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Abstract

Tissue motion estimation in ultrasound images plays a central role in many modern signal
processing applications, including tissue characterization, strain and velocity imaging, and
tissue viscoelasticity imaging. Therefore, the performance of tissue motion estimation is of
significant importance. Also, its computational cost determines if it can be implemented in
real-time so that it can be used clinically. This thesis presents several efficient methods for
accurate estimation of tissue motion using digitized ultrasound echo signals.

First, sample tracking algorithms are presented as a new class of motion estimators. These
algorithms are based on the tracking of individual samples using a continuous representation of
the reference echo signal. Simulations and experimental results on tissue mimicking phantoms
show that sample tracking algorithms significantly outperform common algorithms in terms
of accuracy, precision, sensitivity, and resolution. However, their performance degrades in the
presence of noise.

To improve the performance of motion estimation in multi-dimensions, pattern matching
interpolation techniques are studied and new interpolation techniques are presented. Simu-
lation and experimental results show that, with small computational overhead, the proposed
interpolation techniques significantly improve the accuracy and the precision of motion estima-
tion in both 2D and 3D. Employing these techniques, real-time 2D motion tracking software is
developed. Furthermore, the performance of the proposed 2D estimators is compared with that
of 2D tracking using angular compounding. The results show that the proposed interpolation
methods bring the performance of pattern matching techniques close to that of 2D compound
tracking.

Finally, angular compounding is combined with custom pulse sequencing and delay can-
cellation techniques to develop a system that estimates the motion vectors at very high frame
rates (> 500Hz) in real-time. The application of the system in the study of the propagation
of mechanical waves for tissue characterization is also presented.
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Chapter 1

Introduction

1.1 Background

The basis of medical imaging is the measurement of a property of tissue that varies with spatial
location. Medical images are formed by displaying these properties measured at multiple
locations in the body. From such images, a depiction of anatomy or pathology is gained.
Each imaging modality in common use, such as X-ray, computed tomography, ultrasound and
magnetic resonance imaging, measures a different property of tissue. But none of the properties
measured by these modalities depict directly the mechanical properties of soft tissue even
though such images have proven to be useful in numerous clinical applications.

Changes in the mechanical properties of biological tissue often represent a warning sign for
disease and imaging these properties provides a way of differentiating normal from abnormal
tissues [1–3]. Elastography, as a relatively new imaging technique, aims to produce images
that depict these mechanical properties for clinical applications. In the past two decades a
great number of techniques have been suggested in the literature to provide these type of
images. All these techniques use multiple measurements of tissue displacements to infer local
tissue mechanical properties and are typically categorized based on (i) the type of excitation
used, such as quasi-static compressions [4–8], harmonic waves [9–12], wide-band excitations
[12, 13], or transient/pulsed waves [14–18], (ii) the way these excitations are generated, for
instance using internal tissue motions due to heartbeat or breathing [19–23], acoustic radiation
force [12, 24–27], or an external actuation applied through a mechanical exciter or transducer
motion [7,14,28–30]), (iii) the imaging modality used to estimate the resulting tissue motion,
namely ultrasound, [4, 14, 25] or the use of hydrophone [27], magnetic resonance imaging
[30–32], or optical imaging [33], and (iv) the type of image they produce, such as strain
[4, 5, 34], compliance [13, 35], displacement amplitude [9, 10], compressibility [36], relative
visco-elasticity [24, 28, 29], or absolute viso-elasticity [11, 12, 14, 30, 37–39].

Regardless of which technique is employed, tissue motion estimation lies at the heart of
all the above methods. Because of its central importance, its accuracy, precision, and com-
putational cost are of critical importance. As mentioned above, in principle, several imaging
modalities can be used in order to estimate the tissue motion for elastography but ultrasound
has received the most attention due to its safety, low cost, real-time performance, quick setup
procedure and easy access to digital data. Thus, in this thesis we focus on the estimation of
tissue motion in sequences of ultrasound echo signals.

1.1.1 Ultrasound Imaging

An ultrasound imaging system acquires data through the generation of an ultrasound wave
directed toward the area to be examined, followed by measurement of the echoes generated
by the interaction of the ultrasound wave with the tissue. The ultrasound system consists
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of a transducer for generating the ultrasound pulses and measurement of the echoes, and a
computation system to convert the echo signals into an image. The ultrasound transducer
sends out a short burst of ultrasound and listens for the returning echoes. The time between
the sent pulse and the received echo is used to calculate the depth of the interfaces assuming
the speed of sound is constant throughout the media. The form of the transmitted wave is an
amplitude modulated signal with a fixed carrier frequency determined by the probe and the
returning echoes are sampled during the listening interval. These unprocessed digitized echo
signals are known as radio frequency (RF) data. The RF data go through envelope detection,
logarithmic amplitude compression, and conversion to regular spatial coordinates (called scan
conversion). An image formed this way is generally called a B-image (i.e. Brightness image)
or a sonogram [40–42].

1.1.2 1D Motion Estimation Techniques

Since ultrasound imaging provides higher resolution in the direction of beam propagation,
the estimation of the axial component of the motion has received the most attention in the
literature. Due to the nature of ultrasound, where the echo signals are acquired as a function
of time, 1D motion estimators are generally being referred to as delay estimators. Delay
estimators measure displacement of the backscattered signals with respect to the transducer.
This displacement appears as a time-shift or phase-shift between sequences of echo signals [43].
Delay estimators are typically classified based on the type of signal (RF, envelope, in-phase
and quadrature I/Q) and the domain on which they operate (i.e. time, phase, or frequency).
These estimators have been studied and compared extensively in the literature [44–47].

Phase-shift estimators were initially used for blood flow measurement. Later, the same
techniques were used in other fields in order to estimate tissue motion. Phase-shift estimators
find the average phase-shift over a number of samples within a window with respect to the
nominal or estimated central frequency of the transmitted pulse. Complex cross correlation
of the RF echo signals [48, 49] or complex-valued Doppler signals [43, 50] are typically used in
these techniques.

Time-shift estimators typically consist of the identification of the maximum/minimum of a
pattern matching function. The shape of the signal within a specific window in the reference
echo signal is set to be the pattern and a matching algorithm is used to find the best match
in the delayed echo signal. Several pattern matching techniques are currently employed, each
offering trade offs between complexity and accuracy [44, 51, 52]. The estimation error of the
pattern matching techniques can be as large as half the sample spacing. Several techniques
have been suggested in the literature to reduce the error introduced by finite sampling intervals.
These techniques are categorized as: (i) echo signal up-sampling [47,53,54], (ii) interpolation of
the echo signals [47,53,55,56], and (iii) interpolation of the pattern matching function [57–60].

Up-sampling of the echo signal as in (i) reduces the error by the up-sampling factor [47,54].
Curve or polynomial fitting to the echo signals as in (ii) results in a continuous pattern matching
function, whose extremum determines the location of the best match [47, 53, 55, 56]. These
techniques can be computationally demanding [56,61], whereas curve or polynomial fitting to
the pattern matching function as in (iii) often has significantly smaller computational overhead.
Thus, even though they may introduce some bias in the estimation process, they are widely
used for motion estimation. Many 1D pattern matching interpolation methods have been
proposed for 1D axial motion estimation with sub-sample accuracy. These include parabolic
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fitting [60], spline fitting [59], grid slope [62], and cosine fitting [58], and have been thoroughly
investigated in the literature [44].

Some of the alternative approaches that make use of feature extraction have also been
attempted in the literature. Zero-crossing tracking (ZCT) [63] identifies the zero-crossings of
the echo signals using linear interpolation. Peak tracking and level-crossing tracking, wherein
tracking is performed on a predefined amplitude level, have also been suggested in [63] as
extensions of ZCT. The peak searching algorithm [64] identifies the peaks of the echo signals
using a wavelet transform. The distances between the zero-crossings (or level-crossings) or
peaks represent the time-shifts. ZCT and PSA provide as many measurement points as there
are zero/level crossings or peaks within the signals. As a result they have the potential to
provide much higher resolution than window-based techniques.

1.1.3 2D/3D Motion Estimation Techniques

Tracking the motion in one direction introduces some limitations for different applications. In
blood flow and tissue velocity estimation using Doppler techniques, tracking along the beam
propagation results in a poor estimation of the flow and tissue velocity due to the unknown
Doppler angle between the velocity vector and the beam direction. Poor estimates can result
even if the angle is manually adjusted [65,66]. In quasi-static elastography, tracking the motion
in the axial direction results in estimation of only one component of the strain tensor (i.e. axial),
with all the other components remaining unknown [67]. Finally, in dynamic elastography, using
the wave equations, the estimation of a single component of motion limits modulus estimation
algorithms to a less accurate partial inversion rather than a full inversion [68].

Techniques based on pattern matching functions are the most straightforward approaches
used to estimate the axial motion from digitized ultrasound echo signals [4, 62, 69, 70]. Ex-
tensions of these techniques to 2D and 3D motion estimation have been proposed in the lit-
erature [71, 72] As mentioned above, the estimation error of the pattern matching techniques
can be as large as half the sample spacing, which is important especially when the motion is
small and the sample spacing is large. This error becomes more significant in the lateral and
elevational directions where the sample spacing is very large. Similarly to 1D tracking, tech-
niques like echo signal up-sampling [54] and interpolation of the echo signals [55, 56] in multi
dimensions have been suggested in the literature. Also the same 1D sub-sample estimation
techniques have been applied independently for each direction in 2D or 3D motion estimation
to estimate the sub-sample lateral and elevational motions [55, 73].

1.1.4 Compound Tracking Techniques

Angular compounding has also been attempted in the literature to estimate the motion vectors
[74–78]. With this technique the data from the region of interest is acquired from multiple
look angles. The multiple look angles can originate from a single transducer when it is moved
mechanically, or they can originate from multiple transducers [74]. The multiple look angles
can also originate from a single transducer using single transmit and multiple receive angles
[77–79] or multiple electronically steered transmit and receive angles [75,78,80]. Once the data
from multiple angles are acquired, previously introduced 1D motion estimators are employed
to estimate the motion along the direction of beam propagation for each angle independently.
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Estimations are then compounded to construct the 2D motion vectors inside the overlapping
region.

1.1.5 High Frame Rate Tracking Techniques

Conventional ultrasound systems are based on line by line acquisition of the echo signals in
order to acquire the entire 2D image. As a result, the acquisition time of each frame in these
systems is proportional to the number of scan lines and the acquisition time of each scan line in
that frame. However, high frame rate motion estimation is critical for a wide range of clinically
used ultrasound imaging modes. Several techniques have been attempted in the literature in
order to increase the imaging frame rates. In one simple approach high frame rate is achieved
by reducing the number of scan lines. This technique increases the frame rates but results
in reduction in the field of view (FOV) and/or spatial resolution depending on the spacing
between scan lines. This technique has been used in [23, 81] to study myocardial motion.

In another approach high temporal resolution is achieved by beam interleaving techniques
[82]. This technique divides the region of interest (ROI) into small sectors and acquires each
sector at a high temporal resolution (200 Hz to 10 kHz depending on the number of scan lines
per sector and the imaging depth) for a short period of time before moving on to the next
sector, etc until all the observations for the entire ROI are acquired. Assuming that the time
between the acquisitions of neighboring scan lines is small, the acquisition in each sector can
be considered as a snapshot of the speckle movements. This technique will provide both high
spatial resolution and temporal resolution. However, large delays are introduced between the
data acquired from different sectors. This technique is commonly used in conventional color
flow imaging, power Doppler imaging, and B flow imaging [82,83]. The same technique is also
used in [84] to evaluate regional myocardial deformation and in [11] to study the propagation
of crawling waves in tissue using tissue Doppler imaging. Using the same acquisition scheme,
compounding Doppler imaging has also been attempted in the literature to estimate the motion
vectors using both beam steering and multi-synthetic aperture beamforming [77, 78].

With the help of parallel receive beamformers, techniques like multi-line-acquisitions (MLA)
have also been used to increase the frame rate of conventional ultrasound machines where
multiple echo signals (typically 2-8) are acquired from single transmit [85], thus, multiplying
the effective frame rate by the same factor at little cost to the resolution [22]. In [86], MLA
was used to reduce transducer heating and acoustic exposure, and to facilitate data acquisition
for real-time ARFI imaging. The idea of MLA was also extended to the acquisition of the
entire image as opposed to multiple lines, thus, drastically increasing the effective frame rates
(>5 kHz). This method is generally being referred to as ultrafast imaging where a single
unfocused plane wave is used for transmit and parallel receive beamformers (typically 64-128)
are used to generate the scan lines. In [17, 87], ultrafast imaging was used to capture the
propagation of the transient shear wave in soft tissue and to estimate the tissue elasticity. In
[79] ultrafast imaging was combined with angular compounding using multi-synthetic aperture
beamforming to follow both the axial and the lateral components of the motion during the shear
wave propagation at a frame rate of 6 kHz. Even though very effective, both MLA and ultrafast
imaging are not generally available on conventional ultrasound systems. Additional hardware
overhead is required to implement each of these techniques on conventional ultrasound systems.

Techniques like coded excitations have also been introduced in the literature to increase
the frame rate of the ultrasound acquisition [88–90]. However, these techniques increase the
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beam density and similar to MLA and ultrafast imaging require specialized hardware.
In another approach to achieve high frame rates, synchronization techniques have been

employed in the literature. The data acquisition in these techniques is similar to that of con-
ventional color flow and power Doppler imaging to achieve high temporal resolution. However,
to eliminate long delays between sectors, the start of data acquisition for each sector is syn-
chronized with the exciter which varies from an external actuator (e.g. mechanical vibrator)
to a signal generated in the body (e.g. electrocardiogram ECG). In [91], by synchronizing
the data acquisition and an external exciter the shear-wave propagation in the scan plane was
imaged at a frame rate of 6 kHz using a single element transducer. A similar approach was
used in [92] to study both the transient and harmonic shear-wave scattering in both two and
three dimensions using linear array transducers at a frame rate of 4 kHz. By synchronizing the
image acquisition with the ECG signals, the propagation of several transient mechanical waves
was imaged in different regions of the myocardium in mice at a frame rate of 8 kHz in [93] and
in humans at a frame rate of 481Hz in [20]. These techniques require additional hardware
to synchronize the excitation and the data acquisition. Also, at the end of imaging of each
sector, the system needs to wait long enough to make sure the tissue returns back to its initial
position prior to the next excitation. Otherwise, artifacts will appear in the final image when
different sectors are stitched together. This waiting time will generally increase the total data
acquisition time in these techniques.

1.1.6 Current in-vivo Applications

Mechanical properties of tissue are often associated with tissue state. Thus, they can be used for
diagnosis. Medical applications of both quasi-static and dynamic elastography methods with
the underlaying motion tracking algorithms span a wide range of modern clinical applications.
These applications include but are not limited to tumor detection and classification in breast
[5,8,14,34,94–97], prostate [11,98,99], and skin [100], detection of diffuse diseases such as liver
fibrosis [12], myocardial elasticity imaging [19, 81, 84, 93], distinguishing between normal and
lymphedematous tissues [36], characterization of vascular plaques [21], the impact of aging and
gender on brain viscoelasticity [101], monitoring aging of deep venous thrombosis [102, 103],
imaging of thermal lesion in the liver [104,105], monitoring renal transplant for early rejection
[106], quantifying hepatic elasticity [107], imaging the abdomen [108], and the study of skeletal
muscle contraction [109].

1.2 Thesis Objectives

The following objectives are defined in this thesis:

1. Developing new algorithms for the estimation of motion in sequences of ultrasound echo
signal in 1D (axial component only), 2D (both axial and lateral components), and 3D
(axial, lateral, and elevational components), with high accuracy and precision and small
computational overhead, to make them suitable for real-time applications.

2. Studying the performance of these techniques using both simulation and experimental
data in terms of accuracy, precision, sensitivity, and resolution and comparing them with
state of the art techniques.
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3. Implementing a system based on the proposed methods to estimate the motion in multiple
dimensions at commonly used ultrasound frame rates (up to 50Hz).

4. Overcoming the inherent low frame rate of conventional ultrasound and implementing a
system to facilitate motion tracking in several dimensions at high frame rates (> 500Hz).

1.3 Thesis Outline

The thesis presented here is written in the manuscript-based style, as permitted by the Faculty
of Graduate Studies at the University of British Columbia. In the manuscript-based thesis,
each chapter represents an individual work that has been published, submitted or prepared for
submission to a peer reviewed publication. Each chapter is self-contained in the sense that it
includes an introduction to the work presented in that chapter, the methodology, simulations
and experiments, results and discussion. The references are summarized in the bibliography
found at the end of each chapter. The appendices pertaining to each chapter are presented at
the end of the thesis.

In the course of achieving the primary objectives of this thesis, the following contributions
were made:

1. In Chapter 2 a new class of time-delay estimators based on the tracking of the indi-
vidual echo samples called Sample Tracking (ST) is presented to improve the accuracy,
precision, resolution, and sensitivity of one dimensional motion estimation. The use of
the same interpolation approach to improve the performance of a previously developed
ZCT delay estimator [63] is also presented. Simulation results show that sample tracking
algorithms significantly outperform commonly used window based algorithms in terms
of bias and standard deviation. ST algorithms also have higher sensitivity and resolu-
tion compared to traditional delay estimators, including recently introduced spline-based
continuous time-delay estimators as they provide the displacement of individual samples.
However, their performance degrades as the SNR of the echo signals becomes low. Ex-
perimental results demonstrating the viability of ST in addition to their extension to
several dimensions are also presented.

2. In Chapter 3 we consider the problem of estimating 2D motion in ultrasound echo data
images with sub-sample accuracy. We propose an approach based on iterative 1D inter-
polation, as well as approaches based on 2D interpolation. We study these techniques
using both simulated and experimental data and compare them to other methods in the
literature. The results show that the proposed methods significantly outperform other
techniques in terms of both accuracy and precision. Employing the proposed methods,
a real-time implementation of a 2D motion tracking algorithm is also presented.

3. Extending our previous 2D work, in Chapter 4 we introduce 3D sub-sample estimation
techniques. We study this method using a synthetic phantom and the Field II ultrasound
simulation software. A comparison with other reported methods shows that the proposed
3D interpolation-based method outperforms other common techniques in terms of accu-
racy and precision. Experimental results demonstrating the viability of the proposed
method are also presented.
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4. In Chapter 5, we study and compare the performance of 2D pattern matching techniques
employing 2D sub-sample estimation with that of 2D tracking using angular compound-
ing. Simulations using the Field II ultrasound simulation software on a synthetic phantom
and real ultrasound data acquired from tissue mimicking phantoms were used for this
study. The results show that our proposed 2D interpolation techniques bring the perfor-
mance of the 2D pattern matching close to that of motion vector imaging using angular
compounding.

5. In Chapter 6 to overcome the inherent low frame rate of ultrasound for motion estimation
in several dimensions, the delay cancellation techniques previously introduced in our
laboratory are combined with angular compounding to develop a system that reconstructs
the motion vectors at high frame rates. The system achieves both high spatial (line
density of up to 128) and high temporal resolution (> 500Hz) at an imaging depth of 5 cm
and a 100% field of view. Applications of the system in studying the wave propagation
in two dimensions, and flow vector imaging are presented with experimental results from
phantoms.

6. In Chapter 7 the results of the collected works are related to one another and a unified
goal of the thesis is discussed. The strengths and weaknesses of the research are then
presented, along with future directions for research.
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Chapter 2

Time-Delay Estimation in
Ultrasound Echo Signals Using
Individual Sample Tracking1

2.1 Introduction

Motion estimation as a time-delay estimation in sequences of ultrasound echo signals is essen-
tial for a wide range of modern ultrasound based signal processing applications. Time-delay
estimation lies at the heart of blood flow estimation, tissue velocity estimation [1–3], tissue
elasticity estimation [4–8], radiation force imaging [9–11], and many other applications.

Time-delay estimators measure displacement of the backscattered signals with respect to
the transducer. This displacement appears as time-shift or phase-shift between sequences of
echo signals [2]. Time-delay estimators are typically classified based on the type of signal (radio
frequency signal RF, envelope signal, in-phase and quadrature signals I/Q) and the domain
on which they operate (i.e. time, phase, or frequency). These estimators have been studied
and compared extensively in the literature [12–15]. Phase-shift estimators were initially used
for blood flow measurement. Later, these were used in other fields in order to estimate tissue
motion. Phase-shift estimators find the average phase-shift over a number of samples within a
window with respect to the nominal or estimated central frequency of the transmitted pulse.
Complex cross correlation of the RF echo signals [16,17] or complex-valued Doppler signals [1,2]
are typically used in these techniques.

Time-shift estimators are widely used in estimating tissue motion. Typically, they consist
of the identification of the maximum/minimum of a pattern matching function. The shape of
the signal within a specific window in the reference echo signal is set to be the pattern and a
matching algorithm is used to find the best match in the delayed echo signal. Many pattern
matching techniques are currently employed, each offering trade offs between complexity and
accuracy [12, 18, 19]. To reduce the bias and variance introduced by finite sampling intervals,
pattern matching function interpolation methods such as curve fitting and polynomial inter-
polation techniques have been introduced [20]. These techniques include parabolic fitting [21],
spline fitting [22], cosine fitting [23], and grid slope [24]. While the computational cost of these
methods is small, they suffer from relatively high bias and variance. In an effort to reduce the
bias and variance of the delay estimators, at the expense of computational cost, spline-based
continuous time-shift estimators have been introduced [15,25]. In these techniques the sampled
echo signal is interpolated by spline polynomials. The coefficients of the polynomials are then

1A version of this chapter has been published. R. Zahiri Azar and S. E. Salcudean, (2008) “Time-Delay
Estimation in Ultrasound Echo Signals Using Individual Sample Tracking”, IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, vol. 55, no. 12, pp. 2640-2650
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used to generate a continuous pattern matching function. Time-shifts are estimated by finding
the minimum/maximum of the generated continuous pattern matching function analytically.
By keeping the displaced signals discrete and representing the reference echo signal by poly-
nomials only, a continuous time-shift estimator has been derived by Viola and Walker [25]. At
the expense of higher computational cost, Pinton and Trahey derived another algorithm where
continuous representations of both the reference and the delayed echo signals are used to cal-
culate a continuous pattern matching function [15]. These authors have shown that continuous
time-shift estimators significantly outperform other algorithms in terms of standard deviation
and bias over a broad range of conditions.

All the above-mentioned techniques fall in the category of window-based delay estimators.
Indeed, they all measure the average time-shift/phase-shift of a number of samples within a
certain window. The size of the window and the overlap between windows play an impor-
tant role in the performance of these time-delay estimators [26]. Trade offs exist between the
signal-to-noise ratio and resolution of the time-shift estimators when different window sizes
are used [13, 27, 28]. In an effort to alleviate problems related to windowing, time-delay esti-
mation using multiple window sizes [29, 30] have been introduced in the literature. Some of
the alternative approaches to window-based time-delay estimation make use of feature extrac-
tion. Zero-crossing tracking (ZCT) [4] identifies the zero-crossings of the echo signals using
linear interpolation. Peak tracking and level-crossing tracking, wherein tracking is performed
on a predefined amplitude level, have also been suggested in [4] as extensions of ZCT. The
peak searching algorithm [31] identifies the peaks of the echo signals using a wavelet trans-
form. The distances between the zero-crossings (or level-crossings) or peaks represent the
time-shifts. ZCT and peak searching algorithms provide as many measurement points as there
are zero/level crossings or peaks within the signals. As a result they have the potential to
provide much higher resolution than window-based techniques.

In this paper we propose a new delay estimation algorithm called the Sample Tracking
(ST) algorithm. With this algorithm, the time-shift of each sample in a delayed echo signal is
measured with respect to a continuous, interpolated representation of the reference echo signal.
ST does not require windowing and can be implemented with a number of interpolation schemes
that provide continuous approximations to the original signal. The interpolation schemes
trade off delay estimation accuracy vs computational requirements. ST provides the time-
delay estimates with much higher density compared to conventional window based methods.
We also introduce a spline-based ZCT where a spline-based interpolation method is used to
find the zero-crossings of the echo signals instead of the previously used linear interpolation
technique.

The paper is structured as follows: Section 2.2 presents the ST and the spline-based zero-
crossing algorithms. Section 2.3 and 2.4 present simulation methods and simulation results
that compare the performance of the algorithms introduced in Section 2.2 to some of the best
and most widely used delay estimators. A discussion of the results is provided. Section 2.5
summarizes experimental results with a tissue phantom to demonstrate the feasibility of the
proposed approach. Conclusions are presented in Section 2.6, along with avenues for future
research.
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Figure 2.1: Schematic of ST. The markers represent the discrete samples in the reference 𝑠1[𝑖]
and delayed 𝑠2[𝑖] signals and the continuous line shows a polynomial interpolation 𝑓(𝑡) to the
reference signal. Black arrows show the actual displacements of each sample and gray arrows
show other displacement candidates.

2.2 Proposed Algorithms

2.2.1 Sample Tracking

Let 𝑠1[𝑖], 𝑖 = 0, 1, ..., 𝑛− 1 be a sampled reference echo signal and 𝑠2[𝑖], 𝑖 = 0, 1, ..., 𝑛− 1 be a
sampled, delayed, echo signal, where 𝑛 is the number of discrete samples in the echo signals.
Let 𝑓(𝑡), 𝑡 ∈ [0,∞), be a continuous interpolation of 𝑠1, , i.e. 𝑓 is such that 𝑓(𝑖𝑇 ) = 𝑠1[𝑖], ∀𝑖,
where 𝑇 is the sampling period. The displacement of each individual discrete sample of the
delayed echo signal 𝑠2[𝑖] with respect to the reference signal 𝑠1[𝑖] can be estimated by finding
𝑡 such that

𝑓(𝑡) = 𝑠2[𝑖]. (2.1)

This is shown in Fig 2.1. Any technique that has been used previously to interpolate
the pattern matching function can be used here to interpolate the reference echo signal. The
complexity and accuracy of the ST algorithm depend strongly on the form of the polynomial
representation of the echo signal.

Cubic splines are commonly used in signal processing due to their excellent balance between
ease of computation and accuracy [15,25,32]. To implement ST using a cubic spline polynomial,
without involving any windowing, a continuous representation of the entire reference signal is
generated according to the following equation:
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𝑓(𝑖𝑇 + 𝑡) = 𝑓𝑖(𝑡) = 𝑎𝑖𝑡
3 + 𝑏𝑖𝑡

2 + 𝑐𝑖𝑡+ 𝑑𝑖, 𝑡 ∈ [0, 𝑇 ] (2.2)

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 are the coefficients of the fitted spline polynomial at the 𝑖
𝑡ℎ sample. Alter-

natively, local fitting of polynomials using neighboring samples can be used to generate the
corresponding coefficients at each sample location. The details of local polynomial fitting are
provided in Appendix A.

The individual delays Δ̂[𝑖] of the discrete samples 𝑠2[𝑖], 𝑖 = 0, 1, , 𝑛− 1, of the delayed echo
signal are estimated by finding the root of (𝑓𝑖(𝑡) − 𝑠2[𝑖]) that is nearest to 𝑠2[𝑖], within the
interval [0, 𝑇 ]:

Δ̂[𝑖] = {𝑡 ∈ [0, 𝑇 ]∣𝑓𝑖(𝑡) = 𝑠2[𝑖]}. (2.3)

These delay estimates are not subject to sampling quantization. For negative time-shifts
where the time-shift estimates fall in the interval [−𝑇, 0], the process described above can
be repeated by shifting the reference sampled signal by one sample and using the coefficients
𝑎𝑖−1, 𝑏𝑖−1, 𝑐𝑖−1, 𝑑𝑖−1 to find the root of (𝑓𝑖−1(𝑡) − 𝑠2[𝑖]), within the interval [0, 𝑇 ]. This will
result in estimating a time-shift in the interval −𝑇 +[0, 𝑇 ] = [−𝑇, 0]. This process is analogous
to the shifting process used in conventional window based time-delay estimation using pattern
matching functions.

In addition to polynomial fitting, fitting a cosine function to neighboring samples can
also be employed to generate a continuous representation of the reference echo signal (i.e.
𝑓𝑖(𝑡) = 𝐴𝑖 cos(𝛼𝑖𝑡+𝛽𝑖)). The individual delays Δ̂[𝑖] of the discrete samples of the delayed echo
signal are estimated by solving for 𝑡 and selecting the root (i.e. (±𝑎 cos(𝑠2[𝑖]/𝐴𝑖)−𝛽𝑖)/𝛼𝑖) that
is nearest to 𝑠2[𝑖], within the interval [−𝑇, 𝑇 ].

ST algorithms provide a time-delay estimate for each sample of the echo signal, as opposed
to window-based methods, which provide the same time-delay estimate for all the samples
within a window. As a result, the delay estimates provided by ST are much denser than those
provided by conventional window-based methods.

Due to signal variations, ST may not always find a root. Samples for which equation
(2.1) does not have a root can be marked and removed. They can also be replaced with the
average time-shifts of neighboring samples. Furthermore, without any prior knowledge about
the displacement of each sample, ST may find more than one candidate for the delay estimate
of each sample (i.e. (2.1) has more than one root). Several possible scenarios are shown in
Fig 2.1. On the peak/valley of the echo signal, ST might select the root to the right or the
one to the left (black or gray arrow). Selecting a false root will result in a spike in the sample
delay estimate. The problem of false roots in ST is similar to the selection of false peaks in
pattern matching functions. As done in methods based on pattern matching [28], non-linear
filtering can be used to remove false roots in ST. In the ST algorithms presented in this paper,
false roots and unknown delays are removed by applying 1D median filtering with a kernel size
of five data points.

The ST algorithm is different from the ZCT/level crossing or the peak searching algorithms.
In ZCT, a single level-crossing is defined. In ST, each sample of the delayed signal defines a
level-crossing to be found in the reference signal (Fig 2.1). Thus, in ST, a new level is defined
for every sample, as opposed to tracking a fixed and predefined amplitude level as suggested
in [4].
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ST can also be derived from the spline-based continuous time-delay estimator [25]. In [25],
the error between the reference and the delayed signal is defined for a given window as the
following quadratic function:

𝜖(𝑡) =

𝑊∑
𝑖=1

(𝑓𝑖(𝑡)− 𝑠2[𝑖])
2 , (2.4)

where 𝑊 is the number of samples in the window. The time delay 𝑡 that minimizes 𝜖(𝑡) is
found analytically by taking the derivative with respect to 𝑡 and setting the result equal to
zero, then solving for 𝑡. By setting 𝑊 = 1 in (2.4) the error function and its derivative can be
written as 𝜖(𝑡) = (𝑓𝑖(𝑡)− 𝑠2[𝑖])

2 and ∂𝜖(𝑡)/∂𝑡 = 2 (𝑓𝑖(𝑡)− 𝑠2[𝑖]), respectively. By setting the
derivative equal to zero, we obtain

∂𝜖(𝑡)/∂𝑡 = 0→ 𝑓𝑖(𝑡) = 𝑠2[𝑖], (2.5)

which is the same equation that we used for ST. It should be noted that the error function
defined in (2.4) does not result in the estimation of the average of the displacement of the
individual samples inside the window. Therefore similar results are not expected and are not
obtained when time-delay estimates of several samples are averaged and compared with the
method from [25].

Similarly to phase-shift estimators which fail to estimate delays outside [−𝜆/2, 𝜆/2], where 𝜆
is the wavelength, ST is envisaged to be used primarily for tiny delays (i.e. within [−𝜆/4, 𝜆/4]),
for which sub-sample delay estimation becomes very important and common window based
algorithms suffer from relatively high bias and standard deviation. With this property, ST
algorithms are readily applicable to estimating delays in high frame-rate tissue imaging, where
delays between successive acquisitions are small, and ARFI imaging, where maximum delays
are small. For larger time-shifts, previously estimated time-shifts can be used to find the
coarse location of the current sample. This approach has been used in [33] to guide the search
for the pattern matching function. The same approach has been used in [17] to unwrap the
phase-shifts outside [−𝜆/2, 𝜆/2]. Alternatively, other methods, such as pattern matching, can
be used first to find the coarse estimation of the time-shifts. ST can then be applied to find the
fine sub-sample time-shift of each sample. Thus the time-shift of each sample will be equal to
the coarse time-shift, estimated with the pattern matching function, plus the fine sub-sample
time-shift, estimated with ST. This approach was implemented in this work to accurately
estimate large delays using ST.

2.2.2 Spline-based Zero-Crossing Tracking

The ZCT estimator identifies the zero-crossings of 𝑠1[𝑖] and 𝑠2[𝑖]. The displacements are then
estimated from the distance between the zero-crossings. The initial implementation of the
ZCT employed linear interpolation between consecutive samples of the two RF signals that
have different signs [4]. With a trade off of higher computational cost, the performance of
the ZCT is expected to improve when more accurate representations of the echo signals are
employed to find the zero-crossings. Let 𝑓(𝑡), 𝑔(𝑡) be continuous representations of the echo
signals 𝑠1[𝑖], 𝑠2[𝑖], respectively, generated using spline polynomials as in (2.1) above. The
locations of the zero-crossings 𝑧1[𝑗], 𝑧2[𝑗], where 𝑗 is the zero-crossing index, are found as the
roots of the fitted functions, i.e. 𝑧1[𝑗] = 𝑡∣𝑓(𝑡)=0 and 𝑧2[𝑗] = 𝑡∣𝑔(𝑡)=0. Finally the displacements
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Figure 2.2: Schematic representation of the ZCT algorithm. The circle markers show discrete
samples and the continuous lines show the fitted polynomials to the reference and delayed
signals. The arrows show the displacements of the zero-crossings.

are estimated from the distance between the locations of the corresponding zero-crossings
(Fig 2.2):

Δ̂[𝑗] = 𝑧1[𝑗]− 𝑧2[𝑗]. (2.6)

Equation (2.6) was suggested in [4] and assumes that corresponding zero-crossings in the
reference and delayed signal share the same index. However, this assumption does not always
hold. If some zero-crossings disappear from the reference echo signal or new zero-crossings ap-
pear in the delayed signal, corresponding zero-crossings will not share the same index. There-
fore, if (2.6) is used directly, large biases may be introduced in time-shift estimates. In order
to avoid this problem, prior to using (2.6), a check is added to correct the indexes. In this
work, positive large jumps in Δ̂[𝑗] (e.g., 𝑧1[𝑗] − 𝑧2[𝑗] > 𝜆/4) are assumed to be the result of
the appearance of a zero-crossing. Negative large jumps in Δ̂[𝑗] (i.e. 𝑧2[𝑗] − 𝑧1[𝑗] > 𝜆/4) are
assumed to be the result of a disappearance of a zero-crossing. Therefore, in the ZCT method
presented in this paper, equation (2.6) is re-formulated as follows:

Δ̂[𝑗] = 𝑧1[𝑗 + 𝑛]− 𝑧2[𝑗 +𝑚]. (2.7)

where 𝑚 and 𝑛 are correction factors accounting for additional or missing zero-crossings. The
appearance or disappearance of zero-crossings is a function of the quality of the continuous fit
to the sampled signals. The better the fit, the less likely it is that zero crossings will appear
or disappear.
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2.3 Simulation Methods

A series of computer simulations was performed to study the performance of the proposed
algorithms. The proposed algorithms were compared with the following conventional time-
shift and phase-shift estimators:

1. Viola’s continuous time-delay estimator (CTDE) [25],

2. Parabola fitting to normalized cross-correlation [21],

3. Cosine fitting to normalized cross-correlation [23],

4. Spline fitting to normalized cross-correlation [22],

5. Kasai’s phase-shift estimator (1D autocorrelator) [1],

6. Loupas’ phase-shift estimator (2D autocorrelator) [2].

Detailed descriptions of the normalized correlation and associated interpolation schemes as
time-shift estimators are provided in [25]. Detailed descriptions of the 1D and 2D autocorre-
lators as phase-shift estimators are provided in [13].

The performance of each estimator is considered in terms of its bias and standard deviation
as a function of sub-sample shift [25, 28], window size [13, 26], and resolution [13, 27].

The RF data was constructed to simulate line scatterers moving axially toward the trans-
ducer. Similarly to previously reported work, the base signal was created by convolving Gaus-
sian distributed white noise (zero mean and unit standard deviation) with a sinc-enveloped
sinusoid point spread function (PSF) [25, 28] given by:

PSF(t) =
sin(𝜋𝐵𝑓0𝑡)

𝜋𝐵𝑓0𝑡
sin(2𝜋𝑓0𝑡), (2.8)

where 𝑓0 = 5 MHz is the center frequency and 𝐵 = 0.5 is the fractional bandwidth. A sinc-
enveloped sinusoid PSF was chosen over Gaussian-enveloped sinusoid [13, 15] to facilitate the
comparison of the results with [25,28]. The PSF(t) was sampled from −1.5/(𝐵𝑓0) to 1.5/(𝐵𝑓0)
at a frequency equal to the sampling rate. Oversampling the base signal by a factor of 100
(𝑓𝑠 = 4 GHz) was used to obtain the necessary sub-sample displacement resolution to study
the bias and standard deviation of the time-delay estimators. Reference and delayed signals,
𝑠1[𝑖] and 𝑠2[𝑖], were formed by decimating the base signal by a factor of 100 (𝑓𝑠 = 40 MHz).
The base signal was decimated starting at different samples to produce reference and delayed
signals with a known sub-sample delay. For example, to produce a 0.1 sub-sample shift, the
base RF signal was down-sampled by a factor of 100 starting at the 1st and 11th sample to
produce the reference and delayed signals, respectively. Sub-sample delays were varied from 0
to 0.95 samples in steps of 0.05 samples, so that a total of 20 different delays were evaluated.
A total of 1,200,000 RF samples were generated in the base signal which resulted in 12,000
samples for each step after decimation. Window based displacement calculations are based on
data with an axial extent (or window length) of 24 samples (1.5𝜆 or ≈ 450𝜇m) which resulted
in 𝑀 = 500 independent realizations for each delay. Gaussian white noise was also added to
the reference and delayed signals to generate echo signals with different signal-to-noise ratios
(SNR).
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The following equations were used to estimate the bias 𝑏 and standard deviation 𝜎:

𝑏(Δ̂) =
1

𝑀

𝑀∑
𝑘=1

(Δ̂[𝑘]−Δ[𝑘]) (2.9)

𝜎(Δ̂) =

√√√⎷ 1

𝑀

𝑀∑
𝑘=1

(Δ̂[𝑘]− 1

𝑀

𝑀∑
𝑘=1

Δ̂[𝑘])2 (2.10)

where 𝑀 is the number of measurements, Δ[𝑘] are the true time delays, and Δ̂[𝑘] are the
estimated time delays.

In order to study the resolution of the proposed estimators, their displacement step re-
sponses have been studied as in [13, 27]. A step discontinuity was mimicked by inducing a
square wave displacement profile in the echo signals. Twenty independent realizations of the
reference and the delayed echo signals were generated for the same square wave displacement
profile.

Bias, standard deviation and resolution are the most commonly used metrics in studying
the performance of time-delay estimators. In order to study and compare the sensitivity of ST
in the presence of decorrelation as a strain estimator, its strain filter has also been studied.

A reference 2D RF frame was generated with a 1D simulation for each RF line as explained
above. A total of 100 independent lines were simulated to generate the reference RF frame. To
mimic the deformed signals at different compression ratios, the motion of scatterers for each
RF line was modeled using a serial connection of springs. A stiffness map was assigned to each
RF line. The stiffness was set to be the same across the entire image which leads to uniform
compression of the point scatterers. The displacements of point scatterers were calculated by
compressing the model with different compression ratios [33]. Compressions were generated in
the range of 0.0001% to 10% (equivalent to 4.0 × 10−5 mm ≈ 2.0 × 10−3 of a sample to 4.0
mm ≈ 2.0 × 102 samples maximum displacement) on a logarithmic scale. The deformed RF
signals were then calculated by convolving the compressed point scatterers with the original
PSF (2.8). The strain signal-to-noise ratios 𝑆𝑁𝑅𝑒 as defined in Appendix B were computed
from these data and were used to generate the strain filter of the ST algorithm in the presence
of decorrelation noise.

2.4 Simulation Results and Discussions

Simulations were performed by applying different time-delay estimators to the simulated ultra-
sonic RF data. All calculations were performed in MATLAB (MathWorks Inc., Natick, MA).
Since the ZCT and ST methods provide a higher number of estimate points than window-based
tracking (6 times higher for ZCT and 24 times higher for ST for a window length of 1.5𝜆), the
delay estimates from ZCT and ST algorithms were lumped following the estimation. A delay
estimate for each window was obtained by taking the average of the delay estimates that fall
within the window. These average delay estimates were then used to study and compare the
performance of the ZCT and the ST algorithms with conventional window-based techniques.

Simulation results are shown in Figs 2.3-2.8. Fig 2.3 shows the bias and standard deviation
of all the methods considered as a function of the sub-sample shift as discussed in Section 2.3.
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Figure 2.3: Bias and standard deviation of all the delay estimators. The reference and de-
layed signals were identical, except for a sub-sample shift. For each delay, 500 independent
realizations were used (𝑓𝑠 = 40 MHz, 𝑓𝑜 = 5 MHz, 𝐵 = 0.5, and 𝑊 = 1.5𝜆).

25



Chapter 2. Sample Tracking

10 20 30 40 50 60 70 80 90

−2

0

2

4

6

8

10

12

x 10
−3

Window Length (Samples)

B
ia

s 
(S

am
pl

es
)

 

 
CTDE (Cubic Spline)

NCC (Cosine)

NCC (Spline)

2D Autocorrelator

ST (Cubic Spline)

ZCT (Cubic Spline)

10 20 30 40 50 60 70 80 90

10
−3

10
−2

10
−1

Window Length (Samples)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(S
am

pl
es

)

Figure 2.4: Bias and standard deviation of all the techniques for different window sizes. The
reference and delayed signals were identical, except for a sub-sample shift of 0.25 sample
(𝑓𝑠 = 40 MHz, 𝑓𝑜 = 5 MHz, 𝐷𝑒𝑝𝑡ℎ = 50 mm, no window overlap).
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Figure 2.5: The bias of all the techniques (left) and the standard deviation of window-based
delay estimators (right). The results are the average displacement estimates over 20 realizations
𝑓𝑠 = 40 MHz, 𝑓𝑜 = 5 MHz, 𝐵 = 0.5, 𝑊 = 24 samples for window based techniques.
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A signal and its exact shifted replica were used. The vertical axis for standard deviation is
shown on a logarithmic scale in order to provide a clear differentiation. Fig 2.3 shows the bias
and standard deviation of the ST algorithm when three point cosine fitting, fourth order local
polynomial fitting, and cubic spline fitting are used to generate the continuous representation
of the reference echo signal. The accuracy of tracking individual samples increased with the
quality of the polynomial interpolation. This result is shown in Fig 2.3. ST algorithms using
cubic spline fitting and CTDE significantly outperform all the window-based techniques and
provide exact results, in terms of bias in estimating the average delays. These results are
consistent with the results provided in Section 2.2, where it was shown that ST algorithms can
be derived from CTDE with 𝑊 = 1. For ZCT algorithms, Fig 2.3 shows that both the bias
and standard deviation drop significantly as we use spline functions to locate the zero-crossings
instead of previously used linear interpolations. These expected results are the outcome of the
increased accuracy of tracking the zero-crossings, as the interpolating polynomial becomes a
better representation for the actual discrete data. The results also show that when using linear
interpolation, ZCT performance closely resembles that of the correlation based algorithms.
These results are consistent with the results that were reported by Srinivasan in [4], where
ZCT was reported to generate strain images with lower signal-to-noise ratios in comparison to
normalized correlation.

Fig 2.3 shows that the spline-based ZCT algorithm achieves the smallest bias among all
the techniques and performed better than the spline-based ST and CTDE algorithms. This
is due to the fact that ZCT fits a spline polynomial to both the reference and delayed echo
signals while ST keeps the reference signal discrete. Similar results have been reported in the
literature for window based continuous time-delay estimation. In [15] it has been shown that,
with the trade-off of higher computational cost, fitting spline functions to both the reference
and displaced signals, as opposed to the reference signal only [25], improves the performance
of time-delay estimators. However, ST algorithms have several advantages compared to ZCT
methods. First, ST provides many more measurement points compared to ZCT since the
number of samples is always greater than the number of zero/level crossings. Second, the
spacing between the time-shift estimates is fixed in ST and is equal to the spacing between
echo samples. The ZCT algorithms provide the time-shift estimate only at the location of the
predefined level (zero or other) crossings. These are not always equally spaced. Third, unlike
ZCT, ST can be applied to the envelope signals equally effectively. Fourth, ST does not have
the problem of losing track of motion, as mentioned in Section 2.2 for ZCT. This is due to the
fact that the time-shift estimation of each sample is independent from that of other samples.

Fig 2.3 also shows that CTDE produces the lowest standard deviation among all techniques,
followed by ST and ZCT. Fig 2.3 shows that the normalized correlation with cosine fit and
spline fit achieve lower bias than parabolic fit. The 2D autocorrelator as a phase-shift estimator,
which estimates the center frequency, outperforms the 1D-autocorrelator, which assumes a fixed
center frequency equal to that of the transmitted pulse. These results are all consistent with
previously published results [12, 13, 20, 22, 25, 34].

Fig 2.4 shows the bias and standard deviation of all methods as a function of window
size. An echo signal with sub-sample shift of 0.25 samples was used for this study. The ZCT
algorithm has the smallest bias followed by ST and CTDE. Similarly to the results in Fig 2.3,
the bias of ST is the same as the bias of the CTDE for all window sizes. For spline-based
methods (i.e. ZCT, ST, and CTDE) the size of the window does not affect the bias of the
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estimator. Fig 2.4 shows that for large window sizes, the bias of the 2D autocorrelator phase-
shift estimator becomes comparable to that of spline-based techniques.

For all the methods considered the standard deviation increases as we reduce the size of
the window. This is consistent with the result published in [28], where it was shown that the
lower bound of the standard deviation of the delay estimators is inversely proportional to the
square root of the size of the window. Therefore the standard deviation is expected to increase
as we reduce the size of the window. Fig 2.4 shows that the biases of all the methods remain
larger than that of the CTDE.

It should be noted that the results depicted in Fig 2.3 and 2.4 are in favor of window-based
methods since all the samples were experiencing the exact same shift inside the window. To
study a more realistic case in which the samples inside a window experience different delays,
we used a step discontinuity in the delays. The step responses (square wave responses) of the
techniques we study indicates their resolution, and are shown in Fig 2.5. The step responses
of the window-based techniques are compared with ST when no averaging is applied to the
estimated delays. Fig 2.5 shows that ST outperforms all methods. For ST the transition
from one step to the next happens instantly while for all the window-based methods including
CTDE, the transition is smooth. This was expected as ST has the capability of tracking
individual samples as opposed to tracking a group of samples within a window. Thus its
performance is not limited by the size of the window.

Fig 2.6 depicts the relationship between the standard deviation and the SNR. The SNR
was varied from 10 dB to 60 dB. The results show that the performance of both ST and ZCT
rapidly degrade as the SNR becomes smaller. This is also expected as, unlike window-based
methods, neither ST nor ZCT take advantage of averaging to improve time-delay estimates.
Measurements based on single samples or zero-crossings are more susceptible to errors when
compared to tracking a group of samples within a window.

To study the ST performance as a strain estimator and compare it with commonly used
techniques, the algorithm was employed to estimate the delay when the echo signal changed
due to sample compression. The performance of the cubic spline-based ST was compared with
normalized correlation with cosine fit and cubic spline-based CTDE. The time-delay estimates
at different compression levels are shown in Fig 2.7. The normalized correlation was used
to find the coarse location of the time-shift for both techniques. The sizes of the windows
were set to be 3𝜆 and the windows were set to have 50% overlap as typically used in strain
estimation [26]. The time-delay estimates for varying compression levels are shown in Fig 2.7
for all three methods.

Fig 2.7 shows that window tracking with cosine fit fails to estimate small strains and shows
poor sensitivity while spline-based methods estimate even 0.0001% compression (4.0×10−5 mm
≈ 2.0 × 10−3 of a sample maximum displacement) without any ambiguity. These results are
consistent with the results shown in Fig 2.3 and Fig 2.4, where ST and CTDE were shown to
have much smaller bias and standard deviation when compared to the normalized correlation
with cosine fit. For large compression levels (i.e. 7% to 10%), all the algorithms failed to
estimate the delays correctly. This is due to the fact that they all depend on the normalized
cross-correlation to provide them with estimation delays that are within the sampling accuracy.
As a result, when the normalized correlation fails at large compression levels, all the algorithms
fail as well.

In order to study the sensitivity quantitatively, the strain filters of all the above methods
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Figure 2.6: Standard deviation of the delay estimators as a function of SNR. The bottom panel
depicts an expanded view of each condition tested. The reference and delayed signals were
identical, except for a sub-sample shift. 500 independent realizations were used to generate
the results (𝑓𝑠 = 40 MHz, 𝑓𝑜 = 5 MHz, 𝐵 = 0.5, and 𝑊 = 1.5𝜆).
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Figure 2.7: Time-delay estimation images at different compression levels (0.0001%∼0.1% and
8%∼9% strain on a logarithmic scale) using normalized cross correlation with cosine fit (left),
CTDE with cubic spline fit (center) and ST with cubic spline fit (right). The window size was
set to 3𝜆 with 50% window overlap. Colorbars are in sample.
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Figure 2.8: Signal-to-noise ratio of estimated strain as a function of applied compression for
window tracking and ST. ST shows much higher sensitivity compared to window tracking since
it is capable of estimating very small strains.

were estimated and shown in Fig 2.8. Fig 2.8 shows that compared to CTDE, ST provides
strain images with much higher sensitivity. The performances of all the methods are similar
for large deformations.

To compare the computational cost of ZCT and ST with that of CTDE, note that both ST
and ZCT preserve the order of fitted polynomials for the root estimation process. However,
the square term in (2.4) doubles the order of the polynomial for the continuous time-delay
estimation. Therefore, the root estimation routine is simpler for both ST and ZCT. However,
both ST and ZCT require calling the root estimation process more often than the window
based continuous time-delay estimators. As a result, the ST and ZCT methods have higher
computational cost than the corresponding window-based continuous delay estimators. How-
ever, estimating the delay for a different window size with a window-based method requires
re-estimating the delays for each window, while in ST and ZCT, only the windowing must
be repeated since the sample or the zero-crossing shift does not change. Thus, ST and ZCT
methods offer the flexibility of a variable resolution, depending on the window size used to
average the displacement estimates, without significantly increasing the computation time. In
contrast, window-based techniques need to repeat the entire estimation once the window size
is changed.

Although we have only considered 1D tracking, the generalization of ST to higher dimen-
sions is possible. In the 2D case, for example, a 2D function needs to be fitted to the reference
echo signal. The displacement that satisfies (2.1) in both directions needs to be calculated.
This would result in a 2D estimate of the displacement for each sample. The use of 2D spline
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Figure 2.9: Experimental displacement estimates using the ST algorithm. The straight line
shows the displacement applied to the probe and the dotted line shows the average of mea-
surements over the region of interest. (𝑓𝑠 = 40 MHz, 𝑓𝑜 = 5 MHz, 𝐷𝑒𝑝𝑡ℎ = 40 mm, 𝑊 = 3𝜆,
no window overlap).

polynomials to describe the echo signal to estimate 2D motion has been reported in [35].

2.5 Experimental Performance

In order to study the performance of the ST algorithm with real data, an experiment was
conducted. The transducer was mounted on top of a leadscrew stage that provides controlled
motion. An experiment was performed on a 40×40×40 mm3 uniformly elastic phantom. The
phantom was prepared using a 100% polyvinyl chloride (PVC) plasticizer (M-F Manufacturing
Co., Inc. Fort Worth, TX, USA) with two percent cellulose (Sigma-Aldrich Inc., St Louis,
MO, USA) as scatterers [36]. The phantom was placed in a tank full of degassed water at
room temperature. The phantom was placed 2 mm away from the transducer. In this way
the transducer was able to move without deforming the phantom, producing a rigid motion.
The probe was moved axially in sinusoidal trajectories with 0.5 mm amplitude and variable
frequency. The phantom was imaged to a depth of 40 mm (2 mm water gap plus 38 mm
phantom) with a linear array of 128 elements with 0.3 mm lateral spacing, with a 5MHz
center frequency, digitized at 40MHz, of a SonixRP ultrasound machine (Ultrasonix Medical
Corporation, Richmond, BC). The RF frames and transducer position were recorded at 40Hz
and dumped into a file for off-line processing (a total of 800 frames). The transducer position
was measured through the encoder (as an applied motion) and was synchronized with the RF
ultrasound images of the phantom.
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Figure 2.10: Displacement estimates using normalized cross correlation plus cosine fit (top), ST
algorithm (bottom) of a phantom with a cylindrical hard inclusion when it undergoes small
uniaxial compression (𝑓𝑠 = 40 MHz, 𝑓𝑜 = 5 MHz, 𝐷𝑒𝑝𝑡ℎ = 50 mm, 𝑊 = 3𝜆, no window
overlap).
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For time-delay estimation, RF signals were divided into non-overlapping windows. The
coarse displacements were measured using the normalized cross correlation applied to the non-
overlapping windows. The displacements of the individual samples within the windows were
then estimated using cubic spline-based ST. The estimated time-delays inside a 25 mm× 25 mm
(84 lines and 1300 samples) region of interest at each time were averaged and compared with
the applied displacement. The experimental results are shown in Fig 2.9. The results show
that ST tracks the displacement very accurately in the presence of noise. The average error
was measured to be 8𝜇m over the entire motion.

In order to study the ST performance qualitatively, another experiment was performed
on a phantom with a hard cylindrical inclusion. The phantom was prepared using a 100%
PVC plasticizer for the inclusion and 66.7% PVC plasticizer and 33.3% plastic softener (M-F
Manufacturing Co., Inc. Fort Worth, TX, USA) for the background. Two percent cellulose was
used as scatterers for both inclusion and background. The phantom was placed in front of the
probe. Using the same setup, the phantom was imaged once to capture the reference RF frame
(i.e. pre-compression RF frame). The phantom was then compressed 150 𝜇m uniaxially. The
second RF frame (i.e. post-compression RF frame) was captured while the phantom was under
the compression. The resulting displacements between the echo signals were measured with
both cubic spline-based ST and normalized cross correlation with cosine fit. The results are
shown in Fig 2.10. Compared to the standard technique which provides measurement points
equal to the number of windows (i.e. 50) per each line, ST provides measurement points equal
to the number of samples (i.e. 2500) for each line and provides a smoother image.

2.6 Conclusions

A new class of time-delay estimators based on the tracking of the individual measured echo
samples has been presented in this paper. ST algorithms generate time-shift estimates with
much higher density compared to commonly used window-based methods. Simulation results
show that these algorithms outperform conventional window based time-delay estimators in
terms of bias and standard deviation when applied to high SNR echo signals. Simulation
results also show that ST algorithms have higher resolution and sensitivity when used as strain
estimators compared to commonly used strain estimation algorithms, including the recently
introduced spline-based continuous time-delay estimator.

In addition to ST algorithms, based on the previously introduced zero-crossings tracking
algorithm, a new spline-based zero-crossings tracking algorithm has also been presented. Sim-
ulation results show that the new zero-crossing tracking algorithm significantly outperforms
the original linear interpolation based ZCT. The proposed ZCT has similar performance to
that of the presented ST algorithm.

The proposed algorithms have potential applications in medical ultrasound, including fine
tissue motion estimation, strain estimation, elasticity estimation, and acoustic radiation force
impulse imaging.
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Chapter 3

2D Estimation of Sub-Sample
Motion from Digitized Ultrasound
Echo Signals2

3.1 Introduction

Motion estimation in sequences of ultrasound echo signals is essential for a wide range of
modern ultrasound-based signal processing applications. These applications include blood
flow estimation, tissue velocity estimation [1–3], strain and strain rate imaging [4–6], tissue
elasticity imaging [7], vibro-elastography [8,9], poro-elastography [10], myocardial imaging [11],
tumor classification [12], and acoustic radiation force impulse imaging [13–15]. Because of its
central importance, its accuracy, precision, and computational cost are of critical importance.

Motion estimators measure displacement of the backscattered signals with respect to the
transducer. Motion estimators are typically classified based on the type of signal (RF, envelope,
in-phase and quadrature I/Q) and the domain on which they operate (i.e. time, phase, or
frequency). These estimators have been studied and compared extensively in the literature [16–
20].

Phase-shift estimators were initially used for blood flow measurement [1, 2]. Later, the
same techniques were used to estimate the tissue motion. Phase-shift estimators find the
average phase-shift over a number of samples within a window with respect to the nominal or
estimated central frequency of the transmitted pulse. Complex cross correlation of the RF echo
signals [21, 22] or complex-valued Doppler signals [1, 2] are typically used in these techniques.
The extension of phase shift estimations to 2D has also been studied in the literature [23–27].

In another approach, frequency-shift estimators have also been introduced in the literature
[20, 28, 29]. However their extension to 2D has yet to be studied.

Pattern matching techniques were initially used in video and image processing. Later, the
same techniques were borrowed in the field of ultrasound to estimate motion/time-shift from
sampled ultrasound radio-frequency (RF) echo signals [4,26,30,31]. Estimation of motion from
envelope signals and combination of RF and envelope signals have also been reported [32,33].
These techniques typically consist of the identification of the maximum/minimum of a pattern
matching function. The shape of the signal within a specific window in the reference echo
signal is set to be the pattern and a matching algorithm is used to find the best match in the
delayed echo signal.

2A version of this chapter has been peer reviewed and published in the proceedings of the international
Conference on IEEE EMBS. A version of this chapter has also been submitted for publication. Reza Zahiri-
Azar, Orcun Goksel, and Septimiu E. Salcudean, “A Comparative Study of 2D Pattern Matching Function
Interpolation Methods using Ultrasound Echo signals with Application to Real-Time Elastography”.
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Figure 3.1: Common techniques to reduce the error of discrete pattern matching functions.
Dashed boxes show optional steps. (a) Basic pattern matching function. (b) Pattern match-
ing function with echo signal up-sampling where 𝛼 and 𝛽 are the up-sampling factor in the
axial and the lateral directions. (c) Continuous pattern matching function generated from
curve or polynomial fitting to one or both of the echo signals. (d) Pattern matching function
interpolation which can be implemented without (d.1) and with (d.2) signal up-sampling.

Several pattern matching techniques have been used in the field of ultrasound, such as
normalized cross correlation, sum of square differences, and sum of absolute differences, each
offering trade offs between complexity and accuracy [16,34,35]. Extensions of these techniques
to 2D (or even 3D) has also been suggested [26, 31, 33, 36–40].

The estimation error of pattern matching techniques can be as large as half the sample
spacing. This results in significant errors when accurate and precise tracking of the motion is
the goal. This error become more significant in the lateral (or the elevational) direction were
the sample spacing is an order of magnitude larger compared to the axial direction.

Several techniques have been suggested in the literature to reduce the error introduced
by finite sampling intervals. These techniques are categorized as: (i) echo signal up-sampling
[19,37,41,42], (ii) interpolation of the echo signals [19,38,41,43], and (iii) interpolation of the
pattern matching function [44–47]. These approaches are schematically represented in Fig 3.1.

Up-sampling the echo signal (i) reduces the error by the up-sampling factor (Fig. 3.1(b)),
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but can increase the computational cost significantly [11,19,37,42]. This is due to the fact that,
in addition to the up-sampling operations, the pattern matching function needs to be computed
at a higher sampling rate. Curve or polynomial fitting to the echo signals (ii) results in a con-
tinuous representation of the echo signal and subsequently in a continuous pattern matching
function [19, 38, 41, 43]. The location of the best match can then be identified from the con-
tinuous pattern matching function without the sample spacing limitation (Fig. 3.1(c)). It has
been shown that these techniques outperform other algorithms but, similarly to up-sampling
methods, they can be computationally demanding [43, 48]. Pattern matching interpolation
techniques (iii) are computationally more efficient than up-sampling or continuous representa-
tion (Fig. 3.1(d)). Therefore, even though they introduce some bias in the estimation process,
they are widely used in motion estimation. These techniques will be the topic of this work.

A number of 1D pattern matching interpolation methods such as parabolic fitting [47],
spline fitting [46], grid slope [31, 36], cosine fitting [45], zero padding, and reconstructive
methods [44] have been introduced and thoroughly investigated in the literature [16, 41, 43].
Applying the same 1D interpolation techniques independently to each direction (2-1D) has
also been used widely in the literature to estimate the sub-sample motion in two (or even
three) dimensions [31, 36, 38, 49–51]. Applying iterative 1D interpolation [52, 53] and 2D
interpolation techniques [53–55] have also been attempted in the literature. However, there
is no comprehensive study in the literature that quantifies and compares the performance of
these various techniques.

In this work, the performance of these interpolation methods are studied and compared on
ultrasound radio frequency and envelope data. Both simulation and experimental results are
used to produce a comparative performance assessment. Furthermore, due to small compu-
tational cost, pattern matching interpolation methods facilitate the estimation of sub-sample
motions in real-time. By implementing these interpolation methods, we extend our previously
introduced 1D motion tracking algorithm [56] to 2D, and report an implementation of a mo-
tion tracking software that estimates both axial and lateral motions with sub-sample accuracy
in real-time.

The paper is structured as follows: Section 3.2 presents the interpolation techniques. Sec-
tion 3.3 and 3.4 present the performance comparison between the different methods by studying
both simulation and experimental results. Section 3.5 presents an implementation of the inter-
polation algorithms for 2D motion tracking in real-time, followed by a discussion in Section 3.6.
Section 3.7 presents conclusions along with avenues for future research.

Throughout this work, it is assumed that the echo signals are 2D radio frequency (RF)
signals. In Section 3.3, the performance of sub-sample estimation methods are also studied for
2D envelope data. Without loss of generality, it is assumed that the pattern matching function
optimization involves maximization of the normalized cross correlation. A detailed description
of a pattern matching function is provided in Appendix C. The pattern matching function
values will be referred to as the matching coefficients.

3.2 Methods

Let 𝑅[𝑢, 𝑣] be the discrete 2D pattern matching function between the windowed reference and
the displaced echo signal over a predefined search region. Given 𝑅[𝑢, 𝑣] the coarse axial 𝑑𝑎 and
lateral 𝑑𝑙 estimates of the motion in the axial (𝑥) and the lateral (𝑦) directions are achieved
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(a) Independent 1D estimation (b) Iterative 1D approach

(c) 2D joint estimation

Figure 3.2: Different schemes for sub-sample displacement estimation in 2D, using coeffi-
cients of the cross correlation function in the neighborhood of its maximum. For the first
two techniques ((a) and (b)) only 1D interpolation is required while for the last method (c),
2D interpolation is necessary. Solid circles show the actual matching coefficients and squares
show the interpolated matching coefficients. Ellipses show equal value contours of underlaying
correlation function.
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by locating the maximum of the 2D discrete pattern matching function 𝑅[𝑢, 𝑣]. The estimates
𝑑𝑎 and 𝑑𝑙 are given by

[𝑑𝑎, 𝑑𝑙] = argmax
𝑢,𝑣

𝑅[𝑢, 𝑣]. (3.1)

Following the coarse estimation of the motion within the sampling accuracy, the following
methods are used to estimate the sub-sample displacements (𝛿𝑎, 𝛿𝑙) in the axial and the lateral
directions respectively, using the matching coefficients at neighboring lags (Fig. 3.1(d)).

3.2.1 Independent 1D Method

Referring to Fig. 3.2(a), let 𝑓𝑎(𝑥) be an axial 1-D interpolation function passing through
the 2D pattern matching function at [𝑑𝑎, 𝑑𝑙] and its axial lags (i.e. 𝑅[𝑑𝑎 + 𝑖, 𝑑𝑙] where 𝑖 ∈
{0,±1,±2, ...,±𝑀𝑎}, where 𝑀𝑎 is the fitting radius in the axial direction) and 𝑓𝑙(𝑦) be a
lateral 1-D interpolation function passing through the 2D pattern matching function at [𝑑𝑎, 𝑑𝑙]
and its lateral lags (i.e. 𝑅[𝑑𝑎, 𝑑𝑙 + 𝑗] where 𝑗 ∈ {0,±1,±2, ...,±𝑀𝑙}, where 𝑀𝑙 is the fitting
radius in the lateral direction). The sub-sample motion estimates 𝛿𝑎, 𝛿𝑙 at (𝑑𝑎, 𝑑𝑙) are computed
from their corresponding axial and lateral interpolation functions as follows:

𝛿𝑎 = argmax
𝑥

𝑓𝑎(𝑥),

𝛿𝑙 = argmax
𝑦

𝑓𝑙(𝑦). (3.2)

These methods are the most commonly used techniques to estimate the sub-sample motion
in 2D [38, 49–51]. For the purpose of this work, (i) the three point 1D parabola fitting [47],
where the axial and the lateral sub-sample shifts are estimated from 𝑓𝑎(𝑥) = 𝑎𝑎+𝑏𝑎𝑥+𝑒𝑎𝑥

2 and
𝑓𝑙(𝑦) = 𝑎𝑙+𝑏𝑙𝑦+𝑐𝑙𝑦

2, and (ii) the three point cosine fitting [45], where the axial and the lateral
sub-sample shifts are estimated from 𝑓(𝑥) = 𝐴𝑎 cos(𝛼𝑎𝑥+𝛽𝑎) and 𝑓(𝑦) = 𝐴𝑙 cos(𝛼𝑙𝑦+𝛽𝑙), have
been implemented due to their relative computational simplicity [41,44]. Detailed descriptions
of these common techniques are provided in AppendixD. The independent 1D methods using
three point function fitting (𝑀𝑎 = 𝑀𝑙 = 1), require matching coefficients to be available at
five lags (i.e. the maximum in the center and the two immediate neighboring lags in each
direction).

3.2.2 Grid Slope

This method was proposed in [31, 36]. It has also been studied in [41] when estimating the
motion in axial direction only. In order to apply this technique, it is necessary to compute
the pattern matching function between the reference and displaced signals 𝑅, and the pattern
matching function between the reference signal and itself 𝑅0. Similarly to above mentioned
techniques, the grid slope technique estimates the axial and lateral sub-sample motion inde-
pendently. Thus, it can be classified as an independent 1D interpolation method.

3.2.3 Iterative 1D Method

In an iterative approach, the achieved sub-sample accuracy in one direction can be used to
estimate the sub-sample displacement in the other direction [52, 53]. Referring to Fig. 3.2(b),
let 𝑓𝑎(𝑥, 𝑗), 𝑥 ∈ ℜ and 𝑗 ∈ {0,±1,±2, ...,±𝑀𝑙} be a set of functions such that for every
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value of 𝑗, 𝑓𝑎(𝑥, 𝑗) is an axial 1-D interpolation function passing through 𝑅[𝑑𝑎 + 𝑖, 𝑑𝑙 + 𝑗], 𝑖 ∈
{0,±1,±2, ...,±𝑀𝑎} and 𝑓𝑙(𝑦, 𝑖), 𝑦 ∈ ℜ and 𝑖 ∈ {0,±1,±2, ...,±𝑀𝑎} be a set of functions
such that for every value of 𝑖, 𝑓𝑙(𝑦, 𝑖) is a lateral 1-D interpolation function passing through
𝑅[𝑑𝑎+𝑖, 𝑑𝑙+𝑗], 𝑗 ∈ {0,±1,±2, ...,±𝑀𝑙}. The iterative 1D method can be formulated as follows:
1. 𝑘 = 0, 𝛿0𝑙 = 0,

2. 𝑔𝑘𝑎(𝑥) := 1-D interpolating function passing through 𝑓𝑙(𝛿
𝑘
𝑙 , 𝑖)), 𝑖 ∈ {0,±1,±2, ...,±𝑀𝑎},

3. 𝛿𝑘𝑎 = argmax𝑥 𝑔
𝑘
𝑎(𝑥),

4. 𝑔𝑘𝑙 (𝑦) := 1-D interpolating function passing through 𝑓𝑎(𝛿
𝑘
𝑎 , 𝑗), 𝑗 ∈ {0,±1,±2, ...,±𝑀𝑙},

5. 𝛿𝑘𝑙 = argmax𝑦 𝑔
𝑘
𝑙 (𝑦),

6. if stopping criterion not met, 𝑘 = 𝑘 + 1, return to (2).

where 𝑘 is the index of iteration.
In the algorithm presented above the 𝑓𝑎, 𝑓𝑙 are the interpolation functions passing through

actual matching coefficients, and 𝑔𝑘𝑎 , 𝑔
𝑘
𝑙 are the interpolation functions passing through inter-

polated matching coefficients. It should be noted that in the first iteration 𝑔0𝑎(𝑥) = 𝑓𝑎(𝑥, 0)
since 𝛿0𝑙 = 0 and interpolated values are the same as the discrete values.

In contrast to independent 1D methods, iterative 1D methods use the estimated sub-
sample motion in one direction to calculate the sub-sample motion in the other direction. The
iterative 1D methods use the interpolated matching coefficients at the estimated sub-sample
locations. Thus, they require more matching coefficients than used in the independent 1D
method. Similarly to independent 1D methods, the same three point parabola fitting using
𝑓𝑎(𝑥) = 𝑎𝑎 + 𝑏𝑎𝑥 + 𝑐𝑎𝑥

2, 𝑓𝑙(𝑦) = 𝑎𝑙 + 𝑏𝑙𝑦 + 𝑐𝑙𝑦
2) and cosine fitting 𝑓𝑎(𝑥) = 𝐴𝑎 cos(𝛼𝑎𝑥 + 𝛽𝑎),

𝑓𝑙(𝑥) = 𝐴𝑙 cos(𝛼𝑙𝑦 + 𝛽𝑙)), have been implemented. The iterative 1D method using three point
function fitting (𝑀𝑎 =𝑀𝑙 = 1), requires matching coefficients to be available at nine lags (i.e.
the maximum in the center, and its 8 neighboring lags).

3.2.4 2D Method

In a more general approach a 2D function can be fitted to the discrete matching coefficients in
both the axial and the lateral directions [53,54]. Joint estimation with sub-sampling accuracy
can then be achieved in both directions by finding the peak of the fitted function analytically.

Referring to Fig. 3.2(c), let 𝑓(𝑥, 𝑦) be a 2-D interpolation function passing through the
2D pattern matching function at [𝑑𝑎, 𝑑𝑙] and its neighbors (i.e. 𝑅[𝑑𝑎 + 𝑖, 𝑑𝑙 + 𝑗] where 𝑖 ∈
{0,±1,±2, ... ± 𝑀𝑎}, 𝑗 ∈ {0,±1,±2, ... ± 𝑀𝑙}). The sub-sample motion estimates 𝛿𝑎, 𝛿𝑙 at
(𝑑𝑎, 𝑑𝑙) are computed jointly from the corresponding 2D interpolation functions as follows:

[𝛿𝑎, 𝛿𝑙] = argmax
𝑥,𝑦

𝑓(𝑥, 𝑦). (3.3)
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The following 2D polynomial fitting are implemented in this paper:

𝑓5(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦 + 𝑎4𝑥
2 + 𝑎5𝑦

2, (3.4)

𝑓6(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2, (3.5)

𝑓9(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2 + 𝑎7𝑥𝑦
2 (3.6)

+𝑎8𝑥
2𝑦 + 𝑎9𝑥

2𝑦2,

𝑓16(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2 + 𝑎7𝑥𝑦
2 (3.7)

+𝑎8𝑥
2𝑦 + 𝑎9𝑥

2𝑦2 + 𝑎10𝑥
3 + 𝑎11𝑥

3𝑦 + 𝑎12𝑥
3𝑦2

+𝑎13𝑦
3 + 𝑎14𝑥𝑦

3 + 𝑎15𝑥
2𝑦3 + 𝑎16𝑥

3𝑦3,

𝑓25(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5𝑥
2 + 𝑎6𝑦

2 + 𝑎7𝑥𝑦
2 (3.8)

+𝑎8𝑥
2𝑦 + 𝑎9𝑥

2𝑦2 + 𝑎10𝑥
3 + 𝑎11𝑥

3𝑦 + 𝑎12𝑥
3𝑦2

+𝑎13𝑦
3 + 𝑎14𝑥𝑦

3 + 𝑎15𝑥
2𝑦3 + 𝑎16𝑥

3𝑦3

+𝑎17𝑥
4 + 𝑎18𝑥

4𝑦 + 𝑎19𝑥
4𝑦2 + 𝑎20𝑥

4𝑦3

+𝑎21𝑦
4 + 𝑎22𝑥𝑦

4 + 𝑎23𝑥
2𝑦4 + 𝑎24𝑥

3𝑦4 + 𝑎25𝑥
4𝑦4

𝑓5(𝑥, 𝑦)

This polynomial is used in [57] for tracking single fluorescent particles. The polynomial is fitted
to five points of the discrete pattern matching function, the maximum and four immediate
neighbors. Since there is no cross term in this polynomial (i.e. dependence on 𝑥𝑦), this 2D
joint estimator is equivalent to two independent 1D parabola interpolation that is discussed in
Section 3.2.1. For this reason, this polynomial is not studied separately.

𝑓6(𝑥, 𝑦)

This 2D polynomial with six coefficients is proposed in [55] for spatial shift estimation. The
same polynomial has also been used in [58] to reduce the computational cost of modern video
codecs. The cross term in this polynomial makes it a non-separable 2D polynomial. Two
different implementation of this polynomial are studied in this work. In one approach the
polynomial is fitted to six points of the discrete pattern matching function, the maximum,
four immediate neighbors, and one diagonal neighbor as proposed in [55]. This approach is
expected to bias the results toward the selection of the sixth matching coefficient. To resolve
this issue, in another approach, the 2D polynomial is fitted to nine points of the discrete
pattern matching function, the maximum and its eight immediate neighbors (𝑀𝑎 = 𝑀𝑙 = 1),
using a least squares fit. This method will be referred to as 𝑓6(𝑥, 𝑦). Detailed descriptions of
this 2D paraboloid fitting and the corresponding maximization are provided in Appendix E.

𝑓9(𝑥, 𝑦)

This non-separable 2D polynomial with nine coefficients which is resulted from multiplying
[1, 𝑥, 𝑥2] and [1, 𝑦, 𝑦2] terms (quadratic spline) is used in [53] to estimate the sub-sample
motion in 2D. The polynomial is fitted to the maximum of the discrete pattern matching
function and all its eight neighboring lags. Detailed descriptions of this 2D polynomial fitting
and the corresponding maximization are provided in Appendix E.

45



Chapter 3. Sub-sample Motion Estimation in 2D

𝑓16(𝑥, 𝑦)

This 2D polynomial with sixteen coefficients is resulted from multiplying [1, 𝑥, 𝑥2, 𝑥3] and
[1, 𝑦, 𝑦2, 𝑦3] terms (cubic spline). The polynomial is fitted to the maximum of the discrete
pattern matching function and all its twenty four neighboring lags (𝑀𝑎 = 𝑀𝑙 = 2) using the
Spline Toolbox (MathWorks Inc., Natick, MA). A modified version of this polynomial has been
used in [38] to generate a continuous representation of the echo signal itself in order to generate
a continuous pattern matching function in 2D.

𝑓25(𝑥, 𝑦)

This 2D polynomial with twenty five coefficients is resulted from multiplying [1, 𝑥, 𝑥2, 𝑥3, 𝑥4]
and [1, 𝑦, 𝑦2, 𝑦3, 𝑦4] terms (quartic spline) [59]. The polynomial is fitted to the maximum of the
discrete pattern matching function and all its twenty four neighboring lags (𝑀𝑎 =𝑀𝑙 = 2). 1D
version of this polynomial has also been used in [43] to generate a continuous representation
of the echo signal itself in order to estimate motion of individual samples in one direction.

3.3 Simulations

3.3.1 Simulation Setup

A series of computer simulations were performed to study the performance of all the pattern
matching function interpolation methods. All calculations were performed in MATLAB (Math-
Works Inc., Natick, MA). The simulation assumed a 5 MHz center frequency, 40 MHz sampling
frequency, line spacing of 300𝜇m, and a sample spacing of ≈ 20𝜇m. Unless mentioned other-
wise, the window size for the pattern matching function is set to be approximately 2× 2𝑚𝑚2

(i.e. 104 samples axially and 7 samples laterally). The size of the search area for the pattern
matching function is set to be approximately 3×3𝑚𝑚2 (i.e. 156 samples axially and 11 samples
laterally). In order to have accurate estimation of the cross correlation at the edges of the search
region, the actual data from the echo signals were used instead of zero-padding. The stopping

criterion for the iterative 1D method was set to be
∥∥∥[𝛿𝑘𝑎 , 𝛿𝑘𝑙 ]− [

𝛿𝑘−1𝑎 , 𝛿𝑘−1𝑙

]∥∥∥/∥∥[𝛿𝑘𝑎 , 𝛿𝑘𝑙 ]∥∥ < 10−5,
where ∥.∥ is the Euclidean norm. In all the simulations this criterion was met in less than three
iterations.

A 50×60×10𝑚𝑚3 virtual phantom was simulated by randomly allocating scatterers, with
random scattering amplitudes. Field II [60,61] was then used to simulate the ultrasound radio
frequency echo signals (RF frames) and envelope signals from these scatterers. A linear probe
was modeled with 5MHz center frequency and 40 MHz sampling rate. A linear scan of the
phantom was done with a 128 element transducer, using 64 active elements. A single transmit
focus was placed at 30mm, and dynamic receive focusing was employed to generate the RF
lines. 128 RF lines were simulated along a width of 38mm. The number of scatterers per
smallest sampling volume was set to be 10 to ensure that the speckle of the ultrasound images
is fully developed. A generated sonogram is shown in Fig 3.3.

Both sub-sample rigid and non-rigid motions were simulated. Simulations were performed
by applying the estimation algorithms to simulated RF frames. For all the data the normalized
cross correlation was used as a pattern matching function to find the coarse motion within
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Figure 3.3: Scatterers distributions (a) (only a small fraction of all scatterers are plotted for
better visualization) and a Field II simulated sonogram (b). The region of interest (ROI) that
is used for motion tracking validations is also shown on the sonogram. The ROI was centered
around the transmit focus and data from both near-field and far-field were removed from the
study.

sampling accuracy. The sub-sample motion estimators from Section 3.2 were then applied to
find the 2D sub-sample motion.

3.3.2 Rigid Motion

The transducer was displaced on a 2D grid with sub-sample distances (i.e. smaller than the
axial and the lateral RF signal sample spacing) in both the axial and the lateral directions
to simulate rigid motions on a 2D grid using Field II. This way the motion grid was simu-
lated without using any interpolation. The RF frames corresponding to each of the displaced
scatterers configurations were then simulated.

For both the axial and the lateral displacements, a step size of 1/10 of the sample spacing
in the corresponding axis was chosen (i.e. 2𝜇m axial spacing and 30𝜇m laterally), forming
a grid of 11x11=121 distinct displacement configurations. These simulated RF frames were
then used in conjunction with the RF frame in the center, as a reference frame, to estimate
the motion. This resulted in a grid spanning ±0.5 of a sample in both the axial and lateral
directions. Similarly to [38,41,43], these estimated motions were used to study and compare the
performances of all the estimators in terms of their bias and standard deviation as a function
of sub-sample shift in both the axial and the lateral directions to study their accuracy and
precision.

Simulation time of 121 frames, where each frame contains 128 RF lines, is more than 5000
hours on a single core computer using Field II. Four multi-core processor computers were used
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(a) (b)

Figure 3.4: (a) FEMmesh, deformation constraints, and scatterer distributions; (b) an example
of the displacements of scatterers during a sample compression (only a small fraction of all
scatterers are plotted for better visualization).

in parallel to simulate these RF lines.

3.3.3 Deformation

To study and compare the performance of all the estimators in the presence of deformations,
the virtual phantom mentioned above was meshed using a Finite Element Method (FEM).
The compression is modeled by fixing the top side, touching the probe surface, and moving the
bottom side upwards. This is shown Fig. 3.4. The displacements of both top and bottom sides
are constrained vertically, but not horizontally. This is done considering that the lubricated
tissue surface in reality is free to slide on the probe. Note that throughout this paper the
vertical and horizontal axes here are referred to as the axial and lateral directions, respectively,
considering the frame of reference of the probe.

A symmetrical mesh is used with four times finer resolution than shown in Fig. 3.4. The
mesh contained a square inclusion of 30mm with its Young’s modulus being twice that of the
background. The Poisson’s ratio is set to 0.49 for all the elements. A detailed description of the
FEM used in this study is provided in [62]. A compression of 1% of the depth was applied to
the phantom, resulting in a 0.6mm maximum displacement. The FEM-computed motion field
is then applied to the nominal scatterer’s positions in order to find their post-deformation po-
sitions. The pre- and post-deformation RF echo signals were then generated from the pre- and
post-deformation scatterers positions using the same Field II imaging parameters mentioned
above.

48



Chapter 3. Sub-sample Motion Estimation in 2D

3.3.4 Simulation Results

Bias and standard deviation of all the methods are shown in Fig 3.5. To estimate the bias and
standard deviations from the independent speckle pattern, no window overlap was employed in
estimating the rigid motions. This resulted in more than 1000 estimations for each sub-sample
motion on a grid. For better visualization of the accuracy, the axial and the lateral bias for
each sub-sample shift on the grid are shown with a vector. Error vectors connecting the true
displacements to the mean estimated displacements illustrate the directional bias for each of
the 121 simulations. In order to show the precision in both directions, an ellipse representation
is also used to show the standard deviations for each of the simulations. The ellipses are
centered on the mean displacement estimations and the radius of each ellipse in each direction
is set to be the standard deviation of motion estimation in that given direction.

Fig 3.5 shows that the independent 1D interpolation methods including the grid slope
method perform well only if the displacements have either axial or lateral component (i.e.
𝛿𝑎 = 0 or 𝛿𝑙 = 0). As expected, these methods exhibit large biases (i.e. large vectors) and
standard deviations (i.e. stretched ellipses) when the displacements have both axial and lat-
eral components. Both iterative 1D and 2D interpolation methods significantly outperform the
commonly used independent 1D methods both in terms of bias and standard deviation (i.e.
smaller vectors and ellipses). As we expected, the 𝑓6(𝑥, 𝑦) proposed in [55] does not generate
symmetric results and its performance depends on the selection of the sixth coefficient. This
problem is alleviated when 𝑓6(𝑥, 𝑦) is employed instead. Fig 3.5 shows that both the iterative
1D and 2D methods (i.e. 𝑓6(𝑥, 𝑦), 𝑓9(𝑥, 𝑦), 𝑓16(𝑥, 𝑦), and 𝑓25(𝑥, 𝑦)) are able to recover the
underlying motion from the RF frames.

In order to study the results quantitatively, the biases and standard deviations for all
estimators are shown in Fig 3.6, using an approach similar to the one presented in [38]. The first
two columns depict the axial bias and standard deviation while the second two columns depict
the lateral bias and standard deviation of displacement estimates. To simplify the comparison,
the bias and standard deviation errors are displayed using the same color bar scale for the
axial and lateral performances, for all the methods. It should be noted that bias is signed and
is smaller when it is closer to the center of the color bar (i.e. gray) while standard deviation is
positive and is smaller when it is closer to the bottom of the color bar (i.e. black). Fig 3.6 shows
that the maximum axial biases and standard deviations of the independent 1D interpolation
methods are larger than 0.05 of a sample (i.e. 1𝜇m). The same figure shows that the maximum
lateral biases and standard deviations of the common independent 1D interpolation methods
are larger than 0.1 of a sample (i.e. 30𝜇m). These results are consistent with the results
reported in [38]. Fig 3.6 also shows that the maximum lateral bias and standard deviation of
iterative 1D and 2D interpolation methods are at least one order of magnitude smaller than
those of the common independent 1D interpolation methods.

For better visualization of the performance of the iterative 1D and 2D interpolation meth-
ods, the axial and lateral biases and standard deviations of all these methods are shown in
Fig 3.7 using separate color bars. The performance of all the techniques in terms of their max-
imum absolute bias and standard deviations in both directions is summarized in Table 3.1.
For easier comparison the same results are also depicted in Fig. 3.8. The results show that
2D interpolation using high order polynomials (cubic and quartic spline) performs better than
iterative 1D interpolation followed by 2D interpolation using low order polynomials and inde-
pendent 1D interpolation techniques. The results also show that 2D cubic spline fit performs
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(a) Ind. 1D Cosine Fit
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(b) Ind. 1D Parabola Fit
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(c) Grid Slope Interpolation
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(d) Iter. 1D Cosine Fit
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(e) Iter. 1D Parabola Fit
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(f) 𝑓6(𝑥, 𝑦)
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(g) 𝑓6(𝑥, 𝑦)
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(h) 𝑓9(𝑥, 𝑦)
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(i) 𝑓16(𝑥, 𝑦)
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(j) 𝑓25(𝑥, 𝑦)

Figure 3.5: Biases and standard deviations of different pattern matching interpolation tech-
niques as a function of sub-sample shift on a 11×11 grid. Field II was used to simulate the echo
signals. A total of 1000 windows in the pattern matching function were used to generate each
bias vector and standard deviation ellipse (window size is ≈ 2× 2𝑚𝑚2, which is equivalent to
104 samples axially and 7 samples laterally).
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Figure 3.6: Grey level representations of the biases and standard deviations of Independent
1D cosine (1𝑠𝑡 row), Independent 1D parabola (2𝑛𝑑 row), Grid slope (3𝑟𝑑 row), iterative 1D
cosine (4𝑡ℎ row), iterative 1D parabola (5𝑡ℎ row), 𝑓6(𝑥, 𝑦) (6

𝑡ℎ row), 𝑓6(𝑥, 𝑦) (7
𝑠𝑡 row), 𝑓9(𝑥, 𝑦)

(8𝑡ℎ row), and 𝑓25(𝑥, 𝑦) (9
𝑡ℎ row) as a function of sub-sample shift on a 11× 11 grid.
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Figure 3.7: Grey level representations of the biases and standard deviations of iterative 1D
cosine fit (1𝑠𝑡 row), iterative 1D parabola fit (2𝑛𝑑 row), 𝑓6(𝑥, 𝑦) fit (3

𝑟𝑑 row), 𝑓6(𝑥, 𝑦) fit (4
𝑠𝑡

row), 𝑓9(𝑥, 𝑦) fit (5
𝑡ℎ row), 𝑓16(𝑥, 𝑦) fit (6

𝑡ℎ row), and 𝑓25(𝑥, 𝑦) fit (7
𝑡ℎ row), as a function of

sub-sample shift on a 11× 11 grid.
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Table 3.1: Maximum values of biases and standard deviations obtained from the 2D noise-free
simulations for window of 2× 2𝑚𝑚2.

Max Error (samples) Max Error (microns)
Method Axial Lateral Axial Lateral

∣𝑏𝑎𝑥∣ 𝜎𝑎𝑥 ∣𝑏𝑙𝑎𝑡∣ 𝜎𝑙𝑎𝑡 ∣𝑏𝑎𝑥∣ 𝜎𝑎𝑥 ∣𝑏𝑙𝑎𝑡∣ 𝜎𝑙𝑎𝑡

Ind. 1D Cos 0.0389 0.0428 0.1234 0.1844 0.7483 0.8239 38.5543 57.6356
Ind. 1D Par 0.0475 0.0461 0.1251 0.1855 0.9145 0.8871 39.0811 57.9665
Grid Slope 0.0335 0.0556 0.1421 0.1686 0.6443 1.0704 44.3963 52.6929
Iter. 1D Cos 0.0389 0.0428 0.0086 0.0217 0.7483 0.8239 2.6956 6.7682
Iter. 1D Par 0.0475 0.0461 0.0209 0.0396 0.9145 0.8871 6.5191 12.3699
𝑓6(𝑥, 𝑦) 0.0375 0.0460 0.1322 0.1024 0.7228 0.8846 41.3209 32.0002

𝑓6(𝑥, 𝑦) 0.0097 0.0151 0.0435 0.0747 0.1860 0.2914 13.5821 23.3300
𝑓9(𝑥, 𝑦) 0.0182 0.0154 0.0301 0.0295 0.3513 0.2965 9.4055 9.2043
𝑓16(𝑥, 𝑦) 0.0133 0.0154 0.0126 0.0210 0.2564 0.2961 3.9309 6.5654
𝑓25(𝑥, 𝑦) 0.0020 0.0101 0.0042 0.0142 0.0383 0.1939 1.3125 4.4314

1D(Par) 1D(Cos) GS Itr(Cos) Itr(Par) f_6(I) f_6(II) f_9 f_16 f_25
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Figure 3.8: Maximum values of biases and standard deviations in both the axial and the lateral
directions obtained from the 2D noise-free simulations for window of 2× 2𝑚𝑚2.

better than iterative 1D cosine fit followed by the iterative 1D parabola fit in agreement with
previously reported work for 1D sub-sample estimation [16, 41, 43].

The maximum axial and lateral biases of the 𝑓25(𝑥, 𝑦) fit are found to be 0.0020 and 0.0042
of a sample, which corresponds to 38 nm and 1.31𝜇m at the simulated ≈ 20𝜇m sample spacing
and 300𝜇m line spacing. The maximum standard deviation of 𝑓25(𝑥, 𝑦) fit are found to be
0.0101 and 0.0142 of a sample, which corresponds to 193 nm and 4.43𝜇m. For the same
set of simulated data, the maximum axial and lateral biases and standard deviations of the
independent 1D methods were found to be an order of magnitude larger.

The performance of different estimators in the presence of deformation are shown in Figs. 3.9
and 3.10. To estimate the motion in the presence of deformation, 50% window overlap was
employed as commonly used in elastography applications [63]. It should be noted that in the
1% compression presented here, the displacement in the axial direction reaches the maximum
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(f) Iterative 1D Parabola
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Figure 3.9: Axial (left) and lateral displacement (right) images computed by the FEM (a) and
estimated by different techniques (b-j).
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Table 3.2: The overall performance of 2D motion estimation techniques estimated from com-
pression test for window of 2× 2𝑚𝑚2.

Absolute Error (microns) Absolute Error (%)
Method Axial Lateral Axial Lateral

Mean STD Mean STD Mean STD Mean STD
Ind. 1D Cos 0.4008 0.4958 11.6922 15.1145 1.4883 0.1510 25.4610 32.9133
Ind. 1D Par 0.4029 0.4964 11.6794 15.1491 1.4886 0.1512 25.4332 32.9888
Grid Slope 0.3976 0.4923 9.3275 12.4825 1.4892 0.1499 20.3115 27.1820
Iter. 1D Cos 0.4008 0.4958 6.0302 7.6899 1.4883 0.1510 13.1313 16.7455
Iter. 1D Par 0.4029 0.4964 6.2540 8.0595 1.4886 0.1512 13.6187 17.5503
𝑓6(𝑥, 𝑦) 0.4203 0.5020 7.3661 8.4090 1.4571 0.1529 16.0403 18.3114

𝑓6(𝑥, 𝑦) 0.4287 0.5213 6.0537 7.5425 1.4803 0.1588 13.1826 16.4245
𝑓9(𝑥, 𝑦) 0.3654 0.4368 6.1065 7.6603 1.4785 0.1330 13.2976 16.6810
𝑓16(𝑥, 𝑦) 0.3644 0.4369 5.3262 6.7801 1.4763 0.1331 10.3311 13.4458
𝑓25(𝑥, 𝑦) 0.3637 0.4375 2.8548 3.4952 1.4712 0.1331 6.2166 7.6112

of 32 samples. As a result, the accuracy and precision of sub-sample estimation in the axial
direction becomes less significant. However, for the same data set, the maximum lateral dis-
placement is smaller than the line spacing. Thus, the accuracy and precision of sub-sample
estimation in the lateral direction is critical. To study and compare the performance of dif-
ferent estimators in the presence of deformation quantitatively, the estimated displacement at
each window were compared with the displacements calculated using FEM at the same window
location. The estimation errors are summarized in Table 3.2. Figs. 3.9 and 3.10 show that
iterative 1D interpolation and 2D interpolation methods perform well in estimating the lateral
motion, while independent 1D methods produce larger errors. This is clear in both estimated
lateral motions and displacement vectors. Figs. 3.9 and 3.10 also show the performance of 2D
interpolation methods improves as we increase the order of the 2D polynomials. These results
are in agreement with the results reported for estimations of rigid motions.

So far we only considered estimation of the motion in the sequences of the RF signals.
Fig 3.11 shows the performance of different estimators on the 2D envelope signal rather than on
the raw 2D RF signal. Since there is no carrier frequency in the envelope signals, independent
1D parabola fit, 𝑓9(𝑥, 𝑦) fit, and 𝑓25(𝑥, 𝑦) are used for this study. As expected, the accuracy and
precision of tracking in axial direction becomes poor when the envelope signals are used. This
figure shows that the performance of the independent 1D estimators is improved in estimating
the lateral motion. This is consistent with the results published in [33], where it was suggested
that RF signals be used to estimate the axial motion and envelope signals to estimate the
lateral motion. The results also show that 2D interpolation methods can also be employed to
envelope data to increase both the accuracy and precision of the motion estimation in 2D.

Fig. 3.5 visualizes the biases and standard deviations as a fraction of a sample assuming
equal sample spacing in both directions. As mentioned before, the sample spacing in the lateral
direction is much larger than the sample spacing in the axial direction (approximately fifteen
times in this work). In order to show the true length of the bias vectors and real shape of the
standard deviation ellipses, Fig 3.12 compares the performance of the independent 1D cosine
fit, the iterative 1D cosine fit, and 𝑓25(𝑥, 𝑦) fit (Fig. 3.5(a),(d), and (j)) in units of distance, as
opposed to fraction of a sample. Fig 3.12 depicts how errors of a fraction of a sample translate
to large actual errors especially in the lateral direction. This figure shows the importance of
accuracy and precision of sub-sample estimation especially in the lateral direction.
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Figure 3.10: Displacement vector images computed by the FEM (a) and estimated by different
techniques (b-j).
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(a) Ind. 1D Par Fit
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(b) 𝑓9(𝑥, 𝑦) Fit
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(c) 𝑓25(𝑥, 𝑦) Fit

Figure 3.11: Biases and standard deviations of different pattern matching interpolation tech-
niques as a function of sub-sample shift on envelope signals. Field II was used to simulate the
echo signals. A total of 1000 windows in the pattern matching function were used to generate
each bias vector and standard deviation ellipse (window size is ≈ 2× 2𝑚𝑚2).

3.4 Experiments

3.4.1 Experimental Setup

In order to further study the performance of all the methods using ultrasound data, the fol-
lowing experiment was conducted. A tissue-mimicking phantom was constructed from 100%
polyvinyl chloride (PVC) plasticizer (M-F Manufacturing Co., Inc. Fort Worth, TX, USA).
Two percent Cellulose (Sigma-Aldrich Inc., St. Louis, MO, USA) was added as scattering
particles [43, 64]. The phantom was imaged using a SonixRP ultrasound machine (Ultrasonix
Medical Corporation, Richmond, BC, Canada) with a L9-4/38 linear array transducer with
5MHz center frequency and 300𝜇m line spacing. The RF signal, digitized at 40MHz, was
collected to a depth of 50mm.

The experimental setup is shown in Fig 3.13. To generate motion without applying any
deformation, the phantom was firmly secured within a large cubic container where one face was
replaced by an ultrasound transparent plastic wrap. The phantom was oriented parallel to and
5mm away from the plastic wrap. The container was then filled with degassed water and was
mounted on a piezoelectric motor stage system. The stage system consists of an HR1-1800E
and an HR2-1800E motor stage (ALIO Industries, Wheat Ridge, CO, USA) with reported
resolution of 50 nm, providing 2D motion. A PMAC2A-PC/104 motor controller (Delta Tau
Data Systems Inc., Chatsworth, CA, USA) was used to control each motor through AB1A-3U
amplifiers. The motor positions were measured through RGB25H00R08 encoder interfaces
(Renishaw Plc., Hillesley, Gloucestershire, UK). Due to a limitation in the number of points
that could be programmed for a 2D motion grid, a larger step size was used in the experimental
setup compared to the simulation setup. For both the axial and the lateral displacements, a
step size was set to be 1/8 of the sample spacing in the corresponding axis (i.e. 2.5𝜇m axially
and 37.5𝜇m laterally), forming a grid of 9× 9 = 81 distinct displacement configurations. The
RF frames were captured at each step. These RF frames in conjunction with the reference
frame in the center, were ran through the same estimators that were used for the simulated
data. This resulted in a grid spanning ±0.5 of a sample in both directions.
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(c) 𝑓25(𝑥, 𝑦) Fit

Figure 3.12: Displacement estimates of the independent 1D cosine fit (a) and the iterative
1D cosine fit (b) at actual scale. 2D biases are visualized with error vectors from the true
motion to the mean displacement at each location on a simulated 11 × 11 2D grid. Radii of
the ellipses which are centered at the location of the mean displacement correspond to the
standard deviation of the measurements at the same location. Data was acquired at a 40MHz
temporal sampling rate and a 300𝜇𝑚 line spacing (window size is ≈ 2× 2𝑚𝑚2).

3.4.2 Experimental Results

Experimental results are shown in Fig. 3.14. The experimental results are in good agreement
with the simulation results. Due to the experimental errors and the electromechanical noise
in the system, larger biases and standard deviations were observed in the experimental data.
Similarly to the simulation results generated by Field II, results from experiments show that the
independent 1D methods exhibit large biases and standard deviations when the displacements
have both the axial and the lateral components. Both iterative 1D and 2D interpolation
methods significantly outperform commonly used independent 1D methods in terms of bias
and standard deviation and are able to recover the underlying motion from the RF frames. 2D
interpolations with high order polynomials outperform all the other techniques.

The overall performance of all the techniques in terms of their maximum biases and stan-
dard deviations for experimental data is presented in Table 3.3. The maximum axial and
lateral biases of the 𝑓25(𝑥, 𝑦) fit are found to be 551 nm and 5.92𝜇m, respectively. The max-
imum axial and lateral standard deviations of the 𝑓25(𝑥, 𝑦) fit are found to be 2.04𝜇m and
5.90𝜇m, respectively. For the same set of data the maximum axial and lateral biases and
standard deviations of the independent 1D methods are found to be at least five times larger.
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(a) Experimental Setup

(b) Sonogram

Figure 3.13: Experimental set up (a) shows the positioning of the transducer with respect
to the phantom and plastic wrap. A sample sonogram acquired from SonixRP ultrasound
machine (b) is also shown. The dark layer on top of the sonogram is the water gap between
the probe and the phantom and the markers on the left represent the focal points.
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(a) Ind. 1D Cosine Fit
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(b) Ind. 1D Parabola Fit
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(c) Grid Slope Interpolation

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

A
xi

al
 s

ub
−

sa
m

pl
e 

sh
ift

Lateral sub−sample shift

(d) Iterative 1D Cosine Fit
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(e) Iterative 1D Parabola Fit
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(f) 𝑓6(𝑥, 𝑦)
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(g) 𝑓6(𝑥, 𝑦)
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(h) 𝑓9(𝑥, 𝑦)
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(i) 𝑓16(𝑥, 𝑦)
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(j) 𝑓25(𝑥, 𝑦)

Figure 3.14: Biases and standard deviations of different pattern matching interpolation tech-
niques on a 9x9 grid. Echo signals were captured using an ultrasound machine. A total of 1000
windows in the pattern matching function were used to generate each error ellipse (window
size ≈ 2𝑚𝑚× 2𝑚𝑚 equivalent to 104 samples axially and 7 samples laterally).
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Table 3.3: Maximum values of bias and standard deviation obtained from the 2D experimental
data for window of 2× 2𝑚𝑚2.

Max Error (samples) Max Error (microns)
Method Axial Lateral Axial Lateral

∣𝑏𝑎𝑥∣ 𝜎𝑎𝑥 ∣𝑏𝑙𝑎𝑡∣ 𝜎𝑙𝑎𝑡 ∣𝑏𝑎𝑥∣ 𝜎𝑎𝑥 ∣𝑏𝑙𝑎𝑡∣ 𝜎𝑙𝑎𝑡

Ind. 1D Cos 0.1490 0.1764 0.0831 0.0960 0.7373 3.3959 25.9563 29.9898
Ind. 1D Par 0.1561 0.1827 0.0899 0.0991 0.7421 3.5173 28.0848 30.9681
Grid Slope 0.1396 0.1626 0.0881 0.1045 0.7176 3.1293 27.5185 32.6549
Iter. 1D Cos 0.1490 0.1764 0.0313 0.0409 0.7373 3.3959 9.7814 12.7773
Iter. 1D Par 0.1561 0.1827 0.0399 0.0440 0.7421 3.5173 12.4588 13.7417
𝑓6(𝑥, 𝑦) 0.1540 0.1817 0.1642 0.1434 0.7845 3.4984 51.3202 44.8161

𝑓6(𝑥, 𝑦) 0.1079 0.1189 0.0252 0.0523 0.5803 2.2893 7.8800 16.3330
𝑓9(𝑥, 𝑦) 0.1013 0.1190 0.0346 0.0244 0.5584 2.2906 10.8107 7.6387
𝑓16(𝑥, 𝑦) 0.1013 0.1145 0.0317 0.0236 0.5526 2.2036 10.0311 7.3321
𝑓25(𝑥, 𝑦) 0.1013 0.1062 0.0189 0.0189 0.5515 2.0437 5.9210 5.9079

3.5 Real-Time Implementation

Real-time estimation of the motion for elastography has been reported by several groups [22,
65–67] and has been implemented on different commercial machines. Since ultrasound imaging
provides higher resolution in the axial direction, in all these methods, only the estimation of the
axial component of the motion has been considered. Tracking in lateral (or even elevational)
direction has been used mainly to correct for the axial component of the motion [30, 68].

Due to the small computational cost of pattern matching interpolation methods, they can
be used to estimate sub-sample motions in real-time. By implementing these 2D interpolation
techniques, we extend our previously introduced 1D motion tracking algorithm [56] to 2D, and
report an implementation of a motion tracking software that estimates both axial and lateral
motions with sub-sample accuracy in real-time.

As mentioned in Section 3.2, 2D motion estimation with pattern matching algorithms
consists of the following two steps: (i) locating the maximum of the discrete pattern matching
function in 2D, and (ii) estimating the peak offset in 2D using interpolation techniques. The key
to achieve real-time performance is to reduce the computational cost of first step (i.e. locating
the maximum of the discrete pattern matching function), since the sub-sample estimation is
computationally inexpensive.

Most motion estimation algorithms ignore the strong spatial correlations of the motion
field. The size of the search region for locating the maximum of the pattern matching func-
tion stays the same throughout the tracking. Thus the estimation becomes computationally
expensive and not suitable for real-time applications. We have previously introduced TDPE
as a predictive and corrective motion estimation algorithm [56] that uses prior estimates to
reduce the size of the search region. This is accomplished by centering the search region on the
previously estimated motion of neighboring windows. To avoid losing track of motion, TDPE
also checks the correlation coefficient to validate the estimation results. A recovery search is
triggered when the correlation coefficient is small.

The previous implementation of the TDPE uses 1D windows and applies 1D normalized
cross correlation to find the coarse location of the motion (i.e. 1D window, 1D search). 1D
interpolation is then used to estimate the sub-sample component of the motion in the axial
direction. In this work, employing 2D windows, the previous implementation is extended to
2D by locating the maximum of the discrete pattern matching function in two dimensions (i.e.
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2D window, 2D search). Both iterative 1D and 2D interpolation methods are implemented to
estimate the sub-sample components of the motion in both the axial and the lateral directions.
The 𝑓16(𝑥, 𝑦) and 𝑓25(𝑥, 𝑦) are excluded since, in addition to the computational overhead for
polynomial fitting and root estimation process, they require the pattern matching function to
be evaluated at least for twenty five lags for each window.

The 2D motion tracking algorithm was implemented as a client-software on the Sonix RP
PC-based US machine. The software connects to the US machine to capture RF frames in real-
time. The displacements are then estimated by comparing the sequences of these RF frames.
The estimation of 2D motion runs at a refresh rate of more than 25 frames per second for 2D
displacement images with 6,000 estimation overlapping windows of each 2 × 2𝑚𝑚2. Typical
images displayed by the software interface are shown in Fig. 3.15.

3.6 Discussions

In the simulations, the line spacing was intentionally set to be 300𝜇m in order to be consistent
with our experimental setup. However, this spacing is larger than would be expected for most
ultrasound imaging systems. The bias and the standard deviation of all the estimators are
expected to improve with improved lateral resolution. Moreover, to save simulation time and
to be consistent with our experimental setup, single transmit focus was used to generate the
RF signals. However, the accuracy and the precision of all the estimators are also expected to
improve by increasing the number of transmit focal points.

Although not shown here, the performance of different estimators was also studied when
different window sizes were employed in the pattern matching function. As expected, the
accuracy and precision of all the methods improve, in estimating the rigid motion, when the
size of the window is increased.

Although we have only considered 2D sub-sample estimation, the generalization of the same
methods to higher dimensions is possible. For example, in three dimensions, a 3D polynomial
can be fitted to the discrete matching coefficients in the axial, lateral, and the elevational
directions (i.e. 𝑓(𝑥, 𝑦, 𝑧)). Joint sub-sample motion estimation can then be achieved in all
directions by finding the maximum of the fitted polynomial (∇𝑓 = 0).

The reader should note that the iterative 1D interpolation method studied in this work
is fundamentally different from the iterative 1D cross correlation and recorrelation technique
suggested in [11,37]. In this work, the discrete 2D pattern matching function is evaluated once,
and iterations are used just to find the exact location of the match in that same function.
However, in [11, 37], a new pattern matching function is evaluated at each iteration. The
above mentioned methods use the same common independent 1D interpolation method (i.e.
1D cosine fitting) to estimate the sub-sample motion. The iterative 1D and 2D interpolations
methods presented in this paper can also be used in [11, 37] to improve the performance of
sub-sample estimation.

The assumption of small motions and deformation which is considered and studied in this
work is valid for fast imaging for dynamic [7] and real-time elastography as presented in this
work, where inter-frame displacements and deformations are small and the echo signals are
highly correlated. This is also the case in acoustic radiation force imaging [7, 13–15] where
induced displacements and deformations are very small. Thus, the 2D interpolation methods
can be readily used in these applications. However, the assumption of small motions and
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(a) Axial Displacement (b) Lateral Displacement

(c) Displacement Vector (d) Axial Strain

Figure 3.15: Screen shots of the real-time 2D motion tracking software. Color coded estimated
axial displacement (a), lateral displacement (b), displacement vector (c), and axial strain image
(d) estimated inside a region of interest are shown. The images are imposed over the sonogram
in the background.
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deformations does not hold when large deformations exist and echo signals are decorrelated.
This is generally the case in quasi-static elastography [63,69] where large external compressions
are applied to the tissue and cause the tissue to experience large deformations. This is also the
case in myocardial elastography [11] where the tissue experiences large internal motions and
deformations. The performance of all the pattern matching function interpolation techniques,
including those presented in this work, rely on the matching coefficients estimated by the
pattern matching algorithms and is expected to degrade when the echo signals are decorrelated
and can not be matched correctly. In order to adapt all these methods to the estimation of
displacements resulting from large deformations, previously introduced compounding methods
should be applied to the raw echo signals [68, 70, 71] prior to the motion estimation process.
Once the effect of signal decorrelation is suppressed, the pattern matching algorithms followed
by the 2D interpolation methods can be applied to estimate the 2D motion with sub-sample
accuracy. Alternatively, techniques such as iterative 1D cross correlation with recorrelation
[11, 37], which are more robust in the presence of deccorelation, can be employed to estimate
the motion.

3.7 Conclusion and Future Work

The results in this paper show that the common method of applying a separate 1D sub-sample
estimation to the quantized 2D pattern matching function in each direction independently is
not valid when estimating motion in sequences of ultrasound RF echo signals. Results from
both simulations and experiments show that both iterative 1D and 2D interpolation methods
outperform independent methods in terms of bias and standard deviation. The framework
presented here is well suited to study the performance of other 2D motion estimators in the
future.

Both iterative 1D and 2D sub-sample motion estimation methods are shown to provide a
good balance between accuracy, precision, and computational cost. Although they add compu-
tational overhead, compared to independent 1D methods, they still perform at real-time rates
as presented. The presented real-time motion tracking implementation has several potential
applications throughout the field of signal processing. Specific applications in medical ultra-
sound include fine 2D tissue motion tracking, velocity vector imaging, shear strain imaging,
strain tensor imaging, poro-elastography, and tissue viscoelastography.

In this work we only studied the pattern matching interpolation techniques to estimate
the sub-sample motion in 2D. However, as we mentioned before, with a trade off of higher
computational cost, accurate tracking of the motion in 2D has been reported in literature by
up-sampling the echo signal in the lateral direction with large up-sampling factor and employ-
ing iterative 1D estimation and recorrelation [11, 37, 51], using continuous pattern matching
functions [38], and the phase of RF signal in the axial [23, 25, 26] and the lateral direction us-
ing synthetic lateral phase [27]. Further investigation is required to compare the performance
of these estimators with pattern matching function interpolation methods. Furthermore, in
this work we only used cross correlation as a pattern matching technique. The performance
of the interpolation methods on other pattern matching techniques such as sum of squared
differences and sum of absolute differences needs to be studied. Moreover, the effects of line
spacing, focusing, transmit frequency, and sampling frequency in the echo signals also needs
further study. These will be the topics of our future work.
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Chapter 4

3D Estimation of Sub-Sample
Motion from Digitized Ultrasound
Echo Signals3

4.1 Introduction

Motion estimation in sequences of ultrasound echo signals has many applications such as blood
flow estimation, tissue velocity estimation [1–3], strain and strain rate imaging [4–6], tissue
elasticity imaging [7], vibro-elastography [8,9], poro-elastography [10], myocardial imaging [11],
tumor classification [12], and acoustic radiation force impulse imaging [13–15].

Since ultrasound imaging provides higher resolution in the axial direction, the estimation of
the axial component of the motion has received the most attention in the literature. However,
tracking the motion in one direction introduces several limitations. In blood flow and tissue
velocity estimation using Doppler techniques, tracking along the beam propagation results in a
poor estimation of the flow and tissue velocity due to the unknown Doppler angle between the
velocity vector and the beam direction. Poor estimates can result even if the angle is manually
adjusted [16,17]. In quasi-static elastography, tracking the motion in the axial direction results
in estimation of only the axial component of the strain tensor, with all the other components
remaining unknown [18]. Finally, in dynamic elastography, using the wave equations, the
estimation of a single component of motion limits modulus estimation algorithms to a less
accurate partial inversion rather than a full inversion [19].

A great number of motion estimation algorithms have been introduced in the literature
and have been studied in our previous work. Techniques based on pattern matching functions
are the most straightforward approaches used to estimate the axial motion from digitized
ultrasound radio frequency (RF) echo signals [4, 20–22]. Extensions of these techniques to
2D and 3D motion estimation have also been proposed in the literature [23, 24]. With these
techniques, the reference ultrasound echo signal is divided into a number of windows, which
may have overlap with each other. The reference echo signal within each window is then
set to be the pattern to be matched with the displaced echo signal over a predefined search
region. Finally, the motion of the window is found by locating the best match. Several pattern
matching functions have been suggested in the literature, such as normalized cross correlation,
sum of square differences, and sum of absolute differences [25, 26]. Estimation of the motion
from envelope signals and from a combination of RF and envelope signals have also been

3A version of this chapter has been peer reviewed and published in the proceedings of the international
Conference on IEEE Ultrasonics Symposium. A version of this chapter has also been submitted for publication.
Reza Zahiri-Azar, Orcun Goksel, and Septimiu E. Salcudean, “3D Estimation of Sub-Sample Motion from
Digitized Ultrasound Echo Signals”.
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reported [23, 27].
The estimation error of these techniques can be as large as half the sample spacing, which is

important especially when the motion is small and the sample spacing is large. This estimation
error becomes more significant in the lateral and elevational directions where the sample spacing
is very large. Several techniques have been suggested in the literature to reduce the error
introduced by finite sampling intervals. These techniques are categorized as: (i) echo signal
up-sampling [28–30], (ii) interpolation of the echo signals [28,29,31,32], and (iii) interpolation
of the pattern matching function [33–36].

Up-sampling of the echo signal as in (i) reduces the error by the up-sampling factor [29,30].
Curve or polynomial fitting to the echo signals as in (ii) results in a continuous pattern matching
function, whose extremum determines the location of the best match [28, 29, 31, 32]. It has
been shown that these techniques outperform other algorithms but, similarly to up-sampling
methods, they can be computationally demanding [32,37], whereas curve or polynomial fitting
to the pattern matching function as in (iii) often have significantly smaller computational
overhead. Thus, even though they may introduce some bias in the estimation process, they
are widely used for motion estimation. These techniques will be the topic of this work.

A number of 1D pattern matching interpolation methods such as parabolic fitting [36],
spline fitting [35], grid slope [22, 38], cosine fitting [34], zero padding, and reconstructive
methods [33] have been introduced and thoroughly investigated in the literature [25, 28, 32].
Applying the same 1D interpolation techniques independently to each direction (2-1D) has also
been used in the literature to estimate the sub-sample motion in 2D and 3D [22, 31, 38–41].
Applying iterative 1D interpolation [42,43] and 2D interpolation techniques [43–45] have also
been attempted in the literature.

In our previous work we studied all these techniques in 2D and showed that independent
1D sub-sample motion estimation in each direction results in estimates with poor accuracy
and precision. We showed that 2D interpolation significantly outperform other interpolation
techniques in estimating both the axial and the lateral sub-sample motions. In this work, we
extend our previous work to 3D and study and compare the performance of (i) independent
1D and (ii) 3D interpolation pattern matching interpolation techniques in estimating axial,
lateral, and elevational sub-sample motions on ultrasound radio frequency data.

The paper is structured as follows: Section 4.2 presents the interpolation algorithms. Sec-
tion 4.3 presents the simulation method and a comparison between the algorithms. Section 4.4
presents the experimental results. Finally, Section 4.5 presents a discussion and conclusions
along with avenues for future research.

Throughout this work, it is assumed that the echo signals are 2D radio frequency (RF)
signals. Without loss of generality, it is assumed that the pattern matching function optimiza-
tion involves maximization of the normalized cross correlation. The pattern matching function
values will be referred to as the matching coefficients.

4.2 Methods

Let 𝑅[𝑢, 𝑣, 𝑤] be the 3D discrete pattern matching function between a reference window and
displaced echo signals over a predefined search region. The pattern matching function can be
the normalized correlation as discussed in Appendix F. Given the discrete 3D pattern matching
function 𝑅[𝑢, 𝑣, 𝑤], the coarse axial 𝑑𝑎, lateral 𝑑𝑙, and elevational 𝑑𝑒 estimates of the motion in
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the axial (𝑥), lateral (𝑦), and elevational (𝑧) directions, respectively, are achieved by locating
the maximum of this 3D discrete function:

[𝑑𝑎, 𝑑𝑙, 𝑑𝑒] = argmax
𝑢,𝑣,𝑤

𝑅[𝑢, 𝑣, 𝑤]. (4.1)

Following the coarse estimation of the motion within the sampling accuracy, the following
methods are used to estimate the sub-sample displacements 𝛿𝑎, 𝛿𝑙, and 𝛿𝑒 in the axial, the
lateral, and the elevational directions, respectively, using the matching coefficients at adjacent
lags.

4.2.1 Independent 1D Methods

The most common approach for estimating sub-sample motion is to apply conventional 1D
interpolation techniques such as parabola, cosine, or spline fitting to the axial, lateral, and
elevational directions in an independent manner.

Referring to Fig. 4.1(a), let 𝑓𝑎(𝑥) be an axial 1D interpolation function passing through the
3D pattern matching function at [𝑑𝑎, 𝑑𝑙, 𝑑𝑒] and its axial lags (i.e. 𝑅[𝑑𝑎+𝑖, 𝑑𝑙, 𝑑𝑒] where 𝑖 is in an
axial fitting interval −𝑀𝑎, ...,𝑀𝑎), 𝑓𝑙(𝑦) be a lateral 1D interpolation function passing through
the 3D pattern matching function at [𝑑𝑎, 𝑑𝑙, 𝑑𝑒] and its lateral lags (i.e. 𝑅[𝑑𝑖, 𝑑𝑙 + 𝑗, 𝑑𝑒] where
𝑗 is in a lateral fitting interval {−𝑀𝑙, ...,𝑀𝑙}), and 𝑓𝑒(𝑧) be an elevational 1D interpolation
function passing through the 3D pattern matching function at [𝑑𝑎, 𝑑𝑙, 𝑑𝑒] and its elevational
lags (i.e. 𝑅[𝑑𝑖, 𝑑𝑙, 𝑑𝑒 + 𝑘] where 𝑘 is in an elevational fitting interval {−𝑀𝑒, ...,𝑀𝑒}. The sub-
sample motion estimates 𝛿𝑎, 𝛿𝑙, and 𝛿𝑙, at (𝑑𝑎, 𝑑𝑙, 𝑑𝑒) are computed from their corresponding
axial, lateral, and elevational interpolation functions as follows:

𝛿𝑎 = argmax
𝑥

𝑓𝑎(𝑥),

𝛿𝑙 = argmax
𝑦

𝑓𝑙(𝑦),

𝛿𝑒 = argmax
𝑦

𝑓𝑒(𝑧). (4.2)

For the purpose of this work, the following two interpolation functions have been imple-
mented: (i) three point 1D parabola fitting [36], where 𝑓𝑎(𝑥) = 𝑎𝑎 + 𝑏𝑎𝑥 + 𝑐𝑎𝑥

2, 𝑓𝑙(𝑦) =
𝑎𝑙 + 𝑏𝑙𝑦 + 𝑐𝑙𝑦

2, and 𝑓𝑒(𝑧) = 𝑎𝑒 + 𝑏𝑒𝑧 + 𝑐𝑒𝑧
2 and (ii) three point cosine fitting [34], where

𝑓𝑎(𝑥) = 𝐴𝑎 cos(𝛼𝑎𝑥+𝛽𝑎), 𝑓𝑙(𝑦) = 𝐴𝑙 cos(𝛼𝑙𝑦+𝛽𝑙), and 𝑓𝑒(𝑧) = 𝐴𝑒 cos(𝛼𝑒𝑧+𝛽𝑒). The indepen-
dent 1D methods using three point function fitting (𝑀𝑎 = 𝑀𝑙 = 𝑀𝑒 = 1), require matching
coefficients to be available at seven lags (i.e. the maximum in the center and the two immediate
neighboring lags in each direction). Detailed descriptions of these techniques are provided in
our previous work and are not repeated here.

4.2.2 3D Methods

In a more general approach a 3D function can be fitted to the discrete matching coefficients in
the axial, lateral, and elevational directions. Estimation with sub-sample accuracy can then
be achieved in all directions by finding the peak of the fitted function, analytically.

Referring to Fig. 4.1(b), let 𝑓(𝑥, 𝑦, 𝑧) be a 3D interpolation function passing through the 3D
pattern matching function at [𝑑𝑎, 𝑑𝑙, 𝑑𝑒] and its neighbors (i.e. 𝑅[𝑑𝑎 + 𝑖, 𝑑𝑙 + 𝑗, 𝑑𝑒 + 𝑘] where
𝑖 ∈ {−𝑀𝑎, ...,𝑀𝑎}, 𝑗 ∈ {−𝑀𝑙, ...,𝑀𝑙}, 𝑘 ∈ {−𝑀𝑒, ...,𝑀𝑒}). The sub-sample motion estimates
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(a) Independent 1D estimation

(b) 3D estimation

Figure 4.1: Different schemes for sub-sample displacement estimation in 3D using the coef-
ficients of the cross correlation function in the neighborhood of its maximum. For the first
technique, only 1D interpolation is required while 3D interpolation is needed for the second
method.
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𝛿𝑎, 𝛿𝑙, and 𝛿𝑒 at (𝑑𝑎, 𝑑𝑙, 𝑑𝑒) are computed simultaneously from the corresponding 3D interpo-
lation functions as follows:

[𝛿𝑎, 𝛿𝑙, 𝛿𝑒] = argmax
𝑥,𝑦,𝑧

𝑓(𝑥, 𝑦, 𝑧). (4.3)

The following non-separable 3D polynomials:

𝑓10(𝑥, 𝑦, 𝑧) = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦 + 𝑎4𝑧 + 𝑎5𝑥𝑦 (4.4)

+𝑎6𝑥𝑧 + 𝑎7𝑦𝑧 + 𝑎8𝑥
2 + 𝑎9𝑦

2 + 𝑎10𝑧
2,

𝑓27(𝑥, 𝑦, 𝑧) = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦 + 𝑎4𝑧 + 𝑎5𝑥𝑦 (4.5)

+𝑎6𝑥𝑧 + 𝑎7𝑦𝑧 + 𝑎8𝑥
2 + 𝑎9𝑦

2 + 𝑎10𝑧
2

+𝑎11𝑥
2𝑦 + 𝑎12𝑥

2𝑧 + 𝑎13𝑦
2𝑥+ 𝑎14𝑦

2𝑧

+𝑎15𝑧
2𝑥+ 𝑎16𝑧

2𝑦 + 𝑎17𝑥𝑦𝑧 + 𝑎18𝑥
2𝑦2

+𝑎19𝑥
2𝑧2 + 𝑎20𝑦

2𝑧2 + 𝑎21𝑥
2𝑦𝑧

+𝑎22𝑦
2𝑥𝑧 + 𝑎23𝑧

2𝑥𝑦 + 𝑎24𝑥
2𝑦2𝑧

+𝑎25𝑥
2𝑧2𝑦 + 𝑎26𝑦

2𝑧2𝑥+ 𝑎27𝑥
2𝑦2𝑧2,

with 10 and 27 coefficients are implemented in this paper, where 𝑓10(𝑥, 𝑦, 𝑧) is a multino-
mial of degree 2 and 𝑓27(𝑥, 𝑦, 𝑧) results from multiplying the [1, 𝑥, 𝑥2], [1, 𝑦, 𝑦2], and [1, 𝑧, 𝑧2]
terms (quadratic spline). Higher order polynomials such as cubic and quartic splines are not
considered in this work (please see the Discussions Section).

The two 3D polynomials are fitted to 27 points of the discrete pattern matching function,
the maximum and its 26 immediate neighbors, using a least squares fit. A detailed description
of the 3D polynomial fitting is provided in Appendix G. The location of the unconstrained
maximum of this fitted 3D polynomial (i.e. ∇𝑓(𝑥, 𝑦, 𝑧) = (∂𝑓/∂𝑥, ∂𝑓/∂𝑦, ∂𝑓/∂𝑧) = 0) is then
found using the following closed form solution:

[
𝑥
𝑦
𝑧

]
= −

[
2𝑎8 𝑎5 𝑎6

𝑎5 2𝑎9 𝑎7

𝑎6 𝑎7 2𝑎10

]−1 [
𝑎2

𝑎3

𝑎4

]
, (4.6)

for 𝑓10(𝑥, 𝑦, 𝑧), and by using Newton’s method (E.4) for 𝑓27(𝑥, 𝑦, 𝑧), where 𝜅 = 0, 1, ..., 𝑛 is
the index of the iteration, 𝑛 is the number of iterations. In this work, in order to locate the
maximum of 𝑓27 in Newton’s method, 𝑥0, 𝑦0, 𝑧0 are initialized to zero. Note that the fit for
𝑓10, followed by (4.6), can be used to generate the starting point for estimating the maximum
of 𝑓27. This approach will provide a better starting point for Newton’s method and therefore
will reduce the number of iterations required for convergence, but it will also require the data
to be fitted to both 𝑓10 and 𝑓27.

[
𝑥
𝑦
𝑧

]
𝜅+1

=

[
𝑥
𝑦
𝑧

]
𝜅

−
⎡
⎣ ∂2𝑓

∂𝑥∂𝑥
∂2𝑓
∂𝑥∂𝑦

∂2𝑓
∂𝑥∂𝑧

∂2𝑓
∂𝑦∂𝑥

∂2𝑓
∂𝑦∂𝑦

∂2𝑓
∂𝑦∂𝑧

∂2𝑓
∂𝑧∂𝑥

∂2𝑓
∂𝑧∂𝑦

∂2𝑓
∂𝑧∂𝑧

⎤
⎦
−1 [ ∂𝑓

∂𝑥
∂𝑓
∂𝑦
∂𝑓
∂𝑧

]∣∣∣∣∣𝑥=𝑥𝜅
𝑦=𝑦𝜅
𝑧=𝑧𝜅

(4.7)

75



Chapter 4. Sub-sample Motion Estimation in 3D

−20
−10

0
10

20

−4−2024

10

15

20

25

30

35

40

45

50

55

60

(a) Scatterers (b) Sonogram

Figure 4.2: Scatterers distributions (left) (only a small fraction of all scatterers are plotted for
better visualization) and a Field II simulated sonogram (right).

4.3 Simulations

4.3.1 Simulation Setup

A series of computer simulations were performed to study and compare the performance of the
sub-sample motion estimators. All calculations were performed in MATLAB (MathWorks Inc.,
Natick, MA). A 50 × 60 × 10𝑚𝑚3 virtual phantom was simulated (Fig. 4.2(a)) by randomly
allocating with random scattering amplitudes. Field II [46] was then used to simulate the
ultrasound radio frequency echo volumes (RF volumes) from these scatterers. A linear probe
was modeled. The default simulation assumes a 5 MHz center frequency and 40 MHz sampling
frequency (≈ 19.3𝜇m sample spacing). A linear scan of the phantom was carried out with a 128
element transducer, using 64 active elements. A single transmit focus was placed at 30mm, and
dynamic receive focusing was employed to generate the RF lines. 128 RF lines were simulated
along a width of 38mm for each frame. This results in a line spacing of 300𝜇m. The frames
in the volume were simulated by translating the transducer in the elevational direction. An
elevational frame spacing of 150𝜇mmodeling our experimental ultrasound setup was employed.
Seven frames were simulated for each volume (i.e. 7 × 128 = 896 RF lines per volume). The
number of scatterers per smallest sampling volume was set to be 10 to ensure that the speckle
of the ultrasound images is fully developed. A sample sonogram generated from one of these
simulated RF data sets is shown in Fig. 4.2(b).

In order to simulate rigid motions in all three directions, the scatterers were displaced
on a grid in the axial, lateral and elevational directions with sub-sample distances (i.e. a
fraction of the sample-spacing along each corresponding axis). For all the displacements, a
step size of 1/4 of the sample spacing in the corresponding axis was chosen (i.e. 5𝜇m axially,
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75𝜇m laterally, and 37.5𝜇m elevationally) forming a grid of 5x5x5=125 distinct displacement
configurations up to a full sample. The RF volumes corresponding to each of these displaced
scatterer configurations were then simulated (i.e. 896 × 125 = 112, 000 RF lines). These
simulated RF volumes were used to estimate the motion in conjunction with the RF volume
in the center of the 3D grid as a reference. This resulted in a grid spanning ±0.5 of a sample
in all directions. Simulation of each volume would take more than 500 hours using Field II on
a single core computer. Four multi-core processor computers were used in parallel to simulate
the RF volumes for this work.

4.3.2 Motion Estimation

Simulations were performed by applying the estimation algorithms to simulated RF volumes.
For all the data the normalized cross correlation was used as a pattern matching function to
find the coarse motion within the sampling accuracy. Unless mentioned otherwise, the window
size for the pattern matching function is set to be approximately 2 × 2 × 1𝑚𝑚3 (i.e. 104
samples axially, 7 samples laterally, and 5 samples elevationally). The size of the search area
for the pattern matching function was set to be approximately 3×3×2𝑚𝑚3 (i.e. 156 samples
axially, 9 samples laterally, and 7 samples elevationally), so that it does not introduce any
limitation in the estimation process. The sub-sample motion estimators from Section 4.2 were
then applied to find the sub-sample motions. In order to have accurate estimation of the cross
correlation at the edges of the search region, the actual data from the echo signals were used
instead of zero-padding. The start point for Newton’s method for estimating the maximum of
the 3D polynomial was set to be 𝑥0 = 𝑦0 = 𝑧0 = 0 and the iteration was stopped when the
variations drop below 0.00001, which is equivalent to 0.001% of the sample spacing. In all the
simulations, this criterion was met in less than five iterations (i.e. 𝛿𝑎 = 𝑥5, 𝛿𝑙 = 𝑦5, 𝛿𝑒 = 𝑧5 in
(E.4)).

To have unbiased measurements, the region of interest (ROI) was centered around the
transmit focus and data from both near-field and far-field were removed from the study. The
size of the ROI was set to be 30mm by 30mm. This resulted in more than 1000 pattern
matching windows used for displacement estimations for each sub-sample motion on a grid.
The performance of each estimator was studied in terms of its bias and standard deviation as
a function of the sub-sample shift in the axial, lateral, and elevational directions to study their
accuracy and precision [28, 31, 32].

4.3.3 Simulation Results

Figure 4.3 shows the bias and standard deviation of all the sub-sample estimation techniques
as a function of sub-sample shift on a 5× 5× 5 grid. For better visualization of the accuracy,
the axial, the lateral, and the elevational biases are shown with a vector. Vectors connecting
the true displacements to the mean estimated displacements illustrate the directional bias for
each of the 125 simulations. In order to show the precision, the standard deviations in all
three directions, an ellipsoid error representation is used for each of the simulations. The
radius of each ellipse in each direction corresponds to the standard deviation of the motion
estimation in that given direction. For better visualization, the ellipsoids are centered on the
true motions instead of the estimated motions. Also, every other plane in the elevational
direction is eliminated prior to display in this particular format.
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Figure 4.3: Bias Vectors (1st column) and standard deviation ellipsoids (2nd column) of Ind.
1D parabola fit (1st row), Ind. 1D cosine fit (2nd row), 𝑓10 fit (3rd row), and 𝑓27 fit (4th row) as
a function of sub-sample shift on a 5× 5× 5 simulated grid. A total of 1000 windows/patterns
were used to generate each bias vector and standard deviation ellipsoid.
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Figure 4.3 shows that the common independent 1D methods performs well only if the
displacements have either axial, lateral, or elevational component (i.e. 𝛿𝑎 ∕= 0 or 𝛿𝑙 ∕= 0 or
𝛿𝑒 ∕= 0). The 3D methods are able to recover the underlaying motion from the RF volumes
and show small biases and standard deviations (i.e. smaller vectors and ellipses). The results
show that increasing the number of the coefficients for the 3D polynomial fitting improves the
performance of the sub-sample motion estimator. 3D polynomial fitting with 27 coefficients
has smaller biases and standard deviations. This is consistent with our previously reported
results for 2D sub-sample estimation.

In order to study the results quantitatively, we follow the approach suggested in [31].
The biases and standard deviations of all the above techniques for each individual axes are
presented in Fig. 4.4. To simplify the comparison between the results, the biases and standard
deviations are displayed using the same color range, for all the methods. It should be noted
that bias is signed and is smaller when it is closer to the center of the color bar (i.e. gray) while
standard deviation is positive and is smaller when it is closer to the bottom of the color bar (i.e.
black). Fig. 4.4 shows that the maximum biases and standard deviations of the 3D methods
are significantly smaller than those of the common independent 1D methods. Figure 4.4 shows
that the maximum lateral and elevational biases of the independent 1D interpolation methods
are as large as 0.15 and 0.25 of a sample, respectively. This figure also shows that the maximum
lateral and elevational standard deviations of the independent 1D interpolation methods are
as large as 0.20 and 0.50 of a sample, respectively. These results are consistent with our
previously reported results in 2D and the results reported in [31]. Figure 4.4 shows that the
maximum lateral and elevational biases and standard deviations of all the 3D methods are
an order of magnitude smaller than those of the conventional independent 1D interpolation
methods. For better visualization of the range of errors of the 3D methods, their biases and
standard deviations are shown in Fig. 4.5 using separate color bars. The performance of all
the techniques in terms of their maximum bias and standard deviations in both directions is
summarized in Table 4.1. For an easier comparison, the same results are shown in Fig. 4.6,
using error plots.

The results show that the accuracy and the precision of sub-sample estimation improve in
all three directions when the 3D methods are employed instead of the common independent 1D
method. The maximum axial, lateral, and elevational biases of the 3D polynomial fitting with
27 coefficients, 𝑓27, are found to be 0.0121, 0.0180, and 0.0121 of a sample, which correspond
to 232 nm, 5.40𝜇m, and 1.81𝜇m, respectively, at the simulated 19.3𝜇m, 300𝜇m, and 150𝜇m
axial, lateral, and elevational spacing. The maximum axial, lateral, and elevational standard
deviations of 𝑓27 are found to be 0.0160, 0.0264, and 0.0574 of a sample, which correspond to
307 nm, 7.92𝜇m, and 8.61𝜇m, respectively.

Table 4.1: Maximum values of biases and standard deviations of different 3D motion estimation
techniques evaluated from simulated data in units of sample.

Method Max 𝑏𝑎𝑥 Max 𝑏𝑙𝑎𝑡 Max 𝑏𝑒𝑙𝑣 Max 𝜎𝑎𝑥 Max 𝜎𝑙𝑎𝑡 Max 𝜎𝑒𝑙𝑣

Ind. 1D Par 0.0201 0.1657 0.2767 0.0517 0.1612 0.4053

Ind. 1D Cos 0.0121 0.1641 0.2769 0.0482 0.1623 0.4041

𝑓10(𝑥, 𝑦, 𝑧) 0.0119 0.0891 0.1411 0.0299 0.0454 0.1348

𝑓27(𝑥, 𝑦, 𝑧) 0.0121 0.0180 0.0121 0.0160 0.0264 0.0574
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(a) 1D Parabola fit
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Figure 4.4: Biases and standard deviations of the sub-sample estimation techniques as a func-
tion of sub-sample shift on a 5 × 5 × 5 grid (window size is 104 samples axially, 7 samples
laterally, and 5 samples elevationally ≈ 2× 2× 1𝑚𝑚3).
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Figure 4.5: Biases and Standard deviations of the sub-sample estimation techniques as a
function of sub-sample shift on a 5× 5× 5 grid (window size is 104 samples axially, 7 samples
laterally, and 5 samples elevationally ≈ 2× 2× 1𝑚𝑚3).
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Fig. 4.3 visualizes the biases and standard deviations as a fraction of a sample assuming
equal sample spacing in both directions. However, as mentioned before, the sample spacing
in the lateral and elevational directions is much larger than the sample spacing in the axial
direction. In order to show the true length of the bias vectors and real shape of the standard
deviation ellipsoids, Fig. 4.7 compares the performance of the independent 1D parabola fitting
and the 3D polynomial fitting (Fig. 4.3(a),(d)) in units of distance, as opposed to fraction of a
sample. Fig. 4.7 depicts how small errors in fraction of a sample, translate to large actual errors
especially in the lateral and elevational directions which suffer from large sample spacing. This
figure shows the importance of accuracy and precision of sub-sample estimation especially in
the lateral and elevational directions.

4.4 Experiments

4.4.1 Experimental Setup

In order to study the performance of the 3D method using actual ultrasound data, the following
experiment was conducted. A 3-axis AIMS ultrasound scanning system (Onda Corp., Sunny-
vale, CA) with 10𝜇m resolution in each axis, mounted on a water tank, equipped with the
water conditioning system (Onda Corp., Sunnyvale, CA) was used. This experimental setup
is shown in Fig. 4.8. Experiments were performed on a 60 × 40 × 40𝑚𝑚3 uniform phantom.
The phantom was prepared using a 100% polyvinyl chloride (PVC) plasticizer (M-F Manu-
facturing Co., Inc. Fort Worth, TX, USA) with two percent cellulose (Sigma-Aldrich Inc., St
Louis, MO, USA) as scatterers [47]. The phantom was inserted in a tank of degassed water
and placed 2mm away from the transducer, thus enabling the transducer to move without de-
forming the phantom producing a rigid motion. The probe was moved in steps of 20𝜇m once
axially, once laterally, and once elevationally up to 100𝜇m. The phantom was imaged using
the 3D transducer (4DC6-3/40) of a SonixRP ultrasound machine (Ultrasonix Medical Corpo-
ration, Richmond, BC). Similarly to our simulation setup, a single transmit focus was placed at
30mm. The phantom was imaged to a depth of 60mm (2mm water gap plus 58mm phantom)
using a 128-element motor-driven curved-linear transducer (lateral radius of 𝑟𝑙 = 39.8mm and
elevational radius of 𝑟𝑒 = 27.5mm) with a 5MHz center frequency digitized at 40MHz, with
430𝜇m line spacing at the transducer’s surface, and 0.36∘ frame spacing (i.e. 175𝜇m frame
spacing at the surface of the transducer). 33 frames were acquired per volume (i.e. a total
of 11.5∘ field of view elevationally). In addition to the reference RF volume, 5 RF volumes
corresponding to each 20𝜇m increment, were recorded for each experiment on each axis for
off-line processing (total of 16 RF volumes). These acquired RF volumes, in conjunction with
first RF volume as a reference, were used to estimate the rigid motions.

In order to further study the performance of the 3D method qualitatively, in the presence
of deformation, another experiment was conducted on a commercial phantom. The experiment
was performed on a breast phantom (CIRS, Tissue Simulation and Phantom Technology, Nor-
folk, Virginia, USA). This experimental setup is shown in Fig. 4.9. The transducer was fixed
on top of a mechanical stage that provides controlled motion. A mechanical stage was used to
compress the phantom in the axial direction. Using the same transducer and imaging setup
mentioned above, pre- and post-compression RF volumes were acquired. These acquired RF
volumes were used to estimate the motions.
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Figure 4.6: The maximum error of different 3D motion estimation techniques (axial, lateral,
and elevational) over the 5× 5× 5 simulated motion grid (window size is 104 samples axially,
7 samples laterally, and 5 samples elevationally ≈ 2× 2× 1𝑚𝑚3). For better comparison, the
results are shown both in separate figures (a)-(c) and together (d).
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Figure 4.7: The biases and the standard deviations of the 1D parabola fit (a),(b) and 3D
polynomial fit (c),(d) on a 5× 5× 5 grid shown at the actual scale. For better visualization of
the standard deviation of the independent 1D method, ellipsoids in every other plane in the
lateral and elevational directions are eliminated prior to display. For the 3D method, all the
ellipsoids are shown since they were small.
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(a) Experimental Setup

(b) Sonogram

Figure 4.8: The experimental setup (a) showing the positioning of the transducer with respect
to the phantom on the 3-axis motion stage inside the water tank. A sample sonogram (b)
acquired from ultrasound machine is also shown.
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(a) First experimental Setup

(b) Sonogram

Figure 4.9: The experimental setup (a) showing the positioning of the transducer with respect
to the phantom and a sample sonogram (b) acquired using ultrasound machine.
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4.4.2 Motion Estimation

In this work, instead of a 1D/2D linear array transducer, a motor-driven curved linear array
transducers is used to acquire the echo volumes. In one approach the acquired echo volumes
can be interpolated into Cartesian coordinates prior to the motion estimation process. The
motion can then be estimated from these interpolated echo volumes. Although this approach
will simplify the motion estimation, it requires all the echo volumes to be interpolated into
Cartesian coordinate which is computationally intensive. In another approach the motion can
be estimated in the transducers coordinates using acquired raw RF volumes. Once motions
are estimated, the estimated motion vectors in the transducer’s coordinate can be transformed
into Cartesian coordinates. To avoid interpolation of the echo volumes, the second approach
is used in this work.

The displacements between the sequences of RF volumes were estimated using the normal-
ized cross correlation as a pattern matching function. The Time Domain cross correlation with
Prior Estimates (TDPE) [48] was used to find the motion within sampling accuracy in the RF
volume. The window size was set to be 2 × 2 × 1𝑚𝑚3 (i.e. 104 samples axially, 7 samples
laterally, and 5 samples elevationally) with approximately 50% window overlap in the axial di-
rection. The size of search area for the pattern matching function was set to be approximately
3 × 3 × 2𝑚𝑚3 (i.e. 156 samples axially, 9 samples laterally, and 7 samples elevationally).
Once the coarse motion is estimated within the sampling accuracy, the 3D polynomial fitting
with 27 coefficients which outperformed all the other methods was used to find the sub-sample
components of the motion in all three directions for each window.

4.4.3 Conversion to Units of Distance

1D/2D linear array transducers have fixed sample spacing in all directions. As a result, the
displacements estimated in units of samples in each direction are converted to units of distance
by multiplying the results with a constant scaling factor (i.e. the sample spacing in the same
direction). However, in curved linear array transducers, the sample spacing in the direction
of curvature increases with depth. This is shown in Fig. 4.10. Thus, the conversion factors
to units of distance need to be increased with depth. The 3D motor-driven curved linear
transducer which is used in this study is curved in both the lateral and elevational directions
with different curvatures (i.e. 𝑟𝑒 ∕= 𝑟𝑙). Therefore the conversion factors in these two directions
need to be increased with depth independently. In this paper, the estimated displacements in
units of samples are converted to units of distance using the following equations:[

𝐷′
𝑎

𝐷′
𝑙

𝐷′
𝑒

]
=

[
𝑠𝑎(𝑝) 0 0
0 𝑠𝑙(𝑝) 0
0 0 𝑠𝑒(𝑝)

][
𝐷𝑎

𝐷𝑙

𝐷𝑒

]
(4.8)

where 𝐷𝑎 = 𝑑𝑎+ 𝛿𝑎, 𝐷𝑙 = 𝑑𝑙+ 𝛿𝑙, and 𝐷𝑒 = 𝑑𝑒+ 𝛿𝑒 are estimated axial, lateral, and elevational
components of the motion in units of samples at depth 𝑝, 𝑠𝑎(𝑝) = 𝑠𝑎(0), 𝑠𝑙(𝑝) ≈ 𝑠𝑙(0)(𝑟𝑙+𝑝)/𝑟𝑙,
and 𝑠𝑒(𝑝) ≈ 𝑠𝑒(0)(𝑟𝑒+ 𝑝)/𝑟𝑒 are the transducer’s axial, lateral, and elevational sample spacing
at depth 𝑝, respectively, 𝑠𝑎(0) = 19.3𝜇m, 𝑠𝑙(0) = 430𝜇m, and 𝑠𝑒(0) = 175𝜇m are the sample
spacing at transducer’s surface, 𝑟𝑙 = 39.8mm and 𝑟𝑒 = 27.5mm are the radii of the transducer
in the lateral and the elevational directions, and 𝐷′

𝑎, 𝐷
′
𝑙, and 𝐷′

𝑒 are the estimated components
of the motion in units of distance at depth 𝑝 in transducer’s coordinate.
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Figure 4.10: Variation of the spacing between lines as a function of depth is shown when a
curved array transducer is used to acquire the echo lines. This happens in the lateral and
elevational directions due to the curvature of the array (𝑠(0) is the spacing between lines on
the transducer surface and 𝑠(𝑝) is the spacing between lines at a depth 𝑝).

4.4.4 Coordinate Transformation

Once motion vectors are estimated in the transducers coordinate and converted to units of
distance, it is necessary to transform the coordinates to Cartesian coordinates. For the 3D
motor-driven transducer with different curvatures in lateral and elevational directions that is
used in this study, this coordinate transformation consists of two rotations. This is shown
in Fig. 4.11. In order to compensate for these, the same rotations need to be applied to
the estimated motion vectors in the opposite directions. One rotation is required about the
transducer’s elevational direction to correct for the curvature in each frame. This rotation will
correct for the curvature of the transducer and will transform the estimation in the lateral
direction to the true lateral component in Cartesian coordinates. The second rotation is
required about the actual lateral direction to correct for the axial and elevational components
which will transform them to the Cartesian coordinates. This rotation will correct for the
sweeping angle. This transformation can be formulated as follow:

[
𝐷′′

𝑎

𝐷′′
𝑙

𝐷′′
𝑒

]
=

⎡
⎣ 𝑐𝑜𝑠(𝜙) 0 𝑠𝑖𝑛(𝜙)

0 1 0
−𝑠𝑖𝑛(𝜙) 0 𝑐𝑜𝑠(𝜙)

⎤
⎦ (4.9)

⎡
⎣ 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

⎤
⎦
⎡
⎣ 𝐷′

𝑎

𝐷′
𝑙

𝐷′
𝑒

⎤
⎦ ,
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(a) Transducer Coordinate and Cartesian Coordinates

(b) Front View (left) and Side View (right)

Figure 4.11: The transducer’s coordinate frame and Cartesian coordinates are shown (a). The
coordinate transformation consists of two rotations coming from the curvature of the transducer
in both lateral and elevational directions (b).

89



Chapter 4. Sub-sample Motion Estimation in 3D

where 𝐷′
𝑎, 𝐷

′
𝑙, and 𝐷′

𝑒 are the components of the motion in units of distance in transducer
coordinates, 𝜃, 𝜙 are the rotation angles around elevational and lateral axes, respectively, and
𝐷′′

𝑎, 𝐷
′′
𝑙 , and 𝐷

′′
𝑒 are the components of the motion in units of distance in Cartesian coordinates.

The rotation angles (i.e. 𝜃, 𝜙) are calculated based on the location of the reference window,
which is used as the pattern in the matching algorithm, in the 3D volume.

4.4.5 Experimental Results

The estimated axial, lateral, and elevational components of the displacement in Cartesian
coordinates, that result from the translation of the phantom in the water tank, are shown in
Fig. 4.12. The results show that the 3D method accurately measures all three components of
the motion. The maximum tracking error of the 3D method was measured to be 10𝜇m in all
three axes which is the same as the resolution of our experimental setup (i.e. approximately
10𝜇m).

The estimated axial, lateral, and elevational components of the displacements that resulted
from the axial compression of a breast phantom, were scan converted and shown in Fig. 4.13.
A multi-planar view was used to visualize the results in 3D. The bright echo in the sonogram
(Fig. 4.9(b)) is clearly visible as a hard inclusion in the displacement estimates. For comparison
purposes, the results from the axial compression of a phantom with a hard inclusion computed
using the finite element method (FEM) are also presented. Fig. 4.13 shows good agreement
between the simulated and experimental results.

4.5 Discussions and Conclusion

In this work, we studied several pattern-matching function interpolation schemes that are
suited for precise and accurate estimation of motion in 3D. The performance of all the in-
terpolation methods has been characterized through both simulations and experiments. The
results show that the 3D interpolation methods significantly outperform common independent
1D interpolation algorithms in terms of bias and standard deviation.

In the simulation, the line spacing was intentionally set to be large in order to match our
experimental setup. However, this spacing is much larger than the typical line spacing in state
of the art ultrasound imaging systems. We expect both the bias and the standard deviation
of all the estimators to improve with better lateral resolution.

As shown in Section 4.2, the interpolation to estimate the sub-sample motion assumes a
fix sample spacing in each direction. However, in our experiments section the discrete pattern
matching function is evaluated in the transducer’s coordinates where the sample spacing varies
as a function of depth. Even though we considered this fact during the conversion to units
of distance, we ignored it in the interpolation step and assumed equal sample spacing during
the interpolation. We believe this is a good assumption since the sample spacing in the axial
direction is three orders of magnitude smaller, compared to the position of the pattern matching
window with respect to the center of rotation (20 𝜇m vs 40 mm). This will result in maximum
spacing variation of 0.0005 of a sample in both the lateral and elevational directions which
is much smaller than the bias and standard deviation of the 3D interpolation techniques.
Alternatively, instead of assuming fixed sample spacing, the 3D polynomial can be fitted to
the matching coefficients with corrected sample spacing at each depth. Once the polynomial
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Figure 4.12: The estimated axial (1st column), lateral (2nd column), and elevational (3rd col-
umn) components of the motion resulted from axial (1st row), lateral (2nd row), and elevational
(3rd row) translations of the phantom in the water tank.
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Axial Motion Lateral Motion Elevational Motion

Figure 4.13: Simulated (top) axial, lateral, and elevational component of the displacement,
resulted from axial compression of a phantom with a hard inclusion and the experimental
results (bottom) on the breast phantom. Multi-planar view is used to visualize the results in
3D. Equal cost contours on the surfaces are also used to show the direction of the displacement.
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is fitted, the same root estimation techniques can be applied to find the sub-sample motions.
The performance of all the pattern matching function interpolation techniques, including

those presented in this work, rely on the matching coefficients and is expected to degrade
when the echo signals are decorrelated and can not be matched correctly. Highly correlated
signals are generally the case in ultrafast imaging for dynamic elastography [7] and real-time
elastography [48], where displacements and deformations between frames are small. However,
this is not the case in quasi-static elastography [49,50] and myocardial elastography [11] where
the tissue experiences large internal motions and deformations. In order to adapt all these
methods to the estimation of displacements resulting from large deformations, previously in-
troduced compounding methods should be applied to the raw echo signals [51–53] prior to the
motion estimation process. Once the effect of signal decorrelation is suppressed, the pattern
matching algorithms followed by the 3D interpolation methods can be applied to estimate the
3D motion with sub-sample accuracy.

In our previous work we have studied the performance of quadratic, cubic, and quartic 2D
spline polynomials to estimate the sub-sample motion in two dimensions. We showed that,
with a trade off of higher computational cost, increasing the order of polynomial improves both
the accuracy and the precision of the sub-sample estimation. In this work we extended this
study to 3D and compared the performance of 3D quadratic spline polynomials 𝑓27(𝑥, 𝑦) to
interpolate the pattern matching function. Similarly to our previous work, in addition to the
above 3D methods studied in this work, 3D cubic and quartic splines with 64 (𝑓64(𝑥, 𝑦)) and 125
coefficients (𝑓125(𝑥, 𝑦)), respectively, can also be used to estimate the sub-sample motions in 3D
with higher accuracy and precision. However, these polynomials are excluded from this study
due to their computational overhead. This is due to the fact that, in addition to the polynomial
fitting and root estimation process, these polynomials requires the pattern matching function
to be evaluated at least for 125 lags for each window. This significant additional computational
overhead diminishes the simplicity advantage of the pattern matching interpolation techniques.
Moreover, we showed in our previous work that grid slope interpolation techniques [22, 38]
performs as well as independent 1D interpolation techniques. Thus, they are not included in
this study as a separate interpolation method.

The 3D sub-sample motion estimation methods studied in this work provide a good balance
between accuracy, precision, and computational cost. These methods have several potential
applications throughout the field of signal processing. Specific applications in medical ul-
trasound include fine 3D tissue motion tracking, motion vector estimation, velocity vector
imaging, strain tensor estimation, and tissue elasticity estimation.
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Chapter 5

Comparison Between Pattern
Matching Techniques Employing 2D
Sub-sample Estimation and 2D
Tracking Using Angular
Compounding4

5.1 Introduction

Motion estimation in sequences of ultrasound echo signals is essential for blood flow estimation
[1, 2], tissue velocity estimation [3, 4], elasticity imaging [5–7], and acoustic radiation force
imaging [8–10]. Since ultrasound imaging provides higher resolution in the direction of beam
propagation, the estimation of this component of the motion has received the most attention
in the literature. However, tracking the motion in one direction introduces some limitations
for each of the above mentioned applications. For example, in blood flow and tissue velocity
estimation, tracking along the beam propagation results in a poor estimation of the flow and
tissue velocity due to the unknown angle between the velocity vector and the beam direction,
even if the angle is manually adjusted [11,12]. In quasi-static elastography, tracking the motion
in one direction results in estimation of only one component of the strain tensor, with all the
other components remaining unknown [13]. In dynamic elastography using wave equations,
the estimation of a single component of motion limits modulus estimation algorithms to partial
inversion, rather than more accurate full inversion algorithm [14].

Several authors have proposed methods for measuring both axial and lateral motion com-
ponents using ultrasound radio frequency (RF) eacho signals. Techniques based on 2D pattern
matching functions are the most straight forward approaches in estimating the motion from
sampled ultrasound echo signals [7, 15–18]. With these techniques, the reference ultrasound
echo signal is divided into a number of windows, which may have overlap with each other.
The reference echo signal within each window is set to be the pattern to be matched with the
displaced echo signal over a predefined search region. The motion of the window is then found
by finding the location of the best match. To reduce the estimation error introduced by finite
sampling intervals, curve or polynomial fitting to the pattern matching function [19–22] have
been suggested in the literature to estimate the sub-sample motion.

In another approach, angular compounding has also been attempted in the literature to

4A version of this chapter will be submitted for publication. Reza Zahiri-Azar and Septimiu E. Salcudean,
“Comparison Between Pattern Matching Techniques Employing 2D Sub-sample Estimation and 2D Tracking
Using Angular Compounding”.
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estimate the motion vectors [23–27]. With these techniques the data from the region of interest
is acquired from multiple look angles. The multiple look angles can originate from a single
transducer when it is moved mechanically, or they can originate from multiple transducers [23].
The multiple look angles can also originate from a single transducer using single transmit
and multiple receive angles [26–28] or multiple electronically steered transmit and receive
angles [24, 27, 29]. Once data from multiple angles are acquired, the motions estimated along
multiple directions are compounded to construct the motion vectors inside the overlapping
region.

We have previously presented 2D interpolation techniques that significantly improve the
accuracy and the precision of 2D motion estimation using pattern matching techniques. In
these techniques, iterative 1D polynomial fitting or 2D polynomial fitting are used to estimate
the sub-sample component of the motion in both the axial and the lateral directions, as op-
posed to conventional 1D interpolation methods. In this paper, we study and compare the
performance of 2D tracking methods using 2D sub-sample estimation techniques with that
of conventional angular compounding when beam steering techniques are used to acquire the
data from multiple look directions. The paper is structured as follows: Section 5.2 presents the
motion tracking algorithms. Section 5.3 presents the simulation method and comparison be-
tween the methods using simulated data. Section 5.4 presents the experimental results. Finally,
Section 5.5 presents a discussions and conclusion along with avenues for future research.

Throughout this paper, it is assumed that 2D echo radio frequency (RF) signals are avail-
able. Without loss of generality, it is assumed that the pattern matching function optimization
involves maximization of the normalized cross correlation. The pattern matching function val-
ues will be referred to as the matching coefficients. Also the component of the motion along
the beam propagation and transverse to the beam will be referred to as axial and lateral,
respectively, in both steered and non-steered images.

5.2 Methods

Both of the above mentioned techniques rely on correlation techniques to track the displace-
ments. The difference is that angular compounding uses only the component of the motion
along the beam direction from multiple angles to reconstruct the motion vectors whereas pat-
tern matching techniques measures the motion vector by tracking the motion both along and
transverse to the beam from a single set of data. This is shown in Fig. 5.1.

In a general form, let 𝑠𝜃1[𝑖, 𝑗], 𝑠
𝜃
2[𝑖, 𝑗], 𝑖 = 0, ..., 𝑛 − 1, 𝑗 = 0, ...,𝑚 − 1 be the sampled

reference and displaced/delayed echo signals, respectively, where 𝑛 is the number of discrete
samples and 𝑚 is the number of acquisition lines in the echo signals, and 𝜃 is the steering
angle. When 𝜃 = 0 we are referring to non-steered images. Let 𝑅𝜃[𝑢, 𝑣] be the discrete 2D
pattern matching function between a windowed of the reference and the displaced echo signals
acquired using the same angle (𝜃) over a predefined search region. Given 𝑅𝜃[𝑢, 𝑣], the coarse
axial 𝑑𝜃𝑎 and lateral 𝑑

𝜃
𝑙 estimates of the motion in the axial (𝑥

𝜃) and the lateral (𝑦𝜃) directions
are achieved by locating the maximum of the 𝑅𝜃[𝑢, 𝑣] as follow

[𝑑𝜃𝑎, 𝑑
𝜃
𝑙 ] = argmax𝑢,𝑣

𝑅𝜃[𝑢, 𝑣]. (5.1)
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(a) 2D Pattern Matching (b) Beam Steering

Figure 5.1: Schematics for 2D motion tracking using pattern matching (a) and beam steering
(b). In 2D pattern matching data are acquired from the region of interest with no steering and
2D displacements are estimated from the estimated axial and lateral components of the motion.
In beam steering data from a region of interest are acquired with different steering angles. The
2D displacements in the overlapping region are reconstructed using 1D measurements from the
employed steering angles.

5.2.1 Pattern Matching

Following the coarse estimation of the axial and the lateral components of the motion within
the sampling accuracy according to (5.1) in non steered images (𝑑0𝑎, 𝑑

0
𝑙 ), 2D interpolation

techniques are used to find the sub-sample motions employing the matching coefficients in both
directions (𝛿0𝑎, 𝛿

0
𝑙 ). Subsequently, the total 2D displacement is estimated to be 𝐷0𝑎 = 𝑑0𝑎 + 𝛿0𝑎,

𝐷0
𝑙 = 𝑑0𝑙 + 𝛿0𝑙 .
For the purpose of this work, 2D polynomial fitting with nine coefficients (i.e. 𝑓9(𝑥, 𝑦)) and

iterative 1D cosine fitting are used to estimate the sub-sample in both the axial and the lateral
directions. Detailed descriptions of the 2D polynomial fitting and iterative 1D cosine fitting
are provided in our previous work. These techniques will be referred to as PMP (i.e. pattern
matching with 2D polynomial interpolation) and PMC (i.e. pattern matching with iterative
1D Cosine interpolation).

5.2.2 Angular Compounding

Since we are only interested in estimating the component of the motion along the beam direc-
tion (𝑥𝜃), for each steering angle, following the coarse estimation of the axial component of the
motion within the sampling accuracy (𝑑𝜃𝑎) using (5.1), previously introduced 1D interpolation
techniques are used to find the sub-sample motion employing the matching coefficients in that
same direction (𝛿𝜃𝑎). Subsequently, the total displacement along the beam is estimated to be
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𝐷𝜃
𝑎 = 𝑑𝜃𝑎 + 𝛿𝜃𝑎.
The process mentioned above is repeated for two steering angles (i.e. ±𝜃 in this work).

Once displacements in the direction of beam propagations are estimated (i.e. 𝐷𝜃
𝑎, 𝐷

−𝜃
𝑎 ), the

true axial and the lateral components of the motion is computed according to the following
equation at each spatial location [27]:

𝐷0
𝑎 =

𝐷𝜃
𝑎 +𝐷−𝜃

𝑎

2 cos 𝜃
, (5.2)

𝐷0
𝑙 =

𝐷𝜃
𝑎 −𝐷−𝜃

𝑎

2 sin 𝜃
. (5.3)

In order to have a fair comparison, the common 1D cosine fit [20] and 1D parabola fit [22]
are used to estimate the sub-sample motion along the beam (i.e. 2-1D interpolation vs 2D
interpolation). These technique will be referred to as BSC (i.e. beam steering with 1D cosine
interpolation) and BSP (i.e. beam steering with 1D Parabola interpolation).

5.3 Simulations

5.3.1 Simulation Setup

Computer simulations were performed to study the performance of all methods in terms of
their accuracy and precision. All calculations were performed in MATLAB (MathWorks Inc.,
Natick, MA). Similarly to our previous work, a 50×60×10𝑚𝑚3 virtual phantom was simulated
by randomly allocating scatterers, with random scattering amplitudes.

Field II [30, 31] was used to simulate the ultrasound radio frequency echo signals (RF
frames) and envelope signals from these scatterers. To be consistent with our experimental
setup, a linear probe was modeled with 5MHz center frequency and 40 MHz sampling rate.
A linear scan of the phantom was carried out with a 128 element transducer, using 64 active
elements. A single transmit focus was placed at 30mm, and dynamic receive focusing was
employed to generate the RF lines. 128 RF lines were simulated along a width of 38mm
resulting in line spacing of 300𝜇m. In order to simulate translations in both directions, the
scatters were displaced on a grid with sub-sample distances in the axial and lateral directions
(i.e. smaller than the actual RF sample-spacing in that corresponding axis). For all the
displacements, a step size of 1/10 of the sample spacing in the corresponding non-steered axis
was chosen (i.e. 2𝜇m axially and 30𝜇m laterally) forming a grid of 11 × 11 = 121 distinct
displacement configurations. The number of scatterers per smallest sampling volume was set
to be 10 to ensure that the speckle of the ultrasound images is fully developed.

For each displacement configuration RF frames corresponding to non-steered and 14 differ-
ent steering angles including 7 pairs of angles (i.e. 𝜃 = ±5,±7.5,±10, ...± 20) were simulated.
Sample sonograms generated from one of these simulated RF data sets employing different
steering angles are shown in Fig 5.2. For comparison purpose, the point spread functions
corresponding to all the steering angles are also depicted in Fig. 5.3.

The simulated non-steered RF frames (i.e. 121 frames) were used to estimate the motion
using 2D pattern matching methods (i.e. PMC and PMP) and the pairs of simulated steered
RF frames (i.e. 14×121 = 1694 frames) were used to estimate the motion using beam steering
methods (i.e. BSP and BSC). For all the estimations, the RF frame corresponding to the
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center of the 2D motion grid was set to be the reference. This resulted in a grid spanning ±0.5
of a sample in both non-steered axes.

The region of interest for motion estimation was centered around the transmit focus and
data from both near-field and far-field were removed from the study. Furthermore, since in
beam steering techniques only the data in the overlapping beams can be reconstructed, only
these regions were used for the study. The default window size for the pattern matching
function was set to be approximately 2 × 2𝑚𝑚2 (i.e. 104 samples axially and 7 samples
laterally). This resulted in more than 1000 displacement estimations from different speckle
patterns for each displacement configuration on a grid. It should be noted that large steps
in lateral direction would introduce large motions along the direction of beam when steering
is employed. To estimate these motions correctly, the size of the search area for the pattern
matching function was set to be approximately 3 × 3𝑚𝑚2 (i.e. 156 samples axially and 11
samples laterally). In order to have accurate estimation of the cross correlation at the edges
of the search region, the actual data from the echo signals were used instead of zero-padding.

The performances of all the estimators are studied in terms of their bias and standard
deviation as a function of the sub-sample shift in the axial and lateral directions [32, 33] in
order to study both their accuracy and precision.

Simulation of each RF frame would take more than 100 hours using Field II on a single
core computer. Four multi-core processor computers were used in parallel to simulate the RF
frames for this study.

5.3.2 Simulation Results

Figure 5.4 shows bias and standard deviation of both 2D pattern matching method employing
iterative 1D cosine fit (PMC) and 2D compounding employing 1D cosine fit (BSC) using
different angles as a function of sub-sample shift on a 11× 11 grid. Figure 5.5 shows the same
results for both 2D pattern matching method employing 2D polynomial fit (PMP) and 2D
compounding employing 1D parabola fit (BSP). Similarly to our previous work, for better
visualization of the accuracy, the axial and the lateral bias for each sub-sample shift on the
grid are shown with a vector. Error vectors connecting the true displacements to the mean
estimated displacements illustrate the directional bias for each of the 121 simulations. In
order to show the precision in both directions, an ellipse representation is also used to show
the standard deviations for each of the simulations. The ellipses are centered on the mean
displacement estimations and the radius of each ellipse in each direction corresponds to the
standard deviation of motion estimation in that given direction (confidence interval of 0.95).

The results show that the performance of 2D tracking using the beam steering method is
a function of the employed steering angles. Figs 5.4 and 5.5 show that small steering angles do
not provide enough information to accurately track the motion in lateral direction. Also the
accuracy of the tracking degrades when large steering angles are employed to acquire the echo
signals.

Figs 5.4 and 5.5 show that 2D tracking using beam steering introduces less bias compared
to the 2D pattern matching techniques. The results also show that 2D tracking using beam
steering experiences larger standard deviations when the lateral component of the motion is
large. This is consistent with our previous results reported for non-steered images where we
showed that the performance of sub-sample estimation using 1D interpolation degrades in the
presence of 2D motion.
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Figure 5.2: Scatterer distributions (a) (only a small fraction of all scatterers are plotted for
better visualization) and a Field II simulated sonograms when different steering angles are
employed to acquire the data (b)-(d).
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Figure 5.3: Point target phantom imaged for different steering angles. The point spread
functions images are generated by placing multiple points at multiple depths in front of the
transducer and then sweeping the beam over the points.

To simplify the comparison between the results, the overall performance of beam steering
techniques (i.e. BSC and BSP) are shown in Fig 5.6 when different steering angles are employed
to acquire the signals. The overall performance is calculated by averaging the absolute biases
and standard deviation over the entire 2D motion grid. It should be noted that this is different
from our previous work where we looked at maximum biases and standard deviations. Fig 5.6
shows that employing both very small and very large steering angles degrades the performance
of the 2D compound tracking methods. Among different steering angles studied in this work,
10-12.5 degree steering angles, provide the most accurate results. Fig 5.6 also shows that for all
the steering angles employed in 2D compound tracking, 1D cosine fit outperforms 1D parabola
fit. This is consistent with previously published results for non-steered images where it was
shown that the cosine fit has smaller bias and standard deviations compared to parabola fit in
estimating the motion along the direction of beam propagation [19, 32].

In order to study the results quantitatively, the overall performance of all the methods
are summarized in Tables 5.1 and 5.2 (mean absolute biases and standard deviations over the
2D motion grid). Tables 5.1 shows that the mean absolute axial and lateral biases of the 2D
pattern matching techniques are 0.0076 and 0.0126 of a sample, for 2D polynomial interpolation
(PMP), which corresponds to 146 nm and 3.95𝜇m at simulated 19.3𝜇m axial sample spacing
and 300𝜇m lateral line spacing. The mean axial and lateral standard deviations of the same
technique are found to be 0.0123 and 0.0273 of a sample, corresponding to 236 nm and 8.6𝜇m,
respectively. For the same data, the mean absolute axial and lateral biases of the 2D pattern
matching techniques are found to be 0.0023 and 0.0082 of a sample, for iterative 1D cosine
interpolation (PMC), corresponding to 43 nm and 2.58𝜇m, respectively. The mean axial and
lateral standard deviations of the same technique are found to be 0.0117 and 0.0253 of a sample,
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Figure 5.4: Biases and standard deviations of the pattern matching method (a) and beam
steering employing different angles (b)-(f) as a function of sub-sample shift on a 11 × 11
grid when iterative 1D cosine fit (a) and conventional 1D cosine fit (b)-(f) are employed to
estimate the sub-sample motion. Field II was used to simulate the echo signals. A total of 1000
realizations were used to generate each bias vector and standard deviation ellipse (window size
is ≈ 2mm×2mm).
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Figure 5.5: Biases and standard deviations of the pattern matching method (a) and beam
steering employing different angles (b)-(f) as a function of sub-sample shift on a 11× 11 grid
when 2D polynomial fitting (a) and conventional 1D parabola fitting (b)-(f) are employed to
estimate the sub-sample motion. Field II was used to simulate the echo signals. A total of 1000
realizations were used to generate each bias vector and standard deviation ellipse (window size
is ≈ 2mm×2mm).
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Figure 5.6: The overall performance of all beam steering methods averaged over the simulated
motion grid. The error bars are used to show both mean absolute bias and their corresponding
mean standard deviation in both axial (left) and lateral (right) directions.
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corresponding to 225 nm and 7.97𝜇m, respectively.
Table 5.2 shows that for the same 2D motion grid, the axial and lateral biases of the 2D

tracking using compound techniques are smaller than those of 2D pattern matching techniques.
The mean absolute axial and lateral biases of the 2D tracking using beam steering are found to
be 0.0036 and 0.0025 of a sample, for 1D parabola interpolation (BSP) for ±10 degree steering
angle, which corresponds to 69nm and 793 nm, respectively. The mean absolute axial and
lateral biases of the 2D tracking using beam steering are found to be 0.0016 and 0.0021 of a
sample, for 1D cosine interpolation (BSC) for ±10 degree steering angle, which corresponds to
30 nm and 650 nm, respectively. For the same data set, the mean axial and lateral standard
deviations of the 2D tracking using beam steering are found to be 0.0210 and 0.0123 of a
sample, for both 1D parabola and cosine interpolation (BSP, BPC), corresponding to 404 nm
and 3.86𝜇m, respectively.

As a final comparison step, the overall performances of 2D pattern matching techniques
and 2D compound tracking when ±10 degree steering angles are employed to acquire the data
are shown in Fig. 5.7 using error bars. Fig. 5.7 shows that for both interpolation techniques, 2D
tracking using beam steering (i.e. BSC and BSP) outperforms 2D pattern matching technique
(i.e. PMC and PMP) in estimating lateral motion even with only two steering angles. However,
the estimation of motion in the axial direction does not improve significantly. These results
suggest that to have good measurements in both axial and lateral directions one needs to
employ more steering angles in the estimation process. Alternatively, non-steered images can
be used to estimate the axial motions and steered images can be used to estimate the lateral
motions.

Table 5.1: The overall performance of speckle pattern tracking using iterative 1D cosine fitting
and compound imaging using 1D cosine fitting in simulated data.

Mean ∣𝑏𝑎𝑥∣ Mean ∣𝑏𝑙𝑎𝑡∣ Mean 𝜎𝑎𝑥 Mean 𝜎𝑙𝑎𝑡

Method (±𝜃) sample 𝜇𝑚 sample 𝜇𝑚 sample 𝜇𝑚 sample 𝜇𝑚

PMC 0.0023 0.0435 0.0082 2.5821 0.0117 0.2255 0.0253 7.9712
BSC (±5) 0.0026 0.0500 0.0022 0.3628 0.0268 0.5159 0.0182 5.7201
BSC (±7.5) 0.0025 0.0478 0.0023 0.7197 0.0247 0.4746 0.0123 3.8596
BSC (±10) 0.0016 0.0302 0.0021 0.6510 0.0210 0.4043 0.0123 3.8662
BSC (±12.5) 0.0043 0.0833 0.0019 0.5940 0.0240 0.4626 0.0125 3.9248
BSC (±15) 0.0053 0.1024 0.0015 0.4816 0.0283 0.5449 0.0126 3.9719
BSC (±17.5) 0.0038 0.0732 0.0031 0.9794 0.0353 0.6797 0.0147 4.6440
BSC (±20) 0.0073 0.1402 0.0058 1.8405 0.0483 0.9289 0.0180 5.6754

5.4 Experiments

5.4.1 Experimental Setup

This experimental setup is shown in Fig. 5.8. A 3-axis AIMS ultrasound scanning system (Onda
Corp., Sunnyvale, CA) with 10𝜇m resolution in each axis, mounted on a water tank, equipped
with the water conditioning system (Onda Corp., Sunnyvale, CA) was used. Experiments were
performed on a 60× 40× 40𝑚𝑚3 uniform phantom. The phantom was prepared using a 100%
polyvinyl chloride (PVC) plasticizer (M-F Manufacturing Co., Inc. Fort Worth, TX, USA)
with two percent cellulose (Sigma-Aldrich Inc., St Louis, MO, USA) as scatterers [34]. The
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Table 5.2: The overall performance of speckle pattern tracking using 2D polynomial fitting
and compound imaging using 1D parabola fitting in simulated data.

Mean ∣𝑏𝑎𝑥∣ Mean ∣𝑏𝑙𝑎𝑡∣ Mean 𝜎𝑎𝑥 Mean 𝜎𝑙𝑎𝑡

Method (±𝜃) sample 𝜇𝑚 sample 𝜇𝑚 sample 𝜇𝑚 sample 𝜇𝑚

PMP 0.0076 0.1464 0.0126 3.9575 0.0123 0.2367 0.0273 8.5925
BSP (±5) 0.0056 0.1073 0.0031 0.9907 0.0268 0.5161 0.0182 5.7217
BSP (±7.5) 0.0041 0.0789 0.0029 0.9026 0.0247 0.4751 0.0123 3.8634
BSP (±10) 0.0036 0.0697 0.0025 0.7938 0.0210 0.4048 0.0123 3.8681
BSP (±12.5) 0.0055 0.1063 0.0023 0.7318 0.0241 0.4640 0.0125 3.9289
BSP (±15) 0.0069 0.1322 0.0017 0.5408 0.0283 0.5454 0.0126 3.9727
BSP (±17.5) 0.0056 0.1080 0.0031 0.9792 0.0354 0.6810 0.0147 4.6354
BSP (±20) 0.0094 0.1813 0.0057 1.7796 0.0481 0.9250 0.0179 5.6406

phantom was inserted in a tank of degassed water and placed 2mm away from the transducer,
thus enabling the transducer to move without deforming the phantom producing rigid motions.
The phantom was moved on a 6 × 6 2D grid in steps of 60𝜇m in both axes. This resulted in
a square grid spanning approximately fifteen samples axially and one sample laterally.

The phantom was imaged using a linear transducer (L9-5/38) of a SonixRP ultrasound
machine (Ultrasonix Medical Corporation, Richmond, BC). The phantom was imaged to a
depth of 50mm (2mm water gap plus 48mm phantom) using a 128-element transducer with
a 5MHz center frequency digitized at 40MHz, with 300𝜇m lateral line spacing. For each
displacement configuration RF frames corresponding to non-steered and 6 different steering
angles including 3 pairs of angles (i.e. 0,±5,±10,±15) were acquired. Including the reference
position, a total of 7 × (36 + 1) = 259 RF frames were recorded for off-line processing. The
acquired non-steered RF frames (i.e. 37 frames) were used to estimate the motion using 2D
pattern matching methods (PMP, PMC) and the acquired steered RF frames (i.e. 6×37 = 222
frames) were used to estimate the motion using beam steering methods (BSP, BSC).

5.4.2 Experimental Results

The experimental results are shown in Fig. 5.9. It should be noted that in simulations (i.e.
Figs 5.4 and 5.5), the distance between grid points in both directions was 1/10 of a sample,
whereas the distance between grid points in experiments (i.e. Fig. 5.9) is 30 times larger axially
(i.e. 3 samples vs 1/10 of a sample) and 2 times larger laterally (i.e. 1/5 of a sample vs 1/10
of a sample). For better visualization, the standard deviation ellipses are scaled by a factor of
four in both directions.

The experimental results show very good agreement with the simulation results. Fig. 5.9
depicts that the performances of the 2D compound tracking techniques is a function of the
steering angle employed for data acquisition. Smallest biases and standard deviations are
achieved for steering angles of ±10 for 2D compound tracking techniques. Fig. 5.9 also shows
that 2D tracking using beam steering has smaller biases compared to the 2D pattern matching.
However, 2D tracking using beam steering exhibits larger standard deviations when transverse
motion exists in the motion field, consistent with the simulation results.
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Figure 5.7: The overall performance of all methods averaged over the simulated motion grid.
The bars correspond to the mean absolute biases and the lines corresponds to their mean
standard deviations.

5.5 Discussions and Conclusion

In this work, in order to study the performance of the 2D compound tracking technique as a
function of the steering angles, we only considered reconstruction of motion vectors from two
angles which are acquired from the same steering angle but in opposite directions. However,
as suggested by a number of authors, with a trade-off of longer data acquisition and processing
time, motion vector can be reconstructed from multiple steering angles to improve the perfor-
mance of the 2D tracking using angular compounding techniques. But as the results of this
work show, different weighting needs to be employed to estimate result from different steering
angles in the reconstruction process. This is consistent with the results reported in [29].

It should be noted that pattern matching techniques only require one set of the echo
signals to estimate the motion vectors whereas in beam steering techniques, one set of the echo
signals is required for each steering angle. Thus, the data acquisition time in beam steering
techniques is proportional to the number of steering angles employed. This may introduce
some limitation if high acquisition rate is of interest. A single run of the motion estimation is
enough to generate the vector image in pattern matching techniques whereas in beam steering
techniques, aside from reconstruction step, each set of steered echo requires to undergo the
motion estimation process prior to the reconstruction of the final motion vector. As a result,
their processing time is also proportional to the number of the steering angles employed in the
data acquisition. Moreover, beam steering techniques are only able to reconstruct the motion
vectors in the overlapping region. Thus, they introduce some limitations when large steering
angles are employed or imaging deep structures is of interest, where it can be difficult to get
the necessary acoustic window for beam overlap. This problem does not exist in motion vector
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(a) Experimental Setup

(b) Sonogram

Figure 5.8: The experimental setup (a) showing the positioning of the transducer with respect
to the phantom on the 3-axis motion stage inside the water tank. A sample sonogram (b)
acquired from SonixRP ultrasound machine is also shown.
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Figure 5.9: Experimental displacement estimates of 2D pattern matching techniques (1st col-
umn) and beam steering techniques employing different angles (2nd, 3rd, and 4th rows) on
a 6 × 6 motion grid in units of samples. For better visualization of standard deviations, the
radius of each ellipse in each direction corresponds to four times the standard deviation of
motion estimation in that given direction. Data was acquired at a 40MHz axial sampling rate
and 300𝜇m line spacing. A total of 1000 realizations from unique speckle patterns inside a
region of interest were used to generate each circle and ellipse (window size is ≈ 2 × 2𝑚𝑚2,
which is equivalent to 104 samples axially and 7 samples laterally).
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estimation using pattern matching techniques.
In the simulation, the line spacing was intentionally set to 300𝜇m in order to be consistent

with our experimental setup. However, this spacing is much larger than the typical line spacing
in current ultrasound imaging systems. The biases and the standard deviations of all the
methods are expected to improve with improved lateral resolution.

The performance of the 2D tracking using beam steering techniques is shown to be depen-
dent on the steering angle being employed. However, the fact that the smallest biases and
standard deviations are achieved for steering angles of ±10 only holds for the transducer used
in this work and should not be generalized to all transducers.

The result presented in this work should not be compared with the results reported in [23]
where mechanical rotation of the transducer was employed to acquire the RF data from multiple
views. When employing mechanical rotation or multiple transducers to acquire the data from
multiple angles, the imaging system remains unchanged. However, as shown in this work, when
employing beam steering techniques, image properties change as we change the steering angle
(Fig. 5.3).

Amongst different techniques to acquire the data from multiple look angles, beam steering is
studied in this work since it does not require any mechanical overhead which is clinically desired.
The results presented in this work show that the performance of pattern matching techniques
with 2D sub-sample estimation using 2D interpolations is close to that of 2D tracking employing
beam steering techniques. However, with proper selection of steering angles, 2D tracking
using beam steering techniques still outperform 2D pattern matching techniques especially in
estimating lateral motions. This can be explained by the fact that in 2D tracking using beam
steering techniques, motion vectors (both axial and lateral components) are reconstructed from
multiple measurements along the direction of beam propagations where each has high accuracy
and precision. However, in 2D tracking using pattern matching techniques, lateral motion is
simply estimated from tracking in the direction transverse to the beam which results in less
accurate and precise estimations.

In this work, we only studied and compared the performance of 2D pattern matching func-
tion equipped with 2D interpolation techniques with that of 2D compound tracking employing
conventional 1D interpolation techniques. The results show that beam steering techniques
exhibit large standard deviations in the presence of transverse motions especially in the ax-
ial direction. This can be explained by the fact that the performance of 2D tracking using
beam steering techniques is still limited by the 1D interpolation techniques used for sub-sample
motion estimation. Employing 2D interpolation methods is expected to improve the perfor-
mance of 2D tracking using beam steering techniques both in terms of accuracy and precision.
The adaptation of 2D interpolation methods in steered coordinates, in order to improve their
accuracy and precision, will be the topic of our future work.
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Chapter 6

High Frame Rate Ultrasound for 2D
Motion Estimation5

6.1 Introduction

High frame rate motion estimation has proved to be critical for a range of clinically used
ultrasound imaging modes. These include blood flow estimation [1, 2], tissue velocity and
strain rate imaging [3, 4], elasticity imaging [5–7], acoustic radiation force imaging (ARFI)
[8–10], studying the propagation of mechanical waves in the tissue [11–13], and cardiovascular
imaging [14, 15].

Conventional ultrasound systems are based on line by line acquisition of the echo signals
in order to acquire the entire 2D image. As a result, the acquisition time of each frame in
these systems is proportional to the number of scan lines and the acquisition time of each
scan line in that frame. There exists a fundamental trade off between temporal resolution and
image size. Several techniques have been attempted in the literature in order to increase the
imaging frame rates. In one simple approach the number of scan lines can be reduced. This
will increase the frame rates but will also result in reduction in the field of view (FOV) and/or
spatial resolution depending on the spacing between scan lines. To study myocardial motion,
a frame rate of 200Hz was achieved in [16] by reducing the number of scan lines and keeping
the spacing between scan lines the same thus significantly reducing the FOV. In [17] a frame
rate of 450Hz was achieved by reducing the number of scan lines and increasing the spacing
between scan lines thus keeping the FOV full, but significantly reducing spatial resolution.

In another approach high temporal resolution is achieved by beam interleaving. This
technique divides the region of interest (ROI) into small sectors and acquires each sector at a
high temporal resolution (200 Hz to 10 kHz depending on the number of scan lines per sector
and the imaging depth) for a short period of time before moving on to the next sector, etc
until all the observations for the entire ROI are acquired. Assuming that the time between the
acquisition of neighboring scan lines is small, the acquisition in each sector can be considered as
a snapshot of the speckle movements. This technique will provide both high spatial resolution
and temporal resolution. However, large delays are introduced between the data acquired
from different sectors. This technique is commonly used in conventional color flow imaging,
power Doppler imaging, and B flow imaging [18, 19]. The same technique is also used in [4]
to evaluate regional myocardial deformation and in [12] to study the propagation of crawling
waves in tissue using tissue Doppler imaging. Using the same acquisition scheme, compounding
Doppler imaging has also been attempted in the literature to estimate the motion vectors using
both beam steering and multi-synthetic aperture beamforming [20,21]. In these techniques the

5A version of this chapter has been submitted for publication. Reza Zahiri-Azar, Ali Baghani, and Septimiu
E. Salcudean, “High Frame Rate Ultrasound for 2D Motion Estimation”.
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data from the ROI is acquired from multiple look angles. Once the data from multiple angles
are acquired, the motions estimated along multiple directions are compounded to construct
the motion vectors inside the overlapping region.

With the help of parallel receive beamformers, techniques like multi-line-acquisitions (MLA)
have also been used to increase the frame rate of conventional ultrasound machines where
multiple echo signals (typically 2-8) are acquired from single transmit [22], thus, multiplying
the effective frame rate at little cost to the resolution [14]. In [23], MLA was used to reduce
transducer heating and acoustic exposure, and to facilitate data acquisition for real-time ARFI
imaging. The idea of MLA was also extended to the acquisition of the entire image as opposed
to multiple lines, thus, drastically increasing the effective frame rates (>5 kHz). This method
is generally being referred to as ultrafast imaging where a single unfocused plane wave is used
for transmit and parallel receive beamformers (typically 64-128) are used to generate the scan
lines. In [11,24], ultrafast imaging was used to capture the propagation of the transient shear
wave in soft tissue and to estimate the tissue elasticity. In [25] ultrafast imaging was combined
with angular compounding using multi-synthetic aperture beamforming to follow both the axial
and the lateral components of the motion during the shear wave propagation at a frame rate
of 6 kHz. Even though very effective, MLA and ultrafast imaging are not generally available
on conventional ultrasound systems. Additional hardware overhead is required to implement
each of these techniques on conventional ultrasound systems.

Techniques like coded excitations have also been introduced in the literature to increase
the frame rate of the ultrasound acquisition [26–28]. However, these techniques increase the
beam density and similar to MLA and ultrafast imaging require specialized hardware.

In another approach to achieve high frame rates, synchronization techniques have been
suggested in the literature. The data acquisition in these techniques is similar to that of con-
ventional color flow and power Doppler imaging to achieve high temporal resolution. However,
to eliminate long delays between sectors, the start of data acquisition for each sector is syn-
chronized with the exciter which varies from an external actuator (e.g. mechanical vibrator)
to a signal generated in the body (e.g. electrocardiogram ECG). In [29], by synchronizing
the data acquisition and an external exciter the shear-wave propagation in the scan plane was
imaged at a frame rate of 6 kHz using a single element transducer. A similar approach was
used in [30] to study both the transient and harmonic shear-wave scattering in both two and
three dimensions using linear array transducers at a frame rate of 4 kHz. By synchronizing the
image acquisition with the ECG signals, the propagation of several transient mechanical waves
was imaged in different regions of the myocardium in mice at a frame rate of 8 kHz in [31] and
in humans at a frame rate of 481Hz in [15]. These techniques require additional hardware
to synchronize the excitation and the data acquisition. The number of observations in these
techniques is generally higher than in Doppler techniques (typically 20-100) since the temporal
variation of the echo signal is of interest as opposed to the average time-shift/phase-shift in flow
and Doppler measurement techniques. Also, at the end of imaging of each sector, the system
needs to wait long enough to make sure the tissue returns back to its initial position prior to the
next excitation. Otherwise, artifacts will appear in the final image when different sectors are
stitched together. In the case of using an ECG the waiting time for each sector is determined
by the heart rate. This waiting time will generally increase the total data acquisition time in
these techniques.

Recently we have developed a high frame rate ultrasound imaging system that uses a custom
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sequencer similar to the ones used in color flow imaging and power Doppler imaging followed by
a delay compensation technique. Acquisition delays are compensated to reconstruct in-phase
tissue motions at a virtual high frame rate using conventional ultrasound. In this work we
combine this technique with that of angular compounding using beam steering to develop an
ultrasound system that reconstructs 2D motion vectors from multiple 1D motion measurements
estimated along different angles at a virtual high frame rate. The paper is structured as follows:
Section 6.2 presents the data acquisition scheme. Section 6.3 presents the signal processing
routines applied to acquire echo signals. Section 6.4 presents the experimental results. Finally,
Sections 6.5 and 6.6 present discussions and conclusions along with avenues for future research.

6.2 Data Acquisition

The data acquisition in this technique is similar to compound Doppler imaging using beam
steering techniques [21]. The data from the ROI are acquired from multiple steering angles,
which forms the basis for motion estimation. For each scan line, a series of 𝑁 pulses are
acquired. This acquisition scheme is referred to as packet acquisition, and the number of
pulses 𝑁 as the packet size. Using this technique, the frame rate requirement is attained by
beam interleaving techniques as described above, in which the frame rate for speckle pattern
imaging is the pulse repetition frequency (PRF) used during acquisition. This technique can
be described as follows. The ultrasonic pulse needs to propagate a distance equal to twice the
image depth 𝑑𝑖𝑚𝑔 before a new pulse can be transmitted. The maximum possible PRF is thus
given by:

𝑃𝑅𝐹𝑚𝑎𝑥 =
1

𝑇𝑙
=

𝑐

2𝑑𝑖𝑚𝑔
, (6.1)

where 𝑇𝑙 is the time required to acquire one scan line and 𝑐 is the ultrasound speed. By
decreasing the PRF by a factor 𝐾, there is time to acquire 𝐾 − 1 other scan lines. These 𝐾
scan lines form a sector and the number 𝐾 itself is called the sector size which can be expressed
by:

𝐾 =

⌊
𝑃𝑅𝐹𝑚𝑎𝑥

𝑃𝑅𝐹

⌋
, (6.2)

where the floor operator ⌊.⌋ rounds to the next lower integer. The number of sectors 𝑆 in the
ROI is given by:

𝑆 =

⌈
𝐿

𝐾

⌉
, (6.3)

where 𝐿 is the number of scan lines (line density) determined by the image width and line
spacing and the ceiling operator ⌈.⌉ rounds to the nearest higher integer. It should be noted
that for a fixed imaging depth, 𝑃𝑅𝐹𝑚𝑎𝑥 can be decreased by adding additional waiting time
at the end of each scan line acquisition (i.e. 𝑃𝑅𝐹𝑚𝑎𝑥 is equal to 1/(𝑇𝑙 + 𝑇𝑤) instead of 1/𝑇𝑙,
where 𝑇𝑤 is the additional wait time). This technique can be used to make 𝑃𝑅𝐹 a multiple
of 𝑃𝑅𝐹𝑚𝑎𝑥. This way (6.2) will transform into 𝐾 = 𝑃𝑅𝐹𝑚𝑎𝑥/𝑃𝑅𝐹 . Also, when using (6.3) 𝐿
might not be a multiple of 𝑆 (i.e. 𝑆𝐾 > 𝐿), as a result extra wait times need to be programmed
in the sequencer to keep the PRF fixed for all the scan lines. This will virtually increase the
number of scan lines to 𝑆𝐾.

In order to add angular compounding to this technique, several strategies can be employed.
In one straight forward approach, the process mentioned can be repeated for each steering angle
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independently. This technique will result in large delays between the acquisitions of the same
tissue location with different steering angles. In another approach, different steering angles
can be acquired inside the same sector. This technique will minimize the delay between the
acquisition of the same scan line when different steering angles are employed but will maximize
the delay between the acquisition of the first and the last sector. These two techniques are
shown in Fig. 6.1 when two steering angles are used. The numbers indicate the timing of each
scan line acquisition. Note that the number of sectors is multiplied by the number of steering
angles employed in data acquisition.

Apart from the pulsing strategy used to acquire the data, the total acquisition time is
always equal to the number of lines 𝑆𝐾, times the packet size 𝑁 , times acquisition time of
each line 𝑇𝑙. This can be formulated as follow

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑆 ×𝐾 ×𝑁 × 𝑇𝑙. (6.4)

The observation time for each scan lines is also the number of observations 𝑁 times the pulse
repetition period (PRP) where PRP is equal to 1/PRF.

Following data acquisition, the input data available for processing are radio frequency
(RF) echo signals arranged in packets independently. Each packet of data corresponds to
time samples from one sample volume in the image, sampled at the PRF of the system. In
Section 6.3 the signal processing performed on the input data will be described.

6.3 Signal Processing

A block diagram showing the basic signal processing blocks used in the 2D high frame rate
system is given in Fig. 6.2. Using this block diagram as a reference, detailed description of
each block will be presented in the following subsections.

6.3.1 Motion Estimation and Phasor Computation

Following the data acquisition, commonly used 1D delay estimation algorithms including time-
shift and phase-shift estimators [32] can be applied to find the 1D motions along each steering
angle, at each spatial location. This process is applied to each scan line independently and
thus is not affected by the data acquisition scheme. We denote the estimated displacement by
𝑢(𝑛, 𝑙, 𝑑, 𝜃) where 𝑛 is the packet index, 𝑙 is the scan line index, 𝑑 is the depth of the reference
window used in motion estimation, and 𝜃 is the steering angle employed to acquire the data.

Once the motions at each spatial location are estimated for all the packets, the time series
of displacements are transformed into the frequency domain. This way, the phasors can be
extracted by selecting the frequency of interest from the list of permissible frequencies at every
spatial location. We denote the estimated displacement phasor by 𝑈(𝑓𝑒, 𝑙, 𝑑, 𝜃), where 𝑓𝑒 is the
frequency of interest.

6.3.2 Phase Correction

Once the displacement phasors are estimated, to correct for all the delays introduced during
the data acquisition, their phase needs to be compensated. This phase correction step can be
formulated as follow:

𝑈𝑐(𝑓𝑒, 𝑙, 𝑑, 𝜃) = 𝑈(𝑓𝑒, 𝑙, 𝑑, 𝜃)𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑒𝑡𝑑), (6.5)
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(a) Method I

(b) Method II

Figure 6.1: Two different techniques to acquire high frame rate from two steering angles with
eight scan lines (𝐿 = 8), sector size of 𝐾 = 4 which results in four sectors 𝑆 = 2× 2 = 4 and
𝑃𝑅𝐹 = 𝑃𝑅𝐹𝑚𝑎𝑥/4, and packet size of 𝑁 = 4. The numbers indicate the sequence of the 64
pulses.

122



Chapter 6. 2D High Frame Rate System

Figure 6.2: A diagram showing the basic signal processing blocks used in 2D high frame rate
imaging.

where 𝑈𝑐 is the corrected phasor and 𝑡𝑑 is the acquisition delay with respect to the start of the
sequencing corresponding to the same phasor, calculated based on the 𝑑, 𝑃𝑅𝐹𝑚𝑎𝑥, and the
sequencing order used to acquire the data. The detailed description of this step is provided
in [33] and is not repeated in here. It should be noted that adding the steering angle to
data acquisition do not introduce difficulties for the phase correction process as long as the
acquisition order is correctly considered in the phase correction routine.

6.3.3 2D Reconstruction

Once 1D phasors are corrected for all the delays, their coordinate needs to be transformed
to Cartesian coordinates to correct for the steering angle employed in the data acquisition as
follows:

𝑈𝑐(𝑓𝑒, 𝑙, 𝑑, 𝜃)→ 𝑈𝑐(𝑓𝑒, 𝑥, 𝑦, 𝜃), (6.6)

where 𝑈𝑐 is the corrected phasor in Cartesian coordinate and 𝑥, 𝑦 are the axial and the lateral
axes, respectively. For the purpose of this work, linear interpolation was employed for the
spatial alignment.

Once 1D phasors are spatially aligned, the 2D phasors are reconstructed from the 1D
phasors according to the following equations, at each spatial location [21]:

𝑈𝑎𝑥(𝑓𝑒, 𝑥, 𝑦) =
𝑈𝑐(𝑓𝑒, 𝑥, 𝑦, 𝜃) + 𝑈𝑐(𝑓𝑒, 𝑥, 𝑦,−𝜃)

2 cos 𝜃
, (6.7)

𝑈𝑙𝑎(𝑓𝑒, 𝑥, 𝑦) =
𝑈𝑐(𝑓𝑒, 𝑥, 𝑦, 𝜃)− 𝑈𝑐(𝑓𝑒, 𝑥, 𝑦,−𝜃)

2 sin 𝜃
, (6.8)

where 𝑈𝑎𝑥(𝑓𝑒, 𝑥, 𝑦) and 𝑈𝑙𝑎(𝑓𝑒, 𝑥, 𝑦) are the axial and the lateral phasors, respectively. This
scheme is shown in Fig. 6.3.

6.4 Experimental Results

In order to study the performance of the proposed system, the following experiments were con-
ducted. In one experiment the system was used to measure both axial and lateral component
of the flow. This experiment was used to validate the data acquisition and 2D motion vector
reconstruction steps of the system in Fig. 6.2 since phasor computation and phase correction
steps are not required to measure the average flow velocity over a short period of time. In
another experiment the system was used to measure both axial and lateral components of the
motion resulted from propagation of mechanical waves in the tissue. This experiment was used
to validate the entire system including phasor computation and phase correction steps.
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Figure 6.3: Schematics for the reconstruction of a 2D measurement using 1D measurements
estimated from two steering angles.

6.4.1 2D Flow Measurements

The experimental setup is shown in Fig 6.4. The experiment was performed on a Doppler
flow phantom (1425A LE Doppler Flow System, Gammex, Middleton, USA). The phantom
was imaged using a SonixRP ultrasound machine (Ultrasonix Medical Corporation, Richmond,
BC, Canada) with a L9-4/38 linear array transducer with 5MHz center frequency and 300𝜇m
line spacing. The RF signal, digitized at 40MHz, was collected to a depth of 50mm.

Two steering angles were employed to acquire the data (±10 degrees). Referring to Fig. 6.1,
in order to minimize the delay between the scan lines acquired from the same spatial location
using different steering angles, the second sequencing strategy was employed.

Referring to (6.1), an imaging depth of 50mm results in 𝑃𝑅𝐹𝑚𝑎𝑥 of 15.4 kHz. Wait times
were added to the end of each scan line acquisition to decrease the 𝑃𝑅𝐹𝑚𝑎𝑥 to 10 kHz. This
resulted in 𝑇𝑙 of 0.1ms. In the sequencer, the line density was set to be 𝐿 = 120, the sector
size was set to be six (𝐾 = 6), and the packet size was set to be eight (𝑁 = 8). This resulted
in total of 40 sectors for both steering angles (2×120/6), PRF of 1667Hz (10,000/6) and PRP
of 0.6ms. The observation time for each scan line was 𝑁 × 𝑃𝑅𝑃 = 4.8ms. Referring to (6.4),
the acquisition time was 40× 6× 8× 0.1ms = 192ms which resulted in total frame rate of five
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Figure 6.4: Schematics of the experimental setup used for testing the system using flow phan-
tom.

frames per second (fps).
RF lines were recorded for off-line processing. It should be noted that real-time imple-

mentation is also possible and off-line processing is used only to avoid the overhead of the
programming effort. This is not an inherent limitation of the system. The RF processing for
each line was based on an autocorrelatoin technique, which converts the RF echo signals to
complex I/Q data (basebanded inphase and quadrature components) and processes the com-
plex I/Q data to measure the velocity. This method was first proposed by Kasai et al. [1] and
is commonly used on commercial ultrasound machine to estimate the flow. Once 1D flow mea-
surements were calculated, 2D flow vectors were calculated using the same processing scheme
explained in Section 6.3.3.

The results calculated from one packet of data are shown in Fig. 6.5. No temporal filtering
was used and a 2D spatial median filter with a kernel size of 3× 3 was applied to remove the
outliers. Fig. 6.5 shows that the system can reliably reconstruct the motion vector inside the
region of overlapping beams acquired at high frame rates.

6.4.2 2D Wave Propagation Measurements

The experimental setup for this experiment is shown in Fig 6.6. The experiment was performed
on a tissue-mimicking phantom. The phantom was constructed from 100% polyvinyl chloride
(PVC) plasticizer (M-F Manufacturing Co., Inc. Fort Worth, TX, USA). Two percent cellulose
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Figure 6.5: Spatially aligned 1D motions estimated for different steering angles (a) and axial
and lateral components of the motion reconstructed from the same set of data (b). The
estimated motion vectors are also shown (b).

126



Chapter 6. 2D High Frame Rate System

Figure 6.6: Schematics of the experimental setup used for testing the system using a mechanical
vibrator.

(Sigma-Aldrich Inc., St. Louis, MO, USA) was added as scattering particles [32, 34]. The
phantom was excited at 100Hz continuously using an external shaker mounted on top of it.
The phantom was imaged from the bottom using the same system mentioned above.

Similarly to the previous experiment the 𝑃𝑅𝐹𝑚𝑎𝑥 was set to be 10 kHz. In the sequencer,
the line density was set to be 𝐿 = 60, the sector size was set to be six (𝐾 = 12), and the packet
size was set to be eight (𝑁 = 40). This resulted in total of 10 sectors for both steering angles
(2 × 60/12), PRF of 833Hz (10,000/12) and PRP of 1.2ms. The observation time for each
scan lines was (i.e. 𝑁 × 𝑃𝑅𝑃 = 48ms). The total acquisition time was 10× 12× 40× 0.1ms
= 480ms which resulted in a total frame rate of 2 fps.

The RF lines were recorded for off-line processing. The RF processing for each line was
based on normalized cross correlation which is commonly used to estimate the tissue motion
[5, 35]. Sub-sample accuracy was achieved using cosine fit [36]. For all the scan lines the
motions were estimated with respect to the first observation of the same scan line. Once 1D
motions were calculated, 2D motion vectors were calculated using the same processing scheme
explained in Section 6.3.

The propagation of mechanical waves in the scan plane, imaged with the system are shown
in Fig. 6.7. For better visualization, snapshots of wave images reconstructed at each step are
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displayed. No temporal filtering was employed and a 2D spatial mean filter with a kernel size
of 3 × 3 was applied to the images to improve the signal to noise ratio. Fig. 6.7 shows that
the system reliably corrects for the phase shifts and reconstructs the 2D motion field at high
frame rate.

6.5 Discussion

The notion for data acquisition in this work is taken from [19] and the notation for phasor
calculation and phase compensation is taken from [33]. We used ±10 as two steering angles
to reconstruct 2D motion vectors from 1D estimates. However, as suggested by a number of
authors, multiple steering angles can be used to improve the performance of the 2D tracking
using angular compounding techniques [37,38]. Unfortunately, in practice, there is a limit for
the length of the sequence that can be programmed in ultrasound imaging systems. Thus, in
addition to longer acquisition and processing time, employing several steering angles would
introduce implementation issues since the total number of scan lines which should be acquired
are multiplied by the number of steering angles being employed (Eq. (6.4)). As suggested
in [33], to resolve this issue, the sequencer can be programmed multiple times to acquire the
entire data. However, this approach will increase the acquisition time even further.

In this work, we only considered reconstruction of 2D phasors for a single frequency of
interest 𝑓𝑒. In case we are interested in multiple frequencies, the process of phasor computation,
phase correction, 2D reconstruction should be repeated for each frequency independently on
the same set of data.

Techniques like multi-line-acquisition that were mentioned in the introduction can also be
employed in this system in order to speed up the data acquisition process. However, care needs
to be taken during the phase correction step since scan line acquisition will not be sequential
anymore.

As shown in this work, to adjust the acquisition delays between the acquisition of the same
tissue location when multiple steering angles are employed, different pulsing strategies can
be used. However, it is important to note that when using phase correction techniques, the
acquisition strategy does not play a role in the final estimation results. This is due to the
fact that following the acquisition delay cancellation, all the data are virtually acquired at the
same time.

Referring to Fig. 6.1, the maximum achievable PRF in the system is 𝑃𝑅𝐹𝑚𝑎𝑥 and 𝑃𝑅𝐹𝑚𝑎𝑥/2
for the first and the second sequencing method, respectively. For example in the 2D flow mea-
surement experiment by setting 𝐾 = 2 (i.e. in each sector, acquire one line from each angle),
the PRF can go up to 5 kHz. In the 2D wave propagation measurement by setting 𝐾 = 1 (i.e.
in each sector, acquire only one line), the PRF can go up to 10 kHz. However, as mentioned in
the introduction, for a fixed number of observations, setting the PRF too high will significantly
reduce the observation time. Thus, depending on the application, it is important to find the
proper balance between these two parameters.

The proposed system can be implemented on conventional ultrasound machines without an
extra hardware overhead to facilitate estimation of 2D motion at high frame rates. However,
the proposed system has its own limitations as well. First, the tissue and the transducer should
be stationary during the data acquisition to avoid motion artifacts. Second, even though there
is no need for the excitation to be of a single frequency, the excitation needs to be periodic
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(c) After 2D Reconstruction

Figure 6.7: Snapshot of wave images after 1D motions estimation (a) and phase correction
(b) for both steering angles are shown. The reconstructed images of the axial and lateral
components of the wave are also shown (c).
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and band-limited where the highest frequency content should be smaller than half of the PRF
and the period of the lowest frequency needs to be short enough so that it can be observed
during the imaging of each scan line. Third, without synchronization, the system can not be
used to study the propagation of transient waves since all the scan lines should be acquired at
the same time and long observation times are required to study the propagation of the waves.
Techniques like ultrafast imaging are generally preferred for these applications. Fourth, beam
steering techniques are only able to reconstruct the motion vectors in the overlapping region.
Thus, they introduce some limitations when large steering angles are employed or imaging
deep structures is of interest, where it can be difficult to get the necessary acoustic window for
beam overlap. Techniques like split aperture [21] can be employed to alleviate this problem
however the problem still remains.

6.6 Conclusion

A high frame rate ultrasound system is introduced in this article which can readily be imple-
mented on conventional ultrasound systems in real-time without additional hardware overhead.
The system uses a data acquisition scheme similar to that of compound Doppler imaging to
achieve high frame rates. A previously introduced phase correction scheme is used in the
system to compensate for acquisition delays. Finally, reconstruction techniques are employed
to estimate the 2D motion vectors from individual 1D measurement estimated from multiple
steering angles.

As shown in this work, the proposed system has potential applications in medical ultra-
sound. These applications include vascular imaging, studying the propagation of mechanical
waves in the tissue, strain and strain rate imaging, and elasticity and viscosity imaging.
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Chapter 7

Conclusions and
Future Research

In this Chapter the results of the collected works are related to one another and a unified goal
of the thesis is discussed. The strengths and weaknesses of the research are then presented,
along with future directions for research.

7.1 Multi-Dimensional Motion Estimation Techniques

In Chapters 2, 3 and 4 new algorithms are developed for the estimation of motion in the
sequences of ultrasound echo signal in 1D (axial component only), 2D (both axial and lateral
components), and 3D (axial, lateral, and elevational components). The performance of all
the presented techniques is studied using both simulation and experimental data in terms of
accuracy, precision, sensitivity, and resolution. A comparison is carried out with state of the
art techniques. This way the first two objectives of the thesis are met.

In Chapter 2 a new class of delay estimators based on the tracking of the individual echo
samples called sample tracking (ST) is presented. The use of the same interpolation approach
to improve the performance of the ZCT delay estimator is also presented [1]. Simulation results
show that these algorithms outperform conventional window based time-delay estimators in
terms of bias and standard deviation when applied to high SNR echo signals. Simulation
results also show that ST algorithms have higher resolution and sensitivity when used as
strain estimators compared to commonly used strain estimation algorithms including recently
introduced spline-based continuous time-delay estimators [2] as they provide the displacement
of individual samples. However, their performance degrades rapidly as the SNR of the echo
signals becomes low. Experimental results demonstrating the viability of ST are also presented.

In Chapter 3 we show that the standard approach of applying a separate 1D sub-sample
estimation [3, 4] in multi-dimensional motion tracking is not valid when estimating motion in
sequences of ultrasound echo signals. Several pattern-matching function interpolation schemes
that are suited for 2D motion estimation were presented.

The techniques presented in Chapter 3 are extended to 3D in Chapter 4 where 3D sub-
sample motion estimation schemes are presented. The performance of the proposed methods
has been characterized through both simulations and experiments. The results show that the
proposed methods significantly outperform other commonly used independent 1D algorithms
in the literature in terms of bias and standard deviation.

Both techniques presented in Chapter 3 and Chapter4 assume small motions and deforma-
tions which is valid for fast imaging [5], where inter-frame displacements and deformations
are small and the echo signals are highly correlated. This is also the case in acoustic radiation
force imaging [5–8] where induced displacements and deformations are very small. However,
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the assumption of small motions and deformations does not hold when large deformations
exist and echo signals are decorrelated. This is generally the case in quasi-static elastogra-
phy [9, 10] where large external compressions are applied to the tissue and cause the tissue
to experience large deformations. This is also the case in myocardial elastography [11] where
the tissue experiences large internal motions and deformations. The performance of all the
pattern matching function interpolation techniques, including those presented in this work, is
expected to degrade when the echo signals are decorrelated and can not be matched correctly.
In order to adapt all these methods to the estimation of displacements resulting from large
deformations, previously introduced compounding methods should be applied to the raw echo
signals [12–14] prior to the motion estimation process. Once the effect of signal decorrelation is
suppressed, the pattern matching algorithms followed by the proposed interpolation methods
can be applied to estimate the motion. Alternatively, techniques such as iterative 1D cross
correlation with recorrelation [11,15], which are more robust in the presence of deccorelation,
can be employed to estimate the motion.

In Chapter 3 and Chapter 4 we have only employed a standard polynomial fitting to
generate the continuous representation of the pattern matching function in multi-dimension.
However, several other polynomials may be used for this purpose, including multi-dimensional
spline polynomials as in [3, 16]. The use of higher order splines are expected to improve the
accuracy of the sub-sample estimation, but at higher computational cost.

The proposed methods have several potential applications throughout the field of signal
processing. Specific applications in medical ultrasound include fine velocity vector imaging,
strain tensor estimation, elastography, and acoustic radiation force impulse imaging.

7.2 Real-Time Motion Estimation

The proposed estimators in Chapter 2, Chapter 3, and Chapter 4 are shown to provide a good
balance between accuracy, precision, and computational cost. All the proposed techniques add
small computational overhead and are suitable for real-time applications. Based on the meth-
ods proposed in Chapter 3, a real-time 2D motion tracking software has been implemented
that estimates the motions between the sequences of ultrasound echo signals in several dimen-
sions at the native frame rate of the ultrasound machines used currently (up to 50Hz). In this
manner, the third objective of the thesis is met.

The system is currently being used in several clinical applications namely strain imaging
of the prostate [17], monitoring kidney transplants, studying the tissue deformation following
needle insertion [18], characterization of soft tissue from finite element models [19], 2D strain
tensor estimation, tissue elasticity and viscosity imaging [20], and tissue motion vector imaging
at the University of British Columbia (UBC) and in collaboration with Dr. Christopher Nguan
at the Vancouver General Hospital (VGH) and Dr. Morris at the British Columbia Cancer
agency (BCCA).

The system is also being used for real-time poro-elastography [21] for distinguishing be-
tween normal and lymphedematous tissues in vivo and shear strain imaging for breast tumor
classification [22] in collaboration with Professor Jonathan Ophir and Dr. Arun Thitaikumar
at medical school at Houston at the University of Texas and Dr. Brian Garra at Fletcher Allen
Health Care at the University of Vermont.

A version of motion tracking software has also been implemented in a strain imaging soft-
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ware and licensed for commercial use on ultrasound machines to the Ultrasonix Medical Corpo-
ration (Richmond, BC, Canada). So far, the software has been used in different sites on more
than 1000 clinical cases varying from breast tumor imaging [23] to skin abnormalities [24].

Research are currently going on to implement the methods proposed in Chapter 4 and
develop a real-time 3D motion tracking system. This would provide the opportunity to extend
all the above mentioned application to three dimensions.

7.3 High Frame Rate Tracking

In Chapter 5 we show that the performance of our proposed 2D pattern matching techniques
is close to that of 2D tracking employing beam steering techniques. However, 2D tracking
using beam steering techniques still outperform 2D pattern matching techniques. This can
be explained by the fact that in 2D tracking using beam steering techniques, motion vectors
(both axial and lateral components) are reconstructed from multiple measurements along the
direction of beam propagations where each has high accuracy and precision, whereas in 2D
tracking using pattern matching techniques, lateral motion is simply estimated from tracking
in the direction transverse to the beam which results in less accurate and precise estimations.

Despite better performance, the data acquisition time in beam steering techniques is longer
and is proportional to the number of steering angles employed. This will introduce some
limitation when high acquisition rate is of interest. In order to take advantage of beam steering
techniques without sacrificing the frame rate, in Chapter 6 a high frame rate ultrasound system
is introduced. The system uses beam interleaving techniques [25] in conjunctions with a delay
cancellation method introduced by my colleague Ali Baghani to compensate for acquisition
delays [26]. In this manner, the last objective of the thesis is met.

The system was implemented on conventional ultrasound machines without any additional
hardware overhead and achieves both high spatial (line density of up to 128) and high temporal
resolution (> 500Hz) at an imaging depth of 5 cm and a 100% field of view. Applications of
the system in studying the wave propagation in two dimensions, and flow vector imaging are
presented with experimental results from phantoms. The proposed system has several other
potential applications such as high frame rate strain and strain rate imaging, and quantitative
elasticity and viscosity imaging using dynamic elastography and wave inversion techniques [25].

7.4 Summary of Contributions

The major contribution of this thesis is development of new algorithms for estimation of the
tissue motion in sequences of ultrasound images in multi-dimensions with high accuracy and
precision and small computational cost suitable for real-time applications. The specific contri-
butions of this thesis can be outlined as follows:

∙ A new class of motion estimation techniques called sample tracking was introduced.
Results from both simulations and experiments showed that the proposed techniques
outperform all the the common and state-of-the art motion estimators in terms of accu-
racy, precision, resolution, and sensitivity. The extension of the proposed algorithms to
multi-dimensional motion estimation is also presented.
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∙ To maximize the accuracy and precision of motion estimation in multi-dimensions while
adding a small computational overhead, sub-sample estimators were studied. Several sub-
sample motion estimators were introduced, each offering different trade offs between per-
formance and computational cost. Results from both simulations and experiments show
that by adding a small computational cost, the proposed sub-sample estimation tech-
niques significantly improve the performance of motion estimation in multi-dimensions.

∙ Based on the proposed sub-sample estimation methods, real-time 2D/3D motion tracking
software has been implemented to estimate the motion vectors between sequences of
ultrasound echo signals at commonly used ultrasound frame rates (up to 50Hz). The
software was licensed for commercial use and currently being used in several clinical
applications namely, normal/shear strain imaging [22], dynamic elastography [19], vibro-
elastography [17], tumor detection and classifications [23, 24], and poro-elastography
[21].

∙ The proposed 2D tracking method was compared with 2D tracking employing beam steer-
ing techniques. Results from both simulations and experiments showed that 2D tracking
using beam steering techniques outperforms 2D motion estimation without compounding
in terms of both accuracy and precision especially in estimating lateral motion.

∙ A custom pulse sequencer followed by a phase correction scheme was developed to esti-
mate 2D motion vectors at a high frame rates (> 500Hz). Potential applications include
studying the propagation of mechanical waves in tissue, visocoelasticity imaging of tissue,
high frame rate strain/strain rate imaging, and vascular imaging.

7.5 Future Work

Simulation results show that ST algorithms have higher resolution and sensitivity when used
as strain estimators compared to commonly used techniques. However, their performance
degrades as the SNR of the echo signals becomes low. The use of smoothing splines is expected
to improve the performance of these techniques in the presence of noise.

In this work, we only formulated and studied our proposed interpolation techniques in
Cartesian coordinates to estimate the sub-sample motion. Further investigation is required to
study the adaptability of the proposed interpolation methods to steered coordinates and coor-
dinates which are typically introduced when data are acquire using curved linear transducers.
This is expected to improve the performance of sub-sample estimation in these applications.

The requirement for motion tracking algorithms changes from one medical application to
the next. For example in myocardial imaging large motions and deformations generally exist
in the imaging plane thus the tracking algorithm needs to be robust in the presence of large
decorrelation. However, in breast imaging the tissue is generally stationary and does not expe-
rience large deformations and sensitivity of the estimator is more important. Further studies
and validations are required to optimize the tracking process for different clinical applications.

The studies and validations in this thesis were generally based on the simulated and ex-
perimental data acquired from tissue mimicking phantoms. The performance of the proposed
techniques has also been evaluated in several clinical applications [22–24]. However, further
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studies are required to quantify the performance of the proposed technique using ultrasound
data acquired from real tissue in vivo and in vitro.

In this work we studied and compared the performance of different techniques in estimating
translation and compression. However, due to different boundary conditions, the tissue may
also experience slippage, rotation, and shearing. This is generally the case in tracking the
kidney and the prostate. In the future, these behaviors also need to be studied to further
optimize the motion tracking algorithms for these applications.

Through out this work, the tissue motions were estimated without assuming any under-
laying model. However, including different models in the process is expected to improve the
performance of tissue motion estimation. These will be the topics of our future work.
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Appendix A

Local Polynomial Fitting

A fourth order polynomial 𝑓(𝑡) = 𝑎𝑡4 + 𝑏𝑡3 + 𝑐𝑡2 + 𝑑𝑡 + 𝑒 can be fitted to the reference echo
signal around the 𝑖th sample using the following equation:

⎡
⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐
𝑑
𝑒

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
16 −8 4 −2 1
1 −1 1 −1 1
0 0 0 0 1
1 1 1 1 1
16 8 4 2 1

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣

𝑠1[𝑖− 2]
𝑠1[𝑖− 1]
𝑠1[𝑖]

𝑠1[𝑖+ 1]
𝑠1[𝑖+ 2]

⎤
⎥⎥⎥⎥⎦ , (A.1)

Polynomials with different orders can also be fitted using the same approach.
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Appendix B

Strain Signal to Noise Ratio

The signal-to-noise ratio in strain estimation characterizes the noise at which a value of strain
is estimated and is defined by:

𝑆𝑁𝑅 =
𝑚𝑠

𝜎𝑠
, (B.1)

where 𝑚𝑠 denote the statistical mean strain estimate and 𝜎𝑠 denotes the standard deviation
of the strain noise estimated from the strain image.
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Appendix C

2D Normalized Cross Correlation

Given a pair of sampled signals 𝑠1[𝑖, 𝑗] and 𝑠2[𝑖, 𝑗], where 𝑖 is the sample index and 𝑗 is the line
index, their normalized correlation is defined by (C.2), where 𝑢 ∈ {−𝐾𝑎, ...,−1, 0, 1, ...,𝐾𝑎}, 𝑣 ∈
{−𝐾𝑙, ...,−1, 0, 1, ...,𝐾𝑙}, 𝐾𝑎,𝐾𝑙 are the search radii, and 𝑊𝑎, 𝑊𝑙 represent the window length
in both the axial and the lateral directions.
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Appendix C. 2D Normalized Cross Correlation

𝑅[𝑢, 𝑣] =
𝐴

𝐵 ⋅ 𝐶 , (C.1)

𝐴 =

𝑊𝑙/2∑
𝑗=−𝑊𝑙/2

𝑊𝑎/2∑
𝑖=−𝑊𝑎/2

(𝑠1[𝑖, 𝑗] ⋅ 𝑠2[𝑖+ 𝑢, 𝑗 + 𝑣]),

𝐵 =

√√√√⎷ 𝑊𝑙/2∑
𝑗=−𝑊𝑙/2

𝑊𝑎/2∑
𝑖=−𝑊𝑎/2

𝑠1[𝑖, 𝑗]2,

𝐶 =

√√√√⎷ 𝑊𝑙/2∑
𝑗=−𝑊𝑙/2

𝑊𝑎/2∑
𝑖=−𝑊𝑎/2

𝑠2[𝑖+ 𝑢, 𝑗 + 𝑣]2
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Appendix D

1D Sub-Sample Estimation

Given the discrete 1D pattern matching function 𝑅[𝑢], the coarse location of the best match
can be found in the discrete function (i.e. 𝑑 = argmax𝑢𝑅[𝑢]) within the sampling accuracy.
Sub-sample accuracy 𝛿 can then be achieved by fitting a local function or polynomial to discrete
coefficient values around the best match.

Given the largest sample of the discrete pattern matching function 𝑏 = 𝑅[𝑑], and its two
neighbours 𝑎 = 𝑅[𝑑− 1] and 𝑐 = 𝑅[𝑑+ 1], the estimated sub-sample shift 𝛿 (correlation peak
offset) and its corresponding correlation coefficient at the location 𝑑+ 𝛿 is given by:

𝛿 = −𝛽/𝛼, (D.1)

𝑅̂(𝑑+ 𝛿) = 𝑏/ cos(𝛽) (D.2)

For 1D cosine interpolation method (𝑓(𝑥) = 𝐴 cos(𝛼𝑥+ 𝛽)), where:

𝛼 = arccos(𝑎+ 𝑐/2𝑏), (D.3)

𝛽 = arctan((𝑎− 𝑐)/2𝑏 sin(𝛼)) (D.4)

and by:

𝛿 = (𝑎− 𝑐)/2(𝑎− 2𝑏+ 𝑐), (D.5)

𝑅̂(𝑑+ 𝛿) = 𝑎(𝛿)(𝛿 − 1)/2 (D.6)

−𝑏(1 + 𝛿)(𝛿 − 1)
+𝑐(1 + 𝛿)(𝛿)/2.

for 1D parabolic interpolation method (𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥+ 𝑐).
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Appendix E

2D Sub-Sample Estimation

By fitting a local 2D function to discrete coefficient values around the best match (i.e. [𝑑𝑎, 𝑑𝑙] =
argmax𝑢,𝑣 𝑅[𝑢, 𝑢]), sub-sample accuracy in both directions (i.e. 𝛿𝑎, 𝛿𝑙) can be achieved by
locating the exact value of the best match in the fitted 2D function.

E.0.1 2D Paraboloid Fitting

The following non-separable 2D polynomial 𝑓(𝑥, 𝑦) = 𝑎+𝑏𝑥+𝑐𝑦+𝑑𝑥𝑦+𝑒𝑥2+𝑓𝑦2 can be fitted
to the eight points discrete pattern matching function around its maximum (i.e. (𝑑𝑎, 𝑑𝑙)) using
least squares fit according to (E.1). Each row in the 9×6 𝐴 matrix in (E.1) comes from setting
𝑥, 𝑦 equal to their relative position with respect to the center (i.e. 𝑥, 𝑦 ∈ {−1, 0, 1}) and each
element in the 9× 1 is the matching coefficient corresponding to the same location. The term
(𝐴𝑇𝐴)−1𝐴𝑇 in (E.1) can be computed in advance and stored in memory for subsequent use.
The location of the maximum of this fitted 2D paraboloid is found by setting ∇𝑓(𝑥, 𝑦) = 0,
leading to:

𝛿𝑎 =
2𝑏𝑓 − 𝑑𝑐

𝑑2 − 4𝑒𝑓 ,

𝛿𝑙 =
2𝑒𝑐− 𝑏𝑑

𝑑2 − 4𝑒𝑓 . (E.3)

E.0.2 2D Polynomial Fitting

Similarly to the above method, the following non-separable 2D polynomial 𝑓(𝑥, 𝑦) = 𝑎+ 𝑏𝑥+
𝑐𝑦 + 𝑑𝑥𝑦 + 𝑒𝑥2 + 𝑓𝑦2 + 𝑔𝑥𝑦2 + ℎ𝑥2𝑦 + 𝑖𝑥2𝑦2, resulted from multiplying [1, 𝑥, 𝑥2] and [1, 𝑦, 𝑦2]
terms, can be fitted to the discrete pattern matching function using the eight points around its
maximum (i.e. (𝑑𝑎, 𝑑𝑙)) according to the (E.2). Each row in the 9× 9 𝐴 matrix in (E.2) comes
from setting 𝑥, 𝑦 equal to their relative position with respect to the center (i.e. 𝑥, 𝑦 ∈ {−1, 0, 1})
and each element in the 9× 1 is the matching coefficient corresponding to the same location.
Similarly to the above method, the inverse of the 9× 9 matrix in (E.2) can be computed once
and stored in memory for subsequent use. The location of the maximum of this fitted 2D
polynomial can be found using a variety of iterative techniques. We use Newton’s method:

[
𝑥
𝑦

]𝑘+1
=

[
𝑥
𝑦

]𝑘
−
[

∂2𝑓
∂𝑥∂𝑥

∂2𝑓
∂𝑥∂𝑦

∂2𝑓
∂𝑦∂𝑥

∂2𝑓
∂𝑦∂𝑦

]−1 [
∂𝑓
∂𝑥
∂𝑓
∂𝑦

]∣∣∣∣∣𝑥=𝑥𝑘

𝑦=𝑦𝑘

(E.4)

where 𝑘 = 0, 1, ..., 𝑛 is the index of the iteration, 𝑛 is the maximum number of iterations, and
𝛿𝑎 = 𝑥𝑛, 𝛿𝑙 = 𝑦𝑛. The stopping criterion for Newton’s method for estimating the maximum of
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Appendix E. 2D Sub-Sample Estimation

⎡
⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐
𝑑
𝑒
𝑓

⎤
⎥⎥⎥⎥⎦ = (𝐴𝑇𝐴)−1𝐴𝑇

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅[𝑑𝑎 − 1, 𝑑𝑙 − 1]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 0]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 − 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 0]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 − 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 0]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 1 1
1 0 −1 0 0 1
1 1 −1 −1 1 1
1 −1 0 0 1 0
1 0 0 0 0 0
1 1 0 0 1 0
1 −1 1 −1 1 1
1 0 1 0 0 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐
𝑑
𝑒
𝑓
𝑔
ℎ
𝑖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 1 1 −1 −1 1
1 −1 0 0 1 0 0 0 0
1 −1 1 −1 1 1 −1 1 1
1 0 −1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0
1 1 −1 −1 1 1 1 −1 1
1 1 0 0 1 0 0 0 0
1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅[𝑑𝑎 − 1, 𝑑𝑙 − 1]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 0]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 − 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 0]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 − 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 0]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.2)

the 2D polynomial was set to be ∥∥∥∥∥
[
∂𝑓

∂𝑥
,
∂𝑓

∂𝑦

]
𝑥=𝑥𝑘

𝑦=𝑦𝑘

∥∥∥∥∥ < 10−5, (E.5)

where ∥.∥ is the Euclidean norm. In all the simulations this criterion was met in less than five
iterations (i.e. 𝛿𝑎 = 𝑥5, 𝛿𝑙 = 𝑦5 in (E.4)).
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Appendix F

3D Normalized Cross Correlation

Given a pair of sampled signals 𝑠1[𝑖, 𝑗, 𝑘] and 𝑠2[𝑖, 𝑗, 𝑘], their normalized correlation is de-
fined by (F.2), where 𝑢, 𝑣, 𝑤 are integers 𝑢 ∈ {−𝐾𝑎, ...,𝐾𝑎}, 𝑣 ∈ {−𝐾𝑙, ...,𝐾𝑙}, and 𝑤 ∈
{−𝐾𝑒, ...,𝐾𝑒}, 𝐾𝑎,𝐾𝑙, and 𝐾𝑒 ∈ ℕ

+ are the search radii, and 𝑊𝑎, 𝑊𝑙, and 𝑊𝑒 represent the
window lengths in axial, lateral, and elevational directions.
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Appendix F. 3D Normalized Cross Correlation

𝑅[𝑢, 𝑣, 𝑤] =
𝐴

𝐵 ⋅ 𝐶 , (F.1)

𝐴 =

𝑊𝑒/2∑
𝑘=−𝑊𝑒/2

𝑊𝑙/2∑
𝑗=−𝑊𝑙/2

𝑊𝑎/2∑
𝑖=−𝑊𝑎/2

(𝑠1[𝑖, 𝑗, 𝑘] ⋅ 𝑠2[𝑖+ 𝑢, 𝑗 + 𝑣, 𝑘 + 𝑤]),

𝐵 =

√√√√⎷ 𝑊𝑒/2∑
𝑘=−𝑊𝑒/2

𝑊𝑙/2∑
𝑗=−𝑊𝑙/2

𝑊𝑎/2∑
𝑖=−𝑊𝑎/2

𝑠1[𝑖, 𝑗, 𝑘]2,

𝐶 =

√√√√⎷ 𝑊𝑒/2∑
𝑘=−𝑊𝑒/2

𝑊𝑙/2∑
𝑗=−𝑊𝑙/2

𝑊𝑎/2∑
𝑖=−𝑊𝑎/2

𝑠2[𝑖+ 𝑢, 𝑗 + 𝑣, 𝑘 + 𝑤]2
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Appendix G

3D Polynomial Fitting

The following 3D polynomial with 10 coefficients:

𝑓10(𝑥, 𝑦, 𝑧) = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦 + 𝑎4𝑧 + 𝑎5𝑥𝑦 (G.1)

+𝑎6𝑥𝑧 + 𝑎7𝑦𝑧 + 𝑎8𝑥
2 + 𝑎9𝑦

2 + 𝑎10𝑧
2,

can be fitted to the 27 points discrete pattern matching function around its maximum (i.e.
[𝑑𝑎, 𝑑𝑙, 𝑑𝑒]) using a least-squares fit using (G.2) and (G.3). Each row in the 27 × 10 matrix
in (G.3) is derived by setting 𝑥, 𝑦, and 𝑧 equal to their relative positions with respect to the
center (i.e. 𝑥, 𝑦, 𝑧 ∈ {−1, 0, 1}) in the equation for 3D polynomial (i.e. 1, 𝑥, 𝑦, ..., 𝑧2) and the
values in the 27×1 in (G.2) are the matching coefficients corresponding to these locations. The
term (𝐴𝑇𝐴)−1𝐴𝑇 in (G.3) can be computed in advance and stored in memory for successive
use. Other 3D polynomials can also be fitted to the data using the same approach.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (𝐴𝑇𝐴)−1𝐴𝑇

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅[𝑑𝑎 − 1, 𝑑𝑙 − 1, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 0, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 1, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 − 1, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 0, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 1, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 − 1, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 0, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 1, 𝑑𝑒 − 1]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 − 1, 𝑑𝑒]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 0, 𝑑𝑒]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 1, 𝑑𝑒]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 − 1, 𝑑𝑒]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 0, 𝑑𝑒]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 1, 𝑑𝑒]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 − 1, 𝑑𝑒]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 0, 𝑑𝑒]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 1, 𝑑𝑒]

𝑅[𝑑𝑎 − 1, 𝑑𝑙 − 1, 𝑑𝑒 + 1]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 0, 𝑑𝑒 + 1]
𝑅[𝑑𝑎 − 1, 𝑑𝑙 + 1, 𝑑𝑒 + 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 − 1, 𝑑𝑒 + 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 0, 𝑑𝑒 + 1]
𝑅[𝑑𝑎 + 0, 𝑑𝑙 + 1, 𝑑𝑒 + 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 − 1, 𝑑𝑒 + 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 0, 𝑑𝑒 + 1]
𝑅[𝑑𝑎 + 1, 𝑑𝑙 + 1, 𝑑𝑒 + 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(G.2)
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Appendix G. 3D Polynomial Fitting

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 1 1 1 1 1 1
1 −1 0 −1 0 1 0 1 0 1
1 −1 1 −1 −1 1 −1 1 1 1
1 0 −1 −1 0 0 1 0 1 1
1 0 0 −1 0 0 0 0 0 1
1 0 1 −1 0 0 −1 0 1 1
1 1 −1 −1 −1 −1 1 1 1 1
1 1 0 −1 0 −1 0 1 0 1
1 1 1 −1 1 −1 −1 1 1 1
1 −1 −1 0 1 0 0 1 1 0
1 −1 0 0 0 0 0 1 0 0
1 −1 1 0 −1 0 0 1 1 0
1 0 −1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0
1 1 −1 0 −1 0 0 1 1 0
1 1 0 0 0 0 0 1 0 0
1 1 1 0 1 0 0 1 1 0
1 −1 −1 1 1 −1 −1 1 1 1
1 −1 0 1 0 −1 0 1 0 1
1 −1 1 1 −1 −1 1 1 1 1
1 0 −1 1 0 0 −1 0 1 1
1 0 0 1 0 0 0 0 0 1
1 0 1 1 0 0 1 0 1 1
1 1 −1 1 −1 1 −1 1 1 1
1 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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