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Abstract

In recent years, ultra–wideband (UWB) communications has gained tremen-

dous popularity in both research community and industry. The large band-

width of UWB systems raises new wireless channel effects and consequently

unique advantages as well as challenges to be dealt with, compared to con-

ventional wireless systems. One of these advantages is the ability to resolve

dense multipath components and use Rake combining at the receiver in order

to significantly reduce the negative effects of fading. However, implement-

ing a Rake receiver with a sufficiently large number of fingers to make use

of this advantage is an evident challenge for most UWB devices with limited

signal processing capabilities. A possible approach to overcome this problem

is to move computational complexity from the receiver to the more powerful

transmitter, which is the main focus of the present work.

In this thesis, we propose two novel pre–equalization schemes for multiple–

input single–output (MISO) direct–sequence ultra–wideband (DS–UWB) sys-

tems with pre–Rake combining and symbol–by–symbol detection. The first

pre–equalization filter (PEF) scheme employs one PEF per transmit antenna,

whereas in the second, simplified PEF (S–PEF) scheme all transmit antennas

share the same PEF. For both schemes the optimum finite impulse response

(FIR) and infinite impulse response (IIR) PEFs are calculated based on the

minimum mean squared error (MMSE) criterion. We show that in contrast to

previously proposed schemes for DS–UWB, both our proposed PEF schemes

efficiently exploit the channel shortening properties of the pre–Rake filter. In
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particular, our proposed PEF schemes operate at the symbol level. We also

show that under certain conditions the S–PEF scheme achieves the same per-

formance as the more complex PEF scheme. Finally, we demonstrate that a

single–input multiple–output (SIMO) DS–UWB system with post–Rake com-

bining and MMSE post–equalization is the dual system to the considered MISO

DS–UWB system with pre–Rake combining and MMSE pre–equalization. This

uplink–downlink duality can be exploited for efficient calculation of the PEFs

and for complexity reduction.

Our simulation results show that the proposed PEF schemes achieve significant

performance gains over pre–Rake combining without equalization even if only

short PEFs are employed, and this is the case even for long UWB channel

impulse responses.
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Chapter 1

Introduction

The following section provides a short overview of ultra–wideband (UWB)

technology. In the next section, the background and motivation for the present

work is summarized, and a short history of previously proposed related works

is provided. The third section of this chapter briefly summarizes the con-

tributions of this work, and the last section outlines the organization of the

thesis.

1.1 UWB Technology

Ultra–wideband (UWB) radio is a rapidly emerging technology with attrac-

tive and promising features for wireless communications such as wireless per-

sonal area networks (WPANs), imaging, radar, and positioning systems [1].

In February 2002, the Federal Communications Commission (FCC) allocated

7.5 MHz of spectrum (3.1 to 10.6 GHz frequency band) for unlicensed use of

UWB technology, which resulted in a rapidly growing research interest in this

field in academia and industry. The strict power limitations ruled by FCC

determined two different suitable application categories for UWB communi-

cations. The first one is high bit rate applications over short ranges. The
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IEEE 802.15.3a Task Group (TG) was an exemplary attempt to standardize

this category. The second category regulates low bit rate applications over

medium-to-long ranges, dealt with in the IEEE 802.15.4a TG [2]. The focus

of the present work is on high bit rate UWB applications. The FCC spectral

mask, shown in Fig. 1.1 allows indoor UWB communications to coexist with

other technologies with power spectral densities (PSDs) not exceeding -41.3

dBm/MHz [3]. Fig. 1.1 shows the allowed level of effective isotropic radiated

power (EIRP) of the UWB transmitting antenna. A common method to main-

tain the FCC power spectrum mask for a given data rate is to limit the energy

per pulse by proper pulse waveform design, and reducing the transmit power

for a fixed pulse waveform. According to the modern definition, UWB refers
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Figure 1.1: UWB spectral mask and FCC part 15 limits.

to any wireless transmission with instantaneous spectral occupancy of more

than 500 MHz or a fractional bandwidth greater than 20%. The fractional
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bandwidth Bf is mathematically defined as

Bf =
B

fc
=

fH − fL

fc
, (1.1)

where B = fH − fL denotes the -10 dB bandwidth and fc = (fH + fL)/2 is the

center frequency, with fH being the upper frequency of the -10 dB emission

point, and fL being the lower frequency of the -10 dB emission point. UWB

systems with fc > 2.5 GHz need to have a -10 dB bandwidth of at least 500

MHz, and UWB systems with fc < 2.5 GHz need fractional bandwidth of at

least 0.2 [4].

There are two main candidates for UWB physical–layer (PHY). One candidate

is multiband orthogonal frequency division multiplexing (MB–OFDM), which

is based on the transmission of continuous OFDM signals combined with fre-

quency hopping (FH) over instantaneous frequency bandwidths of 528 MHz.

The second strong candidate is known as direct–sequence (DS) UWB, and is

based on transmission of UWB DS-coded pulses, which are extremely short

(in the order of nanoseconds) and of low power [2]. In the present work, we

consider carrier modulated DS–UWB which was also considered for standard-

ization in the IEEE 802.15.3a TG. However, we do not restrict our work to any

standard. Various types of modulations can be employed for DS–UWB, includ-

ing on–off keying (OOK), pulse–amplitude modulation (PAM), pulse–position

modulation (PPM), and phase–shift keying (PSK), as well as different receiver

types such as the energy detector [5], differential detector [6], Rake receiver

[7], and transmitted reference receiver [8].

The well–known advantages of UWB systems can be summarized as unlicensed

usage of an extremely wideband spectrum, great flexibility of spectrum usage,

and capability of implementing adaptive transceivers for trade–off between

data rate, range, power, and quality-of-service within the same hardware.

UWB high temporal resolution, implies robustness against multipath fading,

and low fading margin requirements. Finally, ranging capabilities, low power

transmission, and robustness against eavesdropping are other advantages of

3



UWB systems [2].

1.2 Background and Motivation

As their unique characteristic, UWB systems can resolve even dense multi-

path components, due to their extremely large bandwidths such that Rake

combining can be used at the receiver to efficiently capture energy and sig-

nificantly reduce the negative effects of fading in the received signal [9, 10].

However, the implementation of the receiver, requires a Rake receiver and can

be considerably complex in a multipath environment. Digital implementation

of the Rake receiver requires very high sampling and processing speed, both

during the channel estimation and the actual data reception. However, for

many UWB applications the receiver is a portable device with severely limited

signal processing capabilities making the implementation of Rake combiners

with a sufficiently large number of fingers very challenging.

A promising approach to overcome this problem is to move computational

complexity from the receiver to the more powerful transmitter (e.g. an access

point). For this purpose the concept of pre–Rake combining (also referred

to as time–reversal) was borrowed from other areas such as time–division du-

plex code–division multiple access (TDD–CDMA) systems [11] and under-

water acoustic communication [12], and was modified for UWB applications,

cf. e.g. [13]–[21]. Pre–Rake combining exploits the reciprocity of the UWB

channel which was recently experimentally confirmed in [19]. Ideally, with

pre–Rake combining channel estimation, diversity combining, and equaliza-

tion are avoided at the receiver, and a simple symbol–by–symbol detector can

be used [14, 20]. In addition, it has recently been shown that pre–Rake combin-

ing also performs well in the presence of multiple users [17], and the extension

to multiple–input single–output (MISO) scenarios was proposed in [17, 19].

Despite all of these desirable properties, pre–Rake combining has a serious

4



drawback. In particular, for the long channel impulse responses (CIRs), which

are typical for UWB applications, it may entail a relatively high error floor if

simple symbol–by–symbol detection is applied [15, 13]. To remedy this prob-

lem receiver–side equalization [22, 13, 23] and post–Rake combining [18] have

been proposed. However, these techniques increase the receiver complexity

and thus, compromise to some extend the advantages of pre–Rake combining.

Therefore, transmitter–side approaches for performance improvement seem to

be more suitable for pre–Rake UWB systems. One option in this regard is to

decrease the data rate (i.e., increase the chip or/and symbol duration), which

effectively decreases the residual intersymbol interference (ISI) at the receiver

[20]. However, if high data rates are desired, some form of pre–equalization

has to be applied at the transmitter. In [24] the pre–Rake filter is replaced by

a pre–filter which minimizes the residual ISI at the receiver based on the min-

imum mean squared error (MMSE) criterion. Since this MMSE pre–filter is

implemented at the chip level, depending on the underlying channel, relatively

long filters may be necessary to achieve a good performance. This entails a

high complexity, since the computation of the filter coefficients requires the

inversion of a matrix with a size equal to the filter length.

1.3 Contributions

In this thesis, we propose a novel pre–equalization filter (PEF) scheme for

MISO DS–UWB systems which consists of a bank of pre–Rake filters and a

bank of PEFs. Unlike [24], we retain the pre–Rake filters, as they efficiently

shorten the overall CIRs, and implement the PEFs at the symbol level. As

a result, the PEF lengths required to achieve certain performance are much

smaller for the proposed scheme than for the scheme in [24], leading to a lower

complexity for filter computation. Although pre–equalization problems have

been extensively studied in the literature, e.g. [25, 26], existing results cannot
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be easily adopted for the problem at hand due to the presence of the pre–

Rake, the imposed simple receiver processing, and the spreading applied in

DS–UWB.

The main contributions of the present research work are as follows:

• We derive a closed–form solution for the optimum finite impulse response

(FIR) and infinite impulse response (IIR) MMSE PEF coefficients for the

MISO DS-UWB system. The MMSE criterion for optimization is mini-

mizing the error variance at the receiver while limiting the power of the

transmitted signal over one symbol interval. We also analyze the per-

formance of the resulting system. Our simulation results confirm that

the proposed PEF scheme achieves significant performance gains over

pre–Rake structures without equalization and that the performance of

IIR PEFs can be closely approached by relatively short FIR PEFs, even

for long UWB CIRs. We compare our simulation results with analytical

Gaussian approximation results and show that they are in good agree-

ment for a sufficient number of filter coefficients.

• We discuss the optimality of all–pre–Rake (A–pre–Rake), and show in

detail that increasing the spreading factor N decreases the error variance

by decreasing the effective spectral fluctuation for a given number of an-

tennas, and consequently improves the system performance. Simulation

results also show that increasing the number of antennas has a similar

positive effect, while providing an additional combining gain, which leads

to better system performance.

• As a meaningful performance bound for any (pre–)equalizer and any

(pre–)Rake scheme, matched–filter (MF) bounds are derived for our pro-

posed schemes. It is mathematically shown that, for the proposed PEF

scheme, as the spreading factor N tends to infinity the effective signal-

to-noise ratio (SNR) becomes the same as the resulting SNR for the

equivalent matched–filtered system.
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• We show that a single–input multiple–output (SIMO) system with post–

Rake combining followed by MMSE equalization is the dual system to the

proposed MISO system with pre–Rake combining and pre–equalization.

This uplink–downlink duality [27] can be conveniently exploited for ef-

ficient adaptive computation of the PEFs. A practical implications for

the uplink–downlink duality is that, while adaptive algorithms cannot be

used to calculate the optimum downlink filter (since the received signal

is not available at the transmitter) algorithms such as the least–mean

square (LMS) or the recursive least squares (RLS) algorithm can be

used to calculate optimum uplink filter efficiently, and from there, the

optimum downlink filters can be easily obtained.

• We also propose a simplified PEF (S–PEF) scheme for the MISO system,

where the bank of PEFs is replaced by a single PEF. We demonstrate

that, under certain conditions, the S–PEF scheme can achieve the same

performance as the more complex PEF scheme. The simulation results

show that for sufficient, but still relatively small numbers of FIR PEF co-

efficients, the PEF scheme can be replaced by the S–PEF scheme without

significant loss in system performance.

• Since we assume perfect channel state information (CSI) in all our deriva-

tions and analysis, we briefly study the effect of having imperfect CSI at

the transmitter on the performance of the proposed schemes. Simulation

results show that our proposed schemes are reasonably robust and not

very sensitive to CSI errors. We also observe that channels with longer

delay spreads are more sensitive to CSI errors, however.

The results of our work are summarized in the following papers:

• E. Torabi, J. Mietzner, and R. Schober. Pre-Equalization for MISO DS–

UWB Systems with Pre–Rake Combining. Accepted subject to minor

revisions in the IEEE Transactions on Wireless Communications, Oct.

2007.
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• E. Torabi, J. Mietzner, and R. Schober. Pre-Equalization for Pre–Rake

MISO DS–UWB Systems. Submitted to the IEEE International Confer-

ence on Communications (ICC), Aug. 2007.

1.4 Thesis Organization

In Chapter 2, we present the considered transmitter structure, channel model,

and receiver structure. The proposed PEF scheme is optimized and analyzed

for both the FIR and the IIR case in Chapter 3. The uplink–downlink duality

is covered in Chapter 4, and the S–PEF scheme is investigated in Chapter 5.

In Chapter 6, we compare the performances of the PEF scheme and the S-PEF

scheme for IIR cases, and briefly discuss the pre–filtering method proposed in

[24] in order to compare its performance with that of our proposed methods.

In Chapter 7, simulation results are provided, and Chapter 8 concludes this

thesis.
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Chapter 2

System and Channel Model

In this thesis, we consider a MISO DS–UWB system with M transmit an-

tennas, symbol duration Ts, and chip duration Tc = Ts/N , where N is the

spreading factor. A block diagram of the discrete–time model of this system is

shown in Fig. 2.1. We note that our results could be extended to multiple re-

ceive antennas in a straightforward fashion. However, for the sake of clarity and

since a simple receiver structure is desired, we assume that only a single receive

antenna is available. To emphasize the different capabilities of the transmitter

and the receiver we will also refer to the system in Fig. 2.1 as the downlink.

Furthermore, for convenience, all signals and systems are represented by their

complex baseband equivalents. In the following, the transmitter structure of

the proposed PEF scheme, the adopted channel model, correlated shadowing,

and the receiver structure are discussed.

2.1 Transmitter Structure

At antenna m, 1 ≤ m ≤ M , the transmitted independent and identically

distributed (i.i.d.) data symbols a[n] ∈ {±1} are filtered with a PEF fm[n] of

9



... ... ...

N g1[k] h1[k]

Nâ[n − n0]

α

r[n]
c[N − 1 − k]

c[k]f1[n]

a[n]

NfM [n] c[k] gM [k] hM [k]
sM [k]

s1[k] zc[k]

y[k]

v1[n]

vM [n]

Figure 2.1: Block diagram of a MISO DS–UWB system (downlink) with M

transmit antennas, pre–Rake combining, and pre–equalization. The multipli-

cation of r[n] with α (dashed box) does not have to be implemented at the

receiver, cf. discussion in Section 2.3 and Chapter 3.

length Lf . The filter output signal

vm[n] , fm[n] ∗ a[n] =

Lf−1
∑

l=0

fm[l]a[n − l] (2.1)

is up–sampled by a factor of N . The up–sampled signal is then filtered with a

(real–valued) spreading sequence c[k], 0 ≤ k < N , and with a pre–Rake filter

gm[k] of length Lg. For convenience the spreading sequence is normalized to
∑N−1

k=0 |c[k]|2 = 1. The resulting transmit symbol sm[k] is given by

sm[k] =
∞
∑

i=−∞

vm[i]g̃m[k − iN ], (2.2)

where g̃m[k] , c[k] ∗ gm[k] includes the combined effects of the pre–Rake filter

and the spreading. We note that the considered transmitter structure is very

general as we do not impose any restrictions on c[k] and gm[k]. If a spreading

sequence is not applied, e.g. [13, 17, 19, 24], c[0] = 1 and c[k] = 0, 1 ≤ k < N .

In general, gm[k], 1 ≤ m ≤ M , will depend in some way on the CIR hm[k],

which is of length Lh. For example, for an all–pre–Rake (A–pre–Rake or time–
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reversal filter) gm[k] is given by

gm[k] ,







h∗

m[Lh − k − 1], 0 ≤ k < Lg,

0, otherwise,
(2.3)

where Lg = Lh, for a partial–pre–Rake (P–pre–Rake) we have

gm[k] ,







h∗

m[Lg − k − 1], 0 ≤ k < Lg,

0, otherwise,
(2.4)

where Lg < Lh, and a selective pre–Rake (S–pre–Rake) is defined by

gm[k] ,







h∗

m[Lg − k − 1], 0 ≤ k < Lg,

0, otherwise,
(2.5)

for the S largest coefficients of hm[k], where Lg ≤ Lh may be adopted [28].

Since for typical UWB CIR lengths it is not realistic to assume that the CIR

coefficients can be fed back from the receiver to the transmitter [21], as any

UWB transmitter structure requiring CSI, the proposed PEF scheme hinges

on the reciprocity of the UWB channel and the use of time–division duplex

(TDD) is assumed, in which the same frequency band is used for both the

uplink and downlink by switching between transmission and reception in time.

Fortunately, this reciprocity has been experimentally confirmed [19]. Hence,

hm[k] can be estimated at the transmitter relieving the receiver from any chan-

nel estimation tasks.

2.2 Channel Model

The equivalent baseband discrete–time CIRs hm[k] , gT (t) ∗ hm(t) ∗ gR(t)|kTc
,

1 ≤ m ≤ M , contain the combined effects of the transmit filter gT (t), the

continuous–time CIR hm(t), and the receive filter gR(t). Furthermore, for

the wireless channel we adopt the recently proposed extension of the IEEE

802.15.3a channel model [29, 30] to multiple antennas [31]. Consequently, the

11



passband version h′

m(t) of the baseband CIR hm(t) consists of Lc clusters of

Lr rays [32] and is modeled as

h′

m(t) = Xm

Lc
∑

l=1

Lr
∑

k=1

αk,l,mδ(t − Tl,m − τk,l,m), (2.6)

where Tl,m is the delay of the lth cluster, τk,l,m is the delay of the kth ray of

the lth cluster, αk,l,m is the random multipath gain coefficient, and Xm models

the log–normal shadowing and can be represented as

Xm = 10
σx
20

wm, (2.7)

where σx is the standard deviation for log–normal shadowing in dB and is as-

sumed to be 3 dB as given in [29], and the variable wm is defined as a Gaussian

random variable (RV) with zero–mean and unit variance, i.e., wm ∼ N (0, 1).

In [29, 30] four parameter sets for the various channel model parameters in

Eq. (2.6) are specified. The resulting four channel models (CMs) are known

as CM1, CM2, CM3, and CM4 and represent different usage scenarios. CM1

describes a line–of–sight (LOS) scenario with a separation between transmit-

ter and receiver of less than 4 m. CM2 describes the same range, but for a

non–LOS situation. CM3 describes a non–LOS scenario for distances of 4-10

m between transmitter and receiver. Finally, CM4 describes an environment

with strong delay dispersion, resulting in a delay spread of 25 ns [29, 30]. For

the simulations provided in this work, we consider CM1 and CM4, which have

the shortest and the longest delay spread, respectively. As an example, 100

CIR realizations for CM1 and CM4 are shown in Fig. 2.2 and Fig. 2.3, respec-

tively. Later on, in Chapter 7, we will show how the long delay spread of UWB

channels can affect the system performances.

Measurements reported in [31] have confirmed that while Tl,m, τk,l,m, and

αk,l,m are independent across antennas, the log–normal terms Xm are mutu-

ally correlated. Adequate modeling of correlated shadowing in UWB MIMO

channels is a pre-requisite to achieve an accurate performance analysis. Based

on [31], a recently proposed modeling method for correlated shadowing with

12
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Figure 2.2: 100 CIR realizations for CM1.

log-normal distribution in UWB MIMO channels and the IEEE 802.15.3a chan-

nel model is used in the present work. As mentioned earlier we assume a UWB

MISO channel with M transmit antennas, therefore we focus our derivations

to UWB MISO channel. The goal is to relate correlation coefficients for log–

normal distributed RV Xm to the correlation coefficients for their correspond-

ing Gaussian distributed RV wm. Let x = [X1, X2, · · · , XM ]T be the vector

of correlated shadowing RVs, with Xm defined according to Eq. (2.7). Since

the log–normal distributed RVs Xm, 1 ≤ m ≤ M are correlated, their corre-

sponding Gaussian RVs wm, 1 ≤ m ≤ M are correlated as well. We assume

vector w = [w1, w2, · · · , wM ]T as a joint Gaussian distribution with correlation

matrix defined as RTw
= [ρwm,wn

]M×M , where ρwm,wn
denotes the correlation

coefficient and is defined as

ρwm,wn
= E {wm × wn} . (2.8)
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Figure 2.3: 100 CIR realizations for CM4.

The correlation coefficient for the log–normal RVs Xm and Xn can then be

computed based on the Gaussian RVs wm and wn as [31]

ρXm,Xn
=

eλ2σ2
xρwm,wn − 1

eλ2σ2
x − 1

(2.9)

where λ = ln 10/20. The correlation coefficient for the Gaussian RVs wm and

wn can also be obtained as

ρwm,wn
=

1

λ2σ2
x

ln
[(

eλ2σ2
x − 1

)

ρXm,Xn
+ 1
]

. (2.10)

If we assume that the correlation matrix for the log–normal shadowing x at

the transmitter end is given by RTx
= [ρXm,Xn

]M×M , corresponding correlation

matrix RTw
for the Gaussian RVs w can be computed using Eq. (2.10).

In particular, the correlated Gaussian random vector w is obtained as

w = (RTw
)1/2

w(u) (2.11)
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where w(u) =
[

w
(u)
1 , w

(u)
2 , · · · , w

(u)
M

]T

is defined as a random vector that con-

sists of real–valued i.i.d. Gaussian RVs with zero–mean and unit variance.

Eq. (2.11) ensures that the random vector w has the predefined correlation

matrix RTw
.

We now conclude that the correlated shadowing for UWB MISO channels can

be generated using Eq. (2.7), where the correlated real–valued Gaussian RV

wm can be modeled by Eq. (2.11). Finally, the correlation matrix RTw
in terms

of Gaussian distribution can be obtained from the correlation matrix RTx
in

terms of their corresponding log–normal distribution using Eq. (2.10). We

will use these results in order to generate correlated channels for UWB MISO

systems in our simulations.

2.3 Receiver Structure

Consider again the system model depicted in Fig. 2.1. The received signal y[k]

is filtered with the time–reversed spreading sequence c[N − 1− k], 0 ≤ k < N .

It will then be sampled at times k = Nn + k0, where 0 ≤ k0 < N denotes the

sampling phase. The resulting receiver output signal r[n] can be expressed as

r[n] =

M
∑

m=1

∞
∑

l=−∞

qm[Nl + k0]vm[n − l] + zs[n], (2.12)

with the overall CIR

qm[k] , g̃m[k] ∗ h̃m[k], (2.13)

where,

h̃m[k] , hm[k] ∗ c[N − 1 − k], (2.14)

and symbol–level noise

zs[n] =
N−1
∑

i=0

c[i]zc[N(n − 1) + k0 + i + 1], (2.15)

where zc[k] denotes the chip–level additive white Gaussian noise (AWGN) with

variance σ2
c , E{|zc[k]|2}. Consequently, zs[n] is also AWGN with variance
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σ2
s , E{|zs[n]|2} = σ2

c

∑N−1
i=0 |c[i]|2 = σ2

c . Ideally, the sampling phase k0 should

be optimized to maximize the energy of qm[Nl + k0]. However, the number

of operations required for finding the optimum k0 may be prohibitive, espe-

cially for large N . Therefore, in practice, it may be preferable to consider

suboptimum choices for k0 which yield a good performance and can be eas-

ily found. For an A–pre–Rake combiner qm[k] will assume its maximum for

k = Lg + N − 2. In order to capture this maximum in qm[Nl + k0], we require

k0 = ks
0 , Lg + N − 2 − N b(Lg + N − 2)/Nc. Through extensive simula-

tions we found that ks
0 yields a close–to–optimum performance not only for

A–pre–Rake combining but also for S– and P–pre–Rake combining as long as

the number of fingers is sufficiently large. We note that the analytical results

in this thesis are valid for any sampling phase k0 but for our simulation results

in Chapter 7 we have adopted k0 = ks
0.

Since the goal of the proposed UWB system design is to minimize receiver

complexity in the downlink, no additional filtering is applied at the receiver

and symbol decisions are made according to1

â[n − n0] = sign{<{r[n]}}, (2.16)

where â[n − n0] is the estimate for a[n − n0], n0 denotes the decision delay,

and sign{x} = 1 if x ≥ 0 and sign{x} = −1 otherwise. As typical for equal-

ization problems, the decision delay n0 has to be optimized for performance

maximization if causal pre–filters are desired.

1Note that the multiplication with α in Fig. 2.1 does not have to be implemented at the

receiver, see discussion in Chapter 3.
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Chapter 3

PEF Optimization and

Performance Analysis

In this thesis, we adopt the MMSE criterion for optimization of the PEFs

fm[n]. In particular, our design goal is to minimize the error variance

σ2
e , E{|a[n − n0] − αr[n]|2}, (3.1)

while limiting the power P of the transmitted signal over one symbol interval,

i.e.,

P ,

N(n+1)−1
∑

k=Nn

M
∑

m=1

E{|sm[k]|2} = 1, ∀n. (3.2)

Here, α in Eq. (3.1) is an auxiliary variable that simplifies the optimiza-

tion of the PEFs fm[n] but does not affect the symbol decisions according

to Eq. (2.16). Note that similar constraint as in Eq. (3.2) is used in other

techniques for UWB applications cf. e.g. [13]–[21]. Since UWB systems have

to comply with the FCC power spectrum mask as discussed in Chapter 1, it

is also of interest to introduce additional constraints on the power spectrum

density of the transmitted signal, which is not considered in the present work

and is open for future research.

In the following section, we derive the optimum FIR PEFs based on Eqs. (3.1)
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and (3.2), and provide an expression for the corresponding minimum error vari-

ance. In Section 3.2 we find closed–form solution for the optimum IIR PEF

coefficients with slightly different method than that of the FIR PEFs and ob-

tain the corresponding minimum error variance. We analyze the performance

of the proposed PEF scheme and provide an expression for its bit–error–rate

(BER) performance in Section 3.3, followed by a discussion on the optimality

of A–pre–Rake for IIR PEFs in Section 3.4. Section 3.5 provides a performance

lower bound for the proposed PEF scheme, and finally in Section 3.6 the effect

of large spreading factors on the performance of the proposed PEF scheme is

investigated.

3.1 FIR Pre–Equalization Filters

For FIR PEF optimization it is convenient to first rewrite Eq. (2.12) as

r[n] =
M
∑

m=1

(Qmfm)Ha[n] + zs[n]

= (Qf)Ha[n] + zs[n], (3.3)

where a[n] , [a[n] . . . a[n − Lt + 1]]T , f , [fT
1 . . . fT

M ]T , fm , [fm[0] . . .

fm[Lf −1]]H , Q , [Q1 . . . QM ], and Qm denotes an Lt ×Lf column–circulant

matrix defined as
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Qm =









































qm[k0] 0 . . . 0

qm[N + k0] qm[k0] . . .
...

qm[2N + k0] qm[N + k0] . . . 0
...

...
. . . qm[k0]

qm[N(Lq − 1) + k0] qm[N(Lq − 2) + k0]
. . . qm[N + k0]

0 qm[N(Lq − 1) + k0]
. . .

...
...

...
. . . qm[N(Lq − 2) + k0]

0 0 . . . qm[N(Lq − 1) + k0]









































.

(3.4)

Here, Lt , Lq +Lf −1 and Lq = d(Lg +Lh +2N −3)/Ne are the lengths of the

impulse response of the overall system (including the PEFs) and the sampled

overall CIR qm[Nn + k0], respectively. Applying Eq. (3.3) in Eq. (3.1) yields

σ2
e = 1 + |α|2σ2

c − αf Hq − α∗qHf + |α|2fHQHQf , (3.5)

where q , QHen0
, and en0

th denotes the unit vector whose elements are all

zero except for the n0 element which is equal to one.

Now, we evaluate Eq. (3.2). Based on Eq. (2.2) for antenna m we obtain

E{|sm[k]|2} = E {sm[k]sm[k]∗}

=
∞
∑

i=−∞

∞
∑

j=−∞

E {vm[i]v∗

m[j]} g̃m[k − iN ]g̃∗

m[k − jN ]

=
∞
∑

i=−∞

∞
∑

j=−∞

{

∞
∑

k=−∞

∞
∑

l=−∞

fm[k]f ∗

m[l]E (a[i − k]a∗[j − l])

}

×

g̃m[k − iN ]g̃∗

m[k − jN ]

=

∞
∑

i=−∞

∞
∑

j=−∞

{

∞
∑

k=−∞

∞
∑

l=−∞

fm[k]f ∗

m[l]δ [i − j − k + l]

}

×

g̃m[k − iN ]g̃∗

m[k − jN ]

=
∞
∑

i=−∞

∞
∑

j=−∞

{

∞
∑

k=−∞

fm[k]f ∗

m[i − j + l]

}

g̃m[k − iN ]g̃∗

m[k − jN ]
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=
∞
∑

i=−∞

∞
∑

j=−∞

ϕm
ff [i − j]g̃m[k − iN ]g̃∗

m[k − jN ], (3.6)

where ϕm
ff [k] , fm[k]∗f ∗

m[−k]. Eq. (3.6) shows that sm[k] is a cyclo–stationary

process with period N . The signal power Pm ,
∑N(n+1)−1

k=Nn E{|sm[k]|2} per

symbol interval at antenna m can be obtained as

Pm =
∞
∑

i=−∞

∞
∑

j=−∞

N(n+1)−1
∑

k=Nn

ϕm
ff [i − j]g̃m[k − iN ]g̃∗

m[k − jN ]

=

∞
∑

l=−∞

ϕm
ff [l]

∞
∑

j=−∞

N(n+1)−1
∑

k=Nn

g̃m[k − jN − lN ]g̃∗

m[k − jN ]

=
∞
∑

l=−∞

ϕm
ff [l]ϕm[−Nl], (3.7)

where we define ϕm[k] as

ϕm[k] , g̃m[k] ∗ g̃∗

m[−k]. (3.8)

Now, Pm can be rewritten in vector form as Pm = fH
mΦmfm, and the total

average transmit power constraint per symbol interval is then calculated as

P =
∑M

m=1 Pm and can be expressed as

P = fHΦf = 1 (3.9)

with MLf × MLf block diagonal matrix Φ , diag{Φ1, . . . , ΦM}. Here, Φm

is a symmetric Toeplitz matrix as

Φm =

















ϕm[0] ϕm[−N ] . . . ϕm[−N(Lf − 1)]

ϕm[+N ] ϕm[0]
. . . ϕm[−N(Lf − 2)]

...
...

. . .
...

ϕm[+N(Lf − 1)] ϕm[+N(Lf − 2)] . . . ϕm[0]

















.

(3.10)

Combining Eqs. (3.5) and (3.9) we obtain the following Lagrange problem

L(f , α) = 1+ |α|2σ2
c −αf Hq−α∗qHf + |α|2fHQHQf +λ(f HΦf −1), (3.11)
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where λ denotes the Lagrange multiplier. Differentiating L(f , α) with respect

to f∗ and α∗ we obtain

∂L(f , α)

∂f ∗
= |α|2QHQf − αq + λΦf (3.12)

and
∂L(f , α)

∂α∗
= ασ2

c + αfHQHQf − qHf . (3.13)

Setting the resulting gradients to zero leads to the optimum solution. To find

the optimum solution faster we use an alternative formulation and define

f̃ = α∗f , (3.14)

so the minimization criterion expressed in Eq. (3.5) can be rewritten as

σ2
e = 1 + |α|2σ2

c − f̃
H
q − qH f̃ + f̃

H
QHQf̃ , (3.15)

and the average transmit power constraint in Eq. (3.9) can be rewritten by

multiplying both sides of the equation by |α|2 as

f̃
H
Φf̃ = |α|2. (3.16)

By substituting Eq. (3.16) in Eq. (3.15) we obtain

σ2
e = 1 + f̃

H
Φf̃σ2

c − f̃
H
q − qH f̃ + f̃

H
QHQf̃ . (3.17)

Differentiating Eq. (3.17) with respect to f̃
∗

leads to

∂σ2
e

∂f̃
∗

=
(

QHQ + σ2
cΦ
)

f̃ − q , (3.18)

and setting the resulting gradient to zero, we calculate

f̃ opt =
(

QHQ + σ2
cΦ
)

−1
q . (3.19)

Now, substituting Eq. (3.19) in Eqs. (3.14) and (3.16) leads to the optimum

FIR solution as

fopt =
1

α∗

opt

(

QHQ + σ2
cΦ
)

−1
q (3.20)

αopt =

√

qH
(

QHQ + σ2
cΦ
)

−1
Φ
(

QHQ + σ2
cΦ
)

−1
q . (3.21)
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As already mentioned in Section 2.3, αopt is always positive and does not have

to be implemented at the receiver.1 Using Eqs. (3.20) and (3.21) in Eq. (3.5)

we will have

σ2
e,min = 1 + qH

(

QHQ + σ2
cΦ
)

−1 (
QHQ + σ2

cΦ
) (

QHQ + σ2
cΦ
)

−1
q

− 2qH
(

QHQ + σ2
cΦ
)

q , (3.22)

which leads to the minimum error variance as

σ2
e,min = 1 − qH

(

QHQ + σ2
cΦ
)

−1
q . (3.23)

For calculation of f opt an MLf × MLf matrix has to be inverted, which is

computationally expensive for large Lf . Therefore, from the complexity point

of view short FIR filters are desirable. On the other hand, the performance of

the proposed pre–equalization scheme improves with increasing Lf . Therefore,

we are interested in finding the minimum value of Lf which achieves close–to–

optimum performance. In this context, the optimum IIR solution is useful as

it allows us to establish the ultimate performance limit of the proposed PEF

scheme.

3.2 IIR Pre–Equalization Filters

As customary for IIR filter optimization, we drop the causality constraint and

set n0 = 0, and use a frequency–domain approach for filter optimization [33].

The frequency–domain approach simplifies our derivations as it avoids having

to deal with infinite–length impulse responses. Furthermore, we denote the

vector of IIR PEF frequency responses by F (ejω) , [F1(e
jω) . . . FM(ejω)]H ,

where Fm(ejω) , F{fm[n]}. Similarly, the vector of the Fourier transforms of

the sampled overall CIRs qm[Nn+k0] is defined as Q(ejω) , [Q1(e
jω) . . . QM(ejω)]T ,

1We note that the error variance does not change if we multiply the right hand side of

Eq. (3.21) with ejφ, where φ is an arbitrary phase. However, since from a practical point of

view real–valued positive αopt are desirable we concentrate on the case φ = 0 in this thesis.
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where Qm(ejω) , F{qm[Nn+k0]}. Note that Qm(ejω) is related to the Fourier

transform

Q̃m(ejω) , F{qm[k + k0]} (3.24)

of the overall CIR via [34]

Qm(ejω) =
1

N

N−1
∑

k=0

Q̃m(ej(ω−2πk)/N ). (3.25)

For IIR PEFs without causality constraint (cf. Section 3.1) the definitions of

fm, qm, and Qm have to be slightly modified compared to the FIR case with

causality constraint. For example, now fm , [. . . fm[−1] fm[0] fm[1] . . .]T and

qm , [. . . qm[−N +k0] qm[k0] qm[N +k0] . . .]T are valid. Taking these changes

into account, fHq can be expressed as

fHq =

M
∑

m=1

∞
∑

n=−∞

fm[n]qm[−Nn + k0]

=
1

2π

M
∑

m=1

∞
∑

n=−∞

π
∫

−π

Fm(ejω)qm[−Nn + k0]e
jωn dω

=
1

2π

π
∫

−π

M
∑

m=1

Fm(ejω)Qm(ejω) dω

=
1

2π

π
∫

−π

F H(ejω)Q(ejω) dω, (3.26)

where we have used the definition of the (inverse) discrete–time Fourier trans-

form. Taking the non–causality and IIR property into account in the definition

of Qm, fHQHQf can be rewritten as

fHQHQf =

M
∑

m=1

||Qmfm||
2

=

M
∑

m=1

∞
∑

n=−∞

|xm[n]|2 =
1

2π

π
∫

−π

M
∑

m=1

|Xm(ejω)|2 dω

=
1

2π

π
∫

−π

F H(ejω)Q(ejω)QH(ejω)F (ejω) dω, (3.27)
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where we have employed the definitions xm[n] , fm[n] ∗ qm[Nn + k0] and

Xm(ejω) , F{xm[n]} = Fm(ejω)Qm(ejω), and Parseval’s theorem [34]

∞
∑

n=−∞

|x[n]|2 =
1

2π

∫ π

−π

|X(ω)|2dω. (3.28)

Applying Eqs. (3.26) and (3.27) in Eq. (3.5) the error variance can be rewritten

as

σ2
e = 1 + |α|2σ2

c −
1

2π

π
∫

−π

[

αF H(ejω)Q(ejω) + α∗QH(ejω)F (ejω)
]

dω

+
1

2π

π
∫

−π

|α|2F H(ejω)Q(ejω)QH(ejω)F (ejω) dω. (3.29)

Similarly, using the definitions

Φ(ejω) , diag{Φ1(e
jω), Φ2(e

jω), . . . , ΦM (ejω)}, (3.30)

and

Φm(ejω) , F{ϕm[Nn]}, (3.31)

and based on Eq.(3.7) we may rewrite the signal power for antenna m as

Pm =
1

2π

∞
∑

l=−∞

π
∫

−π

Φm
ff (e

jω)ϕm[−Nl]ejωl dω =
1

2π

π
∫

−π

|Fm(ejω)|2Φm(ejω) dω,

(3.32)

where we have used the definition of the (inverse) Fourier transform and the

identity Φm
ff (e

jω) , F{ϕm
ff [k]} = |Fm(ejω)|2. By adding the powers Pm, 1 ≤

m ≤ M , of all M antennas we obtain the average transmit power constraint

as

P =
1

2π

π
∫

−π

F H(ejω)Φ(ejω)F (ejω) dω = 1. (3.33)

We note that the Fourier transform Φm(ejω) of the sampled sequence ϕm[Nn]

is related to the Fourier transform

Φ̃m(ejω) , F{ϕm[k]} (3.34)
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of the sequence by [34]

Φm(ejω) =
1

N

N−1
∑

k=0

Φ̃m(ej(ω−2πk)/N ). (3.35)

Based on Eqs. (3.29) and (3.33) we can formulate a Lagrange problem similar

to Eq. (3.11) in the FIR case. Again, as an alternative formulation we define

F̃ (eiω) = α∗F (eiω), (3.36)

therefore the average transmit power constraint in Eq. (3.33) can be rewritten

as

|α|2 =
1

2π

π
∫

−π

F̃
H

(eiω)Φ(ejω)F̃ (eiω) dω. (3.37)

From this, we find the error variance as

σ2
e = 1 −

1

2π

π
∫

−π

F̃
H

(eiω)Q(eiω) dω −
1

2π

π
∫

−π

QH(eiω)F̃ (eiω) dω

+
σ2

c

2π

∫ π

−π

F̃
H

(eiω)Φ(ejω)F̃ (eiω) dω +
1

2π

π
∫

−π

F̃
H

(eiω)Q(ejω)QH(ejω)F̃ (eiω) dω.

(3.38)

To solve this problem we differentiate Eq. (3.38) with respect to F̃
∗

(eiω) and

find

∂σ2
e

∂F̃
∗

(eiω)
= σ2

cΦ(eiω)F̃ (eiω) + Q(eiω)QH(eiω)F̃ (eiω) − Q(eiω). (3.39)

Setting the resulting gradient to zero, we calculate

F̃ (eiω) =
(

Q(eiω)QH(eiω) + σ2
cΦ(eiω)

)

−1
Q(eiω). (3.40)

Finally, substituting Eq. (3.40) in Eqs. (3.36) and (3.37) leads to the optimum

IIR PEFs

F opt(e
jω) =

1

α∗

opt

M(ejω)Q(ejω) (3.41)

αopt =

√

√

√

√

√

1

2π

π
∫

−π

QH(ejω)M(ejω)Φ(ejω)M(ejω)Q(ejω) dω, (3.42)
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with M(ejω) , (Q(ejω)QH(ejω) + σ2
cΦ(ejω))−1. Using the matrix inversion

lemma [35], we obtain

M(ejω) =
Φ−1(ejω)

σ2
c

[

IM −
Q(ejω)QH(ejω)Φ−1(ejω)

σ2
c + QH(ejω)Φ−1(ejω)Q(ejω)

]

. (3.43)

With this result Eqs. (3.41) and (3.42) can be simplified to

F opt
m (ejω) =

1

α∗

opt

Qm(ejω)

Φm(ejω)(σ2
c + X(ejω))

(3.44)

αopt =

√

√

√

√

√

1

2π

π
∫

−π

X(ejω)

(σ2
c + X(ejω))2

dω, (3.45)

where

X(ejω) = QH(ejω)Φ−1(ejω)Q(ejω)

=

M
∑

m=1

|Qm(ejω)|2

Φm(ejω)
, (3.46)

and F opt
m (ejω), 1 ≤ m ≤ M , denotes the mth component of F opt(e

jω). The

corresponding minimum error variance can be obtained from Eqs. (3.29) and

(3.46) as

σ2
e,min =

1

2π

π
∫

−π

σ2
c

σ2
c + X(ejω)

dω. (3.47)

3.3 Performance Analysis

In this section, we provide an expression for the BER of the proposed pre–

equalization scheme. For this purpose we assume that the residual ISI is ap-

proximately Gaussian distributed, which is typically a good assumption for

MMSE problems [36]. For this purpose, we first assume that FIR PEFs are

used and note that the receiver output signal can be expressed as

r[n] = fHqa[n − n0] + fHQHan0
[n] + zs[n], (3.48)

where an0
[n] is identical to a[n] except that its n0th component is zero. Based

on this representation, it can be observed that the effective SNR of the decision
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variable r[n] can be easily calculated. The first term in Eq. (3.48) represents the

signal contribution, whereas the second and third term represent the residual

interference contribution and the noise, respectively. Therefore, the signal

power γ can be found as

γ =
∣

∣fHq
∣

∣

2
, (3.49)

and the effective variance of residual ISI and noise, denoted as σ2, can be

expressed as

σ2 = (Qf)H
Ĩn0

(Qf) + σ2
s

= fHQHQf −
∣

∣fHq
∣

∣

2
+ σ2

c , (3.50)

where Ĩn0
is the identity matrix except that its n0th diagonal component is

zero instead of one. Note that σ2
s , E{|zs[n]|2} = σ2

c as shown in Section (2.3).

Now the effective SNR of the decision variable r[n] can be calculated as

SNR =
|fHq |2

fHQHQf − |fHq |2 + σ2
c

. (3.51)

By replacing Eqs. (3.20), (3.21), and (3.23) in Eq. (3.51) we obtain

SNR =
qH(QHQ + σ2

cΦ)−1q

1 − qH(QHQ + σ2
cΦ)−1q

=
1

σ2
e,min

− 1. (3.52)

Assuming now that the residual interference term fHQHan0
[n] + zs[n] is ap-

proximately Gaussian distributed, we obtain for the BER of the proposed FIR

pre–equalization scheme the expression

Pe = Q

(√

2

(

1

σ2
e,min

− 1

)

)

. (3.53)

The same expression is also valid for IIR PEFs if the corresponding error

variance σ2
e,min given in Eq. (3.47) is used.
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3.4 Optimality of A–Pre–Rake for IIR PEFs

It is well known that the performance of pre–Rake (and post–Rake) receivers

does not necessarily improve if the number of Rake fingers is increased, cf. e.g. [37].

When there is significant ISI in the system, a carefully chosen number of Rake

fingers of an S–pre–Rake filter can achieve better performance than the A–

pre–Rake filter. The reason for this behavior is that while more energy can be

collected by increasing the number of fingers, the amount of residual ISI may

also increase. A similar effect can also be observed if the pre–Rake filters are

enhanced with short FIR PEFs. However, we will show in the following that

the A–pre–Rake filter is indeed optimum if the PEFs are sufficiently long. For

this purpose we rewrite X(ejω). Using Eq. (3.8) in Eq. (3.34) we obtain

Φ̃m(ejω) = |G̃m(ejω)|2, (3.54)

where G̃m(ejω) , F{g̃m[k]}. Now, based on Eq. (3.35) we find

Φm(ejω) =
1

N

N−1
∑

k=0

|G̃m(ej(ω−2πk)/N)|2. (3.55)

Using Eq. (6.8) in Eq. (3.24) we obtain

Q̃m(ejω) = ejωk0G̃m(ejω)H̃m(ejω), (3.56)

where H̃m(ejω) , F{h̃m[k]}, and based on Eq. (3.25) we find

|Qm(ejω)|2 =
1

N
|

N−1
∑

k=0

G̃m(ej(ω−2πk)/N )ej(ω−2πk)k0/NH̃m(ej(ω−2πk)/N )|2. (3.57)

Now replacing Eq. (3.55) and (3.57) in Eq. (3.46) we can rewrite X(ejω) as

X(ejω) =
1

N

M
∑

m=1

|
∑N−1

k=0 G̃m(ej(ω−2πk)/N )ej(ω−2πk)k0/NH̃m(ej(ω−2πk)/N )|2
∑N−1

k=0 |G̃m(ej(ω−2πk)/N)|2
.

(3.58)

Using the Cauchy–Schwarz inequality [35] it can be shown that X(ejω) is

maximized if G̃m(ejω) = e−jωk0H̃∗

m(ejω) corresponding to an A–pre–Rake (or
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time–reversal) filter for each branch m, 1 ≤ m ≤ M . Therefore, the A–pre–

Rake filter minimizes the error variance σ2
e,min and is thus optimum if IIR

PEFs are employed. In this case, the corresponding minimum error variance

in Eq. (3.47) is given by

σ2
e,min =

1

2π

π
∫

−π

σ2
c

σ2
c + 1

N

∑M
m=1

∑N−1
k=0 |H̃m(ej(ω−2πk)/N )|2

dω. (3.59)

Increasing the spreading factor N improves performance by decreasing the

effective spectral fluctuation for a given m, i.e., 1
N

∑N−1
k=0 |H̃m(ej(ω−2πk)/N)|2

becomes smoother which has a positive effect on σ2
e,min in Eq. (3.59). Increasing

the number of antennas has a similar effect, but also provides an additional

combining gain. The impact of N on the performance of the proposed PEF

scheme will be investigated more in detail in Section 3.6.

3.5 Performance Bound

A meaningful performance bound for any (pre–)equalizer and any (pre–)Rake

scheme is the so–called matched–filter (MF) bound [38]. For the MF bound

we assume that the optimum A–pre–Rake filter is used at the transmitter and

ignore any interference caused at the receiver. The resulting SNR is

SNRMF =
1

σ2
c

M
∑

m=1

∞
∑

k=−∞

|h̃m[k]|2 =
1

2πσ2
c

M
∑

m=1

π
∫

−π

|H̃m(ejω)|2 dω, (3.60)

where we have applied Parseval’s theorem [34]. The corresponding BER lower

bound is

PMF = Q
(

√

2SNRMF

)

, (3.61)

i.e., no implementable (pre–)equalizer and (pre–)Rake scheme will achieve a

better performance.
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3.6 Performance for Large Spreading Factors

It is interesting to investigate the performance of the proposed PEF scheme

for the case of long spreading sequences, i.e., N → ∞. For N → ∞ the

summations over 0 ≤ k < N in Eq. (3.58) can be replaced by integrals and

X(ejω) = X becomes independent of ω.

In particular, we obtain

X =

M
∑

m=1

∣

∣

∣

∣

1
2π

π
∫

−π

G̃m(ejω)ejωk0H̃m(ejω) dω

∣

∣

∣

∣

2

1
2π

π
∫

−π

|G̃m(ejω)|2 dω

, (3.62)

and with Eqs. (3.47) and (3.52) the resulting effective SNR is

SNR = X/σ2
c . (3.63)

For the special case of an A–pre–Rake filter X simplifies to

X =
1

2π

M
∑

m=1

∫ π

−π

|H̃m(ejω)|2 dω, (3.64)

i.e., and the SNR becomes

SNR =
1

2πσ2
c

M
∑

m=1

π
∫

−π

|H̃m(ejω)|2 dω = SNRMF. (3.65)

Consequently, the proposed transmitter structure approaches the MF bound

performance limit for sufficiently long spreading sequences. This result is in-

tuitively pleasing since N → ∞ means that the overall CIR, q[Nn] is ISI–free,

and linear processing at the transmitter is optimum.
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Chapter 4

Uplink–Downlink Duality

In this chapter, we study a SIMO DS–UWB system with M receive antennas,

post–Rake combining, and post–equalization, cf. Fig. 4.1. We will also refer

to the SIMO system in Fig. 4.1 as the uplink to distinguish it from the MISO

downlink configuration shown in Fig. 2.1. For h̃m[k] and g̃m[k] in Fig. 4.1 the

..
.

..
.

..
.

..
.

yM [n]

y1[n]

zc,M [k]

r[n] â[n − n0]
a[n]

g̃M [k]

g̃1[k]

h̃M [k]

h̃1[k]

zc,1[k]

N

N

N

fM [n]

f1[n]

Figure 4.1: Block diagram of a SIMO DS–UWB system (uplink) with M

receive antennas, post–Rake combining, and post–equalization.

definitions provided in Section 2 are still valid, i.e., h̃m[k] contains the combined

effects of spreading with c[N − 1 − k] and the CIR of antenna m, whereas

g̃m[k] contains the combined effects of de–spreading with c[k] and post–Rake

combining. Each receive antenna employs a post–equalization filter fm[n],

1 ≤ m ≤ M , to remove residual ISI before a decision is made. The noise

processes zc,m[k], 1 ≤ m ≤ M , are mutually independent AWGN processes
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with variance σ2
c .

We derive the optimum filter coefficients for the uplink structure in Section

4.1, and show its relationship to that of the downlink structure, followed by

a brief discussion on practical implications of the uplink–downlink duality in

Section 4.2.

4.1 Filter Optimization

In the following, we assume FIR filters fm[n], 1 ≤ m ≤ M , and optimize them

based on the MMSE criterion. We note that for Q, q , Φ, and f the same

definitions as for the MISO downlink problem considered in Section 3.1 are

valid. The received signal r[n] in Fig. 4.1 can be expressed as

r[n] =

M
∑

m=1

(Qmfm)Ha[n] +

M
∑

m=1

fH
mzm[n]

= (Qf)Ha[n] + fHz[n], (4.1)

where z[n] , [zT
1 [n] . . . zT

M [n]]T , zm[n] , [zm[n] zm[n−1] . . . zm[n−Lf +1]]T ,

and

zm[n] =

∞
∑

l=−∞

zc,m[l]g̃m[Nn − l]. (4.2)

Based on Eq. (4.2) the autocorrelation function of zm[n] can be calculated as

ϕm
zz[n] = E{zm[λ + n]z∗m[λ]}

=
M
∑

l=1

M
∑

k=1

g̃m[l]g̃∗

m[k]E
{

zc,m[N(λ + n) − l]z∗c,m[Nλ − k]
}

=

M
∑

l=1

M
∑

k=1

g̃m[l]g̃∗

m[k]σ2
c δ[Nn + k − l]

= σ2
c

M
∑

l=1

M
∑

k=1

g̃m[N(λ + n) − l]g̃∗

m[Nλ − k]δ[l − k]

= σ2
c

M
∑

l=1

g̃m[Nn − l]g̃∗

m[−l]
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= σ2
cϕm[Nn], (4.3)

with ϕm[k] as defined in Section 3.1. Exploiting this result we can express the

error variance to be minimized as

σ2
e , E{|a[n − n0] − r[n]|2}

= 1 − E {a∗[n − n0]r[n]} − E {a[n − n0]r
∗[n]} + E

{

|r[n]|2
}

, (4.4)

and replacing r[n] from Eq. (4.1) in Eq. (4.4) will lead to

σ2
e = 1 −

M
∑

m=1

qH
mfm −

M
∑

m=1

fH
mqm + fHQHQf + fHΦzf . (4.5)

Note that Φz = E
{

zzH
}

= diag{Φ1
z, . . . , ΦM

z }, where Φm
z = E

{

zmzH
m

}

=

σ2
cΦm, and therefore Φm

z = σ2
cΦ. Replacing Φz in Eq. (4.5) we obtain

σ2
e = 1 − fHq − qHf + fHQHQf + σ2

cf
HΦf

= 1 − fHq − qHf + fH
(

QHQ + σ2
cΦ
)

f . (4.6)

To minimize σ2
e , we differentiate it with respect to f∗ which leads to

∂σ2
e

∂f̃
∗

=
(

QHQ + σ2
cΦ
)

f − q . (4.7)

Setting the resulting gradient to zero, we obtain the optimum vector

f
uplink
opt = (QHQ + σ2

cΦ)−1q . (4.8)

By replacing f
uplink
opt in Eq. (4.6) the minimum error variance will be obtained

identical to σ2
e,min given in Eq. (3.23) for the downlink, according to

σ2
e,min = 1 − qH

(

QHQ + σ2
cΦ
)

−1
q . (4.9)

This means the optimum SIMO uplink post–equalization filters in Eq. (4.8)

are up to an irrelevant scaling factor identical to the optimum MISO downlink

PEFs. Furthermore, it can easily be verified that the minimum error variances

are identical in both cases. In other words, there is a duality between SIMO

MMSE post–equalization after post–Rake combining and MISO MMSE pre–

equalization before pre–Rake combining. We note that this duality also holds

if IIR MMSE equalization filters are employed, of course.
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4.2 Practical Implications

The uplink–downlink duality of the above MMSE problem is not only of the-

oretical interest but also has important practical implications. In particular,

while adaptive algorithms cannot be used to calculate the optimum downlink

filter fopt since the received signal r[n] is not available at the transmitter, the

uplink filter f
uplink
opt can be efficiently calculated using an adaptive algorithm

such as the least–mean square (LMS) or the recursive least squares (RLS)

algorithm [39]. For example, with the LMS algorithm the uplink filters are

updated according to

fuplink[n + 1] = fuplink[n] + µ0e
∗[n]y[n], (4.10)

where µ0 and e[n] , a[n − n0] − r[n] denote the adaptation step size and the

error signal, respectively. Furthermore, y[n] , [yT
1 [n] . . . yT

M [n]]T , ym[n] ,

[ym[n] ym[n − 1] . . . ym[n − Lf + 1]]T , and ym[n] denotes the input signal for

the equalization filter at antenna m, 1 ≤ m ≤ M , cf. Fig. 4.1. We note that

for calculation of the error signal, a[n − n0] can either be a training symbol

or a previously decided symbol. Once the LMS has converged and f
uplink
opt is

known, the normalization factor α required in the downlink can be obtained

from

αopt =
√

(fuplink
opt )HΦf

uplink
opt , (4.11)

and the optimum downlink PEF is

f opt =
f

uplink
opt

αopt
. (4.12)

It should be noted that Φ only depends on the pre–Rake filter coefficients.

Therefore, the proposed recursive calculation of the optimum MISO downlink

PEF f opt only requires knowledge of the pre–Rake filter coefficients. For the

P- and S–pre–Rake filter estimation of the entire CIRs, hm[k], 0 ≤ k < Lh,

1 ≤ m ≤ M , which is necessary for the closed–form solution in Eq. (3.20), can

thus be avoided.
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Chapter 5

Simplified PEF Structure

In this chapter, we consider the simplified PEF (S–PEF) structure for the

MISO downlink shown in Fig. 5.1. The main difference to the PEF structure

shown in Fig. 2.1 is that only one PEF f , [f [0] . . . f [Lf − 1]]T is employed

jointly for all M > 1 transmit antennas, which reduces transmitter complexity.

In the next section we derive the optimum FIR S–PEF coefficients and pro-

...f [n]

sM [k]

s1[k]

a[n] c[k]N

g1[k]

gM [k]

Figure 5.1: Block diagram of a MISO DS–UWB system (downlink) with M

transmit antennas, pre–Rake combining, and simplified pre–equalization.

vide an expression for the corresponding minimum error variance. The IIR

filter optimization follow in Section 5.2 and expressions for the corresponding

minimum error variance and the approximate BER of the S–PEF scheme for

the IIR case are provided.
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5.1 FIR Filter Optimization

As far as filter optimization is concerned, the S–PEF structure shown in

Fig. 5.1 leads to an equivalent single–input single–output (SISO) channel with

effective overall CIR

qeff [Nn + k0] =
M
∑

m=1

qm[Nn + k0], (5.1)

and transmit power

P = fHΦefff , (5.2)

where

Φeff =

M
∑

m=1

Φm. (5.3)

Consequently, based on the results in Section 3.1 the optimum FIR PEF is

obtained by replacing q , Q, and Φ in Eqs. (3.20) and (3.21) by q eff , Qeff , and

Φeff , respectively, and is thus given by

fopt =
1

α∗

opt

(

QH
effQeff + σ2

cΦeff

)

−1
q eff (5.4)

αopt =

√

qH
eff

(

QH
effQeff + σ2

cΦeff

)

−1
Φeff

(

QH
effQeff + σ2

cΦeff

)

−1
q eff , (5.5)

where

q eff , QH
effen0

, (5.6)

and

Qeff ,

M
∑

m=1

Qm. (5.7)

The corresponding minimum error variance is obtained by the same replace-

ments, respectively, in Eq. (3.23) as

σ2
e,min = 1 − qH

eff

(

QH
effQeff + σ2

cΦeff

)

−1
q eff . (5.8)
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5.2 IIR Filter Optimization

Similarly, in the IIR case by replacing Qm(ejω), Φm(ejω), and X(ejω) with

Qeff(ejω) ,

M
∑

m=1

Qm(ejω), (5.9)

Φeff(ejω) =
M
∑

m=1

Φm(ejω), (5.10)

and

Xeff(ejω) =
|Qeff(ejω)|2

Φeff(ejω)
, (5.11)

respectively, in Eqs. (3.44) and (3.45) we obtain

Fopt(e
jω) =

1

α∗

opt

Qeff(ejω)

Φeff(ejω)(σ2
c + Xeff(ejω))

(5.12)

αopt =

√

√

√

√

√

1

2π

π
∫

−π

Xeff(ejω)

(σ2
c + Xeff(ejω))2

dω. (5.13)

The corresponding error variance is thus given by

σ2
e,min =

1

2π

π
∫

−π

σ2
c

σ2
c + Xeff(ejω)

dω. (5.14)

The approximate BER of the S–PEF scheme can be obtained by applying

σ2
e,min from Eq. (5.14) (or the corresponding expression for the FIR case) in

Eq. (3.53)as

Pe = Q

(√

2

(

1

σ2
e,min

− 1

)

)

. (5.15)

Furthermore, we note that an uplink–downlink duality can also be established

for the simplified MISO downlink structure and a corresponding simplified

SIMO uplink configuration with just one post–equalization filter. Using similar

steps as in Section 4.2 for the original transmitter structure, this duality can

be exploited for adaptive calculation of the optimum PEF.
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Chapter 6

Comparisons

It is of interest to compare the performances of the transmitter structure of the

PEF scheme as in Fig. 2.1 and that of the S–PEF scheme in Fig. 5.1 for the IIR

case. In the following section we compare the performances of these proposed

schemes and discuss the trade–off between their computational complexity

and system performance. On the other hand, we briefly discuss the previously

proposed MMSE–Rake scheme in Section 6.2, and compare computational

complexity of this scheme with that of the proposed PEF scheme.

6.1 PEF Scheme versus S–PEF Scheme

In order to compare the transmitter structures in Figs. 2.1 and 5.1, we first note

that based on the complex version of Hölder’s inequality [40] we can establish

the following inequality

(

M
∑

m=1

|
√

Φm(ejω)|2

)1/2




M
∑

m=1

∣

∣

∣

∣

∣

Qm(ejω)
√

Φm(ejω)

∣

∣

∣

∣

∣

2




1/2

≥

∣

∣

∣

∣

∣

M
∑

m=1

Qm(ejω)

∣

∣

∣

∣

∣

. (6.1)
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Squaring both sides of Eq. (6.1) and dividing them subsequently by
∑M

m=1 Φm(ejω)

leads to
∣

∣

∣

∑M
m=1 Qm(ejω)

∣

∣

∣

2

∑M
m=1 Φm(ejω)

≤
M
∑

m=1

|Qm(ejω)|2

Φm(ejω)
. (6.2)

Therefore, we obtain

Xeff(ejω) ≤ X(ejω), (6.3)

where Xeff(ejω) is defined in Eq. (5.11), and X(ejω) is defined in Eq. (3.58).

Since X(ejω) and Xeff(ejω) appear in the denominator of the respective error

variances, Eq. (6.3) shows that the S–PEF scheme cannot outperform the PEF

scheme. This result is not surprising since the S–PEF structure in Fig. 5.1 may

be viewed as a special case of the PEF structure in Fig. 2.1 with f1[n] = f2[n] =

· · · = fM [n], 0 ≤ n < Lf . For the special case of an A–pre–Rake filter Eq. (6.3)

simplifies to

Xeff(ejω) =
1

N

M
∑

m=1

N−1
∑

k=0

|H̃m(ej(ω−2πk)/N)|2

= X(ejω), (6.4)

It follows from Eq. (6.4) that the minimum error variances for the S–PEF

scheme and the PEF scheme are equal in this case, cf. Eqs. (3.47), (5.14),

i.e., both schemes will achieve the same performance. Therefore, the S–PEF

scheme and the PEF scheme are equivalent for the IIR PEFs and A–pre–Rake

combining, which implies that the S–PEF scheme should perform close to

optimum as long as sufficiently long FIR PEFs and a good approximation of

the A–pre–Rake filter (i.e., a P– or S–pre–Rake filter with a sufficient number

of fingers) are employed. Thus, in this case, the more complex structure in

Fig. 2.1 can be avoided. On the other hand, if a suboptimum pre–Rake filter

with very few fingers and/or short FIR PEFs are used, the PEF structure in

Fig. 2.1 is preferable and will lead to a better performance than the S–PEF

structure in Fig. 5.1.
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6.2 MMSE–Rake Scheme Versus PEF Scheme

......

h1[k]

Nâ[n − n0]

α

r[n]
c[N − 1 − k]

N

hM [k]
sM [k]

s1[k] zc[k]

y[k]

a[n] c[k]

f1[k]

fM [k]

Figure 6.1: Block diagram of a MISO DS–UWB system with M transmit

antennas, and a pre–equalization filter, implemented at chip level. The multi-

plication of r[n] with α (dashed box) does not have to be implemented at the

receiver, cf. discussion in Section 2.3 and Chapter 3.

In this section we briefly discuss the FIR pre–filtering method which was pro-

posed in [24]. We call this method MMSE–Rake. We compare the performance

of this scheme with that of our proposed PEF and S–PEF schemes in Chapter

7.

As in Chapter 2, we assume a MISO DS–UWB system with M transmit an-

tennas. The transmitter structure of this system is shown in Fig. 6.1, in which

the pre–Rake filter is replaced by a pre–equalization filter that minimizes the

residual ISI at the receiver based on the MMSE criterion. Unlike our proposed

method, this pre–filtering scheme is performed at the chip level. Note that all

definitions are as in Chapter 3 unless they are redefined. Here, the resulting

transmit symbol sm[k] is given by

sm[k] =
∞
∑

i=−∞

a[i]f̃m[k − iN ], (6.5)
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where f̃m[k] , c[k] ∗ fm[k]. The received signal r[n] can be expressed as

r[n] =

M
∑

m=1

(QN,mfm)Ha[n] + zs[n]

= (QNf )Ha[n] + zs[n], (6.6)

where a[n] , [a[n] . . . a[n−Lt+1]]T , f , [fT
1 . . . fT

M ]T , fm , [fm[0] . . . fm[Lf−

1]]H , and QN , [QN,1 . . . QN,M ], where QN,m denotes an Lt × Lf matrix de-

fined as

QN,m =









































qm[k0] 0 . . .

qm[N + k0] qm[N + k0 − 1] . . .

qm[2N + k0] qm[2N + k0 − 1] . . .
...

... . . .

qm[N(Lq − 1) + k0] qm[N(Lq − 1) + k0 − 1] . . .

0
... . . .

...
... . . .

0 0 . . .









































. (6.7)

Here, qm[k] is the overall CIR and is defined as

qm[k] , c[k] ∗ h̃m[k], (6.8)

where,

h̃m[k] , hm[k] ∗ c[N − 1 − k], (6.9)

and Lt = d(Lf + Lh + 2N − 3)/Ne is the length of the impulse response of the

overall system which is the same as the length of the sampled overall CIRs,

qm[Nn + k0]. The error variance at the receiver is the same as in Eq. (3.1).

Applying Eq. (6.6) in Eq. (3.1) yields

σ2
e = 1 + |α|2σ2

c − αf Hq − α∗qHf + |α|2f HQH
NQNf , (6.10)

where q , QH
Nen0

, and en0
denotes the unit vector whose elements are all

zero except for the n0th element which is equal to one. Furthermore, the error
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variance σ2
e has to be minimized based on the MMSE criterion and subject to

the average transmit power limit as

P ,

N(n+1)−1
∑

k=Nn

M
∑

m=1

E{|sm[k]|2} = 1, ∀n. (6.11)

Following the same steps as in Section 3.1 now we find a simpler constraint

P = fHf = 1. (6.12)

Combining Eqs. (6.10) and (6.12) we obtain the Lagrange problem as

L(f , α) = 1+ |α|2σ2
c −αf Hq−α∗qHf + |α|2fHQH

NQNf +λ(f Hf −1), (6.13)

where λ denotes the Lagrange multiplier. Similar to the steps made in Section

3.1, with differentiating L(f , α) with respect to f∗ and α∗ and setting the

resulting gradients to zero the optimum solution is obtained as

f opt =
1

α∗

opt

(

QH
NQN + σ2

cI
)

−1
q (6.14)

αopt =

√

qH
(

QH
NQN + σ2

cI
)

−2
q . (6.15)

Since MMSE pre–filtering is implemented at the chip level, long filters may

be necessary depending on the underlying channel in order to achieve a good

performance. Eq. (6.14) shows that for long filter lengths the computation

of the filter coefficients requires the inversion of a matrix with a size equal

to the filter length and therefore, entails a high complexity. However, in our

proposed methods the pre–equalization filters are implemented at the symbol

level, which brings much less computational complexity. Numerically, in the

MMSE–Rake scheme QN is of size Lt × MLf , where Lt = d(Lf + Lh + 2N −

3)/Ne, and QH
NQN in Eq. (6.14) is of size MLf × MLf , where Lf ≈ Lh (or

even > Lh), while in our proposed PEF scheme Q is of size Lt × MLf , where

Lt = d(Lg + Lh + 2N − 3)/Ne+ Lf − 1, and therefore QHQ in Eq. (3.20) is of

size MLf × MLf , and Lf is quite small. Since the computational complexity

of inverting an n × n matrix is of the order of O(n3), one can observe that
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Eq. (3.20) is far less complex than Eq. (6.14). In Chapter 7, the performance

of the MMSE–Rake is compared with that of our proposed PEF schemes for

the UWB channel models CM1 and CM4.
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Chapter 7

Simulation and Numerical

Results

In this chapter, we present computer simulation and numerical results for the

proposed PEF schemes for MISO DS–UWB systems. In particular, we show

results for the effective SNR at the receiver and the BER. Thereby, we consider

the practically most relevant cases of M = 1 and M = 2 transmit antennas.

For convenience and practical relevance, we adopted for our simulations the

parameters from the IEEE 802.15.3a standardization efforts. In particular, we

assume a chip duration of Tc = 0.76 ns and both transmit filter gT (t) and

receive filter gR(t) are square-root raised-cosine filters with rolloff factor 0.3

[41]. For M = 2 transmit antennas we assumed that the log–normal terms

Xm, m ∈ {1, 2}, are correlated with correlation coefficient ρX = 0.86 [31].

We focus on the CM1 and CM4 channel models as they have the smallest

and the largest average delay spread of the four channel models proposed in

[29, 30], respectively. All effective SNR and BER results shown in the following

were averaged over 100 channel realizations. For our simulations, we generated

oversampled versions of h́m(t), hm(t), gT (t), and gR(t) with a sampling interval

of Tc/8, respectively. The oversampled overall CIR was then downsampled and

the resulting overall discrete-time CIR was truncated to length Lh such that
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∑Lh−1
k=0 E

{

|hm[k]|2
}

/
∑

∞

k=−∞
E
{

|hm[k]|2
}

< 0.999. This led to Lh = 145 and

Lh = 420 for CM1 and CM4, respectively. Throughout this chapter we adopt

for the sampling phase k0 = ks
0, cf. Section 2.3, and for FIR PEFs the decision

delay n0 was optimized. Finally, we will show the BER sensitivity of our

proposed system to imperfect CSI estimation.

7.1 Effective SNR Results

First, we show numerical results for the average effective SNR at the receiver

by averaging SNR = 1/σ2
e,min − 1 over 100 independent channel realizations

(cf. Fig. 2.2, 2.3). Thereby, σ2
e,min is obtained from the analytical expressions

in Eqs. (3.23), (3.47), and (5.14).

Fig. 7.1 shows the average effective SNR of the PEF and S–PEF schemes with

A–pre–Rake combining vs. FIR PEF length Lf for the CM1 channel model,

for M = 2, N = 6, and Eb/N0 = 15 dB, where Eb and N0 denote the average

energy per bit and the single–sided power spectral density of the underlying

passband AWGN process, respectively. Fig. 7.1 shows that as Lf increases the

FIR PEF filters quickly approach the performance of IIR PEF filters (solid

lines). The performance of IIR PEF filters can be achieved by employing

Lf = 40 for this channel model. We also note that while the PEF scheme

achieves a higher SNR than the S–PEF scheme for short FIR PEFs, both

schemes achieve the same performance for long FIR and IIR filters, cf. Section

6.1.

For comparison, we have also included in Fig. 7.1 the results for the MMSE–

Rake scheme proposed in [24]. As Lf increases the MMSE–Rake scheme

achieves the same performance as the proposed PEF and S–PEF schemes.

However, since the filters in the MMSE–Rake scheme operate at the chip level,

the convergence to the optimum IIR performance is much slower than for the

PEF and S–PEF schemes. For example, if an SNR of 14 dB is desired for CM1,
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the PEF and the MMSE–Rake schemes require filter lengths of 4 and 114, re-

spectively. Asymptotically, using the MMSE–Rake scheme, the performance

of IIR can be achieved by having Lf = 200 for CM1 compared to Lf = 40 for

the PEF scheme. Later on, we will show that even much smaller numbers of

Lf for the PEF scheme can achieve a very good BER performance compared

to MMSE–Rake scheme.

Fig. 7.2 shows the average effective SNR of the PEF and the S–PEF scheme
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Figure 7.1: Effective SNR vs. Lf for PEF, S–PEF, and MMSE–Rake schemes

for CM1 UWB channel model. A–pre–Rake, M = 2, N = 6, and Eb/N0 = 15

dB.

with A–pre–Rake combining vs. FIR PEF length Lf for CM4. Similar to the

CM1 channel model, as Lf increases the FIR PEF filters quickly approach the

performance of IIR PEF filters (solid lines). Since the average delay spread

for CM4 is considerably larger than for CM1, this convergence is much slower

for CM4 than for CM1. The performance of IIR PEF filters can be achieved

by employing a filter length of at least Lf = 90 for CM4.

Again, we have included in Fig. 7.2 the results for the MMSE–Rake scheme.
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Figure 7.2: Effective SNR vs. Lf for PEF, S–PEF, and MMSE–Rake schemes

for CM4 UWB channel model. A–pre–Rake, M = 2, N = 6, and Eb/N0 = 15

dB.

The convergence to the optimum IIR performance is much slower than for

the PEF and the S–PEF scheme. As can be seen from the figure, for CM4

we need a filter length of more than 500 to achieve the performance of the

IIR case, compared to Lf = 90 for the PEF scheme. The computation of

the long filters required for the MMSE–Rake may be very difficult in practice

even if a recursive (e.g. a steepest descent algorithm) or an adaptive algorithm

(e.g. LMS algorithm) is used to avoid direct matrix inversion.

In Figures 7.3 and 7.4, we investigate the dependence of the average effective

SNR of the PEF and the S–PEF scheme on the spreading factor N for CM1

and CM4, respectively, for M = 2, Lf = 5, Eb/N0 = 15 dB, and A–pre–Rake

combining are assumed. For both CM1 and CM4, as N increases the effective

amount of ISI after pre–Rake combining rapidly decreases, and both the PEF

and the S–PEF scheme approach the SNR of the pure AWGN channel given

by SNR = M/σ2
c (solid line), cf. Section 3.6.

Again the convergence to the optimum value is slower for CM4 than for CM1
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because of its larger delay spread. The performance of the pure AWGN
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Figure 7.3: Effective SNR vs. N for PEF and S–PEF schemes for CM1 model.

A–pre–Rake, M = 2, Lf = 5, and Eb/N0 = 15 dB.
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Figure 7.4: Effective SNR vs. N for PEF and S–PEF schemes for CM4 model.

A–pre–Rake, M = 2, Lf = 5, and Eb/N0 = 15 dB.

channel can practically be achieved by using N = 20 for CM1, while we need
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at least N = 50 to achieve the same performance for CM4. Note again that

the PEF scheme outperforms the S–PEF scheme for small values of N .

The average effective SNR of the PEF and the S–PEF scheme as a function of

Lf for CM1 and CM4 are shown in Figs. 7.5 and 7.6, respectively, this time

for A–pre–Rake combining and S–pre–Rake combining with different numbers

of fingers S (M = 2, N = 6, and Eb/N0 = 15 dB). As predicted in Section 5.2,

0 10 20 30 40 50 60 70 80 90 100
16  

17  

18  

Lf −→

S
N

R
[d

B
]
−
→

 

 

PEF Scheme
S−PEF Scheme
PEF IIR Bound
S−PEF Bound

S = 16

S = 32

A-pre-Rake

S = 8

Figure 7.5: Effective SNR vs. Lf for PEF and S–PEF schemes for CM1 UWB

channel model. S–pre–Rake, M = 2, N = 6, and Eb/N0 = 15 dB.

with S–pre–Rake combining the PEF scheme outperforms the S–PEF scheme

even for IIR PEFs and the performance gap between both schemes increases

as the number of fingers decreases. Numerical results show that, for CM1,

the asymptotic SNR differences between the PEF and the S–PEF scheme for

S = 32, 16, and 8 are 0.005 dB, 0.04 dB, and 0.13 dB, respectively.

As can be seen in Fig. 7.6 for CM4, the asymptotic SNR differences between

the PEF and the S–PEF scheme are slightly higher, namely 0.25 dB, 0.60 dB,

and 1.14 dB, for S = 32, 16, and 8, respectively.
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Figure 7.6: Effective SNR vs. Lf for PEF and S–PEF schemes for CM4 UWB

channel model. S–pre–Rake, M = 2, N = 6, and Eb/N0 = 15 dB.

7.2 BER Results

Now, we show simulation and numerical results for the BER of the PEF and

the S–PEF scheme. Fig. 7.7 shows simulated BER results for the PEF and the

S–PEF scheme with FIR PEFs of lengths Lf = 5, 10, and 20 for CM1, and nu-

merical results for the same schemes with IIR PEFs obtained from Eq. (3.53).

M = 2, N = 6, and A–pre–Rake combining are used. For comparison we also

show simulation results for the A–pre–Rake (or time–reversal) scheme without

pre–equalization and the MF bound calculated based on Eq. (3.61). As can

be observed from Fig. 7.7, both the PEF and the S–PEF scheme significantly

lower the high BER floor of the pure A–pre–Rake scheme. The performance

gap between the PEF scheme and the S–PEF scheme decreases as Lf increases

and disappears for Lf → ∞ as expected from the discussion in Section 5.2.

We note that the gap between IIR PEFs and the MF bound is only 0.3–dB in

this case.
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Fig. 7.8 shows simulated BER results for the PEF and the S–PEF scheme
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Figure 7.7: BER vs. Eb/N0 for PEF, S–PEF, and A–pre–Rake schemes for

CM1. A–pre–Rake, M = 2, and N = 6. MF bound is also shown.

with FIR PEFs of lengths Lf = 5, 10, and 20 for CM4. Again, both the PEF

and the S–PEF scheme significantly lower the high BER floor of the pure A–

pre–Rake scheme as in CM1. The performance gap between the PEF scheme

and the S–PEF scheme decreases as Lf increases and disappears for Lf → ∞

(cf. Section 6.1). We note that even for IIR PEFs there remains a 1–dB gap

to the MF bound. However, to further narrow this gap some form of non–

linear processing at the transmitter would be required, which would (further)

increase complexity.

In Fig. 7.9, we compare the performances of the PEF scheme for M = 1 and

M = 2 transmit antennas. We assume S–pre–Rake combining with S = 16

fingers and N = 6 and we investigate CM1. The BER curves for the FIR PEFs

and the S–pre–Rake scheme without equalization were simulated, whereas the

BER curves for the IIR PEFs and the MF bound were obtained by evaluating
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Eqs. (3.53) and (3.61), respectively. Fig. 7.9 shows that a second transmit

antenna yields substantial performance improvements even if the antennas are

correlated due to the correlated log–normal shadowing terms. This perfor-

mance gain is about 4.1 dB at the bit error rate of 10−3 for IIR PEFs, and

even larger gains are obtained for short FIR PEFs. These gains are due to the

fact that increasing M has a similar effect as increasing the spreading factor

N , cf. Section 3.6.
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Figure 7.8: BER vs. Eb/N0 for PEF, S–PEF, and A–pre–Rake schemes for

CM4. A–pre–Rake, M = 2, and N = 6. MF bound is also shown.

Fig. 7.10, shows the same comparison between the performances of the PEF

scheme for M = 1 and M = 2 transmit antennas for CM4. The positive effects

of increasing the length of the filters Lf and the number of antennas M on

the performance can still be observed in this case. However, the performance

improvement from Lf = 5 to Lf = 10, and Lf = 20 is much more evident

compared to CM1. This is because of the relatively larger delay spread of
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CM4, which requires longer PEFs. Again, the second transmit antenna yields

a substantial performance gain of about 3.8 dB at the bit error rate of 10−3

for IIR PEFs, and even larger gains are obtained for short FIR PEFs. Re-

markably, even if we fix the total number of FIR filter taps MLf , the SISO

scheme with Lf = 10 and Lf = 20 still performs substantially worse than the

MISO scheme with Lf = 5 and Lf = 10, respectively. Note that larger PEFs

are required to achieve a performance close to the IIR, but increasing number

of antennas from M = 1 to M = 2 decreases the performance gap between

FIR PEF and IIR PEF significantly. The relatively large gap between the

MF bounds and the corresponding PEF scheme with IIR filters is due to the

suboptimum S–pre–Rake combining.

In Fig. 7.11, we compare the performance of the PEF and the S–PEF scheme
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Figure 7.9: BER vs. Eb/N0 for PEF and S–pre–Rake schemes for CM1. S–

pre–Rake with S = 16 fingers and N = 6. MF bounds are also shown.

for CM1, for different spreading factors N assuming S–pre–Rake combining
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(S = 16) and M = 2. For FIR PEFs with Lf = 10 both simulation (mark-

ers) and analytical (lines) results obtained from Eq. (3.53) are shown. For

IIR PEFs only analytical results for N = 12 are shown. For both the FIR

PEF and the FIR S–PEF scheme the analytical and simulation results are in

good agreement for sufficiently large spreading factors N , i.e., for N = 6, 12 .

Furthermore, since the amount of ISI after pre–Rake combining decreases as

N increases, the performance of both the PEF and S–PEF schemes improves

and the gap between both schemes decreases with increasing N . Of course,

this performance improvement comes at the price of a decreased data rate. We

note that since S–pre–Rake combining is used the PEF scheme outperforms

the S–PEF scheme even for IIR PEFs, cf. Section 5.2. The same comparison
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Figure 7.10: BER vs. Eb/N0 for PEF and S–pre–Rake schemes for CM4. S–

pre–Rake with S = 16 fingers and N = 6. MF bounds are also shown.

for the performance of the PEF and the S–PEF scheme for CM4 are shown in
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Fig. 7.12, again for different spreading factors N assuming S–pre–Rake com-

bining (S = 16) and M = 2. For IIR PEFs only analytical results for N = 12

are shown. We observe that for both the FIR PEF and the FIR S–PEF the

analytical and simulation results are in good agreement in this case, even for

smaller spreading factor N = 3. Note that the PEF scheme with small number

of filter coefficients, i.e., Lf = 10 can suppress some ISI, while leaving some

residual interference. To obtain the BER expression in Eq. (3.53) we used

the central limit theorem and assumed that the residual interference term in

Eq. (3.48) is approximately Gaussian distributed. Since CM4 has longer delay

spread than CM1 this approximation is more valid for CM4.
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Figure 7.11: BER vs. Eb/N0 for PEF and S–PEF schemes for CM1. S–pre–

Rake with S = 16 fingers, M = 2, and Lf = 10. MF bound is also shown.

Finally, in Figs. 7.13 and 7.14, we compare the BER performance of the PEF

scheme with that of the previously proposed MMSE–Rake scheme, for CM1
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and CM4. A–pre–Rake combining and M = 2 are assumed. For this purpose

we show the performance of the PEF scheme with Lf = 10, and Lf = 30 for

CM1 and CM4, respectively. To clarify how we choose the length of the filter

Lf for the PEF scheme and the MMSE–Rake scheme, we refer to Figs. 7.1

and 7.2. It can be observed in Fig. 7.1 that for CM1 the PEF scheme requires

filter length of Lf = 10 to achieve SNR = 16.9 dB, while the MMSE–Rake

scheme requires Lf = 145 to achieve SNR = 17.2 dB, therefore for CM1, the

PEF scheme with Lf = 10 and the MMSE–Rake scheme with Lf = 145 are

compared in Fig. 7.13. Note that we choose these values since we want to show

close–to–optimum performances for both cases and we also intend to show the

performance that the MMSE–Rake can achieve with long filter length equal to

the length of the channel, i.e., Lf = 145.
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Figure 7.12: BER vs. Eb/N0 for PEF and S–PEF schemes for CM4. S–pre–

Rake with S = 16 fingers, M = 2, and Lf = 10. MF bound is also shown.

Following a similar discussion for CM4, Fig. 7.2 shows that the PEF scheme
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Figure 7.13: BER vs. Eb/N0 for PEF with Lf = 10 and MMSE–Rake schemes

for CM1. A–pre–Rake and M = 2 are assumed. MF bound is also shown.

with Lf = 30 is required to achieve SNR = 15.6, while the MMSE–Rake scheme

requires Lf = 420 to achieve SNR = 16.8 dB. Therefore, the PEF scheme with

Lf = 30 and the MMSE–Rake scheme with Lf = 420 are compared in Fig. 7.14.

Note that we could choose a shorter filter length for the MMSE–Rake scheme

to achieve closer BER performance to that of the PEF scheme but again,

we intend to show the performance that the MMSE–Rake can achieve with

long filter length equal to the length of the channel, i.e. Lf = 420. As we

expected from the simulation results in Section 7.1, Figs. 7.13 and 7.14 show

that even with very small filter length of Lf = 10, and Lf = 30 for CM1 and

CM4, respectively, the PEF scheme can closely achieve the same performance

of MMSE–Rake scheme. Note that the small performance gap between the

PEF scheme and the MMSE–Rake scheme in Fig. 7.14 can be reduced by

slightly increasing Lf in the PEF scheme. However as shown in Section 6.2

the computational complexity of the PEF scheme is significantly lower than

that of the MMSE–Rake scheme. For the PEF scheme the computation of the
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Figure 7.14: BER vs. Eb/N0 for PEF with Lf = 30 and MMSE–Rake schemes

for CM4. A–pre–Rake and M = 2 are assumed. MF bound is also shown.

filter coefficients requires the inversion of a matrix with a size equal to the

filter length which are 10 and 30 for CM1 and CM4, respectively, while in the

case of the MMSE–Rake scheme the size of this matrix is 145 and 420 for CM1

and CM4, respectively.

7.3 CSI Sensitivity Results

Throughout this work Rake combining has been used to reduce the multipath

fading in the UWB system. However, the tap weights of the multipath channel

model, also known as CSI, need to be estimated. We assumed that perfect

CSI is available at the transmitter for the downlink structure, and at the

receiver for the dual uplink structure. We also assumed the use of time–

division duplex (TDD), in which the same frequency band is used for both the

uplink and downlink by switching between transmission and reception in time,
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and exploited the fact that the UWB radio channel is reciprocal [19].

In practice, the CSI should be estimated at the receiver or the transmitter.

There are different methods for channel estimation such as the synchronized

summation scheme [18]. We do not intend to cover these methods here, instead,

we briefly show the sensitivity of our proposed methods to imperfect CSI. To

demonstrate the effect of imperfect CSI, we assume that instead of having the

perfect CIRs available, we only have a noise corrupted version of the CIRs at

the transmitter, considering the downlink structure. For this purpose, consider

again the system model depicted in Fig. 2.1. The estimated CIRs at the

transmitter, ĥm[k] is defined according to

ĥm[k] = hm[k] + em[k], (7.1)

where hm[k] is the true base–band discrete–time CIRs as defined in Section

2.2, and em[k] are i.i.d. AWGN samples with variance σ2
e at antenna m, 1 ≤

m ≤ M . We define the variance of the impacting noise as a fraction of the

system noise according to

σ2
e = β · σ2

c , (7.2)

where σ2
c denotes the variance of the chip–level AWGN at the receiver as

defined in Section 2.2. β is defined as the sensitivity factor, and we consider

the cases β = 0 ( perfect CSI), and β = 0.001, 0.01, and 0.1.

Figs. 7.15 and 7.16, show the BER performance of CM1 and CM4, respectively,

in the presence of imperfect CSI. S–pre–Rake with S = 16 fingers, N = 6,

M = 2, and Lf = 20 are assumed, and both PEF and S–PEF schemes are

examined in theses simulations.

Fig. 7.15 shows that for CM1, even for a relatively high sensitivity factor of

β = 0.1, the system performance for the PEF and the S–PEF scheme is quite

close to the case of perfect CSI with β = 0, and suffers a performance loss of

only 0.25 dB at the bit error rate of 10−4.

Fig. 7.16 shows the BER performance for the PEF and the S–PEF scheme
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Figure 7.15: BER vs. Eb/N0 for PEF and S–PEF schemes for CM1. S–pre–

Rake with S = 16 fingers, M = 2, and Lf = 20. Sensitivity factor β =

0, 0.001, 0.01, 0.1.
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Figure 7.16: BER vs. Eb/N0 for PEF and S–PEF schemes for CM4. S–pre–

Rake with S = 16 fingers, M = 2, and Lf = 20. Sensitivity factor β =

0, 0.001, 0.01, 0.1.
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for CM4. Still, for a relatively high sensitivity factor of β = 0.1, the system

performance loss is less than 1 dB at the bit error rate of 10−4. Particularly,

we observe that at higher SNR the S–PEF scheme has less performance loss

compared to the PEF scheme and is more robust to imperfect CSI.
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Chapter 8

Conclusions and Future Work

This chapter concludes the thesis with some general comments on pre–equalization

for pre–Rake MISO DS–UWB systems proposed in this work, followed by a

discussion on possible future work for further investigation.

8.1 Conclusions

In this work, we have proposed two different PEF schemes for MISO DS–UWB

systems with pre–Rake combining. The first PEF scheme employs one PEF

per transmit antenna, whereas the second, simplified scheme requires only

one PEF shared by all transmit antennas. In contrast to previously proposed

pre–filtering schemes for DS–UWB, both proposed PEF schemes efficiently

exploit the channel shortening properties of the pre–Rake filter and operate at

the symbol level. Therefore, relatively short PEFs achieve close–to–optimum

performance even for long UWB CIRs. For sufficiently long PEFs and A–pre–

Rake combining both proposed PEF schemes achieve the same performance,

but the S–PEF scheme suffers from a certain performance degradation for

suboptimum pre–Rake combining and/or short PEFs. Furthermore, we have

also shown that a SIMO DS–UWB system with post–Rake combining and
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MMSE post–equalization is the dual system for our MISO DS–UWB system

with pre–Rake combining and MMSE pre–equalization. This uplink–downlink

duality can be exploited for complexity reduction. Simulation results have

confirmed the analytical findings and the excellent performance of the proposed

PEF schemes. We note that while in this paper only DS–UWB systems have

been considered, the proposed PEF schemes are also applicable to other areas

(e.g. TDD–CDMA systems and underwater acoustic communication) where

pre–Rake combining is used.

8.2 Recommendations for Future Work

We believe that the research work we initiated here on pre–equalization for

MISO DS–UWB systems with pre–Rake combining only scratches the tip of

the iceberg and many important questions remain to be answered. We list

some recommendations for future work as follows:

• In this work, we did not consider the effect of multiuser interference

(MUI). An extension to the present work could be the study of the mul-

tiusers case, which we expect to impact our proposed PEF and S–PEF

schemes. Since we have already included spreading sequences in our

work, this extension could be easily done.

• We did not consider the FCC power spectrum limitation in our proposed

filter optimization method. In addition to the transmit signal average

power constraint, limiting the spectrum of the transmit signal will in-

troduce additional constraints to the present optimization problem, and

could be an interesting topic for future work.

• Last but not least, employing the non–linear processing at the trans-

mitter (e.g. Tomlinson-Harashima precoding) should be of interest for

suboptimum pre–Rake combining with small number of fingers.

63



Bibliography

[1] S. Roy, J.R. Foerster, V.S. Somayazulu, and D.G. Leeper. Ultrawide-

band Radio Design: The Promise of High-Speed, Short-Range Wireless

Connectivity. Proceedings of the IEEE, 92:295 – 311, February 2004.

[2] H. Arslan, Z.N. Chen, and M.-G. Di Benedetto. Ultra Wideband Wireless

Communication. John Wiley & Sons, Inc., New York, 2006.

[3] FCC Revision of part 15 of the Commission’s Rules Regarding Ultra–

Wideband Transmission Systems: Report and Order, February 2002.

[4] FCC First Report and Order: In the Matter of Revision of part 15 of the

Commission’s Rules Regarding Ultra–Wideband Transmission Systems,

April 2002.

[5] S.S. Mo, N. Guo, J.Q. Zhang, and R.C. Qiu. UWB MISO Time Reversal

with Energy Detector Receiver Over ISI Channels. 4th IEEE Consumer

Communications and Networking Conference (CCNC), pages 629 – 633,

January 2007.

[6] A.A. D’Amico and L. Taponecco. A Differential Receiver for UWB Sys-

tems. IEEE Transactions on Wireless Communications, 5:1601 – 1605,

July 2006.

[7] A.G. Klein, D.R. Brown, D.L. Goeckel, and C.R.Ir. Johnson. RAKE Re-

ception for UWB Communication Systems with Intersymbol Interference.

64



4th IEEE Workshop on Signal Processing Advances in Wireless Commu-

nications (SPAWC), pages 244 – 248, June 2003.

[8] T.Q.S. Quek and M.Z. Win. Ultrawide Bandwidth Transmitted-Reference

Signaling. IEEE International Conference on Communications, 6:3409 –

3413, June 2004.

[9] M. Win and R. Scholtz. Impulse Radio: How it Works. IEEE Com-

mun. Letters, 2:36–38, February 1998.

[10] M. Win and R. Scholtz. Characterization of Ultra-Wide Bandwidth Wire-

less Indoor Channels: A Communication-Theoretic View. IEEE J. Select.

Areas Commun., 20:1613–1627, December 2002.

[11] R. Esmailzadeh, E. Sourour, and M. Nakagawa. PreRAKE Diversity Com-

bining in Time-Division Duplex CDMA Mobile Communications. IEEE

Trans. Veh. Technol., 48:795–801, May 1999.

[12] A. Parvulescu. Matched-Signal (’MESS’) Processing by the Ocean.

J. Acoust. Soc. Am., 98:943–960, August 1995.

[13] T. Strohmer, M. Emami, J. Hansen, G. Papanicolaou, and A. Paulraj.

Application of Time-Reversal with MMSE Equalizer to UWB Communi-

cations. In Proceedings of the IEEE Global Telecomm. Conf. (Globecom),

pages 3123–3127, November 2004.

[14] S. Imada and T. Ohtsuki. Pre-Rake Diversity Combining for UWB Sys-

tems in IEEE 802.15 UWB Multipath Channel. In Proceedings of the Joint

Ultra Wideband Systems and Technology (UWBST) and Intern. Workshop

for Ultra Wideband Systems (WIWUWBS), pages 236–240, May 2004.

[15] K. Usuda, H. Zhang, and M. Nakagawa. Pre-Rake Performance for

Pulse Based UWB System in a Standardized UWB Short-Range Chan-

nel. In Proceedings of the IEEE Wireless Commun. and Networking

Conf. (WCNC), pages 920–925, March 2004.

65



[16] N. Guo, R. Qiu, and B. Sadler. An Ultra-Wideband Autocorrelation De-

modulation Scheme with Low-Complexity Time Reversal Enhancement.

In Proceedings of the IEEE Military Commun. Conf. (Milcom), pages

3066–3072, Atlantic City, October 2005.

[17] H. Nguyen, I. Kovcs, and P. Eggers. A Time Reversal Transmission Ap-

proach for Multiuser UWB Communications. IEEE Trans. Antennas and

Propagation, 54:3216–3224, November 2006.

[18] Y. Nishida, C. Fukao, M. Fujii, M. Itami, and K. Itoh. A Study on Improv-

ing Performance of Pre-Post-RAKE Combining in UWB-IR System. In

Proceedings of the IEEE Intern. Conf. Ultra-Wideband (ICUWB), pages

79–84, September 2006.

[19] R. Qiu, C. Zhou, N. Guo, and J. Zhang. Time Reversal With MISO for

Ultrawideband Communications: Experimental Results. IEEE Antennas

and Wireless Propagation Letters, 5:269–273, December 2006.

[20] W. Cao, A. Nallanathan, and C. Chai. On the Tradeoff between Data Rate

and BER Performance of Pre-RAKE DS UWB System. In Proceedings of

the IEEE Global Telecomm. Conf. (Globecom), November 2006.

[21] Y.-H. Chang, S.-H. Tsai, X. Yu, and C.-C. Kuo. Ultrawideband

Transceiver Design Using Channel Phase Precoding. IEEE Trans. Sig-

nal Processing, 55:3807–3822, July 2007.

[22] G. Ding, D. Wang, and Z. Chen. Performance Evaluation of Two Kinds of

Precoding Joint with MMSE Equalization in DS–UWB. In Proceedings of

the First Intern. Conf. Commun. and Networking in China (ChinaCom),

Beijing, October 2006.

[23] M. Eslami and X. Dong. Performance of Rake-MMSE-equalizer for UWB

Communications. IEEE Wireless Communications and Networking Con-

ference, 2:855 – 860, March 2005.

66



[24] M. Emami, M. Vu, J. Hansen, A. Paulraj, and G. Papanicolaou. Matched

Filtering with Rate Back–off for Low Complexity Communications in

Very Large Delay Spread Channels. In Proceedings of the 38th Asilo-

mar Conf. Signals, Systems, and Computers, pages 218–222, November

2004.

[25] T. Berger and D.W. Tufts. Optimum Pulse Amplitude Modulation, Part I:

Transmitter-Receiver Design and Bounds from Information Theory. IEEE

Trans. Inform. Theory, IT-13:196–208, 1967.

[26] J. Yang and S. Roy. On Joint Transmitter and Receiver Optimization for

Multi–Input Multi–Output (MIMO) Transmission Systems. IEEE Trans.

Commun., COM-42:3221–3231, December 1994.

[27] D. Tse and P. Viswanath. Fundamentals of Wireless Communication.

Cambridge Univeristy Press, Cambridge, 2005.

[28] Y. Ishiyama and T. Ohtsuki. Performance Comparison of UWB-IR Using

RAKE Receivers in UWB Channel Models. International Workshop on

Ultra Wideband Systems Joint with Conference on Ultrawideband Systems

and Technologies, pages 226 – 230, May 2004.

[29] Channel Modeling Sub-Committee Final Report. IEEE 802.15-02/368r5-

SG3a, IEEE P802.15. December 2002.

[30] A. Molisch, J. Foerster, and M. Pendergrass. Channel Models for Ul-

trawideband Personal Area Networks. IEEE Wireless Communications,

10:14–21, December 2003.

[31] Z. Lin, X. Peng, K. Png, and F. Chin. Kronecker Modelling for Correlated

Shadowing in UWB MIMO Channels. In Proceedings of the IEEE Wireless

Commun. and Networking Conf. (WCNC), Hong Kong, March 2007.

67



[32] A. Saleh and R. Valenzuela. A Statistical Model for Indoor Multipath

Propagation. IEEE Journal on Selected Areas in Communications, 5:128

– 137, February 1987.

[33] J.G. Proakis. Digital Communications. McGraw–Hill, New York, forth

edition, 2001.

[34] A.V. Oppenheim and A.S. Willsky. Signals and Systems. Prentice–Hall,

Inc., Upper Saddle River, New Jersey, 1996.

[35] T.K. Moon and W.C. Stirling. Mathematical Methods and Algorithms for

Signal Processing. Prentice Hall, New York, 2000.

[36] V. Poor and S. Verdu. Probability of Error in MMSE Multiuser Detection.

IEEE Trans. Inform. Theory, 43:858–871, May 1997.

[37] B. Hu and N. Beaulieu. Comparison of Modulation Schemes and Rake

Receiver Structures for UWB Systems on an IEEE 802.15.3 Indoor Chan-

nel. In Proceedings of the IEEE Global Telecommun. Conf. (Globecom),

pages 3493–3497, November 2005.

[38] F. Ling. Matched Filter–Bound for Time–Discrete Multipath Rayleigh

Fading Channels. IEEE Trans. Commun., COM-43:710–713, February–

April 1995.

[39] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Upper Saddle River,

New Jersey, Third Edition, 1996.

[40] I. S. Gradshteyn and I. M .Ryzhik. Table of Integrals, Series, and Prod-

ucts. Academic Press, New York, 2000.

[41] R. Fisher, R. Kohno, M. McLaughlin, and M. Welbourn. DS–UWB Phys-

ical Layer Submission to IEEE 802.15 Task Group 3a (Doc. Number

P802.15-03/0137r4). January 2005.

68




