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Abstract 
 

Condition monitoring of hydraulic systems is an area that has grown 

substantially in the last few decades. This thesis presents a scheme that 

automatically generates the fault symptoms by on-line processing of raw sensor data 

from a real test rig. The main purposes of implementing condition monitoring in 

hydraulic systems are to increase productivity, decrease maintenance costs and 

increase safety. Since such systems are widely used in industry and becoming more 

complex in function, reliability of the systems must be supported by an efficient 

monitoring and maintenance scheme. 

This work proposes an accurate state space model together with a novel 

model-based fault diagnosis methodology. The test rig has been fabricated in the 

Process Automation and Robotics Laboratory at UBC. First, a state space model of 

the system is derived. The parameters of the model are obtained through either 

experiments or direct measurements and manufacturer specifications. To validate the 

model, the simulated and measured states are compared. The results show that under 

normal operating conditions the simulation program and real system produce similar 

state trajectories.  

For the validated model, a condition monitoring scheme based on the 

Unscented Kalman Filter (UKF) is developed. In simulations, both measurement and 

process noises are considered. The results show that the algorithm estimates the 
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system states with acceptable residual errors. Therefore, the structure is verified to 

be employed as the fault diagnosis scheme.  

Five types of faults are investigated in this thesis: loss of load, dynamic 

friction load, the internal leakage between the two hydraulic cylinder chambers, and 

the external leakage at either side of the actuator. Also, for each leakage scenario, 

three levels of leakage are investigated in the tests. The developed UKF-based fault 

monitoring scheme is tested on the practical system while different fault scenarios 

are singly introduced to the system. A sinusoidal reference signal is used for the 

actuator displacement. To diagnose the occurred fault in real time, three criteria, 

namely residual moving average of the errors, chamber pressures, and actuator 

characteristics, are considered. Based on the presented experimental results and 

discussions, the proposed scheme can accurately diagnose the occurred faults.  
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CHAPTER 1 
 
 
 

Introduction 
 
 
 
 
 
 
 

1.1 Preliminary Remarks 

The advent of hydraulic systems with their speed and reliable force accelerated a 

rapid development in the modern industry such as heavy-duty industrial robots, mining, 

material handling and press, manufacturing and construction. Hydraulic systems 

developed and accompanied by automatic controls allow flexibility in various types of 

operations, and significantly speed up the processes involved.  

Employing hydraulic systems rather than other power transmission systems (e.g., 

electrical motor) provides a number of relatively important advantages, some of which 

are the following ([1] Section 4.4 and [2] Chapter 1): 

1. Hydraulic fluids carry away heat generated from moving parts in the 

systems, as well as they act as superb lubricants. 

2. Hydraulic actuators can be employed in random and periodic operations 

without any considerable suffering. 
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3. Hydraulic actuators can apply large forces with high load stiffness. 

4. Load effects are insignificant in hydraulic systems, compared with those 

in other power transmission systems. 

5. Hydraulic systems have long operating lives even if employed in harsh 

environments. 

6. Hydraulic systems have considerably less weight/ power ratio. 

However, there are a number of disadvantages associated with hydraulic power 

systems ([1] Section 4.4 and [2] Chapter 1): 

1. Generating hydraulic power is not so readily achievable as is with other 

forms of powers, e.g. electrical, and mechanical. 

2. Hydraulic systems are relatively expensive. 

3. Fire and explosion hazards exist during operation. 

4. Hydraulic power transmissions produce significant amount of loud noise. 

5. Hydraulic system designers face several complex characteristics such as 

non-linearity. 

Wide industrial applications, along with the design challenges, make hydraulic 

systems one of the most interesting topics in engineering research [3-5]. 

The main objective of this thesis is to analyze and select the best modeling 

approach, compromising between model accuracy and model complexity regarding real-

time applications and response effectiveness followed by developing, verifying and 
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integrating modules for the purpose of online monitoring and diagnosis of faults in 

hydraulic power systems . 

In the process engineering and mechanical machinery, diagnosing the occurred 

faults in the system is an essential issue. Undoubtedly, in some applications such as 

airplane power systems, faults should be detected and recovered immediately while the 

plant is still operating to prevent catastrophic system failure and loss of human lives. 

Fault diagnosis in some other applications, such as off-highway machinery or 

manufacturing, may not be as critical but nevertheless early diagnosis of plant faults 

helps enhance the productivity and avoid fault progression leading almost certainly to 

plant failure. Thereby, there has been considerable interest in this field from practitioners 

as well as researchers for a number of decades. Based on physical redundancy and 

analytical redundancy ideas, a wide variety of methodologies have been developed to 

improve the fault diagnosis in dynamic systems [6]. In the first approach, redundant 

sensors and actuators are installed in the systems; therefore in the event of a failure, these 

surplus devices are employed instead of the faulty one. The analytical redundancy 

approach is founded on the accurate model of the dynamic system. If a malfunction 

occurs, the difference between the real plant and model behavior will evolve. Once this 

difference exceeds a set threshold value, it is concluded that the system operates 

undesirably and tends to function in uncontrollable regions. 
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1.2 Hydraulic Power Systems 

A servo-system is a feedback system consisting of at least the following three 

essential elements; sensor, servomotor, and controller. As for hydraulic systems, the vast 

majority of these types of power systems in industrial applications are servo-systems. 

Beside the mentioned elements, a number of hydraulic components are interconnected to 

form a practical hydraulic servo-system that provides the desired operational 

characteristics. The descriptions of fundamental components of a hydraulic servo-system 

are the following: 

Actuator 

A Hydraulic actuator (cylinder) employed in a hydraulic system is the motor side 

of the system as opposed to a pump, which is the generator or driver side of the system. 

Hydraulic actuators are activated by hydraulic pressure. They transform the fluid's energy 

to a linear work, which can be either rotational or translational. The actuator comprises a 

cylinder tube, in which a piston connected to a rod slides. The rod slides out of the 

cylinder through seals from either one or both sides. The piston, which consists of the 

sliding rings and seals, divides the inside of the cylinder into two chambers. If the 

effective areas of both chambers are identical, the cylinder is called symmetric, otherwise 

it is asymmetric. By pumping hydraulic oil to one side of the hydraulic cylinder, the rod 

begins sliding toward the other. Hence, the oil is pushed back through the return line to 

the reservoir from the other chamber. 
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Pump 

The pump is the heart of the hydraulic power system and, as such, is fundamental 

for an efficient system operation. Typically, the pump supplies the hydraulic power of the 

system, which is essential to activate the actuator. Most of the hydraulic pumps used in 

power systems are positive displacement pumps. Positive displacement means that the 

flow is directly proportional to the speed of the pump. Regarding the internal pump 

volume, two types of pumps are designated: fixed displacement and variable (adjustable) 

displacement. Depending on the required pressure and flow, as well as the efficiency and 

life expectancy, either fixed displacement pump (low budget) or variable displacement 

pump (high quality) may be chosen. Fixed displacement pumps derive a constant amount 

of fluid in each revolution of the rotor. To achieve the desired characteristics from 

hydraulic power system, several kinds of pumps have been developed (e.g., screw pumps, 

gear pumps, gerotor pumps, vane pumps, and piston pumps). 

Servo valve  

Servo valves are employed in hydraulic systems to manage the flow of the fluid in 

the hydraulic circuit pipelines. They, along with the feedback controllers, generate 

continuously regulated outputs as functions of the electrical inputs. Commonly, the 

feedback signal is produced by the comparison between the position, velocity, or force of 

the actuator (end-effector) and reference signal sent to the control valve. Servo valves are 

designed in single-stage, two-stage, and three-stage models. The single-stage servo-valve, 

the simplest and least cost, consists of a spool valve whose position is controlled by a 

torque motor via a direct connection. Multi-stage servo-valves intensify the applied 

torque of the torque motor using one or two hydraulic amplifiers. Thereby, multi-stage 
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servo-valves can be employed for higher flow rates and pressures, as well as, they can 

overcome high friction.  

Other components 

In addition to the above, several other components are required to complete a 

hydraulic system, e.g. sensors and pipelines. Sensors must be installed in the proper 

locations to measure the demanded data; on the contrary, the measurand should not be 

affected. The feedback controller may need this data to generate the input signal to servo-

valve.  

Several valves, such as needle valves, pressure relief valves, check valves, are 

employed to control the pressure, rate of flow, and direction of fluid inside of the circuit. 

As an instance, the pressure relief valve reduces and controls the pressure not to exceed a 

certain level. To do so, it connects the high pressure flow to the reservoir. Mostly, the 

common usage is in the protection of a hydraulic element from the unwanted high 

pressure.  

Generally, a hydraulic circuit is a closed-loop system including a tank as a fluid 

reservoir. A pump is always necessary to pressurize the fluid, which ordinarily is 

hydraulic oil. Meanwhile, a servo-valve regulates this high pressure fluid to control the 

behavior of the end-effector, which could follow a complex trajectory with a required 

force.  For this sake, a controller should be developed. For instance, Dutton and Groves 

[7] developed an adaptive controller based on a pole-placement algorithm.  

Thus far, primary structure of a hydraulic system has been explained. Moreover, 

regarding a sophisticated hydraulic system, the couplings or interactions emerge from the 
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existence of signal connections or common elements between the different lines in the 

circuit [8].  

1.3 Potential faults in hydraulic systems 

In hydraulic systems, a wide range of faults and failures may occur, which have 

been extensively investigated by researchers. Chen and Saif [9] developed an iterative 

learning observer (ILO) for estimation, fault detection and compensation. Their proposed 

methodology can diagnose multiple faults. Three most common faults in industrial 

hydraulic systems are fluid contamination [10], supply pressure malfunction [11], and 

leakage [12]. 

Heron and Huges [13] developed a novel contaminant monitoring scheme to 

examine the cleanliness level of fluid in a hydraulic system. Fine solid contaminant 

emanating from the moving parts in the hydraulic circuit accumulates around the small 

clearances of spool valves. Consequently, the friction in the valve increases and the 

system operates erratically. To simulate this fault in their study, the oil was added with 

various level of contaminants and was passed through the hydraulic system and finally 

through the contaminant monitor. 

Leakages whose effects include a reduced pressure, degraded stability, and 

decreased efficiency are the most common faults occurring in the practical hydraulic 

power systems. Leakages are classified into two categories: external and internal. The 

greatest concern among the related topics is the leakage in Pumps and actuators as they 

are two essential components in all hydraulic power systems as well as they both contain 

moving parts accelerating the wear. 
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Actuator external leakages mostly occur at the location of the connecting hoses 

and the cylinder. An and Sepehri [14] modeled the external leakages through two bleed 

valves, each mounted on a bypass to each side of a cylinder. The amount of leakages was 

tuned by opening these bleed valves. However, they did not quantify the leakage. In 

2006, An and Sepehri [15] developed a sequential analysis (SA) and addressed a 

quantification scheme. The importance of this scheme is in recognizing the progression 

of the leakage fault. Crowther et al. [12] built a neural network model for a hydraulic 

actuation system in which the lack of supply pressure, internal leakage in the actuator, 

and dynamic friction load were investigated. The actuator internal leakage was modeled 

by a cross-line bleed valve. The internal leakage, which is relatively more common in 

practice rather than the external one, arises as a consequence of superfluous clearance 

between the inner wall of the cylinder and the piston. The seal may wear after being in 

operation for a while. Both types of leakages lead to the demand of higher flow and 

pressure supply for the recovery intention. 

Furthermore, leakage in the hydraulic pump is another aspect of leakage faults. 

Leakage faults regularly lead to decrease in both the flow rate and pressure in discharge 

ports. It may happen by virtue of Excessive wear of pump internal clearances or poor 

sealing. Skormin and Apone [16] developed a failure prediction procedure, detecting and 

utilizing trends exhibited by parameter estimation. The investigated faults included the 

leakage of the hydraulic pumps. In addition, there are several minor reasons causing this 

decline in pressure and flow rate. Two most common of them are a) a pipe, impeller, or 

suction strainer that may be blocked, and b) The characteristics of the liquid may vary 
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from the manufacturer specifications, as examples, higher viscosity, or density than 

expected. 

Despite major development, researchers are constantly working on more accurate 

and fast algorithms, which are suitable for real time applications and more complex 

systems.  

1.4 Research Objectives 

As a consequence of all above, over time, operational problems or faults due to 

factors such as wear, misuse and lack of proper maintenance develop in hydraulic 

systems. Such trends if not prevented can lead to catastrophic failure. It is therefore, 

desirable to quickly resolve these problems and recover from their adverse consequences. 

This may be achieved with the use of sensors, signal processing and artificial intelligent 

(AI) techniques. This proposed research focuses on design, and fabrication of a hydraulic 

experimental set-up that allows fault emulation, and development of a model-based fault 

detection, diagnosis and real-time control scheme. Specifically, the objectives of the 

research are to: 

• Analyze and select the best modeling approach, compromising between model 

accuracy, model complexity, and real-time detection and response 

effectiveness. 

• Develop algorithms to characterize, isolate and correctly associate various 

faults to causes. 

• Design an experimental set-up, which gives the flexibility to induce the 

proposed faults at any desired location in the system, and simultaneously does 
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not produce any superfluous affect due the arrangement, other than that 

induced by the simulator algorithm. 

• Experimentally verify the theoretical propositions. 

• Develop, verify and integrate fault detection and diagnosis module for 

hydraulic systems. 

• Perform fine-tuning to obtain a trade-off between false alarms and detection 

rate. 

In this thesis, Unscented Kalman Filter (UKF), a novel methodology inspired 

from Kalman filters, is utilized for health monitoring of the system. This methodology is 

a recursive estimator. This means that only the current measurement and the estimated 

state from the previous time step are required to compute the estimate for the current 

state. The significant characteristic of the UKF is that they are suitable for highly non-

linear systems. 

Faults affecting the reliability of hydraulic systems are the most critical in 

industrial applications. Four of the common faults in such systems will be studied. These 

are: 

1) Dynamic friction due to the load. (Emulated by resistance from a pneumatic 

cylinder.) 

2) Sudden loss of load. 

3) Internal leakage of the actuator. (Emulated with a needle valve.) 

4) External leakage of the actuator. (Emulated with two needle valves.) 

Based on the model developed, the control command executed, and the 

measurements obtained on the response, Unscented Kalman filtering technique will be 
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used to determine the state errors or residuals. Devising practical and statistically viable 

thresholds, the residuals will be used to isolate a possible fault and to identify the 

probable cause. Once a degree of certainty is established, corrective actions can be taken. 

This may constitute a) modifying the control command, b) issuing a warning, or c) safely 

halting the operation if possible.  

1.5 Organization of the Thesis 

This thesis, which is conducted to meet the outlined scope, is organized in the 

following order. Chapter 1: The hydraulic systems along with their applications are 

introduced and also potential faults that may occur in the practical hydraulic systems are 

discussed. The objectives of the current research are also explained. 

Chapter 2: The experimental hydraulic set-up is introduced and a state space 

model is developed and explained in detail. Simulations and tests are carried out in order 

to validate the developed state space model. Also, the frequency range of the system is 

discussed. 

Chapter 3: fault diagnosis methods are surveyed and a basis for understanding the 

Kalman filter is provided in this chapter. Moreover, the Unscented Kalman filter, as the 

base of the fault diagnosis methodology in this research, is studied in detail. The fault 

monitoring scheme applied to the hydraulic test rig is developed and the simulation 

results are shown to confirm the satisfactory operation of the proposed algorithm. 

Chapter 4: Condition monitoring of the hydraulic test rig is investigated. The 

results of the real-time state estimation are shown followed by the fault diagnosis 

discussions.  
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Chapter 5: The conclusions drawn from the investigation are presented, and the 

prospects for applications and further developments are discussed. 
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CHAPTER 2 
 
 
 

System Modeling and Set-up 

Configuration 
 
 
 
 
 
 
 

2.1 Introduction 

This chapter describes the experimental set-up on which the condition monitoring 

is conducted. The investigated test rig is typical of the systems used in many industrial 

applications. It is composed of a group of essential hydraulic components including a 

pump, servo-valve, solenoid-valve, cylinder, needle-valve, relief-valve, and filter. 

Component specifications along with the non-linear dynamic equations are analyzed to 

develop a mathematical model of the system. A LabViewTM interface is developed to 

issue control commands based on sensory data and perform real-time condition 

monitoring and fault diagnosis. 

In Section 2.2 the test rig configuration is illustrated and its subsystems along 

with their operations are explained in detail. Then, all five potential faults that are 

emulated by the current scheme are discussed. Subsequently, the state space model 
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corresponding to the explained set-up is derived in Section 2.3. This mathematical model 

is further elaborated with the details of the various governing equations, function 

modeling, and all related parameters. In Section 2.4, the actual data acquired from the set-

up is compared with the simulation results in order to validate the developed state space 

model. 

2.2 Experimental Test Rig 

The schematic diagram of the experimental set-up is shown in Figure 2.1. The 

entire system is divided into two subsystems: Pneumatic and Hydraulic subsystems. The 

hydraulic part is the main part of the system while the pneumatic subsystem is designed 

to emulate the dynamic friction load. 

The pneumatic subsystem consists of an SMC five-way solenoid valve connected 

to an air pressure supply. This supply provides the constant pressure of 750 KPa. The 

solenoid valve receives the control signal from a PC equipped with a PCI-6024E data 

acquisition board. The asymmetric pneumatic cylinder controlled by this solenoid valve 

applies a force to the hydraulic actuator as an occurred fault for the hydraulic subsystem. 

The direction of this force is always opposite of the hydraulic actuator movement. To do 

so, as the hydraulic servo-valve pressurizes the retracting chamber (chamber 2 as 

illustrated in Figure 2.2), the pneumatic solenoid valve connects the supply line to 

retracting chamber of pneumatic cylinder and vice versa. This process emulates the 

dynamic friction load, which is common in practical servo-actuator systems. The 

magnitude of this force is 1162 N during the hydraulic actuator extraction period while it 

is 1042 N during the hydraulic actuator retraction period. 
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Figure 2.1: Schematic diagram of the experimental set-up 
 

The hydraulic subsystem is powered by a pump supplying high-pressure hydraulic 

fluid to the actuator. In order to investigate a more general system modeling, an 

asymmetric cylinder rather than a symmetric one is employed as the actuator. As shown 

in Figure 2.2, chambers are referred to as chamber 1 and chamber 2, and are connected to 

an Atchley Controls® servo-valve. Its control signal range is from -100 mA to 100 mA, 
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which is received from a computer equipped with the LabViewTM software. Analog and 

digital electronic units are shown schematically in Figure 2.3. Three sensors are installed 

in the set-up to measure the required states. Two pressure transducers are mounted to 

measure the pressure in both chambers. A position encoder measures the displacement of 

the actuator. All these signals are transmitted to the PC via the PCI-6024E data 

acquisition board, and subsequently the command signals are sent to servo-valve from the 

PC. 

Points of leakages and external forces as potential faults are illustrated in Figure 

2.2. Flows of q1 and q2 to chambers 1 and 2 respectively are controlled by the input 

current Ia of the servo-valve. Since the servo-valve has a symmetric spool, the positive 

direction for the spool movement is arbitrarily defined. As for the asymmetric cylinder, 

the positive direction for the actuator movement is outward to the left. 

 

 

Figure 2.2:  Servo-actuator functional diagram 
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Figure 2.3: Schematic diagram of the control units 
 

The set-up is designed to produce common faults in the hydraulic systems. Figure 

2.4 shows a photograph of the experimental test rig. All three leakages are emulated by 

means of three needle valves with the same characteristics. These needle valves are 

shown in Figure 2.5a. On each chamber, there is a pressure transducer along with a visual 

gage for safety purposes. One needle valve is mounted as the bypass for the cross-port 

leakage emulation. As shown in Figure 2.5b, a pneumatic cylinder, a position encoder, an 

LVDT, and an external load are connected to the hydraulic end-effector. The LVDT is 

used to mark the origin of the actuator, while the position encoder is employed to 

measure the displacement from this origin. The actuator stroke is 10 cm and the origin of 

yx  is located at the point where the ram is fully retracted. Since the external load is 

emulated by means of two suspended weights, due to the gravity, its effect is a force 

applied on the actuator asymmetrically. This force resists the piston displacement during 

the retracting period while it accords with the movement during the extracting period. 

Sudden loss of these weights is a scenario that will be discussed as another occurred fault 

in the system in section 4.2.2.2. 
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Figure 2.4: Hydraulic test rig 
 

The closed-loop controller regulates the characteristics of the hydraulic test rig. 

To validate the performance of the proposed closed-loop system, the set-up is excited 

with a sinusoidal reference signal that the end-effector position should follow. A low 

frequency sinusoidal signal, )4.0sin(02.005.0 tr π+=  meter, is considered as the 

reference signal for a period of 50 seconds. Due to the digital computing pace limits, the 

sampling time is chosen as 20 ms in this research. Figure 2.6 shows the reference signal 

along with the measurement signals. With a comparison between Figures 2.6a and 2.6b, it 

can be observed that the end-effector tracks the reference signal satisfactorily; however, 

there is a phase difference of around 
4

π , as well as a 4% amplitude offset. Additionally, 

Figures 2.6c and 2.6d show that the pressure in chamber 2 is much higher than that at 

chamber 1. The reference signal is symmetrical around the origin therefore the servo-

valve transmits higher pressure to chamber 2 because this chamber has less effective area 

than that of chamber 1. Moreover, with reference to the hydraulic system schematic 
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diagram shown in the Figure 2.1 the asymmetric external load intensifies the pressure in 

chamber 2. 

 

   

(a) 
 

   

 (b) 

Figure 2.5: Hydraulic test rig in more detail, (a) Hydraulic circuit, and (b) 

Pneumatic circuit and end-effector attachments 
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Figure 2.6: The test rig characteristics, (a) actuator position reference signal and resulting 
(b) end-effector displacement, (c) Pressure in chamber 1, and (d) Pressure in chamber 2 
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2.3 System Modeling 

2.3.1 Governing Equations 

The dynamics of almost all practical hydraulic components can be appropriately 

described by the equations presented by Merritt [2]. In this research, understanding the 

dynamic features of the actuator and the servo-valve are imperative. The flow through the 

servo-valve is proportional to the square root of the pressure drop across the port and the 

area of the valve opening. The valve opening area is proportional to the spool 

displacement and therefore by applying a linear orifice area gradient related to the spool 

displacement, the following expression can be used to represent the flow equations of the 

servo-valve: 
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where: 

q1, q2: flow from the servo-valve to chamber 1 and chamber 2 

  Ps, Pe: supply and return line pressures  

  p1, p2: pressures in chamber 1 and chamber 2 
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  xv: the servo-valve spool displacement 

  Cd, ω:  orifice coefficient of discharge and orifice area gradient 

  ρ: density of the hydraulic oil 

It is assumed that the rod and the piston of the hydraulic cylinder are rigid, and 

the oil on either side of the piston is compressible. As this compressibility is proportional 

to the volume in which pressure acts, the rate of the change of volumes within the 

actuator may be expressed as: 
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where: 

  β: effective bulk modulus of the hydraulic fluid 

  A1, A2: effective piston areas of chamber 1 and chamber 2 

  xy: actuator position 

  Xmax, Xmin: positions when the piston is fully extended and fully retracted 

V0: volume of the fluid trapped in the supply pipes connected to each 

chamber (it is assumed that this volume is identical for both chambers) 

The continuity equations for hydraulic flows of the actuator are applied to 

determine a relationship between chamber flows, chamber pressures, and the piston 

velocity. By considering the compressibility issue from the preceding equation, the 

following descriptions are held for the flows of the chambers. 
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Equations 2.1 and 2.3 are combined to eliminate the flow parameters from the 

equations. By solving the obtained relationship for 1p&  and 2p& , we achieve: 
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The position of the flow controlling spool valve as a function of the drawn current 

can be characterized by a quadratic system: 

vnvmnvsp xxdxuK
2ωω ++= &&&                                    (2.5) 

where: 

  Ksp: spool valve positioning gain 

  ωn: natural frequency of the spool dynamics 

  u: valve input current  

  dm: damping ratio 

The dynamics of the actuator is modeled based on the summation of the forces 

acting on the piston of the cylinder. The following equation can be expressed: 
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extfye FfpApAxMf +−−==∑ 2211
&&                            (2.6) 

where: 

  Me: combined effective mass of the objects moving with the ram 

  ff, Fext: actuator friction and external forces 

As illustrated in Figure 2.1, the ram pulls up a mass, Ma = 25 kg, during its 

retraction. For the hydraulic system this weight acts as an external force (Fext = 245 N). 

Moreover, it is assumed that this weight moves along with the ram and therefore its mass 

should be added to the effective mass of the moving objects. Also, the pneumatic cylinder 

ram and the position encoder are attached to the end-effector. Then as a result Me = 33 

kg.  

Friction is an unavoidable factor in moving machinery and thus it has to be 

studied as a part of dynamics. Friction is a non-stationary and non-linear force that 

depends on many physical parameters and even environmental situations. As an instance 

when two sliding materials are lubricated, different sliding speed causes different film 

thickness of the lubricant and therefore friction characteristics may change. Not only 

because of the challenges of the friction modeling but also due to its significant impact on 

the dynamic of the system, there has been considerable interest in this field. Karnopp [17] 

proposed a typical stick-slip friction model in mechanical dynamic systems. Laval [18] 

improved the Karnopp model and his proposition is adopted in this study to model the 

friction inside of the hydraulic cylinder. His model is expressed as: 
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where: 

  fst, fsl: static and kinetic friction forces 

  C: lubrication coefficient 

  d: effective damping ratio 

In order to produce reliable numerical results, all above parameters and physical 

quantities should be known initially. The parameters of the current system are classified 

into two sets. Parameters of the first set such as effective bulk modulus of the fluid are 

those that are either specified by the manufacturer or measurable directly. On the other 

hand, some parameters, which are categorized as the second group, are neither 

measurable directly nor specified by the manufacturer, such as the static friction, and 

hence must be determined by a set of experiments and measurements through the system 

states.  

To accurately estimate the friction of the actuator, unloaded set-up is run in 

different scenarios to evaluate both static and kinetic frictions. To determine the kinetic 

friction parameter, fsl, the ram is run in several certain velocities. With reasonably good 

precision, it is assumed that these movements have no acceleration (except at start and 

stop) and hence the calculated actuation forces during the ram motions give an indication 

of the kinetic friction. The results of these experiments are shown in Figure 2.7, where 

actuator friction forces are seen to stay reasonably constant for speeds over 0.015 m/s in 

either direction. As an instant of experimental result, Figure 2.6 shows the actuator 

movement from which it can be derived that the average velocity of the actuator is 

around 0.02 m/s. Because this is more than 0.015 m/s, the steady friction force can be 
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chosen as the kinetic friction value. From the Force-Velocity curve (Figure 2.7) the actual 

magnitude of the kinetic friction can be appraised as 0.140 kN, which is the average of 

the actuation force values at the velocity of 0.015 m/s in either direction.  

To recognize the static friction, fst, the input current is regulated to make the ram 

start moving. To do so, the current is increased slowly until the ram starts to move. For 

the sake of simplicity, since the ram starts moving slowly, the acceleration is ignored. 

This experiment is carried out in three different locations along the cylinder for both 

retracting and extracting directions and the applied actuation force is calculated in each 

trial run. Subsequently, the average of these six force values is taken to represent the 

approximate static friction, which is obtained as 0.295 kN.  

There are two other parameters in the friction formulation that should be dealt 

with: the effective damping ratio (d) and the lubrication coefficient (C). The 

mathematical friction model (equation 2.7) is plotted for different values of d and C (not 

all calculations are reproduced here). Both values are positive and also in all surveyed 

literature in which this model of the friction is investigated, the inverse of the lubrication 

coefficient is a positive value less than one tenth. We hereby try to fit the mathematical 

model to the experimental data (Figure 2.7) in a trial and error approach. The values of d 

and C from the best fitted curve are chosen for the state space model parameters. The 

damping ratio, d, is 250 N.s/m, while the lubrication coefficient, C, is 28 s/m.  

The following table shows all actual parameters employed in the state space 

model. 
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Figure 2.7: Experimental results in actuator friction investigation 
 
 

Table 2.1: The numeric values of the hydraulic set-up parameters 

 

 

 

 

 

 

2.3.2 State Space Model 

The state vector of the state space model consists of six variables, which are 

defined as the following: 

[ ] [ ]Tvyyv

T
xxxppxxxxxxxx &&&

21654321 ==          (2.9) 

A1 =31.7 ×  10
-4

 m
2
 fst = 295 N v0 = 0.001 m/s 

A2 =26.6 ×  10
-4

 m
2
 fsl = 140 N ω = 0.02 m

2
/m 

Me = 33 kg C = 28 s/m β = 6.89 ×10
8
 Pa 

Xmin = 0 m ksp = 3.003 ×  10
-5

 V/m ρ = 857 kg/m
3
 

Xmax = 0.1 m ωn = 600 rad/s Ps = 6.5 MPa 

d = 250 N.s/m dm = 0.7 Pe = 0  MPa 

Cd = 2.605 ×  10
-2

 V0 = 18.09 ×  10
-6

 m
3
 Fext = 245 N 
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In order to acquire the state space model, x& should be derived. Having noted the 

definition of x1 and x6, the following expression can be written: 

 61 xx =&                                                           (2.9) 

In order to determine functions for 2x& and 3x& , equation 2.4 can be recast as the following: 













<







−−

−+

≥







−−

−+
=













<







−−

−+

≥







−−

−+
=

0)(
2

)(

0)(
2

)(

0)(
2

)(

0)(
2

)(

15231

4max20

15231

4max20

3

15121

min410

15121

min410

2

xxAPxxC
xXAV

xxAxPxC
xXAV

x

xxAxPxC
XxAV

xxAPxxC
XxAV

x

ed

sd

sd

ed

ρ
ω

β

ρ
ω

β

ρ
ω

β

ρ
ω

β

&

&

         (2.10) 

and 4x& can be easily expressed as: 

54 xx =&                                                           (2.11) 

To derive an expression for 5x& , ff from equation 2.7 can be substituted in the dynamic 

model of the actuator (equation 2.6) and then solved to obtain an equation for yx&& . 

Generally, a threshold is considered for zero in numerical computations, therefore a 

threshold as v0 is designated in the expression for ff. The following shows the 5x&  

formulation in the state space model:  
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in which: 



 29 







≤

>+−−−
=

−

05

0555

||
)()]1)(([ 5

vxf

vxdxxsignefff
f

st

xC

slstst

f                     (2.13) 

By solving the equation 2.5 for vx&& , the following expression holds for 6x& : 

ukxxdx spnnm +−−= 1

2

66 ωω&                                      (2.14) 

2.4 Model Validation 

Any mathematical model should be validated in order to ascertain that the 

differences between the measured states from the practical system and the simulated 

states from the state space modal do not exceed a certain threshold for a similar input 

signal. For hydraulic systems, these thresholds are approximately 10% of the actual 

measurements according to most literature such as [19-21]. These errors are considered 

as model uncertainties presented by the process noise in the proposed fault diagnosis 

algorithm that will be explained in Chapter 3.  

In the current research the moving average method is used to study the error 

signals. In this method, the average of a number of data is taken at each discrete time 

increment. By applying this algorithm to error data, the effects of extra noises and 

transient errors on the error signal diminish. The moving average of the errors (MAEs) at 

kth time step is calculated by the following expression: 
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in which m is the number of previous error data from which the average is calculated at 

each time step. ei is the error data at the ith time step. In the current study, m is chosen as 
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250 considering the sampling time and the reference signal frequency. As explained in 

section 2.2, the sampling time is 20 ms and the frequency of the reference signal is π4.0  

rad/sec. Thus by choosing m as 250, the MAE is calculated for a complete motion period, 

a full retraction and extraction, at each time step.  

2.4.1 Experimental Results 

In order to validate the state space model, a low frequency sinusoidal signal, 

)4.0sin(02.005.0 tr π+=  meter, is applied to both mathematical model and the 

experimental test rig as the position reference signal for a period of 60 seconds. Figures 

2.8 and 2.9 illustrate the characteristics of the pressures in chamber 1 and chamber 2, 

respectively. Both measured and simulated pressures are shown and also the error 

between the model and the system for the corresponding state is represented. It can be 

observed visually that the simulated and the measured pressures are so close to each other 

and the errors converge to satisfactory values. The MAE is 0.12 MPa for chamber 1 and 

0.14 MPa for chamber 2, which are within 10% of the actual measurements. Figure 2.10 

depicts both actuator displacement trajectories from sensor signal and state space model 

computation as well as the corresponding error signals. This figure shows that the 

simulated trajectory adequately matches the measured one. The MAE signal, which has a 

steady value around 2 mm, stays within 10% of the actual measurements of the actuator 

movement.  
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Figure 2.8: (a) Simulated and measured values of the pressure in chamber 1, (b) MAE 

between simulated and measured values 
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Figure 2.9: (a) Simulated and measured values of the pressure in chamber 2, (b) MAE 

between simulated and measured values 
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Figure 2.10: (a) Simulated and measured values of the actuator displacement, (b) MAE 

between simulated and measured values 

 

2.4.2 Frequency Range 

To compare the frequency responses of the practical system and the state space 

model, a sinusoidal position reference signal with a time varying frequency and constant 

amplitude is applied to the servo-valve and the state space model. The reference signal is 

))
4

1(3.0sin(02.005.0 t
t

r ++=  meter. The error signals between measured and 

simulated results are shown in Figures 2.11 to 2.13. All three measurands are studied in 

the frequency range between 0.05 to 0.8 Hz, which is a typical range of practical 

operating frequencies for hydraulic systems. The simulation errors of the state space 

model increase by increasing the input frequency as it can be observed from the figures. 
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(b) 
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Nevertheless, the error signals still stay within the satisfactory boundary. In this study, all 

experiments are carried out at the frequency of 0.2 Hz. 
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Figure 2.11: Error signal between measured and simulated pressure of chamber 1 
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Figure 2.12: Error signal between measured and simulated pressure of chamber 2 
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Figure 2.13 Error signal between measured and simulated displacement 

 

2.4.3 Repeatability of the Experiments 

It is essential that the system measurements are repeatable within an acceptable 

margin in any experimental study. This is necessary in interpreting the results and 
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drawing conclusions. In all the tests, the operating conditions such as fluid temperature, 

supply pressure, operating scheme, etc remain almost constant. The operating supply 

pressure was approximately 6.50 MPa and the laboratory temperature was set to be 

around 20˚C. 

Repeatability of the pressure in chamber 1 is illustrated in Figure 2.14 as an 

example. The test rig was run at different times and three sets of measurements were 

collected for the same operating conditions. It can be verified visually that the data of this 

particular state are very similar from test to test. All four data sets show similar trends, 

time periods and magnitudes. Variation between the traces is very small. It is perceived 

that the values of five performance indicators, minimum, maximum, mean, standard 

deviation, and range, for these three data sets are very close, all varying within 0.8%. 

These indicators suggest that the data repeatability is acceptable. 
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Figure 2.14: Pressure repeatability 
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CHAPTER 3 
 
 
 

Implementation of a Fault Monitoring 

Technique 
 
 
 
 
 
 
 

3.1 Introduction 

A fault is a deviation of a desirable characteristic property leading to the inability 

to fulfill an intended purpose. Practically, it is assumed that the system is healthy and no 

fault is present at the beginning but takes place some time, with magnitude, type and time 

of occurrence being unknown [22]. Generally, faults occur in two different manners: a) 

step functions such as when the end-effector is obstructed by an object or b) ramp 

functions such as leakage or deterioration of a device. It is essential to distinguish the 

difference between noise and fault. Customarily, any noise is considered as a random 

zero-mean signal, which could originate from any element of the plant especially from 

sensors; meanwhile, any non-zero-mean disturbance is treated as a fault. 

In this chapter the development and implementation of the condition monitoring 

technique for the current study are investigated. The material in this chapter is organized 
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as follows; initially, in Section 3.2, an overview of fault categories in dynamic systems is 

given. Afterwards, fault diagnosis approaches are classified and explained in Section 3.3. 

A general Kalman filter algorithm is explained in Section 3.4. Sections 3.5 and 3.6 

outline the Unscented Kalman filter and its application in the present system. 

 3.2 Classification of Faults 

Faults may be classified into the following groups [23]: 

1. Additive faults: they are unknown inputs, which vary the plant outputs 

independently of the known inputs. The existence of an external force or friction load as a 

fault is a certain instance of this class of faults. Additive faults, known as Error-In-

Variable (EIV), [24] do not depend on whether other faults have occurred or not therefore 

they can easily be detected.  

Sensor output signals are generally affected by non-zero-mean signals and hence 

they differ from the actual values of measurands. These faults are usually considered as 

additive faults (even though some sensor faults such as complete failure may be better 

designated as another class, which is “multiplicative faults”). The following model 

describes the general sensor signals from the healthy system: 


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+=
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tututu

      (3.1) 

where )(tu is the system input signal and y(t) is the actual system output, )(tu  and 

)(ty  are fault-free sensor signals, )(~ ty and )(~ tu are corresponding noises. Moreover, 

sensor signals from faulty systems can be modeled as the following: 
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in which fu(t) and fy(t) are the models of the fault situations.                

2. Multiplicative faults: they may turn up as parameter deviations within the 

systems, which lead to the system output changes [25, Chapter 1]. These deviations 

depend on the magnitudes of the plant control inputs. Deteriorations of the system 

elements such as loss of power are categorized as multiplicative faults. This type of faults 

can be modeled as the following [26]: 
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                           (3.3) 

in which A, B, C, and D are the state space model matrices and ∆s show the deviations 

from the healthy system matrices resulting from the parameter changes. 

3.3 Overview of Fault Diagnosis Approaches 

There is an abundance of literature on process fault diagnosis ranging from 

artificial intelligence to analytical methods and statistical approaches. Fault diagnosis 

methods are usually classified due to the type of the usage of a priori process knowledge. 

The a priori knowledge is the relationship between the failures and the observations, 

which may be obtained either explicitly or from any source of domain knowledge. Based 

on the knowledge that requires a priori, fault diagnosis techniques surveyed in [27-29] 

can be categorized into two general classes; model-based and model-free (data driven) 

methods. 
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From a modeling perspective, there are methodologies that require accurate 

process models called quantitative models. At the other end of the spectrum, there are 

methodologies that do not require any form of model information and rely only on 

previous process data [30].  

Given the process knowledge, there are various methods that can be employed to 

perform diagnosis. A taxonomy of major fault diagnosis techniques is shown in Fig. 3.1.  

 

 
 

Figure 3.1: Classification of fault diagnosis methods 

  

 

3.3.1 Model-based Fault Diagnosis Approaches 

All model-based methodologies can be categorized into two major groups: 

qualitative and quantitative. The models of the systems are usually developed based on 

the fundamental understanding of the physics of the processes. In a quantitative approach 

Fault Diagnosis  

Methods 

Model-based Model-free 

Quantitative 
 

Qualitative 
 

Quantitative 
 

Qualitative 
 

Fuzzy 
 

Qualitative 
Trend 

Analysis 
(QTA) 

 

Statistical 
 

Neural 
Network 

 

Qualitative 
Physics 

Fault Tree 

Diagraph 

Frequency 
Domain 

Observer 
 

Parity Space Wavelet 
Analysis 



 39 

the fundamentals of the dynamic systems are demonstrated in a mathematical model in 

which some functions show the relationship between the system inputs and outputs. On 

the other hand, in a qualitative model the fundamental system relationships are expressed 

by qualitative functions. 

3.3.1.1 Quantitative Model-based Methods 

Most studied reported in literature working on quantitative model-based 

approaches develop a state space model of the system where residual errors can be 

generated. These techniques can be broadly classified into frequency domain, observer, 

and parity space classes.  

Frequency Domain Approach 

The basic idea behind the frequency domain approaches is to generate residuals 

via factorization of the transfer functions of the dynamic systems. Frank and Ding [31] 

studied a methodology in frequency domain for robust residual generation.  

Observer Approach 

Residuals can also be generated by estimation of the system outputs from the 

sensor data by using appropriate observers. Observer-based residual generators for linear 

systems were developed by Chen and Patton in [32], they also studied the correlation 

between factorization-based and observation-based residual generators. Regarding the 

observer criteria, these approaches may be classified as a) fixed (Chapter 13 of [33]) or 

adaptive [34], b) reduced [35] or full-order [36], and c) linear [37] or non-linear [38].  
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Parity Space Approach 

Parity space methods rearrange the model of the system and examine the 

consistency of the model with sensor data and known system inputs. Willsky [39] 

introduced dynamic parity relations for failure detection.  

3.3.1.2 Qualitative Model-based Methods 

Based on various forms of qualitative knowledge used in fault diagnosis, 

qualitative model-based approaches can be classified into fault trees, digraphs and 

qualitative physics classes. 

Qualitative Physics Approach 

Qualitative physics is an area of artificial intelligence, which is concerned with 

reasoning about the behavior of physical systems. In fault diagnosis applications, 

qualitative physics knowledge is represented in two main groups. In the first group, 

qualitative equations (behavior) are derived from the differential equations. Umeda et al. 

[45] developed a fault detection methodology whose knowledge for diagnosis is based on 

qualitative physics. In the second group, the qualitative equations (behavior) are derived 

from ordinary differential equations (ODEs). Sacks [46] was the first who examined 

piece-wise linear approximations of non-linear differential equations by means of a 

qualitative mathematical regulator to infer the qualitative properties of a dynamic system.  

Fault Tree Approach 

Fault trees are commonly formed of layers of nodes and usually applied in 

analyzing of the system reliability. These logic trees propagate faults to the next level of 

layers. Different logic operations such as “AND” and “OR” are performed at each node 
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for propagation. He et al. [40] developed a methodology to accurately assess the system 

reliability with limited statistical data. They used fault tree analysis based on the fuzzy 

logic. Fault trees have been used in a variety of risk assessment and reliability analysis. 

Tartakovsky [41] estimated the probabilities of the system failures by means of 

uncertainty quantification techniques. Then, applied fault tree analyses to combine these 

probabilities in order to estimate the risk of the system failures. 

Digraph Approach 

Generally, a digraph is a graph, which includes directed arcs between nodes. And 

a signed diagraph (SDG) is a digraph in which these directed arcs are designated with 

either a positive or a negative sign. SDGs have been widely used to represent qualitative 

models or cause-effect relationships and also in the form of causal knowledge, they are 

employed to diagnose the process faults. The first development of the SDG for fault 

diagnosis was reported by Iri et al. [42]. They derive a cause-effect graph (CE graph) 

from SDG. Vedam and Venkatasubramanian [43] developed an SDG approach for 

multiple fault detection. Han et al. [44] incorporated the fuzzy set theory into SDGs to 

provide an accurate resolution of fault origin.  

3.3.2 Model-free Fault Diagnosis Approaches 

Model-free Fault diagnosis approaches are based on the historical process data 

rather than the models of the systems. From another point of view, these methodologies 

extract the feature characteristics from the previous data.  Based on whether the 

knowledge about process characteristics is required or not, one can perform either 

qualitative or quantitative feature extraction.  
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3.3.2.1 Quantitative Model-free Methods 

There are a notable number of methods, which are employed in decision making 

by the use of quantitative information without any necessity for system modeling. These 

can be categorized into two main classes: non-statistical methods such as neural network, 

and statistical methods such as Partial Least Squares (PLS). 

Statistical Approach 

Essentially, faults can be diagnosed by considering the combination of the 

instantaneous estimates of the pattern recognition over time. Historical information about 

the properties of the system failure mode is used and hence fault diagnosis can be treated 

in a statistical pattern recognition framework. 

The extensive improvement in computing power of softwares has had an 

increasing impact on the practical applications of statistical science. The applications of 

statistical development in fault diagnosis area have been comprehensively studied in the 

literature. Kresta et al. [47] gave an overall overview of statistical monitoring in process 

analysis. They introduced a basic technique of using the PLS and PCA (Principal 

Component Analysis) to efficiently monitor the fulfillment of large processes and to 

quickly detect process changes. Qin and Li [48] studied a methodology based on the PCA 

for sensor fault detection. A non-linear PCA method for batch processes has been 

developed by Dong and McAvoy [49]. 

Neural Network Approach 

A neural network consists of several processing modules (the number of these 

modules depends on the problem complexity). These modules are connected to each 
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other by means of several elements that store information along with the programming 

functions. Classification processes including decision making, pattern recognition, and 

fault diagnosis are the most common tasks to which neural networks are applied.  

Considerable attention to the application of neural networks for fault diagnosis 

has appeared in the literature. The practicality of neural networks for fault diagnosis in 

chemical engineering was demonstrated for the first time in the 1980s by researchers 

such as Venkatasubramanian and Chan [50] and Unger et al [51]. Later, the hierarchical 

neural network architecture, successful in the detection of multiple faults, was proposed 

by Watanabe et al. [52]. 

 Back-propagation strategy, first described by Werbos in 1974, is the most 

conventional supervised learning technique for training neural networks. Back-

propagation neural networks have been vastly investigated in engineering research in 

which problems of fault diagnosis are addressed. The idea of feature presentation, which 

has been demonstrated by Farell and Roat [53] and Tsai and Chang [54], is the 

foundation of the performance progress of the primary back-propagation neural networks 

in fault diagnosis applications. Recently, to overcome the slow convergence of the back-

propagation algorithm a number of techniques such as the diagonal recurrent neural 

network have been proposed. Wang and He [55] introduced an adaptive dynamic back-

propagation algorithm to determine the optimum number of the hidden layer neurons. 

They employed two diagonal recurrent neural networks to detect stator winding turn 

fault. One determines the fault intensity and the other is used to estimate the exact 

number of fault turns. 
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In addition to back-propagation, various network architectures have been studied 

in the fault diagnosis area. For example, Adaptive Resonance Theory 2 Neural Network 

(ART2 NN) is a self-organizing neural network structure, which is a prosperous 

methodology in fault diagnosis. Lee et al. [56] proposed an algorithm composed of three 

parts: parameter estimation, fault detection, and fault isolation. Once a fault is detected in 

the system, in order to isolate the occurred fault the estimated parameters are transmitted 

to the ART2 NN structure.. 

Wavelet Analysis 

Wavelet analysis is a common methodology for analyzing localized variations of 

signal. In this method, to determine the dominant modes of variability and how those 

modes vary in time, a time series is decomposed into time–frequency space. The wavelet 

transform has been used for numerous studies, for example, Tafreshi et al. [57] used 

wavelet packet to recognize different conditions of one cylinder in a 12-cylinder engine. 

The combustion malfunctions in the cylinder were detected using the wavelet packet 

providing a useful data analysis structure for extracting features. Wang et al. [58] and 

Chen et al. [59] discuss the integration of ART networks with wavelets to develop fault 

diagnosis algorithms 

3.3.2.2 Qualitative Model-free Methods 

Qualitative model-free methodologies, which extract qualitative historical 

information, are studied in two major classes: a) expert systems and b) Qualitative Trend 

Analysis (QTA). 
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Fuzzy Approach 

Zadeh [60] was the first to recognize the importance of the concept of the fuzzy 

theory. Rule-based feature extraction methodology has been broadly employed in expert 

systems for fault diagnosis applications. Important efforts to apply expert systems in fault 

diagnosis applications can be seen in the works of Hakami and Newborn [61] and Stewart 

[62]. The idea of using task framework in knowledge-based diagnostic systems was 

developed by Ramesh et al. [63]. Tarifa and Scenna [64] proposed a hybrid system that 

uses the combination of fuzzy logic and signed directed graphs (SDG). Scenna [65] 

discussed an expert system approach for fault diagnosis in batch processes. Leung and 

Romagnoli [66] described an implementation of a probabilistic model-based fault 

diagnosis expert system. Ghodsi and Sassani [67] demonstrated an adaptive fuzzy 

algorithm, which continuously adapts to variations in the input data. They demonstrated 

the efficiency of the structure in minimizing wood waste cutting process. Later, they 

improved the adaptive fuzzy algorithm using a recursive sub-algorithm to designate a 

preferred cut patterns among all possible patterns [68].  

Qualitative Trend Analysis Approach 

In process monitoring and supervisory control, qualitative trend analysis (QTA) is 

an important component, which is utilized to describe important events in a dynamic 

process to predict future condition and diagnose system faults. Even though the QTA is 

robust and accurate in system monitoring, its real-time application to very large-scale 

plants is prohibitive due to its computational complexity.  

Initial formal framework for the representation of process trends can be found in 

Cheung and Stephanopoulos’s work [69]. Vedam and Venkatasubramanian [70] proposed 
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an adaptive trend analysis framework based on the wavelet theory. Subsequently, they 

proposed a dyadic B-spline-based trend analysis algorithm achieving data compression 

by removing noise from the sensor data. Maurya et al. [71] resolved the shortcoming of 

the QTA in real-time applications by applying the QTA on the principal components 

rather than on the sensor data. 

The mathematical model-based approach adopted in the present thesis falls into 

the observer category, which is described in Section 3.3.1.1. The approach is based on the 

Kalman Filter algorithm developed to monitor the highly non-linear dynamic systems.    

3.4 Kalman Filtering in Fault Diagnosis 

The Kalman Filter algorithm developed by R. Kalman is a recursive filter using 

noisy and even incomplete measurements to estimate the states of a linear system in the 

time domain. It is applied to the states of the discretised system to estimate the new states 

at each discrete time increment. Inputs of the algorithm are the system information and    

optionally some knowledge from the controls on the plant if it is known. The existence of 

two independent noises is considered; one perturbs the information from system 

(measurement noise) and the other is mixed with linear operator (process noise). 

A general linear discrete-time system is represented by two equations; system 

equation: 

kkkk wBuAxx ++=+1                                             (3.4) 

and output equation: 

kkk vHxy +=                                                     (3.5) 
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where A is the state matrix, B is the input matrix, H is the output matrix, x is the state 

vector, y is the system output, u is the system input, w is the process noise and v is the 

measurement noise. Both process and measurement noises are assumed to have a mean of 

zero, and be Gaussian (normal distribution). There are process noise matrix Q and 

measurement noise matrix R, which are related to process noise vector w and 

measurement noise vector v, respectively. The noise matrices are the expected values (the 

sum of the probability of each possible consequence of the experiment multiplied by its 

value) of corresponding vectors described mathematically as 

][ TwwEQ =                                                     (3.6) 

and 

 ][ TvvER =                                                      (3.7) 

where Q and R are the covariance matrices of the measurement noise and process noise, 

respectively. The noise level during measurements and the accuracy of sensors together 

with the modeling uncertainties (such as what is discussed in Section 2.4.1) are essential 

to derive the covariance noise matrices. 

The Kalman filter performs the estimation in a predictor-corrector approach. 

Using the given system model, the a priori (predicted) state estimate vector at step k is 

defined from previous trajectory of x and calculated by the “Time-update” equation: 

 kkk BuxAx += −

−

1
ˆˆ                                                 (3.8) 
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where 1
ˆ

−kx  is the previous time step a posteriori (corrected) state estimate vector and uk 

is the known system input. The residual is defined as the difference between the 

measured and predicted output: 

−− kk xHy ˆ                                                       (3.9) 

noting that when the Kalman filter is implemented in a real system, ky  is information 

from sensors, but in a simulation ky  is calculated from equation 3.5. 

The a posteriori state estimate vector uses the information in the current 

observation and is calculated by the “Measurement-update” equation: 

)ˆ(ˆˆ −− −+= kkkkk xHyKxx                                          (3.10) 

where −

kx̂  is the a priori state estimate vector from Equation 3.8 and Kk is the Kalman 

gain. Note that if the residual ( −− kk xHy ˆ ) is zero, the a priori state estimate vector will 

equal the a posteriori state estimate vector. A function for the Kalman gain must be 

defined to minimize the a priori and a posteriori estimate errors and thus accurate 

estimation of the system states is achieved. The a priori and a posteriori estimate error 

covariances that we try to minimize are defined as: 

])ˆ)(ˆ[( TxxxxEP −−= −−−                                        (3.11) 

and 

])ˆ)(ˆ[( TxxxxEP −−=                                          (3.12) 

respectively. Referring to [72] Chapter 4, the resulting function for the Kalman gain is 

1)( −−− += RHHPHPK
T

k

T

kk                                      (3.13) 



 49 

and the minimized a priori estimate error covariance is found as 

QAAPP
T

kk += −

−

1                                              (3.14) 

and the minimized a posteriori estimate error covariance is  

−−= kkk PHKIP )(                                           (3.15) 

The Kalman algorithm should be initialized at first with the a posterior estimate error 

covariance and the state variable values. The recursive relations of the predictor-corrector 

structure for the Kalman filter can be presented by the block diagram as shown in Figure 

3.2. This structure evolves into a computational scheme, which is run recursively in 

parallel with a sampled-data system to acquire the real-time state estimates. Sampled-data 

systems such as the one used in the present investigation and described in Chapter 2 are 

continuous-time dynamic systems controlled by digital devices.  

Early attempts at the application of Kalman filter for fault diagnosis can be found 

in the works of Dalle Molle and Himmelblau [73] and Bergman and Astrom [74]. Tsuge 

et al. [75] introduced a hierarchical methodology consisting of the signed directed graph 

and the extended Kalman filter. Pirmoradi et al. [76, Chapter 23] investigated a Kalman 

filter methodology to track conditions of the spacecraft attitude control systems.  
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Figure 3.2: Kalman filter algorithm 
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order terms, it leads to high computational costs. There are a number of weaknesses 

associated with the EKF algorithm such as [78]: 

1. The EKF performance depends heavily on the time-step interval. For 

successive estimation it should be sufficiently small, especially for highly 

non-linear models, otherwise the linearization leads to unstable filter 

performance. 

2. Providing Jacobian matrices makes the EKF not suitable for large 

dimension systems because of the calculation of the derivatives. 

3. Since the EKF algorithm is based on linearization to propagate the 

covariance and mean of the system states, it gives unreliable estimates and 

is difficult to be tuned provided that the system is highly non-linear. 

Although the EKF has been one of the most widely used algorithms for parameter 

estimation and tracking for forty years, it has led to a general agreement within the 

control community that the EKF is difficult to implement and because of the linearization 

error (as mentioned above) it is only reliable for systems, which are not highly non-linear 

on the time scale of the update intervals. In the next section, another non-linear 

transformation for the mean and covariance will be introduced to handle the linearization 

issue. 

3.5 Unscented Kalman Filter 

Generally, the basic difference between the EKF and the Unscented Kalman Filter 

(UKF) emerges from the manner in which the non-linear model states and parameters are 

approximated. The UKF introduced by Julier [79] employs the unscented transformation, 
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which is a non-linear transformation. In this algorithm, the state probability distribution is 

represented by a minimal set of data points, referred to as sampled sigma points.  

3.5.1 Unscented Transformation 

Julier and Uhlmann [77] calculated the mean and covariance by the use of a 

sampling approach, called the Unscented Transformation (UT), instead of an arbitrary 

non-linear function. Consider an n-element variable, n
x ℜ∈ , with known covariance, Pxx, 

and mean value, x . To statistically approximate the mean and covariance of the non-

linear transformation, y = h(x) in which my ℜ∈ , a vector of 2n sigma points is formed 

according to the following: 

nixxx
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where inP )( is the ith row of the )( nP ; )( nP  , which is called the matrix square 

root of nP, is defined as follows: 

nPnPnP T =)(                                               (3.17) 

Then the calculated sigma point vectors are simply propagated through the h 

function, which can be either linear or non-linear: 

nixhy ii 2,...,1)( )()( ==                                       (3.18) 

note that no linearization is applied for propagation. The estimated mean and covariance 

of y are determined as follows: 
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Simon in Chapter 14 of [80] investigated the UT.  A typical problem was studied 

to make a comparison between UT and EKF performances. The non-linear 

transformations examined by Simon are as the following: 
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ry
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=
                                                      (3.20) 

He calculated the covariance and mean of 300 stochastic points, which are dispersed 

uniformly in the ranges of -0.01<r<0.01 and -0.35<θ <0.35 through both the UT and 

EKF. Then the unscented (from the UT) and linearized (from the EKF) results were 

compared with the exact (reference) data. Figure 3.3 depicts a summarized illustration of 

the approach for both UT and EKF along with the reference resolution. 

 

 

Figure 3.3: Compression of the UT and linear approximation  
(From Optimal State Estimation, Dan Simon, Copyright © 2006, reprinted with 

permission of John Wiley & Sons, Inc.)   



 54 

 

With the use of the UT algorithm the estimation of mean and covariance are closer to the 

real values and that holds because this approach leads to a third order accuracy for 

Gaussian inputs [81]. Contrarily, the linearization technique used in the EKF scheme 

results in the first order accuracy for similar inputs. 

3.5.2 UKF Algorithm 

The UKF algorithm is an extension of the UT to the recursive estimation in non-

linear filtering problems. The UKF algorithm is summarized next [80]: 

The following expressions form a general model of non-linear discrete-time 

systems to which the UKF may be applied at step k: 
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in which f is the non-linear system function and h is the non-linear measurement function 

and the other parameters are the same as those defined in Section 3.4. The set of sigma 

points of the augmented state is constructed as: 
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then the UKF can be proceeded by the predictor-corrector step in the Kalman filter 

algorithm. The a priori state estimate, −
kx̂ , and its predicted error covariance, −

kP , are 

calculated from the combination of the transformed sigma points as follows: 
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k tuxfx −=                                              (3.23) 
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Similarly the predicted observation vector kŷ  and its predicted covariance yP  are 

calculated as: 
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and the cross covariance matrix between −
kx̂  and kŷ  is obtained as: 
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The filter gain kK , the updated state estimate kx̂ , and the covariance kP  are computed 

as: 

 1−= yxyk PPK                                                    (3.30) 

)ˆ(ˆˆ
kkkkk yyKxx −+= −

                                          (3.31) 

T

kykkk KPKPP −= −                                              (3.32) 

The structure of the UKF can be presented by the schematic block diagram as shown in 

Figure 3.4.  
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Figure 3.4: UKF structure block diagram 
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In contrast with the noise in real systems, both process and measurement noises 

are considered as additive and hence the explained UKF algorithm is not rigorous. Wan 

[82] augmented the noise onto the state vector as: 
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then the augmented state )(a

kx  is estimated. The initialization is as the following: 
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Now the presented UKF can be used except that as we estimate the augmented mean and 

covariance, the terms 1−kQ  and kR  should be removed. 

3.6 UKF Application in the Hydraulic System 

The UKF algorithm has been applied in non-linear control applications through 

the state estimation. The state space models are assumed known in these applications. In 

this section, we demonstrate the use of the UKF to the dynamic model explained in 

Chapter 2, and illustrate the results to show the performance of the developed algorithm. 
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3.6.1 The UKF Propagation 

Since the UKF is a discrete-time algorithm and also in order to be compatible 

with real time digital computing, the state space equations should be discretised prior to 

using the UKF. Equation 3.36 shows the discretised state space model, which is derived 

by the use of Forward Difference method. Note that all parameters in this model are time 

invariant.  
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(3.36)  

in which T is the sampling time and k denotes the process step number. Due to the digital 

computing chrematistics of the computer used, the sampling time was chosen as 20 ms in 

this research. The discretised actuator friction is calculated from: 
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Since the system has three outputs (measurements), two chamber pressures (x2, 

x3) along with the actuator displacement (x4), the measurement matrix, which is linear 

here, can be written by inspection as: 
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For the sake of simplicity, the noise characteristics of different states are assumed 

to be independent of each other. Therefore, the noise covariance matrices are diagonal. 

With reference to Figures 2.8 to 2.10, the MAEs between model output and test rig 

measurements are included in Table 3.1. Each MAE reflects the model uncertainty due 

the corresponding state. Therefore, the process noise matrix component in accord with 

the pressure in chamber 1 is 1010 Pa2, the pressure in chamber 2 is 1010 Pa2, and the 

actuator movement is 10-6 m2. 

 

Table 3.1: The MAEs of the pressures and actuator movement 

State 
Pressure in 
Chamber 1  

Pressure in 
Chamber 2  Actuator Position 

Model MAE 0.12 (MPa) 0.14 (MPa) 2.0 (mm) 
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Other components of Q matrix are determined regarding the physical attributes of 

the corresponding state. Then, these values are tuned to achieve the satisfactory UKF 

performance. The following matrix is defined as the process noise matrix in this system 

in each of the experiment: 
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in which all quantities are in the SI system.  

The measurement noise matrix is defined regarding the accuracy of the sensors. 

The two msisensors® pressure transducers have the accuracy of Pa101.4 5×  and the 

accuracy of the Mitutoyo® position encoder is calculated as m105.3 -6× . Since there is 

no significant noise source near the set-up, it is assumed that the noise levels lie in the 

sensor accuracies. Therefore, the measurement noise matrix can be represented as the 

following in each of the experiment: 
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in which all quantities are in the SI system. 
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The preceding matrices should be defined before the UKF algorithm can be built. 

Now the UKF must be initialized; regarding the UKF structure block diagram (Figure 

3.4) 0x̂ and 0P  should be defined. 0x̂  is a 1×6 matrix whose second and third components, 

the chamber pressures, should be within the range of [Pe, Ps] and its fourth component, 

the actuator displacement, should be within the range of [Xmin , Xmax]. Generally, 0P can be 

defined as a positive-definite matrix.  
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in which all quantities are in the SI system. 

After setting the initial conditions as well as the covariance matrices the recursive 

part of the UKF algorithm can be performed in a series of steps. At first, k is unity and 

the sigma points are calculated. Following the UKF structure, these sigma points are 

propagated and the “measurement update” block is performed. Then to proceed in the 

recursive algorithm to the next time step, we return to sigma point calculations and k is 

incremented by one. 

3.6.2 Simulation Results 

After describing the UKF recursive algorithm as applied to the system, sample 

numerical simulations are run in this part. In order to simulate the measurement noise we 

call the Gaussian random number generator once every time-step interval and therefore 

the output is calculated via equation 3.5. By applying the UKF to the state space model a 

sequence of estimated state vectors is available and hereupon the estimation residual 
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vector can be computed by applying equation 3.9. Due to the measurement noise, R 

matrix, and the modeling uncertainties, Q matrix, the residual errors can not be ignored 

but still should remain at relatively low levels depending on the Q and R matrices’ values. 

To show the performance of the developed UKF, the residual errors in the state 

estimations of the system are presented in Figures 3.5 to 3.7. Figures 3.5 and 3.6 

demonstrate the residual errors in the estimates of the chamber pressures. Figure 3.7 

illustrates the residual error in the estimation of the actuator position. 
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Figure 3.5: Estimation error of the pressure in chamber 1 
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Figure 3.6: Estimation error of the pressure in chamber 2 
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Figure 3.7: Actuator position estimation error 

 



 63 

In the preceding graphs, dashed lines display the plus and minus values of the 

theoretical standard deviations of the corresponding measurements. Theoretically, the 

residual error results should fall within the σ±  bounds at least 68% of the time 

approximately. Accordingly, we can visually verify that the experimental and theoretical 

results appear to be in agreement. Note that in these simulations, the noise-added model 

represents the experimental data. This agreement should be held in order to show that the 

UKF algorithm is performing appropriately. 

3.7 Concluding Remarks 

In this chapter, fault diagnosis methods were surveyed and the overall structures 

of the Kalman filter and UKF schemes were described. The recursive part of the UKF 

consists of two phases, Time Update and Measurement Update. In “Time Update”, the 

sigma points are calculated to be used in mean and covariance calculations, and then the 

a priori state estimates and covariances are obtained, while in “Measurement Update”, 

the a posteriori state estimates and covariances are calculated. The purpose of this 

scheme is to estimate the system states and generate the residual errors, which is used in 

fault detection by threshold testing. 

To verify the proposed UKF algorithm performance, it was applied to the state 

space model. The UKF used the information from the dynamic of the system along with 

the sensor measurements to predict future sensor outputs. The results showed that the 

difference between the actual and predicted states stayed in the acceptable bound. 

Therefore, the investigated UKF scheme is reliable to be employed in condition 

monitoring of the experimental set-up. 
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CHAPTER 4 
 
 
 

Online Monitoring of the Hydraulic 

System 
 
 
 
 
 
 
 

4.1 Introduction 

Online condition monitoring through examining certain system state relationships 

and comparing the states with known nominal values is the most practical method to 

predict the occurred faults in hydraulic systems. This prediction increases the system 

efficiency by decreasing the chance of the further degradation beside the maintenance 

cost. To do so, an accurate state space model (as discussed in Chapters 2) along with a 

robust and reliable fault diagnosis methodology (as discussed in Chapters 3) is required.  

In this chapter, the terminology used in [25] is employed to address the functions 

within the fault monitoring scheme: 

Fault Detection 

By the “Fault Detection” process, fault occurrence is determined along with its 

arising time.   
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Fault Diagnosis 

By the “Fault Diagnosis” process, which includes fault detection, the size, 

location, kind and time of fault occurrence is determined.  

Monitoring 

By the “Monitoring” process, the conditions of the system are surveyed in real-

time continuously.  

In this chapter, the experimental results of artificially introduced faults into the 

hydraulic circuit are presented followed by the discussions pertaining to the fault 

diagnosis scheme performance.  

4.2 Experimental Results and Discussion 

Similar to the previous experiments and simulations, the sinusoidal signals are 

used as the position reference signals to control the test rig activities in this section. All 

the experiments are carried out under the UKF observation and a closed-loop control 

regulation. The reference signal is given as )4.0sin(025.005.0 tr π+= . Simulation 

results of previous chapters show that in the normal operational conditions the state space 

model follows the experimental test rig characteristics in a satisfactory precision and 

moreover the UKF scheme estimates the system states precisely. All proposed faults 

occur in the set-up approximately 50 seconds after the test starts and are kept until the 

end of the tests, which last 100 seconds. Note that faults exist in a multiple-fault 

environment but occur singly.  
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The matrices of the process noise, Q, measurement noise, R and initial covariance, 

P0 along with the initial state vector are defined the same as what is derived in Section 

3.6.1: 
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The results of the experiments are reported in the following sections. The 

experiments were intended to diagnose the occurred faults in real-time operations. All 

five introduced faults are studied in two groups: leakage and load faults. 

4.2.1 Leakage Faults 

This section is developed to study the affects of leakages on the system. 

Therefore, different types of leakage faults in various levels are investigated. 

4.2.1.1 Actuator External Leakage at Chamber 1 

In this section, we introduce the fluid loss in the first chamber’s connecting hoses. 

In real systems, this form of leakage may occur because of the poor pipe connections or 

hose ruptures. As a result of this fault, the pressure reduces in chamber 1 during an 

extraction stroke when this chamber is connected to the pressure supply line through the 

servo-valve.  

The amount of the leakage is regulated manually by tuning the adjusting knob of 

the needle valve mounted on chamber 1. The bypass is illustrated in Figure 2.5. The 
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experiments are carried out for three different levels of the leakages as shown in Table 

4.1. 

Table 4.1: Multilevel leakage coefficients 

Leakage level Effective Control Flow coefficient of the needle valve 

Low Cv = 0.0143 (Valve open one turn) 

Medium Cv = 0.0612 (Valve open two turns) 

High Cv = 0.112 (Valve open three turns) 

 
 

For brevity, since the system response is similar for all levels of leakages only the 

medium level is discussed in more detail here. Figure 4.1 shows the actuator 

displacement while medium level external leakage occurs at chamber 1. It can be verified 

visually that the actuator shifts slightly toward chamber 1 after the leakage occurs. This 

happens because the leakage at chamber 1 reduces the pressure in this chamber during the 

extracting period and as a result there is not sufficient power to identically push the 

piston toward chamber 2. Note that due to the closed-loop control, after about two cycles 

the piston stops shifting, but a bias error remains in the actuator referenced-movement.  
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Figure 4.1: Actuator displacement while medium level leakage occurred in chamber 1 
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All three residual error signals due to the low level external leakage at chamber 1 

are shown in Figure 4.2. It can also be observed visually that residual error of the 

corresponding state (pressure in chamber 1) increases slightly more than that of the 

pressure in chamber 2. This distinction is more obvious in the next two experiments in 

which medium and high level leakages are considered. The results are illustrated in 

Figures 4.3 and 4.4, respectively. 
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Figure 4.2: Low level leakage at chamber 1; (a) Residual errors of pressure in chamber 1, 

(b) pressure in chamber 2, and (c) actuator position 
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Figure 4.3: Medium level leakage at chamber 1; (a) Residual errors of pressure in 

chamber 1, (b) pressure in chamber 2, and (c) actuator position 
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Figure 4.4: High level leakage at chamber 1; (a) Residual errors of pressure in chamber 1, 

(b) pressure in chamber 2, and (c) actuator position 
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The following table shows the corresponding variation of residual MAEs. It is 

intuitive that by opening of the needle valve, the leakage increases much more when the 

chamber 1 is activated, and therefore, the residual MAE increases more for higher level 

of leakage. 

Table 4.2: Increase in MAEs due to the external leakage at chamber 1 

                          Leakage level 

Measurand 
Low Medium High 

Pressure in Chamber 1 (MPa) 0.026 0.05 0.073 

Pressure in Chamber 2 (MPa) 0.016 0.026 0.034 

Actuator Position (mm) 1.2 2.35 3.85 

 

 

4.2.1.2 Actuator External Leakage at Chamber 2 

The fluid loss in connecting hoses of chamber 2 is introduced in this section. As 

the system has same characteristics for different levels of leakages, the medium level of 

leakage is discussed in more detail here. Figure 4.5 illustrates the actuator displacement 

while medium level external leakage occurs in chamber 2. It is intuiuive that the actuator 

shifts toward chamber 2 accordingly after the occurrence of the leakage. The reason is 

that the leakage at chamber 2 reduces the pressure in this chamber during the retracting 

period and as a result there is not sufficient power to identically push the piston toward 

chamber 1. The same as previous section, after less than two cycles the piston stops 

shifting as a result of the closed-loop control, but a bias error remains. With reference to 

Figures 4.1 and 4.5, it does seem almost certain that the actuator malfunctions more 
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aggressively in the presence of the leakage at chamber 2 rather than that at chamber 1. 

This happens because the pressure is much higher in chamber 2 and therefore connecting 

this chamber to the tank causes more pressure loss, which leads to further defection in the 

system. 
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Figure 4.5: Actuator displacement while medium level leakage occurred in chamber 2 

 

Figures 4.6 to 4.8 show the results of introducing leakage into chamber 2. Graphs 

indicate that the residual error of the pressure in chamber 2 increases much more than 

that in chamber 1. Similar to the previous section, these experiments are carried out 

considering three different leakage levels as shown in Table 4.1. 
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Figure 4.6: Low level leakage at chamber 2; (a) Residual errors of pressure in chamber 1, 

(b) pressure in chamber 2, and (c) actuator position 
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Figure 4.7: Medium level leakage at chamber 2; (a) Residual errors of pressure in 

chamber 1,  (b) pressure in chamber 2, and (c) actuator position 
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Figure 4.8: High level leakage at chamber 2; (a) Residual errors of pressure in chamber 1, 

(b) pressure in chamber 2, and (c) actuator position 
 
 

What is noticeable in the results is that the residual MAE of the faulty chamber 

increases proportionally with the increase of the leakage. As expected, the residual MAE 

of the pressure in chamber 2 increases much more aggressively than that in chamber 1 as 

shown in Table 4.3. 

Table 4.3: Increase in MAEs due to the external leakage at chamber 2 

                   Leakage level 

    Measurand 

 

Low 

 

Medium 

 

High 

Pressure in Chamber 1 (MPa) 0.012 0.015 0.015 

Pressure in Chamber 2 (MPa) 0.045 0.074 0.094 

Actuator Position (mm) 2.75 5.4 8.5 

 
 

 

a) 

b) 
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4.2.1.3 Actuator Internal Leakage 

In this section, experiments are carried out in order to assess the performance of 

the UKF algorithm in diagnosing of the actuator internal leakage. There are a number of 

potential causes that lead to internal leakage in a hydraulic cylinder, each of which may 

result in a set-up that fails to operate appropriately. For instance, if the cylinder’s piston 

seal is impaired, fluid may leak internally between chambers. Furthermore, the internal 

leakage may occur as a result of the improper operation of a bypass valve. All of which 

may result in the differential force between the extension and retraction chambers be out 

of balance and hence the end-effector characteristics become unreliable.  

In the experiments, the internal leakages are adjusted manually by tuning the knob 

of the cross-over needle valve shown in Figure 2.5. Tests are carried out for the same 

three leakage levels used earlier. Figure 4.9 illustrates the variation in actuator 

characteristic due to the medium level internal leakage occurrence. The point is that the 

actuator shifts toward the chamber with higher pressure (chamber 2). That is because the 

internal leakage decreases the pressure difference between two chambers and 

consequently the chamber with higher effective area (chamber 1) can apply more force to 

the piston.  
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Figure 4.9: Actuator displacement while medium level internal leakage occurred 

 

The residual errors due to the internal leakage are illustrated in Figures 4.10 to 

4.12. However, the residual MAEs of all measurements increase, the increments in 

pressure MAEs are less than that in actuator displacement MAE. Moreover, these 

variations increase in amount for higher level of leakages. 
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Figure 4.10: Low level internal leakage; (a) Residual errors of pressure in chamber 1,  

(b) pressure in chamber 2, and (c) actuator position 
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Figure 4.11: Medium level internal leakage; (a) Residual errors of pressure in chamber 1, 

(b) pressure in chamber 2, and (c) actuator position 
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Figure 4.12: High level internal leakage; (a) Residual errors of pressure in chamber 1, 

(b) pressure in chamber 2, and (c) actuator position 
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Table 4.4 shows that as expected, the residual MAEs corresponding pressures are 

almost equal to each other.   

Table 4.4: Increase in MAEs due to the internal leakage 

                   Leakage level 

    Measurand 

 

Low 

 

Medium 

 

High 

Pressure in Chamber 1 (MPa) 0.01 0.028 0.057 

Pressure in Chamber 2 (MPa) 0.008 0.025 0.046 

Actuator Position (mm) 1.8 4.95 11.15 

 
 

 

4.2.2 Load Faults 

As opposed to the leakage faults, load faults are not quantified. Therefore, each 

set of test is carried out for a certain level of fault. 

4.2.2.1 Dynamic friction load 

This section is developed to study the affects of the dynamic friction load on the 

hydraulic system. This force is applied to the hydraulic actuator by means of the 

pneumatic cylinder as explained in Section 2.2. All experiments are carried out for the 

dynamic friction of 1162 N as the actuator is extracting and 1042 N as the actuator is 

retracting. These applied forces vary in amount because of utilizing the asymmetric 

pneumatic cylinder. 

The following Figure shows the actuator displacement. There is no significant 

variation in the sinusoidal movement of the actuator after fault occurs. The reason is that 
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the controller compensates by inputting current with higher amplitude to the servo-valve, 

and therefore the capability of the actuator in making up for the dynamic friction load 

improves.  
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Figure 4.13: Actuator displacement while the dynamic friction load is applied 

 

Figure 4.14 shows the residual error signals due to the dynamic friction load. It 

can be observed visually that residual error of the actuator position increases much more 

than that of the pressures in chambers 1 and 2.  

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

M
A

E
 (

M
P

a
) 

  
.

 

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

M
A

E
 (

M
P

a
) 

  
.

 

0

5

10

15

20

0 20 40 60 80 100

Time (S)

M
A

E
 (

m
m

) 
  
.

 
Figure 4.14: Dynamic friction load; (a) Residual errors of pressure in chamber 1,  

(b) pressure in chamber 2, and (c) actuator position 

a) 

b) 

c) 
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The following table presents the variation of residual MAEs. Both pressure 

residual errors increase equably. 

Table 4.5: Increase in MAEs due to the dynamic friction load 

Measurand 

 

Pressure in 

Chamber 1 (MPa) 

Pressure in  

Chamber 2 (MPa) 

Actuator Position 

 (mm) 

Increase in MAE 0.061 0.05 13.0 

 

 

4.2.2.2 Loss of Load 

The goal of this section is to examine the system characteristics subject to loss of 

the load. This type of faults is mostly related to the industrial robotics and crane 

machinery. In this experiment two weights are disconnected from the actuator 

simultaneously. Similar to the previous section result, removing the load does not cause 

significant disturbance to the end-effector movement as shown in the following figure. 

With a comparison between the actuator characteristics in this and previous 

experiments, it can be observed that the actuator movement diverges from the reference 

signal by occurrence of any leakage fault. Although, it follows the reference signal 

satisfactorily by occurrence of faults regarding the load. The reason is that by applying 

any disturbance on the healthy system the regulator starts compensating via the current 

input to the servo-valve. In leakage scenarios the servo-valve increases the pressures of 

the corresponding chambers. Since the leakage is proportional to the pressure difference, 

the amount of the leakage intensifies, but it is not a case of load faults. The following 

equation expresses the leakage through the needle valve: 
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pxCq vv ∆=                                               (4.2) 

in which vC is the flow coefficient, vx  is the valve spool position, and ∆p shows the 

pressure difference between valve ports.  
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Figure 4.15: Actuator displacement while the load is removed 

 

Experimental results are illustrated in Figure 4.16. All residual MAEs increase 

just as the fault occurs and also this variation for actuator displacement residual is much 

more than that for pressure residuals.  
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Figure 4.16: Load lost; (a) Residual errors of pressure in chamber 1, (b) pressure in 

chamber 2, and (c) actuator position 
 

Corresponding variation of the residuals are shown in Table 4.6. The same as 

previous section, pressure residual errors increase equably. 

Table 4.6: Increase in MAEs due to the load lost 

Measurand 

 

Pressure in  

Chamber 1 (MPa) 

Pressure in  

Chamber 2 (MPa) 

Actuator Position 

 (mm) 

Increase in MAE 0.007 0.006 1.3 

 
 

a) 

b) 

c) 
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4.3 Fault Diagnosis and Discussion 

The performance of the designed fault monitoring scheme in fault detection has 

been discussed in Section 4.2. The fault can be diagnosed reliably in a case that fault 

signatures are distinguishable satisfactorily. Table 4.7 provides the variations of residual 

MAEs of the three measurements corresponding to all five studied faults. 

In order to diagnose the occurred fault, there are three criteria that should be 

concerned; residual MAEs, chamber pressures, and actuator characteristics. The 

influences of each fault on the system, which lead to the fault diagnosis, are described 

individually.  

4.3.1 Leakage at Chamber 1 

In a case that the residual MAE of pressure in chamber 1 increases almost to 

twice or more than that in chamber 2, it can be concluded that external leakage occurs at 

chamber 1 regardless of any other criterion variation. Since the residual errors increase 

proportional to the amount of the leakage at chamber 1, the intensity of the external 

leakage can also be estimated by observing the amounts of the residual error increments. 
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Table 4.7: Increase in MAEs due to the occurred fault 

                   Measurand 

    Fault 

Pressure in  

Chamber 1 (MPa) 

Pressure in  

Chamber 2 (MPa) 

Actuator Position 

 (mm) 

Leakage at Chamber 1  

(Low) 

0.026 0.016 1.2 

Leakage at Chamber 2  

(Low) 

0.012 0.045 2.75 

Internal Leakage  

(Low) 

0.01 0.008 1.8 

Leakage at Chamber 1  

(Medium) 

0.05 0.026 2.35 

Leakage at Chamber 2  

(Medium) 

0.015 0.074 5.4 

Internal Leakage  

(Medium) 

0.028 0.025 4.95 

Leakage at Chamber 1  

(High) 

0.073 0.034 3.85 

Leakage at Chamber 2  

(High) 

0.015 0.094 8.5 

Internal Leakage  

(High) 

0.057 0.046 11.15 

Dynamic friction load 

 

0.61 0.5 15.5 

Load Rupture 

 

0.007 0.006 1.3 
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4.3.2 Leakage at Chamber 2 

The difference between the pressure residual error increments is much higher in 

the presence of leakage at chamber 2 rather than that at chamber 1 for a certain leakage 

level. As an instance for medium-level leakage occurrence in chamber 1, the residual 

MAE of pressure in chamber 1 increases 24 kPa more than that in chamber 2, but for a 

medium-level leakage at chamber 2 the residual MAE difference between chamber 1 and 

chamber 2 is 59 kPa.  However, still we follow the regulation regarding the leakage at 

chamber 1. This imitation is decided for the sake of simplicity of the real-time practical 

fault monitoring scheme.  

Therefore, in a case that the residual MAE of pressure in chamber 2 increases 

almost to twice or more than that in chamber 1, it can be concluded that external leakage 

occurs at chamber 2 regardless of any other criterion variation. Since the residual errors 

increase proportional to the amount of the leakage at chamber 2, the intensity of the 

external leakage can also be estimated by observing the amounts of the residual error 

increments. 

4.3.3 Dynamic Friction Load 

It can be observed that by occurrence of either internal leakage or load faults all 

residual MAEs grow, however, as opposed to the presence of external leakage, residual 

errors of pressure in chamber 1 and chamber 2 increase almost identically. To distinguish 

the dynamic friction load, it is essential to consider the characteristics of pressures and 

actuator movement. Figure 4.17 shows the pressure attributes as the dynamic friction load 

takes place.  
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Figure 4.17: Pressure characteristics in dynamic friction load occurrence; (a) pressure in 

chamber 1, and (b) pressure in chamber 2 

 

It can be observed that to compensate the external force, higher pressures are 

applied on the actuator, which leads to the agreement between the end-effector movement 

and the reference signal (as illustrated in Figure 4.13).  

In summary, when the dynamic friction load fault occurs, the pressure residual 

errors grow almost equably along with the increase in the actuator displacement residual 

error. Moreover, pressure transducers measure higher pressures at both chambers as the 

opposite of the position encoder, which shows no variation in the actuator movement. 

4.3.4 Loss of Load 

Again, all three criteria should be considered to diagnose the load disconnection. 

The residual error increment trends are consistent with those of the dynamic friction load 

experiment. As illustrated in Figure 4.15 there is no significant variation in the actuator 

referenced-movement while the load is removed. To study the pressure characteristics, 

pressure transducer signals are shown in the following figures.  

a) 

b) 



 86 

0

2

4

6

0 20 40 60 80 100

P
re

s
s
u
re

 (
M

P
a
) 

  
.

 

1

1.5

2

2.5

3

3.5

40 50 60 70
Time (S)

P
re

s
s
u
re

 (
M

P
a
) 

 .

 
Figure 4.18: (a) Pressure in chamber 1 while the load is removed and (b) the close-up plot 
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Figure 4.19: (a) Pressure in chamber 2 while the load is removed and (b) the close-up plot  
 

The close-up plots show the pressure variations better at the time of load 

disconnection, from which it can be seen that pressure in chamber 1 increases slightly 

while the pressure in chamber 2 decreases a little. This happens because of the 

asymmetry in the load attached to the actuator as discussed in Section 2.2. In scenarios in 

which symmetric loads are applied to the actuator, due to the acceleration issue, by 

a) 

b) 

a) 

b) 
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removing the load the pressure transducers show less pressures in compare with the time 

that the fault is not introduced to the system.  

In summary, when the load is disconnected, the pressure residual errors grow 

almost equably along with the increase in the actuator displacement residual error. 

Moreover, at least one of the pressures decreases in amount while the position encoder 

displays no variation in actuator referenced-movement. 

4.3.5 Internal Leakage 

By introducing the internal leakage to the actuation system the most significant 

characteristic variation pertains to the actuator movement as shown in Figure 4.9. This 

variation makes the internal leakage fault distinguishable from faults related to the load. 

However, the pressures in chambers decrease in this experiment. Figure 4.20 illustrates 

the pressures while the high level of internal leakage occurs in the system.  
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Figure 4.20: Pressure characteristics in internal leakage occurrence; (a) pressure in 

chamber 1, and (b) pressure in chamber 2 

a) 

b) 
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Pressures reduce because both chambers are connected to the tank continuously 

after the internal leakage is introduced. For instance, chamber 1 is connected to the return 

line directly during the retraction period while it is connected to the return line through 

the needle valve, which emulates the internal leakage, and chamber 2 during the 

extraction period.  

In summary, when the internal leakage occurs, the pressure residual errors grow 

almost equably along with the increase in the actuator displacement residual error. 

Moreover, pressure transducers show decreases in pressures. Another point that should be 

notified is the actuator movement variation from the reference signal. Since the residual 

errors increase proportional to the amount of the leakage as it can be observed from Table 

4.7, the intensity of the cross-port leakage can also be estimated by observing the 

amounts of the residual error increments. 
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CHAPTER 5 
 
 
 

Conclusion 
 
 
 
 
 
 
 

5.1 Summary 

The goal of this research was to develop an on-line condition monitoring 

technique based on the Unscented Kalman Filter (UKF). This scheme was applied to a 

hydraulic test rig to diagnose artificially induced faults. Since the UKF requires an 

accurate model of the system to give good estimation of the system states, the set-up was 

inspected carefully to derive its state space model.  

First, the investigated test rig configuration was explained with the aid of pictures 

and schematic diagrams. Two subsystems, pneumatic and hydraulic, together with their 

essential components were described in detail. All five potential faults, which were 

emulated by the current scheme, were discussed, namely:  

1, 2. External leakages at both hydraulic cylinder chambers 

3. Dynamic friction load 

4.  Sudden loss of load 
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5. Leakage inside of the hydraulic cylinder 

Then, the linear time-invariant state space model corresponding to the set-up was derived. 

Six state variables characterized the system: the servo-valve spool displacement and 

velocity, the hydraulic cylinder chamber pressures, and the actuator displacement and 

velocity. This mathematical model was further elaborated with the details of the various 

governing equations, function modeling, and all related parameters. A number of 

experiments were carried out to determine the parameters, which were not measurable 

directly such as the parameters of the actuator friction model. Then, to validate the state 

space model, a sinusoidal position reference signal was applied to the closed-loop system. 

The results verified that the system model characteristics satisfactorily converged to the 

corresponding set-up features as it operated in normal conditions. 

Fault detection and diagnosis techniques were explained, and a number of 

valuable previous works were outlined for each of the methodologies. The Kalman filter 

and EKF algorithms were studied in more detail, and their advantages and disadvantages 

when applied to dynamic systems were discussed. Then, the UKF was introduced and its 

capabilities in handling the highly non-linear systems were described. Its satisfactory 

performance in state estimation was tested on the model of the set-up. The measurement 

data were generated by adding white noise to the output of the mathematical model of the 

hydraulic test rig. The estimation results of three states, actuator displacement and 

chamber pressures, were compared with the measurement data to generate residual errors.  

Since all the errors were satisfactorily within the acceptable bandwidth, it was concluded 

that the UKF methodology was reliable to be employed in condition monitoring of the 

experimental set-up. 
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The developed UKF-based fault monitoring scheme was tested on the physical 

system while different fault scenarios were singly introduced to the system. Again, a 

sinusoidal reference signal was used for the actuator displacement. The fault diagnosis 

scheme estimated the system states and generated residual errors in real time. To 

diagnose the occurred fault, three criteria, residual MAEs, chamber pressures, and 

actuator characteristics, were considered. Based on the presented experimental results and 

discussions, the proposed scheme could reliably diagnose the occurred faults. Also, for 

each leakage scenario, three levels of leakages were introduced to the test rig. However, 

it was impracticable to evaluate quantity of the leakage from residual errors, the proposed 

algorithm can be employed to qualitatively assess the leakage level. 

5.2 Contributions 

This thesis consists of a number of contributions, which have been made to both 

fields of hydraulics and fault diagnosis. The major contributions of this thesis are outlined 

below: 

• A fully operational hydraulic test rig capable of emulating faults was 

constructed. 

• A novel UKF application in hydraulic systems for on-line diagnosis of faults 

was proposed. This structure accepted raw sensor data as input and 

automatically generated fault symptoms. 

• Five of the most common faults in industrial hydraulic systems were 

investigated. Two faults were related to the load and three were pertinent to 
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the external leakage on either side and internal to the actuator. The leakage 

faults were quantified and the proposed fault monitoring scheme was 

successful in indicating the leakage fault level. 

• A comprehensive mathematical model for accurate simulation of a servo-

actuator system was developed and validated using the experimental data. The 

asymmetry of the system (the asymmetric load was carried by the asymmetric 

cylinder) was the major challenging aspect in this test rig. The model 

calculations converged to the sensor data with an MAE within 10% of the 

actual measurements. 

5.3 Suggestions for Future Works 

Model-based fault diagnosis for an uncertain non-linear system is an extremely 

rich area for research both in terms of theoretical problems and practical implementation 

issues. There are many ways to improve the proposed technique or introduce new 

methods. In future works, the proposed strategy can be extended in the following 

direction: 

• The state space model acquired for fault monitoring can be extended to 

incorporate other hydraulic and even pneumatic components. To do so, it is 

required to obtain good representative mathematical models and appropriate 

estimation for their parameters. As a result, the system states may be predicted 

more accurately, which makes the system more reliable. 
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• An expert system can diagnose the occurred fault by considering the UKF 

estimations, residual errors and sensor signals, in real-time. Designing and 

implementing a graphical user interface to show decisions of the expert 

system is also desirable. 

• More common faults can be introduced to the system to examine the 

effectiveness of the proposed condition monitoring scheme in diagnosing 

them.  

• Inducing and diagnosing multiple faults can also be investigated to improve 

the applicability and utility of the monitoring system. 
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