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Abstract

In recent years there has been increased interest in the development of sensorless switched reluctance
machine drives. The proper operation of a switched reluctance machine (SRM) requires knowledge
of the position of the rotor of the machine. The inclusion of a physical position sensor compromises
the inherent robustness of this type of machine. Thus, there has been a need to develop techniques
to estimate the position of the rotor in SRM drives.

Switched reluctance machines are able to operate over a large range in speed. A fully loaded
SRM is typically designed to saturate the ferromagnetic material that comprises the stator and
rotor of the machine whereas a lightly loaded machine does not. Therefore, the model of the
machine should be able to handle both a large range in frequency and input excitation levels of the
magnetic material in the machine.

The development of a new dynamic circuit-based ferromagnetic model is described in this thesis.
The investigation of the behaviour of 24 gauge M19 silicon steel led to the conclusion that, for this
material, a circuit model that has static parameters is unable to accurately reproduce the behaviour
of the actual material over a large range of input frequencies and excitation levels without resorting
to retuning the parameters of the model.

This thesis provides two new mechanisms that dynamically adjust the resistance values of the
flux tubes of the model. Comparisons using a normalized vertical least-squares metric between
the newly proposed dynamic model and a model that has static resistance values clearly show the
improvement that is gained by using these mechanisms.

A practical implementation of the new model is also given. Timing using a general purpose
CPU shows that this implementation of the model will most likely be able to be used as part of a
multi-phase lumped parameter model for a SRM in realtime.
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Chapter 1

Introduction

The use of ferromagnetic materials is widespread since they allow the generation of large magnetic
fields for relatively small values of current. Their use can be seen in many devices including power
frequency transformers and electric machinery. Thus, the development of models that are suitable
for characterizing the behaviour of ferromagnetic materials has been a focus of research for many
decades in several fields.

The ability to be able to predict the behaviour of ferromagnetic materials with models provides
great advantages to the user of the materials. These models allow designers to do many things
ranging from validating their designs to being part of an optimization algorithm for the geometry
of the material. The literature contains many different approaches to modeling ferromagnetic
materials. Every class of models have their own strengths and weaknesses. The choice of which
class of model is appropriate for a given application depends on three major things: speed, accuracy,
and ease of use. The work that is presented in this thesis provides an extension to a specific class
of models that have been available for many years. The intended application of the new model is
in the sensorless control of switched reluctance drives

1.1 Switched Reluctance Drives

With the development of reliable power semiconductor devices and powerful microcontrollers,
switched reluctance machine (SRM) drives have become feasible. Switched reluctance machines
have several advantages over the more traditional types of electric machines. One of the chief
advantages of SRMs is their ability to be operated at very high speeds – in some cases in excess of
100,000 rpm. Another important feature of SRMs is their ability to be used in hostile environments
such as space. These machines are able to operate in these conditions because their construction
is very simple and, therefore, very robust. However, one very limiting issue in the operation of
SRMs is the requirement of the knowledge of the position of the rotor. If a physical sensor is
utilized to measure the position then the robustness of the machine is severely compromised. Thus,
a substantial amount of work in the area of sensorless control of SRMs has appeared recently in
the literature [1–26].

Most of the literature on sensorless control of SRM drives has been focused on low to medium
speed applications. The few papers that have dealt with very high speed SRM control are rare
[1–3]. With the exception of a couple of papers by Panda et al. [4, 5], no current position estimation
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techniques have explicitly included the dynamic behaviour of magnetic materials in their models.
There has been a fair amount of offline modeling work on the estimation of the behaviour of SRMs
that includes some dynamic effects of magnetic materials [27–31]. However, based on the experience
that has been gained from undertaking this work, the author of this work believes that all of the
currently available models for SRMs have a major shortcoming. This shortcoming is that these
papers present magnetic models that have static parameters. Based on the findings of this work,
it is concluded that a static model with a single set of parameters cannot accurately reproduce the
behaviour of ferromagnetic materials over a large range of frequencies and input excitation levels.
This is particularly relevant to very high speed SRMs because they in fact do operate over a large
range of speeds and levels of excitation of the magnetic material. Due to the nature of the operation
of SRMs, a large range in speed equates to a large range in frequency.

The major goal of this work was to provide a model that can be potentially used in realtime to
accurately predict the position of the rotor of a SRM over a large range in operating speeds and
load levels. Due to time constraints only part of this goal was achieved. However, the work that
was completed constitutes the major part of the work that is needed to be done to achieve the
stated goal.

1.1.1 Machine Structure

A switched reluctance machine is typified by its double salient structure. This means that the
machine has teeth (otherwise known as poles) on both its stator and rotor. For the vast majority
of applications, the ability to be able to control the torque at any position and in either direction
of rotation is necessary. Thus, configurations of SRMs that have this characteristic prevail over
others that do not. Examples of SRMs that have this property include machines with six stator
poles and four rotor poles, eight stator poles and six rotor poles, and twelve stator poles and eight
rotor poles. A shorthand for specifying the structure of the machine has been developed. For the
case of a SRM with six stator poles and four rotor poles the machine is called a 6/4 SRM.

As with other machines, pairs of poles are electrically connected to become the phases of the
machine. Furthermore, multiple pairs of poles can be electrically connected. Machines with this
type of configuration tend to have shorter magnetic paths compared to machines that have single
pairs of poles. Unfortunately, connecting more that one pair of poles to become a phase effectively
increases the excitation frequency that is seen by the magnetic material. Depending on the char-
acteristics of the magnetic material of the machine, this can potentially eliminate any benefits that
are gained by having shorter magnetic paths in the material. A 6/4 SRM is an example of a three
phase machine with a single pair of poles per phase while a 12/8 SRM is an example of a three
phase machine with two pairs of poles per phase. Thus, for the same speed of rotation and the
same size of machine, the excitation frequency of a 6/4 SRM is half that of the 12/8 SRM but its
magnetic paths are double the length.

2



Chapter 1. Introduction

Another defining characteristic of SRMs is their phase currents are unidirectional. This is in
contrast to AC machines which require bidirectional currents. The orientation of the phase currents
are set up to minimize the magnetic path length of the material during the commutation between
the phases of the machine. The necessity for only unidirectional currents is the direct result of the
physical mechanism behind the generation of the torque in this type of machine. SRMs operate on
the principle that a force is produced on a structure in a magnetic field in order to decrease the
reluctance of the magnetic path of the field. The reluctance of a magnetic circuit is analogous to
the resistance in electric circuit theory. In the case of a SRM, the structure in the field is the rotor
and the field is generated by concentrated windings on the poles of the stator of the machine. Thus,
when a pair of stator poles is excited with a current in either direction, a force is generated on the
rotor poles that are the nearest to the excited stator poles in order to align the rotor poles with the
stator poles. If the phase currents of the machine are suitably generated and the number of stator
and rotor poles of the machine are as described above then the machine can exhibit continuous
torque in either direction.

A silhouette of a 6/4 SRM is given later when an equivalent circuit model of the machine is
presented.

1.1.2 Control of Switched Reluctance Machines

In order to understand how SRMs are controlled, consider a typical block diagram of a sensorless
SRM drive that is given in Figure 1.1.
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Figure 1.1: Sensorless SRM drive

While the specifics of the control algorithms of SRMs are beyond the scope of this work, a
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general description is given to emphasize the need for the estimation of the rotor position.
As mentioned above, the phase currents of the machine generate a magnetic field in the machine

that tends to align the poles of the rotor with the currently excited stator poles. If the rotor poles
that are closest to the excited stator poles are moving towards the stator poles then the torque on
the rotor is positive. Conversely, if the rotor poles are moving away from the stator poles then the
torque on the rotor is negative. As a result, the phase current should be reduced to zero as close to
the alignment position of the poles as possible to minimize the generation of negative torque. The
number of degrees of rotation that is required to do this depends on both the current speed of the
rotor of the machine, ωm, and the value of the current. The rise/fall angle generator block in Figure
1.1 is a predetermined 2-dimensional lookup table that outputs the required fall (or turn-off) angle,
θc, of the machine based on the speed of the machine and the desired value of the phase current,
i∗. Similarly, the rise (or turn-on) angle, θo, is determined by the desired value of current for the
next phase of the machine and the current speed of the rotor.

The current is controlled with a hysteresis type of controller. A band around the desired value
of current is specified based on the amount of allowable ripple in the current and the update rate
of the control algorithm. If the measured value of the phase current, ip, is larger than the upper
value of the band, imax, then a negative voltage is applied to the phase to decrease the value of the
phase current. Conversely, if the phase current is lower than the lower value of the band, imin, then
a positive voltage is applied to the phase to increase the value of the phase current. For all other
cases the value of the phase voltage is maintained at its current value. The phase that the voltage
is applied to is determined by the current value of the position of the rotor, θ. This is determined
by the phase selector/controller block in Figure 1.1. In fact, the hysteresis controller block in
Figure 1.1, actually contains a hysteresis controller for each phase of the machine. The phase
selector/controller block either enables or inhibits the actions of each hysteresis controller based on
the state of the machine. For example, the value of the desired current is overridden in order to
properly switch the current off in the current phase i.e. the current is set to zero when the block
determines that it is time to switch off the current in the conducting phase. Likewise, when it is time
to ramp up the current in the next phase of the machine then the appropriate hysteresis controller
is enabled. For high speed operation of the machine, the control of the machine becomes wholly
based on the generated rise and fall angles since the phase currents can no longer be arbitrarily
controlled. In this mode of operation, the output of the hysteresis controller block is completely
determined by the phase selector/controller block.

In all modes of operation of the machine the duty cycle, d, of each phase is either set to one
to increase the current in that phase or to zero to decrease the current in that phase. The duty
cycle signals are given to a power electronics circuit that is fed with a voltage that is fixed at some
value. Note that the structure of the power electronics circuit effectively blocks negative values of
current except for a typically small undershoot that occurs when a phase current goes to zero.
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Since the controller for the machine is typically implemented in a microcontroller such as a
digital signal processor, the analog phase currents and voltages need to be converted into digital.
This is performed with analog-to-digital (A/D) converters. Typically, microcontrollers have on-
board A/D conversion.

The value of the desired current is generated by the torque controller block that is shown in
Figure 1.1. The input of this block is the desired electrical torque, T ∗

e that is generated by the speed
controller that is also shown in Figure 1.1. The torque constant Kt is not necessarily constant as
it is in other machines. The error in the speed of the machine is the input to the speed controller.
The speed controller is typically a saturable proportional-integral (PI) type of controller.

The last block in the sensorless controller of a SRM is the position estimator. As is mentioned
above, it is the improvement in the accuracy of this block that is the motivation for this work. The
approach to achieve this goal is given next.

For further details on the structure, design, and control of SRMs please refer to a comprehensive
book on this subject by Miller [32]. There is also another book that is available that gives a collection
of topics on SRM control that is edited by Miller [33].

1.1.3 The Multi-Phase Lumped Parameter SRM Model

From the above discussion, it is clear that the current position of the rotor is required to properly
control the switching of the phases of the machine. To this end, an estimation of the position of
the rotor is required. One important phenomenon that occurs in the high speed operation of SRMs
is the simultaneous conduction of current in more than one phase of the machine at a time. This
can occur for significant periods of time at high speeds. Since the characteristics of ferromagnetic
materials are very nonlinear, a simple superposition of the results of separate phases can produce
large errors in the estimation of the position. To account for the mutual effects of the phases and
to allow for the multi-phase excitation of the machine, a lumped parameter model by Lyons et
al. provides an excellent way of consistently finding the position of the rotor [6, 7]. Figure 1.2
illustrates this model for a 6/4 machine. Note that the airgaps that are shown in the machine
silhouette are greatly exaggerated to show the relationship between the physical machine and the
parameters of the model. Also, only the winding for phase A is shown.

The parameters of the model as given in Figure 1.2 are as follows:

FA is the input magnetomotive force of phase A;
FB is the input magnetomotive force of phase B;
FC is the input magnetomotive force of phase C;
RSP is a saturable element that represents the reluctance of the base of the stator poles;
RRP is a saturable element that represents the reluctance of the base of the rotor poles;
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Figure 1.2: Lumped parameter model for a 6/4 SRM

RSPT is a saturable and position dependent element that represents the reluctance of the tips
of the stator poles;

RRPT is a saturable and position dependent element that represents the reluctance of the tips
of the rotor poles;

RG is a non-saturable and position dependent element that represents the reluctance in the
airgaps of the machine;

RSC is a saturable element that represents the reluctance of the backplane (or core) of the
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stator;
RRC is a saturable element that represents the reluctance of the core of the rotor;
RPP is a non-saturable element that represents the reluctance of the air path between

adjacent stator poles of the machine;
RPC is a non-saturable element that represents the reluctance of the 3-dimensional end

effects of the machine and the leakage paths in air between the stator poles and
backplane.

The magnetomotive forces (mmf) FA, FB, and FC are equal to the number of turns on each
individual stator pole multiplied by the appropriate phase current e.g. FA = NiA where N is the
number of turns.

In order to determine the position of the rotor, the simultaneous sampled values of the phase
currents and fluxes are necessary. Flux is analogous to current in electric circuits theory, however,
there is an inherent danger in using this analogy. This danger is explained later in Chapter 3
when the flux is defined. The phase currents are already available since the hysteresis controller
requires their values. The fluxes can be estimated from the phase voltages, phase currents, and
the winding resistances. In the existing model, the values of the mmf drops across the position
independent reluctances as a function of the flux through the element are stored in a look-up table.
The reluctances of the stator and rotor pole tips and the airgap are combined to form a single
position and flux dependent reluctance, RGT . This gap-tip reluctance function can be inverted at
a known flux levels to obtain a set of curves that relate the position as a function of reluctance and
flux level. Thus, once the values of the reluctance across the airgaps are calculated from the rest
of the model, the value of the position can be determined with a 2-dimensional lookup table that
stores the values of the position as a function of the gap-tip reluctance and flux level.

Due to the typical relationship between the rotor position and the current for different levels of
flux, it is well documented that there are optimum ranges of position to calculate the position for
each phase [6]. Outside of these regions, the error in the position estimate can be potentially very
large.

One drawback of the model that was proposed by Lyons et al. is it does not account for the
dynamic effects of the material. Since this model is inherently very accurate, it was decided to
modify the model to include these missing effects. These modifications are discussed next.

1.1.4 Modification of the Multi-Phase Lumped Parameter SRM Model

The base model that was proposed by Lyons et al. is modified by replacing the time-invariant
saturable inductances with time variant reluctances that exhibit hysteresis and eddy current ef-
fects. This involves both the determination of a suitable model for the new reluctances and the
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modification to the existing implementation of the SRM model for the inclusion of the new circuit
elements. The work that is presented in this thesis is entirely focused on the first task. However,
some comments on the second task are presented to give a sense of what still needs to be done.

The position in the new framework can be calculated in a similar fashion to the original model.
First, the mmf drops are computed for the position independent reluctances. The sum of these
mmf drops for each phase then gives the mmf drop across the position dependent RGT reluctances.
The mmf drop for the phase with the least expected error in the position is then compared to the
mmf drop that is calculated by using the elements for RGT . It is likely that the position data will
be stored in small increments instead of being continuous. The estimate of the position is obtained
by minimizing the difference between the two mmf drops across the position dependent reluctances.
Note that this determination of the position gives the rotor angle relative to the aligned position of
the chosen phase but not which side of the aligned position. The other phases are used to determine
what side of the stator pole this angle refers to in order to find the absolute position of the rotor.

The big disadvantage of this approach is it numerically quite complex. The determination of
the rotor angle needs to be performed many times between commutations of the phases in order
to preserve the proper dynamic behaviour of the new reluctance elements as opposed to only a
few times for the original model. Furthermore, the time to calculate a single rotor position is also
significantly longer compared to the original model. Finally, a mechanism also needs to be devised
to update the history terms of the model when the accuracy in the absolute position is poor.

1.2 Intended Contribution of this Work

The intended contribution of this thesis is:

to produce a model that can be potentially used in realtime to predict the behaviour
of a given ferromagnetic material of a given geometry over a large range of excitation
frequencies and over a large range of saturation levels without resorting to retuning the
parameters of the model.

The key to the stated objective is the requirement that the parameters of the model are only
determined at the time of the model’s formulation and thereafter remain fixed. As was briefly
mentioned above, the pre-existing schemes are unable, in general, to achieve this without a loss in
accuracy. As will be seen, this loss in accuracy can be quite severe.

It is hoped that this new type of model can then be used for the online prediction of the position
of the rotor of a switched reluctance machine. Note that the application of this type of model is
not just limited to the prediction of the rotor position of a SRM. It can also be used as part of an
offline model to design and validate the performance of many different kinds of devices including
but not limited to fast acting solenoids and SRMs.
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1.3 Utilized Material and its Geometry

The magnetic material that was studied in this work is used by a commercial SRM. Since the
efficiency of the machine is not a factor for this particular machine, the SRM is designed as cheaply
as possible. As a result, the magnetic material is relatively thick for this type of machine. Based
on the information from the manufacturer of the machine, the material is industrial grade M19
silicon steel. The magnetic material is doped with a small percentage of silicon to decrease the
resistivity of the material. This comes at a cost to the magnetic properties of the material but this
cost is relatively small. The specified thickness of the material is 0.635 mm. In the gauge system
of specifying thicknesses, this corresponds to 24 gauge.

The material was cut into a torus with a rectangular cross-section. This geometry is shown
in Figure 1.3. The coil that drives the material is wound such that the excitation H field is in
the direction that is shown in the figure. The other details for the winding arrangement of the
driving coil and the sense coil are given in Appendix A. However, it is worth noting here that
the coils are arranged in order to minimize any leakage paths of the flux. Leakage flux tends to
vary the value of the magnetic field density along the magnetic path. Thus, large errors can occur
in the measurements of the characteristics of the material if significant leakage paths exist. The
specifications of the material along with the dimensions of its geometry are tabulated in Table 1.1.

H

½ID

½OD w

Figure 1.3: Geometry of the test material

The material was cut using an abrasive high pressure water cutter. Since this process does
not generate heat it is assumed that magnetic properties of the material were not overly affected
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by this process. The act of manipulating the material can cause minute stresses and deformities
in the crystal lattice of the material. As is discussed below, the work that is required to move
the domain walls of the material will increase if there are more irregularities or stresses in the
lattice. Typically, laminations that are punched out of raw materials need to be heat treated by a
process called annealing to bring the magnetic properties back to those that are specified by the
manufacturer. It is hoped that the process of abrasive water cutting essentially leaves the magnetic
properties of the material intact. The material was cut from the stator of the aforementioned
machine. Initially, the material in the stator of the machine was tested but the irregular shape of
the stator makes it very difficult to isolate the properties of the material from other effects such as
air leakage paths between stator poles. However, the general shape and magnitude of the response
of the material in the uncut stator and the test geometry are quite similar. This gives confidence
that the process of abrasive water cutting is relatively unobtrusive.

Table 1.1: Specifications of the test material

Parameter Value Unit

Type M19 silicon steel

Grain-oriented ? No

Nominal resistivity 2× 10−5 Ω-m

1/2ID 57.5 mm

1/2OD 62.3 mm

w 0.635 mm

1.4 Basic Concepts

Before the discussion can proceed any further some basic concepts of ferromagnetic materials need
to be discussed. Most of the discussion that is presented here is taken from Magnetoelectric Devices:
Transducers, Transformers, and Machines by Slemon [34].

The properties of ferromagnetic materials can be split into two broad categories: time rate
dependent and time rate independent. This is not to say that the time rate independent properties
do not vary with time but that their variation is not a function of the rate of change of time.
The properties that are of interest to this work are hysteresis and eddy current effects. Hysteresis
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effects are time rate independent whereas eddy current effects are time rate dependent. Before
these properties can be discussed, however, a basic definition of ferromagnetism is required.

1.4.1 Ferromagnetism

Magnetic effects in all materials are the result of the orbital motions of electrons about the nuclei
of atoms and the spin motion of each electron as is depicted in Figure 1.4. A net magnetic moment
exists in atoms that have an incomplete inner shell of electrons. In these atoms the spins of electrons
in one direction are not completely cancelled by electrons with the opposite spin direction. Thus, a
net magnetic moment is produced. For illustration purposes an atom with a net magnetic moment
can be considered as equivalent to a small constant current loop. Only changing the orientation of
the spin axis of the electrons can alter the direction of this equivalent current loop.

pm

pm

Figure 1.4: Orbital and electron spin magnetic moments in an atom

The alignment of an equivalent current loop in proximity to other current loops dictates whether
or not a material is ferromagnetic. Consider the two potential cases that are given in Figure 1.5
below.

The case of antiferromagnetism that is shown in Figure 1.5(b) occurs when the atoms are in
too close proximity to each other. Materials with this arrangement have no benefit because the
magnetization M that is produced can not link an external current carrying coil. On the other
hand, the magnetization that is produced in the ferromagnetic case that is depicted in Figure
1.5(a) is useful since it does have the ability to link an external coil. However, materials made of
pure elements that are naturally ferromagnetic at useable temperatures are not the only materials
that can display ferromagnetism. If an antiferromagnetic element is combined with a nonmagnetic
element then the spacing between the atoms can become larger. In these cases the resulting material
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(a) ferromagnetic
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(b) antiferromagnetic

Figure 1.5: Ferromagnetic and antiferromagnetic structures

can display ferromagnetic properties.
In summary, materials that display ferromagnetism are, at a minimum, partially composed of

atoms that are able to produce a net magnetic moment. The magnetic moments in the crystal
lattice of the material also need to be orientated as is shown in Figure 1.5(a) for ferromagnetism
to occur.

1.4.2 Hysteresis

Hysteresis is defined by the Oxford American Dictionary as:

the phenomenon in which the value of a physical property lags behind changes in the
effect causing it, as for instance when a magnetic induction lags behind the magnetizing
force.

This lag is best illustrated by considering a typical hysteresis loop in a ferromagnetic material
that is shown in Figure 1.6.

The quantity H is the magnetic (field) intensity whereas the quantity B is the magnetic field
(density). The B field is also sometimes called the magnetic flux density. The units for H are
typically given in A/m while the units for B are typically given in T. The trajectory from the
origin to the positive extremum in the trajectory is called the initial magnetization curve. It is
called this since the material starts from a demagnetized state and increases (or decreases) until
the direction of H is reversed. Notice that for a negative-going trajectory the value of B is non-zero
when H becomes zero. In fact, the B becomes zero for a negative value of H. Clearly, the B field
(the response) lags behind the H field (the cause).

The cause of hysteresis in ferromagnetic materials is due to physical structure of the material.
Ferromagnetic materials are comprised of magnetic domains. In a given domain all of the magnetic
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H 

B 

Figure 1.6: An illustration of hysteresis

moments are aligned in the same direction. Without an external H field, the alignment of the
moments within the domains are in directions that minimize the total energy of the crystal structure
of the material. The number of minimum energy alignments of the magnetic moments within the
crystal structure of the material is highly dependent on the structure of the crystal itself. The
application of a sufficiently large external H field allows the magnetic moments to be rotated in
the direction of the field. The resulting additional energy that is stored in the crystal lattice of
the material is called the magnetic anisotropy energy. If at a later time the H field is removed,
the magnetic moments move to the closest minimal energy alignment. The new alignment of the
magnetic moments are not necessarily the same as the configuration before the external field was
applied. The rotation of the magnetic moments within the domains of the material is associated
with domain rotation.

Adjacent domains are separated by a thin wall. The magnetic moments within the wall are
smoothly rotated from the alignment on one side of the wall to the opposing alignment on the other
side. Since the magnetic moments within the wall are not aligned in any of the minimal energy
configurations of the crystal, energy is stored within the wall. If a sufficiently large external H field
is applied to the crystal lattice of the material, the domain wall will move in order to enlarge the
domain that is aligned closest to the direction of the external field. The value of H that is required
to achieve this is called the coercive force. In the event that a new domain wall is required to be
created, such as when the material is moving from a state of saturation, the wall is initially located
such that its total volume is minimized. The energy that is used in moving the wall across the
material is irrecoverable. It is used to push the wall across regions in the material with impurities,
irregularities, or strains in the crystal lattice. Eventually the energy is dissipated as heat in the
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material. The loss that is the result of this process is called the hysteresis loss.
The two preceding affects that occur as the result of the application of an external H field are

dominant for different parts of the hysteresis loop. This is because the strength of the field that is
required for domain rotation is considerably higher than that for domain wall motion. Furthermore,
materials that already have their grains oriented in the direction of the field essentially do not require
domain rotation. The losses in these grain-oriented materials are, therefore, less than materials that
have no preferred direction of magnetization. The material that was utilized in the work that is
presented in this thesis is of the latter type.

The actual mechanism that causes the magnetic moments to rotate is a torque that is created
in presence of the external H field. This torque, is given by:

Tm = pm× µ0H (1.1)

where pm is the value of the magnetic moment of the atom with units A-m2 and µ0 is a constant
called the permeability of free space. Its value is 4π × 10−7 Wb /(A-m).

Since the value of the magnetic moments is essentially fixed, the magnitude of H dictates the
variation of the torque that acts on the moments. Thus, the amount of the magnetization can be
directed controlled by the variation of H.

To illustrate the difference between domain wall movement and domain rotation consider the
sequence of changes in the magnetization of a section of a ferromagnetic material that is depicted
in Figure 1.7. These changes are the result of the monotonic increase in the magnitude of H. Note
that the domain wall that is shown as a dashed line in Figure 1.7 is for illustration purposes only.
In actuality, the wall is typically hundreds of atoms thick.

The first three steps in the sequence show the movement of the domain wall whereas the last
step shows the result of domain rotation. Initially, the net magnetization of the section of material
that is shown in Figure 1.7(a) opposes the external H field. As the value of H increases, the domain
wall that separates the magnetic moments with opposite directions moves downwards as is shown
next in Figure 1.7(b). This results in a component of the net magnetization that is now in the same
direction as H. Further increasing H rids this section of the material of any domain walls as is
depicted in Figure 1.7(c). As Figure 1.7(d) shows, the magnetic moments are then finally aligned
with the external H field. Once the magnetic moments are fully aligned with the H field further
increasing H does not increase the magnetization. At this point the material is deemed to be fully
saturated. The value of B at this point is typically called the saturation flux density.

The concepts of hysteresis and the domain structure of ferromagnetic materials are used through-
out this work. These basic concepts are expanded upon as is necessary. In particular, Chapter 2
shows the development of a class of practical hysteresis models and Chapter 4 shows a modification
to existing models that is based on magnetic domains.
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Figure 1.7: Sequence of magnetization changes due to an external H

1.4.3 Eddy currents

The existence of eddy currents is a direct consequence of Faraday’s Law. Faraday’s Law states that
for any surface that is bounded by the closed line, the time rate of change of the flux perpendicular
to the surface gives rise to a voltage along the line i.e.

E = −dφ

dt
(1.2)

where E is the voltage in volts (V) and φ is the flux.
If the area of the surface is given by A and the magnetic field B is constant on the surface

then φ = BA. The negative sign in Equation 1.2 indicates that the voltage is set up to oppose the
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change in flux. A current will then flow along the line as a result of the voltage. This current is
called an eddy or Foucault current. The specific amount of current depends on the value of the
voltage and the conductivity of the material that the current is passing though. This current loop
gives rise to a B field that opposes the change in the original B field.

The generation of eddy currents results in the phenomenon called the skin effect. The name is
aptly chosen since, for current carrying conductors, the current tends to flow on the outside of the
material. The depth at which the current falls to 1!e of its original value is given by:

δ =
√

2
ωµ0σ

(1.3)

where σ is the conductivity of the material and ω is the frequency (in rad/s) of the current. δ is
typically called the depth of penetration. Note that the conductivity of a material is the reciprocal
of its resistivity. The SI unit for conductivity is S/m.

For magnetic systems the concept of the skin effect also applies. However, the skin effect
refers to the attenuation of the H field as it penetrates the core of the magnetic material. Since
ferromagnetic materials are nonlinear, the depth of penetration varies as H varies. Once definition
that was developed for sinusoidally excited saturated cores by MacLean and Agarwal [35, 36] is:

δ =

√
2H0

ωσB0
(1.4)

where H0 is the peak of the magnetic intensity at the surface of the core. B0 was proposed by
Agarwal to be 75% of the saturation flux density. If x is the distance from the surface of the core
then the relationship between H and B at x is approximated by Bx = B0sign(Hx). Note that the
value of δ in Equation 1.4 gives the absolute penetration depth not the depth at which H falls to
1!e of its original value.

Some authors use Equation 1.3 for magnetic materials by replacing µ0 by µ. This is only very
approximate at best since µ is a function of time and the wave solution that generates Equation
1.3 assumes that the intrinsic parameters of the medium are time invariant. One of the main uses
of the depth of penetration is to estimate the number of layers that are required for circuit based
ferromagnetic models.

1.4.4 Relating the Magnetization of a Material to Other Field Quantities

The magnetization M of a material is related to the H field and B field in the material by:

M =
1
µ0

B −H (1.5)
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Typically M is replaced with H in Equation 1.5 by assuming that M and H are related by:

M = χmH (1.6)

where χm is the magnetic susceptibility of the material. It is dimensionless if H and M are expressed
in the same units.

Substituting M from Equation 1.6 into Equation 1.5 yields the more commonly found B = µH.
The constant of proportionality µ is called the permeability of the material. Classically, Equation
1.6 is only valid for linear media since χm is assumed to be a constant. However, for nonlinear
hysteretic media, the end result B = µH is useful if µ is defined by the slope of the curve relating
H and B.

1.5 State of the Art

There are numerous papers in the literature that address the various aspects of ferromagnetic
materials. This section provides a glimpse into the papers and methodologies that are the most
suitable for a start point of this work. Other techniques that are clearly not suitable for solving
the aforementioned problem are also mentioned for completeness.

The requirements that are stated above place restrictions on the modeling techniques that are
currently available. For instance, the use of finite element element analysis is not considered since
the computational times for this class of models is excessively long. The unbounded nature of the
iterative nonlinear solution techniques that are mostly used today are also unsuitable for realtime
applications.

1.5.1 Finite Element Analysis

In finite element analysis (FEA) the physical device is represented by a 2-dimensional (2D) or
3-dimensional (3D) mesh of objects. The fields inside the objects are allowed to vary based on
a polynomial of a fixed order. The algorithm then solves the fields inside the objects based on
the values of the field on its surfaces. The solution is deemed to be correct when the boundary
conditions on all adjoining surfaces of all of the objects are matched to within a specified error.
With a large number of elements, this procedure takes a very long time — in the order of hours to
stimulate a transient case for a simple rotating 3D device with a fine mesh.

The excessively long simulation times of this approach makes it impractical for many situations.
Clearly, for the intended use of the model examined in this work, this approach is too unwieldy.
However, for the determination of reluctances in air or for static solutions of the fields inside
materials, finite element analysis is a very useful tool.

One approach that has gained popularity is the solution of circuit based models that are coupled
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with FEA models. In some of these cases, the airgap reluctances are represented with a FEA model
and the material with a lumped parameter circuit model. This approach significantly improves the
speed of the overall solution while retaining a good portion of the accuracy of the original FEA
model.

1.5.2 Solution of the Diffusion Equation

Many approaches derive analytical equations for the solution of the H field inside ferromagnetic
materials staring from the 1-dimensional (1D) diffusion equation. The specific case of the diffusion
equation for the laminations of a transformer is well known [37]. Assuming that the external H

field is in the +z direction, the 1D diffusion equation in rectangular (x,y,z) coordinates can be
written as:

∂2

∂x2
Hz(x, t) = σ

∂

∂t
Bz(x, t) (1.7)

Bz(x, t) = f
(
Hz(x, t)

)
(1.8)

As is discussed in Section 1.4.3, the fields inside the material are attenuated by the presence of
eddy currents. The electric field that drives these currents is related to H by:

∂

∂t
Hz(x, t) = −σEy(x, t) (1.9)

where Ey(x, t) is the electric field. Typically, the units of the electric field are given in V/m.
Equations 1.7–1.9 are solved subject to boundary conditions that are specified based on the

assumptions that were made in the formulation of the model. For instance, the main assumption
of this formulation is the height of the lamination is significantly larger than its width. Thus, the
effects near the ends of the lamination are ignored.

The 1-dimensional diffusion equation can also be solved using cylindrical coordinates. An
example of this is presented in Chapter 4.

The diffusion equation accounts for eddy currents that flow in the classical sense. It does not,
however, model the currents that are generated in order to dampen the movement of the domain
walls. This is a major limitation of the model. The errors that are produced by models that do
not include eddy currents due to domain wall movement can be very significant if the core is not
allowed to saturate to any extent. This is further explored in Chapters 3 and 4.

One of the key difficulties in finding the solution to Equations 1.7–1.9 is the relationship between
Hz(x, t) and Bz(x, t) is nonlinear and hysteretic. The choice of hysteresis models can dictate what
is a feasible approach to finding the solution. Two very popular classes of hysteresis models are
the Preisach and Jiles-Atherton approaches. The Preisach approach is dealt with extensively in
Chapter 2 whereas the Jiles-Atherton approach is presented below.
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The solution for the 1D diffusion equation needs to be solved numerically since its parameters
are very nonlinear. There are many ways to numerically represent the diffusion equation. Naidu
proposed using a spline function to represent the distribution of H in subintervals of a single
lamination [37]. His formulation uses a Preisach model to model hysteresis. The resulting model
requires solving a set of seven non-linear equations.

Stoll’s book The Analysis of Eddy Currents is the start point of many papers that utilize his
approximations for magnetic diffusion problems [38]. One approximation that is frequently used is
to model cylindrical geometries by “rolling” the angle out flat. The solution of the problem is then
formulated for an infinite plane that has a width equal to the original radius of the cylinder. The
time derivative in the resulting diffusion equation is then replaced by the Laplace variable s = jω.
This approximation has also been applied to geometries with a square cross-section if the square
cross-section is approximated with a circular cross-section [39]. The resulting solution of the 1D
diffusion equation for these cases is given by:

Hz(x, s) = H(rm, s)
cosh

(
x
√

µωs
)

cosh
(

rm

√
µωs

) (1.10)

where rm is the radius of the cylinder or half the length of the side of the square cross-section.
It is this approach that is utilized by Dallago et al. to model a high frequency transformer

with a ferrite core [39]. Although, the model in this paper is developed for ferrimagnetic (ferrite)
materials, the basic results of the paper provide useful information. Using Equation 1.10, they
present a circuit-based model with core reluctances given by:

R(s) = R0

√
s
ω0

coth

(√
s
ω0

)

∼= R0

(
1 +

s
3 ω0

)
if ω & ω0

(1.11)

where R0 is the DC reluctance of the section of the core to be modeled and ω0 = 1!µσr2
m.

The DC reluctance of the core can be modeled with any hysteresis model. The authors use the
Jiles-Atherton approach. One particularly interesting result of using this approach is the frequency
dependent portion of the reluctance R0!3 ω0 does not depend on µ so long as ω & ω0. While this is
the case for a large range of ferrimagnetic materials, it certainly is not for the case of ferromagnetic
materials. Furthermore, the solution of the diffusion equation given by Equation 1.10 assumes that
the parameters σ and µ are time invariant. This is certainly not true to any extent for inputs that
saturate the core — µ changes significantly in a cycle that saturates the core. Thus, this approach
is only useful for modeling ferromagnetic materials in certain very restrictive cases.
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The problems that are associated with using a solution of the form of Equation 1.10 does not
invalidate the use of the diffusion equation. Rather, they reinforce the fact that Equations 1.7–1.9
must be solved using nonlinear solution techniques for the majority of cases with ferromagnetic
materials.

1.5.3 Incorporation of Empirically Determined Equations for Eddy Current

Losses

The use of empirically determined equations for determining the contribution of eddy currents to
the instantaneous value of H in the core of a ferromagnetic material is widespread [40–43]. In
particular, these equations are often used in the determination of the iron losses of the material.

The contribution of the eddy currents to H that are produced in the classical sense is given by:

Hcls = k1
dB̄

dt
(1.12)

where k1 is a constant that is determined by fitting experimental data and B̄ is the average value
of the B field in the material.

The contribution of the eddy currents that flow as the result of domain wall movement is found
to be:

Hexc = k2

∣∣∣∣
dB̄

dt

∣∣∣∣

1
2

(1.13)

where k2 is a constant that is determined by fitting experimental data.
Thus, the instantaneous value of H inside the material can be determined by:

H(t) = Hext −Hcls −Hexe (1.14)

where Hext is the externally applied H field.
As with the other modeling approaches, the relationship between H and B is determined with

the use of a hysteresis model. Papers that describe models that use the Preisach or Jiles-Atherton
hysteresis formulations can both be found in the literature for this class of solution techniques.

Note that the average value of B in the material is used in Equations 1.12 and 1.13 instead of the
value of B at a particular depth. Additionally, these relationships are developed using sinusoidal
excitations. Both of these conditions impose rather restrictive limitations on the validity of using
this approach. This is discussed in further detail in Chapter 3.

1.5.4 Circuit-Based Ferromagnetic Models

Since these circuits are the focus of this work, a whole chapter is devoted to exploring the perfor-
mance of the preexisting circuits. However, for completeness some general commentary is included
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here.
Circuit-based modeling techniques have been used for many decades. In fact, a single layer

version of the basic circuit that is presented in Chapter 3 is incorporated in the ubiquitous T-
circuit transformer model if the magnetizing branch is modeled as a nonlinear inductor in parallel
with a resistor.

Some of the earlier work such as Charap’s paper modeled both hysteresis and eddy current
effects in ferromagnetic materials in a single circuit i.e. the effects due to hysteresis are not modeled
separately from eddy current effects [44]. This is in stark contrast to the recent trends in magnetic
material modeling.

A major advantage of circuit-based models is they can be incorporated into larger models that
describe complex devices seamlessly. Thus, the equations that describe the whole device can be
solved together. This advantage along with others are explained in the remaining chapters to come.

1.5.5 The Jiles-Atherton Model of Hysteresis

As is briefly mentioned above, there are two major classes of techniques that are used for mod-
eling hysteresis: the Preisach and Jiles-Atherton methodologies. Both of these approaches are
phenomenological in nature. The main features of the Jiles-Atherton approach are presented here
while the next chapter covers in depth the theory behind the Preisach approach.

The main results of the Jiles-Atherton model appear below. The detailed derivation of these
results can be found in the original paper by Jiles and Atheron [45].

The Jiles-Atherton approach attempts to model the behaviour of the domain walls in ferromag-
netic materials. Specifically, the translation and bowing (bending) of domain walls is modeled.

The basic shape of the hysteresis loop is provided by an anhysteretic magnetization Man(H)
curve. This curve does not exhibit hysteresis. It models the behaviour of the material that would
occur if the motion of the domain walls was fully reversible. Thus, in the words of Jiles and
Thoelke, “ · · · the anhysteretic magnetization represents a global minimum towards which the
magnetization strives but is prevented from reaching because of impedances to domain wall motion”
[46]. Typically, a modified Langevin function is used to model Man. This function is given by:

Man(H) = Ms

(
coth

(
He

γ

)
− γ

He

)
(1.15)

where Ms is the value of the magnetization at the saturation flux density, γ is a parameter that
characterizes the shape of Man with units equal to He, and He is the effective magnetic intensity
that is seen by every magnetic domain of the material due to the coupling between neighbouring
domains. The effective magnetic intensity is defined as:

He = H + αM (1.16)
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where α is the coupling factor between domains.
The domain walls bow (bend) in the vicinity of the origin of the initial magnetization curve.

Wall bowing is considered to be the primary mechanism for domain wall motion in this region. The
bowing of the domain walls is a reversible process. However, the bulging of the wall is impeded by
localized imperfections in the crystal lattice of the material [47]. The locations of these imperfections
are called “pinning” sites in the literature.

In the Jiles-Atherton formulation, the translation of the domain walls is assumed to be impeded
by uniformly distributed pinning sites. As is described above in Section 1.4.2, the energy that is
required to move the walls past imperfections in the crystal lattice is eventually dissipated as heat.
Thus, the translation of the domain walls is a irreversible process. The energy that is lost due to
moving the wall pass these pinning sites is expressed as a function of the irreversible change in the
magnetization Mirr:

Epin(Mirr) =
n〈επ〉
2m

∫ Mirr

0
dMirr

= µ0k

∫ Mirr

0
dMirr

(1.17)

where n is the average density of pinning sites in the material, 〈επ〉 is the average pinning energy of
the sites for 180o domain walls, m is the magnetic moment of a typical domain, and k is a parameter
that lumps material dependent variations together with units equal to Mirr. The constant k is
sometimes known as the domain anisotropy parameter.

Note that 180o domain walls rotate the magnetic moment from one side of the wall to the other
by 180o. Usually these walls continue through many crystals in the material. Conversely, 90o walls
are typically contained only within individual crystals [44]. Thus, the Jiles-Antherton formulation
only models the movement of the 180o walls.

The irreversible magnetization can be obtained from Equation 1.17. The results of this deriva-
tion can be found in the oft cited paper by Jiles and Atherton [45] as:

Mirr = Man − kδ
dMirr

dHe
(1.18)

where δ is defined as a directional parameter that has a value of +1 if dH/dt > 0 and −1 if
dH/dt < 0.

Provided that k )= 0 and the denominator of Equation 1.18 is not zero, Equation 1.16 can be
substituted into Equation 1.18 to yield:

dMirr

dH
=

Man −Mirr

kδ − α(Man −Mirr)
(1.19)

where dMirr/dH is called the differential irreversible susceptibility. Equation 1.19 constitutes the
first of two equations that define the Jiles-Atherton hysteresis model.

22



Chapter 1. Introduction

As mentioned above, the bending of the domain walls is a reversible process. Therefore, a
reversible component of the total magnetization of the material is present due to the domain walls
bending. Since the bending is primarily influenced by difference between the anhysteretic magne-
tization and the irreversible magnetization, the differential reversible susceptibility dMrev/dH can
obtained by:

dMrev

dH
= c

(
dMan

dH
− dMirr

dH

)
(1.20)

where c is a parameter that determines the amount of domain wall bending.
Equation 1.20 constitutes the second equation that defines the Jiles-Atherton hysteresis model.

Equations 1.19 and 1.20 can be combined to yield the total differential susceptibility dM/dH:

dM

dH
= (1− c)

Man −Mirr

kδ − α(Man −Mirr)
+ c

dMan

dH
(1.21)

One of the main touted benefits of this model is it only requires five parameters to be deter-
mined: namely, Ms, γ, α, k, and c. These parameters can be determined by a set of experimental
magnetization measurements [46, 48].

There have been some reported issues with using the model as is written above. In particular,
the direct solution of Equation 1.19 can lead to a negative differential susceptibility in certain
circumstances. This results in a unphysical solution.

One of these circumstances can occur just after the direction of H reverses at the extremity
of the hysteresis loop. If in this region the irreversible magnetization is below the anhysteretic
magnetization in the first quadrant of the H-B plane or above the anhysteretic magnetization in
the third quadrant then a negative differential susceptibility occurs as the field is reduced. This is
avoided if dMirr/dH is set to zero in these conditions. Physically, this is justified since the domain
walls remain pinned on defect sites as the field is reduced. The bulging of the walls, however, is
allowed to relax as the field decreases. Since the bulging of the walls is deemed to be reversible,
dM/dH = dMrev/dH in these cases.

Another circumstance when a negative differential susceptibility can occur is in the generation of
minor hysteresis loops. The basic model can be modified without the need for additional parameters
to better model the behaviour of minor loops [49]. This reformulation ensures that minor loops
close since the vast majority of minor loops do actually close. The error that is produced by the
model in cases in which the minor loop does not close is extremely small. Thus, the validity of this
approach is quite good.

The modification to the basic Jiles-Atherton model is based on the concept of a working volume.
The concept of a working volume can be seen by considering the case of a small minor loop. If the
H field reverses at H = H1 and then reverses again sometime later at H = H2, the change in the
position of the domain walls (and the amount of rotation of the domains) is small if "H = H2−H1
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is small. Thus, the change that is necessary to return the magnetization to the original state at
H = H1 does not require the entire volume of the material to be changed i.e. the change in H

from H2 to H1 only acts on a small potion of the material. This potion of the material is called
the working volume. It is clear that as the change in H given by "H increases, then the working
volume increases as well.

For the part of the magnetization that is irreversible, the fraction of the total volume that is
acted on can be obtained by:

vf =
Mirr(H+)−Mirr(H−)

∫ H+

H−

Man(H)−Mirr(H)
kδ − α(Man(H)−Mirr(H))

dH

(1.22)

where H+ is the value of H of the positive extremum of the minor loop and H− is the value of H

at the negative extremum of the minor loop.
The new definition of dMirr/dH is now obtained by:

dMirr

dH
= vf

Man −Mirr

kδ − α(Man −Mirr)
(1.23)

There are a few comments that can be made about Equations 1.22 and 1.23. Firstly, the value
of vf is constant for a given minor loop. Secondly, the model requires the reversal points in the
trajectory along with the values of vf for each set of reversal points to be stored. Finally, for the
case of major loops the working volume is the entire material. As expected vf = 1 for major loops.

A working volume for the reversible magnetization can be defined similar to the irreversible
magnetization:

v′f =
Mrev(H+)−Mrev(H−)

∫ H+

H−

c

(
dMan(H)

dH
− dMirr(H)

dH

)
dH

(1.24)

Likewise, the new definition of dMrev/dH is:

dMrev

dH
= v′fc

(
dMan

dH
− dMirr

dH

)
(1.25)

The same comments that are given above for the use of dMirr/dH apply to the use of dMrev/dH.
Equations 1.22 - 1.25 constitute the equations that define the modified Jiles-Atherton model of

hysteresis. This formulation is able to successfully model the behaviour of both major and minor
hysteresis loops.

The modified Jiles-Atherton model could be used as the hysteresis model for this work. However,
the modified Preisach model that is described in Section 2.2 is significantly easier to implement
than the modified Jiles-Atherton model. This is particularly true when the relationship between
H and B is represented by a constant µ and B-intercept for a predefined range of H. This
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piecewise linearization of the relationship between H and B has significant advantages in terms of
computational speed and the convergence of the resulting solution. This will be become clear in
light of the discussion in Chapter 5.

1.6 Outline of this Thesis

This chapter gives an introduction to sensorless SRM drives. The perceived limitations in the
preexisting models for SRMs provides the motivation for undertaking the work that is presented in
this thesis. The basic concepts in magnetics theory that are relevant to ferromagnetic materials is
then given to provide a basis for the discussions in the chapters to come. Finally, this chapter ends
with an overview of the existing body of knowledge for the modeling of ferromagnetic materials.

The hysteresis model that is utilized in this work is presented in Chapter 2. The hysteresis
model forms the backbone of the model that is the result of this work. This chapter also includes
the basic details that are necessary to implement a specific form of the class of hysteresis models
that is used. This implementation uses piecewise linear elements to represent the relationship
between H and B. The benefits for doing this are detailed in Chapter 5.

Chapter 3 presents the basic details of circuit-based ferromagnetic models. Following this
presentation is a summary of some trends in the performance of the most basic form of this type
of model. These trends provide some insight into what modifications are necessary to achieve the
stated objectives of this work. A new methodology for statically adjusting the parameters of the
basic circuit model is included in this chapter. The dynamic model that is developed in Chapter 4
builds on this initial modification to the basic circuit model. Chapter 3 ends with a discussion on
the performance of preexisting circuit-based models in order to highlight the need for this work.

Chapter 4 provides the details for the two mechanisms that are the main contributions of this
work. A method for obtaining the parameters of the resulting dynamic model is then given. Finally,
Chapter 4 concludes with an analysis of the accuracy of the new model. This is performed with a
specific metric that is based on least squares. Additionally, the results for a comparison between the
new dynamic model and a static model is graphically given. Further waveforms that characterize
the behaviour of the resulting model are given in Appendix B.

The implementation details for the piecewise linearized version of the model that is developed in
this work is given in Chapter 5. Specifically, the issues that are associated with the implementation
of the two mechanisms are addressed in this chapter. The basic details of the implementation of
the hysteresis model that is given in Chapter 2 is also expanded upon in this chapter. ANSI C is
used to code the algorithms that are given in this chapter; the code can be found in Appendix C.
Chapter 5 closes with the presentation of a feasibility study for using this model in the sensorless
control of SRMs.

Concluding remarks are given in Chapter 6. The specific contributions of this work are also
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listed. The modeling work that is presented in this work is only for one specific material with a set
geometry. Thus, Chapter 6 also highlights the possible extensions to this work.

Appendix A gives the experimental setup that generated all of the results that are shown in
this work. Some of the issues that are present in the determination of the experimental waveforms
are also discussed in this appendix.

As mentioned above Appendix B provides additional waveforms that are generated with the
model that is proposed in this work. It also presents the tabulation of the results of the numerical
comparison that is given in Chapter 4.

Finally, Appendix C lists the C code that was written to produce the results of the implemented
model.
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Hysteresis Model

Hysteresis is an integral part of any accurate model describing the behaviour of ferromagnetic
materials. As was mentioned in Chapter 1, there are two major approaches to representing hys-
teresis in magnetic materials: the Jiles-Atherton and Preisach models. An introduction to the
Jiles-Atherton modeling approach is given in Chapter 1. The Preisach approach is detailed in
this chapter. Ultimately, the Preisach approach was chosen for the hysteresis model because it is
significantly easier to implement as part of a circuit-based ferromagnetic model compared to the
Jiles-Atherton approach.

This Chapter details the Preisach approach to hysteresis modeling and how it is incorporated
into a circuit-based model. The basic details regarding the implementation of this type of approach
using piecewise linear elements is also described.

2.1 The Classical Preisach Model

In 1935, the German physicist F Preisach published his paper proposing a model of magnetic
hysteresis [50]. The basic ideas in this seminal paper have been focus of numerous papers describing
improvements or explanations in the years since its publication. Krasnoselskii further expanded the
applicability Preisach’s model by representing the model in a pure mathematical form [51]. The
model can, therefore, be applied to any physical phenomenon that exhibits hysteresis. Furthermore,
Krasnoselskii’s mathematical representation can also be used to establish the limitations of the
applicability of Preisach’s model.

The classical Preisach model as represented by Krasnoselskii (called the Preisach–Krasnoselskii
model in this work) is purely phenomenological in nature i.e. it does not attempt to describe the
cause of hysteresis but rather it attempts to represent the effects of hysteresis. This is in contrast
to the Jiles-Atherton model which, in part, tries to represent the physical nature of hysteresis.

The Preisach–Krasnoselskii model is based on a weighted double integral of an infinite set of
elementary hysteresis operators. Before the model can be formulated, however, the definition of
the elementary hysteresis operator needs to be given.
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2.1.1 The Hysteresis Operator γ̂αβ

The Preisach-Krasnoselskii model utilizes an infinite set of elementary hysteresis operators γ̂αβ .
This operators act on an input u(t). They are represented by a rectangular loop in the u − γ̂αβu

plane as shown in Figure 2.1. As can be seen in Figure 2.1, the output γ̂αβu(t) can assume only
two values: +1 and -1. The output changes from -1 to +1 at u(t) = α and from +1 to -1 at
u(t) = β. Due to this switching action, the output depends not only on the input u(t) but also on
the previous state of each operator. Therefore, the operators have their own localized memory.

1

-1

αβ u

γ
αβ
u^

Figure 2.1: The elementary hysteresis operator γ̂αβ

2.1.2 The Preisach-Krasnoselskii Model

The elementary hysteresis operators γ̂αβ are integrated using an arbitrary weight function ρ(α, β).
The arbitrary weight function ρ(α, β) is a surface with unique values inside and on the triangular
region that is defined in Figure 2.2 and is zero elsewhere. The weighting function is typically called
the Preisach (density) function in the literature. The double integration that forms the basis of the
Preisach-Kransnoselskii model is given by:

y(t) =
∫∫

α!β

ρ(α, β)γ̂αβu(t) dα dβ (2.1)
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The double integration is performed in the plane that is defined by the switching points β and
α. The β − α plane can be split into two regions corresponding to hysteresis operators that have
a value of +1 or -1. The two regions along with the interface that divides the regions is shown in
Figure 2.2.

α

β

α = 
S-(t)

S+(t)

I(t) β

Figure 2.2: The β − α plane showing the geometric interpretation of Equation 2.1

S+(t) is the region of operators with a value of +1 whereas S−(t) is the region of operators with
a value of -1. Notice that the shape of the interface I(t) is a staircase. Vertical lines in the staircase
not including the line that connects to the α = β line are the result of u(t) following a negative
going trajectory in the past. Conversely, horizontal lines not including the line that connects to
the α = β line represent u(t) following positive going trajectory in the past. The line connecting
the α = β line represents the current trajectory of u(t). This final link in the interface moves as
the value of the input changes i.e. a horizontal final link moves upwards as the input becomes
more positive and a vertical final link moves to the left as the input becomes more negative. If the
final link joins the line that represents the most recent previous trajectory in the same direction
as the current trajectory then the model returns to its original state before the two most recent
trajectories were taken. As a result, the information pertaining to the last two reversals in the
trajectory are wiped from the memory of the model. This wiping property is one of the two main
features of the Preisach model of hysteresis.

From Figure 2.2 and the discussion above, it follows that the output at any time depends on
the shape of the interface I(t). The interface I(t) in turn depends on the reversal points of u(t) in
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the past. This illustrates the extraordinary fact that the superposition of the γ̂αβ operators with
local memory results in a model that exhibits nonlocal memory.

It can be seen from Figure 2.2 that Equation 2.1 can be rewritten as:

y(t) =
∫∫

S+(t)

ρ(α, β) dα dβ −
∫∫

S−(t)

ρ(α, β) dα dβ (2.2)

The two double integrations that are defined in Equation 2.2, therefore, describe the multiplica-
tion of the volume under the surface that is defined by ρ(α, β) by either +1 in the S+(t) region or −1
in the S−(t) region. The addition of the two integrals becomes the output of the model y(t). The
double integration probably makes Preisach’s model seem too unwieldy for practical applications.
However, as will be seen, this can be avoided through the use of an explicit form of Equation 2.1.
The explicit formulation greatly enhances the appeal of Preisach’s model for practical applications.

Up to this point the discussion of Preisach’s model has been performed in very general terms.
Equation 2.1 can potentially describe any physical phenomenon that exhibits hysteresis. In the
case of magnetic systems the input u(t) is typically the magnetic intensity H, and the output y(t)
is the magnetic field density B or the magnetization M . In terms of a magnetic system, Equation
2.1 can be rewritten as:

B(t) =
∫∫

α!β

ρ(α, β)γ̂αβH(t) dα dβ (2.3)

The determination of an appropriate weighting function ρ(α, β) for magnetic materials has
been the topic of vigorous research in recent years [52–54]. The final form of the weighting function
depends on many things including what and how experimental data from the actual material is
used. Furthermore, since the Classical Preisach model has some inherent limitations, the model
has been modified in numerous ways to remove the limitations of the base model. This, in turn,
requires ρ(α, β) to be redefined as is appropriate for the new model.

Equation 2.3 describes a scalar system i.e. a magnetic system with no orientation. The literature
also contains several papers that propose vector based Preisach models [55, 56]. The incorporation
of this type of hysteresis model into the overall model presented in this work is the topic for further
research.

2.1.3 Explicit Formulation of the Preisach-Krasnoselskii Model

The double integration that is necessary for Equations 2.1 – 2.3 is troublesome for practical im-
plementations of the Preisach model. This can be avoided if an explicit formulation such as the
one that is proposed by Mayergoyz is used [57]. In his formulation, a function that is defined by
experimentally determined first order reversal curves is used in the calculation of the output. This
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function is defined as:
F (α, β) = (Bα −Bαβ)/2 (2.4)

where Bα and Bαβ are the values of magnetic field density at H = α and H = β respectively on a
first order reversal curve.

A first order reversal curve is obtained by first starting from a state of either positive (+Hsat)
or negative (−Hsat) saturation. The field is then either decreased or increased corresponding to
starting from positive or negative saturation respectively to a value H = α. Finally, at H = α the
trajectory of H is reversed to bring the material back into its original state of saturation. Since
the direction of the trajectory of H is changed only once, the resulting reversal curve is deemed to
be first order. Bαβ is the value of the magnetic field density at H = β along the path that returns
the material to a state of either positive or negative saturation. An example of a typical first order
reversal curve that starts from negative saturation is shown below in Figure 2.3.

B

H

B

β

α

Bα

α

β

Figure 2.3: A typical first order reversal curve

With the definition of F (α, β) in Equation 2.4, the output at any time is given by the explicit
equation:

B(t) = −F (α0, β1) + 2
n∑

k=1

(F (αk, βk)− F (αk, βk+1)) (2.5)

where n is the number of horizontal links in the interface I(t) shown in Figure 2.2.
The validity of Equation 2.5 can be seen by examining a typical sequence of reversals in the

trajectory of H. The state of the model in the β − α plane along with the trajectory that the
material takes in the H −B plane is shown below in Figure 2.4.
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Figure 2.4: The β − α plane and the path of the material for sequence of reversals of H
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Figure 2.4 cont.: The β −α plane and the path of the material for sequence of reversals of H cont.

The correspondence between the state of the model and the trajectory of its output is greatly
facilitated when the value of F (α, β) is related to the β − α plane. The value of F (α, β) is equal
to the double integral of ρ(α, β) in the area of the triangle T (α, β) that is defined by its vertex at
(α, β) and the line β = α i.e.:

F (α, β) =
∫∫

T (α,β)

ρ(α, β) dα dβ (2.6)

where the definition of T (α, β) is shown in Figure 2.5.
Keeping the geometric interpretation of F (α, β) in mind, it follows that the explicit formula

that is given in Equation 2.5 is equal to the addition and subtraction of triangular areas in the
β−α plane with output values equal to F (α, β). This is demonstrated in the sequence of reversals
of H that is shown in Figure 2.4. As the number of reversals increases, then so does the number
of triangular areas that are required to make up the interface between the two regions S+(t) and
S−(t).
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Figure 2.5: Definition of the triangular area T (α, β)

2.1.4 The Everett Function

A function that appears regularly in papers that use some form of Preisach’s model is called the
Everett function. The Everett function is the change of magnetization "M from a turning point
H1 in the applied magnetic field intensity to some field H2. It is given by:

E(H1, H2) =
∫ H2

H1

dα

∫ α

H1

ρ(α, β) dβ (2.7)

Note that the Everett function could also be defined for a change in magnetic field density
"B. Comparing the definition of the Everett function to that of F (α, β) shows that the value
of E(H1, H2) = 2F (α, β) when the Everett function is defined for changes in the magnetic field
density. Additionally, if the output of the model is the magnetization M , then the definition of
F (α, β) in Equation 2.4 would use magnetizations instead of magnetic field densities. In other
words, the use of the magnetization as the output of the model only requires instances of B to be
replaced with M and instances of "B with "M .

The definition of the Everett function has lead to characterizing ρ(α, β) by arranging experimen-
tal data into a two-dimensional map, the so-called Everett Map, and then double differentiating the
map to obtain ρ(α, β). The numerical double differentiation, however, can lead to spurious results
when it used as part of the calculation for the output B(t). Thus, this approach must be applied
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with caution.

2.1.5 Limitations of the Classical Preisach Model

The classical Preisach-Krasnoselskii model exhibits the two following properties:

• Wiping-out property

• Congruency property

The wiping out property is discussed above in reference to the movement of the final link of the
interface I(t) in Figure 2.2.

The congruency property states that all hysteresis loops between the same two extremum points
in H are congruent. This is seen by observing that the movement of the links in I(t) between any
two extremum points produces the same change in magnetization "M and magnetic field density
"B. As discussed below this property poses serious limitations to the applicability of the model.

It is a well known fact that the behaviour of magnetic materials depends not only on the past
extremum values of the input as in the classical Preisach–Krasnoselskii Model but also on the
present state of the material. Real materials, therefore, do not exhibit congruent behaviour. This
poses a serious problem in the identification of model using first order reversal curves. Since the
Preisach function ρ(α, β) is symmetrical [58], it follows that Everett’s function is also symmetrical
i.e.:

E(Hk, Hk+1) = E(−Hk+1,−Hk) (2.8)

If the Preisach–Krasnoselskii model is identified using measured first order reversal curves then
the observed changes in magnetization can be equated to Everett’s function as given by:

E(Hk, Hk+1) = "M(Hk, Hk+1), Hk+1 > Hk (2.9)

where "M is the change in magnetization along a given first order reversal curve.
Due to the symmetry in Everett’s function as given in Equation 2.8, "M is required to be sym-

metrical too. However, in general, this is not the case i.e. "M(Hk, Hk+1) )= "M(−Hk+1,−Hk).
Not surprisingly, this is also true if the Everett function is defined for "B instead of "M . The end
result is the same. This implies that if the first order reversal curves are used to identify the model
then the output of the model will not predict closed minor loops. This is a serious shortcoming
of the model because, to a good approximation, minor loops close in actual magnetic materials.
This problem can be evaded by using other experimental data such as the limiting hysteresis curve
[37, 43, 59, 60] or the initial magnetization curve [61] instead of the first order reversal loops.
However, these methods cannot reproduce the first order curves. The accuracy of these methods
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is therefore limited. The next section details a modification to the classical Preisach–Krasnoeslskii
model that can successfully identify Everett’s function using experimental first order reversal curves.

2.2 The Modified Preisach Model

Kurt Wiesen and Stanley Charap proposed a simple modification to the Preisach–Krasnoselskii
model that can successfully identify Everett’s function using experimental first order reversal curves
[62]. This is not the only way to modify the classical Preisach model to successfully identify Everett’s
function. Another major approach is to modify the definition of the Preisach function to include
other components that cannot be modeled using the classical model such as other irreversible
components or offsets. Other methods use Gaussian or Lorentzian type functions to define the
Preisach function. The use of these functions or other non-linear mathematical functions are not
appropriate for the type of model that was developed in this work so they were not investigated.
Mayergoyz proposed several new schemes that require second order reversal curves [63–67]. Given
that the variation in the properties of the material from one sample to another is likely to create
a larger error in the response of the model compared to any gain in accuracy that results from
using second order reversal curves, it was decided that the extra effort of using the additional data
was not worthwhile. This is substantiated by the fact that the actual initial magnetization curves
provided by manufacturers give only the statistical mean of the curve over a large sample of the
material. The actual variance of the initial magnetization curve is quite large for low values of
H. Furthermore, mechanical stress on the material will further change the microstructure of the
material. This in turn modifies the magnetic behaviour of the material. For the above stated
reasons it was decided to implement the model proposed by Wiesen and Charap over others.

2.2.1 The Model Formulation

The model proposed by Wiesen and Charap ensures that minor hysteresis loops close. This is
achieved by using a correction factor to modify "M from the experimental first order curves.
If the magnetic field density is used instead of the magnetization then all instances of "M are
replaced with "B. This has already been done where appropriate. The correction factor is given
by:

C(Hk+1, Hk) =






− "M ′(Hk, Hk+1)
"M(−Hk+1,−Hk)

for Hk < Hk+1

− "M ′(Hk, Hk+1)
"M(Hk+1, Hk)

for Hk > Hk+1

(2.10)

where "M ′(Hk, Hk+1) is the change in magnetization for the previous trajectory.
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Consequently, the change in magnetization for the current trajectory is given by:

"M ′(Hk+1, Hk+2) =






− "M ′(Hk, Hk+1)
"M(−Hk+1,−Hk)

"M(−Hk+1,−Hk+2) for Hk+2 < Hk+1

− "M ′(Hk, Hk+1)
"M(Hk+1, Hk)

"M(Hk+1, Hk+2) for Hk+2 > Hk+1

(2.11)

Notice that as Hk+2 −→ Hk, "M ′(Hk+1, Hk+2) −→ −"M ′(Hk, Hk+1) and the minor loop closes.
For this scheme the output B(t) now becomes:

B(t) = B0 +
m−1∑

k=−1

"B′(Hk+1, Hk+2) (2.12)

where m is the number of reversals of the field H and B0 is the initial value of the magnetic field
B at H0 = −Hsat.

Note that for k = −1, "B′(H0, H1) = "B(H0, H1) since the experimental first order curves
already close. Also note that Equations 2.10 - 2.12 assume that the first order reversal curves
are referenced to H = +Hsat. The initial trajectory from H = +Hsat that the first order curves
are attached to is itself a reversal curve for the case when H reverses at H = −Hsat. Therefore,
Equation 2.12 is defined when B0 corresponds to H0 = −Hsat and the first reversal occurs when
the trajectory changes from positive going to negative going.

The modified Preisach model has the following symmetry properties:

• "M ′(Hk, Hk+1) = −"M ′(−Hk,−Hk+1)

• "M ′(Hk, Hk+1) = −"M ′(Hk+1, Hk)

The first property states the experimentally observed phenomenon that the first order curves
that are generated using positive saturation as the start point are the negated version of the curves
that are generated from starting at negative saturation. As with the limiting hysteresis loop any
loop that starts at H = ±Hp, reverses at H = ∓Hp, and finally returns to H = ±Hp, closes.
Furthermore, the first order loop that is used for the returning trajectory is the negated version of
the first order loop that is used for the initial trajectory. The correction factor for both trajectories
is identical. Therefore, it follows that the first property must hold.

The second property states that minor hysteresis loops close. As mentioned above the correction
factor guarantees that this occurs.

Unfortunately, the values of the magnetic field density along the initial magnetization curve are
not as easily obtained for this scheme compared to some implementations of the classical Preisach
model. For example, the values along the initial magnetization curve for models that just use a
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limiting hysteresis loop to identify Everett’s function are given by E(−H,H)/2. In this case, the
model needs to be fed a sequence of trajectories that makes up an AC demagnetization. Once the
current state of the model is H = 0 and B ≈ 0, H can be increased monotonically to obtain the
initial magnetization curve. Note that it would require and infinite number of turning points obtain
B = 0.

2.2.2 Model Implementation

This section details the basic implementation of the modified Preisach model. Further details can
be found in Chapter 5.

As mentioned in Chapter 1, the model that was proposed for this work utilizes piecewise linear
resistances and inductances. The rest of the model requires the hysteresis model to output a
permeability µ and either a B or H intercept that are valid over a certain range of H.

The first step in the implementation of the hysteresis model is to piecewise linearize the exper-
imentally obtained first order reversal curves. The regions where the slope of the curves are high
require more pieces to reasonably fit the data. Of course, adding more pieces will result in a more
accurate model but at the expense of the computational time of the overall model. This tradeoff will
become more apparent in Chapter 5 when the overall implementation issues of the proposed model
are discussed. Figure 2.6 shows the first order curves that were obtained from the test material in
this work. The experimental setup that was used to obtain these curves is described in Appendix
A. Notice the significant deviations in the responses near the positive saturation point +Hsat. The
reason behind these deviations is also described in Appendix A. The actual error in the piecewise
linear curves due to these deviations is quite small since the enclosed area of the hysteresis loops
in this region is small compared to the region near H = 0. The best fit piecewise linear curves for
the first order reversal curves of the test material is shown in Figure 2.7.

Looking at Equation 2.12 might suggest that the more reversals in the trajectory of H in the
past of the material, the higher the computational time should be for the model. This is not
the case. In fact, the summation in Equation 2.12 is not required if the value of the magnetic
field density B at the reversal points of H is stored along with the value of H. Furthermore, if
the correction factor is also stored then in the event that the current trajectory wipes out part
of the history of the model, the new correction factor can be retrieved from memory instead of
recalculated.

With the above in mind, Equation 2.12 can be rewritten as:

B(t) = B(Hn) + C(Hn, Hn−1)"B(±Hn,±H) (2.13)

where Hn is the most recent reversal point in the trajectory of H. Hn−1 is the previous reversal
point. The signs for the arguments of "B are chosen as in Equation 2.11.
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Figure 2.6: Experimental first order reversal curves for test material

The value of "B needs to be interpolated between the experimentally obtained piecewise lin-
earized first order reversal curves. The pieces of each curve are defined for explicit ranges of H.
The ranges are the same for every curve. Thus, only one index is required to determine the position
of a given value of H with respect to the regions defined for the first order curves. The endpoints
of the pieces of the descending limiting hysteresis curve are also the start points of the first order
curves. However, there are fewer first order curves than endpoints. First order curves for the
remaining endpoints are generated by weighting the slopes of the first order curve above and below
the interpolated curve by:

µm∗ = (µm∗−1 − µm+j)rm∗ + µm+j (2.14)

where m∗ = m, m + 1, . . . ,m + j − 1. The slopes µm−1 and µm+j correspond to the bounding
experimental first order curves. Note that the relationship between the various variables that are
used to determine the interpolated curves are depicted in Figure 2.8 below. The value of rm∗ is
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Figure 2.7: Piecewise linearized first order reversal curves for test material

defined as:

rm∗ =
Bm∗(Hm∗−1)−Bm+j(Hm∗−1)

Bm∗−1(Hm∗−1)−Bm+j(Hm∗−1)
(2.15)

Note that an upper bounding curve has an index lower than the lower bounding curve. The
reason for this will become apparent later. The value of rm∗ is determined at the start point of
the m∗ − 1 first order curve i.e. Hm∗−1 in Equation 2.15 is the value of the magnetic intensity
at the start point of the m∗ − 1 first order curve. Bm∗ , Bm∗−1, and Bm+j are the magnetic field
densities at Hm∗−1 of the interpolated, upper bounding, and lower bounding first order curves
respectively. Note that for m∗ )= m the upper bounding curve is itself an interpolated curve. Thus,
the interpolated curves need to be calculated in a specific order: from m∗ = m to m∗ = m + j − 1.
Since the bounding curves are linear, the value of rm∗ does not change along the interpolated curve.
The value of Bm∗(Hm∗−1) requires the trajectory of the interpolated curve to be determined for
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values of H less than the start point of the m∗−1 order curve. The initial slopes of the interpolated
curves between the experimental curves need to be determined first. The initial slope µ′

m∗ of these
interpolated curves is given by:

µ′
m∗ = (µ′

m−1 − µ′
m+j)r

′
m∗ + µ′

m+j (2.16)

where µ′
m+j and µ′

m−1 are the initial slopes of of the m + j and m − 1 experimental first order
curves. The value of r′m∗ is defined as:

r′m∗ =
B′

m∗ −B′
m+j

B′
m−1 −B′

m+j

(2.17)

where B′
m∗ , B′

m−1, and B′
m+j are the values of the magnetic field density at the start points of the

m∗, m− 1, and m + j first order curves respectively. Bm∗(Hm∗−1) is now obtained by:

Bm∗(Hm∗−1) = B′
m∗ + µ′

m∗(Hm∗−1 −Hm∗) (2.18)

where Hm∗ is the value of H at the start point of the m∗ interpolated curve. After the initial slopes
of the interpolated curves are determined, Equations 2.14 and 2.15 can be used to complete the
interpolated curves.
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Figure 2.8: The relationship between the variables that are used to interpolate other first order
reversal curves

This interpolation scheme assumes that the trajectory follows the slope of the j + 1 first order
curve for values of H between the start of the j + 1 and j first order reversal curves.
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With the addition of the interpolated first order curves, the path between the first order curves
can be determined. As is mentioned above, only one index is required to determine the position of a
given value of H with respect to the definition of the regions of the first order curves. The boundary
values that define the regions can be stored in a constant array of the form Ĥ = [+Hsat, . . . ,−Hsat].
For a given value of H, the corresponding index i satisfies the constraints Ĥ(i) > η̂H ! Ĥ(i+1).
η̂ is an operator that is +1 if the trajectory of H is positive going and −1 if it is negative going.
Thus, as the current trajectory progresses the index i decreases. If the most recent reversal point
Hn lies between the j and j + 1 first order curves then the value of r for the new trajectory is
defined as:

r =
η̂Hn − Ĥ(i+1)
Ĥ(i)− Ĥ(i+1)

(2.19)

where i satisfies Ĥ(i) > η̂Hn ! Ĥ(i+1). The direction of the trajectory is defined as the direction
of the new trajectory.

Note that the use of H in the determination of r is the equivalent of using B since µ is constant
between Ĥ(i) and Ĥ(i+1). The correction factor C(Hn, Hn−1) as given in Equation 2.10 can be
rewritten as:

C(Hn, Hn−1) =
|B(Hn)−B(Hn−1)|
|"Bj,j+1(Hn, Hn−1)|

(2.20)

where the magnitude of the change in the magnetic field density "B using the weighted first order
curves j and j + 1 from H = Hn to H = Hn−1 is:

|"Bj,j+1(Hn, Hn−1)| = µj+1(i+1)(Ĥ(i)− η̂Hn)

+
{
"Bj(Hn−1)−"Bj+1(Hn−1)

}
r

+"Bj+1(Hn−1)

(2.21)

where "Bj(Hn−1) and "Bj+1(Hn−1) are defined as:

"Bj(Hn−1) =
i−1∑

l=im
i$=im

{
µj(l+1)(Ĥ(l)− Ĥ(l+1))

}
− µj(im+1)(Ĥ(im)− η̂Hn−1) (2.22)

"Bj+1(Hn−1) =
i−1∑

l=im
i$=im

{
µj+1(l+1)(Ĥ(l)− Ĥ(l+1))

}
− µj+1(im+1)(Ĥ(im)− η̂Hn−1) (2.23)
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where im satisfies the constraints Ĥ(im) > η̂Hn−1 ! Ĥ(im+1).
The summations in Equations 2.22 and 2.23 can be done offline and stored in a lookup table.

Using the definitions in Equations 2.19 - 2.23, the current slope of the model can be written as:

µ(H,Hn, Hn−1) = C(Hn, Hn−1)
{
(µj(i+1)− µj+1(i+1))r + µj+1(i+1)

}
(2.24)

where H is the current value of the magnetic intensity and i satisfies the constraints Ĥ(i) > η̂H !
Ĥ(i+1).

Notice that the index of µj and µj+1 is equal to i + 1. This is because the value of µ for index
i + 1 is defined for H = Ĥ(i+1) to H = Ĥ(i). As previously mentioned, C(Hn, Hn−1) and r only
need to be calculated when the trajectory of H changes direction.

A graphical representation of the variables in the above equations is shown in Figure 2.9 below.
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H(i)

H(i-1)
Bj+1

Figure 2.9: The relationship between the variables that are defined in Equations 2.19 – 2.24

The intercept of the B-axis called the B pivot point Bpv here is given by:

Bpv(H,Hn, Hn−1) = B∗(H∗)− µ(H,Hn, Hn−1)H∗ (2.25)

where the value of H∗ depends on the state of the model. If the trajectory of H just reversed then
the value of H∗ is equal to the reversal point Hn otherwise the value of H∗ is equal to Ĥ(i+1).
The value of B∗(H∗) is calculated based on the current values of µ, Bpv and H∗ i.e.

B∗(H∗) = µoH
∗ + B′

pv (2.26)
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Thus, Bpv can be obtained by:

Bpv(H,Hn, Hn−1) = B′
pv +

{
µo − µ(H,Hn, Hn−1)

}
H∗ (2.27)

where B′
pv and µo are the previous values of Bpv and µ respectively.

Finally, the output of the model is given by:

B(t) = µ(H,Hn, Hn−1)H(t) + Bpv(H,Hn, Hn−1) (2.28)

The equations describing the model here are based on the assumption that the first order
curves are arranged in a specific order. The order was chosen to facilitate the implementation of
the model. Specifically, the order was chosen to minimize the number of required calculations when
the trajectory of H reverses. The slopes of the first order curves are arranged in a two dimensional
lookup table. The data structure for the slopes is given in Table 2.1.

Table 2.1: Data structure for µ

+750 +600 · · · i+1 · · · −750 −1000

+750 µ1(1) µ2(2)

+600 µ2(1) µ2(2) µ3(3)

...
...

...
...

. . .

j+1
...

...
... µj+1(i+1)

. . .

...
...

...
...

...
. . .

. . .

−750 µ29(1) µ29(2) · · · · · · · · · µ29(29) µ30(30)

−1000 µ30(1) µ30(2) · · · · · · · · · µ30(29) µ30(30)

Table 2.1 illustrates several features of the data structure of µ that benefit the implementation
of the model. For example, notice that the last entry in every row except for the last row is the start
point of the first order curve below. This allows the use of Equation 2.24 with no exceptions. Even
more beneficial is the justification of the data. As the current trajectory progresses, i decreases
while j remains the same. When the trajectory of H reverses, the required value of im in Equations
2.22 and 2.23 is equal to 30− j. Furthermore, the value of 30− i before the trajectory reverses is
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the new value of j. Note that the number 30 is equal to the length of the array Ĥ − 1 that is used
in this work. Finally, as expected, the starting value of i is equal to the new value of j.

As mentioned above, the summations in Equations 2.22 and 2.23 can be performed offline and
stored in a look-up table. The data structure for the precalculated differences in B is given in Table
2.2.

Table 2.2: Data structure for "Mj

+1000 +750 · · · im · · · −750 −1000

+1000 0

+750 "B2(1) 0

...
...

...
. . .

j
...

...
...

∑
µj"Ĥ

...
...

...
...

...
. . .

−750 "B30(1) "B30(2) · · · · · · · · · 0

−1000 "B31(1) "B31(2) · · · · · · · · · "B31(30) 0

To use Table 2.2 as shown a slight modification needs to be made to Equation 2.23. The
summation is performed to i not i − 1 as given in Equation 2.23 i.e. the summation is performed
from the start of the first order curves. While this is not a problem for Equation 2.22 since the
summation starts from its start point anyway, this does pose a problem for Equation 2.23. The
correct value of the summation for Equation 2.23 requires the rightmost nonzero value of the data
of row j+1 to be subtracted from the column corresponding to im.

When the trajectory of H changes direction five pieces of information are stored in memory.
The variables that are stored in memory are:

1. Hn

2. j

3. C(Hn, Hn−1)

4. r
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5. B(Hn)

If at any time the current value of |H| becomes larger than |Hn−1| then the current trajectory
has closed a minor loop. In this case the history of the minor loop has been wiped from the memory
of the model. This is implemented by decrementing a pointer that points to the top of the stack of
reversal data by two increments of Hn. This assumes that the reversal data is stored in blocks such
that the pointer always points to the first variable, namely Hn. The new values of r, j, etc. on the
top of the stack are now used in Equation 2.24. The old value of Hn−1 is used for H∗ in Equation
2.27. The value of Hn one increment of Hn below the top of the stack becomes the new value for
Hn−1. Finally, it is important to remember that data structure of µ as shown in Table 2.1 insures
that the value of i only needs to be modified when the relationship Ĥ(i) > η̂H ! Ĥ(i+1) does not
hold or when the trajectory of H changes direction.

2.3 Chapter Summary

This chapter presents the Preisach approach to modeling hysteresis. The Preisach model is defined
by the double integral of an infinite set of elementary hysteresis operators that are weighted by
an arbitrary weight function. The double integration, however, can be avoided with the use of an
explicit formula that relies on the first order reversal curves of the material.

Unfortunately, the Classical Preisach model has some features that limit its applicability. In
particular, the model is based on the assumption that all of the trajectories between the same set
of extremum values in the input are congruent. In actual magnetic materials this is rarely the case.
As a result, the identification of the model with first order reversal curves is not consistent. There
are many approaches that have been given in the literature that address this issue.

A modified Preisach model that uses a correction factor to guarantee the closure of minor loops
was chosen for this work. This technique, therefore, allows for the consistent identification of the
model from experimental first order reversal data. One of the primary advantages of this approach
over others is it still only requires the first order reversal curves of the material. This is in contrast
to many other techniques that require second order reversal curves or other details.

The chapter closes with the basic details of the implementation of the modified Preisach model.
The implementation relates the H and B fields as a slope and intercept that is valid over a set
range of values of H. This piecewise linearization has specific advantages that can be used in the
implementation of the overall model that is presented in this work. These advantages along with
the details that are specific to the implementation of the algorithm in the overall model of this work
are given in Chapter 5. Unless otherwise stated the following chapters use this model to represent
the effects of hysteresis for any results that are presented.
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Chapter 3

Existing Circuit-Based Ferromagnetic
Models

The performance of existing circuit-based ferromagnetic models are shown within this chapter to
highlight some of their deficiencies and to justify the need for some improvements. The deficiencies
of these models are specifically their inability to perform well over large ranges in frequency and
input excitation magnitude. This chapter also gives the basic structures and ideas that are used
by the newly developed mechanisms that are presented in the following chapter.

The discussion starts with a description of circuit-based modeling in general. Some trends in
the performance of the basic circuit are then given along with some typical output responses. This
is followed by a method for methodically modifying the values of the circuit resistances. Finally, the
methodology and results from two existing mechanisms is presented to show some of the difficulties
with the currently available models.

3.1 Circuit Based Modeling: A Preamble

Circuit based models are based on the theory behind four of the most recognized equations of
electromagnetism: namely, Maxwell’s equations. This basis will be shown here. Maxwell’s equations
are:

∇ · E =
1
ε0

ρ (3.1)

∇ · B = 0 (3.2)

∇×E = −∂B
∂t

(3.3)

∇×B = µ0J + µ0ε0
∂E
∂t

(3.4)

where ρ in Equation 3.1 is the total charge density not the Preisach density function used in
Chapter 2. The SI unit for ρ is C/m3. The field E is called the electric field whereas J is the
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current density. The SI units for E and J are V/m and A/m2 respectively. The constants ε0 and
µ0 are the permittivity of free space and permeability of free space respectively. The value of ε0 is
equal to 1/c2µ0 ≈ 8.854× 10−12 F/m where c is the speed of light (≈ 3× 108 m/s).

In matter, Maxwell’s equations are usually rewritten in terms of free charges and currents. This
affects Equations 3.1 and 3.4 as given by:

∇ · D = ρf (3.5)

∇×H = Jf +
∂D
∂t

(3.6)

where Jf and ρf are the free current and charge densities respectively. The field D is called the
electrical displacement. The SI unit for D is C/m2.

The second term in Equation 3.6 can be neglected because the frequencies of interest in this work
are comparatively very low i.e. the displacement current is so small in the operating frequencies
that are considered here that it can be ignored.

The free current and charge densities represent the external currents and charges that we can
directly control. In contrast, bound currents with density Jb involve the spin and orbital motion
of electrons in the material that we have no direct control over. The bound currents are, therefore,
associated with the magnetization of the material. There is also a third component of the current
density called the polarization current (Jp). It is the result of the linear motion of charge when the
electrical polarization changes. Associated with the polarization current is the polarization charge
density (ρ b). This is, in fact, the bound charge density in the material thus the subscript b. The
total current density is J = Jf + Jb + Jp whereas the total charge density is ρ = ρf + ρ b.

Of particular interest to circuit based models are Equations 3.3 and 3.6. The usefulness of these
equations is more apparent when they are written in their integral form:

∮

L

E · dl = − d
dt

∫∫

S

B · da (3.7)

∮

L

H · dl = Ifenc (3.8)

for any surface S bounded by the closed loop L where Ifenc is the enclosed free current.
Equation 3.8 is the well known Ampère’s law. Circuit based models are lumped parameter

models. As such, the models assume that for a specified volume of magnetic material, the magnetic
fields are invariant in space. Therefore, for a given volume of material, Equation 3.8 can be rewritten
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as:

Hl = Ni

= F
(3.9)

where l is the magnetic path length, N is the number of turns of an externally connected coil
carrying a current i that are enclosed by the path l, and F is called the magnetomotive force
(mmf). The SI units for F is A. Sometimes the unit for mmf is written as A-t (ampere-turn).

The well known magnetic circuits equivalent of Ohm’s law equates F to the flux and reluctance
of a path in the material by:

F = φR (3.10)

where φ is the flux through an area A of the material and R is the non-linear reluctance of the
path. The SI units for the flux and reluctance are Wb and A/Wb respectively. The direction of
the flux is perpendicular to the area A.

There is an inherent danger with the magnetic equivalent of Ohm’s law. The danger is it is easy
to forget that flux does not exist. Thus, flux does not actually flow in the material. This is where
the analogy to electric circuits breaks down because in an electric circuit current does actually flow.
However, even with this physical inaccuracy, the magnetic equivalent circuit is still a very useful
tool in analyzing magnetic systems.

Physically, the flux is a measure of the number of magnetic field lines in a given area. If the
magnetic field density B is assumed to be invariant in space over an area A then the flux is given
by:

φ = BA (3.11)

where the field B is perpendicular to A.
Equation 3.11 can be substituted into Equation 3.7 to obtain:

∮

L

E · dl = −dΦ
dt

(3.12)

This is just Faraday’s law in its integral form. Note that φ has been replaced with Φ to indicate
that the flux is formally a vector. The right-hand side of Equation 3.12 is equal to the electromotive
force (emf) or the voltage as it is more commonly known in circuit theory. Using Ohm’s law to
replace the emf yields:

∮

L

E · dl = E = −dφ

dt
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iR = −dφ

dt
(3.13)

where R is the resistance of the closed path bounding the flux φ.
The negative sign in front of the derivative of the flux indicates that the generated voltage is

setup to oppose the change of flux. Thus, the current that flows in the material along a closed path
tends to shield the material enclosed within the path from the externally applied mmf in order
to limit the rate of change of the flux. The closer a piece of the material is to the center of the
material, the more that piece is shielded from the external source.

With the relationships given in Equations 3.10 - 3.13 the following circuit can be proposed.

3.1.1 Basic Circuit

The circuit shown in Figure 3.1 represents the ubiquitous basic circuit that models, in part, the
effect of the currents given in Equation 3.13. As is mentioned in Chapter 1, these currents are
called eddy currents. However, the circuit is most often shown in its electrical equivalent form.
Before the electric equivalent circuit is shown, a few comments on the magnetic equivalent circuit
will be given.
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1

R
n
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n

φ
1

φ
2

φ
n-1

1
R
1

dφ1
dt

1
R
2

dφ2
dt

1
R
n

dφn
dt

Figure 3.1: Basic circuit that exhibits eddy current effects

Notice that the basic circuit tries to mimic the shielding effect of the eddy currents given in
Equation 3.13. The mmf drop across the inductors reduces the effect of the externally applied
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field on the elements below the inductor – “below” in this case refers to elements that are closer
to the center of the material. Each pair of reluctance and inductance, e.g. R1 and the inductor
involving R1, are on the same layer in the material. This layer represents a tube of flux in which
the magnetic fields H and B are spatially invariant i.e. the fields are uniform in space within a
given tube. An example of a magnetic material with a circular cross-section that has been split
into three flux tubes is shown in Figure 3.2.

H

φ
1φ

2
φ
1φ

3
φ
2

1
R
3

dφ3
dt 1

R
2

dφ2
dt 1

R
1

dφ1
dt

Figure 3.2: Three tube model with its magnetic equivalent circuit parameters defined

The electrical equivalent circuit of the circuit shown in Figure 3.1 is found more often in the
literature. This is likely because it is usually part of a larger electrical circuit describing devices
such as power transformers. Using the duality between electrical and magnetic circuits [34], it can
be shown that the magnetic circuit given in Figure 3.1 is equivalent to the electrical circuit given
in Figure 3.3 below. Note that L1, L2, . . . , Ln in Figure 3.3 are equal to N2/Rn. The resistances
are the same as those in Figure 3.1 since the turns ratio for the resistances is effectively one i.e.
the currents generated in the material are modeled as coils with one turn.

Magnetic equivalent circuits are used throughout this work because they give a more intuitive
connection between the actual physical material and the circuits that try to model the response
of the material to certain input conditions. The duality between the equivalent circuits allows any
of the circuit-based models shown in this work to be implemented with either equivalent. The
choice of which equivalent to use depends on the particular application e.g. as mentioned, power
transformers are usually modeled using electrical circuits whereas a lumped parameter model for a
sensorless switched reluctance application typically uses a magnetic equivalent circuit.

The basic circuit actually represents a discretized version of the classical eddy current model. It
is discretized in the sense that the values of the fields within the material do not vary continuously
but have certain discrete values that change in steps between tubes. At a glance you would think
that as more layers are added to the model, the model’s response should better approximate the
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Figure 3.3: Electrical equivalent circuit of the basic eddy current model

behaviour of the actual material. While this is in general true, the response of the basic circuit
becomes worse as tubes are added if the parameters of the model are not adjusted properly i.e. the
response of this type of model does improve as the number of tubes increases but the basic circuit
with no modifications eventually performs worse as the number of tubes increases. The reasons for
this will be given later in this chapter.

The basic circuit as either a magnetic or electrical equivalent circuit mimics the behaviour of
a magnetic material that exhibits eddy currents that flow in the classical sense. It was discovered
in the 1940’s that the classical eddy current model could not account for all of the losses in fer-
romagnetic materials. These excess losses as they are called are due to the fact that the actual
material is composed of many magnetic domains. As the domain walls move, local fluctuations
in B are created by the shifting of the walls. As a result, additional localized eddy currents are
induced to inhibit the movement of the domain walls. A domain model was proposed to account
for the discrepancy in the behaviour of the actual material and the classical eddy current models.
A graphical representation of the difference between the classical and domain model is shown in
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Figure 3.4: Classical and domain eddy current models

Figure 3.4. Note that the domain model as shown in Figure 3.4(b) is rotated by 90o compared to
the classical model that is shown in Figure 3.4(a). It also only represents a small portion of the
material i.e. the width of the material is significantly smaller than its height as is shown in the
depiction of the classical model.

The illustration of the domain model in Figure 3.4(b) is an oversimplification of the actual
domain structure since, in general, the orientation of the domains is in three dimensions. However,
if the dominant external H field is along one axis of the material then the domains will tend to
become 1–dimensional since the torque on the magnetic dipoles due to B align the dipoles parallel
to the field.

Given that the basic circuit model exhibits the general behaviour of the classical eddy current
model as shown in Figure 3.4(a), it is not surprising that the basic circuit model has limitations
to its accuracy. The classical model breaks down when the number of domains in the material is
large. As will be seen later in this chapter, this error is significant when the material is not allowed
to saturate.
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3.1.2 Tube Structure

Most circuit based models make the assumption that, for laminations with rectangular cross-
sections, the height of the lamination h is significantly larger than its width w. In these cases,
the lamination is typically split into plates with widths that have even symmetry about the major
axis. Plates that are equal distance from the center of the material form the tube for that layer.
While this assumption is valid for the majority of cases, it fails for devices that have square or
circular cross-sections such as solenoids. The tube structure that is used in this work is shown in
Figure 3.5. Notice that no assumption is made about the dimensions in this definition. Further-
more, this structure models the path of classical eddy currents more closely since these currents
tend to curve around the ends of the lamination instead of abruptly change direction.

The half-widths w1 and w2 are chosen so that the area in each tube is identical. Note that the
area of the outermost tube includes the corners of the lamination outside the curved dashed lines.
However, the path of the eddy currents in this tube is restricted to the path between the outer wall
of the next lower tube and the curved dashed lines. Therefore, the calculated reluctance of the
outermost tube includes the corners whereas the calculated resistance does not. The resistance of
the kth tube not including the innermost tube is:

Rk =
2(h− w)

σl(wk − wk−1)
+

2π

σl

{
1

/
ln

(
wk

wk−1

)}
, k > 1 (3.14)

where l is the length of the magnetic path in the lamination and σ is the conductivity of the
material. In Figure 3.5 this is perpendicular to the plane of the page.

For the innermost tube, the resistance is given by:

R1 =
2(h− w)

σlw1
+

2π

σl
(3.15)

The reluctance of the tubes depends on the current permeability of the tubes. As shown in
Chapter 2, the permeability is dependent on the previous history of the material. The reluctance
of the tubes is:

Rk(µk) =
l

µkA
(3.16)

where the area A of every tube is equal to wh/n and n is the total number of tubes.
The restriction on the areas of the tubes does not reduce the applicability of this tube structure.

Rather it allows the implementation of the model to be simplified. In cases where the equal area
criterion is too restrictive then the areas can be allowed to vary without changing the main features
of the structure.
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Figure 3.5: Tube Structure

3.2 Performance Trends in the Existing Circuits

The trends in the performance of the basic circuit given above and other major existing circuit
based models are given in this section. These trends are important because they give the range of
validity of the different models. The performance trends of the basic circuit are the most useful
since all of the circuit based models presented here including the proposed circuit of this work are
derivatives of the base circuit.

The sample material was tested using the same apparatus that was used to generate the first
order reversal curves for the hysteresis model. The test setup is given in Appendix A. The test
material was excited using sinusoidal current waveforms. As a result, H is sinusoidal not B. Most
of the existing circuits are tested using sinusoidal B waveforms. Using sinusoidally impressed H

waveforms over sinusoidal B waveforms was chosen more for experimental convenience than any
other factor.

As previously mentioned, the aim of this work is to develop a model that can approximate
the behaviour of a given material of a given geometry over a large range of input frequencies and
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excitation magnitudes. Since the response of the material is extremely nonlinear, it is important
that the enough data is collected in order to sufficiently characterize its behaviour.

The test material and its geometry as given in Chapter 1 was used to produce all of the
experimental results in this chapter. The modified hysteresis model as described in Chapter 2 is
used for all of the circuit models described here except where noted otherwise.

3.2.1 Basic Circuit Performance with Fixed Rk

The response of the basic circuit with three and five tubes is used as a baseline of comparison
between the various circuits in this chapter. Initially, the values of Rk are the calculated DC
resistances of the tubes as given by Equations 3.14 and 3.15. The effect of changing the values
of Rk on the circuit performance is then explored as this type of modification is the simplest to
perform. This initial change is not dynamic i.e. the values of Rk are changed but then remain fixed
during the run-time of the model.

Consider the response of the base circuit with the calculated DC values of Rk for various
frequencies that is shown in Figures 3.6–3.8.
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Figure 3.6: 60 Hz curves comparing the basic circuit with 3 and 5 tubes for three excitation levels
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Figure 3.7: 250 Hz curves comparing the basic circuit with 3 and 5 tubes for three excitation levels

Notice that the response of the basic model with five tubes is actually worse than the response
with three tubes. As will be formalized next, increasing the number of tubes requires the values
of Rk to be modified. The value of the magnetic field density B̄ represents the average value of
B in the material. It is obtained by integrating the voltage on the sense winding and dividing the
resulting flux by the cross-sectional area of the test sample. As can be seen in Figures 3.6 - 3.8 the
effect of the eddy currents is significant. In fact, notice that the peak values of B̄ do not correspond
to the peak values of H for many of the cases. This behaviour is the result of the effective H inside
the material becoming phase shifted compared to the excitation H. Thus, the peak of H inside
the material becomes delayed compared to the input H. At the same time, the peak magnitude of
H in the material becomes smaller as the field passes through the material. The combined effects
of the delay and damping cause H to become increasingly non-sinusoidal as the field penetrates
deeper into the material.

Although the shape of the response of the model is generally accurate, the damping provided by
the basic circuit is insufficient. For example, the width of the resulting 60 Hz curves for Hpeak = 500
and 1000 is too small, whereas for Hpeak = 125 the peak values of B̄ are too large. In both cases,
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Figure 3.8: 500 Hz curves comparing the basic circuit with 3 and 5 tubes for three excitation levels

this is the result of insufficient damping. The logical first step to rectify this problem is to decrease
the values of Rk in the circuit. The reduction in Rk that is required for a given k is not necessarily
the same as the reduction for different values of k. The modification to the values of Rk does
improve the performance of the circuit to a point. As the values of Rk are decreased the 60 Hz
curves for Hpeak = 500 and 1000 become wider and the peak values of B̄ decrease for Hpeak = 125
but eventually the damping for the higher frequency curves becomes too much while the damping
for the 60 Hz curves is still insufficient. Furthermore, the reduction in Rk that is required for
Hpeak = 125 is 2-3 times more than that of Hpeak = 500 and 1000. Clearly, the values of Rk need
to be modified as the states of the model change.

3.2.2 Static Modification to Rk

Looking at Figures 3.6 - 3.8 shows the performance of the basic circuit for five tubes being distinctly
worse than the performance with three tubes. This seems to be counter-intuitive. In fact, the
response of the basic circuit with the initially calculated values of Rk is misleading. Actually, as
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the number of tubes increases, the values of Rk need to be reduced. This is not surprising since
the time constants, τ , of the model decrease significantly as n increases. The time constants are
given by:

τ =
L

R
=

1
RR

(3.17)

As n increases the cross-sections of the eddy current paths decrease causing R to increase.
Additionally, the reluctances of the tubes also increase. The increase of both R and R really
reduces the time constants of the model. This description lacks detail because R varies significantly
in time; thus, the use of linear circuit theory is limited in characterizing the behavior of the model.

Unfortunately, there is a limit to the effectiveness of reducing the values of Rk as was described
above. The model can be tuned by modifying the values of Rk for narrow ranges of frequency
to yield very accurate results for cases with saturation. However, large deviations from the tuned
range in frequency significantly degrade the performance of the model. Using this scheme alone is
not enough for a model that is expected to operate over a large frequency. It is still, however, a
vital part of the overall model proposed here. Note that the following analysis and commentary
has not explicitly appeared in the literature before this work was undertaken.

The first step in the procedure for systematically changing the values of Rk is to rewrite Equa-
tions 3.14 - 3.15 in terms of the number of tubes:

Rk(n) =
2π

σl





h− w√

(h− w)2 + πkwh!n−
√

(h− w)2 + π(k − 1)wh!n

+ 1

/
ln




−(h− w) +

√
(h− w)2 + πkw!n

−(h− w) +
√

(h− w)2 + π(k − 1)wh!n










(3.18)

The equation for Rk(n) is valid for 2 " k " n− 1. For the innermost and outermost tubes the
resistance is:

R1(n) =
2π

σl




1 +
h− w

−(h− w) +
√

(h− w)2 + πwh!n




 (3.19)

Rn(n) =
2π

σl





h− w

πw!2 + (h− w)−
√

(h− w)2 + π(n− 1)wh!n

+ 1

/
ln



 πw!2

−(h− w) +
√

(h− w)2 + π(n− 1)wh!n










(3.20)
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where the equation for Rn(n) is valid for n > 1.
The variation of the resistance with n is a strong function of the geometry of the material to

be modeled. However, the variation of the reluctance with n is linear due to the restriction on the
area of the tubes i.e. if the number of tubes is increased by one, then the reluctance increases by
l/wh. Furthermore, keeping the area of the tubes the same has the advantage that the change in
the reluctance due to a change in µk affects every tube equally. In general, this reduces the effort
required to modify the values of Rk.

Looking at Equation 3.20 reveals a potential limitation to the number of tubes. If n is greater
than 4h

w(4−π) then the resistance becomes negative. In particular, as h → w the maximum number
of tubes becomes increasingly limited. In these cases the areas of the tubes can no longer remain
equal. For the geometry utilized in this work, the number of tubes is limited to 35. This limitation
is not an issue for this case.

The DC resistance of the tubes for n = 3, 4, 5, 8, and 10 is shown in Figure 3.9 for reference
below. There are some features of Figure 3.9 that are important to highlight. Firstly, observe that
the resistance of the outermost tube increases dramatically as n increases. This is not surprising
since the outer edge of the outermost tube is fixed. As n increases the inner edge of the outermost
tube approaches the outer edge of the tube until the limit described above is reached. After this
point, the inner edge is actually outside the outer edge. Secondly, and more importantly, notice
that the resistance increases as k increases. This is primarily the result of the width of the tubes
decreasing as k → n. As is repeatedly pointed out in the literature, the effective H field in the
material falls off rapidly in the presence of significant eddy currents. To capture the rapid change in
the effective H and, therefore in B, the tube widths need to become narrower as k → n. This is the
reported motivation for decreasing the widths of the tubes as k increases in the tube structure that
assumes h . w. Recall in that tube structure the tubes are plates with even symmetry about the
major axis. In the tube structure for this work, keeping the area of the tubes the same automatically
ensures that this is the case. However, as h becomes large compared to w then the tube structure
presented in this work approaches the tube structure that assumes h. w. Inevitably, this requires
the areas to be modified in the same way as described above. A similar modification is also required
in cases in which keeping the areas of the tubes the same overly restricts the maximum number of
tubes.

The procedure for tuning the values of Rk assumes that the widths of the tubes are chosen
appropriately. Thus, the initial selection of the tube structure and tube widths can be considered
as the first step in this procedure. Since the above mentioned variation in the widths of the tubes
is the most desirable, this procedure was not tested for cases in which the tubes are arranged in a
different way.

The values of Rk are initially modified by tuning the response of the circuit at one frequency for
a single peak value of H. In this case, the 60 Hz curve for Hpeak = 500 was chosen. Consider the
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Figure 3.9: Variation of tube DC resistances with n

trajectory from H = −500 to H = +500. The initial part of the trajectory is matched by weighting
the resistances of the outermost tubes. The middle part of the trajectory is matched by weighting
the resistances of the middle tubes. Finally, the last part of the trajectory is matched by weighting
the resistances of the innermost tubes. Formally the weights ζ1, ζ2, . . . , ζn can be determined by
minimizing the vertical distance between the experimental curve and the curve generated by the
model in the least squares sense i.e. minimize the objective function R2 given by:

R2 = min

(
∑

i

[
B̄i − B̄∗

i (Hi, ζ1, ζ2, . . . , ζn)
]2

)
(3.21)

where B̄i are the sample points in the trajectory of the response of the actual material and
B̄∗

i are points in the trajectory generated by the model. The minimization has to be performed
iteratively since the model is highly nonlinear.

This procedure can be repeated for higher frequencies. However, the response of the model is
dominated by the values of the resistance in the outermost tubes. In general, only the resistances
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Figure 3.10: Modification to Rk for n = 4 and 10

of the outermost tubes need to be varied as the frequency varies. Furthermore, the outermost
resistances need to be varied as the peak magnitude of the input excitation varies. Typical results
of this procedure for n = 4 and 10 are shown in Figure 3.10.

This method essentially shapes the response of the model for the H field inside the material.
As expected, as the number of tubes increases, the accuracy of the circuit improves since the H

field inside the material is better approximated. This is particularly true for higher frequencies i.e.
the accuracy of the n = 4 circuit is the about the same as the n = 10 circuit for 60 Hz inputs, but
at 1 kHz the accuracy of the n = 4 circuit is starting to deteriorate whereas the accuracy of n = 10
circuit remains unchanged.

The main advantage of this approach is it is systematic. It also emphasizes the need for varying
the resistances of the circuit as the input changes. If the use of the basic circuit was to model the
behaviour of a device for a narrow range of frequencies and variation in the magnitude of H then
this modification by itself would be sufficient.

This approach provides a static change to the values of Rk. Two of the more promising currently
available modifications that provide dynamic changes to the values of the circuit resistances of the
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basic circuit are presented next.

3.2.3 Variation of Rk Based on the Variation of J

Zhu et al. noted that even though B is assumed to be uniform in every tube, the electric field
E is not [43]. Equation 3.11 is a bit misleading because it gives the total flux perpendicular to a
given surface S. In the case of the tubes of the basic circuit, the surface is the area of each tube.
Actually, in a tube of flux, the total enclosed flux varies as:

φ(w) = l

∫ w

w0

B(w) dw

= lB(w − w0) if B(w) = B

(3.22)

As w − w0 approaches the width of the tube, φ(w) approaches φ in Equation 3.11. Since the
derivative of φ in Equation 3.12 is defined for the flux enclosed within the bounding path L it
follows that E and, therefore, E varies within the tube. As a result, the current density J varies
along the width of the tube. The basic circuit uses the total enclosed flux to calculate a value of E .
It is assumed that this E is constant across the width of the tube. Thus, the resistances calculated
in Equations 3.14 and 3.15 can be used directly.

A correction factor was proposed by Zhu et al. to account for the variation of J across the
width of the tube [43]. The derivation of the correction factor will be partially repeated below.

First, note that:

J = σE (3.23)

Assume that B = −Bk̂ where k̂ is a unit vector along the z-axis. The direction of J is normal
to k̂ and parallel to the sides of the tubes. Call this unit vector p̂. Therefore, the current density
J can be written as J p̂. Note that in the end pieces of the tubes, p̂ will follow a circular path.
Hence, from Equation 3.3:

dJ

dw
= σ

(
dBz

dt

)

k

(3.24)

where the direction of w is perpendicular to p̂ and goes from the inside to the outside wall of the
tube. Call this unit vector n̂. Bz is the value of B in the kth tube as denoted by the subscript k.
The preceding definitions of the unit vectors are shown in Figure 3.11.

Integrating 3.24 along the width of the tube yields:

Jk = σ

(
dBz

dt

)

k

(wk − wk−1) + Jk−1 (3.25)

where Jk and Jk−1 are the current densities at w = wk and w = wk−1 respectively.
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Figure 3.11: Definition of unit vectors for Equations 3.23 - 3.25

The variation of J along the width of the tube as given in Equation 3.25 is identical to what is
reported in [43] except that the direction of J is simply along the y-axis in that case because the
tubes are defined as plates.

The power per unit volume for classical eddy current losses is given by:

Peddy =
1
σ

J2 (3.26)

Equation 3.26 is integrated over the straight sections of the tube with the use of Equations 3.24
and 3.25 to obtain the relationship:

Peddy =
(

2(h− w)l(wk − wk−1)
σ

)
J2

k rJk (3.27)

where:
rJk =

1
3

[
1 +

(
1 +

Jk−1

Jk

)
Jk−1

Jk

]
(3.28)

A similar derivation can be made with the curved sections of the tube except that in this case
the path length is not constant but instead depends on the radius of the path. For the curved
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sections Peddy is:

Peddy =
πl(wk − wk−1)2

2σ
J2

kRJkθ
(3.29)

where:

RJkθ
=

1− J4
k−1

J4
k(

1− Jk−1

Jk

)2 (3.30)

Noting that the voltage induced along the straight sections of the tubes at w = wk is given by
2(h−w)

σ Jk and R = E 2
k !Peddy, the effective resistance of the straight sections is:

R′
k =

2(h− w)
σl(wk − wk−1)rJk

(3.31)

where 2(h−w)
σl(wk−wk−1) is just the DC resistance of the straight sections of the kth tube.

Similarly, the effective resistance of the curved sections of the tube is given by:

R′
k =

8π

σl
(
1− wk−1

wk

)2
RJkθ

=
2π

σl

{
1

/
ln

(
wk

wk−1

)}



4 ln

(
wk

wk−1

)

(
1− wk−1

wk

)2
RJkθ





=
RDCθk

RθkRJkθ

(3.32)

where:

Rθk =
1
4

(
1− wk−1

wk

)2/
ln

(
wk

wk−1

)
, k > 1 (3.33)

Rθk is just a constant factor similar to the 1/3 factor in Equation 3.28 except that it different
for every tube. RDCθk is the DC resistance of the curved section of the kth tube. For k = 1, Rθk

is equal to 1/4.
Notice that if Jk is larger than Jk−1 then the effective resistance increases. This is also true for

the curved sections of the tube but the rate of variation of the effective resistance is different. Since
for this particular case h is still over 10 times larger than the width of the tubes, it was decided to
ignore the end effects in the study of the effectiveness of this modification.

In the curves presented here the entire resistance was modified based on the following:

r′Jk = γ

[
1 +

(
1 +

Jk−1

Jk

)
Jk−1

Jk

]
(3.34)

where γ is a constant gain.
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It was noticed that if rJk was implemented strictly as given in Equation 3.28 then the damping
is even worse than the basic circuit case. The modified Rk for the generation of the curves below
is now given by:

R′
k =

Rk

r′Jk

(3.35)

Note that J0 = 0 A/m2 since the enclosed flux is zero. Also notice that there are numerical
problems with this method if Jk is close to or equal to zero since r′Jk →∞ as Jk → 0.

The behaviour that results from using this dynamic modification to the basic circuit model
for a three tube model at 60 Hz and 500 Hz is shown in Figures 3.12 and 3.13 along with the
experimental data.
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Figure 3.12: 60 Hz curves for γ = 2/3 at three excitation levels

Comparing Figure 3.12 to Figure 3.6 shows the effectiveness of using the modification based on
the variation of J and a constant gain. Notice the distortion in the response of the model. This
distortion becomes even more pronounced for the response of the model to a 500 Hz excitation as
shown in Figure 3.13.
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Figure 3.13: 500 Hz curves for γ = 2/3 at three excitation levels

The sharp corners in the response of the model as shown in Figure 3.13 is mostly due to the
problem when Jk approaches zero. They can be reduced by setting a maximum for the change in
R′

k from its initial value. This effectively turns off the algorithm when the value of the current
density Jk is near zero. As the maximum change in R′

k is increasingly clamped, the region near
Jk = 0 where the algorithm is turned off becomes larger.

The inward bulging of the response of the model for both sets of frequencies is due to the
sharp decrease of the value of R′

k as the excitation changes sign and the lagged field inside the
material creating a current density that is larger inside the material than on the outer surface of
the lamination

The response of the model with the inclusion of the correct modifications to Rk based on the
curved sections of the tubes does not make a noticeable difference. In this case, the same pronounced
effects will still be present. Although this type of dynamic modification to the tube resistances has
strong theoretical merit, it produces results that have undesirable distortions. These distortions
prompted the continuation of the search for better modifications to the basic circuit.
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3.2.4 Variation of Rk Based on a Correction Factor for the Excess Currents

This technique dynamically corrects the values of the circuit resistances based on the empirical
equations for the classical and excess eddy current losses in thinly laminated materials.

Through empirical studies, for sinusoidal excitation the power loss due to classical eddy currents
has been found to be:

Peddy = Cc

(
dB̄

dt

)2

(3.36)

where Cc is a empirically determined constant of the material.
Similarly, the power loss associated with the excess eddy currents is found to be:

Pexcess = Ce

∣∣∣∣
dB̄

dt

∣∣∣∣
3/2

(3.37)

where Ce is a empirically determined constant of the material.
It is important to realize that these relationships assume that the field is mostly uniform inside

the material. Since the field is assumed to be uniform within every tube these equations are usually
applied on a per tube basis.

The total loss due to the eddy currents is the sum of these two components i.e. PT = Peddy +
Pexcess. As shown in [43] the total eddy current loss can be rearranged to yield:

PT = Cc

(
dBz

dt

)2

k

rexk (3.38)

where:

rexk = 1 +
Ce

Cc

√∣∣dBz
dt

∣∣
k

(3.39)

The resulting modification of the DC resistance can be shown to be:

R′′
k =

Rk

rexk
(3.40)

Notice that rexk → ∞ as
∣∣dBz

dt

∣∣
k
→ 0. As with Equation 3.28 care must be taken to avoid a

division by zero.
This mechanism was not tried for the following reasons:

1. This modification is only approximate at best because, as mentioned above, the field becomes
increasingly non-sinusoidal as it penetrates the material. Furthermore, the excitation itself is
not necessarily sinusoidal either such as in the case for high speed operation of SRMs.
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2. Notice that R′′
k → 0 as

∣∣dBz
dt

∣∣
k
→ 0. As will be seen later this trend is actually opposite to

what is desired

As is discussed in Section 1.5.3, the use of Equations 3.36 and 3.37 is quite widespread in the
modeling of ferromagnetic materials. In particular, many strictly mathematical implementations
of magnetic models use some form of Equations 3.36 and 3.37.

3.3 Chapter Summary

This chapter gives a theoretical basis for the basic circuit-based model for ferromagnetic materials.
It was shown that the basic circuit attempts to emulate the behaviour of electromagnetic fields inside
matter. The emulation, however, is not perfect because ferromagnetic materials have magnetic
domains. The movement of these domains generates additional currents that are not predicted by
the basic circuit.

To understand how the basic circuit needs to be modified the trends in the performance of the
basic circuit are investigated. From the behaviour of the basic circuit for different frequencies and
excitation levels it is found that the values of the circuit resistances need to be dynamically changed.
It is also found that the initial values of the circuit resistances need to be statically modified from
their initially calculated DC values. A technique for systematically doing this is also provided in
this chapter.

The chapter closes with two existing techniques that dynamically vary the values of the circuit
resistances. It is found that, although there is some theoretical merit in these techniques, the
modified models produce distortions in their output responses that are undesirable.

The main results of this chapter were used in the development of the two mechanisms that are
the main contributions of this work. This development is given in the next chapter.
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Chapter 4

New Mechanisms for Circuit-Based
Ferromagnetic Models

This chapter discusses the main focus of this thesis. Namely, the modification of existing circuit-
based models for better performance over a larger range of operating conditions. The preexisting
models are modified by two newly developed mechanisms. The details of these mechanisms along
with a procedure for identifying their parameters is contained within this chapter. This chapter
also provides an analysis of the accuracy of the newly proposed model in comparison to the base
model shown in Figure 3.1 that is tuned at specific operating conditions.

This discussion also includes other methods that ultimately failed. The reasons for their failures
are highlighted to emphasize the difficulty in achieving the seemingly easy task of adding frequency
dependence to the parameters of the model.

4.1 Mechanisms that Failed

Several other approaches were explored before the final mechanism was developed. Given the trends
presented in Chapter 3, the first logical step would be to add a direct rate dependance to the values
of Rk. One potential problem with using derivatives is they are generally very noisy. The noise
from the derivatives can cause unwanted oscillations in the output of the model if used improperly.
In a magnetic circuit there are two potential rates that can be used: rate of change of flux and rate
of change of mmf. Since the presence of current produces the B field it seems reasonable that the
rate of change of mmf should be used. However, the rate of change of the flux is more convenient to
use since the basic circuit already incorporates the derivatives of the fluxes in the circuit whereas
the derivatives of the mmfs in the circuit need to be separately obtained.

In the end, two approaches were tried. The first approach uses just the estimated derivatives
of the mmfs in the circuit. The second approach uses a combination of both derivatives.

4.1.1 Direct Use of the Derivatives of the Circuit Mmfs

The rate of change of the mmfs of the basic circuit need to be estimated. This estimation will be
covered in detail in Chapter 5. Assume for now that the derivatives of any of the mmfs in the basic
circuit are available to be used.
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The first step is to determine which mmfs to use. It was decided that, for the kth layer, the
derivative of the k + 1 layer mmf is used to modify Rk as given by:

R′
k = f−1(Ḟk+1)ζkRk (4.1)

where f is a function to be determined that depends on the derivative of the mmf of the k+1 layer,
Ḟk+1. The derivative of the input mmf is used for the nth layer. For a given layer k, the value
of ζk is the static adjustment to the value of the calculated DC resistance Rk that is described in
Section 3.2.2.

The function f is obtained by fitting the response of the modified model to the experimental
data. The general shape of the curve can be anticipated by the observations that were made with
the unmodified basic circuit i.e. f should be large for low values of Ḟ and small for high values of
Ḟ . Note that the inverse of f is used in Equation 4.1 since the inductances in the basic circuit are
proportional to 1!Rk. The same function is used for every layer. The use of a different function
for every layer is unlikely to improve the accuracy by very much. Furthermore, the time that would
be required to obtain separate functions is prohibitively high for models with many layers.

Unfortunately, the performance of this mechanism is unsatisfactory. The results that were
obtained using this approach were less than ideal for the following reasons:

1. The shape of f that is required for a given input frequency is different than the shape for
another input frequency in some narrow bands of Ḟ . Thus, it is impossible to determine a
single function that can cover a large range of input frequencies.

2. The use of Ḟ directly allows the inherently noisy derivatives to directly affect the output of
the model.

This mechanism was abandoned after the preliminary results showed it to be inadequate. Even
if different functions for different layers lessens or removes the issue of point 1, the noise issue is
insurmountable. No reasonable amount of filtering of the derivatives is able to reduce the effects of
the noise to an acceptable level. Thus, a method that uses the derivatives of the mmfs to modify
the values of Rk in a more indirect way is required.

4.1.2 The Use of the Flux and Mmf Derivatives Together

The second approach that was tried was the use of both the derivatives of the circuit fluxes and
mmfs. Consider the following modification to the circuit resistances:

R′
k =

ζkRk

1 + g(Ḟk+1)φ̇k

(4.2)
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where g is a function that is similar in shape to the function f above and φ̇k is the derivative of
the φk flux as defined in Figure 3.1.

The derivative of the fluxes can not be used directly because as the frequency increases so would
the value of the circuit inductance. This trend is opposite to what is required. Thus, the derivatives
of the mmfs are used to roll off the gain introduced by φ̇k. As the frequency decreases the gain needs
to be substantially increased to account for the decrease in the derivative of the flux. This is also
provided for by g. The required shape for g is determined by matching the experimental curves to
the output of the model for various frequencies. For similar reasons as the above described method,
only one definition of g is used for every tube. The result of this procedure for a ten tube model is
shown below. Notice in Figure 4.1 that the high frequency gain of g is actually negative. This is
required to further decrease the circuit inductances for high frequency, high peak magnitude, input
excitations. Care must be taken that the resulting resistance does not “blow-up” for excessively
high derivatives of the mmfs. Therefore, a minimum value of the denominator of Equation 4.2 is
set to avoid this situation.

Note that Equation 4.2 could have been written as follows:

R′
k = ζkRk

(
g′0 + g′(Ḟk+1)φ̇k

)
(4.3)

where g′0 is a predetermined constant and g′ )= g.
The resulting surface that is mapped by R′

k(Ḟk+1, φ̇k) is the same for either definition so only
the results for Equation 4.2 are necessary to validate this type of mechanism.

Although the derivatives of the mmfs are used in this approach, the impact of the noise on the
circuit’s output is substantially smaller than the previously described mechanism. Furthermore,
the problems that occur while trying to define a single function for f are significantly reduced in
the definition for g. Looking at Figure 4.1, however, reveals a potential drawback to this scheme.
The extreme change in the slope of g requires a relatively small value of the time step in the digital
implementation of this modified circuit compared to the original circuit. For online applications
such as the sensorless control of SRMs this could prove to be a severe limitation.

The mechanism described by Equation 4.1 was implemented in a magnetic equivalent circuit
with three, four and ten tubes. This allowed the behaviour of the modification to be examined as
the number of tubes is changed. The response of the ten tube model for 60 Hz and 500 Hz input
excitations is shown in Figure 4.2.

Notice that even for a model with ten tubes the performance of this mechanism for the 60 Hz
case is undesirable. The damping in the 60 Hz case is still insufficient as highlighted by the error in
the circuit’s response near middle and ends of the curves. In particular, the error near the middle
of the curves generally becomes worse as the number of tubes is deceased. The performance of this
mechanism for the 500 Hz case is acceptable. However, the model’s response at 500 Hz is bought
with a cost; namely, the degradation of the performance of the model at 60 Hz. The independence
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Figure 4.1: Gain function g(Ḟ )

of g on the input excitation frequency is still not completely achieved. Finally, this mechanism
was eventually abandoned because, for the ten tube case, a 10µs timestep was still not able to
completely eliminate the oscillations in the response of the circuit due to the extreme change in the
slope of g.

The above two mechanisms are an improvement over the original basic circuit but they still have
too many problems. Although it is not detailed here, a mechanism that used just φ̇ was also tried
i.e. a correction factor 1 + g∗(φ̇k) was employed to modify the values of Rk. The determination
of a suitable shape for the function g∗ is similar to the other mechanisms in this section. The
performance of this scheme is generally even worse than the two mechanisms described here so it
was quickly discarded.

The remainder of this Chapter details the mechanisms that are the final result of this work.
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Figure 4.2: Performance of a 10 tube model with the 1 + g(Ḟk+1)φ̇k correction factors

4.2 Proposed New Circuit Model

The development of the model that is the final result of this work was carried out in three phases.
The first phase involved the testing of an idea for a model that only used the initial magnetization
curve to characterize the relationship between H and B and eddy currents that flow in the classical
sense. At that time the results from the actual material were not available. When the results
from the actual material were made available the initial attempt was shown to have problems.
The second phase in the development of the final model included the testing of the ideas that are
presented in the previous section and the modification of the initial attempt in the first phase. The
end result of the second phase is a mechanism that can match the behaviour of the actual material
when it is allowed to partially or fully saturate over a wide range of frequencies with good accuracy.
However, the model still can not match the behaviour of the material very well when it does not
saturate to any extent. The result of the third phase handles this discrepancy by adding a second
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mechanism that corrects for the observed error. It is thought that the error can be attributed to
the effect of the additional eddy currents that flow due to the shifting of the domain walls. The
combination of the two mechanisms gives a model that can match the behaviour of the actual
material for a large range in both input frequency and magnitude to a high level of accuracy.

4.2.1 A Partially Successful Attempt

The resulting mechanism from the first attempt to solve the modeling problem of this work matched
the behaviour of models that just exhibit classical eddy currents quite well but was not as successful
at modeling the real material. Initially, the response of a similar circuit to the basic circuit was
tested without the effect of hysteresis. The initial magnetization curve was used to characterize
the static relationship between H and B. An analytical non-linear representation of a core with a
circular cross-section was solved in Matlab to compare the response of the circuit with the analytical
model. The response of the model was also compared to the results that were produced with 3D
finite element software for a rectangular cross-section. In the case of the analytical solution, the
following diffusion equation in cylindrical coordinates (r, θ, z) was solved:

µσ
∂Hz

∂t
=

1
r

∂

∂r

(
r
∂Hz

∂r

)
(4.4)

subject to the boundary conditions:

∂Hz

∂r
(0, t) = 0 (4.5)

Hz(rm, t) = Hf (t) (4.6)

where rm is the radius of the core, and Hf (t) is the value of the excitation field on the outer surface
of the core.

Note that H = Hzk̂. Since Hz only varies along r, Equation 4.4 does not contain θ. Equation
4.4 can be derived directly from Maxwell’s equations and B = µH. Since µ is nonlinear this has
to be solved numerically. Equation 4.4 is a 1-dimensional parabolic partial differential equation.
Matlab has a built in solver for this type of equation.

The finite element solution was implemented with a very fine mesh. The cross-section of one
lamination was modeled with 20 layers of quadratic elements. The 3D dynamic solver from Infolyt-
ica was used to produce the results.

The circuit that was used is a variation of the basic circuit. Instead of using inductors, flux
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dependent mmf sources were used. The value of the mmf sources are given by:

L ∗
k (φk−1 or φk) =






1
Rk

dφk−1

dt
k > 1

1
Rk

dφk

dt
k = 1

(4.7)

For k > 1 the value of L ∗
k depends on the derivative of the sum of the fluxes of the tubes below

the kth tube. The mmf source for the innermost tube is the same as the inductor in the basic
circuit.

Comparing the results from thus circuit with the two above described magnetic models yielded
two very general trends:

1. The damping for values of H less than the knee point of the initial magnetization curve was
about the required amount. However, the damping for values of H above the knee point is
insufficient.

2. Adding more tubes to the model improves the accuracy of the model. This is particularly
noticeable when the circuit is modified in order to mitigate the error described in point 1.

In particular, point 2 is very interesting because this trend seems to be boundless i.e. adding
more layers always extends the frequency range of the model without degrading the low frequency
performance of the model. This might explain the multitude of papers in the literature that
implement models without hysteresis with 10 or more tubes. On the other hand, increasing the
number of tubes is also a way of artificially increasing the damping to compensate for the loss
in width of the generated B − H loops of the model due to not utilizing a hysteresis model.
Nevertheless, the behaviour of this circuit is indicative of the behaviour of circuits that include a
full hysteresis model instead of an initial magnetization curve.

The error described in point 1 was significantly reduced by modifying the values of Rk based
on a function of µ. In this way, the time constants τ = L ∗!R of the L ∗R circuits are adjusted to
compensate for the large increase in R as the material saturates. With this new modification the
mmf sources given in Equation 4.7 now become:

L ∗′
k (φk−1 or φk, µ

′
k) =






1
RµkRk

dφk−1

dt
k > 1

1
RµkRk

dφk

dt
k = 1

(4.8)
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where:
Rµk(µ′

k) = 1− pk + pk
µ′

k

µ(0)
, pk ∈ [0, 1] (4.9)

Note that µ(0) is the value of µ for H = 0. The value of µ′
k is equal to the value of µ that

would be obtained if the flux φk−1 was in one tube with an area equal to the sum of the areas of
the 1, 2, . . . , k − 1 tubes. Thus, the value of B that corresponds to φk−1 needs to be calculated.
From this the value of µ′

k is obtained from the initial magnetization curve. The response from the
analytical model or the finite element model for a case with and without saturation for a single
frequency was compared to the response of the circuit in order to tune the value of pk. In general
pk can be different for every tube but it is was found that having the same value of pk for every
tube was sufficient. Thus, really only one parameter needs to be tuned for this approach.

It was hoped that the success of this technique with the simplified magnetic model would
carry over to a model with hysteresis with little or no modification. Unfortunately, the resulting
performance is not as good as was hoped. It was understood that the performance of this technique
was likely to worsen compared to the simple case because the generation of eddy currents due to the
domain structure is not captured in this approach. However, the required frequency dependance of
pk was not anticipated.

The implementation of this modification for the basic circuit with hysteresis requires minor
modifications. The values of Rk are now multiplied by Rµk(µ′

k) in Figure 3.1. The value of µ′
k is

now obtained from φk instead of φk−1. Similarly to above, µ′
k is determined by assuming that φk

is in a single tube of total area equal to the 1, 2, . . . , k tubes. In this case, however, the resulting
B is related to H via the hysteresis model instead of the initial magnetization curve. The value
of µ(0) becomes the largest value of µ in the set of the first order reversal curves that are used by
the modified hysteresis model. The same value of pk was used for all of the tubes. The only other
modification to the basic circuit is the static adjustment of the values of Rk that is described in
Section 3.2.2. Note that some of the gains that are obtained from that procedure need to be reduced
otherwise the model produces results that are overly damped. This reduction can be preformed
by iteratively changing the resistances of the tubes that use this mechanism for one case until the
model’s results match the behaviour of the actual material.

The response of this model to 60Hz and 500Hz excitation inputs for Hpeak = 500 A/m is shown
in Figure 4.3. Notice that the response of the model for the 500 Hz case is overly damped. The
overdamping becomes increasingly severe as the frequency increases. This can also be seen in the 60
Hz case. The damping is too much near the knee points of the response but is then underdamped
after the knee points. The frequency response of this mechanism prompted the search for ways to
modify the parameters of the model as the frequency changes.
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Figure 4.3: Performance of a 4 tube model with the modification Rµk(µk)

4.2.2 Variation of Rk Based on Λk(Ḟk+1)

As is clearly seen in Figure 4.3, pk needs to vary as the frequency varies. This is achieved by using
the derivatives of the mmfs of the circuit. The issues that are associated with using derivatives are
the same for this modification as the cases that are detailed in Section 4.1 so they are not repeated
here. If the values of the gain pk are allowed to vary in response to the variation of the derivatives
of the circuit mmfs then Equation 4.9 can be redefined as:

R′
µk(µ

′
k,Λk) = 1− Λk(Ḟk+1) + Λk(Ḟk+1)

µ′
k

µ(0)
, Λk ∈ [0, 1] (4.10)

However, if Equation 4.10 is implemented as is then the response of the model for cases when
the material is subjected to high frequency, high peak magnitude input excitations is overdamped
near the endpoints of the response compared to the actual material. Thus, the lower limit of the
allowed range of Λk needs to be relaxed. The third term on the right had side of Equation 4.10
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Figure 4.4: Variation of Λ with |Ḟ |

still needs to be restricted to the original range otherwise the increase in R′
µk due to a negative Λk

will be reduced by the negative third term.
With the above considerations in mind, the modified circuit resistances are finally given by:

R′
k = ζ ′kRkR

′
µk(µ

′
k,Λk) (4.11)

where:
R′

µk(µ
′
k,Λk) = 1− Λk(Ḟk+1) + Λ′

k(Ḟk+1)
µ′

k

µ(0)
, Λk ∈ [−∞, 1] (4.12)

Λ′
k(Ḟk+1) =

{
Λk Λk ! 0

0 Λk < 0
(4.13)

The value of ζ ′k is the adjusted static modification to Rk that is described near the end of Section
4.2.1. The static adjustment to the value of the resistance remains unchanged for tubes that do
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not use this mechanism i.e., ζ ′k = ζk for these tubes.
Note that although Λk could theoretically approach negative infinity, for practical reasons it is

capped at a sufficiently large number.
The variation of Λk as a function of Ḟ is obtained by iteratively modifying the shape of the

curve for different input frequencies and peak magnitudes of H. The resulting piecewise linearized
variation of Λk for a ten tube model is shown in Figure 4.4. Although a smooth variation could
be used, a piecewise linear variation is more convenient to implement. Notice that the variation of
Λk with Ḟ is less abrupt than the variation of g with Ḟ . Consequently, the maximum allowable
timestep for this scheme is higher than that for the mechanism that modifies the resistances based
on the factors 1 + g(Ḟk+1)φ̇k.

Equations 4.11–4.13 along with Figure 4.4 define the first of two mechanisms that are the main
contributions of this work.

The typical results for this mechanism are presented near the end of this chapter along with
the results for the mechanism that is presented next. Notice the significant errors produced by this
mechanism for cases when the material does not saturate to any extent. Clearly, this mechanism
by itself can not account for all of the eddy currents that are flowing in the material.

4.2.3 Accounting for Eddy Currents due to Domain Wall Motion

The modeling work so far has been primarily based on the classical model for eddy currents. No
explicit correction has been made for the eddy currents that flow due to the motion of the domain
walls. The error that can occur when the effect of these currents is ignored can be very significant
as is shown by the response of all of the models presented so far for Hpeak = 125 A/m. The second
mechanism that is proposed in this work is designed specifically to correct for the error that occurs
due to these additional currents. The development of this mechanism is based on the following
assumptions:

1. Any localized eddy currents that may flow due to domain rotation are small enough that they
can be neglected.

2. As a ferromagnetic material becomes more demagnetized the number of domains in the mate-
rial increase. Therefore, the eddy currents that flow due to the domain walls shifting increase
as the material becomes more demagnetized

3. Along any given trajectory as the path taken by the material approaches the origin the number
of domains increase whereas as the path moves away from the point that is the closest to the
origin the number of domains decrease.

The state of a piece of the material can be broadly defined as either being saturated or unsat-
urated. Based on the assumptions that are given above, the mechanism described here deals with
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the material when it is in an unsaturated state.
The first assumption pertains to the rotation of entire domains as the material saturates. As a

material approaches saturation the number of domains in the material decrease until the material
is dominated by a few domains. After this point an increase in H only further aligns the magnetic
moments within these domains with the field. This assumption appears to be justified because the
excess currents are commonly attributed to the localized disturbance of B in the vicinity of moving
domain walls whereas domain rotation strictly describes the rotation of the magnetic moments
within the remaining domains within the material. An illustration of the difference between the
two is provided in Section 1.4.2.

The second and third assumptions give a basis to define a function that provides additional
gain to dampen the response of the model when it is unsaturated. The function is generated from
symmetrical hysteresis loops. These loops are provided by the modified Preisach model that is
detailed in Chapter 2. Specifically, the hysteresis model is first brought into a demagnetized state.
The model is then perturbed by a symmetrical input with peaks corresponding to the desired curve.
According to point 2, curves that are closer to the origin are given a larger gain. Furthermore, as
the trajectory goes from either extreme points in H the gain increases until the path is the closest
to the origin. Thereafter, the gain decreases until the trajectory returns to the initial magnetization
curve at the other extremum point. The gains are chosen such that the peak gain on a hysteresis
loop that is further away from the origin than another is smaller than the gain at the extremum
on the closer loop.

The gain along the curve that connects the closest points of the hysteresis loops to the origin
is defined as:

gz(di) = 1
/(

a1x
4 + a2x

3 + a3x
2 + a4x + a5

)

x =
(

di

dc

) (4.14)

where 1!a5 is the value of the gain at the origin, a1 + a2 + · · · + a5 = 1, and di is given by:

di =

√(
Hi

Hm

)2

+
(

Bi

Bm

)2

(4.15)

Hm and Bm correspond to the values of H and B on the initial magnetization curve at the
outermost curve. The gain at this point and along the outermost hysteresis curve is equal to one.
The distance as defined by Equation 4.15 for the endpoint of the curve that connects the closest
points of the hysteresis curves to the origin is equal to dc. This point also lies on the outermost
hysteresis curve.
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A similar curve can be defined for the gains along the initial magnetization curve. This curve
is defined as:

gz(di) = 1
/(

b1y
4 + b2y

3 + b3y
2 + b4y + b5

)

y =
(

di√
2

) (4.16)

where b5 = a5 and b1 + b2 + · · · + b5 = 1.
The definitions of Equations 4.14 and 4.16 may seem to be too unwieldy given the number of

constants that need to be determined. For this particular case a fourth order equation was the
minimum order equation that was able to fit the required shape for the gain function. The number
of constants can be significantly reduced by forcing the ratio of the maximum gain at the closest
point to the origin and the minimum gain at the extremum points on the initial magnetization
to be the same for every hysteresis loop. The ratio was initially chosen to be 0.8. Varying the
ratio about this value did not seem to overly affect the results produced by this mechanism so it
was retained for the final model. Once the constants a1, a2, a3, a4, and the ratio are fixed then
the constants b1,b2,b3, and b4 can be obtained by any reasonable curve fitting algorithm. The
constants a1, a2, a3, and a4 are obtained by fitting the response of the model to the response of the
actual material for various frequencies.

The gain along the path from the points on the initial magnetization curve to the point closest
to the origin for a given hysteresis curve is obtained by:

gz(di) = gz(H ′, B′)

(
1 +

(
1− rp

rp

)
di −

√
2

dp −
√

2

)
(4.17)

where dp is the distance from the closest point on the hysteresis curve to the origin, rp is the ratio
that is described above, and gz(H ′, B′) is the value of the gain on the initial magnetization curve
that corresponds to the hysteresis curve.

With the use of Equations 4.14 - 4.17, the definition of the gain gz that was developed for the
test material is shown in Figure 4.5. Note that this definition is for only one specific model – a
10 tube model that uses a 25 µs timestep. If the timestep or number of tubes is changed then
the definition of gz needs to be identified again. More on this is discussed in the section on the
accuracy of the new model that is given later in this chapter.

If the definition of gz is used as is then this mechanism can produce results that excessively
attenuate the H and, therefore, B magnetic fields inside the model of the material. This is partic-
ularly true of models that use this mechanism for every tube. A function called Γ is defined to roll
off the gain for higher frequencies. An example of a suitable shape for Γ is shown in Figure 4.6.
This is for the same case as the definition of gz i.e. a 10 tube model with a 25 µs timestep.
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Figure 4.5: Definition of gz for a ten tube model

Notice in Figure 4.6 that the gain actually becomes larger than one for rates less than 1000
A/s. This allows more gain for lower frequencies without overly affecting higher frequencies. Also
note that the derivatives of the circuit mmfs are used in this mechanism for the same reasons that
are discussed in Section 4.1.

The definition of gz and the frequency dependent roll-off gain Γ are combined to become a
mechanism that can correct for the errors that occur due to ignoring the eddy currents that are
produced by the motion of the domain walls.
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Figure 4.6: Variation of Γ with |Ḟ |

Thus, with the definitions of gz and Γ in mind, the modifications to the circuit resistances for
this mechanisms are:

R′′
k =

R′
k

Rgzk
(4.18)

where:
Rgzk = 1 + (gz(Hk, Bk)− 1)Γk(Ḟk+1) (4.19)

The values of R′
k are the modified circuit resistances from the R′

µk mechanism that is given by
Equation 4.11.

The benefit of using this mechanism is clearly seen in the figures in the next section. As with
the mechanism that is described in Section 4.2.2, increasing the number of tubes increases the
accuracy of the model. The number of tubes that are required for this mechanism compared to
the mechanism in Section 4.2.2 is higher because the falloff of H in the material is more severe for
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cases without saturation compared to cases with partial or full saturation.
A final note needs to be made about the tuning of the values of the constants a1, a2, a3, and a4

and the determination of Γ. Initially, the lower frequency gains of Γ are set to one. The required
roll-off of the gain and the constants are determined by ensuring that the amount of damping
at the ends of the waveforms is correct for the entire frequency range of inputs. This process is
iterative, however, suitable values of the constants and the roll-off can be determined with only a
few iterations. Finally, the lower frequency gain of Γ is increased until the damping at the ends
starts to be affected. The increase of the lower frequency gain tends to tighten the response of the
mechanism while leaving the damping at the ends mostly intact.

4.2.4 Procedure for Identifying the Parameters of the Model

This section gives the procedure for generating the necessary parameters for the proposed model
that is described in this chapter. The parameters should be derived in such a way that they can
be directly used in the implementation of the model that is described in Chapter 5.

The identification of the model requires the following pieces of information:

1. a set of first order reversal curves that are referred to either +Hsat or −Hsat;

2. a set of H and B (or M) data at three or more frequencies for peak input excitation values
that correspond to a DC magnetization that is unsaturated, near the middle of the saturation
region and almost completely saturated;

3. dimensions of the magnetic structure to be modeled;

The data for items 1 and 2 can be obtained with the use of the experimental setup that is
described in Appendix A or by any other suitable means. The magnetic material should be excited
such that either a sinusoidal H or sinusoidal B waveform is generated for the sets of frequency
dependent data. Furthermore, the frequencies that are used to produce the data should span the
entire operation range of the model.

The value of the nominal value of the resistivity of the material can be obtained from the
manufacturer of the magnetic material. If the type of material is unknown then either σ can be
experimentally found or it can be found as part of the identification process of the model in Step
4 below.

The procedure that was used to identify all of the parameters of the models that were developed
for this work is as follows.

Step 1. Generate the two data structures given in Tables 2.1 and 2.2 for the hysteresis algo-
rithm from piecewise linearized first order reversal curves.

Step 2. Decide on the number of tubes for the model.
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Step 3. Calculate R(µk) and Rk(σ) from the geometry of the material as given in Section
3.1.2.

Step 4. Determine the static change ζk to the values of Rk as outlined in Section 3.2.2 and
optionally a value for σ if it is unknown.

Step 5. Generate Λ(|Ḟ |) by fitting data for cases when the material is allowed to saturate to
some extent. This is done by:

i. readjusting ζk for tubes that use the R′
µk mechanism that is described in Section

4.2.2 to obtain ζ ′k;

ii. adjusting the gain of Λ for values of |Ḟ | corresponding to low, mid, and high
excitation frequencies starting with low frequencies and then progressing to in-
creasingly higher frequencies.

Step 6. Obtain gz(H,B) and Γ(|Ḟ |) by:

i. obtaining an estimate of the gain that is required for gz at different frequencies
by statically changing the modified resistances ζkRk and ζ ′kRk while the R′

µk

mechanism is still active;

ii. based on Step 6(i), determine the initial values of a1, a2, . . . that are defined in
Section 4.2.3 to fit the estimate of the required gain as a function of |Ḟ | for gz;

iii. fix the ratio rp that is described in Section 4.2.3 to 0.8;

iv. readjust gz by fitting the response of the model for low to mid range frequencies
while initially fixing the value of Γ = 1;

v. reduce Γ for higher frequencies while keeping gz fixed;

vi. increase Γ while keeping gz fixed for low frequencies to tighten the response of
the model until the damping at the ends of the response starts to be affected.

Step 7. If the accuracy of the final model is insufficient then increase the number of tubes of
the model and return to Step 3.

The procedure for the identification of the model assumes that the timestep of the solution
is fixed based on the time constraints that are imposed on the implementation of the model. In
general, reducing the time step of the model increases the accuracy of the solution but at the
expense of increased computational effort. This will become clearer in light of the discussion in the
next section and in Chapter 5.

The procedure also assumes that the geometry of the material is simple i.e. the cross-section
of the material as seen by the magnetic path is constant and is either rectangular or circular.
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Thus, complex structures such as the stator and rotor of machines need to be divided into several
more elementary shapes that are fitted with individual models separately. Generally each section
of a more complex device can be approximated with an equivalent geometry that allows for the
calculation of the reluctance of the magnetic path and the resistance of the eddy current paths. A
good approach for doing this can be found in the book Dynamics of Saturated Electric Machines by
Ostović [68]. This approach is beyond the scope of this work so it is not included in this discussion.
Fortunately, the vast majority of structures that are composed of ferromagnetic materials can be
approximated with sections that have either rectangular or circular cross-sections. Thus, the tube
structure that is defined in Section 3.1.2 can be used without major adjustments for most of the
cases that are present.

When this procedure is applied to complex structures the models of each section of the device
need to be determined with the use of separate pieces of the same material with an equivalent simple
geometry. It is hoped that general trends in the parameters of the model exist for cross sections
of different dimensions of the same material. Thus, the parameters for models with dimensions
that are bounded by existing fitted models can be obtained by interpolating the parameters of the
existing bounding models.

Finally, a quick comment about the first-order reversal curves of the material should be given.
The first-order reversal curves are principally dependent on the composition of the material. Chang-
ing the geometry of the material has generally little or no impact on the shape of these curves.
However, mechanical stress that causes the permanent deformation of the material can cause the
shape of the curves to change. The shape is also dependent on the ambient temperature surround-
ing the material. These effects among others are important but are left for future consideration.
Since hysteresis by itself is deemed to be time and geometry independent, only one set of first order
reversal curves is necessary to construct the hysteresis model for a given material.

4.3 Accuracy of the Proposed Model

The accuracy of the proposed model is explored in comparison to the basic model that is depicted
in Figure 3.1. The initially calculated DC values of the tube resistances of the basic model are
statically modified based on the procedure in Section 3.2.2. This tuning of the circuit is performed
for two operating conditions: 250 Hz and 500 Hz for a peak value of H of 500 A/m. The parameters
of the proposed models are determined based on the procedure that is given in the previous section.

The accuracy is shown here in two ways. The first way is to compare the results of the various
models with a metric. As a result, trends in the behaviour of the models can be determined. The
second way is to present the response of two specific models graphically. A dynamic ten tube model
is compared to a static ten tube model to highlight the advantages of the proposed model in this
work.
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4.3.1 Analytical Determination of the Accuracy

A specific metric is used as the basis for the comparison. The metric is the normalized least squares
error of the output of a model. The output of the various models are compared to the experimental
data that was measured using the apparatus described in Appendix A. Since the models operate
at specific fixed timesteps, the number of output points for a single cycle of the input decrease as
the input frequency increases. In order to compensate for this trend, a scaling factor for the error
is introduced to allow the response of the models to be compared for different frequencies.

The metric that is used to generate the error in response of a given model is given by:

E2 =
n60

n

n∑

i=1

(
B̄i − B̄∗

i

B̄p

)2

(4.20)

where: n is the number of data points, n60 is the number of data points for the 60 Hz waveforms, B̄i

is an array containing the output response of the actual material, B̄∗
i is an array of the output values

that are generated by the model, and B̄p is the maximum value of the output of the experimental
curve.

Note that since the difference between the model’s response with the experimentally determined
curve is divided by the peak of the output response of the actual material, the resulting error E is
dimensionless. Thus, the division with the peak value provides the normalization that is mentioned
above.

Besides comparing the improvement of the proposed model with the basic circuit, the effec-
tiveness of increasing the number of tubes and reducing the timestep of the new model was also
investigated. All of the comparisons are performed by computing the metric that is given in Equa-
tion 4.20 for twelve different operating conditions. These operating conditions are tabulated below
in Table 4.1.

In Table 4.1, for all cases, the input waveform H is sinusoidal with a peak amplitude of Hp and
frequency f . The cases when Hp is equal to 125 A/m correspond to a DC magnetization that does
not saturate the material to any degree. The cases when Hp is equal to 500 A/m and 1000 A/m
correspond to DC magnetizations that are near the middle of the saturation region and almost fully
saturated respectively. Thus, at the very least, part of the material will saturate to some degree in
these cases.

Three separate studies of the accuracy are presented here. The first study compares the output
of three models with four tubes that are solved with the same timestep of 50 µs. Of the three
models one uses both of the mechanisms and the other two are tuned for two different operating
conditions. These operating conditions correspond to cases 5 and 8 in Table 4.1. The dynamic
model only uses the R′

µk mechanism in the outermost tube whereas the Rgzk mechanism is used
for every tube. The reason for this choice is explained below.
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Table 4.1: Operating conditions for comparing the models

Case Hp (A/m) f (Hz) Case Hp (A/m) f (Hz)

1 1000 1000 7 1000 250

2 500 1000 8 500 250

3 125 1000 9 125 250

4 1000 500 10 1000 60

5 500 500 11 500 60

6 125 500 12 125 60

The second study compares the effect of changing the timestep. The accuracy of two models
that have four tubes are compared for timesteps of 25 µs and 50 µs. Both of the models use the
R′

µk mechanism in the outermost tube and the Rgzk mechanism for every tube.
The third and final study compares the accuracy of a ten tube model to a four tube model.

Both of the models are solved with a timestep of 25 µs. The four tube model that was used is the
same one as in the second study. The ten tube model uses both the R′

µk and Rgzk mechanisms on
the four outermost tubes.

In these studies, one fact that became very apparent is the two mechanisms are not necessary
for every tube. Initially the mechanisms were only added to the outermost tubes of the model.
It is found that as the mechanisms are added to more tubes, starting with tubes nearer to the
outside surface of the material, the improvement in the response of the model becomes increasingly
smaller. This is not surprising since the response of the outermost tubes dominates the response of
the entire model. They dominate in the sense that a change in a parameter of an outermost tube
has a larger impact on the response of the model compared to a similar change in the parameter of
an inner tube. The extent of this behaviour was confirmed when the values of the resistances were
statically changed while performing the procedure in Section 3.2.2. In general, the drop off in the
improvement of the model’s response is more severe for the R′

µk mechanism compared to the Rgzk

mechanism.
The results of the first study are shown in Figure 4.7. Notice the large error in the output of

the models that are tuned for specific operating conditions when the material is not allowed to
saturate to any degree. Also notice that the model that was tuned at f = 500 Hz is more accurate
than the model that is tuned at f = 250 Hz for higher frequencies. Conversely, the model that is
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Figure 4.7: Comparison between a dynamic and two static four tube models with 50 µs timesteps

tuned at f = 250 Hz is more accurate for lower frequencies and values of the peak H compared
to the model that was tuned at f = 500 Hz. These trends are consistent when the gains of the
circuit inductors are considered. What probably seems surprising is the error for the tuned models
actually decreases for cases above 250 Hz when the material does not saturate whereas the error
for the dynamic model increases. This trend will be explained in the discussion that follows the
presentation of all of the results of the three studies. The error that is produced by the dynamic
model is either lower or at worst only slightly higher than the best of the two models that are
tuned. For the cases when the material is not allowed to saturate, the error produced by the
dynamic model is significantly lower than the tuned models. This is mostly due to the action of the
Rgzk mechanism. Although not shown here, the advantage of the dynamic model over the tuned
models becomes more significant as the timestep of the solution is reduced and/or the number of
tubes for the model increases. Appendix B gives data for these cases that clearly demonstrates this
fact.
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Figure 4.8: Comparison between dynamic four tube models for two timesteps

The results of the second study are given in Figure 4.8. Notice that the accuracy of the model
that uses a 25 µs timestep is generally better than the model that uses a 50 µs timestep for cases
when the material is allowed to saturate to some extent. This is as one might expect. However,
the accuracy of the 25 µs model is actually worse than the 50 µs model when the material is not
allowed to saturate. This might come as a surprise but there is a good reason for this to happen.
The rationale for this behaviour is similar to the reason why the accuracy appears to decrease for
the tuned models in the first study. The explanation follows the results of the last study.

The results of the final study are shown in Figure 4.9. With the exception of Case 7, the accuracy
of the ten tube model is significantly better or approximately the same as the four tube model.
This result shows that adding more tubes generally improves the accuracy of the resulting model.
Conversely, adding more tubes to a statically adjusted model actually decreases the accuracy of the
model as shown in Appendix B. This can be explained by remembering that the static adjustment
of the values of the tube resistances is based on shaping the H field as it penetrates deeper into
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Figure 4.9: Comparison between dynamic four and ten tube models with 25 µs timesteps

the model of the material. The variation in the values of the resistances of the outermost tubes
that is required to properly shape the H field as the frequency changes increases as the number of
tubes increases. Thus, static models with more tubes are more sensitive to changes in frequency
than models with fewer tubes.

The three studies that are presented above show some results that are surprising based on the
trends that are presented in Chapter 3. With the exception of the 10 tube dynamic model, the error
in the response of the models tends to increase as the frequency increases for inputs that saturate
the core to some extent. However, as previously mentioned, the error in the response of the four
tube static models for the unsaturated cases actually deceases. This phenomenon is attributed to
how the circuit is discretized. Specifically, the circuit inductances need to be discretized. All of
the models that are presented in this work are discretized using the backward Euler (BE) rule of
integration. While Chapter 5 covers this discretization in detail, its effect on the response of models
is given here to facilitate the explanation of the errors that are seen in the figures above.
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The discretization of the circuit inductances with the use of the backward Euler rule of inte-
gration distorts the value of the inductance based on the frequency of the change in the input [69].
Additionally, the BE rule also introduces additional damping that depends on the original value of
the inductance and the timestep that is used for the solution of the model. This additional damping
reduces the effect of the circuit inductors. Thus, the magnetic H field and, therefore, the B field is
attenuated less due to this additional damping. The equivalent circuit model of an inductor that
has been discretized with the BE rule is illustrated in Figure 4.10.

L
(a) original inductor

R
e

Le

(b) discretized inductor

Figure 4.10: Effect of discretizing an inductor with the backward Euler integration rule

The values of the circuit parameters that are shown in Figure 4.10 are given by:

Le = L
tan

(
ωT

2

)

ωT

2

(4.21)

Re =
2L
T

(4.22)

The frequency distortion of the value of L is relatively small as long as ω & 1/2T where 1/2T

is called the Nyquist frequency. Since the Nyquist frequency of the discrete time solution is chosen
to be significantly higher than the maximum frequency that exists in the response of the circuit this
effect is negligible. Conversely, the effect of Re can not, in general, be ignored unless the timestep
of the solution is very small. Certainly, in the cases that are presented in this work, the effect of
Re is very significant.

The existence of Re also raises an important issue with using the BE integration rule. Namely,
the response of the magnetic equivalent circuit is different from the electric equivalent circuit for
the same identified parameters because the reluctances in the magnetic equivalent circuit become
inductors in the electric equivalent circuit whereas the “inductors” in the magnetic equivalent
circuit become resistances in the electric equivalent circuit. Since the circuit elements that are
discretized are different for the equivalent circuits, the extra damping that is added due to Re is
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in different places in the circuits and has different values. Thus, the parameters would need to be
identified again if the equivalent circuit is changed. This is not really a problem because typically
the application dictates which equivalent circuit to use. Thus, the parameters would only need to
be identified for one of the two equivalent circuits. As a side note, the trapezoidal rule of integration
does not have this issue because Re is infinite in this case i.e. the trapezoidal rule does not introduce
any additional damping. This might suggest that the trapezoidal rule should be used in place of
the BE rule. However, the additional damping that is provided by BE rule tends to make the
output more stable compared to the trapezoidal rule. Also, the response of the magnetic equivalent
circuit that is discretized using the trapezoidal rule tends to be overly attenuated compared to the
BE rule. For these reasons the BE rule was chosen over the trapezoidal rule for the discretization
method of the circuit.

With the above discussion in mind, the response of the static four tube models for unsaturated
cases can be explained. Clearly, the frequency response of all of the models is modified by the
presence of the additional reluctances in parallel with the inductors. In the case of the static four
tube models, the increase in the damping of the H field inside the actual material becomes better
matched with the damping that is given by the model as the frequency increases. Note that this
is not necessarily true for every case. For example, a static four tube model that is solved with a
25 µs timestep instead of a 50 µs timestep shows a slight increase in the error at 500 Hz before it
drops off at 1 kHz for the cases that do not saturate the material. Thus, a clear trend can not be
given for the results of the static cases when the material does not saturate to any extent. The
results that are produced by the static four tube model that is solved with a 25 µs timestep are
given in Appendix B.

In the dynamic models the value of the additional reluctances becomes frequency dependent
since the value of L depends on frequency. Since the values of the reluctances are directly pro-
portional to the inductance values and the inductances decreases with frequency, the reluctances
become smaller as the frequency increases. The combination of the decrease of both the inductance
and the reluctance actually allows a more accurate model to be identified compared to an equivalent
model that has been discretized using the trapezoidal rule of integration.

As is mentioned above, the accuracy of a four tube dynamic model that is solved with a 25 µs
timestep performs worse when the material is not allowed to saturate to any extent than a dynamic
four tube model that is solved with a 50 µs timestep. The reason behind this is a little subtle. As
explained above a larger timestep provides a greater cancellation of the effect of the inductances.
Thus, for the same amount of damping at the extremums of the input, the response of a model
with a larger timestep to a symmetrical input tends to be thinner i.e. encompasses less area in the
B–H plane. Additionally, the gain of gz is allowed to be uniformly greater for the 50 µs model
compared to the 25 µs model. The combination of these two factors provides a greater apparent
attenuation of the fields inside the model of the material for the dynamic four tube model with a
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50 µs timestep compared to the dynamic four tube model with a 25 µs timestep. Note that for
these same reasons the response of the 50 µs model is generally worse than the 25 µs model for
inputs that saturate the material to some extent. In these cases the attenuation that is provided
by the 50 µs model tends to be insufficient.

4.3.2 Graphical Comparison Between a Dynamic and a Static Ten Tube

Models

The results of a ten tube model that was identified using the procedure in Section 4.2.4 are graph-
ically compared to a ten tube model that has its tube resistances statically modified based on the
procedure in Section 3.2.2. The dynamic model uses both the R′

µk and Rgzk mechanisms for the
four outermost tubes of the model. The static model is tuned at 250 Hz for a peak input excitation
of 500 A/m. Both of the models are solved with a 25 µs timestep. The following pages show the
results for three different levels of input excitation at 60 Hz, 250 Hz, 500 Hz, and 1 kHz. These
conditions correspond to the cases that are given in Table 4.1 above.

Some of the apparent errors in the response of the models are actually due to the experimental
curves being not completely symmetrical. Furthermore, the extremum values of the input excitation
are not identical either. This is particularly true of the curves for Hp ≈ 125 A/m. For example,
the apparent error in the 60 Hz case is misleading because the experimental curve is heavily skewed
and has extremum values that are not identical. In the worst cases, such as the 60 Hz case, the
model is excited with a non-symmetrical input that corresponds to the input in the experimental
case.

Notice that the response of the static model is overly attenuated for the cases with saturation
at 500 Hz and 1 kHz. This illustrates the overriding problem with the static circuits. Namely, a
single set of parameters for the static model can not, in general, produce a response that matches
the frequency response of the actual material over a large range of frequencies and input excitation
levels.

The gain in accuracy by using the Rgzk mechanism is clearly demonstrated in the shown curves.
The errors that are produced by the dynamic model are clearly significantly smaller than the errors
that are produced by the static model.

Figures B.1 – B.4 in Appendix B show the same sets of curves as below for a dynamic and a
static four tube models that are solved with a 50 µs timestep. Some typical variations in time of
the circuit inductance values due to the two new mechanisms and the resulting profile of the H

field as it penetrates into the material are also shown in Figures B.5 and B.6 in Appendix B.
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Figure 4.11: Response of ten tube models for 60 Hz input excitations
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Figure 4.12: Response of ten tube models for 250 Hz input excitations
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Figure 4.13: Response of ten tube models for 500 Hz input excitations
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Figure 4.14: Response of ten tube models for 1 kHz input excitations
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4.4 Chapter Summary

This chapter is primarily concerned with the development of two new mechanisms that form the
main contribution of this work. Two other failed approaches are also given to highlight the difficulty
in achieving a dynamic variation of the values of the tube resistances that suits the required variation
in the resistances that is observed by statically tuning the model.

Both of the mechanisms require the derivatives of the circuit mmfs to be determined. The
discussion that is presented in this chapter assumes that these derivatives are available. Chapter 5
details how the derivatives are obtained along with providing solutions to the other implementation
issues of the proposed model.

This chapter gives a procedure for identifying all of the parameters that are required to obtain
a new model from the geometry of the material and some experimental sets of data. The procedure
assumes that the geometry of the material is simple. A basic guideline for cases when the geometry
is not simple is also given.

The chapter closes with an analytical study of the effectiveness of the new proposed model
followed by a graphical comparison of a model that uses the mechanisms with a static model. The
study clearly shows the benefits of using the two newly developed mechanisms over the traditionally
used static model. The output curves of the two models further emphasizes the improvement of
the newly developed dynamic model over the preexisting static model.
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Implementation Issues

The discussion up to this point has mostly avoided the issues that pertain to the practical im-
plementation of the proposed new modifications to the preexisting ubiquitous basic circuit. The
details of the realization of the hysteresis model other than its data structure and the basic circuit
itself are also absent. This chapter addresses these concerns along with providing a measure of the
computational complexity of the new model.

This chapter begins with the implementation of the final circuit starting with the basic circuit.
In order to assess the feasibility of using this implementation for the purpose of predicting the posi-
tion of the rotor of a SRM, this chapter then concludes with the determination of the computational
complexity of the proposed algorithm based on the analysis of the timing of the algorithm.

5.1 An Implementation of the Modified Basic Circuit

There are numerous ways that the modified basic circuit can be implemented. The choice of the
solution that was ultimately realized is heavily influenced by the goals of this work.

One of the stated goals of this work is to produce a model that can be potentially run in
real time. The major difficulty with achieving this goal is the model is extremely nonlinear. The
seemingly best approach to achieve this goal is to piecewise linearize the relationship between B and
H. This allows the circuit to be discretized using an implicit integration technique. The resulting
discretized circuit needs to be iterated to find the solution at any given timestep. However, the
number of iterations is bounded by the rate of change of the input. Thus, an estimate of the
upper bound on the number of iterations can be determined. This is a major advantage over other
nonlinear solution techniques since there is no guaranteed way of knowing the required number of
iterations for an arbitrary input for these approaches. The justification for these comments is given
later in this chapter.

The stability of the solution is also of utmost importance especially for applications in which
this model is part of an overall control scheme. Again, it is believed that the discretized circuit
that utilizes piecewise linearized elements has specific advantages over other available solution
techniques.
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5.1.1 Discretization of the Basic and Modified Basic Circuits

The basic circuit that is shown in Figure 3.1 and its modified version are discretized using the
backward Euler integration rule. Specifically, the Laplace variable s is approximated by:

1
s
≈ T

1− z−1
(5.1)

where T is the timestep of the discretized model and z is the z-domain variable.
The backward Euler integration rule is used because it provides additional damping. This tends

to dampen out any numerical oscillations that might occur in the response due to changes in the
typology of the circuit or the values of its elements. In this case the topology remains fixed, however,
the values of the circuit elements can change from one timestep to another. The damping that is
provided by the backward Euler rule also has the benefit that it does not distort the resulting
waveform. This is seen by examining the phase response of the rule. The phase response of the
backward Euler rule is linear. This is similar to digital finite impulse response (FIR) filters. It is
an established fact in signal processing that filters with linear phase response do not distort the
input waveform [70].

Of the two elements in the (modified) basic circuit only the inductors need to be discretized
since the resistors do not vary based on the a time derivative. However, the resistors do vary based
on the current values of H and B. The modified hysteresis model that is discussed in Chapter 2
outputs a value of µ and the B-axis intercept Bpv. These values are valid for a certain range of H.
Alternately, the H-axis intercept Hpv can be calculated by:

Hpv = −Bpv

µ
(5.2)

The use of Bpv or Hpv depends on how the circuit elements are represented in the overall
model. The nonlinear resistances in the (modified) basic circuit can be replaced by the circuit
representation that is shown in Figure 5.1.

F
pv

Rφ

F

Figure 5.1: Circuit representation of the circuit elements
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The value of R in Figure 5.1 is equal to l
µA . The mmf source Fpv is given by Hpvl = − lBpv

µ .
As the values of µ and Bpv change the circuit values of R and Fpv need to be updated.

The inductances are discretized by first examining their definition:

F =
d
dt

(
L φ

)
(5.3)

The value of L is in general nonlinear. Like the resistances the value of L can be represented
by a slope and an intercept. Thus, Equation 5.3 can be rewritten as:

F =
d
dt

(
Lmφ + Lpv

)
(5.4)

where Lm is the slope of the inductance and Lpv is the intercept.
Now consider the case in which L (t) )= L (t − T ). Although this condition does not exist in

the basic circuit, it does in the modified basic circuit so the following will include this condition.
Using the approximation for s in Equation 5.1 for the time derivative in Equation 5.4 yields:

F (t) =
Lm(t)

T
φ(t)− Lm(t− T )

T
φ(t− T ) +

"Lpv

T
(5.5)

where "Lpv = Lpv(t)−Lpv(t− T ).
The value of "Lpv can be determined by letting the previous value of the flux be the point

where the two lines that represent Lmφ + Lpv at time t and t−T cross. This is shown graphically
in Figure 5.2.

φ (t T )

Lm(t)

Lm(t T )

Lpv (t)

Lpv(t T )
φ

Lφ

Figure 5.2: Determination of "Lpv
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With the aid of Figure 5.2 the value of "Lpv is given by:

"Lpv =
(
Lm(t− T )−Lm(t)

)
φ(t− T ) (5.6)

The definition of "Lpv in Equation 5.6 can be substituted into Equation 5.5 to yield:

F (t) =
Lm(t)

T

(
φ(t)− φ(t− T )

)
(5.7)

The basic and modified basic circuits can now be completely represented by resistances and mmf
sources. Before the techniques for solving this network are given, the practical implementation of
the modified hysteresis model and the two new mechanisms is discussed.

5.1.2 Practical Implementation of the Modified Preisach Model

Chapter 2 contains the basic information for implementing the Modified Preisach Model. This
includes all of the relevant equations that are necessary to calculate the current relationship between
B and H. Two data structures are given there that reduce the number of necessary calculations.
The details in Chapter 2 are sufficient if the value of H remains fixed during every timestep in the
solution of the model. However, the iterative nature of finding the solution for the (modified) basic
circuit requires that the algorithm be expanded to include the potential variation of H during the
timestep.

The required additions to the algorithm can be seen by examining the effect of varying H about
the solution of the model (H0, B0) in the previous timestep. Consider three possible branches in the
trajectory of the solution that are depicted in Figure 5.3. All other possible branches near (H0, B0)
can be handled in a similar way as these three branches. The branch that is shown in Figure 5.3(a)
illustrates a change of direction in the trajectory. The branch in Figure 5.3(b) shows the closure
of a minor loop within the same segment as (H0, B0) whereas Figure 5.3(c) shows the closure of a
minor loop outside of the current segment. Besides being able to determine the necessary changes
in the state of the model as the result of taking a new branch, the hysteresis algorithm must also
be able to reverse the changes if it is deemed in a later iteration that the new branch should not
be taken. In order for the solution of the model to remain stable, the algorithm must guarantee
that the final solution of the current timestep lies on either the original branch or one of the many
possible new branches.

The following discussion is made in reference to the flowchart of the hysteresis algorithm that
is shown in Figure 5.4. Note that the notation that is used in the flowchart is for ANSI C e.g.
STATE ptr−= 2 is equivalent to STATE ptr = STATE ptr−2.

For the case of closing a minor loop, |H| needs to be larger than the end point of the current
minor loop and the end point must also lie in the same segment as the current definitions of µ and
Bpv. If this is the case then the new branch is automatically taken. Figure 5.3(b) illustrates this
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( H0,B0 )

(a) branch A

( H0,B0 )

(b) branch B

( H0,B0 )

(c) branch C

Figure 5.3: Three possible new branches of the solution near (H0, B0)

condition if the current definitions of µ and Bpv are in the same segment as (H0, B0). Notice that
if the minor loop closes in a segment that is not the same as the current definitions of µ and Bpv,
as is shown in Figure 5.3(c), then the validity of the solution is checked against the endpoint of
the current segment not the closure of the minor loop. To ensure that errors due to rounding or
quantization do not cause the solution to drift over time, the values of H and B that were stored in
the reversal data stack are used to update the new values of µ and Bpv when a minor loop closes.

For the case of a potential reversal of the trajectory, the previous solution point (H0, B0) must
lie on the same segment that is defined by the current definitions of µ and Bpv. If this is not the
case then the change of direction is ignored.

As mentioned above, if a temporary solution of H later dictates that the solution does not take
a new branch even though previous temporary values of H indicated so then the effects of taking
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the new branch need to be reversed. The reversal of the effects of taking new branches is performed
in the reverse order that the branches were taken i.e. the most recently processed branch is reversed
first followed by the next most recent branch, etc.

If along any given path a temporary value of H indicates that the solution may exist on the
next segment in the current trajectory then the solution is resolved with the values of µ and Bpv

for the next segment. Similarly, if a temporary value of H latter falls on a segment before the
current segment and (H0, B0) is not located on the current segment then the model is resolved
for the values of µ and Bpv for the previous segment. However, if the temporary value of H also
indicates that the effects of closing a minor loop needs to be reversed then resolving the model for
the previous segment of the new path takes priority over reversing the effects of the path so long
as the boundary between the segments falls after the start point of the new branch in the direction
of the current trajectory.

The handling of the model is slightly different when there are no previous reversals in the
trajectory of the model. In this case, the trajectory updated based on the values of µ and Bpv for
the limiting first order reversal curve. The closure of minor loops is not checked in this case since
the data that the algorithm looks for does not exist i.e the reversal stack is empty.

The number of iterations per time step is limited in order to ensure that the solution does not
infinitely “bounce” between values at the boundaries of the model such as at the start point of a
new branch and the current branch. This may occur due to the effects of rounding or quantization.
The maximum number of iterations that is allowed is set high enough that it does not interfere
with a legitimate number of iterations for a high frequency high peak value input.

If the values of µ and Bpv are not required to be changed then the solution for this instance of
the hysteresis model is deemed to be valid.

The above rules constitute all of the additional actions that may need to be performed as the
solution of the model is iterated. The ANSI C code that realizes the Modified Preisach Model is
given in Appendix C.

There are two significant variations of this methodology that are required for the practical
implementation of this algorithm as part of the overall model that is presented in this thesis. The
first variation is particularly relevant to the estimation of the position of the rotor in a SRM. These
are given next.

5.1.3 Elimination of Stack Overflow Errors

There still remains a disastrous situation that will most likely occur when the practical implemen-
tation of the modified Preisach model is implemented as is presented above. Presently, there is
no bounds on the amount of memory that is required to store the reversal data. Actual devices
have a very finite amount of memory. Thus, if the number of reversals becomes excessive then
the reversal stack overflows and the model crashes. This section presents a way of rectifying this
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problem without overly effecting the accuracy of the model.
Consider the modification of the trajectory of the material in the H–B plane that is shown in

Figure 5.5.

1

2

3

4

Figure 5.5: Modified trajectory of the material

Instead of going from the reversal point 4 to the reversal point 3, the trajectory returns to the
reversal point 1; thus, ignoring the reversal at point 3. Any further reversals from positive going H

to negative going H overwrite the reversal at point 3 because it is no longer needed. The decision
on whether a reversal point should be ignored or not is based on how close the two relevant reversal
points are in terms of H. If the absolute difference in H is smaller than some value δ then the actual
reversal point is ignored in favor of the next reversal point in the same direction. It is important to
note that the reversal at 3 is still put on the reversal stack. The closeness of each pair of reversal
points is only checked when the trajectory is to return the model to the reversal point that is to be
potentially ignored. For instance, if the trajectory from 3 actually returns to 2 then the reversals
at 2 and 3 are removed from the stack as before.

This approach requires the reversal stack to be split into two separate stacks since the order of a
single stack becomes disrupted when reversal points are overwritten in the above fashion. One stack
contains the reversals from positive going H to negative going H and the other contains reversals
from negative going H to positive going H. Each stack has its own stack pointer to the most recent
reversal data. The additional overhead compared to the implementation in the previous section
is minor since the algorithm already splits up the handling of positive going and negative going
trajectories. The value of δ fixes the maximum number of entries on each stack. For example if
δ = 1 A/m then each stack will contain at most 1000 entries if the trajectory of the path starts
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from H = +1000 A/m. Naturally, there is a tradeoff between the accuracy of the model and the
amount of memory that is required to store the reversal data. As δ increases the amount of memory
that is required decreases but at the expense of the accuracy of the model.

5.1.4 Update of the Modified Preisach Model Based on the Value of B

The following discussion is made in reference to the flowchart in Figure 5.6.
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Figure 5.6: Flowchart for the hysteresis algorithm based on B

As will be explained later, the number of divisions that are required to calculate the output and
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update the state of the model need to be minimized. The newly proposed R′
µk mechanism requires

an instance of the hysteresis model for every tube that uses it except for the innermost tube. The
input to these models is based on an average value of the magnetic field density as opposed to the
magnetic field intensity. In order to use the algorithm as presented in the previous section, the
estimate of the value of µ would need to be inverted for every iteration of the solution. This is
computationally very expensive. Furthermore, the value of B̄ that is used is calculated after the
updated state of the overall model is obtained. Thus, the algorithm that is presented above can be
greatly simplified since the value of B̄ does not vary as the state of the hysteresis model is iterated.

The validity of the solution of the hysteresis model is checked based on values of B instead of
the values of H. For example, a closure of a minor loop is detected if the magnitude of B̄ is larger
than the magnitude of B at the end of the current minor loop and the minor loop closes in the
current segment. This approach is possible since B either increases or decreases monotonically as
H increases or decreases.

As mentioned above, the value of B̄ remains fixed as the state of the hysteresis model is obtained.
As Figure 5.6 shows, this greatly simplifies the algorithm from its original form in Figure 5.4. The
ANSI C code that implements this algorithm is given in Appendix C.

5.1.5 Modification of the Basic Circuit

The previous sections provide the necessary tools for the implementation of the basic circuit. This
section provides the additional details that are required to implement the mechanisms that are
presented in Sections 4.2.2 and 4.2.3. Specifically, the derivatives of the mmfs of the circuit and
the lookup tables for Λ, Γ, and gz need to be obtained.

As was mentioned in Section 4.1, the derivatives of most quantities tend to be quite noisy. The
derivatives of the circuit mmfs are no exception. The derivatives are determined in a two step
process. First the derivative is calculated by using the backward Euler integration rule that is
defined in Equation 5.1. The derivative is then filtered with a lowpass digital filter. An infinite
impulse response (IIR) filter was chosen because compared to a FIR filter, the order of an IIR filter
is lower for the same amount of attenuation. Thus, the number of calculations that are necessary
to compute the current output and the data storage that is required for an IIR filter are lower than
an equivalent FIR filter. However, IIR filters can suffer stability problems and their phase response
is in general nonlinear. The phase response of the designed filter in the frequency range of interest
is almost linear so the phase response was not deemed to be an issue. The poles of the resulting
filter need to be checked to ensure that they are not too close to the unit circle in the z-domain.
Rounding and quantization errors can cause IIR filters to become unstable if the coefficients of the
filter are inappropriately selected.

A second order maximally flat filter was designed to filter the generated derivatives. A cutoff
frequency is set to be 5 kHz. This ensures that the filter does not overly affect the frequencies of
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interest. The transfer function of this filter is given by:

fLP (z) =
Kz−1(1− z−1)

1 + a1z−1 + a2z−2
(5.8)

The block diagram of the minimal realization of the filter is shown in Figure 5.7 below. The
parameters of the filter are tabulated in Table 5.1 for two timesteps.

The filter is primarily used to filter the noise that occurs for high frequency excitations. As a
result, the noise that is generated at lower frequencies is mostly unaffected by the filter. This does
not pose a significant problem because the effect of the noise at lower frequencies is far less than
at higher frequencies.

2K 0.5

a

z-1

1

a2

0.5

z-1

yx

Figure 5.7: Minimal realization of the IIR filter

Table 5.1: Parameters of the IIR filter

Parameter Value
T = 25µs T = 50µs

K +0.3636759 +0.9151538

a1 −0.9653129 −0.1895345

a2 +0.3289887 +0.1046883

The lookup tables for Λ and Γ are relatively easy to implement. The values between the data
points are linearly interpolated. In order to speed up the execution of the lookup table, the previous
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region for the past value of Ḟ can be stored as a start point in the search for the region of the
present value of Ḟ .

The lookup table for gz is more challenging to implement. The values of the function of gz could
be resampled in a grid with fixed cell sizes in order to simplify the implementation of the lookup
table. However, the extreme variation of the slope requires a very fine mesh. This can greatly
increase the time that is required to search for the correct region of the current values of H and B.
Furthermore, anomalies can be potentially present in the resampled curve. This issues are avoided
if the data that defines gz is not changed.

Consider a typical cell that is present in the definition of gz that is depicted in Figure 5.8 below.

H

B

(H2 ,B2H,h

(H ,B,

BH

BL

2H)

(H2 ,B2L ,h2L )

(H1 ,B1H,h1H)

(H1 ,B1L ,h1L )

gz)

Figure 5.8: A typical cell in the definition of gz

The value of gz at (H,B) can be determined by first defining the following ratios based on the
values at the corners of the cell:

rH =

√
(BL −B1L)2 + (H −H1)2

√
(B2L −B1L)2 + (H2 −H1)2

=
H −H1

H2 −H1

(5.9)

and

rB =
B −BL

BH −BL
(5.10)

where BL and BH are obtained by storing the slopes and B-intercepts of the data e.g. BL =
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µH + Bpv. How the data is stored and looked up is discussed next.
Given the definitions of rH and rB, the height of the function gz can be obtained by:

gz(H,B) = (hH − hL)rB + hL (5.11)

where

hH = (h2H − h1H)rH + h1H (5.12)

hL = (h2L − h1L)rH + h1L (5.13)

The values of h2h, h1H , etc. need to be stored in a very specific order. The required order is the
result of how the current cell is found. For a given (H,B) the correct cell is determined with the
use of two lookup tables: one for the values of µ and the other for the B-intercepts Bpv. The data
is stored with the format that is given in Table 5.2. Note that fm(n) is either µ(m, n) or Bpv(m, n).

Table 5.2: Data structure for µ and Bpv

1 2 3 Bindex · · · 13 14 15

−125 f1(1) f1(2) f1(3)
...

...
...

...
. . .

Hindex
...

...
... fm(n)

. . .

−25 f7(1) f7(2) f7(3) · · · · · · f7(13) f7(14) f7(15)

0 f8(1) f8(2) f8(3) · · · · · · f8(13) f8(14) f8(15)
...

...
...

... . .
.

. .
.

...
...

...
... . .

.

+100 f14(1) f14(2) f14(3)

The correct cell is found but first finding the index for H. The index for B is determined by
comparing B to the values of the magnetic field on the boundaries of the potential cell as shown
in Figure 5.8 as BL and BH . The index is incremented by one if B ! BH and decremented by one
if B < BL. For cases in which either the index for B or the index for H falls outside of the bounds
of the tables for µ and Bpv then gz(H,B) = 1. With the indices determined the ratios rH and rB

can be calculated.
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Similar to the lookup tables for Λ and Γ for the region of Ḟ , the indices for H and B can
be stored from the previous timestep as a start point. While this does not pose a problem for
determining the index for H, care must be taken for determining the index for B. If the index
for H changes from the previous timestep then it is possible that using the index for B from the
previous timestep will not result in finding the correct region. This is the case if the starting index
for B is too large for the new index of H. Thus, the previous index for B is checked first for the
new index of H and if the index for B is too large then it is set to a predetermined maximum value
for that given index of H.

The values of gz at the corners of the cells are stored similarly to µ and Bpv except that the
data for the top and bottom boundaries are stored together. This is required because the shapes
of all of the cells do not have four sides. In particular, the cells that are adjacent to the initial
magnetization curve only have three sides. Although the search mechanism that utilizes tables for
µ and Bpv can find the correct cell, it can not distinguish between a cell that has four sides or three
sides. To mitigate this problem the data for the corners that lie on the initial magnetization curve
is repeated three times. For example, consider the two cases that are shown in Figure 5.9.

H1 H2

n

n

n

1

1

n 1
n
n 1}

(a) H1 < 0

H2H1

n

n

n

1

1
n 1
n
n 1
}

(b) H2 > 0

Figure 5.9: Three sided cells near the initial magnetization curve

For the case shown in Figure 5.9(a) the values of gz for H1 are the same for n− 1, n, and n + 1
since they all describe the same point. Similarly, for the case in Figure 5.9(b), the values of gz for
H2 are the same for n − 1, n, and n + 1. The remaining values of gz in both cases are in general
different.

The table that stores the corner values of gz is constructed with double the number of rows as
the tables for µ and Bpv. The row index for the table of stored h-values (values of gz at the corners
of the cells) is given by 2m− 1. This row corresponds to the values of h for H1. The value of the
column index that corresponds to the lower boundary of the cell that contains (H,B) in Figure 5.8
is equal to n. Given its similarity to the tables for µ and Bpv, the table of h-values is not shown
herein. With the values stored at h(2m− 1, n), h(2m− 1, n + 1), etc. the value of gz(H,B) can be
determined.
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In order to minimize the number of divisions that are required, the denominator for Equation 5.9
is inverted beforehand and stored as a array. Likewise, Equations 5.9 – 5.13 are lumped together
so that only one devision is made after the resulting numerator and denominator is computed.
The benefit for doing this is described later. The resulting ANSI C code that was written for the
implementation of the lookup tables can be found in Appendix C as part of the determination of
the scaling factor for the tube resistances.

5.1.6 Putting it All Together

The preceding sections give the basic building blocks that are necessary to represent the modified
basic circuit in its digital form. However, the discussion as yet has not made any reference to how
the overall model is solved. An approach that can be used to iteratively solve the model is detailed
here.

Ideally, solving the circuit should not require several iterations to find the solution. It was found
that it is most likely impossible to solve the circuit without resorting to resolving the equations
until all of the constraints on the circuit values are met. Even with a timestep of 1 µs, the model
still did not remain stable when no iterations were performed. Unfortunately, iteratively solving
the model makes it difficult to guarantee that the algorithm can perform in realtime. The best that
can be done for an iterative approach is to calculate a theoretical upper bound on the number of
iterations. A hybrid approach that allows the solution to iterate but then limits the total number
of iterations per timestep to a predetermined number could be used. In this approach, if the limit
is reached then the most recent solution is used as the output of the current timestep. In fact, as
described above, it is this approach that is implemented since the maximum number of iterations
is limited to avoid the solution infinitely “bouncing” between two values.

In the implementation that is presented in this work, the Rµk and Rgz mechanisms are only
allowed to modify the values of the circuit resistances at the beginning of the current timestep.
Both of the mechanisms could be allowed to vary the values of resistances during the iterations of
the solution. However, the improvement in the output of the model is negligible compared to the
computational effort that is required to produce the output. Thus, the limitation of only allowing
the values to change at the beginning of the timestep is imposed on the implementation that is
given here.

The first step in the formulation of the solution is to write the circuit equations in matrix form
i.e. the circuit values can be expressed in the following form:

[
F

]
=

[
Z

][
φ
]

(5.14)

The values for F , Z, and φ in Equation 5.14 are obtained by systematically deriving the
equations of the discretized basic circuit using Kirchhoff’s voltage law i.e. the mmf drops around
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the paths that are taken by φ1, φ2, . . . , φn are equated to zero. A set of n equations can, therefore,
be written. Consider the specific case of a three tube model that has been discretized as shown in
Figure 5.10 below.
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Figure 5.10: Discretized three tube model

Using the variables that are given in Figure 5.10, the resulting system of equations can be
written as:





FR2 −FR1 −FL 1

FR3 −FR2 −FL 2

F −FR3 −FL 3




=





R1 + R2 +
Lm1

T
−R2 0

−R2 R2 + R3 +
Lm2

T
−R3

0 −R3 R3 +
Lm3

T









φ1

φ2

φ3




(5.15)

The system of equations in Equation 5.15 assumes that F is known. If φ3 is known, such as
in the case of the determination of the position of the rotor of a SRM, or the magnetic equivalent
circuit is part of a larger electric equivalent circuit then the systems of equations needs to be
reformulated. For instance, in the latter case, F is replaced by:

F =
Nl

Rw

(
v(t)−N

φ3(t)− φ3(t− T )
T

)
(5.16)

where v(t) is the externally applied voltage, N is the number of turns of the coil that couples the
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electric circuit to the magnetic circuit, and Rw is the winding resistance of the coil.
In all of these cases the procedure for solving the Equation 5.14 or its equivalent remains the

same. One thing that became very clear with the formulation of the circuit in this way is the
values of µ for the tubes need to be inverted every time that they change value. This is because
the reluctances of the circuits are inversely proportional to µ as given in Equation 3.16. Divisions
take significantly more time to compute than multiplications. This holds true from both general
purpose CPUs or DSPs. The solution of the circuit in this manner requires potentially many
divisions per iteration of the solution. The number of divisions that are required per iteration is
greatly reduced if the circuit that is shown in Figure 5.10 is represented using Norton equivalents
instead of Thévenin equivalents i.e the series mmf sources and reluctances can be transformed into
equivalent flux sources and reluctances in parallel. The result of doing this for a three tube model
is shown in Figure 5.11.

The values of φR1, φR2, etc. are given by −BpvA where Bpv corresponds to the B pivot point of
the appropriate hysteresis model. Similarly, the values of φL 1, φL 2 , etc. are given by −φ1(t− T ),
−φ2(t− T ), etc. respectively.

The circuit shown in Figure 5.11 is solved using Kirchhoff’s current law i.e. the fluxes entering
each node of the circuit must add up to zero. The resulting system of equations that correspond
to the three tube circuit that is shown in Figure 5.11 can be written as:




φR1 − φL 1

φR2 − φL 2 + φL 1

− φR1 − φR2 − φR3 − φ3




=





− 1
R1

− T

Lm1

T

Lm2

1
R1

T

Lm2
− 1

R2
− T

Lm1
− T

Lm2

1
R2

1
R1

1
R2

− 1
R1

− 1
R2

− 1
R3









F1

F2

F3





(5.17)

where:
φ3 =

T

Lm3

(
F −F3

)
(5.18)

Note that it is written in this way because for the determination of the position of the rotor of
a SRM, the flux is known instead of the total mmf. Equation 5.17 can be solved first to determine
F3. F can then be computed from Equation 5.18 once F3 is known. Like the circuit in Figure
5.10 that uses Thévenin equivalents, Equation 5.17 can be reformulated based on what inputs are
known.

Examining Equation 5.17 reveals that it is written in the form:

[
φ
]

=
[

G
][

F
]

(5.19)
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Figure 5.11: Norton equivalent discretized three tube model

For the discussion that follows, the matrix G refers to a matrix of the form given in Equation
5.17.

Notice that the reluctances in the G matrix are inverted. Thus, the values of µ that are obtained
from the hysteresis model do not need to be inverted. The values of the circuit “inductances” can
be calculated such that they are already inverted. However, the matrix G itself still needs to be
inverted. For matrices of low order it is generally more efficient to determine the form of the inverse
and calculate the coefficients of the inverse directly. The inverse of the matrix G can be obtained
by:

G−1 =
1

det(G)
adj(G) (5.20)
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where: det(G) and adj(G) are the determinant and adjoint of the matrix G respectively. For the
example of the three tube model, the adjoint of G is given by:

adj(G) =




a11 a12 a13

a21 a22 a23

a31 a32 a33



 (5.21)

where:

a11 =
(

1
R2

+
T

Lm1
+

T

Lm2

) (
1

R1
+

1
R2

+
1

R3

)
− 1

R2
2

a12 =
1

R1

1
R2

+
T

Lm2

(
1

R1
+

1
R2

+
1

R3

)

a13 =
1

R2

T

Lm2
+

1
R1

(
1

R2
+

T

Lm1
+

T

Lm2

)

a21 = a12

a22 =
(

1
R1

+
1

R2
+

1
R3

) (
1

R1
+

T

Lm1

)
− 1

R2
1

a23 =
1

R1

T

Lm2
+

1
R2

(
1

R1
+

T

Lm1

)

a31 = a13

a32 = a23

a33 =
(

1
R1

+
T

Lm1

) (
1

R2
+

T

Lm1
+

T

Lm2

)
− T 2

L 2
m2

while the determinant of G is:

det(G) = −
(

1
R1

+
T

Lm1

)
a11 +

T

Lm2
a21 −

1
R1

a31 (5.22)

Notice that the G matrix is symmetrical. As a result, its inverse is also symmetrical. The impli-
cation of this is some of the entries of the inverse are repeated and do not need to be recomputed.
If any of the parameters of the tubes change then the adjoint and determinant of G need to be
recalculated. Additionally, the column vector of fluxes also needs to be updated as the parameters
of the tubes change.

As mentioned above the solution is iterated until the solution is bounded for the current defi-
nitions of the reluctances of the tubes or the number of iterations hits a predefined limit. The flow
of the overall algorithm that was implemented is shown in Figure 5.12.
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Figure 5.12: Main flowchart for the implemented model
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The flowchart for the main function is given for the case that is used for determining the position
of the rotor of a SRM i.e. for each instance of model, the total flux is known and the mmf drop
across the element of material needs to be determined. The ANSI C code for the main function of
the algorithm is given in Appendix C.

5.2 Solution Convergence, Stability, and Computation Time

This section details some of the issues that are associated with the realtime implementation of the
model that is presented in this work. With the exception of the computation time, these issues are
only tersely addressed due to their complexity.

5.2.1 Solution Convergence

The convergence of the solution in every timestep is required. If at any timestep the solution fails
to converge then the model fails. As a result, it is important that the convergence of the solution
is guaranteed. For this reason the methodology for solving the model was chosen. Unfortunately,
it is difficult to rigorously prove the convergence of the model that is proposed in this work.

After the software code was fully debugged, the solution always converged at every timestep.
The author of this work believes that the convergence of the solution at every timestep is ensured
by the shape of the relationship between H and B in the hysteresis model. An increase in H

always produces an increase in B. Likewise, a decrease in H always produces a decrease in B. The
implication of these trends is the slope of the relationship between H and B is always positive;
thus, the reluctance of the tubes is always positive. Note that this is distinct from the relationship
between the value of H on the surface of the material and the average value of B in the material.
As is seen in Chapter 4, the slope can be negative for this case.

Similar to the circuit reluctances the circuit “inductances” are always positive. Consequently,
there are no local minima or maxima in the relationship between F and φ for any of the circuit
elements. A local minima or maxima can cause the solution to not converge as is shown in the
fictitious example below.

Consider the iterative solution at one timestep for a two tube model below.
In the figures that are presented below the bold lines in the definitions of the tube reluctances

indicate the current segment that is being used to solve the circuit. Also the “inductance” of
the innermost tube that is given by the 0.5 A-t/Wb resistor and 5 A-t mmf source remains fixed
throughout the iterative process – as it is in the actual implementation of the model. The input to
the circuit is the total flux of 15 Wb.

In the first iteration of the solution of the model, the values of φ1 and φ2 can determined by
solving the circuit in Figure 5.13(c). This results in φ1 = 5 Wb and φ2 = 10 Wb.
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Figure 5.13: Iteration 1
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Figure 5.14: Iteration 2
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Figure 5.15: Iteration 3

As can be seen by the definitions of the tube reluctances in Figures 5.13(a) and 5.13(b), the
current segment that is being used for the innermost tube is incorrect whereas the current segment
for the outermost tube is correct. The correct definition for the innermost tube reluctance is then
used in the second iteration. The circuit in Figure 5.14(c) is then solved to obtain new values of
circuit fluxes φ1 = 5.43 Wb and φ2 = 9.57 Wb. Notice that the value of φ1 increases whereas φ2

decreases. The values of the circuit fluxes follow a “waterbed” effect – the increase of one value
comes at the expense of the decrease in other values.

The solution of the second iteration results in the definition of the outermost tube being violated.
Thus, the circuit needs to be resolved for the correct definition of the reluctance of the outermost
tube. Solving the circuit in Figure 5.15(c) yields φ1 = 4 Wb and φ2 = 11 Wb. This indicates that
the definition of the reluctance of the outermost tube should be the one that is used in the second
iteration. However, the solution of the previous iteration indicates that the current definition should
be used. Since there is no way of rectifying this problem, the solution of the model fails to converge.

The solution of this simple two tube circuit illustrates the problem with local extremum. In this
case, a local minima exists at φ1 = 9.75 Wb. This condition can never occur in the solution of the
real model because local minima and maxima do not exist in the space that defines the solution of
the model. However, as is discussed above, care needs to be taken in the practical implementation
of the model to ensure that quantization and rounding errors do not cause the solution to “bounce”
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between two solution points as is shown in the example above.

5.2.2 Solution Stability

Besides converging at every timestep, the solution of the model must remain stable. Most of control
theory deals with linear time invariant (LTI) systems. Clearly the model that is presented in this
work is not a LTI system. Therefore, it is more difficult to analytically prove the stability of the
model. The stability analysis is further complicated by the fact that the pivot points (Hpv or Bpv)
of the tube reluctances need to be modeled as inputs since their values do not solely depend on
the previous states of the model. Unfortunately, this necessitates the use of multivariable control
theory. In this case, the resulting model for stability analysis is a multiple input, single output
(MISO) system. A MISO system is a specific instance of a multiple input, multiple output (MIMO)
system. Generally, the stability analysis of MIMO systems is more involved compared to single
input, single output (SISO) systems.

As was mentioned above, the actual analysis of the stability was not performed in this work.
However, the framework for the analysis is given below.

Using of a set of nodal or loop equations as given in Equations 5.14 or 5.19 is an efficient way of
solving the model; however, they are not convenient for determining the stability of the model. The
stability is better determined with a state space model of the system. In this case, a discrete state
space representation of the modified basic circuit can be obtained. A linear time varying discrete
state space system is characterized by the following equations:

x(k + 1) = Ψ(k)x(k) + ∆(k)u(k) (5.23)

y(k) = C(k)x(k) + D(k)u(k) (5.24)

where
x(k) is a n row state column vector
y(k) is a m row output column vector
u(k) is a r row input column vector
Ψ(k) is a n× n state matrix
∆(k) is a n× r input matrix
C(k) is a m× n output matrix
D(k) is a m× r direct transmission matrix

There are an infinite number of possible state space representations for any system since the
choice of states for the state vector x(k) do not necessarily need to correspond to the physical states
of the system. However, there are disadvantages to choosing states with no physical meaning. In
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this case, the natural choice of the states are the values of φ1, φ2, . . . , φn from the previous timestep.
The chosen states physically represent the past history of the circuit “inductors”.

As with the circuit representation above, the values of Ψ(k), ∆(k), C(k), and D(k) depend on
the validity of the states in the next timestep. Thus, if this state space representation is used to
solve the circuit then the solution needs to be iterated until the calculated next states are valid.

With the above comments in mind, the equivalent state space representation of a n tube circuit
is given by:




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Equations 5.25 and 5.26 assume that the input mmf F is known. If φn or the voltage of the
coil that is driving the magnetic system is known instead then F becomes one the states of the
x(k) vector. The output of the model then would likely become F as well. The state space system
that is described in Equations 5.25 and 5.26 can be used to determine the stability of the model.
However, the values of the Ψ and ∆ matrices depend on the trajectory of the input F and the
pivot points of the tube reluctances. For a given periodic input it is possible to track the movement
of the gains of the system. However, it is important to note that the since the proposed model is not
a SISO system, the values of the gains have an associated input direction vector as well. If the time
dependent gains of a set of periodic inputs are determined then any input that is bounded by this
set of periodic inputs has bounded gains. In this way the stability of the model can be predicted
for a range of periodic inputs. Fortunately, most real world electromagnetic systems are excited
by periodic inputs; thus, a good measure of the stability can be determined. This determination is
left for future work

One point that has been overlooked thus far is the effect of the coupling between the total flux
and total mmf. Equation 5.18 shows the relationship for a three tube system. It was found that if
the total mmf is used as input then the total flux is smooth. However, if the total flux is used as the
input then the output periodically rings. This is due to the coupling of the input and output by the
Lmn inductance. The ringing can be significantly reduced if the rate of change of the mmf that is
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used for the Lmn inductance value is the nth layer mmf and not the output mmf. The output can
ring because the input is infinitely stiff; thus, any numerical ringing is directly seen on the output
if the circuit can not absorb it. If the input is significantly decoupled from the output then the
output will not ring. This can be the case in circuits that are driven by a voltage source. In this
case the input flux is the integral of the coil voltage minus the product of the coil resistance and
current. As long as there is enough resistance between the stiff voltage source and the coil current
then the output mmf (coil current) will not ring. In any case, this “issue” does not diminish the
applicability of the model that is developed in this work – only that care must be taken on how
the model is implemented as part of a larger model.

5.2.3 Solution Complexity

The whole direction for the choice of the implementation that is presented in this chapter is based
on the need for the proposed model to be solved in realtime. This section provides the analysis
that was performed to determine whether or not it is likely that the model can be used as part of
the position estimation algorithm for a SRM that is presented in Chapter 1.

Consider the multiphase lumped parameter model of a 6/4 SRM that is given in Figure 1.2.
Due to the symmetry of the model only half of the circuit actually needs to be solved. Therefore,
twelve position independent instances of the proposed model need to be solved every timestep. The
timing for position dependent instances of the proposed model are more difficult to determine since
the models would potentially need to be resolved several times before the position is determined.
Furthermore, errors in the position from previous timesteps may cause the position estimate to
oscillate. These issues can be avoided if the stator and rotor pole tips are modeled with time
independent lumped reluctances. The loss in accuracy is likely to be far outweighed by the gain
in solution speed and the avoidance of oscillations in the predicted rotor position. This analysis
assumes that this choice is taken.

As is mentioned throughout this chapter, the implementation that is given in this chapter was
coded in ANSI C. It is this code that was used to time one instance of the model. The input flux
to the model is a triangular waveform that generates a peak value of H that roughly corresponds
to the cases in the previous chapter with Hp = 1000 A/m. The flux varies from zero to its peak
value with a frequency of 1kHz. A triangular waveform was chosen because the flux varies in this
manner in the poles of the machine if the leakage flux paths are ignored. The flux in the backplane
of the stator and the body of the rotor follows a more complicated waveform. However, the rate of
change of the flux in these parts of the machine is no more than in the poles. Thus, the triangular
waveform gives a good indicator of the numerical complexity of the proposed model for a sensorless
SRM application. The flux waveform would generate a rotation speed of 10,000 rpm in a 6/4 SRM.

It is important to note that the timing is ultimately dependent on the rate of change of the mmfs
in the model. A higher rate of change requires more iterations of the hysteresis models; therefore,
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the time required to find the solution of the model increases as the rate of change increases.
The timing analysis was done on a 1.8 GHz Pentium 4 desktop computer. The model was solved

for 10,000 timesteps in order to improve the accuracy of the timing. The ANSI C code that was
used to measure the time to solve the model is given in Appendix B.

The average time to solve the model was found to be 1.3 µs per instance of the proposed
model when the above described input flux waveform was used. Therefore, the average total time
to calculate the twelve position independent instances of the proposed model is 15.6 µs. If the
algorithm was solved with a 50 µs timestep then only 31% of the available time is being used. If a
25 µs timestep is used then 62% of the available time is used. For both timesteps there is a large
margin available to make the necessary calculations and table lookups to determine an estimate of
the position. The margins are likely to improve if the algorithm is optimized on a DSP processor.

The maximum speed of the machine dictates the timestep that is required to solve the model.
In order to minimize the error that is introduced by discretizing the flux waveform, at minimum
of 10 samples per period are required [69]. In the case of a 1kHz waveform this corresponds to a
minimum timestep of 100 µs. Thus, the model that is solved with a 50 µs timestep is suitable for
6/4 SRMs with rotation speeds up to 20,000 rpm. Similarly, a 25 µs solution timestep is likely to
be able to sufficiently model a 6/4 SRM with rotation speeds up to 40,000 rpm.

The above timing analysis strongly indicates that it is feasible to use the model that is proposed
in this work as part of the multi-phase lumped parameter model for the purpose of determining
the position of the rotor of a SRM.

5.3 Chapter Summary

This chapter details a specific implementation of the model that is proposed in this work. The
implementation of the model has definite advantages over other similar approaches. The piece-
wise linearization of the relationship between H and B in the modified Preisach hysteresis model
coupled with discretization of the circuit elements of the model with the Backward Euler integra-
tion rule provides an upper bound on the number of the iterations that are required per timestep.
Consequently, a solid measure of the numerical complexity of the model can be determined.

The practical considerations of implementing the Modified Preisach model is given in this chap-
ter. This includes a new method for ensuring that the stack that contains the reversal data does not
overflow. Flowcharts are also given to illustrate how the integrity of hysteresis model is maintained
as the input H is varied within a given timestep as the overall model is iterated.

The details of the implementation of the lookup tables is given in this chapter. In particular,
the details for the structure and lookup of the 2D table for the Rgzk mechanism are given since
its implementation is not trivial. The determination of the rate of change of the circuit mmfs is
also given. A simple numerical differentiator is used in conjunction with a low order IIR filter to
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produce the derivatives of the mmfs.
As is described in this chapter, a Norton equivalent circuit is used to represent the overall model.

The circuit equations that result contain the minimum number of divisions that are required to
solve for the circuit mmfs. This is advantageous because divisions are very expensive to compute.

This chapter closes with a discussion on the proposed model’s convergency, stability, and com-
putation complexity. The convergence and stability of the model were only tersely examined;
therefore, further work needs to be done in these areas. The numerical complexity of the model
was explored with a specific case. The results of this case strongly indicate that the proposed model
is suitable for use as part of the multi-phase lumped parameter model that is used to determine
the position of the rotor of a SRM.
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Conclusions and Future Work

As is stated in the beginning of Chapter 1 the purpose of this work was to develop a ferromagnetic
model that has certain specific features. These features are determined by the need to model the
behaviour of the stator and rotor of a switched reluctance machine for either the offline simulation
of the machine or for the online determination of the position of the rotor. Given the requirements
of the intended application of this model, the desirable features for the model are:

• accurate over a wide range of input frequencies and saturation levels of the material;

• only requires to be initially tuned — thereafter the parameters of the model remain fixed;

• can be potentially used in realtime.

As the results at the end of Chapter 4 show, the first point is achieved. The model’s performance
is shown to be sufficiently accurate over both a wide range of frequencies and saturation levels of
the material. Furthermore, the performance of the model is achieved without resorting to retuning
the model as is required by the second point. The newly proposed model was compared to a model
that was tuned for a specific input waveform with the use of a normalized vertical least-squares
metric. The results clearly show that the proposed model outperforms a model that has static tube
resistances.

The last point is addressed in Chapter 5. The solution any model that is to be used in realtime
is required to converge at every timestep, remain stable, and be computed predictably within a
fixed time frame. These constraints motivated the choice of the implementation that is given in
Chapter 5. Unfortunately, the highly non-linear nature of the relationship between H and B in
the hysteresis model requires the solution to be iterated at every timestep. The backward Euler
integration rule coupled with the piecewise linearization of the relationship between H and B does
theoretically allow the solution to be solved in one iteration. However, testing of the hysteresis
algorithm showed that no reasonable value of the timestep produced a solution that is stable.

Requiring iteration does not overly diminish the appeal of the presented implementation since
the author of this work believes that the solution is guaranteed to converge at every timestep and
remain stable. Furthermore, an upper bound on the number of iterations can be predicted to ensure
that the realtime operation of the model can be maintained. Chapter 5 contains the starting point
for assessing the convergence and stability of the model with the presented implementation. Further
work is required to formally prove the author’s belief. The time complexity of the algorithm was
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explored by coding the model in ANSI C. One instance of the model for a 1 kHz triangular input
flux took on average 1.3 µs per timestep to compute on a 1.8 GHz PC computer. This result shows
that the proposed model will most likely be feasible for use as part of the multi-phase lumped
parameter model for the prediction of the position of the rotor of a SRM.

6.1 Contributions

The academic contributions that are produced as the result of this work are spread throughout this
thesis. This section summarizes these contributions. Specifically, the contributions that the author
of this work considers to be significant are:

1. the piecewise linearized implementation of the modified Preisach model including:

i. basic implementation details (Chapter 2)

ii. modification of the basic implementation that can account for the variation of H as the
solution iterates during a single timestep (Chapter 5)

iii. modification to the basic model that prevents stack overflows (Chapter 5)

iv. modification to the basic model that uses B instead of H to check whether the solution
of the model is valid or not (Chapter 5)

2. the proposed structure for the flux tubes of the model (Chapter 3);

3. the method for systematically adjusting the values of the calculated DC resistances of the
flux tubes in order to fit the response of the model to the response of the actual material
(Chapter 3);

4. the first (R′
µk) mechanism that dynamically adjusts the values of the tube resistances in order

to allow for a large range of frequencies and for a large range of input magnitudes that cause
the material to saturate to some extent (Chapter 4);

5. the second (Rgzk) mechanism that dynamically adjusts the values of the tube resistances for
cases in which the material is not allowed to saturate to any extent (Chapter 4);

6. the systematic procedure for obtaining the lookup tables for the two mechanisms that are
proposed in this work from experimentally obtained data (Chapter 4);

7. the implementation details of the model besides the hysteresis model including:

i. discretization of the tube “inductances” that allows the value of the inductance to vary
at any time during the solution of the model (Chapter 5)

ii. the implementation of the lookup table for the Rgzk mechanism (Chapter 5)
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iii. the determination of the derivatives of the circuit mmfs with the use of a basic differen-
tiator followed by a IIR filter (Chapter 5)

iv. use of a Norton equivalent circuit for the minimization of the number of divisions in the
computation of the solution (Chapter 5)

8. the analysis of the accuracy of the proposed model with the use of a normalized vertical
least-squares metric (Chapter 4);

9. the timing analysis of the overall implementation with the use of ANSI C code running on a
standard PC computer (Chapter 5).

The resulting model that is the product of this work is the first, albeit major, step in the
development of a class of models that can be used as part of the multi-phase lumped parameter
model that describes a switched reluctance machine.

6.2 Future Work

The continuation of the work that is presented in this work has many potential avenues for future
work. Some of the more promising future endeavours that can be pursued are given below.

One of the more critical areas that needs to be addressed is how do the parameters of the
model change as the geometry of the material changes. If the parameters can be shown to change
in a predictable way then the model could be used as part of an optimization program for the
design of devices such as SRMs or fast acting solenoids. Furthermore, it would lessen the burden
of experimentally testing different shapes of the material after the trends are determined.

The implementation of the model in the context of sensorless control of a SRM can be further
explored. As was mentioned in Chapter 5, the mmf drop of each section of the core can be calculated
separately in the multi-phase lumped parameter model for a SRM. Once the mmf drop of a given
section is known then it does not need to be recalculated. The only potential exception to this is
the position dependent pole tips in the stator and rotor. The solution of the pole tips along with
the linear airgaps could be iterated until the incremental position that minimizes the error between
the calculated mmf drop due to the position independent reluctances and the mmf generated by
the pole tips and airgap at is found. However, this approach has two drawbacks; namely, it would
add significant time to the overall computational time of the model and it would also potentially
introduce oscillations in the predicted position of the rotor. As an alternative, it was proposed in
Chapter 5 that the tip reluctances be modeled with the time independent flux tubes. A tradeoff
study between the two approaches needs to be undertaken to determine the best approach.

The model needs to be checked for grain orientated materials. One of the major differences
between non-oriented and oriented materials is oriented materials lack of domain rotation in the
preferred direction of magnetization. The other is the permeability of the material depends on the
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orientation of the magnetic field. The incorporation of a vector based Preisach hysteresis model
could be used to model the orientation of the material. However, it is unclear how this would affect
the definitions of the lookup tables for the two mechanisms that are proposed in this work.

Finally, as is mentioned above and in Chapter 5, the proof of the stability of the model that is
proposed in this work along with the proof that the solution is guaranteed to converge need to be
generated. It is likely that the framework that is given in Chapter 5 can be the start point in this
investigation.
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Appendix A

Acquisition of the Experimental Data

The experimental setup that was developed to obtain the experimental curves in this work is
described here. The experimental apparatus can be divided into three main components: the
test material along with its driving and sense coils, the driving circuit, and the data acquisition
equipment. Each component is described in detail. The description of the test setup is then followed
by some discussion on the limitations of this approach to obtaining the necessary data.

A.1 Test Material and Its Associated Coils

The measurement of the properties of the test material requires it to be driven in a very specific
manner. The proper layout of the test material, the driving coil, and the sense coil is critical
in order to minimize the effects of leakage flux paths. Ideally, the test material is driven with a
completely uniform H field. This in turn gives rise to a uniform B field inside the material at a
given depth along the magnetic path. The presence of leakage flux causes the magnetic material
to have a nonuniform B field. Thus, the H field on the surface of the material is no longer uniform
with the presence of leakage flux.

The leakage flux can be minimized in three ways:

1. wind the driving coil around the test material as uniform as possible;

2. situate the driving coil as far away from the test material as is practical;

3. situate the sense coil as close to the test material as is possible.

Typically, setups that are used for measuring the properties of magnetic materials use a different
coil for driving the material and sensing the material’s response. This allows the sense coil to be
left open-circuited; thus, the induced voltage on the sense coil can be integrated directly to obtain
the average B field in the material. If the driving coil was also used as the sense coil then the
product of the current flowing in the coil and the coil resistance would be required as well as the
voltage across the coil in order to calculate the average magnetic field. Since the resistance can
vary over time this leads to more experimental error.

The housing for the test material, the test material, and the two coils are shown in Figure A.1.
Note that the outer diameter of the housing is 205 mm. A stack of seven laminations of the test
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material forms the magnetic core. Since the pressure that is applied to the stack of laminations is
relatively small, the effects of eddy currents between laminations is negligible.

Figure A.1: Test material, driving, and sense coils

The driving coil was wound with 27 turns of AWG 12 magnetic wire. The sense coil was wound
with 120 turns of AWG 32 magnetic wire. Two sense coils were wound to check the variation of
the magnetic fields in the material. The sense coils produced results that are within 5% of each
other. This error was deemed to be acceptable for the verification of the models that are shown in
this work.

A.2 The Drive Circuit

With the introduction of increasingly more powerful power amplifiers, an inexpensive linear driving
circuit for this type of testing has become more feasible. Two power amplifiers from Burr-Brown
with peak driving currents of 10 A each were used in a master-slave arrangement to produce a total
peak current of 20 A. The physical layout of the drive circuit is shown in Figure A.2 whereas the
schematic of the driving circuit is shown in Figure A.3.

The distortion that is produced by the driving circuit is quite low. The region of the output
response that has the most distortion is near the zero crossing of the response. This becomes
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increasingly more apparent in the low current responses of the higher frequency waveforms. This
distortion is produced by the limitation of the slew rate of the op-amp.

Figure A.2: Drive circuit for the magnetic core

The input signal was provided by a 33220A signal generation from Argilent. The reversal curves
were programmed with included PC software from Arglent that allows the programed curve to be
transfered to the unit via a USB interface. The reversal curves were generated at approximately
35 mHz. However, as the first order reversal curves reverse sooner (at larger values of H) the rate
of change of the section of the curve that returns the state of the material to positive saturation
needs to increase otherwise the induced voltage on the sense coil is not detectable. The frequencies
that were used were as low as possible to minimize eddy current effects. The minimal achievable
frequency, however, is limited by the minimal detectable voltage on the sense coil and, more criti-
cally, the error in the integration of the sensed voltage due to drift. The error due to drift will be
described in more detail in the section on the data acquisition equipment.
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Figure A.3: Schematic of the drive circuit for the magnetic core
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A.3 The Data Acquisition Equipment

A closed-loop current sensor from LEM was used to sense the current in the coil that drives the
test material. Both the output of the current sensor and the induced voltage of the sense coil were
measured using a digital oscilloscope from LeCroy. The oscilloscope is able to sample the data at
a very high rate. Thus, the signals can be filtered without distorting the original signals. The
sampled waveforms were processed using Matlab by first filtering the data with a 100 point FIR
filter and then decimating the filtered signal by 100. The filtered induced voltage is integrated
using the trapezoidal rule of digital integration. The voltage waveform is first shifted to remove
the voltage offset before it integrated. This procedure was used for all of the data to produce the
waveforms that are shown in this work.

As is mentioned above, there was evidence of drift in the signals. This was particularly apparent
when the data for the first order reversal curves was obtained. If the frequency was too low then the
integrated signal was not useable because the distortion in the waveform due to drift was excessively
large.

The first order reversal curves that were obtained using this testing procedure are shown in
Chapter 2. As is mentioned in Chapter 2, the waveforms near the positive saturation point +Hsat

tend to be rather noisy. This is not surprising since the level of the voltage signal at this point is
very low compared to the signal that produces the waveform near zero. It is difficult to improve
the resolution of the voltage signal for small values of input signal because of the dynamic range of
the signal. The voltage input of the oscilloscope dictates the maximum range of the input signal.
In order to capture the narrow width spikes of voltage near zero current requires a large range for
the input signal. Thus, the resolution for small levels of the input is limited. Fortunately, this issue
is not a big concern since the width of the hysteresis loop in saturation is narrow compared to the
width of the hysteresis loop when the material is unsaturated.

A.4 Test Setup

Figure A.4 below shows a picture of the entire testing apparatus except for the oscilloscope and
the DC voltage supplies for ±15 V. Notice that the 100 W power resistor is actually a precision
shunt resistor. The LEM current sensor is part of the metal box that is on the right hand side of
the picture.

Normally the test material was situated as far from the drive circuit and other sources of EMI
as was practical in order to minimize their influence on the test.
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Figure A.4: Testing apparatus

A.5 Limitations of this Testing Approach

Some of the issues that were encountered with using this testing approach have already been
mentioned. However, there are other issues with this setup that haven’t been discussed yet.

One of the advantages of using the geometry of the test material that was used is there are no
breaks or abnormalities in the magnetic path. Unfortunately, the path length is not the same across
the width of the material due to its circular shape. Since the width of the test material is small
compared to the diameter of its circular path, the error in using the mean path length is small. If
the testing of wider materials is required then using this approach would require the diameter of
the material to become increasingly larger as the width increases. At some point this is likely to
become impractical.

The geometry of the test material is suitable for non-oriented materials. For grain oriented
materials the geometry is not suitable since the grains are not oriented in circular paths but in
straight paths. For these materials the standard Epstein test is still required. In brief, the Epstein
test uses an Epstein frame to test the material. Rectangular stripes of the material with tapered
ends are positioned into four legs of the frame to make a square geometry. The coils are driven by
uniformly distributed windings on all four legs of the apparatus. Underneath the driving coils are
wound sense coils to measure the induced voltage. One of the issues of the Epstein test is the field
needs to bend around the corners of the material. This causes the field to become nonuniform near
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the corners of the material. This, in turn, creates errors in the measured data.
For the tests that were performed in this work the test apparatus produced reasonable results.

Ideally, the results from this test should be compared to the standard Epstein test to see the effects
of the choice of geometry on the response of the material.
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Analysis Data and Supporting Curves

This appendix gives the raw data that was generated from the normalized least-squares metric that
is defined in Chapter 4. A graphical comparison between the proposed dynamic model and a static
resistance model is also given for a four tube structure. Finally, curves that depict the variation of
the tube resistances and the magnetic intensity H through the material in time are shown.

B.1 Error Data

Table B.1: Error data for the comparison of various models

Error
Hp f 4 Tube Models 10 Tube Models

(A/m) (Hz) 50 µs timestep 25 µs timestep 25 µs timestep
tuned tuned tuned tuned

dynamic @250 Hz @500 Hz dynamic @250 Hz dynamic @250 Hz

1000 1000 0.8006 0.9810 0.7138 0.5257 1.2282 0.3134 1.3570

500 1000 0.4260 0.8704 0.5320 0.4280 1.0601 0.3081 0.9604

125 1000 3.9988 7.3603 8.2862 5.9729 8.3986 3.2882 10.0828

1000 500 0.5249 0.6889 0.4357 0.5864 0.9686 0.2842 0.8832

500 500 0.3498 0.5359 0.1224 0.3213 0.7120 0.3650 0.7656

125 500 2.5215 8.2814 9.0593 3.2291 8.9002 2.1031 9.0216

1000 250 0.2745 0.2820 0.2745 0.2197 0.4697 0.3828 0.3054

500 250 0.4688 0.3638 0.4428 0.3762 0.3706 0.3283 0.3067

125 250 1.9686 8.5733 9.1469 2.4219 8.7278 1.7989 8.3629

1000 60 0.1863 0.2140 0.3670 0.1109 0.1077 0.1536 0.1949

500 60 0.3480 0.3555 0.5401 0.2054 0.2369 0.1860 0.3362

125 60 1.3748 4.7264 4.9704 1.8671 4.5542 1.4202 4.6384
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B.2 A Graphical Comparison Between Four Tube Dynamic and

Static Models
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Figure B.1: Response of four tube models for 60 Hz input excitations
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Figure B.2: Response of four tube models for 250 Hz input excitations
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Figure B.3: Response of four tube models for 500 Hz input excitations
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Figure B.4: Response of four tube models for 1 kHz input excitations
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B.3 Variation of Tube Resistances and Magnetic Intensity

Profile Inside the Material
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Figure B.5: Magnetic intensity profile inside the material in time for a 10 tube model
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Figure B.6: Variation of the outermost tube resistances of a 10 tube model for the profile above
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ANSI C Code of the Realized Model

C.1 stdafx.h

// s t d a f x . h : i n c l ude f i l e f o r s tandard system inc l ude f i l e s
// and magnetic model header f i l e s

#pragma once
#define WIN32 LEAN AND MEAN // Exclude rare l y−used s t u f f from Windows

headers
#include <s t d i o . h>
#include <tchar . h>
#include <s t d l i b . h>
#include <math . h>
#include <s t r i n g . h>
#include <windows . h>
#include ” h y s t e r e s i s . h”
#include ” lookup ga in . h”
#include ” cpu time . h”

C.2 main.C

// modi f ied mode l . cpp : Def ines the entry po in t f o r the magnetic model
a p p l i c a t i o n .

#include ” s tda fx . h”
int tmain ( int argc , TCHAR∗ argv [ ] )
{
hy s t i n s t an c e tube1 , tube2 , tube3 , tubex ;
hy s t i n s t an c e ∗ tube1 ptr = &tube1 ;
hy s t i n s t an c e ∗ tube2 ptr = &tube2 ;
hy s t i n s t an c e ∗ tube3 ptr = &tube3 ;
hy s t i n s t an c e ∗ tubex ptr = &tubex ;
i n i t i a l i z e h y s t i n s t a n c e ( tube1 ptr ) ;
i n i t i a l i z e h y s t i n s t a n c e ( tube2 ptr ) ;
i n i t i a l i z e h y s t i n s t a n c e ( tube3 ptr ) ;
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i n i t i a l i z e h y s t i n s t a n c e ( tubex ptr ) ;

const f loat dt = 5e−5 f ;
const f loat h = 4 .8 e−3 f ;
const f loat w = 0.635 e−3 f ;
const f loat Lp = 1e−3 f ;
const f loat inv Lp = 1 / Lp ;
const f loat w1 = 1.1682181 e−004 f ;
const f loat w2 = 2.2486728 e−004 f ;
const f loat A = 1.0160 e−006 f ;
const f loat inv At = 1/(3∗A) ;
const f loat sigMa = 3 .5 e6 f ;
const double pi = 3.14159265358979 ;
const f loat R3 base = dt ∗ (2∗ (h−w) /( sigMa∗Lp∗(w/2 − w2) ) + 2∗ pi /( sigMa∗Lp) / log (

w/2 / w2) ) ;
const f loat inv R3 base = 1 / R3 base ;
const f loat R2 base = dt ∗ (2∗ (h−w) /( sigMa∗Lp∗(w2 − w1) ) + 2∗ pi /( sigMa∗Lp) / log (

w2 / w1) ) ;
const f loat R1 base = dt ∗ (2∗ (h−w) /( sigMa∗Lp∗w1) + 2∗ pi /( sigMa∗Lp) ) ;
const f loat i nv Re l ba s e = A / Lp ;

int H index o ld 1 = tube1 ptr −>H index ;
int H index o ld 2 = tube1 ptr −>H index ;
int H index o ld 3 = tube1 ptr −>H index ;
f loat Hold 1 = 0 ;
f loat Hold 2 = 0 ;
f loat Hold 3 = 0 ;
f loat Bold 1 = tube1 ptr −>Bpv ;

f loat Bold 2 = Bold 1 ;
f loat Bold 3 = Bold 1 ;
f loat Bold x = Bold 1 ;
f loat f l u x 1 o l d = Bold x ∗ A;
f loat f l u x 2 o l d = 2∗( Bold x ∗ A) ;
f loat f l u x 3 o l d = 3∗( Bold x ∗ A) ;

int passed 1 = 0 ;
int passed 2 = 0 ;
int passed 3 = 0 ;
int∗ pa s s ed 1 p t r = &passed 1 ;
int∗ pa s s ed 2 p t r = &passed 2 ;
int∗ pa s s ed 3 p t r = &passed 3 ;
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int c a l c r e v e r s e 1 = 0 ;
int c a l c r e v e r s e 2 = 0 ;
int c a l c r e v e r s e 3 = 0 ;
int∗ c a l c r e v e r s e 1 p t r = &c a l c r e v e r s e 1 ;
int∗ c a l c r e v e r s e 2 p t r = &c a l c r e v e r s e 2 ;
int∗ c a l c r e v e r s e 3 p t r = &c a l c r e v e r s e 3 ;

int va l i d = 0 ;
int changed = 1 ;

f loat H 1 = 0 ;
f loat H 2 = 0 ;
f loat H 3 = 0 ;
f loat B x = Bold 1 ;
f loat H x = 0 ;

f loat Fout [ 1 0 0 0 0 ] ;
f loat F3 [ 1 0 0 0 0 ] ;

f loat inv R1 = inv Re l ba s e ∗ tube1 ptr−>m ;
f loat inv R2 = inv Re l ba s e ∗ tube2 ptr−>m ;
f loat inv R3 = inv Re l ba s e ∗ tube3 ptr−>m ;
f loat inv L1 = R1 base ;
f loat inv L2 = R2 base ;
f loat L3 = 1 / R3 base ;
f loat G11 = −(inv R1 + inv L1 ) ;
f loat G22 = −(inv R2 + inv L1 + inv L2 ) ;
f loat G33 = −(inv R1 + inv R2 + inv R3 ) ;

f loat inv G row1 [ 3 ] = { (G22∗G33 − inv R2∗ inv R2 ) , ( inv R1∗ inv R2 − inv L1 ∗G33
) , ( inv L1 ∗ inv R2 − inv R1∗G22) } ;

f loat inv G row2 [ 3 ] = { inv G row1 [ 1 ] , (G11∗G33 − inv R1∗ inv R1 ) , ( inv L1 ∗
inv R1 − G11∗ inv R2 ) } ;

f loat inv G row3 [ 3 ] = { inv G row1 [ 2 ] , inv G row2 [ 2 ] , (G11∗G22 − inv L1 ∗ inv L1 )
} ;

f loat inv det G = 1 / ( G11∗ inv G row1 [ 0 ] + inv L1 ∗ inv G row1 [ 1 ] + inv R1∗
inv G row1 [ 2 ] ) ;

f loat h i s t [ 3 ] ;
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f loat i n pu t f l u x [ 1 0 0 0 0 ] ;
int i ;

for ( i =0; i <10000; i++) i npu t f l u x [ i ] = 0 . 75∗2 . 4 e−6∗ s i n ( 2∗ pi ∗60∗ i ∗dt ) ;

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ Generate input sawtooth waveform ∗/

const int s t ep s = 20 ; /∗ number o f s t e p s f o r 1 khz ∗/
int num steps = 0 ;

for ( i =0; i < 10000 ; i++) {
i f ( num steps <= step s /2) {

i n pu t f l u x [ i ] = 0 . 75∗2 . 4 e−6∗num steps/ s t ep s ∗4 ;
num steps++;

}
else {

i f ( num steps < s t ep s ) {
i n pu t f l u x [ i ] = 0 . 75∗2 . 4 e−6∗( s teps−num steps ) / s t ep s ∗4 ;
num steps++;

}
else {

num steps = 1 ;
i npu t f l u x [ i ] = 0 ;

}
}

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

int i t e r a t i o n s = 0 ;
int c oun t i t e r = 0 ;

int ga in H index 1 = 7 ;
int ga in B index 1 = 7 ;
int∗ g H index 1 pt r = &ga in H index 1 ;
int∗ g B index 1 pt r = &ga in B index 1 ;

int ga in H index 2 = 7 ;
int ga in B index 2 = 7 ;
int∗ g H index 2 pt r = &ga in H index 2 ;
int∗ g B index 2 pt r = &ga in B index 2 ;
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int ga in H index 3 = 7 ;
int ga in B index 3 = 7 ;
int∗ g H index 3 pt r = &ga in H index 3 ;
int∗ g B index 3 pt r = &ga in B index 3 ;
int ga in T index = 0 ;
int∗ g T index = &gain T index ;

const f loat Kgain [ 3 ] = {0.9151538 f , −0.1895345 f , 0 . 1046883 f } ;
f loat t u b e 1 f i l t e r [ 3 ] = {0 ,0 , 0} ;
f loat f t ube1 o ld = 0 ;
f loat abs derv 1 = 0 ;
f loat x1 ;

f loat t u b e 2 f i l t e r [ 3 ] = {0 ,0 , 0} ;
f loat f t ube2 o ld = 0 ;
f loat abs derv 2 = 0 ;
f loat x2 ;

f loat t u b e 3 f i l t e r [ 3 ] = {0 ,0 , 0} ;
f loat f t ube3 o ld = 0 ;
f loat abs derv 3 = 0 ;
f loat x3 ;

f loat t e s t d e r v [ 1 0 0 0 0 ] ;

StartTimer ( ) ; // s t a r t t imer f o r t iming ana l y s i s

for ( i =0; i <10000; i++) {

inv L1 = R1 base∗ f ind L mult ( Hold 1 , Bold 1 , abs derv 1 , g H index 1 ptr ,
g B index 1 pt r ) ;

inv L2 = R2 base∗ f ind L mult ( Hold 2 , Bold 2 , abs derv 2 , g H index 2 ptr ,
g B index 2 pt r ) ;

L3 = inv R3 base ∗ find Lmod ( tubex ptr−>m, Hold 3 , Bold 3 , abs derv 3 ,
g H index 3 ptr , g B index 3 ptr , g T index ) ;

i t e r a t i o n s = 0 ;
changed = 1 ;

while ( changed ) {
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changed = 0 ;
i t e r a t i o n s++;

G11 = −(inv R1 + inv L1 ) ;
G22 = −(inv R2 + inv L1 + inv L2 ) ;
G33 = −(inv R1 + inv R2 + inv R3 ) ;
inv G row1 [ 0 ] = G22∗G33 − inv R2∗ inv R2 ;
inv G row1 [ 1 ] = inv R1∗ inv R2 − inv L1 ∗G33 ;
inv G row1 [ 2 ] = inv L1 ∗ inv R2 − inv R1∗G22 ;
inv G row2 [ 1 ] = G11∗G33 − inv R1∗ inv R1 ;
inv G row2 [ 2 ] = inv L1 ∗ inv R1 − G11∗ inv R2 ;
inv G row3 [ 2 ] = G11∗G22 − inv L1 ∗ inv L1 ;
inv G row2 [ 0 ] = inv G row1 [ 1 ] ;
inv G row3 [ 0 ] = inv G row1 [ 2 ] ;
inv G row3 [ 1 ] = inv G row2 [ 2 ] ;

h i s t [ 0 ] = −A∗ tube1 ptr−>Bpv + f l u x 1 o l d ;
h i s t [ 1 ] = −A∗ tube2 ptr−>Bpv + f l u x 2 o l d − f l u x 1 o l d ;
h i s t [ 2 ] = A∗( tube1 ptr−>Bpv + tube2 ptr−>Bpv + tube3 ptr−>Bpv) − i n pu t f l u x [ i

] ;

inv det G = inv Lp /( G11∗ inv G row1 [ 0 ] + inv L1 ∗ inv G row1 [ 1 ] + inv R1∗
inv G row1 [ 2 ] ) ;

H 3 = inv det G ∗( inv G row3 [ 0 ] ∗ h i s t [ 0 ] + inv G row3 [ 1 ] ∗ h i s t [ 1 ] + inv G row3
[ 2 ] ∗ h i s t [ 2 ] ) ;

v a l i d = output m Bpv ( H index o ld 3 , pas s ed 3 pt r , c a l c r e v e r s e 3 p t r , tube3 ptr ,
H 3 , Hold 3 ) ;

i f ( ! v a l i d ) {
inv R3 = inv Re l ba s e ∗ tube3 ptr−>m ;
changed = 1 ;

}

H 2 = H 3 − inv det G ∗( inv G row2 [ 0 ] ∗ h i s t [ 0 ] + inv G row2 [ 1 ] ∗ h i s t [ 1 ] +
inv G row2 [ 2 ] ∗ h i s t [ 2 ] ) ;

v a l i d = output m Bpv ( H index o ld 2 , pas s ed 2 pt r , c a l c r e v e r s e 2 p t r , tube2 ptr ,
H 2 , Hold 2 ) ;

i f ( ! v a l i d ) {
inv R2 = inv Re l ba s e ∗ tube2 ptr−>m ;
changed = 1 ;

}
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H 1 = H 3 − inv det G ∗( inv G row1 [ 0 ] ∗ h i s t [ 0 ] + inv G row1 [ 1 ] ∗ h i s t [ 1 ] +
inv G row1 [ 2 ] ∗ h i s t [ 2 ] ) ;

v a l i d = output m Bpv ( H index o ld 1 , pas s ed 1 pt r , c a l c r e v e r s e 1 p t r , tube1 ptr ,
H 1 , Hold 1 ) ;

i f ( ! v a l i d ) {
inv R1 = inv Re l ba s e ∗ tube1 ptr−>m ;
changed = 1 ;

}

i f ( i t e r a t i o n s == 15) {
changed = 0 ;

}
}

va l i d = 0 ;
B x = inpu t f l u x [ i ]∗ inv At ;
while ( ! v a l i d ) va l i d = simple output m Bpv ( tubex ptr , B x , Bold x ) ;
Bold x = B x ;
H x = (B x − tubex ptr−>Bpv) / tubex ptr−>m;

Hold 1 = H 1 ;
Bold 1 = H 1∗ tube1 ptr−>m + tube1 ptr−>Bpv ;
H index o ld 1 = tube1 ptr −>H index ;
∗( pa s s ed 1 p t r ) = 0 ;
∗( c a l c r e v e r s e 1 p t r ) = 0 ;

Hold 2 = H 2 ;
Bold 2 = H 2∗ tube2 ptr−>m + tube2 ptr−>Bpv ;
H index o ld 2 = tube2 ptr −>H index ;
∗( pa s s ed 2 p t r ) = 0 ;
∗( c a l c r e v e r s e 2 p t r ) = 0 ;

Hold 3 = H 3 ;
Bold 3 = H 3∗ tube3 ptr−>m + tube3 ptr−>Bpv ;
H index o ld 3 = tube3 ptr −>H index ;
∗( pa s s ed 3 p t r ) = 0 ;
∗( c a l c r e v e r s e 3 p t r ) = 0 ;

f l u x 1 o l d = Lp∗H 1∗ inv R1 + A∗ tube1 ptr−>Bpv ;
f l u x 2 o l d = f l u x 1 o l d + Lp∗H 2∗ inv R2 + A∗ tube2 ptr−>Bpv ;
Fout [ i ] = Lp∗H 3 + L3∗( i npu t f l u x [ i ] − f l u x 3 o l d ) ;
f l u x 3 o l d = inpu t f l u x [ i ] ;
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t u b e 1 f i l t e r [ 0 ] = H 2∗Lp − f t ube1 o l d ;
f t ube1 o ld = H 2∗Lp ;
x1 = t u b e 1 f i l t e r [ 0 ] ∗ Kgain [ 0 ] − t u b e 1 f i l t e r [ 1 ] ∗ Kgain [ 1 ] − t u b e 1 f i l t e r [ 2 ] ∗

Kgain [ 2 ] ;
abs de rv 1 = fabs ( 0 . 5∗ ( x1 + t u b e 1 f i l t e r [ 1 ] ) ) ;
t u b e 1 f i l t e r [ 2 ] = t u b e 1 f i l t e r [ 1 ] ;
t u b e 1 f i l t e r [ 1 ] = x1 ;

t u b e 2 f i l t e r [ 0 ] = H 3∗Lp − f t ube2 o l d ;
f t ube2 o ld = H 3∗Lp ;
x2 = t u b e 2 f i l t e r [ 0 ] ∗ Kgain [ 0 ] − t u b e 2 f i l t e r [ 1 ] ∗ Kgain [ 1 ] − t u b e 2 f i l t e r [ 2 ] ∗

Kgain [ 2 ] ;
abs de rv 2 = fabs ( 0 . 5∗ ( x2 + t u b e 2 f i l t e r [ 1 ] ) ) ;
t u b e 2 f i l t e r [ 2 ] = t u b e 2 f i l t e r [ 1 ] ;
t u b e 2 f i l t e r [ 1 ] = x2 ;

t u b e 3 f i l t e r [ 0 ] = H x∗Lp − f t ube3 o l d ;
f t ube3 o ld = H x∗Lp ;
x3 = t u b e 3 f i l t e r [ 0 ] ∗ Kgain [ 0 ] − t u b e 3 f i l t e r [ 1 ] ∗ Kgain [ 1 ] − t u b e 3 f i l t e r [ 2 ] ∗

Kgain [ 2 ] ;
abs de rv 3 = fabs ( 0 . 5∗ ( x3 + t u b e 3 f i l t e r [ 1 ] ) ) ;
t u b e 3 f i l t e r [ 2 ] = t u b e 3 f i l t e r [ 1 ] ;
t u b e 3 f i l t e r [ 1 ] = x3 ;
}

double dtime = StopTimer ( ) ;
p r i n t f ( ” execut ing loop took %f seconds \n” , dtime ) ;

FILE ∗ fp ;
e r r no t e r r ;
i f ( ( e r r = fopen s (&fp , ” te s t mod i f i ed mode l C . txt ” , ”wt” ) ) != 0) {

p r i n t f ( ”Cannot open f i l e .\n” ) ;
e x i t (1 ) ;

}

for ( i =0; i <10000; i++) {
f p r i n t f ( fp , ”%f \ t ” , i npu t f l u x [ i ] / ( 3∗A) ) ;
f p r i n t f ( fp , ”%f \n” , Fout [ i ]∗ inv Lp ) ;

}

i f ( f c l o s e ( fp ) )
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{
p r i n t f ( ”The f i l e was not c l o s ed \n” ) ;

}
return 0 ;

}

C.3 cpu time.h

void StartTimer ( ) ;
double StopTimer ( ) ;

C.4 cpu time.C

#include ” s tda fx . h”

LARGE INTEGER s ta r tT i ck s ; /∗ f o r High−r e s o l u t i o n performance counter ∗/
LARGE INTEGER t imer f rq ; /∗ f o r High−r e s o l u t i o n performance counter ∗/
LARGE INTEGER stopTicks ;
LARGE INTEGER to ta lT i ck s ;
double totalTime ;

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ S T A R T T I M E R ∗/
/∗ ∗/
/∗ S ta r t g enera l purpose t imer ∗/
/∗ Use StopTimer () to s top and re turn the t imer va lue ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

void StartTimer ( )
{
/∗ s e t up high−p r e c i s i on c l k ∗/

QueryPerformanceFrequency(&t ime r f r q ) ;

/∗ Use High Performance Counter f o r W2000 and NT ∗/
QueryPerformanceCounter(& s t a r tT i ck s ) ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ S T O P T I M E R ∗/
/∗ ∗/
/∗ Returns t imer va lue in microseconds ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
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double StopTimer ( )
{
/∗ Use High Performance Counter f o r W2000 and NT ∗/

QueryPerformanceCounter(&stopTicks ) ;
t o t a lT i c k s . QuadPart = stopTicks . QuadPart − s t a r tT i ck s . QuadPart ;
totalTime = (double ) ( (double ) t o t a lT i c k s . QuadPart /(double )

t ime r f r q . QuadPart ) ;
return ( ( ( double ) totalTime ) ∗1000000) ;

}

C.5 hysteresis.h

struct STATE struct {
f loat H;
int j ;
f loat C;
f loat r ;
f loat B;

} ;

struct hy s t i n s t an c e {
int up ;
STATE struct STATE[ 1 0 0 ] ;
STATE struct∗ STATE ptr ;
int H index ;
f loat m;
f loat Bpv ;

} ;

void i n i t i a l i z e h y s t i n s t a n c e ( hy s t i n s t an c e ∗) ;
int output m Bpv ( int , int ∗ , int ∗ , h y s t i n s t an c e ∗ , f loat , f loat ) ;
int simple output m Bpv ( hy s t i n s t an c e ∗ , f loat , f loat ) ;

const f loat data m [ 3 0 ] [ 3 0 ] = { . . . } ;

const f loat data dB [ 3 1 ] [ 3 1 ] = { . . . } ;

const f loat H bounds [ 3 1 ] = { . . . } ;
int counter ;
const f loat inv dH [ 3 0 ] = { . . . } ;
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C.6 lookup gain.h

f loat f ind L mult ( f loat , f loat , f loat , int ∗ , int ∗) ;
f loat find Lmod ( f loat , f loat , f loat , f loat , int ∗ , int ∗ , int ∗) ;

const f loat m check [ 1 4 ] [ 1 6 ] = { . . . } ;

const f loat Bpv check [ 1 4 ] [ 1 5 ] = { . . . } ;

const f loat he i gh t va l u e s [ 2 8 ] [ 1 5 ] = { . . . } ;

const f loat H corners [ 1 5 ] = { . . . } ;
const f loat i nv H corne r s [ 1 4 ] = { . . . } ;

const f loat dF dt data [ 8 ] = { . . . } ;
const f loat f a l l o f f s l o p e [ 7 ] = { . . . } ;
const f loat p i vo t po i n t [ 7 ] = { . . . } ;

const f loat dF dt data2 [ 1 4 ] = { . . . } ;
const f loat f a l l o f f s l o p e 2 [ 1 3 ] = { . . . } ;
const f loat p ivo t po in t2 [ 1 3 ] = { . . . } ;
const f loat inv max m = 2.0446 e+001 f ;

C.7 lookup gain.C

#include ” s tda fx . h”

f loat f ind L mult ( f loat H, f loat B, f loat abs derv , int∗ H index , int∗ B index )
{
f loat k ;
int k index = 1 ;
int not done = 1 ;

i f ( abs derv >= 0 . 2 ) return 1 ;
while ( not done ) ( dF dt data [ k index ] < abs derv ) ? k index++ : not done = 0 ;
k index−−;
k = f a l l o f f s l o p e [ k index ]∗ abs derv + p ivo t po i n t [ k index ] ;

i f ( f abs (H) >= 125) return 1 ;
not done = 1 ;
while ( not done ) {

i f (H >= H corners [ ( ∗ H index ) +1])
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(∗H index )++;
else {

i f (H < H corners [∗ H index ] )
(∗H index )−−;

else
not done = 0 ;

}
}
switch (∗H index ) {

case 0 : i f (∗B index > 1) ∗B index = 1 ;
break ;

case 13 : i f (∗B index > 1) ∗B index = 1 ;
break ;

case 1 : i f (∗B index > 3) ∗B index = 3 ;
break ;

case 12 : i f (∗B index > 3) ∗B index = 3 ;
break ;

case 2 : i f (∗B index > 5) ∗B index = 5 ;
break ;

case 11 : i f (∗B index > 5) ∗B index = 5 ;
break ;

case 3 : i f (∗B index > 7) ∗B index = 7 ;
break ;

case 10 : i f (∗B index > 7) ∗B index = 7 ;
break ;

case 4 : i f (∗B index > 9) ∗B index = 9 ;
break ;

case 9 : i f (∗B index > 9) ∗B index = 9 ;
break ;

case 5 : i f (∗B index > 11) ∗B index = 11 ;
break ;

case 8 : i f (∗B index > 11) ∗B index = 11 ;
break ;

default : i f (∗B index > 13) ∗B index = 13 ;
break ;

}
not done = 1 ;
while ( not done ) {

i f (B >= H∗m check [∗ H index ] [ ( ∗ B index ) +1] + Bpv check [∗ H index ] [ ( ∗
B index ) +1]) {

(∗B index )++;
i f ( m check [∗ H index ] [ ∗ B index ] == 0) return 1 ;
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}
else {

i f (B < H∗m check [∗ H index ] [ ∗ B index ] + Bpv check [∗ H index ] [ ∗
B index ] ) {

(∗B index )−−;
i f ( (∗B index ) == −1) {

∗B index = 0 ;
return 1 ;

}
}
else

not done = 0 ;
}

}
register int h index1 = 2∗(∗H index ) ;
register f loat r1 = (H − H corners [∗ H index ] ) ∗ i nv H corne r s [∗ H index ] ;
register f loat he ight low = ( he i gh t va l u e s [ h index1 +1] [∗B index ] −

he i gh t va l u e s [ h index1 ] [ ∗ B index ] ) ∗ r1 ;

he ight low = he ight low + he i gh t va l u e s [ h index1 ] [ ∗ B index ] ;

register f loat he i gh t h i gh = ( he i gh t va l u e s [ h index1 +1] [ (∗ B index ) +1] −
he i gh t va l u e s [ h index1 ] [ ( ∗ B index ) +1])∗ r1 ;

h e i gh t h i gh = he i gh t h i gh + he i gh t va l u e s [ h index1 ] [ ( ∗ B index ) +1] ;

register f loat r2 num = B − (H∗m check [∗ H index ] [ ∗ B index ] + Bpv check [∗
H index ] [ ∗ B index ] ) ;

register f loat r2 den = H∗( m check [∗ H index ] [ ( ∗ B index ) +1] − m check [∗ H index
] [ ∗ B index ] ) ;

r2 den = r2 den + Bpv check [∗ H index ] [ ( ∗ B index )+1]− Bpv check [∗ H index ] [ ∗
B index ] ;

return r2 den / ( r2 den + ( ( he i gh t h i gh − he ight low ) ∗r2 num +(he ight low −1)∗
r2 den ) ∗k ) ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

f loat find Lmod ( f loat m, f loat H, f loat B, f loat abs derv , int∗ H index , int∗
B index , int∗ T index )

{
f loat k ,T, den ;
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int k index = 1 ;
int not done = 1 ;

i f ( abs derv >= 0 . 4 )
T = 0.95 f ;

else {
while ( not done ) {

i f ( dF dt data2 [ ( ∗ T index ) +1] < abs derv )
(∗T index )++;

else
i f ( dF dt data2 [∗ T index ] > abs derv )

(∗T index )−−;
else

not done = 0 ;
}
T = f a l l o f f s l o p e 2 [∗ T index ]∗ abs derv + p ivo t po in t2 [∗ T index ] ;

}
i f (T > 1)

den = T;
else

den = T + (1−T) ∗ inv max m∗m;

i f ( abs derv >= 0 . 2 ) return (1/ den ) ;
not done =1;
while ( not done ) ( dF dt data [ k index ] < abs derv ) ? k index++ : not done = 0 ;
k index−−;
k = f a l l o f f s l o p e [ k index ]∗ abs derv + p ivo t po i n t [ k index ] ;

i f ( f abs (H) >= 125) return (1/ den ) ;
not done = 1 ;
while ( not done ) {

i f (H >= H corners [ ( ∗ H index ) +1])
(∗H index )++;

else {
i f (H < H corners [∗ H index ] )

(∗H index )−−;
else

not done = 0 ;
}

}
switch (∗H index ) {

case 0 : i f (∗B index > 1) ∗B index = 1 ;
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break ;
case 13 : i f (∗B index > 1) ∗B index = 1 ;

break ;
case 1 : i f (∗B index > 3) ∗B index = 3 ;

break ;
case 12 : i f (∗B index > 3) ∗B index = 3 ;

break ;
case 2 : i f (∗B index > 5) ∗B index = 5 ;

break ;
case 11 : i f (∗B index > 5) ∗B index = 5 ;

break ;
case 3 : i f (∗B index > 7) ∗B index = 7 ;

break ;
case 10 : i f (∗B index > 7) ∗B index = 7 ;

break ;
case 4 : i f (∗B index > 9) ∗B index = 9 ;

break ;
case 9 : i f (∗B index > 9) ∗B index = 9 ;

break ;
case 5 : i f (∗B index > 11) ∗B index = 11 ;

break ;
case 8 : i f (∗B index > 11) ∗B index = 11 ;

break ;
default : i f (∗B index > 13) ∗B index = 13 ;

break ;
}
not done = 1 ;
while ( not done ) {

i f (B >= H∗m check [∗ H index ] [ ( ∗ B index ) +1] + Bpv check [∗ H index ] [ ( ∗
B index ) +1]) {

(∗B index )++;
i f ( m check [∗ H index ] [ ∗ B index ] == 0) return (1/ den ) ;

}
else {

i f (B < H∗m check [∗ H index ] [ ∗ B index ] + Bpv check [∗ H index ] [ ∗
B index ] ) {

(∗B index )−−;
i f ( (∗B index ) == −1) {

∗B index = 0 ;
return (1/ den ) ;

}
}
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else
not done = 0 ;

}
}
register int h index1 = 2∗(∗H index ) ;
register f loat r1 = (H − H corners [∗ H index ] ) ∗ i nv H corne r s [∗ H index ] ;
register f loat he ight low = ( he i gh t va l u e s [ h index1 +1] [∗B index ] −

he i gh t va l u e s [ h index1 ] [ ∗ B index ] ) ∗ r1 ;

he ight low = he ight low + he i gh t va l u e s [ h index1 ] [ ∗ B index ] ;

register f loat he i gh t h i gh = ( he i gh t va l u e s [ h index1 +1] [ (∗ B index ) +1] −
he i gh t va l u e s [ h index1 ] [ ( ∗ B index ) +1])∗ r1 ;

h e i gh t h i gh = he i gh t h i gh + he i gh t va l u e s [ h index1 ] [ ( ∗ B index ) +1] ;

register f loat r2 num = B − (H∗m check [∗ H index ] [ ∗ B index ] + Bpv check [∗
H index ] [ ∗ B index ] ) ;

register f loat r2 den = H∗( m check [∗ H index ] [ ( ∗ B index ) +1] − m check [∗ H index
] [ ∗ B index ] ) ;

r2 den = r2 den + Bpv check [∗ H index ] [ ( ∗ B index )+1]− Bpv check [∗ H index ] [ ∗
B index ] ;

return ( r2 den + ( ( he i gh t h i gh − he ight low ) ∗r2 num +(he ight low −1)∗ r2 den ) ∗k
) / ( r2 den ∗ den ) ;

}

C.8 output m Bpv.C

#include ” s tda fx . h”

void i n i t i a l i z e h y s t i n s t a n c e ( hy s t i n s t an c e ∗ model )
{
model −>up = 1 ;
( model −>STATE[ 0 ] ) .B = −1.50465 f ;
( model −>STATE[ 0 ] ) .C = 1 ;
( model −>STATE[ 0 ] ) .H = −1000;
( model −>STATE[ 0 ] ) . j = 28 ;
( model −>STATE[ 0 ] ) . r = 0 ;
model −>STATE ptr = &(model −>STATE[ 0 ] ) ;
model −>H index = 29 ;
model −>m = 9.6864 e−005 f ;
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model −>Bpv = −1.4078 e+000 f ;

const double pi = 3.14159265358979 ;

int H index o ld = 29 ;
int passed data = 0 ;
int c a l c da t a = 0 ;
int∗ passed = &passed data ;
int∗ c a l c r e v e r s e = &ca l c da t a ;
int output = 0 ;
int i ;
const f loat dt = 1e−4 f ;

f loat Hold = −1000;
f loat Hin ;

for ( i =0; i <9876; i++) {
Hin = −999.99∗ cos (40∗ pi ∗( i +1)∗dt ) ∗exp(−dt ∗5∗( i +1) ) ;
output = 0 ;
while ( output != 1 ) output = output m Bpv ( H index old , passed ,

c a l c r e v e r s e , model , Hin , Hold ) ;
H index o ld = model −>H index ;
∗passed = 0 ;
∗ c a l c r e v e r s e = 0 ;
Hold = Hin ;

}
return ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

int simple output m Bpv ( hy s t i n s t an c e ∗ hyst data , f loat B, f loat Bold )
{
int va l i d = 0 ;
i f ( hyst data −> up == 1) {

i f (B < Bold ) {
hyst data −> up = 0 ;
hyst data −>H index = 29 − hyst data −>H index ;

f loat dB1 = fabs ( Bold − (∗ ( hyst data −>STATE ptr ) ) .B ) ;
f loat Hold = ( Bold − hyst data−>Bpv) / hyst data−>m;
f loat r = −(Hold + H bounds [ ( hyst data−>H index ) +1])∗ inv dH [ hyst data

−>H index ] ;
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int H end = 28 − (∗ ( hyst data −>STATE ptr ) ) . j ;
f loat dH u = H bounds [ H end ] + (∗ ( hyst data −>STATE ptr ) ) .H;
f loat dB u = data dB [ hyst data−>H index ] [ H end ] − data m [ ( hyst data−>

H index ) −1][H end ]∗ dH u ;
f loat dB l = data dB [ ( hyst data−>H index ) +1] [ H end ] − data m [ hyst data

−>H index ] [ H end ]∗ dH u ;

dB l = dB l − data dB [ ( hyst data−>H index ) +1] [ hyst data−>H index ] ;

f loat dB2 =(dB u − dB l ) ∗ r + dB l ;

dB2 = dB2 + data m [ hyst data−>H index ] [ hyst data−>H index ] ∗ ( H bounds [
hyst data−>H index ]+Hold ) ;

f loat C fac to r = dB1 / dB2 ;

( hyst data −>STATE ptr )++;
(∗ ( hyst data −>STATE ptr ) ) .C = C fac to r ;
(∗ ( hyst data −>STATE ptr ) ) . r = r ;
(∗ ( hyst data −>STATE ptr ) ) .H = Hold ;
(∗ ( hyst data −>STATE ptr ) ) .B = Bold ;
(∗ ( hyst data −>STATE ptr ) ) . j = hyst data−>H index −1;

f loat mH = ( data m [ hyst data −>H index −1] [ hyst data −>H index ] ) ;
f loat mL = ( data m [ hyst data −>H index ] [ hyst data −>H index ] ) ;
f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bold − m∗Hold ;
hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else { /∗ not a change o f d i r e c t i o n ∗/

i f ( hyst data −>STATE ptr != &(hyst data −>STATE[ 0 ] ) ) { /∗ Does
s t a c k po in t e r not po in t to f i r s t en try ∗/
i f ( (∗ ( hyst data −>STATE ptr −1) ) .B <= ( H bounds [ hyst data −>

H index ]∗ hyst data−>m + hyst data−>Bpv) ) { /∗ curren t segment
conta ins a c l o su r e o f a minor loop ∗/

i f (B >= (∗ ( hyst data −>STATE ptr −1) ) .B) { /∗ has the minor
loop c l o s ed ∗/

f loat Hstar = (∗ ( hyst data −>STATE ptr −1) ) .H;
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f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

Bstar = (∗ ( hyst data−>STATE ptr−1) ) .B;
( hyst data −>STATE ptr )−=2;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;
return va l i d ;

}
}

}
i f (B >= ( H bounds [ hyst data−>H index ]∗ hyst data−>m + hyst data−>Bpv)

) {
f loat Hstar = H bounds [ hyst data −>H index ] ;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

( hyst data −>H index )−−;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [ hyst data −>

H index ] ) ;
f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [ hyst data

−>H index ] ) ;
f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;
hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else { /∗ s o l u t i o n i s bounded and v a l i d ∗/

va l i d =1;
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}
}

}
else { /∗ d i r e c t i o n i s downwards ∗/

i f (B > Bold ) {
hyst data −> up = 1 ;
hyst data −>H index = 29 − hyst data −>H index ;

f loat dB1 = fabs ( Bold − (∗ ( hyst data −>STATE ptr ) ) .B ) ;
f loat Hold = ( Bold − hyst data−>Bpv) / hyst data−>m;
f loat r = ( Hold − H bounds [ ( hyst data−>H index ) +1])∗ inv dH [ hyst data−>

H index ] ;
int H end = 28 − (∗ ( hyst data −>STATE ptr ) ) . j ;
f loat dH u = H bounds [ H end ] − (∗ ( hyst data −>STATE ptr ) ) .H;
f loat dB u = data dB [ hyst data−>H index ] [ H end ] − data m [ ( hyst data−>

H index ) −1][H end ]∗ dH u ;
f loat dB l = data dB [ ( hyst data−>H index ) +1] [ H end ] − data m [ hyst data

−>H index ] [ H end ]∗ dH u ;

dB l = dB l − data dB [ ( hyst data−>H index ) +1] [ hyst data−>H index ] ;

f loat dB2 =(dB u − dB l ) ∗ r + dB l ;

dB2 = dB2 + data m [ hyst data−>H index ] [ hyst data−>H index ] ∗ ( H bounds [
hyst data−>H index ]−Hold ) ;

f loat C fac to r = dB1 / dB2 ;

( hyst data −>STATE ptr )++;
(∗ ( hyst data −>STATE ptr ) ) .C = C fac to r ;
(∗ ( hyst data −>STATE ptr ) ) . r = r ;
(∗ ( hyst data −>STATE ptr ) ) .H = Hold ;
(∗ ( hyst data −>STATE ptr ) ) .B = Bold ;
(∗ ( hyst data −>STATE ptr ) ) . j = hyst data−>H index −1;

f loat mH = ( data m [ hyst data −>H index −1] [ hyst data −>H index ] ) ;
f loat mL = ( data m [ hyst data −>H index ] [ hyst data −>H index ] ) ;
f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bold − m∗Hold ;
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hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else { /∗ not a change o f d i r e c t i o n ∗/

i f ( hyst data −>STATE ptr != &(hyst data −>STATE[ 0 ] ) ) { /∗ Does
s t a c k po in t e r not po in t to f i r s t en try ∗/
i f ( (∗ ( hyst data −>STATE ptr −1) ) .B >= (−H bounds [ hyst data −>

H index ]∗ hyst data−>m + hyst data−>Bpv) ) { /∗ curren t segment
conta ins a c l o su r e o f a minor loop ∗/

i f (B <= (∗ ( hyst data −>STATE ptr −1) ) .B) { /∗ has the minor
loop c l o s ed ∗/

f loat Hstar = (∗ ( hyst data −>STATE ptr −1) ) .H;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

Bstar = (∗ ( hyst data−>STATE ptr−1) ) .B;
( hyst data −>STATE ptr )−=2;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;
return va l i d ;

}
}

}
i f (B <= (−H bounds [ hyst data−>H index ]∗ hyst data−>m + hyst data−>Bpv)

) {
f loat Hstar = −H bounds [ hyst data −>H index ] ;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

( hyst data −>H index )−−;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [ hyst data −>

H index ] ) ;
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f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [ hyst data
−>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else { /∗ s o l u t i o n i s bounded and v a l i d ∗/

va l i d =1;
}

}
}
return va l i d ;
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

int output m Bpv ( int H index old , int∗ passed , int∗ c a l c r e v e r s e , hy s t i n s t an c e
∗ hyst data , f loat H, f loat Hold )

{
int va l i d = 0 ;
i f ( hyst data −> up == 1) {

i f (∗ passed != 0) {
i f ( hyst data −>STATE ptr != &(hyst data −>STATE[ 0 ] ) ) { /∗ Does

s t a c k po in t e r not po in t to f i r s t en try ∗/
i f ( (∗ ( hyst data −>STATE ptr −1) ) .H <= H bounds [ hyst data −>

H index ] ) { /∗ curren t segment conta ins a c l o su r e o f a minor
loop ∗/

i f (H >= (∗ ( hyst data −>STATE ptr −1) ) .H) { /∗ has the minor
loop c l o s ed ∗/

f loat Hstar = (∗ ( hyst data −>STATE ptr −1) ) .H;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

Bstar = (∗ ( hyst data−>STATE ptr−1) ) .B;
( hyst data −>STATE ptr )−=2;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;
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f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;
return va l i d ;

}
}

}
/∗ no minor loop c l o su r e in t h i s segment ∗/
i f (H >= H bounds [ hyst data−>H index ] ) {

f loat Hstar = H bounds [ hyst data −>H index ] ;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

( hyst data −>H index )−−;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [ hyst data −>

H index ] ) ;
f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [ hyst data

−>H index ] ) ;
f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else {

i f ( (∗ ( hyst data −>STATE ptr +1) ) .H >= H bounds [ hyst data −>

H index +1]) { /∗ curren t segment conta ins p r e v i o u s l y
processed minor loop c l o su r e ∗/
i f ( H < (∗ ( hyst data −>STATE ptr +1) ) .H) { /∗ i s the

r e v e r s a l o f the c l o s u r e o f a minor loop requ i r ed ∗/
f loat Hstar = (∗ ( hyst data −>STATE ptr + 1) ) .H;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;
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Bstar = (∗ ( hyst data−>STATE ptr+1) ) .B;
( hyst data −>STATE ptr )+=2;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;
(∗ passed )−−;

}
else { /∗ s o l u t i o n i s bounded and v a l i d ∗/

va l i d =1;
}

}
else { /∗ r e v e r s a l o f minor loop not r e qu i r ed ∗/

i f (H < H bounds [ hyst data −>H index +1]) {
f loat Hstar = H bounds [ hyst data −>H index +1] ;
f loat Bstar = ( hyst data −>m) ∗Hstar +

hyst data−>Bpv ;

( hyst data −>H index )++;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j ] [ hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j +1] [ hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) )
. r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
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hyst data −>Bpv = Bpv ;
}
else { /∗ s o l u t i o n i s bounded and v a l i d ∗/

va l i d =1;
}

}
}

}
else { /∗ not processed minor loop c l o su r e t h i s t imes t ep ∗/

i f ( (H < Hold ) && ( ( hyst data−>H index == H index o ld ) | | ( 2 9 −
hyst data−>H index == H index o ld ) ) ) {

hyst data −> up = 0 ;
hyst data −>H index = 29 − hyst data −>H index ;

f loat Bold = Hold∗hyst data−>m + hyst data−>Bpv ;
f loat dB1 = fabs ( Bold − (∗ ( hyst data −>STATE ptr ) ) .B ) ;

i f (dB1 == 0)
( hyst data −>STATE ptr )−−;

else { /∗ proces s change in d i r e c t i o n ∗/
i f (∗ c a l c r e v e r s e == 1) /∗=1 i f data f o r r e v e r s a l

was c a l c u l a t e d in a prev ious i t e r a t i o n ∗/
( hyst data −>STATE ptr )++;

else {
f loat r = −(Hold + H bounds [ ( hyst data−>

H index ) +1])∗ inv dH [ hyst data−>H index ] ;
int H end = 28 − (∗ ( hyst data −>STATE ptr ) )

. j ;
f loat dH u = H bounds [ H end ] + (∗ ( hyst data −>

STATE ptr ) ) .H;
f loat dB u = data dB [ hyst data−>H index ] [ H end

] − data m [ ( hyst data−>H index ) −1][H end ]∗
dH u ;

f loat dB l = data dB [ ( hyst data−>H index ) +1] [
H end ] − data m [ hyst data−>H index ] [ H end
]∗ dH u ;

dB l = dB l − data dB [ ( hyst data−>H index ) +1] [
hyst data−>H index ] ;

f loat dB2 =(dB u − dB l ) ∗ r + dB l ;
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dB2 = dB2 + data m [ hyst data−>H index ] [
hyst data−>H index ] ∗ ( H bounds [ hyst data−>
H index ]+Hold ) ;

f loat C fac to r = dB1 / dB2 ;

( hyst data −>STATE ptr )++;
(∗ ( hyst data −>STATE ptr ) ) .C = C fac to r ;
(∗ ( hyst data −>STATE ptr ) ) . r = r ;
(∗ ( hyst data −>STATE ptr ) ) .H = Hold ;
(∗ ( hyst data −>STATE ptr ) ) .B = Bold ;
(∗ ( hyst data −>STATE ptr ) ) . j = hyst data−>

H index −1;
∗ c a l c r e v e r s e = 1 ;

}
f loat mH = ( data m [ hyst data −>H index −1] [ hyst data −>

H index ] ) ;
f loat mL = ( data m [ hyst data −>H index ] [ hyst data −>

H index ] ) ;
f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bold − m∗Hold ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
}
else { /∗ not a change o f d i r e c t i o n ∗/

i f ( hyst data −>STATE ptr != &(hyst data −>STATE[ 0 ] ) ) { /∗
Does s t a c k po in t e r not po in t to f i r s t en try ∗/
i f ( (∗ ( hyst data −>STATE ptr −1) ) .H <= H bounds [ hyst data

−>H index ] ) { /∗ curren t segment conta ins a c l o su r e o f
a minor loop ∗/
i f (H >= (∗ ( hyst data −>STATE ptr −1) ) .H) { /∗ has

the minor loop c l o s ed ∗/
f loat Hstar = (∗ ( hyst data −>STATE ptr −1) ) .H;
f loat Bstar = ( hyst data −>m) ∗Hstar +

hyst data−>Bpv ;

Bstar = (∗ ( hyst data−>STATE ptr−1) ) .B;

179



Appendix C. ANSI C Code of the Realized Model

( hyst data −>STATE ptr )−=2;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j ] [ hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j +1] [ hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) )
. r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;
return va l i d ;

}
}

}
i f (H >= H bounds [ hyst data−>H index ] ) {

f loat Hstar = H bounds [ hyst data −>H index ] ;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

( hyst data −>H index )−−;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else {

i f (H < H bounds [ hyst data −>H index +1]) {
f loat Hstar = H bounds [ hyst data −>H index +1] ;
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f loat Bstar = ( hyst data −>m) ∗Hstar +
hyst data−>Bpv ;

( hyst data −>H index )++;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j ] [ hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j +1] [ hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) )
. r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else { /∗ s o l u t i o n i s bounded and v a l i d ∗/

va l i d =1;
}

}
}

}
}
else { /∗ d i r e c t i o n i s downwards ∗/

i f (∗ passed != 0) {
i f ( hyst data −>STATE ptr != &(hyst data −>STATE[ 0 ] ) ) { /∗ Does

s t a c k po in t e r not po in t to f i r s t en try ∗/
i f ( −(∗( hyst data −>STATE ptr −1) ) .H <= H bounds [ hyst data −>

H index ] ) { /∗ curren t segment conta ins a c l o su r e o f a minor
loop ∗/

i f (H <= (∗ ( hyst data −>STATE ptr −1) ) .H) { /∗ has the minor
loop c l o s ed ∗/

f loat Hstar = (∗ ( hyst data −>STATE ptr −1) ) .H;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;
Bstar = (∗ ( hyst data −>STATE ptr −1) ) .B;

( hyst data −>STATE ptr )−=2;
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f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;
(∗ passed )++;
return va l i d ;

}
}

}
/∗ no minor loop c l o su r e in t h i s segment ∗/
i f (−H >= H bounds [ hyst data−>H index ] ) {

f loat Hstar = −H bounds [ hyst data −>H index ] ;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

( hyst data −>H index )−−;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [ hyst data −>

H index ] ) ;
f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [ hyst data

−>H index ] ) ;
f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;
hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else {

i f ( −(∗( hyst data −>STATE ptr +1) ) .H >= H bounds [ hyst data −>

H index +1]) { /∗ curren t segment conta ins p r e v i o u s l y processed
minor loop c l o su r e ∗/

i f ( H > (∗ ( hyst data −>STATE ptr +1) ) .H) { /∗ i s the
r e v e r s a l o f the c l o s u r e o f a minor loop requ i r ed ∗/
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f loat Hstar = (∗ ( hyst data −>STATE ptr + 1) ) .H;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

Bstar = (∗ ( hyst data−>STATE ptr+1) ) .B;

( hyst data −>STATE ptr )+=2;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;
(∗ passed )−−;

}
else { /∗ s o l u t i o n i s bounded and v a l i d ∗/

va l i d =1;
}

}
else { /∗ r e v e r s a l o f minor loop not r e qu i r ed ∗/

i f (−H < H bounds [ hyst data −>H index +1]) {
f loat Hstar = −H bounds [ hyst data −>H index +1] ;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

( hyst data −>H index )++;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;
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hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else { /∗ s o l u t i o n i s bounded and v a l i d ∗/

va l i d =1;
}

}
}

}
else { /∗ not processed minor loop c l o su r e t h i s t imes t ep ∗/

i f ( (H > Hold ) && ( ( hyst data−>H index == H index o ld ) | | ( 2 9 −
hyst data−>H index == H index o ld ) ) ) {

hyst data −> up = 1 ;
hyst data −>H index = 29 − hyst data −>H index ;

f loat Bold = Hold∗hyst data−>m + hyst data−>Bpv ;
f loat dB1 = fabs ( Bold − (∗ ( hyst data −>STATE ptr ) ) .B ) ;

i f (dB1 == 0)
( hyst data −>STATE ptr )−−;

else { /∗ proces s change in d i r e c t i o n ∗/
i f (∗ c a l c r e v e r s e == 1) /∗=1 i f data f o r r e v e r s a l

was c a l c u l a t e d in a prev ious i t e r a t i o n ∗/
( hyst data −>STATE ptr )++;

else {
f loat r = ( Hold − H bounds [ ( hyst data−>H index

) +1])∗ inv dH [ hyst data−>H index ] ;
int H end = 28 − (∗ ( hyst data −>STATE ptr ) )

. j ;
f loat dH u = H bounds [ H end ] − (∗ ( hyst data −>

STATE ptr ) ) .H;
f loat dB u = data dB [ hyst data−>H index ] [ H end

] − data m [ ( hyst data−>H index ) −1][H end ]∗
dH u ;

f loat dB l = data dB [ ( hyst data−>H index ) +1] [
H end ] − data m [ hyst data−>H index ] [ H end
]∗ dH u ;

dB l = dB l − data dB [ ( hyst data−>H index ) +1] [
hyst data−>H index ] ;

f loat dB2 =(dB u − dB l ) ∗ r + dB l ;
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dB2 = dB2 + data m [ hyst data−>H index ] [
hyst data−>H index ] ∗ ( H bounds [ hyst data−>
H index ]−Hold ) ;

f loat C fac to r = dB1 / dB2 ;

( hyst data −>STATE ptr )++;
(∗ ( hyst data −>STATE ptr ) ) .C = C fac to r ;
(∗ ( hyst data −>STATE ptr ) ) . r = r ;
(∗ ( hyst data −>STATE ptr ) ) .H = Hold ;
(∗ ( hyst data −>STATE ptr ) ) .B = Bold ;
(∗ ( hyst data −>STATE ptr ) ) . j = hyst data−>

H index −1;
∗ c a l c r e v e r s e = 1 ;

}
f loat mH = ( data m [ hyst data −>H index −1] [ hyst data −>

H index ] ) ;
f loat mL = ( data m [ hyst data −>H index ] [ hyst data −>

H index ] ) ;
f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bold − m∗Hold ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
}
else { /∗ not a change o f d i r e c t i o n ∗/

i f ( hyst data −>STATE ptr != &(hyst data −>STATE[ 0 ] ) ) { /∗
Does s t a c k po in t e r not po in t to f i r s t en try ∗/
i f ( −(∗( hyst data −>STATE ptr −1) ) .H <= H bounds [

hyst data −>H index ] ) { /∗ curren t segment conta ins a
c l o su r e o f a minor loop ∗/

i f (H <= (∗ ( hyst data −>STATE ptr −1) ) .H) { /∗ has
the minor loop c l o s ed ∗/

f loat Hstar = (∗ ( hyst data −>STATE ptr −1) ) .H;
f loat Bstar = ( hyst data −>m) ∗Hstar +

hyst data−>Bpv ;
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Bstar = (∗ ( hyst data−>STATE ptr−1) ) .B;
( hyst data −>STATE ptr )−=2;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j ] [ hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j +1] [ hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) )
. r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;
(∗ passed )++;
return va l i d ;

}
}

}
i f (−H >= H bounds [ hyst data−>H index ] ) {

f loat Hstar = −H bounds [ hyst data −>H index ] ;
f loat Bstar = ( hyst data −>m) ∗Hstar + hyst data−>Bpv ;

( hyst data −>H index )−−;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j ] [
hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) ) . j +1] [
hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) ) . r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else {

i f (−H < H bounds [ hyst data −>H index +1]) {
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f loat Hstar = −H bounds [ hyst data −>H index
+1] ;

f loat Bstar = ( hyst data −>m) ∗Hstar +
hyst data−>Bpv ;

( hyst data −>H index )++;

f loat mH = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j ] [ hyst data −>H index ] ) ;

f loat mL = ( data m [ ( ∗ ( hyst data −>STATE ptr ) )
. j +1] [ hyst data −>H index ] ) ;

f loat m = (mH−mL) ∗ (∗ ( hyst data −>STATE ptr ) )
. r + mL;

m = m∗ (∗ ( hyst data −>STATE ptr ) ) .C;

f loat Bpv = Bstar − m∗Hstar ;

hyst data −>m = m;
hyst data −>Bpv = Bpv ;

}
else { /∗ s o l u t i o n i s bounded and v a l i d ∗/

va l i d =1;
}

}
}

}
}
return va l i d ;
}

187


