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ABSTRACT 

The success of the 3D technology and the speed at which it will penetrate the 

entertainment market will depend on how well the challenges faced by the 3D-

broadcasting system are resolved. The three main 3D-broadcasting system components 

are 3D content generation, 3D video transmission and 3D display. One obvious challenge 

is the unavailability of a wide variety of 3D content. Thus, besides generating new 3D-

format videos, it is equally important to convert existing 2D material to the 3D format. 

This is because the generation of new 3D content is highly demanding and in most cases, 

involves post-processing correction algorithms. Another major challenge is that of 

transmitting a huge amount of data. This problem becomes much more severe in the case 

of multiview video content.  

This thesis addresses three aspects of the 3D-broadcasting system challenges. 

Firstly, the problem of converting 2D acquired video to a 3D format is addressed.  

Two new and efficient methods were proposed, which exploit the existing relationship 

between the motion of objects and their distance from the camera, to estimate the depth 

map of the scene in real-time. These methods can be used at the transmitter and receiver-

ends. It is especially advantageous to employ them at the receiver-end since they do not 

increase the transmission bandwidth requirements. Performance evaluations show that 

our methods outperform the other existing technique by providing better depth 

approximation and thus a better 3D visual effect.  
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Secondly, we studied one of the problems caused by unsynchronized zooming in 

stereo-camera video acquisition. We developed an effective algorithm for correcting 

unsynchronized zoom in 3D videos.  The proposed scheme finds corresponding pairs of 

pixels between the left and right views and the relationship between them. This 

relationship is used to estimate the amount of scaling and translation needed to align the 

views. Experimental results show our method produces videos with negligible scale 

difference and vertical parallax.    

Lastly, the transmission of 3D-content problem is addressed and two schemes for 

multiview video coding (MVC) are proposed. While both methods outperform the current 

MVC standard, one of them introduces significantly less random access delay compared 

to the MVC standard. 
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CHAPTER 1: INTRODUCTION AND OVERVIEW 

1.1 Introduction 

The history of three-dimensional television (3D TV) can be traced back to 1920s, 

when the first experimental 3D TV set-up was built [1].  Since then, several attempts 

have been made to introduce this technology into the market. Despite the immense 

keenness towards 3D, the great expectations of viewers, content providers and 

distributors were not fulfilled. The main drawbacks were the discomfort of the viewers 

(headaches, eyestrain) due to the poor quality content, the low-tech display systems and 

the high costs involved in the production and distribution of 3D content.  

Recently, 3D TV has received increased attention among researchers and 

technology developers. The showcase of advanced immersive 3D displays by major TV 

manufacturers in consumer electronics trade shows and the production of compelling 3D 

movies by Hollywood are evidence that the dream of watching 3D TV at home is not far 

from reality.  

Hollywood is at the forefront, leading the 3D technology revolution with a vested 

interest in seeing 3D succeed. Studios and content providers are aiming at an 

unprecedented 3D quality, far distant from the traditional fuzziness that has been 

indicative of past 3D experience. To this end, Hollywood has pioneered many new 3D 

initiatives, including the gathering of various stakeholders, defining standards and 

funding research. 3D films have greater returns at the box office due to their higher 

admission rates, since consumers have proved to be willing to pay more for the enhanced 
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3D experience. In fact, most films do not break even at the theatres and more than 60% of 

Hollywood’s revenue comes from home entertainment, i.e., DVD sales and rentals [2]. 

The studios have not only been vocal about their desire for the development of 3D for 

home, but they have also backed this assertion with partnerships, investments and 

development. These investments and commitments to 3D technology at the theatre level 

ensure that there will be 3D content readily available for home consumers. 

The sports industry also has a keen interest in the development of 3D 

technologies. 3D is especially applicable to sports broadcasts since it adds an immersive 

experience, allowing viewers to feel like they are in the actual stadium. A selling point 

for tickets to sporting events is the atmosphere, action, and pace of the game, which 

cannot be recreated at home on television. 3D technology is much better equipped to 

provide a new perspective of sports in action and bring a stadium-like experience to the 

household. 3D broadcasts are also attractive for sports leagues since they provide an 

alternate revenue stream, which can be priced at a premium.  

Market studies predict that 30 million 3D television sets will reach US households 

by 2012; this number translates to 9% of the entire US TV market [3]. Canadian 

Communications Research Centre (CRC) speculates that 3D television will be the next 

major innovation in the television market [4].  

3D TV can enormously enhance the viewer’s experience by allowing the on-

screen images to emerge and penetrate into the spectator’s space. The ultimate version of 

3D TV, known as Free viewpoint TV (FTV), provides TV viewers with interactive 

features that allow the viewer to adjust the 3D depth perception based on his/her 

preferences and also choose a viewing angle within a visual scene (free navigation).  
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Over the years, a consensus has been reached that a successful introduction of 3D 

TV broadcast services can only be a lasting success if the perceived image quality and the 

viewing comfort are better than those of conventional 2D television. This is becoming 

increasingly feasible because of the recent advances in capturing, coding, and display 

technologies, the three key components of a future 3D TV broadcast chain (see Figure 

1.1). 

 

Figure 1.1 Future 3D TV broadcast chain. 

In the remainder of this chapter, we provide a brief background on the 3D human 

visual system, followed by a comprehensive overview of the three components of the 3D 

TV broadcast chain (3D content generation, 3D video coding and 3D display systems) 

and the existing challenges. Subsequently, the thesis statement and our research 

objectives are discussed. At the end, we summarize our research contributions. 
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Figure 1.2 3D visual depth perception (http://www.strabismus.org).  

1.2 The Human 3D Visual System 

Human depth perception is based on a combination of many visual cues as well as 

internal mental templates and expectations. For most people, the 3D depth perception is 

realized by two slightly different images being projected on the left and right eye retinas 

(binocular parallax), each represents a slightly different viewpoint. The brain fuses the 

two images to give the depth perception. The viewer then sees one solid scene instead of 

two slightly different projections (see Figure 1.2). The perceived image with depth 

contains all the information present in the two individual viewpoint images. It also 

conveys something else that is not present in either of them: an intrinsic feeling of depth, 

distance and solidity. The differences between the left and right eye viewpoint images 

arise because an object in a scene will not fall in the same spot in both images. This 

relative displacement is according to the object’s distance from the viewer (this 

displacement is referred as disparity).  
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Although the binocular parallax is the most dominant cue for depth perception, 

there exist many other depth cues known as monocular depth cues, which do not require 

the observer to have two eyes to perceive depth. Over the years, the human brain has 

been trained to perceive depth using these cues. Below, we list a number of such 

monocular depth cues [5, 6]: 

Relative size: If two objects in a scene are known to have the same size (observer’s priori 

knowledge) but they are located at different distances from the observer, then the 

projection of the near object onto the observer’s retina will be larger than the projection 

of the far object.  In addition, an object with a larger size may appear smaller than a 

smaller object, if it is located at a much further distance from the observer.  

Motion parallax: The relative motion between the viewing camera and the observed 

scene provides an important cue to depth perception: near objects move faster across the 

retina than distant objects do. This motion may be seen as a form of “disparity over 

time”, represented by the concept of motion field.  

Occlusion (Interposition): The principle of depth-from-occlusion has its roots in the 

phenomenon that an object which overlaps or partly obscures our view of another object 

is considered to be closer. Occlusion is also known as interposition and offers rich 

information in relative depth ordering of the objects.  

Light and shade: They provide a clue of the relative position of objects in all imagery 

recorded from the real world, mainly photographs and video material. Shadows also form 

occlusion (occlusion is also monocular depth cue). 
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Texture gradient: Texture gradient is another depth cue since the face-texture of a 

textured material (such as fabric or wood) is more apparent when it is closer.  

Haze (Atmosphere scattering): Haze happens when the direction and energy of light 

propagation through the atmosphere is altered due to diffusion caused by small particles 

in the atmosphere. As a result, the distant objects visually appear less distinct and more 

bluish (the atmosphere scatters red light) than objects nearby. 

Perspective: An objects appear to be getting gradually smaller as it gets further away 

from the observer. Also, parallel lines, such as railroad tracks, appear to converge with 

distance, eventually reaching a vanishing point at the horizon. 

1.3 3D Content Generation 

Currently there does not exist an industry-wide accepted mastering standard 

regarding the format of 3D content. Consumer electronics companies are thus delivering 

various 3D technologies with incompatible formats. This industry fragmentation and lack 

of standardization has hold back the development of 3D technologies. Standardization is 

one of the key components needed for the successful development and employment of 

3D. To this end, Hollywood has spearheaded efforts to implement standards through the 

Society of Motion Picture and Television Engineers (SMPTE), the leading technological 

group in Hollywood. SMPTE has created a task force to discuss possible standards for 

3D content. The goal is to make 3D system backward compatible with present 2D 

system, scalable and deliverable over cable, satellite, disk, and the Internet. SMPTE 

delivered their report in April 2009. The report defines guidelines for the mastering 

standard, which will be used by 3D developers. Using these guidelines, SMPTE hopes to 
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define the core standards by this summer (2010) [7]. The same society also hopes to work 

with other standards development organizations to develop the standards for 

complementary products, to ensure compatibility from end to end [7]. It is expected that 

these interoperable standards are implemented across the industry within two years [7]. 

In general, there are four types of 3D content generation as shown in Figure 1.1: i) 

the stereoscopic dual-camera approach, which results in two separate views (left and 

right), ii) the 3D depth-range camera approach, which generates a 2D image plus a depth 

map, iii) the 2D-to-3D video conversion approach, which converts existing 2D video 

material into stereoscopic 3D by estimating a depth map from the 2D video sequence and 

subsequently rendering the left and right sequences, and iv) the multiview video camera 

approach. The following subsections present an overview of the different schemes for 3D 

content generation. 

1.3.1 Stereoscopic dual-camera approach 

In stereoscopic videos, the function of the retinas in the visual system is mimicked 

by the lenses of two identical synchronized cameras, which record the left-eye and the 

right-eye views from two slightly different perspectives (see Figure 1.3). Then, when the 

viewer watches stereo videos, the recorded right and left view images are projected on 

the viewer’s eyes and the brain reconstructs the third dimension by combining the 

received visual information.  The configuration of the cameras can be parallel (with axial 

offset of the imaging sensor) or toed-in (where the cameras are angled in). However, to 

eliminate keystone distortion and depth plane curvature, the parallel camera configuration 

is preferred (see [8] for more details). 
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Stereo ImagesStereo Images  

Figure 1.3 Stereoscopic camera setup. 

The production of stereoscopic dual-camera video is highly demanding. Two 

cameras should be configured so that the contrast, brightness, colour, and sharpness of 

captured images are the same or within a very tight tolerance to prevent eyestrain and 

headache for the viewer [9]. In addition, the cameras need to be properly calibrated so 

that the disparity introduced to the viewer is similar to the one he/she receives from the 

actual scene. This consensus should be satisfied even when visual effects such as zoom-in 

or zoom-out occur. This is very challenging in the case of 3D. For example, an increased 

zoom-in may break the 3D effect in the sense that viewers become unable to fuse the 

right and left view images.  

1.3.2 3D depth-range camera approach  

An approach to cope with some of the limitations of stereoscopic dual-cameras, is 

to exploit 3D depth-range cameras. These cameras capture 3D content as two video 

sequences: a conventional 2D-RGB view and its synchronized depth map [9]. As shown 

in Figure 1.4, for each image point in the depth map image, the depth information is 

stored as an 8-bit number (between 0 and 255). The closer the object is, the greater this 

number is. This format allows easy capturing, simplifies the postproduction, and requires 

a lower transmission bandwidth compared to the dual-camera configuration.  
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Depth Map 2D Video 

 

Figure 1.4 3D Depth-range camera. 

The disadvantage of this approach is that in order to watch the 3D content 

captured by a 3D depth-range camera, the left- and right-eye views must be reconstructed 

at the receiver end. This is achieved using depth image-based rendering (DIBR) 

techniques [10, 11]. Rendering techniques create two images, one for each eye, in such a 

way that 1) when independently viewed they present an acceptable image to the visual 

cortex and 2) when simultaneously watched the viewer can fuse both images and 

perceive the depth information of the scene as if he/she is viewing a real scene. One 

potential problem here is estimating the image information of areas that are present in one 

of the stereo images and occluded in the other [10, 11]. The other issue is related to the 

conflict of depth cues in a sense that during rendering one cue may become dominant and 

it may not be the correct/intended one. As a result, the depth perception will be 

exaggerated or reduced. This means that watching the rendered images will be 

uncomfortable and in some cases the stereo pairs may not fuse at all (i.e., the viewer 

would see two separate images). 

Examples of 3D depth-range cameras are the AXI-Vision developed by NHK, and 

the Zcam manufactured by 3DV Systems [12, 13].  
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1.3.3 2D to 3D video conversion approach 

It is widely accepted that the success of the 3D technology and its market 

penetration will directly depend on the availability of 3D content. It is probably not 

realistic (in the introduction phase of 3D TV) to assume that the need for 3D content can 

be satisfied only with new-recorded materials. One alternative solution is the conversion 

of existing 2D popular movies and documentaries into 3D format to be watched on 3D 

screens. Successful implementation of such an approach will also create a new market 

opportunity for content owners and providers to resell their existing products. It is 

because of these reasons that 2D to 3D conversion has recently received a lot of attention 

by the research and industry communities.  

Converting 2D content to 3D video streams is possible if the depth information is 

estimated from the original 2D video sequence. Having the depth information along with 

the 2D video, 3D video content can be created using the DIBR techniques as discussed in 

subsection 1.3.2.   

Conversion of existing 2D video materials to 3D is a very challenging task. Depth 

map estimation techniques try to use monocular depth cues and imitate the human visual 

system when estimating the distance between objects. The difficulty of this task is the 

absence of the binocular parallax information, which is the most dominant cue for depth 

description. Depth map estimation techniques generally fall into one of the following 

categories:  manual, semi automatic and automatic. For the manual methods, an operator 

would manually draw the outlines of objects that are associated with an artistically 

chosen depth value. As expected, these methods are extremely time consuming and 
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expensive. For this reason, semi-automatic [14, 15] and automatic techniques [16-24] are 

preferred for depth map estimation.  

1.3.4 Multiview video camera approach 

The multiview video camera approach involves capturing the scene from multiple 

viewpoints with a setup of N synchronized cameras (see Figure 1.5). The configuration 

concerns of this approach are similar to those of the stereoscopic dual-camera approach, 

with the exception that there are N synchronized cameras rather than two. In this case, 

several people can watch 3D videos from slightly different viewing angles. Ultimately, 

we would like to offer the viewer the opportunity to choose his/her preferred viewing 

angle (free viewpoint TV). To achieve this, we need to have a high camera density (large 

N) and the ability to accurately interpolate any possible view in-between using the 

camera parameters [25, 26].  

Figure 1.5 shows a set-up of multiview video cameras in a circular arrangement 

(there are different arrangements depending on the application) and virtual cameras 

(representing synthesized intermediate views). In general, the quality of the intermediate 

views increases as the number of available cameras increases. This is because more 

original image information becomes available as the number of cameras increases. On the 

other hand, the use of more cameras increases the capturing and processing expenses but 

improve the quality of the interpolated views (an obvious trade-off between cost and 

quality). 
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Virtual Cameras
Virtual Cameras

 

Figure 1.5 Multiview video camera configuration (circular arrangement). 

1.4 3D Video Coding 

As discussed in subsection 1.3, there are different types of 3D video generation 

represented by different types of raw data. Coding and compression of these data form 

the next block in the 3D video processing chain, and that is the scope of this subsection. 

Many different compression techniques have been proposed over the years. In the 

following subsections we summarize these techniques under three categories: 1) depth-

based coding, 2) multiview video coding and 3) multiview video plus depth coding. In 

the first category, the depth-based coding targets 3D content in the form of 2D video plus 

depth recorded by depth-range cameras or generated by 2D to 3D video conversion 

techniques. In the second category, the multiview video coding targets stereoscopic 3D 

(two views) and multiview video content. In the third category, multiview video plus 

depth coding focuses on compression of multiview videos and the corresponding depth 

maps for FTV applications (depth information is transmitted for synthesizing 

intermediate views). 
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1.4.1 Depth-based coding   

Researchers have put much effort in recent years in developing efficient 

compression techniques for 2D video sequences. The same techniques can be applied to 

compress 3D content. Experiments on compression of 3D content in the form of a 2D 

video stream and a depth map sequence show the following: if MPEG-2 is used to 

compress both streams, the transmission of the depth map stream increases the required 

bandwidth of 2D video stream by 20% (at a typical broadcast bitrate of 3 Mbit/s for 2D 

video) [27]. If the H.264/AVC standard is used instead, the required bandwidth increases 

by only 8% [27, 28]. Higher compression ratios can be however achieved by better 

exploiting the features of the depth data. For example, Grewatsch et al. took advantage of 

the existing correlation between the 2D video sequence and the depth map sequence and 

used the motion vectors (MVs) obtained for the 2D video sequence (based on MPEG-2 

standard) to encode the depth map sequence [29]. Another technique [30] improved on 

[29] by implementing the same concept using the H.264 standard and selectively 

choosing 2D MVs for coding the depth map sequence.   

1.4.2 Multiview video coding  

One major challenge with multiview video applications is the transmission of 

huge amount of data, which requires the development of highly efficient coding schemes. 

Another challenge is that any compression scheme designed specifically for multiview 

video streams should support random access functionality, i.e., allowing viewers to 

access arbitrary views with minimum time-delay (one of the promises of future FTV). 

A straightforward approach for coding multiview video content is simulcast 

coding. This compresses each video stream independently. While this scheme exploits 
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temporal and spatial correlations within each stream, it does not benefit from the existing 

correlation between the different views. Multiview sequences show a scene from many 

different viewing angles, which means that there is a high possibility of inter-view 

correlation between the multiple streams. The existence of this multiple correlation 

makes multiview video coding have a different structure from single-view coding 

techniques. To address this issue, in December 2001, the ISO/IEC Moving Pictures 

Experts Group (MPEG) established an ad hoc group (AHG) on 3D Audio Visual (3DAV) 

with a mandate to evaluate and standardize a new technology that extends the capabilities 

of existing MPEG standards in terms of creating visual 3D impression with interactive 

features [31]. The investigations by 3DAV AHG showed that H.264 is the most efficient 

one in terms of compressing 3D content among all existing MPEG standards. Following 

that, MPEG issued a “Call for Proposals on Multiview Video Coding (MVC)” which 

were evaluated in January 2005. This led to the development of a new, dedicated standard 

for MVC under ISO/IEC MPEG and the ITU-T Video Coding Experts Group (VCEG). 

The MVC standard was added as an extension to H.264/AVC (MPEG-4 Part10, 

Amendment 4) in July 2008 [32]. H.264/MVC enables efficient encoding of sequences 

captured simultaneously from multiple cameras for 3D TV applications. This standard 

uses hierarchical B pictures for each view and at the same time, applies inter-view 

prediction to every 2nd view, using already encoded frames from adjacent camera views.  

Figure 1.6 shows the prediction structure supported by the MVC standard which utilizes a 

hierarchical-B picture structure, involving an 8-view sequences and GOP-length of 8. 

The horizontal and vertical directions represent the temporal and spatial axes, 

respectively. As illustrated in Figure 1.6, H.264/MVC tries to predict the video frame 
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from a given camera using one or more video frames of neighboring-cameras (disparity 

estimation) in addition to the consecutive frames of the given camera stream (motion 

estimation). Performance evaluations show that this approach outperforms simulcast 

coding (coding each stream separately) by an average gain of 1.5 dB PSNR (or an 

average 20% compression ratio enhancement). The performance in this case strongly 

depends on the arrangement of the cameras (i.e., positioning and distance between 

cameras) [33].  

 
Figure 1.6 Prediction structure recommended by H.264/MVC. 

Although this inter-view prediction approach enhances the compression 

performance of MVC, it also introduces computational complexity and random-access 

delay.  Random access delay is measured based on the maximum number of frames that 

must be decoded in order to access a B-frame in the hierarchical structure. The access 

delay for the highest hierarchical order is given by: 

⎣ ⎦2)1(*2*3F maxmax −+= Nlevel  (1-1) 
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where levelmax is the highest hierarchical order and N is the total number of views. For 

instance, in order to access a B-frame in the 4th hierarchical order (B4-frames in Figure 

1.6), 18 frames (Fmax = 18) must be decoded. 

MVC is backward compatible with H.264/AVC, i.e., it allows existing 2D play-

back devices to decode only one of the two views of a stereoscopic video stream 

(ignoring the other one).  

1.4.3 Multiview video plus depth coding 

Current MPEG activities aim at establishing a standard for free viewpoint video 

(where a 3D viewpoint can be changed freely) by estimating the depth of the scene and 

synthesizing intermediate views. To this end, the multi-view video plus depth map 

approach is included in recent proposals and ongoing tests by the MPEG community. In 

this format, a depth image is estimated for each associated view of the multi-view videos.  

In compressing depth map sequences, maintaining the fidelity of the depth 

information is important, since the quality of the synthesised view is highly dependent on 

the accuracy of the geometric information provided by depth. Therefore, it is crucial to 

achieve a good balance between the fidelity of depth data and the associated bandwidth 

requirements. As reported in [34], the rate used to code the depth map stream with pixel-

level accuracy could be quite high and of the same order as that of texture video. 

Experiments were performed to demonstrate how the synthesised video quality varies as 

a function of the bit rate for both texture and depth videos. It was found that higher bit 
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rates were needed to code the depth data so that the view rendering quality around object 

boundaries is maintained. 

Various approaches have been considered in the literature to reduce the required 

bit rate for coding depth, while maintaining high view synthesis and multiview rendering 

quality. One approach is to code a reduced resolution version of the depth map using 

conventional compression techniques and then apply filtering to reconstruct high 

resolution depth map images [35,36]. This method could provide substantial rate 

reductions, but the filtering and reconstruction techniques need to be carefully designed 

to maximize quality. Another method is to code the depth based on the geometric 

representation of the data [37, 38]. A drawback of this scheme is that it appears difficult 

to extend it to video applications. An alternative multi-layered coding scheme for depth is 

suggested in [39]. The argument here is that the quality of depth information around 

object boundaries needs to be maintained with higher fidelity since it has a notable 

impact on subjective visual quality [18]. This scheme guarantees a near-lossless bound on 

the depth values around the edges while allowing lossy compression for the rest of 

regions. This method effectively improves the visual quality of the synthesized images by 

maintaining the accuracy of depth information around the edges.  

1.5 3D Displays 

Displaying 3D content is the last component of the 3D broadcasting chain. 

Although this part falls outside the scope of our thesis, we feel that a short overview of 

this topic will help the reader obtain a better understanding and appreciation of the 

present status of the 3D technology. The 3D displays fall into two categories: Binocular 
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(with active or passive glasses), and Autostereoscopic (without glasses) displays. The 

following subsections elaborate on the different 3D displays.  

Right Image Left ImageAnaglyph ImageAnaglyph Glasses Right Image Left ImageAnaglyph ImageAnaglyph Glasses  

Figure 1.7 Anaglyph glasses and anaglyph image. 

1.5.1 Binocular-with passive glasses 

1.5.1.1 Colour filtered-anaglyph  

Anaglyph is one of the first commercial methods for displaying 3D (year 1853). 

In anaglyph displays, the left and right eye images are filtered with near-complementary 

colors (red and green for Europe, red and blue for the USA). The right and left eye 

images are superimposed over each other (see Figure 1.7). The viewers are required to 

wear color-filter glasses to filter the images and perceive depth. This well-known and 

inexpensive method has been used for stereoscopic cinema and television, and is still 

popular for viewing stereoscopic images in print (magazines, etc.), since the approach 

readily lends itself to the production of hard copies. A serious limitation of this method is 

that color information is lost since it is used as a selection mechanism. Only limited color 

rendition is possible through the mechanism of binocular color mixture. The other 

drawback of this system is crosstalk. Crosstalk in a 3D display results in eyes seeing the 

wrong view (left eye sees the right view image and vice versa). On the actual display, 
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crosstalk is seen as double contour (ghosting) and is a potential cause of eyestrain and 

headaches [40, 41]. 

1.5.1.2 Polarized  

Polarization-based displays separate left and right eye images by means of 

polarized light. Left and right output channels (monitors or projectors) are covered by 

orthogonally oriented filters, using either linear or circular polarization. The polarized 

stereo images are projected and superimposed onto the same screen. The observer needs 

to wear polarized glasses to separate the different views again. When watching with 

glasses, since each lens passes only the light that is polarized in its polarizing direction 

and blocks the light polarized in the opposite direction, each eye sees its matching image 

and the observer perceives depth effect. 

Linear polarized glasses use vertical polarization on one lens and horizontal 

polarization on the other (see Figure 1.8). The 3D effect is perceived as long as the user’s 

head is kept straight. Tilting the head will break the 3D effect and some amount of 

ghosting or crosstalk may occur. 

Circularly polarized lenses are polarized clockwise for one eye and counter-

clockwise for the other (see Figure 1.8). This method of polarization will maintain the 3D 

effect if the head is tilted. 

The polarized-based display system offers good quality stereoscopic imagery, 

with full color rendition at full resolution, and very little crosstalk in the stereo pairs [40]. 

It is the system most commonly used in stereoscopic cinemas today. The most significant 
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drawback of this kind of system is the loss of light output due to the use of polarizing 

filters (which is more evident in circular polarization). 

 

Figure 1.8 Linear and circular polarizations (http://www.zalman.com). 

1.5.1.3 Spectrum filtered-Dolby 3D 

Dolby 3D uses Infitec technology which stands for interference filter technology. 

This system encodes left and right images by projecting each with a differently filtered 

spectrum of light. In this case the light is filtered differently for each view, but both the 

left and right spectrums appear as white light or near-white light (Figure 1.9). This 

differentiates Infitec from the anaglyph method which uses red filters for one eye and 

blue filters for the other. In Dolby’s implementation, the light path in the projector is 

modified with a filter wheel to achieve spectral division of the stereoscopic images (see 

Figure 1.9). Prior to projection, some color-balancing is applied to the image signal inside 

Dolby’s digital cinema server.  

Complementary spectral division glasses are worn by audience members for 

decoding the images so that left eye images are seen only by the left eye, and right eye 

images are seen by only the right eye. To accomplish this, Dolby’s glasses employ some 

50 layers of thin-film coatings to create the appropriate optical interference filters.  
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Figure 1.9 Dolby 3D. 

1.5.2 Binocular-with active glasses 

Shutter glasses are the most commonly used active 3D glasses. The lenses of 

shutter glasses are actually small LCD screens. When voltage is applied, the "shutters" 

close and the lens goes dark. This behaviour is synchronized with the screen displaying 

the 3D content, usually through an infrared transmitter. When the viewer looks at the 

screen through shuttering eyewear, each shutter is synchronized to occlude the unwanted 

image and transmit the wanted image. Thus, each eye sees only the appropriate 

perspective view. The left eye sees only the left view, and the right eye only the right 

view. On an LCD or LED television, this method of 3D displaying cuts the refresh rate in 

half and has been known to cause headaches for some people. To eliminate this problem, 

new display systems use a refresh rate double that of conventional displays (i.e. 120Hz 

rather than 60Hz).  
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1.5.3 Autostereoscopic displays 

Auto-stereoscopic displays apply optical principles such as diffraction, refraction, 

reflection and occlusion to direct the light from the different perspective views to the 

appropriate eye [40], allowing multiple users to watch 3D content at the same time 

without wearing specialized 3D glasses. This property makes them the best candidate for 

future consumer 3D TVs. One of the drawbacks of this system is that the resolution for 

each view drops as the number of views increases. The arrival of high resolution flat 

panel displays has made multiview applications more feasible [42]. The other important 

drawback of these systems is the fact that only under a limited horizontal viewing angle 

the picture will be perceived correctly.  

Historically, the two most dominant autostereoscopic techniques are based on 

parallax barriers and lenticular arrays, and these techniques are still popular today. The 

following subsections elaborate on parallax barriers and lenticular lenses. 

1.5.3.1 Parallax barrier  

 Parallax barrier displays are based on the principle of occlusion, where part of the 

image is hidden from one eye but visible to the other eye. As it can be observed in Figure 

1.10, at the right viewing distance and angle, each eye can only see the appropriate view, 

as the other view is occluded by the barrier effect of the vertical slits. Different 

implementations of this principle are available, including parallax illumination displays 

(where the opaque barriers are placed behind the image screen) and moving slit displays 

(use time-sequential instead of stationary slits). The main advantage of these displays is 

their backward compatibility in a sense that they can be switched to a 2D display mode. It 
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is imperative that 3D television technology should be compatible with conventional 2D 

television to ensure a gradual transition from one system to the other. 

Parallax barrier 
sheet

Parallax barrier 
sheet

 

Figure 1.10 Parallax barrier display. 

1.5.3.2 Lenticular lens  

Lenticular systems are based on the principle of refraction. As it can be observed 

from Figure 1.11, instead of using a vertical grating as with parallax barrier displays, an 

array (or sheet) of vertically oriented cylindrical lenses is placed in front of columns of 

pixels, alternately representing parts of the left and right eye view. Through refraction, 

the light of each image point is emitted in a specific direction in the horizontal plane. In 

what is known as the sweet spot of a display, left and right images can be delivered to the 

correspondent eye to create a 3D effect. Older, less sophisticated systems, required the 

viewer to sit at a specific distance and angle in order to properly view the image and 

avoid headaches and eyestrain. Current lenticular lens systems have corrected this by 

using a slanted lenticular sheet, allowing up to eight viewers to observe a 3D image with 

no ill effects.  
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Left image

Right image

Left image

Right image

 

Figure 1.11 Lenticular lens display. 

1.6 Specific Challenges in 3D Technology 

The success of the 3D technology and the speed at which it will penetrate the 

entertainment market depend on how well the SMPTE and MPEG Working Groups will 

be able synchronize the standardization efforts of the three key components: 1) 3D 

content generation, 2) coding and transmission and 3) playback. Although significant 

work has been done in recent years regarding each of these components, the resulting 

findings have only managed to expose the challenges laying ahead. The rest of this 

subsection briefly points out some of these challenges.  

In addition to the efforts for generating 3D movies and other content, the 

successful introduction of the 3D TV to the consumer market highly depends on the 

availability of 3D content. It is for this reason that an increased emphasis has been given 

to the conversion of existing 2D content to 3D format.   

2D to 3D video conversion is a very challenging task, since it requires the 

approximation of depth information of the scene based on monocular depth-cues. The 

quality of the approximated depth-map has direct effect on the quality of the rendered 3D 
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content. Thus, there is an obvious need for developing effective depth estimation 

methods. The success of depth estimation techniques strongly relies on how well they can 

imitate the human visual system in incorporating monocular depth cues in order to 

estimate the distance between different objects in a scene. Although several depth 

estimation methods have been proposed, the generation of high quality 3D content from 

2D video streams is still far from reality. Although one may think that there is no need for 

real-time conversion of existing 2D video content to 3D, there are advantages where such 

conversion is welcome. For instance, if 2D videos are transmitted and the 2D to 3D 

conversion is performed at the receiver side, then the required bandwidth will be reduced. 

In that case many real-time programs are broadcasted only in 2D (e.g., news and sports) 

can also be viewed in 3D. For this reason, there is a lot of emphasis on developing 

efficient real-time 2D to 3D methods for the decoder side. 

The generation of new 3D content, as discussed before, is highly demanding and 

requires both the producer and cameraman to be experts in 3D production and also 

understand the limitations of existing 3D technologies. To avoid fatigue and nausea, left 

and right pictures must be as identical as possible in terms of vertical shift, colour 

homogeneity and focus. In most cases, matching the above criteria is only possible by 

using post-processing correction algorithms.  

One of the shooting conditions that can degrade the perceived 3D quality is 

unsynchronized zooming of the dual cameras. Synchronizing the optical zooming of two 

identical cameras precisely is not an easy task. If the two cameras have different zoom 

factors, an object will have different sizes in the left and right views, and thus vertical 

parallax (vertical shift) will be introduced. This causes eyestrain and interferes with the 
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fusion of the two images. Correcting the unsynchronized zooming factor requires the 

development of an efficient post-processing algorithm.  

As already discussed in subsection 1.4, one of the major challenges of a 3D 

broadcast system is the huge amount of information needed to be transmitted. This 

problem is much more severe in the case of multiview video content. Although the 

developed MVC standard (H.264/MVC) is more efficient in compressing multiview 

video streams than simulcast coding (H.264/AVC), its prediction structure introduces 

random access delay and computational complexity (refer to equation 1-1). This hampers 

the random access functionality of Free viewpoint TV (FTV) because of the introduced 

time-delay when arbitrary views are accessed by viewers. A straightforward approach for 

facilitating random access is to increase the number of I and P frames, but this 

significantly reduces the compression efficiency. Thus, there is a tradeoff between 

compression performance and random access time-delay in the prediction structure 

suggested by H.264/MVC. Moreover, as experimental results show, the inter-view 

prediction structure of the MVC standard is more efficient in compressing multiview 

video streams captured by a camera setting where the cameras are close to each other 

compared to a set-up with large distances between the cameras [33]. The gain strongly 

depends on the original setting of the multi-camera arrangement: as the interval between 

cameras increases the disparity between the views increases. In such a case, inter-view 

prediction using frames from adjacent views may not be successful in reducing the inter-

view redundancies.  
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1.7 Thesis Objectives 

Based on the above discussions, the employment of a 3D TV broadcast service 

faces many challenges in terms of 3D-content generation, transmission and display. The 

objective of my thesis is to address some of these challenges, specially: 

1. To develop efficient real-time methods that can estimate the depth-map of any 

scene from compressed 2D video sequences. The goal is to design techniques, 

which can extract and utilize the monocular depth cues from the information 

in 2D video. Since the implementation of these methods is aimed to be carried 

at the receiver-side, it is important for these techniques to be of low 

computational complexity. 

2. To develop an efficient post-processing algorithm that can correct the 

unsynchronized zooming factor of the recorded 3D content by stereo cameras.  

3. To design an inter-view prediction structure for multiview video coding 

(MVC). MVC utilizes the correlation between adjacent streams as well as that 

within each stream. The designed interview-prediction structure should be 

effective in terms of compression efficiency as well as random access delay, 

two of the key factors required for future interactive multiview systems.  

1.8 Thesis Contributions 

The main contributions of this thesis are summarized as follows: 

• We designed a new and efficient method that estimates the depth map of a 

2D video sequence using the existing H.264/AVC estimated motion 

information. This method exploits the existing relationship between the 
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motion of objects and their distance (motion parallax) from the camera, to 

estimate the depth map of the scene. Our proposed method modifies the 

motion information based on the characteristics of the 3D visual perception. 

One advantage of the proposed approach is that it can be implemented in 

real-time at the receiver-end, thus the transmission bandwidth requirements 

are not increased.  Performance evaluations show that our method 

outperforms the other existing H.264 motion-based depth map estimation 

technique by providing better approximation for the scene’s depth map and 

thus a better 3D visual effect.  

• We then utilized color-texture segmentation to identify objects within the 

scene and estimate their motion (H.264/AVC estimated motion vectors are 

block-based). This further improves the quality and smoothness of estimated 

depth maps. Performance evaluation shows that this approach results in a 

higher quality and a smoother depth map compared to our previous 

approach. 

• We developed an effective algorithm for correcting unsynchronized zoom in 

3D videos.  The proposed scheme finds matching points (i.e., corresponding 

points) between the left and right views. The y coordinate of a matching pair 

in the synchronized zooming is identical. To correct the vertical parallax 

(vertical shift) introduced by the unsynchronized zoom, a least squares 

regression is performed on the y coordinates of all matching points. This will 

determine which view needs to be scaled and to estimate the amount of 

scaling and translation needed to align the views.  Experimental results show 



 

 29

our method produces videos with negligible scale difference and vertical 

parallax.    

• We developed a new prediction structure for coding multi-view camera 

sequences. In the MVC standard as shown in Figure 1.6, each block in a 

frame is predicted based on the blocks of the frames within the same stream 

(temporal and spatial prediction) or the blocks of corresponding frames from 

adjacent views (inter-view prediction). The frames which are used for 

predicting each block are called reference frames. Our proposed scheme 

constructs an extra reference frame, which is used to improve the inter-view 

prediction in the MVC standard (H.264/MVC). Later, our adaptive approach 

automatically re-sorts the reference frame list to prevent the use of extra bits 

for coding reference frame indices. Performance evaluations show that the 

proposed scheme is effective in compressing multiview streams due to its 

enhanced inter-view prediction structure.   

• We developed an efficient multiview video coding scheme with a new inter-

view prediction structure. Our MVC method has merits in terms of coding 

efficiency and random-access delay. These two capabilities will be required 

in future interactive multiview systems. Performance evaluations show that 

the proposed scheme outperforms H.264/MVC in terms of both compression 

efficiency and random-access delay. 
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1.9 Thesis Summary 

This is a manuscript-based thesis that follows the specifications required by the 

University of British Columbia for this format. In addition to this introductory chapter, 

the thesis includes four chapters two of which have been already published, one has been 

submitted and one is ready for submission to refereed academic journals and they all have 

been slightly modified in order to offer a logical progression in the thesis. Please note 

there is some redundancy between chapters because of the manuscript-based format of 

thesis. The final chapter discusses the conclusions and directions for future work. In what 

follows, we give a detailed summary for the following four chapters, i.e., chapters 2, 3, 4 

and 5, which include the main work/contributions that we have made in this thesis.  

In chapter 2, an efficient method that converts 2D video sequences to 3D is 

presented. This method utilizes the motion information between consecutive frames to 

approximate the depth map of the scene. To estimate the depth map, the horizontal 

motion captured by a single camera is revised and then approximated as the displacement 

between the right and left frames captured by the two cameras in a stereoscopic set-up 

case.  To enhance the visual depth perception, a non-linear scaling model is then applied 

to the modified motion vectors. The low complexity of our approach and its compatibility 

with future 3D systems, allows real-time implementations at the receiver-end for no 

additional bandwidth burden on the network. Performance evaluations show that our 

approach outperforms the existing H.264-based depth map estimation technique by up to 

1.84 dB PSNR, providing more realistic depth representation of the scene. Moreover, the 

subjective comparison of the results (obtained by viewers watching the generated stereo 

video sequences on a 3D display system) confirms the better performance of our method.  
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Chapter 3, presents an algorithm that improves the proposed 2D to 3D conversion 

scheme of chapter 2 using color-texture segmentation to identify objects and correct 

motion vectors accordingly. Our objective and more so the subjective evaluations show 

that the implementation of this approach improves the performance of our other method 

presented in chapter 2 by enhancing the quality of the estimated depth maps.  

In chapter 4, we first present a subjective study that shows the perceived quality 

of stereo video is greatly reduced when the two views were acquired using different 

zooming factors. Next, we present a method for correcting such zoom mismatches by 

cropping and scaling one of the two views, considering the direction of the zoom 

operation.  Our method involves finding matching points, i.e., corresponding points 

between the left and right views, and performing least-squares regressions to estimate the 

amount of scaling and cropping required to make the views consistent.  Experiments were 

performed on videos with digitally introduced zoom mismatch and videos with optical 

unsynchronized zoom. In both cases the results show that our method is highly accurate 

and produces videos without size differences or vertical parallax between the two views. 

In chapter 5, we present two efficient inter-view prediction structures for 

multiview video coding (MVC): an adaptive MVC and a panorama-based MVC. Our 

adaptive MVC algorithm synthesizes extra video streams and uses them as extra 

references when coding the original views. These streams are synthesized based on the 

already encoded frames from neighboring views and without requiring the scene’s depth 

information. The proposed scheme utilizes both motion and disparity compensation 

methods to exploit temporal and inter-view correlation within each view sequence and 

among views, respectively. To guarantee the best bitrate performance, the minimum 
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number of bits is used for coding the reference frame indices. To carry this effectively, 

our algorithm adaptively re-sorts the reference frame list.  

In the proposed panorama-based scheme, inter-view prediction (disparity 

estimation), which introduces time-consuming computations and random access delay to 

MVC, is replaced with a residue-stream coding process. Our algorithm transforms the 

middle view to a panoramic view of the scene. This is done by expanding each frame of 

the middle stream by adding the image information of the corresponding frames in the 

other streams. Then, the residue streams are created as the difference of the luma and 

chroma values of the overlapping regions of each view and the panoramic view. Finally, 

the panoramic stream and all the residue streams are encoded separately (simulcast 

coding). The hierarchical B picture prediction structure is implemented for coding each 

stream. 

Objective evaluations confirm that proposed coding methods result in better 

compression performance compared to the recent multiview video coding (H.264/MVC) 

standard. Our adaptive MVC scheme outperforms the standard MVC by up to 1 dB 

PSNR and enhances the compression ratio by 22.97% while our panorama-based MVC 

scheme enhances the compression ratio by 24.6% and the quality by up to 2.13 dB PSNR. 

The panorama-based MVC not only offers superior compression performance compared 

to the standard and adaptive MVC methods but it also reduces the random-access delay 

by 39%. 

Note that the notations used in the different chapters are independent of each 

other. 
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CHAPTER 2:  AN H.264-BASED SCHEME FOR 2D TO 3D 
VIDEO CONVERSION2 

2.1 Introduction 

The availability of three-dimensional television (3D TV) as a commercial product 

is not far from reality. 3D TV generates a compelling sense of physical real space for 

viewers by allowing on-screen scenes to emerge and penetrate into the viewers’ space.  

The successful introduction of 3D TV to the consumer market would not only rely 

on technological advances but also on the availability of a wide variety of 3D content. 

Thus, the creation of new 3D video content as well as the ability to convert existing 2D 

material to 3D format is of great importance. The latter depends on developing 2D-to-3D 

conversion tools capable of converting 2D video sequences into 3D ones. This would 

allow existing popular movies and documentaries to be watched on a 3D screen, and thus 

create a new market for content owners and providers. 

To display 3D content, at least two temporally synchronized video streams (for 

the right and left eyes) are required. These two streams can be captured by two 

synchronized cameras. Alternatively, they can be rendered from a 2D video stream and 

its corresponding depth map, using a process known as depth image based rendering 

(DIBR) [1]. Thus, in principle, the conversion of 2D content to 3D video streams is 

possible if the depth information could be derived from the original 2D video sequence.  

                                            
2 A version of this chapter has been published. Pourazad, M.T., Nasiopoulos, P., and Ward,R.K. (2009) An 

H.264-based Scheme for 2D to 3D Video Conversion. IEEE Transactions on Consumer Electronic, vol. 
55, no. 2, pp 742-748. 
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Depth map estimation techniques generally fall into one of the following 

categories:  manual, semi automatic and automatic. For the manual methods, an operator 

manually traces the outlines of objects that are associated with an artistically chosen 

depth value. As expected, these methods are extremely time consuming and expensive. 

For this reason, semi automatic and automatic techniques are preferred. These techniques 

are designed based on the visual depth perception mechanism. There are several factors 

(referred as monocular depth cues) such as light and shade, relative size, motion parallax, 

interposition (partial occlusion), textural gradient and geometric perspective, which help 

the viewer to perceive the relative distance of objects within a scene. In fact, the depth 

map estimation techniques try to generate binocular parallax (disparity) using monocular 

depth cues. 

A machine learning approach for estimating the depth map of 2D video sequences 

is proposed in [2]. Although the results of this approach are promising, it requires an 

operator to input the local depth information of some selected pixels with their color 

information. Extraction of depth from blur has also been explored [3]. The problem in 

this case is that depth is not the only cause of the blur in a picture. Other causes include 

motion, climate conditions and fuzziness of objects within a scene. There are also studies 

where depth values of the scene are obtained from edge information [4, 5]. 

The relationship between the distance of a moving object from the camera and its 

registered displacement in the captured consecutive frames (motion parallax) has also 

been utilized for estimating the depth map [6-8]. For objects traveling with the same 

speed, this approach assumes that the still camera always registers the closer objects as 

covering larger displacements (in pixel) than further objects. This approach is based on 
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the principle known as the Pulfrich effect [9, 10]. The Pulfrich effect is a psychophysical 

phenomenon wherein lateral motion of an object in the field of view is interpreted by the 

visual cortex as having a depth component, due to a relative difference in signal timings 

between the two eyes. To utilize this principle, the study in [8] uses modified  a time 

difference method (MTD) to detect horizontal motion of objects and determine the 

image-presentation time-delay to create a stereo pair. The MTD method does not work 

for images containing objects with complicated motion.  

The study in [6] uses color segmentation and the KLT (Kanade-Lucas-Tomasi) 

feature tracker to estimate motion information. Then, the depth map is approximated 

based on the motion information. In this approach, factors such as camera movement, 

scene complexity and the magnitude of estimated motion are used for converting motion 

information of each frame into depth map information. The complexity of motion 

information extraction in [6] does not allow real-time implementation of this technique. 

In [7], motion estimation is based on the H.264 standard, but uses fixed (rather than 

variable) block-size matching technique. This study assumes that the motion of every 

object is directly proportional to its distance from the camera, thus the depth map is 

approximated as a constant factor of the estimated motion. Unfortunately, this is only true 

for a relatively small part of real life footage (when the camera is panning across a 

stationary scene, or a still camera captures the scene with moving objects). Otherwise, 

when the objects and camera are both moving, there would be ambiguity in depth 

estimation based on motion information. The other issue in [7] is related to the accuracy 

of H.264-estimated motion vectors when they are used to derive the objects’ motion. The 

principle idea behind motion estimation process in H.264/AVC and other standards relies 
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on maximizing the compression performance and not on obtaining accurate estimates of 

the objects’ displacement in the scene. Thus, not all motion vectors can be used to 

accurately estimate the depth unless they reflect the objects’ displacement.  

In this paper, we present an effective scheme that finds an approximate depth map 

of the scene using the motion information of the recorded video. The relative motion 

between two consecutive frames is derived (by the H.264/AVC motion estimation 

process) at quarter pixel accuracy by a block matching technique where the block sizes 

are dynamically adjusted according to the video content. When a moving camera captures 

a scene with moving objects, our proposed scheme provides a solution to resolve the 

motion ambiguity problem for estimating the scene’s depth map.  

To resolve the issue regarding the accuracy of motion vectors, we propose an 

algorithm that examines the motion vectors and (whenever necessary) it properly 

modifies their values, to make sure the estimated motion vectors reflect the displacement 

of objects. Since the motion estimation procedure is based on the block-matching 

technique, there will be depth ambiguity between the foreground and the background at 

the object boundaries. For this reason, our algorithm re-evaluates and modifies the 

estimated values of the motion vectors of object-boundary pixels. Then, the absolute 

horizontal value of the estimated motion vectors are used as initial depth values. To 

enhance the visual depth perception, we propose to increase the contrast among the initial 

approximated depth values by using a non-linear scaling model. Finally, a DIBR 

technique is used to render the stereoscopic video sequences based on the approximated 

depth map and 2D video.  
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The rest of this paper is organized as follows. Section 2.2 elaborates on our 2D-to-

3D conversion scheme, followed by Section 2.3 which presents the performance 

evaluation of our scheme and discusses the results in detail. Section 2.4 presents the 

conclusions. 

2.2 Proposed 2D-TO-3D Conversion Scheme 

The visual depth perception relies upon the fact that when viewer watches a scene 

using both eyes, two slightly different images are projected on the left and right eye 

retinas, each from a slightly different viewpoint. Then the brain fuses the two images to 

give depth perception, and the viewer sees one solid scene instead of two slightly 

different projections. The perceived image with depth contains everything which is 

present in the two individual viewpoint images but adds something that is present in 

neither of them: an intrinsic feeling of depth, distance and solidity. 
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Figure 2.1 Stereo geometry for two identical parallel cameras. 

The differences between the left and right eye viewpoint images are due to the 

fact that objects are relatively displaced according to their distance from the viewer. In 

digital stereoscopic videos, where the function of the retina in the eye is taken over by the 
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lenses of two synchronized cameras, this displacement is referred as disparity. Figure 2.1 

illustrates a stereoscopic set up where two identical parallel cameras capture a scene-

point P. p and p' are the images of P as captured by the right (C) and left (C') cameras, 

respectively. x and x' are the coordinates of p and p', respectively. Z is the distance of 

point P from the cameras (depth), tc is the distance between the two cameras (baseline), 

and f is the focal length of cameras. x and x' are inversely proportional to the depth, Z. 

Also their difference (d), known as disparity, is inversely proportional to Z as follows 

[11]:  

Z
ft

xxd c=′−=  (2-1) 

This relationship shows that the depth of a point P can be easily obtained if the 

disparity d is known.  

For our case where the 2D scene captured by only one camera, we shall obtain the 

depth Z of a moving point P using the registered displacement that results from its 

motion. In other words, if the left and right side frames shown in Figure 2.1 are aligned in 

the time domain, then p and p' would be two consecutive images of point P when it 

moves. Since the time delay between two consecutive frames is small (as in the studies 

[6-8]), we assume that the displacement due to motion in the 2D case is equivalent to the 

disparity in a stereoscopic setup. Then, the depth of point P is obtained using (2-1) and 

the displacement (x−x') between two consecutive frames, is obtained using the 

H.264/AVC-estimated motion vectors. The following sub-sections provide detailed  

description of our proposed algorithm.  
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2.2.1 Motion vector estimation  

In our algorithm, the H.264/AVC motion vectors are used to estimate the 

displacement of objects in the scene. H.264/AVC-based motion vectors (MVs) are 

estimated using variable block sizes of 16x16, 16x8, 8x16, 8x4, 4x8 and 4x4 pixels, and 

quarter-pixel matching accuracy [12]. These two features of the H.264/AVC standard 

(i.e., variable block size and quarter-pixel matching accuracy) have been shown to yield 

motion vector precision that is far superior to that of any previous standards [12]. An 

additional advantage of using the H.264/AVC standard is its nomination as the platform 

for 3D TV applications [13]. In that regard, the proposed scheme will be compatible with 

future 3D networks and players, and thus could be implemented at the receiver-end where 

motion vectors will be readily available at no additional computational cost. The existing 

approach in [7] uses only 4x4 block sizes. Such an implementation will hinder a standard 

decoder in producing the necessary information. Any effort to force the encoder to use 

4x4 blocks will significantly decrease the compression performance, and will 

significantly increase the computational complexity of the overall system. 

Moreover, the use of small block-sizes results in many wrong matches due to 

ambiguities and noise, but has the advantage of preserving object shapes with relatively 

fine details. In contrast, the use of large block sizes cuts down on the wrong matches, but 

has the potential of blurring the objects boundaries [11]. For the above reasons, in our 

study, a variable block size is used to deal with the basic trade-off involved in selecting 

the best window size. 
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2.2.2 Camera motion correction   

One of the potential problems that may arise in motion-based depth estimation is 

depth ambiguity when both the objects and the camera are in motion. In this case, an 

object that is captured as if it has larger motion than others is not necessarily closer to the 

camera, since the camera may have moved in the opposite direction from the object. To 

resolve this issue, the camera motion needs to be estimated and the motion information 

registered by the camera should be corrected accordingly. 

In the case of camera panning, the estimated motion vectors of the stationary 

areas of a scene are equal to the motion of the camera. These stationary areas are often 

flagged by the H.264/AVC motion estimation process as ‘Skip Mode’. The ‘Skip Mode’ 

is used for the 16x16 blocks, where the motion characteristics of the block can be 

effectively predicted from the motion of its neighboring blocks, and the quantized 

transform coefficients of the block are all zeros. When a block is skipped, the 

transformed coefficients and the motion data are not transmitted, since the median of the 

motion vectors of the surrounding blocks, known as predicted motion vector (MVp), is 

used as the motion vector of the block.  

As long as there is no camera motion, the predicted motion vector of a skipped 

block is zero. Moreover, when camera panning is present, the predicted motion vectors of 

the skipped blocks are all equal to a unique non-zero value (which represents the camera 

motion). Since most of the skipped blocks over the entire frame are blocks that contain 

background areas, in our proposed scheme the predicted motion vector (MVp) with the 

maximum occurrence is used to estimate the value of camera motion. In order to find 

such a vector, we compute the histogram of MVps of the skipped blocks for each frame. 
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The MVp that corresponds to the maximum of the histogram is recognized as the camera 

motion (panning). The net motion of each object is extracted by subtracting the camera 

motion from the MVs of all blocks within the frame. This procedure cannot be 

accommodated in [7] since only 4x4 blocks are used and the size of the skip-mode blocks 

is 16x16. 

Besides panning, camera zoom-in/out can also cause depth ambiguity. To address 

this issue, we check the tendency of MVs, in the four corners of the frame to detect zoom 

in/out [6]. Then the estimated MVs are scaled accordingly [6]. Note that zoom-in/out 

may cause reverse depth or eye fatigue if not corrected in depth estimation. 

2.2.3 Correction of displacement estimates 

  H.264/AVC coding obtains the motion vectors by maximizing the compression 

performance rather than the accuracy of the estimated motion. Thus, two matching blocks 

related to a motion vector may not even contain the exact same object or part of the 

object in the scene. For such a case, the displacement of the object due to motion would 

not be correctly calculated using the obtained MV.  

To check if a motion vector points to the same object (or part of it) in two 

consecutive frames, our proposed scheme compares the motion of the block with that of 

its surrounding blocks. This is done by finding the difference between the MV of the 

block and the median MV of the neighboring blocks (MVm). If the difference is greater 

than a pre-defined threshold, the value of the MV is readjusted by making it equal to the 

MVm vector. This is necessary, unless the block includes the boundary pixels of a moving 

object. To determine if this is the case, the “residue frame” is computed as the difference 
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between the luma of the current frame (which includes the block) and that of the previous 

frame.  In this residual frame, the edges of moving objects appear thicker and with higher 

density compared to static objects and the background. If the variance of the 

corresponding block in the “residue frame” is greater than a predefined threshold, the 

estimated motion vector is not modified since it is considered to be part of a moving 

object’s border. Otherwise, for correction, the median of MVs of adjacent blocks is 

assigned as the estimated MV of the block.  

2.2.4 Displacement correction of object borders  

In our study, we use the absolute value of the horizontal component of the motion 

vectors (i.e., abs(MVx)) for estimating the depth map. This is because disparity is the 

horizontal displacement between the two camera images (as shown in Figure 2.1). Since 

all the pixels within each matching block are assumed to have the same amount of 

motion, the abs(MVx) is assigned to each pixel within a block. This assumption, however, 

is not valid for blocks that include both stationary background pixels and moving object 

pixels. For such blocks, a different procedure should be used, otherwise the resulting 

object borders in the 3D video constructed using the estimated depth may appear blurred, 

and small details or even entire objects may be removed.  

A computationally expensive solution is to perform pixel-based motion vector 

estimation for the object-border pixels. We propose an alternative solution which detects 

the blocks with non-zero motion vector, then, classifies each pixel within each of these 

blocks as a background pixel or an object pixel. This classification is achieved by first 

calculating the average luma intensity of the corresponding block in the “residue frame”. 

Then, the pixels within the block (in the current frame) whose corresponding pixels in the 
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“residue frame”  have luma intensities lower than the calculated average are marked as 

background pixels and the rest are marked as object pixels. The estimated abs(MVx) is 

assigned to the object pixels, while the background pixels are assigned the median of the 

abs(MVx) of the surrounding pixels that are not object pixels. The background pixels 

within the block might be utilized in the motion estimation process only if the updated 

abs(MVx) has been assigned to them. In our method, we start the motion correction 

procedure from the corner background pixels within the block to employ non-object 

pixels of the surrounding blocks in the process. This will result in more accurate motion 

vector estimates for background pixels located inside the blocks. After pixel-based 

motion vector estimation, the absolute horizontal value of the motion vector of each pixel 

is used as its initial depth value.  

2.2.5 Perceptual depth enhancement 

To enhance the visual depth perception, we propose applying a non-linear scaling 

model to the initial approximated depth values, i.e., abs(MVx)s. Since there is a non-

linear relation between visual depth perception (disparity) and the distance of an object, 

the proposed scaling factors are defined such that the further the object is, the smaller the 

scaling factor. This will increase the contrast among depth values and enhance the visual 

depth perception. 

In our model we assume that there are N uniformly spaced depth layers within a 

scene, i.e., within [Znear and Zfar]. A set of scaling factors is defined as: 
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where S is the scaling factor and i ranges from layer 0, which corresponds to Znear ( here 

i=0, S(0) = Zfar / Znear) to layer N-1 which corresponds to Zfar ( i=N-1, S(N-1) = 1). To 

generate the enhanced depth map, the estimated depth values, i.e., abs(MVx) are sorted 

and categorized to N uniformly spaced layers. If abs(MVx) belongs to the ith category, its 

value is scaled as follows:  

           )()( iSMVxabsD =  (2-3) 

where D is the enhanced depth value and S(i) is the scaling factor at the ith depth layer.  

Using the approximated depth map and the 2D video sequence, the stereoscopic 

pair images can be rendered via the depth-image-based rendering algorithm proposed in 

[1]. This algorithm includes a depth map smoothing process (using asymmetric Gaussian 

filter) to resolve the occlusion problem of depth image-based rendering. In our 

implementation, only the right-eye stream is rendered (based on the estimated depth map 

and the 2D video sequence), and the original 2D video is used as the left-eye stream [5]. 

2.3 Performance Evaluation 

The performance of our depth map estimation method is tested using two 2D 

video sequences known as “Interview” and “Orbi”. The true depth maps of the test 

streams have been captured by a 3D-depth range camera (Zcam) [14]. The 2D streams of 

Interview and Orbi are 10 seconds and 5 seconds long, respectively, with 720×576 pixels 

resolution and 4:2:2 YUV format. The depth consists of luma information only.    

In our experiments, the motion between two consecutive frames is estimated 

using the JM 12.2 version of the H.264/AVC standard.  
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We compare our method with the method presented in [7]. Since the recorded 

depth for each pixel is an integer number between 0 and 255 (where 255 represents the 

shortest distance from the camera), we assume there are 256 depth layers for the 

perceptual depth enhancement step, and also the estimated depth maps of both methods 

are normalized accordingly.  

(a) (b)

(h)(g)

(e)

(d)(c)

(f)

(a) (b)

(h)(g)

(e)

(d)(c)

(f)

 

Figure 2.2 2D video sequence (a and b), recorder depth map (c and d) estimated depth map by [7] (e and 
f), and estimated depth map by our approach (g and h). 
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Figure 2.2 shows a snap-shot of the original 2D stream, the original depth map, 

and the estimated depth maps generated by [7] and our approach. We observe that our 

approach generates a more realistic depth. However both techniques fail to estimate depth 

maps for static objects (e.g., the table in Figure 2.2). This, however, is the drawback of all 

motion-based depth estimation techniques. 

The visual quality of the resulting 3D video streams using our method and the one 

presented in [7] is subjectively tested against the original depth map based on the ITU-

Recommendation BT.500-11 [15]. Fifteen people graded the videos from 1 to 10 in terms 

of 3D visual perception and visual quality. The evaluation is performed using a SeeReal, 

Cn 3D display. Table 2.1 illustrates the subjective test scores. 

Table 2.1 Subjective test scores for test streams.  

Interview Orbi

Actual depth 5.50 7.08

Our method 6.51 7.60

Existing method 5.49 7.28

Actual depth 7.91 6.93

Our method 6.65 6.15

Existing method 6.04 4.88
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The original stereoscopic video had the highest scores in terms of visual quality 

and our method yielded the highest scores in terms of 3D visual perception. These tests 

show that: i) the approximated depth map obtained by our method provides the best 3D 

visual perception and ii) the visual quality of the results by our technique is higher than 

the one obtained by [7].  
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(a) (b) (c)(a) (b) (c)
 

Figure 2.3 Rendered right image based on real depth map (a), estimated depth map by our approach (b), 
estimated depth map by [7] (c). 

Since our technique and the one presented in [7] are both capable of 

approximating the depth information only for areas with moving objects, watching the 

resultant stereoscopic video streams tends to create visual discomfort for viewers. On the 

other hand, since the depth values are prominent in moving-object boundaries, the 3D 

visual perception is enhanced. Figure 2.3 demonstrates this effect clearly by comparing 

the right images rendered based on the real depth map, our estimated depth map and the 

approximated depth map obtained by [7]. As it can be observed, the fingers of the 

moving hand are longer in the image rendered using the estimated depth of our technique 

and the one presented in [7] compared to the image obtained by the real depth map. This 

has the effect of increasing the 3D perception when it is watched on 3D display. 

For the quantitative analysis, we chose to compare the quality of the stereoscopic 

videos synthesized by our technique, the technique proposed in [7], and the stereoscopic 

videos rendered from the actual (recorded) depth map.  

Figure 2.4 illustrates the five different PSNR (Peak signal-to-noise ratio) 

comparisons that we chose for our analysis. In one scenario we compare the right view 

generated by our method and the one by [7] with the right view rendered based on the 

recorded depth map (b and d in Figure 2.4).  These comparisons show how close the 

average quality of the estimated 3D views is to the actual ones. Note that, in this case, 
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higher PSNR values indicate better visual quality. Table 2.2 shows the obtained average 

PSNR values. We observe that our method outperforms the proposed method in [7] by 

1.7 dB to 1.84 dB.  

 

Figure 2.4 Quantitative analysis of the results. 

 

Table 2.2 Average PSNR comparison case b and d in Figure 2.4.  

Average PSNR (dB) Interview Orbi

3D views based on our method vs actual 3D views 36.31 31.8

3D views based on existing method vs actual 3D views 34.47 30.1  
 

In addition to the above, we also compare the generated right views with the 

actual 2D video stream (a, c and e in Figure 2.4). These comparisons show how 

effectively the two different techniques generate the depth perception. In this case, since 

there is no depth present in the 2D video stream, large PSNR values indicate failure in 

adding significant depth perception to the stream. Table 2.3 shows the average PSNR 

values obtained for this case. As expected, we observe that the actual 3D views have the 

least similarity with the 2D video (no depth perception). More importantly, our method 

yields a PSNR value very similar to the actual 3D view, while the PSNR value obtained 
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by [7] is higher than the original recorded depth. This conveys the fact that the depth map 

estimated by [7] creates the least 3D perception.  

Table 2.3 Average PSNR comparison case a, c and e in Figure 2.4.  

Average PSNR (dB) Interview Orbi

Right view rendered based on the actual depth map vs 
actual 2D view 32.27 27.85

Right view rendered based on our estimated depth map vs 
actual 2D view 32.41 27.98

Right view rendered based on the estimated depth map the 
by existing method vs actual 2D view 36.99 33.34

 
 

For further quantitative analysis, we also compute the percentage of the badly 

matched pixels in the estimated depth obtained by our scheme and [7] as:  

         )|),(),((|1
),(
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N

B r
yx
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where N is the number of all pixels within the depth map, D is the estimated depth map, 

Dr is the recorded depth map and Th is the error tolerance. In our experiment we use 

Th=1 [16]. The results show the percentage of correctly matched pixels is 50% 

(Interview) and 47% (Orbi) for our method.  For [7], the percentage of correctly matched 

pixels is 34% (Interview) and 27% (Orbi). The comparison confirms that our method 

outperforms the existing method by 16% to 20%. 

2.4 Conclusion 

We present a new and efficient method that estimates the depth map of a 2D 

video sequence using its H.264/AVC estimated motion information. This method exploits 

the existing relationship between the motion of objects and their distance from the 

camera, to estimate the depth map of the scene. Our proposed method modifies the 

motion information based on the characteristics of the 3D visual perception. In this study, 
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the 2D horizontal motion is taken as the displacement between the right and left frames 

of a 3D set up. However, for cases involving camera motion, our proposed method 

provides solutions for issues regarding displacement of object borders and false 

displacement estimates. One advantage of the proposed approach is that it can be 

implemented in real-time at the receiver-end, without increasing the transmission 

bandwidth requirements.  Performance evaluations show that our method outperforms the 

other existing H.264 motion-based depth map estimation technique by 1.7 to 1.84 dB 

PSNR, i.e., our method provides better approximation for the scene’s depth map.  

The visual quality of the created 3D stream was also tested subjectively, by 

having viewers watch the generated 3D streams on a stereoscopic display. The subjective 

tests show that the 3D streams created by our approach provide viewers with superior 3D 

experience. Moreover, in terms of visual quality, our approach outperforms the other 

existing H.264-based depth estimation method. 
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CHAPTER 3: GENERATING THE DEPTH MAP FROM 
THE MOTION INFORMATION OF H.264-ENCODED 2D 
VIDEO SEQUENCE3 

3.1 Introduction 

Three-dimensional television (3D TV) generates a compelling sense of physical 

real space for the viewers by allowing on-screen scenes to emerge and penetrate into the 

viewers’ space. Viewers thus feel that they are part of the scene they are watching.  It is 

predicted that by commercialization of 3D TV applications, another revolution will take 

place in TV’s history (the last one being the introduction of digital video broadcasting).  

The history of 3D TV can be traced back to 1920s, when the first experimental 3D 

TV set-up was built [1].  Since then, several attempts have been made to introduce this 

technology into the market. Despite the immense keenness towards 3D, the great 

expectations of viewers, content providers and distributors have not yet been fulfilled. 

The main drawbacks were the discomfort of the viewers (headaches, eyestrain) due to the 

poor quality content, the low-tech display systems and the high costs involved in the 

production and distribution of 3D content.  

The successful introduction of 3D TV to the consumer market relies not only on 

technological advances but also on the availability of a wide variety of 3D content. Thus 

the production of 3D-format videos is important. Equally important is the ability to 

convert existing 2D material to 3D format. This allows the existing popular movies and 
                                            
3 A version of this chapter has been accepted for publication. Pourazad, M.T., Nasiopoulos, P., and 

Ward,R.K. (2010) Generating the Depth Map from the Motion Information of H.264-Encoded 2D Video 
Sequence. EURASIP Journal on Image and Video Processing. 
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documentaries to be watched on 3D screens. Converting 2D content to 3D video streams 

is possible if the depth information is estimated from the original 2D video sequence. 

Using the depth information, 3D video content in the stereoscopic format (two temporally 

synchronized video streams, one for the right and another for the left eye) can be 

rendered from the 2D video stream, via a process known as depth image based rendering 

(DIBR) [2].  

Depth map estimation techniques generally fall into one of the following 

categories:  manual, semi automatic and automatic. For the manual methods, an operator 

would manually draw the outlines of objects that are associated with an artistically 

chosen depth value. As expected, these methods are extremely time consuming and 

expensive. For this reason, semi automatic and automatic techniques are preferred for the 

depth map estimation. These techniques are designed based on the human visual depth 

perception mechanism. There are several factors (referred as monocular depth cues) such 

as light and shade, relative size, motion parallax, interposition (partial occlusion), textural 

gradient and geometric perspective, which help the human visual system perceive the 

relative distance of objects within a real scene. In fact, depth map estimation techniques 

try to use these monocular depth cues and imitate the human visual system when 

estimating the distance between objects to generate binocular parallax (disparity) for the 

viewer. 

A machine learning approach for estimating the depth map for 2D video 

sequences is proposed in [3]. Although the results of this approach are promising, it 

requires an operator to input the local depth information of some selected frames. 

Extraction of depth from blur has also been explored by researchers [4]. The problem in 
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this case is that depth is not the only cause of the blur in a picture. Other reasons include 

motion, climate conditions and fuzziness of objects within a scene. The estimation of 

depth based on the edge information has also been studied [5, 6]. Another group of 

researchers has utilized the motion/edge-corrected color-segmentation via a K-means 

algorithm to estimate the depth map [7]. This algorithm does not provide solutions when 

the camera is moving or when the objects have complicated motion. Also, since 

supervised image segmentation is implemented, when the number of objects within the 

scene is higher than a pre-specified number, the algorithm cannot recognize the silhouette 

of all objects and estimate their relative distance from the camera. The study in [8] 

applies an unsupervised image segmentation algorithm to separate the objects. Then to 

decide on the depth value of each object, the proposed algorithm uses the assumption that 

the objects on the top part of the image are further from the viewer and the ones at the 

bottom part of image are closer. This assumption, however, is not valid for all video 

sequences. 

There is a relationship between the distance of moving objects from the camera 

and their registered motion, which has been utilized in previous studies for motion 

estimation [9] and also for depth map approximation [10- 12]. For objects traveling with 

the same speed, but different distance from a still camera, this relationship implies that 

the camera registers larger displacements (in pixel) for the closer objects to the camera. 

This approach is based on the principle known as the Pulfrich effect [13, 14]. The 

Pulfrich effect is a psychophysical phenomenon wherein lateral motion of an object in the 

field of view is interpreted by the visual cortex as having a depth component, due to a 

relative difference in the signal timings between two eyes. To utilize this principle, the 
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study in [10] uses a modified time difference method (MTD) to detect the horizontal 

motion of objects and determine the image-presentation time-delay for synthesizing a 

stereo pair. The MTD method does not work for images containing objects with 

complicated motion.  

The study in [11] uses color segmentation and the KLT (Kanade-Lucas-Tomasi) 

feature tracker to estimate motion information. Then, the depth map is approximated 

based on the estimated motion information. In this approach, factors such as camera 

movement, scene complexity and the magnitude of the estimated motion are used for 

converting the motion information of each frame into depth map. The facts that this 

method is not based on existing video coding standards and it involves a relatively 

complex motion estimation extraction process, do not allow its cost-effective real-time 

implementation at the decoder side. In [12], motion estimation is based on the H.264 

standard, but uses fixed (rather than variable) block-size matching technique. This study 

assumes that the motion of every object is directly proportional to its distance from the 

camera, thus the depth map is approximated as a constant factor of the estimated motion. 

Unfortunately, this is only true for a relatively small part of real life footage (when the 

camera is panning across a stationary scene, or a still camera captures a scene with 

moving objects). Otherwise, when the objects and the camera are both moving, there 

would be ambiguity in the depth estimation based on the motion information. The other 

issue in [12] is related to the accuracy of H.264-estimated motion vectors when they are 

used to derive the objects’ motion. The principle idea behind the motion estimation 

process in H.264/AVC and other standards relies on maximizing the compression 

performance and optimizing rate distortion and not on obtaining accurate estimates of the 



 

 60

objects’ displacement in the scene. Thus, not all motion vectors can be used to accurately 

estimate the depth unless they reflect the objects’ displacement. 

In this paper, we present an effective scheme that finds an approximate depth map 

of the scene using the motion information of the H.264 encoded video which is derived 

(at quarter pixel accuracy) via matching blocks with different sizes, where the sizes 

dynamically adjust to the video content. This proposal is an improved version of 

algorithm in [12] from two aspects: i) generalizing previous assumption that any motion 

is directly proportional to distance from camera, and ii) improving accuracy from motion 

vectors in H.264.  

To resolve the issue regarding the accuracy of motion vectors, we propose an 

algorithm that examines the motion vectors and (whenever necessary) properly modifies 

their values, to ensure that the values of the motion vectors reflect the displacement of 

objects. When a moving camera captures a scene with moving objects, our proposed 

scheme provides a solution to estimate the motion of moving objects and uses this 

information to find the scene’s depth map [15]. Since the motion estimation procedure is 

based on the block-matching technique, there will be depth ambiguity between the 

foreground and the background at the object boundaries. To solve this problem, our 

algorithm first adopts a color-texture segmentation algorithm known as JSEG to properly 

distinguish between the different object-regions [16]. Then it re-evaluates and modifies 

the estimated values of the motion vectors of the object-boundary pixels. To ensure that 

the final estimated depth map is smooth and free of artifacts, our algorithm assumes that 

each segmented object has a unique depth value, and accordingly corrects the estimated 
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motion of the object-body pixels using the object-boundary pixels. This enhances the 

visual quality of 3D video that is rendered based on the estimated depth map.  

After refining the motion vectors in different stages, the absolute horizontal 

values of the refined motion vectors are used to approximate initial depth values. To 

enhance the visual depth perception, we propose to increase the contrast among the initial 

approximated depth values by using a non-linear scaling model.  

Finally, a DIBR technique is used to render the 3D videos based on the 

approximated depth map and 2D video. The 3D videos created using this scheme are of 

the stereoscopic format and are supposed to be watched on 3D TVs in the sense of 

stereoscopic TV. Note in this paper by “3D TV”, we mean 3D TV in the sense of 

stereoscopic TV. 

The rest of this paper is organized as follows. Section 3.2 provides background 

information on the principal idea behind this study. Section 3.3 elaborates on our 2D-to-

3D conversion scheme. Section 3.4 presents the performance evaluation of our scheme 

and discusses the results in detail. Section 3.5 presents the conclusions. 

3.2 Background 

In 3D video capturing using stereo camera set-up, the displacement between the 

left and right camera images is directly related to the distance of objects from the camera. 

This displacement, which is known as disparity [17], creates an intrinsic feeling of depth 

for viewers watching stereo videos. Basically when two slightly different images are 

projected on the left and right eye retinas (each from a slightly different viewpoint) the 
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brain fuses these images such that the perceived image represents everything included in 

two images, but in a three-dimensional format.  
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Figure 3.1 Stereo geometry for two identical parallel cameras. 

 

Figure 3.1 illustrates how the disparity is related to depth for two identical parallel 

cameras. P is a scene point whereas pL and pR are its images captured by the left (CL) and 

right (CR) cameras, respectively. 

For this case, assuming the images are rectified, the disparity, d (=xR−xL), is 

expressed as in [17]:  

Z
ft

xxd c
LR =−=  (3-1) 

where xR and xL are the coordinates of pL and pR, respectively. Z is the distance of point P 

from the cameras (depth), tc is the distance between the two cameras (baseline), and f is 

the focal length of the cameras. In a practical stereoscopic camera set-up, tc is usually 

equal to the average distance between the human eyes and f is chosen based on the region 

of the interest within the scene. 

The relationship in (3-1) shows that the depth of a point P (i.e., Z) can be easily 

obtained if the disparity (xR-xL) is known. Figure 3.2 illustrates the relationship between 



 

 63

depth and disparity. Znear and Zfar in Figure 3.2 are respectively referred to the nearest and 

furthest distances within the scene where still 3D perception is possible for the human 

visual system. In other words, only objects within [Znear and Zfar] are perceived as 3D, 

while the ones outside this range are viewed as 2D objects. In practical 3D TV 

applications, Zfar does not exceed 5 meters, since the depth of objects beyond this 

distance from the camera are not visually perceptible on a 3D-display. Also Figure 3.2 

shows that the 3D visual depth perception of the scene will not change if the viewer 

moves along horizontal coordinate of the scene. 
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Figure 3.2 Relationship between disparity and depth for sample parallel cameras (tc=0.1 m and f=0.05 
m). 

For our case where the 2D scene is captured by only one camera, we shall obtain 

the depth Z of a moving point P using the registered displacement that is resulted from its 

motion. In other words, if the left and right side frames shown in Figure 3.1 are aligned in 

the time domain to form two consecutive frames, then  pR and pL would be two 

consecutive images of moving point P, and xR-xL would be the displacement between 

them. Since the time delay between two consecutive frames is small (as in the studies 
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[10]-[12]), we assume that the displacement due to motion in the 2D case is equivalent to 

the disparity in a stereoscopic setup. Then Z, the depth of point P, can be calculated using 

(3-1), if xR−xL is measured. The displacement (xR−xL) between two consecutive frames 

could be obtained using information embedded in the motion vectors of the encoded 

video, assuming ftc is constant. The following section provides detailed information on 

this process.  

3.3 Proposed Scheme 

To find the displacement of objects within a scene captured by single camera, we 

use the motion vector estimation procedure of the H.264 standard. Since H.264 motion 

vector estimation is block-based (i.e., it measures the displacement of a block and not a 

point or object), we propose correction steps that re-evaluate and refine the estimated 

motion vectors in order to calculate the motion vectors for the objects within the scene. 

Then the resulting object motion vectors are transformed to depth information. The 

following subsections elaborate on different steps of our proposed scheme. 

 

3.3.1 Motion vector estimation 

H.264/AVC-based motion vectors (MVs) are estimated using variable block sizes 

of 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 pixels, at quarter-pixel matching accuracy 

[18]. These two H.264 features (variable block size and quarter-pixel matching accuracy) 

have been shown to yield motion vector precision that is far superior to those of any 

previous standards [18]. An additional advantage of using the H.264/AVC standard is the 

fact that H.264 has been chosen as the platform for 3D TV applications [19]. This means 

that the proposed scheme will be compatible with future 3D networks and players, and 
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also could be implemented at the receiver-end where the motion vectors are readily 

available at no additional computational cost. The existing approach in [12] forces the 

encoder to use only 4x4 block sizes, and this will significantly decrease the compression 

performance, and will increase the computational complexity of the overall system. 

The use of small block sizes results in many wrong matches due to ambiguities 

and noise, however it preserves object shapes with relatively fine details. In contrast, the 

use of large block sizes cuts down on the wrong matches, but may blur the objects 

boundaries [17]. For the above reasons, in our study, a variable block size is used to deal 

with the basic trade-off involved in selecting the best window size. Figure 3.3a shows a 

frame from the “Orbi” sequence and Figure 3.3b illustrates the magnitude of estimated 

motion vectors for this frame (the brighter the region, the higher is the magnitude and 

vice versa).  

 

Figure 3.3 2D video frame (a) and magnitude of estimated motion vectors (b). 

In H.264, depending on the application and content, some frames are selected to 

be compressed as I-frames. For compressing I-frames only intra prediction is utilized and 

no motion estimation is involved. Thus, to retrieve the motion information, we utilize the 

estimated motion vectors of the P-frame just after each I-frame. Since the MVs for the P-
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frame are estimated in relation to the I-frame (as reference), a simple solution for finding 

MVs of the I-frame, is to invert the MVs of the P-frame. This will give us the 

displacement of some overlapped blocks of the I-frame. To estimate the approximated 

MVs of each separate block of the I-frame, the MVs of overlapped blocks are weighted 

and averaged [20]. Since the use of I-frames in compression is not as common as P-

frames and B-frames, an alternative solution is to estimate the MVs of an I-frame at the 

decoder side by implementing block matching process between the decoded I-frame and 

the previously decoded frame. 

There also exist blocks within a P-frame or B-frame which are compressed based 

on intra prediction. In this case we estimate the block’s motion as the median of its 

neighbouring-block motion vectors. There is no provision for the intra prediction case in 

[12].  

Multiple reference frames may be used in H.264 motion estimation for enhancing 

the compression performance. In this case, the estimated motion vectors do not represent 

the displacement of objects over two consecutive frames any more. To resolve this 

problem, we assume that the motion vector length is related to the reference image 

distance [21]. Therefore, to find the motion information between two consecutive frames, 

the H.264 estimated motion vectors should be rescaled proportionally, according to the 

distance between the used reference image and the last encoded image in the video 

sequence as suggested in [21].  

For B-frames, forward or backward reference frames are used for predicting the 

blocks. To ensure the estimated motion vectors represent the displacement of objects over 
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consecutive frames, the motion vectors of each block should refer to the same region4 in 

forward or backward reference frames. If that is not the case, the block’s motion is 

estimated as the median of its neighbouring-block motion vectors. 

3.3.2 Camera motion correction   

A potential problem that arises in motion-based depth estimation algorithms is 

when both the objects and the camera are in motion, i.e., neither of them is stationary. In 

this case, an object that is estimated to have captured larger motion than others may not 

be closer to the camera, since the camera may have moved in the opposite direction from 

the object. To resolve this issue, the camera motion needs to be approximated and the 

motion information registered by the camera should be corrected accordingly. 

In the camera panning case, the registered motion information for the stationary 

areas of the scene would be equivalent to the camera motion. These areas are often 

flagged as ‘Skip Mode’ by the H.264/AVC motion estimation process. The ‘Skip Mode’ 

is used for 16x16 blocks, where the motion characteristics of the block can be effectively 

predicted from the motion of its neighboring blocks, and the quantized transform 

coefficients of the block are all zeros. When a block is skipped, the transformed 

coefficients and the motion data are not transmitted, since the motion of the block is 

equivalent to the median of the motion vectors of the surrounding blocks. This median is 

known as the predicted motion vector (MVp) [18].   

As long as there is no camera motion, the predicted motion vector of a skipped 

block is zero. However, when camera panning is present, all the predicted motion vectors 

                                            
4 Image segmentation is required in such cases (see Section 3.3.3). 
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of the skipped blocks become equal to a unique non-zero value (which represents the 

camera motion). Since most of the skipped blocks over the entire frame are blocks that 

contain background areas, our proposed scheme uses the predicted motion vector (MVp) 

with the maximum occurrence to estimate the value of the camera motion. In order to 

find this vector for each frame, we compute the histogram of the MVps of all the skipped 

blocks. The MVp that corresponds to the maximum of the histogram is recognized as the 

camera (panning) motion [15]. The net motion of each object is extracted by subtracting 

the camera motion from the MVs of all blocks within the frame. This procedure cannot 

be accommodated in [12] since only 4x4 blocks are used and the size of the skip-mode 

blocks is 16x16. The following code summarizes the above-mentioned procedure:  

for each frame:  

1. find skipped-mode blocks with MVp~=0. 

2. calculate the histogram of the MVps of blocks found in 1.  

3. assign the MVp with maximum occurrence to camera panning motion.  

4. subtract camera panning motion from all the MVs within the frame. 

Besides panning, camera zoom-in/out can also cause depth ambiguity. To address 

this issue, we check the tendency of MVs in the four corners of the frame to detect zoom 

in/out [11]. Then the estimated MVs are scaled accordingly. Note that zoom-in/out may 

cause reverse depth or eye fatigue if not corrected in the depth estimation process. 

3.3.3 Correction of false displacement estimates 

The criterion used in video compression standards is to optimize the rate 

distortion and maximize the compression performance, i.e., to transmit the least number 

of bits. The motion vectors obtained by H.264/AVC coding are thus derived so as to 

minimize the compression rate and optimize rate distortion and not maximize the 
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accuracy of the estimated motion of the objects within a scene. Thus, the matching blocks 

determined by a motion vector do not necessarily relate to the same part of an object in 

the scene. In such a case the estimated motion vectors do not accurately convey the 

displacement of an object, i.e., they do not point to the corresponding left and right areas 

as defined by the disparity in a stereoscopic scenario (Figure 3.1).  

To check if a motion vector points to the same object (or part of it) in two 

consecutive frames, our proposed scheme compares the motion of the block with that of 

its surrounding blocks. To this end, we use two predefined thresholds, Th1 and Th2. 

Threshold Th1 is defined as the difference between the MV of the block and the median 

MV of the neighboring blocks (MVm) of the same object. Our experiments have shown 

that if this difference is larger than 1, then either the MV is not the actual displacement or 

there is a moving edge within the block. Threshold Th2, which is the measure of the 

variance of the residue block resulting from subtracting the present and previous frame, is 

then used to help us determine if the block includes the boundary pixels of a moving 

object. In the residual block, the edges of moving objects appear thicker and with higher 

density compared to static objects and the background (see Figure 3.4a). Camera motion 

compensation is taken into account when constructing the “residue frame”.  Note that the 

“residue frame” is obtained by direct subtraction of two consecutive frames. In the case 

of panning, since we know the global motion vector, simple shifting will compensate for 

camera motion. In the case of zooming, the frame zoomed out more (i.e., shows objects 

further away) is cropped and scaled to match the other frame. 

We have found through performance evaluations that if the variance (i.e.,Th2) is 

less than 1000, then there is a very high probability that there is no moving edge within 
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the block and therefore the MV needs to be replaced by the median MV the instant 

neighboring blocks. Otherwise (i.e., there is a moving edge within the block), the H.264 

estimated MV is correct. 

 

Figure 3.4 (a) Residue frame, and (b) a color-texture segmented frame of “Orbi” sequence. 

Assume the MV of a certain block is presently being estimated. To find the 

adjacent blocks that belong to the same object as this block, we use an unsupervised 

segmentation algorithm called JSEG [16]. This algorithm consists of color quantization 

and spatial segmentation as two separate steps. As a result, each frame is segmented into 

different regions based on the color and texture of the region, without any presumption 

about the number of objects (see Figure 3.4b). For detailed information on this algorithm 

see [16].  

The following code summarizes the above procedure for displacement correction: 

for each frame:  

1. calculate MVdiff=abs(MV-MVp)for each block. 

2. compute residue frame as: 

   resFrame= abs(lumacurrent frame–lumaprevious frame) 

3. calculate the variance of each block within residue frame (resVAR).  

4.  implement JSEG algorithm to segment the frame based on color and texture and distinguish different 

object regions. 
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5. for the blocks which MVdiff>Th1 and resVar<Th2, new MVs are calculated as of median MV of their 

instant neighboring blocks belong to the same segmented object.  

3.3.4 Displacement correction of object-border pixels 

In this study, we use the absolute value of the horizontal component of the motion 

vectors (i.e., abs(MVx)) for estimating the depth map. This is because, as explained 

earlier, the disparity, d (=xR−xL), which is the horizontal displacement between the two 

camera images, is related to the depth Z (as shown in Figure 3.1).  

Since all the pixels within each matching block are assumed to have the same 

amount of motion, the abs(MVx) is assigned to each pixel within the block. This 

assumption, however, is not valid for blocks that include both stationary background 

pixels and moving object pixels. For such blocks, a different procedure should be used, 

otherwise the resulting object borders in the constructed 3D video may appear blurred, 

and the small details or even entire objects may be removed.  

A computationally expensive solution is to perform pixel-based motion vector 

estimation for the object-border pixels. We propose an alternative solution which detects 

the border blocks with non-zero motion vectors, then, classifies each pixel within each of 

these blocks as a background pixel or an object pixel. This process is based on the results 

of the JSEG algorithm (subsection 3.3.3). The estimated abs(MVx) is assigned to the 

object pixels, while the median of the abs(MVx) of the surrounding non-object pixels is 

assigned to the background pixels. The background pixels inside the block who have 

been assigned with updated abs(MVx) might be utilized in the motion correction process. 

Note that if the block includes multiple segmented regions, the MV of the pixels within 
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each segmented region is calculated as the median of MVs of pixels within the 

neighboring blocks which belong to the similar segmented region.  

JSEG algorithm is robust but as it can be observed from Figure 3.4b, over-

segmentation may occur because of the varying illumination shades [16]. For this reason, 

pixel classification of border blocks is further verified by calculating the average luma 

intensity of the corresponding block in the “residue frame”, and then comparing it with 

the luma intensity of each pixel within the block. The luma intensity of the background 

pixels in the “residue frame’ should be less than the calculated average. This is because 

the intensity of the still-background pixels in the “residue frame” is close to zero, while 

the intensity level of moving region edges is high. 

In our method, to accurately estimate the motion vectors of the background pixels 

located in the central part of the blocks, we start the motion correction procedure with 

those background pixels that have higher number of neighbouring pixels with correct 

motion-values. This ensures that the median value is mainly based on correct motion 

values. After each iteration, the abs(MVx) values are updated and this process continues 

until all motion values are corrected. After pixel-based motion vector estimation, the 

absolute horizontal value of the motion vector of each pixel is used to approximate its 

initial depth value. Figure 3.5 shows the initial depth map after the above-mentioned 

procedure.  

The following code summarizes object-border correction process: 

for each object:  

1. find blocks which MVx~=0.                                         
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 2. label pixels within the blocks found in 1 as background-pixel or object-pixel based on the object-

segmentation results by JSEG. 

3. find corresponding blocks of the ones found in 1 in the resFrame. 

4. compute average luma intensity of blocks found in 3 (resAVR) 

5. compare the luma intensity background pixels within each block found in 3 (in the resFrame) with 

resAVR; if it was higher than that, change the pixel’s label to object-pixel. 

6. label the corresponding pixels within the blocks found in 1 (in the current frame) according to the 

ones in 5.  

7. for background pixels within the blocks found in 1 recalculate motion as of median of abs(MVx) of 

instant-neighboring background-pixels by iteration.    

8. for the object pixels assign the estimated abs(MVx) of the block.                                       

 

 

Figure 3.5 Initial depth map after correcting the displacement of object-border pixels. 

3.3.5 Displacement correction of object-body pixels 

For the proposed method we assume that all the pixels of a segmented object have 

one depth value. Since the depth of each pixel is related to its abs(MVx), a common 

abs(MVx)  should be assigned to all the pixels within each object region. A simple 

solution is to calculate the average abs(MVx) of all the pixels within each segmented 
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object and assign that to all the pixels. The problem with this approach is that the H.264 

motion estimation process assigns zero-value motion vector or skip-mode flag to the flat 

areas of segmented objects (usually middle part). Thus, averaging all the abs(MVx) will 

not give an accurate estimate of the motion of the segmented object. Among the pixels of 

a segmented object, the border/edge pixels are the ones whose motion better represents 

the motion of the entire object. Thus in our proposed scheme, the average of the 

abs(MVx) value of border pixels is assigned to all the pixels of the segmented object and 

is used in estimating the object’s depth value. This may cause some detailed depth 

information of the central part of objects is lost, but it will not hamper the quality of the 

final 3D video, since the depth information of the object boundaries is preserved [5, 6].  

 

Figure 3.6 Motion information after correcting the displacement of object-body pixels. 

Figure 3.6 shows the resulting motion information after correcting the 

displacement using the above-described process. In our study, the thickness of the object-
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boundary was set to four pixels at most, with the motion of a segmented object estimated 

as the average of the motion values of these pixels.  

3.3.6 Perceptual depth enhancement 

The visual depth perception on 3D display systems is limited to the objects within 

a certain range from the camera. This means that only the objects within a certain 

distance from camera can be seen on a 3D display system, while distant objects have no 

depth perception. Considering this limitation, to enhance visual depth perception of 

videos to be watched on 3D display, we apply a non-linear scaling model to the abs(MVx) 

values, which increases the disparity of closer objects and decreases that of distant 

objects. Since there is a non-linear relation between the visual depth perception 

(disparity) and the distance of an object as shown in Figure 3.2, the proposed scaling 

factors are defined such that the further the object is, the smaller the scaling factor. This 

will increase the contrast among depth values and enhance the visual depth perception.  

Our model assumes that there are N uniformly spaced depth layers within a scene, 

i.e., within [Znear  and Zfar]. A set of scaling factors is defined as: 

near

far

near

far

Z
Z

Z
Z

N
iiS +−
−

= )1(
1

)(  0≤ i ≤N-1             (3-2) 

where S is the scaling factor and i ranges from layer 0, which corresponds to Znear ( here 

i=0, S(0) = Zfar / Znear) to layer N-1 which corresponds to Zfar ( i=N-1, S(N-1) = 1). To 

generate the enhanced depth map, the abs(MVx) values are sorted and categorized to N 

uniformly spaced layers. If abs(MVx) belongs to the ith category, its value is scaled as 

follows:  
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           )()( iSMVxabsD =  (3-3) 

where D is the enhanced disparity value and S(i) is the scaling factor at the ith depth layer. 

Figure 3.7 shows the estimated depth information after perceptual depth enhancement. 

 

 

Figure 3.7 Estimated depth map after perceptual depth enhancement. 

Using the approximated depth map and the 2D video sequence, the stereoscopic 

pair images are rendered via the depth-image-based rendering algorithm proposed in [2]. 

This algorithm includes a depth map smoothing process (using asymmetric Gaussian 

filter) to resolve the occlusion problem of depth image-based rendering. In our 

implementation, only the right-eye stream is rendered (based on the estimated depth map 

and the 2D video sequence), and the original 2D video is used as the left-eye stream [5, 

6].  

3.4 Performance Evaluation and Discussion  

The performance of our proposed depth map estimation method is tested using the 

2D video sequences “Interview”, “Orbi”, “Breakdancers” and “Ballet”. “Interview” and 
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“Orbi” have been captured by a 3D-depth range camera (Zcam) [22], which measures the 

depth map of the scene while recording the 2D video. Thus, the true depth-measures of 

the scene are available in the form of sequences which consist of luma information only. 

The 2D streams of “Interview” and “Orbi” are 10-seconds and 5-seconds long 

respectively, with 720×576 pixels resolution and 4:2:2 YUV format [23]. “Breakdancers” 

and “Ballet” are two multi-view video test sequences (8 views), with 1024x768 pixels 

resolution, which provided by Microsoft Research (MSR) group for research on 

multiview video coding (MVC) standard [24]. MSR also has provided the approximated 

depth map of the scene using stereo matching. For our experiment, the forth view video 

sequence of each test set and its corresponding depth map was used.  

In our experiments, the motion between two consecutive frames is estimated 

using the H.264 encoder (JM 12.2 version). We assume that the broadcasted video is of 

acceptable visual quality. For this reason, in our experiments the quantization parameter 

was set to QP=30, which yields PSNR (Peak signal-to-noise ratio) values above 37 dB 

for the tested sequences. The GOP (Group of Picture) size was set to 25 frames, and the 

frame structure was IBBP with 5 reference frames. We compare our method with the one 

presented in [12]. Since the recorded depth per each pixel is an integer number between 0 

and 255, (where 255 represent the shortest distance from the camera), we assume there 

are 256 depth layers for the perceptual depth enhancement step. For the same reason, the 

estimated depth maps of both methods are normalized as integer numbers between 0 and 

255.  
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Figure 3.8 2D video sequence (a, b, c, d), recorder depth map (e, f), depth map estimated by stereo 
matching (g, h) estimated depth map by [12] (I, j, k, l), and estimated depth map by our 
approach (m, n, o, p). 

Figure 3.8 shows a snap-shot of the original 2D stream, the original depth map, 

and the estimated depth maps generated by [12] and our approach. The experimental 

results have been posted online for further review [25]. We observe that our approach 

yields more realistic depth estimates compared to [12]. As it is illustrated in Figure 3.8, 

unlike [12], our method can approximate the depth information of an entire object even if 

only partial motion information of the object is available. This is due to our object-body 

displacement correction procedure. The success of this procedure, however, depends on 

the accuracy of the adopted color-texture segmentation algorithm. As it has been 

reported, JSEG is a robust segmentation algorithm but has some limitations (over 
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segmentation where variation of illumination shades exists) [16]. Therefore, in order to 

further improve our depth estimation technique in the future, more research is needed on 

enhancing the segmentation procedure. 

Comparing the results in Figure 3.8 shows that both techniques like other motion-

based depth estimation approaches fail to estimate the depth maps of static objects (e.g., 

the table in Figure 3.8b). According to the human visual system, which integrates 

different depth cues to perceive the depth, one can expect the integration of depth cues to 

provide more sufficient means for depth map estimation techniques [5, 6]. Improvement 

on retrieving depth information of static objects may require integration of our approach 

with other depth cues, such as sharpness, and it is recommended path for future research.  

The visual quality of the resulting 3D video streams using our method and the one 

presented in [12] are subjectively tested against the original depth map (for Orbi and 

Interview) and the one acquired via stereo matching by MSR (for Breakdancers and 

Ballet), based on the ITU-R Recommendation BT.500-11 [26]. Eighteen people graded 

the videos from 1 to 100 in terms of 3D visual perception and visual picture quality in 

two separate experiment sets (with a short rest period between sessions). The evaluation 

is performed using the SeeReal, Cn 3D display.  For the 3D visual perception part of the 

experiment, the viewers were asked to score the videos based on the depth or volume that 

objects appeared to have.  For the visual picture quality part, the viewers were asked to 

rank the videos based on picture quality, which could be affected by visual noise, blur, or 

various other distortions and picture instabilities (which may cause visual discomfort for 

viewers). Higher picture quality corresponded to higher scores.  
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Figure 3.9 illustrates the average scores of our subjective test. The original 

stereoscopic video had the highest scores in terms of visual picture quality and our 

method yielded the highest scores in terms of 3D visual perception. These tests show that 

the approximated depth map obtained by our method provides the best 3D visual 

perception and the visual picture quality of the results by our technique is higher than 

those of the existing method.  
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Figure 3.9 Average subjective test scores of 3D visual perception (a) and picture quality (b) for test 

streams. The error bars denote the 95% confidence intervals. 

Since our technique and the one suggested by [12] are both capable of 

approximating the depth information only for areas with moving objects, watching the 

resultant stereoscopic video streams may create visual discomfort for viewers. However 

the use of the object-body displacement correction procedure in our method has been 

successful in reducing this effect. This procedure reduces the artifacts and results in a 

smooth depth map. Without it, the rendered stereoscopic image would have the binocular 

parallax effect only for parts of moving objects (for which the H.264-based motion 
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information is non-zero). In this case, some part of an object is perceived in 3D format 

and the rest in 2D, something that would increase the viewer’s visual discomfort. 

The visual 3D perception improvement obtained by our method is due to two 

factors: the perceptual depth enhancement step, and the prominence of the depth for 

moving-objects. Figure 3.10 demonstrates this effect clearly. As it can be observed, the 

fingers of the moving hand in image (b), rendered using the depth estimated by our 

technique, are longer than the ones based on the real depth map (a) and the estimated 

depth map by [12] (c). This effect increases the 3D perception when the rendered videos 

are watched on a 3D display.  

 

Figure 3.10 Rendered right image based on real depth map (a), estimated depth map by our 
approach (b), estimated depth map by [12] (c). 

For the quantitative analysis, we chose to compare the quality of the stereoscopic 

videos synthesized using our technique with those of the technique proposed in [12] and 

the stereoscopic videos rendered from the actual (recorded) depth map.  Note, since the 

ground truth depth maps of Breakdancers and Ballet is not available, the results for these 

two streams did not go under quantitative analysis.  
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Figure 3.11 illustrates the five different PSNR comparisons that we chose for our 

analysis. In one scenario we compare the right view generated by our method and the one 

by [12] with the right view rendered based on recorded depth map (b and d in Figure 

3.11).  These comparisons show how close the average quality of the estimated 3D views 

is to the actual ones. In this case, the higher PSNR values indicate better visual quality. 

Table 3.1 shows the average PSNR values obtained for this case. We observe that our 

method outperforms the proposed method in [12] by 1.81 dB to 1.98 dB.  
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Figure 3.11 Quantitative analysis of the results. 

 

Table 3.1 Average PSNR comparison case b and d in Figure 3.11. 

Average PSNR (dB) Interview Orbi
3D views based on our method vs actual 3D views 36.45 31.91
3D views based on existing method vs actual 3D views 34.47 30.1  
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In addition to the above, we also compare the generated right views with the 

actual 2D video stream (a, c and e in Figure 3.11). These comparisons show how 

effectively the two different techniques generate depth perception. In this case, since 

there is no depth present in the 2D video stream, large PSNR values indicate failure in 

adding significant depth perception to the stream. Table 3.2 shows the average PSNR 

values obtained for this case. As expected, we observe that the actual 3D views have the 

least similarity with the 2D video (no depth perception). More importantly, our method 

yields a PSNR value that is very similar to the actual 3D views while the PSNR value 

obtained by the [12] is higher than the original recorded depth. This conveys the fact that 

the depth map estimated by [12] creates the least 3D perception.  

Table 3.2 Average PSNR comparison case a, c and e in Figure 3.11. 

Average PSNR (dB) Interview Orbi

Right view rendered based on the actual depth map vs actual 2D view 32.27 27.85

Right view rendered based on our estimated depth map vs actual 2D 
view 32.38 27.89

Right view rendered based on the estimated depth map the by existing 
method vs actual 2D view 36.99 33.34

 

The percentages of the badly matched pixels for the estimated depth yielded by 

our scheme and by [12] were computed as:  

         )|),(),((|1
),(

ThyxDyxD
N

B r
yx

>−= ∑  (3-4) 

where N is the number of all pixels within the depth map, D is the estimated depth map, 

Dr is the recorded depth map and Th is the error tolerance. In our experiment we use 

Th=1 [27]. The results show that for our method the percentage of the correctly matched 

pixels is 53% (Interview) and 48% (Orbi).  For [12], the percentage of correctly matched 
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pixels is 34% (Interview) and 27% (Orbi). The comparison confirms that our method 

outperforms the existing method by 19% to 21%. 

3.5 Conclusion 

We present a new and efficient method that approximates the depth map of a 2D 

video sequence using H.264/AVC estimated motion information. This method exploits 

the existing relationship between the motion of objects and their distance from the 

camera to estimate the depth map of the scene. Our proposed method revises the motion 

information based on the characteristics of the 3D visual perception. In this study, the 2D 

horizontal motion is approximated as the displacement existing between the right and left 

images when the scene is captured by a stereoscopic camera. For cases involving a 

moving camera and for possible problems regarding the displacement of object borders 

and false displacement estimates, our proposed method provides appropriate solutions. 

To improve the quality and smoothness of the estimated depth, our algorithm utilizes 

color-texture segmentation. Our proposed approach can be implemented in real-time at 

the receiver-end, offering 3D experience without increasing transmission bandwidth 

requirements.  Performance evaluations have shown that our approach outperforms the 

other existing H.264 motion-based depth map estimation technique by up to 1.98 dB 

PSNR, i.e., providing more realistic depth information of the scene.  

The visual quality of our constructed 3D stream was also tested subjectively, with 

viewers watching the generated 3D streams on a stereoscopic display. The subjective 

tests showed that the 3D streams created based on our approach provided viewers with 

superior 3D experience. Moreover, in terms of visual quality, our approach outperforms 

the other existing H.264-based depth estimation method. 
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CHAPTER 4: UNSYNCHRONIZED ZOOM CORRECTION 
IN 3D VIDEO5 

4.1 Introduction 

The majority of 3D content is produced using a dual-camera configuration, which 

generates a stereo pair where the left-eye and the right-eye views are separately recorded 

from slightly different perspectives. Creating visually pleasing stereoscopic video is a 

very tricky task and requires that both the director and the camera operators are extremely 

knowledgeable of the challenges of 3D capturing and the limitations of the 3D displaying 

devices.  

In fact, defining the Quality of Experience in 3D is a new and challenging task, 

and has attracted the attention of many different standardization bodies such as MPEG, 

ITU and SMPTE.  The challenges arise from the differences between the 3D capturing 

devices and the way human visual system perceives 3D, and the limitations of the 3D 

displaying mechanisms. While we may not yet have a clear understanding of how 

different capturing and displaying parameters affect 3D quality, we definitely know that 

unsychronized zooming of dual cameras will degrade the perceived 3D video quality. It is 

well known that precise synchronization of the optical zooming of two identical cameras 

is very difficult. In practice, zoom progression is not a linear function of the 

magnification factor and this function is inconsistent between optical lenses. If dual 

cameras are set to the same zoom progression course, the final magnification will not be 

                                            
5 A version of this chapter will be submitted for publication. Pourazad, M.T., Doutre, C., Nasiopoulos, P., 

Tourapis, A., and Ward, R.K. (2010) Unsynchronized zoom correction in 3D video.  
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identical (optics discrepancies) [1]. The effect of having different magnification factors 

on each camera in a stereo set-up is that the objects will have different size in the left and 

right views. This will introduce vertical parallax which causes eye-strain and interferes 

with the fusion of the two images (convergence artifacts) [2].  The other issue in 

synchronized zooming of dual cameras is related to the tendency of the cameras’ optical 

axis to roam around during zooming, a process that is inconsistent from one lens to 

another. This also causes vertical parallax and convergence artifacts.  

One possible solution to the zooming synchronization problem in a stereoscopic 

camera setup is to use high-end computerized motorized 3D rigs [1]. These rigs use zoom 

look-up tables to compensate for the optics discrepancies and lenses’ roaming tendency 

compensation and they utilize the motion control of at least one of the cameras. These 3D 

rigs are not commercially available for sale to end users. This set-up is custom made for 

professional film making companies [1].  

There are less perfect alternative solutions for ordinary amateur videographers 

willing to capture quality stereoscopic videos with synchronized zooming effects. They 

can either use zoom synchronizing electronic devices at the time of capturing or run a 

“correction pass” during postproduction to match the stereo images’ magnification.  

Electronic zoom synchronization is possible through the communication port of 

video cameras, known as the LANC (Local Application Control Bus System) protocol. 

Sony developed the LANC protocol in the 1980s, to allow sending commands to the 

camera, like controlling the shutter and the zoom [3]. What makes LANC suitable for 3D 

is its ability to switch the cameras on and off and to get the video clock signal. Recently, 

some dedicated devices for synchronizing cameras have been introduced to the market, 
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like the “LANC Shepherd” [4] and the “ste-fra® LANC” [5]. These devices switch on 

both cameras at once by applying ground voltage (0V) to the LANC signal pin for a 

certain period of time (about 140ms). In addition, they check the video clocks and display 

the actual synchronization delay. Within a couple of tries, both cameras will “boot” 

relatively synchronized (very small initial time disparity) [1]. Due to several reasons, the 

initial time disparity is usually larger than zero. However, since internal oscillators in 

both devices are running at slightly different frequencies, the time disparity changes over 

time and soon becomes unacceptable. Thus, after certain time of shooting, the cameras 

should reboot for synchronization.  Another device, the 3D LANC Master, controls the 

time drift and keeps the camera in synch for hours [6, 7]. This device is not commercially 

available [7]. 

The unsynchronized zooming problem can also be corrected through post-

processing algorithms. One solution proposed in [8] is to first determine the stereo 

cameras calibration parameters for different zoom settings. At the time of unsynchronized 

zooming, correct the camera parameters from the nearest calibrated zoom positions and 

use that knowledge to rectify the stereo images accordingly. However, in this case, 

information about the camera parameters is required. The other post-proceesing approach 

involves digital cropping and scaling of one of the views in order to make it match the 

other.  Achieving that requires accurate estimation of the relative amount of zoom 

between the two videos.  Several methods have been proposed for estimating zooming in 

monoscopic (single-view) video [9-11]. All of these involve relating the optical flow (i.e., 

the motion field) to camera parameters, such as zoom (focal length), translation and 

rotation.  A common problem with these methods is separating the optical flow, caused 
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by changing camera parameters, from the optical flow caused by object motion.  

Determining which parts of the motion field are affected by object motion is an ill-posed 

problem, and it affects the accuracy of zoom estimation methods. To correct 

unsynchronized zoom in stereo video, one needs to estimate the zoom ratio between the 

two views. There is no previous work that has addressed this problem. 

In this paper, first, we present a subjective study of the impact of zoom mismatch 

on the perceived quality of 3D video.  The results show that unsynchronized zoom 

severely degrades 3D video quality.  Next, we present a method for correcting zoom 

mismatch by applying digital cropping and scaling to one of the views.  In the case of 

zooming in, the view that is originally zoomed in less is scaled to match the one that is 

zoomed in more, and in the case of zooming out, the view originally zoomed out more is 

scaled to match the one which is originally zoomed out less.  To avoid the effect of object 

motion on zoom estimation, we use only vertical coordinates for estimating the zoom 

ratio between the views.  This takes advantage of the constraint that there should be no 

vertical parallax between images captured with parallel cameras, which holds regardless 

of object motion.  

The rest of this paper is organized as follows.  A subjective study showing the 

impact of zoom mismatch in stereo videos is presented in Section 4.2. Our proposed 

method for correcting unsynchronized zoom is described in Section 4.3. Experimental 

results are presented and discussed in Section 4.4.  Finally, conclusions are given in 

Section 4.5. 
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4.2 Impact of Zoom Mismatch on Subjective 3D Quality  

Consider the stereo geometry of two parallel cameras shown in Figure 4.1.  A 

point with world coordinates (X,Y,Z) is projected onto the left and right image planes at 

image coordinates (xL,O,yL,O) and (xR,O,yR,O). The subscripts L and R indicate the left and 

right images respectively, and the O subscript indicates that the coordinates are measured 

relative to the optical center of the camera.  The cameras are separated by a baseline 

distance B and have focal lengths fL and fR.  In a real camera the focal length is a property 

of the optical system (a higher focal length meaning more optical magnification), but 

even synthetic images are usually rendered with a virtual focal length in projecting a 3D 

model on to a virtual image plane.   

(X,Y,Z)

X=0

fL fR

X=B/2

Z=0

xL
xR

X=-B/2  
Figure 4.1 Stereo geometry with parallel cameras 

Using similar triangles, simple equations for the image coordinates can be found 

as follows: 

Z
Yfy

Z
Yfy

Z
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Ideally, the focal lengths of both cameras should be the same, i.e., fL = fR.  In that 

case, yL,O = yR,O, so the images will have no vertical parallax, which is a very important 

requirement for 3D video.  Vertical parallax in stereo images causes eyestrain, and if it is 

too large the human visual system will not be able to fuse the images at all, resulting in a 

loss or distortion of the 3D effect [2].  If the two initially synchronized cameras are 

zoomed by a different amount, it means that their focal lengths will be different.  

Consequently, there will be vertical parallax between the images, and objects will have a 

different size in each image; both results are highly undesirable in 3D video.  

 

Figure 4.2 Stereo test images. 

To evaluate the effect this unsynchronization has on viewers, we performed a 

subjective experiment using zoom-mismatched stereo video.  In the test videos, the two 

views were zoomed in or zoomed out linearly and with the left view always having a 

larger scaling factor than the left (the difference was a constant value). To prepare an 

appropriate data set, we captured the stereo video streams “Emily”, “Friends”, “Arch”, 

and “ICICS” using two full HD parallel cameras with baseline distance of 9cm. The 

captured stereo images were rectified to ensure right and left views are aligned. Figure 

4.2 shows the snapshot of the test images. To synthesize left-view streams with zoom-
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in/out effect, the left-eye image was digitally scaled (about its center) with the scaling 

factor being increased from 1X up to 1.8X of its original size. In each frame the scaling 

factor was increased 0.01X from that of the previous frame. Then the videos were 

zoomed back out to the original size. The right-view had the same zoom pattern as the 

left view, only with the scaling factor higher by a constant amount so that 

unsynchronized zooming is simulated. 
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Figure 4.3 Subjective results: Rating is expressed as a difference between ratings for the 

unsynchronized and synchronized zoomed stereo videos. The error bars denote the 95% 
confidence intervals. 

The test videos were shown to fifteen subjects on a 22” widescreen monitor with 

the 1680x1050 resolution and refreshing frequency of 120Hz. Most of the subjects had 

not participated in stereoscopic experiments before, and all viewers were naive to the 

underlying purpose of the experiment. In our experiment, viewers rated the test 

stereoscopic video streams using the double-stimulus continuous-quality scale method 

suggested by the ITU-R Recommendation 500 [12], in which viewers wore NVIDIA 

GeForce 3D vision (active) glasses and graded two versions of the same video stream 

(synchronized and unsynchronized zooming effect) announced as "A" and "B", from 
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“Bad” to “Excellent”. The subjects were not informed which one of the video streams 

had the unsynchronized zooming effect. A number of zoom factor differences were 

tested, ranging from 0.03 to 0.2 (i.e., 3% to 20% size difference). For analysis, the ratings 

were digitized to the range between 0 and 100 units. Figure 4.3 shows the results of the 

subjective test. We observe that the quality of the perceived 3D image degrades 

dramatically when the difference between the zooming factor of right and left view 

streams increases. These results show that zoom mismatch causes a large drop in 

perceived 3D quality, and should be corrected.   

4.3 Proposed Zoom Correction Method  

The problem of unsynchronized zooming in stereo video can be fixed by applying 

cropping and scaling to one of the views. Referring to the camera model of Figure 4.1, 

the view with a shorter focal length has to be scaled to match the view with a longer focal 

length.  If the cameras are zooming in, the view that has been zoomed less will have a 

lower focal length and should be scaled. If the cameras are zooming out, the view that has 

been zoomed out more will have a shorter focal length and should be scaled.  For each 

frame in the videos, we estimate the amount of scaling that needs to be applied based on 

the y coordinates of matching points found between the two views.    

To simplify notation, let us assume the right video has higher focal length, i.e.  fR 

is greater then fL.  According to equation (4-1), the left image could simply be scaled by a 

factor fR/fL, and the corresponding coordinates would be exactly the same as if the left 

image was captured with the same focal length as the right image.  However, trying to 

implement this in practice is challenging.  The image would have to be scaled about its 

optical center, which in general is not the same as the geometric center of the image [13].  
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The optical center of a camera changes as the camera zooms, so it is difficult to find the 

precise optical center of an image for every frame during zooming [13].   

Instead of trying to directly estimate the optical center of each image and then 

apply scaling about that, we work in a coordinate system with the top left corner of the 

image defined as the origin.  In this system, the optical center of the image is defined as 

(u,v) relative to the top left corner of the image.  The coordinates of a point relative to the 

corner, which we will denote (xL, yL), are found simply by adding (u,v) to the coordinates 

in (4-1) that are relative to the optical center. 

RORRLOLL

RORRLOLL

vyyvyy
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+=+=
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,,  (4-2) 

Combining (4-2) and (4-1), we can find an expression that relates the y 

coordinates of the left and right images, with all the coordinates expressed relative to the 

image corners: 
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fvy
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fy −+=  (4-3) 

Equation (4-3) shows that we can apply a simple linear transform of the form: 

yLL tsyy +='  (4-4) 

that will make the y coordinates of the left image match those of the right image 

(i.e., RL yy =' ), where s is a scaling factor LR ffs /=  and ty is the amount of vertical 

translation LLRRy fvfvt /−= .  Estimating the parameters s and ty is sufficient for scaling 

one image so that the images will have no vertical parallax. Therefore, we do not need to 

explicitly calculate the focal lengths or optical centers. 
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 In order to estimate the parameters s and ty, we find a number of matching points 

between the left and right images.  There are many methods for finding matching points 

between images; we choose the Scale Invariant Feature Transform (SIFT) [14], as it is 

one of the most popular and reliable matching methods.  Using SIFT feature matching 

provides a number of points (xL,yL) and (xR,yR) that match between the left and right 

images.  A matrix equation relating these matching points to the scaling and translation 

parameters can be written as: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

y

LR

t
syy

MMM

1  (4-5) 

where each row in the matrices contains the data for one  matching point.  A standard 

linear least squares regression can be used to estimate s and ty based on equation (4-5).  

With the parameters estimated, a simple scaling transform can be applied to the left 

image to make it match the right image: 
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Applying equation (4-6) simply requires re-sampling the image, which can easily 

be done with standard methods such as bilinear or bicubic interpolation.  One additional 

parameter is required in (4-6), the translation along the x-axis.  This parameter is much 

less important than ty, as any choice of tx will give images without vertical parallax.  We 

choose tx so that equal amounts of cropping will be applied to the left and right of the 

image during scaling.  To achieve this, tx is chosen as: 

( )sWtx −= 1
2

 (4-7) 
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where W is the width of the image. 

The way we have calculated the parameter s, its value reflects the amount of 

scaling required if the left view were scaled to make it match the right view.  Of course it 

is possible that instead the right view should be scaled to make it match the left view.  

We always want to scale up one of the images, because scaling down an image would 

result in there being missing data around the edges of the scaled image.  Scaling up 

simply requires some image data be cropped from around the edges.   

If the least squares regression gives a value of s less than one, it means we would 

have to scale down the left image to make it match the right one.  In that case we actually 

want to scale up the right image.  Simple rearranging of equation (4-4) shows that the 

appropriate scaling and translation values for modifying the right image are: 

s
t

t
s

s y
y −== '1'  (4-8) 

where s and ty are the parameters as estimated with the least squares regression based on 

(4-5), and s’ and ty’ are the modified values that should be used for scaling the right 

image.   

Note that the value of s is related to which camera has been zoomed more, 

depending on whether the cameras are zooming in or zooming out.  If the cameras are 

zooming in, a value of s<1 indicates the left view has been zoomed in more (and hence 

objects appear bigger in it), and if s>1 then the right camera has been zoomed in more.  If 

the cameras are zooming out, a value of s<1 would indicate the right camera has been 

zoomed out more, and hence objects appear bigger in the left view.  A value of s>1 
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indicates the left camera has been zoomed out more, and objects appear larger in the right 

view. 

Our complete algorithm can be summarized as follows.  SIFT is used to find 

matching points between the left and right images, and a linear least squares regression is 

performed based on equation (4-5).  If the regression produces s>1, then the left image is 

scaled and cropped with equation (4-6).  If s<1, then equation (4-6) is applied to the right 

image with the modified parameter values of (4-8).  This entire process is repeated for 

each temporal frame in the stereo video. 

4.4 Experimental Results  

4.4.1 Objective results on digitally zoomed videos 

 
Figure 4.4 Digital zooming pattern applied to the left and right views for the objective tests. 

In order to objectively measure the performance of the proposed method, we 

applied digital zooming to two standard test stereo videos, “soccer2” and “puppy”.  Both 

videos have resolution 720x480 pixels.  We applied a different digital zooming pattern to 

the left and right view of each video, starting at original size and zooming in to a 

maximum zoom factor of 2X.  The profile of the left and right zoom is illustrated in 
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Figure 4.4.  Since we applied digital zooming to these videos, the ground truth values for 

s and ty are known. 

We corrected the videos with our proposed algorithm, and measured the mean 

absolute difference between the estimated parameters and the known ground truth 

parameters.  We also report the maximum vertical parallax that is introduced in each 

frame due to the error in the estimated parameters, which is calculated as: 

( )estyestgtygtHy
tystysy ,,],1[max max +−+=Δ

∈
 (4-9) 

In (4-9) the parameters with the subscript ‘gt’ are the ground truth parameters 

used in our experiment, and the parameters with an ‘est’ subscript are those estimated 

with our method.  The range of the argument ‘y’ in (4-9) is from 1 to H (the image 

height), but the maximum of (4-9) will always occur at one of the endpoints.  Therefore 

only the y=1 and y=H cases need to be evaluated to find the maximum. 

Table 4.1 Accuracy of estimated correction parameters.  

Mean Absolute Difference Video 
s ty 

Max Vertical Parallax, 
Δymax (pixels) 

soccer2 0.00038 0.127 0.236 

puppy 0.00026 0.074 0.126 

In Table 4.1, we report the absolute difference of the estimated correction 

parameters, as well as the maximum vertical parallax.  All values are averaged over the 

50 frames of the zoom-in.  From Table 4.1, we can see the proposed method is very 

accurate at estimating the correction parameters.  The maximum vertical parallax 

introduced is well below one pixel for both test videos, which is below the limit of what 

is noticeable by the human visual system. 
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4.4.2 Results on 3D video with unsynchronized optical zoom 

In the previous section, we showed that our proposed method works well on test 

videos where zoom mismatch was introduced synthetically through digital zooming.  In 

order to test our method on video with optical zoom, we captured a stereo video pair with 

hand-controlled optical zoom.  In the video, both cameras start at 1X zoom and zoom-in 

to a factor of just over 2X, and then zoom back out to 1X, lasting about 150 frames.  The 

zooming was controlled by hand with no attempt to synchronize the two views.  In Figure 

4.5a, the captured video shows clear zoom mismatch between the left and right views, 

and the 3D effect is lost during most of the zooming due to excessive size differences and 

vertical parallax.  After correction with our method, the left and right views show no 

noticeable size differences or vertical disparity (Figure 4.5b), and 3D effect is perceived 

during the zooming.   

(a) (b)(a) (b)  
Figure 4.5 Sample frames of the test video with unsynchronized optical zoom. (a) Captured left-right 

stereo pair (b) Corrected with proposed method.   

4.5 Conclusions 

In this paper we propose a method for correcting unsynchronized zoom in 3D 

videos.  For each frame, a set of matching points is found between the left and right 

views with the SIFT algorithm.  A least squares regression is performed on the y 
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coordinates of these matching points to determine which view needs to be scaled and to 

estimate the amount of scaling and translation needed to align the views.  Experimental 

results show our method produces videos with negligible scale difference and vertical 

parallax.    
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CHAPTER 5: EFFICIENT INTER-VIEW PREDICTION 
FOR MULTIVIEW CODING6 

5.1 Introduction 

Free viewpoint television (FTV) is believed to be the next major revolution in 

TV’s history [1]. FTV allows on-screen images to emerge or penetrate into the viewer’s 

space (3D perception). It also provides TV viewers with interactive features: the viewer 

can adjust the 3D depth perception based on his/her preferences and can also choose a 

viewing angle within a visual scene (free navigation). FTV involves capturing the scene 

from multiple views with a setup of N synchronized cameras and then transmitting the 

multiview streams to the end-user.  One major challenge in multiview applications is the 

transmission of huge amount of data, requiring the development of highly efficient 

coding schemes. Another challenge is that any compression scheme designed specifically 

for multiview video streams should support random access functionality, allowing 

viewers to access arbitrary views with minimum time-delay. 

A straightforward approach for multiview video coding (MVC) is simulcast 

coding, which compresses each video stream independently [2]. While this scheme 

excessively exploits temporal and spatial correlations within each stream, it does not 

benefit from the existing correlation between different views. Multiview sequences show 

a scene from many different viewing angles, which means that there is a high possibility 

of inter-view correlation between the multiple streams. The existence of this multiple 

                                            
6 A version of this chapter has been submitted for publication. Pourazad, M.T., Nasiopoulos, P., and 

Ward,R.K. (2010) Efficient inter-view prediction structures for multiview coding.  
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correlation makes multiview video coding have a different structure from single-view 

coding techniques. This issue is addressed in the latest recommendation for MVC by the 

ISO/IEC Moving Pictures Experts Group (MPEG) and the ITU-T Video Coding Experts 

Group (VCEG), known as H.246/MVC. H.246/MVC uses hierarchical B pictures for 

each view and, at the same time, applies inter-view prediction to every 2nd view, using 

already encoded frames from adjacent camera views [3, 4]. The objective is to predict the 

video frame from a given camera using one or more neighboring-camera video frames 

(disparity estimation) in addition to the consecutive frames of the given camera stream 

(motion estimation). This approach can improve the PSNR (Peak signal-to-noise ratio) 

quality by up to 3.2 dB compared to simulcast coding (coding each stream separately). 

The performance in this case strongly depends on the arrangement of the cameras [4]. 

Although inter-view prediction enhances the compression performance of MVC, it also 

introduces computational complexity and random-access delay. A straightforward 

approach for facilitating random access is to increase the number of I and P frames, 

which in turn hampers the compression efficiency. Thus, there is a tradeoff between 

compression performance and random access time-delay in the prediction structure 

suggested by H.264/MVC.  

To improve the multiview video compression efficiency, the study in [5] suggests 

using the already encoded frames from adjacent views and the depth map to synthesize a 

virtual view. Then the synthesized frames are used for predicting the actual view. This 

scheme can achieve PSNR gains of up to 2dB relative to simulcast coding. An important 

issue here is the computing, coding and transmission of the depth map information [5]. 

Depth maps either exist, or must be obtained. In the former case, 5 to 10% of the bitrate 
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needs to be devoted for transmitting the depth maps. For the latter case, a method that 

conveys depth maps to the decoder needs to be defined at the encoder side. In terms of 

random access delay, the proposed method in [5] introduces similar time-delay to that of 

H.264/MVC. 

To reduce random access delay, the study in [6] proposes an image-stitching 

based MVC method. This approach generates a stitched reference and encodes multiview 

sequences using inter-view prediction. The result is reduced-delays during the decoding 

stage, but this approach still involves high computational complexity due to inter-view 

prediction. Experimental results show that this MVC method increases the PSNR by 

1.5~2.0 dB and reduces the bit rate by 10% compared to simulcast coding. In the best 

scenario, the performance of this scheme in terms of PSNR is expected to be similar to 

H.264/MVC.  

In this paper, we investigate two new multiview video coding schemes which try 

to benefit from the recommended approaches in [5] and [6] while overcoming their 

drawbacks. In our first method (Adaptive MVC), inter-view prediction is exploited by 

using the already encoded frames from the neighbouring views as well as a synthesized 

version of the to-be-coded frame. This synthesized frame is constructed using the already 

encoded frames from neighbouring views, with no need to have depth information of the 

scene (unlike [5]). Moreover, in our method, the indices of all possible reference frames 

stored in the decoded picture buffer (DPB) are adaptively re-sorted to guarantee the best 

bitrate performance. The use of multi reference frames significantly enhances the coding 

efficiency in conventional 2D video. However, the multi reference frames are not 

sequential in the multiview case and our study shows that the proper selection of the 
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reference frames and the order of sorting can improve the bitrate. There is no provision 

for this issue in the MVC standard. The only available option is to specify if all the inter 

prediction reference pictures are placed ahead or after the inter-view prediction ones in 

the reference picture list. 

Our second approach proposes a new panorama-based multiview video coding 

structure, which outperforms the current MVC standard in terms of computational 

complexity and random access functionality. It turns out that the same method offers 

exceptional compression performance as well. The proposed multiview video coding 

structure transforms the middle view to a panoramic view of the scene. In order to take 

advantage of the existing correlation between views, instead of using inter-view 

prediction, residue streams are created as the difference of the luma and chroma values of 

overlapping regions of each view and the panoramic view. Finally, the panoramic stream 

and all residue streams are encoded separately using hierarchical B pictures. This 

structure eliminates the computational complexity and random-access delay that exist in 

H.264/MVC while it enhances the coding efficiency.  

The rest of the paper is structured as follows. Section 5.2 presents a short 

overview of the current MVC standard. Section 5.3 elaborates on our proposed 

approaches. Experimental results are presented and discussed in Section 5.4 and 

conclusions are drawn in Section 5.5. 

5.2 Overview of H.264/MVC 

H.264/MVC is the latest recommendation for multivew video coding by MPEG 

and the ITU-T VCEG. Figure 5.1 shows the prediction structure supported by 
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H.264/MVC which utilizes hierarchical-B picture structure, involving an 8-view 

sequence and GOP (Group of Picture) length of 8. The horizontal and vertical directions 

represent the temporal and spatial axes, respectively.  

 
Figure 5.1 Prediction structure recommended by H.264/MVC. 

As illustrated in Figure 5.1, H.264/MVC tries to predict the video frame from a 

given camera using one or more video frames of neighboring-cameras (disparity 

estimation) in addition to the consecutive frames of the given camera stream (motion 

estimation). Although this inter-view prediction approach enhances the compression 

performance of MVC, it also introduces computational complexity and random-access 

delay.  Random access delay is measured based on the maximum number of frames 

needed to be decoded in order to access a B-frame in the hierarchical structure. The 

access delay for the highest hierarchical order is given by: 

⎣ ⎦2)1(*2*3F maxmax −+= Nlevel  (5-1) 
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where levelmax is the highest hierarchical order and N is the total number of views. For 

instance, in order to access a B-frame in the 4th hierarchical order (B4-frames in Figure 

5.1), 18 frames (Fmax = 18) must be decoded. 

5.3 Proposed MVC Methods 

The following subsections elaborate on our proposed MVC schemes: adaptive 

MVC and panorama-based MVC. Note that both of the proposed methods are based on 

the H.264/AVC standard which has been recognized as the most promising video 

compression platform for MVC [7]. 

5.3.1 Adaptive MVC method 

The prediction structure of our adaptive MVC method is illustrated in Figure 5.2. 

For the sake of simplicity, Figure 5.2 shows only three of the camera views involved in 

inter-view prediction. It illustrates the hierarchical B picture prediction structure that is 

applied to video streams captured by cameras C1 and C3 and the inter-view prediction 

scheme applied to the video stream captured by camera C2.  

Unlike the existing methods ([3] and [5]) that use either synthesized frames or 

adjacent views to improve compression, our proposed scheme is based on a combination 

of these approaches. To properly address the synthesized reference frame and other 

reference frames in the reference frame list, we have proposed an adaptive reference-

frame resorting technique. As it can be observed from Figure 5.2, the random access 

delay of our MVC method is similar to that of MVC standard. The following subsections 

elaborate on this technique as well as our synthesized reference construction approach.  
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Figure 5.2 Prediction structure of proposed adaptive MVC method. 

5.3.1.1 Adaptive re-sorting of reference frame indices 

Similar to conventional 2D videos, using multi reference frames in multiview 

coding can assist in improving the compression bitrate of multiview video sequences. 

However, in the case of MVC, using reference frames belonging to neighboring views 

may cause increased bitrates if reference frame management is not handled properly. This 

is because the entropy coding schemes used by the H.264/AVC standard to code the 

reference frame indices were designed based on the distribution models of 2D video 

sequences. The principle idea is to assign short codewords to frequently-occurring 

elements while infrequent elements are assigned longer codewords. H.264/AVC uses 

“Exponential Golomb Codes” to code the reference frame indices [8]. Table 5.1 shows 

the first nine elements of the Exponential Golomb Code table for a given code number, 

which is the reference frame index in this case. 
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Table 5.1 Exponential Golomb codes. 

code Num 0 1 2 3 4 5 6 7 8

Code 1 010 011 00100 00101 00110 00111 0001000 0001001

Exp Golomb Codes

 

The original H.264 standard assigns index 0 (the shortest codeword) to the last 

encoded frame by default and larger indices to the temporally distant frames from the to-

be coded frame. This works pretty well for temporal prediction of normal 2D video 

sequences, since normally the last encoded frame has the highest correlation with the to-

be coded frame. However, for the case of inter-view prediction (as shown in Figure 5.2) 

the last encoded frame is not necessarily the most frequently referenced one. Because in 

inter-view hierarchical prediction frames from other views are engaged, it is difficult to 

predict which one has the highest correlation with the to-be coded frame. For this reason, 

the existing Exponential Golomb Code is not efficient for the multiview hierarchical 

approach. Currently, this problem is not addressed by the MVC standard. The only 

available option is to pre-specify if all the inter prediction reference pictures are 

reordered so they are placed ahead of the inter-view prediction pictures or after them in 

the reference picture lists. In order to show the importance of proper ordering the 

reference frame indices, Figure 5.3 compares two reference-frame sorting scenarios for a 

multiview test sequence (“Ballroom”). Note that S2 represents the proposed synthesized 

reference frame (see subsection 5.3.1.2). Considering “d” as the frame to be coded (see 

Figure 5.2), in one scenario the reference frames are sorted as “S2, b, c, a” and in the 

other as “b, S2, c, a” (where index 0 is assigned to frame “a”). We observe that 308 more 

bits are needed for the transmission of frame “d” for the first scenario. Moreover, 

reordering the reference frames has changed the referral percentage to all frames due to 

the rate distortion optimization used by H.264/AVC. 
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Figure 5.3 Experimental results for coding frame “d” within “Ballroom” sequence with reference 

frames arranged as “S2, b, c, a” versus “b, S2, c, a”. 
 

One possible approach to resolve the reference-frame management issue is to 

consider designing a new Exponential Golomb Code using a distribution model for 

MVC. However, performance evaluations have shown that it is almost impossible to 

come up with such a model, since factors such as the distance between cameras and 

multiview content directly affect the number of times different frames are referenced. In 

fact, our tests have shown that even within consecutive GOPs (of a 3D sequence captured 

by the same set of cameras) the frequency at which the frames are referenced varies 

drastically.  

In this study, we propose an adaptive histogram-based technique which 

automatically reorders the indices for the reference frames according to the frequency at 

which they are referred. To achieve this while encoding each frame within a view, the 

percentage of referral to different reference frames is counted. Then, when encoding the 

next frame, the reference frame indices are re-sorted (if necessary) such that shorter codes 

are assigned to the more frequently used reference frames.  
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In order to accurately decode the compressed stream, extra bits need to be added 

to the frame header to convey the re-sorting reference frame lists. To achieve this, 

reference frames are indexed during encoding by numbers in the binary format and with a 

default arrangement. Since up to five reference frames are used in our inter-view 

prediction, only a total of fifteen bits is needed to define this arrangement. If during 

encoding, the proposed histogram-based technique identifies that reordering is needed, 

the new arrangement information (15 bits) is added to the to-be coded frame’s header 

information accompanied with a flag that indicates whether the reference frames need to 

be reordered or not. The resulting increase in the total bit rate is negligible, considering 

the fact that this extra byte is sent only when reference frame reordering takes place.  In 

the worst case scenario, when resorting is needed for every frame, the bit rate of a 30fps 

video sequence will increase by a mere 450 bits/second. This is a negligible amount 

compared to the savings achieved as illustrated in Figure 5.3. 

5.3.1.2 Synthesized frame construction   

The objective here is to synthesize an extra reference frame based on existing 

information in the encoder, such that this synthesized reference frame is more similar to 

the to-be-coded frame than other reference frames. This will result in reduced residue 

information (enhancing motion estimation process) which in turn will improve the overall 

compression performance. As Figure 5.2 shows, for each frame captured by camera C2 

one extra reference frame will be synthesized based on the decoded version of the already 

encoded corresponding frames from C1 and C3. In order to synthesize such a frame, the 

overlapping areas among camera views need to be determined first. Thus, we must know 

the global disparity vectors among the adjacent multiview frames. A global disparity 
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vector (GDV) shows the horizontal and vertical displacement between two multiview 

pictures. Basically, a GDV yields the best overlapping area for the two adjacent camera 

frames. The simplest way to find a GDV is as follows. First, we match two images. Then, 

we shift one image by a pixel and calculate the matching error between the two 

overlapping regions, repeatedly. The shift that corresponds to the minimum matching 

error (which maximizes similarity) is defined as the GDV between the two views. 

In video coding, the sum of absolute differences (SAD) or the sum of square 

differences (SSD) is used as the cost function for finding matching areas. However, these 

cost functions are sensitive to the brightness level of the two frames, and have been 

shown to achieve very poor performance when there are brightness variations between 

views [9]. Since among multiview video streams there may be substantial brightness 

variations, a more robust matching criterion is needed. For this reason, we use the 

normalized cross correlation (NCC) defined as: 
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(5-2) 

where Yn(x,y) and Yn+1(x,y) are the luma information of two adjacent views,  mn and 

mn+1 are the mean of Yn and Yn+1,  and ∆x and ∆y are horizontal and vertical shifts. The 

∆x and ∆y that maximize NCC will be used as horizontal and vertical components of 

GDV:  

 ),(maxarg1, yxNCCGDV nn ΔΔ=+
 (5-3) 

Note that in equation (5-2), which calculates NCC, the mean of the luma values of 

the overlapped area is subtracted from the luma value of each pixel and the energy of the 

overlapped area is normalized. This provides robustness to changes in brightness between 
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the views. This procedure is implemented only once at the beginning of encoding, 

assuming the camera arrangement remains unchanged. The information about GDV of 

adjacent views is sent to the receiver as an MVC supplemental enhancement information 

(SEI) message [3] for recovering the original views at the decoder side. 

It is common practice that, before coding starts, all multiview videos undergo a 

pre-processing stage, which includes rectification and colour-correction. With such pre-

processing at the encoder side, the inter-view correlation among multiview videos is 

increased, resulting in better overall coding efficiency [10]. Assuming that cameras are 

arranged in parallel, rectification involves applying a homography matrix to frames in 

order to make the image plane parallel to the baseline (the line connecting the camera 

centres).  

Colour-correction is also important in multiview applications, and involves 

correcting variations in the colour of views captured with different cameras, something 

that negatively affects performance when the videos are compressed with inter-view 

prediction. In our implementation, we applied the colour-correction algorithm suggested 

in [11]. In this approach, one view is chosen as the reference and all other views are 

corrected to match it. The corrected YUV values are expressed as a weighted linear sum 

of the original YUV values and an offset. Disparity estimation is used to find matching 

points between the view being corrected and the reference, and a least squares regression 

is performed on the set of matching points to find the optimal weight values for 

correction. 
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Figure 5.4 Overlapping areas among frames captured by cameras, Area 1: C1 and C2, Area 2: C1, C2 and 
C3, Area 3: C2 and C3. 

Because of the parallel arrangement of cameras and the rectification of all the 

video streams, only a horizontal shift is needed for maximizing the normalized cross 

correlation and thus finding the overlap areas as shown in Figure 5.4. The corresponding 

horizontal shift for frames captured by C1 and C2 is given by Δx2,1. The same procedure is 

used for finding the best overlap between frames captured by C2 and C3 and the 

corresponding horizontal shift of Δx2,3. Having Δx2,1 and Δx2,3 as well as the decoded 

versions of the C1 and C3 frames (available in the decoded picture buffer), we can 

construct the synthesized frame. The intensity and colour of each pixel within the 

synthesized reference frame are set to the average intensity and colour of the 

corresponding pixels in C1 and C3 for the common overlapped area (denoted as Area 2 in 
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Figure 5.4). For the non-overlapped areas (Area 1 and Area 3 in Figure 5.4), the 

synthesized frame’s intensity and colour are equal to the intensity and colour of either C1 

or C3. The synthesized reference frame is added to the decoded picture buffer, so it can be 

used as an extra reference frame, and the multiview videos are compressed based on the 

prediction structure shown in Figure 5.2. Note that the synthesized frame is not 

transmitted, but rather it is reconstructed at the decoder side (using readily available 

decoded version of corresponding frames from adjacent views and GDV information) 

whenever it is used as a reference.  

5.3.2 Panorama-based MVC method  

While our adaptive MVC method outperforms the H.264/MVC standard in 

compression performance, it involves the same or slightly higher computational 

complexity and the same random access delay. The proposed panorama-based MVC 

method is designed to address these two issues while trying to improve on the 

compression performance as well. Figure 5.5 shows the prediction structure of our 

proposed panorama-based MVC method which is applied to an 8-view sequence. The 

horizontal and vertical directions represent the temporal and spatial axes, respectively. 

The main feature of our proposed prediction structure is that the middle view (which is 

chosen as the base view) is transformed to a panoramic view through a process described 

in detail in the following subsection. The reason for choosing the middle view as the base 

is because this view generally has more overlapping parts with the other views (an 

important requirement for creating the panoramic view). If the number of total views is 

even, one of the middle views is chosen as the base view.  As shown in Figure 5.1, the 

reference MVC codec uses the leftmost view as the base view.  
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As it can be observed from Figure 5.5, in our approach, we reduce the redundancy 

between views by subtracting the luma and chroma values of each view from 

corresponding parts of the panoramic view. The resulting residue frames have very low 

energy, thus improving the overall compression performance [2]. Compression of 

residues is an approach that has been shown to be very effective in compressing MRI 

(magnetic resonance imaging) images [12]. This is because very low energy remains in 

the final residue frames, which in turn may be represented by a much smaller number of 

bits (i.e., better compression) [2]. 

Since the proposed prediction structure does not include traditional inter-view 

prediction, the level of computational complexity and random-access delay inherent in 

the standard MVC is significantly reduced. In our proposed panorama-based MVC 

structure, the maximum number of frames that must be decoded in order to access a B-

frame with the highest hierarchical order is formulated as follows: 

5*2 maxmax += levelF  (5-4) 

where levelmax is the highest hierarchical order. Applying this to the coding structure 

shown in Figure 5.5 indicates that a total of Fmax = 11 reference frames are required to be 

decoded to access a B-frame in the 3rd hierarchical order (compared to 18 for the 

H.264/MVC). As equation (5-4) shows, the random-access delay in our approach is 

independent of the increase in the total number of views.  

The following subsections elaborate on the process of creating the panorama view 

and residue video streams in our method. 
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Figure 5.5 Our proposed panorama-based MVC prediction structure. 

5.3.2.1 Panorama-view creation   

The panorama-view creation in our approach is the process of transforming the 

base/middle view of multiview images (acquired by multi cameras with parallel set-up) 

into a panoramic view that includes all parts of the scene. Figure 5.6 shows a panorama 

image which is composed of four images. In this example, we perform the panorama-

view creation with the assumption that there is no vertical disparity (for the sake of 

simplicity). The 4th view is chosen as the base view and is transformed to the panorama 

view as shown in Figure 5.6. We obtain the panorama view by using the entire 4th image 

and stitching the image sections of views 1, 2, and 3 that do not exist in the 4th image into 

the base view. In order to create such a view, the overlapping areas between each pair of 

adjacent camera views must be determined first. In order to achieve this, we must 

estimate the global disparity vectors among the adjacent multiviews as explained in 

subsection 5.3.1.2. Here also the information about GDV of adjacent views is sent to the 
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receiver as an MVC SEI message [3] for enabling the recovery of original views at the 

decoder side. Also in a pre-processing stage, all multiview videos are rectified and 

colour-corrected (see subsection 5.3.1.2).  
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Figure 5.6 Multiview images and the created panorama-view. 

5.3.2.2 Residue-view creation and encoding  

Figure 5.7 shows the block diagram of the redundancy reduction method 

implemented in our prediction structure. As it can be seen, residue-views are created by 

subtracting the luma and chroma values of each view from those of the corresponding 

overlapping region on the panorama view. The overlapping area on the panorama image 

is determined using the global disparity vector between views. Since the multiview 

camera setting is parallel and, as explained above, the video streams are rectified and 

colour-corrected, the luma and chroma values of the overlapped parts in the residue frame 

are close to zero while those of the non-overlapped areas are all zeros (as shown in Figure 

5.7). In order to have all-positive values in the residue frame, the luma and chroma values 

are shifted by 255. As a result, the residual pixel-values are stored in the 9-bit format 

instead of the 8-bit. 
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During encoding, all residue streams and the panorama view stream are 

compressed separately using the hierarchical B-picture prediction-structure (simulcast 

coding). As it can be observed from Figure 5.5, the proposed panorama-based MVC 

scheme does not implement inter-view prediction (disparity estimation). This has 

advantages in terms of computational complexity and random-access delay, while 

improving compression performance.  
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Figure 5.7 Panorama-view and Residue-view creation. 

In order to recover any view at the decoder side, only the corresponding residue-

view, the panorama-view and GDV information are required. The flowchart of the 

proposed MVC algorithm is shown in Figure 5.8. 
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Figure 5.8 Flowchart of the proposed panorama-based MVC algorithm. 

5.4 Experiments and Discussion  

For our experiments we used the test sequences suggested by the MPEG−MVC 

group. Table 5.2 lists the names, size, frame rate, and camera arrangement of these 

multiview video streams. The test sequences are in YUV 4:2:0 format and have been 

already rectified using the homography matrix. Only 16 center views of the “Rena” test 

set (camera no.38 – 53) are publicly accessible. For our experiment, before encoding is 

performed by our proposed schemes or by the MVC standard, all the test sequences have 

been colour-corrected using the technique recommended in [11].  

Table 5.2  Test sequences. 

Sequences Image Property Camera Arrangement

Ballroom 640x480, 25fps 
(rectified) 8 cameras with 20cm spacing; 1D/parallel

Rena 640x480, 30fps 
(rectified) 100 cameras with 5cm spacing; 1D/parallel 
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Both of our proposed MVC prediction structure methods were implemented on 

H.264 (version JM 12.2), which was configured to employ Context-adaptive Binary 

Arithmetic Coding (CABAC) [2]. The performance of our proposed multiview video 

coding schemes was tested against the MVC standard (JMVM 8.0) in terms of PSNR and 

bitrates. The MVC standard was configured to employ CABAC with GOP-length of 8 

(common practice since GOP=16 introduces much more access delay for H.246/MVC). 

The GOP sizes of 8 and 16 were used for our proposed adaptive MVC scheme and 

panorama-based MVC method, respectively. Note that if the GOP size of 16 is used for 

H.264/MVC and our proposed adaptive MVC, the maximum number of reference frames 

needed to be decoded to access the B-frame in the highest hierarchical order would 

become 21 instead of 18 frames, with a very slight bitrate improvement.  The 

illumination compensation was not used in the encoding process since the test sequences 

were colour-corrected before coding.  

Figure 5.9 shows the performance of our proposed MVC schemes versus the 

H.264/MVC standard in terms of PSNR and bitrates. It is observed that our proposed 

schemes outperform the MVC standard by up to 1dB PSNR in the adaptive MVC case 

and by up to 2.13 dB in the panorama-based MVC method. More specifically, the 

average picture quality improvement achieved by the adaptive MVC scheme is 1 dB for 

‘Rena’, and 0.42 dB for ‘Ballroom’. In other words, the proposed adaptive MVC 

approach enhances the average compression ratio by 22.97% for ‘Rena’ and by 10.14% 

for ‘Ballroom’. For the panorama-based MVC approach, the average picture quality 

improvement over the MVC standard is 2.13 dB for ‘Rena’, and 0.56 dB for ‘Ballroom’. 

The proposed panorama-based MVC approach enhances the average compression ratio 
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by 24.6% for ‘Rena’ and by 11.99% for ‘Ballroom’.  We observe that our methods result 

in a higher coding improvement for ‘Rena’, which is captured with cameras positioned 

5cm apart, than for ‘Ballroom’ captured with cameras positioned at 20cm apart. This 

shows that our methods work better for multiview applications where cameras are 

arranged for a natural 3D experience (small distance between cameras). Comparing the 

performance of the panorama-based MVC against the adaptive MVC we observe that the 

panorama-based MVC results in higher compression efficiency especially when the multi 

cameras are closer together. Note that, although in our panorama-based approach the 

required bitrate for the panorama view is higher compared to that for the original middle 

stream (due to larger frame-size), the overall average bitrate is much less than the 

standard MVC. This is due to the significant reduction in the information carried in the 

generated residue streams compared to that in the original streams.  
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Figure 5.9 Coding results for “Rena” and “Ballroom” test sequences. 
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In the proposed panorama-based MVC scheme, since inter-view prediction was 

not exercised, the computational-complexity and speed of the coding process are 

significantly reduced compared to H.264/MVC and the stitching method proposed in [6]. 

In addition, comparing equations (5-1) and (5-4) confirms that our panorama-based 

scheme imposes less random-access delays than the standard MVC approach. This is 

always true, if there are at least three multiviews and at least one B-frame is used, which 

is the case in multiview video coding.  Regarding random-access delay, the maximum 

number of reference frames that need to be decoded to access the B-frame in the highest 

hierarchical order is 11 frames for the panorama-based MVC scheme compared to 18 

frames required for the MVC standard (39% improvement). The random access delay 

imposed by the adaptive MVC is similar to that of the standard MVC (i.e., 18 frames).  

5.5  Conclusion 

We have presented two efficient video coding schemes called adaptive MVC and 

panorama-based MVC. The proposed adaptive MVC scheme constructs an extra 

reference frame, which is used to improve the accuracy of motion estimation process of 

MVC standard. Later, our adaptive approach automatically re-sorts the reference frame 

list to prevent the use of extra bits for coding reference frame indices. Performance 

evaluations show that the proposed scheme outperforms H.264/MVC by up to 1 dB 

PSNR (up to 22.97% compression ratio enhancement). The reason is due to the 

synthesized reference frame and the adaptive re-sorting of reference frame indices used 

by our method.  

In the panorama-based MVC, inter-view prediction is replaced with a residue-

stream coding process. Our algorithm transforms the middle view to a panoramic view of 
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the scene. Then the residue streams are created as the difference of the luma and chroma 

values of overlapping regions of each view and the panoramic view. Finally, the 

panoramic stream and all the residue streams are encoded separately (simulcast coding). 

Performance evaluations show that the proposed scheme outperforms the MVC standard 

by up to 2.13 dB PSNR (or up to 24.6% compression ratio enhancement). This is due to 

the compression of multi residue streams (which include zero or close to zero luma and 

chroma information) instead of original multiview streams. In addition, since inter-view 

prediction (which imposes time-consuming complex composition and random-access 

delay to MVC) is replaced with the residue-stream coding process, the random-access 

delay is reduced by 39%.  

In summary, both of the proposed prediction structures enhance the compression 

ratio compared to MVC standard. However, the panorama-based MVC shows 

significantly superior compression performance when the multiview sequence is captured 

via close-distant cameras. In addition, the panorama-based MVC involves less 

computational complexity and lower random-access delay.  
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CHAPTER 6: CONCLUSIONS 

6.1 Significance of the Research 

The availability of three-dimensional (3D) TV as a commercialized product is not 

far from reality. Future 3D TV sets will not only allow the on-screen images to emerge or 

penetrate into the viewers’ space, but will also provide viewers with interactivity features 

such as depth-perception adjustment and random-access to different viewing angles. This 

can be achieved by capturing the scene from multi-view points with a setup of N 

synchronized cameras and transmitting the resulted multi-view streams to end users. The 

introduction of 3D TV to the consumer market will be an endless success if a wide 

variety of 3D content is available, the quality of the delivered (compressed) content is 

high and the overhead for transmitting the additional data (second view) is not 

prohibitive. To this end, the objectives of my PhD thesis have been to 1) propose 

algorithms for high-quality 3D content generation from 2D videos, 2) enhance the quality 

of captured 3D content and 3) develop efficient video compression schemes for 3D TV 

applications. 

In chapter 2, an efficient method that converts 2D video sequences to 3D is 

presented. This method utilizes the motion information between consecutive frames to 

approximate the depth map of the scene. To estimate the depth map, the horizontal 

motion captured by a single camera is revised and then approximated as the displacement 

between the right and left frames captured by the two cameras used in a stereoscopic set-

up.  To enhance the visual depth perception, a non-linear scaling model is then applied to 
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the modified motion vectors. The low complexity of our approach and its compatibility 

with future 3D systems, allows real-time implementations at the receiver-end with no 

additional-bandwidth burden on the network. Performance evaluations show that our 

method outperforms the existing H.264-based depth map estimation technique [1] by up 

to 1.84 dB PSNR, providing more realistic depth representation of the scene. Moreover, 

the subjective comparison of the results (obtained by viewers watching the generated 

stereo video sequences on a 3D display system) confirms the better performance of our 

method.  

The presented algorithm in chapter 3, aims at improving the proposed 2D to 3D 

conversion scheme in chapter 2 by using color-texture segmentation to identify objects 

and correct motion vectors accordingly. Our objective and the subjective evaluations 

show that this approach improves the performance of our method presented in chapter 2 

by enhancing the quality of the estimated depth maps. 

In chapter 4, we first study the impact of zoom mismatch on subjective 3D 

quality.  Then we propose an effective post-processing algorithm, which aims at 

correcting the vertical parallax caused by the unsynchronized zooming in stereo video 

recording.  The proposed scheme finds the matching points, i.e., the corresponding points 

in the left and right views. The relationship between the points is then found (using least 

squares regression) so as to estimate the amount of scaling and translation needed to align 

the views.  Experimental results show that our method produces videos with negligible 

scale difference and vertical parallax.    

Chapter 5 presents two schemes for efficiently encoding N multiview video 

streams. These multiview video coding (MVC) schemes utilize the strong correlation that 
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exists between all multi-view streams to improve compression efficiency. The proposed 

schemes result in a more accurate motion prediction and a less computationally complex 

prediction structure compared to the recent H.264/MVC standard. Experimental results 

confirm that both proposed schemes outperform the recent MVC standard in terms of 

compression efficiency. In addition, one of the proposed approaches introduces 

significantly less random access delay compared to the MVC standard due to its 

prediction structure. 

6.2 Potential Applications of the Research Findings 

Considering the recent penetration of 3D technology to the entertainment market, 

there are several applications for the schemes proposed in this thesis.  

• The main target of our proposed scheme for 2D to 3D video conversion are 

content producers. These include movie studios (Hollywood), film production 

companies, television networks, and content owners in general. The generation of 

3D content from existing 2D material will not only help enable the 3D market but 

it will also allow the above parties to increase their revenues by reselling existing 

2D content. 

• Our proposed 2D to 3D video conversion method can also be embedded in 

receivers (TVs or receiver boxes) so that the conversion of live 2D content to 3D 

format is carried in real-time. This has the advantage that it allows the network 

providers to broadcast in 2D while the viewer is able to watch the same content in 

3D format without adding any burden to the network or additional cost during 

capturing.  
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• The other application of our 2D to 3D video conversion schemes is on playback 

devices such as DVD, Blu-ray and set-top boxes. The implementation of our 

algorithms in these devices will allow home viewers to watch 2D video in 3D 

format. 

• Current consumer 3D video cameras which utilize bundled dual lenses do not 

allow users to zoom in/out while recording video [2]. Our proposed zoom 

correction algorithm can be embedded in consumer 3D cameras. This would 

enable users to have the zoom effect in their recording video. The proposed 

algorithm can also be used as a post-processing tool for correcting the 3D content 

captured by a stereo camera setup.  

• Our proposed coding schemes for multiview video streams may be used for the 

transmission and storage of 3D content. Transmission of 3D content in the form 

of multiview is one of the major challenges of the 3D broadcasting system. Also, 

storing the huge amount of data, needed for representing multiview video streams, 

on Blu-ray discs or Personal Video Recorders is challenging, since the visual 

quality has to be kept at very high levels and there are always memory restrictions 

for both applications.  

6.3 Contributions 

The algorithms proposed in the preceding chapters address 3D broadcasting 

system problems from three aspects: 1) 3D content generation (by converting 2D video to 

3D format), 2) enhancing the quality of captured 3D content, and 3) developing efficient 

video compression schemes for 3D TV applications. 
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• We designed a new and efficient method that estimates the depth map of a 2D 

video sequence using the existing H.264/AVC estimated motion information. 

Our proposed method modifies the motion information based on the 

characteristics of the human 3D visual perception. One advantage of the 

proposed approach is that it can be implemented in real-time at the receiver-end, 

without increasing the transmission bandwidth requirements. Performance 

evaluations showed that our method outperforms the other existing H.264 

motion-based depth map estimation technique by providing better approximation 

for the scene’s depth map and thus a better 3D visual effect.  

• We further improved the quality and smoothness of the depth maps estimated by 

our above-mentioned method by identifying the objects in the scene and 

correcting the motion information accordingly. Performance evaluations showed 

that this approach results in higher quality and a smoother depth map compared 

to our previous approach. 

• We investigated the effect of unsynchronized zoomed stereo videos on viewers 

through subjective tests. The results of our investigation motivated us to develop 

an effective algorithm for correcting the unsynchronized zoom effect in 3D 

videos.  Our proposed scheme finds the matching points between the left and 

right views.  This information is used to estimate the amount of scaling and 

translation needed to align the views and thus remove the vertical parallax due to 

unsynchronized zoom.  Experimental results showed that our method produces 

videos with negligible scale difference and vertical parallax.    
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• We developed a new structure for coding multi-view camera sequences. The 

proposed scheme constructs an additional reference frame (besides the existing 

reference frames) to improve the inter-view prediction in the H.264/MVC 

standard. This scheme then automatically re-sorts the reference frame list so as 

to prevent the use of extra bits for coding reference frame indices. Performance 

evaluations showed that the proposed scheme is effective in compressing 

multiview streams due to its enhanced inter-view prediction structure.   

• We developed a new multiview video coding scheme which has merits in terms 

of coding efficiency and random-access delay, two key requirements of future 

interactive multiview systems. Performance evaluations show that the proposed 

scheme outperforms H.264/MVC in terms of compression efficiency as well as 

random-access delay. 

6.4 Suggestions for Future Research  

The success of the 3D technology and the speed at which it will penetrate the 

entertainment market depend on how well the SMPTE and MPEG Working Groups will 

synchronize the standardization efforts of the three key components: 1) 3D content 

generation, 2) coding and transmission and 3) playback. Although significant work has 

been done in recent years regarding each of these components, the resulting findings have 

only managed to expose the challenges that lay ahead. The proposed methods in this 

thesis provide solutions to some of these challenges, but there are several other ideas that 

can be further explored. The following subsections addresse some of these ideas. 
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6.4.1 3D content recording 

The availability of a wide variety of 3D content is one of the major requirements 

for the successful introduction of 3D TV to the consumer market. Although there are 

several studies regarding the guidelines for recording suitable 3D content for viewers [3-

5], in practice 3D content generation is challenging, expensive and time consuming. 

More studies are required about the impacts of different camera setup parameters 

(baseline distance, focal length, and etc.) on the quality of perceived 3D content. The 

appropriate camera parameters should be defined for scenes with different depth ranges. 

The type and resolution of the display device (theatre, HD, active or passive glasses, etc.) 

should also be considered when choosing these parameters. Eventually these parameters 

can be added as default settings on 3D cameras to facilitate 3D video capturing.  

6.4.2 3D video quality metrics 

Another key factor for the successful penetration of 3D technology to the 

consumer market is to ensure that the new experience is superior to the one presently 

offered to the consumers. Assessing 3D quality is a huge challenge on its own. It seems 

that perceived user experience is psychological in nature and viewing 3D content 

introduces a new dimension of different environmental and display conditions. Therefore, 

new techniques are needed to assess this kind of experience. Currently there is no 

objective metric for measuring the quality of 3D content. Even the subjective test 

standards are not fully dedicated to the evaluation of 3D content quality. More study and 

research are required for defining the quality of experience in 3D and for developing a 

3D quality measure metric. 
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6.4.3 2D to 3D video conversion using multiple monocular cues 

In chapters 2 and 3 we proposed low-complexity real-time depth estimation 

techniques which utilize the motion parallax depth cue. As described in chapter 1, the 

human visual system, in addition to binocular parallax, utilizes several monocular depth 

cues to distinguish the distance between objects. Thus, it is expected that developing 

algorithms that properly integrate several monocular depth cues would enhance the 

quality of the estimated depth map and eventually that of the generated 3D content.  

In recent years, machine learning has been receiving increasing attention in depth-

map estimation application [6-9]. This is more evident in the area of 2D to 3D video 

conversion where supervised learning appears highly advantageous. The existing 

machine learning-based depth estimation algorithms are either semi-automatic [6, 7] or 

have been designed for images and not video (in a sense that they do not utilize motion 

parallax) [8, 9]. More study and research are required for developing fully automatic 

machine learning-based algorithms that integrate many monocular depth cues for 

estimating high quality depth map streams for 2D videos.  As expected, such approaches 

may have to be used offline due to their high complexity.  
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