ̂

−1
W C.

This is the matrix we saw in (3.14).

B.5 Calculations in Section 3.3.4

Recall we want to maximize the log-likelihood

Λ̃N = −N
2

ln(β′Kβ + σ2) − 1

2(β′Kβ + σ2)

N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2

over {β, σ2} to find the update while fixing the other parameters. In this

section, we derive the first order conditions (3.22) and (3.23) via calculating

the first differential of Λ̃N with respect to {β, σ2}. Calculating the second

differential of Λ̃N then gives us the Hessian matrix (3.26).

The following two differentials will facilitate our calculation in dΛ̃N and

d2Λ̃N . Recall the expression of σ2
Y |z in (3.19). We have

dσ2
Y |z ≡ d

(
β′Kβ + σ2

)
= 2β′Kdβ + dσ2. (B.3)

Let

g(β) =
N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)
(zi − µ)′G′. (B.4)

We then obtain

d

[
N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2
]

= −2
N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)
(dβ)′G(zi − µ)
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= −2
N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)
(zi − µ)′G′(dβ)

= −2g(β)dβ (B.5)

To calculate dΛ̃N , we use the terms σ2
Y |z and β′Kβ+σ2 interchangeably.

dΛ̃N = −N
2

d
[
ln(β′Kβ + σ2)

]
− d

[
1

2(β′Kβ + σ2)

] N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2

− 1

2(β′Kβ + σ2)
d

[
N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2
]

By (B.3) and (B.5), the right hand side above is equal to

−N
2

2β′Kdβ + dσ2

σ2
Y |z

+
2β′Kdβ + dσ2

2σ4
Y |z

N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2
+

1

σ2
Y |z

g(β)dβ.

Let

c(β, σ2) =

[
N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)2 −Nσ2
Y |z

]
. (B.6)

Then dΛ̃N is equal to

dσ2

2σ4
Y |z

c(β, σ2) +
1

σ4
Y |z

[
β′K c(β, σ2) + σ2

Y |zg(β)
]
dβ. (B.7)

By the First Identification Theorem mentioned in Section B.1, we obtain

the first order conditions

1

σ4
Y |z

[
β′K c(β, σ2) + σ2

Y |zg(β)
]

= 0,

1

2σ4
Y |z

c(β, σ2) = 0

which lead to (3.22) and (3.23).

Calculating d2Λ̃N to identify the Hessian matrix is lengthy and tedious.

In fact, we don’t need the closed form of the Hessian matrix but the Hes-

119



Appendix B. Appendix to Chapter 3

sian matrix evaluated at the critical points {β̂, σ̂2} given in (3.26). So in

our derivation, we will make use of the first order conditions to simplify

calculation.

We notice, equivalently, the critical points {β̂, σ̂2} only need to satisfy

g(β̂) = 0 (B.8)

c(β̂, σ̂2) = 0. (B.9)

From (B.6), using (B.3) and (B.5) we have

dc(β, σ2) = −2
N∑

i=1

(
Yi − β0 − β′G(zi − µ)

)
(zi − µ)′G′dβ − 2Nβ′Kdβ −Ndσ2

= −2g(β)dβ − 2Nβ′Kdβ −Ndσ2,

which is a function of β. By (B.8),

dc(β̂, σ2) = −2N(dβ)′Kβ −Ndσ2. (B.10)

Now we calculate d2Λ̃N starting from (B.7). We first calculate

d

[
dσ2

2σ4
Y |z

c(β, σ2)

]

which is

d

(
1

2σ4
Y |z

)
dσ2 c(β, σ2) +

dσ2

2σ4
Y |z

d c(β, σ2).

When at {β̂, σ̂2}, by (B.9) and (B.10), it is equal to

−Ndσ2

2σ̂4
Y |z

(
2(dβ)′Kβ̂ + dσ2

)
= − N

σ̂4
Y |z

(
dβ′ dσ2

)( Kβ̂

1/2

)
dσ2. (B.11)

Then we calculate

d

[
1

σ4
Y |z

[
β′K c(β, σ2) + σ2

Y |zg(β)
]
dβ

]
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which is

d

(
1

σ4
Y |z

)[
β′K c(β, σ2) + σ2

Y |zg(β)
]
dβ+

1

σ4
Y |z

d
[
β′K c(β, σ2) + σ2

Y |zg(β)
]
dβ.

(B.12)

At {β̂, σ̂2}, the term in the first square brackets vanishes by (B.8) and (B.9).

Thus, at {β̂, σ̂2}, (B.12) is equal to

1

σ̂4
Y |z

[
(dβ)′Kc(β̂, σ̂2) + β′Kdc(β̂, σ2) + dσ2

Y |zg(β̂) + σ̂2
Y |zdg(β̂)

]
dβ.

From (B.4), we have

dg(β) = −(dβ)′
N∑

i=1

G(zi − µ)(zi − µ)′G′. (B.13)

Again by (B.8)-(B.10) and that dc(β̂, σ2) is a scalar, (B.12) is equal to

1

σ̂4
Y |z

[(
−2N(dβ)′Kβ̂ −Ndσ2

)
β̂
′
K− σ̂2

Y |z(dβ)′
N∑

i=1

G(zi − µ)(zi − µ)′G′

]
dβ

= − N

σ̂4
Y |z

(
dβ′ dσ2

)

 2Kβ̂β̂

′
K +

σ̂2
Y |z

N

∑N
i=1 G(zi − µ)(zi − µ)′G′

β̂
′
K


dβ (B.14)

Combining (B.11) and (B.14), eventually we get, at (β̂, σ̂2),

d2Λ̃N (β̂, σ̂2) =
(
dβ′ dσ2

)
HΛ̃(β̂, σ̂2)

(
dβ

dσ2

)
,

where

HΛ̃(β̂, σ̂2) = − N

σ̂4
Y |z


 2Kβ̂β̂

′
K +

σ̂2
Y |z

N

∑N
i=1 G(zi − µ)(zi −µ)′G′ Kβ̂

β̂
′
K 1/2


 .

By the Second Identification Theorem mentioned in Section B.2, H Λ̃(β̂, σ̂2)

is the Hessian matrix and we have seen it in (3.26).
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