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Abstract 
Low-frequency noise is a health concern for workers in industrial workshops; 

rooms of highly varying size and dimensions, usually containing obstacles (the ‘fittings’). 

Low-frequency noise can be generated from sources such as reciprocating or rotating 

machinery, or ventilation systems. As the exposure time to the noise lengthens, workers 

are increasingly at risk to harmful effects such as hearing loss, communication difficulty, 

personal discomfort, and even nausea from induced body vibrations. Passive methods of 

noise control, such as absorption or barriers, generally perform better at high frequencies, 

but are inadequate at low frequencies. A proposed solution is active noise control, which 

relies on destructive interference of sound waves to reduce noise levels. However, this 

depends on phase, and how it is affected when sound waves encounter diffracting obstacles. 

In addition, the geometrical configuration of the active-control system must be optimized, 

which can be done using a prediction model. Sound-prediction models can also estimate 

the decibel level of sound within a given room configuration created by a source and the 

attenuation provided by the control system. Therefore, it is of interest to develop a model 

that predicts sound propagation in fitted rooms with phase. In this thesis, sound-pressure 

fields were investigated in rooms containing parallelepiped obstacles at low frequencies for 

which the wavelength is comparable to the obstacle dimensions. The geometric theory of 

diffraction (GTD) was used to model edge diffraction from an obstacle and, thus, the 

pressure field in shadow regions. A ray-tracing prediction model was improved to consider 

both the amplitude and phase of sound fields, and also the effects of edge diffraction. To 

validate the prediction model, experiments were performed in an anechoic chamber where 

a source and diffracting objects were located. In collaboration with Dr Valeau at the 

Université de Poitiers in France, a second model based on the finite element method (FEM) 

was used to compare prediction results. It was found that the phase depends mostly on the 

direct unblocked source-to-receiver distance. The FEM and experimental results showed 

that occluding objects cause phase shifts. The implementation of first-order diffraction into 

the ray-tracing program was successful in predicting shadow zones, thus producing a better 

prediction of realistic sound fields in rooms with obstacles. 
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Chapter 1 

Introduction 
1.1 Noise in Industrial Workrooms 
 Low-frequency noise is a problem in industrial workshops. These are rooms of 

highly varying size and dimensions, often containing obstacles (the machines, etc., called 

the ‘fittings’) and many noise sources. The sources of low-frequency noise range from 

machinery with rotating parts, or reciprocating engines, to air flow in ventilation systems. 

Even walls and flat, panel surfaces contribute to the problem, as mechanical vibrations 

can be transferred to the walls through acoustical coupling, causing them to radiate sound. 

Usually the noise source cannot simply be turned off, for practical reasons, so the 

generated noise must be endured by workers, possibly during their entire work shifts. As 

the exposure time to loud noises increases, the employees are more likely to experience 

hearing problems, difficulty in verbal communication, nausea from body vibrations, and 

overall general stress and uneasiness. Typical exposure-control measures are hearing 

protectors and sound absorption. These are effective for high-frequency noise, but their 

performance at low frequencies is inadequate due to the long wavelengths of sound 

involved. A proposed solution is active noise control (ANC). This technique uses 

destructive interference to cancel sound. The control system must be optimized given the 

room geometry, by means of a prediction model. Moreover, a thorough understanding of 

phase in the presence of large objects is an essential prerequisite. Therefore, it is of 

interest to develop a prediction model that predicts the sound field in a room with 

obstacles, including phase. 

 This work extends previous research by Wong [1] in his study of low-frequency 

noise in fitted rooms. Wong measured and predicted the effect of fittings on the modal 

characteristics of the room in terms of sound-pressure level, but with minimal attention to 

phase and diffraction. It also continues work done on active noise control by Guo [2] and 

Li [3]. Guo developed an image-phase model to predict the effect of active noise control 
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in empty rooms. Li used the model to optimize the physical configuration of the control 

system to produce the largest zones of strong local sound attenuation. 

 

1.2 Room Acoustics 
1.2.1 Wave Theory 

Sound is a compression wave traveling through air and, as a form of wave energy 

that propagates through a medium, it must obey the general wave equation, 

01
2

2

2
2 =

∂
∂−∇

t
p

c
p ,    (1.1) 

where 2

2

2

2

2

2
2

zyx ∂
∂+

∂
∂+

∂
∂=∇ is the three-dimensional Laplacian operator in Cartesian 

coordinates and c is the wave speed. The general solution to this equation is a traveling 

wave of the form )( φ+− ctxf , whereφ is the phase of the wave. This functional form is 

characterized by harmonic oscillations of any frequency in both time and space. Note that 

the wave speed and frequency f are related by the wavelength λ  in the equation fc λ= . 

Using a separation of variables, the time component of Eq. (1.1) can be solved 

independently. It has the form )exp( tiω− where ,2 fπω =  the angular frequency, relates to 

the frequency of the oscillations. The time-independent wave equation can be rewritten as 

the Helmholtz equation, 

022 =+∇ pkp ,    (1.2) 

where λπω /2/ == ck is the wave number. The solution to this equation depends on the 

boundary conditions. In room acoustics, the boundaries of the domain are surfaces which 

can have a range of acoustical properties. The simplest surface is an ideal surface that is 

completely rigid. Conceptually, this means that the particle velocity of an incident sound 

wave at the wall is zero, and the sound pressure at the wall is a maximum. 

Mathematically, if the surfaces in the x-direction are located at 0=x  and xLx = , the 

boundary condition at those locations is, 
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0=
dx
dp .     (1.3) 

Similar boundary conditions can be written for the y and z directions. Then solving the 

Helmholtz equation yields, 

)cos()cos()cos(),,(,, z
L

ny
L

n
x

L
nAzyxp

z

z

y

y

x

x
nnn zyx

πππ= ,   (1.4) 

where zyx nnn ,, are positive integers known as mode indices and A is a generic constant 

representing the amplitude of the mode. Note that the lowest mode in any direction is 

zero, indicating no sinusoidal fluctuations in that direction. The higher the mode, the 

more oscillations exist in the given direction. Eq. (1.4) is often rewritten with the wave 

number xxx Lnk /π= , and similarly in the y and z directions. 

 Under a different set of boundary conditions, the solution to the Helmholtz 

equation changes. Another typical boundary condition in acoustics is that in a free field 

(or within an anechoic chamber, where wall reflections are negligible). In this situation, a 

radiative boundary condition is used, which states that, as the radial distance r increases, 

sound pressure approaches zero. This is represented by, 

0)(lim =
∞→

rp
r

.     (1.5) 

In these circumstances, the solution can be derived using cylindrical or spherical 

coordinates. Assuming isotropic conditions, the solution in cylindrical coordinates is, 

)()()( krYBkrJArp nnn ⋅+⋅= ,   (1.6) 

where )(krJn  and )(krYn  are Bessel functions, while A and B are amplitude constants. 

For large values of r, the asymptotic behaviour of the Bessel functions is r
1 , thus obeying 

the radiative boundary condition in Eq. (1.5). Similarly with a spherical coordinate 

system, the solution at large r is, 

ikre
r
Arp =)(      (1.7) 
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which decays as r
1 at large distances. The significance of Eqs. (1.6) and (1.7) is that the 

sound-pressure field for a cylindrical source and a spherical point source will decay as r
1  

and r
1 , respectively. Refer to [4] for further details on the solutions to wave equations. 

 

1.2.2 Acoustic Theory 

 In acoustics [5], the fluctuations of sound pressure may be detectable by our ears. 

The typical human ear is capable of hearing amplitudes as quiet as about 20 µPa, and 

frequencies between 20 Hz and 20 kHz. The unit of decibel (dB) is a logarithmic scale 

used to measure the amplitude of sound, relative to a reference level of p0 = 2x10-5 Pa. p0 

is the minimum pressure of sound that an average person can hear. A change of less than 

1 dB is considered inaudible. Sound pressure in Pascals is converted to a sound-pressure 

level Lp in decibels by, 

)(log20
0

10 p
pLp = .    (1.8) 

Note that the characteristic decays of the solutions to the wave equation in the previous 

section can be described in terms of decibels. Since Lp is proportional to the square of 

pressure, the spherical source decay of r
1 corresponds to a drop of -6 dB per doubling of 

distance (-6 dB/dd), while the cylindrical source decay of r
1  corresponds to -3dB/dd. 

 Sound can also be quantified in terms of energy and power. For a spherical source, 

the pressure amplitude relates to source power by, 

2
2

4
)(

r
cWrp
π

ρ=      (1.9) 

where W is the source power in Watts and ρ is the density of the medium. Both energy 

and power are proportional to pressure squared. Sound power can be expressed in 

decibels by, 

)(log10
0

10 W
WLw =      (1.10) 
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where 12
0 10−=W W is the reference power level. In the case of a radiating sound wave, 

Lw and Lp have the same decay rates because 20log10(p) and 10log10(p2) are equivalent. 

Note that the boundary conditions introduced in the previous section can be expressed in 

terms of energy using the law of conservation of energy. Upon striking any surface, 

incident sound energy can be reflected, absorbed, or transmitted through the surface. The 

proportion of the incident energy that is reflected is quantified by the reflection 

coefficient R, and similarly for the absorption coefficient α and transmission 

coefficient .τ  The sum of the three coefficients must be one in order to conserve energy. 

For an individual room, energy is assumed to remain within the room, so 0=τ . The 

boundary condition in Eq. (1.3) can therefore be expressed as R=1 and α = 0. In an 

anechoic chamber, which has highly absorptive surfaces to approximate free-field 

conditions, the boundary condition in Eq. (1.5) can be written as R=0 and α =1, as no 

energy reflects back into the room. 

 

1.2.3 Scattered Field Theory 

 Thus far, we have only considered the sound field in an empty room. For a room 

containing obstacles (a “fitted” room) like many industrial workshops, the contents of the 

room scatter the sound field. When an incident wave impinges on an obstacle, it is 

scattered by means of reflection or diffraction. The scattered wave interferes with the 

incident wave, creating complex amplitude and phase behaviour, in all directions around 

the obstacle. The scattering characteristics depend on the wavelength, and the size and 

shape of the obstacle. The ratio of wavelength to obstacle size is an important factor. In 

the extreme case of a large obstruction, or at high frequency, most of the sound would be 

reflected. This is equivalent to a large wall with some reflection and absorption 

coefficient. On the other hand, if the scattering object is small, or at low frequency, most 

of the sound would diffraction around it. In general, the smaller the wavelength (or the 

higher the frequency), the more directional the scattering becomes. Figure 1.1 illustrates 

this concept by showing the theoretical scattering pattern due to a cylinder of radius a [6]. 

The focus of the work reported in this thesis lies between these extremes, where the ratio 
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of wavelength-to-obstacle dimension is close to unity. This is because low-frequency 

industrial noise is typically below 250 Hz, which corresponds to wavelengths greater than 

1 m. The fitting dimensions in a workroom vary widely, ranging from human-sized 

machinery of about one meter, to large fixtures that span several meters.  

 A scattering problem can be approached from two perspectives: deterministic and 

probabilistic. The deterministic method seeks to calculate the scattered field analytically. 

However, this restricts the problem to simple geometric cases, such as a straight edge, 

sphere or cylinder, where boundary conditions can be easily represented. There are 

several sources in the literature that derive analytical solutions for such cases 

(Interestingly, scattering from squares or cubes was not readily found.) [6-8]. One could 

also characterize edges exactly by their impulse responses, which is another well-studied 

approach [9-12]. Deterministic methods generally work well for a large, individual 

obstacle of simple shape. Otherwise, this approach becomes mathematically cumbersome 

and difficult to implement. For example, in Kawai’s study of multiple edges [13], the 

scattered wave produced by each edge must be considered as an input parameter with 

respect to every other edge, to compute higher-order effects on the total field. The 

random-scattering perspective is therefore adopted for arrays of scatterers [14]. Here, the 

exact boundary conditions imposed by each and every obstacle are ignored. Instead, the 

obstacles are modeled as dimensionless points that scatter sound omni-directionally. 

Their locations are described by a mean free path that governs the probability of sound 

encountering an object. Similar probabilistic parameters include the ‘fitting density’ 

(inverse of the mean free path) [15], and the ‘diffusion coefficient’ [16]. This method can 

more easily handle a random array of relatively small scatterers with any intrinsic shape. 

However, for large structures with simple geometry where the theoretical solution is 

known, the randomness may cause inaccuracies in regions close to boundaries. 

Furthermore, this approach works best at mid and high frequencies, but not for low 

frequencies. 
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Figure 1.1 Polar diagrams of the scattered intensity pattern due to a cylinder of radius a.  

 

1.3 Geometric Theory of Diffraction 
A deterministic approach to the diffraction of electromagnetic waves around 

edges was introduced by Keller [17] in his Geometric Theory of Diffraction (GTD), and 

was extended to acoustic waves. Without diffraction, the domain in the presence of a 

wedge can be divided into three distinct regions, as seen in Figure 1.2. Region 1 contains 

the incident and reflected waves, Region 2 has only the incident wave, and Region 3 

contains neither and is known as the shadow zone. The shadow region is unrealistic and 

contradicts real-life experience because sound diffracts into it; hence, a diffracted wave in 

that region was derived analytically by Keller. Briefly, Keller constructed diffracted rays 

by using laws of diffraction analogous to Snell’s law of reflection (angle of incidence 

equal to angle of reflection in two homogeneous media) and Fermat’s Principle (light 

traverses the path of least time between any two points). In the end, the diffracted ray has 

the following properties: its phase is proportional to its path length, and its amplitude 

depends on the incident field and a diffraction coefficient D. The diffraction coefficient is 

complex and depends on geometric factors such as the wedge angle, angle of incidence, 

angle of diffraction, source-to-wedge distance and wedge-to-receiver distance. 
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Figure 1.2 Three distinct regions that arise during diffraction. 

 

 Kouyoumjian and Pathak [18] noticed that the diffraction coefficient was ill-

defined at the reflection and shadow boundaries. They developed a Uniform Geometric 

Theory of Diffraction, which modifies Keller’s diffraction coefficient to address this 

issue. A full equation to compute the diffraction coefficient can be found in section 3.4.3, 

where the geometric parameters are pictured in Figure 3.4. Since then, this representation 

of diffraction has been successfully implemented in prediction models by Tsingos et al 

[19, 20], and Kawai [13]. Furthermore, it has been compared to the impulse-response 

approach to diffraction, with good results [12]. 

 

 
Figure 1.3 Edge diffraction gives rise to a cone of rays. 
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1.3.1 Edge Diffraction 

 The diffraction coefficient was used in this work, to diffract rays around edges 

into shadow regions. For an incident ray striking a single edge, a cone of diffracted rays 

emerges, as seen in Figure 1.3. The scattered wave has contributions in all directions, but 

our focus will be in the shadow region. Analytically, the shadow zone only contains a 

cylindrical wave [6]; hence the edge can be considered as a cylindrical sound source. 

This idea may be used as an alternative to the diffraction coefficient, if extra cylindrical 

sources are easily created in a prediction model. If not, it is still possible to approximate a 

cylindrical source by several point sources [12, 21], but an additional problem arises in 

determining their source strengths. This problem is nontrivial, and involves a known 

solution towards which the source amplitudes are tuned. In the present work, the 

diffraction coefficient was implemented. 

 

1.4 Room-Prediction Models 
There are several models that incorporate the theory discussed above, in order to 

predict sound in rooms. Each has its own way of handling the various features of a fitted 

room: sound-source characterization, wall reflection, modal behaviour (due to wave 

interference, from phase), and scattering from objects. The advantages and disadvantages 

of some of the relevant models will be outlined briefly in this section. 

 

1.4.1 Sabine and Eyring Diffuse-Field Theory 

The simplest model is the diffuse-field theory of Sabine / Eyring [5]. It calculates 

the steady-state sound field in a room, assuming the field is diffuse. The field is 

comprised of the direct-energy contribution from the sound source, and the reverberant 

energy due to the room. Wall reflections are accounted for by way of the total surface 

area S, and the average absorption coefficient of the walls,
_

dα . The Eyring expression for 

the sound-pressure level is, 



 
 
 

 Chapter 1 10 
 
 

)log(10)(
)1ln(

)1(4
4 _

_

2
Sr

Q
wp

d

dLrL
⋅−−

−++=
α

α
π   (1.11) 

 

where )log(10 24 r
Q

wL
π

+ describes the direct contribution from a point source of sound 

power Lw with directivity factor Q, and 
Sd

d

⋅−−

−

)1ln(

)1(4
_

_

α

α  is the room-effect term. For low average 

room absorption, the Sabine version is derived. This simple and explicit formula works 

best for empty, quasi-cubic rooms. For rectangular rooms with obstacles and non-uniform 

surface absorption, this formula does not perform well. Phase is also ignored, as the 

derivation is entirely in terms of energy. Refer to [22] for a discussion on using this 

room-prediction model. 

 

1.4.2 Finite Element Method 

Finite element methods (FEM) are numerical procedures that solve multi-

dimensional differential equations in a domain with given boundary conditions. If a room 

is quasi-cubic with simple boundary conditions, this prediction method can give 

theoretically accurate results. However, once the room geometry becomes complex, and 

boundary conditions imposed by obstacles are introduced, the finite element method 

becomes increasingly difficult to implement. Also, the accuracy of the results depends on 

the mesh size and the frequency of the waves. The higher the frequency, the smaller the 

required mesh size to attain a sufficient number of nodes per wavelength. This imposes 

constraints on computer memory and runtime. In this research, the finite element method 

was used to solve the Helmholtz equation in a room with completely absorptive walls 

(free-field or radiative boundary conditions). Fittings were then added to the domain, 

which introduces reflective boundary conditions. Note that the FEM research was 

performed with the FEMLAB software, through the collaborative work of Dr. Vincent 

Valeau at the Université de Poitiers in France [23]. 
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1.4.3 Ray Tracing 

The focus of this work involves a ray-tracing model originally developed by 

Ondet and Barbry [24]. In this approach, a sound source emits spherical waves that are 

approximated by a large, user-defined number of infinitely thin rays. Each ray carries an 

equal portion of the total energy of the source. These rays are traced as they travel in 

straight lines through the room, reflecting from walls and obstacles as their trajectory 

dictates. Wall reflections may be specular (based on Snell’s Law of Reflection) or diffuse 

(based on Lambert’s Law of Diffuse Reflection). Scattering obstacles are modeled 

randomly via a fitting density, as explained previously in section 1.2.3, and an absorption 

coefficient. In particular, the probability of encountering an obstacle follows a Poisson 

distribution with the mean free path as its parameter. Energy is lost due to distance 

traveled, air absorption and surface reflections. When the ray crosses the location of the 

receiver, its energy is added, and the ray continues its trajectory. After a given number of 

reflections, the remaining energy of the ray is accumulated in a residual term, which is 

added to all receivers as a form of diffuse energy. Sound-pressure levels are calculated 

from the energy levels accumulated in each receiver cell after all rays are emitted. 

The benefits of this method include the ability to model any polygonal room, 

randomized furnishings, and diffuse wall reflections. Some limitations of Ondet and 

Barbry’s ray-tracing model are the lack of phase, and of deterministic diffraction for 

larger obstructions such as interior walls. The long runtime due to the tracking of a large 

number of rays and reflections is also a disadvantage. Also, the receiver cannot be a point; 

it must have some finite volume which the rays can intersect.  

 

1.4.4 Other models 

Beam tracing is another prediction model that runs in a similar fashion to ray 

tracing. Instead of tracing the trajectories of infinitely-thin rays, beams with non-zero 

cross-sectional area are tracked. The spherical wave emitted by the sound source is 

decomposed into, for example, triangular prisms that radiate outwards. The advantage 

here is that a point receiver is possible. However, a problem is that the beam widens as it 
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travels, which leads to complications when the beam encounters a wall or obstacle. This 

may be solved by adaptive beam tracing. Note that Tsingos et al [20] implemented the 

diffraction coefficient into a beam-tracing model. 

It was mentioned earlier that Guo [2] used an image-phase model to predict sound 

fields in empty rooms. This approach uses the method of images to model specular wall 

reflections. Fittings would be extremely difficult to implement, because each reflective 

surface would introduce additional image sources. Hybrid models exist that combine the 

method of images and diffuse-field theory [25]. Image sources are used to simulate the 

first few reflections, and then diffuse-field theory is used to account for the reverberant-

room effect. In a sense, this is the same as ray tracing with a few reflections, but diffuse 

reflections and fittings will remain a challenge to implement with secondary sources. 

Table 1.1 provides a summary of the room-prediction models. The ray-tracing and 

finite element models are used because of their ability to model diffracting obstacles 

within the room. We decided that improving the ray-tracing model to include phase and 

diffraction would be easier than implementing fittings and diffraction into the beam-

tracing or image-phase model. 

 

Table 1.1 Summary of room-prediction models. 

Model Conditions of applicability 

Sabine / Eyring Empty, quasi-cubic rooms with uniform surface absorption. 

Finite Elements Non-randomly fitted, quasi-cubic rooms with simple boundary 

conditions at low frequency. 

Ray Tracing Polygonal rooms with random or non-random fittings, specular or 

diffuse reflections, non-point receiver. 

Beam Tracing Empty polygonal rooms with specular or diffuse reflections. 

Image-Phase Empty parallelepiped rooms with specular surface reflections, with 

phase. 
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1.6 Research Objectives 
With the theoretical background introduced, we now define the objectives of this 

research. The overall goal was to develop a method for predicting sound pressure in 

workshops with fittings. This involves investigating how diffracting obstacles influence 

the phase of the sound field, and improving an existing ray-tracing program to predict 

these effects. Our approach begins by first measuring the sound field around diffracting 

obstacles in an anechoic chamber. The detailed procedure and results of the experiments 

are discussed in Chapter 2. In the following chapter, the ray-tracing program is modified 

and tested extensively. Predictions of the experimental configurations are also presented 

in Chapter 3, along with data comparisons. Simulated sound fields in non-anechoic rooms 

are discussed in Chapter 4. Finally, Chapter 5 summarizes our findings and concludes the 

thesis. 
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Chapter 2 

Anechoic-Chamber Experiment 
2.1 Overview 
 In this chapter, the details of anechoic-chamber experiments are discussed. The 

goal is to perform simple tests that would reinforce our current understanding of phase, 

and investigate how it changes in the presence of fittings. We also aim to study 

diffraction in a systematic way. An anechoic chamber is used so that free-field conditions 

are simulated and room effects are negligible. Thus, any observed phenomena can be 

attributed to the fittings. Sound in rooms is discussed in Chapter 4. The next section 

describes the anechoic-chamber experimental setup, followed by specific test cases and 

their results. 

 

2.2 Equipment Setup and Procedure 
 The dimensions of the anechoic chamber are 4.7 m by 4.3 m by 2.3 m. A picture 

of the anechoic chamber is seen in Figure 2.1. An acoustically transparent wire-mesh 

floor spans the chamber, on which objects may be placed. Experiments were done as 

close to the center of the chamber as possible, to minimize wall effects. A Stanford  

 

 
Figure 2.1 Photograph of the anechoic chamber and the coordinate system. 
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SR770 signal generator was used to generate pure tones. Together with an Alesis RA-100 

amplifier and a loudspeaker, the sound field was created in the test space. The diaphragm 

of the loudspeaker was 20 cm in diameter, mounted in a 30x20x30 cm3 box. A Brüel and 

Kjær condenser microphone type 4135 was used to measure the sound field at various 

locations within the chamber. It was placed on the wire mesh, facing the loudspeaker. For 

configurations with a fixed coordinate system, tape measures were used to pinpoint the 

desired microphone location. The microphone was connected to a Nexus conditioning 

amplifier type 2690, predominantly for cable-adapting purposes. Finally the Nexus was 

connected to the second channel of an oscilloscope. Amplitude and phase data were taken 

from the oscilloscope display, in units of volts and seconds, respectively. Note that 

voltage was proportional to pressure, so Eqs (1.9) and (1.10) were applied to convert the 

voltages into pressure levels. The first channel of the oscilloscope was connected to the 

source of a reference signal, which was either the signal generator or a second (reference) 

microphone (via the Nexus) located directly in front of the speaker. The reference signal 

remained unchanged between test configurations, because the signal generator and 

speaker were not affected by the fittings. Phase was measured relative to the reference 

signal. In addition to the above setup, a stand-alone RION sound-level meter was used to 

measure the sound-pressure level in unweighted decibels. The apparatus were placed on 

one side of the anechoic chamber, where they had minimal influence on the sound field. 

Figure 2.2 shows a schematic diagram of the equipment. 

 

 
Figure 2.2 Equipment setup for anechoic-chamber experiments. 
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 Obstacles were introduced to scatter the sound field. The first type of obstacle was 

a 6-mm-thick, rectangular wooden panel, with side lengths of 60 cm. It was used to create 

a reflecting plane, and also a diffracting edge. By placing several panels side by side, a 

wall with variable length was effectively created. The second type of object was a hollow, 

five-sided cube made from 10-mm-thick plywood, with a side length of 30 cm. Note that 

the surfaces of both these obstacles were varnished and considered to be highly reflective. 

With the dimensions of the obstacles in mind, a signal wavelength λ was chosen that is 

comparable in magnitude, so that the wavelength-to-obstacle size ratio would be close to 

unity. Hence a frequency of 1000 Hz (λ = 34.3 cm) was used. Note that, to relate the 

experiment to real industrial rooms, we have effectively designed a 1:n scale model. In 

scale models, all distances (including wavelength and obstacle dimension) can be 

considered as 1/n of their full size [26]. Conversely, frequency can be treated as n times 

higher. For n = 8, the side length of the cubic block becomes 2.4 m, which is not an 

unusual length for a workbench. Similarly the frequency scales to 125 Hz, which is 

clearly regarded as low-frequency sound. 

 Furthermore, some of the theoretically straightforward cases were simulated in 

the Matlab environment. Animations were created to mimic results observed on the 

oscilloscope. This was done because, otherwise, a large number of discrete data points 

would have been needed to fully capture the behaviour of the phase. A better approach 

was to do continuous experiments while watching the oscilloscope, and then reproduce 

the results with a Matlab animation. Afterwards, magnitude and phase were easily plotted 

from the Matlab variables. 

 

2.3 Test Configurations 

 Several test configurations were considered, to analyze the behaviour of the sound 

field in both magnitude and phase. These included an empty anechoic chamber (free 

field), one reflecting plane, one diffracting edge, one cubic block, and multiple blocks. 

Each case will be described in the following subsections, and results shown. 
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2.3.1 Empty Anechoic Chamber 

 For the empty anechoic chamber (free-field) configuration, all blocks and panels 

were removed from the test area. The significance of this basic case is that when phase 

changes are determined in other room setups, the phase is compared to that of the empty 

room. Note that we were effectively characterizing the speaker’s efficiency and 

directivity in this case. From a theoretical standpoint, sound pressure from a point source 

should decay as 1/r, or SPL by –6 dB per doubling of distance in all directions. 

Furthermore, the phase should vary linearly with distance, since it is related to the time it 

takes for the wave to propagate to the microphone, and sound speed is constant. In fact, 

the slope of phase versus distance should be equal to the wave number 

32.18/2 == λπk rad/s. Measurements were recorded in 10-cm increments along two 

straight lines away from the speaker, at two different angles. Figure 2.3 shows the 

variation with distance of the measured sound field when the angle was 0o, or along the 

axis directly in front of the speaker. It shows that the theoretical amplitude decay was 

indeed measured. The linearity of the phase measurements can be seen in Figure 2.3c. 

The slope was 17.46 rad/s, which is very similar to the theoretical value. When phase 

changes were later calculated, the actual phase values were normalized out. Similarly, the 

free-field case was remeasured at an angle of 18o from the central axis of the speaker. 

Figure 2.4 summarizes the amplitude and phase results. The speaker radiated like a point 

source at both angles when the receiver was sufficiently far away. Near-field effects of 

the speaker may be the cause of the magnitude dips at the 18o angle. 
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Figure 2.3 Free-field measurements along the 0o axis in front of the speaker: 

(a) magnitude in volts, (b) magnitude in dB, (c) phase in radians. 



 
 
 

 Chapter 2 19 
 
 

(a)

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

Distance (m)

A
m

pl
itu

de
 (v

ol
ts

)

Experiment Ideal 1/r decay
 

(b)

80

90

100

110

0 0.5 1 1.5 2 2.5 3

Distance (m)

Lp
 (d

B
)

Experiment RION Ideal 20log(1/r)
 

(c)

0

20

40

60

0 0.5 1 1.5 2 2.5 3

Distance (m)

Ph
as

e 
(r

ad
ia

ns
)

Experiment Ideal phase
 

Figure 2.4 Free-field measurements along the 18o axis from the front of the speaker: 

(a) magnitude in volts, (b) magnitude in dB, (c) phase in radians. 
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2.3.2 Reflecting Plane 

 In this test, one reflecting panel was introduced to the side of the 0o axis, to create 

a reflected wave, in order to observe interference based on path-length differences. 

Instead of moving the field microphone, it was left stationary in front of the speaker, 

while the panel was gradually moved. In effect, this changed the distance that the 

reflected wave had to travel and, therefore, changed its phase at the microphone. 

Meanwhile the path length of the direct wave was kept constant. Therefore, when the 

direct and reflective waves combined at the microphone, we expected to see both 

constructive and destructive interference in the resultant wave. In terms of phase, the 

direct wave should have constant phase due to a constant path length, and the reflective 

wave should increase in phase. However, the expected behaviour of the phase of the 

resultant wave was unknown, hence the phase result of this test was of interest. Figure 2.5 

displays predicted results that simulate those observed on the oscilloscope during the 

reflecting-plane experiment. Note that the x-axis on the figures was the path difference 

divided by the wavelength. The amplitude results in Figure 2.5a were as expected, since 

the direct wave stayed constant, the reflected wave decayed slightly due to the longer 

distance traveled, and the resultant wave alternately experienced constructive and 

destructive interference. In Figure 2.5b, the phases of the three waves are seen. The direct 

wave had constant phase and the reflected wave had linearly-varying phase. The phase of 

the resultant wave varied periodically. When the path difference was an integer multiple 

of the wavelength, constructive interference occurred, and the phase increased. At half-

integer multiples of the wavelength, the waves interfered destructively, and the phase 

decreased sharply. 
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Figure 2.5 Measured sound pressures in an anechoic chamber with one reflecting plane: 

(a) magnitude and (b) phase. 

 

2.3.3 One Edge 

 The next configuration tested was one diffracting edge in the anechoic chamber, 

to detect evidence of the cylindrical wave in the shadow zone, as theory suggests. A 

schematic of the setup can be seen in Figure 2.6 and photographs are included in Figure 

2.7. Wooden panels were placed vertically in front of the speaker, forming a wall at a 

distance of 1.22 m away. The microphone locations were on the central axis of the 

speaker, behind the panels. Note that the edge of the wall protruded 15 cm from the 

central axis, so that all sound emitted from the diaphragm of the speaker had to diffract in 

order to reach the microphone. It was assumed that most of the sound reaching the 

microphone came from diffraction around the vertical edge at coordinates (1.22, 0.15). 

However, there were three other flanking paths to consider. The other vertical edge at 

coordinates (1.22, -1) was the farthest one and, therefore, was assumed to be negligible. 

The flanking path underneath the wall was significant and had to be dealt with. Otherwise, 

the path length to the microphone would have been equal to that around the edge of 

interest. Thus a reflecting ground was added between the source and the wall to block this 

path (Figure 2.7b). The contribution of the final flanking path, over the top of the wall, 

was also ignored. Since the panels were 60-cm tall, and the microphone was laid on the 

floor, the path length was more than a wavelength longer than the path of interest for 
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short distances behind the wall. However, as the microphone was moved further behind 

the wall, this approximation broke down. 

 The locations of the maxima and minima were recorded, but not the absolute 

magnitudes. Phase was observed to vary linearly with distance; its direction did not 

reverse as in the reflecting-plane case. Data were predicted in Matlab, by treating the 

edge as a line source that radiates cylindrical waves into the region behind the panel. A 

complication arose here in picking the orders for the Bessel functions )(krJn and )(krYn . 

Through trial and error, we found that the inclusion of higher-order modes agreed better 

with our data. By summing the first three orders of )(krJn  and )(krYn , we obtained the 

results seen in Figure 2.8. Notice that the minima and maxima of the cylindrical wave 

occur at roughly the same place as those observed. The difference could be because of 

experimental approximations discussed above, and also the choice of n in the Bessel 

functions. 
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Figure 2.6 Schematic of the one-edge test, as seen from above. 
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(a) (b) 

  
Figure 2.7 Photographs of the one-edge configuration from the view point of: 

(a) the receiver, and (b) the source. 
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Figure 2.8 Measured and predicted pressure amplitudes behind one diffracting edge. 
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2.3.4 Edge Proximity 

 The configuration with one diffracting edge was revisited with the following goal: 

to determine how close to the edge a ray must strike for significant diffraction to occur. 

This has meaningful implications for implementing diffraction in the ray-tracing 

prediction model, because infinitesimally-thin rays have zero probability of arriving at a 

specific point in space. Hence, the edge tip must have some non-zero effective area 

around it, defined by some tolerance value. It is this value of tolerance that we seek. In 

the experiment, the same setup was used as for the one-edge test (Figure 2.6), except that 

additional panels were added or removed, and the microphone location was fixed. The 

idea was to extend or retract the edge from the central axis of the speaker, thus changing 

how close the sound strikes to the edge. We expected that, as the wall extended further 

off-axis, the path that the diffracting sound had to travel increases, so the measured 

sound-pressure level should decrease. We then compared the measured SPL to that when 

the diffracting path was blocked with a panel, to assess how much sound arrived via the 

edge.. 

However, some assumptions needed to be addressed. The first issue was the 

directionality of the speaker; this setup assumed that the speaker radiated predominately 

in front. As seen in the free-field results, this is not true; the loudspeaker radiated 

significant energy into other angles (for example, at an 18o angle). Therefore, an 

additional panel was placed vertically next to the speaker to prevent sound from directly 

accessing the edge. The second approximation again involved the flanking paths. The 

vertical edge in the –y region extended to the wall of the anechoic chamber and should be 

negligible.  Flanking underneath the wall was dealt with as in the previous test. Flanking 

over the wall was more significant than before, since the path length around the edge of 

interest was increasing. Hence, another panel was placed above the microphone. Pictures 

of this experimental setup are included in Figure 2.9. 
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(a) (b) 

  
(c) 

 
Figure 2.9 Pictures of the edge-proximity configuration: (a) before the edge is lengthened, 

(b) after the edge is lengthened, (c) with the flanking path over the wall blocked. 
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 Figure 2.10 shows the SPL results for a lengthening edge at three frequencies: 500 

Hz, 1 kHz and 2 kHz. Note that the normalized edge length on the horizontal axis refers 

to how far the edge protruded off-axis, divided by the wavelength. At 500 Hz, the sound 

did not decay uniformly until the edge lengthened by about half a wavelength, when the 

attenuation was -6 dB or more. Flanking was an issue at this frequency, and the 

additional panel above the receiver made a significant difference. The SPL at 1 kHz 

attenuated rather quickly, reaching the -6 dB mark when the edge lengthened by only a 

quarter of the wavelength. At 2 kHz, the sound decayed uniformly, albeit the slowest, 

reaching the -6 dB point at half a wavelength, as in the 500-Hz case. All three cases 

decayed as expected, and it appeared that diffraction occurring over half a wavelength 

away from the edge could be considered to make minor contributions. 

 The results of blocking the diffracting edge are displayed in Figure 2.11. The 

vertical axis is the difference between the sound-pressure levels measured before 

blocking the edge and after blocking the edge. In effect, this indicates the significance of 

the edge contribution. Note that the 500-Hz result was omitted because flanking was a 

problem. In some cases, blocking the edge with a panel decreased levels by 1-4 dB but, in 

other cases, it increased levels. At 1 kHz, the edge made a 10-dB difference until it 

lengthened by roughly half a wavelength, then levels began to drop off. The edge hardly 

made any difference to the sound field at 0.8λ. At 2 kHz, the edge diffraction became less 

significant more quickly, contributing over 10 dB at 0.4λ but nearly nothing at 0.6λ. This 

result makes sense, because higher frequencies of sound diffract less. 
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Figure 2.10 Normalized sound levels measured behind a lengthening edge. 
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Figure 2.11 Difference in sound levels measured before and after blocking the edge. 

 

 Considering the results of Figure 2.10 and Figure 2.11, we selected a value for the 

edge-proximity tolerance, such that rays striking within this distance of an edge are 

considered close enough to the edge and are diffracted. It was clear that rays hitting more 

than 0.6λ away from the edge can be ignored for diffraction, while those within 0.4λ 

should be included. Hence we settled on the convenient ratio of 0.5λ as the value for the 

edge-proximity factor. 

 

2.3.5 One Block 

 We next studied the configuration of a single cubic block at 1000 Hz. The block 

was placed such that its front face was 70 cm in front of the speaker, centered on the 0o 

axis, and perpendicular to it. The sound field was explored on each face of the block, and 

detailed measurements were made in front of and behind the block along the central axis. 

In theory, the field in front of the block consisted of the direct wave from the speaker, 

and a reflected wave from the block. This was simulated in Matlab as verification. A 

photograph of the one-block configuration is shown in Figure 2.12. 
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Figure 2.12 Photograph of the single-block configuration. 

 

 Qualitative results for the field on the block faces are as follows. For the front 

face of the block, the sound was loudest in the middle and decreased towards the edges. 

This was expected, since the source-to-receiver distance was shortest between the center 

of the loudspeaker diaphragm and the center of the front block face. Along the top and 

sides, similar behaviour was observed, due to symmetry. The sound decayed from front 

to back with linear phase. On the back face of the block, a local maximum was measured 

in the center of the face. Local maxima were also recorded at the back corners, while 

local minima were observed at the midpoints of the edges. However, all levels were much 

lower than at the front of the block. Clearly there were some complicated second-order 

diffraction effects occurring on the back face of the block. 

Quantitative results for the region in front of the block are seen in Figure 2.9. For 

the amplitude results (Figure 2.13a), the interference pattern between the direct and 

reflected waves was evident in both measurement and prediction. Scaling the x-axis by 

the wavelength, the major dips at 43 cm and 60 cm correspond to λ/4 and 3λ/4 away from 

the block (or 5λ/4 and 7λ/4 away from the source), respectively. Hence the path 

differences between the direct and reflected waves at those locations were λ/2, so the 

occurrence of destructive interference was not a surprise. Similarly, the peaks at 32 cm 

and 50 cm occurred when the path differences were 0 or λ, resulting in constructive 
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interference. Note that the increase at 70 cm was due to the pressure-doubling boundary 

condition at the surface of the block. Phase behaved approximately linearly until 50 cm 

from the block, when it started to decrease. This was reminiscent of the reflecting-plane 

case (Figure 2.5b), because the phase decreased at half-integer multiples of λ. Thus, 

reflected waves due to block surfaces may cause phase changes in the nearby field. 

Agreement between experiment and prediction was surprisingly good for the amplitude 

and phase results in front of the block. 
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Figure 2.13 Measured and predicted sound field in front of a block in 

(a) amplitude and (b) phase. 
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Figure 2.14 Measured sound field behind a block in (a) amplitude and (b) phase. 

 

Behind the block, the measured amplitude data initially increased, and then it 

decayed with some oscillations, as seen in Figure 2.14a. Compared to the free field, the 

greatest difference occurred directly behind the block; at larger distances, the decay was 

similar, but lower in amplitude. As shown in Figure 2.14b, phase varied linearly despite 

the presence of the block, but it was consistently about one radian higher than the free-

field phase. This was probably due to the longer path length caused by diffraction around 

the block; it also explains why the one-radian difference decreased as the distance grew. 

Matlab simulations did not agree with experimental results behind the block, however. It 

was conceivable that the field comprised a few edge sources or point sources, but our 

attempts failed to reproduce observed results. 
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2.3.6 Multiple Blocks 

 The final experiment was a case with multiple blocks, to investigate how an array 

of scatterers affect the phase of a sound field. We compared the sound pressure in the 

case with fittings to that in the free field, and investigated amplitude and phase changes. 

Note that there was an infinite number of ways to place multiple blocks in the anechoic 

chamber. Some parameters to consider were the number of blocks, the coordinate 

location of each block, the angular orientation of each block, the spacing between blocks, 

and the receiver locations among the blocks. Only a few constraints were imposed on the 

setup. One was to avoid near-field effects of the loudspeaker; thus, the nearest block 

could not be within 1 m of the source. The second restriction was that all blocks had to be 

within a 2x2 m2 test area, to keep the block and microphone positions close to each other. 

In the end, nine cubes were placed randomly, with random rotations, and four series of 

receiver positions were selected. The receiver positions included along the central 0o axis, 

along the ±18o directions (as in the empty anechoic chamber case), and along an arc of 

radius 5  m. A schematic of the configuration can be seen in Figure 2.15; pictures of the 

blocks are included in Figure 2.16. Keep in mind that, in the diagram, the block positions 

are approximate, and the random rotations are not depicted accurately. Note that a block 

crosses the measurement locations at about 2.5 m along the central axis, 2.1 m along the 

+18o direction, 2.0 m along the -18o direction, and y=0.6 m along the arc. Note also that 

the ±18o directions were chosen to run from the loudspeaker to the back corners of the 

test area. The purpose of choosing a few directions other than along the central axis was 

to measure through a slightly different configuration of blocks, since the precise 

orientations of the blocks were different. Thus, it could also be thought of as rotating the 

room about the source. The reason for measuring along the 5 m arc was to fix the radial 

distance (hence the amplitude and phase in the free-field case), and investigate changes 

caused by the blocks. The measurements were done twice at 1 kHz to check the 

reproducibility of the results, and a third time at a lower frequency of 250 Hz. Only one 

set of 1 kHz results will be shown here, for the sake of brevity. 
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Figure 2.15 Approximate block and receiver locations for the multiple-block case. 

 

 

(a) (b) 

  
Figure 2.16 Photographs of the multiple-block configuration as viewed from 

(a) a corner of the room, and (b) the source. 
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 The amplitude and phase results for the central axis (0o direction), +18o direction, 

-18o direction, and the arc at 1 kHz are seen in Figures 2.17, 2.18, 2.19 and 2.20, 

respectively. Note that the phase is wrapped from –π to π so that phase changes are not 

dwarfed by the scale of the axis. The three angular directions gave consistent amplitude 

results: Lp in the first 1.5 m of the test area could be louder or quieter than in the free-

field by up to 5 dB, but Lp farther away was always less than that in the free field by 3-10 

dB. This can be explained by a redistribution of energy due to the blocks. The blocks 

create reflections or back-scattering, which interferes with the incident field to cause the 

initial fluctuations. At the same time, this decreases the amount of sound reaching the 

longer-distance section of the test area, causing Lp to be lower. The three angular 

directions also had similar phase results. Agreement with free field was good except in 

the vicinity of a block. Minor phase changes were sometimes recorded in front of or 

beside a block, which could be explained by phase shifts caused by reflection, as seen 

previously in Figures 2.5b and 2.13b. The exact block orientation probably had a strong 

affect on these reflections. However, more significant phase changes were observed 

behind the blocks, which was in accordance with the results in the single-block case in 

section 2.3.5. Due to the added path length associated with diffraction around the block, 

the phase was roughly 2 rad higher than in the free-field case for the ±18o rays. The 

results along the arc were similar, despite the experimental error associated with 

difficulties in tracing a perfect arc. With most of the blocks positioned in front of the arc, 

the above argument explains the decrease in Lp. The observed phase was always greater 

than or equal to the free-field phase, which also agrees with previous statements about 

increases in path length. Similar results were found at 250 Hz, except that the phase 

changed by 0.5 rad. Note that symmetry was assumed in the free-field measurements, 

which is the reason why some of those results appear perfectly symmetrical. 
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Figure 2.17 Measured pressures along the central axis for the multiple-block case: 

(a) sound-pressure level and (b) phase. 
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Figure 2.18 Measured pressures along the 18o direction for the multiple-block case: 

(a) sound-pressure level and (b) phase. 
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Figure 2.19 Measured pressures along the -18o direction for the multiple-block case: 

(a) sound-pressure level and (b) phase. 
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Figure 2.20 Measured pressures along the r = 5 m arc for the multiple-block case: 

(a) sound-pressure level and (b) phase. 
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2.4 Error Analysis 
 Experimental uncertainty in the results in this chapter will now be discussed. First, 

the loudspeaker was assumed to be a point source. Its precise location has some 

uncertainty, because the speaker box has finite volume, unlike a point source. Moreover, 

the diaphragm is a 20-cm disk. It was assumed that the location of the source was at the 

front face of the loudspeaker, at the center of the diaphragm. One could argue that the 

source was in fact in the middle of the loudspeaker, in which case all the source-to-

receiver distances must be increased by 10 cm. The exact microphone location also has 

an uncertainty of a few centimeters, but no more than 3 cm. Tracing the 5 m arc in the 

multiple-block experiment gave the most difficulties in pinpointing the receiver locations. 

Also, the electronic devices may be a small source of uncertainty. Imperfections in the 

microphone, cable connections and various amplifiers could affect the magnitude and 

phase of the results. However, comparing the amplitude readings with the RION sound-

level meter, the differences were usually within 0.5 dB, and at worst 1 dB. Reading the 

values from the oscilloscope had an error of 0.1 of a division. The time scale was set to 1 

ms per division, which corresponds to a phase error of 0.63 rad. Hence, only phase 

changes of over 1.26 rad were considered significant, which was a conservative estimate. 

The voltage scale of the oscilloscope varied from 0.5 to 0.01 volts per division, so the 

error in measurement reading varied. However, this error was small compared to 

inaccuracies caused by low signal-to-noise ratios. When the receiver was over 2.5 m 

away, the signal was very weak and had to be amplified with the 0.01 volts per division 

setting. These measurements were highly sensitive to the surrounding conditions, 

including the movement of the experimenter. Weak signals were also distorted sometimes; 

the waveform was no longer sinusoidal. Hence, after converting to decibels, the 

amplitude data may have an uncertainty of less than 0.5 dB at close distances, and as 

much as 3 dB at the farthest distances. 
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2.5 Summary 

 In this chapter, we conducted several experiments to observe the sound-pressure 

field in the presence of obstacles. We verified that diffraction from edges can indeed be 

modeled by cylindrical sources. We found that sound incident on a wall within a distance 

of λ/2 from an edge should be considered for ray diffraction. Phase shifts were observed 

from interference between direct and reflected waves, and also from diffraction around 

the edges of a block. Both were explained by differences in path length caused by the 

blocks. In the following chapter, we turn our attention to sound-field prediction, with the 

goal of reproducing the characteristics observed in this chapter using a comprehensive 

model. 
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Chapter 3 

Prediction 
3.1 Overview 

In the last chapter, we described anechoic-chamber measurements in which we 

observed phase and diffraction effects around single and multiple objects. We proceed in 

this chapter with the following objective: to upgrade a prediction model by implementing 

features that were observed in experiment. In the first chapter, we alluded to a ray-tracing 

model that would be our primary prediction model. Thus, we will begin this chapter by 

re-introducing the prediction model in its original state, followed by a lengthy discussion 

of the various changes and improvements that were made to the model. Next, we present 

simulations of the configurations studied in Chapter 2. At the end of this chapter, we will 

look briefly at another prediction model, the finite element method, and the results of its 

predictions. 

 
3.2 Original Ray-Tracing Model 

Recall from section 1.4.3 the description of the original Ondet and Barbry ray-

tracing model - namely its mechanics, advantages and disadvantages. We will continue 

the description by presenting examples of predictions by the original ray-tracing program, 

and describe shortcomings that prompted our improvements. The first example consists 

of a source with a sound-power level of 100 dB, in the middle of an anechoic room, at 

1000 Hz. This was chosen to demonstrate the accuracy of the model in predicting the 

ideal free-field decay from an omni-directional point source. The output – i.e. sound-

pressure levels in 0.2 x 0.2 m2 receiver cells located throughout the room - is shown in 

Table 3.1. The sound level is loudest in the cell containing the source and decays by 

about -6 dB/dd, as expected from a point source. Near the source, the decay rate appears 

slightly too fast. Also, the SPL in the receiver cell that contains the source is 

overestimated, due to how the ray-tracing algorithm handles such receiver cells. The 

second case shown consists of a 20 x 45 x 6 m3 factory with a pitched roof. There are two 
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noise sources at (5,5) and (5,15) with sound-power levels of 92 dB, and random fittings, 

at 1000 Hz. The fittings are defined by partitioning the domain into sub-volumes, and 

assigning a fitting density to each. In the region 0 < x < 20 m and z < 2 m, the fitting 

density is 0.1 m-1; in the region z > 3 m, the fitting density is 0.05 m-1. Table 3.2 shows 

the predicted sound-pressure levels. The impact table (Table 3.2b) shows how often each 

wall and the obstacles are struck by rays. Notice that the SPL does not decay uniformly 

away from the sources, because of the fittings and reflections from the bounding walls. 

This time the sources are not inside receiver cells, so realistic levels are predicted in all 

cells. 

A number of factors in the existing model provide incentive for an upgrade. Not 

only does the model lack phase and diffraction consideration, the model is also 

programmed in Fortran, which has its own drawbacks. For example, programming and 

debugging tools are limited, there are no visualization of results except text, as seen in 

Tables 3.1 and 3.2, and workspace variables are inaccessible and must be explicitly 

printed out to be retrieved. Also, the Fortran input file is nontrivial to prepare because the 

correct number of blank spaces and rows of zeros are required in some cases. In addition 

to these inconveniences, some serious technical problems arose that stifled our new work. 

One such case was when the program refused to compile, presumably because it was too 

long or took too much memory space. In a second case, variables would suddenly reset to 

zero partway through the simulation, for no apparent reason. With no clear solution to 

these technicalities, we opted to translate the entire code from Fortran into Matlab, which 

shall be discussed in the next section. 
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Table 3.1 Predicted SPL (dB) results from the original ray-tracing model, for an anechoic 

room with a point source at (2.0, 2.0). 

x/y (m) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 

0.2 81 82 82 82 83 83 83 84 84 84 83 84 83 83 83 82 82 82 81 
0.4 81 82 83 83 84 84 84 85 85 85 85 85 84 84 83 83 83 82 82 
0.6 82 83 83 84 84 85 85 86 86 86 86 86 85 85 84 84 83 83 82 
0.8 83 84 84 84 85 86 86 87 87 87 87 87 86 86 85 85 84 83 82 
1.0 83 84 85 85 86 87 88 88 89 89 89 88 87 87 86 85 84 83 82 
1.2 83 84 85 86 87 88 89 90 91 91 91 90 89 88 87 86 85 84 83 
1.4 83 84 85 86 88 89 90 92 93 93 93 92 91 89 88 86 85 84 84 
1.6 84 85 86 87 88 90 92 94 96 97 96 94 92 90 88 87 86 85 84 
1.8 84 85 86 87 89 91 93 96 100 103 100 96 93 91 89 87 86 85 84 
2.0 84 85 86 88 89 91 94 97 103 112 103 97 93 91 89 88 86 85 84 
2.2 83 85 86 87 89 91 93 96 100 103 100 96 93 91 89 87 86 85 83 
2.4 84 85 86 87 88 90 92 94 96 97 96 94 92 90 89 87 86 85 84 
2.6 83 84 85 87 88 89 91 92 93 94 93 92 91 89 87 86 85 85 84 
2.8 83 84 85 86 87 88 89 90 91 91 91 90 89 88 87 85 84 84 83 
3.0 82 83 85 85 86 87 88 89 89 89 89 88 88 87 86 86 84 83 82 
3.2 83 83 84 85 85 86 87 87 87 87 87 87 87 86 85 85 84 83 82 
3.4 82 83 84 84 84 85 86 86 86 86 86 86 85 85 84 84 83 83 82 
3.6 81 83 83 83 84 84 85 85 85 85 85 85 85 84 84 83 83 82 82 
3.8 81 82 82 83 83 84 84 84 84 84 84 84 84 83 83 82 82 81 81 
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Table 3.2a Predicted SPL (dB) results from the original ray-tracing model for a factory. 

x/y (m) 1 3 5 7 9 11 13 15 17 19 
1 79.4 79.8 79.9 79.8 79.5 79.5 79.7 79.7 79.9 79.6 
2 79.5 79.8 80.3 80 79.6 79.6 79.7 80 79.6 79.7 
3 79.5 80.2 80.7 80.4 79.6 79.8 79.9 80.9 80.5 79.8 
4 79.6 80.7 83 81.1 79.5 79.4 80.5 83.2 80.7 79.6 
5 79.4 80.9 88.3 81.1 79.7 79.8 80.8 88.4 80.7 79.6 
6 79.7 80.5 82.8 80.5 79.3 79.5 80.5 83 80.2 79.4 
7 79.4 79.7 80.4 79.8 78.9 79.4 79.8 80.7 79.8 79 
8 79.2 79.3 79.6 79.2 79 79 79.3 79.4 79.6 78.8 
9 78.9 79.1 78.9 78.8 78.6 79.1 79 78.9 79 78.9 
10 78.3 78.8 78.6 78.7 78.3 78.9 78.5 78.6 78.6 78.8 
11 78.1 78.4 78.6 78.3 78.5 78.3 78.5 78.8 78.5 78.8 
12 78.1 78.1 78.4 77.9 78.5 78.2 78.3 78.1 78.5 78.3 
13 78.1 77.8 78.3 78.1 78.2 77.9 78.2 78.2 78.5 78.1 
14 77.5 77.8 77.7 78 77.9 77.9 77.5 78.1 77.9 78.3 
15 77.8 77.8 78 77.9 78 77.9 77.7 77.7 77.8 77.9 
16 77.4 77.5 77.8 78.3 77.9 77.7 77.7 77.4 78.1 77.4 
17 77.7 77.1 77.1 78 77.9 77.7 77.3 77.4 77.4 77.5 
18 77.2 77.2 77.5 77.8 77.6 77.6 77.6 77.6 77.1 77 
19 76.9 77.2 77.7 77.7 78 78.2 77.7 77.7 76.9 76.8 
20 76.8 76.8 76.7 76.9 76.9 76.9 76.8 77.2 76.6 76.2 
21 76.3 75.9 75.4 75.5 74.7 75.2 75.5 75.6 76.1 76 
22 76.5 76.3 75.9 75.6 75.3 75.8 75.8 75.9 76.5 76.3 
23 76.6 76.4 75.9 75.9 75.6 75.9 75.9 76.2 76.2 76 
24 76.2 76.1 75.9 75.9 75.7 76.1 76 76.3 75.9 76 
25 75.9 76 75.9 76.4 75.5 75.9 75.8 76.2 75.6 76.2 
26 75.8 75.6 75.9 75.6 75.7 75.9 75.8 75.6 75.9 76 
27 75.9 75.6 75.9 75.8 76.2 75.8 76 75.8 76.1 76.1 
28 75.5 75.7 75.5 76.2 75.6 75.6 75.9 75.6 75.8 75.5 
29 75.7 75.9 75.8 76.1 75.8 75.7 76 76 76.3 75.4 
30 75.7 75.8 76 75.9 75.4 75.7 75.8 75.7 75.9 75.8 
31 75.7 75.6 75.7 75.8 75.8 75.7 75.7 75.9 75.6 75.1 
32 75.7 75.4 75.5 75.5 75.7 75.7 75.8 76.4 75.6 75.4 
33 75.7 75.9 75.8 75.4 75.6 75.9 75.8 75.7 75.5 75.4 
34 75.6 75.7 75.8 75.5 75.4 75.8 75.7 75.5 75.4 75.5 
35 75.4 75.8 75.7 75.9 75.2 76 75.6 75.8 75.7 75.3 
36 75.2 75.9 75.4 75.9 75.3 76 75.5 75.6 75.9 75.4 
37 75.4 75.9 75.7 75.8 75.3 75.9 75.8 75.1 76 75.6 
38 75.4 75.5 76 75.4 75.6 75.8 75.9 75.6 75.9 75.8 
39 75.5 75.6 75.8 75.7 75.9 75.8 75.9 75.4 75.6 75.7 
40 75.5 75.8 76.1 75.9 76 75.6 75.9 75.7 75.5 75.6 
41 75.5 75.8 75.6 75.5 75.8 75.9 75.5 75.8 75.5 75.9 
42 75.5 75.8 75.5 75.6 75.3 75.8 75.7 75.5 75.5 75.9 
43 75.3 75.1 75.7 75.7 75.5 75.8 75.6 75.6 75.8 75.4 
44 75.2 75.5 75.8 75.7 75.5 75.6 75.6 75.4 75.4 75.7 
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Table 3.2b Impact table for the factory. 
Wall 

number 
1st 

reflection 
2nd 

reflection 
3rd 

reflection 
All 

reflections 
1 26 82 123 10142 
2 359 564 691 27801 
3 304 546 631 28011 
4 363 532 629 28142 
5 346 590 643 27940 
6 412 605 619 31103 
7 390 615 619 31095 
8 791 1209 1066 22398 
9 1 33 79 15451 

10 2639 2026 2295 105222 
Obstacles 4369 3198 2605 72695 

 

 

3.2.1 Matlab Ray-Tracing Model 

 The first improvement to the original ray-tracing program was simply a 

translation into Matlab. This addressed all the issues mentioned in the preceding section. 

The code was essentially copied line for line, with the exception of the “Go to line” 

command which was handled with a “while” loop. Hence we did not expect any major 

changes from the Fortran model. For verification, the two sample results (Tables 3.1 and 

3.2) were rerun with the Matlab version of the model; the results are tabulated in Tables 

3.3 and 3.4. Comparing the numbers, the empty anechoic room results are almost 

identical to the Fortran results, to the nearest decibel. The slight differences can be 

explained by the randomness of the ray-tracing algorithm; the direction of each ray is 

generated randomly. The sound levels for the factory results are about 1.5 dB lower, and 

the obstacles are hit more often, according to the impact table. The extra obstacle impacts 

likely caused the lower SPL’s, because energy is absorbed with every impact. It is not 

known how this change came about in the translation but, fortunately, our work on 

deterministic diffraction does not involve much use of random fittings. One downside to 

the upgrade is that the runtime lengthened substantially, because Matlab has far more 

functions loaded in the background than a command prompt running the Fortran model. 
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All in all, the Matlab version of the ray-tracing model increases the model’s ease-of-use 

without many disadvantages, or introducing any new major problems. 

 

Table 3.3 Matlab ray-tracing model results for SPL (dB) in an empty anechoic room with 

a point source at (2.0, 2.0). 

x/y (m) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 

0.2 81 82 82 82 83 83 83 83 84 84 84 84 83 83 83 82 82 81 81 
0.4 81 82 83 83 84 84 84 84 85 85 85 85 84 84 83 83 83 82 82 
0.6 82 82 83 84 84 85 86 86 86 86 86 86 85 85 84 84 83 83 82 
0.8 83 83 84 85 85 86 87 87 87 87 87 87 86 86 85 84 84 83 82 
1.0 83 84 84 85 86 87 88 88 89 89 89 88 88 87 86 85 84 83 83 
1.2 83 84 85 86 87 88 89 90 91 91 91 90 89 88 87 86 85 84 83 
1.4 83 84 85 87 88 89 90 92 93 93 93 92 90 89 88 86 85 84 84 
1.6 84 85 86 87 88 90 92 94 96 97 96 94 92 90 88 87 86 85 84 
1.8 84 85 86 87 89 91 93 96 100 103 100 96 93 91 89 87 86 85 84 
2.0 84 85 86 88 89 91 94 97 103 112 103 97 93 91 89 87 86 85 84 
2.2 84 85 86 87 89 91 93 96 100 103 100 96 93 91 89 87 86 85 84 
2.4 84 85 86 87 88 90 92 94 96 97 96 94 92 90 88 87 86 85 84 
2.6 84 84 85 87 88 89 90 92 93 94 93 92 91 89 88 86 85 84 84 
2.8 83 84 85 86 87 88 89 90 91 91 91 90 89 88 87 86 85 84 83 
3.0 83 84 84 85 86 87 88 88 89 89 89 88 88 87 86 85 84 84 83 
3.2 83 83 84 84 85 86 87 87 88 88 87 87 87 86 85 85 84 83 82 
3.4 82 82 83 84 84 85 85 86 86 86 86 86 86 85 84 84 83 83 82 
3.6 81 82 83 83 84 84 84 85 85 85 85 85 85 84 84 83 83 82 82 
3.8 81 81 82 83 83 83 83 84 84 84 84 83 83 83 83 83 82 81 81 
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Table 3.4a Matlab ray-tracing model results in SPL (dB) for the factory. 

x/y (m) 1 3 5 7 9 11 13 15 17 19 
1 78.1 79.0 78.9 78.3 78.4 78.3 78.5 78.9 78.8 78.6 
2 78.2 79.0 79.3 79.0 78.5 78.5 78.9 79.2 78.7 78.3 
3 78.8 79.1 80.3 79.3 78.7 79.0 79.7 80.3 79.2 78.4 
4 79.0 79.9 83.0 79.7 78.9 78.8 80.0 82.9 79.8 78.9 
5 78.6 80.1 88.5 80.2 78.8 78.5 80.1 88.5 80.6 78.2 
6 78.4 79.8 82.9 79.8 78.8 78.6 79.7 83.1 79.7 78.2 
7 78.5 79.0 80.2 79.0 78.2 78.2 79.0 80.3 79.1 77.9 
8 77.9 78.3 78.9 78.6 78.0 78.3 78.3 78.6 78.4 77.7 
9 77.6 77.6 78.3 78.5 77.9 77.9 77.8 78.2 77.4 77.5 
10 77.1 77.2 77.6 77.8 77.1 77.5 77.5 77.6 77.1 77.5 
11 77.0 77.2 77.2 77.1 77.3 77.3 77.1 77.1 77.2 76.7 
12 76.6 76.8 76.9 76.8 77.1 77.0 77.2 77.0 76.8 76.6 
13 76.7 76.7 76.9 76.5 76.7 76.6 76.9 75.9 76.5 76.7 
14 76.1 76.4 76.2 76.3 76.1 76.1 76.0 76.7 76.0 76.6 
15 75.8 75.9 76.2 75.7 76.2 76.4 75.9 76.1 76.0 76.1 
16 75.6 76.1 76.2 75.8 75.7 76.4 76.1 75.9 76.1 75.7 
17 75.8 75.5 76.1 76.0 75.5 75.7 76.3 76.1 75.9 75.4 
18 75.2 75.4 75.8 76.1 75.8 76.0 75.8 76.3 76.1 75.3 
19 74.7 75.5 76.0 75.9 76.0 76.1 76.2 75.6 75.6 75.1 
20 74.7 75.0 74.8 75.3 74.3 74.6 74.9 74.8 74.7 74.8 
21 74.3 74.3 73.8 73.8 73.3 73.7 73.4 74.0 74.3 74.4 
22 74.4 74.6 74.6 73.7 74.1 73.5 73.9 74.1 74.3 74.7 
23 73.8 74.1 74.3 73.9 74.0 73.5 73.4 74.2 74.8 74.1 
24 74.2 74.3 74.2 74.4 74.4 73.9 73.8 74.4 74.5 73.7 
25 74.6 74.3 75.0 74.0 74.1 74.0 74.2 74.0 74.5 74.2 
26 74.4 74.0 74.5 74.0 73.7 74.5 74.6 74.2 74.3 74.0 
27 74.2 73.9 74.3 74.3 74.1 74.7 74.6 74.0 74.0 73.9 
28 74.4 74.4 74.3 74.7 74.3 74.2 74.3 74.4 73.8 74.0 
29 74.2 74.3 74.0 74.4 74.1 74.1 74.0 74.3 74.2 74.4 
30 74.3 74.0 74.6 74.1 73.7 73.7 73.8 74.0 74.2 74.0 
31 74.0 74.0 74.3 74.0 73.9 73.9 73.8 73.8 74.2 73.8 
32 73.8 74.0 73.8 74.1 74.1 73.9 73.4 74.2 74.0 74.5 
33 73.9 74.5 73.7 73.8 74.4 74.4 74.0 74.1 74.0 74.3 
34 74.1 74.3 73.9 74.2 73.6 74.1 73.7 73.7 74.2 73.8 
35 73.8 74.2 73.8 73.8 73.9 74.1 74.0 74.1 74.1 73.8 
36 73.7 74.0 73.8 74.2 73.9 73.6 73.8 74.0 73.8 73.8 
37 73.8 73.9 73.8 74.0 73.9 73.9 73.3 73.9 74.3 73.8 
38 73.9 74.2 73.8 73.8 73.9 73.3 73.9 73.6 74.4 73.5 
39 73.6 73.7 74.3 74.0 74.0 73.3 74.0 73.6 73.4 73.4 
40 74.3 73.7 73.8 73.6 73.9 73.8 73.7 73.7 74.0 73.5 
41 73.9 73.8 73.5 73.9 74.0 74.2 74.0 73.8 73.6 73.3 
42 73.7 74.3 73.8 73.8 74.2 73.9 73.8 73.7 73.6 73.2 
43 73.7 73.6 73.9 74.0 74.0 73.6 73.6 73.9 73.6 73.5 
44 73.9 73.8 73.8 74.1 74.0 73.9 73.9 73.8 73.4 73.7 
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Table 3.4b Matlab ray-tracing model impact table for the factory. 
Wall 

number 
1st 

trajectory 
2nd 

trajectory 
3rd 

trajectory 
All 

trajectories 
1 2 19 33 7206 
2 167 357 435 22338 
3 149 355 488 22285 
4 135 383 480 22166 
5 138 387 429 22036 
6 170 351 416 24461 
7 147 363 386 24398 
8 341 748 807 19310 
9 2 6 21 10727 

10 1707 1454 1675 83874 
Obstacles 7042 5577 4830 141199 

Diffractions 0 0 0 0 
 

3.2.2 Parameters and Optimum Settings 

The following sections present many ray-tracing results; thus a brief summary of 

the inputs is outlined here. The parameter values listed in this section were used for all 

predictions shown later; optimization of some parameters are discussed in the next 

paragraph. The room size was similar to the dimensions of the anechoic chamber (except 

rounded to the nearest meter, for convenience), so that the results could be compared to 

experiment. Absorptive walls had reflection coefficients of 0.01 and reflective walls had 

reflection coefficients of 0.9. Diffuse reflections were not considered. Phase changes 

upon reflection were also ignored. Air absorption was set to a negligible value of 0.0001 

Np/m. Fitting zones, fitting density, and absorption from fittings were not used unless 

explicitly stated otherwise. The frequency was set to 1000 Hz. The position of a single 

source varied, but its power was set to Lw = 100 dB. The receiver height was 0.02 m 

above the ground for predictions of the experimental configurations, to approximate 

placing the microphone on the wire-mesh floor of the anechoic chamber. For all other 

configurations, the receiver height was fixed at 1 m. The cells of the receiver spanned the 

entire length and width of the room at that height. Hence, all figures will show results 
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over a plane in the room. These ray-tracing parameters describe the basic characteristics 

of the anechoic chamber, and did not need to be changed throughout the tests. 

Certain parameters required optimization in order to achieve high statistical 

accurate of the prediction results. These include the number of rays, the number of 

trajectories, and the size of the receiver cells. Increasing the number of rays renders the 

source more omni-directional, increases the number of rays striking each receiver cell, 

and makes the results more continuous between adjacent receiver cells, but at the cost of 

runtime. If an inadequate number of rays is used, some receiver cells are missed 

completely and show a quiet spot in the domain, which is an inaccuracy. We found that 

the minimum number of rays is 300,000 to achieve acceptable results. The number of 

trajectories refers to how many re-directions (reflections and diffractions) a ray is traced 

for. For the anechoic-room setup studied in this chapter, this parameter makes little 

difference, because reflections are strongly absorbed. Since diffractions count towards 

this number, we used three trajectories. Note that runtime increases with the number of 

trajectories. Finally, the receiver-cell size (or mesh size) defines how finely the receiver 

area is partitioned. A smaller cell size can resolve finer detail, such as edges of diagonal 

walls, and phase. The drawbacks are the need for more computer resources to store and 

plot results; also some cells may be missed entirely if insufficient rays are used. We 

found that six receiver points per wavelength worked well; this corresponded to a 5-cm 

mesh at 1000 Hz. A finer mesh produced figures that do not display well; the images 

appear solid black as the colour of each cell could not be resolved in a Matlab surface 

plot. However, this could be alleviated by shrinking the maximum receiver area. A 

coarser mesh gave suboptimal phase results. 
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Figure 3.1 Phase in radians of a source along a plane in an anechoic room; 

the source is at (2,2). 

 

3.3 Phase Implementation 
Phase was added to the model by considering the total distance traveled by the ray 

from the source to the receiver. The ray’s energy contribution was multiplied by )exp(ikr , 

and then added to the cumulative pressure at the receiver. As a result, rays with different 

total path lengths interfere properly. Figure 3.1 shows the phase plot of the field due to an 

omni-directional source in an empty anechoic room. As expected, it consists of 

concentric circular rings around the source, because phase varies linearly with distance, 

with no angular dependence. 

 

3.4 Diffraction Implementation 
The last major addition to the ray-tracing model was diffraction. Without 

diffraction, unrealistic shadow zones are predicted behind interior surfaces, which 

reflections alone cannot account for. An example of such a case can be seen in Figure 3.2; 

it has two angled walls which intersect, forming a V-shaped wedge in an anechoic 

chamber that creates a shadow region. From Figure 3.2, the maximum SPL predicted in 

the shadow zone is 55 dB, which is too low compared to reality. 
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Figure 3.2 Predicted SPL (dB) in an anechoic chamber with a V-shaped wedge, 

without diffraction; the source is at (1,1). 

 

Therefore, the objective was to diffract sound around the edges of the interior 

surfaces as our experiences in physical reality suggest. This was accomplished by re-

directing rays that impinge on the interior surface towards the shadow zone, and adjusting 

their amplitude and phase by the diffraction coefficient D, as defined by the Uniform 

Geometric Theory of Diffraction [18]. The algorithm is summarized as a flowchart 

shown in Figure 3.3. When a ray strikes an interior surface, a decision is made on 

whether to diffract the ray or not. If the ray is not diffracted, it is simply reflected as in 

the original model. If the ray is diffracted, all angles are calculated from the room 

geometry, including a random angle that determines the direction that the ray propagates 

into the shadow zone. The starting point of the ray’s next trajectory is moved to the edge 

of the interior wall. Note that if a particular three-dimensional direction is unaffected by 

bending the ray around the edge, then that component of the ray’s direction does not 

change. Next, the angles and distances are used to calculate the diffraction coefficient. 

After the ray’s pressure is adjusted by the diffraction coefficient, the current trajectory of 

the ray ends, and the next one begins. It is during the next trajectory that the ray travels 

through the shadow zone, starting at the edge of the interior surface. Each of these steps 

will be explained in more detail in the following subsections. 
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Figure 3.3 Implementation of diffraction into the existing model. 

 

3.4.1 Diffraction Conditions 

 The decision whether or not to diffract a ray is based on a few factors. The first is 

simply a user-defined flag, named DFRCT, to give the user the option to turn all 

diffractions on or off. It has been added to the last line of the input file. Secondly, only 

first-order rays are diffracted. This means that diffracted rays must encounter the interior 

wall on their first trajectory; that is, they must come directly from the source. Diffraction 

of reflected rays and second-order diffraction are not considered. Next, the ray is only 

diffracted if it hits close enough to the edge of the interior wall. The λ/2 criterion from 

section 2.3.4 is applied here. Note that rays that do not hit the interior wall, but pass 

within λ/2 of its edge, are not diffracted. The next two conditions are purely technical 

ones to quickly screen out rays that could not be diffracted. The ray must have last struck 

an interior, or “constrained” wall. This is common sense, because a ray cannot bend 

around an outer wall; otherwise it would go outside the domain. Finally, if the ray strikes 

near an edge of the interior wall, that edge cannot be connected to an outer wall. It may 

be joined to another interior wall, in which case the two walls form a wedge. 

Alternatively, it may be connected to nothing (“hanging” walls), as in the case of 

diffraction over a fence. A variable called WALREL (“wall relationships”) is created to 

serve as a quick look-up table to find what each edge of the interior walls is connected to. 

 Ray hits 
a wall 

Diffract 
ray? 

Update ray position, 
direction, magnitude, 

phase 

End current 
trajectory 

Ray 
reflects

Yes

No
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Implementing this variable involved inputting the edge points into the plane equations of 

the other walls to check for intersections. Thus the limits of the constrained walls should 

not overshoot the coordinates of the outer walls, otherwise an intersection may not be 

found. In effect, we are searching for all diffracting edges and storing them this data 

structure. In any case, once the decision to diffract the ray has been made, the wedge 

angle, incident angle and diffracted angle must be calculated. 

 

3.4.2 Angle Calculations 

 Three angles are needed to calculate the diffraction coefficient: the angle of the 

wedge, the incident angle of the incoming ray, and the diffracted angle of the outgoing 

ray. Figure 3.4 shows the definitions of these angles. Of the three required angles, the 

wedge angle is easiest to find. The dot product between two normalized vectors gives the 

cosine of the angle between them. Next, calculating the incident angle simply involves 

finding the slope between the starting point of the ray and the edge of the interior wall. 

Lastly, for the diffracted angle, two slopes are needed to create upper and lower limits for 

the randomly-generated diffracted angle. One limit is the slope used to find the incident 

angle; the other limit is imposed by the slope of the connecting wall. Once the slopes are 

found, the inverse tangent function converts them to angles between –π/2 and π/2. With 

the two angles that bound the shadow region, a random angle of diffraction is chosen in 

between them, so that the ray is guaranteed to travel into the shadow region. However, 

this may not be the suitable angle, given the configuration of the source and diffraction 

point. Hence a large (and computationally inefficient) set of if-statements is used to 

distinguish between all source and edge-tip position combinations and their diffracting 

paths. This way, the angles are correctly placed in their appropriate quadrants, and the 

program is robust enough to handle diffraction from any direction. Figure 3.5 shows a 

polar plot of the diffracted rays emerging from the V-wedge seen in Figure 3.2. Notice 

that all the rays enter the shadow zone, without accidentally passing through the wedge 

itself. 
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 Some complications arose that increased the complexity of the code; they will be 

listed here without extensive discussion. For a particular interior wall, its position could 

be rotated to symmetric locations in the room, so extra care is needed to identify which 

coordinate directions take part in the diffraction, and which angle is really the azimuthal 

or elevation angle. Also, diffracting edges formed by certain types of interior walls are 

handled differently. Between combinations of wedges formed by two interior walls as 

compared to one (hanging) interior wall, and walls parallel to the coordinate axes as 

compared to inclined walls, the amount of code effectively doubles. In the end, the case 

of inclined hanging walls was not successfully coded. Furthermore, a ray could strike 

close enough to more than one edge of an interior wall. In this case, one of the possible 

edges is chosen randomly. Finally, vertical diffractions have a separate section of code 

because only the z-component of the ray’s direction changes. 

 

 

 
Figure 3.4 Geometry and angles involved in diffraction. 
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Figure 3.5 Predicted angles of diffraction for rays entering the shadow zone behind a V-

wedge. The center of the polar plot represents the tip of the wedge. 

 

3.4.3 Diffraction Coefficient 

 Having calculated all the angles and geometrical parameters, we compute the 

diffraction coefficient D. The following equations are from Kouyoumjian and Pathak’s 

Uniform Geometric Theory of Diffraction [18]: 
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where (see Figure 3.4): 

k is the wave number, λπ /2=k , 

n (also called the wedge index) is such that the exterior wedge angle is ,πn  

]2,0(∈n , 

ρ is the source to diffraction point distance, 

r is the receiver to diffraction point distance, 

θi is the azimuthal angle between the edge vector and the incident direction 

 ],0[ πθ ∈i , 

αi is the elevation angle between the wall vector and the incident direction 

 ],0[ πα ni ∈ , 

αd is the elevation angle between the wall vector and the diffracted direction 

 ],0[ πα nd ∈ , 

and where F(X) is the Fresnel integral given by: 

∫
+∞ −=

X

iiX deeXiXF ττ 2

2)(      (3.2) 

and 

ir
rL θ

ρ
ρ 2sin
+

= ,      (3.3) 

),
2

2(cos2)( 2 βπβ −=
±

± nNa      (3.4) 

±N  is the integer that satisfies more closely the relations: 

πβπ =−+nN2  and πβπ −=−−nN2    (3.5) 

Several approximations exist in the related literature, useful for implementing the above 

equations. In particular, Eq. (3.5) reduces to: 
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Kawai [13] gives an approximate rational expression for the Fresnel integral in Eq. (3.2): 
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Eq. (3.1) is still singular at a reflection or shadow boundary and cannot be evaluated 

numerically at these boundaries. However, near the boundaries, we can express the terms 

di αα ± as )(2 εππβ −= ± mnN . The coefficient is then continuous and its value can be 

computed using [18]: 

( ) )2)sgn(2()()
2

(tan 441
ππ

εεπββπ ii

ekLkLnekLaF
n

−≈± ±−   (3.9) 

where 1)sgn( =ε  if 0>ε and -1 otherwise. 

 Note that, in our implementation of the above formulae, the edge-to-receiver 

distance was set to 0.01 m because the current trajectory of the ray ends. Magnitude 

attenuation with distance occurs in the ray’s next trajectory. This completes the 

discussion of the diffraction additions to the ray-tracing model. 

 

3.5 Validation Tests 
 Several configurations were predicted to test that the improved ray-tracing model 

worked properly. The goal was to ensure that the model is robust enough to handle 

diffraction around any physical placement of constrained walls within the domain. This 

included situations such as a fence, a screen, a doorway, a right-angle corner, a V-shaped 

wedge, or a square pillar. Each of those configurations could be rotated a number of 

times, and also could have different wall heights and sound frequencies. This set of 
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obstacles and their permutations were chosen to involve all the complications discussed 

previously, such as inclined walls, hanging walls, and rotations. Results will not be 

shown for all of the cases; only a few sample cases are shown in Figures 3.6, 3.7 and 3.8. 

Overall, the model produces similar results for rotated rooms, and it handles well wedges 

formed by both inclined and straight interior walls. It also handles hanging straight walls, 

but not hanging inclined walls, as expected, since they were omitted from the 

implementation. Figures 3.2 and 3.6 share the same room configuration (a wedge created 

by two intersecting inclined walls), but with and without diffraction. The results with 

diffraction are clearly better, because the shadow zone is traversed by diffracted rays 

instead of only strongly attenuated reflected rays, creating sound-pressure levels of at 

least 70 dB, which is more realistic. 

 

 
Figure 3.6 Predicted SPL (dB) in an anechoic room showing diffraction around a 

V-wedge formed by inclined walls for a source at (1,1). 
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We also tested some configurations that were studied in the literature. Figure 3.7 

shows predicted results for the configuration used in [27], which also serves as an 

example of a right-angle wedge formed by two straight walls. Note that the results in this 

figure are normalized by the free-field SPL. The field in front of the block should contain 

zones of +6 dB and -6 dB relative SPL, due to interference between the direct and 

reflecting waves. However, this is not predicted near the edge, because rays striking near 

the edge are diffracted instead of reflected. Far away from the corner, the difference in 

SPL relative to free field should be 0 dB, because the wedge has minimal effect. The ray-

tracing prediction has differences of up to ±4 dB, likely due to randomness and 

variability between predictions. Along the x=0.3 m line, ray-tracing predictions agree 

well with the literature near the vertex of the edge, but are several decibels lower in the 

shadow zone. 
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Figure 3.7 Predicted pressure field showing diffraction around a wedge formed by 

straight walls for a source at (0.2,0.8). SPL relative to free field is plotted in dB 

(a) for the whole surface and (b) along the x=0.3 m axis. 
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Another example that was predicted is that of one interior wall, parallel to a 

coordinate axis, connected to nothing, as seen in Figure 3.8. It is located at y=2.5 m, 

extending from x=0 m to x=2.5 m. A similar configuration is presented in [28], except 

that the distances are not the same, the relative source and edge positions are different, 

and the room is rotated. In both set of results, the SPL in the shadow zone is 10-20 dB 

lower than at the tip of the wall. The biggest difference between our results and the 

literature is for the continuity at the boundary, where the ray-tracing data provided a 

smoother transition into the shadow region. The phase results are very good, because the 

wave fronts in the shadow zone matched up with those in the direct field. Also, the phase 

is shifted on one side of the wall due to reflections. Notice that, in all of these cases, the 

shadow zones are not uniformly quiet as in the non-diffractive results. Sound decays 

gradually as the receiver moved deeper into the shadow zone. SPL’s are smallest at the 

deepest corners within the shadow zone and largest at the boundary. In the phase plots, 

the wave fronts could be seen propagating into the shadow region. At the zone boundary, 

there is a slight discontinuity in some cases, but otherwise the wave fronts appear well 

aligned. 

 

 
Figure 3.8 Predicted pressure field showing diffraction around a hanging straight wall for 

a source at (4,1): (a) amplitude in dB and (b) phase in radians. 
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3.6 Prediction of Experimental Configurations 
 Recall that in Chapter 2, we presented experimental results for an edge, a block 

and multiple blocks. We can simulate the same experimental configurations with the 

improved ray-tracing model to predict the sound field and test the accuracy of the 

predictions. 

 

3.6.1 One Edge 

 The single diffracting-edge result predicted by ray tracing is plotted in Figure 3.9, 

along with the previous results from Figure 2.8. The ray-tracing results show less smooth 

variations than do those for the cylindrical wave. Although the oscillations do not 

completely coincide with those of the cylindrical wave, they peak and dip at nearly the 

same locations. This makes sense, because the experimental imperfections are modeled in 

ray tracing. That is, the flanking path over the top of the wall exists in ray tracing as in 

experiment. Recall that, as the distance from the edge increases, the flanking path 

becomes more significant. This is a reasonable explanation for why the ray-tracing and 

theoretical results match close to the edge, but deviate further away. Surface plots of 

magnitude and phase are shown in Figure 3.10. The magnitude decays as expected 

outside the shadow zone, but the decay is not uniform in the shadow region. Instead, it 

shows random fluctuations at a SPL lower than that in the non-shadow region. Phase 

varies linearly with distance in both regions. At the boundary between the direct and 

shadow zones, the amplitude is 10 dB lower in the shadow zone, and the phase is slightly 

mismatched. The wave fronts are not as sharply defined (compared to the similar 

configuration in Figure 3.8), probably because of interference with the flanking rays over 

the top of the wall. 
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Figure 3.9 Comparison of ray-tracing results to experiment and theory for one edge. 

 

 

 
Figure 3.10 Predicted pressure field for the one-edge configuration; the source is at (2,1): 

(a) amplitude in decibels and (b) phase in radians. 
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3.6.2 One Block 

 Using six intersecting straight walls, a square block is modeled in the center of an 

anechoic room. Ray-tracing results for this case are plotted in Figure 3.11 along with 

experimental results from Figure 2.13, showing the pressure in front of the block. The 

agreement is not great, but the ray-tracing results still have the measured features. 

Interference effects are seen close to the block – in particular, the maximum at x=0.5 m 

between two minima at x=0.43 m and x=0.6 m. However, their locations are not exactly 

the same, and the predicted relative amplitudes do not vary as strongly as the measured 

amplitudes. This inaccuracy in front of the block could be attributed to the lack of 

reflected rays. Most of the rays that strike the front surface of the block are diffracted into 

the shadow zone, instead of reflected. Hence, there is insufficient interference in front of 

the block to reproduce the experimental results accurately. However, the traces of the 

correct interference pattern are predicted, despite the lack of reflected rays. As for the 

results in Figure 3.12 showing the corresponding surface plots, the predicted sound field 

on either side of the block is realistic. The shadow zone behind the front corners of the 

block is continuous in both amplitude and phase. However, the shadow zone behind the 

block is not reached by any rays, due to the lack of second-order diffraction. 
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Figure 3.11 Comparison of ray-tracing results with experiment and theoretical simulation 

in front of one block. 

 

 
Figure 3.12 Predicted pressure field for the one-block configuration; the source is at (2,1): 

(a) amplitude in decibels and (b) phase in radians. 
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3.6.3 Multiple Blocks 

 To predict the multiple-block configuration from Figure 2.15, the fitting-zone 

feature of the original ray-tracing model was used. Hence, the new diffraction algorithm 

took no part in generating these results. The domain was split into four volumes by two 

fitting zone planes, z=0.3 m and x=2.0 m. Obstacles were placed into the region x>2 m 

and z<0.3 m as in the experimental setup. Their reflection coefficient was set to 0.9, 

which was the same as the other varnished wooden surfaces. A mean free path of 0.9966 

m was calculated from the block positions, so a fitting density of 1/0.9966 = 1.0034 m-1 

was used. Figure 3.13 plots the experimental results, along with the prediction along the 

central axis. The ray-tracing results follow the free-field levels until several centimeters 

into the fitting zone, where they begin to drop off due to scattering from the blocks. 

However, the experimental result did not drop off as much. Figure 3.14 shows the surface 

plots in amplitude and phase. Again, the amplitude decays in general, but the randomized 

scattering creates oscillations about the main downward trend. Phase behaves linearly, 

but the obstacles randomly scatter the wave fronts in the fitting zone. Note that the phase 

changes are due to interference between rays of different path length; no phase shifts 

occur when objects are encountered. 
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Figure 3.13 Comparison of ray-tracing results with experiment for the multiple-block 

case using random fittings, along the central axis. 

 

 

 

 
Figure 3.14 Predicted pressure field for the multiple-block configuration with random 

fittings; the source is at (1,2): (a) SPL in dB and (b) phase in radians. 
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 The multiple-block configuration was predicted again using the diffraction 

algorithm rather than the random fittings. Using six intersecting interior surfaces to 

construct each of the nine blocks, the setup seen in Figure 2.15 was modeled. This was a 

cumbersome process because the planar equation and the limits of the range of the 

coordinates (x,y,z) had to be specified for each of the block’s six sides. For simplicity, all 

blocks were rotated such that their surfaces were parallel or perpendicular to the 

coordinate axes. Figure 3.15 plots the experimental results, along with the prediction 

along the central axis. Compared to the prediction using the fitting-zone feature in Figure 

3.13, the agreement with experimental results is better since the curves are closely 

matched until x=3.3 m. The presence of a block near x=3.5 m causes the SPL to drop 

significantly, since sound does not penetrate into the block. Behind the block, levels 

remain low because there is no second-order diffraction. Figure 3.16 shows the surface 

plots in amplitude and phase. Predicted sound-pressure levels in shadow zones are 

noticeably lower (by about 10 dB) than in direct regions. The SPL in shadow zones that 

were reached by single-order diffractions is at least 65 dB. Due to the lack of higher-

order diffraction, the predicted SPL in several shadow regions behind the blocks is 50 dB 

or lower. This is too low because in the experimental results, the lowest SPL measured 

was about 70 dB. The predicted phase varies linearly in direct regions and shadow 

regions reachable by first-order diffraction. In shadow zones that could not be accessed 

by first-order diffraction, the phase results are difficult to interpret. The phase is 

composed of reflected rays, and it appears scattered and nonlinear. 
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Figure 3.15 Comparison of ray-tracing results with experiment for the multiple-block 

case using the diffraction algorithm, along the central axis. 

 

 
Figure 3.16 Predicted pressure field for the multiple-block configuration using the 

diffraction algorithm; the source is at (1,2): (a) SPL in dB and (b) phase in radians. 
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3.7 Known Problems 
 To conclude the section on the ray-tracing model, we first summarize the known 

problems and inaccuracies, and then finish with some suggested improvements in the 

next section. First we review previously-stated problems. In both the original and 

improved ray-tracing models, sound levels are overestimated for receiver cells that 

contain the source. Thus, for neighbouring receiver cells, the decibel levels appear to 

decay too quickly. Fittings are encountered more often in the improved model. In our 

implementation, hanging inclined walls and second-order diffraction are omitted. Note 

that, although the region behind a square obstacle cannot be predicted, the model still 

succeeds when the square is rotated. Also, in our approach to diffraction, we reduced the 

number of reflections in favour of diffraction into the shadow zone. Hence the sound 

field near an edge on the incident side no longer contains a reflected wave, which may be 

inaccurate if the reflected wave is significant. However, the accuracy behind the edge is 

an adequate compromise for the slight inaccuracy in front of the edge. Diffraction could 

be implemented differently to avoid this problem, but at the cost of other complications. 

As an aside, we tried a smoothing technique that was intended to assign missed 

receiver cells an average value depending on its neighbouring cells. The origin of this 

procedure came from image-processing masks, used to filter out salt-and-pepper noise in 

a picture, or increase contrast by emphasizing edges, for example. We intended to reduce 

the runtime of the ray-tracing model by decreasing the number of rays, and compensating 

the inaccurate receiver cells by applying the smoothing mask, which is a computationally 

simpler post-processing maneuver. It succeeded in blurring discontinuities, but it affected 

all the receiver cells and erased some of the positive features. For instance, sharp edges 

became blurry, and the -6 dB/dd decay rate was reduced. Therefore, the smoothing the 

results was omitted from our results; increasing the number of rays was the preferable 

way to eliminate singularities. 
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3.8 Suggested Changes 
 Some changes could be made to the ray-tracing model to increase its efficiency 

and accuracy. The most important improvement would be to include second-order 

diffraction. The difficulty with this is that the rays of neither the source nor the first-order 

edge source can physically contact a point on the wall near the second corner. The rays 

would have to stop in mid-trajectory when a second corner is found, and make the turn. 

This is difficult to implement, because either the secondary edge must be assigned a finite 

volume, or decisions must be made along the trajectory to check if the ray should 

suddenly make a turn. Another possibility is to position the first-order source such that it 

protrudes from its actual location, so that a small range of angles will hit close to the 

second edge. Either way, care must be taken to avoid introducing new shadow zones that 

could arise when bending certain rays. Furthermore, the implementation has to 

realistically model diffraction. 

The suggestions for efficiency improvements are minor. One is to eliminate the 

upper limits on parameters such as the number of walls, constrained walls, sources, etc. 

These are required in the Fortran model because all variables and array sizes must be 

declared at the beginning. In Matlab, there is no such constraint and declaring variables 

this way makes them bigger than needed, which is a waste of memory. However, upper 

limits would still be useful for the number of receiver cells, since figures with too many 

receiver cells display poorly. Also, while the multiple-frequency capability is handy, it 

does not work with diffraction, since the ray’s trajectory depends on frequency. Thus, 

only one frequency can be studied at a time. Although the program does not crash, the 

downside with having more than one frequency is that displaying the multi-dimensional 

array becomes slightly inconvenient.  An extra loop is required to convert the 

incompatible n-dimensional matrix to a 2D matrix. 
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3.9 Finite Element Method 

 The finite element method (FEM) is a second prediction model used to generate 

sound fields around cubic obstacles. It was briefly introduced in section 1.4.2. Predictions 

with this model were done by collaborators Matthieu Boirlaud and Vincent Valeau at the 

Université de Poitiers, France. The objective of the FEM work was to confirm and 

validate the experimental work and ray-tracing predictions. The model was used to 

simulate two of the experimental configurations: the anechoic chamber with the single 

block and with the multiple blocks. According to [29], the prediction domain was 

partitioned into a mesh with six points per wavelength. The whole domain had 153653 

elements for the single-block case, and 791547 elements for the multiple-block case. 

Runtimes were only a few minutes, which is much faster than ray tracing. Furthermore, it 

is noted in [29] that the FEM phase results are slightly inaccurate for large distances due 

to a dispersion phenomenon. Compared to the ideal phase of the Green’s function (the 

mathematical analogy of a point source), the phase seems to be about half a radian lower 

that the exact phase, for x>1.5 m. 

 

3.9.1 Single-Block Results 

Results with a single block can be seen in Figures 3.17, 3.18 and 3.19. In the plots 

of FEM prediction results, the source is always at x=0 m and the spaces between data 

points indicate the presence of a block. In the single-block results, the block occupies the 

space between x=0.7 m and x=1.0 m. In Figure 3.17, experimental results are compared 

to FEM, with good agreement. In front of the block, the fluctuations in the sound-

pressure level agree very well, with perhaps a slight shift which is more evident in the 

phase results. Behind the block, the two phase results overlap, while the magnitude 

results for the FEM are higher immediately behind the block. Figure 3.18 compares FEM 

simulations with and without the block; refer to Figures 2.13 and 2.14 for the same 

experimental comparison. The amplitude results are as expected and they confirm the  
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Figure 3.17 Comparison of pressure predicted by FEM and experiment for the one-block 

case: (a) normalized amplitude in decibels and (b) phase in radians. 

 

experimental results. The phase results also agree with experiment, since the phase 

changes relative to free field occur most noticeably near the front of the block (due to the 

reflected wave) and behind the block (due to increased path length from diffraction). 

 

 
Figure 3.18 FEM prediction comparing SPL with and without a block: 

(a) normalized amplitude in decibels and (b) phase in radians. 

 

 



 
 
 

 Chapter 3 72 
 
 

 

The final graph for the single-block results, Figure 3.19, shows the sound field 

over the z=0.15 m plane. However, the block is moved to a different position. It occupies 

the space between x=0.3 m and x=0.6 m. These results can be compared to the ray-

tracing results in Figure 3.12. The biggest difference is behind the block, where the lack 

of second-order diffraction causes a shadow zone in the ray-tracing results. With FEM, 

there is an interesting local maximum behind the block, which was observed in 

experiment. Phase also shifts the most behind the block, as the pattern of concentric 

circles is perturbed. At the back corners of the block, a slightly quieter zone emerges 

from both ray tracing and FEM. In front of the block, the sharp interference dip is more 

visible in FEM than in ray tracing. This is likely because of the decision to diffract rays, 

rather than reflect them, in the ray-tracing algorithm. 

 

 

 
Figure 3.19 FEM prediction of the sound field around a block: 

(a) amplitude in decibels and (b) phase in radians. 
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3.9.2 Multiple-Block Results 

 The multiple-block configuration in Figure 2.15 was modeled with the FEM. The 

positions and rotations of the blocks were approximated from the photographs of the 

experiment, Figure 2.16. We will compare the simulation and experimental results along 

the central axis, the +18o direction, the -18o direction, and the 5  m arc, in magnitude 

and phase. We will also compare the free-field (no-block) case with the multiple-block 

configuration, to investigate phase changes predicted by the FEM. 

 Figure 3.20 compares the FEM results along the central axis with measured data. 

In general the FEM amplitude and phase results match the experimental data reasonably 

well. The FEM amplitude prediction oscillates more, but it follows the downward trend 

of the experimental data. The phase agreement is worst near the blocks at x=1.3 m and 

x=1.6 m. In Figure 3.21, the results with multiple blocks are compared to free field to 

detect phase changes. The phase begins to behave nonlinearly around x=1.6 m, 

presumably because of reflections from a nearby block. After x=2.5 m, the phase is again 

linear, but seems to be displaced vertically. This is likely because of a block at that 

location, which sat along the central axis, obscuring the direct path. Thus it appears that 

the sound diffracted around the block, and the increased path length caused the phase 

shift. 
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Figure 3.20 Comparison between FEM prediction and experiment for the multi-block 

case along the central axis: (a) amplitude in decibels and (b) phase in radians. 

 

 

 
Figure 3.21 FEM prediction for the multi-block case along the central axis: 

(a) amplitude in decibels and (b) phase in radians. 
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Figure 3.22 Comparison between FEM prediction and experiment for the multi-block 

case along the +18o direction: (a) amplitude in decibels and (b) phase in radians. 

 

Along the +18o direction, the comparison to experimental data can be seen in 

Figure 3.22. Note that the gap in the data points indicates the presence of a block. The 

agreement is better in some places and worse in others, but overall it is satisfactory. FEM 

predicts higher levels behind the block, at r>2.3 m. In the comparison with free field from 

Figure 3.23, the phase nonlinearity is seen again in front of a block. Behind the block, 

phase changes are predicted, but the difference is, surprisingly, in the opposite direction. 

 
Figure 3.23 FEM prediction for the multi-block case along the +18o direction: 

(a) amplitude in decibels and (b) phase in radians. 
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Figure 3.24 Comparison between FEM prediction and experiment for the multi-block 

case along the -18o direction: (a) amplitude in decibels and (b) phase in radians. 

 

 For the results along the -18o direction, the FEM predictions are plotted along 

with experimental data in Figure 3.24. The amplitude data compare well, and FEM again 

predicts higher levels behind a block. Phase results agree better. For phase changes, 

Figure 3.25 compares the FEM predictions with the blocks to the free-field case. The 

phase exhibits some strange behaviour beyond the block at r>2.3 m. The phase shift is 

probably due to diffraction. 
 

 
Figure 3.25 FEM prediction for the multi-block case along the -18o direction: 

(a) amplitude in decibels and (b) phase in radians. 
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Figure 3.26 Comparison between FEM prediction and experiment for the multi-block 

case along the 5  m arc: (a) amplitude in decibels and (b) phase in radians. 

 

Finally, the results along the 5  m arc are shown in Figure 3.26 and 3.27. The 

agreement with experiment is not good, likely because the block locations and rotations 

were all approximated in the FEM. The amplitude data show some evidence of similarity, 

but the phase does not. Phase changes are both above and below the free-field phase. 

Solid conclusions could not be drawn from this set of measurements. 

 

 

Figure 3.27 FEM prediction for the multi-block case along the 5  m arc: 

(a) amplitude in decibels and (b) phase in radians. 
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3.10 Error Analysis 
 While some of the theoretical inaccuracies were discussed before, the numerical 

inaccuracy of the prediction results will now be discussed. In ray tracing, there is error 

associated with the mesh size, number of rays, number of trajectories, and randomness. 

Optimizing for statistical accuracy with the first three of these parameters was discussed 

in section 3.2.2. Increasing the number of rays and trajectories, and decreasing the mesh 

size decreases the prediction error. The error from these parameters can be very 

significant, depending on their settings. For our settings, we estimate the error to be a few 

decibels. Increasing the number of rays also decreases the error due to randomness, since 

the initial direction of the ray from the source is chosen randomly. As an example, refer 

to the results from Table 3.3. If the source is in the middle of a square room, each 

quadrant should exhibit symmetrical results. With 300,000 rays, the symmetry is 

respected to within 1 dB. 

There are also errors from modeling that lead to differences between real-life 

measurements and ray-tracing results. For example, values for the reflection coefficient 

and source power are approximate, which affects the amount of residual energy added to 

all receiver cells. This results in an offset of several decibels, which leads to inaccuracies 

in the absolute sound-pressure levels. However, the proper decay rates are preserved, so 

the relative magnitude of the sound levels may be more accurate than the absolute values. 
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3.11 Summary 

 In Chapter 3, we improved a ray-tracing model to include phase and deterministic 

diffraction. Several test cases were presented to show the robustness of the algorithm. We 

then simulated the experimental configurations from Chapter 2 with both the ray-tracing 

and finite element models. Results were compared between experiment and the two 

prediction methods, with overall satisfactory agreement. Ray-tracing predictions were 

inaccurate in front of obstacles in some cases, due to a lack of reflected rays. Behind one 

edge, the agreement was better. Around two edges, no comparison was made because 

second-order diffraction was not implemented. Phase changes were predicted in front of 

objects due to reflection, and in behind objects due to diffraction. The next step, to be 

taken in the following chapter, is to perform diffraction predictions for non-anechoic 

boundary conditions – that is, in an actual room. 
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Chapter 4 

Application 
4.1 Overview 
 In the previous chapter, a diffraction algorithm was implemented and tested with 

several obstacle configurations in a free-field environment. In this chapter, we present 

ray-tracing predictions of the same obstacles, but this time in non-free-field conditions – 

in particular, in rooms. The motivation is to determine how phase behaves around 

diffracting objects in conjunction with wall reflections. Some amount of phase change is 

expected from interference with reflected waves, depending on their magnitudes. The 

idea is that, if the phase becomes overly randomized, it becomes difficult to match the 

phase at any point in space, and the application of active noise control, which relies on 

this principle for the cancellation of sound, may not be feasible or effective. We complete 

the chapter with preliminary predictions of active noise control. 

 

4.2 Room Predictions 
 We begin with an outline of the ray-tracing inputs that were used to perform the 

room predictions. Most of the parameter settings from the free-field predictions were 

retained (see section 3.2.2), but the following inputs were changed. The reflection 

coefficient R of the exterior walls that bound the domain was raised from 0.01 to 0.9, 

creating a highly reverberant room. An intermediate value of R=0.5 was also studied. The 

number of trajectories was increased to 20 from 3. A frequency of 1000 Hz was again 

studied, but a lower frequency of 250 Hz was also investigated. Note that this is of 

interest since the corresponding wavelength (1.36 m) is larger than the obstacle 

dimensions. The room geometry, including the relative locations of the source, receiver 

and the interior surfaces, was not altered. However, different room configurations from in 

the previous chapters will be presented. Results will be shown first for 1000 Hz, for both 

reflection coefficients for comparison purposes, followed by 250 Hz. Amplitude results 
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are suppressed, because the focus here is on phase. Note that, with the increased number 

of trajectories, the runtime lengthened to 1.5-2 hours. 

 

4.2.1 Results at 1000 Hz 

The first result is for an empty, reverberant room. In Figure 4.1, the phase of the 

sound field with R=0.9, R=0.5 and R=0.01 can be compared. Near the walls of the room, 

the outermost concentric rings show signs of phase shifting. The phase of the anechoic 

results is less scattered at the corners of the room. As the reflection coefficient decreases 

from 0.9 to 0.5 to 0.01, the phase becomes progressively less scattered, as expected. 

 

 
Figure 4.1 Phase in radians of a source in an empty reverberant room; 

the source is at (2,2): (a) R=0.9 (b) R=0.5 (c) R=0.01.  
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Figures 4.2, 4.3 and 4.4, show phase predictions around various configurations of 

interior walls. In Figure 4.2, a wedge is created from two straight walls, resembling the 

configuration from Figure 3.7, but with a more prominent shadow zone. For R=0.9, the 

phase of the sound along the furthest walls from the source is strongly scattered by the 

reflected waves. The wave fronts are clearly resolved up to 3 m away from the source. In 

contrast, the phase of the R=0.5 case continues its linear pattern up to the exterior wall. 

Within the shadow zone, the phase appears more random in the more reflective case. 

Wave fronts are still identifiable in the shadow zone of the R=0.5 results. 

In Figure 4.3, a new configuration is shown, consisting of two hanging straight 

walls at that form a doorway. Both walls are located at y=2.5 m, and extend 2 m into the 

room from the outer walls. Hence, there is an opening of 1 m between the walls, and 

shadow zones exist behind both walls. The wave fronts of the direct sound are visibly 

propagating through the opening between the two walls and into the shadow zones. As in 

the previous configuration, the phase of the R=0.9 case seems to be randomly diffused 

deep in both shadow zones, and in the far corners of the room. In comparison, the phase 

of the R=0.5 case is still sharply defined in the farthest corner of the direct field, and also 

in parts of both shadow zones. Interestingly, parts of the wave fronts near the shadow 

boundary are still identifiable in the R=0.9 case, and they are aligned continuously with 

the wave fronts of the direct sound. 

 
Figure 4.2 Phase in radians of a source in a reverberant room with a wedge; 

the source is at (4,4): (a) R=0.9 (b) R=0.5. 
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Figure 4.3 Phase in radians of a source in a reverberant room with a doorway; 

the source is at (1,1): (a) R=0.9 (b) R=0.5. 

 

Finally, in Figure 4.4 a square pillar is placed in the middle the room, similar to 

the previous block configurations. The shadow zone that could only be illuminated with 

second-order diffractions is filled in by rays reflecting from the bounding surfaces of the 

room. This can be seen in the phase plots, as the wave fronts appear V-shaped instead of 

circular behind the square. This suggests that, when there are many reverberant 

reflections, second-order diffraction may not be important. Another consequence is that 

the magnitude (not shown) is reasonably continuous behind the obstacle. Comparing the 

two reflection coefficients, the same pattern is observed, in that the phase is clearer in the 

less reverberant room. Notice again that, in all these figures, the physical alignment of the 

source, diffraction point and shadow zone are different from previously shown results, 

demonstrating that the diffraction implementation correctly bends rays into the 

appropriate directions. 
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Figure 4.4 Phase in radians of a source in a reverberant room with a square pillar; 

the source is at (2.5,1): (a) R=0.9 (b) R=0.5. 

 

4.2.2 Results at 250 Hz 

At a lower frequency of 250 Hz, the main difference from the 1000 Hz 

predictions is an increase in the number of diffracted rays. This is because the edge-

proximity tolerance of λ/2 is greater, allowing more rays to satisfy the diffraction 

conditions. Ray-tracing predictions at 250 Hz for exactly the same room configurations 

are shown in Figures 4.5, 4.6, 4.7 and 4.8. For the empty, reverberant room in Figure 4.5, 

the phase contours appear to lose their circular shape and became slightly square, near the 

reflective room boundaries. As in the 1000-Hz case, there is less scattering when the 

reflection coefficient of the walls decreases. 

 
Figure 4.5 Phase in radians of a source in an empty reverberant room at 250 Hz; 

the source is at (2,2): (a) R=0.9 (b) R=0.5.  
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Figure 4.6 Phase in radians of a source in a reverberant room with a corner at 250 Hz; 

the source is at (4,4): (a) R=0.9 (b) R=0.5.  

 

In Figure 4.6, the presence of a diffracting corner does not scatter the sound as 

strongly as in the 1000-Hz case. The wave fronts in the shadow zone remain quite 

distinguishable and circular, even with R=0.9. This result makes sense because more 

diffraction occurs at a lower frequency, allowing the diffracted rays to better dominate 

the scattering caused by reflected rays. The results of the doorway configuration in Figure 

4.7 reinforce the previous two results. The phase scatters less at the lower frequency, and 

also for the lower reflection coefficient. The continuity of the wave fronts is not good at 

the left shadow-zone boundary, but is better at the right shadow-zone boundary. 

 
Figure 4.7 Phase in radians of a source in a reverberant room with a doorway at 250 Hz; 

the source is at (1,1): (a) R=0.9 (b) R=0.5. 
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In Figure 4.8, the phase around the square pillar has both similarities to and 

differences from that of the 1000-Hz case. At the boundary between the first-order 

shadow region and the direct region, the wave fronts at 250 Hz appear V-shaped in the 

R=0.9 results, but not in the R=0.5 results. Within the shadow region, the phase of both 

250-Hz results is circular, while that of the 1000-Hz results is still V-shaped. The 

explanation for these predictions lies in the relative strengths of the reflected and 

diffracted rays. Since more diffraction occurs at lower frequency, the diffracted rays 

dominate the reflected rays within the shadow zone, creating the circular wave fronts. 

However, when the reflection coefficient of the wall increases, the reflected rays 

dominate the diffracted rays, causing the V-shaped wave fronts. At 250 Hz, both of these 

cases are observed but, at 1000 Hz, the reflected rays always dominate. Again, this 

suggests that for room predictions where the reflection coefficient is high, the prediction 

of second-order diffraction around obstacles may be unnecessary. 

 

 
Figure 4.8 Phase in radians of a source in a reverberant room with a square pillar at 

250 Hz; the source is at (2.5,1): (a) R=0.9 (b) R=0.5. 
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 We now compare the 1000-Hz and 250-Hz results in the context of active noise 

control. In theory, active noise control should perform better when the phase of the sound 

field is better defined. This is because it is easier to match phase to achieve destructive 

interference when the phase behaves in an orderly fashion. From the room predictions, 

the phase is always clearest close to the source. Far away from the source, a smaller value 

of the reflection coefficient produces sharper wave fronts, at both frequencies. Also, the 

lower frequency seems to generate better defined wave fronts in the shadow zones. In 

these regions, reflected rays tend to scatter the phase, so the presence of stronger 

diffracted rays is beneficial. Hence, active noise control should work better at lower 

frequencies in less reverberant rooms. 

 

4.3 Active Noise Control Prediction 

 In this section, we used the improved ray-tracing model to predict the effects of 

active noise control (ANC). ANC predictions have been done in the past using the Image-

Phase model [2, 3]. We studied the case of a single-channel ANC system, which consists 

of two sound sources - one primary noise source and one secondary control source. Only 

a few adjustments had to be made to the program, because the original code already 

supported multiple sources, even though the feature was not intended for ANC prediction. 

The main modification was to address the issue of the sources originally always being in 

phase; thus, an additional variable, φ , was added to account for a phase difference 

between the sources. The phase difference between the sources was then added to the 

phase difference due to path length as )](exp[ φ+kri , when calculating the SPL at the 

receiver. We will show results of this implementation, but optimization of the control 

system will not be included; refer to [2] for a detailed discussion of optimizing the 

effectiveness of the ANC system. Instead, the noise and control source were simply 

placed at the same location, with ,πφ = or a relative 180o phase shift between the source 

outputs. In theory, this should create global control, resulting in destructive interference 

and strong sound attenuation over the entire room [3]. 
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4.3.1 Results at 1000 Hz 

 Figure 4.9 shows the attenuation of SPL achieved by active control, for an empty 

4 m by 4 m anechoic room with R=0.01 at 1000 Hz. Note that sound attenuation is 

defined as the SPL with active control (i.e. with the secondary control source operating) 

minus the SPL without. This means that a negative value of attenuation is a desirable 

reduction of SPL, while a positive value of attenuation is an unfavourable increase of 

SPL. The predicted amplitude in Figure 4.9a shows greatest attenuation close to the 

source. Far away, there are some regions of sound increase. On average, the attenuation is 

-8.4 dB. In Figure 4.9b, the resultant phase field due to the two sources shows faint traces 

of the concentric circles around the source. Interference with the control source appears 

to randomize the phase. Note that subsequent result figures will not show phase, since the 

sound attenuation provided by active noise control is the focus here. In Figure 4.10, the 

reflection coefficient of the walls of the same room is increased to 0.5 and then 0.9. The 

average attenuation is -6.9 dB for R=0.5, and +3.8 dB for R=0.9. For R=0.5, most of the 

receiver locations show sound reduction. However, for R=0.9, attenuation is only 

achieved within 1 m of the source. Beyond that, the control source either has no effect or 

increases the total sound level. As expected, the effectiveness of the control source 

increases with decreasing reflection coefficient. Note that runtimes were about one hour 

in the anechoic case, and about three hours in the non-anechoic cases; the second source 

doubles the complexity of the algorithm. 
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Figure 4.9 Noise-control prediction for an empty anechoic chamber at 1000 Hz; 

the source is at (2,2): (a) amplitude attenuation in dB, (b) phase in radians. 

 

 

 
Figure 4.10 Predicted amplitude attenuation in dB for an empty room; 

the source is at (2,2): (a) R=0.9 (b) R=0.5. 
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 The next set of predictions, in Figure 4.11, is for a room with the same geometry 

as for Figure 3.8 - namely, a room with one hanging straight wall. Attenuation is best in 

regions close to the source. It is worse in some areas within the shadow zone, where 

sound levels increase. The average attenuation for the entire room is -4.8 dB for R=0.01, -

3.3 dB for R=0.5, and +6.5 dB for R=0.9. If the average is calculated within the shadow 

zone only, the attenuation is -1.4 dB for R=0.01, +0.36 dB for R=0.5, and +10.6 dB for 

R=0.9. Again, increased surface reflection results in worse sound cancellation. The poor 

performance in the shadow zone is not surprising because the phase was strongly 

scattered (see Figure 4.3). 

 

 

 
Figure 4.11 Predicted amplitude attenuation in dB for a room with a hanging straight wall; 

the source is at (1,1): (a) R=0.01 (b) R=0.5 (c) R=0.9. 
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 The last two sets of predictions in Figures 4.12 and 4.13 pertain to a room with 

fittings (see section 3.6.3). In Figure 4.12, the fittings are random, using the fitting-zone 

feature of the original ray-tracing model (see Figure 3.14). In Figure 4.13, the fittings are 

well-defined blocks, as seen in Figure 3.16. Comparing these two cases, we can evaluate 

the prediction of active noise control with random scattering versus deterministic 

diffraction. For the random fittings, the average attenuation is +3.5 dB for R=0.01, -1.5 

dB for R=0.5, and +10.0 dB for R=0.9. The trend between attenuation and reflection 

coefficient is not consistent, although the most reverberant case still produces the worst 

sound attenuation. This may be because of the randomness in the model for fittings, since 

precise phase matching is required in active noise control. 

 

 

 
Figure 4.12 Predicted amplitude attenuation in dB for a room with random fittings; 

the source is at (1,2): (a) R=0.01 (b) R=0.5 (c) R=0.9. 
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 For the non-random fittings with deterministic diffraction, the average attenuation 

is -3.8 dB for R=0.01, -3.5 dB for R=0.5, and -1.8 dB for R=0.9. The trend of increasing 

attenuation with decreasing reflection coefficient is again obeyed. Also, attenuation is 

always achieved, unlike the previous results using random scattering. The difference 

between the results suggests that the method of modeling diffraction around fittings (i.e. 

randomly or deterministically) has a significant impact on ANC predictions. 

 

 

 
Figure 4.13 Predicted amplitude attenuation in dB for a room with non-random blocks; 

the source is at (1,2): (a) R=0.01 (b) R=0.5 (c) R=0.9. 
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4.3.2 Results at 250 Hz 

 The same room configurations from section 4.3.1 were re-predicted at 250 Hz. 

Since the frequency is lower, we expect active noise control to perform better. Results for 

the empty-room case are shown in Figure 4.14 (compare to Figure 4.9 at 1000 Hz). The 

average attenuation is -8.8 dB for R=0.01, -7.2 dB for R=0.5, and +3.6 dB for R=0.9. 

These values are all improvements from those at 1000 Hz, but the difference is less than 

half a decibel. The trend of better sound attenuation with decreasing reflection coefficient 

is obeyed. 

 

 

 
Figure 4.14 Predicted amplitude attenuation in dB for an empty room; 

the source is at (2,2): (a) R=0.01 (b) R=0.5 (c) R=0.9. 
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 The results for the case of a hanging straight wall are shown in Figure 4.15. The 

average attenuation is -6.3 dB for R=0.01, -3.1 dB for R=0.5, and +6.4 dB for R=0.9. In 

the shadow zone, the average attenuation is -5.8 dB for R=0.01, -0.8 dB for R=0.5, and 

+10.4 dB for R=0.9. As in the empty-room predictions, the 250-Hz results are all better 

than the 1000-Hz results. This time, sound levels are slightly reduced in the R=0.5 case, 

rather than slightly increased. 

 

 

 
Figure 4.15 Predicted amplitude attenuation in dB for a room with a hanging straight wall; 

the source is at (1,1): (a) R=0.01 (b) R=0.5 (c) R=0.9. 
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 The prediction results for the room with random scatterers are seen in Figure 4.16. 

In the fitting zone, the average attenuation is +2.3 dB for R=0.01, -3.1 dB for R=0.5, and 

+8.7 dB for R=0.9. As before, the 250-Hz attenuations are uniformly better than at 1000 

Hz. Interestingly, the sound is reduced most at R=0.5 instead of at R=0.01, as for the 

1000-Hz case with random fittings. 

 

 

 
Figure 4.16 Predicted amplitude attenuation in dB for a room with random fittings; 

the source is at (1,2): (a) R=0.01 (b) R=0.5 (c) R=0.9. 
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In Figure 4.17, results for ANC prediction in the room with non-random fittings 

are shown. The average attenuation is -3.5 dB for R=0.01, -3.9 dB for R=0.5, and -2.0 dB 

for R=0.9. The 250-Hz attenuations are better than those at 1000 Hz except for R=0.5, 

which is surprising. The R=0.5 case also achieved more attenuation than R=0.01, as 

predicted when random scatterers were used. There is again a significant difference in the 

results between the cases of random and non-random fittings; the non-random method 

predicts greater attenuation. The average sound attenuations of all the above cases are 

summarized in Table 4.1. 

 

 
Figure 4.17 Predicted amplitude attenuation in dB for a room with non-random fittings; 

the source is at (1,2): (a) R=0.01 (b) R=0.5 (c) R=0.9. 
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Table 4.1 Predicted average sound-level attenuation (dB) obtained with a single-channel 

active control source in various room configurations. 

 Configuration 

f (Hz) R Empty Wall
Shadow zone 
behind wall 

Random 
fittings 

Non-random 
fittings 

250 0.01 -8.8 -6.3 -5.8 +2.3 -3.5 
250 0.5 -7.2 -3.1 -0.8 -3.1 -3.9 
250 0.9 +3.6 +6.4 +10.4 +8.7 -2.0 

1000 0.01 -8.4 -4.8 -1.4 +3.5 -3.8 
1000 0.5 -6.9 -3.3 +0.36 -1.5 -3.5 
1000 0.9 +3.8 +6.5 +10.6 +10.0 -1.8 

 

4.4 Summary 

 In this chapter, we have applied the improved ray-tracing model to predict sound-

pressure levels in rooms with diffracting objects. Two reflection coefficients (0.5 and 0.9) 

and two frequencies (250 Hz and 1000 Hz) were studied. Predicted phase wave fronts 

were less scattered at the lower frequency, and with the lower reflection coefficient. The 

lack of second-order diffraction was less evident in room predictions, because higher-

order reflections allow rays to enter shadow zones. The model was also modified to 

include the secondary source of a single-channel ANC system. Predictions were made to 

study ANC effectiveness in the same room configurations. Active noise control was 

expected to perform better in cases with clearer phases, and this was confirmed in the 

results of ANC predictions. For rooms with multiple fittings, the representation of the 

fittings – either randomly using a fitting density, or non-randomly using several 

connected interior surfaces – strongly affects the predicted effectiveness of the ANC. The 

following chapter concludes the work and summarizes the results. 
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Chapter 5 

Conclusion 
5.1 Summary of Accomplishments 
 The objective of this work was to develop a model that predicts sound-pressure 

fields in amplitude and phase, in rooms with diffracting obstacles. This is essential for 

optimizing an active noise control system, so that low-frequency noise in industrial 

workrooms could be attenuated for the benefit of the room occupants. To achieve this 

objective, we performed both experiments and predictions to study the behaviour of 

sound in the presence of diffracting obstacles. 

 Measurements were performed in an anechoic chamber to study sound diffraction. 

A diffracting edge, a single block, and a random array of blocks were used to investigate 

phase changes due to first-order diffraction and multiple obstacles. We found that phase 

changes occur in front of obstacles, due to interference with reflected waves. Phase 

changes also occur behind obstacles, due to the larger source-to-receiver distances 

involved; the path length increased when the direct source-to-receiver path was blocked. 

Far behind an obstacle, in the shadow zone, phase varied linearly with distance. The 

fittings also created more peaks and dips in the amplitude results, because of interference 

effects. The experimental data were verified in comparison with theoretical solutions, and 

also with predicted results from the finite element model. In general, the agreement was 

good; the peaks and dips of the amplitude and phase plots occurred at the expected 

locations. 

 An existing ray-tracing prediction model was upgraded to include phase and 

deterministic first-order diffraction. Phase was implemented by considering the total 

distance traveled by a ray when it arrives at the receiver. Diffraction was implemented by 

redirecting rays that strike within λ/2 of an edge into the shadow zone behind the obstacle. 

The amplitude and phase of a ray are also modified by the diffraction coefficient as per 

the Uniform Geometric Theory of Diffraction. The ability of the algorithm to handle 

different types of edges and room geometries was tested extensively. Results for the 
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experimental configurations were satisfactory; phase varied continuously between the 

direct and shadow zones, and realistic amplitude decay was predicted in the shadow zone. 

Inaccuracies were associated with the lack of both second-order diffraction and 

reflections near an edge. 

 Furthermore, the ray-tracing model was used to predict sound fields in non-

anechoic rooms, to investigate the effect of wall reflections with diffraction on phase. We 

found that the phase became more scattered when the reflection coefficient of the walls 

increased. Phase was clearest close to the source, and scattered the most near the room 

boundaries, and within shadow regions. Moreover, lower frequencies have clearer wave 

fronts. These results imply that active noise control should be more effective for rooms 

with lower reverberation and lower frequencies of sound. This was verified by modifying 

the ray-tracing program to predict sound attenuation due to a single secondary control 

source. Thus a single-channel active control system was simulated, where by an out-of-

phase secondary control source was co-located with the primary noise source to be 

controlled. Attenuation was indeed predicted, with greater effectiveness at a lower 

frequency and a lower reflection coefficient. This suggests that the ray-tracing model 

may be a viable tool for optimizing active noise control systems in the future. 

 

5.2 Future Work 
 Although this work has been successful in predicting sound-pressure levels in 

shadow zones with phase, there is still room for improvement. Future work with the ray-

tracing model could address some of the known problems and suggested changes 

discussed in the third chapter. Most notably, the implementation of higher-order 

diffraction, and making the code more efficient and user-friendly, would be welcome 

changes. On the topic of active noise control in rooms, the ray-tracing model in its 

current state requires the user to input secondary-source strengths, in magnitude and 

relative phase. It would be beneficial to combine the ray-tracing algorithm with the 

algorithm for calculating the strengths of the control sources [30] to automate this step.  
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