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Abstract

The conventional prostate brachytherapy approach is limited by needle po-
sitioning accuracy, needle trajectory option, and prostate motion and de-
formation between the pre-operative volume study and the seed implant
procedure. These limitations increase the risks of post implant complica-
tions. In this thesis we develop a robotic needle guide to improve prostate
brachytherapy needle placement accuracy and trajectory option as well as
a pre-operative to intra-operative prostate volume registration algorithm to
address the issue of prostate motion and deformation.

Our four degrees of freedom robot provides X-Y axes translational ac-
curacy of 0.12 and 0.1 mm compared to the 5 mm accuracy of the standard
needle guide. The robot also provides yaw and pitch angulations with 0.050

accuracy which can be used to reach prostate regions blocked by pubic arch
interference. The robot is adaptable to conventional brachytherapy appara-
tus without adding the clinical procedure time and can be used manually in
the case of electronic control failure.

The registration approach is based on fitting prostate surfaces into el-
lipsoids. Pre-operative and intra-operative sagittal view-based volume data
are contoured using a novel semi automatic sagittal view-based segmentation
algorithm. The resulting contours are fit into ellipsoids whose parameters -
centers, orientations, and radii - are used to calculate the registration ma-
trix. The accuracy of the registration algorithm was compared with Opto-
trak measurement as the gold standard and with the Iterative Closest Point
(ICP) algorithm. The result shows that the orientation of the ellipsoid fit is
sensitive to user initialization points causing up to 5 mm translational errors
and 5.50 angular error. The comparison with ICP shows that the ellipsoid
fitting based algorithm is faster but less accurate.
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Chapter 1

Introduction

1.1 Prostate Brachytherapy

Prostate cancer is the most commonly diagnosed cancer among men in
Canada with 25500 new cases and 4400 related deaths reported in 2009
[1]. At its early stage, the cancer is localized within the prostate and several
treatment options are available [2]:

1. Prostatectomy

2. Radiation therapy:

External beam radiation therapy (EBRT)

Brachytherapy

3. Cryotherapy

4. Hormonal therapy

5. Laser therapy

6. Watchful waiting (conservative management)

There are two types of brachytherapy: HDR (High Dose Rate) and LDR
(Low Dose Rate). The differences between the two are the number of frac-
tions and the method of application. In HDR brachytherapy, radioactive
dosage are delivered into the prostate with removable catheters, leaving no
radioactive material inside the prostate. The treatment is done in several
fractions. In LDR brachtyherapy, radioactive seeds are permanently im-
planted into the prostate, requiring no treatment fractions. In this thesis,
the term brachytherapy refers to LDR brachytherapyy.

Prostatectomy, EBRT, and brachytherapy are the standard treatment
options for localized prostate cancer. Among the three, brachytherapy is
the most convenient treatment option [3]. The procedure takes only about
an hour and is usually done on an outpatient basis. The patient can re-
sume daily activities afterwards. In comparison, prostatectomy takes 2-3
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1.1. Prostate Brachytherapy

hours and requires a hospital stay and patient activity restrictions, while
EBRT requires regular patient visits over a period of 7-8 weeks. This conve-
nience factor along, with aging demography and increase in early detection
of prostate cancer [1], makes brachytherapy a popular treatment choice in
Canada.

In brachytherapy, radioactive seeds (125I or 103Pd) are implanted through
the perineum into the prostate using surgical needles under template guid-
ance and transrectal ultrasound (TRUS) imaging. The method delivers
localized dosage of radiation while minimizing damage to healthy tissues
and organs. This dose profile results in lower complications rates compared
to prostatectomy or EBRT. Such complications include impotence, urinary
toxicity (incontinence, retention, and dysuria), and renal toxicity [4, 5].

Every brachytherapy patient must undergo a prostate volume study (the
pre-operative volume study), typically 2-3 weeks before the seed implant
procedure [6]. The study’s purpose is to obtain the volume and shape of
the patient’s prostate. This information will be used to generate radioactive
dose and seed distribution plans for the implant procedure.

During the pre-operative volume study, the patient lies on the operating
table in a dorsolitothomy position with his leg supported by the bed’s legs
stand (illustrated in Figure 1.1). A radiation oncologist mounts a TRUS
probe onto the brachytherapy stepper and mount, such as the EXII stepper
[7] and Micro-Touch R©© LP mount (CIVCO Medical, Kalona, Iowa) [8] and
inserts the probe into the patient’s rectum. Both apparatus are shown in
Figure 1.2. The probe is inserted until the oncologist is able to identify the
base of the prostate (the part of the prostate closest to the bladder). Often,
the prostate is viewed sagittally to confirm the base location. The TRUS
probe is also adjusted so that the prostate is symmetric about the center line
of the image. Then, the oncologist collects a set of 2D transverse B-mode
US images starting from 5 mm superior to the base up to 5 mm inferior
to the prostate’s apex. The apex is the part of the prostate closest to the
perineum (also illustrated in Figure 1.1). The images are captured in 5 mm
steps provided by the brachytherapy stepper. In total, 13 2D B-Mode US
images are collected.

The 2D images are loaded into a treatment planning system such as
VariSeed (Varian Medical Systems, Chalottesville, VA) [9]. Such a system,
enables the medical physicist to manually contour (segment) the prostate
boundary on each of the 2D images. The contours are interpolated to define
the 3D volume and shape of the patient’s prostate. Based on this informa-
tion, the medical physicist creates the plan for the implant which consists
of the radioactive dose distribution profile, the seed location, and the needle

2



1.1. Prostate Brachytherapy

Figure 1.1: A Typical pre-operative volume study setup. The patient is
put in litothomy position. The TRUS probe is inserted into the rectum and
transverse images of the prostate are taken at 5 mm intervals.

3



1.1. Prostate Brachytherapy

Figure 1.2: The conventional EXII Brachytherapy stepper with the Micro-
Touch LP R©© Mount.

4



1.1. Prostate Brachytherapy

Figure 1.3: Pre-operative volume study images of a patient taken from a
VariSeed treatment plan. In the images we can see the prostate boundary
(red line) from manual segmentation and the brachytherapy seeds location
(light blue dots). Oncologists use these images to manually register the
probe during the implant procedure.
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1.2. Thesis Motivation and Objective

insertion plan as shown in Figure 1.3.
During the implant procedure, the patient is put under anesthesia, gen-

eral or regional (spinal or epidural), and is positioned in the same dorsolitho-
tomy position during the pre-operative volume study. The radiation oncolo-
gist sets up the TRUS probe on the brachytherapy stepper and mount, then
inserts the probe into the patient’s rectum. To make sure that the stepper-
probe-patient setup is the same as in the pre-operative volume study, the
oncologist manually registers the prostate midgland (base+25 mm) B-Mode
image with the midgland image on the printed treatment plan (illustrated
by Figure 1.3). The prostate motion is recognized by changes in its shape
and the location of its discernible boundary. The oncologist rotates and
translates the TRUS probe via the stepper’s and mount’s adjustment dials
to reproduce the pre-operative volume study setup.

After the patient setup is confirmed, the radiation oncologist performs
the needle insertions one by one, according to the plan, as read out by
the medical physicist. Needles are inserted through the grid holes in the
template guide. As shown in Figure 1.4, the holes are spaced 5 mm apart
and constrain the needle trajectory to be parallel to the TRUS probe axis.
The oncologist confirms the needle locations using real time B-mode US
images. After deploying the seeds, the oncologist checks the seed locations
using both B-mode US images and real time fluoroscopy imaging.

1.2 Thesis Motivation and Objective

1.2.1 Motivation for a Robotic Needle Guide

Improving needle placement accuracy should result in a more conformal
radioactive dosage and, consequently, less risk of post brachytherapy com-
plications. Needle placement error is one of the sources of seed placement
deviation from the treatment plan [10]. The deviation can cause significant
radiation overdose [11] to regions of the prostate causing increased risk of
post implant complications [5].

Pubic arch interference (PAI) is one of the main concerns in prostate
brachytherapy. It is caused by the pubic bone partially blocking the anterior
portion of the prostate. The bone will obstruct parallel needle trajectories
thus preventing seeds from being implanted in the blocked region. If PAI is
detected in the pre-operative volume images, the patient may be prevented
from following the brachytherapy treatment [12] or may be prescribed hor-
mone therapy to reduce his prostate volume. Hormone therapy, however,
comes with its own side effects. Figure 1.1 illustrates the occurrence of PAI.
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Figure 1.4: The conventional needle guide template with 5 mm grid hole
spacing. The holes enforce parallel needles trajectories.
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The pubic bone (red) obstructs the needle from some of the anterior parts
of the prostate.

Unexpected PAI during the implant procedure is typically overcome by
performing angled needle insertions. The oncologist adjusts the brachyther-
apy stepper to angle the template guide with respect to the insertion point
to provide better needle access. This approach is limited by the stepper’s
workspace and the template guide’s 5 mm hole spacing. Moreover, since the
TRUS probe is fixed on the brachytherapy stepper, the already registered
probe-patient setup changes. The change introduces seed misplacement er-
rors on the remaining needle insertions.

Replacing the current template guide with a robotic needle guide would
help reduce the seed placement errors and solve the PAI problem. The robot
can potentially provide less than 5 mm needle spacing resolution for higher
needle placement precision and can add two more degrees of freedom (pitch
and yaw) to angulate the needle. When PAI occurs, a new needle path
incorporating pitch and yaw can be calculated. Since the robot provides
needle angulation, treament plans can be optimized to include needle angu-
lation in order to lower seed misplacement errors [13]. With such treatment
plans, patients with high risk of PAI may be more likely to be admitted for
brachytherapy with or without hormone therapy.

The use of the needle guide robot does not change the operating room
workflow and implant procedure time. The robot can easily be customized
to fit the current brachytherapy apparatus (the brachytherapy stepper and
stand). The robot helps the oncologist guide the needle but he or she will still
have control over the needle insertion. Manual controls can be incorporated
should the oncologist wish to rely on manual control without reverting back
to the conventional template guide.

1.2.2 Motivation for Pre-operative to Intra-operative
Prostate Volume Registration

The issue of pre-operative to intra-operative registration occurs in both
brachytherapy and EBRT. In EBRT, the patient’s prostate suffers from in-
terfraction motion and deformation. The position, pose, and shape of the
prostate changes between the planning phase and the radiation phase. Un-
like EBRT, prostate brachytherapy treatment does not have any fractions.
Yet, between the pre-operative volume study and the implant procedure
there is a significant time period of time - typically weeks - in which prostate
motion and deformation can occur. They contribute to seed placement er-
rors and radioactive dose deviation since the treatment plan is based on the
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pre-operative prostate volume. Errors and deviations affect the effectiveness
of the treatment and the risk of post implant complications.

Prostate motion and deformation are caused by external and internal
factors. Patient setup error, caused by difficulties in reproducing the pre-
operative volume setup, is one of the external factors. Although the patient’s
legs support and brachytherapy mount are fixed on the operating table,
subtle variations (a few mm) in the patient’s dorsolitothomy position are not
discernible by the naked eye. Another external factor is the TRUS probe.
The pressure it exerts dislocates and deforms the prostate. Internal factors
include the change in bladder filling, which causes bladder expansion and
pushes the prostate in the anterior-posterior direction, and the relaxation of
the pelvic muscles due to anesthesia.

As mentioned before, to correct for prostate motion and deformation,
oncologists manually register the real time midgland B-Mode image with
its pre-operative one by matching the prostate’s discernible boundary. This
method, although claimed to be accurate, suffers from both intra-user and
inter-user variability. Poor US visualization of the prostate makes boundary
recognition difficult. It is even more difficult to determine the changes in
prostate pose, location, and shape based on just its boundaries. Experience
and practice dictates the precision of manual registration.

To the author’s knowledge, there have not been extensive publications
regarding pre-operative to intra-operative registration of prostate volumes
for brachytherapy. The author found related studies focusing on prostate
motion due to brachytherapy needle insertion [14–16], interfraction motion
compensation for EBRT treatment [17, 18] and US localization in prostate
biopsy [19]. A dedicated study to quantify interfraction motion in prostate
brachytherapy is warranted. Such study can asses the accuracy of man-
ual registration and eventually provide solutions to correct for interfraction
prostate motion.

There are several specific benefits of developing an algorithm to regis-
ter pre-operative and intra-operative prostate volumes. First, the algorithm
can quantify prostate motion and deformation in brachytherapy treatment,
providing a more consistent benchmark and understanding of the motion.
Second, the transformation parameters from the algorithm can be used for
training of manual registration. Third, applying the transformation param-
eters to a needle guide device or to the treatment plan may improve the
quality of the implant.
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1.2.3 Thesis Objectives

To summarize, this thesis project has two objectives. First is to design,
build, and characterize a robotic needle guide for prostate brachytherapy.
Second is to develop an ultrasound B-mode image-based pre-operative to
intra-operative prostate volumes registration algorithm.

1.3 Literature Review and Thesis Approach

1.3.1 Literature Review

1.3.1.1 Literature Review on Robotic Needle Guides

Along with robotic approaches to needle guidance, several groups have ex-
plored the idea of modifying the needle guide template to provide angulation
and to improve needle placement accuracy. Green et al. [20] presented a
pivoting needle template that provides manual yaw angulation of needles
with respect to the US probe. Hogendijk et al. also explored template guide
modifications providing needle angulation and translation [21]. To the au-
thor’s knowledge, none of these ideas have been implemented for clinical
use.

Schneider et al. developed a three degrees of freedom (DOF) robotic nee-
dle guide for transrectal prostate brachytherapy [22]. The needle is guided
by a motorized half cylinder TRUS probe sheath through one of its side
channels. The needle tip location is calculated based on three parameters:
the sheath rotation angle, the sheath insertion depth, and the needle in-
sertion depth. The later two are measured manually since only the probe
rotation is motorized. Although the proposed needle trajectory is novel,
it is completely different compared to the conventional template guidance
approach. Thus, direct use by physicians may be difficult.

Bassan et al. developed a needle guide robot based on a Macro-Micro
system design [23]. The seven DOF passive macro manipulator is used to
grossly position the needle tip on the skin entry point. The active (mo-
torized) micro manipulator has five DOF. Two for needle insertion axis
orientation, one for needle rotation, one for needle insertion, and one for
seed ejection. The micro manipulator is also equipped with a force sensor
to measure the needle insertion force. Although the micro-manipulator is
light weight (less than 5kg), the overall system is large and may obstruct
the transperineal view and/or the fluoroscopy machine.

RAPID (Robot-Assisted Platform for Intratumoral Delivery) [24, 24],
developed by Yu et al., is a cart-mounted surgery module which consists
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of a two DOF TRUS probe driver, a three DOF gantry, a two DOF needle
driver, and a one DOF seed dispenser. The gantry module enables motorized
x-y translation and pitch angulation of the needle. The cart itself provides
manual control of three axes of translations and three axes of rotations for
the probe driver and the gantry. The module is equipped with two force
sensors and one torque sensor to measure the needle insertion force and
torque. RAPID completely replaces the conventional brachytherapy stepper
and stand which may make clinical acceptance more difficult.

Fenster et al. developed a complete 3D TRUS guided system for prostate
brachytherapy which includes a 3D US imaging system and a needle guide
robot [25, 26]. In their earlier work, the group used a six DOF commercial
robot (Model A465 from Thermo-CRS, Burlington Ontario, Canada). A
needle guide for manual insertion is attached to the robot’s arm. The robot
positions the needle guide onto the skin insertion point and a physician per-
forms the needle insertion. In their later publication, the group developed
a custom made four DOF eleven revolute cylindrical closed-kinematic robot
[27]. The robot is compact and equipped with mechanical brake clamps for
manual positioning. The encoders’ angular positions define the position and
orientation of the needle guide through the linkage’s coordinate transfor-
mation. Since the encoder readings do not directly translate to X-Y axes
translation or the pitch and yaw angle of the needle, manual ease of use by
physicians might be an issue.

Fichtinger et al. developed several needle guidance robots. The “Acubot”
[28] is a robot for percutaneous needle intervention using fluoroscopy and
computed tomography (CT) - originally intended for applications such as
biopsy and ablation. The design comprises of a three DOF gantry attached
to the operating table, a seven DOF passive arm and a three DOF needle
insertion device with a Remote Center of Motion (RCM). The same robot
is later applied for prostate brachytherapy [29]. The AcuBot’s RCM design
is novel but the three DOF gantry has a limited range of motion and a
large structure which makes it difficult to integrate into the clinical setting.
Hence, the group recently designed a lighter and more compact custom par-
allel robot for prostate brachytherapy [30]. The robot is compatible with
a conventional brachytherapy stepper and provides four DOF needle move-
ment (X-Y translations and pitch-yaw angulations). The robot is very light
(1.3 kg) with decoupled kinematics which makes manual positioning easy.
However, if the robot’s electronic control fails, the solution is to revert back
to the manual template. The same group also developed a Magnetic Reso-
nance Imaging (MRI) compatible robot for prostate brachytherapy [31].

Other robots were designed for needle guidance but not specifically for
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prostate brachytherapy application. Phee et al. developed a nine DOF
passive robot for prostate biopsy [32]. The robot has a large structure which
makes it not adaptable to the typical brachytherapy apparatus. The UMI
(ultrasound-guided motion-adaptive needle-insertion instrument) robot is a
two DOF needle driving manipulator attached to a five DOF passive arm
developed by Hong et al. for percutaneous cholecystostomy [33]. Kettenbach
et al. developed a seven DOF robot, “B-Rob I”, for general percutaneous
biopsy [34]. None of these robots have been used for the brachytherapy
application, possibly due to the use of different needle insertion approach
that limits the operational space and dictates specific needle trajectories.

1.3.1.2 Literature Review on Prostate Volumes Registration

Several research groups studied inter-fraction prostate motion and prostate
localization for EBRT by using implanted markers. Wu et al. [35] and Crook
et al. [36] used three implanted gold markers and portal film imaging to mea-
sure the prostate motion and patient setup error by identifying the shifts in
markers’ positions. Shimizu et al. [37] developed a real time tracking radio-
therapy system to localize prostate cancer by tracking a single marker using
two X-ray images. The Calypso system by Willoughby et al. [38] uses three
electro magnetic markers to measure the patient’s prostate motion during
EBRT treatment. The group claimed that the system can also be used for
real-time tracking of the prostate. Marker-based registration approaches,
beside being invasive, suffer from the possibility of marker migration [39].
It is also not suitable for registering pre-operative prostate volume to the
intra-operative one as the presence of the markers might interfere with the
brachytherapy implant procedure.

Other research groups studied prostate motion using Cine-MRI [40, 41]
and CT [42–45] imaging modalities. Although both CT and Cine-MRI are
not the main imaging modality used in prostate brachytherapy, it is inter-
esting to note that these research groups, with the exception of Ghilezan
et al. [40], follow similar approaches in studying prostate motion. They
quantify the motion based on the changes of prostate contours which are
obtained by manually contouring the prostate in their CT and Cine-MRI
images. Most of these research groups reported the prostate motion in terms
of translation in the anterior-posterior, superior-inferior, and left-right di-
rection. Only vanHerk et al. [45] reported the translation and rotation of
the prostate with respect to the pelvic bone.

Several groups studied prostate motion and localization using ultrasound
as the main imaging modality. The Fox Chase group developed a stereo-
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tactic guidance system for prostate localization during radiation therapy
treatment, called B-mode Acquisition and Targeting (BAT) [43, 43, 46].
The system combines a transabdominal US probe with a position sensing
arm and a touch screen. The prostate contours from the CT treatment plan-
ning system is displayed on the touch screen along with the transverse and
sagittal suprapubic ultrasound images. The contours are manually shifted to
overlay the prostate in the ultrasound images. The motion of the prostate
is quantified by the shift. The system was compared with CT based lo-
calization by other groups [18, 47]. Xu et al. [19] register pre-operative
US volume data with intra-operative US images in fused MR-TRUS image
guided prostate biopsy. A few 2D intra-operative images are registered to
the pre-operative volume with a stereotactic tracking system’s assistance.
The registration is used in a closed-loop control to correct for prostate mo-
tion in the fused MR-TRUS images. Krupa et al. [48] developed a prostate
tracking algorithm based on region tracking and speckle decorrelation for
visual servoing purposes. Prostate brachytherapy is identified as one of the
possible clinical applications of the work.

1.3.2 Thesis Approach

The conventional needle guide template, illustrated in Figure 1.4, has 5 mm
needle placement accuracy and limits the needle trajectory to be parallel.
As mentioned, improving the needle placement accuracy (less than 5 mm)
will help reduce the risk of post implant complications while adding the
degrees of freedom of the needle guide may help patients with pubic arch
interference.

Most of the existing robotic needle guides are not directly adaptable to
this clinical setting due to their weight, space requirements, ease of use, and
adaptability to the conventional brachytherapy apparatus e.g. the EXII
stepper and Micro-Touch R©© stand. The design by Fichtinger et al. [30]
does not suffer from these limitations and has a light weight. However, if
power or electronic control failure occurs, the oncologist has to revert back
to the conventional needle guide template. Our design aims to avoid such
limitations while still being adaptable to clinical apparatus and work flow.

Our proposed approach to improve prostate brachytherapy needle place-
ment is to design and implement a four DOF robotic needle guide. The four
DOF consist of two translation axes, which mimic the XY (horizontal and
vertical) template grid positioning method, and two rotation axes which
provide pitch and yaw angulations to the needle. The robot is light and
is designed to be compatible with the conventional brachytherapy stepper
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and mount (the EXII Stepper and the Micro-Touch R©© stand). The robot’s
design also allow manual positioning capabilities in the event of electronic
control or power failures.

To register the pre-operative prostate volume to the intra-operative vol-
ume, we propose a new surface-based registration technique using ellipsoid
fitting. Surface-based registration is suitable for the prostate as it is a soft
organ without any distinct landmarks that can be used as references. Our
approach is to contour the pre-operative and intra-operative prostate vol-
umes using a semi automatic algorithm. The contours are fitted into el-
lipsoids and their parameters are used to calculate the registration matrix.
There are two reasons we are using an ellipsoid as the model of the prostate.
First, it is common to use an ellipsoid to calculate the volume of the prostate
[49]. Second, ellipsoid fitting can be solved with robust, fast, and computa-
tionally inexpensive algorithm such as [50].

In our registration approach, we opt to use the sagittal images instead
of the transverse ones due to several reasons. First, our research group has
developed an automatic US volume data acquisition system by motorizing
the TRUS probe rotation. With this system, the prostate volume can be
finely sampled using the sagittal images as the system allows rotation angle
increments as low as 0.5o. This angle interval translates to the worst case
scenario of 0.52 mm lateral resolution with 60 mm imaging depth. As a
comparison, the conventional technique using the EXII stepper samples the
prostate with 5 mm increments. Second, the rotation of the TRUS probe
does not change its position with respect to the prostate. So, prostate
motion due to probe angular rotation should be small. Third, the sagittal
images provide direct depiction of pitch rotation motion [14], which has been
identified as a significant motion in EBRT procedures [45].

For our image segmentation purposes, we opt to use the semi-automatic
segmentation algorithm developed by Badiei et al. [51]. The algorithm
ensures smooth and continuous contours, only requires the user to input five
initialization points, and does not require training models like [52]. It only
takes about 1 second to segment one US image. However, the algorithm by
Badiei et al. is intended for prostate segmentation in its transverse images.
Modifications have to be made to apply the algorithm for sagittal US images.
A survey of available segmentation algorithms for US images can be found
in [53]
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1.4 Thesis Organization

This thesis is divided into five chapters.
Chapter 1 explains the background knowledge, motivation, and approach

of the thesis. In the chapter we give an overview of the general prostate
brachytherapy procedure. We also identify some of its key challenges that
motivate the thesis project to develop a robotic needle guide and a prostate
volume registration algorithm. Based on related publications, we explain
the general approach of this thesis.

Chapter 2 centers around the robot design and implementation. First,
we explain the robot design: its mechanical components, its controller, and
its Graphical User Interface (GUI). Then, we performed several experiments
to quantify the characteristics of the robot. The chapter also explains a seed
implant study conducted on a prostate phantom using the robot prototype.
The chapter finishes with updates and changes to the robot since its first
prototype.

Chapter 3 explains the sagittal view based segmentation algorithm whose
contour results are used for registration. The first three sections of the
chapter explain the origins of the algorithm [51] and the modifications made
to develop the algorithm. We extend the algorithm, in the fourth section
of the chapter, to segment 3D-sagittal-view-based US data. In the last
section, we validate the algorithm by comparing it with a recently published
transverse view based segmentation algorithm [54].

Chapter 4 describes our registration work: simulation, experiment setup,
and results. In the chapter’s first section, we explain the idea of using ellip-
soid fitting on prostate contours to calculate the registration matrix. Then,
we simulate the ellipsoid-fitting algorithm using noiseless but partial data
(the second section of the chapter). To measure the registration accuracy,
we designed and implemented an experimental setup using an accurate op-
tical tracking as the gold standard - explained in the third section of the
chapter. We analyzed and discussed the results in the fourth section of the
chapter. At the last section, we explored the use of ICP as an alternative
registration algorithm.

Chapter 5 concludes the thesis with a summary, list of contributions,
and possible future work.
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Chapter 2

Brachyguide: a Robotic
Needle Guide for Prostate
Brachytherapy

This chapter is divided into 4 sections. Section 2.1 explains the robotic
needle guide design and implementation. Section 2.2 explains the character-
ization tests done on the robot and their results. Section 2.3 describes the
first use of the robot during an implant study.

2.1 Robot Design and Implementation

We designed and implemented a four DOF serial manipulator (Brachyguide)
that addresses the needs of brachytherapy:

1. It facilitates angled needle insertion

2. It has a translational work space of at least 60× 60 mm2

3. Its positioning resolution is less than 5 mm

4. It is light weight and easily mounted on the commonly used EXII
stepper

5. It does not interfere with TRUS insertion or view of the surgical space

6. It provides manual override during power or electronic control failure

The translational stage positions the robot wrist in the X-Y direction.
The wrist carries the needle guide (see Figure 2.1). The robot wrist provide
pitch and yaw angulation to the needle guide.

The Brachyguide’s translational stages are made of two A15 UniSlide
linear drives (Velmex Inc., Bloomfield, NY). Each drive consists of a low
friction lead screw driven slider on a nickel-plated aluminum dovetail base.

16



2.1. Robot Design and Implementation

Figure 2.1: Brachyguide kinematics design and implementation. Left:
Brachyguide kinematics design. Right: Brachyguide.
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The Y-Axis stage is mounted on the EXII brachytherapy stepper with its
slider carrying the X-Axis stage (see Figure 2.2). Each UniSlide has a trans-
lation range of 150 mm giving a larger workspace than needed. The M6
lead screws gives 1 mm/ turn resolution to the sliders. They are actuated
by 23 mm coreless DC Micromotors (Series 2342-024CR, Faulhaber, Ger-
many) through spur gears with a 3.125 ratio. The motors use a 512 count
magnetic encoder (series IE2-512) from Faulhaber. Due to quadrature sig-
nal processing, each encoder resolution is actually 2048 counts per turn.
Theoretically, the motor - spur gears - lead screw configuration gives 0.65
µm X-Axis and Y-Axis translation resolution. The actual resolution of the
translational axes are affected by other factors such as backlash.

Figure 2.2: Brachyguide translation stages.

The robot’s wrist - mounted on the X-Axis stage - consists of two pre-
cision rotation stages (Model 7R174-11, Standa, Vilnius, Lithuania). The
stages are mounted orthogonally with the yaw rotation stage carrying the
pitch rotation stage (see Figure 2.3). The latter rotates the needle guide
through a Kevlar belt parallelogram linkage. A distance of 10 mm separates
the center of rotation of the stage and the needle guide. The parallelogram
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linkage limits the pitch angle range within −180 to +240. While the yaw an-
gle is limited by interference with the translation stages, it still reaches±300.
The servomotors of the rotation stages are 17 mm DC micromotors (Series
1727-24CR) with IE2-512 encoders from Faulhaber. Each motor drives the
rotation stage through a built in worm gear with a 3 degrees/ turn ratio,
giving it a theoretical angular resolution of 0.00580.

Figure 2.3: Robot wrist.

The needle guide is an acrylic hollow tube (see Figure 2.3). The guide
bore is milled with sufficient clearance for an 18 G brachytherapy needle
(1.27 mm diameter). The needle guide is “snap mounted” onto the needle
holder flexure at the bottom of the parallelogram linkage.

The unique feature of the Brachyguide is its manual positioning capabil-
ity in the case of electronic control failure or power outage. This is achieved
through manual cranks and quick release mechanisms on the translation
stages, translational readings via digital calipers, and turn dials on the ro-
tation stages (see Figure 2.4).

Manual cranks are fixed on the lead screws of the translational stages.
Each crank directly rotates the screw, giving fine manual adjustment of
1 mm per turn. However, if the robot’s operator wishes to save time by
coarsely adjusting the stages, the quick release mechanism can be used. A
spring loaded lever is fixed onto the brass nut of the stage slider. The nut
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Figure 2.4: Brachyguide manual positioning features. Left: rotational stage
dial (top) and translation stage manual crank (bottom). Middle: quick
release mechanism. Right: digital calipers.
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was custom milled with sufficient clearance at an angle with respect to the
M6 lead screw. Thus, the nut can rotate around an axis orthogonal to the
slider and lead screw. When the spring lever is pulled, the nut disengages
the lead screw allowing the slider (stage) to move freely.

Linear digital calipers (Model 303-9303, Shars Tools Inc., IL) gives the
XY position of the needle guide. These calipers can be interfaced to the com-
puters through a simple serial connection; and serve as redundant sensors
to the linear stages’ motor encoders. In the absence of electronic control,
the calipers help the operator position the needle guide (similar to the use
of conventional grid template). The LCD displays on the calipers give 0.01
mm reading resolution while the engraved markings give 1 mm reading res-
olution.

Turning dials are installed between the rotation stages and their motors.
The dials provide 0.050 angular reading accuracy. We do not expect nee-
dle angulations of more than ±150 as it translates to an endpoint position
change of tens of mms. One turn of the dial translates to three degrees
rotation and with five turns of the dial, one can easily obtain ±150 needle
angulation. Hence, quick release mechanisms for the rotation stages are not
necessary.

2.1.1 Control and Graphical User Interface (GUI)

Each motor is individually controlled using the Faulhaber’s MCDC 3006S
microcontroller. Four MCDC 3006S units are daisy-chained together and
connected to a PC through a single serial port (see Figure 2.5). Each of
the controllers employs PI control system for speed control and PD control
system for position control. Controller parameters were set according to the
user manual using Faulhaber’s user interface. A medical grade power supply
(SL Industries, CA, US) powers up the controllers.
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Figure 2.5: . The block diagram diagram of Brachyguide controller (top).
The block diagram for the MCDC 3006S (bottom),taken from its manual
[55].
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The operator can control the robot’s motion through a simple GUI (Fig-
ure 2.6). The interface provides individual control to each of the robot’s
axis. The operator can type in the end point X-Y coordinates (in mm) and
pitch-yaw angle values (in degrees) and command the stages to move ac-
cordingly. As a safety feature, the encoder readings are monitored through
multiple threads and the motors are disabled when the desired coordinate is
reached. Scaled motor encoder readings and digital caliper readings are dis-
played as feedback to the operator. The GUI also provides an option to load
pre-determined needle plans from VariSeed. Needle plans from VariSeed can
be exported into text files and then loaded into the GUI for the robot to
follow. These plans do not incorporate angled needle insertions.

Figure 2.6: Brachyguide GUI. The needle plan from VariSeed is shown
in the center. Individual motor control is shown on the left (green) while
calipers readings are shown on the top right (red).

2.2 Brachyguide Characteristics

We performed several characteristics tests on the Brachyguide prototype.
Table 2.1 summarizes the test results.
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Mass 2.6 kg
Translational workspace 150 × 150 mm2

Pitch Range +240 to -180

Yaw Range +300 to -300

Translational Accuracy X-axis Max 0.292 mm
Mean 0.120 mm

Std. Dev 0.102 mm
Y-axis Max 0.89 mm

Mean 0.607 mm
Std. Dev. 0.299 mm

Caliper accuracy

X-axis
Max 0.059 mm
Mean 0.022 mm

Std. Dev 0.014 mm

Y-axis
Max 0.066 mm
Mean 0.017 mm

Std. Dev 0.015 mm

Rotational accuracy
Max 0.042o

Mean 0.018o

Std. Dev 0.008o

X Axis Stiffness 9200 N/m
Y Axis Stiffness 15500 N/m

Point to point move time
60 mm <2 s
150 mm <4.6 s
30 degree 0.7 s

Table 2.1: Brachyguide characteristics table.
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2.2.1 Translational Accuracy and Straight Motion
Deviation

X-axis and Y-axis translation accuracy was tested using a laser interferome-
ter (ML10, Renishaw PLC, Gloucesteshire, UK) in a setup shown in Figure
2.7. Each axis’ stage travels unidirectionally while caliper, encoder, and
interferometer readings were recorded at 5 mm intervals. Due to reflector
interference, the Y-Axis range was limited from 0-110 mm.

Figure 2.7: Translational accuracy measurement setup.

As seen from Figure 2.8, maximum caliper errors were within 0.06 mm
of the interferometer reading with an average error of about 0.02 mm (both
directions). Encoder readings shows that the motor control always follow
the commanded motion input. However, the maximum actual motion errors
are within 0.3 mm (X-Axis) and 0.9 mm (Y-Axis).

Motion errors are primarily caused by backlash in the lead screw nuts of
the translational stages. The error is more severe on the Y-axis stage because
its nut is loaded by the combined weight of the X-axis stage and the robot
wrist. Different friction levels at different point of contacts between the slider
and the UniSlide’s base caused error variations within a single motion. In
this initial work, we controlled the motor without using the digital calipers
as redundant sensors. Using the caliper readings in the control loop will
help reduce motion errors due to backlash.
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2.3. Seed Implant Study on a Phantom

A digital dial gauge (Mitutoyo Co., UK) was mounted onto the needle
holder to measure straight motion deviation. The dial gauge’s arm was
rested against a granite table while the stage traverse its full motion range
(0-150 mm) back and forth. A deviation of less than 0.1 mm was recorded.

2.2.2 Angular Accuracy

Angular accuracy was measured using the interferometer which has a limited
motion range within±1.50 (see Figure 2.9). The maximum angular error was
0.0420, the average error was 0.0180 and standard deviation was 0.0080. The
result confirms the 3 arcmin stage resolution specification (Standa, Vilnius,
Lithuania). The graph showed several random noises (spikes) which we
suspected was due to vibrations on the optical table.

2.2.3 Stiffness

We determined the stiffness by pressing a load cell (MDB-2.5, Transducer
techniques, Temecula, CA) against the Brachyguide’s wrist and measuring
its deflection using the interferometer (see Figure 2.10 for illustration). The
force data was plotted against the measured displacement and a straight
line is fitted onto the data (see Figure 2.11). The slope of the line gives
the measured stiffness. Both X and Y axes stiffnesses were measured. In a
similar fashion, we measured the stiffness of the Brachystand (EXII stepper
mounted on the MicroTouch R©© mount).

The Brachyguide’x X-Axis and Y-Axis measured stiffness are 9200 N/m
and 15500 N/m while the Brachystand’s are 2600 N/m and 6500 N/m respec-
tively. The Brachyguide frame is significantly stiffer than the Brachystand.
Consequently the accuracy of the needle placement will mostly be affected
by flexing of the Brachystand when the Brachyguide is mounted on it. This
flexing comes mainly from the base of the stepper: the connection point
between the EXII stepper and the MicroTouch stand. The problem can be
reduced by adding a support mechanism to the stepper which will be used
in conjunction with the Brachyguide.

2.3 Seed Implant Study on a Phantom

We conducted a seed implant study [56] on a prostate phantom (Model 053,
CIRS Inc., Norfolk, Virginia) using a setup consisting of: the Brachyguide
protoype, the EXII Stepper, the MicroTouch R©© stand, and an US machine
(Sonix RP, Ultrasonix Medical Corp., Richmond, BC). The purpose of this
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Figure 2.8: Translational accuracy measurement results. X+ direction is
the direction away from the ML10 laser and Y+ direction is the upward
direction.
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Figure 2.9: Angular accuracy measurement measurement results.
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Figure 2.10: Brachyguide stiffness measurement setup.
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Figure 2.11: Brachyguide stiffness measurement results. The colored lines
(red and blue) represent the linear fit to the data.
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implant study was to test whether or not the robot use disrupts the clinical
work flow or adds to implant procedure time.

Several days before the implant, a medical physicist conducted a vol-
ume study on the phantom as typically done in the B.C. Cancer Agency
(BCCA). Using VariSeed, a seed implant plan consisting 136 dummy seeds
in 26 needles were generated. Both loose and stranded seeds (RAPIDStrand,
Oncura, Plymouth Meeting, PA) were used. The implant plan was loaded
into the Brachyguide’s motion controller

Before the actual implant, the Brachyguide was registered to the US
image by using a water bath. The implant grid was overlaid onto the B-
Mode transversal images. The robot was used to guide a needle onto the
center of the grid. Once the needle tip was located, the encoder and caliper
readings were zero-ed.

During the seed implant study, a medical physics student read out the
needle position from the printed plan, an electrical engineering student oper-
ated the robot, and the radiation oncologist performed the needle insertion
into the phantom (see Figure 2.12). The study was finished in 32 minutes:
comparable to conventional procedure time (30-40 minutes). The study
showed that Brachyguide use did not alter implant procedure time although
it was the first time use of the prototype by the oncologist.

Figure 2.12: Brachytherapy seed implant study on a phantom. Guided
by the US image, the radiation oncologist is inserting the needle using the
Brachyguide.

A post implant CT scan (in-slice resolution 0.0293 mm/pixel, thickness
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Maximum
absolute
error
(mm)

Average
error
(mm)

Standard
deviation
of errors
(mm)

X-axis 3.3301 0.108 1.1048
Y-axis 2.0464 0.1993 0.8689
Distance
in XY
plane

3.4273 1.2296 0.7102

Table 2.2: Seed placement errors based on post implant CT scan.

1.5 mm) was performed on the phantom. Xu Wen, a colleague from the
UBC Robotics and Control Lab, applied his seed detection algorithm [57]
to quantify the seed placement errors (see Table 2.2) measured relative to
the planned seed location. Figure 2.13 shows the seed placement error his-
tograms. As illustrated in Figure 2.14, the implanted seeds are projected
onto a plane orthogonal to the needles direction and then compared with the
pre-plan seeds locations. Although the results were affected by registration
error, backlash, and needle deflection and deformation, the errors are small,
ranging from 2 - 3.5 mm. In this study, we did not perform needle insertion
with oblique trajectories since they have not been incorporated within the
general clinical procedures.
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Figure 2.13: Seed placement errors histograms.

Figure 2.14: Projection of the CT scan of the prostate phantom onto the
plane orthogonal to the planned needle insertions.
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2.4 Additional Features and Updates on the
Robot

Since its first prototype trial, changes and additional features have been
added to the robot with the help of Victor Wang and Honza Vrodazky.

First, new linear digital calipers were installed into the robot. It was
found that whenever the calipers from Shars Tools Inc. are interfaced with
the computer, their measurement values are noisy (they deviate by 0.04 mm
under stationary positions). The noise is caused by a design problem within
the caliper serial interface unit. Thus, we replaced the calipers with OEM
scales from Fowler (Fred V. Fowler Co. Inc., Newton, MA) as shown in
Figure 2.15.

Figure 2.15: The robots calipers were replaced by ones from Fowler

Second, control loop incorporating the caliper readings was programmed
into the robot to compensate for backlash on the translational stages. When
each of the robot’s translational stages is actuated, the controller samples
the encoder reading at 500 ms intervals. Each time, the controller calculates
the distance difference between the target position and the current position.
Once the difference is within 0.01 mm, the controller switches to sampling
the caliper’s reading at 600 ms intervals. The stage is moved until the
distance difference between the target position and the caliper’s reading are
within 0.03 mm. Unlike the encoder readings, the caliper’s readings are
affected by the stage’s backlash. Hence, the switch from encoder to caliper
readings provides backlash adjustments.

Last, Victor Wang added a path-finding module and updated the GUI to
incorporate angled needle plans. The path-finding module helps the robot

34



2.4. Additional Features and Updates on the Robot

avoid collision with the TRUS probe as it moves to its designated position.
The details of these improvements are not described in this thesis.

Victor Wang repeated the translational accuracy measurement using the
same setup in Figure 2.7. Table 2.3 and Figure 2.16 show the updated X-axis
and Y-axis accuracy measurement and their repeatability. The Renishaw
Laser 10 linear measurement software (ML10, Renishaw PLC, Glouces-
teshire, UK) was used to plot the measurement results and to calculate
the repeatability values. Figure 2.16 shows four plots in each box. The
blue-cyan and red-green pairs describe two sets of uni-directional accuracy
error measurements. The error values are the differences between the linear
encoder’s readings and the laser interferometer measurements. With the
new calipers and an improved control system, we achieved less than 0.12
mm and less than 0.1 mm X-axis and Y-axis translational accuracies. Such
accuracies cannot be achieved using the current template grid approach as
it limits the X-Y spacing to 5 mm.

Table 2.3: Updated translational accuracy and repeatability measurement
results. The error values in the table show the differences between linear
caliper readings and laser interferometer measurements.

Value
Accuracy 113.6 µm

Positive Direction Repeatability 13.1 µm
Negative Direction Repeatability 11.8 µm

Bi-directional Repeatability 70.2 µm
Accuracy 93.1 µm

Positive Direction Repeatability 8.8 µm
Negative Direction Repeatability 8.1 µm

Bi-directional Repeatability 39.2 µm

X Axis

Property

Y Axis
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Figure 2.16: Updated translational accuracy and repeatability measure-
ments.
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Chapter 3

Segmentation Based on
Sagittal Images

The sagittal view-based segmentation algorithm (“sagittal segmentation al-
gorithm”), was developed by modifying Badiei et al.’s algorithm (“transver-
sal segmentation algorithm”) [51]. The transversal segmentation algorithm
outlines the prostate boundaries in 2D transverse B-mode transrectal ul-
trasound (TRUS) images based on image warping, ellipse fitting, and the
IMMPDAF (Interacting Multiple Model Probabilistic Data Association Fil-
ter) edge detector [58]. This chapter starts by introducing the transversal
segmentation algorithm in Section 3.1. A brief explanation of the algorithm
steps will help the readers follow the modifications explained in Section 3.2.
These modifications convert the transversal segmentation algorithm to the
sagittal one (Section 3.3). Section 3.4 explains the extended sagittal segmen-
tation algorithm. Section 3.5 gives validation of the algorithm in phantom
and patient volume data.

3.1 The Transversal Segmentation Algorithm

The transversal segmentation algorithm consists of the following steps (see
Figure 3.1 for illustrations of each steps)

1. User initialization

2. Image warping

3. Initial ellipse fit

4. IMMPDAF edge detection

5. Symmetrization and final ellipse fit

6. Image unwarping
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3.1. The Transversal Segmentation Algorithm

Figure 3.1: Six steps of the transversal segmentation algorithm by Badiei et
al. The algorithm is applied on a transverse image of the CIRS phantom.

3.1.1 User Initialization

The transversal segmentation algorithm asks the user to input five initializa-
tion points at specific locations on the prostate’s midgland transverse view
as illustrated in Figure 3.3(a). The order of the initialization point is pre-
determined. The first initialization point is the TRUS probe center. The
second one is the center of the prostate. The last three points are located
at the prostate’s right most edge, mid-bottom, and top. These points are
used to calculate the warping factor in step 2. Using 5 initialization points,
3 additional points along the prostate boundary are interpolated. It is as-
sumed that the prostate boundary is symmetric along the prostate center
(initialization point 2).

3.1.2 Image Warping

A novel warping function transforms the shape of the prostate to resemble
that of an ellipse. It converts the pixel coordinate system (u, v) into a polar
coordinate system (R, θ) with the TRUS center as the coordinate center. A
warping function that is Gaussian in the radial direction and sinusoidal in
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3.1. The Transversal Segmentation Algorithm

the angular direction is then applied:

Rwarped = −R · [1− sin θ · e−R2

2σ2 ] (3.1)

The standard deviation (σ) is calculated using the coordinates of the initial-
ization points (the TRUS location, the seed location, the top initialization
point location and, the bottom initialization point location) with formula
3.2 (see Figure 3.2).

σ =

√
−(vT − v3)2

2 · ln(1− vT + v3 − 2vs

vT−v3
)

(3.2)

Figure 3.2: Warping factor calculation. The transverse image was generated
using the CIRS phantom.

The warping function is applied to the image pixels, located radially as
far as 356 pixels. The warping is also applied to the initialization points,
but excludes the probe center and the prostate center.
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3.1.3 Initial Ellipse Fit

An ellipse fitting algorithm [59] is applied to the warped initialization points.
The detailed mathematical background of the algorithm is provided in Ap-
pendix B.1. Using the ellipse parameter results, 120 ellipse sample points
are drawn on the warped image. The ellipse fit ensures smooth contours of
the prostate.

3.1.4 IMMPDAF Edge Detection

The ellipse sample points are used to guide the IMMPDAF edge detector.
The full mathematical explanation of the detector is provided in Appendix
C.

3.1.5 Symmetrization and Final Ellipse Fit

The algorithm enforces symmetry on the IMMPDAF result by mirroring
edge points about the prostate center line (a vertical line crossing through
the prostate center). After the symmetrization process, a second ellipse fit is
applied to the boundary points and 120 ellipse sample points are generated
from the ellipse parameters.

3.1.6 Image Unwarping

The last step of the transversal segmentation algorithm is the unwarping
of final ellipse sample points. The unwarped ellipse sample points become
the final segmentation result. All the ellipse sample points are expressed in
the same polar coordinate system used in the warping step. The radius of
each sample point corresponds to Rwarped and we wish to find the unwarped
radius (R) - see equation (3.1). Since we found no closed form solution,
we applied the Newton Rhapson method with R = 356 pixels as the initial
guess.

3.2 Modifications on the Transversal
Segmentation Algorithm

The following subsections explain the modifications on the transversal seg-
mentation algorithm that leads to the sagittal segmentation algorithm.
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3.2.1 Initialization Points

We have modified the requirements of the initialization points. In the sagit-
tal segmentation algorithm, we use the midsagittal US image of the prostate.
We ask the user to input the first point at the anterior midgland of the
prostate. The second point is at either the base or the apex of the prostate
(depending on which part is more visible). The third point is at the poste-
rior midgland of the prostate. We give the flexibility of putting the last two
points along the boundaries of the prostate.

In the transversal segmentation algorithm, the seed point is defined as
the center of the prostate and is the second initialization point. This point
is important for the calculation of the warping factor (vs in equation 3.2).
We decided to remove the seed point from the user initialization for sagittal
segmentation because sometimes it is hard to determine the prostate center.
For example, this occurs when only part of the prostate is visible, or when
the prostate is rotated. Therefore, the seed location is calculated using the
first three initialization points: (u1 + u3

2 , v1 + 2v2 + v3
4 ) where u refers to the

X-axis image coordinate and v refers to the Y-axis image coordinate (as
shown in Fig 3.2). The first three initialization points for the sagittal view-
based segmentation algorithm is as shown in Figure 3.3(b). We expect that
the user will place the second initialization point around the same height
as the prostate’s center. Hence, more weight is given on the coordinate v2.
By applying symmetry around the seed location, three additional points are
interpolated, also illustrated in Figure 3.3(b).

The TRUS probe center is not part of the user initialization points as it
can always be calculated by using the probe’s radius and US pixel conversion
ratio. The TRUS probe center is at the bottom left corner of the image,
opposite the image origin (the top left corner), unlike in the transverse
images. The probe that we use has a 9.87 mm radius [60]. In our setting, the
imaging depth is set to 60 mm with 156 µm per pixel conversion ratio. If the
image settings change, the location of the probe can always be recalculated.

3.2.2 Warping

The sinusoidal component of the warping function in the sagittal case is de-
pendent on the rotation of the probe around its center axis (as illustrated in
Figure 3.4). Therefore, we removed the sinusoidal dependency from equation
3.2 and substituted the probe rotation angle as θ into equation 3.1. Follow-
ing equation 3.2, the warping factor (σ) is calculated using the seed point
location, the TRUS location, the top initialization point (first initialization
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3.2. Modifications on the Transversal Segmentation Algorithm

(a) Transverse midgland plane of the CIRS phan-
tom.

(b) Midsagittal plane of the CIRS phantom.

Figure 3.3: Modifications in initialization points. Figure (a) and (b) show
the initialization points of the transversal and sagittal segmentation algo-
rithms. The red dots are the user initiated points. The green dots are the
interpolated points.
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point), and the bottom initialization point (third initialization point).
The warping function is applied uniformly across the width of the image.

It is only applied to the lower half of the image. This approach makes
the warping step faster without sacrificing the accuracy because warping
at the top half is negligible compared to the pixel size (see Figure 3.5 for
illustration).

Figure 3.4: Image warping on sagittal images. The images show the con-
sideration for modifications.
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Figure 3.5: Uniform warping (radial compression) across the bottom half
of the image.
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3.2.3 Selective IMMPDAF Edge Detector

On occasion, the IMMPDAF edge detector encounters a division by zero
problem. This happens when the detector strays outside the image bound-
ary due to the prostate being larger than the US array width as in our
CIRS phantom images. Division by zero also happens when the detector
encounters a completely black prostate region (image pixel magnitude of
zero).

The problem is caused by the PDAF (Probabilistic Data Association
Filter), refer to Appendix C.2.3 for details. The PDAF collects 5 candidate
edge points with the largest edge magnitudes. It assigns a Gaussian proba-
bility density function which depends on the edge magnitude to each of the
candidates. When the image region is completely black, the five candidate
edge points have edge magnitudes of zero, causing divisions by zero in the
probability density calculation. To solve this problem the IMMPDAF de-
tector has been made selective: whenever all the five candidate edge points
have zero edge magnitudes, the detector skips to the next Kalman filter
step. We also have removed the symmetrization step from the transversal
segmentation algorithm as we do not expect the prostate to be symmetric
in the sagittal view.

3.2.4 Stable Ellipse Fitting Algorithm

A more stable ellipse fitting algorithm [61] is employed in the segmentation
algorithm. The full mathematical formulation of this algorithm is provided
in Appendix A.2.

The ellipse fitting problem comes down to finding the eigenvalues and
eigenvectors pair of the following mathematical formulation:

S
−→
P = λ C

−→
P (3.3)

where S is the Scatter Matrix, C is the Constraint Matrix, and P is the
parameter vector (a six element vector containing the algebraic parameter
of the ellipse). The Scatter Matrix and the Constraint Matrix are formulated
as follows:

S =




x2
1 x2

2 · · · x2
n

x1y1 x2y2 · · · xnyn
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1 y2
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1 1 · · · 1
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1 x1y1 y2
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45



3.3. The Sagittal View-based Segmentation Algorithm

Where (xn, yn) are the coordinate sample points to be fit into an ellipse.

C =




0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(3.5)

As noted by Halir and Flusser [61], the Constraint Matrix is singular
and when the set of points are very close to an ellipse, the Scatter Matrix
is close to singular: in occasions, leading to the wrong sets of eigenvalues
and eigenvectors. They circumvent the problem by decomposing the Scatter
matrix, and the Constraint matrix:

[
S1 S2

ST
2 S3

] [
P1

P2

]
= λ

[
C1 0
0 0

] [
P1

P2

]
(3.6)

The solution to ellipsoid fitting boils down to solving the following equa-
tions and eigensystem:

S1P1 + S2P2 = λC1P1 (3.7)
ST

2 P1 + S3P2 = 0
P2 = −S−1

3 ST
2 P1 (3.8)

C−1
1 (S1 − S2S

−1
3 ST

2 ) P1 = λP1 (3.9)

Since C1 and (S1 − S2S
−1
3 ST

2 ) are no longer singular, the eigensystem
is more numerically stable.

3.3 The Sagittal View-based Segmentation
Algorithm

The overall flow of the sagittal segmentation algorithm is illustrated in Fig-
ure 3.6. The algorithm steps are as follows:

1. Input 5 initialization points

2. User accepts or declines the extrapolated initialization points. If the
user accepts, move to next step. Otherwise, pick 5 new initialization
points
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3.3. The Sagittal View-based Segmentation Algorithm

3. Warp the image and initialization points

4. Fit an ellipse to the warped initialization points

5. Apply the selective IMMPDAF edge detector guided by the initial
ellipse fit

6. Fit a final ellipse fit to the detector results

7. Unwarp the image and final ellipse fit
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Figure 3.6: The steps of the sagittal segmentation algorithm.
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3.4 Extending the Sagittal Segmentation
Algorithm

By controlling the TRUS probe rotation, we can collect a set of 2D B-mode
sagittal images with finely sampled rotation angle intervals. The collected
images make up a 3D US volume and can be visualized using software such
as Stradwin (an open source Windows based research software developed
from Stradx [62]). It offers some flexibility in viewing the prostate in 3D.

We can use the sagittal segmentation algorithm to contour the prostate
boundary from each individual 2D sagittal image in the acquired volume.
However, it is very tedious and time consuming to segment the images one
by one as the user must input initialization points at each image. For ex-
ample, a finely sampled volume data (e.g. 0.5o rotation angle intervals)
typically consists of 200 images. We developed a method to segment all the
sagittal images automatically by using the ellipse slice-generation method
described in Appendix B.3 and Stradwin. The result is an extended segmen-
tation method based on sagittal image-based volume data. This method is
hereafter called the “extended sagittal segmentation algorithm”.

The algorithm steps are as follows:

1. The volume data are exported into Stradwin to be visualized in 3D.

2. Using Stradwin, 14 initialization points are selected (seven on the mid
sagittal view and seven on one of the coronal views, see Figure 3.7 for
illustration).

3. The initialization points coordinates are read by the extended sagittal
segmentation algorithm.

4. The warping factor is calculated using the first three initialization
points in the mid sagittal view.

5. Warping is applied to the initialization points and an ellipsoid is fit
into the warped initialization points.

6. With the known probe rotation angles, ellipse slices are generated from
the ellipsoid.

7. Each ellipse slice becomes the initial ellipse fit for the sagittal segmen-
tation algorithm (step 4 in Section 3.3).

8. Each sagittal images in the volume is segmented using step 5 - 7 of
the sagittal segmentation algorithm (see Section 3.3).
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In the extended sagittal segmentation algorithm, Stradwin is used to
visualize the volume data and to choose the fourteen initialization points
which are required for warping and ellipsoid fitting. These fourteen points
are selected based on the mid sagittal image and one of the coronal view
images. The coronal view images are interpolated by Stradwin based on
the US volume data. We choose the coronal view with the clearest prostate
image. Instead of one of the coronal images, we can opt to use one of the
transverse images. However, in our phantom images, the coronal view shows
sharper prostate boundaries compared to the transverse ones.

In summary, we extended our 2D sagittal segmentation algorithm to
be able to segment sagittal image-based US volume data. The extension
requires a larger number of initialization points (14 instead of 5) and the
Stradwin 3D visualization software. However, it offers the convenience of
not having to initialize each individual image.

3.5 Segmentation Results on Phantom and
Patient Volume Data

3.5.1 Segmentation on CIRS Phantom Volume Data

We tested the extended sagittal segmentation algorithm on 25 sagittal view-
based volume data sets of the CIRS phantom. The volume data was collected
under the following conditions: imaging depth of 60 mm, 100o sector angle,
and 6.6 MHz center frequency. These settings translate to horizontal and
vertical conversion ratios of 156 µm per pixel. We used the Ultrasonix US
machine (Ultrasonix, Richmond, BC,CA) with the BIP 6.5/R10/2x128-472
TRUS probe (Vermon, Tours, France) [60]. Note, we segmented the same
volume data set that is used for our registration experiment (explained in
Section 4.3). Figure 3.8 shows the Stradwin visualization of the sagittal
view-based segmentation results of two CIRS phantom volumes.
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Figure 3.8: Extended sagittal segmentation results on two CIRS phantom volume data as visualized using
Stradwin. Left: mid sagittal view, center: mid transverse view, right: one of the coronal views of the. The red
lines on the transverse and coronal view show the location of the mid sagittal plane.
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In the absence of a gold standard for the true segmentation, we compared
the results with the transverse image-based segmentation results obtained
using the 3D segmentation algorithm by Mahdavi et al. [54].

First, the sagittal view-based US volume data and the extended sagittal
algorithm contour results were re-sampled in the transverse views. This
step involved scan converting the volume data to produce sector transverse
images views and linearly interpolating the sagittal contour points along the
transverse axis direction (TRUS probe axis direction).

Second, we manually determined the base of the phantom from the re-
sampled volume data (the transverse view-based US volume data). From the
transverse view-based volume data, we extracted several transverse images.
The images were sampled using 5 mm step intervals along the transverse
view axis (TRUS probe axis) starting from the base.

Last, we segmented the extracted transverse images using the recently
published segmentation algorithm by Mahdavi et al. [54]. The transversal
segmentation results were then compared with the interpolated sagittal seg-
mentation results. The comparison results were affected by the re-sampling
of the transverse view-based volume from the original sagittal view-based
volume.

In each transverse image, we calculated the mean absolute distance
(MAD) and maximum absolute distance (MAXD) between the transver-
sal segmentation contour points and the interpolated sagittal segmentation
contour points. The distance is defined based on the point to line distance
calculation (see Figure 3.9 for illustration). The green curve in the figure
illustrates the transversal segmentation results while the red one illustrates
the interpolated sagittal segmentation results. For each transversal segmen-
tation results, there are 120 contour points in total.

In our comparison calculations, we only use three transverse images for
each volume data: the images at base+20mm, base+25mm (midgland), and
base+30mm. The reason is the phantom size is larger than the region of
interest in the sagittal view. Hence, the apex of the phantom is not visible in
the sagittal US images. The transversal segmentation algorithm requires full
view of the prostate (from base to apex) because it fits the contours into a
tapered ellipsoid. The partial view of the phantom moves the apex forward,
giving an impression of a smaller prostate. Hence, the segmentation results
are only reliable near the midgland.

Table 3.1 and Figure 3.10 show the comparison between the segmentation
results. The overall maximum absolute distance is 2.01 ± 0.79 mm while
the mean average distance is 0.72 ± 0.37 mm. An interesting observation is
the jagged edges on the interpolated sagittal segmentation contours are due
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Figure 3.9: Distance calculation between two segmentation results. The
red curve illustrates the interpolated sagittal segmentation results while the
green one illustrates the transversal segmentation results.

to interpolation. The contours are sampled finely in the sagittal view but
not in the transverse view. Even with these jagged edges, the mean average
distance is still relatively small: 0.72 ± 0.37 mm.

Excluding the user’s time for initialization, the extended segmentation
algorithm can contour a volume data of 200 ± 0.5 US images in 73 ± 3
seconds. In other words, it takes about 0.37 ± 0.01 seconds to segment each
individual US sagittal image. The algorithm was implemented in Matlab
running on a 1.66GHZ computer with 1 GB RAM.
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Figure 3.10: Comparison of interpolated sagittal segmentation results (red) and transverse segmentation results
(green). Notice that the green line is smooth while the red line has jagged edges.
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Table 3.1: Validation of segmentation results on CIRS phantom volume
data.

MAXD (mm) MAD (mm) MAXD (mm) MAD (mm) MAXD (mm) MAD (mm)
Vol data 1 1.84 0.51 1.29 0.36 0.90 0.34
Vol data 2 2.21 0.65 2.14 0.49 1.62 0.50
Vol data 3 1.49 0.71 1.48 0.57 1.27 0.44
Vol data 4 2.10 0.95 1.95 0.76 1.88 0.70
Vol data 5 2.47 0.51 2.12 0.36 2.68 0.46
Vol data 6 1.87 0.47 1.74 0.47 1.71 0.61
Vol data 7 3.47 0.63 0.99 0.41 0.90 0.30
Vol data 8 1.46 0.39 1.76 0.47 1.56 0.63
Vol data 9 1.55 0.64 0.98 0.39 0.76 0.24

Vol data 10 2.44 0.97 2.44 1.07 2.49 1.26
Vol data 11 2.86 0.88 2.32 0.70 1.84 0.58
Vol data 12 3.89 1.69 3.53 1.45 3.04 1.34
Vol data 13 2.18 0.71 1.59 0.54 2.42 0.55
Vol data 14 5.19 1.64 3.15 1.28 2.20 0.87
Vol data 15 1.50 0.47 1.44 0.52 1.47 0.55
Vol data 16 1.59 0.54 1.65 0.54 1.60 0.50
Vol data 17 2.20 0.91 1.67 0.70 1.19 0.56
Vol data 18 1.26 0.43 1.21 0.44 1.11 0.39
Vol data 19 1.79 0.55 1.51 0.41 0.99 0.37
Vol data 20 3.97 1.69 3.07 1.43 2.45 1.23
Vol data 21 2.50 1.01 2.58 0.84 2.32 0.75
Vol data 22 2.79 1.68 2.56 1.35 2.14 0.96
Vol data 23 2.48 0.94 1.97 0.73 1.74 0.62
Vol data 24 1.27 0.51 1.86 0.52 2.40 0.98
Vol data 25 1.97 0.56 1.17 0.38 1.24 0.36

Average (mm) 2.33 0.83 1.93 0.69 1.76 0.64
Std. Dev (mm) 0.95 0.42 0.67 0.35 0.63 0.30

Overall

Average (mm)
Std. Dev (mm)

0.72
0.79 0.37

Base+20mm Base+25mm (Midgland) Base+30mm

MAXD MAD
2.01

3.5.2 Segmentation on Patient Volume Data

We also tested the extended sagittal segmentation algorithm on sagittal
view-based volume data of 6 patients. The volume data were collected dur-
ing an ongoing elastography study within our group by Mehdi Moradi and
Xu Wen in the BCCA. They comprised of pre-processed B-mode sagittal
images captured at 0.4o probe rotation angle increments. The volume data
were collected under the following conditions: imaging depth of 50 mm,
100o sector angle, and 5.0 MHz center frequency. These settings translate
to horizontal and vertical conversion ratios of 175 µm per pixel. We used
the Ultrasonix US machine (Ultrasonix, Richmond, BC,CA) with the BIP
6.5/R10/2x128-472 TRUS probe (Vermon, Tours, France) [60]. The ethics
approval certificates for the use of these patient data can be found in Ap-
pendix I.
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3.5. Segmentation Results on Phantom and Patient Volume Data

Prior to segmentation, low level image processing was applied to each
pre-processed B-mode sagittal images. The processing consisted of image
enlargement and interpolation. The enlargement was needed to maintain
the uniform horizontal and vertical pixel ratio (square pixels). Figure 3.11
shows the Stradwin visualization of the sagittal view-based segmentation
results of two patient volume data.

We compared the segmentation results with transverse image-based seg-
mentation results obtained using the 3D segmentation algorithm by Mahdavi
et al. [54] - similar to the steps for the phantom data. The only difference
is the method of extracting the transverse images.

To extract the transverse images, first we manually chose the location
of both the base and the apex from the resampled volume data (the trans-
verse view-based US volume data). Once these two have been identified, we
extracted 9 transverse images in between the base and the apex with equal
spacing. Hence, the transversal segmentation algorithm was applied to a set
of 11 transverse images for each patient. However, we chose to exclude the
base and apex segmentation results when calculating the distances between
the transversal segmentation contour points and the interpolated sagittal
segmentation contour points. Due to poor visibility of the base and the
apex of the prostate, we do not include their contours in our comparison.

Table 3.2 and Figure 3.12 show the comparison between the segmentation
results. The overall maximum absolute distance is 3.54 ± 1.17 mm while the
mean average distance is 1.05 ± 0.31 mm. From the transverse images of
patient 2 in Figure 3.12 and Figure 3.11, we can see the short coming of the
extended sagittal segmentation algorithm. When the prostate is significantly
“squished” by the probe, the contours at the bottom left and bottom right
tailings of the prostate are slightly inaccurate. This is due to the probe
“squishing” effect that lowers the rightmost and leftmost prostate edges. If
the coronal view is chosen above these edges, the initial ellipsoid fit will
give a smaller ellipse fit that does not cover the bottom right and bottom
left tailings which affects the final contour. In comparison, the transverse
view usually gives a better view of the probe “squishing” effect hence the
transverse images-based segmentation tends to give better results around
the bottom right or bottom left of the prostate when the “squishing” effect
is significant (as illustrated in Figure 3.12).

Excluding the user initialization time, the extended segmentation algo-
rithm can contour a volume data of 234 ± 46 US images in 112 ± 24 seconds.
In other words, it takes about 0.5 ± 0.02 seconds to segment each individual
US sagittal image. The algorithm was implemented in Matlab running on a
1.66 GHz computer with 1 GB RAM.
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Figure 3.11: Extended sagittal segmentation results on two patient volumes (top row and bottom row) as visualized
using Stradwin. Left images: mid sagittal view, center images: mid transverse view, right images: one of the
coronal views. The red lines on the transverse and coronal view show the location of the mid sagittal plane.
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Table 3.2: Validation of segmentation results on patient volume data.

Location from 

Base

MAXD  

(mm)

MAD 

(mm)

MAXD 

(mm)

MAD 

(mm)

MAXD 

(mm)

MAD 

(mm)

MAXD 

(mm)

MAD 

(mm)

MAXD 

(mm)

MAD 

(mm)

MAXD 

(mm)

MAD 

(mm)
5 mm 3.15 1.32 2.09 1.01 4.89 2.31 3.77 1.37 2.33 1.07 4.42 1.79

10 mm 3.45 1.25 2.28 0.86 3.33 1.23 2.88 1.20 3.14 1.04 2.30 0.87
15 mm 3.11 1.27 2.23 0.69 3.09 1.04 2.51 1.08 3.02 1.07 2.82 0.80
20 mm 3.08 1.16 2.85 0.65 6.12 1.21 3.56 0.94 2.30 1.00 3.21 0.93
25 mm 3.21 1.08 3.23 0.77 6.58 1.47 3.54 0.94 2.43 1.05 3.94 1.17
30 mm 3.12 0.98 2.93 0.96 5.89 1.34 2.23 0.76 2.80 1.12 3.99 1.27
35 mm 3.22 1.02 3.31 1.22 3.72 1.27 2.50 0.65 3.29 1.23 3.66 1.30
40 mm 3.77 1.12 3.69 1.66 3.85 1.38 3.33 0.72 3.92 1.27 3.59 1.19
45 mm 4.06 1.62 5.70 1.94 4.06 1.44 6.11 1.34 4.71 1.34 4.58 1.25

Mean (mm) 3.35 1.20 3.15 1.08 4.62 1.41 3.38 1.00 3.10 1.13 3.61 1.18
Std (mm) 0.34 0.19 1.10 0.45 1.30 0.36 1.16 0.27 0.80 0.12 0.74 0.30
Overall

Average
Std. Dev

Patient Data 5 Patient Data 6Patient Data 1 Patient Data 2 Patient Data 3 Patient Data 4

1.05
1.17
0.31

MAXD  (mm) MAD (mm)
3.54
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Figure 3.12: Comparison of interpolated sagittal segmentation results (red) and transversal segmentation results
(green) on patient data.
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Chapter 4

Surface-based Pre-operative
to Intra-operative
Registration of the Prostate

4.1 Registration Using Ellipsoid Parameters

Our approach is to fit the pre-operative and intra-operative prostate bound-
ary points to two different ellipsoids, using the direct least square ellipsoid
fitting [50], and then use the ellipsoids’ parameters to calculate the regis-
tration matrix. The long-term goal is to use the contours from only a few
pre-operative and intra-operative sagittal images in order to perform the
registration. However, as an initial step we will use finely sampled pre-
operative and intra-operative US volume data. An US volume is a set of
2D sagittal B-mode US images which are acquired while rotating the TRUS
probe around its center axis. The images are captured at 0.5 degree intervals
and each of them are tagged with the probe’s angular position.

Our group has developed an automated US volume data acquisition sys-
tem. However, if such system is not available, the conventional EXII stepper
from the commercial brachytherapy apparatus is equipped with an encoder
that provides probe rotation angle readings. While rotating the TRUS probe
manually, sagittal images can be acquired and tagged with the angle read-
ings from the encoder. Hence, our registration algorithm can also be used
with the conventional brachytherapy system.

From the volume data, one selects multiple pre-operative and intra-
operative sagittal images, and contours the prostate using the sagittal seg-
mentation algorithm from Chapter 3. Using the known probe rotation angle
and US machine’s pixel to mm conversion factor, the resulting contours can
be reconstructed into pre-operative and intra-operative point clouds in the
3D US coordinate frame {US}. The Z-axis of this coordinate frame is the
probe’s rotation axis and is pointing away from the TRUS distal end to-
wards the TRUS proximal end. The Y-axis of the frame is perpendicular to
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4.1. Registration Using Ellipsoid Parameters

the sagittal US crystal array and is pointing away from it in the axial imag-
ing direction. The two axes subtend the sagittal image plane. The frame’s
origin is located along the probe’s rotation axis, one probe radius distance
below the first element of the sagittal US crystal array. See Figure 4.1 for
illustration.

Figure 4.1: Coordinate system convention for the US frame.

As illustrated in Figure 4.2, the goal is to find the rigid body trans-
formation matrix, TReg, which transforms the pre-operative point cloud to
the intra-operative one. By fitting ellipsoids to the two point clouds [50],
we obtain the pre-operative ellipsoid “PreOpEll” and intra-operative ellip-
soid “IntraOpEll” and use them as the equivalents of the point clouds. We
express the registration as follows:

USXIntraOpEll = TReg
USXPreOpEll (4.1)

The superscript US indicates that the points in the point clouds are ex-
pressed in the US coordinate frame. Homogeneous coordinate convention is
used to express the coordinate points (USXPreOpEll and USXIntraOpEll) and
the transformation matrix (TReg).

From the pre-operative and intra-operative ellipsoids we obtain two sets
of parameters: (xcp, ycp, zcp, Axp, Ayp, Azp, rxp, ryp, rzp) and (xci, yci,
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4.1. Registration Using Ellipsoid Parameters

Figure 4.2: Pre-operative to intra-operative prostate registration based on
ellipsoid fitting. The two ellipsoids represent the pre-operative and intra-
operative prostates.
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4.1. Registration Using Ellipsoid Parameters

zci, Axi, Ayi, Azi, rxi, ryi, rzi). These parameters are derived by defining
the pre-operative ellipsoid coordinate frame {PreOpEll} and intra-operative
ellipsoid coordinate frame {IntraOpEll}, as illustrated in Figure 4.3. The
origins of the coordinate frames are the ellipsoids’ centers and the coordinate
axes are the ellipsoids’ principal axes. The parameters (xcp, ycp, zcp) and
(xci, yci, zci) describe the location of the ellipsoids’ centers, in mm, with
respect to the origin of {US}. The parameters (Axp, Ayp, Azp) and (Axi,
Ayi, Azi) describe the orientations, in degrees, of the principal axes of the
ellipsoids’ with respect to the axes of {US}. The orientations are expressed
in Euler roll-pitch-yaw convention with Axp and Axi as the yaw angles, Ayp

and Ayi as the pitch angles, and Azp and Azi as the roll angles [63]. The
parameters (rxp, ryp, rzp) and (rxi, ryi, rzi) are the lengths of the pre-
operative and intra-operative ellipsoids principal radii in mm.

Then, we define two homogeneous transformation matrices, USTPreOpEll

and USTIntraOpEll. These matrices describe {PreOpEll} and {IntraOpEll}
relative to {US} following equations 4.2 and 4.3.

USTPreOpEll =




cypczp sxpsypczp − cxpszp cxpsypczp + sxpszp xcp

cypszp sxpsypszp + cxpczp cxpsypszp − sxpczp ycp

−syp sxpcyp cxpcyp zcp

0 0 0 1




(4.2)

USTIntraOpEll =




cyiczi sxisyiczi − cxiszi cxisyiczi + sxiszi xci

cyiszi sxisyiszi + cxiczi cxisyiszi − sxiczi yci

−syi sxicyi cxicyi zci

0 0 0 1




(4.3)

Where sxp is sin(Axp), cxp is cos(Axp), syp is sin(Ayp), and so on.
The first three columns of USTPreOpEll and USTIntraOpEll express the

direction of the axes of the pre-operative and intra-operative ellipsoid coor-
dinate frames relative to the US coordinate frame’s. Their values are calcu-
lated using the ellipsoids’ orientations - (Axp, Ayp, Azp) and (Axi, Ayi, Azi) -
using the Euler roll-pitch-yaw rotation matrix [63]. The last column of these
matrices express the location of the ellipsoids origins’ relative to the origin
of the US coordinate frame.

Using USTPreOpEll and USTIntraOpEll, equation 4.1 can be rewritten as
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4.1. Registration Using Ellipsoid Parameters

Figure 4.3: Ellipsoid parameters definition.
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4.1. Registration Using Ellipsoid Parameters

follows:

USTIntraOpEll
IntraOpEllXIntraOpEll = TReg

USTPreOpEll
PreOpEllXPreOpEll

(4.4)
We model the prostate motion as a rigid motion: the registration matrix
is a rigid body transformation matrix. Ideally, the pre-operative and intra-
operative ellipsoids represent the same prostate (only rotated and trans-
lated) and the point cloud distribution with respect to its own ellipsoid
coordinate frame stays constant: PreOpEllXPreOpEll = IntraOpEllXIntraOpEll.
Hence, equation 4.4 can be simplified into:

USTintraOpEll = TReg
USTPreOpEll (4.5)

And the registration matrix TReg can be calculated as follows:

TReg = USTIntraOpEll
PreOpEllTUS (4.6)

The prostate, however, suffers from shape deformation and the segmenta-
tion algorithm will not always produce the same contour points for a given
prostate. The two conditions affect our assumption and translate to errors
in ellipsoid fitting. Consequently, they affect the accuracy of TReg.

Note, we can also obtain TReg through the typical composition of homo-
geneous coordinate frame transformations. Equation 4.7 shows the composi-
tion of homogeneous transformations between the US coordinate frame, the
pre-operative ellipsoid coordinate frame, and the intra-operative ellipsoid
coordinate frame.

USTIntraOpEll = USTPreOpEll
PreOpEllTIntraOpEll (4.7)

PreOpEllTIntraOpEll = PreOpEllTUS
USTIntraOpEll (4.8)

The transformation by PreOpEllTIntraOpEll in equation 4.7 rotates and trans-
lates the pre-operative ellipsoid frame to the intra-operative ellipsoid frame.
As well, PreOpEllTIntraOpEll rotates and translates the pre-operative point
cloud to the intra-operative one. However, PreOpEllTIntraOpEll is expressed
relative to the pre-operative ellipsoid coordinate frame while the pre-operative
and intra-operative contour points are expressed in the US coordinate frame.
To find the registration matrix, TReg, we need to express PreOpEllTIntraOpEll

in the US frame, i.e. we need to find the similar matrix of PreOpEllTIntraOpEll

in the US frame. TReg can be calculated by applying a similarity transfor-
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4.1. Registration Using Ellipsoid Parameters

mation as follows:

TReg = USTPreOpEll
PreOpEllTIntraOpEll

PreOpEllTUS (4.9)
TReg = USTPreOpEll

PreOpEllTUS
USTIntraOpEll

PreOpEllTUS

(4.10)
TReg = USTIntraOpEll

PreOpEllTUS (4.11)

Equation 4.11 gives the same final result as equation 4.6.
As the ellipsoid represent the patient’s prostate, the transformation ma-

trix TReg registers the pre-operative prostate to the intra-operative one.
The oncologist can directly use the registration parameters to manipulate
the US frame by actuating the TRUS probe through the EXII Stepper and
MicroTouch R©© LP mount since the registration is expressed in the US frame.

To give a physical meaning to the transformation, we can express the
rigid motion in terms of translation (tx, ty, tz) and Euler roll-pitch-yaw angles
(Ax, Ay, Az), using the following formulae:




tx

ty

tz




=




TReg 14

TReg 24

TReg 34




(4.12)




Rx

Ry

Rz




=




arctan2
(

TReg 32

TReg 33

)

arcsin (− TReg 31)

arctan2
(

TReg 21

TReg 11
)
)




(4.13)

Where arctan2 is the four quadrant inverse tangent.
In summary, our registration approach is straight forward. Ellipsoids are

fit to pre-operative and intra-operative prostate contours, obtained using our
sagittal segmentation algorithm. Using their parameters, the registration
matrix can be calculated through matrix inverse and multiplication. For
homogeneous matrices, inverse operator just involves matrix transpose and
multiplication operators.
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4.2. Registration Experiment: Simulation

4.2 Registration Experiment: Simulation

Before we test the registration algorithm on the CIRS phantom, we wish to
know the feasibility and accuracy of the ellipsoid fitting algorithm. If we are
given a set of ellipse sample points (“ellipse slices”) from an ellipsoid with
known parameters, can we accurately retrieve those parameters and with a
relatively small number of ellipse slices compared to the volume size. Then,
if transformations (rotations and translations) are applied to these ellipse
slices, will we be able to obtain the transformation values accurately. Note
that the “ellipsoid” represents the prostate volume while the “ellipse” slices
represent the prostate contours on each sagittal images which are obtained
at different probe rotation angles.

We simulated the ellipsoid fitting based registration algorithm with the
following steps:

1. We specified the pre-operative ellipsoid’s parameters (xcp, ycp, zcp,
Axp, Ayp, Azp, rxp, ryp, rzp).

2. We calculated USTPreOpEll following equation 4.2.

3. We generated the desired rigid body translation (tx, ty, tz) and rotation
(Rx, Ry, Rz) in mms and degrees respectively.

4. We obtained the transformation operator TReg by substituting (xcp,
ycp, zcp, Axp, Ayp, Azp) in equation 4.2 with (tx, ty, tz, Rx, Ry, Rz).

5. We calculated USTIntraOpEll following equation 4.5.

6. We calculated the intra-operative ellipsoid’s center location (xci, yci,
zci) and principal axes orientation (Axi,Ayi, Azi) by substituting
TReg, in equation 4.12 and 4.13, with USTIntraOpEll.

7. We generated the pre-operative ellipsoid sample points USXPreOpEll at
specific rotation angles using the method described in Appendix B.3.

8. We applied the transformation operator TReg to each of the pre-operative
ellipsoid sample points to obtain the intra-operative ellipsoid sample
points USXIntraOpEll, following equation 4.1 .

9. We fitted USXIntraOpEll into an ellipsoid and labeled its parameters
as the “fitted intra-operative ellipsoid” parameters (xifit, yifit, zifit,
Axifit, Ayifit, Azifit, rxifit, ryifit, rzifit).
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4.2. Registration Experiment: Simulation

10. We calculated USTIntraOpEllF it using equation 4.3 and the fitted intra-
operative ellipsoid parameters.

11. We calculated the “fitted registration matrix”, TRegF it by substituting
USTIntraOpEll with USTIntraOpEllF it in equation 4.6.

12. We extracted the fitted rigid body translation (txfit, tyfit, tzfit) and
rotation (Rxfit, Ryfit, Rzfit) by substituting TReg, in equation 4.12 and
4.13, with TRegF it.

13. We calculated the ellipsoid fitting errors and registration errors by
comparing the intra-operative ellipsoid parameters with the fitted ones
and the desired rigid motion (translation and rotation) with the fitted
one.

As shown in Figure 4.4, the simulation was performed with 4 different
cases:

1. Case 1: using 2 ellipse slices (at probe rotation angles 95o and 85o),

2. Case 2: using 3 ellipse slices (at probe rotation angles 95o,90o and
850),

3. Case 3: using 5 ellipse slices (probe rotation 100o, 95o, 90o, 85o, and
80o),

4. Case 4: using all ellipse slices, typically 134 slices, with 0.50 rotation
angle interval between slices.

At each cases, we simulated 10 random translations on each axes (X,Y ,
and Z), 10 random rotations on each axes (yaw, pitch, and roll), and 20
instances of random transformations (combinations of translations and ro-
tations), called “combination”. The translations and rotation numbers were
randomly selected between [-10, 10] mm and [-10, 10] degrees, respectively.
We assumed these values represent realistic prostate motion values [43, 45].

Table 4.1 shows the ellipsoid fitting errors in our simulation. We report
the mean squared errors of the ellipsoid’s center (in mm), orientation (in
degrees), and radii length (in mm). The errors are calculated as follows:
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4.2. Registration Experiment: Simulation

Ecenter =
1
N

N∑

i=1

∣∣∣∣∣∣

∣∣∣∣∣∣

xi − xifit

yi − yifit

zi − zifit

∣∣∣∣∣∣

∣∣∣∣∣∣
(4.14)

Eorientation =
1
N

N∑

i=1

∣∣∣∣∣∣

∣∣∣∣∣∣

Axi −Axifit

Ayi −Ayifit

Azi −Azifit

∣∣∣∣∣∣

∣∣∣∣∣∣
(4.15)

Eradii =
1
N

N∑

i=1

∣∣∣∣∣∣

∣∣∣∣∣∣

rxi − rxifit

ryi − ryifit

rzi − rzifit

∣∣∣∣∣∣

∣∣∣∣∣∣
(4.16)

Table 4.2 shows the registration errors in our simulation. We report the
mean squared errors of the translation (in mm), orientation (in degrees).
The errors are calculated as follows:

Etrans =
1
N

N∑

i=1

∣∣∣∣∣∣

∣∣∣∣∣∣

tx − txfit

ty − tyfit

tz − tzfit

∣∣∣∣∣∣

∣∣∣∣∣∣
(4.17)

Erot =
1
N

N∑

i=1

∣∣∣∣∣∣

∣∣∣∣∣∣

Rx −Rxfit

Ry −Ryfit

Rz −Rzfit

∣∣∣∣∣∣

∣∣∣∣∣∣
(4.18)
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4.2. Registration Experiment: Simulation

Figure 4.4: Four different cases of simulated pre-operative (blue) and intra-
operative (red) ellipsoids: 2 ellipse slices (top left), 3 ellipse slices (top right),
5 ellipse slices (bottom left), and all possible ellipse slices (bottom right)
before registration.
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Table 4.1: Ellipsoid fitting error under various simulation cases.

X translation Y translation Z translation Ax (yaw) Ay (pitch) Az (roll) Combination

Cases MSE Fitting  10 runs  10 runs  10 runs  10 runs  10 runs  10 runs 20 runs

2  Slices Ecenter (mm) 8.22E-01 6.92E-01 7.87E-01 7.88E-01 1.21E+00 1.02E+00 2.06E+00

Eorientation (
o) 6.67E+00 5.19E+00 6.19E+00 6.25E+00 8.42E+00 4.99E+00 8.67E+00

Eradii (mm) 8.19E+00 6.82E+00 7.81E+00 8.06E+00 9.90E+00 1.03E+01 1.30E+01

2 non 
ellipsoid

3 non 
ellipsoid

9 non 
ellipsoid

9 non 
ellipsoid

3  Slices Ecenter (mm) 2.42E-09 6.08E-10 3.38E-10 4.73E-10 1.39E-10 1.75E-10 2.05E-09

Eorientation (
o) 3.39E-08 1.26E-08 1.55E-08 2.83E-08 1.80E-09 4.94E-09 5.05E-08

Eradii (mm) 2.03E-08 1.84E-09 9.52E-10 1.11E-09 1.26E-09 1.19E-09 1.46E-08

5 Slices Ecenter (mm) 1.01E-11 3.87E-12 1.35E-11 6.78E-12 3.54E-11 1.96E-10 2.71E-11

Eorientation (
o) 1.22E-10 3.91E-11 1.44E-10 8.05E-11 1.21E-09 3.92E-10 3.01E-10

Eradii (mm) 8.36E-11 3.22E-11 1.11E-10 5.23E-11 1.17E-10 5.01E-10 2.08E-10

All Slices Ecenter (mm) 2.99E-11 7.37E-12 6.59E-12 1.21E-11 8.26E-13 2.15E-12 1.94E-12

Eorientation (
o) 8.08E-10 1.94E-11 5.57E-11 4.18E-11 3.47E-11 1.93E-11 5.39E-11

Eradii (mm) 2.66E-10 3.08E-11 2.87E-11 4.97E-11 5.96E-12 9.96E-12 1.45E-11

Ellipsoid Fitting Error

Motion Type
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Table 4.2: Registration errors under various simulation cases.
X Y Z Ax (yaw) Ay (pitch) Az (roll) Combination

Cases
MSE 

Registration
 10 runs  10 runs  10 runs  10 runs  10 runs  10 runs 20 runs

2 Ellipse Slices Etrans (mm) 1.32E+00 9.41E-01 1.01E+00 2.01E+00 2.22E+00 1.36E-01 5.32E+00

ERot (
o) 1.89E+00 1.31E+00 1.66E+00 2.48E+00 4.15E+00 3.92E-01 6.27E+00

2 non 
ellipsoid

3 non 
ellipsoid

9 non 
ellipsoid

9 non 
ellipsoid

3  Slices Etrans (mm) 1.77E-08 6.39E-09 3.93E-09 8.47E-10 1.00E-08 9.12E-09 2.06E-08

ERot (
o) 4.88E-08 1.70E-08 1.13E-08 2.33E-09 2.78E-08 2.54E-08 5.71E-08

5 Slices Etrans (mm) 3.92E-11 6.80E-11 2.75E-11 8.17E-11 5.14E-10 3.96E-10 1.01E-10

ERot (
o) 1.06E-10 2.05E-10 7.57E-11 2.67E-10 1.29E-09 4.90E-10 3.39E-10

All Slices Etrans (mm) 6.67E-10 1.88E-11 4.14E-11 2.82E-11 4.86E-11 3.50E-11 5.76E-11

ERot (
o) 8.29E-10 1.97E-11 6.03E-11 3.13E-11 5.14E-11 4.06E-11 6.61E-11

Motion Type
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The simulation results show that a minimum of three ellipse slices are
needed to recover the ellipsoid parameters reliably. As the number of ellipse
slices increase, the ellipsoid fitting error decreases. When only two ellipse
slices were used, the ellipsoid fitting algorithm may fail to produce an ellip-
soid. In such occurrences, the ellipse slices make the ellipsoid look thin-long
or compressed. The ellipsoid fitting algorithm can’t fit these types of ellip-
soids. In the simulation, such problems did not occur when three or more
ellipse slices were used. Furthermore, we assume that the prostate will not
assume thin-long or compressed shapes.

As illustrated in Figure 4.4, our ellipse slices are partial contours that
are not closed. We purposely simulated this condition to mimic our CIRS
phantom images, where the prostate phantom is larger than the sagittal
view of the TRUS probe. Thus, in the images, the prostate seem to be “cut
off”. However, our simulation shows that we still can accurately recover the
ellipsoid parameters from partial data. The small errors in Table 4.2 show
that if the ellipsoid parameters are accurately retrieved, the registration
algorithm gives good results.

4.3 Registration Experiment: CIRS Phantom

4.3.1 Experiment Setup

We next tested the registration algorithm on the CIRS phantom. The phan-
tom was mounted on a platform that provides three axes of translation, plus
yaw rotation and pitch rotation. We could change the position and pose of
the phantom by manipulating the platform. This platform was constructed
using three precision translation stages (Newport Corp, CA, USA) and two
precision rotation stages (Parker Positioning System, CA, US). Each of the
translation stage has 2 µm resolution and each of the rotation stage has 1o

resolution. Figure 4.5 shows the experiment setup.
Measurements from the 3020 Optotrak (NDI, ON, Canada) system was

used as the gold standard for registration because the platform was not cal-
ibrated to the US coordinate frame. Four Optotrak markers were attached
to the phantom and six markers were attached to the TRUS probe. These
markers established coordinate frames for the phantom and the probe rela-
tive to the Optotrak’s camera coordinate frame. From these two, the Op-
totrak can directly report the position and orientation of the phantom in
the probe coordinate frame. A minimum of three markers must be visible
for the Optotrak to establish the position and orientation of each of these
coordinate frames. Since the TRUS probe’s rotation will occlude some of
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4.3. Registration Experiment: CIRS Phantom

Figure 4.5: Top: the CIRS phantom mounted on our custom made plat-
form. Optotrak markers were attached to the phantom and probe. Bottom:
Optotrak camera with its data acquisition unit.
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4.3. Registration Experiment: CIRS Phantom

its Optotrak markers from the camera, a larger number of markers were
used for the probe. The Optotrak reported the probe and phantom frames
in terms of three axes of translation and yaw-pitch-roll angles - similar to
equation 4.12 and 4.13.

Figure 4.6 illustrates the coordinate frames involved in the experimen-
tal setup. The phantom’s position and pose are changed using the 5 DOF
platform. The labels “pre-operative” and “intra-operative” are used to dif-
ferentiate the original pose and position of the phantom with the newer
ones. Equations 4.19 - 4.21 express composition of homogeneous coordinate
transformations in the experimental setup.

USTPreOpEll = USTProbe
ProbeTPreOpPtm

PreOpPtmTPreOpEll

(4.19)
USTIntraOpEll = USTProbe

ProbeTIntraOpPtm
IntraOpPtmTIntraOpEll

(4.20)
IntraOpPtmTIntraOpEll = PreOpPtmTPreOpEll = PtmTEll

(4.21)
PtmTEll expresses the pose and position of the of the synthetic prostate

(inside the phantom) with respect to the phantom’s coordinate frame which
is established by the four Optotrak markers. The value of this matrix is
unknown but is assumed to be constant as the synthetic prostate is rigidly
positioned within the phantom.

Both ProbeTPreOpPtm and ProbeTIntraOpPtm were directly measured using
the Optotrak. The transformation mapping the US coordinate frame to the
probe coordinate frame, ProbeTUS , was found by calibrating the probe with
the Optotrak (briefly explained in the next sub section and in Appendix D).

Similar to equation 4.1, we calculate the registration matrix TReg:

TReg = USTIntraOpEll
PreOpEllTUS

TReg = USTProbe
ProbeTIntraOpPtm

PtmTEll
EllTPtm

PreOpPtmTProbe
ProbeTUS

TReg = USTProbe
ProbeTIntraOpPtm

PreOpPtmTProbe
ProbeTUS

(4.22)

TReg in equation 4.22 can be directly compared with the one obtained
using the ellipsoid fitting based registration algorithm (equation 4.6) because
both of them are expressed in the same reference frame (the US coordinate
frame).

The experimental data collection was carried out as follows:
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4.3. Registration Experiment: CIRS Phantom

Figure 4.6: The coordinate frames used in the experiment and their respec-
tive transformations.
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4.3. Registration Experiment: CIRS Phantom

1. We started with a particular pose and position for the phantom and
recorded the phantom’s and probe’s Optotrak readings.

2. We captured the US volume datum at its starting position and pose.

3. We adjusted the stage dials on the platform to change the phantom’s
position and pose (while still being able to acquire US images of the
prostate).

4. We recorded the new Optotrak readings of the phantom and the probe.

5. We captured a new US volume datum at the new position and pose.

6. We repeated step 3 to 5 for the next volume datum until 25 volume
data for 25 phantom position and poses are collected.

The 25 poses were divided into seven categories. From pose 1, the starting
pose, to pose 3, no motion was applied to the phantom. In poses 4 - 7, the
phantom was translated 5 mm back and forth in the X-axis direction twice.
In poses 8 - 11 and poses 12 - 15 the phantom was translated in similar
manner but in Y-axis and Z-axis direction. In poses 16 - 19 back and forth
5o yaw angulation was applied to the phantom. Similarly, in poses 20 - 23
pitch angulation was applied to the phantom. In the remaining two poses,
rotation and translation combinations were applied to the phantom.

From each volume, we contoured the prostate phantom with two ap-
proaches. The first approach was to individually segment ten to eleven sagit-
tal images using the sagittal segmentation algorithm (explained in Section
3.3). The images were selected to be 5o apart and were symmetric around
the 90o probe rotation angle, e.g. at rotation angles 90o, 85o, 95o, 100o, 80o

and so on. The second approach was to segment the whole volume using
our extended sagittal segmentation algorithm (explained in Section 3.4). As
mentioned before, our ultimate long-term goal is to be able to do registration
with ellipsoid fitting by just using several pre-operative and intra-operative
images (similar to the first approach). However, if the goal is not feasible, we
can use the whole volume to generate a complete set of contours for registra-
tion. Thus, in this experiment we compared the two approaches. Hereafter
the first approach is called the sparse volume registration while the
second one is called the full volume registration.

Using the ellipsoid fitting-based registration, the contours were used to
compute the transformation between adjacent poses (pose 1 and 2, pose 2
and 3, and so on). The results were compared with transformations calcu-
lated using Optotrak readings of the phantom. The transformation param-

78



4.3. Registration Experiment: CIRS Phantom

eters were expressed in terms of three axes translations (tx,ty,tz) and three
axes rotations (Rx,Ry,Rz).

4.3.2 TRUS Probe Calibration

We opted to use the “single wall ultrasound calibration technique” [64] due
to its convenience. The technique only required the use of a water bath with
a flat floor and it is already incorporated within Stradwin. We performed the
calibration off-line as Stradwin does not support real time probe calibration
using the 3020 Optotrak. Optotrak data and US images had to be collected
independently and then combined into the Stradwin’s standard file format.
The file was then uploaded into Stradwin and the calibration steps followed
its built in functions. The step by step calibration process is described in
Appendix D.

4.3.3 Registration Experiment Results

Tables 4.3 and Table 4.4 summarize the errors of the ellipsoid fitting reg-
istration based on the two approaches: the sparse volume registration
and the full volume registration. In the tables, we report the average,
standard deviation, and maximum of the registration errors for the five dif-
ferent categories of phantom motion (no motion, X-axis translation, Y-axis
translation, and so on). We also report the bounding box registration error
“bounding box error”) and the Hausdorff distance between the registered
surfaces.

The bounding box errors were calculated by defining two smallest rectan-
gular boxes that cover the intra-operative and pre-operative contour points.
The boxes’ vertices are the permutations of the X-axis, Y-axis, and Z-axis
extrema of the intra-operative and pre-operative contour points. The later
is registered using the registration matrix obtained from the ellipsoid fitting
based registration algorithm. Then, the bounding box error is calculated by
taking the root mean square distance between corresponding vertices.

The complete registration experiment results can be found in Appendix
E.
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Table 4.3: Summary of registration errors: the sparse volume registration.
Motion Type

Transformation Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max
Tx (mm) 0.00 0.00 0.01 3.02 0.05 3.06 0.14 0.00 0.14 0.51 0.00 0.51
Ty (mm) 0.01 0.01 0.01 0.37 0.03 0.41 2.92 0.04 2.96 0.12 0.02 0.15
Tz (mm) 0.00 0.00 0.00 0.26 0.01 0.26 0.03 0.01 0.04 5.01 0.00 5.01

Rx (
o) 0.00 0.00 0.00 0.01 0.00 0.02 0.36 0.00 0.36 0.02 0.01 0.03

Ry (
o) 0.00 0.00 0.00 0.25 0.00 0.25 0.06 0.01 0.07 0.03 0.00 0.04

Rz (
o) 0.01 0.01 0.02 0.20 0.01 0.20 0.18 0.01 0.19 0.02 0.01 0.03

Tx (mm) 1.38 0.72 2.08 8.56 2.41 11.74 4.60 3.22 7.36 11.67 6.85 17.43
Ty (mm) 0.36 0.27 0.55 0.14 0.16 0.35 0.68 0.48 1.25 1.10 0.52 1.64
Tz (mm) 0.65 0.44 1.07 1.48 0.83 2.41 1.20 0.84 2.04 4.99 2.36 7.46

Rx (
o) 0.68 0.48 1.03 0.49 0.30 0.73 0.99 0.96 2.24 1.59 1.34 3.31

Ry (
o) 3.37 2.04 5.07 16.63 3.16 20.91 7.83 4.38 11.83 25.23 11.77 35.44

Rz (
o) 0.81 0.67 1.24 0.82 0.80 1.90 1.07 0.85 2.12 2.09 1.70 4.13

1.00 0.36 1.32 3.16 0.85 4.41 2.30 0.11 2.37 4.65 2.25 7.52

4.32 0.28 4.57 12.49 1.11 14.01 9.71 1.61 11.06 15.38 3.78 18.16

Absolute 

motion 

value from 

optotrak
Error 

|Ellipsoid 

Fit Reg - 

Optotrak|
Bounding Box Error (mm)

Hausdorff Distance (mm)

Title
No Motion X axis translation Y axis translation Z axis translation 
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Table 4.3 continued from previous page
Motion Type

Transformation Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max
Tx (mm) 0.19 0.01 0.22 0.20 0.11 0.31 0.70 0.21 0.85
Ty (mm) 0.33 0.10 0.43 0.23 0.03 0.25 0.46 0.26 0.65
Tz (mm) 1.64 0.01 1.65 4.75 0.05 4.79 6.72 0.05 6.76

Rx (
o) 4.95 0.03 4.99 0.35 0.01 0.36 3.38 0.01 3.39

Ry (
o) 0.30 0.02 0.32 4.72 0.09 4.79 2.85 0.03 2.87

Rz (
o) 0.38 0.01 0.39 0.21 0.02 0.22 0.87 0.09 0.93

Tx (mm) 3.76 2.53 6.92 9.28 5.70 13.12 6.51 7.33 11.69
Ty (mm) 0.50 0.23 0.81 1.64 0.63 2.19 1.08 0.79 1.64
Tz (mm) 3.20 0.89 4.00 2.46 3.24 7.19 1.52 1.04 2.26

Rx (
o) 1.40 0.58 1.76 2.42 2.22 5.66 1.93 0.46 2.25

Ry (
o) 8.74 4.99 12.30 11.92 7.43 19.50 7.25 5.16 10.90

Rz (
o) 0.99 0.61 1.82 3.09 2.11 5.26 6.03 2.28 7.64

4.22 0.12 4.31 3.69 2.20 6.42 4.26 2.24 5.84

11.55 0.49 12.19 14.69 2.19 16.00 8.51 2.07 9.97

Bounding Box Error (mm)

Hausdorff Distance (mm)

Absolute 

motion 

value from 

optotrak
Error 

|Ellipsoid 

Fit Reg - 

Optotrak|

Y axis rotation (pitch) Combination
Title

X axis rotation (yaw)
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Table 4.4: Summary of registration errors: the full volume registration.
Motion Type

Transformation Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max
Tx (mm) 0.00 0.00 0.01 3.02 0.05 3.06 0.14 0.00 0.14 0.51 0.00 0.51
Ty (mm) 0.01 0.01 0.01 0.37 0.03 0.41 2.92 0.04 2.96 0.12 0.02 0.15
Tz (mm) 0.00 0.00 0.00 0.26 0.01 0.26 0.03 0.01 0.04 5.01 0.00 5.01

Rx (
o) 0.00 0.00 0.00 0.01 0.00 0.02 0.36 0.00 0.36 0.02 0.01 0.03

Ry (
o) 0.00 0.00 0.00 0.25 0.00 0.25 0.06 0.01 0.07 0.03 0.00 0.04

Rz (
o) 0.01 0.01 0.02 0.20 0.01 0.20 0.18 0.01 0.19 0.02 0.01 0.03

Tx (mm) 1.72 1.29 2.61 2.33 0.44 2.95 0.94 0.44 1.46 0.64 0.93 2.03
Ty (mm) 0.31 0.15 0.48 1.05 0.52 1.61 0.68 0.48 1.11 0.92 0.22 1.25
Tz (mm) 0.38 0.25 0.55 2.08 0.40 2.65 1.48 1.27 2.86 2.00 1.14 3.46

Rx (
o) 0.41 0.21 0.64 2.02 0.65 2.82 1.18 1.42 2.91 1.88 0.67 2.78

Ry (
o) 3.19 1.79 4.79 4.33 0.96 5.51 2.08 2.15 4.95 2.87 2.04 5.45

Rz (
o) 0.84 0.36 1.26 0.95 0.25 1.30 0.72 0.38 1.23 1.35 0.71 2.33

0.76 0.23 1.01 1.03 0.08 1.12 1.05 0.15 1.25 3.23 0.92 3.87

2.76 0.21 2.97 3.97 0.25 4.22 3.41 0.35 3.70 7.34 0.45 7.93

Error 

|Ellipsoid 

Fit Reg - 

Optotrak|

Absolute 

motion 

value from 

optotrak

Title
Y axis translation Z axis translation No Motion X axis translation

Bounding Box Error (mm)

Hausdorff Distance (mm)
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Table 4.4 continued from previous page
Motion Type

Transformation Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max
Tx (mm) 0.19 0.01 0.22 0.20 0.11 0.31 0.70 0.21 0.85
Ty (mm) 0.33 0.10 0.43 0.23 0.03 0.25 0.46 0.26 0.65
Tz (mm) 1.64 0.01 1.65 4.75 0.05 4.79 6.72 0.05 6.76

Rx (
o) 4.95 0.03 4.99 0.35 0.01 0.36 3.38 0.01 3.39

Ry (
o) 0.30 0.02 0.32 4.72 0.09 4.79 2.85 0.03 2.87

Rz (
o) 0.38 0.01 0.39 0.21 0.02 0.22 0.87 0.09 0.93

Tx (mm) 0.62 0.44 0.99 1.70 0.46 2.21 3.73 0.25 3.91
Ty (mm) 0.71 0.44 1.17 0.60 0.26 0.93 0.74 0.70 1.24
Tz (mm) 4.34 0.79 5.02 1.37 0.58 2.08 0.60 0.62 1.04

Rx (
o) 2.11 0.69 2.72 1.51 0.76 2.39 0.71 0.32 0.93

Ry (
o) 1.88 1.99 4.58 1.16 0.26 1.44 1.79 0.39 2.06

Rz (
o) 1.01 0.71 1.67 1.54 0.59 2.34 3.05 0.25 3.23

4.73 0.34 5.01 3.09 0.95 4.15 2.61 1.20 3.46

12.93 0.18 13.12 8.34 0.94 9.37 7.36 0.06 7.40

Bounding Box Error (mm)

Hausdorff Distance (mm)

Absolute 

motion 

value from 

optotrak
Error 

|Ellipsoid 

Fit Reg - 

Optotrak|

Combination
Title

X axis rotation (yaw) Y axis rotation (pitch)
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4.4. Discussion

The results in Table 4.3 and 4.4 show that the sparse volume regis-
tration results in significant translational, angle, and bounding box errors.
Noticeably, there is a 17.43 mm error in X-axis translation, 35.44o pitch
(Y-axis) angle error, and 7.52 mm bounding box error when the phantom
was only moved 5 mm in Z-axis direction. These error values are the largest
amongst the other motion categories. The full volume registration pro-
duces smaller maximum error values: 5.02 mm Z-axis translation error, 5.51o

pitch (Y-axis) angle error, and 5.01 mm bounding box error.
We compared the bounding box error and Hausdorff distance between

the sparse volume registration and the full volume registration using
the paired t-test. The hypothesis is that the sparse volume registration
has significantly larger bounding box error and significantly larger Hausdorff
distance. The paired t-test on the bounding box error concludes that the
sparse volume registration has a larger bounding box error with P-Value
of 0.0015 (less than 0.05) and mean difference range of [0.3995 1.4838] within
the 95% confidence interval. The paired t-test on the Hausdorff distance
concludes that the sparse volume registration has a larger Hausdorff
distance with P-Value of 5.2586 .10−6 (less than 0.05) and mean difference
range of [3.0553 6.4093] within the 95% confidence interval. Hence, the
sparse volume registration does not seem to be a feasible approach for
ellipsoid fitting based registration. For registration purposes, we need to use
the whole US volume.

It is possible that the large difference in the number of sample points is
the reason behind the difference in errors. On average, the sparse volume
registration fits about 1100 contour sample points into an ellipsoid; com-
pared to 13800 points fit by the full volume registration (see Appendix
F). Using more sample points seems to produce a better ellipsoid fit on real
US contour data as shown by the root mean square algebraic distance of the
ellipsoid fit of the two approaches. The ellipsoid fit for the sparse volume
registration has a root mean square algebraic distance of 0.011 ± 0.001
mm. While, the fit for the full volume registration has a root mean
square algebraic distance of 0.008 ± 0.0005 mm.

4.4 Discussion

4.4.1 Ellipsoid Orientation Fit Differences Cause
Translation and Distance Registration Errors

As shown in Table 4.4, we have as much as (2.61, 0.48, 0.55) mm maximum
X-Y-Z axes translational errors for a (0.64o, 4.79o, 1.26o) maximum angular
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4.4. Discussion

errors even when no motion was applied to the phantom (pose 1 to pose 3).
These translation errors correspond to about 2.7 mm absolute distance error.
On closer inspection of the ellipsoid fit results (Table F.2), we noticed that
the ellipsoid centers in pose 1 to pose 3 are almost constant. The maximum
absolute difference between the three ellipsoid centers are (0.37, 0,12, 0.07)
mm in the X-Y-Z axes respectively - corresponding to a 0.4 mm absolute
distance difference. However, the maximum orientation angle differences
between the three ellipsoids are (0.60, 4.80, 1.3) degrees. We believe that
the 2.7 mm absolute distance error in pose 1 to pose 3 are due to differences
in the fit of the ellipsoids’ orientations. This is more apparent when equation
4.6 is expressed as:

TReg = USTIntraOpEll
PreOpEllTUS (4.23)

TReg =
[

RReg tReg

0 1

]
(4.24)

Where

RReg = USRIntraOpEll
PreOpEllRUS (4.25)

tReg = UStIntraOpEll −US RIntraOpEll
PreOpEllRUS

UStPreOpEll

(4.26)

And

UStIntraOpEll =




xci

yci

zci


 UStPreOpEll =




xcp

ycp

zcp


 (4.27)

The rotation matrices USRIntraOpEll and USRPreOpEll are calculated using
the intra-operative and pre-operative ellipsoids’ orientations respectively.

Equation 4.26 shows that the translation part of the registration matrix
is affected by both the orientation of the ellipsoids and the location of the
ellipsoids’ centers. Although the ellipsoid centers are close together, the
translational errors will be large if the orientation angles differences are
large. The further away the ellipsoid’s center from the coordinate center of
the US frame, the larger the translational errors will be due to lever arm
effects.

Hence, the key to getting an accurate registration results using ellipsoid
fitting is to make the ellipsoid orientation parameter as accurate as possible.
This is a very difficult task since the prostate is deformable and, being a
soft tissue, it does not have any distinct landmarks. Moreover, the ellipsoid
fit depends on the contours from the segmentation algorithm which includes
some errors.
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4.4. Discussion

4.4.2 Sensitivity of Final Ellipsoid Parameters to
Initialization Points

Large differences (up to 4.8o) in the ellipsoid orientation parameters in vol-
ume 1-3 seem to be caused by sensitivity to initialization points. Volumes 1
to 3 are collected with the phantom being still. Hence, the US images in the
volumes should be similar. To confirm, we cross correlated corresponding
images between the volumes. Images correspond to each other when they
are taken at the same probe rotation angle. The cross correlation coefficient
is 0.9967 ± 0.0027. Thus, the only difference between the three volumes’
contours are their choices for initialization points. This affects the results
of the segmentation and hence the ellipsoid fit.

We performed a simple sensitivity test to confirm this hypothesis. We
segmented volume 1 with the extended segmentation algorithm by varying
the location of the first (and only the first) initialization point. This point is
the one located at the top of the prostate in its mid sagittal view. From its
original location, we independently moved the point in the X,Y,and Z axes
directions and observed the resulting ellipsoid parameters. At most, the
point is moved 1.56 mm (10 pixels) away from its original location. Figures
4.7 to 4.9 show the observation results.
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Figure 4.7: Effects of changing one initialization point in X-axis direction to ellipsoid fit parameters. The
plots show linear fits of the observation along with its R2 (the square of the correlation coefficient) and the line
equation. The middle graph at the bottom row shows that the roll angle is linearly dependent to X-axis location
of the initialization point with a slope of -6.28 o/mm.87
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Figure 4.8: Effects of changing one initialization point in Y-axis direction to ellipsoid fit parameters.The plots
show linear fits of the observation along with its R2 (the square of the correlation coefficient) and the line equation.
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Figure 4.9: Effects of changing one initialization point in Z-axis direction to ellipsoid fit parameters. The plots
show linear fits of the observation along with its R2 (the square of the correlation coefficient) and the line equation.
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4.4. Discussion

The graphs show several strong linear dependencies (R2 >0.8) between
several ellipsoid parameters and the initialization point location. For exam-
ple, the slope of the linear fit between the ellipsoid roll angle (Z-axis angle)
and the initialization point’s X-axis location is -6.28 (Figure 4.7). This
means that a one mm change in the initialization point results in about -6
degrees change in ellipsoid roll angle. In our extended sagittal segmentation
algorithm, the effects of the 14 initialization points locations toward the el-
lipsoid fit parameters are combined in a complex and non linear manner.
Nevertheless, our simple sensitivity test shows that the ellipsoid fit parame-
ters are, indeed, sensitive to the locations of the initialization points. This is
something that we did not expect prior to implementing the ellipsoid fitting
based registration algorithm.

The user determines the choice of initialization points based on how well
they can discern the prostate boundaries in the US images. This judgment
depends on the US image quality which is affected by speckle noise and
various imaging artifacts. For example, in our phantom images the top
boundary of the prostate is unclear (see Figure 3.3) due to depth artifacts
and shadowing which affects the choice of the first initialization point. In
real prostate data, the patient’s physical conditions also affect the image
quality, for example, gas, liquid, or calcification might be present in the
rectum and prostate reducing the quality of the images. Such occurrences
are mostly uncontrollable. Hence, variability in user initialization points is
unavoidable.

We can also improve the registration algorithm using other surface based
registration approach that do not depend on specific model fitting, for ex-
ample iterative closest point (ICP), as explored in Section 4.5

4.4.3 Role of the Kalman Filter Segmentation

To explore the role of the Kalman filter based segmentation in the final el-
lipsoid fit, we fit the fourteen user initialization points into ellipsoids and
observed the sensitivity of their parameters. Recall, in the extended segmen-
tation algorithm, the user selected fourteen initialization points that guided
the IMMPDAF edge detector. We used the same data set from Section
4.4.2. The complete results of this observation can be found in Appendix H.

In Figure 4.10, we select and plot the ellipsoid fit parameters sensitivity
on several cases. We compare the sensitivity of fitting the user initialization
points (magenta line) and the sensitivity of fitting the final contour points
after the Kalman filter segmentation (blue line). The graphs show that the
Kalman filter segmentation helps reduce the sensitivity of the ellipsoid fit
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4.4. Discussion

parameters with respect to the user initialization points locations. In the
ellipsoid’s roll axis (Az) versus X-axis location of the initialization point plot,
the slope of the linear fit decreases from −8o to −6o. In the ellipsoid’s yaw
axis (Ax) versus Y-axis location of the initialization point plot, the linear fit
measure (R2) decreases from 0.97 to 0.57; meaning that there is no longer a
strong linear dependency between the two. The less sensitive the ellipsoid fit
results with respect to the initialization points locations, the more accurate
is the registration results.
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Figure 4.10: Comparison between the ellipsoid parameters sensitivity. The magenta line shows the results of
fitting an ellipsoid to the user initialization points under different initialization point locations. The blue one
shows the result of fitting the final contour (after the Kalman filter segmentation). As shown in the plots, the
Kalman filter segmentation reduces the sensitivity of the ellipsoid parameters to user initialization points locations.
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4.5. Iterative Closest Point (ICP)

4.5 Iterative Closest Point (ICP)

We re-registered our prostate contours using the Iterative Closest Point algo-
rithm [65] - a commonly used registration algorithm. We used the contours
which were obtained using the extended sagittal segmentation algorithm.
In our ICP registration, the pre-operative point cloud becomes the model
for the registration while the intra-operative point cloud is the data to be
registered. We under-sampled the data’s sample points to make the ICP
algorithm run significantly faster. Since ICP does not require specific model
fitting, we expect it to be less sensitive to the location of the initialization
points and to give more accurate registration results.

Table 4.5 summarizes the ICP registration errors, reported in a similar
manner as Tables 4.3 and 4.4. The complete ICP registration results can be
found in Appendix E.3.

As expected, the maximum errors for the no-motion category, 1.42 mm
X-axis translational error, 1.37o yaw (X-axis) angular error, and 0.76 mm
bounding box error, are less than the full volume registration’s. The
overall maximum errors, across all categories, are 3.28 mm Z-axis transla-
tional error, 4.43o pitch (Y-axis) angular error, and 4.19 mm bounding box
error. They are also less than the full volume registration results.

We also compared the bounding box error and Hausdorff distance be-
tween the the full volume registration and ICP registration using the
paired t-test. The hypothesis is that the full volume registration has
larger bounding box error and larger Hausdorff distance. The paired t-test
on the bounding box error concludes that the full volume registration
has a larger bounding box error with P-Value of 0.0073 and mean difference
range of [0.1011 0.5825] within the 95% confidence interval. The paired t-
test on the Hausdorff distance concludes that the full volume registration
has a larger Hausdorff distance with P-Value of 0.0032 and mean difference
range of [0.1740 0.7700] within the 95% confidence interval.

Compared to the full volume registration, ICP registration proves
to give better results, although not significantly (based on the 95% confi-
dence interval range). Figure 4.11 illustrates that the registration results
between ICP and the full volume registration are visually similar. The
smaller errors in the no motion category suggest that ICP is less sensitive
to initialization points. However, there is a trade off between registration
error and execution time. ICP registration produces more accurate results
as measured but it takes longer to execute. Overall, it takes ICP 76.49 ±
28.84 seconds to register the prostate contours even after under-sampling
the data points. It only takes 0.015 ± 0.014 seconds to fit an ellipsoid to the
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contours and 0.02 ± 0.025 seconds to register the prostate using the ellipsoid
fitting registration algorithm. Both algorithm were implemented in Matlab
running on a 1.66 GHz computer with 1 GB RAM.

The ICP algorithm is sensitive to the presence of noise and outliers in
the data [66–68]. In our study, we have not measured the robustness of the
ellipsoid fitting registration towards outliers nor compared it with the ICP
algorithm.

Figure 4.11: Results of the full volume registration (left column) and
ICP registration (right column) when X-axis rotation (top row) and X-axis
translation (bottom row) are applied to the phantom. The blue, red, and
green contours are the pre-operative, intra-operative, and registered pre-
operative volumes.
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Table 4.5: Summary of registration errors: ICP.
Motion Type

Transformation Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max
Tx (mm) 0.00 0.00 0.01 3.02 0.05 3.06 0.14 0.00 0.14 0.51 0.00 0.51
Ty (mm) 0.01 0.01 0.01 0.37 0.03 0.41 2.92 0.04 2.96 0.12 0.02 0.15
Tz (mm) 0.00 0.00 0.00 0.26 0.01 0.26 0.03 0.01 0.04 5.01 0.00 5.01

Rx (
o) 0.00 0.00 0.00 0.01 0.00 0.02 0.36 0.00 0.36 0.02 0.01 0.03

Ry (
o) 0.00 0.00 0.00 0.25 0.00 0.25 0.06 0.01 0.07 0.03 0.00 0.04

Rz (
o) 0.01 0.01 0.02 0.20 0.01 0.20 0.18 0.01 0.19 0.02 0.01 0.03

Tx (mm) 1.18 0.22 1.42 0.66 0.47 1.21 0.50 0.44 1.15 0.45 0.48 1.16
Ty (mm) 0.25 0.11 0.33 0.73 0.42 1.15 0.46 0.30 0.77 0.74 0.34 1.10
Tz (mm) 0.36 0.20 0.58 1.18 0.64 1.71 0.86 0.96 2.18 1.59 1.00 2.88

Rx (
o) 0.50 0.22 0.65 1.18 0.78 1.75 0.86 1.05 2.40 1.23 0.65 2.08

Ry (
o) 1.17 0.18 1.37 1.53 0.84 2.70 0.75 0.83 1.96 0.82 0.65 1.61

Rz (
o) 0.42 0.32 0.75 0.72 0.67 1.45 0.11 0.13 0.26 0.71 0.87 2.00

0.55 0.25 0.76 0.67 0.11 0.79 0.88 0.10 1.03 3.15 0.70 3.81

2.69 0.17 2.87 4.13 0.18 4.33 3.35 0.32 3.71 6.78 0.75 7.37

Y axis translation Z axis translation 
Title

No Motion X axis translation

Bounding Box Error (mm)

Hausdorff Distance (mm)

Absolute 

motion 

value from 

optotrak
Error |ICP 

Reg - 

Optotrak|
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Motion Type
Transformation Average Std. Dev. Max Average Std. Dev. Max Average Std. Dev. Max

Tx (mm) 0.19 0.01 0.22 0.20 0.11 0.31 0.70 0.21 0.85
Ty (mm) 0.33 0.10 0.43 0.23 0.03 0.25 0.46 0.26 0.65
Tz (mm) 1.64 0.01 1.65 4.75 0.05 4.79 6.72 0.05 6.76

Rx (
o) 4.95 0.03 4.99 0.35 0.01 0.36 3.38 0.01 3.39

Ry (
o) 0.30 0.02 0.32 4.72 0.09 4.79 2.85 0.03 2.87

Rz (
o) 0.38 0.01 0.39 0.21 0.02 0.22 0.87 0.09 0.93

Tx (mm) 0.36 0.26 0.65 0.38 0.29 0.73 1.29 0.22 1.45
Ty (mm) 0.60 0.51 1.33 0.88 0.70 1.88 0.54 0.34 0.78
Tz (mm) 1.11 0.54 1.64 1.62 1.12 3.28 2.28 0.64 2.73

Rx (
o) 0.66 0.83 1.90 1.70 1.40 3.57 1.74 0.39 2.02

Ry (
o) 1.03 0.93 2.39 3.08 1.06 4.43 1.11 0.10 1.18

Rz (
o) 0.56 0.32 0.81 1.15 0.42 1.46 1.90 0.32 2.13

3.25 0.16 3.41 3.30 0.87 4.19 2.45 0.75 2.98

12.20 0.11 12.32 7.47 0.71 8.51 5.67 0.26 5.86

Combination
Title

X axis rotation (yaw) Y axis rotation (combination)

Bounding Box Error (mm)

Hausdorff Distance (mm)

Absolute 

motion 

value from 

optotrak
Error |ICP 

Reg - 

Optotrak|
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Chapter 5

Conclusions

This thesis project was carried out with two main objectives. The first
objective is to design, implement, and characterize a robotic needle guide
for prostate brachytherapy. The second is to develop an ultrasound B-
mode images-based pre-operative to intra-operative prostate registration al-
gorithm. The summary, contributions, and future work of this thesis are
divided in the following sections based on the two objectives.

5.1 A Robotic Needle Guide for Prostate
Brachytherapy

5.1.1 Summary

The author has participated in the design and implementation of a novel
robotic needle guide for prostate brachytherapy (Brachyguide). The four de-
gree of freedom robot is made of two linear and rotation stages and driven by
commercial off-the-shelf DC motors. The robot is designed with custom fea-
tures - manual cranks, digital linear calipers, and quick release mechanisms
- that enable it to be operated during control system or electrical failure.
The robot is controlled with a new GUI design that provides needle plan ex-
traction from the conventional treatment planning software (VariSeed) and
digital caliper readings display. Upon completion of its first prototype, the
robot’s characteristics were studied. Then a seed implant study on a com-
mercial prostate phantom involving an oncologist and a medical physicist
from the BCCA was conducted to assess the usability of the robot. The
study showed that integration of the robot does not add to the implant
procedure time even when it was the first use of the robot by the oncologist.

To be specific, the author’s participation in the design and implementa-
tion of the robot can be divided as follows:

1. The determination and specification of suitable DC Motors for the
robot.
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2. The implementation of the robot’s electrical hardware: cables, con-
nectors, and controller box.

3. The tuning of the robot’s controller’s.

4. The design and implementation of the robot’s graphical user interface.

5. The design and implementation of the robot’s characterization test.

6. Participation as the robot’s operator in the usability test with the
oncologist from the BCCA.

The mechanical design and implementation of the robot was contributed by
the author’s supervisor, Dr. Tim Salcudean.

5.1.2 Contributions

The robotic needle guide has resulted in the following contributions:

• Better needle positioning accuracy for prostate brachytherapy: The
robot has a needle positioning accuracy along the X-Y axes of less
than 0.12 mm and 0.1 mm respectively . These values are better than
the 5 mm needle positioning accuracy of the conventional template
grid.

• The capability of performing angled needle insertions: The robot pro-
vides yaw and pitch angulations (-300 to +300 and +240 to -180 re-
spectively) to the needle with up to 0.05o accuracies. These added
degrees of freedom are an improvement over the parallel trajectory of
the template grid based approach which help with pubic arch interfer-
ence in patients. Moreover, seed position and needle trajectory plan
can now be optimized by including angled needle trajectories.

• A convenient method of performing needle insertion: The GUI en-
ables the needle insertion plan to be extracted from VariSeed - the
conventional and most commonly used prostate brachytherapy plan-
ning software. Once imported into the robot’s GUI, the oncologist
can step through the individual needle positions with a click of a but-
ton: eliminating the need to manually locate the grid location in the
template grid approach.
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5.1.3 Future Work

The following are the possible future work and improvements involving the
robotic needle guide:

• Clinical integration and patient study: As proven in our phantom
study, the robot’s usage does not add to the overall seed implant pro-
cedure time. This result paves way for the robot to be used in a clinical
setting for in-vivo seed accuracy placement studies.

• Future needle path planning studies: With the capability of angled
needle trajectories, the robot can be used to aid with needle path
planning studies such as suggested in [13].

• A lighter robot design: The current robot weighs about 2.6 kg. Pos-
sible design changes might reduce the weight of the robot to make it
comparable to other designs such as the design found in [30].

• Integration of real time US visualization into the robot’s GUI : Adding
real time US visualization to the robot’s GUI may be beneficial. On
the real time US images, the target location of the needle, the pre-
operative prostate contours, and dosimetry plans can be displayed to
give a holistic view of the needle insertion procedure.

5.2 Pre-operative to Intra-operative Registration
of Prostate Volumes

5.2.1 Summary

We have developed a novel US image-based algorithm to register a pre-
operative prostate volume to an intra-operative volume. The algorithm in-
volves a semi automatic segmentation of sagittal US images and registration
of the resulting contour points based on ellipsoid fitting.

We have developed a semi automatic algorithm to segment sagittal US
images of the prostate. Note, transverse images-based segmentation is the
most commonly used approach for prostate contouring in brachytherapy.
Initially, we only used the segmentation algorithm to segment 2D sagittal
images. Then, we extended the algorithm to be able to segment sagittal
view-based 3D US volume data (each volume comprising a set of 2D US
sagittal images). We validated the extended sagittal segmentation algo-
rithm by comparing it with transverse image-based segmentation using the
algorithm by Mahdavi et. al. [54].
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We registered the pre-operative and intra-operative prostate contours
using a novel ellipsoid fitting based algorithm. The contours are fit into two
different ellipsoids and their parameters are used to calculate the registra-
tion matrix. The registration accuracy has been tested in an experimental
setup using the CIRS prostate phantom and the Optotrak. Unfortunately,
the results show that our ellipsoid fitting based algorithm suffers from sen-
sitivity to user initialization during segmentation. The conventional ICP
registration method produced more accurate results, but at greater compu-
tational cost. This means there is a current tradeoff between accuracy and
speed.

5.2.2 Contributions

The pre-operative to intra-operative registration work makes the following
contributions:

• A novel prostate segmentation algorithm and approach: We have devel-
oped a novel semi automatic segmentation algorithm based on sagittal
US B-mode images. The algorithm is capable of segmenting sagittal
view-based 3D US volume data. On average, it takes the algorithm
73 seconds to segment one volume which consists of 200 images. The
algorithm was compared to a published transverse view-based segmen-
tation algorithm using patient and phantom volume data. The mean
average distance of the contours is 1.17 ± 0.31 mm. The algorithm
can be used to aid prostate segmentation during brachytherapy pre-
operative volume studies as well as in intra-operative planning. Con-
touring the sagittal US volume data provides a better identification of
the base and apex of the prostate which has always been difficult to
do with the transverse images. The sagittal contours provide a more
holistic view of the prostate since the sagittal US volume data can be
more finely sampled than the transverse US volume data which are
sampled at 5 mm depth intervals.

• A novel ellipsoid fitting-based registration algorithm: We have devel-
oped a novel registration algorithm based on ellipsoid fitting. The
algorithm execution time is fast: 0.02 ± 0.025 seconds. The registra-
tion accuracy however, is, sensitive to user initialization during the
image segmentation. This leads to a 5.02 mm maximum translation
error, 5.51 o maximum angular error, 5.01 mm maximum bounding
box error, and 6.68 mm average Hausdorff distance between the reg-
istered surfaces. In our study, the main application of the registration

100



5.2. Pre-operative to Intra-operative Registration of Prostate Volumes

algorithm is in the field of prostate brachytherapy. It is possible to
apply the algorithm for other prostate cancer treatment options such
as EBRT.

• Possible registration solution using ICP : We have explored one pos-
sible solution to improve the registration accuracy by using ICP to
register the prostate contours. ICP takes longer to execute (76 ± 29
seconds) but result in lower registration errors: 3.28 mm maximum
translation error, 4.43 o maximum angular error, 4.19 mm maximum
bounding box error, and 6.20 mm average Hausdorff distance between
the registered surfaces. These lower error values suggest that registra-
tion without specific model fitting produces lower errors but at greater
computational cost.

• Minor contributions in the design of registration experiment setup and
calibration setup using the Optotrak : To measure the accuracy of our
registration algorithm we have designed an experimental setup using
the Optotrak as the gold standard. This experimental setup can be
re-used for future registration studies or for real time tracking ex-
periments. Currently, Stradwin does not support probe calibration
using the 3020 Optotrak. During our probe calibration, we developed
the protocols for combining the Optotrak data into Stradwin standard
files in order to perform off-line calibration. The protocols can be used
for future Optotrak-based calibration or to develop online calibration
using the Optotrak.

5.2.3 Future Work

The following are the possible directions for future work and improvements
involving the pre-operative to intra-operative prostate volume registration:

• Improving the extended sagittal segmentation algorithm: Our extended
sagittal segmentation algorithm requires the aid of Stradwin to visual-
ize the volume data and to select 14 initialization points. Developing
a custom made visualization module that can be integrated into the
segmentation algorithm offers a smoother and more unified work flow.
As mentioned in Section 3.5.2, one of the shortcoming of the algorithm
is its inability to contour the prostate tailings at its bottom sides when
significant prostate “squishing” is introduced by the probe. Placing
extra initialization points by using the transverse views may improve
the result.
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• Improving the registration accuracy: The major issue of our ellipsoid
fitting-based registration is its sensitivity to user initialization. Pos-
sible solutions that can be studied include using a fully automatic
segmentation algorithm such as [69] and [70] and using non-ellipsoid
fitting models (e.g. super ellipsoids). A completely different approach
is to use a model-less registration approach such as ICP which was
briefly studied in this thesis. In addition, deformable registration can
also be explored.

• A more extensive study of the extended sagittal segmentation algo-
rithm: We validated the extended sagittal segmentation algorithm on
patient volume data by comparing it with a transverse view-based seg-
mentation algorithm. However, the gold standard of segmentation is
manual contouring by the oncologist. More proper validation can be
explored by designing an extensive in-vivo comparison study where the
oncologist manually contours the sagittal images - not the transverse
ones - and compare the results to our extended sagittal segmentation
algorithm. This study would also serve as a usability study of the
algorithm.
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Appendix A

Ellipse Fitting

The 2D algebraic distance F(
−→
X ,

−→
P ) of a point

−→
X [x y]T to a conic with

algebraic parameter
−→
P = [a b c d e f ]T is described by equation A.1. F(

−→
X ,
−→
P )

= 0 when the point lies exactly on the conic’s boundary. The shape of the
conic is an ellipse if

−→
P follows inequality (A.2) [71].

F (
−→
X,
−→
P ) = ax2 + 2bxy + cy2 + 2dx + 2ey + f (A.1)

4ac − b2 > 0 (A.2)

By introducing an auxiliary vector
−→
L = [x2 xy y2 x y 1], equation A.1

and constraint A.2 can be rewritten in matrix form as:

F (
−→
X,
−→
P ) =

−→
L
−→
P (A.3)

−→
P

T




0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




−→
P > 0

−→
P

T
C
−→
P > 0 (A.4)

The “Constraint Matrix” C is symmetric and singular.

A.1 Direct Least Squares Fitting of Ellipses

Fitzgibbon et.al. introduced two ideas to the ellipse fitting problem. First,
fitting a set of n points

−→
X i=1..n into an ellipse is to optimize

−→
P values by

minimizing the sum of squared algebraic distances between the points and
the ellipse. Second, constraint (A.2) can be reformulated as an equation.
Combining the two ideas, they developed a fast and robust ellipse fitting
algorithm.
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A.1. Direct Least Squares Fitting of Ellipses

Referring to equation A.1, the sum of square algebraic distance is for-
mulated as:

Q(
−→
P ) =

n∑

i=1

F (
−→
L i,

−→
P )

2

= (
−→
L 1

−→
P )

2
+ (

−→
L 2

−→
P )

2
+ . . . + (

−→
L

T

n

−→
P )

2

=

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣




−→
L 1−→
L 2
...−→

L n



−→
P

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

=
−→
P

T




−→
L 1−→
L 2
...−→

L n




T 


−→
L 1−→
L 2
...−→

L n



−→
P

=
−→
P

T
DT D︸ ︷︷ ︸

S

−→
P (A.5)

D and S are referred as the “Design Matrix” and “Scatter Matrix” re-
spectively. As shown below, the Scatter Matrix is symmetric - an important
property for subsequent explanations.

S = DT D

=




x2
1 x2

2 · · · x2
n

x1y1 x2y2 · · · xnyn

y2
1 y2

2 · · · y2
n

x1 x2 · · · xn

y1 y2 · · · yn

1 1 · · · 1







x2
1 x1y1 y2

1 x1 y1 1
x2

2 x2y2 y2
2 x2 y2 1

...
...

...
...

...
...

x2
n xnyn y2

n xn yn 1




=
(A.6)




∑n
i=1 x4

n

∑n
i=1 x3

nyn
∑n

i=1 x2
ny2

n

∑n
i=1 x3

n

∑n
i=1 x2

nyn
∑n

i=1 x2
n∑n

i=1 x3
nyn

∑n
i=1 x2

ny2
n

∑n
i=1 xny3

n

∑n
i=1 x2

nyn
∑n

i=1 xny2
n

∑n
i=1 xnyn∑n

i=1 x2
ny2

n

∑n
i=1 xny3

n

∑n
i=1 y4

n

∑n
i=1 xny2

n

∑n
i=1 y3

n

∑n
i=1 y2

n∑n
i=1 x3

n

∑n
i=1 x2

nyn
∑n

i=1 xny2
n

∑n
i=1 x2

n

∑n
i=1 xnyn

∑n
i=1 xn∑n

i=1 x2
nyn

∑n
i=1 xny2

n

∑n
i=1 xny3

n

∑n
i=1 xnyn

∑n
i=1 y2

n

∑n
i=1 yn∑n

i=1 x2
n

∑n
i=1 xnyn

∑n
i=1 y2

n

∑n
i=1 xn

∑n
i=1 yn n




︸ ︷︷ ︸
Symmetric

(A.7)
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A.2. Numerically Stable Least Squares Fitting

The ellipse constraint (inequality (A.2)) tells us that the left hand side
must be a positive number: any positive number. Hence, we can set the
ellipse constrain to be 4ac − b2 = k. By scaling down k to 1 and proper
scaling of a,b, and c, the ellipse constraint is re-defined as an equality:

4ac− b2 = 1
−→
P

T
C
−→
P = 1 (A.8)

The ellipse fitting problem boils down to minimizing the scalar function
Q with constraint (A.8). Applying the Lagrange multiplier concept and
taking advantage the symmetric property of C and S simplify the problem
further:

∂Q

∂
−→
P

= λ
∂(
−→
P

T
C
−→
P − 1)

∂
−→
P

∂(
−→
P

T
S
−→
P )

∂
−→
P

= λ 2C
−→
P

2S
−→
P = λ 2C

−→
P

S
−→
P = λ C

−→
P (A.9)

The solution amounts to finding the eigenvalues and eigenvectors pairs
of the Scatter Matrix. Fitzgibbon et.al. proved that the only eigenvector
corresponding to the positive eigenvalue gives the best ellipse fit.

A.2 Numerically Stable Least Squares Fitting

Fitzgibbon et.al.’s algorithm is, however, numerically unstable [61]. As
noted by Halir and Flusser, the Constraint Matrix is singular and when
the set of points are very close to an ellipse, the Scatter Matrix is close to
singular: in occasions, leading to the wrong sets of eigenvalues and eigen-
vectors.

To circumvent the problem Halir and Flusser developed a solution by
decomposing

−→
P , the Design matrix, the Scatter matrix, and the Constraint

matrix:
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A.2. Numerically Stable Least Squares Fitting

D =




x2
1 x1y1 y2

1 x1 y1 1
x2

2 x2y2 y2
2 x2 y2 1

...
...

...
...

...
...

x2
n xnyn y2

n xn yn 1




D =
[
D1(n×3) D2(n×3)

]
(A.10)

S = DT D

S =
[
DT

1

DT
2

] [
D1 D2

]

S =
[

DT
1 D1 DT

1 D2

DT
2 D1 DT

2 D2

]

S =
[

S1(3×3) S2(n×3)

ST
2 S3(3×3)

]
(A.11)

C =
[

C1 0
0 0

]
where C1 =




0 0 2
0 −1 0
2 0 0


 (A.12)

−→
P =




a
b
c

d
e
f




=
[

P1(3×1)

P2(3×1)

]
(A.13)

The eigensystem (A.9) can then be reformulated as:

[
S1 S2

ST
2 S3

] [
P1

P2

]
= λ

[
C1 0
0 0

] [
P1

P2

]
(A.14)

Which can be split into two equations:

S1P1 + S2P2 = λC1P1 (A.15)
ST

2 P1 + S3P2 = 0
P2 = −S−1

3 ST
2 P1 (A.16)
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A.3. Converting Algebraic Parameters to Geometric Parameters

Substituting equation A.16 into (A.15) and taking the inverse of C1, we
have the following eigensystem:

C−1
1 (S1 − S2S

−1
3 ST

2 ) P1 = λP1 (A.17)

The eigenvector corresponding to the positive eigenvalue of equation
A.17 yields the optimum value of P1. The optimum solution of the ellipse
fit is the combination of P1 and P2 - calculated using (A.16). Since C1 and
(S1 −S2S

−1
3 ST

2 ) are no longer singular, the eigensystem is more numerically
stable.

A.3 Converting Algebraic Parameters to
Geometric Parameters

The parameter
−→
P offers little insight to the geometric properties of the

ellipse. An ellipse is more often described by its geometric parameters
−→
Q

[xc yc ra rb θ]T . Where (xc, yc) is the coordinate location of the ellipse
center, ra is the length of the major axis, rb is the length of the minor axis,
and θ is the tilt of the ellipse with respect to the X+ axis.

To convert
−→
P to

−→
Q , we define three coordinate frames {1,2,3} - see

Figure A.1. Coordinate frame {1} is the stationary reference frame. Frame
{2} is frame {1} rotated counter clockwise by angle θ. Frame {3} is frame
{2} translated by (1xc

1yc) and is attached to the ellipse. The following
geometric transformation can be defined:

[
2x
2y

]
=

[
Cos(θ) Sin(θ)
−Sin(θ) Cos(θ)

] [
1x
1y

]
(A.18)

[
3x
3y

]
=

[
Cos(θ) Sin(θ)
−Sin(θ) Cos(θ)

] [
1x
1y

]
−

[
Cos(θ) Sin(θ)
−Sin(θ) Cos(θ)

] [
1xc
1yc

]
(A.19)

In frame {3}, the ellipse is unrotated and untranslated. Its equation can
simply be written as:

3x2

r2
a

+
3y2

r2
b

= 1 (A.20)

The parametric equation of the ellipse in the reference frame (frame1)
is:

a 1x2 + b 1x1y + c 1y2 + d 1x + e1y + f = 0 (A.21)
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A.3. Converting Algebraic Parameters to Geometric Parameters

Figure A.1: Different coordinate frames used to derive the ellipse parameter
conversion
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A.3. Converting Algebraic Parameters to Geometric Parameters

Substituting equation A.19 into equation A.21 and grouping the terms
according to the variables (x2, xy, y2, x, y) we come up with the following
set of equations:




a
b
c
d
e
f




=




r2
bCos2θ + r2

aSin2θ
Sin2θ

(
r2
b − r2

a

)
r2
bSin2θ + r2

aCos2θ
−2 1xc (r2

aSin2θ + r2
bCos2θ) + 1yc Sin2θ (r2

a − r2
b )

−2 1yc (r2
bSin2θ + r2

aCos2θ) + 1xc Sin2θ (r2
a − r2

b )(
r2
bCos2θ 1x2

c + r2
bSin2θ 1xc

1yc + r2
bSin2θ 1y2

c

)
+

(
r2
aSin2θ 1x2

c − r2
aSin2θ 1xc

1yc + r2
aCos2θ 1y2

c

) − r2
ar

2
b




We can find the angle θ by from a, b, and c in equation A.22.

a− c = (r2
bCos2θ + r2

aSin2θ)− (r2
bSin2θ + r2

aCos2θ)
= Cos2θ(r2

b − r2
a) (A.22)

b = Sin2θ
(
r2
b − r2

a

)
(A.23)

θ = arctan(
b

a− c
) (A.24)

In frame {2}, the ellipse is translated but not rotated. The center of the
ellipse is located at (2xc

2yc). The equation of the ellipse can be described
as:

(2x−2 xc)2

r2
a

+
(2y −2 yc)2

r2
b

= 1

r2
b

2x2 + r2
a

2y2 − 2r2
b

2xc
2x− 2r2

a
2yc

2y + (r2
b

2x2
c + r2

a
2y2

c − r2
ar

2
b ) = 0

(A.25)

The variables ra and rb are the length of the major and minor axes of the
ellipse. As rotation and translation do not affect geometric length, they are
same as ra and rb in equation A.22. Let’s define

−→
P ’ as:




a′

b′

c′

d′

e′

f ′




=




r2
b

0
r2
a

−2r2
b

2xc

−2r2
a

2yc

r2
b

2xc + r2
a

2yc − r2
a r2

b




(A.26)
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A.3. Converting Algebraic Parameters to Geometric Parameters

Substituting equation A.18 into equation A.21, we have the following
equation:

(a Cos2θ + b SinθCosθ + c Sin2θ) 2x2

+(−2a SinθCosθ + b Cos2θ − b Sin2θ + 2c SinθCosθ) 2x2y

+(a Sin2θ − b SinθCosθ + c Cos2θ) 2y2

+(d Cosθ + e Sinθ) 2x + (−d Sinθ + e Cosθ) 3y + f = 0 (A.27)

We can solve for (2xc
2yc) and (1xc

1yc) from equations A.26 and A.27:
[

2xc
2yc

]
=

[− d′
2a′

− e′
2c′

]

[
2xc
2yc

]
=

[
− d Cosθ+e Sinθ

2(a Cos2θ+b SinθCosθ+c Sin2θ)

− −d Sinθ+e Cosθ
2(a Sin2θ−b SinθCosθ+c Cos2θ)

]

[
1xc
1yc

]
=

[
Cos(θ) −Sin(θ)
Sin(θ) Cos(θ)

] [
2xc
2yc

]
(A.28)

The length of the ellipse’s radii can be found using the following equation:

[
ra

rb

]
=




√
−P6+

P ′24
4P ′1

+
P ′25
4P ′3

P ′1√
−P6+

P ′24
4P ′1

+
P ′25
4P ′3

P ′1




(A.29)
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Appendix B

Ellipsoid Fitting

The algebraic distance F(
−→
X ,
−→
P ) of a point

−→
X [x, y, z]T to a 3D conic with

parameter
−→
P = [a b c d e f g p q r s]T is defined as:

F (
−→
X,
−→
P ) = ax2 + by2 + cz2 + 2dxy + 2exz

+ 2fyz + 2px + 2qy + 2rz + s (B.1)

Similar to the 2D conic equation, F(
−→
X ,
−→
P ) = 0 if the point lies on the conic’s

surface.
The conic is an ellipsoid if J > 0 and I × K > 0 with I, J, and K

defined as follows:

I = a + b + c (B.2)
J = ab + ac + ac− f−e2 − d2 (B.3)

K =

∣∣∣∣∣∣

a d e
d b f
e f c

∣∣∣∣∣∣
(B.4)

Similar to the ellipse fitting problem, fitting a set of n points
−→
X i=1..n

into an ellipsoid amounts to minimizing the sum of squared of the algebraic
distance between the points to the ellipsoid while adhering to constraints
B.2 - B.4.

B.1 Direct Least Square Fitting of Ellipsoids

Li and Griffiths [50] simplified ellipsoid the constraints into equation B.5.
They proved that any conic that satisfies the equation is an ellipsoid and
developed a robust ellipsoid fitting algorithm.

4J − I2 = 0 (B.5)
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B.2. Converting Algebraic Parameters to Geometric Parameters

Equation B.5 can be rewritten in matrix form:

−→
P

T
C
−→
P = 0 (B.6)

−→
P

T
[

C1 0(6×4)

0(4×6) 0(4×4)

]−→
P = 0 (B.7)

C1 =




−1 1 1 0 0 0
1 −1 1 0 0 0
1 1 −1 0 0 0
0 0 0 −4 0 0
0 0 0 0 −4 0
0 0 0 0 0 −4




(B.8)

By redefining the auxillary vector
−→
L , redecomposing the Scatter Matrix,

and redecomposing the vectot
−→
P , the solution of the ellipsoid fitting follows

equation A.15) - A.17).

−→
L i=1..n =

[
x2

i y2
i z2

i xiyi xizi yizi xi yi zi 1
]

(B.9)

S =

[
ST

1(6×6) S2(6×4)

ST
2 S3(4×4)

]
(B.10)

−→
P =

[
P1(1×6)

P2(1×4))

]
(B.11)

The eigenvector corresponding to the positive eigenvalue of equation A.17
yields the optimum value of P1.

Although constraint B.5 guarantees an ellipsoid solution, it does not
cover the whole set of the ellipsoids. In particular, Li and Griffiths cautions
that the constraint cannot characterize ellipsoids that are “long-thin or com-
pressed”. The ellipsoid fitting algorithm is used to model the prostate and
we assume that normal prostate are not “long-thin or compressed”.

B.2 Converting Algebraic Parameters to
Geometric Parameters

Similar to the ellipse fitting problem, we wish to express the ellipsoid using
its geometric parameters: center location (xc, yc, zc), radii length (rx, ry, rz),
orientation about the reference frame’s principal axis (Ax, Ay, Az).

We define the coordinate frames: {1} and {2} as illustrated in Figure
B.1. Frame {1} is the reference frame. Frame {2} is frame {1} rotated, in
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order, by angle Ax, Ay, Az around its own x,y,and z-axis and then translated
by (1xc,

1 yc,
1 zc)T .

Figure B.1: Coordinate frames for ellipsoid parameter conversion

For point
−→
1X on the conic’s surface, the parametric equation can be

normalized into:

a′1x2 + b′1y2 + c′1z2 + 2d′1x1y + 2e′1x1z + 2f ′1y1z

+2p′1x + 2q′1y + 2r′1z + 1 = 0 (B.12)

Equation B.12 can be expressed in matrix form as:

−→
1X

T




a′ d′ e′

d′ b′ f ′

e′ f ′ c′


−→1X +

[
2p′ 2q′ 2r′

]−→
1X + 1 = 0

−→
1X

T
A
−→
1X + B

−→
1X + 1 = 0 (B.13)

The relationship between points in frame {1} and {2} can be described
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as:
−→
1X = 1R2

−→
2X +

−→
1Xc (B.14)

1R2 =




cycz sxsycz − cxsz cxsycz + sxsz

cysz sxsysz + cxcz cxsysz − sxcz

−sy sxcy cxcy


 (B.15)

R is the rotation matrix following the Euler yaw-pitch-roll convention. Where
sx is sin(Ax), cx is cos(Ax), sy is sin(Ay), and so on. Ax, Ay, Az are the
yaw angle, pitch angle, and roll angle. They are the rotation angles about
the x, y, and z axes of the reference frame1.

We substitute equation B.14 into equation B.13 and normalize the result:

(1R2

−→
2X +

−−→
1Xc)

T
A (1R2

−→
2X + 1Xc) +

B (1R2

−→
2X +

−−→
1Xc) + 1 = 0

−→
2X

T
1RT

2 A 1R2

−→
2X +

−→
2X

T
(1RT

2 A
−−→
1Xc) + (1RT

2 A
−−→
1Xc)T

−→
2X +

(B 1R2

−→
2X) + (

−−→
1Xc

T
A
−−→
1Xc + B

−−→
1Xc + 1) = 0

−→
2X

T
1RT

2 A 1R2

−→
2X + 2((1RT

2 A
−−→
1Xc)T + B 1R2)

−→
2X

+(
−−→
1Xc

T
A
−−→
1Xc + B

−−→
1Xc + 1) = 0

−→
2X

T 1RT
2 A 1R2

−(
−−→
1Xc

T
A
−−→
1Xc + B

−−→
1Xc + 1)

−→
2X +

(2
−−→
1XT

c A 1R2 + B1R2)

−(
−−→
1Xc

T
A
−−→
1Xc + B

−−→
1Xc + 1)

−→
2X − 1 = 0

(B.16)

In coordinate frame {2}, the ellipsoid is unrotated and untranslated. Its
parametric equation is as follows:

2x2

r2
a

+
2y2

r2
b

+
2z2

r2
c

= 1

−→
2X




1
r2
a

0 0
0 1

r2
b

0

0 0 1
r2
c



−→
2X − 1 = 0 (B.17)

Comparing equation B.16 and equation B.17, we can find 1Xc (the center
of the ellipsoid in the reference frame):
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2
−−→
1XT

c A 1R2 + B 1R2 = 0
1Xc = −1

2
A−1 B (B.18)

(B.19)

The radii lengths of the ellipsoid and its orientation around the reference
frame’s x, y, and z-axis can be solved using the eigen values and eigenvectors
of the normalized A matrix:

1RT
2

A

−(
−−→
1Xc

T
A
−−→
1Xc + B

−−→
1Xc + 1)

1R2 =




1
r2
a

0 0
0 1

r2
b

0

0 0 1
r2
c




1RT
2 D 1R2 =




1
r2
a

0 0
0 1

r2
b

0

0 0 1
r2
c


 (B.20)

Since the rotation matrix 1R2 is orthogonal and the matrixA is symmetric
(diagonalizable), the left hand side of equation B.20 becomes the diagonal-
ization of the normalized matrix A. Matrix D is the result of this diago-
nalization. The inverse of square root of the eigenvalues of D are the radii
lengths of the ellipsoid.

The columns of 1R2 are the eigenvectors of matrix D. The orientation
angles of the ellipsoid can be solved from 1R2:

Ax = arctan2
(

1R2(3, 2)
1R2(3, 3)

)
(B.21)

Ay = arcsin
(−1R2(3, 1)

)
(B.22)

Az = arctan2
(

1R2(2, 1)
1R2(1, 1)

)
)

(B.23)

Note that arctan2 is the four quadrant inverse tangent.

B.3 Generating Ellipses from an Ellipsoid

For simulation purposes, we needed to generate ellipse sample points from a
given ellipsoid. The ellipsoid represent the prostate and the ellipses represent
the contours of the prostate as seen in different sagittal US image planes.
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We approached the problem as a plane (the “slicing plane”) intersecting
an ellipsoid. We derived the algebraic parameter of the ellipse

−→
P ellipse,

[a b c d e f ]T given the algebraic parameter of the ellipsoid
−→
P ellipsoid,

[A B C D E F P Q R S]T , and the location and orientation of the “slicing
plane” (x, y, z, yaw, pitch, roll).

We start by expressing the 2D and 3D conic equations using the homo-
geneous coordinate convention. Using this convention, a point in 2D and
3D can be expressed as

−→
X ′ [x y 1]T and

−→
X ′′ [x y z 1]T . Consequently, the

2D (A.1) and 3D (B.1) conic equation can be written into matrices forms
as:

[
x y 1

]



a b d
b c e
d e f







x
y
1


 = 0

−→
X ′T Pellipse

−→
X ′ = 0 (B.24)

[
x y z 1

]



a d e p
d b f q
e f c r
p q r s







x
y
z
1


 = 0

−→
X ′′T Pellipsoid

−→
X ′′ = 0 (B.25)

Notice that we can obtain
−→
X ′ by pre-multiplying

−→
X ′′ with a projection

matrix:




x
y
1


 =




1 0 0 0
0 1 0 0
0 0 0 1







x
y
z
1




−→
X ′ = Pproj

−→
X ′′ (B.26)

The next step is to attach a coordinate frame {pl} to the desired slicing
plane. The x-axis and y-axis of the frame are parallel to the orthogonal
vectors subtending the plane and the z-axis is parallel to the plane’s normal
vector.

We can express points in the reference coordinate frame ref
−→
X ′ with re-

spect to the slicing plane’s frame {pl} using the homogeneous transformation
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matrix refTpl.

ref−→X ′′ = refTpl
pl−→X ′′ (B.27)

refTpl =




refRpl

ref tx
ref ty
ref tz

0 0 0 1


 (B.28)

Where refRpl is the rotation matrix defined using the euler yaw-pitch-roll
convention (equation B.15). The vector [ref tx

ref ty
ref tz]T is the location of

the center coordinate of {pl} in frame {ref}.
We apply the coordinate transformation in equation B.28 to the ellipsoid

equation:

ref−→X ′′T Pellipsoid
ref−→X ′′ = 0

(refTpl
pl−→X ′′)T Pellipsoid (refTpl

pl−→X ′′) = 0

pl−→X ′′T plPellipsoid
pl−→X ′′ = 0 (B.29)

To obtain the ellipse parameters, we project the transformed 3D points
into 2D following equation B.26:

(Pproj
pl−→X ′′)T plPellipsoid (Pproj

pl−→X ′′) = 0

pl−→X ′′T (P T
proj

plPellipsoid Pproj) pl−→X ′′ = 0

pl−→X ′T Pellipse
pl−→X ′ = 0 (B.30)

The parameter of the desired ellipse would be:

−→
P ellipse =




Pellipse(1, 1)
2 Pellipse(1, 2)
Pellipse(2, 2)

2 Pellipse(1, 3)
2 Pellipse(2, 3)
Pellipse(3, 3)




(B.31)

When a desired plane does not intersect a given ellipsoid,
−→
P ellipse will contain

imaginary numbers.
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Appendix C

The IMMPDAF Edge
Detector

One of the components of the transversal segmentation algorithm is a the
IMMPDAF edge detector. The detector is based on three concepts: discrete
time Kalman filter, Probabilistic Data Association Filter (PDAF) [72], and
multiple model interaction.

The boundary of the prostate is modeled as the random trajectory of an
object travelling around the seed point. The seed point is an imaginary point
located at the prostate center. Two discrete time Kalman filter models are
used to track the object’s trajectory. The measurement vector of the filters
is obtained by combining multiple candidate edge points obtained from the
US image’s pixel values. This idea is analogous to tracking a single target
under a clutter of measurements (the PDAF). At each iteration step, the
trajectory estimate can switch from one Kalman filter mode to the other
based on some probability value. The final prostate boundary point is the
combination of the estimate from the two modes. This combination process
is the multiple model interaction. Note, the word “mode” is used to refer
to each Kalman filter model.

The algorithm can be divided into three main steps: state estimate ini-
tialization, discrete time Kalman filtering, and mode combination. Each
step is described in the following subsections.

C.1 State Estimate Initialization

The algorithm starts by estimating the initial states of the Kalman filters
by using previous step estimates X̂m(k − 1|k − 1). The index m represents
the mode number (1 or 2). Each X̂m(k − 1|k − 1) is assigned a posterior
transition probability µmn(k−1|k−1) (the probability of the filter switching
from mode n to m at step k-1). It is calculated as follows:

µmn(k − 1|k − 1) =
pmn µm(k − 1)∑2
i=1 pmi µi(k − 1)

(C.1)
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The variable pmn is the prior transition probability that the filter switch
from mode n to mode m. It is assumed that the prior probability of the
system staying on the same mode is 75%:

[
p11 p12

p21 p22

]
=

[
0.75 0.25
0.25 0.75

]
(C.2)

The variable µm(k − 1) is the mode occurence probability at step k-1. Its
value is updated at the last step of the IMMPDAF algorithm. When k = 1,
µ1(0) = 1 and µ2(0) = 0

The initial state estimate for mode m of the Kalman filter is the expected
values of the distribution:

X̂0m(k − 1|k − 1) =
2∑

n=1

X̂n(k − 1|k − 1)µmn(k − 1|k − 1) (C.3)

The initial state covariance is calculated as follows:

P0m(k − 1|k − 1) =
2∑

n=1

µmn(k − 1|k − 1) {Pn(k − 1|k − 1) +

[X̂n(k − 1|k − 1)− X̂0m(k − 1|k − 1)]
[X̂n(k − 1|k − 1)− X̂0m(k − 1|k − 1)]T } (C.4)

Pn(k − 1|k − 1) is the state covariance at step k-1. When k = 1, P01(k −
1|k − 1) = P02(k − 1|k − 1) = I (the identity matrix).

C.2 Discrete Time Kalman Filter

The initial state estimate, X̂0m(k−1|k−1), and covariance, P0m(k−1|k−1),
is passed to the Kalman filter iterations to obtain the current state estimate
X̂m(k − 1|k − 1).

C.2.1 State Space Model

The general discrete time state space equation is given as:
−→
X (k) = A(k − 1)

−→
X (k − 1) + B

−→
U (k − 1) +

−→
V (k − 1) (C.5)

−→
Z (k − 1) = H(k − 1)

−→
X (k − 1) +

−→
T (k − 1) (C.6)

Where
−→
X is the system state, A is the state matrix, B is the input matrix,

−→
U

is the input vector,
−→
Z is the measurement vector, and H is the measurement
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matrix.
−→
V is the system noise vector with covariance matrix Q and

−→
T is

the measurement noise vector with covariance matrix R.
The prostate boundary is modeled as the trajectory of an object travel-

ling, without extenal influence, at a random distance r(k∆θ) from the “seed
point”. The variable k represents sampling of space (not of time). From the
seed point, Nr radii to spread outwards, each separated by angle ∆θ = 360

Nr
.

In the algorithm Nr = 120 and the first radii (k=0) coincides with the x+
axis.

As the object traverse from (k−1)∆θ to k∆θ the distance between the ob-
ject and the seed point is expected to be constant: r(k∆θ) = r((k− 1)∆θ)).
The model is linearized around r((k−1)∆θ)) using a Taylor approximation:

r(k∆θ) = r((k − 1)∆θ)
+ ṙ((k − 1)∆θ) [(k∆θ − (k − 1)∆θ]

+
1
2

r̈((k − 1)∆θ) [k∆θ − (k − 1)∆θ]2 + .... (C.7)

For convenience, we drop the notation ∆θ from equation (C.7):

r(k) = r(k − 1) + ṙ(k − 1) ∆θ +
1
2

r̈(k − 1) ∆θ2 + ... (C.8)

The first derivative of (C.8) is:

ṙ(k) = ṙ(k − 1) + r̈(k − 1) ∆θ +
1
2

δ3r(k − 1)
δk3

∆θ2 + ... (C.9)

The state space model of the object is constructed based on the first and
second order derivatives (dropping third order derivatives and higher):

[
r(k)
ṙ(k)

]
=

[
1 ∆θ
0 1

] [
r(k)
ṙ(k)

]
+

[
1
2∆θ2

∆θ

]
r̈(k − 1) (C.10)

The acceleration r̈(k − 1) is assumed to be white Gaussian noise with
variance of σ2

m. The index m represents the mode number. Each mode has
different variance number: σ2

1 = 10 pixel/rad2 and σ2
2 = 105 pixel/rad2.

The system noise covariance matrix Q(k) becomes:

Q(k) =
[

1
2∆θ2 ∆θ

] [
σ2

m 0
0 σ2

m

] [
1
2∆θ2

∆θ

]

Q(k) =

[
∆4θ
4

∆3θ
2

∆3θ
2 ∆2θ

]
σ2

m (C.11)
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At each space sample, we measure the distance of the object with respect
to the seed point. The measurement is affected by white Gaussian noise with
variance λ2 = 20 pixel/rad2 for both modes. Thus, the measurement vector
model and measurement noise covariance are:

−→
Z (k) =

[
1 0

]−→
X (k) +

−→
T (k) (C.12)

R(k) = 20 (C.13)

As apparent in subsequent explanations, the actual value of
−→
T (k) is not as

important as its noise covariance R(k).
To summarize, the following equations characterize the system’s dynam-

ics:

X̂(k) =
[
r(k)
ṙ(k)

]
(C.14)

A =
[
1 ∆θ
0 1

]
(C.15)

H =
[
1 0

]
(C.16)

Qm(k) =

[
∆4θ
4

∆3θ
2

∆3θ
2 ∆2θ

]
σ2

m (C.17)

R(k) = 20 (C.18)

As a side note, Badiei et. al. compared different system models and
found that the model described by equation (C.14) - (C.18) is the most
suitable and stable for prostate image segmentation. The values used in the
model were optimized through trial and error.

C.2.2 Kalman Filter Iteration

The iteration steps for the discrete Kalman filter are as follows:

1. Compute the prior estimate for the state at step k and its covariance
using the initial state estimate and covariance:

X̂m(k|k − 1) = A X̂0m(k − 1|k − 1) (C.19)
Pm(k|k − 1) = A P0m(k|k − 1) AT + Qm(k − 1) (C.20)

2. Estimate the measurement at step k and its covariance using results
from step 1:

Ẑm(k|k − 1) = H X̂m(k|k − 1) (C.21)
Sm(k) = H Pm(k|k − 1) H ′ + Rm(k − 1) (C.22)
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3. Compute the posterior estimate for the state at step k and its posterior
covariance using the filter gain W(k) and error vector E(k).

Wm(k) = Pm(k|k − 1) H ′ S−1
m (k|k − 1) (C.23)

Em(k) = Z(k)− Ẑm(k|k − 2) (C.24)
X̂m(k|k) = X̂m(k|k − 2) + Wm(k) Em(k) (C.25)
Pm(k|k) = (I −Wm(k)H)Pm(k|k − 1)

+ Wm(k) (y(k)− z2(k)) W T
m(k) (C.26)

The variables y(k) and z(k) will be explained in the section C.2.3.

C.2.3 Obtaining the Measurements: the PDAF Concept

The Kalman filter requires the tracked object’s measurement value: z(k).
In this case, it is the distance of the edge point with respect to the “seed
point”. The edge point is obtained by combining several candidate edge
points using the PDAF - similar to tracking a single object under a clutter
of measurements [72].

To extract the candidate edge points, the following 1 dimensional edge
detection filter is applied along one radii:

F (r(k), k∆θ) =
1
3
|{I(r(k) + 2, k∆θ) + I(r(k) + 1, k∆θ) + I(r(k), k∆θ)

−I(r(k)− 1, k∆θ)− I(r(k)− 2, k∆θ)}| (C.27)

I(r(k),k) is the pixel value at distance r(k) from the seed points and at angle
k ∆θ. As mentioned in the previous section, from the seed point a number
of radii spreads out and each radii is separated by angle ∆θ. When k = 0,
the radii coincides with the x+ axis.

The value of r(k) is bounded by the ellipse fit of the user-initialized
points. Like the radii, the ellipse is also sampled at k∆θ. The value of r(k)
is limited to within 15 pixels within the ellipse sample point. This is how
the ellipse fit guides the IMMPDAF edge detector.

From the edge detection results, the 5 largest edge points are consid-
ered as candidate edge points. A Gaussian probability density function is
assigned to the candidate edge points. The probability density function, βi,
is proportional to the squared magnitude of the edge and centered around
the prior estimate of the measurement Ẑ(k|k − 1):
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pi(k) =
Fi(ri(k), k∆θ)√

2πSm(k)
exp−(ri(k)− Ẑ(k|k − 1))2

2 Sm(k)
(C.28)

βi =
pi∑5
i=1 pi

(C.29)

The true measurement z(k) is the expected value of the distribution:

z(k) =
5∑

i=1

ri(k)βi(k) (C.30)

And y(k) from previous section is calculated as follows:

y(k) =
5∑

i=1

r2
i (k)βi(k) (C.31)

C.3 Combining the Estimates From the Two
Modes

The last step of the IMMPDAF algorithm is combining the estimates from
the two modes. Each mode is assigned a Gaussian probability density func-
tion centered around the measurement estimate and proportional to the
their mode occurrence probability µm(k − 1)

γm(k) =
1√

2π|Sm(k)| exp{−1
2

Em(k)T S−1
m (k) Em(k)} (C.32)

µm(k) =
γm(k)µm(k − 1)∑2

n=1 γn(k)µmn(k − 1)
(C.33)

The final estimate for the object’s state is the expected value of the
distribution:

X̂(k|k) =
2∑

m=1

X̂m(k|k) µm(k) (C.34)

The boundary point location (segmentation result) the final measurement
value Z(k|k):

Ẑ(k + 1|k + 1) = H X̂(k|k) (C.35)
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X̂m(k|k) and µm(k) transfer over to the next step of the iteration as X̂m(k−
1|k− 1) and µm(k− 1). One can also calculate the final state and measure-
ment covariance (P(k—k) and S(k—k)) but they are not needed for the next
step of the iteration.
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Appendix D

Probe Calibration Using
Stradwin and the Single Wall
Technique

We needed to determine the position and orientation of the US coordinate
frame {US} which was defined in Section 4.1 with respect to the position
sensors (Optotrak markers attached on the probe), i.e. to calibrate the
US probe. Calibration was performed using the single wall technique [64]
implemented in Stradwin.

D.1 The Framework of Single Wall Calibration
Technique

As illustrated in Figure D.1, there are 4 coordinate frames: the Optotrak
camera’s coordinate frame {Opto}, the probe’s coordinate frame {Probe},
the 3D US coordinate frame {US} and the US image coordinate frame
{IM}. There is a 9.87 mm offset between {IM} and {US} due to the TRUS
probe’s radius as well as orientation difference. Equation D.1 expresses
{IM} relative to {US}.

USTIM =




0 0 −1 0
0 1 0 9.87
1 0 0 0
0 0 0 1


 (D.1)

US image calibration using the single wall technique gives the homoge-
neous transformation from {IM} to {Probe}: ProbeTIM . The results are
the eight values for the calibration parameter vector

−→
P [x y z Rx Ry Rz

Sx Sy] T . The parameters (x,y,z) - in mm - describe the location of the
origin of {IM} with respect to the origin of {Probe}. The parameters (Rx,
Ry, Rz) - in degrees - describe the orientation of the axes of {IM} with
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respect to the axes of {Probe}. The parameter Sx and Sy are the scaling
factor (mm/pixel). To obtain ProbeTUS we post multiply ProbeTIM with the
inverse of USTIM .

Figure D.1: The framework of TRUS probe to Optotrak calibration.

The single wall technique assigns an arbitrary coordinate frame {C} is
attached to the floor of the water bath giving the following composition of
homogoneous coordinate transformations:




Cx
Cy
0
1


 =C TOpto

OptoTProbe
ProbeTIM




Sx
IMx

Sy
IMy
0
1


 (D.2)

In equation (D.2), OptoTProbe and the pixel values (IMx, IMy) are the only
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known values to solve for the calibration parameter
−→
P . Thus, only the zero

component of (D.2) gives one equation in 11 unknowns (6 for ProbeTImage

and five for CTOpto).
In the US image, the water bath’s floor can be detected as a line. Since

two pixel locations uniquely define the line, two equations can be extracted
from each image frame. For m image frames, we have 2m equations: an
over-determined system of equations. To solve for the unknowns, the single
wall technique uses the Marquardt-Levenberg optimization algorithm. The
algorithm gives the best values for

−→
P and calculated root mean squared

error in mm.

D.2 US Image and Optotrak Data Collection

Six Optotrak markers were attached to the TRUS probe. The markers were
glued onto the metallic casing that enclosed the probe. The casing were used
to prevent direct damage to the probe due to the attachment of the markers.
The markers are labeled from 1 - 6 and are connected to the Optotrak data
acquisition unit via its strobers (see Figure D.2).

We used the 6 markers configuration to define the probe as a rigid body
using the NDI RigMaker software (NDI, ON, Canada). This software only
needed a minimum of three markers to define an object as a rigid body. We
used three extra markers in case some of them were out of the Optotrak
camera’s field of view when the TRUS probe was translated or rotated. By
defining the probe as a rigid body, a coordinate frame {Probe} is attached
to the probe. The location of marker 1 defines the origin of this coordinate
frame.

The TRUS Probe was mounted on the EXII Stepper and Micro-Touch
LP R©© mount and was partially submerged in a water bath. Due to the
stepper and mount’s workspace limitations, the probe was submerged in an
upside down position. Hence, the wall of the water bath, not the floor,
was used as the reflector for the single wall calibration technique. The
temperature of the water bath was kept at 40o Celsius by frequent mixing
with heated water. A thermometer was used to measure the temperature of
the water bath at all time (see Figure D.3).

The NDI Toolbench software (NDI, ON, Canada) collected the Optotrak
readings. The data consisted of the location of each of 6 the markers (xi=1..6,
yi=1..6, zi=1..6) and the position-orientation (x, y, z, Rx, Ry, Rz) of {Probe}
with respect to {Opto}. Position (x, y, z) were expressed in mm with respect
to the origin of {Opto}. Orientation data (Rx, Ry, Rz) were expressed in
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D.2. US Image and Optotrak Data Collection

Figure D.2: Calibration setup: US probe and Optotrak configuration. Top
left: Optotrak markers attached on the probe. Top right: Optotrak strobers.
Bottom: Optorak data acquisition unit and Optotrak camera.
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D.2. US Image and Optotrak Data Collection

Figure D.3: The water bath calibration setup. Left: the TRUS probe
inside the water bath in upside down position. Right: the US machine,
EXII stepper, and Micro-Touch mount.
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D.2. US Image and Optotrak Data Collection

degrees using the yaw-pitch-roll Euler angles convention.
We used the Ultrasonix Ulterius research package to capture the post

processed sagittal B-mode images. The US probe was set at 6.6 MHz center
frequency with imaging depth of 60 mm. These parameters gave X-axis and
Y-axis conversion ratio of 156 microns/pixel. The image width and height
were 350 pixels and 384 pixels respectively.

We collected 50 images of the water bath’s wall at different TRUS probe
poses and positions. The probe was manipulated using the stepper and the
mount to cover all the needed 6 degrees of freedom illustrated in Figure
D.4. At each pose and location, the B-mode US image and Optotrak read-
ings were captured simultaneously and independently as Stradwin doesn’t
support the real time data capture using the Optotrak.

Figure D.4: Types of poses and motions required for single wall calibration
method.

The Optotrak data and the post processed B-mode images were com-
bined into Stradwin standard files format: a pair of files with “.sw” and
“.sxi” extensions. The first is a text file containing information such as: the
US imaging settings, position data from the location sensors, the calibra-
tion parameters, etc. The later is a binary image data file. A Matlab script
was used to combine the B-mode images and Optotrak data into Stradwin
standard files.

First, header parameter tokens are written into the “.sw” file. The to-
kens’ name are self explanatory and the parameter values are taken from
the actual US imaging parameters. In our calibration we used 51 image
frames although we collected 50 images of the water bath. The first image,

139



D.3. Single Wall Calibration Technique Using Stradwin

a phantom image, was an extra. It was only used to define the boundary of
the image (will be explained later) but it is not used for calibration. The
following are the parameter tokens written into the “.sw” file:

RES BUF FRAMES 51
RES BUF WIDTH 350
RES BUF HEIGHT 384
RES POS REC true
RES BUF RF false
RES RF VECTORS 127 (irrelevant, used default value)
RES RF SAMPLES 3128 (irrelevant, used default value)
RES END HEADER
RES BIN IM FILENAME Calibration.sxi

Following the header parameter tokens, the Optotrak position data of
the 50 images were written into the “.sw” file:

IM 0 0 0 0 0 0 0
IM 1 -42.2469 0.40293 -189.9733 -4.324 -17.4499 -15.8196
IM 2 -42.2362 -1.356 -190.1175 -4.3067 -17.4411 -15.8755
...

The phrase “IM” indicates that the information is tagged to each images
inside the “.sxi” file. It is followed by the frame number and the Optotrak
position reading at the instant image was captured in (x, y, z, Rz, Ry, Rx)
format. Note that Stradwin expects the image location in cm (instead of
mm) and that there is a change in Rx and Rz order compared to the Opto-
trak data format. Since frame 0 (the first frame) is not used for calibration,
its position and orientation is set to be zeros.

D.3 Single Wall Calibration Technique Using
Stradwin

We loaded the “.sw” and “.sxi” files into the Stradwin research software
and selected the probe calibration tab. First, we set the temperature to 40o

C. The next step is to set the image scale (horizontal and vertical) using
the image at frame 0. This image is an image of a PVC phantom with
clear boundaries. It was recorded using the exact same imaging parameters
as the calibration’s. The phantom image clearly showed the image frame
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D.3. Single Wall Calibration Technique Using Stradwin

top-bottom and left-right boundaries. Hence, we can set the horizontal and
vertical scale more accurately.

We set the horizontal image scale by clicking the “Mark ends of first
line” button. Then we left clicked on the bottom left corner of the image
(a red ‘x’ appeared) and right clicked on the bottom right corner of the
image (a green ‘x’ appeared). Then, we clicked the “Finished locating ends
of line” button and set the first line length to be 54.6 mm (350 pixels times
156 microns per pixels). Next, we set the vertical image scale by clicking the
“Mark ends of second line” button. This step was followed by left clicking
on the top right corner of the image and right clicking on the bottom right
corner of the image. Red and green ‘x’s appeared once again. We finished
by setting the length of the line to 60 mm (the imaging depth).

Figure D.5: Setting the calibration image scales: marking the line (red and
green x’s in the blue circles) and setting the line length (red circle)
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D.4. Automatic Line Detection and Optimization

D.4 Automatic Line Detection and Optimization

The water bath’s wall shows up in the image as a thick bright line. The
thickness of the line depends on the pose of the TRUS probe relative to
the wall. Sometimes the image shows two bright lines due to reverberation.
Stradwin applies an automatic line detection algorithm to find the wall of the
water bath. The algorithm is a combination of Laplacian of Gaussian (LoG)
edge detector and the Random Sample Consensus (RANSAC) algorithm.

Figure D.6: Automatic line detection in Stradwin. The wall of the water
bath appears as a thick bright line in the US image. Vertical red lines divides
the image into bands. The line detection algorithm can be adjusted by the
parameters in the blue circle

The image is divided into several bands by several vertical red lines. The
number of bands is adjustable through “Vertical analysis bands” parameter.
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D.4. Automatic Line Detection and Optimization

At each vertical line, the image pixel values are collected into a vector and
a one dimensional LoG operator is applied to detect the strongest edge
point. The user can change the variance of the Gaussian operator and the
threshold of the gradient by adjusting the “Variance of Gaussian Kernel”
and “Gradient threshold” parameters.

Stradwin applies the RANSAC algorithm to the edge points to detect
the best line fit that represent the wall. RANSAC selects all permutations
of two edge points and fits lines to each of them. Each line is ranked based
on its consensus score. An edge point contributes to the line consensus
score if it is located within a certain distance from the line. This distance is
adjustable through the “Pixel linearity threshold” parameter. The line with
the highest consensus score is the best candidate for the wall. The consensus
score is checked against the maximum possible consensus score (the number
of vertical red lines). This number is not the same as the number of bands
in the image. If the consensus score pass a certain fraction of the maximum
possible score, the line will be used for calibration. This fractional number
can be adjusted through the “Ransac accept threshold” parameter.

For our calibration we used the default parameter values:

1. Variance of Gaussian kernel: 5.0

2. Vertical analysis band: 20

3. Gradient threshold 5.0

4. Pixel linearity threshold :3

5. Ransac accept threshold: 0.6

Fifty lines from fifty image frames were used to determine the calibration
parameters.
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Appendix E

Registration Experiment
Results

E.1 Registration Experiment Results: the Sparse
Volume Registration

Table E.1 shows the registration experiment results using contours which
were obtained by segmenting several sagittal US images from each volume
data using the sagittal segmentation algorithm. In the table, we report rel-
ative transformation between adjacent poses. For example, the results in
column “Vol 2” explain the transformation from pose 1 to pose 2, the re-
sults in column “Vol 3” explain the transformation from pose 2 to pose 3,
and so on. The results in column “Vol 3-1” explain the relative transfor-
mation from pose 3 to pose 1 since the relative transformation from pose
1 to pose 1 is always zero. The transformation is expressed in three axes
translation(Tx, Ty, Tz) and three axes rotation (Rx, Ry, Rz).

The bounding box errors were calculated by defining two smallest rectan-
gular boxes that cover the intra-operative and pre-operative contour points.
The boxes’ vertices are the permutations of the X-axis, Y-axis, and Z-axis
extrema of the intra-operative and pre-operative contour points. The later
is registered using the registration matrix obtained from the ellipsoid fitting
based registration algorithm. Then, the bounding box error is calculated by
taking the root mean square distance between corresponding vertices.

The overall average bounding box error is 3.34 mm while the overall
average Hausdorff distance is 11.41 mm. The standard deviations are 1.71
mm and 3.89 mm respectively.

We report the dial numbers on the motion stage, the transformation pa-
rameters calculated from the Optotrak measurements, and the transforma-
tion parameters calculated using our ellipsoid fitting registration algorithm.
The registration error is calculated by taking the absolute difference between
the later two.
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Table E.1: Registration experiment results: the sparse volume registration.
Motion Type
Transformation Vol 3-1 Vol 2 Vol 3 Vol 4 Vol 5 Vol 6 Vol 7 Vol 8 Vol 9 Vol 10 Vol 11 Vol 12 Vol 13 Vol 14 Vol 15

Tx (mm) 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ty (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00
Tz (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00

Rx (
o) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ry (
o) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tx (mm) 0.00 0.00 -0.01 3.06 -3.06 2.98 -2.97 0.14 -0.14 0.13 -0.14 0.51 -0.50 0.51 -0.51
Ty (mm) 0.00 -0.01 0.01 0.41 -0.38 0.37 -0.33 2.86 -2.96 2.93 -2.95 -0.10 0.13 -0.12 0.15
Tz (mm) 0.00 0.00 0.00 -0.26 0.25 -0.26 0.26 0.03 -0.04 0.02 -0.03 5.01 -5.01 5.01 -5.01

Rx (
o) 0.00 0.00 0.00 0.02 -0.01 0.01 0.00 -0.36 0.35 -0.36 0.36 -0.02 0.02 -0.02 0.03

Ry (
o) 0.00 0.00 0.00 0.24 -0.25 0.25 -0.25 0.07 -0.06 0.05 -0.06 -0.04 0.03 -0.03 0.03

Rz (
o) 0.01 0.00 -0.02 0.20 -0.20 0.18 -0.20 0.19 -0.18 0.17 -0.18 -0.03 0.03 -0.02 0.01

Tx (mm) -2.08 0.64 1.41 10.43 -12.02 14.71 -9.12 -7.21 4.80 0.13 -6.25 17.53 -17.94 -2.66 8.56
Ty (mm) 0.06 0.48 -0.53 0.40 -0.03 0.38 -0.50 2.94 -3.73 3.54 -1.70 -0.61 -1.29 1.52 -0.69
Tz (mm) -0.20 -0.69 1.07 0.13 2.66 1.24 1.87 0.53 2.01 -0.43 -1.84 11.56 2.45 1.95 -2.11

Rx (
o) 0.14 0.87 -1.03 0.73 -0.40 0.74 0.10 -0.61 -0.89 -0.13 2.59 -1.32 -1.68 3.28 -0.03

Ry (
o) 5.07 -3.94 -1.11 -13.63 16.79 -20.66 14.43 11.90 -10.92 2.41 6.21 -35.48 33.51 9.91 -22.03

Rz (
o) 0.05 -1.24 1.13 -0.72 -0.36 0.46 1.70 -1.15 -0.38 0.78 -2.30 0.53 0.86 2.81 -4.11

Tx (mm) 2.08 0.64 1.42 7.37 8.96 11.74 6.15 7.36 4.94 0.00 6.12 17.02 17.43 3.17 9.07
Ty (mm) 0.06 0.49 0.55 0.01 0.35 0.01 0.17 0.08 0.77 0.61 1.25 0.51 1.42 1.64 0.84
Tz (mm) 0.19 0.70 1.07 0.38 2.41 1.50 1.61 0.50 2.04 0.44 1.80 6.56 7.46 3.06 2.90

Rx (
o) 0.14 0.88 1.03 0.71 0.39 0.73 0.11 0.25 1.24 0.23 2.24 1.31 1.70 3.31 0.05

Ry (
o) 5.07 3.94 1.11 13.87 17.04 20.91 14.68 11.83 10.87 2.35 6.27 35.44 33.48 9.95 22.06

Rz (
o) 0.04 1.24 1.15 0.92 0.16 0.28 1.90 1.35 0.20 0.60 2.12 0.56 0.83 2.84 4.13

1.32 1.08 0.61 2.87 2.85 4.41 2.51 2.37 2.35 2.13 2.35 7.52 4.29 4.73 2.04

4.37 4.57 4.01 12.50 12.05 14.01 11.40 10.55 11.06 7.43 9.78 18.16 18.09 10.12 15.17

Error 

|Ellipsoid 

Fit Reg. - 

Optotrak|

Ellipsoid 

Fitting 

Reg.

Optotrak

Source
No Motion X axis translation Y axis translation Z axis translation

Motion 

Platform

Bounding Box Error (mm)

Hausdorff Distance (mm)145
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Table E.1 continued from previous page
Motion Type
Transformation Vol 16 Vol 17 Vol 18 Vol 19 Vol 20 Vol 21 Vol 22 Vol 23 Vol 24 Vol 25

Tx (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00
Ty (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00
Tz (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00

Rx (
o) 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00 -3.00 3.00

Ry (
o) 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 3.00 -3.00

Tx (mm) 0.19 -0.22 0.19 -0.19 0.09 0.31 0.12 0.29 0.85 -0.55
Ty (mm) -0.20 0.38 -0.31 0.43 -0.24 0.25 -0.19 0.24 0.65 -0.28
Tz (mm) 1.63 -1.64 1.65 -1.63 4.67 -4.79 4.78 -4.74 6.69 -6.76

Rx (
o) -4.94 4.99 -4.91 4.94 -0.35 0.36 -0.34 0.36 -3.37 3.39

Ry (
o) -0.29 0.32 -0.27 0.30 4.59 -4.79 4.77 -4.74 2.87 -2.83

Rz (
o) 0.38 -0.39 0.38 -0.35 0.22 -0.22 0.18 -0.21 0.80 -0.93

Tx (mm) -1.98 4.40 -1.13 -7.11 -0.89 10.41 -12.78 13.41 -10.84 0.78
Ty (mm) -0.45 -0.42 0.15 -0.07 -1.03 1.83 1.83 -1.95 0.13 1.36
Tz (mm) -0.32 2.36 -1.64 1.96 6.47 -5.60 4.75 2.45 8.94 -7.54

Rx (
o) -4.40 3.22 -3.15 3.43 -1.25 1.39 1.76 -5.30 -5.63 4.99

Ry (
o) 9.62 -11.03 1.13 12.60 6.56 -16.09 19.68 -24.24 13.78 0.77

Rz (
o) 2.20 -0.95 -0.66 -0.88 0.45 2.85 -5.09 3.58 -6.84 3.48

Tx (mm) 2.17 4.61 1.32 6.92 0.99 10.10 12.90 13.12 11.69 1.33
Ty (mm) 0.24 0.81 0.46 0.50 0.79 1.58 2.02 2.19 0.52 1.64
Tz (mm) 1.95 4.00 3.28 3.58 1.80 0.81 0.02 7.19 2.26 0.78

Rx (
o) 0.54 1.76 1.76 1.51 0.90 1.03 2.10 5.66 2.25 1.60

Ry (
o) 9.91 11.36 1.40 12.30 1.97 11.29 14.91 19.50 10.90 3.61

Rz (
o) 1.82 0.56 1.04 0.52 0.23 3.06 5.26 3.79 7.64 4.41

4.31 4.29 4.04 4.25 4.52 1.83 6.42 1.98 5.84 2.68

11.66 12.19 11.09 11.27 11.42 15.83 16.00 15.49 9.97 7.05

Error 

|Ellipsoid 

Fit Reg. - 

Optotrak|

Optotrak

Ellipsoid 

Fitting 

Reg.

Source
X axis rotation (yaw) Y axis translation (pitch) Combination

Motion 

Platform

Bounding Box Error (mm)

Hausdorff Distance (mm)
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E.2 Registration Experiment Results: the Full
Volume Registration

Table E.2 shows the registration experiment results using contours which
were obtained by segmenting the US volume data using the extended sagittal
segmentation algorithm. In the table, we report relative transformation
between adjacent poses. For example, the results in column “Vol 2” explain
the transformation from pose 1 to pose 2, the results in column “Vol 3”
explain the transformation from pose 2 to pose 3, and so on. The results in
column “Vol 3-1” explain the relative transformation from pose 3 to pose 1
since the relative transformation from pose 1 to pose 1 is always zero. The
transformation is expressed in three axes translation (Tx, Ty, Tz) and three
axes rotation (Rx, Ry, Rz).

The bounding box errors were calculated by defining two smallest rectan-
gular boxes that cover the intra-operative and pre-operative contour points.
The boxes’ vertices are the permutations of the X-axis, Y-axis, and Z-axis
extrema of the intra-operative and pre-operative contour points. The later
is registered using the registration matrix obtained from the ellipsoid fitting
based registration algorithm. Then, the bounding box error is calculated by
taking the root mean square distance between corresponding vertices.

The overall average bounding box error is 2.40 mm while the overall
average Hausdorff distance is 6.68 mm. The standard deviations are 1.53
mm and 3.49 mm respectively.

We report the dial numbers on the motion stage, the transformation pa-
rameters calculated from the Optotrak measurements, and the transforma-
tion parameters calculated using our ellipsoid fitting registration algorithm.
The registration error is calculated by taking the absolute difference between
the later two.
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Table E.2: Registration experiment results: the full volume registration.
Motion Type
Transformation Vol 3-1 Vol 2 Vol 3 Vol 4 Vol 5 Vol 6 Vol 7 Vol 8 Vol 9 Vol 10 Vol 11 Vol 12 Vol 13 Vol 14 Vol 15

Tx (mm) 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ty (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00
Tz (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00

Rx (
o) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ry (
o) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tx (mm) 0.00 0.00 -0.01 3.06 -3.06 2.98 -2.97 0.14 -0.14 0.13 -0.14 0.51 -0.50 0.51 -0.51
Ty (mm) 0.00 -0.01 0.01 0.41 -0.38 0.37 -0.33 2.86 -2.96 2.93 -2.95 -0.10 0.13 -0.12 0.15
Tz (mm) 0.00 0.00 0.00 -0.26 0.25 -0.26 0.26 0.03 -0.04 0.02 -0.03 5.01 -5.01 5.01 -5.01

Rx (
o) 0.00 0.00 0.00 0.02 -0.01 0.01 0.00 -0.36 0.35 -0.36 0.36 -0.02 0.02 -0.02 0.03

Ry (
o) 0.00 0.00 0.00 0.24 -0.25 0.25 -0.25 0.07 -0.06 0.05 -0.06 -0.04 0.03 -0.03 0.03

Rz (
o) 0.01 0.00 -0.02 0.20 -0.20 0.18 -0.20 0.19 -0.18 0.17 -0.18 -0.03 0.03 -0.02 0.01

Tx (mm) 0.24 2.32 -2.61 6.01 -5.00 5.11 -5.28 1.61 -0.83 -0.36 -1.25 2.54 -0.29 0.57 -0.79
Ty (mm) 0.48 -0.27 -0.17 1.45 -0.73 -0.81 1.28 1.81 -3.31 4.04 -3.13 0.66 -1.12 -0.96 0.97
Tz (mm) -0.50 0.55 0.09 -2.27 1.99 1.66 -2.39 2.89 0.30 -2.23 0.44 2.67 -1.55 5.99 -6.23

Rx (
o) 0.64 -0.35 -0.22 2.25 -1.34 -1.68 2.81 -3.27 0.36 1.42 0.37 1.96 -2.76 -1.28 1.55

Ry (
o) 1.25 -4.79 3.53 -2.98 3.76 -4.32 5.26 -4.88 0.00 2.44 0.85 -5.49 3.53 -1.68 -0.85

Rz (
o) 1.27 -0.65 -0.63 1.14 0.55 -0.62 1.10 -1.04 -0.55 0.97 -0.67 -0.66 2.35 -1.19 -1.25

Tx (mm) 0.24 2.32 2.61 2.95 1.93 2.13 2.31 1.46 0.68 0.49 1.12 2.03 0.21 0.06 0.28
Ty (mm) 0.48 0.26 0.19 1.05 0.35 1.18 1.61 1.06 0.35 1.11 0.18 0.76 1.25 0.84 0.82
Tz (mm) 0.49 0.55 0.09 2.01 1.74 1.92 2.65 2.86 0.33 2.24 0.47 2.33 3.46 0.98 1.22

Rx (
o) 0.64 0.35 0.22 2.23 1.33 1.69 2.82 2.91 0.01 1.78 0.02 1.97 2.78 1.26 1.52

Ry (
o) 1.26 4.79 3.52 3.22 4.01 4.57 5.51 4.95 0.05 2.39 0.91 5.45 3.50 1.65 0.88

Rz (
o) 1.26 0.65 0.61 0.94 0.74 0.80 1.30 1.23 0.37 0.80 0.49 0.63 2.33 1.17 1.27

0.69 1.01 0.57 0.97 1.09 0.96 1.12 1.25 1.04 0.93 0.96 3.81 1.90 3.87 3.36

2.75 2.56 2.97 3.62 4.22 4.01 4.01 3.70 2.92 3.61 3.40 7.93 6.83 7.27 7.33

Optotrak

Ellipsoid 

Fitting 

Reg.
Error 

|Ellipsoid 

Fit Reg. - 

Optotrak|

No Motion X axis translation Y axis translation Z axis translation
Source

Bounding Box Error (mm)

Hausdorff Distance (mm)

Motion 

Platform
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Table E.2 continued from previous page
Motion Type
Transformation Vol 16 Vol 17 Vol 18 Vol 19 Vol 20 Vol 21 Vol 22 Vol 23 Vol 24 Vol 25

Tx (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00
Ty (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00
Tz (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00

Rx (
o) 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00 -3.00 3.00

Ry (
o) 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 3.00 -3.00

Tx (mm) 0.19 -0.22 0.19 -0.19 0.09 0.31 0.12 0.29 0.85 -0.55
Ty (mm) -0.20 0.38 -0.31 0.43 -0.24 0.25 -0.19 0.24 0.65 -0.28
Tz (mm) 1.63 -1.64 1.65 -1.63 4.67 -4.79 4.78 -4.74 6.69 -6.76

Rx (
o) -4.94 4.99 -4.91 4.94 -0.35 0.36 -0.34 0.36 -3.37 3.39

Ry (
o) -0.29 0.32 -0.27 0.30 4.59 -4.79 4.77 -4.74 2.87 -2.83

Rz (
o) 0.38 -0.39 0.38 -0.35 0.22 -0.22 0.18 -0.21 0.80 -0.93

Tx (mm) 0.20 -1.20 0.75 -1.10 -1.12 2.27 -1.31 2.50 -2.71 3.36
Ty (mm) -0.06 -0.78 0.59 -0.21 0.69 -0.43 -0.59 0.65 0.40 0.96
Tz (mm) -1.90 3.37 -3.38 2.19 2.59 -3.20 5.84 -5.51 5.65 -6.91

Rx (
o) -3.57 2.26 -2.25 3.27 2.04 -1.52 -1.32 1.14 -2.89 4.32

Ry (
o) 4.30 -1.82 0.37 0.46 3.15 -3.49 3.89 -5.76 4.93 -4.34

Rz (
o) 2.05 -1.97 0.77 -0.77 -1.17 2.12 -1.31 0.72 -2.07 2.29

Tx (mm) 0.01 0.99 0.56 0.91 1.21 1.96 1.43 2.21 3.56 3.91
Ty (mm) 0.14 1.17 0.90 0.64 0.93 0.68 0.39 0.41 0.25 1.24
Tz (mm) 3.53 5.01 5.02 3.81 2.08 1.59 1.06 0.76 1.04 0.15

Rx (
o) 1.37 2.72 2.66 1.67 2.39 1.88 0.98 0.78 0.48 0.93

Ry (
o) 4.58 2.14 0.64 0.15 1.44 1.31 0.88 1.01 2.06 1.51

Rz (
o) 1.67 1.58 0.39 0.41 1.40 2.34 1.49 0.92 2.87 3.23

4.29 5.01 4.96 4.65 3.65 2.39 4.15 2.19 3.46 1.76

12.83 13.12 13.03 12.73 7.24 7.95 8.82 9.37 7.32 7.40

Optotrak

Ellipsoid 

Fitting 

Reg.
Error 

|Ellipsoid 

Fit Reg. - 

Optotrak|

Y axis translation (pitch) Combination
Source
Motion 

Platform

X axis rotation (yaw)

Bounding Box Error (mm)

Hausdorff Distance (mm)149



E.3. ICP Registration Results

E.3 ICP Registration Results

Table E.3 shows the registration experiment results using ICP on contours
which were obtained by segmenting the US volume data using the extended
sagittal segmentation algorithm. In the table, we report relative transfor-
mation between adjacent poses. For example, the results in column “Vol
2” explain the transformation from pose 1 to pose 2, the results in column
“Vol 3” explain the transformation from pose 2 to pose 3, and so on. The
results in column “Vol 3-1” explain the relative transformation from pose 3
to pose 1 since the relative transformation from pose 1 to pose 1 is always
zero. The transformation is expressed in three axes translation (Tx, Ty, Tz)
and three axes rotation (Rx, Ry, Rz).

The bounding box errors were calculated by defining two smallest rectan-
gular boxes that cover the intra-operative and pre-operative contour points.
The boxes’ vertices are the permutations of the X-axis, Y-axis, and Z-axis
extrema of the intra-operative and pre-operative contour points. The later
is registered using the registration matrix obtained from the ellipsoid fitting
based registration algorithm. Then, the bounding box error is calculated by
taking the root mean square distance between corresponding vertices.

The overall average bounding box error is 2.06 mm while the overall
average Hausdorff distance is 6.20 mm. The standard deviations are 1.32
mm and 3.18 mm respectively.

We also report the final root mean square closest points distance error
“Final RMS Dist” as well as the ICP registration time. Overall, it takes
76.49 ± 28.84 seconds to register the prostate volumes even after under
sampling the data points. The algorithm was implemented in Matlab run-
ning on a 1.66 GHz computer with 1 GB RAM. The final RMS distance
error is 0.83 ± 0.39 mm.

We report the dial numbers on the motion stage, the transformation pa-
rameters calculated from the Optotrak measurements, and the transforma-
tion parameters calculated using our ellipsoid fitting registration algorithm.
The registration error is calculated by taking the absolute difference between
the later two.
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Table E.3: Registration experiment results - ICP.
Motion Type
Transformation Vol 3-1 Vol 2 Vol 3 Vol 4 Vol 5 Vol 6 Vol 7 Vol 8 Vol 9 Vol 10 Vol 11 Vol 12 Vol 13 Vol 14 Vol 15

Tx (mm) 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ty (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00

Tz (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00

Rx (
o) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ry (
o) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tx (mm) 0.00 0.00 -0.01 3.06 -3.06 2.98 -2.97 0.14 -0.14 0.13 -0.14 0.51 -0.50 0.51 -0.51

Ty (mm) 0.00 -0.01 0.01 0.41 -0.38 0.37 -0.33 2.86 -2.96 2.93 -2.95 -0.10 0.13 -0.12 0.15

Tz (mm) 0.00 0.00 0.00 -0.26 0.25 -0.26 0.26 0.03 -0.04 0.02 -0.03 5.01 -5.01 5.01 -5.01

Rx (
o) 0.00 0.00 0.00 0.02 -0.01 0.01 0.00 -0.36 0.35 -0.36 0.36 -0.02 0.02 -0.02 0.03

Ry (
o) 0.00 0.00 0.00 0.24 -0.25 0.25 -0.25 0.07 -0.06 0.05 -0.06 -0.04 0.03 -0.03 0.03

Rz (
o) 0.01 0.00 -0.02 0.20 -0.20 0.18 -0.20 0.19 -0.18 0.17 -0.18 -0.03 0.03 -0.02 0.01

Tx (mm) -0.97 1.14 -1.43 3.84 -3.13 4.19 -3.56 1.29 -0.50 -0.06 -0.43 0.76 -0.40 -0.65 -0.23

Ty (mm) 0.12 -0.31 -0.32 0.82 -0.05 -0.78 0.68 2.09 -3.34 3.52 -3.03 0.29 -0.97 -0.64 -0.80

Tz (mm) -0.19 0.58 0.33 -1.36 0.55 1.45 -1.35 2.21 0.23 -0.92 -0.09 4.09 -2.12 5.70 -3.15

Rx (
o) 0.25 -0.59 -0.65 1.26 0.05 -1.74 1.66 -2.76 0.36 0.18 0.84 0.82 -2.07 -0.66 -1.34

Ry (
o) 1.12 -1.37 1.02 -0.77 0.58 -1.34 2.45 -1.89 -0.10 0.51 0.50 -1.65 1.05 -0.61 -0.05

Rz (
o) -0.39 0.11 -0.77 -0.04 0.93 0.12 1.25 0.19 -0.17 -0.01 0.07 -0.24 0.51 -2.02 0.18

ICP Time (s) 110.7 89.9 83.8 94.8 59.1 119.2 132.9 83.2 24.7 40.9 42.5 64.8 48.8 115.6 32.1

Final RMS Dist (mm) 0.58 0.48 0.47 0.55 0.57 0.56 0.61 0.55 0.58 0.54 0.57 0.71 0.99 0.60 1.17

Tx (mm) 0.97 1.14 1.42 0.78 0.07 1.21 0.58 1.15 0.36 0.19 0.29 0.25 0.10 1.16 0.28

Ty (mm) 0.12 0.30 0.33 0.42 0.33 1.15 1.02 0.77 0.39 0.59 0.08 0.39 1.10 0.52 0.94

Tz (mm) 0.18 0.58 0.33 1.11 0.30 1.71 1.60 2.18 0.26 0.94 0.06 0.91 2.88 0.69 1.86

Rx (
o) 0.25 0.59 0.65 1.25 0.06 1.75 1.66 2.40 0.01 0.54 0.49 0.84 2.08 0.64 1.37

Ry (
o) 1.12 1.37 1.02 1.02 0.83 1.59 2.70 1.96 0.05 0.46 0.56 1.61 1.02 0.58 0.08

Rz (
o) 0.40 0.11 0.75 0.24 1.13 0.06 1.45 0.00 0.01 0.19 0.26 0.21 0.49 2.00 0.16

0.76 0.61 0.27 0.79 0.62 0.54 0.72 0.83 1.03 0.80 0.88 3.63 2.32 3.81 2.83
2.65 2.87 2.54 4.21 4.33 4.03 3.93 3.31 2.94 3.45 3.71 6.61 5.80 7.35 7.37

Source
No Motion X axis translation Y axis translation Z axis translation

Motion 

Platform

Bounding Box Error (mm)

Hausdorff Distance (mm)

Error |ICP 

Reg. - 

Optotrak|

ICP Reg.

Optotrak
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Table E.3 continued from previous page
Motion Type
Transformation Vol 16 Vol 17 Vol 18 Vol 19 Vol 20 Vol 21 Vol 22 Vol 23 Vol 24 Vol 25

Tx (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00

Ty (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00

Tz (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 -3.00

Rx (
o) 5.00 -5.00 5.00 -5.00 0.00 0.00 0.00 0.00 -3.00 3.00

Ry (
o) 0.00 0.00 0.00 0.00 5.00 -5.00 5.00 -5.00 3.00 -3.00

Tx (mm) 0.19 -0.22 0.19 -0.19 0.09 0.31 0.12 0.29 0.85 -0.55

Ty (mm) -0.20 0.38 -0.31 0.43 -0.24 0.25 -0.19 0.24 0.65 -0.28

Tz (mm) 1.63 -1.64 1.65 -1.63 4.67 -4.79 4.78 -4.74 6.69 -6.76

Rx (
o) -4.94 4.99 -4.91 4.94 -0.35 0.36 -0.34 0.36 -3.37 3.39

Ry (
o) -0.29 0.32 -0.27 0.30 4.59 -4.79 4.77 -4.74 2.87 -2.83

Rz (
o) 0.38 -0.39 0.38 -0.35 0.22 -0.22 0.18 -0.21 0.80 -0.93

Tx (mm) 0.61 -0.87 -0.17 -0.17 0.04 -0.16 -0.61 0.02 -0.60 0.59

Ty (mm) -0.77 0.63 -0.56 1.77 0.62 -1.63 -0.57 -0.16 0.95 -1.06

Tz (mm) 0.67 -0.23 0.01 -2.04 3.48 -1.51 6.03 -3.98 4.86 -4.03

Rx (
o) -5.25 4.80 -4.65 6.84 1.61 -3.21 -1.14 -0.12 -1.91 1.37

Ry (
o) 2.10 -0.24 0.53 -0.04 2.14 -0.36 2.70 -1.36 1.69 -1.80

Rz (
o) 1.19 -0.51 -0.39 0.16 -0.32 1.24 -1.20 1.01 -1.32 0.74

ICP Time (s) 79.8 62.6 58.1 54.9 93.4 68.2 102.3 70.4 68.0 111.5

Final RMS Dist (mm) 1.17 1.85 1.38 1.75 0.76 1.08 0.55 1.15 0.64 0.94

Tx (mm) 0.42 0.65 0.35 0.02 0.05 0.47 0.73 0.26 1.45 1.14

Ty (mm) 0.57 0.25 0.25 1.33 0.86 1.88 0.38 0.39 0.30 0.78

Tz (mm) 0.96 1.41 1.64 0.42 1.19 3.28 1.25 0.77 1.82 2.73

Rx (
o) 0.31 0.18 0.26 1.90 1.95 3.57 0.79 0.48 1.46 2.02

Ry (
o) 2.39 0.57 0.80 0.35 2.45 4.43 2.07 3.39 1.18 1.03

Rz (
o) 0.81 0.13 0.78 0.52 0.55 1.46 1.38 1.22 2.13 1.68

3.22 3.41 3.34 3.04 3.87 2.39 4.19 2.73 2.98 1.91
12.07 12.26 12.15 12.32 7.08 7.33 8.51 6.96 5.86 5.49

Source
X axis rotation (yaw) Y axis translation (pitch) Combination

Motion 

Platform

Bounding Box Error (mm)

Hausdorff Distance (mm)

ICP Reg.

Error |ICP 

Reg. - 

Optotrak|

Optotrak
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Appendix F

Ellipsoid Fitting Results

F.1 Ellipsoid Fitting Results: the Sparse Volume
Registration

Table F.1 shows the ellipsoid fit results on the contours obtained by seg-
menting several sagittal US images from each volume data using the sagit-
tal segmentation algorithm. In the table, the ellipsoid parameters (center
location, orientation, radii lengths) are reported. We also report the sum
of square of the algebraic distance (SSD) from the fit - calculated using
equation A.5. The root mean squared of this algebraic distance (RMSD)
is reported by dividing SSD with the number of the sample points in the
contours and taking the square root of the division results.

The ellipsoid fit takes 0.002 ± 0.004 seconds to execute and it produces
a fit with root mean square distance of 0.011 ± 0.001 mm. The fit produces,
on average, 1100 sample points. The algorithm was implemented in Matlab
running on a 1.66 GHz computer with 1 GB RAM.
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Table F.1: Ellipsoid fit results for the sparse volume registration.
Motion Type
Param. Vol 1 Vol 2 Vol 3 Vol 4 Vol 5 Vol 6 Vol 7 Vol 8 Vol 9 Vol 10 Vol 11 Vol 12 Vol 13 Vol 14 Vol 15

Xc (mm) -0.74 -1.25 -1.30 2.50 -0.88 2.73 -0.43 -0.66 -0.96 -0.18 -1.12 -0.42 -0.81 0.04 -0.99
Yc (mm) 44.84 44.91 44.86 44.97 45.08 44.97 44.70 47.83 44.59 48.19 44.94 44.84 44.80 44.70 44.83
Zc (mm) 30.04 29.90 30.13 29.65 30.03 29.57 29.91 29.42 30.03 29.52 29.67 34.22 30.11 34.23 29.61

Ax (
o) 1.75 2.81 1.86 3.26 1.84 3.94 3.20 2.27 1.91 1.65 3.99 5.83 1.71 4.58 4.43

Ay (
o) 6.99 3.09 1.92 -11.66 5.08 -15.49 -1.08 10.80 -0.15 2.25 8.56 -26.90 6.41 16.46 -5.56

Az (
o) -2.77 -3.88 -2.80 -3.56 -3.77 -3.37 -1.57 -2.74 -3.24 -2.46 -4.69 -4.89 -2.77 0.33 -3.80

Rx (mm) 27.84 28.38 28.69 30.93 28.25 29.84 27.55 28.22 28.44 28.84 28.62 28.85 28.86 28.41 29.58
Ry (mm) 21.61 21.69 21.59 21.48 21.80 21.60 21.52 20.99 21.37 21.36 21.74 21.57 21.54 21.49 21.53
Rz (mm) 30.29 29.81 30.06 29.80 30.45 29.96 29.88 30.03 30.01 30.14 29.94 29.49 30.13 29.39 30.01

Fit time (s) 0.022 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
# of points 1150 1160 1147 1043 1146 1043 1175 1060 1149 1051 1167 1036 1141 1037 1161
SSD (mm2) 0.148 0.183 0.165 0.114 0.173 0.092 0.156 0.123 0.168 0.117 0.107 0.116 0.143 0.089 0.191

RMSD (mm) 0.011 0.013 0.012 0.010 0.012 0.009 0.012 0.011 0.012 0.011 0.010 0.011 0.011 0.009 0.013

Motion Type
Param. Vol 16 Vol 17 Vol 18 Vol 19 Vol 20 Vol 21 Vol 22 Vol 23 Vol 24 Vol 25

Xc (mm) -0.41 -0.64 -0.70 -0.89 1.17 -0.70 0.87 -1.05 0.39 -0.96
Yc (mm) 46.62 44.77 46.50 44.72 44.35 44.81 44.66 44.87 46.49 44.72
Zc (mm) 25.56 29.90 25.77 29.92 35.33 29.69 34.23 30.12 33.67 30.03

Ax (
o) -0.55 2.86 -0.34 2.55 0.89 3.10 4.86 2.11 -2.76 2.12

Ay (
o) 3.76 -7.21 -6.17 6.55 13.02 -2.97 16.71 -7.92 0.68 1.95

Az (
o) -1.15 -1.89 -2.14 -3.39 -3.15 0.09 -5.08 -2.86 -5.91 -2.35

Rx (mm) 28.59 28.64 27.96 28.34 28.67 28.51 27.44 28.56 27.34 28.06
Ry (mm) 21.56 21.61 21.45 21.57 21.30 21.72 21.67 21.74 21.53 21.79
Rz (mm) 30.62 29.96 30.64 30.12 29.82 30.02 29.59 30.33 30.02 30.30

Fit time (s) 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.001
# of points 1032 1158 1032 1156 1014 1163 1045 1145 955 1146
SSD (mm2) 0.089 0.215 0.123 0.171 0.079 0.219 0.153 0.124 0.147 0.177

RMSD (mm) 0.009 0.014 0.011 0.012 0.009 0.014 0.012 0.010 0.012 0.012

Z axis translation

 X axis rotation (yaw)

No Motion X axis translation Y axis translation

 Y axis rotation (pitch) Combination
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F.2. Ellipsoid Fitting Results: the Full Volume Registration

F.2 Ellipsoid Fitting Results: the Full Volume
Registration

Table F.2 shows the ellipsoid fit results on the contours obtained by using
the extended sagittal segmentation algorithm. In the table, the ellipsoid
parameters (center location, orientation, radii lengths) are reported. We
also report the sum of square of the algebraic distance (SSD) from the fit
- calculated using equation A.5. The root mean squared of this algebraic
distance (RMSD) is reported by dividing SSD with the number of the sample
points in the contours and taking the square root of the division results.

The ellipsoid fit takes 0.014 ± 0.013 seconds to execute and produces a
fit with root mean square distance of 0.008 ± 0.0005 mm. The fit produces,
on average, 13778 sample points. The algorithm was implemented in Matlab
running on a 1.66 GHz computer with 1 GB RAM.
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Table F.2: Ellipsoid fit results for the full volume registration.
Motion Type

Param. Vol 1 Vol 2 Vol 3 Vol 4 Vol 5 Vol 6 Vol 7 Vol 8 Vol 9 Vol 10 Vol 11 Vol 12 Vol 13 Vol 14 Vol 15
Xc (mm) -1.47 -1.10 -1.39 2.11 -1.48 1.97 -1.19 -1.04 -1.40 -1.17 -1.43 -1.39 -1.61 -0.95 -1.32
Yc (mm) 44.69 44.64 44.57 44.75 44.72 44.81 44.65 48.12 44.63 47.90 44.58 44.25 44.69 44.43 44.46
Zc (mm) 29.81 29.86 29.79 29.14 29.87 30.02 29.47 29.56 30.16 29.06 29.82 33.72 30.03 34.96 29.90

Ax (
o) 5.04 4.76 4.45 6.80 5.41 3.75 6.48 3.20 3.56 4.91 5.27 7.36 4.48 3.19 4.75

Ay (
o) 6.55 1.75 5.27 2.37 6.11 1.78 7.08 2.20 2.20 4.69 5.54 0.09 3.53 1.86 1.03

Ax (
o) -0.78 -1.46 -2.10 -0.74 -0.26 -1.05 0.13 -1.31 -1.85 -0.83 -1.47 -1.93 0.41 -0.86 -2.06

Rx (mm) 25.83 25.31 25.15 25.80 25.75 25.69 25.39 25.92 25.11 25.23 25.55 25.39 25.06 24.80 25.56
Ry (mm) 21.61 21.64 21.52 21.53 21.49 21.53 21.57 21.41 21.65 21.34 21.54 21.28 21.46 21.46 21.43
Rz (mm) 30.40 30.48 30.58 30.11 30.60 31.05 30.21 30.65 30.49 30.11 30.57 28.79 30.67 30.13 30.71

Fit time (s) 0.077 0.020 0.011 0.012 0.013 0.012 0.013 0.011 0.012 0.011 0.012 0.011 0.011 0.010 0.012
# points 14650 14271 14033 14466 14340 14002 14437 13269 14098 13332 14351 13603 13947 12849 14211

SSD (mm2) 1.002 1.035 1.019 0.924 0.871 1.050 1.022 0.667 1.011 0.708 0.928 0.750 0.864 0.926 1.003
RMSD (mm) 0.008 0.009 0.009 0.008 0.008 0.009 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.008 0.008

Motion Type
Param. Vol 16 Vol 17 Vol 18 Vol 19 Vol 20 Vol 21 Vol 22 Vol 23 Vol 24 Vol 25
Xc (mm) -0.74 -1.25 -0.92 -1.20 0.30 -1.10 0.58 -1.03 0.11 -1.05
Yc (mm) 46.17 44.38 46.11 44.39 43.97 44.34 44.40 44.31 45.90 44.07
Zc (mm) 25.20 30.33 25.20 29.99 34.16 29.74 34.56 29.80 33.46 29.82

Ax (
o) 1.02 3.28 1.02 4.29 6.24 4.89 3.50 4.86 0.53 5.11

Ay (
o) 5.19 3.38 3.67 4.19 7.40 3.84 7.71 2.00 5.83 1.75

Ax (
o) -0.08 -1.84 -1.21 -1.76 -2.79 -0.85 -2.26 -1.37 -3.66 -0.90

Rx (mm) 24.92 24.92 24.69 25.23 24.21 24.66 25.28 24.75 23.82 24.73
Ry (mm) 21.20 21.41 21.24 21.45 21.30 21.51 21.59 21.44 21.27 21.32
Rz (mm) 31.84 30.82 31.52 30.56 29.36 30.54 29.63 30.75 30.30 30.48
Fit time 0.010 0.011 0.010 0.011 0.010 0.012 0.011 0.012 0.011 0.012

# of points 12916 13896 13122 14173 12998 14050 13140 13947 12368 13971
SSD (mm2) 0.747 0.974 0.968 0.954 0.818 1.052 0.740 1.032 0.783 0.934
RMSD (mm) 0.008 0.008 0.009 0.008 0.008 0.009 0.008 0.009 0.008 0.008

 X axis rotation (yaw)  Y axis rotation (pitch) Combination

Z axis translationNo Motion Y axis translationX axis translation
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Appendix G

Determining the Motor
Specifications

The Brachyguide robot is made of two linear stages and two rotation stages.
Each stage is driven by a direct current (DC) motor with different torque
requirements depending on the stage’s load. The motors were selected based
on size constraints. First, their diameter must be less than or equal to 25 mm
to keep the robot design compact and light. Second, the motors and gears
configuration satisfy the load torque requirement. The following subsections
explain how the motor torque requirements were estimated.

G.1 The Rotation Stages

The rotation stages’ static friction torques are the main load torques for the
motors since the stages are already geared with high ratio bevel gears. Ten
turns of the stages’ knobs (3600o) rotates the stages’ plates by 30o. This
high gear ratio makes any load torque on the stage’s plate negligible. To
estimate the rotation stage static friction torque, an experiment - illustrated
in Figure G.1 - was conducted. An object with a known mass was attached
to the stage’s knob with a string. Different objects with increasing masses
were placed until the stage reached “impending motion state” - when the
knob was about to turn. The object’s weight multiplied by the knob’s radius
gave the estimated value of the static friction torque: 3.4 mNm. The 1727-
024 DC micromotor from Faulhaber, satisfies this requirement and is used
to drive the rotation stages.

G.2 The X-axis Linear Stage

For this stage, the DC motor has to generate enough torque to overcome
the static friction of the stage’s slider, the friction in the M6 lead screw
transmission, and the friction in the motor gear (if any gears are used). We
assumed the latter is negligible.
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G.2. The X-axis Linear Stage

Figure G.1: An object with known mass is attached to the stage’s knob
with a string to estimate the static friction torque.
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G.2. The X-axis Linear Stage

We conducted an experiment to estimate the slider’s static friction coef-
ficient. An object with known mass (object A) was put on top of the stage’s
slider. The stage’s slider generated a normal force equal to the combined
weight of the slider and object A. Another object with known mass (object
B) pulled the slider through a pulley system - see Figure G.2 for illustration.
Different objects with increasing masses were substituted as object B. When
the slider was at the stage of impending motion, the mass of object B was
recorded and its weight was calculated. This weight divided by the normal
force gave the estimated friction coefficient: 0.1637.

The pulley easily turned when an object with 8 grams of mass ( 0.08
N weight) was attached to it. The maximum recorded static friction of the
slider was about 3 N (almost forty time as large). Hence, in our estimation
experiment, the static friction of the pulley is considered to be negligible.

Figure G.2: Estimating the static friction coefficient of the stage’s slider
using a pulley system.

In the robot design, the X-axis slider carries the parallelogram linkage
and the two rotation stages. The combined weight of these components are
2 kg at most, corresponding to a 19.6 N normal force exerted by the slider.
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G.3. The Y-axis Linear Stage

Multiplying this number with the estimated static friction coefficient, gives
the estimated static friction force of the slider: 3.209 N.

To calculate the friction torque of the M6 lead screw, we used the rotary
to linear equation (equation G.1) from the PIC Design online catalogue [73].
The efficiency of the lead screw is estimated to be 44% based on the efficiency
of a similar Acme lead screw in the catalogue.

Torque =
Load · lead

2 · π · efficiency
(G.1)

Where the load is 19.6 N, the lead is 1 mm, and the efficiency is 44 percent.
The estimated lead-screw friction torque is 7.09 mNm.

The DC motor torque requirement is calculated based on the conserva-
tion of energy principle (see equation G.2).

Ffriction · l = (Tmotor − Tleadscrew) · θmotor (G.2)

Where Ffriction is 3.209 N, Tleadscrew is 7.09 mNm, l is 1 mm, and θmotor is
2π radians. The last two parameters are obtained from the lead value of the
M6 lead screw. The required DC motor torque is 7.6 mNm. The 2342-024
DC micromotor from Faulhaber, satisfies this requirement as it has a stall
torque of 85.4 mNm and a maximum operating torque of 16 mNm. The
motor’s diameter is 23 mm (below our constraint value). As a safety factor,
a 3.125 ratio gear is installed on the motor.

G.3 The Y-axis Linear Stage

The DC motor for the Y-axis stage must generate enough torque to overcome
the static friction of the stage’s slider, the friction in the M6 lead screw
transmission system, and the combined weight of the robot’s wrist and the
X-axis stage.

The Y-axis linear stage’s static friction was estimated using a digital
balance. The stage’s slider was held manually in a vertical position and the
stage was allowed to slide freely until the bottom side touched the balance,
see Figure G.3 for illustration. The mass measured by the balance, minus the
stage’s mass, multiplied by the gravitational acceleration gave the friction
force. This crude estimation approach may over estimate the true value
of the friction force. The estimated friction force of the Y-axis slider was
4.6021 N.
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G.3. The Y-axis Linear Stage

Figure G.3: Estimating the static friction forcr of the stage’s slider using a
digital balance.
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G.3. The Y-axis Linear Stage

The Y-axis stage supports the combined weight of the parallelogram
linkage, the two rotation axes, and the X-axis stage. The combined mass
of these components are 2.5 kg at most (equivalent to 24.5 N weight). Sub-
stituting this value into equation G.1, we estimate the lead screw friction
torque for the Y-axis stage to be 8.86 mNm. Then, the required DC motor
torque for the Y-axis stage can be calculated as

(Ffriction + Fweight) · l = (Tmotor − TScrew−Thread) · θmotor (G.3)

where Ffriction is 4.6021 N, Fweight is 24.5 N, TScrew−Thread is 8.86 mNm, l
is 1 mm, and θmotor is 2π radians. The required motor torque is 13.5 mNm.
The 2342-024 DC micromotor from Faulhaber, satisfies this requirement as
it has a stall torque of 85.4 mNm and a maximum operating torque of 16
mNm. The motor’s diameter is 23 mm (below our constraint value). As a
safety factor, a 3.125 ratio gear is installed on the motor.
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Appendix H

Initial Ellipsoid Fit
Sensitivity Analysis

To explore the role of the Kalman filter based segmentation in the final el-
lipsoid fit, we fit the fourteen user initialization points into ellipsoids and
observed the sensitivity of their parameters. Recall, in the extended segmen-
tation algorithm, the user selected fourteen initialization points that guided
the IMMPDAF edge detector. We used the same data set from Section
4.4.2. Figure H.1 to H.3 shows how the parameters of the ellipsoid fit to the
user initialization point change as one of the initialization points is varied
in X-Y-Z axes direction.
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Appendix I

Ethics Certificates for Full
Board Approval

This appendix contains the UBC Research Ethics Board certificates of Ap-
proval for the use of patients’ prostate volume data in this study.
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Appendix I. Ethics Certificates for Full Board Approval

Figure I.1: Ethics Approval Certificate for the use of patients’ prostate
volume data for the year 2007 - 2008.
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Appendix I. Ethics Certificates for Full Board Approval

Figure I.2: Ethics Approval Certificate for the use of patients’ prostate
volume data for the year 2008 - 2009.
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Appendix I. Ethics Certificates for Full Board Approval

Figure I.3: Page one of the Ethics Approval for the use of patients’ prostate
volume data for the year 2009 - 2010.
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Appendix I. Ethics Certificates for Full Board Approval

Figure I.4: Page two of the Ethics Approval for the use of patients’ prostate
volume data for the year 2009 - 2010.
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