
Test and Fault-Tolerance for Network-on-Chip Infrastructures

by

Cristian Grecu

B.Sc., Technical University of Iasi, 1996

M.A.Sc., The University of British Columbia, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)

© Cristian Grecu, 2008

November 2008

ii

Abstract

The demands of future computing, as well as the challenges of nanometer-era VLSI
design, will require new design techniques and design styles that are simultaneously
high-performance, energy-efficient, and robust to noise and process variation. One of the
emerging problems concerns the communication mechanisms between the increasing
number of blocks, or cores, that can be integrated onto a single chip. The bus-based
systems and point-to-point interconnection strategies in use today cannot be easily scaled
to accommodate the large numbers of cores projected in the near future. Network-on-chip
(NoC) interconnect infrastructures are one of the key technologies that will enable the
emergence of many-core processors and systems-on-chip with increased computing
power and energy efficiency. This dissertation is focused on testing, yield improvement
and fault-tolerance of such NoC infrastructures.

The motivation for the work is that, with technology scaling into the nanometer
range, defect densities will become a serious challenge for fabrication of integrated
circuits counting billions of transistors. Manufacturing these systems in high volumes can
only be possible if their cost is low. The test cost is one of the main components of the
total chip cost. However, relying on post-manufacturing test alone for guaranteeing that
ICs will operate correctly will not suffice, for two reasons: first, the increased fabrication
problems that are expected to characterize upcoming technology nodes will adversely
affect the manufacturing yield, and second, post-fabrication faults may develop due to
electromigration, thermal effects, and other mechanisms. Therefore, solutions must be
developed to tolerate faults of the NoC infrastructure, as well as of the functional cores.

In this dissertation, a fast, efficient test method is developed for NoCs, that exploits
their inherent parallelism to reduce the test time by transporting test data on multiple
paths and testing multiple NoC components concurrently. The improvement of test time
varies, depending on the NoC architecture and test transport protocol, from 2X to 34X,
compared to current NoC test methods. This test mechanism is used subsequently to
perform detection of NoC link permanent faults, which are then repaired by an on-chip
mechanism that replaces the faulty signal lines with fault-free ones, thereby increasing
the yield, while maintaining the same wire delay characteristics. The solution described
in this dissertation improves significantly the achievable yield of NoC inter-switch
channels – from 4% improvement for an 8-bit wide channel, to a 71% improvement for a
128-bit wide channel. The direct benefit is an improved fault-tolerance and increased
yield and long-term reliability of NoC-based multicore systems.

iii

Table of Contents
Abstract ... ii
Table of Contents... iii
List of Tables... v
List of Figures .. vi

Acknowledgments.. ix
1 Introduction ... 1

1.1 Dissertation contribution.. 9
2 Background on Network-on-chip Testing ... 11

2.1 Introduction... 11
2.2 Multi-processor systems-on-chip ... 11
2.3 Networks-on-chip .. 13
2.4 Network-on-chip test – previous work.. 14
2.5 Fault models for NoC infrastructure test ... 18

2.5.1 Wire/crosstalk fault models for NoC inter-switch links 19
2.5.2 Logic/memory fault models for FIFO buffers in NoC switches 20

2.6 Summary.. 23
3 Test Time Minimization for Networks-on-Chip 24

3.1 Test data organization .. 24
3.2 Testing NoC switches.. 25
3.3 Testing NoC links.. 26
3.4 Test data transport ... 28

3.4.1 Multicast test transport mechanism .. 30
3.5 Test scheduling .. 35

3.5.1 Test time cost function ... 37
3.5.2 Test transport time minimization... 39
3.5.3 Unicast test scheduling .. 41
3.5.4 Multicast test scheduling ... 44

3.6 Experimental results ... 48
3.6.1 Test output evaluation.. 48
3.6.2 Test modes for NoC components ... 49
3.6.3 Test scheduling results... 50

3.7 Summary.. 57
4 Fault-tolerance Techniques for Networks-on-chip 59

4.1 Introduction... 60
4.2 Traditional fault-tolerance metrics ... 65
4.3 Fault-tolerance metrics for network-on-chip subsystems 67
4.4 Metrics evaluation... 73
4.5 Summary.. 82

5 Fault-tolerant Global Links for Inter-core Communication in
Networks-on-chip .. 83

5.1 Introduction... 83
5.2 Related work.. 84

List of Acronyms and Abbreviations ...viii

iv

5.3 Problem statement .. 86
5.4 Interconnect yield modeling and spare calculation 88
5.5 Fault-tolerant NoC links .. 90
5.6 Sparse crossbar concentrators... 91
5.7 Fault tolerant global interconnects based on balanced crossbars 95
5.8 Link test and reconfiguration mechanisms .. 103

5.8.1 Testing the sparse crossbar matrix and interconnect wires 104
5.8.2 Link reconfiguration.. 107
5.8.3 Yield, performance and cost analysis .. 110

5.9 Summary.. 114
6 Conclusions .. 115

6.1 Summary of contributions ... 115
6.2 Limitations... 116
6.3 Future work ... 117

7 Appendices ... 122
7.1 Appendix 1: Proof of Correctness for Algorithms 1 and 2 122
7.2 Appendix 2: Algorithm for balancing fault-tolerant sparse crossbars 125

References ... 129

v

List of Tables
Table 3-1: Unicast test data scheduling for the example in Fig. 3-7........................... 44
Table 3-2: Multicast test data scheduling for the example in Fig. 3-7 47
Table 3-4: Gate count and comparison for the proposed test mechanism 56
Table 3-5: Test scheduling run-times ... 57
Table 4-1: Detection latency (10-10 flit error rate) ... 81
Table 4-2: Recovery latency (10-10 flit error rate) ... 81
Table 5-1: Effective yield improvement vs interconnect complexity 111
Table 5-2: Test and reconfiguration time overhead .. 113

vi

List of Figures
Figure 1-1: a) Regular NoC. b) Irregular NoC. ... 2
Figure 1-2: (a) Global links in NoC-based systems-on-chip; (b) global inter-core link

with m signal lines; (c) interconnect line spanning multiple metal/via levels...... 5
Figure 2-1: MP-SoC platform.. 12
Figure 2-2: Network-on-chip building blocks in a mesh configuration 14
Figure 2-3: Test configurations in [29]: (a) straight paths; (b) turning paths; (c) local

resource connections ... 15
Figure 2-4: Core-based test of NoC routers using an IEEE 1500 test wrapper and

scan insertion [30] ... 16
Figure 2-5: Test data transport for NoC router testing using (a) multicast and (b)

unicast [26]... 17
Figure 2-6: Examples of faults that can affect NoC infrastructures: (a) crosstalk

faults; (b) memory faults in the input/output buffers of the switches; (c)
short/open interconnect faults; (d) stuck-at faults affecting the logic gates of
NoC switches.. 18

Figure 2-7: MAF crosstalk errors (Y2 – victim wire; Y1, Y3 – aggressor wires). 20
Figure 2-8: (a) 4-port NoC switch – generic architecture; (b) dual port NoC FIFO.22
Figure 3-1: Test packet structure .. 25
Figure 3-2: a) Wire i and adjacent wires; b) Test sequence for wire i; c) Conceptual

state machine for MAF patterns generation. ... 27
Figure 3-3: (a) Unicast data transport in a NoC; (b) multicast data transport in a

NoC (S – source; D – destination; U – switches in unicast mode; M – switches in
multicast mode). .. 29

Figure 3-4: 4-port NoC switch with multicast wrapper unit (MWU) for test data
transport. ... 31

Figure 3-5: Multicast route for test packets. .. 34
Figure 3-6: (a), (b): Unicast test transport. (c) Multicast test transport.................... 37
Figure 3-7: 4-switch network with unidirectional links. ... 43
Figure 3-8: Test packets processing and output comparison...................................... 49
Figure 4-1: Processes communicating across a NoC fabric .. 68
Figure 4-2: Hierarchical partitioning for fault tolerant NoC designs........................ 68
Figure 4-3: Average detection latency for end-to-end (e2e), switch-to-switch (s2s),

and code-disjoint (cdd) detection schemes.. 74
Figure 4-4: Average recovery latency for equal priority recovery (epr) and priority

based recovery (pbr). .. 76
Figure 4-5: Average recovery latency for pbr scheme with variable flit error rate . 78
Figure 4-6: Average message latency vs. bound on MAP. .. 79
Figure 4-7: Processes P1, P2 mapped on a mesh NoC with QoS communication

constraints.. 80
Figure 4-8: Performance and cost of detection techniques. .. 80
Figure 5-1: (a) Non-fault-tolerant sparse crossbar and crosspoint implementation;

(b) n-m fault-tolerant sparse crossbar. ... 92
Figure 5-2: Fastest and slowest propagation delay paths for non-balanced fault-

tolerant links.. 93

vii

Figure 5-3: Delay variation for imbalanced fault-tolerant links with 25%
redundancy. ... 84

Figure 5-4: Balancing an (n-m) fault-tolerant sparse crossbar through successive
column exchange operations; m=5, n=11.. 98

Figure 5-5: Delay variation for balanced (b) links with 25% redundancy.............. 100
Figure 5-6: Delay variation versus degree of redundancy for a 64-bit link 102
Figure 5-7: Delay variation versus crossbar size and degree of redundancy. 102
Figure 5-8: Self-test and repair link architecture with shared test and

reconfiguration blocks .. 104
Figure 5-9: Link-level test and reconfiguration. .. 105
Figure 5-10: Test and reconfiguration hardware. ... 107
Figure 5-11: Link reconfiguration algorithm... 108
Figure 5-12: Physical link width (n) for different values of logic link width (m = 32,

64, 128 bits) and target effective yield (Yeff). .. 110
Figure 5-13: Area overhead for different crossbar sizes and degrees of redundancy.

... 112

viii

ATE: Automated Test Equipment

ATPG: Automated Test Pattern Generation

CAD: Computer Aided Design

CMOS: Complementary Metal Oxide Semiconductor

CMP: Chip Multi-Processors

CPU: Central Processing Unit

DFT: Design for Test

DFM: Design for Manufacturability

DRC: Design Rule Checking

DSP: Digital Signal Processor

FIFO: First In First Out

FO4: Fan-out of four

FPGA: Field Programmable Gate Array

IC: Integrated Circuit

IP: Intellectual Property

ISO: International Organization for Standardization

ITRS: International Technology Roadmap for Semiconductors

I/O: Input/Output

MAF: Maximum Aggressor Fault

MAP: Message Arrival Probability

MP-SoC: Multi-processor System-on-chip

MWU: Multicast Wrapper Unit

NMR: N-Modular Redundancy

NoC: Network-on-chip

OSI: Open Systems Interconnection

QoS: Quality of Services

RISC: Reduced Instruction Set Computer

RLB: Routing Logic Block

SoC: System-on-chip

TAM: Test Access Mechanism

TTPE: Test Time per Element

TT: Test Time

VLSI: Very Large Scale Integration

List of Acronyms and Abbreviations

ix

Acknowledgments

I would like to thank my research supervisors, Professors André Ivanov and Resve

Saleh, for their continued support along my graduate studies. Without their guidance and

help, this work would have not been possible.

I would also like to thank my colleague and friend Partha Pande, for his advice,

participation and help in my research.

Special thanks are due to my wife, Gabriela, who supported me unconditionally all

these years.

This work was partially supported by NSERC of Canada and Micronet.

1

Chapter 1

1 Introduction

The microprocessor industry is moving from a single-core processor to multi-core

and, in the foreseeable future, to many-core processor architectures built with tens to

hundreds of identical cores arranged as chip multi-processors (CMPs) [1]. Another

similar trend can be seen in the evolution of systems-on-chip (SoCs) from single-

processor systems with a set of peripherals to heterogeneous multi-core systems,

composed of several different types of processing elements and peripherals (memory

blocks, hardware accelerators, custom designed cores, input/output blocks, etc.) [2].

Microprocessor vendors are also venturing forwards to mixed approaches, combining

multiple identical processors with different types of cores, such as the AMD Fusion

family [3], which combines together multiple identical CPU cores and a graphics

processor in one design.

Such multi-core, multi-processor systems, whether homogeneous, heterogeneous, or

hybrid, must be interconnected in a manner that is high-performance, scalable, and

reliable. The emerging design paradigm that targets such interconnections is called an on-

chip interconnection network, or network-on-chip (NoC). The basic idea of the NoC

paradigm can be summarized as “route packets, not wires” [4]. Interconnecting cores

through an on-chip network has several advantages over dedicated point-to-point or

bus-based wiring, offering potential advantages in terms of high aggregate bandwidth,

2

low communication latency, low power dissipation in inter-core communication, and

increased scalability, modularity and flexibility.

The potential of NoCs is, however, far from being fully realized, and their practical

implementation presents numerous challenges [5]. The first set of challenges is associated

with meeting power/performance targets. The second set of issues relates to CAD tools

and design methodologies to cope with the typical number of devices (in the range of one

billion transistors or more), and the high degree of hardware and software parallelism that

is characteristic of NoC-based systems.

Network-on-chip architectures were proposed as a holistic solution for a set of

challenges faced by designers of large, multi-core systems-on-chip. In general, two types

of NoC architectures can be identified, as shown in Fig. 1-1: (a) regular interconnection

structures derived from parallel computing, and (b) irregular, custom-built NoC fabrics.

The infrastructure for NoC includes switches, inter-switch wires, interface blocks to

connect to the cores, and a protocol for data transmission [6]. There is a significant

number of active research efforts to bring NoCs into mainstream use [7].

(a) (b)

- Functional core

- Switch

Figure 1-1: a) Regular NoC. b) Irregular NoC.

3

The power dissipation of current NoC implementations is estimated to be

significantly higher (in the order of 10 times or more) compared to the expected power

budget of future CMP interconnects [5]. Both circuit-level and architecture-level

techniques must be combined in order to reduce the power dissipation of NoC-based

systems and their data-communication sub-systems to acceptable values.

The data transport latency of NoC infrastructures is too large for the current

programming models, leading to significant performance degradation, especially in the

case of on-chip memory access operations. Here, various research efforts are focused on

reduced-latency router microarchitecture design [8], circuit techniques that reduce signal

propagation time through NoC channels [9], and network architectures with reduced

number of hops for latency-critical data transfers [10].

From a CAD perspective, most of the NoC architectures and circuit techniques are

incompatible with the current design flows and tools, making them difficult to integrate

in the typical SoC design flow. The fundamental reason is the high degree of parallelism

at both computation and data transport levels, combined with the different ways in which

the software and hardware components of a NoC interact with each other.

A major challenge that SoC designers are expected to face [11] is related to the

intrinsic unreliability of the communication infrastructure due to technology limitations.

Two different sources can be identified: random and systematic. The random defects

arise from the contaminants, particles and scratches [12] that occur during the fabrication

process. The systematic defects have roots in the photolithographic process, chemical-

mechanical polishing methods and the continuous feature size shrinking in semiconductor

fabrication technology. Chips are increasingly prone to feature corruption producing

4

shorts and opens in the wires, and missing vias, or vias with voids, as a result of

photolithographic limitations. In addition, the effect of steps such as chemical-mechanical

polishing may cause surface dishing through over-polishing, ultimately becoming

important yield-loss factors [13].

Metal and via layers in advanced CMOS processes are characterized by defect

densities correlated with their specific physical dimensions. Upper layers of metal tend to

be wider and taller due to the expected current levels. The fabrication of wider wires does

not present as much of a problem to photolithographic techniques; however, the vias tend

to be tall and thin and are prone to voids. Therefore, via duplication or via arrays are

employed to circumvent this issue.

Producing fine-lined wires presents the greatest challenge to the resolution of the

most advanced photolithographic capabilities available today. Mitigating all these general

observations is the fact that, in a typical foundry, older generations of equipment are used

to fabricate the middle and upper layers of metal, each with their own yield

characteristics. It is expected that the overall yield of interconnects will continue to

decrease as the number of metal layers increases (e.g., 12 metal layers for 45 nm

technology, compared with 9 layers for a typical 90nm process, and 5 layers for a 180nm

process), as projected by the ITRS documents [14].

The impact on the overall yield of multi-core chips [15] can be quite significant,

given that the data communication infrastructure alone can consume around 10-15% of

the total chip area [16]. The inter-core communication links are likely to be routed on the

middle and upper metal layers. Hence, the layout scenario is very similar to the example

shown in Fig. 1-2, which illustrates a multi-processor SoC built on a network-on-chip

5

platform, consisting of functional cores, switching blocks and global links. The active

devices (processing cores, memory blocks) are on the lower levels on the silicon surface,

and the inter-core wires are on the higher levels of the 3D structure [17]. Global signal

lines span more metal layers and require more levels of vias in order to go to/from the

active devices on the silicon surface and therefore are more prone to manufacturing

defects.

Figure 1-2: (a) Global links in NoC-based systems-on-chip; (b) global inter-core link with m
signal lines; (c) interconnect line spanning multiple metal/via levels.

Many authors have tried to make the case for the network-on-chip paradigm by

stating that “wires are free” and consequently an interconnect architecture consisting of

many multi-wire links is, by default, feasible and efficient. In fact, wires are expensive in

terms of the cost of the masks that are required in the successive steps of the fabrication

of interconnect metal layers through photolithography. Moreover, they are not free in

terms of the possible defects that can appear due to technology constraints specific to an

6

increase in the number of metal layers for every process generation, and continuous

increase in the aspect ratio of wires (the ratio between their vertical and horizontal

dimensions). While the wires on the lower layers can be made with an aspect ratio of less

than one, the interconnects on middle and upper metal layers require an aspect ratio of

two or higher. This, in turn, places an increased difficulty in achieving reliable contact

between wires on different layers, since the vias between such wires will need to be

relatively tall and narrow, and as a consequence more likely to exhibit open or resistive

defects.

Currently, via duplication is the solution that attempts to address this issue by

inserting redundant vias in the routing stage of the chip layout design phase. This method

for improving interconnect yield is ad-hoc in nature and can only provide results if

enough space is left on the upper level metal layers to insert the redundant vias while

preserving the design rules. Most of the authors of technical articles on the topic of via

duplication state clearly that, ideally, the solution for interconnect yield improvement

should be pushed earlier in the design flow of ICs, more preferably in the front-end rather

than in the back-end. A universal front-end solution for improving interconnect yield has

not yet been found. However, by examining the categories of interconnect that are more

prone to defects, it is possible to develop custom solutions targeting particular

interconnect types.

That is, in order to ensure correct fabrication, faults must be detected through post-

fabrication testing, and, possibly, compensated for through fault-tolerant techniques.

When looking in particular at design, test, manufacturing and the associated CAD

tools in the NoC design flow in the context of shrinking transistor size and wire

7

dimensions, it is clear that fabrication defects and variability are significant challenges

that are often overlooked. On-chip networks need mechanisms to ensure correct

fabrication and life-time operation in presence of new defect/fault mechanisms, process

variability, and high availability requirements.

Traditionally, correct fabrication of integrated circuits is verified by post-

manufacturing testing using different techniques ranging from scan-based techniques to

delay test and current-based test. Due to their particular nature, NoCs are exposed to a

wide range of faults that can escape the classic test procedures. Among such faults we

can enumerate crosstalk, faults in the buffers of the NoC routers, and higher-level faults

such as packet misrouting and data scrambling [6]. These fault types add to the classic

faults that must be tested after fabrication for all integrated circuits (stuck-at, opens,

shorts, memory faults, etc.). Consequently, the test time of NoC-based systems increases

considerably due to these new faults.

Test time is an important component of the test cost and, implicitly, of the total

fabrication cost of a chip. For large volume production, the total chip testing time must be

reduced as much as possible in order to keep the total cost low. The total test time of an

IC is governed by the amount of test data that must be applied and the amount of

controllability/observability that the design-for-test (DFT) strategy chosen by designers

can provide. The test data increases with chip complexity and size, so the option the DFT

engineers are left with is to improve the controllability/observability. Traditionally, this is

achieved by increasing the number of test inputs/outputs, but this has the same effect of

increasing the total cost of the IC.

8

DFT techniques such as scan-based test improve the controllability and observability

of IC internal components by serializing the test input/output data and feeding/extracting

it to/from the IC through a reduced number of test pins. The trade-off is the increase in

test time and test frequency, which makes at-speed test difficult using scan-based

techniques. While scan-based solutions are useful, their limitations in the particular case

of NoC systems demand the development of new test data generation and transport

mechanisms that simultaneously minimize the total test time and the number of test I/O

pins.

In this work, two types of solutions are proposed to reduce the test time of NoC data

transport infrastructures: first, we use a built-in self-test solution to generate test data

internally, eliminating the need to inject test data using I/O pins. Second, we replace the

use of a traditional dedicated test access mechanism (TAM) with a test transport

mechanism that reuses the NoC infrastructure progressively to transport test data to NoC

components under test. This approach has the advantage that it exploits the inherent high

degree of parallelism of the NoC, thus allowing the delivery of multiple test vectors in

parallel to multiple NoC components under test. A multicast test delivery mechanism is

described, with one test data source that sends test data in a parallel fashion along the

subset of already tested NoC components. The test data routing algorithm is optimized

off-line, deterministically, such that the shortest paths are always selected for forwarding

test packets. This techniques guarantees that the test transport time is minimized which,

together with the advantage of testing multiple NoC components in parallel, yields a

reduced test time for the overall NoC.

9

An effective and efficient test procedure is necessary, but not sufficient to guarantee

the correct operation of NoC data transport infrastructures during the life-time of the

integrated circuits. Defects may appear later in the field, due to causes such as

electromigration, thermal effects, material ageing, etc. These effects will become more

pronounced with continuous downscaling of device dimensions beyond 65 nm and

moving towards the nanoscale domain. New methods are needed to enhance the yield of

these links to make them more reliable. The fault-tolerant solution using reconfigurable

crossbars and redundant links developed in this work is aimed specifically at the NoC

links, and allows both post-fabrication yield tuning and self-repair of links that may break

down later in the life-cycle of the chip.

1.1 Dissertation contribution

This dissertation offers three major contributions:

1. A complete NoC test methodology, including the hardware circuitry and

scheduling algorithms, which together minimize the test time by

distributing test data concurrently to multiple components of the NoC

fabric.

2. An evaluation of various fault-tolerance mechanisms for NoC

infrastructures, and two new metrics relevant to quality-of-services on

NoCs.

3. A fault-tolerant design method for NoC links that allows fine yield tuning

and life-cycle self-repair of NoC interconnect infrastructures. This method

uses the above-mentioned test mechanism to diagnose and identify the

faulty interconnects.

10

The rest of this dissertation is organized as follows: Chapter 2 presents background

on network-on-chip test aspects and fault models. Chapter 3 presents contribution (1) - a

test methodology and scheduling algorithms that minimize the test time of NoC of

arbitrary topologies. Chapter 4 presents contribution (2) - an overview and evaluation of

fault-tolerance mechanisms and two proposed metrics relevant to NoCs. Chapter 5

describes contribution (3) - a method to provide design fault-tolerant NoC links based on

sparse crossbars and tune the yield of NoC links based on the expected defect rate.

Chapter 6 concludes the dissertation, outlines a few limitations of the proposed

approaches, and provides a set of possible future research directions that can be pursued

as a direct follow-up to the contributions presented in this dissertation.

11

Chapter 2

2 Background on Network-on-chip Testing

2.1 Introduction

System-on-Chip (SoC) design methodologies are currently undergoing revolutionary

changes, driven by the emergence of multi-core platforms supporting large sets of

embedded processing cores. These platforms may contain a set of heterogeneous

components with irregular block sizes and/or homogeneous components with a regular

block sizes. The resulting platforms are collectively referred to as multi-processor SoC

(MP-SoC) designs [7]. Such MP-SoCs imply the seamless integration of numerous

Intellectual Property (IP) blocks performing different functions and exchanging data

through a dedicated on-chip communication infrastructure. A key requirement of these

platforms, whether irregular or regular, is a structured interconnect architecture. The

network-on-chip (NoC) architecture is a leading candidate for this purpose [18].

2.2 Multi-processor systems-on-chip

Since today’s VLSI chips can accommodate in excess of 1 billion transistors, enough to

theoretically place thousands of 32-bit RISC [18] processors on a die, leveraging such

capabilities is a major challenge. Traditionally, SoC design was based on the use of a

slowly evolving set of hardware and software components: general-purpose processors,

digital signal processors (DSPs), memory blocks, and other custom-designed hardware IP

blocks (digital and analog). With a significant increase in the number of components in

complex SoCs, significantly different design methods are required to cope with the deep

sub-micron physical design issues, verification and design-for-test of the resulting SoCs.

12

One of the solutions that the design community adopted to reduce the design cycle is the

platform-based design paradigm, characterized by the use of higher-level off-the-shelf IP

blocks, connected via a modular, scalable SoC interconnect fabric and standard

communication interfaces and protocols. Such MP-SoC platforms are highly flexible,

programmable and/or reconfigurable for application areas such as wireless, multimedia,

networking, automotive. A high-level view of the general MP-SoC platform is given in

Fig. 2-1. When designing with such platforms, no IP design is performed, but

specification, configuration and assembly of existing IP blocks is greatly facilitated.

Figure 2-1: MP-SoC platform [7]

MP-SoC platforms will include, in the near future, tens to hundreds of embedded

processors, in a wide variety of forms, from general-purpose reduced instruction-set

computers (RISC) to application-specific instruction-set processors (ASIP) with different

trade-offs in time-to-market, performance, power and cost. New designs are being

reported from industry [19], with more than 100 embedded heterogeneous processors, for

applications ranging from communications, network processing, to security processors,

storage array networks, and consumer image processing.

13

2.3 Networks-on-chip

A key component of the MP-SoC platform of Fig. 2-1 is the interconnect fabric

connecting the major blocks. Such a fabric must provide orthogonality, scalability,

predictable physical parameters and a plug-and-play design style for integrating various

hard-wired, reconfigurable or programmable IPs. Such architectures must support high-

level, layered communication abstraction, and simplify the automatic mapping of

processing resources onto the interconnect fabric. Networks-on-chip are particularly

suitable for accomplishing these features.

A NoC interconnect fabric is a combination of hardware (switches and inter-switch

links) and software components (communication and interfacing protocols). NoCs can be

organized in various topologies [20] – mesh, tree, ring, irregular, etc…– and can

implement various subsets of the ISO/OSI communication stack [21]. A well-known 2D

mesh NoC topology is illustrated in Fig. 2-2. The term Network-on-chip is used today

mostly in a very broad sense, encompassing the hardware communication infrastructure,

the communication protocols and interfaces, operating system communication services,

and the design methodology and tools for NoC syndissertation and application mapping.

All these components together can be called a NoC platform [7]. Some authors use the

Network-on-chip to denote the entire MP-SoC built on a structured, networked fabric –

including the IP cores, the on-chip communication medium, application software and

communication protocols [20]. In this dissertation, the Network-on-chip term refers to the

on-chip communication architecture, including the hardware components (switches,

links) and communication protocols.

14

Figure 2-2: Network-on-chip building blocks in a mesh configuration

2.4 Network-on-chip test – previous work

While much work has centered on design issues, much less effort has been directed to

testing such NoCs. Any new design methodology will only be widely adopted if it is

complemented by efficient test mechanisms. In the case of NoC-based chips, two main

aspects have to be addressed with respect to their test procedures: how to test the NoC

communication fabric, and how to test the functional cores (processing, memory and

other modules). Since the inception of SoC designs, the research community has targeted

principally the testing of the IP cores [22], giving little emphasis to the testing of their

communication infrastructures. The main concern for SoC test was the design of efficient

test access mechanisms (TAM) for delivering the test data to the individual cores under

constraints such as test time, test power, and temperature. Among the different test access

mechanisms, TestRail [23] was one of the first to address core-based test of SoCs.

Recently, a number of different research groups suggested the reuse of the

communication infrastructure as a test access mechanism [24] [25] [26]. In [27] the

authors assumed the NoC fabric as fault-free and subsequently used it to transport test

data to the functional blocks; however, for large systems, this assumption can be

unrealistic, considering the complexity of the design and communication protocols. In

15

[28], the authors proposed a dedicated TAM based on an on-chip network, where

network-oriented mechanisms were used to deliver test data to the functional cores of the

SoC.

A test procedure for the links of NoC fabrics is presented in [29], targeted specifically

to mesh topologies. The NoC switches are assumed to be tested using conventional

methods first, and then three test configurations are applied in series to diagnose potential

faults of the inter-switch links, as indicated in Fig. 2-3.

(a) (b) (c)

Figure 2-3: Test configurations in [29]: (a) straight paths; (b) turning paths; (c) local
resource connections

A configuration is set up by adjusting the corresponding destination address fields of

the transmitted packets to the last row (column) of the network matrix. The three

configurations cover all possible link directions in a mesh NoC: vertical, horizontal,

turning paths, and local connections to processing resources. The major limitations of this

approach are: 1) applicability to mesh-based NoC only; 2) a test procedure for NoC

switches is not defined.

A different approach is presented in [30], based on an extension of the classic

wrapper-based SoC test [23] and scan-chain method [31]. Each NoC switch (or router) is

subjected to scan-chain insertion, and the set of all NoC switches is wrapped with an

16

IEEE 1500 test wrapper and tested using the core-based test approach [23]. The overall

test architecture is presented in Figure 2-4.

test inputs output comparison

Figure 2-4: Core-based test of NoC routers using an IEEE 1500 test wrapper and scan
insertion [30]

The solution presented in [30] addresses the test of the NoC switches only,

overlooking completely the aspect of testing the NoC links. For large NoCs, the method

inherits the limitations of scan-based test when applied to large cores: slow test speed for

long scan chains, the trade-off between the number of test I/Os and scan chain length.

The idea of reusing the NoC fabric for delivering test data to the processing elements

appears also in [26], combined with progressive test of NoC routers and overlapping the

test of routers and processing elements in time to reduce the total test time. Both unicast

and multicast test transport methods are considered, as shown in Figure 2-5.

17

(a) (b)
Figure 2-5: Test data transport for NoC router testing using (a) multicast and (b) unicast

[26]

The work presented in [26] does not consider the test of NoC links, and does not

show how to minimize the test transport time in either the unicast or multicast transport

modes. It is also not clear if the proposed solution delivers an optimal test time when

combining test of NoC routers and processing cores.

This dissertation is focused on the test of the NoC infrastructure that includes both

NoC switches and inter-switch links. The work complements previous approaches by

developing the test strategy for the interconnect infrastructure itself. The test strategies of

NoC-based interconnect infrastructures must address two problems [16]: (i) testing of the

switch blocks; (ii) testing of the inter-switch wire segments. The test procedures of both

switches and inter-switch links are integrated in a streamlined fashion. Two novel

techniques characterize the proposed solution. The first is the reuse of the already tested

NoC components to transport the test data towards the components under test in a

recursive manner. The second is employing the inherent parallelism of the NoC structures

to propagate the test data simultaneously to multiple NoC elements under test. Two test

scheduling algorithms are provided that guarantee a minimal test time for arbitrary NoC

topologies. In the next section we elaborate the set of fault models used for designing the

proposed test method, including scheduling algorithms and on-chip test-related hardware.

18

2.5 Fault models for NoC infrastructure test

When developing a test methodology for NoC fabrics, one needs to start from a set of

models that can realistically represent the faults specific to the nature of NoC as a data

transport mechanism. As stated previously, a NoC infrastructure is built from two basic

types of components: switches and inter-switch links. For each type of component, test

patterns must be constructed that exercise its characteristic faults.

- Functional core

- Switch

- Link

‘1’

‘0’

(a)

(b)

(d)

(c)

Figure 2-6: Examples of faults that can affect NoC infrastructures: (a) crosstalk faults; (b)
memory faults in the input/output buffers of the switches; (c) short/open interconnect faults;

(d) stuck-at faults affecting the logic gates of NoC switches.

The range of faults that can affect the NoC infrastructure is significant and it extends

from interconnects faults to logic and memory faults. Consequently, the data set required

to test all these faults is extremely large, and carries a major overhead to the overall test

time of NoC-based integrated circuits. A subset of these faults is represented in Fig. 2-6.

In the following subsections the set of faults considered in this work for the NoC

switches and links is presented.

19

2.5.1 Wire/crosstalk fault models for NoC inter-switch links

Cuviello et al. [32] proposed a novel fault model for the global interconnects of DSM

SoCs that accounts for cross-talk effects between a set of aggressor lines and a victim line.

This fault model is referred to as Maximum Aggressor Fault (MAF) and it occurs when

the signal transition on a single interconnect line (called the victim line) is affected

through cross-talk by transitions on all the other interconnect lines (called the aggressors)

due to the presence of the crosstalk effect. In this model, all the aggressor lines switch in

the same direction simultaneously.

The MAF model is an abstract representation of the set of all defects that can lead to

one of the six crosstalk errors: rising/falling delay, positive/negative glitch, and

rising/falling speed-up. The possible errors corresponding to the MAF fault model are

presented in Fig. 2-7 for a link consisting of 3 wires. The signals on lines Y1 and Y3 act

as aggressors, while Y2 is the victim line. The aggressors act collectively to produce a

delay, glitch or speed-up on the victim.

This abstraction covers a wide range of defects including design errors, design rules

violations, process variations and physical defects. For a link consisting of N wires, the

MAF model assumes the worst-case situation with one victim line and (N-1) aggressors.

For links consisting of a large number of wires, considering all such variations is

prohibitive from a test coverage point of view [31].

The transitions needed to sensitize the MAF faults can be easily derived from Fig. 2-7

based on the waveform transitions indicated. For an inter-switch link consisting of N

wires, a total of 6N faults need to be tested, and requiring 6N 2-vector tests. These 6N

MAF faults cover all the possible process variations and physical defects that can cause

20

any crosstalk effect on any of the N interconnects. They also cover more traditional faults

such as stuck-at, stuck-open and bridging faults.

(c)

fault-free signalsignal affected by MAF
Y , Y : aggressor lines1 3 Y : victim line2

Y1

Y2

Y3

“0”

(a)

gp
(positive

glitch)

Y1

Y2

Y3

“1”

(b)

gn
(negative

glitch)

Y1

Y2

Y3

(d)

df
(delayed

fall)

Y1

Y2

Y3

dr
(delayed

rise)

Y1

Y2

Y3

(e)

sr
(speedy

rise)

Y1

Y2

Y3

(f)

sf
(speedy

fall)

Figure 2-7: MAF crosstalk errors (Y2 – victim wire; Y1, Y3 – aggressor wires).

2.5.2 Logic/memory fault models for FIFO buffers in NoC switches

NoC switches generally consist of a combinational block in charge of functions such

as arbitration, routing, error control, and first-in/first-out (FIFO) memory blocks that

serve as communication buffers [33][34]. Fig. 2-8(a) shows the generic architecture of a

21

NoC switch. As information arrives at each of the ports, it is stored in FIFO buffers and

then routed to the target destination by the routing logic block (RLB).

The FIFO communication buffers for NoC fabrics can be implemented as register

banks [35] or dedicated SRAM arrays [36]. In both cases, functional test is preferable due

to its reduced time duration, good coverage, and simplicity.

The block diagram of a NoC FIFO is shown in Fig. 2-8(b). From a test point of view,

the NoC-specific FIFOs fall under the category of restricted two-port memories. Due to

the unidirectional nature of the NoC communication links, they have one write-only port

and one read-only port, and are referred to as (wo-ro)2P memories. Under these

restrictions, the FIFO function can be divided in three ways: the memory-cells array, the

addressing mechanism, and the FIFO-specific functionality [37].

22

RLB
(

)
routing logic

block
FIFO FIFO

(a)
WRITE PORT

READ PORT

FF
WO

EF
RO

WCK RCK

WD0

WD1

WDn-1

RD0

RD1

RDn-1

B

(b)

Figure 2-8: (a) 4-port NoC switch – generic architecture; (b) dual port NoC FIFO.

Memory array faults can be stuck-at, transition, data retention or bridging faults [31].

Addressing faults on the RD/WD lines are also important as they may prevent cells from

being read/written. In addition, functionality faults on the empty and full flags (EF and FF,

respectively) are included in our fault models set [37].

23

2.6 Summary

In this chapter, the problems of NoC testing and prior work in this area were

described. Then, the set of fault models that used in this work for developing the test

scheduling algorithms and the associated on-chip test hardware were detailed. Different

fault models are outlined for testing NoC channels and routers. The choice for

constructing test vectors for NoC links is the maximum aggressor fault (MAF) which

takes the worst-case crosstalk scenario into consideration, with the benefit that it also

covers other, more traditional faults (opens, shorts, stuck-at). For the input/output buffers

of the NoC routers we use memory-specific fault models which take into account the

dual-port characteristic of the FIFO buffers and allow functional test for these

components. The routing logic blocks of the NoC switches are simply tested using classic

stuck-at, open, and short fault models.

24

Chapter 3

3 Test Time Minimization for Networks-on-Chip 1

A significant portion of the total production cost of an IC is represented by its

associated test procedures. A direct measure of an IC’s test cost is the time spent for

testing it. With increasing transistor-count and complexity, multi-core SoCs pose a

particular challenge in terms of keeping the test time under reasonable limits. Much

research effort is invested in minimizing the test time of large SoCs, and, consequently,

the total production cost. In the case of NoC-based MP-SoCs, the test time of the NoC

infrastructure adds to the total IC production cost. Reducing the NoC test time contributes

to lowering the total SoC test time, and, implicitly, production cost. This chapter presents

a test method and corresponding hardware circuitry that minimize the test time of NoC

interconnect fabrics.

3.1 Test data organization

A key feature that differentiates a NoC from other on-chip communication media is the

transmission of data in form of packets [4]. In the approach proposed here, the raw test

data, obtained based on the fault models and assumptions outlined in Chapter 2, are

organized into test packets that are subsequently directed towards the different

components of the NoC under test. Test data is organized into packets by adding routing

1 This chapter is based on work published in:
1. C. Grecu, P.P. Pande, B. Wang, A. Ivanov, R. Saleh, " Methodologies and algorithms for testing

switch-based NoC interconnects", IEEE Symposium on Defect and Fault Tolerance in VLSI
Systems, 2005, DFT '05, Oct. 2005.

2. C. Grecu, A. Ivanov, R. Saleh, P.P. Pande, "Testing Networks-on-chip Communication
Infrastructures", IEEE Transactions on Computer Aided Design, Volume 26, Issue 12, Dec. 2007.

25

and control information to the test patterns generated for each NoC component. The

routing information is similar to that of functional data packets and identifies the

particular NoC component towards which the test packet is directed. The control

information consists of fields that identify the packet type (e.g., test packet) and type of

the NoC component under test (inter-switch link, switch combinational block, FIFO). At

the beginning and the end of each test packet, dedicated fields signal the start and stop

moments of the test sequence, respectively.

T_startT_stop

Te
st

_c
on

tr
ol

Figure 3-1: Test packet structure

The test set for the faults presented in Chapter 2 was developed based on [32] and

[37], and includes test vectors for inter-switch links, FIFO buffers, and routing logic

blocks of the NoC switches. The generic structure of a test packet is shown in Fig. 3-1.

The test header field contains routing information and packet identification information

which denotes the type of data being carried (test data). The second field (test control)

contains the type of test data, i.e., interconnect, FIFO, or RLB (routing logic block) test

data. The test data field is bordered by corresponding flags (T_start and T_stop) marking

its boundaries.

3.2 Testing NoC switches

When a test packet arrives at an untested switch, the payload is unpacked to extract the

test data. NoC switches can be tested with standard logic and memory test methods.

26

Scan-based testing [31] is adopted for the routing logic blocks of NoC switches, while

functional test [37] is used for the communication buffers (FIFO memory blocks). Test

patterns are generated for the RLB and FIFO blocks separately so that the test vectors can

be optimized for each type of block. The test of the logic part of the switch (the RLB

block) is performed while it is isolated from the rest of the switch.

Assuming the FIFOs are B bits wide and have n locations, the test uses B-bit patterns.

As an example, consider the detection of a bridging fault, i.e., a short between the bitlines

bi and bj (i ≠ j), that can eventually yield an AND or OR behaviour. In order to detect

such faults, four specific test patterns are used: 0101…, 1010…, 0000…, and 1111…,

denoted by 1G , 1G , 2G , and 2G , respectively [37] . Specifically, to test the dual-port

coupling faults, the following sequence is used:

1
1
nw rw r

for each of the four test patterns above. The first write operation (denoted by w in the

expression above) sets the read/write pointers to FIFO cells 0 and 1, respectively; the

next (n-1) simultaneous read(r)/write(w) operations (denoted by 1
1
n wr) sensitize the

coupling faults between adjacent cells, and the last read operation (denoted by r) empties

the FIFO and prepares it for the next test pattern. All other standard tests proceed in a

similar manner.

3.3 Testing NoC links

Testing for wire faults and crosstalk effects can be carried out together as follows.

According to the MAF fault model, each possible MAF on a victim line of a link requires

a two-vector test sequence to be sensitized. The test sequence exhibits some useful

properties which allow for a compact and efficient design of the MAF test packets:

27

 Property (a): For each test vector, the logic values on the aggressor lines are the

opposite of that on the victim line;

 Property (b): After having applied the exhaustive set of test sequences for a

particular victim line, the test sequence of the adjacent victim line can be obtained

by shifting (rotating) the test data by exactly one bit.

If wire i in Fig. 3-2(a) is to be tested for 6 MAF faults, then twelve vectors are

implied, due to the two-vector test needed for each case. However, the transitions from

one test vector to another can be concatenated such that the number of test vectors needed

to sensitize the MAF faults can be reduced from twelve vectors per wire to eight, as

shown in Fig. 3-2(b) and (c).

(a) (b) (c)

Figure 3-2: a) Wire i and adjacent wires; b) Test sequence for wire i; c) Conceptual state
machine for MAF patterns generation.

The test data packets are designed based on Properties (a) and (b) above, by

generating the logical values corresponding to the MAF tests in eight distinct states s1 to

s8. In an s1-to-s8 cycle, the state machine produces eight vectors. During each cycle, one

line is tested and is assigned the victim logic values, while the rest of the lines get the

28

aggressor values. The selection of the victim wire is achieved through the victim line

counter field that controls the test hardware such that for the first eight test cycles, the

first wire of the link is the victim. During the second set of eight test cycles, the second

wire is the victim, and so on. After each eight-vector sequence, the test patterns shift by

one bit position, and an identical eight-vector sequence is applied with a new

corresponding wire acting as the victim. This procedure repeats until all the lines of the

link are completed.

3.4 Test data transport

This section describes the NoC modes of operation and a minimal set of features that

the NoC building blocks must possess for packet-based test data transport. A

system-wide test transport mechanism must satisfy the specific requirements of the NoC

fabric and exploit its highly-parallel and distributed nature for an efficient realization. In

fact, it is advantageous to combine the testing of the NoC inter-switch links with that of

the other NoC components (i.e., the switch blocks) in order to reduce the total silicon area

overhead. The high degree of parallelism of typical NoCs allows simultaneous test of

multiple components. However, special hardware may be required to implement parallel

testing features.

Each NoC switch is assigned a binary address such that the test packets can be directed

to particular switches. In the case of direct-connected networks, this address is identical

to the address of the IP core connected to the respective switch. In the case of indirect

networks (such as BFT [38] and other hierarchical architectures [39]), not all switches are

connected to IP cores, so switches must be assigned specific addresses in order to be

29

targeted by their corresponding test packets. Considering the degree of concurrency of

the packets being transported through the NoC, two cases can be distinguished:

Unicast mode: the packets have a single destination [40]. This is the more common

situation and it is representative for the normal operation of an on-chip communication

fabric, such as processor cores executing read/write operations from/into memory cores,

or micro-engines transferring data in a pipeline [41]. As shown in Fig. 3-3(a), packets

arriving at a switch input port are decoded and directed to a unique output port, according

to the routing information stored in the header of the packet (for simplicity, functional

cores are not shown in Fig. 3-3). Test packets are injected at the source switch (denoted

by S in Fig. 3-3) and transported towards the destination switch (denoted by D) along the

path indicated by the set of switches in the unicast (U) mode.

(a) (b)

Figure 3-3: (a) Unicast data transport in a NoC; (b) multicast data transport in a NoC (S –
source; D – destination; U – switches in unicast mode; M – switches in multicast mode).

Multicast mode: the packets have multiple destinations [42]. This mode is useful for the

management and reconfiguration of functional cores of the NoC, when identical packets

carrying setup and/or configuration information must be transported to the processing

elements [43]. Packets with multicast routing information are decoded at the switch input

ports and then replicated identically at the switch outputs indicated by the multicast

30

decoder. The multicast packets can reach their destinations in a more efficient and faster

manner than in the case when repeated unicast is employed to send identical data to

multiple destinations [44]. Fig. 3-3(b) shows a multicast transport instance, where the

data is injected at the switch source (S), replicated and retransmitted by the intermediate

switches in both multicast (M) and unicast (U) modes, and received by multiple

destination switches (D). The multicast mode is especially useful for test data transport

purposes, when identical blocks need to be tested as fast as possible.

3.4.1 Multicast test transport mechanism

One possible way to multicast is simply to unicast multiple times, but this implies a

very high latency. The all-destination encoding is another simple scheme in which all

destination addresses are carried by the header. This encoding scheme has two

advantages. First, the same routing hardware used for unicast messages can be used for

multi-destination messages. Second, the message header can be processed on the fly as

address flits arrive. The main problem with this scheme is that, as the number of switch

blocks in the system increases, the header length increases accordingly and thereby

results in significant overhead in terms of both hardware and time necessary for address

decoding.

A form of header encoding that accomplishes multicast to arbitrary destination sets in a

single communication phase and also limits the size of the header is known as bit-string

encoding [45]. The encoding consists of N bits where N is the number of switch blocks,

with a ‘1’ bit in the ith position indicating that switch i is a multicast destination. To

decode a bit-string encoded header, a switch must possess knowledge of the switches

reachable through each of its output ports [34].

31

Several NoC platforms developed by research groups in industry and academia

feature the multicast capability for functional operation [46] [47]. In these cases, no

modification of the NoC switches hardware or addressing protocols is required to

perform multicast test data transport.

If the NoC does not possess multicast capability, this can be implemented in a

simplified version that only services the test packets and is transparent for the normal

operation mode. As shown in Fig. 3-4, the generic NoC switch structure presented in Fig.

2-8(a) was modified by adding a multicast wrapper unit (MWU) that contains additional

demultiplexers and multiplexers relative to the generic (non-multicast) switch. The

MWU monitors the type of incoming packets and recognizes the packets that carry test

data. An additional field in the header of the test packets identifies that they are intended

for multicast distribution.

FIFO

FIFO

FIFO

FIFO

MWU

RLB(1)

(2)

(3)

(4)

Figure 3-4: 4-port NoC switch with multicast wrapper unit (MWU) for test data transport.

For NoCs supporting multicast for functional data transport, the routing/arbitration

logic block (RLB) is responsible for identifying the multicast packets, processing the

32

multicast control information, and directing them to the corresponding output ports of the

switch [33]. The multicast routing blocks can be relatively complex and hardware-

intensive.

In the design proposed here for multicast test data transport, the RLB of the switch is

completely bypassed by the MWU and does not interfere with the multicast test data flow,

as illustrated in Fig. 3-4. The hardware implementation of the MWU is greatly simplified

by the fact that the test scheduling is done off-line, i.e., the path and injection time of

each test packet are determined prior to performing the test operation. Therefore, for each

NoC switch, the subset of input and output ports that will be involved in multicast test

data transport is known a priori, allowing the implementation of this feature to these

specific subsets only. For instance, in the multicast step shown in Fig. 3-3(b), only three

switches must possess the multicast feature. By exploring all the necessary multicast

steps to reach all destinations, the switches and ports that are involved in the multicast

transport are identified, and subsequently the MWU is implemented only for the required

switches/ports.

The header of a multi-destination message must carry the destination node addresses

[44]. To route a multi-destination message, a switch must be equipped with a method for

determining the output ports to which a multicast message must be simultaneously

forwarded. The multi-destination packet header encodes information that allows the

switch to determine the output ports towards which the packet must be directed.

When designing multicast hardware and protocols with limited purpose, such as test

data transport, a set of simplifying assumptions can be made in order to reduce the

33

complexity of the multicast mechanism. This set of assumptions can be summarized as

follows:

Assumption A1: The test data traffic is fully deterministic. For a given set of fault

models and hardware circuitry, the set of test vectors is unique and known at design time.

On the contrary, application data can widely vary during the normal operation of the NoC.

Assumption A2: Test traffic is scheduled off-line, prior to test application. Since the

test data is deterministic, it can be scheduled in terms of injection time and components

under test prior to test execution.

Assumption A3: For each test packet, the multicast route can be determined exactly at

all times (i.e., routing of test packets is static). This is a direct consequence of

assumptions A1 and A2 above: knowing the test data, the test packets source and

destinations, multicast test paths can be pre-determined before the test sequence is run.

Assumption A4: For each switch, the set of input/output ports involved in multicast

test data transport is known and may be a subset of all input/output ports of the switch

(i.e., for each switch, only a subset of I/O ports may be required to support multicast).

These assumptions help in reducing the hardware complexity of multicast mechanism

by implementing the required hardware only for those switch ports that must support

multicast. For instance, in the example of Fig. 3-4, if the multicast feature must be

implemented exclusively from input port (1) to output ports (2), (3), and (4), then only

one demultiplexer and three multiplexers are required. A detailed methodology for test

scheduling is presented in Section 3.5. The set of I/O ports of interest can be extracted

accurately knowing the final scheduling of the test data packets, and then those ports can

be connected to the MWU block, as indicated in Figs. 3-3(b) and 3-4. Various options for

34

implementing multicast in NoC switches were presented in [34] [43] [44]; therefore, the

details regarding physical implementation are omitted here. Instead, we describe how the

multicast routes can be encoded in the header of the test packets, and how the multicast

route can be decoded at each switch by the MWU.

To assemble the multicast routes, binary addresses are assigned first to each switch of

the NoC. Then, for each switch, an index is assigned to each of its ports, e.g., if a switch

has four ports, they will be indexed (in binary representation) from 00 to 11. The

multicast route is then constructed as an enumeration of switch addresses, each of them

followed by the corresponding set of output port indices. These steps must be followed

for each possible multicast route that will be used by a multicast test packet. A simple

example to illustrate how the multicast test address is built is presented in Fig. 3-5.

1

2

3

4

5

6

00

01

00

00

00

00

00

01

01

10

10

DA list Switch 1 Switch 2 Switch 3

4, 5, 6 1 {00, 01} 2 {01, 10} 3 {10}

Figure 3-5: Multicast route for test packets.

Consequently, with the assumptions A1 to A4 stated previously, the multicast wrapper

unit must simply decode the multicast routing data and place copies of the incoming

packet at the output ports found in the port list of the current switch. Since the test data is

fully deterministic and scheduled off-line, the test packets can be ordered to avoid the

35

situation where two (or more) incoming packets compete for the same output port of a

switch. This is guaranteed according to the packet scheduling algorithms presented later

in Section 3.5. Therefore, no arbitration mechanism is required for multicast test packets.

Also, by using this simple addressing mode, no routing tables or complex routing

hardware is required.

The lack of input/output arbitration for the multicast test data has a positive impact on

the transport latency of the packets. Our multicast implementation has lower transport

latency than the functional multicast since the only task performed by the MWU block is

routing. The direct benefit is a reduced test time compared to the use of fully functional

multicast, proportional to the number of functional pipeline stages [33] that are bypassed

by the MWU. The advantages of using this simplified multicasting scheme are reduced

complexity (compared to the fully-functional multicast mechanisms), lower silicon area

required by MWU, and shorter transport latency for the test data packets.

3.5 Test scheduling

The next step is to perform test scheduling to minimize test time. The approach

described in this work does not use a dedicated test access mechanism (TAM) to

transport test data to NoC components under test. Instead, test data is propagated towards

the components in a recursive, wave-like manner, via the NoC components already tested.

This method eliminates entirely the need for a dedicated TAM and saves the

corresponding resources. Another distinct advantage of this method over the dedicated

TAM is that the test data can be delivered at a rate independent of the size of the NoC

under test. The classic, shared-bus TAMs are not able to deliver test data at a speed

independent of the size of the SoC under test. This occurs due to the large intrinsic

36

capacitive load of the TAM combined with the load of multiple cores serviced by the

TAM [32]. In Section 3.6.3, we compare the test time achieved through our approach,

with previously proposed NoC test methods, and show a significant improvement

compared to the results obtained by applying the prior methods.

An important pre-processing task that determines the total test time is referred to as

test scheduling. Many of the previous research efforts have been devoted to reducing the

test time of large systems-on-chip designs by increasing test concurrency using advanced

test architectures and test scheduling algorithms. In the case of NoC-based MP-SoCs, the

data communication infrastructure itself contributes to the total test time of the chip and

this contribution must be minimized as well. The test scheduling problem can be

formulated as optimizing the spatial and temporal distribution of test data such that a set

of constraints are satisfied. In this work, the specific constraint is minimizing the test time

required to perform post-manufacturing test of the NoC infrastructure. At this point, we

assume that the test data is already available and organized in test packets, as outlined in

Sections 3.1-3.4. We also assume that, when required, the fault-free part of the NoC can

transport the test data to the NoC components under test using unicast or multicast, as

detailed in Section 3.4.

With these considerations, two different components of the test time can be identified

for each NoC building element. The first component is represented by the amount of time

required to deliver the test patterns to the NoC element that is targeted, called transport

time (TT). The second component represents the amount of time that is actually needed to

apply the test patterns to the targeted element and perform the actual testing procedure.

37

This latter component is called test time per element (TTPE), where element refers to a

link segment, a FIFO buffer, or a routing/arbitration block.

3.5.1 Test time cost function

To search for an optimal scheduling, we must first use the two components of the test

time to determine a suitable cost function for the complete test process. We then compute

the test cost for each possible switch that can be used as a source for test packet injection.

After sequencing through all the switches as possible test sources and evaluating the

costs, the one with the lowest cost is chosen as the test source.

We start by introducing a simple example that illustrates how the test time is

computed in the two transport modes, unicast and multicast, respectively. Let ,
u
p rT (,

m
p rT)

be the time required to test switches Sp and Sr, including the transport time and the

respective TTPEs, using the unicast (multicast) test transport mode, respectively.

Consider the example in Fig. 3-6, where switch S1, and links l1 and l2 are already tested

and fault-free, and switches S2 and S3 are the next switches to be tested. When test data is

transmitted in the unicast mode, one and only one NoC element goes into the test mode at

a time, at any given time, as shown in Figs. 3-6(a) and 3-6(b).

S1 T

(a) (b) (c)

l1

l2

l1

l2

l1

l2

S2

S3

S1

S2

S3

S1

S2

S3

T

T

T

Figure 3-6: (a), (b): Unicast test transport. (c) Multicast test transport.

Then, for each switch, the test time equals the sum of the transport latency, TT = Tl,L

+ Tl,S, and the test time of the switch, TTPE = Tt,S. The latter term accounts for testing the

FIFO buffers and RLB in the switches. Therefore, the total unicast test time 2,3
uT for

38

testing both switches S2 and S3 is:

2,3 , , ,2 2u
l L l S t ST T T T (3.1)

where Tl,L is the latency of the inter-switch link, Tl,S is the switch latency (the number of

cycles required for a flit to traverse a NoC switch from input to output), and Tt,S is the

time required to perform the testing of the switch (i.e., ,t S FIFO RLBT T T).

Following the same reasoning for the multicast transport case in Fig. 3-6(c), the total

multicast test time 2,3
mT for testing switches S2 and S3 can be written as:

2,3 , , ,
m

l L l S t ST T T T (3.2)

Consequently, it can be inferred that the test time cost function can be expressed as

the sum of the test transport time, TT, and the effective test time required for applying the

test vectors and testing the switches, TTPE, over all NoC elements.

Test Time NoC = All NoC Elements(TT + TTPE) (3.3)

which can be rewritten as

Test Time NoC = All NoC Elements (TT) + All NoC Elements (TTPE) (3.4)

Expression (3.4) represents the test time cost function that has to be minimized for

reducing the test cost corresponding to the NoC fabric.

Consequently, there are two mechanisms that can be employed for reducing the test

time: reducing the transport time of test data, and reducing the effective test time of NoC

components. The transport time of test patterns can be reduced in two ways:

(a) by delivering the test patterns on the shortest path from the test source to the

39

element under test;

(b) by transporting multiple test patterns concurrently on non-overlapping paths to their

respective destinations.

The TTPE is governed by the considerations described in Sections 3.3 and 3.4.

Therefore, in order to reduce it, one would need to re-evaluate the fault models or the

overall test strategy (i.e., to generate test data locally for each element, with the

respective incurred overhead [31]). Within the assumptions in this work (all test data is

generated off-line and transported to the elements under test), the only feasible way to

reduce the term corresponding to TTPE is to overlap the test of more NoC components.

The direct effect is the corresponding reduction of the overall test time. This can be

ultimately accomplished by employing the multicast transport and applying test data

simultaneously to more components.

3.5.2 Test transport time minimization

With the goal of minimizing the time required to deliver test patterns to the NoC

elements under test, we formulate the problem using a graph representation of the NoC

infrastructure. We then find, for each NoC component, the shortest path from an arbitrary

source node on the NoC graph, traversing only previously tested, fault-free components.

The total transport time TT equals the sum of all transport latencies for the set of shortest

paths corresponding to the chosen source node, as expressed in Eq. (3.4); consequently,

since these paths are minimal, the total test time corresponding to the respective node is

also minimal. By repeating the procedure similarly for all possible nodes in the network,

and choosing the solution that delivers the shortest test time, the minimum test transport

time is guaranteed to be obtained.

40

The graph representation of the NoC infrastructure used to find the minimum test

transport latency is obtained by representing each NoC element as a directed graph G

=(S, L), where each vertex si S is a NoC switch, and each edge li L is an inter-switch

link. Each switch is tagged with a numerical pair (Tl,s, Tt,s) corresponding to switch

latency and switch test time. Each link is similarly labeled with a pair (Tl,L, Tt,L)

corresponding to link latency and link test time, respectively. For each edge and vertex,

we define a symbolic toggle t which can take two values: N and T. When t = N, the cost

(weight) associated with the edge/vertex is the latency term, which corresponds to the

normal operation. When t = T, the cost (weight) associated with the edge/vertex is the

test time (of the link or switch) and corresponds to the test operation.

A modified version of Dijkstra’s shortest path algorithm [48] is used for graph

traversal in order to find a test scheduling with minimum test cost. Dijkstra's algorithm

solves the single-source shortest path problem for a directed graph with non-negative

edge weights. It is known for its efficient and simple implementation.

Initially, the t toggle is equal to T for all edges/vertices. We start by choosing a node

and traversing the NoC graph using Dijkstra's algorithm. Every time an element is

encountered whose t toggle is T, the test cost function is updated with the corresponding

term, and t is switched to N. When an element whose toggle is N is encountered, the test

function is updated with the corresponding term (the element’s current weight) and t

remains unchanged. There are slight differences in our approach compared to the classic

algorithm: are modified to a lower value exactly once during graph traversal2. Also, after

a directed edge is traversed, the edge in the opposite direction is traversed as soon as

2 Details regarding the weight updating and a proof that the modified algorithm returns a shortest path are
provided in Appendix 1.

41

possible. An additional constraint placed on the modified algorithm is that all toggles t

must be switched to N by the end of the algorithm. This ensures that no edges remain that

have not been traversed (i.e., no inter-switch links remain untested). However, these

differences are minor and only affect the way in which the test cost function is calculated.

The test cost function is computed differently, depending on whether unicast or

multicast employed. In the following, the algorithms used to determine a minimum cost

test scheduling for these two test delivery methods are presented.

3.5.3 Unicast test scheduling

Problem formulation: Given the graph G(S, L), the pairs (Tl,s, Tt,s) and (Tl,L, Tt,L), and

assuming that only one vertex/edge whose toggle t equals T can be visited at a time,

determine a graph traversal sequence that covers all vertices and edges, and has a

minimum associated test cost function FTC,u.

The fact that only one toggle can be switched at a time accounts for the unicast

transport mechanism when the NoC components are tested sequentially. The unicast test

cost function FTC,u, is defined recursively as:

, ,
1 1

1
,

1
,

(1) ()

,

,

p r
u u i j

TC TC l L l S
i j

k
t L

k
t S

F k F k T T

T if element k+1 is a link

T if element k+1 is a switch

(3.5)

where k+1 is the index of the current element under test and k is the index of the previous

NoC element (switch or link) under test. The path onto which test packets are delivered to

element k+1 consists of p links and r switches, with corresponding latencies Tl,L and Tl,S.

It can be observed that, in each step of the sequence, the latency terms corresponding to

42

the path along which the test data is transported, and the terms corresponding to the

effective test procedure per element are added to the cost function. Hence, the unicast-

based test procedure can be minimized by minimizing the latency component of the test

cost function. This fact is used to obtain a minimum-cost test scheduling by ensuring that

each element of the graph G(S, L) is visited on the shortest path from the test source.

Algorithm 1: Unicast Scheduling

for each sS

--- initialization ---
Uni_min (G,S,L,w,t)

for each vertex s in G
v_toggle(s) := T; --- initialize all switches as untested
v_weight(s) := Tt,S;

d[s] :=;

previous(s) := undefined;
for each edge between vertices u,v in G

e_toggle(u,v) := T; --- initialize all links as untested
e_weight(u,v) := Tt,L;

Q := S union L;
R := empty set;
FTC,u := 0;

--- graph traversal on all shortest paths from switch s ---
while Q is not an empty set ----graph traversal

u := Extract Min{S}; ---- pick switch with min. Tt,S

R := R union {u};
for each edge (u,v) outgoing from u

if {d[u] + e_weight(u,v) < d[v] and v_toggle(v)=T}
d[v] := d[u] + weight(u,v);
update FTC,u; --- update cost using Eq. (3.5) ---
v_toggle(v) := N; --- set unicast mode ---
e_toggle(u,v):=N;
v_weight(u):= Tl,S; --- change weights ---
e_weight(u,v):=Tl,L;
previous[v] := u;

endif ;
return FTC,u;
choose {smin , FTC,u, min }; --- pick the test source with minimum cost ---
end.

43

In Algorithm 1 above, d[u] denotes the distance from the current test source to switch

u under test when the NoC graph G(S, L) is traversed using the modified Dijkstra

algorithm, and it represents the test injection time corresponding to switch u. Upon

completion of Algorithm 1, the switch smin that yielded a test scheduling with a minimum

cost, FTC,u, min, is selected as the final test source. The test cost function for unicast

transport FTC,u is updated according to Eq. (3.1). This algorithm returns the optimum test

source switch in the NoC, and a test scheduling that is minimized with respect with test

time, since all test paths that are returned have the shortest length. Table 3-1 shows the

test scheduling obtained using the unicast-based test time minimization algorithm,

applied to the 4-switch network in Fig. 3-7, when switch S1 is selected as the initial test

source. As outlined in Table 3-1, the scheduling algorithm returns the test time and the

path for each test packet.

S1

l1 l2

S2 S3

S4

l3
l4

l5

l5’

l1’ l2’

l3’ l ’4

Test packets

Figure 3-7: 4-switch network with unidirectional links.

44

Table 3-1: Unicast test data scheduling for the example in Fig. 3-7

Element
under
test

Test
packets

path

Unicast Test Cost
FTC,u

S1 - Tt,S

l1 S1 Tt,S + Tl,S + Tt,L

l2 S1 Tt,S + 2Tl,S+2Tt,L

S2 S1l1 2Tt,S+3Tl,S+2Tt,L+ Tl,L

l1’ S1l1S2 2Tt,S+5Tl,S+3Tt,L+2Tl,L

S3 S1l2 3Tt,S+6Tl,S+3Tt,L+3Tl,L

l2’ S1l2 S3 3Tt,S+8Tl,S+4Tt,L+4Tl,L

l5 S1l2 S3 3Tt,S+10Tl,S+5Tt,L+5Tl,L

l5’ S1l1S2 3Tt,S+12Tl,S+6Tt,L+6Tl,L

l3 S1l1S2 3Tt,S+14Tl,S+7Tt,L+7Tl,L

S4
S1l1S2

l3

4Tt,S+16Tl,S+6Tt,L+9Tl,L

l3’
S1l1S2

l3 S4

4Tt,S+19Tl,S+8Tt,L+11Tl,L

l4 S1l2 S3 4Tt,S+21Tl,S+9Tt,L+12Tl,L

l4’
S1l2 S3

l4 S4

4Tt,S+24Tl,S+10Tt,L+14Tl,L

When all possible test sources are exhaustively exercised, the optimum solution is the

one that selects S2 (or S3) as test sources, since this is the case for which the transport

time TT reaches its minimum value. Inter-switch links are indicated in full, as pairs of

unidirectional connections.

3.5.4 Multicast test scheduling

Problem formulation: Given the graph G(S, L), the pairs (Tl,s, Tt,s) and (Tl,L, Tt,L), and

assuming that all vertices/edges whose toggle t equals T and are adjacent to

edges/vertices whose toggle equals N, can be visited at a time, determine a graph

traversal sequence that covers all vertices and edges, and has a minimum associated test

45

cost function FTC,m.

The fact that more than one toggle can be switched at a time accounts for the

multicast transport mechanism when the NoC components are tested concurrently.

We define the multicast test cost function, FTC,m, recursively as:

1 , ,
1 1

,

1

,

1() ()m m
TC TC

r n
p
i l L l S

j j

i
t Lq

i i
t S

k k

if current element is a link

if current element is a switch

F F

Max T T

T ,
Max

T ,

(3.6)

where k+1 and k refer to the value of the multicast test cost function in the

corresponding multicast test step. In each multicast step, the test cost function is updated

according to Eq. (3.6), adding the latency of the longest multicast paths, and the largest

test time required by the elements under test in the current test step.

Hence, the multicast-based test procedure can be minimized by minimizing both the

latency component of the test cost function and the total test by transporting test data to

more components concurrently, i.e., minimizing both terms of Eq. (3.4). This observation

is used to realize a minimum-cost test scheduling by ensuring that each element of the

graph G(S, L) is visited on the shortest path from the test source and all elements whose

toggle equals T and are adjacent to elements whose toggle equals N are visited at the

same time.

The pseudo-code of the algorithm that realizes the multicast test scheduling is

presented below:

46

Algorithm 2: Multicast scheduling

The test cost function is updated according to Eq. (3.4), once per each multicast step.

Since more than one node (edge) is involved in each multicast step, and only the

maximum weight of all the elements involved in each multicast step is used to update the

cost function, the total value of FTC,m will be lower than that of the unicast test cost

for each sS

--- initialization ---
Multi_min (G,S,L,w,t)

for each vertex s in G
v_toggle(s) := T; --- initialize all switches as untested
v_weight(s) := Tt,S;

d[s] :=;

previous(s) := undefined;
for each edge between vertices u, v in G

e_toggle(l) := T; --- initialize all links as untested
e_weight(l) := Tt,L;

Q := S union L;
R := empty set;
FTC,m := 0;

--- graph traversal on all shortest paths from switch s ---
while Q is not an empty set ---graph traversal

u := Extract Min{S}; --- pick switch with min. Tt,S

R := R union {u};
for all edges (u,v) outgoing from u

for all nodes v
if {d[u] + weight(u,v) < d[v] and toggle(v) = T}

d[v] := d[u] + weight(u,v);
v_toggle(v) := N; --- set multicast mode ---
e_toggle(u,v):=N;
v_weight(u):= Tl,S; --- change weights ---
e_weight(u,v):=Tl,L;
previous[v] := u;

update FTC,m; --- update cost function using Eq. (3.6) ---
return FTC,m;
choose {smin, , FTC,u, min }; --- pick the test source with minimum cost ---
end.

47

function FTC,u , for identical networks.

Algorithms 1 (unicast) and 2 (multicast) are similar in regards to the search sequence.

The differences between the two algorithms lie in a different way of updating the test cost

function and the sets of paths (single switch/link in the unicast case, multiple

switches/links in the multicast case). Also, the original Dijkstra algorithm is slightly

modified in the sense that the weights of the links/switches are modified during the

search sequence. The proof that the modified algorithm returns a minimum cost solution

is provided in Appendix 1.

Table 3-2 shows the test scheduling obtained by using the multicast-based algorithm

for the example in Fig. 3-7, when switch S1 is selected as test source. Once Algorithm 2

terminates and thereby all possible test sources have been considered, in this example, the

optimum test scheduling would select S2 (or S3) as the test source yielding the optimal

solution.

Table 3-2: Multicast test data scheduling for the example in Fig. 3-7

Elements
under
test

Test packets
path

Multicast
Test Cost

FTC,m

S1 Tt,S

l1, l2 S1 Tt,S+Tl,S+Tt,L

S2, S3 S1{l1,l2} 2Tt,S+2Tl,S+Tt,L+ Tl,L

l1’, l2’, l3,
l4, l5, l5’

S1{l1,l2}{S2,S3} 2Tt,S+4Tl,S+2Tt,L+
2Tl,L

S4 S1l1S2l3
3Tt,S+6Tl,S+2Tt,L+4Tl,L

Both test scheduling algorithms are direct mappings of Dijkstra’s shortest path

algorithm for the NoC graph, the difference being in the way the cost functions are

calculated and updated. Therefore, the complexity of the algorithms can be considered to

48

be as O(e log v), where e is the number of directed edges, and v is the number of vertices

in the NoC graph [48].

3.6 Experimental results

In order to evaluate the efficiency of our testing methods, we first need to present

some implementation details necessary to realize the application of methods and

algorithms described in Section 3.5.

3.6.1 Test output evaluation

The methods described in this dissertation are primarily targeted for

post-manufacturing testing, where the objective is to deliver a set of test patterns in the

shortest possible time and the final outcome is the fail/pass decision.

In classical SoC core-based testing, test data is injected from a test source, transported

and applied to the core under test, and then the test output is extracted and transported to

the test sink for comparison with the expected response [49]. In this work, a more

effective solution is adopted, first proposed in [50], where the expected output data is sent

together with the input test data, and the comparison is performed locally at each

component under test. A clear advantage of this approach is a shorter test time, since

there is no need to extract the test output and to transport it to a test sink. Moreover, the

test protocol is also simplified, since this approach eliminates the need for a flow control

of test output data (in terms of routing and addressing). The tradeoff is a small increase in

hardware overhead due to additional control and comparison circuitry, and increased size

of the test packets. These must now contain the expected output of each test vector,

interleaved with test input data.

49

As shown in Fig. 3-8, the test packets are processed by test controller (TC) blocks

that direct their content towards the inputs/outputs of the component under test (CUT)

and perform the synchronization of test output and expected output data. This data is

compared individually for each output pin, and, in case of a mismatch, the component is

marked as faulty by raising the pass/fail flag. The value of this flag is subsequently stored

in a pass-fail flip-flop which is a part of a shift register that connects pass-fail flops of all

switches. The content of this register is serially dumped off-chip at the end of the test

procedure.

pass/fail

test inputs

inputs outputs

expected
outputs

test packets

NoC channel

S
D Q

Figure 3-8: Test packets processing and output comparison.

In our implementation, the TC block is shared by a switch and its adjacent links, in

order to reduce the area overhead of the scheme.

3.6.2 Test modes for NoC components

The components of the NoC fabrics are quite heterogeneous with respect to their test

requirements and their test modes differ significantly. For each type of component (FIFO

buffers, routing/arbitration blocks, inter-switch links) we provide test modes for

50

executing the test procedure in a manner suitable for the nature of the component under

test.

The test data can be injected from the external ATE by multiplexing the functional

I/Os so that, in test mode, test packets are directed towards the first switch under test

determined according to Algorithms 1 and 2 in Section 3.5. Subsequently, the test path is

constructed progressively by adding the individual NoC components, after their test

procedure is completed successfully (when a faulty component is found the test

procedure terminates). In other words, chip I/Os are multiplexed to a NoC channel,

through which test data is injected into the NoC to access the flip-flops within the RLB

and FIFO.

As stated in Section 3.3, scan insertion is adopted as the DFT strategy for the

routing/arbitration blocks. The number of scan-chains is constrained to be equal to the

inter-switch link width.

Since we perform functional test in the case of the FIFO blocks, they do not require

special control signals or additional hardware to manage the test input data. In this case,

the test control (TC) block only separates the input data from the expected output data

and performs the output comparison for the FIFO test. A similar situation arises for the

inter-switch links, except that the link test packets do not contain any expected output

data. Instead, since the expected output is identical to the MAF test inputs, the TC block

duplicates the latter and thus creates the expected output, which is then used to perform

the test output comparison.

3.6.3 Test scheduling results

The proposed scheduling algorithms were evaluated with respect to their run-times

51

(time required to run the program that implements the algorithms on a computer) and

final test cost (the value of the test cost function associated with the optimal scheduling

solution returned by each algorithm). For estimation purposes, two different types of NoC

topologies are considered: the mesh and butterfly-fat-tree (BFT) [33]. For each of these

types, NoCs were built of three different sizes considered representative for the level of

integration at which the NoC paradigm becomes a viable solution: 16-IP (“small NoC”),

64-IP (“medium” NoC), and 256-IP (“large” NoC). Correspondingly, the number of

switches that service each NoC instance differs for the two types of topologies, due to the

fact that they are direct (mesh) and indirect (BFT) networks; their respective number of

switches is given in Table 3-3. More details on the particular characteristics of these

topologies can be found in [33] [38] [51].

The switches were designed using commercial grade digital design tools by

Synopsys, and synthesized in a 90 nm CMOS standard cell technology from ST

Microelectronics. The test patterns for the routing/arbitration blocks were obtained using

the Synopsys’ TetraMAX ATPG tool [52], and arranged in test packets by in-house

written scripts. The FIFOs were also designed using standard cells; however, they were

isolated from the logic blocks for test generation purposes, and their test data was

obtained and organized in test packets according to Sections 3.3 and 3.4. The size of the

FIFOs was set to four flits per virtual channel, with four virtual channels per port and

symmetrical input-output buffering [20] [33].

For all NoC instances, the bit-width of the inter-switch links was set to 32. All

inter-switch links consist of a pair of unidirectional interconnections. The MAF test

packets were generated according to the MAF model presented in Section 2.2. The code

52

implementing the two scheduling algorithms was run on a Linux PC with a 2 GHz

X86-family processor and 1 GB of DRAM.

The most important quality metric for the test methods developed in this dissertation

is the corresponding test time required to perform both the unicast- and multicast-based

schemes. We compare our method with two previously proposed test methods for NoC

switches. None of these prior methods addresses the test of interconnects (inter-switch

links). We include them in our comparison since they are the most relevant NoC test

methods currently available. In the following, a brief overview of the two NOC test

methods used for comparison is provided.

The work in [30] proposed a test methodology for NoC switches based on a

combination of flat core full scan and hierarchical core full scan methods. For test

purpose, the NoC is considered as a flat core and wrapped with an IEEE 1500 test

wrapper [53] for test data access to internal scan chains of individual NoC routers. Test

data is delivered in parallel to all identical scan chains of the routers and the test

responses are compared internally. The number of comparators used depends on the

number of scan chains: a comparator block is required for each scan chain in the routers.

Ideally, all routers are tested in parallel, and a single comparator is needed. For NoCs of

larger size where practical fan-out limitations cannot be ignored, the number of scan

chains per router (and correspondingly the number of comparator blocks) must be

increased.

In [25] the authors use progressive transport of test data to the switches under test,

while the NoC links are assumed fault-free. Test data is organized in packets and injected

from the ATE using input ports, routed through several channels and routers, then

53

captured by the test wrapper of the router under test. This wrapper is similar to the IEEE

1500 test wrapper. The main concern for test packets scheduling is to avoid using

untested routers in their paths. Moreover, only unicast data transport is considered, with

no particular focus on minimizing the test transport time. Test responses are processed

locally on-chip through the use of either comparator blocks or MISR (Multiple Input

Shift Registers). In [25], test time results are presented for both switches-only test and

integrated switches/cores test. For the purpose of this comparison, we only considered the

case of switches-only test.

Depending on the availability of test resources (I/O pins), designers may choose to

include dedicated TAM that can be used in combination with NoC-based test transport.

Here, we considered that NoC reuse is the only mechanism used to transport test data.

The results showing the test time required by the unicast, multicast, and the previous

test methods presented in [26] and [30] are summarized in Table 3-3.

Before discussing the specifics of the experimental results, note that no direct

comparison is intended between the two types of NoC architectures considered for test

Table 3-3: Test time results and comparison.

NoC type and size Test method and test time [cycles] Relative test time improvement

Test time
[30]*

Test time
[26]*

Unicast Multicast

Test time
improvement

[30]/
multicast

Test time
improvement

[26]/
multicast

Test time
improvement

 unicast/
multicast

4 x 4 9,451 18,840 19,958 4,603 2X 4X 4.3X

8 x 8 40,309 79,921 85,122 7,559 5.3X 10.5X 11.2XMesh

16 x 16 105,775 209,720 223,368 15,223 7X 13.7 14.6X

6 7,226 15,352 16,107 3,258 2.2X 4.7X 4.9X

28 27,690 58,830 61,724 7,036 4X 8.3X 8.7XBFT

120 125,576 266,896 280,073 8,107 15.5X 33X 34.5X

* Test time corresponding to interconnect test is not included (NoC links are assumed fault-free in [30] and [26]).

54

time evaluation. The NoC structures studied here have very different topologies and sizes

(in terms of number of switches).

The reason for choosing these particular topologies and sizes is that they represent

two extreme cases with respect to the nature of their respective topologies: the mesh is a

more uniform architecture, while the BFT is hierarchical. In the absence of standard NoC

benchmark circuits, we believe these topologies offer a reasonable representation of the

practical cases.

The routing policies employed for the unicast and functional multicast cases were the

dimensional routing (e-cube) [20] for mesh topologies, and least-common ancestor

(LCA) for the BFT topologies [33]. For the test-only multicast, the routing was

customized according to Algorithm 2 in Section 3.5.4.

Based on the test times reported in Table 3-3, we note that the unicast test time and

the test time reported in [26] are very similar. This is because, in each case, test data is

delivered sequentially to each component under test. The test volume of the proposed

unicast method is larger than the one in [26], due to the fact that we include test packets

for testing the NoC channels. The larger test volume is compensated, however, by

minimizing the test transport time. Compared to [30], the unicast approach appears to

perform worse, but only because [30] uses a reduced test data volume (no interconnect

test is performed) and second-order effects such as the effect of scan input fan-out are not

considered for larger NoCs. Our unicast method has, however, an advantage that is not

apparent from Table 3-3: it can deliver test data at the nominal operating speed of the

NoC infrastructure regardless of the NoC size. The method presented in [30] may not be

able to carry the test data at the NoC nominal frequency, especially in the case of

55

large-size architectures, when the fan-out of the scan input will increase significantly and

the maximum switching rate of the scan-chains accordingly.

Comparing the test times with multicast, the superiority of the multicast test data

transport is evident. The improvement in test speed range from 2X for the case of

small-size NoCs, to 34.5X for large size NoCs. As with the unicast transport method, the

multicast mechanism is able to transport test data at the nominal operating speed of the

NoC, thus making possible at-speed transport of test packets test with no additional cost.

Another important quality metric of our test methodology is the silicon area overhead

of the unicast and multicast test data transport mechanisms. There are two major

components that contribute to the overhead of the schemes. The first is the test control

(TC) unit, in charge of test packet processing, test input data injection to CUT inputs, and

test output comparison. The second is the multicast wrapper unit (MWU) which

implements the single-source, multiple-destination test data transport feature. We

compare the gate-count of the test-only multicast solution with the gate-count of the

functional multicast implementation.

Table 3-4 shows the gate count for the unicast, test-only multicast, and functional

multicast implementations. The gate-count for the unicast case corresponds to the test

control (TC) blocks, which are identical for a given topology. The TC blocks differ for

different topologies, since they have to handle a different number of components (FIFOs,

routing blocks, inter-switch links) adjacent to a switch. The gate-count reported for the

test-only multicast is the sum of TC gate-count and the MWU gate-count, averaged for

all the switches in the respective NoC instance. Averaging is needed because the test-only

multicast feature is implemented selectively, only for those ports per switch which are

56

involved in multicast data transport. The list of ports that need to be connected to the

MWU for each switch was obtained by examining the optimal test scheduling as

computed using Algorithms 1 and 2 presented in Section 3.5.4. The last column in Table

3-4, labeled %diff, shows the percent difference between the gate-count per switch of the

functional multicast implementation (column 4) and the test-only one (column 3).

The absolute area required to implement the proposed test mechanisms is acceptable,

especially when compared to the typical gate-count of a NoC switch (around 30,000

gates, as reported in [25], [46] and [47]).

Table 3-4: Gate count and comparison for the proposed test mechanism (per switch)

NoC type & size
Algorithm 1
unicast test

[gates]

Algorithm 2
multicast test

[gates]

Functional
multicast
[gates]

%diff

4 x 4 524 825 1025 19.5

8 x 8 548 792 1025 22.7Mesh

16 x 16 576 721 1025 29.6

6 693 816 1210 32.5

28 718 771 1210 36.3BFT

120 736 722 1210 40.3

Moreover, when multicast data transport is adopted, by implementing this feature

selectively for only the switch ports on multicast paths, significant area reduction can be

obtained (up to 40% when compared to the functional multicast realization, for the NoC

instances in our experiments).

The MWU hardware introduces a certain amount of delay in the data path of the

packets, equivalent to the delay of a demultiplexer/multiplexer pair as shown in Fig. 3-4.

This delay adds to the delay of the routing block RLB. Through gate level design and

analysis, the equivalent delay of the MWU is found to be equal to 3 FO4 (fan-out of four)

delay units. The typical delay of the RLB block is around 6 FO4 units [54]. Therefore,

57

the total delay of the RLB and MWU blocks is around 9 FO4 units, which fits well within

the limit of 10-15 FO4 units according to ITRS projected trends for clock speed of high-

performance multi-processors.

Table 3-5 shows the amount of time required to obtain an optimal scheduling running

the two algorithms presented in Section 3.5.

Table 3-5: Test scheduling run-times

NoC type &
size

Algorithm 1 - unicast
run-time [s]

Algorithm 2 – multicast
run-time [s]

4 x 4 4 3

8 x 8 12 9Mesh

16 x 16 33 27

6 2 2

28 7 5BFT

120 15 11

The run-times in Table 3-5 do not include the time required to run the ATPG tool to

generate the test patterns for the logic blocks, since this has to be done irrespective of the

particular test transport implementation. Clearly, the test scheduling methods do not

require significant run-times, even for relatively large NoCs (256-nodes mesh,

120-switch BFT).

3.7 Summary

A novel method for testing the communication fabric of network-on-chip (NoC)

based multi-processor systems-on-chip (MP-SoCs) was presented in this chapter. The

novelty of this method lies in the reuse of the NoC fabric for test data transport in a

recursive manner, and in exploiting the inherent parallelism of the NoC architectures for

speeding the test data transport and reducing the test time. Test scheduling algorithms

were developed for two types of test data transport: sequential (unicast) and concurrent

58

(multicast). The proposed methods integrate the test of all types of NoC components

(buffers, links, and routing blocks) in a unified fashion. The efficiency of the test

methods was evaluated for synthetic NoCs of different topologies and sizes. The results

of this assessment show significant speed-up of test data delivery compared to previously

proposed NoC test methods, from 2X for small-size NoCs, up to 34X for larger networks.

Chapter 4

4 Fault-tolerance Techniques for Networks-on-chip 3

Fault tolerance in a design implies that the design can withstand certain static and

dynamic faults, and still operate correctly. Although all possible fault mechanisms are not

usually covered, the most important ones are addressed to greatly increase the reliability

of a system.

Fault tolerant design of network-on-chip communication architectures requires the

addressing of issues pertaining to different elements described at different levels of

design abstraction – these may be specific to architecture, interconnection,

communication and application issues. Assessing the effectiveness of a particular fault

tolerant implementation can be a challenging task for designers, constrained with tight

system performance specifications and other constraints. In this chapter, a top-down view

of fault tolerance methods for NoC infrastructures is provided, and two novel metrics

used for estimating their quality are proposed: detection latency and avoidance latency.

The use of these metrics is illustrated by simulating a few simple but realistic fault

tolerant scenarios.

3 This chapter is based on work published in:
1. C. Grecu, L. Anghel, P. P. Pande, A. Ivanov, R. Saleh, "Essential fault-tolerance metrics for NoC

infrastructures", 13th IEEE International Online Testing Symposium (IOLTS), IOLTS’07 9th -11th

July, 2007.
2. C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, P.P. Pande, "On-line fault detection and

location for NoC interconnects", 12th IEEE International Online Testing Symposium (IOLTS),
IOLTS06, July 2006.

60

4.1 Introduction

A major cause affecting the reliability of the VLSI global interconnects is the

shrinking of the feature size, which exposes them to different faults of a permanent

(static), transient (dynamic) or intermittent (dynamic) nature. Static faults include opens

and shorts in the wires and missing vias in the interconnect, and a variety of well-known

faults in logic and memory. Among the dynamic failure mechanisms we can enumerate

factors such as crosstalk, electromigration, electromagnetic interference, alpha particle

hits, and cosmic radiations [55]. These phenomena can alter the timing and functionality

of the NoC fabrics and thus degrade their quality-of-services (QoS) characteristics or,

eventually, lead to failures of the whole NoC-based system. Providing resilience from

such faults is mandatory for the operation of NoC-based chips.

Traditionally, error detection and correction mechanisms are used to protect

communication subsystems against the effects of transient malfunctions. Designers must

carefully weigh the hardware cost of implementing such mechanisms for the on-chip data

communication infrastructures against the potential benefits they can bring [56] [57].

Complex error detection and correction (EDC) schemes may require additional energy

dissipation and area overhead, and can affect the performance of SoC communication

architectures in terms of throughput and latency. Other approaches for fault-tolerant on

chip communication include stochastic communication, adaptive routing, and different

hybrid schemes that combine spatial and temporal redundancy for achieving fault

tolerance.

Metrics for fault-tolerant systems are well-established and have been used extensively

in design of distributed computing systems. Recent research in fault-tolerant NoC fabrics

61

proposed metrics that are specific to message-passing on-chip communication systems

for evaluating the effectiveness of new and existing fault tolerance methods. In the

absence of widely accepted metrics, it is difficult for NoC designers to assess the fault-

tolerant capabilities in a quantitative manner. This is especially true when comparing

different fault-tolerant techniques with the objective of determining which one can

deliver the best performance within acceptable costs.

One option for evaluating the fault-tolerance (FT) capabilities of a system is to

measure the degree of hardware and software redundancy (spatial and temporal), which is

an inherent property of most NoC architectures. While redundancy by itself is a useful

measure, it is incomplete in that different systems can exploit redundancy in more or less

efficient ways. It is therefore preferable to have metrics that can measure the effective

fault tolerance as it influences the required performance in accomplishing the task of

transporting information across the NoC fabric. Based on the above considerations, the

scope of this chapter is to present traditional FT metrics in the novel context of NoC

systems, and use them synergistically with newly proposed metrics, in order to measure

the effective fault tolerance in the context of overall system performance for NoC

subsystems.

The quest for on-chip fault-tolerant communication started well before the NoC

paradigm emerged as a solution for integrating large MP-SoCs. Design techniques for

fault-tolerant on-chip busses are found in [58], where a particular form of duplication is

used to detect and correct crosstalk and transient faults, and [59], where different error

recovery mechanisms from simple retransmission to correction/retransmission are

analyzed in terms of power/area figures.

62

The NoC infrastructures are characterized by more complex topologies (relative to

buses), with higher degrees of connectivity. Moreover, in the NoC paradigm, data is

transferred across the chip by employing some form of packet switching, where sent data

is tagged with additional flow control information [20]. The additional hardware and/or

information redundancy, offers significant potential for implementing different

fault-tolerant strategies. Hardware redundancy can be exploited by using multiple paths

to transport data between source and destination cores, e.g., in the case of adaptive

routing methods [60], or stochastic communication [61] [62]. In [61], the total time to

complete the application (a Fast Fourier Transform algorithm) in the presence of faults is

another performance measure of the FT method. General-purpose metrics used in [61]

and [62] are energy consumption and area cost, which are fully usable and relevant.

Information redundancy can be implemented by means of error detection/correction

schemes, where additional control bits can be used to detect the presence of errors and

eventually to reconstruct the original data. When the presence of errors in the data stream

is detected but not corrected, error recovery is usually performed through retransmission,

which is one of the possible forms of temporal recovery [63].

In practice, temporal and spatial data redundancy is often used to achieve the fault

tolerant goals. Ultimately, designers must assess the effectiveness of the FT

implementation in the context of the NoC performance specification. This information

must be readily available and quantifiable such that, if a specific FT implementation

cannot be accommodated while still meeting the performance specification of the NoC

medium, it can be eliminated from the set of potential FT realizations at early stages of

the design process.

63

Most of the previously published works on the issue of FT in NoCs present methods

at algorithm or circuit level, and then proceed to assess them relative to an ad-hoc set of

parameters that may be more or less relevant to the specifics of an on-chip data transport

mechanism.

In [61] and [62], the authors propose probabilistic communication schemes based on

probabilistic broadcast and random walk, respectively. In these schemes, multiple copies

of the same message are transmitted following different paths, selected randomly from

the set of possible routes between communicating pairs of cores. When transient or

permanent faults manifest themselves in the NoC fabric, the affected message replicas are

discarded. Eventually, from the set of redundant messages, one that is error-free may

reach the destination, completing a successful transmission. Message latency is correctly

identified in both works as an important measure for evaluating the impact of the FT

solution. However, there are many factors that can affect message latency, other than the

specific FT implementation, such as traffic distribution (spatial and temporal), buffer size

and buffer management, flow control, etc. The contributions of all these factors towards

message latency are generally inter-dependent, and it is quite difficult to separate their

individual effects. As such, it is difficult to estimate with acceptable accuracy the effect

of the FT method on latency, isolated from the other factors.

In [64], a new metric to characterize fault-tolerant NoCs is proposed, called message

arrival probability (MAP). For a pair of tasks (processes) that exchange messages across

the NoC, MAP is defined as the fraction of successfully transmitted messages. This

metric is useful for assessing NoC performance when tight bounds are imposed on its

capability of transmitting error-free messages.

64

A different category of FT metrics relates to topology characteristics that can

potentially offer FT properties. In particular, connectivity is used to express the ability of

an interconnection network to offer multiple paths among its communicating nodes [65].

This metric is useful, but only when combined with the flow control mechanism that can

exploit the degree of connectivity in a more or less efficient manner.

When dedicated spare routers or links are employed for achieving fault tolerance, the

amount of spare elements can give an estimate of the NoC’s FT capabilities. As for the

connectivity, the amount of spares is only offering information about the NoC’s potential

fault tolerance, rather than its actual ability.

Various coding schemes were proposed for providing error resilience to on-chip

communication infrastructures [57] [66]. A comprehensive comparison and evaluation is

carried out in [67] for detection-only and single-error correcting codes, combined with

retransmission for data recovery. The effect of locating the recovery points in the NoC

topology (e.g., end-to-end or switch-to-switch recovery) is also studied and evaluated.

The metrics used in [66] and [67] quantify the effect of error recovery schemes on NoC

parameters such as data latency, area overhead, and energy consumption, under specific

conditions of NoC operation.

The types of approaches for determining the efficiency of FT schemes based on their

effect on NoC performance parameters, under specific operating conditions, have the

drawback that they only deliver information for a set of inter-dependent operating

conditions (i.e., a given NoC hardware instance, specific traffic distributions and flow

control protocols).

65

We propose to complement these measuring practices by including the measurement

of the intrinsic performance of the particular FT scheme in terms of its capability of

avoiding failed states, detecting a failure, or recovering from a failed state. Combined

with performance parameter measurement in presence of FT mechanisms, the metrics

proposed and evaluated in this chapter give the designers a better understanding of the

trade-offs involved in designing high-performance, fault-tolerant networks-on-chip.

4.2 Traditional fault-tolerance metrics

Traditional engineering methods that address design of fault tolerant systems use

reliability and availability analysis to characterize these systems and their components

[68]. Reliability is defined as the probability with which a system will perform its task

without failure under specified environmental conditions over a specified time duration.

Thus, the MTBF (Mean Time Between Failures) parameter is used as a representation of

reliability, and is calculated as:

Total operating time
MTBF

No.of failures encountered
 (4.1)

Another metric used for evaluation of fault tolerant systems with repair/recovery

capabilities is represented as MTTR (Mean Time to Repair):

Total time spent for repairs
MTTR

No. of repairs
 (4.2)

Based on MTBF and MTTR, the availability of a system can be used to measure the

impact of failures on an application, and is defined as:

100%
MTBF

Availability
MTBF MTTR

(4.3)

While useful at the system level, these metrics may overlook important properties of

fault tolerant NoC subsystems. One such property that is misrepresented by use of MTBF

66

is the capability of a NoC protocol to rapidly recover from failures. Even in the case

when the number of failures is high (which indicates a low, undesired MTBF), if the

recovery can be performed quickly (e.g., through flit-level recovery [67] [69]), the impact

of failures may be minimal and, therefore, it may not affect the application at all. For the

same reason, the availability of the NoC subsystem in such a condition can be

misinterpreted if viewed only by Eq. (4.3).

Another drawback of these generic, system-level metrics is that they represent average

values. In the case of NoC fabrics that must meet tight quality of services (QoS)

requirements in the presence of failures, the average values are not useful since the

performance constraints (in terms of guaranteed latency per message or available

throughput) have to be met for all possible instances, not only on an average basis.

While there is little doubt that fault tolerance is a desirable and useful property of NoCs,

designers need simple, readily available metrics to be able to characterize FT methods in

the context of the specific NoC implementation. We introduce these metrics relative to

the NoC’s ability to detect the occurrence of faults and recover from failures. The metrics

proposed in this work aim to address the issue of characterizing the effectiveness of fault

tolerance schemes for NoC communication subsystems in the context of the specific QoS

requirements that designers face in their implementation. They are not intended to

substitute the existing metrics, but to complement them by offering a more detailed view

of the properties of different fault-tolerance methods. We illustrate how the metrics

defined here can help designers gain more insight on the actual performance of fault

tolerant implementations related to NoC architectures. The metrics proposed in this

chapter are described in Section 4.3 and evaluated in Section 4.4.

67

4.3 Fault-tolerance metrics for network-on-chip subsystems

Before defining the set of metrics forming the object of this work, we need to

differentiate between different hierarchical abstraction levels for achieving resilience to

failures. There are five key elements in a comprehensive approach to fault tolerant

design: avoidance, detection, containment, isolation, and recovery. Ideally, these are

implemented in a modular, hierarchical design, encompassing an integrated combination

of hardware and software techniques. Moreover, the fault tolerant techniques can be

applied at different layers from the set of ISO/OSI layers [21] that the NoC may

implement, resulting in numerous possibilities for fine tuning the performance of the FT

implementation by combining the (sub)set of FT elements with the (sub)set of NoC

layers. As an example, error detection may be implemented in the data layer, and

recovery may be realized either in the data layer (e.g., if an error correcting code is used)

or at the application layer. In a more generic approach, the partitioning and derivation of

requirements, and the partitioning and implementation of fault/failure management

techniques must be realized in a hierarchical fashion. For each hierarchical level, the

existence of appropriate metrics allows the designers to have full control and

understanding of the implications that a particular fault-tolerant implementation will have

on the operation of a NoC subsystem. In this chapter, two novel metrics for evaluating

the performance of fault-tolerant mechanisms are proposed: detection latency and

avoidance latency.

For illustrating the value of the metrics proposed here and their usability, a simple

example of an application A running on a NoC-based multi-processing system is

considered. The application uses two processes P1 and P2 on two different processing

68

cores, as shown in Fig. 4-1. Ideally, processes P1 and P2 use the NoC subsystem to

communicate with each other along the path shaded in grey. However, a different path

may be taken if there is a fault on the ideal path.

Figure 4-1: Processes communicating across a NoC fabric

 layout & device level
(physical layer)

 fl it/packet level
(data layer)

 end-to-end
(network/transport layer)

 app lication level
(application/session layer)

Faults:
- type
 - source
 - rate
 - impact

D/R

D/R

D/R

D/R

Figure 4-2: Hierarchical partitioning for fault tolerant NoC designs.

69

Faults can be detected and recovered in many ways. Using a layered representation of

the data communication in a NoC-based system, and considering a subset of the standard

OSI layers [70], Fig. 4-2 shows the propagation of faults from the physical level (faults

affecting low-level device functionality) to the application level (faults affecting the

software application running on the NoC-based system). At each level in the hierarchy,

faults can be characterized by type, source, frequency of occurrence, and impact. At the

lowest level (physical), it is assumed that a fault results in a degraded operation of the

respective component. For example, a wire short or open, or a missing via could occur at

this level. Then, either repair is performed or the problem is passed on to the next level.

That is, at each level, detection and recovery have associated costs and performance

penalties. If it is not always cost effective to detect-and-recover (D/R) at the lowest level,

the fault manifests as a local error/failure which propagates to the next higher level,

where the corresponding FT technique is evaluated again relative to performance and cost

effectiveness. The objective of this hierarchical partitioning is to provide cost-effective

handling of error/failures while satisfying system requirements. The hierarchical

approach can provide back-up at higher levels for faults which, for any reason, are not

handled at lower levels. In the case of Fig. 4-1, if a low level-fault occurs, an alternate

route can be taken between P1 and P2 (along the dashed line) to avoid the problem by

addressing it at the network/transport layer. This comes at the cost of higher data

transport latency due to the non-optimal path-length. Generally, the higher the level in the

hierarchy, the longer it takes to contain and/or recover from the effect of a failure, but

there are certain advantages with respect to area cost and power dissipation. For real-time

NoC systems, time is the critical factor for specifying the performance of the FT

70

implementation. Designers must decide on the effectiveness of a particular method by

knowing how quickly faults must be detected, how quickly they have to recover from the

occurrence of a fault, how long an error can exist in the NoC infrastructure without

impairing/compromising system performance. This is the motivation for new metrics for

fault-tolerance in NoCs, especially in cases when QoS constraints must be satisfied.

First, based on the example application in Fig. 4-1 and considering a hierarchical

implementation as in Fig. 4-2, we define metrics for the five elements of comprehensive

fault-tolerant methods.

(a) Avoidance

Fault-avoidance techniques can be realized through information redundancy (by

means of error correcting codes for NoCs) or hardware redundancy (n-modular

redundancy being a typical example). Depending on the targeted number of errors to

correct, coding/decoding hardware blocks may require a certain number of cycles to

perform their operation. The associated time overhead adds to the total latency of the data

being transported across the NoC fabric. Additionally, area and power overhead must be

considered.

We define the time overhead of an avoidance scheme, Tav,ov, as the difference

between data latency with (Latav) and without (Lat) fault avoidance:

Tav ov = Latav – Lat (4.4)

The difference between various implementations of this concept can be significant

relative to this metric. In the example in Fig. 4-1, if coding/decoding functions are

implemented at each switch on the path between P1 and P2 (switch-to-switch avoidance),

the resulting time overhead will be significantly higher than in the case where only

71

end-to-end avoidance is implemented (i.e., data is encoded at the source and decoded at

destination). Ideally, latency insensitive protocols and link pipelining techniques mitigate

the effect of the extra latency cycles.

(b) Detection

The next hierarchical level in a fault-tolerant design is detection of faults that were not

handled by the avoidance mechanism. Detection is built in most error-correcting codes,

which generally can provide information regarding the number of un-corrected faults,

when the correction mechanism fails (or is not even present in the particular

implementation). Fault detection is then used to assess the need for recovery from

potentially uncorrected fatal failures. The quicker the detection mechanism signals the

presence of uncorrected faults, the quicker the recovery can be initiated. We define the

detection latency Tlat as the amount of time between the moment a fault occurs and the

moment it is detected. Going back to our example in Fig. 1, fault detection may be

performed by the processes P1 and P2 whenever data is received (end-to-end detection), at

the input ports of the intermediate switches (switch-to-switch detection), or at each

switch input/output port (code-disjoint detection). In each case, the detection latency Tlat

is different and the impact on the performance of the FT system varies accordingly.

(c) Containment

Fault containment is concerned with limiting the impact of a fault to a well-defined

region within the NoC. Error containment refers to avoiding the propagation of the

consequences of a fault, the error, out of this defined region. Fault containment regions

(FCR) may be defined with variable resolutions, directly correlated with the quality and

resolution of the fault detection mechanism. For the case of Fig. 4-1, and assuming an

72

end-to-end detection mechanism, the fault containment region can be defined as the

entire shaded route between the cores where processes P1 and P2 are being executed. The

size of the fault containment regions can be decreased by employing more accurate fault

detection schemes, such as switch-to-switch or code-disjoint detection. It is essential that

FCR be independent in the sense that a fault occurring in a FCR does not affect a

different FCR. In this respect, if two routes between cores/processes P1 and P2 can be

found that are on independent FCRs, and a fault is detected on one of the routes, the other

route can be used to provide an alternative path between processes P1 and P2 (represented

as a dashed line in Fig. 4-1).

(d) Isolation

The independency of fault containment regions can only be achieved if an effective

isolation method can be provided, which can guarantee that the effect of a fault occurring

in a FCR does not propagate to another FCR. At the physical layer, in the case of

permanent faults, isolation can be accomplished by marking or disconnecting the faulty

NoC components (links, switches, routes) and avoiding their use until, eventually,

hardware recovery/repair can be performed through reconfiguration. At higher layers,

erroneous data packets can be dropped on the fly or at the destination process, such that

they are not allowed to interfere with the rest of the data and propagate at application

level.

(e) Recovery

The ultimate goal of fault tolerant schemes is to provide means to recover from

occurrence of failures. For fault-tolerant, QoS constrained NoCs, it is important to

recover from failures within the time budget allowed by the QoS specifications. Late

73

recoveries, even when successful, are not acceptable, since they lead to

out-of-specification behaviour of the NoC subsystem. Consequently, we define recovery

time (Trec) as the amount of time that passes between the detection of a fault and recovery

from the corresponding failure. A simple form of attempting recovery of erroneous data

flowing between processes P1 and P2 is to provide a hardware correction at lower layers,

or a retransmission mechanism at higher layers where, upon detection of an error, an

automated retransmission request (ARQ) is generated and an error-free copy of original

data is resent from the source process.

4.4 Metrics evaluation

The use of the metrics defined in this work is illustrated by running simulations of a

few detection and recovery schemes on a 4x4 NoC fabric, as depicted in Fig. 4-1. A

cycle-accurate, flit-level simulator is used [101], with messages injected with equal

probabilities by all NoC cores (i.e., uniformly distributed random traffic). The value of

these metrics will be illustrated with an example.

In all simulations, messages are organized in 16 flits each, and are transferred across

the NoC medium following the dimension-order (e-cube) routing algorithm, where

messages are first sent along the x direction of the topology, then along the y direction

towards the destination core. The injection rate is varied uniformly. Faults are injected

randomly, on a flit-per-cycle basis, i.e., in each cycle, flits may be marked as erroneous

with equal probabilities, regardless of their current location in the NoC fabric.

In this set of experiments, we are mainly interested in detection and recovery

estimation. We consider the following cases for fault detection scenarios:

74

- end-to-end (e2e) detection: the errors are detected at the destination cores. Each flit is

checked for errors upon reception and, if found erroneous, the detection latency is

calculated as the time difference between the fault injection moment and flit arrival time.

- switch-to-switch (s2s) detection: error checking is performed at each input port of the

switches, for each flit traveling across the NoC.

- code-disjoint (cdd) detection: flits are checked for errors at both input and output ports

of the NoC switches.

Figure 4-3: Average detection latency for end-to-end (e2e), switch-to-switch (s2s), and
code-disjoint (cdd) detection schemes.

Fig. 4-3 shows the average detection latency for the three detection mechanisms

considered here. Flit error rate is set at e=10-10, i.e., in each cycle, for each flit, the

probability of being flagged as erroneous is 10-10 [71]. The e2e detection is the poorest

performer relative to detection latency, since the messages must travel all the way from

source to destination before an eventual error being detected. The cdd mechanism

75

performs best, due to the fact that error detection is performed at each input/output of the

switches.

Next, two recovery methods are simulated, both based on retransmission of erroneous

messages. The first scheme is a message-level, equal-priority retransmission. Upon

detection of an erroneous flit, an ARQ message is generated at the destination core. For

ease of implementation, the ARQ message is injected into the network immediately, once

all the flits of the erroneous message have been completely received. If more flits in a

message are erroneous, only one ARQ message is generated. The ARQ is sent towards

the source of the erroneous message and handled as any other regular message by the

NoC environment. The case where ARQ messages themselves are affected by errors is

not considered here. There are three types of messages in this scheme: regular messages,

ARQ messages, and retransmitted messages. They all have equal priorities, and are

treated similarly when traversing the NoC. We call this method equal priority recovery

(epr).

For speeding up the recovery process, we consider a second retransmission-based

recovery scheme, where ARQ and retransmitted messages have higher priority than the

regular messages. When contention arises, regular messages will wait for ARQ and

retransmitted messages to be processed. This allows faster transport of the latter

messages types, and therefore speed-up the recovery process. We call this method

priority-based recovery (pbr).

The next experiment measures the recovery latency for a few combinations of

detection/recovery schemes. Ideally, we would like to isolate the detection and recovery

mechanisms, and report individual performance figures for the recovery phase only. In

76

practice, this is difficult due to the two processes being inter-dependent. In our

experiments, the inter-dependency is caused by the need to manage the erroneous

messages in a realistic fashion, i.e., upon detection of an erroneous flit, the corresponding

message continues to be transported toward its destination and, eventually, interact with

ARQ and retransmitted messages. This causes erroneous messages to continue to traverse

the NoC after error detection and keep NoC resources occupied, effectively reducing the

NoC capability to transport ARQ and retransmitted messages with maximum efficiency.

Figure 4-4: Average recovery latency for equal priority recovery (epr) and priority based
recovery (pbr).

The average recovery latencies for the two recovery methods considered in our

experiments are shown in Fig. 4-4. The flit error rate is set to e=10-10 for all simulation

runs. Note that the pbr method offers better recovery latency due to preferential

processing of ARQ and retransmitted messages. The advantage of priority-based

recovery is more apparent at higher injection rates, where the ARQ and retransmitted

messages are able to travel faster than the regular messages waiting in queue buffers for

available resources. Also, the pbr scheme can support tighter QoS requirements in terms

77

of minimum latency in presence of errors.

In the last experiment, we study the effect of varying the flit error rate e on the

average recovery latency, for the pbr scheme. In this experiment, the message injection

rate was set constant to a non-saturating value of 0.1 flits/cycle/core. A high flit error rate

will cause the generation of numerous ARQ and retransmitted messages, which will

effectively cause an increase of the NoC traffic. Similarly, a high injection rate will

cause, even in the error-free case, an increase in latency due to message congestion.

Therefore, simulations are performed at a low, non-saturating injection rate, at which the

variation of message recovery latency is principally affected by the error rate e.

The results shown in Fig. 4-5 indicate that the system can reliably recover from

failures at flit error rates up to approximately e=10-9. At this point, the recovery latency

starts to increase significantly, and reaches values that may not be compatible with the

QoS specifications of the system. The recovery latency is influenced by both the flit error

rate and message injection rate. For higher message injection rates, the nature of the

curves in Fig. 4-5 remains the same, but with a higher flat plateau at low flit error rates

(due to increased average message latency), and a faster increase of recovery latency with

increasing flit error rate. For a complete characterization of a practical case, simulations

would have to cover a wider range of traffic conditions.

78

Figure 4-5: Average recovery latency for pbr scheme with variable flit error rate

The advantage of using the detection and recovery latencies as defined in this work

becomes apparent by observing that using experiments similar to the ones presented here,

designers are able to isolate the performance figures of fault tolerant methods from the

environmental conditions (represented by traffic conditions in our experiments).

As an example, the design specification of a NoC fabric such as the one in Fig. 4-1

may require an average recovery latency of 30 cycles for a message injection rate of up to

0.1 flits/cycle/core, at a flit error rate of up to e=10-10. Based on the simulation results in

Fig. 4-4 and 4-5, the end-to-end (e2e) schemes can be eliminated from the set of potential

candidates for FT implementations, since their average recovery latency is greater than

the required value of 30 cycles.

Finally, we estimate the message arrival probability (MAP) associated with the three

detection scenarios, for the pair of communicating processes P1 and P2. This is an

indication of how well the three schemes perform when application A in Fig. 4-1 has tight

bound imposed on the quality of communication between processes P1 and P2 in terms of

79

the ratio of successfully transmitted messages (targeted QoS [72]). In Fig. 4-6, we plot

the average message latency versus bound on MAP under traffic assumptions stated

earlier in this section. In this set of experiments, flit error rate was set at e=10-6, at a

message injection rate close to network saturation.

Figure 4-6: Average message latency vs. bound on MAP.

Note that when the required MAP is increasing towards 1, the average message

latency increases significantly. This indicates that, when the application requires a MAP

close to 1, the simple recovery techniques presented here may not suffice, and more

advanced FT techniques need to be employed. Also, a complete characterization of

particular FT techniques would involve additional application metrics under

application-specific traffic conditions.

To illustrate how the metrics presented in this chapter can be used by NoC designers

to select an appropriate FT technique when a NoC system is designed with QoS

constraints, consider the case of two application tasks T1, T2 mapped onto processors P1,

P2, respectively, in a 4X4 mesh NoC, as shown in Fig. 4-7.

80

Figure 4-7: Processes P1, P2 mapped on a mesh NoC with QoS communication constraints.

The QoS specifications for the two tasks are expressed as follows:

“The maximum allowed flit latency between processes P1 and P2 is 60 clock cycles, for

a message injection rate of up to 0.3 message/cycle/process and a maximum flit error

rate of 10-10.”

The task of the designer is to find a combination of error detection and recovery

methods that satisfies the above constraint, while factoring in the cost in terms of area

overhead. For simplicity, these costs are assumed to be known and ordered as in Fig. 4-8

for the set of detection and recovery methods considered earlier in this chapter.

code-disjoint

switch-to-switch

lo
w

m
ed

iu
m

hi
gh

end-to-end

lo
w

m
ed

iu
m

hi
gh

Figure 4-8: Performance and cost of detection techniques.

For determining what combination of error detection and latency is the most

81

appropriate, the designer will extract the latency numbers performing analysis or

simulations, and then choose the pair whose added latencies satisfy the QoS requirement.

For illustration, the latency metrics for the detection/recovery methods considered in this

chapter and applied to the two communicating processes P1, P2 in Fig. 4-7 are shown in

Tables 4-1 and 4-2, respectively.

Table 4-1: Detection latency (10-10 flit error rate)

Traffic load (message injection rate, [message/cycle/process])

0 (no-load) 0.1 0.2 0.3

cdd 3 3 3 4

s2s 4 4 5 6

e2e 21 21 22 24

Table 4-2: Recovery latency (10-10 flit error rate)

Traffic load (message injection rate, [message/cycle/process])

0 (no-load) 0.1 0.2 0.3

epr 42 42 45 58

pbr 42 42 45 51

Adding the corresponding cells in Tables 4-1 and 4-2, one can determine which

detection/recovery pair can be successfully used. Two options are available to the

designer in this example: cdd + pbr and s2s + pbr. All other combinations exceed the

latency limit imposed by the QoS constraint. Factoring in the higher area cost of the

detection techniques as shown in Fig. 4-8, the solution of choice is s2s + pbr, which

82

requires a lower implementation cost. Clearly, the separation of fault-tolerance

mechanisms and differentiation of the latency metrics provides greater visibility in

selecting the optimal method.

4.5 Summary

The need for fault-tolerant features in NoC communication fabrics is recognized by

academic and industrial communities, and different implementations are possible to

address the challenges of providing fault-tolerant communication in NoC subsystems. It

is, however, difficult for designers to choose a particular FT scheme due to lack of

metrics that can express the intrinsic effectiveness of a FT method, and not only its effect

on generic performance parameters such as latency, throughput, and power consumption.

We have presented a comprehensive, unified view of fault tolerant methods for NoC

subsystems, with hierarchical partitioning that makes possible mapping the elements of a

FT implementation on the generic layered structure of network-based communication

systems. We presented two novel metrics (detection latency and recovery latency) that

assess the capability of a NoC subsystem to quickly detect the presence of a fault and

recover from failures in a speedy manner. The use of these metrics was illustrated with a

set of simulations. These metrics are intended to complement the generic, application

oriented (throughput, latency) and resource oriented (area overhead, power consumption)

metrics.

83

Chapter 5

5 Fault-tolerant Global Links for Inter-core Communication
in Networks-on-chip 4

5.1 Introduction

In this chapter, we propose a method to improve the yield of global links of NoC-

based chips by using redundant upper-level wires interconnected with the low-level metal

lines in a sparse matrix configuration. The global NoC links are defined as the lines used

to transfer the intercore signals (inter-router or router-to-PE). A yield improvement

technique targeted specifically at these links is developed. The structured nature and

functionality of the SoC interconnect infrastructures render them particularly suitable for

the implementation of these features, similar to the case of memory blocks, where yield

enhancement and defect tolerant techniques have become common practice [15] [55] for

some time already. According to the discussion and classification in Chapter 4, the

fault-tolerant solution here is a low-level fault-tolerant technique, placed at the physical

level, whose containment region is the corresponding NoC link. Its performance in terms

of fault detection time and recovery speed through link reconfiguration is outlined in

Section 5.8 of this chapter.

4 This chapter is based on work published in or submitted to:
1. C. Grecu, A. Ivanov, R. Saleh, P.P. Pande, "NoC interconnect yield improvement using crosspoint

redundancy", IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, 2006, DFT '06,
Oct. 2006.

2. C. Grecu, D. Sengupta, P.P. Pande, A. Ivanov, R. Saleh, “Self-repairable SoC communication
links using crosspoint redundancy”, IEEE Transactions on VLSI, under review, submitted Feb.
2008.

84

The method described in the following sections is based on the use of sparse regular

crossbars, which are a particular class of generalized connectors. The novel features of

our method are two-fold: first, we provide a mechanism to test the inter-core links

post-fabrication at start-up or during run-time and detect the faulty wires. Second, we

design a reconfiguration scheme that selects a set of fault-free wires to set-up the

connections between cores. The reconfiguration scheme is designed such that every

possible combination of fault-free wires yields closely matched delays, with the benefit

of ensuring consistent, uniform link speed across a wide range of defect sites.

A widely-used technique for achieving fault-tolerance in computing systems is the

N-way modular redundancy (NMR) [63]. This is based on replicating the component a

number of times (three or more) and employing voting mechanisms to decide which of

the replicas delivered a fault-free output. Generally, this technique brings a high hardware

overhead due to the number of replicas involved. In the particular case of fault-tolerant

NoC communication links, the use of NMR is prohibitive due to large interconnect

overhead, which can lead to wire congestion and routing difficulties. Our solution is more

fine-grained than the classic NMR, and delivers a methodology for yield tuning, test, and

reconfiguration.

5.2 Related work

Sparse crossbars were originally proposed in [73] for designing high-performance,

hardware efficient concentrators and distributors for interconnection networks. Their

applications range from computer networks [74] to multi-processor systems [75] and

instrumentation networks [76]. Fault tolerance of global SoC interconnects was addressed

by different groups proposing error recovery schemes based on error detection and

85

correction [67], mainly aimed at recovering from failures caused by transient faults.

Another approach, proposed for multi-core SoCs built on NoC platforms, is to achieve

fault-tolerance at the data transport level by employing stochastic [77] [78] or adaptive

[79] communication mechanisms. For more structured interconnect systems, such as

FPGAs, tolerance to permanent faults can be achieved by rerouting and remapping the

faulty interconnect resources [80]. In [81], FPGA interconnect are tested, diagnosed and

reconfigured on-line, performing an incremental routing that uses a routing window to

reduce reconfiguration time, incremental configuration file size, and incremental

configuration file download time. The high level of programmability and modularity of

the FPGA systems makes them readily adaptable for implementing fault-tolerant

mechanisms.

Another method of improving interconnect yield when via failure is a significant

source of yield loss is via duplication [82] [83]. Usually, via duplication is performed as a

post-layout design for manufacturability (DFM) step, where additional vias are inserted

wherever the layout and design rules checking (DRC) allow it [84] [85]. Post-layout via

duplication tends to increase the complexity of the layout by adding vertices and edges to

the layout. Restricted layout topology design styles aim for reduced layout complexity,

with fewer vertices and edges. This places the goals of restricted topologies and DFM in

conflict with one another. Ideally, DFM techniques are applied early in the design stage.

Yield-aware routers attempt to insert redundant vias during the routing stage [86].

However, the optimum parameters for DFM may not be known until after the layout is

substantially complete, and layouts migrated from earlier technologies will typically not

be designed in a way that follows the newer technology’s DFM requirements.

86

The NoC global interconnects (communication links) do not have the degree of

programmability of FPGA interconnects; however, they are prone to the same types of

manufacturing and reliability defects. Via duplication, being performed late in the design

stage, is a “best effort” solution that cannot provide guarantees with respect to a targeted

interconnect yield. As a layout-level solution, via duplication is not entirely reusable

when designs are migrated from one technology to another. Although most defects can

be detected during manufacturing test, permanent defects (undetected and/or developed

post-fabrication) may still affect the operation of SoC interconnects due to latent

manufacturing flaws and wear-out mechanisms. More importantly, the global

interconnect defects are a potential source of yield loss [13] due to the large number of

vias they need.

In this chapter, a method is proposed for designing NoC infrastructure links such that

a specified interconnect yield target can be achieved. We present the trade-off between

the interconnect resources and the achievable yield. Our method integrates spare

calculation for targeted yield, test and diagnosis mechanism, and interconnects

reconfiguration.

5.3 Problem statement

In this section, the problem of constructing global, structured NoC interconnects such

that, under a specific set of defect assumptions, a certain interconnect yield be achieved,

is formally described. Let L be a NoC link consisting of a set of wires whose function is

to transfer a certain number of signals, denoted by m, between two cores (NoC routers or

processing cores). Let Pline be the probability that a single global line (including the vias

from the silicon surface to the upper metal layers and back – as in Fig. 5-1) is fabricated

87

correctly. Given a certain interconnect yield target Y to be achieved, we want to

determine the total number of metal lines n (n m) that need to be provided to the global

NoC link L.

Additional objectives are:

1. The spare and active metal lines must have closely-matched electrical

characteristics.

2. The switching circuitry that routes the m signal lines to the n active wires of the

NoC interconnect L must be of minimal area and complexity.

The first objective above reflects the fact that the circuits that implement and manage

the interconnects and perform the actual mapping of signal lines to physical wires may

place an additional capacitive load on the metal wires. If this load is not identical for all

wires, then their delays may be different and, consequently, the timing characteristics of

the same link may change when the link is reconfigured upon the occurrence of a

permanent fault.

The second objective is due to the fact that the implementation of the fault-tolerant

features must be hardware efficient, since the silicon area is an important component of

the overall cost.

Our approach is intended for use in the early stages of the physical design of the NoC-

based SoCs and it consists of the following steps:

Step 1: Identify the NoC links that connect different routers/cores and span multiple

metal layers (as indicated in Fig. 5-1b).

Step 2: Calculate the probability of failure per line, using the probability of failure of an

individual via; calculate the number of spare metal lines required in order to achieve the

88

desired interconnect yield.

Step 3: Provide a mechanism that can select a set of good lines at both ends of the

NoC link, with the number of defect-free lines equal to the number of logic core

inputs/outputs, from a total number of lines equal to the sum of logic inputs/outputs and

spare lines calculated in Step 2.

Step 1 can be accomplished by inspecting the schematics of the NoC circuitry and

selecting the global links – the ones that interconnect NoC switches. In Section 5.4, we

present a method to calculate the number of spare metal lines that must be provided in

order to achieve a desired interconnect yield as required in Step 2. The mechanism that

realizes Step 3 above is presented in Section 5.8.

5.4 Interconnect yield modeling and spare calculation

In VLSI manufacturing, the critical area model [87] is commonly employed to estimate

the yield sensitivity of chips to random failure mechanisms. For specific manufacturing

processes, the results are then calibrated using electrical test structures [88]. The

power-law model is applied, following the procedure in [89], and the critical area model

is applied to determine the probability of failure of an individual via, PoFvia:

1
0, /k k

via ref refPoF D Dens Dens (5.1)

where D0, ref represents the reference via chain defect density, while Densref represents the

via density of the regular via chain test structure. Here, D0,ref and Densref are constants for

a specific manufacturing process and are determined through curve fitting during process

characterization using regular via chain test structures. Experiments on technologies with

different minimum feature sizes reveal that the exponent of the power-law model, k,

tends to 1 as the feature size decreases [89]. This allows the assumption that PoFvia is

89

almost independent of via density (Dens) and consider via failures as independent events

for statistical yield calculations. This weak dependence is even more pronounced for

smaller feature sizes, i.e., PoFvia in a 90 nm technology has a weaker dependence on via

density than does PoFvia in a 130 nm technology.

The probability of failure of an interconnect line spanning multiple metal layers, Pline,

is then determined, taking into account the corresponding number of via levels that it

traverses. Assuming via failures on different via levels as independent events, the

probability that a global interconnect line spanning l metal layers is defect-free can be

expressed as:

2

1,
1

1
l

line i i
i

P PoF via

 (5.2)

where PoF(viai-1,i) is the probability of failure of vias between metal layers i-1 and i.

Under these considerations, tolerating global wire defects is a matter of providing an

adequate number of spares, separating the good wires from the faulty ones, and

configuring the inter-core links accordingly.

An m-choose-n calculation can be performed to obtain the number n of wires that

must be available to achieve m functional wires in the link. The probability that the yield

be such that exactly i wires (i m) are defect-free is:

(,) 1
i n i

yield line line

n
P n i P P

i

(5.3)

That is, there are exactly
n

i

ways of selecting i wires from a total of n wires, and the

90

probability that each of these cases is defect-free is 1
i n i

line lineP P

 . We can have a set

of m functional wires whenever m or more of them are defect-free, so the yield of the link

is expressed as the cumulative distribution function:

1
n

i n i

m of n line line
i m

n
P P P

i

(5.4)

Given the desired probability (or yield) for having at least m defect-free wires, Pm of n,

(5.4) provides a way to find the number of physical wires, n, that are required in the

layout in order to achieve the target yield.

5.5 Fault-tolerant NoC links

In order to physically connect a set of m functional wires at the core interface, a scheme

must be provided to arbitrarily connect the m interface signals to the n physical wires (m

 n) such that exactly m defect-free wires are used to transmit/receive the data between

two cores. Moreover, we must ensure that, in any possible configuration, the electrical

properties of the core-to-core interconnect are preserved, i.e., the delays of different

possible configurations of the same link must match closely. Another objective that we

target is that the area of the configuration circuitry must be minimal, since this adds up to

the total cost of interconnects.

With these objectives, we propose a method to construct configurable connectors that

have closely-matched delays for any possible connection, and are of minimal size. This

method is based on the theory of generalized connectors [90], and uses specific results for

a class of connectors known as sparse crossbar concentrators [91].

91

5.6 Sparse crossbar concentrators

An (m,n)-sparse crossbar concentrator [96] is defined as a bipartite graph G={I,O,E},

with a set of m inputs {I}, a set of n outputs {O}, and a set of edges {E} such that there

exists a one-to-one mapping between any n or fewer outputs and the m inputs. In our

case, the m inputs correspond to the functional wires that must be realized per link, while

the n outputs correspond to the total number of wires (including the redundant ones) that

must be physically implemented for achieving the target yield. The edges in E are called

the crosspoints of graph G. The number of crosspoints of G represents its crosspoint

complexity. For a hardware implementation of a sparse crossbar, the crosspoint

complexity is a direct measure of the silicon area required by its layout.

The number of outputs (inputs) to which an input (output) is connected to in graph G

is referred to as its fanout (fanin). The maximum number of outputs (inputs) to which an

input (output) in G is connected to is referred to as the fanout (fanin) of graph G. A

sparse crossbar is said to be regular (or balanced) if the difference between both the

fanouts of its inputs and the fanins of its outputs is no greater than two. The direct sum G1

+ G2 of sparse crossbars G1={I,O1,E1} and G2={I,O2,E2} is defined as being another

sparse crossbar G1+G2={I,O1UO2,E1UE2}.

An (m,n)-sparse crossbar is called a fat-and-slim crossbar if any n-m of its outputs are

connected to all the inputs in I, and each of the remaining n outputs is connected to a

distinct input. An (m,n) fat-and-slim crossbar G can be represented by an m x n adjacency

matrix, AG=[aij]m x n of binary elements, where a ‘1’ element in row i and column j

represents a crosspoint between input i and output j. An (m,n)-fat-and-slim crossbar has

the adjacency matrix [Fm, n-m|Sm], where Fm, n-m is a m x n-m matrix of ‘1’s and Sm denotes

92

the m x m diagonal matrix, as indicated in Fig. 5-1. Each crosspoint may have one of two

states: active (‘1’), in which the corresponding pass-transistor is in a conducting state,

and inactive (‘0’), in which the pass-transistor is shut-off. At all times, during normal

operation, at most one crosspoint per row can be active, such that each of the m wires

representing the rows is connected to exactly one of the n wires of the fault-tolerant link.

Note that in the formal definition of the sparse crossbar concentrator above, the “inputs”

of the crossbar denote in fact the set of logic signals that must be transferred between two

IP cores along the fault-tolerant link, while the “outputs” denote the set of physical wires

(including the spare ones) of the fault-tolerant link. In terms of directionality, the fault-

tolerant link is bidirectional in the sense that the rows of the crossbar connector can be

connected to either inputs or outputs of the IP cores.

A different option for physical implementation of such crossbars is to use

multiplexers [102]. The requirement of bidirectionality and reconfigurability precludes,

however, the use of multiplexers due to the complexity and area overhead involved.

(a) (b)

Figure 5-1: (a) Non-fault-tolerant sparse crossbar and crosspoint implementation; (b) n-m
fault-tolerant sparse crossbar.

Fault tolerant links based on fat-and-slim crossbar connectors have a major limitation:

the asymmetrical resistive/capacitive loads on input/output combinations determine a

large variation of the corresponding delays. The amount of delay variation is in direct

93

relation with the mismatch between the total numbers of crosspoints of the different

row/column combinations that may be selected to achieve a fault-free configuration. Note

that there is a best-case delay, for the case in which both ends of the connection belong to

the “slim” part of the crossbar, and a worst-case delay, for the case in which both belong

to the “fat” part of the crossbar, as indicated in Fig. 5-2. For each row/column pair, the

signal propagation delay is proportional to the amount of capacitance attached to the two

wires on the respective row and column of the crossbar matrix.

Figure 5-2: Fastest and slowest propagation delay paths for non-balanced fault-tolerant
links.

Each crosspoint – either in conducting state or not – contributes to the attached

capacitance with the equivalent capacitances of its source and drain terminals, CSource and

CDrain. Denoting the delays of the best and worst cases by DBest and DWorst respectively,

their dependency on the crossbar size (which in turn is proportional to the degree of

redundancy) can be expressed as:

(1) ()Best Drain SourceD n m C C (5.5)

and

94

(1) ()Worst Drain SourceD n C C (5.6)

This dependency quantifies the delay mismatch for the cases when a crosspoint is

activated in the “slim” part of the crossbar, or in the “fat” part of the crossbar,

respectively. The delay variation (the difference between the worst-case delay DWorst and

best-case delay DBest) becomes more pronounced for large crossbars (large m) with

increased level of redundancy (n-m). This is illustrated in Fig. 5-3 for a set of inter-core

communication links of 1 mm length with different row sizes and a 25% degree of

redundancy, in a 65 nm CMOS process. The curve in Fig. 5-3 was obtained through

HSPICE [92] simulation. The 25% value was chosen to reflect a typical case of yield

enhancement using redundant links as discussed later in Section 5.8. The delay variation

across the fault-tolerant links may take values along the curve depicted in Fig 5-3. The

delay difference is significant (10% to 35%) for link widths in the range of 8 to 128 bits,

typical for on-chip networks [93] [94].

Figure 5-3: Delay variation for imbalanced fault-tolerant links with 25% redundancy.

When building integrated systems with fault-tolerant links, designers must account

95

conservatively for the delay of the worst case, which involves a significant penalty -

between 10% and 35% in the example in Fig. 5-3. Ideally, when the configuration of the

fault-tolerant link is modified due to occurrence of a permanent fault, the delay of the link

should not change. Therefore, all possible link configurations should have very similar

delays. Intuitively, we can observe that this can happen if, for all I/O combinations, the

sums of crosspoints on the corresponding crossbar rows and columns are identical. In the

following subsection, a structured method is provided to distribute the crosspoints across

the crossbar matrix such that these sums are identical (or as closely matched as possible).

5.7 Fault tolerant global interconnects based on balanced crossbars

Based on the yield considerations formulated in Section 5.4 and sparse crossbars

briefly described in Section 5.6, we now present a method to build connectors that can

tolerate defects of the global wires, while still complying with the balanced delay

requirement.

As shown in Fig. 5-1(a), we start with a simple crossbar whose corresponding

adjacency matrix is the m x m identity matrix. This corresponds to the case when the

global interconnect is not fault-tolerant and represents the “slim” part of the fat-and-slim

crossbar. The “fat” part is then added, as shown in Fig. 5-1(b), corresponding to n-m

spare wires required to achieve the desired interconnect yield according to (5.4), as a

fully-connected crossbar whose adjacency matrix is of size (m) x (n-m) and has all

elements ’1’.

We have now a fat-and-slim crossbar that can tolerate n-m defects. However, this

crossbar is not balanced, in the sense that the capacitive loads from a row to a column are

not matched for different row-column combinations. To balance the load, the “fat-and-

96

slim” crossbar can be transformed such that for each row/column combination, the sums

of the corresponding fanout and fanin are “closely matched”. First, we require that such a

crossbar exists. Its existence is provided by the following theorem [91]:

Theorem 1: For any positive integers m and nm, the (m,n)-fat-and-slim sparse

crossbar can be rearranged to obtain a sparse crossbar with fanout of either 1 or ,

fanin of n-m+1 and minimum number of crosspoints, where is given by:

 - 1 3
, if

2

(1) (1) (1) 3
, if 0.5, and

2

(1) (1) (1) 3
, if 0.5, and

2

n m m m
 n

n

n m m n m m n m m m
n

n n n

n m m n m m n m m m
n

n n n

(5.7)

where x and x are the floor and ceiling functions, defined as the largest integer less

than or equal to x, and the smallest integer not less than x, respectively. A rigorous

mathematical proof of this theorem can be found [91] and [95]. This theorem guarantees

the existence of crossbars with closely-matched fanins and fanouts, but does not provide a

method to construct such crossbars. In the following, we develop a method to construct

such crossbars.

Intuitively, it can be observed that the sum fanin+fanout of column/row pairs can

differ by one due to the fanin and fanout being even or odd integers, which explains why

the capacitive loads of input/output connections cannot always be made identical:

physically, this implies that they may differ by an amount equal to the equivalent nominal

capacitance of one crosspoint (equal to the sum of drain and source capacitances of the

pass-transistor connecting a row to a column).

97

The following column exchange operation is used for balancing the rows and

columns of the adjacency matrix of a “fat-and-slim” crossbar. The column exchange

operation distributes evenly the crosspoints along the columns of the sparse crossbar.

Since the crosspoints are only moved along the same row, the total number of crosspoints

on each row does not change, and remains equal to n-m+1. Formally, let AG be the

adjacency matrix of the (m,n)-sparse crossbar G.

Definition: given the adjacency matrix A = [aij]mxn of the sparse crossbar, column x =

[a1i a2i … ami] is said to cover column y = [a1j a2j … amj], 1i, jn, ij, if for each akj=1

in y, aki=1 in x.

Let x and y be any two columns in AG, where x covers y. Let ai1,x,ai2x,…,air,x be a

string of r ‘1’s in x. For any 1lr, the column exchange operation is performed by

exchanging ail,x with ail,y . If matrix B is the result of the column exchange operation,

matrix B is said to be balanced when the difference between the sums of ‘1’ elements of

any two columns is equal or less than one.

98

Figure 5-4: Balancing an (n-m) fault-tolerant sparse crossbar through successive column
exchange operations; m=5, n=11.

Fig. 5-4 shows how the column exchange operation is applied on the “fat-and-slim”,

n-m fault tolerant crossbar (n=11, m=5). By plugging into Eq. (5.7), the value of is 3,

and the number of elements per column after balancing is expected to be either 3 () or 4

99

(+1). The first step of the balancing operation (step 0 in Fig. 5-4) is re-arranging the

adjacency matrix of the crossbar as four concatenated matrices: a full matrix, a lower-

triangular matrix, a banded matrix, and an upper-triangular matrix. After the pre-

processing step, the column exchange operation proceeds with the columns outside the

banded matrix (step 1 in Fig. 5-4). Note that column 1 is the first that covers column 11,

so we start by exchanging elements (1,1) and (1,11). For the matrix newly formed, we

observe that the column 11 is still unbalanced, and the set of crosspoints in column 1

unaffected by the previous exchange operation still covers the corresponding set of

crosspoints in column 11. Therefore, a new exchange takes place (step 2 in Fig. 5-4),

whose results is that both columns 1 and 11 are balanced (each column has 3

crosspoints). The exchange operation continues in the same manner with columns 2 and

10 (step 3 in Fig. 5-4). At the end of the sequence, a balanced crossbar is obtained, whose

sum fanin + fanout has two possible values: either 10 or 11.

The details regarding the arrangement of the slim-and-fat matrix and balancing

algorithm are provided in Appendix 2. Note that, after balancing, the fanout + fanin sums

for each possible input/output combination do not differ by more than 1.

The order of complexity of the column balancing algorithm is governed by the

number of columns (n) and the average number of crosspoint elements per column ().

For each pairs of columns, the average number of column exchange operations is equal to

the average number of crosspoints per column, therefore the order of complexity of the

algorithm can be estimated as

100

2(1)
(1) (1)

n m m
O n n O n n O n nm m m

n

We compare the link delays between the unbalanced and balanced cases, for different

link widths and degrees of redundancy, using HSPICE simulation and 65 nm CMOS

parameters. The effect of balancing on the link delays for 25% redundancy is shown in

Fig. 5-5. For all simulations, link length was maintained constant at 1 mm.

Figure 5-5: Delay variation for balanced (b) links with 25% redundancy.

Note that the effect of balancing brings the delay of the redundant links closer to the

unbalanced best case delay (ubc curve in Fig. 5-5). Moreover, the range of delays for the

individual wires in each redundant link is reduced from the area between the unbalanced

worst and best cases (uwc and ubc), to a very narrow range around the balanced delay

curve (bc). This reduction of delay variation for the balanced case is due to the balancing

operation yielding closely matched numbers of crosspoints on each column of the

crossbar matrix. As an example, in the non-balanced case of 32-bit links (Fig. 5-3), the

101

delay variation may be up to 20% (between 1.6 ns and 2 ns according to Fig. 5-5),

whereas after the balancing operation, the delay is set to a value of approximately 1.8 ns,

with no variation between different link configurations. At most, the number of

crosspoints per column can differ by one and, since the numbers of crosspoints on

crossbar rows are identical, the capacitive load on link wires may differ with the

equivalent capacitance of exactly one pass-transistor.

An important parameter that has to be considered at design time is the delay variation

as a function of the degree of redundancy. This dependence expresses the trade-off

between the target yield (directly related to the degree of redundancy) and the achievable

link data rate (inversely proportional to link delay).

Fig. 5-6 shows the effect of balancing on a 64-bit link when the degree of redundancy

is varied from 0% to 100%. Note that the balancing operation has two beneficial effects:

first, it reduces the worst-case link delay (from the unbalanced curve uwc to the balanced

curve bc). Second, it reduces the range of link delay variation from the entire range

between the two unbalanced cases (ubc and uwc curves) to values along the curve

corresponding to the balanced case (bc curve).

102

Figure 5-6: Delay variation versus degree of redundancy for a 64-bit link

Fig. 5-7 shows the effect of both link width and degree of redundancy on the delay of the

fault-tolerant links.

Figure 5-7: Delay variation versus crossbar size and degree of redundancy.

The degree of redundancy is set by the yield requirements; however, if the yield

target imposes a large degree of redundancy, the performance target in terms of link

delay may not be met. The trade-off between performance, link width, and degree of

103

redundancy brings relevant limitations in the design space when yield appears as an

additional constraint. We note that the speed of wide links tends to be severely limited in

the presence of manufacturing faults, when fault-tolerant mechanisms are implemented

for yield improvement.

5.8 Link test and reconfiguration mechanisms

The required number of spare wires that must be included for constructing the sparse,

balanced crossbar that can be used to interface the NoC routers/cores with the fault

tolerant links, can be determined as presented in Sections 5.4 and 5.5. This requires

knowledge of the defect distribution for a particular technology and the target yield,

together with the delay budget of each inter-core link.

Once the desired link width is selected such that yield and performance requirements

are met, a mechanism must be provided to perform two functions: first, to test the links

after the chip is fabricated; and second, to configure the links such that only fault-free

wires are used.

This work is concerned with fault types that typically affect the NoC interconnects:

the faults that model fabrication defects, the effect of parameter variation, design rules

violations, and data dependency. Consequently, we include fault models like opens,

shorts, and bridging faults, and crosstalk faults, as outlined earlier in Chapter 2.

The links can be reconfigured both at start-up and at run-time, as soon as one or more

faulty wires are detected and marked as such. Before reconfiguration, a test procedure is

run in two steps to identify (1) faults in the sparse matrix elements, and (2) faults in the

set of interconnect wires. The first step insures that the redundant interconnect can be

reconfigured successfully. The second step identifies potential faulty wires and marks

104

them as defective. If the number of detected faults is greater than the number of

redundant wires, the test procedure returns a “fail” signal and no further reconfiguration

is possible. If the number of faulty wires is less the total number of redundant wires, the

reconfiguration procedure is started and a fault-free configuration is selected among the

set of redundant wires.

The overall test/reconfiguration architecture is presented in Fig. 5-8. Note that, for

area efficiency reasons, the test and reconfiguration hardware blocks are shared among

multiple links for the same IP core. This is of particular interest for the case of

communication-intensive cores with multiple links, such as network-on-chip routers,

split-bus controllers and multi-core processors.

Figure 5-8: Self-test and repair link architecture with shared test and reconfiguration
blocks

The following subsection presents the test and reconfiguration procedures and the

corresponding hardware blocks, respectively.

5.8.1 Testing the sparse crossbar matrix and interconnect wires

For simplicity and efficiency, we choose a scan-based approach for testing the

105

programmable switches of the matrix array. For test purposes, the columns of the sparse

matrix are concatenated in a one-dimensional array, organized as a serial shift register.

Testing is performed by shifting-in a sequence of alternative ‘0’s and ‘1’s, and then

shifting-out the content of the array. The length of this sequence is equal to the size of the

one-dimensional array. At the output of the array, a simple sequence detector indicates

the occurrence of two consecutive identical values, which means that a fault is present in

the array. In this implementation, the test procedure is halted and the “fail” flag is raised

if faults are detected in the crossbar array.

Figure 5-9: Link-level test and reconfiguration.

The time taken for the test procedure to complete is equal to 2*m*(n-m+1) clock

cycles, since the test sequence must be shifted through the uni-dimensional array whose

length is equal to the total number of matrix crosspoints (see Fig. 5-2). After the

106

crosspoint matrix is tested, if it is found fault-free, the test procedure advances to the

inter-core wires. These are tested using a built-in self-test (BIST) method, based on a

fault model that accounts for both defects/faults characteristic to global interconnects.

In Chapter 3, a method was introduced to test structured links using the MAF model

and a BIST approach. Here, we adapt it to the specifics of employing the sparse crossbar

matrices as a means to reconfigure the redundant links. The MAF test must be applied not

only to the wires actually used to transport data between cores, but to all the wires –

including the spare ones, which are not yet determined at the time of MAF test – in the

fault-tolerant communication link.

The MAF test vectors are launched at one end of the link, and the response is

compared to the expected output at the other end of the link. The results of the MAF test

procedure are stored on a per wire basis, by marking each wire as good/faulty at the end

of its corresponding 6-vector sequence. This information is stored in a register array RL

(one element per column) and subsequently used for reconfiguring the sparse crossbar

matrices. The number of faulty wires in a link is stored and updated by the MAF test

procedure; when this number exceeds the total number of redundant wires (n-m in Fig. 5-

2(b)), the test procedure is halted and a “fail” flag is raised. In this case, the link is

marked as permanently defective, and cannot be used further.

107

Figure 5-10: Test and reconfiguration hardware.

5.8.2 Link reconfiguration

Once the links are tested, if the number of faulty wires is found to be less than the

amount of redundant ones, the reconfiguration phase begins. The reconfiguration

mechanism uses the output of the link test mechanism (stored in register RL) to assign a

set of m fault-free wires to the m core I/Os. When activating the crosspoints of the

crossbar matrix, at most one element per column can be set to logical ‘1’ (to ensure that a

core I/O is connected to exactly one wire), and exactly m elements can be active (to

ensure that all core I/Os are connected to wires in the redundant link). A reconfiguration

vector initially set to [1 0 0 … 0] is used to configure each column of the crossbar matrix

by shifting it serially into each column’s set of crosspoints. To ensure that at most one is

connected to any row, the reconfiguration vector of the next connected column is shifted

right by one position relative to the previous connected column.

The pseudo-code describing the operation of the reconfiguration mechanism is

presented in Fig. 5-11. It assumes that at least m wires are fault-free (out of n wires of the

108

redundant link).

Figure 5-11: Link reconfiguration algorithm.

For each fault-free wire, the reconfiguration vector is constructed by rotating right the

reconfiguration vector of the previous fault-free wire, and then shifted into each column

of the crosspoint matrix. Faulty or unused wires are invalidated by shifting in an all-0

vector on the corresponding column of the crossbar. This ensures that at most one core

I/O is connected to each redundant global wire.

So far, via failure was considered as the predominant yield loss mechanism for global

interconnects. Using active devices for implementing the link test and reconfiguration

hardware adds a potential source of yield loss due to the non-zero probability of failure of

these devices. This effect must be accounted for when estimating the yield of the

interconnect. Conversely, when calculating the number of spares required for achieving a

certain target yield, this additional source of yield loss must be considered as well. We

define the effective interconnect yield Yeff as the interconnect yield achievable in presence

of non-zero probability of failure of test and reconfiguration circuitry. Therefore, the

probability of failure of a single line of interconnect Pline in Eq. (5.2) must be adjusted

accordingly.

-- crosspoint matrix reconfiguration
-- initialize
k = 0; -- column index
l = 0; -- row index
rec_vector = [1000…0]
while l < m -- not all rows have been connected

while RL(k) = 0 -- wire k is defective
invalidate(k); -- do not use column k
k=k+1; -- advance to next wire

end while;
column(k) = rec_vector; -- reconfigure column k
rec_vector = ror (rec_vector); -- rotate right and set the next

 --reconfiguration vector
l++; -- advance to the next row

end while;

109

As depicted in Fig. 5-2, both ends of each line of the fault-tolerant inter-core links are

connected to the core’s inputs/outputs by a pass-transistor. The probability of failure

PoFT of this transistor can be estimated knowing the killer defect density k [14] for the

manufacturing process under consideration, and the area of the device AT:

T TPoF k A (5.8)

Therefore, Eq. (5.2) must be rewritten to take into account the probability of failure of the

two pass transistors as:

2
2

1,
1

1 1
l

line T i i
i

P PoF PoF via

 (5.9)

Similarly, the effective yield Yeff of an inter-core link must account for the potential yield

loss of the crosspoint matrix elements and test/reconfiguration mechanism. Using again

the killer defect density k and the area AFT of the circuitry used to implement and

reconfigure the fault-tolerant links, the effective yield of a link can be express as:

eff FT m of nY k A P (5.10)

where Pm of n is the yield of the link without considering the yield loss due to fault-tolerant

circuitry, as calculated in Eq. (5.4). In the expression of effective yield Yeff in Eq. (5.10)

we use the adjusted value of Pline corresponding to Eq. (5.9).

The test and reconfiguration sequences can be run at start-up only, both at start-up

and run-time, or during idle periods in which there is no traffic on the particular link. The

amount of time required to run the test/reconfiguration procedures is an important figure

of merit since it expresses how fast the system can be operational after start-up, or how

long the individual links undergoing test/reconfiguration will be unavailable during

run-time. In Section 5.8.3, a more detailed analysis and estimation of these figures of

110

merit is provided, in addition to other cost parameters such as wire complexity and area

overhead associated with the hardware implementation of fault-tolerant interconnects.

5.8.3 Yield, performance and cost analysis

We applied the method developed in this work to sets of global interconnects of

different widths, representative for the cases of massive multi-core communication

fabrics. We considered the case of a 65 nm technology with 12 metal layers and defect

distributions as projected by the ITRS 2006 roadmaps.

Figure 5-12: Physical link width (n) for different values of logic link width (m = 32, 64,
128 bits) and target effective yield (Yeff).

Fig. 5-12 plots the total number of wires (including the redundant ones), n, that need

to be routed in order to provide 90%, 99%, and 99.9% effective interconnect yield

respectively, for global link widths (m) of 32, 64, and 128 bits and probability of

defect-free global interconnect line Pline ranging between 0.9 and 1.

The total number of wires n, of the global link, in the above example, was determined

assuming the global interconnects are laid out starting on source/drain contacts, through

111

intermediate metal layers to the upper metal layers and back. As mentioned above, we

use a 65 nm CMOS technology, with a typical defect density of 0.025defects/cm2

obtained from [14].

Table 5-1: Effective yield improvement vs interconnect complexity

Interconnect
width (m)

Target
interconnect

effective
yield Yeff

[%]

Number of
crosspoints

Interconnect
effective

yield
improvement

[%]
90 25 3.9
99 58 7.68

99.9 74 8.3
90 82 11.1
99 248 15.716

99.9 279 16.1
90 112 16.9
99 302 25.832

99.9 725 26.7
90 285 36.4
99 573 45.364

99.9 2224 46.5
90 1192 61.3
99 5429 70.3128

99.9 10984 71.2

Table 5-1 shows the relative interconnect effective yield improvement (the fourth

column in the table) for a probability of defect-free line Pline = 0.99 and the cost to

achieve it in terms of number of crossbar crosspoints (third column) for different target

interconnect yields and link widths.

As shown in Table 5-1, the yield of NoC interconnects can be significantly improved

by using our technique. It is, however, extremely important to estimate carefully the

target effective yield and characterize the manufacturing process accurately, since

demanding a high yield or underestimating the individual Pline for global interconnects

112

can increase dramatically the size of the fault tolerant crossbars and, implicitly, the

silicon area and metal lines required. For example, if a 99% effective yield is targeted for

a 64-bit wide global link, we need to provide a 573-crosspoint sparse crossbar at each end

of the link; if, instead, a 99.9% yield is aimed for, the number of required crosspoints is

2224. That translates to an approximately 4X increase in silicon area for an interconnect

yield improvement of only 0.9%.

The area overhead of the combined test and reconfiguration mechanisms is presented

in Fig. 5-13, for different crossbar sizes and degrees of redundancy. Note that the amount

of circuitry required for implementing the test and reconfiguration mechanisms is

relatively small. The overhead corresponding to the programmable crosspoints, each

consisting of a pass transistor and a memory cell is reported separately in Table 5-1. Each

crossbar matrix constructed as described in Section 5.5 has a number of (1)n n m

such crosspoints.

Area overhead (test and reconfiguration)

0

50

100

150

200

250

300

8 16 32 64 128

crossbar size

25% 50% 75% 100%

Figure 5-13: Area overhead for different crossbar sizes and degrees of redundancy.

Table 5-2 presents the time overhead of test and reconfiguration mechanisms, in

113

clock cycles. These values are important for systems that are required to have a short

start-up time, or, in the case in which the test/reconfiguration mechanism is executed

during the regular operation, for systems that must achieve high availability.

In Table 5-2, TC represents the crossbar test time, and is proportional to the logical

crossbar size (m) and the degree of redundancy (expressed in percentage in Table 5-2).

TL denotes the physical link test time, and is governed by the number of physical wires

that must be realized for each logical link, for achieving a target yield. TR is the link

reconfiguration time, and denotes the amount of time required to shift-in the

reconfiguration vectors for each crossbar. The sum of TC, TL and TR is denoted by

and indicates the total amount of time required to set-up a fault-tolerant link between two

cores of a NoC, either at start-up on during its operation.

Table 5-2: Test and reconfiguration time overhead

25% redundancy 50% redundancy 75% redundancy 100% redundancy

C
ro

ss
b

ar
 s

iz
e

TC TL TR TC TL TR TC TL TR TC TL TR

8 59 60 40 159 119 72 96 287 179 84 168 431 239 96 240 575

16 199 120 140 459 399 144 312 855 599 168 532 1299 799 192 800 1791

32 719 240 480 1439 1439 288 1104 2831 2159 336 1904 4399 2879 384 2880 6143

64 2719 480 1760 4959 3439 576 2592 6607 8159 672 7168 15999 10879 768 10880 22527

128 10559 960 6720 18239 21119 1152 15936 38207 31679 1344 27776 60799 42239 1536 42240 86015

Depending on the link width and the amount of redundancy required by the interconnect

yield target, the fault-tolerant communication links will not be available for transporting

data during their respective test and reconfiguration procedures, for an amount of time

corresponding to the columns labeled “” in Table 5-2.

114

5.9 Summary

In this chapter, a structured method is presented for building defect tolerant NoC

interconnects that takes into account the manufacturing process characteristics in terms of

via failure probability and, in turn, generates interconnects with the desired target yield.

The mechanism that selects and reconfigures the communication links is based on

balanced sparse crossbars, and uses a minimum number of crosspoints to connect the set

of defect-free wires at the core interface. The method also ensures that all valid

interconnect configuration have identical capacitive load, which guarantees the

invariance of timing characteristics of different possible configurations. With the method

described in this chapter, a relative interconnect yield improvement can be obtained in the

range of 3.9% for an 8-bit logic link width to 71.2% for a 128-bit logic link width. An

important advantage of this technique is that it can be easily automated and implemented

in NoC/SoC design tools.

We expect the solution proposed here to become more relevant with the emergence of

nanometer-scale VLSI processes, where high defect rates and device failures will be

serious manufacturing limitations.

115

Chapter 6

6 Conclusions

6.1 Summary of contributions

In this dissertation, an integrated solution for testing and yield-tuning of network-on-

chip (NoC) interconnect infrastructures is presented. A method for testing the NoC fabric

(switches and links) is proposed, that employs the transport of test data progressively

through the NoC, reusing the fault-free NoC elements to deliver test vectors to the NoC

elements under test. Two types of test data transport are proposed. The first is based on a

unicast transport, where test data is directed to each element under test on a single path,

and exactly one NoC component is tested at a time. The second type uses a multicast

transport method, where multiple NoC components are tested concurrently, by delivering

test data simultaneously on multiple paths constructed from fault-free components. The

yield-tuning method that complements the test solution addresses the potential yield loss

in NoC systems due to interconnect defects, and is based on the use of reconfigurable

crossbars and redundant links. A technique is proposed for distributing the crossbar

crosspoints such that all the possible link configurations are characterized by closely

matched signal propagation delays. The benefit of this technique lies in its ability to

provide consistent performance in presence of interconnect defects, with effectively no

delay penalty compared to the fault-free case.

The test procedure of this solution was shown to be faster than previously proposed

methods for NoC test, effectively reducing the test cost and consequently the total cost of

NoC-based chips. Experiments on NoC infrastructure of various sizes and topologies

116

show that the proposed test method can improve the test time with up to 34X when

compared to current solutions. The fault tolerance technique presented here is able to

significantly improve the yield of NoC links, in a range from 3% to 71% for the case of

logical link widths of 8-bit to 128-bit in our experiments.

6.2 Limitations

In this subsection, we enumerate certain limitations and provide views as to how

these limitations can be overcome. One of the aspects that were not addressed in this

dissertation is the power overhead. The test method developed in Chapter 3 is very time-

efficient because it can deliver a large quantity of test data in a short time to the NoC

components across the chip. This comes at a cost of increased power dissipation, which,

potentially, can be a problem depending on the power budget for the design. The solution

is to include the power dissipation as an additional component of the test cost function,

and limit the injection of new test data packets when the maximum power dissipation is

about to be exceeded. Similarly for the fault-tolerant mechanism presented in Chapter 5,

there is a certain amount of power that the extra circuitry (crosspoint elements, test and

reconfiguration hardware) will dissipate through mechanisms such as switching (during

test and reconfiguration phases), and leakage during normal operation. This leakage

power should be included in the overall chip power.

The test solution presented in Chapter 3 is targeted to the NoC infrastructure only.

The main reason behind this approach is that a common trend in industry is to design

NoCs as IP cores, which are generally delivered together with the associated test method.

However, if the testing of the NoC infrastructure is integrated with testing of the

functional cores of the NoC-based chip, there is a possibility to use the concepts in

117

Chapter 3 to deliver test data concurrently to NoC components and functional cores, and

reduce the overall test time of the chip in a more significant manner. We believe that, in

practice, this is not a very likely situation, especially when the NoC is developed as an IP

core and provided to the final user together with its test method.

Another limitation of the fault-tolerant mechanism in Chapter 5 is the significant

increase of link delay when the degree of redundancy increases. This, in turn, implies a

significant defect rate, which will have serious repercussions on the operation of the NoC

functional cores. Therefore, the target yield may not be achievable when a design

constraint is applied to the link delay.

Finally, some form of quantitative estimation of the “amount” of fault-tolerance most

appropriate for each layer of the NoC communication protocol, and the effect of

interaction between FT mechanisms at different layers, would be extremely useful for

designers looking for the best FT solution for NoC-based chips.

6.3 Future work

The high level of concurrency and parallelism in on-chip networks/multi-processor

systems-on-chip is at the same time an opportunity and a challenge. The opportunity is

provided by the great flexibility of these systems in terms of applications (software) that

can be used to manage different aspects of their operation: power management, yield

tuning, and fault-tolerance. These aspects become increasingly challenging with the shift

toward nanoelectronics, which demands a paradigm change best described as “designing

reliable systems with unreliable components” [97]. A few research directions can be

pursued as direct developments of the contributions presented in this dissertation, as

follows:

118

 Application-level fault-tolerance for multi-processor systems-on-chip. In the past

few years, fault-tolerance of multi-core chips was addressed mainly through hardware

redundancy or error correction mechanisms. The increased level of faults associated with

nano-scale device sizes demands new approaches for dealing with transient and

permanent faults. There may be a great opportunity to exploit the distributed computing

capabilities of these systems for achieving fault tolerance. The challenge is to integrate

fault-tolerant solutions at application level through software-based micro-agents that

monitor the operation of the system periodically, and restore it to error-free state upon

detection of malfunctions. This would allow a higher degree of flexibility for designers of

fault-tolerant systems-on-chip. Traditionally, hardware-intensive voting mechanisms

based on component replication are used to achieve fault-tolerance at system level.

Complementing the hardware redundancy with state restoration makes possible a more

refined tuning of fault-tolerant capabilities of a MP-SOC depending on the operating

conditions and expected failure rate.

 Fault-tolerant crossbar structures for nanoelectronics. Reconfigurable crossbar

arrays are increasingly being proposed as the basic building structure for nanoelectronic

systems [98]. The main challenge in manufacturing commercially viable nanoelectronic

chips is the high defect rate – estimated in the order of 10% or more [99]. This can be

compensated for by adding a certain amount of redundancy to the crossbar structures, and

using reconfiguration techniques to avoid the faulty components. Implicitly, the

performance of such structures is heavily influenced by the degree of redundancy and the

particular reconfiguration mechanism employed. Initial studies have shown that the speed

of reconfigurable crossbar-based structures can vary widely for different instances of the

119

same fault-tolerant array [100]. To account for this variation, designers must take the

conservative approach and report the worst-case performance with the goal of developing

reconfiguration methods for nanoelectronic crossbar arrays that will yield near-optimal,

closely-matched performance for all functional instances, with improved overall speed

and tight parameters variation.

Nanoelectronics is expected to play an important role in providing solutions to

surmount obstacles imposed physical limitations of CMOS electronics. Nanoelectronics

imposes significant quantitative constraints resulting in qualitative modifications to the

design process; among them are an increase in fabric size, density and fault rates which

result in (1) increased emphasis on parallelism, (2) short-range communication, (3)

regular nano-scale interconnects, and (4) offline and online repair of faulty structures.

A fundamental challenge in constructing nanoelectronics-based systems is the high

unreliability of nanoelectronic devices which manifests mainly in two forms. First,

manufacturing defects increase significantly, due to the defect prone fabrication process

through bottom-up self-assembly. The defect rates of nanoelectronic systems are

projected to be orders of magnitude higher than those of current CMOS systems [99].

Second, a high variance in the fault rate at run-time and a clustered behavior of faults are

expected. These are essentially caused by the nanoscale size of the devices as well as the

low operating voltage, which result in extremely high sensitivity to environmental

influences, such as temperature, cosmic radiation and background noise.

The emerging challenges of nanoelectronics require a re-evaluation of the

components and methods typically employed in creating designs. Questions of paramount

importance are related to (1) mapping design descriptions to regular nanofabrics with

120

massive defect rates; (2) realizing defect tolerant designs in the presence of significant

defect occurrence rates and limited test access; (3) development of efficient, systematic

fault tolerance techniques for faults with dynamic spatial and temporal distributions; (4)

ensuring reliability without sacrificing performance.

Due to the difference in complexity at the various system hierarchical levels,

appropriate fault tolerance schemes vary. Building large systems using nanoelectronic

fabrics must include fault-tolerance as one of the primary constraints, similar to

performance, power, area and testability. Moreover, fault-tolerance must be seamlessly

integrated in the design flow starting from physical design and going up to application

design and specification. For instance, an interconnect routing tool should be able to take

into account the possible fault set that can manifest for the particular technology used (e.g.

carbon nanotubes, quantum dots, nano-scale CMOS, or hybrid) and achieve a target yield

in a transparent fashion, without the explicit intervention of the designer. At higher levels

- such as that of application - compilers should be capable to insert automatically micro-

agents for fault management, enabling self-healing by repairing failed components or

restoring the system to fault-free state.

Integrating fault-tolerance into the nanoelectronic system design flow requires an

intimate understanding of fault sources, nature, spatial-temporal distribution, and effects

at different levels from device behaviour to application. Having this knowledge, it is

possible to exploit the particular characteristic of nanoelectronic fabrics, such as

reconfigurability, multiple-valued logic, and high density, for integrating fault-tolerance

into digital nanoelectronics design flow.

121

In summary, the semiconductor industry is rapidly advancing towards nanoscale

domain, driven by continuous miniaturization and need for computing power. The

immediate benefit of integrating fault-tolerance in the design flow for nanoelectronics is

the possibility of a rapid transition from research phase to volume production, enabling

the use of nanoelectronic systems in key areas such as biomedical sciences,

communications, multimedia; ultimately, facilitating developments that are leading us to

the ubiquitous information society.

122

7 Appendices

7.1 Appendix 1: Proof of Correctness for Algorithms 1 and 2

The search sequence that Algorithms 1 and 2 presented in Chapter 3 implement is

based on Dijkstra’s shortest path search algorithm, which is guaranteed to find the

shortest distance between any two vertices in a graph.

Given a graph G(V,E), where V is the set of vertices and E is the set of edges.

Each edge e in E is labeled with its weight w(e) which corresponds to the “length” of that

edge. In the original Dijkstra algorithm, the weights are static and remain constant as long

as the search sequence is executed. In the modified search sequence, the weights are

initialized with a set of values corresponding to the TTPE (test time per element). The

search starts by selecting the edge with minimum weight (minimum TTPE) and adding it

to the set of elements on the shortest path. Before the next minimum-weight element is

selected, the weight of the current element is modified from the value corresponding to

its test time to the value corresponding to the time needed by a test packet to traverse the

NoC element placed in the normal mode of operation. For a link, this corresponds to the

links latency, while for a switch, this is the number of cycles required to transfer a data

packet from an input port to an output port.

123

(a) (b)
Figure A1: Shortest path search with dynamical weight updating.

For instance, in Fig. A1(a), assume that the current search path is (v7, v8, v5) and the

current value of the test cost function is F. The next element to be added to the search

path is the edge v5-v6 with weight 4 corresponding to its test time. The edge is added to

the search path which becomes (v7, v8, v5, v6) and the test cost function is updated to its

new value, F+4. In the next step of the search sequence, the test cost function is updated

to its new value F+4+2 = F+6, then edge v6-v3 is added to the search path. The test cost

function becomes F+6+4 = F+10, and then the weight of edge v6-v3 is updated to

F+10+2. At this moment, a minimum length path was found from v7 to v3, and the

algorithm advances to a new pair of vertices.

In the general case, let Pk = (v1, vi, …, vj, vk) be the shortest path from v1 to vk.

Then Pj = (v1, vi, …,vj) must be a shortest path from v1 to vj, otherwise Pk would not be

as short as possible. Also, Pj must be shorter than Pk (assuming all edges have positive

weights).

Let w(j,k) be the weight of the edge between vertices vj and vk as initialized at the

beginning of the algorithm (corresponding to the test time per element TTPE), and

v1 v2 v3

v4 v5 v6

v7 v8 v9

v10 v11 v12

2 5

5 4

2 2

1 2

2

3

3

6

1

4

4

5

2

v1 v2 v3

v4 v5 v6

v7 v8 v9

v10 v11 v12

2 5

5 2

2 2

1 2

2

3

3

6

1

4

4

5

2

124

w’(j,k) the new value of the weight of the (j,k) edge (corresponding to the latency of the

NoC element) that gets updated after edge (j,k) is added to the search path. Since w(j,k)

reflects the test time, and w’(j,k) reflects the latency, the following inequality is true:

w’(j,k) < w(j,k), (vj, vk) E.

If Fk , Fj are the values of the test cost function corresponding to paths Pk, Fj,

respectively, then Fj < Fk. Moreover, Fk is calculated as:

Fk = Fj + w(j,k)

and then updated as:

F’(k) = F(k) + w’(j,k)

Since w’(j,k) < w(j,k) (vj, vk) E, then F’(k) is the minimum possible value of the test

cost function, which proves that the modified shortest path algorithm returns the test path

with the minimum associated test cost.

The main difference between Algorithms 1 and 2, and Dijkstra’s algorithm, is the

manner in which the cost function is updated., Therefore, the order of complexity of

Algorithms 1 and 2 is similar to the one of the original Dijkstra algorithm, i.e., O(N),

where N is the total number of NoC components to be tested (links and switches).

125

7.2 Appendix 2: Algorithm for balancing fault-tolerant sparse

crossbars

Given a (n,m) fat-and-slim sparse crossbar with a AG adjacency matrix

1 0 0 . 0 1 1 1 1 . 1

0 1 0 . 0 1 1 1 1 . 1

0 0 1 . 0 1 1 1 1 . 1

. 1 . 1

0 0 0 0 1 1 1 1 1 . 1

GA

= Sm|Fm,n-m

the balancing algorithm that matches the fanin+fanout sums corresponding to each of the

elements of AG matrix is described below:

1. Re-arrange the adjacency matrix as

AG = Fmx|Umx(-1)|Bmx(n--2-2)|Lmx(-1), where:

Fmx is a matrix with all elements equal to ‘1’;

Umx(-1) is an upper triangular matrix;

Bmx(n--2-2) is a banded matrix;

Lmx(-1) is a lower triangular matrix;

Let and be [91]:

126

 - 1 3
, if

2

(1) (1) (1) 3
, if 0.5, and

2

(1) (1) (1) 3
, if 0.5, and

2

n m m m
 n

n

n m m n m m n m m m
n

n n n

n m m n m m n m m m
n

n n n

;

1n m

where represents an estimation of the average number of ‘1’ per column of matrix

AG, and represents the number columns of matrix F.

F U B L

1 1 . 1 1 1 1 0 . 0 0

1 1 . 1 0 1 1 1 . 0 0

1 1 . 1 0 0 1 1 . . 0

. 1 0

1 1 . 1 0 0 0 0 0 1 1

GA

2. Let ‘1’s be assigned to each column in matrix B. Then the number of ‘1’s left in

the F, U and L matrices is (+2-2)(-1), and the number of ‘1’s left unassigned

is

 = (n-m+1)m-*n-(+2-2)

The total number of ‘1’s in the AG matrix is greater than or equal to *n:

(n-m+1)m-*n 0,

therefore -(+2-2)

127

Case i): 0

Then the average number of ‘1’s in AG is in the [,+1] interval. Therefore, the

matrix can be balanced by transferring ‘1’s from the columns of the F matrix to the

columns of U and L matrices so that each column has either or +1 ‘1’s, using the

column exchange operation described in Section 5.7.

Case ii): 0

Then the average number of ‘1’s in each column of AG is more than +1. In this case,

a number of
1m

columns in F can be balanced with the U and L matrices

such that each balanced column has +1 ‘1’s.

Since

0 (n-m-1)m-*n n,

and

 = (n-m-1)m-*n-(+2-2)

then

 n-(+2-2).

128

Therefore, the remaining ‘1’s in the unbalanced columns of matrix F can be

distributed to the columns of B, each having at most one additional ‘1’, using the column

exchange operation described in Section 5.7.

Proof of convergence

We prove the convergence of the balancing algorithm by contradiction. Assume that

the balancing algorithm does not converge, that is, the balancing operation ends by

leaving a column that has ‘1’s and another that has +2 ’1’s. Then, a ‘1’ can be moved

from the column with +2 ‘1’s to the column with ’1’s, hence balancing the two

columns. Since the existence of the balanced crossbar is guaranteed, it follows that the

initial assumption is false, and hence the balancing operation converges to a solution.

129

References

[1] G. Sohi, “Single-Chip Multiprocessors: The Next Wave of Computer Architecture
Innovation”, The 37th Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2004.

[2] I. O’Connor, B. Courtois, K. Chakrabarty, M. Hampton, “Heterogeneous Systems
on Chip and Systems in Package”, Design, Automation & Test in Europe
Conference & Exhibition, 2007.

[3] AMD Fusion Microprocessor Family, http://www.amd.com/us-
en/assets/content_type/DownloadableAssets/AMD_Technology_Analyst_Day_Ne
ws_Summary_FINAL.pdf

[4] W. J. Dally, B. Towles, “Route Packets, Not Wires: On-Chip Interconnection
Networks”, Proceedings of DAC, Las Vegas, Nevada, USA, June 18-22, 2001, pp:
683-689.

[5] J. Owens, W. J. Dally, R. Ho, D. N. Jayashima, S. W. Keckler, L-S. Peh, “Research
Challenges for On-Chip Interconnection Networks”, IEEE Micro, vol. 27, no. 5, pp.
96-108, Sept/Oct, 2007.

[6] T. Ye, L. Benini and G. De Micheli, “Packetization and Routing Analysis of On-
chip Multiprocessor Networks”, Journal of System Architecture, Vol. 50, Issues2-3,
February 2004, pp: 81-104.

[7] P. Magarshack, P. Paulin, “System-on-chip beyond the nanometer wall”,
Proceedings of DAC, Anaheim, 2003, pp: 419-424.

[8] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, N. Jha. “A 4.6Tbits/s 3.6GHz Single-
cycle NoC Router with a Novel Switch Allocator in 65nm CMOS”, International
Conference on Computer Design (ICCD), October, 2007.

[9] E. Nigussie, T. Lehtonen, S. Tuuna, J. Plosila, J. Isoaho, “ High-Performance Long
NoC Link Using Delay-Insensitive Current-Mode Signaling“, VLSI Design, Vol.
2007 (2007), Article ID 46514.

[10] J. Chan, S. Parameswaran, “NoCOUT: NoC topology generation with mixed
packet-switched and point-to-point networks”, ASP-DAC, 2008, pp: 265-270.

[11] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, P. Pande, C. Grecu, A.
Ivanov, “System on Chip: Reuse and Integration ”, Proceedings of the IEEE, Vol.
94, Issue 6, June 2006, pp. 1050-1069.

[12] Y. Li (editor), Microelectronic Applications of Chemical Mechanical Planarization,
Wiley, 2007.

[13] Y. Zorian, D. Gizopoulos, C. Vandenberg, P. Magarshack, “Guest editors'
introduction: design for yield and reliability”, IEEE Design & Test of Computers,
May-June 2004, Vol. 21, Issue: 3, pp. 177–182.

[14] International Technology Roadmap for Semiconductors, 2006 update,
http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm

[15] S. Shoukourian, V. Vardanian, Y. Zorian, “SoC yield optimization via an
embedded-memory test and repair infrastructure”, IEEE Design & Test of
Computers, May-June 2004, Vol. 21 , Issue: 3, pp. 200 – 207.

130

[16] P. Pande, C. Grecu, A. Ivanov, R. Saleh, G. De Micheli, “Design, Syndissertation
and Test of Networks on Chip”, IEEE Design and Test of Computers, Vol. 22, No.
5, 2005, pp: 404-413.

[17] D.A. Hodges, H.G. Jackson, R.A. Saleh, Analysis and Design of Digital Integrated
Circuits: In Deep Submicron Technology, McGraw-Hill, 3rd edition, 2003.

[18] L. Benini, G. De Micheli, “Networks on Chip: A New Paradigm for Systems on
Chip Design”, International Conference on Design and Test in Europe DATE, Paris
2002, pp. 418-419.

[19] Intel Teraflops Research Chip, http://techresearch.intel.com/articles/Tera-
Scale/1449.htm

[20] A. Jantsch and Hannu Tenhunen, editors, Networks on Chip, Kluwer Academic
Publishers, 2003.

[21] International Standards Organization, Open Systems Interconnection (OSI)
Standard 35.100, www.iso.org.

[22] Y. Zorian, E. J. Marinissen, S. Dey, “Testing Embedded-Core-Based System
Chips”, IEEE Computer Vol. 32, Issue 6, pp: 52-60, 1999.

[23] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, C. Wouters,
“A Structured and Scalable Mechanism for Test Access to Embedded Reusable
Cores”, Proceedings of ITC 1998, pp: 284-293.

[24] E. Cota, Luigi Caro, Flavio Wagner, Marcelo Lubaszewski, “Power aware NoC
Reuse on the Testing of Core-Based Systems”, Proceedings of ITC 2003, pp: 612-
621.

[25] C. Liu, V. Iyengar, J. Shi and E. Cota, “Power-Aware Test Scheduling in Network-
on-Chip Using Variable-Rate On-Chip Clocking”, IEEE VLSI Test Symposium,
pp: 349-354, 2005.

[26] C. Liu, Z. Link, D. K. Pradhan, “Reuse-based Test Access and Integrated Test
Scheduling for Network-on-Chip”, Proceedings of Design, Automation and Test in
Europe, 2006. DATE '06, pp: 303 – 308.

[27] B. Vermeulen, J. Dielissen, K. Goossens, C. Ciordas, “Bringing Communications
Networks on a Chip: Test and Verification Implications”, IEEE Communications
Magazine, Volume 41, Issue 9, Sept. 2003, pp: 74-81.

[28] M. Nahvi, A. Ivanov, “Indirect Test Architecture for SoC Testing”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Volume 23, Issue 7, July 2004, pp: 1128-1142.

[29] J. Raik, R. Ubar, V. Govind, “Test Configurations for Diagnosing Faulty Links in
NoC Switches”, Proceedings of the 12th IEEE European Test Symposium, 2007,
pp: 29-34.

[30] A. M. Amory, E. Briao, E. Cota, M. Lubaszewski, F. G. Moraes, “A Scalable Test
Strategy for Network-on-chip Routers”,Proceedings of The IEEE International Test
Conference, 2005, ITC 2005, pp: 591-599.

[31] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits, Boston: Springer, 2005.

[32] M. Cuviello, S. Dey, X. Bai, Y. Zhao, “Fault Modeling and Simulation for
Crosstalk in System-on-Chip Interconnects”, Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, San Jose, CA, Nov. 1999,
pp: 297-303.

131

[33] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, "Performance Evaluation and
Design Trade-offs for MP-SoC Interconnect Architectures", IEEE Transactions on
Computers, Volume 54, Issue 8, August 2005, pp: 1025-1040.

[34] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks – An Engineering
Approach, Morgan Kaufmann, 2002.

[35] I. Saastamoinen, M. Alho, J. Nurmi, “Buffer Implementation for Proteo Network-
on-chip”, Proceedings of the 2003 International Symposium on Circuits and
Systems, 2003. ISCAS '03, Vol: 2, pp: II-113- II-116.

[36] H. Wang L.-S. Peh, S. Malik, “Power-driven Design of Router Microarchitectures
in On-chip Networks”, Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36, pp: 105- 116.

[37] A.J. Van de Goor, I. Schanstra, Y. Zorian, “Functional test for shifting-type FIFOs”,
Proceedings of European Design and Test Conference 1995, March 1995, pp. 133-
138.

[38] C. E. Leiserson, “Fat-trees: Universal Networks for Hardware-Efficient
Supercomputing”, IEEE Transactions on Computers, October 1985, Volume 34,
Issue 10, pp: 892 – 901.

[39] A.O. Balkan, Q. Gang, V. Uzi, “A Mesh-of-Trees Interconnection Network for
Single-Chip Parallel Processing”, International Conference on Application-specific
Systems, Architectures and Processors, ASAP, Sept. 2006, pp: 73 – 80.

[40] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch “The Nostrum
backbone - a communication protocol stack for networks on chip”, Proceedings of
the IEEE VLSI Design Conference, Mumbai, India, January 2004, pp: 693- 696.

[41] Intel IXP2400 datasheet, http://www.intel.com/design/network/products/
npfamily/ixp2400.htm

[42] J. Liu, L-R. Zheng, H. Tenhunen, “Interconnect intellectual property for network-
on-chip (NoC)”, Journal of Systems Architecture: the EUROMICRO Journal,
Volume 50 , Issue 2-3 (February 2004), pp: 65 – 79.

[43] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, P. Wielage, “An Efficient
on-chip Network Interface Offering Guaranteed Services, Shared-memory
Abstraction, and Flexible Network configuration”, Proceedings of IEEE DATE
2004, vol. 2, pp: 878-883.

[44] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, "Switch-Based Interconnect
Architecture for Future Systems on Chip", Proceedings of SPIE, VLSI Circuits and
Systems, Vol. 5117, pp: 228-237, 2003.

[45] C-M. Chiang, L. Ni, “Multi-address Encoding for Multicast”, Proceedings of the
First International Workshop on Parallel Computer Routing and Communication,
pp: 146-160, 1994.

[46] Z. Lu, B. Yin, A. Jantsch, “Connection-oriented multicasting in wormhole-switched
networks on chip”, IEEE Computer Society Annual Symposium on Emerging VLSI
Technologies and Architectures, 2006.

[47] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, A. Kolodny, “The Power of Priority: NoC
Based Distributed Cache Coherency”, The First International Symposium on
Networks-on-Chip, 2007. NOCS 2007, pp: 117 – 126.

[48] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition, MIT Press and McGraw-Hill, 2001.

132

[49] Y. Zorian, E. J. Marinissen, S. Dey, “Testing Embedded-core-based System Chips”,
IEEE Computer, Volume 32, Issue 6, June 1999, pp. 52-60.

[50] M. Nahvi, A. Ivanov, “An embedded autonomous scan-based results analyzer
(EARA) for SoC cores”, Proceedings of the 21st IEEE VLSI Test Symposium, 2003,
pp: 293-298.

[51] A. DeHon, “Compact, Multilayer Layout for Butterfly Fat-tree”, Proceedings of the
12th Annual ACM Symposium on Parallel Algorithms and Architectures, 2000, pp:
206 – 215.

[52] Synopsys TetraMAX ATPG Methodology Backgrounder,
www.synopsys.com/products/test/tetramax_wp.html

[53] IEEE Std 1500 - Standard for Embedded Core Test, online,
http://grouper.ieee.org/groups/1500/index.html

[54] C. Grecu, P. Pande, A. Ivanov, R. Saleh, “Timing Analysis of Network on Chip
Architectures for MP-SoC Platforms”, Microelectronics Journal, Elsevier, Vol.
36(9), pp: 833-845.

[55] C. Constantinescu, “Trends and challenges in VLSI circuit reliability”, IEEE Micro,
July-Aug. 2003, Vol. 23, Issue: 4, pp. 14-19.

[56] D. Bertozzi, L. Benini, G. De Micheli, ‘’Error Control Schemes for On-Chip
Communication Links: The Energy-Reliability Tradeoff ‘’, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 6, June
2005, pp. 818-831.

[57] S. R. Sridhara, and N. R. Shanbhag, “Coding for System-on-Chip Networks: A
Unified Framework”, IEEE Transactions on Very Large Scale Integration (TVLSI)
Systems, Vol. 13, No. 6, June 2005, pp. 655-667.

[58] M. Lajolo, “Bus guardians: an effective solution for online detection and correction
of faults affecting system-on-chip buses”, IEEE Transactions on VLSI Systems,
Vol. 9, Issue: 6, Dec. 2001, pp: 974-982.

[59] D. Bertozzi, L. Benini, G. De Micheli, “Low power error resilient encoding for on-
chip data buses”, Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, (DATE), 4-8 March. 2002, pp: 102-109.

[60] J. Kim, D. Park, T. Teocharides, N. Vijaykrishnan, C. R. Das, “A low latency
router supporting adaptivity for on-chip interconnects”, Proceedings of the 42nd

DAC, Anaheim, 2005, pp: 559 – 564.
[61] T. Dumitras, S. Kerner, and R. Marculescu, “Towards on-chip fault-tolerant

communication”, in Proceedings of ASP-DAC, Jan. 2003. pp: 225-232.
[62] M. Pirretti, G. Link, R. R. Brooks, N. Vijaykrishnan, M. Kandemir, M. J. Irwin,

“Fault Tolerant Algorithms for Network-On-Chip Interconnect”, Proceedings of
IEEE ISVLSI 2004, pp: 46-51.

[63] B. Joshi, D. Pradhan, J. Stiffler. "Fault-tolerant computing", Wiley Encyclopedia of
Computer Science and Engineering, January 15, 2008.

[64] S Manolache, P Eles, Z Peng, “Fault and Energy-Aware Communication Mapping
with Guaranteed Latency for Applications Implemented on NoC”, Proceedings of
DAC 2005, pp: 266 – 269.

[65] D. Ferrero, C. Padró, “Connectivity and fault-tolerance of hyperdigraphs”, Discrete
Applied Mathematics 117 (2002), pp: 15-26.

133

[66] P. P. Pande, A. Ganguly, B. Feero, B. Belzer, C. Grecu, “Design of low power and
reliable networks on chip through joint crosstalk avoidance and forward error
correction coding”, Proceedings of IEEE DFT Symposium, DFT’06, 2006, pp:466-
476.

[67] S. Murali, T. Theocharides,. N. Vijaykrishnan, M. J. Irwin, L. Benini, G. De
Micheli, “Analysis of error recovery schemes for networks on chips”, IEEE Design
& Test of Computers, Sept.-Oct. 2005, Vol: 22, Issue: 5, pp: 434- 442.

[68] P. D. T. O’Connor, Practical Reliability Engineering, 4th edition, Wiley, June 2002.
[69] C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, P. P. Pande, "On-line fault

detection and location for NoC interconnects," Proceedings of the 12th IEEE
International On-Line Testing Symposium (IOLTS'06), 2006, pp. 145-150.

[70] L. Benini, G. De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE
Computer, Vol. 35, Issue 1, pp: 70-78, 2002.

[71] M. Zhang, N.R. Shanbhag, “Soft-Error-Rate-Analysis (SERA) Methodology”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Volume 25, Issue 10, Oct. 2006 pp: 2140 – 2155.

[72] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, ”QNoC: QoS architecture and
design process for Network on Chip", Special Issue on Networks on Chip, The
Journal of Systems Architecture, December 2003.

[73] G. Masson, “Binomial switching networks for concentration and distribution”,
IEEE Transactions on Communications, Sep 1977, Vol. 25, Issue: 9, pp. 873–883.

[74] S. G. Shiva, Advanced Computer Architectures, CRC Press, 2005.
[75] B. Wilkinson, “On crossbar switch and multiple bus interconnection networks with

overlapping connectivity”, IEEE Transactions on Computers, Vol. 41, Issue 6, June
1992, pp. 738-746.

[76] L. Noordergraaf, R. Zak, “SMP System Interconnect Instrumentation for
Performance Analysis”, Proceedings of the ACM/IEEE Conference on
Supercomputing 2002, pp. 53-62.

[77] T. Dumitras, R. Marculescu, “On-chip stochastic communication”, Proceedings of
the IEEE Design, Automation and Test in Europe Conference, 2003, pp. 0790-
10795.

[78] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M. T. Kandemir, M. J.
Irwin, “Fault tolerant algorithms for network-on-chip interconnect”, Proceedings of
ISVLSI 2004, pp. 46-51

[79] H. Zhu, P. P. Pande, C. Grecu, "Performance evaluation of adaptive routing
algorithms for achieving fault tolerance in NoC fabrics," Proceedings of 18th IEEE
International Conference on Application-specific Systems, Architectures and
Processors, ASAP 2007.

[80] J. Huang, M. B. Tahoori, F. Lombardi, “Fault tolerance of switch blocks and switch
block arrays in FPGA”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 13 , Issue 7, July 2005, pp. 794-807.

[81] J. M. Emmert, S. Baumgart, P. Kataria, A. M. Taylor, C. E. Stroud, M. Abramovici,
“On-line fault tolerance for FPGA interconnect with roving STARs”, Proceedings
of the IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, 2001, pp.445-454.

134

[82] N. Harrison, “A simple via duplication tool for yield enhancement”, IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, 2001, pp.
39-47.

[83] K. McCullen, “Redundant via insertion in restricted topology layouts”, Proceedings
of the 8th International Symposium on Quality Electronic Design, (ISQED’07),
2007, pp. 821-828.

[84] G. A. Allan, “Targeted layout modification for semiconductor yield/reliability
modifications”, IEEE Transactions on Semiconductor Manufacturing, Vol. 17,
Issue 4, Nov. 2004 pp. 573 – 581.

[85] G. A. Allan, J. Walton, “Automated redundant via placement for increased yield
and reliability”, Proceedings of SPIE, Vol. 3216, Microelectronics Manufacturing
Yield, Reliability, and Failure Analysis III, September 1997, pp. 114-125.

[86] G. Xu, L.-D. Huang, D. Z. Pan, M. D. F. Wong, “Redundant-via enhanced maze
routing for yield improvement”, Proceedings of the 2005 ASP-DAC, 2005, pp.
1148-1151.

[87] S. Gandemer, B.C. Tremintin, J.-J. Charlot, “Critical area and critical levels
calculation in IC yield modeling”, IEEE Transaction on Electron Devices, Vol. 35,
Issue: 2, Feb. 1988, pp. 158-166.

[88] A. Cabrini, D. Cantarelli, P. Cappelletti, R. Casiraghi, A. Maurelli, Marco Pasotti,
P.L. Rolandi, G. Torelli, “A test structure for contact and via failure analysis in
deep-submicrometer CMOS technologies”, IEEE Transactions on Semiconductor
Manufacturing, Feb. 2006, Vol. 19, Issue: 1, pp. 57-66.

[89] D.K. de Vries, P.L.C. Simon, “Calibration of open interconnect yield models”,
Proceedings of the 18th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2003, pp. 26-33.

[90] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl, Parallel System Interconnections and
Communications, CRC Press, 2000.

[91] W. Guo, A. Y. Oruc, “Regular Sparse Crossbar Concentrators”, IEEE Transactions
on Computers, Vol. 47 , Issue 3, March 1998, pp. 363-368.

[92] HSPICE, http://www.synopsys.com/products/mixedsignal/hspice/hspice.html,
Synopsys, Inc.

[93] K. Goossens, J. Dielissen, A. Radulescu, “The Aethereal network on chip:
concepts, architectures, and implementations”, IEEE Design and Test of
Computers, Sept-Oct 2005, Vol. 22, Issue: 5, pp. 414-421.

[94] C. Grecu, A. Ivanov, R. Saleh, P.P. Pande, “Testing network-on-chip
communication fabrics”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 26, Issue 12, Dec. 2007, pp. 2201 – 2214.

[95] E. Gunduzhan, A. Y. Oruç, “Structure and density of sparse crossbar
concentrators,” DIMACS Series in Discrete Mathematics and Computer Science.
Advances in Switching Networks. 1998, Vol. 42. pp. 169-180.

[96] G. Lemieux, D. Lewis, `”Design of Interconnection Networks for Programmable
Logic”, Kluwer Academic Publishers, 2004.

[97] P. Bose, “Designing reliable systems with unreliable components”, IEEE Micro,
Vol. 26, Issue 5, Sept-Oct. 2006, pp. 5-6.

135

[98] G. Snider, P. Kuekes, T. Hogg1 and R. Stanley Williams, “Nanoelectronic
architectures”, Journal of Applied Physics A: Materials Science & Processing,
Volume 80, Number 6, March, 2005, pp: 1183-1195.

[99] R. I. Bahar, D. Hammerstrom, J. Harlow, W. H. Joyner Jr., C. Lau; D. Marculescu,
A. Orailoglu; M. Pedram “Architectures for Silicon Nanoelectronics and Beyond”,
Computer, Vol. 40, Issue 1, Jan. 2007, pp: 25-33.

[100] A. Schmid, Y. Leblebici, “Regular array of nanometer-scale devices performing
logic operations with fault-tolerance capability”, IEEE Conference on
Nanotechnology, Munich, 2004, pp: 399-401.

[101] C. Grecu, C. Rusu, A. Ivanov, R. Saleh, L. Anghel, P. P. Pande, “A Flexible
Network-on-Chip Simulator for Early Design Space Exploration”, The 1st

Microsystems and Nanoelectronics Research Conference (MNRC 2008), Ottawa,
2008.

[102] Advanced Microcontroller Bus Architecture,
www.arm.com/products/solutions/AMBAHomePage.html.

