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Abstract 
 
 
 
 
Conceptual structural design is a process through which structural forms are created. The 
forms are shaped by a set of design requirements representing the expected function, and 
by constraints that reflect physical laws and practical limitations. There is no direct 
mathematical transformation from requirements to a form; the conceptual design process 
is nonlinear and iterative. Like all creative processes, it is most effective when ideas can 
be rapidly synthesized, dissolved, combined and evolved. In structural design, these ideas 
need to be evaluated in the context of performance, functionality, and cost. Conceptual 
design, compared to later design stages, is characterized by a high degree of uncertainty 
and a general lack of knowledge. A key objective in conceptual structural design is 
therefore to rapidly create, modify and evaluate vague or abstract structural forms.  
 
This work describes a computational framework to support conceptual structural design, 
emphasizing the importance of form. Techniques from image processing, pattern 
recognition and linguistics are used to describe, classify, and reason with forms at high 
levels of abstraction. Most other computer applications in conceptual structural design 
describe design concepts in terms of words or through simplified spatial relationships. 
This work highlights the central role that visual information plays in formulating ideas in 
conceptual design. 
 
The major contributions of this work are an efficient method for synthesizing conceptual 
designs of discrete structures, and the application of pattern recognition and visual case-
based reasoning techniques to conceptual structural design. The framework is directed 
towards large-scale discrete structures characterized by interconnected linear elements. 
During synthesis, forms are initially created using topology optimization methods; these 
forms are processed to extract high level information that supports further structural 
optimization, including the assessment of stability and relative cost. The high level 
information is used to describe, classify and store conceptual forms for case-based 
reasoning. A novel feature of the work is that arbitrary images of shapes may be 
interpreted as structures by using visual similarity to infer potential boundary conditions, 
functionality, and behaviour for those shapes. 
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This dissertation gives a complete description of the framework, along with sample 
applications. A proof-of-concept computer application is also described. 
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1.  Introduction 
 
 
 
 
Conceptual structural design may be described as a process used to create structural 
forms. In general, design is the process by which a set of requirements are transformed 
into a description. Conceptual design is concerned with the early phases of the overall 
design process, where the emphasis is the interpretation of requirements and the 
exploration of multiple design ideas. In contrast, the later phases of design are concerned 
with detailed analysis and description, usually of a single concept. In structural design, 
the goal of the detailed design phase is to produce detailed models, drawings and 
instructions that can be used to fabricate the structure. In conceptual structural design, the 
objective is to produce structural forms that are likely to satisfy the requirements once 
detailed analysis and description have been completed.  
 
The conceptual design phase is an important part of the life cycle of a project. Decisions 
made earlier in the design process have a proportionally higher impact on overall cost and 
schedule than later decisions. Conceptual design is a fluid process where design forms 
may be readily synthesized, dissolved, combined and evolved. As design progresses, 
concepts become more solidified and entrenched, and more difficult and expensive to 
change. 
 
As a creative process, conceptual design becomes more effective as a wider a range of 
different configurations is investigated. The effective and rapid evaluation of design 
concepts, in terms of performance, functionality and cost, is therefore important in 
conceptual design. Although there are many tools available to evaluate structural systems 
in the later design stages, far fewer methods are applicable to conceptual design. 
 
The conceptual design stage, compared to later design stages, is characterized by a higher 
degree of uncertainty and a greater lack of knowledge. At the conceptual stage, 
requirements may be flexible, vague, and subject to various interpretations. In complex or 
unique projects, the requirements are often refined as more information is gained about 
the potential performance of the system. Most analysis and design applications are 
designed to be used in the later design stages, where there is less uncertainty. Most 
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applications do not explicitly model numerical uncertainty, and are not designed to 
handle incomplete or partially-specified input data. For example, analysis programs often 
require the user to make specific assumptions where data is not known, and do not accept 
a range of input values for an uncertain parameter, nor do they inform the user of the 
sensitivity of the result to such parameters. Most computer-aided design (CAD) programs 
force the user to enter a specific set of dimensions for an object, rather than allow the user 
to express the fact that a range of dimensions are acceptable. At the conceptual design 
stage, the ability to express and reason with uncertain or partially specified information is 
more important than in the latter design stages. 
 
Conceptual structural design is a highly visual and symbolic process, where sketches and 
diagrams are essential tools to crystallize structural forms from ideas. The form of a 
structure is the most elemental constituent of a conceptual design solution. It is the form 
that is captured in the first quick hand sketches, before calculations and models are made. 
Human designers are very effective at remembering and manipulating concepts in their 
visual forms. Large databases of images can be quickly scanned to locate a specific 
image. Viewing an image or diagram initiates the recall of experiences from memory and 
suggests new areas of design exploration. More abstract images, such as rough sketches, 
are often more effective than precise drawings in conceptual design because they suggest 
different ideas to different viewers, opening up a wider expanse of design space. 
 
Most other work to develop computer applications in conceptual structural design 
describes design concepts in terms of words or through simplified spatial relationships. A 
common feature of these applications is that designs are classified and indexed using 
words and text. Although some of these systems employ sophisticated hierarchical 
classification schemes capable of working at several different levels of abstraction 
simultaneously, the underlying nature of the classification is textual rather than visual.  
 
A major objective in conceptual structural design is therefore to rapidly create, modify 
and evaluate vague or abstract structural forms. Although research in conceptual 
structural design has been ongoing for several decades, there appear to be few tools on 
the horizon to support the practicing structural designer in the conceptual stages. 
Currently, the engineer has few structured techniques to augment experience and intuition 
in this phase. 
 
The main objective of this research is to develop a form-based framework that supports 
the conceptual design of structures. As a goal, the framework would enable the rapid 
generation and evaluation of new designs, and facilitate the reuse of past designs. The 
concept of form is intended to be central to the development of the framework, for both 
the generation and reuse of design concepts. Ideally, the framework would support the 
rapid transformation from design requirements to conceptual design form.  
 
The framework developed in this research has been developed to test the following main 
hypothesis: 
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Patterns exist that relate structural forms to design requirements. 
 
As a secondary hypothesis, it is proposed that: 

 
A formal language exists to describe structural form. 

 
To guide the development of the framework, a more specific set of objectives has been 
established. These objectives address current limitations in the conceptual structural 
design and propose solutions to overcome these limitations. Specific objectives are listed 
here. 
 
• Case-based reasoning systems are a paradigm for applying past design experience to 

new design scenarios. A major shortcoming of case-based reasoning systems in 
structural design is the inability to index and retrieve cases on the basis of visual 
information. An objective of this research is to apply visual case-based reasoning 
methods to conceptual structural design. 

• The conceptual design of buildings has been widely covered in the literature. 
Computer applications for conceptual building design are generally limited to 
buildings with simplified geometric relationships, such as rectilinear grids of beams 
and columns. An objective of this research is to develop a more general system that is 
useful for a wide range of structural applications, including scientific instruments, 
industrial equipment supports, and geometrically complex bridges and buildings. 

• Sophisticated graphical user interfaces have been developed in the fields of 
architecture and industrial design, where natural, pen-based applications simulate 
sketching, clay modeling and other creative form-finding methods. Unfortunately, 
such applications do not recognize content such as the meaning of elements and 
relationships between them. Symbolic sketch recognition computer programs have 
been developed in architecture and mechanical design, but no such applications exist 
in structural design. An objective of this research is to establish techniques to develop 
conceptual structural designs from natural user input such as hand sketches. 

• The form of many existing natural and human-made objects is intrinsically connected 
to an explicit or implicit set of constraints, including loads, support conditions, and 
functional and geometric constraints. Given two objects with similar form, it seems 
reasonable to ask whether those objects have other similarities. For example, do the 
objects have similar support conditions? In the case of human-made objects, do two 
designed artifacts have similar design requirements?  An objective of this research is 
to develop visual similarity measures for structural design concepts. Used with a 
database of design cases, such similarity measures would be used to automate the 
retrieval of designs with similar form and enable other design features to be 
compared. 

• Of the vast number of computer applications for engineering optimization, topology 
optimization methods are most applicable to conceptual structural design. Topology 
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optimization seeks the optimal connectivity and layout of members in discrete 
structures (trusses), and the optimal material distribution in continuum structures 
(plates or solids). Truss topology optimization is known to be computationally 
demanding, and is complicated by the fact that small changes, such as removing a 
single bar, may lead to large differences in overall stiffness. There is a need for 
efficient methods for finding and optimizing the topology of discrete structures. One 
of the objectives of this research is to develop an efficient framework for rapidly 
generating discrete topology at the conceptual design stage. 

• Continuum topology optimization methods are efficient, well-established, and 
commercially available. The major drawback is that the output of such methods is not 
directly suitable for fabrication, particularly at scales larger than a few meters. For 
small scale fabrication of arbitrary shapes, material removal or deposition methods 
are common. At larger scales, structures are more often built up from discrete 
components. An objective of this research is to utilize the efficiency of continuum 
topology optimization methods, and extend the range of their applicability to large 
scale structures. 

• Although methods for verifying structural stability are well established, efficient 
methods for generating stable structures are not. In truss topology optimization, 
stability is generally ensured using heuristics and generate-and-test methods. A 
common heuristic is to add sufficient members to ensure that all polygonal cells are 
triangular. Generate-and-test refers to the generation of a large number of different 
topological configurations, and filtering out the ones that are unstable. An objective 
of this work is to develop an efficient method for developing a stable configuration of 
discrete structural elements.  

• Given the importance of visual and graphical information during conceptual design, it 
is remarkable that few computational tools for conceptual structural design exploit 
this information. In the fields of image processing and pattern recognition, there are 
well-established, rigourous techniques for manipulating graphical information. Such 
techniques have been applied for many years in areas such as medical imaging, 
remote sensing, and maufacturing, but few of these techniques have been applied to 
conceptual structural design. An objective of this research is to use such methods to 
generate conceptual designs and reason with those designs at relatively high levels of 
abstraction. 

 
This work describes a computational framework that has been developed to support the 
conceptual design of structures, emphasizing the importance of form. Visual reasoning 
techniques are central to the framework. Methods from image processing, pattern 
recognition and linguistics are used to describe, classify, and reason with forms at high 
levels of abstraction.  
 
In the framework, new conceptual design are generated, or synthesized, using a 
combination of mathematical optimization, image processing and pattern recognition 
methods. The reuse of past designs is implemented using visual case-based reasoning 
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methods. During synthesis, forms are initially created using topology optimization 
methods; these forms are processed to extract high level information that supports further 
structural optimization, including the assessment of stability and relative cost. The high 
level information is used to describe, classify and store conceptual forms for case-based 
reasoning. 
 
The intent of creating the framework is not to replace the designer or to develop a fully 
automated conceptual design system. Rather, the goal is to provide support during the 
design process and to augment the designer’s intuition. The most important creative force 
during conceptual design is the human designer. The methods implemented in the 
framework draw from our understanding of the cognitive processes used by experienced 
designers. These processes include the retrieval of past experience, and the evaluation 
and modification of design concepts. The process of inferential reasoning is important in 
applying past experiences, given a mechanism for representing similarity between 
concepts.  
 
The framework was not developed for all types of structures. Specifically the framework 
is designed to handle larger scale steel structures which are assembled from linear 
elements. Such “skeletal” structures are typically found in a wide range of applications, 
including bridges, buildings, towers, industrial and scientific equipment. The work was 
initially inspired by the challenges of designing a support structure for a 30-meter 
diameter optical telescope [Szeto et al., 2008]. Several existing conceptual design 
research systems have been developed for conventional buildings. In contrast, this work 
is more applicable to architectural applications requiring curvilinear and other more 
complex forms. 
 
The main intent in developing the framework was to form the basis for a computer 
application to assist the practicing structural engineer during conceptual design. Another 
potential application for the framework is in education. Conceptual design is a skill that is 
learned primarily through experience. A system that allows students to draw high level 
connections between structural design requirements and the resulting forms could be a 
useful tool to assist in the teaching of conceptual design. 
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2.  Background 
 
 
 
 
This work draws from sources in a range of disciplines, including design theory, 
structural and mechanical engineering, image processing, pattern recognition, cognitive 
science and linguistics. This chapter describes the research background and context in 
which this work was developed. 

2.1.  Conceptual Design 
The act of designing exists because of the human desire to change the world around us. 
Although design has been practiced for millennia, the study of design is a relatively new 
field. From antiquity, architects were the master builders responsible for design and 
execution of buildings, bridges, and other structures. The Roman architect Vitruvius left 
one of the earliest surviving major books on architecture, The Ten Books on Architecture, 
in which he asserted that a structure must exhibit the three qualities of firmitas, utilitas, 
and venustas – strength, utility and beauty [Vitruvius, 1999].  
 
At the turn of the century, ideas began to germinate about the design of mass-produced 
goods. What was the meaning of mass-produced ornament and how could useful and 
beautiful products be created in a fragmented system where parts were made in different 
factories and assembled into a whole? The Arts and Crafts movement in England and the 
Bauhaus and De Stijl schools in Europe developed in response to the desire to imbue 
architecture and machine-produced goods with the care and intent of the master 
craftsman. In America, architect Louis Sullivan proclaimed “form ever follows function”, 
and this credo had a strong influence on design at least until the 1930s.  
 
During World War II the discipline of operations research was born and with it, close 
scrutiny of the design of products and the means and methods of production became the 
norm. Mathematical programming methods, such as the Simplex Method [Dantzig, 
1963], were developed around this time, heralding the use of generalized optimization 
methods. Where design changes the world by making artifacts, the goal of optimization is 
to make those artifacts better.  
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With the advent of high speed electronic computing in the 1950s, computational methods 
began to have a profound impact on design. Since then, innumerable applications have 
been developed to aid in the design process. Although these applications may free the 
designer from tedious calculations and repetitious drawings, in most cases they are not 
designed to help the designer at the conceptual stage. 
 
Many of the systems developed to provide support for the conceptual stage of design had 
their origins in the field of artificial intelligence, a term coined in 1956 [Sriram, 2006]. 
Research in artificial intelligence in the 1960s and 1970s sought to expand the application 
of computers from repetitive numerical computations into reasoning, knowledge, 
planning and learning. Notes on the Synthesis of Form, a book about the process of 
design by the mathematician and architect Christopher Alexander [Alexander, 1964], had 
considerable influence in computer science, in the areas of object-oriented programming 
and pattern languages. In it, Alexander calls design “the process of inventing things 
which display new physical order, organization, form, in response to function.” Areas of 
artificial intelligence that have been applied to conceptual design include knowledge 
representation, logic programming, expert systems, case-based reasoning, qualitative 
reasoning, grammars, shape annealing, and evolutionary algorithms.  
 

2.1.1.  Expert Systems 
The first systems to provide computational support for engineering design, other than 
drafting and analysis, were knowledge-based expert systems. Expert systems aim to 
simulate the knowledge and analytical skills of human experts by reasoning from a 
database of stored heuristics (“rules of thumb”), textbook knowledge, standards and 
engineering experience. The architecture of an expert system involves two principal 
components: a problem-dependent set of data declarations called the knowledge base or 
rule base, and a problem independent program called the inference engine. The inference 
engine uses deductive reasoning to apply a series of inference rules until a desired goal is 
reached. 
 
Expert systems were the first commercially successful applications of artificial 
intelligence. The rule-oriented description of human expertise and rule-based inference 
techniques have been brought to the industrial standard level in domains such as medical 
diagnosis and computer configuration.  
 
Examples of expert systems in engineering design are HI-Rise [Maher et al., 1988], Tall-
D [Ravi and Bédard, 1993], DOLMEN [Harty and Danaher, 1994], and an expert system 
to select structural systems for large span systems [Golabchi, 1997]. Other, more 
complex research systems that take into account the interdisciplinary nature of building 
design include DICE [Sriram et al., 1992], IBDE [Fenves et al., 1994], and ACL 
[Flemming et al., 1996].  
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Expert systems have been most successful where the domain model is well defined. They 
are notoriously brittle outside their narrow domain of application. Rule bases are difficult 
to expand with new data, and validation of existing rules is difficult. The efficiency of 
expert systems decreases with knowledge base size, and often a large amount of tedious 
general knowledge needs to be incorporated to provide common sense responses to 
queries. For these reasons, expert systems are rarely used in the structural engineering 
office. 
 
Limited success has been achieved with expert systems in conceptual design. This is 
likely due to the lack of well accepted domain models of design synthesis [Maher and de 
Silva Garza, 1997]. Expert systems in engineering design have been largely supplanted 
by case-based reasoning, and an emphasis on experience rather than expertise. 
 

2.1.2.  Qualitative Reasoning 
In the late 1970s, a group of artificial intelligence researchers sought to develop a 
knowledge representation capable of describing human commonsense reasoning and 
explanation about physical systems. De Kleer developed a framework for causal 
reasoning in which a qualitative description of the behaviour of a system is derived from 
a qualitative description of its structure [De Kleer, 1977; De Kleer, 1979; Kuipers, 1984]. 
The framework included a functional description that makes explicit which behaviours 
are possible for a system.  
 
Research in qualitative reasoning influences conceptual engineering design in several 
ways. The conceptual design stage is characterized by uncertainty, and incomplete and 
imprecise information. Qualitative reasoning is a method of analyzing designs using non-
numeric computations. Qualitative reasoning has also influenced the theory of design 
processes by providing a better understanding of how function, behaviour and structure 
are related in physical systems. 
 

2.1.3.  Design Prototypes 
In the late 1980s, Gero developed semiformal computational models for the design 
process based on the concept of design prototypes. The models draw from concepts in 
artificial intelligence and prototype theory [Osherson and Smith, 1981]. It is based on the 
idea that designers organize their individual experiences into schema or classes consisting 
of abstract concepts. Gero defined a design prototype [Gero, 1990] as a conceptual 
schema for representing a class of elements derived from similar design cases, which 
provides a basis to initiate and continue design.  
 
The design prototype model included a classification scheme for design knowledge, 
where function (F), behaviour (B), and structure (S) are the three most important classes. 
The prototype model is sometimes referred to as simply the FBS framework [Gero, 
1990]. Design knowledge was also classified into relational knowledge between function, 
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behaviour and structure; qualitative knowledge, computational knowledge, contextual 
knowledge, and other forms of knowledge. Using this computational model, the design 
process is initiated with a set of required functions and structures. These requirements are 
then used to initiate a search for candidate prototypes which are indexed using 
requirements. Once a prototype is selected from the search results, a design instance is 
created and used as the basis for a new design. 
 
Design may be generally described as a process that transforms functions (F) into design 
descriptions (D). Design descriptions contain the information required to manufacture the 
artifact, such as drawings and documents. Gero noted that in general no direct 
transformation between function and description exists. The transformation between 
function and description occurs indirectly through behaviour and structure, as suggested 
in Figure 2.1. The transformation from structure to description is today typically carried 
out by computer-aided drafting (CAD) systems. Function represents the design intent, 
which is usually transformed into a set of expected behaviours (Be), which expresses that 
intent. “The expected behaviour provides the syntax by which the semantics represented 
by the function can be achieved,” notes Gero. In practice, function is transformed to 
expected behaviour through the process of formulation or specification. The actual 
behaviour (Bs) is derived from the structure through the process of analysis.  
 
Figure 2.1 illustrates a number of key concepts in the design process. The comparison 
between expected and actual behaviour is called evaluation in design.  The process of 
design synthesis involves transforming function to expected behaviour, then selecting or 
combining structure to satisfy that behaviour. When structures are synthesized, they 
produce their own behaviours which may change the expected behaviours and lead to a 
change in the function, called a reformulation. Reformulation also occurs when no 
structure can be found that produces the expected behaviour. Design is an iterative 
process that follows a series of synthesis, analysis, evaluation and reformulation loops 
until a satisfactory solution is found. 
 
 
  
 
 
 
 
 
 
 
Figure 2.1. Model of design as a process [Gero, 1990] 

 
The FBS model is a commonly-used representation of the overall design process, and 
contains the elements necessary to represent the conceptual design process. Since its 
development, Gero has coupled the design prototype representation with a number of 
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different process models to support early architectural design. The prototype model was 
coupled with an evolutionary process [Gero, 1996], and with the creative design 
processes of combination, transformation, analogy, emergence and first principles [Gero, 
2000].  
 

2.1.4.  Case-based Reasoning 
Human designers draw heavily from past experiences when synthesizing new designs. 
Case-based reasoning represents a range of computational methods based on the recall 
and reuse of specific past experiences, called cases. The methods are analogous to the 
processes humans use to organize memory, and to recall information to solve problems 
and generate explanations. Case-based reasoning has been applied to a wide range of 
fields, including architecture, engineering, medicine and law. Two major considerations 
in applying case-based reasoning to design are the representation of design cases and 
process models for recalling and adapting design cases. 
 
To represent design cases to support reasoning, experience must be abstracted into a 
symbolic form. A range of different approaches and models are described in the 
literature. In general, an effective design case representation considers the problem, the 
context, the solution, and the outcome.  Design experience may be recorded as stories, 
sketches, drawings, charts, photographs, or video. 
 
Design case recall involves finding a suitable case for solving the design problem at 
hand. In case-based reasoning, design cases are organized in a library, or case base. Since 
cases are represented in a symbolic form, the problem must also be formalized. The 
problem is called the target case, while the cases in the case base are called source cases. 
Design case recall consists of the subtasks of indexing, retrieval and selection. Indexing 
describes how source cases are identified and organized. Retrieval identifies which 
source cases have features that are relevant to the target case. Selection evaluates the 
retrieved cases so they can be ranked. 
 
Case adaptation identifies the differences between a selected case and the target case, and 
changes the selected case to synthesize a solution that matches the target case. Changing 
the selected case involves evaluation to check the feasibility of the modified case as a 
design solution.  
 
Designed artifacts influence us in many different ways. From their conception, through 
their design, manufacture, use and eventual destruction, these artifacts give us different 
experiences, depending on our viewpoint. Design cases are often complex, and the design 
case representation must be capable of supporting different perspectives, and different 
levels of abstraction. For complex cases, it is sometimes necessary to decompose the 
problem into multiple subcases, or to select and modify multiple source cases. Multiple 
subcases can be combined iteratively, one case at a time, by extending single case 
adaptation. Multiple source cases can be adapted iteratively, or simultaneously.  
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In domains where analytical or heuristic knowledge is available, the notion of design 
cases can be extended to include generalized design knowledge. For example, causal 
models can be used in the design of physical devices, and geometric information can be 
used in the design of buildings. 
 
A key difference between rule-based reasoning (used in expert systems) and case-based 
reasoning relates to the size of information blocks. Rule-based systems are built from 
short clauses such as ‘if p then q’, called Horn clauses. In contrast, case-based systems 
reason with larger clusters of information in the form of cases. One of the limitations of 
expert systems is the difficulty in representing trivial or commonsense knowledge. Cases 
include such basic knowledge. Design cases encapsulate the tradeoffs, errors, revisions, 
iterations and lessons that are an intrinsic part of the design of real artifacts. While rule-
based reasoning build solutions to a problem from scratch, case-based systems start with 
an existing solution to a similar problem, and then attempt to modify that solution to 
solve the problem at hand. 
 
A number of case-based reasoning systems have been developed for architectural and 
structural engineering applications. A selection of these systems is presented in the 
following sections. A survey of case-based reasoning applications in design is found in 
Maher [Maher and de Silva Garza, 1997]. A survey of case-based reasoning systems for 
building design is found in [Rivard and Fenves, 2000a] and [Watson and Perera, 1997]  
 
STRUPLE (STRUctural PLanning from Experience) is an early attempt to demonstrate 
the use of case-base reasoning in building design [Zhao and Maher, 1988]. The system 
proposes high-level structural subsystems from past experiences based on a problem 
description. 
 
Architectural design is a challenging domain for case-base reasoning applications 
because of the lack of formal knowledge, which makes it difficult to develop a consistent 
design case representation.  ARCHIE is an interactive system to aid architects in building 
design. The design case structure represents goals, constraints, outcomes and lessons at 
the conceptual design level. In response to a query, the system returns multiple cases, and 
can combine cases to create a high-level qualitative design that meets the intended goals. 
The system evaluates goals, plans and outcomes using a domain model, which captures 
causal relationships between case concepts. The work is extended in ARCHIE-2 
[Domeshek and Kolodner, 1991; 1992], which augments cases with multimedia. 
 
Research with ARCHIE highlighted several of the practical difficulties in developing 
architectural case-based reasoning systems. One of the findings was that users engaged in 
a creative process want to be in control of the process. User interfaces in creative 
applications should be interactive, providing ideas and alternatives but allowing the user 
to make design decisions. A strength of ARCHIE was the ability to store and index the 
work of previous architects, making the range of past design solutions more accessible to 
the user. One of the limitations of the system is that concepts are primarily expressed in 
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textual, rather than visual form, which is a more natural mode of representation in 
architecture. 
 
CADSYN (CAse-based reasoning for Design and SYNthesis) uses design cases and 
generalized knowledge to assist designers in conceptual structural design [Maher and 
Zhang, 1993]. CADSYN uses a hierarchical decomposition to represent design cases. The 
generalized knowledge includes decomposition information, structural design constraints, 
and procedural functions. The decomposition hierarchy can be used to generate a new 
design or adapt an inconsistent solution using constraint satisfaction methods. CADSYN 
does not emphasize user interaction and graphics.  
 
CASECAD integrates case-based reasoning and model-based computer-aided design 
(CAD) techniques to assist structural designers during conceptual design [Maher and 
Balachandran, 1994]. The design case representation includes design indices, CAD 
drawings, and graphical illustrations of behaviours of design cases. CASECAD uses a 
flexible indexing system to provide multiple access paths to cases. Design cases are 
organized using a hierarchical decomposition and the function-behaviour-structure, or 
FBS, framework [Gero, 1990]. The FBS models identify a range of allowable values for 
each variable, providing generalized heuristic knowledge. CASECAD performs case 
retrieval and selection, but requires the user to perform case adaptation. 
 
CADRE is a case-based reasoning system in which cases are geometric models of the 
conceptual structural and architectural layouts of a building [Bailey and Smith, 1994]. 
Cases represent building floor plans at different levels of abstraction, topological and 
dimensional. The system solves a system of constraints consisting of user-specified 
constraints and constraints that are generated from the architectural and structural layouts 
and their relationship to each other. The solution process uses two transformation 
adaptation methods: dimensional and topology adaptation. Dimensional adaptation 
involves the solution of a set of linear and nonlinear constraints on parameters used to 
describe the building. Topology adaptation uses a rule-based system to change the 
geometry. The system focuses on the representation and adaptation of cases rather than 
indexing and retrieval. 
 
SEED (Software Environment to support the Early phases of building design) is a 
multidisciplinary effort aimed at providing computational support for the conceptual 
design of buildings [Flemming and Woodbury, 1995]. The emphasis of SEED is on 
supporting early design exploration through the rapid generation and evaluation of 
alternative concepts. The SEED-Config module within SEED supports the design of 
three-dimensional building elements in terms of spaces, subsystems and physical 
elements [Woodbury and Chang, 1995]. The module represents the overall form or 
massing of the building, the structural system, and the enclosure. The intent is to assist 
designers in generating designs, not to generate design automatically [Fenves et al., 
2000]. SEED-Config includes case-based reasoning functionality to provide designers 
with initial potential solutions [Rivard and Fenves, 2000a]. 
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Cases in SEED are formalized in a generic information model called BENT, the Building 
Entity and Technology model [Rivard and Fenves, 2000b]. In BENT a building is 
represented as a set of building entities, which can be systems, subsystems, parts, a 
feature of a part, a space or joint [Gielingh, 1988]. Each building entity is a generic 
container that stores the entity’s geometry, classifiers, properties, relationships, and 
design knowledge. Properties are named attribute-value pairs, grouped into three subsets: 
the functional unit (FU), the design unit (DU), and the evaluation unit (EU). The 
functional unit stores properties related to the intended purposes, requirements and 
constraints. The design unit captures properties required for design, such as material and 
shape characteristics. The evaluation unit represents the behaviour of the entity and 
records feedback on a design that has been implemented. Properties may be added to the 
building entity as the design progresses, supporting design evolution and exploration. 
Two kinds of relationships are modeled: the containment relationship models the 
hierarchical decomposition of design problems, and domain specific relationships store 
other essential relationships such as “support” and “connect” in structural engineering. 
Spatial relationships are not stored in the information model, because these are obtained 
directly from a geometric modeler. Design information is represented by a technology 
graph. The graph consists of technology nodes, each of which represents a known design 
alternative, the constraints that determine its applicability, and the computational 
procedure needed to assign values to the attributes defining that alternative. 
 
Case retrieval in SEED is an interactive process in which the designer is in control of all 
steps. The user initiates the case-based reasoning process by selecting a building entity 
and activating the case retrieval process. The user has three options for preparing a query, 
one based on the selected entity, a second based on the hierarchical decomposition of the 
case, and a customized query using SQL/X. SEED uses the faceted classification scheme, 
where each building entity has a set of associated categories. Categories are 
hierarchically organized semantic networks, which provide an efficient mechanism for 
reasoning at a range of different abstraction levels. 
 
Case adaptation in SEED uses the derivational replay method, which reproduces an 
existing set of reasoning steps in a new situation. This method is particularly well suited 
to SEED, where technology nodes record all the steps in the design process. Case 
accumulation and learning in SEED is also facilitated by the information model. Each 
building entity is essentially a self-contained case, because it includes its problem 
statement (the functional unit), the design solution (the design unit), the design process 
(the references to the technology nodes), and the design outcome (the evaluation unit). 
 
SEED supports the reuse of both design information and design procedures. This 
capability distinguishes it from most other case-based reasoning applications, which 
reuse one or the other but not both. SEED includes conceptual design capabilities beyond 
case-based reasoning. These are discussed in a later section. 
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2.1.5.  Building Design 
Due to the importance of the building construction sector, much of the research into 
computational support of conceptual design has been in this area. Early collaboration 
between architects and engineers remains a challenging problem. Conceptual building 
design is a complex multidisciplinary activity characterized by rapidly changing and 
imprecise information, and a relatively high level of abstraction. Researchers have used 
several different approaches to assist the architect and engineer at the conceptual stage of 
building design. Early computer applications viewed building design as a planning 
problem, and drew heavily from research in artificial intelligence. More recent 
approaches favour model-based representation and reasoning.  
 
Work in artificial intelligence has inspired a range of research applications for conceptual 
building design. Such applications use techniques such as formal logic and engineering 
first principles [e.g. Jain et al., 1991; Fuyama et al., 1997; Eisfeld and Scherer, 2003], 
grammars and shape annealing [Meyer, 1995; Shea and Cagan, 1999], fuzzy logic [Shen 
et al., 2001], and genetic algorithms [Krishnamoorthy and Rajeev, 2000; Grierson and 
Khajehpour, 2002; Sisk et al., 2003; Rafiq et al., 2003; de Silva Garza and Maher, 1996; 
Soibelman and Peña-Mora, 2003].  
 
Given the importance of geometric modeling in the later stages of building design, some 
research programs have attempted to apply model-based reasoning to conceptual design. 
One example is SEED, a conceptual design system for buildings that integrates model-
based reasoning and case-based reasoning. The SEED project highlights a number of 
important features in a conceptual building design system. Such a system should support 
design synthesis, design evolution, design exploration, multiple views, and be extensible 
[Rivard and Fenves, 2000b]. In addition, the system supports the rapid generation and 
evaluation of alternative design concepts, and reasoning at multiple levels of abstraction. 
SEED uses a three level information model: an object-oriented data model, an 
information model (BENT) that stores and shares design data, and acts as a case library, 
and a conceptual model [Rosenman and Gero, 1996]. The conceptual model defines the 
types of objects, relationships and data needed to fully represent the information in a 
given design domain. Effectively, the conceptual model specifies the semantics of the 
design domain using the syntax in the information model [Rivard and Fenves, 2000b]. 
 
The design process is alternately a top-down and a bottom-up process. Bottom-up design 
starts with the definition of components and connections, followed by aggregation into 
subassemblies. In contrast, top-down design starts with an overall definition which is 
refined into functional subsystems and assemblies, and physical components. A top-down 
method is often favoured for conceptual design because it supports successive design 
refinements [Martini and Powell, 1990]. An early approach to top-down design in 
buildings was the “total system” approach [Lin and Stotesbury, 1988], which starts with a 
3D structural mass that observes the architectural space-form requirements, then proceeds 
to structural subsystems consisting of 2D elements and finally to 1D structural 
connections. Other top down models include those of [Sauce et al., 1992], [Hauser and 
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Scherer, 1997], and [Sacks and Warszawski, 1997]. While many researchers view the 
design process as primarily a top-down process, others see design as a nonlinear process 
that involves reasoning at alternating levels of detail, and in practice involves 
backtracking. 
 
Geometric modelers in conceptual building design systems often have very limited 
modeling capabilities. The geometric modeler implemented in SEED is limited to 
geometric objects that are rectilinear in shape and positioned orthogonal to the global 
axes. In many building applications, the hierarchy and semantics of structural elements is 
well defined. Each structural element in a building is relatively easy to classify as a beam, 
a column, or a brace. Structural elements in general structural applications are not so 
readily classified as in buildings. The strength of SEED lies in the support of recurring 
building types rather than in support of universal structural configurations [Fenves et al., 
1995].  
 
Applications to support building design use a range of user interface approaches. 
Different views are often required to suit the various needs of users, including architects, 
structural engineers and mechanical engineers. Other differences between applications 
relate to the balance between user control and automation. For example, StAr (Structure-
Architecture) [Mora et al., 2005; 2008] uses an interactive algorithmic process controlled 
by the engineer. Other researchers favour more automated approaches such as automated 
reasoning and generative structural design [e.g. Meyer, 1995; Krishnamoorthy and 
Rajeev, 2000; Hofmeyer et al., 2006]. 
 
Early collaboration between architects and engineers provides useful insights into 
conceptual structural design. While architects are trained in design synthesis, the bulk of 
engineering education focuses on analysis. Concepts relating to the overall appearance 
and layout of structures, like repetition, visual rhythm, order, modularity, symmetry, 
balance, scale, proportion and unity are familiar to the architect [Mora et al., 2003]. The 
architect’s terminology reflects a level of abstraction that is useful in effectively 
synthesizing a range of conceptual design configurations. 
 

2.1.6.  Commercial Software 
In the latter phases of building construction, highly detailed building information models 
are commercially-available and in common use. Current versions of industry-standard 
CAD applications such as Autodesk Revit provide some support for conceptual design of 
buildings, and integrate architectural and structural models [Mora et al., 2008]. Neutral 
file formats transfer information between participants in the construction process. For 
example, the CIMsteel Integration Standard CIS/2 supports information transfer between 
detail design, fabrication, and erection of steel structures. Efforts have been made to 
extend existing information models and CAD applications upstream to support the 
conceptual design of buildings, however such efforts have not been completely 
successful. The standard building information models are bottom-up models built 
element by element that were not designed to support higher level concepts like structural 



2.   Background 
 

  16

subsystems and assemblies. Effective conceptual design requires a top-down approach, 
with representations that support higher levels of abstraction. 
 
Support for conceptual design by commercial CAD software programs has improved in 
recent years but the rapid generation and evaluation of imprecisely specified concepts is 
still not possible with these programs. The CAD software market is dominated by a 
relatively small number of major vendors. Although new software versions are released 
regularly, the basic functionality of CAD software in producing working drawings has 
remained unchanged for some time. Many of the new features that have been added relate 
to interoperability between different software applications. All the major CAD programs 
directly support a range of analysis applications, such as finite element analysis, 
kinematic simulation, and thermal analysis. Integration between CAD applications and 
production software is highly advanced, particularly in structural steel design and 
fabrication. The CIS/2 standard defines a neutral file format that allows steel detailing 
information to be transferred directly from the CAD package into cost estimating and 
production tracking applications, as well as computer controlled fabricating equipment. 
With such an advanced level of support for the latter stages of the design process, 
developers of CAD programs have begun to focus more attention on the conceptual 
stages. Intuitive sketch-based user interfaces have been developed or acquired by the 
major commercial CAD packages (e.g. Autodesk Alias and Google SketchUp).  Such 
interfaces are generally not well integrated into the CAD production environment, which 
limits their effectiveness as conceptual design tools. Support for design synthesis is the 
part of conceptual design that is most lacking from commercial applications. Although 
improved user interfaces make it quicker to transfer ideas to models and to analyze those 
ideas, they will not generate new concepts. Commercial CAD applications do not 
understand the language of requirements and specifications, and require the designer to 
interpret these in the form of well defined design concepts. The framework presented in 
this research directly interprets design requirements, synthesizes new concepts, and 
evaluates those concepts even though they are not precisely defined.  
 

2.1.7.  Visual Case-Based Reasoning 
Many applications in case-based reasoning retrieve cases based on matching of indexed 
attribute-value pairs. Even in domains where visual and geometric information is 
essential, such as architecture, case retrieval on textual attributes is frequently used. 
Although sophisticated methods of text-based case retrieval have been developed in the 
field of document processing, such retrieval methods have limitations in dealing with 
primarily graphic data: 
 

 "It is hard to capture geometric relationships by means of attribute and attribute 
values; it is even harder and in most cases practically impossible to base retrieval 
on such a description since the names of the involved objects are irrelevant and 
mostly unknown; what matters are the relationships between corresponding 
objects in the query and source cases. Therefore one has to adopt specialized 
retrieval methods.” [Gebhardt et al., 1997, p.65] 
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FABEL is an architectural case-based reasoning system that reasons with building floor 
plans [Gebhardt et al., 1997]. FABEL uses specialized geometric case retrieval methods 
to reason with cases that contain diagrammatic or geometric information. These 
specialized methods include the concept of gestalts, the Object Density Map, and graph 
matching algorithms. A central feature of these methods is the use of multiple views at 
different levels of abstraction. 
 
A general definition of gestalt is a “symbolic configuration or pattern of elements so 
unified as a whole that its properties cannot be derived from a simple summation of its 
parts.” In FABEL, gestalts are characteristic geometric arrangements of certain 
components in a building. It was observed that a limited number of gestalts represents a 
large number of specific configurations, illustrating that gestalts are a useful method to 
generalize geometric layouts. The set of gestalts used in FABEL is shown in Figure 2.2.  
 

 
Figure 2.2. Set of gestalts in FABEL [Gebhardt et al., 1997] 

 

 
Figure 2.3. Representing gestalts with successive abstraction [Gebhardt et al., 1997] 

 
Figure 2.3 illustrates the process of developing a gestalt from specific configurations of 
objects using a series of successive abstraction operations. Figure 2.3.a identifies a group 
of objects, where each ellipse represents a bounding box that contains a building 
component, such as a room1. The configuration shown in Figure 2.3 is commonly 
referred to as a quadrangle in architecture. Figure 2.3.b shows the centers of the objects, 
and Figure 2.3.c adds alignment information. Bars represent objects with an alignment, 
and circles indicate objects without alignment. Figure 2.3.d show a sketch which uses a 
grid to abstract from scale, and from distortion. Finally, Figure 2.3.e indicates an 
abstraction which neglects the exact position and number of objects. In FABEL, gestalts 

                                                 
1 Ellipses, as opposed to rectangles, are used to represent bounding boxes because large number of 
rectangles that share edges are indistinguishable. 

a b c d e 
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are detected by an algorithm that compares stored patterns, like the one in Figure 2.3.e, 
with patterns generated from the design object under consideration. Matching gestalts are 
attached to the case as descriptors, or index terms. 
 
FABEL uses another geometric abstraction method, the Object Density Map (ODM) 
[Coulon and Steffens, 1994], to view specific architectural layouts at different levels of 
resolution. When images are compared on a pixel-by-pixel basis, large differences may 
exist even when images convey very similar information. An ODM is constructed by 
overlaying a low resolution grid over an image. The number of image pixels in each grid 
square is counted and used to calculate the image density, a number between 0 and 1. The 
image density on each grid square is represented using a set of overlapping grayscale 
intervals, as shown in Figure 2.4. The intervals are narrower at lower density to bring 
better definition to sparse images [Rosenfeld, 1969]. Two images are considered similar 
if every set of corresponding grid squares share at least one interval of grayscale values. 
The similarity function is symmetric, but not transitive, however it is invariant with 
respect to rotation, translation, or sizing. A numerical value for the similarity between 
two images is calculated with a normalized sum of differences between the corresponding 
pixels.  
 
                
 

 
 
 

 
 
 
 
 
 
 
Figure 2.4. Similarity of object density maps [based on Gebhardt et al., 1997] 

 
A third method for determining similarity between two cases in FABEL uses graph 
matching algorithms. Relational graphs can be used to produce an abstract representation 
of a configuration of physical objects. [Winston, 1975] used a version of relational graphs 
to describe structures, such as arches and towers, for the purpose of generalizing and 
classifying images. TOPO [Börner et al., 1996], a subsystem of FABEL, detects spatial 
relationships between two objects by comparing the graph representation of those objects. 
TOPO uses the maximum common subgraph (MCS) to measure the degree of structural 
similarity between cases. The maximum common subgraph algorithm is NP-complete, so 
the time for computing similarities between cases may be prohibitive. In alternative 
approach, constraint satisfaction methods were applied in a visual case-based reasoning 
system for the retrieval of 2D line drawings [Yaner and Goel, 2003]. 
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Case-based reasoning has been integrated with image processing methods in fields such 
as medical diagnosis [e.g. Plaza and López de Mántaras, 1990] and molecular biology 
[e.g. Jurisica and Glasgow, 2004]. A common approach is to use image processing to 
compute a vector of numerical features for each case image. The feature vectors of two 
cases are compared to determine similarity. The degree of structural similarity is 
determined indirectly, in contrast to the direct comparisons used in FABEL. 
 
In the application of case-based reasoning to visual information such as images and 
diagrams, the methods of pattern recognition are important. These methods are discussed 
in more detail in a later section. 
 
In architecture [Gross and Do, 1995] describe a method for retrieving images from a 
database using a freehand sketch as input. This method uses a relatively simple heuristic: 
given two drawings, it compares the type and number of spatial elements and spatial 
relations by counting.  
 

2.1.8.  User Interfaces 
Drawings in their various forms are an essential part of the design process. In the later 
stages of design, highly specific and detailed fabrication drawings provide precise 
instructions on how to manufacture an artifact. In the embryonic stages of design, 
unstructured, informal sketches assist the designer in retrieving images from long-term 
memory [Simon, 1969]. Sketches support reasoning at a number of different levels of 
abstraction. They may be relatively unconstrained and ambiguous, encouraging 
reinterpretation and the emergence of  new concepts. The role of sketching in design and 
its relationship to cognitive processes has been studied by researchers in design and 
cognitive science [Purcell and Gero, 1998]. 
 
Computational support for drawings is well established in the latter stages of design. 
Support in the early stages has received much less attention. Design is a process of 
incremental formalization proceeding from abstract to more specific forms. Paper-like or 
pen-based computer applications in architecture, industrial design and graphic design 
have been commercially available for some time (e.g. Autodesk Alias and Google 
SketchUp), but most do not recognize content, such as the meaning of the elements and 
the relationships between them.  The Electronic Cocktail Napkin [Gross, 1996] 
application is a prototype pen-based interface to allow architects to sketch with various 
degrees of precision or ambiguity. The system recognizes hand-drawn multi-stroke 
symbols (glyphs), spatial relationships between symbols, and identifies matching 
configurations from a library. The EsQUIsE  prototype [Leclercq, 1999] interprets 
architect’s sketches, and extracts concepts such as walls, functional spaces and space 
topology. 
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2.1.9.  Mechanical Design 
Qualitative reasoning about the behaviour of mechanical and other physical systems 
developed as a field of artificial intelligence research [e.g. De Kleer, 1979; Kuipers, 
1984]. Causal and heuristic knowledge about such systems were incorporated into early 
case-based reasoning systems such as KRITIK and KRITIK II [Goel, 1989], and CADET 
[Navinchandra et al., 1991].  
 
Given a drawing of a new device, human experts are capable of understanding the 
components of the device (structure), as well as what the device does (function) and how 
it works (behaviour). Several systems have been developed to attempt to formalize the 
interpretation of drawings. GeoRep is a diagrammatic reasoning system that takes an 
arbitrary 2D line drawing as input and produces a description of the physical system in 
the drawing [Ferguson and Forbus, 2000]. Some applications have also used structure-
mapping to use analogy to make inferences at the structural level [Falkenhainer et al., 
1990]. With the ARCHYTAS system [Yaner and Goel, 2007], the goal is use visual 
analogy to infer structural components, connections, causal interactions, processes, and 
functionality from 2D unlabeled drawings. 
 

2.1.10.  Conceptual Analysis Methods 
Many computational analysis procedures have been developed for the latter stages of 
design, in which the design problem has been well specified and the input is complete. In 
contrast, the conceptual design phase is characterized by incomplete, uncertain and 
imprecise information. Conceptual design therefore requires a different set of analysis 
methods than those used in preliminary and final design. The analysis methods must not 
only handle uncertainty, they must provide solutions quickly. Effective conceptual design 
synthesis requires rapid analysis procedures that allow the designer to easily explore a 
broad expanse of design space and to evolve concepts. 
 
Approximate analysis techniques are widely used by experienced designers. Before the 
advent of computers, approximate techniques were essential. A broad range of 
computational analysis techniques are used to handle uncertainty and provide for rapid 
assessment of conceptual designs. Examples of approximate analysis in computer-
supported conceptual design of buildings are found in [Ravi and Bédard, 1993] and 
[Fuyama et al., 1997].  
 
Where the finite element method is used for analysis, structural reanalysis methods may 
be used for exploring design variations. Both exact and approximate reanalysis methods 
are available; most of the exact methods are based on the Sherman-Morrison-Woodbury 
formulae [Sherman and Morrison, 1949; Woodbury, 1950]. 
 
A range of  methods are used to deal with uncertainty in engineering applications. The 
most common approach is to use probability theory. Many processes in nature are 
characterized by random uncertainty, and are well represented by probability 
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distributions. Probability theory is best suited to model the uncertainty related to naturally 
random behaviour, called aleatory uncertainty. During conceptual design, however, much 
uncertainty is characterized by the simple lack of information, or epistemic uncertainty. 
Approaches such as interval analysis [Moore, 1966] and constraint satisfaction methods, 
are often more appropriate under conditions of epistemic uncertainty. Evidence theory (or 
Dempster-Shafer theory) is a generalization of classical probability and possibility theory 
that can represent probability distributions, membership functions (from fuzzy set 
theory), and intervals [Shafer, 1976]. 
 

2.2.  Optimization 
Optimization aims to find the best configuration of a system given a set of constraints. 
What is the best configuration depends on the context and the overall objective in 
improving the current configuration. In aerospace engineering, a common objective is to 
minimize the mass. In civil and automotive engineering, the objective is usually to 
minimize cost. In light of the impact of production of artifacts on our environment, and 
due to shortages of energy, material, and labour, the optimization problem now generally 
reduces to one of achieving the maximum of benefit from limited resources. 
 

2.2.1.  General Optimization 
Classical optimization was largely concerned with finding an optimum function that 
satisfies a differential equation, the distributed parameter problem. An example is 
seeking the optimal moment of inertia along the length of a beam, subject to the 
governing beam equation. With the advent of high speed computation and techniques 
such as finite element analysis, differential equations were largely replaced by algebraic 
equations, and discrete parameter formulations became more common. Discrete 
parameter optimization refers to systems described by a set of variables that vary 
continuously within a given range. Another optimization method, integer or 
combinatorial optimization, refers to problems where variables may only take on discrete 
values. Mathematical programming refers to the general study of problems in which one 
seeks to minimize a real function by choosing the values of real or integer variables from 
an allowed set. Many practical problems involve integer parameters, often due to 
production limitations. For example, steel mills produce a limited selection of sizes of 
rolled steel shapes. Since integer problems are computationally more difficult than 
problems with continuous variables, it is quite common in practical optimization to 
substitute discrete functions with continuous approximations. 
 
Classical optimization deals with exact, analytical solutions to optimization problems. 
Although many practical problems are not amenable to closed-form solutions, classical 
techniques still play an important role in optimization. Most importantly, these 
techniques give insight into the existence and uniqueness of solutions to optimization 
problems. For general solutions to most real-world optimization problems, computer-
based mathematical programming methods are used. 



2.   Background 
 

  22

 
Optimization methods are used to find a set of design parameters, x = {x1,x2,...,xn} that 
define an optimal configuration. A general problem in optimization is stated as: 
  
 minimize: f(x) 
 subject to: equality constraints  Gi(x)=0, i=1,...,me 
   inequality constraints  Gi(x)≤0 i=me+1,...,m 
 
where x is the vector of length n design parameters, f(x) is the objective function, which 
returns a scalar value, and the vector function G(x) returns a vector of length m 
containing the values of the equality and inequality constraints evaluated at x.  
 
The selection of an appropriate procedure depends on the nature of the variables, the 
objective function and constraints. In a linear programming problem, both the objective 
function and constraints are linear functions of the design variable. A quadratric 
programming problem concerns the minimization or maximization of a quadratic 
objective function with linear constraints. In a more general nonlinear programming (NP) 
problem, the objective function and constraints are nonlinear functions of the design 
variables. The solution to the NP problem generally requires an iterative procedure 
involving the solution of an LP, QP or unconstrained subproblem. 
 
A wide range of solutions exists for unconstrained optimization problems. Practical 
design, however, is generally concerned with constrained optimization. The general 
approach in constrained optimization is to transform the problem into simpler 
subproblems and to solve the subproblems as part of an iterative algorithm. A class of 
efficient solutions employs the Kuhn-Tucker (KT) equations, which are necessary 
conditions for optimality for a constrained optimization problem. For a convex 
programming problem, where f(x) and Gi(x), i=1,...,m are convex functions, the KT 
equations are both necessary and sufficient conditions for a global solution point. 
 
In practice, most optimization problems cannot be shown to be convex, and have several 
local minima. Mathematical programming techniques are typically local in nature and 
return only one of these local minima. In order to find the global minimum, nonconvex 
problems can be formulated using a series of convex approximations. For example, in 
sequential linear programming (SLP) a linear approximation of the objective function 
and constraints produces a linear programming problem. Similar methods, such as 
sequential quadratic programming (SQP) and the method of moving asymptotes (MMA), 
have been used in structural optimization. 
 
For problems that are highly nonconvex or nonlinear, classical optimization methods 
often fail and more robust, global optimization techniques are required. While most 
global methods still cannot guarantee a global optimum and are often computationally 
inefficient, they may be the only methods available for some problems, and therefore are 
useful in many complex, practical problems. Evolutionary computing (EC) methods fall 
in the category of global optimization methods. Inspired by the biological processes of 
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evolution and selection, evolutionary computing may be understood as a parallel, 
stochastic optimization process in which a population of solutions undergoes a process of 
gradual change [Kicinger et al., 2005]. Evolutionary computing encompasses a range of 
optimization methods which are classified as one of four main evolutionary algorithms 
[e.g., Rafiq et al., 2005]: the genetic algorithm (GA) [Holland, 1975], the evolutionary 
strategy (ES) [Rechenberg, 1965], evolutionary programming (EP) [Fogel et al., 1966] 
and genetic programming (GP) [Koza, 1992]. All four of these algorithms have been 
applied to engineering design,  however the GA and GP are the most common. All EC 
methods start with the generation of an initial population of solutions. Then, over a 
sequence of generations, parent solutions are selected and reproduced, and offspring are 
selected for continued reproduction based on their fitness. After a number of generations, 
the process is expected to converge to a solution with “maximum fitness”. Genetic 
algorithms generally encode design variables as fixed length binary strings, or genotypes. 
Genetic programming is similar to genetic algorithms, except that parse trees are used 
instead of fixed length strings. 
 

2.2.2.  Multiobjective Optimization 
The general problem formulation optimizes a single objective function. Practical design 
problems require that a number of objectives be addressed simultaneously. Multiobjective 
optimization involves the minimization of a vector of objectives F(x), where the problem 
stated as: 
 
 minimize: F(x) 

subject to: Gi(x) = 0,   i=1,...,me 
   Gi(x) <= 0,   i=me+1,...,m 
 
Often the objectives are competing and their relative importance must be weighed  in 
order to make tradeoffs. The relative importance of the objectives is generally not known 
in advance, and some analysis is usually done to assess the capabilities of a system before 
tradeoffs are made.  
 
Since F(x) is a vector of objectives, if any of the objectives are competing, there is no 
unique solution to the problem. In this case, the concept of noninferiority [Zadeh, 1963], 
or Pareto optimality [Da Cunha and Polak, 1967; Censor, 1977], is used to assess 
multiple objectives. A vector of design variables x* is said to be noninferior if, for any 
other vector x either the values of all the objective functions remain the same, or at least 
one of them degrades compared with its value at x*. Multiobjective optimization is 
concerned with the generation and selection of noninferior solution points. There is a 
wide range of techniques for multiobjective optimization. Two of the most common are 
the weighted sum method, and the goal attainment method. 
 
The weighted sum strategy creates a single objective function by constructing a weighted 
sum of all the objectives. The vector of objectives F(x) is thus converted into a scalar. An 
advantage of the weighted sum approach is that the single objective function can be 
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handled using the GP formulation. There are several challenges in using this approach, 
however. The selection of appropriate weighting coefficients is often difficult, since the 
coefficients do not necessarily correspond directly to the relative importance of 
objectives. Also, they are not able to clearly express tradeoffs between objectives. 
Another limitation is that certain points on the noninferior solution boundary may be 
inaccessible.  
 
The goal attainment method [Gembicki, 1974] avoids some of the difficulties of the 
weighted sum method, while still using standard optimization procedures. The method 
specifies a set of design goals related to the objectives, allowing objectives to be over- or 
under-achieved. A set of weighting parameters allows the user to specify the relative 
importance of the goals. 
 
In multiobjective design optimization problems, the goal is generally to find a large 
number of widely differentiated Pareto-optimal solutions. Classical optimization methods 
like the weighted sum and goal attainment method are limited because most of them 
produce only one solution on the Pareto front. Also, such methods are sensitive to the 
shape and continuity of the front. Evolutionary algorithms are well-suited to 
multiobjective optimization problems because they are population-based, and therefore 
can generate an entire set of Pareto-optimal solutions in a single run. Also, evolutionary 
algorithms are more robust than classical methods, and are less sensitive to the shape of 
the front. There has been a significant amount of research in the area of Multi-Objective 
Evolutionary Algorithms (MOEA). For an overview of MOEAs, see, for example, 
[Coello, 2006]. 
 

2.2.3.  Structural Optimization 
Mathematical optimization techniques have been used in a wide range of structural 
design and analysis applications. Many early applications dealt with exact, analytical 
solutions for specific problems. Computer-based methods expanded the range of potential 
optimization problems, and several general structural optimization methods have 
emerged. These general methods are particularly important in the conceptual design 
stage, and are emphasized in this overview. 
 
Most early structural optimization methods sought to minimize the weight or volume of 
the structure considering constraints on member stresses or overall deflection. Methods 
have now been developed to handle more complex constraints related to buckling, cost, 
plasticity, and reliability. 

2.2.3.1.  Truss Optimization 
Some of the earliest applications in structural optimization were to truss and truss-like 
structures. In 1904, Michell developed a theory for the layout of minimum weight 
structures composed of axially loaded bars [Michell, 1904]. The bars are perpendicular to 
each other, and follow the lines of maximum tensile and compressive stress (Figure 2.5). 
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Michell structures are of more interest in theory than in practice. They are designed for 
only one loading case, and consist of an infinite number of bars of nonstandard length. 
 

 
Figure 2.5. Michell structure [from Rozvany, 1997] 

 
The most basic truss optimization method is sizing optimization, where the design 
parameters are the truss member cross-sectional areas. In geometry optimization, the 
design variables are the truss node positions. Topology optimization seeks the optimal 
pattern of connectivity or spatial sequence of members in a structure. The optimization of 
cross-sectional area, node position, and topology is termed layout optimization or 
configuration optimization. 
 
The truss sizing problem was the subject of much analytical work in the 1960s and 1970s. 
Generally, the goal was to find an assignment of cross-sectional areas that produced the 
minimum weight structure, subject to stress or displacement constraints. This is a 
nonconvex problem which may be solved using a constrained optimization algorithm 
together with finite element solver. For example, the optimality criterion method has been 
used for the sizing problem [e.g. Taylor and Rossow, 1977; Rozvany, 1989] 
 
Truss topology optimization commonly uses the ground structure [Dorn et al., 1964], 
consisting of a grid of nodes and potential structural members (Figure 2.6). The task is to 
find an optimal truss structure that satisfies all load and support conditions, and consists 
of a subset of the potential members. Topology optimization is inherently a discrete 
problem, but can be handled as a continuous sizing problem that allows for zero cross-
sectional areas. In contrast to the standard sizing problem, there are major differences. 
The number of design parameters is much larger than the number of degrees of freedom. 
The use of zero cross-sectional area can lead to a singular stiffness matrix, if the complete 
ground structure is considered. Since most optimal designs have a singular stiffness 
matrix, standard structural optimization procedures cannot be used. 
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Figure 2.6. Ground structure 

 

 
Figure 2.7. Solution using ground structure method [after Rozvany, 1997] 

 
Different computational procedures may be used to solve the topology problem, 
depending on the formulation of the problem [Bendsøe and Sigmund, 2004]. An example 
of a solution is given in Figure 2.7. Early researchers [e.g. Dorn et al., 1964] assumed a 
plastic design constraint, leading to a linear problem that was solved using the Simplex 
method. The problem of finding the stiffest truss for a given volume, the minimum 
compliance problem, may be solved using optimality criteria methods. This approach can 
be interpreted as an implementation of a sequential quadratic programming technique 
[Svanberg, 1994]. For more general design situations involving stress and displacement 
constraints, problems are large scale and non-convex. The truss topology problem may 
also be solved using a discrete optimization approach, using such techniques as simulated 
annealing [Reddy and Cagan, 1995] and evolutionary methods, which are discussed later 
in this section. 
 
It was observed early on that the ground structure approach can lead to mechanisms 
which are in equilibrium under the given loads [Dorn et al., 1964].  In these cases overall 
stability can be ensured by adding infinitesimal members, or by using multiple loads. 
Also, truss members may contain interior nodes, which must be removed to ensure 
stability.  
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The optimal topology is sensitive to the number of nodes, particularly for coarse grids. 
For finer grids, the results are less sensitive, however the number of potential members 
increases quickly with decreasing grid spacing. The ground structure method can be 
augmented with node position design variables, allowing the use of coarser grids, but this 
also leads to a highly nonlinear objective function [Topping, 1983], and increased 
computational difficulty. [Bendsøe and Sigmund, 2004] outline computational procedures 
for several different formulations of the truss topology optimization problem, noting that 
the truss topology design problem is a “very challenging mathematical problem”. 
 
The truss geometry optimization problem seeks the optimum positions of nodes that 
satisfy a set of constraints on a structure. Since both displacements and stress are 
nonlinear functions of node position, the problem is nonlinear. [Svanberg, 1982] used 
mathematical programming methods and finite element models to solve the geometry 
problem. As nodes are repositioned during truss geometry optimization, nodes may move 
close together. [Pedersen, 1992] used a two stage algorithm where the first stage 
performs geometry optimization, the second stage merges nodes when element lengths 
are below a given threshold. 
 
Evolutionary computing methods have been studied extensively in structural optimization 
applications. Geometric and topology optimization of discrete structures pose 
computational difficulties for gradient-based methods. In layout optimization, even small 
changes in topology can lead to significant changes in behaviour. For example, removing 
a single member can change a highly statically indeterminate structure into a mechanism. 
Evolutionary computing methods such as genetic algorithms are suited to such 
applications because they do not require gradient information. Another advantage of 
evolutionary methods is that they naturally handle discrete variables, such as member 
sizes, which arise frequently in practical engineering applications. 
 
Some of the earliest applications of evolutionary computing to structural engineering 
were in the sizing and geometric optimization of trusses. [Goldberg and Samtami, 1986] 
appear to have first suggested the use of a GA for structural optimization, and applied the 
method to a 10-bar plane truss problem. [Jenkins, 1991] employed a GA for discrete 
problems involving both sizing and geometric variables. [Rajeev and Krishnamoorthy, 
1992] used a GA with a penalty function to perform truss sizing optimization with stress 
and displacement constraints. [Adeli and Cheng, 1993] used a penalty function approach 
to handle constraints on cross-sectional area, stress and displacement. [Grierson and Pak, 
1993] applied a GA to layout optimization of skeletal building structures, using an 
approximate analysis method to improve efficiency. [Koumousis and Georgiou, 1994] 
solved a mixed sizing and layout problem in steel roof truss design with constraints on 
stress, deflection, and connection types. [Rajeev and Krishnamoorthy, 1997] applied a 
variable string length genetic algorithm (VGA) to represent topology variations in truss 
layout optimization. [Louis and Zhao, 1995] used a GA, augmented with engineering 
heuristics, to do truss layout optimization. The heuristics ensure that during topology 
generation, members are connected so that the truss is, with high probability, 
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triangularized and stable. Mutation sometimes leads to unstable structures, which are 
made stable by adding bracing. [Soh and Yang, 2001] used genetic programming for 
truss layout optimization, in which truss topology is encoded in the form of parse trees. 
The genetic programming method is shown to be flexible in handling topology variations, 
and the strategy is claimed to be valid for frames, trusses, plates and shells. Examples are 
given for a 10-bar planar truss and a 25-bar 3D transmission tower with stress and 
displacement constraints. 
 
There are several examples in the literature of the use of evolutionary computing in the 
structural optimization of high-rise building frames. [Arciszewski et al., 1994] include 
general bracing system parameters in a demonstration of machine learning. [Murawski et 
al., 2000] used evolutionary algorithms to seek optimal designs for a 3-bay, 26-story 
building with design variables representing the connectivity of beams, columns and 
supports. [Kicinger et al., 2003] use an evolutionary method to generate structural 
configurations for tall buildings, assuming a regular spacing of stories and bays, six 
different types of diagonals, and two types of beams (rigid and hinged). [Kicinger, 2004] 
combines cellular automata and a GA to generate and optimize designs, observing 
emergent behaviour. [Baldock et al., 2005] applied a modified pattern search algorithm to 
optimize lengths of bracing spirals on a tall building. [Baldock and Shea, 2006] optimize 
the bracing configuration of a high rise building using genetic programming. In contrast 
to the work of [Soh and Yang, 2001], this approach evolves programs for generating 
designs, rather than simply evolving tree representations of designs. The genetic 
programming approach is demonstrated to generate a relatively wide variety of layouts, 
which include variation in the size of basic bracing units. 
 
Many of the previous evolutionary computing methods are relatively problem-specific in 
nature. For example, trusses and high-rise buildings are generally assumed to have a 
fixed number of panels or bays, and the methods optimize bracing layouts or some basic 
overall shape parameters. More general discrete optimization techniques, similar to the 
ground structure approach of [Dorn et al., 1964], have seen less research than the 
problem-specific methods. [Hajela and Lee, 1995] developed a two-stage genetic 
algorithm for general topology design based on the ground structure approach. The 
method generates kinematically stable configurations in the first stage, and optimizes for 
response constraints (such as stress) in the second stage. Hajela and Lee used a fixed 
length bit string, which increases in size as the number of possible member connections 
increases, and as the resolution of the node positions is increased. To lessen the impact of 
node position encoding, the resolution is successively increased using a multistage 
approach [Lin and Hajela, 1993].  [Rajan, 1995] proposes an alternative ground structure 
method that applies a penalty term to unstable structures. [Leung and Nevill, 1994] used a 
2D binary array, with the problem domain limited to bars of equal length. [Nakanishi and 
Nakagiri, 1996; 1997] used a similarly restrictive approach to 2D topology optimization 
of frames and panel structures. 
 
The use of evolutionary computing with fully-connected ground structures has significant 
practical limitations. The major limitation is the difficulty in efficiently encoding a wide 
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variety of different topological configurations. The underlying grid limits the topology to 
the fineness of the chosen grid, and coarse grids severely restrict the topological freedom. 
The optimum design is highly dependent on the choice of ground structure [Yang and 
Soh, 2002]. Given that fine grids are usually not possible, the ground structures become 
problem-dependent and different designers will choose different initial configurations. A 
number of researchers have proposed more general evolutionary topology optimization 
methods that do not make use of ground structures [e.g. Shrestha and Ghaboussi, 1998]. 
[Azid and Kwan, 1999] describe the complexity of developing an efficient encoding 
scheme that handles a range of topologies and produces structurally meaningful 
topologies after modification by  mutation and crossover operations. Azid and Kwan 
assert that crossover should produce structures that bear some architectural similarity to 
their parents, even when the parents have much different complexity. [Azid and Kwan, 
1999] describe a GA-inspired method with crossover and mutation algorithms that work 
directly with the structural configuration rather than an encoded representation. The 
initial population is constructed using a randomly generated pattern of nodes. Members 
are added to connect the nodes, guided by heuristics based on bar lengths, joint 
complexity, and bar colinearity. The approach is extended to 3D truss optimization in 
[Azid et al., 2002]. [Yang and Soh, 2002] developed a general approach to discrete 
topology optimization using genetic programming. Compared to the fixed length 
chromosomes used in most GA applications, genetic programming uses 2D variable 
length parse strings which have the ability to dynamically evolve and represent a broad 
range of different topologies. 

2.2.3.2.  Continuum Optimization 
In the analysis of continua, such as plates, shells and solids, optimization is generally 
classified into sizing optimization, shape optimization and topology optimization. In 
sizing optimization, the design variables are the thickness of plate and shell elements. 
The computational methods for continuum sizing optimization are similar to those used 
for truss sizing. Shape optimization concerns the description of external and internal 
boundaries, which are parametric functions of the design variables. Topology 
optimization refers to the distribution or arrangement of material within a structure. 
Combined shape and topology optimization is called generalized shape optimization. 
 
Much of the research in shape optimization relates to finite element analysis techniques, 
in particular the remeshing of models as the boundaries change. During optimization, 
sensitivity derivatives are calculated to guide the search direction. A critical aspect of 
shape optimization is distinguishing sensitivity to changes in the boundary as from errors 
related to the accuracy of the mesh. The development of robust automatic mesh 
generators, while not eliminating sensitivity errors, has improved the performance of 
shape optimization techniques. Shape optimization is more effective as a tool for refining 
existing designs rather than synthesizing new designs. The generation of design concepts 
is one of  the strengths of topology optimization. 
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The goal of topology optimization is to find the optimal distribution of material within a 
general design domain, such as the shape of the external boundary, the number, size and 
shape of holes, and the overall connectivity. While shape optimization starts with a 
predefined parametric description of the boundaries of a structure, topology optimization 
starts with a more general set of structural requirements. The only inputs to the topology 
optimization are the applied loads, the possible support conditions, the volume of the 
structure to be constructed, and restrictions on where material should or should not be 
located. In shape optimization the design variables represent the domain through the 
parametric representation of boundaries. In topology optimization, the design domain is 
fixed, and the shape and size of the structure are defined by a set of distributed functions 
defined on the domain. These functions represent a parameterization of the stiffness 
tensor of the continuum. 
 
The early development of topology optimization methods for continuum structures is 
closely linked with theoretical work in composite materials. In the homogenization 
approach [Bendsøe and Kikuchi, 1988], the design variable is the continuous density of 
the base material in the composites. In this representation, the composite material consists 
of an infinite number of infinitely small holes periodically distributed through the base 
material. The material is parameterized through the material density ρ, where ρ=0 
corresponds to a void, ρ=1 to material, and 0<ρ<1 to porous composites.  
 
For continuum topology optimization problems involving isotropic material, a simpler 
approach called the material distribution method is available. In this formulation, each 
point in the design domain is either on structure or in a void. The geometry of the 
structure is defined by the subset of all the points in the domain that have material. On a 
domain discretized using finite elements, the structure can be viewed as a black and white 
image where the pixels of the image are the elements. In contrast, structures produced 
using the homogenization approach correspond to grayscale images, where the shade 
represents material density. The material distribution method is formulated as a 
distributed, discrete-value design problem, or a 0-1 problem. 
 

 
Figure 2.8. Continuum topology optimization problem 
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Figure 2.9. Continuum topology optimization output 

 
The topology optimization problem is defined as the problem of finding the optimal 
choice of stiffness tensor Eijkl(x) which is a variable over the reference domain Ω (Figure 
2.8). The goal is to determine the optimal subset Ωmat of points consisting of material. 
This implies that the set of admissible stiffness tensors consists of those tensors for which 
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A common approach to this problem is to replace the integer variables with continuous 
variables and use a penalty function to steer the solution to discrete 0-1 values. The 
design variable then becomes a continuous function that is interpreted as the density of 
the material. The penalty function is used to avoid regions of intermediate “density”, 
since the stiffness is small compared to the cost or volume of material. An efficient and 
commonly-used interpolation method is found in the penalized, proportional stiffness 
model (SIMP) [Bendsøe, 1989]: 
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For p > 1, intermediate densities are treated as unfavourable. To obtain true black and 
white (binary) designs, p ≥ 3 is usually required. With the current technology for 
producing advanced composite materials, intermediate densities are not necessarily 
uneconomical. For conventional construction techniques for the large scale structures 
considered in this work, however, binary designs are preferred. Because the interpolation 
function is continuous, intermediate zones between the existence and non-existence of 
material are still present, so the final useful geometry is usually obtained by filtering or 
interpretation using threshold values. 
 
Compared to conventional structural optimization, topology problems have a large 
number of variables but relatively few constraints, so efficient computational methods are 
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required. The two main classes for solving the material distribution problem are 
optimality criteria methods [e.g. Olhoff, 1970; Taylor and Rossow, 1977; Rozvany and 
Zhou, 1991] and mathematical programming techniques, such as CONLIN [Fleury, 1993] 
and the Method of Moving Asymptotes (MMA) [Svanberg, 1987]. Similar in nature to 
Sequential Linear Programming (SLP) and Sequential Quadratic Programming (SQP), 
CONLIN and MMA use separable and convex approximations to solve smooth, nonlinear 
optimization problems.  
 
A typical result of topology optimization, obtained using optimality criteria methods, is 
shown in Figure 2.9. The constraints for this problem are to minimize compliance for a 
given volume fraction (or ratio of optimized volume to available volume). Figure 2.9 
shows a characteristic result of the material distribution method; that low volume 
fractions result in truss-like structures. The material distribution method predicts similar 
forms to those obtained using classical analytical methods, such as the forms developed 
by Michell in the study of grid-like continua. For certain conditions, namely the 
minimum compliance constraint with a single load case, it has been shown that at low 
volume fractions, the optimal solution for plates in plane stress tends to that of least-
weight trusses [e.g. Rozvany et al., 1985]. 
 
Two important complications arise in the use of the material distribution method for 
topology optimization. These are the mesh-dependency of results and the appearance of 
checkerboard patterns. Mesh-dependency refers to the effect that different finite element 
discretizations of the domain can produce qualitatively different results. In practical 
applications it is preferable to have a finer element mesh result in more clearly defined 
boundaries, rather than a qualitatively different structure. The mesh-dependency problem 
has been solved, and the methods used fall into three categories. These consist of adding 
constraints to the optimization, directly reducing the parameter space, or applying filters 
as part of the optimization procedure. The checkerboard problem refers to alternating 
solid and void elements arranged in a checkerboard-like pattern, and is related to the 
finite element discretization. The techniques for reducing mesh-dependency also decrease 
the likelihood of checkerboard problems. Higher order finite elements, additional 
constraints, and filters are other ways to eliminate the formation of checkerboard patterns. 
 
Evolutionary computing methods have been applied to continuum optimization problems. 
Although not based on evolutionary computing principles, the so-called Evolutionary 
Structural Optimization (ESO) method [Xie and Stevens, 1992] is a heuristic method that 
involves the sequential removal of lightly-stress elements. Some researchers have shown 
that ESO may produce highly nonoptimal designs [Zhou and Rozvany, 2001]. A true 
evolutionary computing approach to continuum optimization was developed by 
[Sandgren et al., 1990] and [Jensen, 1992]. Their work was extended by [Chapman et al., 
1994] to optimized finely-discretized design domains. [Liang et al., 1999] present a 
method, based on ESO, for developing minimum-weight topologies for continuum 
structures under stress constraints. [Mijar et al., 1998] and [Liang et al., 2000] use 
continuum topology optimization to evolve bracing systems for simple 2D multistory 
frames. [Bentley and Wakefield, 1996] use a GA with a primitive building block 
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representation to form a system of clipped and stretched cuboids. [Griffiths and Miles, 
2003] apply a GA to the problem of finding the optimal cross-section of a beam as a 
shape and discovery problem. More recently, more advanced representation schemes 
have been developed, including Voronoi-based representations [Periaux and Winter, 
1995; Schoenauer, 1996] and representations based on fractal theory [Hamda et al., 
2002]. 

2.2.3.3.  Commercial Applications 
The major commercial finite element analysis packages, such as ANSYS and 
MSC.Nastran include continuum topology optimization routines. For example, ANSYS 
uses a material distribution method based on energy methods [Mlejnek et al., 1993]. 
Specialized structural optimization programs include Quint OptiShape, Altair OptiStruct, 
and Vanderplaats Genesis. These software packages each have the capability to do 
topology, shape and sizing optimization. Some commercial optimization programs have 
interfaces to major CAD applications; for example, Altair OptiStruct can run topology 
optimization on Pro/Engineer models using their HyperShape/Pro product.  
 

2.2.4.  Postprocessing 
The layouts resulting from structural optimization must be processed to put them in a 
form suitable for manufacturing. At a minimum, the layouts are manually converted into 
a CAD format for detailing. In combined topology and shape optimization, the rough 
boundaries produced by topology optimization are represented using smooth parametric 
descriptions, which are more suitable for manufacturing. In a further level of 
postprocessing, the topology optimization output may be used as the input for 
multiobjective optimization to include a range of manufacturing, assembly, cost and other 
criteria. 
 
Design for Manufacturing (DFM) and Design for Assembly (DFA) methods provide a 
systematic procedure for analyzing a proposed design from manufacturing and assembly 
viewpoints [Boothroyd et al., 1994]. The goal of DFM and DFA is to produce simpler 
and more reliable products which are less expensive to fabricate. More specifically, some 
of the objectives are to maximize standardization (of materials, concepts, components, 
tools and fixtures), to simplify manufacturing, to enhance uniformity, to support 
parallelism (e.g. concurrent engineering and simultaneous manufacturing), and to 
minimize resource requirements. Modularity is a systematic approach to designing 
products that share interchangeable components. Modularity shortens the product 
development cycle by reusing existing components, and by enabling simultaneous work 
in design and manufacturing. 
 
[Yetis and Saitou, 2002] proposed a systematic method for the decomposition of a 
complex structure obtained from structural topology optimization using image processing 
algorithms. Decomposition is framed as a graph partitioning problem, and solved using a 
genetic algorithm. The objective function considers strength reduction and 
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assembleability criteria related to the number and similarity of welds. [Cetin and Saitou, 
2004] extend this method to include modularity criteria, based on the similarity of the 
components.  
 
[Chickermane and Gea, 1997] present a method for optimal layout topology of 
multicomponent structural systems connected by joints (or fasteners). The input consists 
of design domains for each component, an initial distribution of joints, and a target 
number of joints. Joints are represented using a microstructure-based model. 
Optimization results in the topology of each component, along with the optimal joint 
locations. 
 
[Chirehdast et al., 1992; 1994] propose a four-phase design process called the Integrated 
Structural Optimization System (ISOS). In Phase I, an optimal initial topology is created 
as a gray-scale image using a homogenization method [Bendsøe and Kikuchi, 1988]. In 
Phase II, the image is transformed into a simpler parametric model using image 
processing techniques. In this phase, rules derived from elementary mechanics and 
engineering intuition are used to delete nodes and add or remove elements. For example, 
zero force truss elements are deleted, and elements are added to triangulate polygonal 
cells and ensure stability. Phase III implements truss geometry and sizing optimization 
using SAPOP [Bremicker et al., 1990; 1991]. In Phase IV the resulting design is either 
refined or manufactured. 
 

2.3.  Image Processing 
Image processing is the manipulation and analysis of image data, and is used in many 
fields, including medicine, astronomy, microscopy, seismology, defense, industrial 
quality control, and aerial and satellite imagery. Although image processing may be 
broadly defined, in this context the term is used to refer to operations on digital images 
where the input and output are both in the form of images. The analysis of images to 
produce measurements or high level descriptions is discussed in the following section 
under the topic of pattern recognition. Image processing commonly involves 2D images, 
but is increasingly being used on 3D data sets, such as those generated using magnetic 
resonance imaging (MRI) in medical imaging. More generally, image processing is signal 
processing using 2D or 3D signals. Many of the algorithms applicable to image 
processing, such as filtering, were developed in the signal processing field. 
 

2.3.1.  General 
Image processing is used to enhance images, using techniques such as brightness 
adjustment, contrast adjustment and noise filtering. A brightness histogram is a plot of 
the distribution of pixel brightness in an image. The histogram may be manipulated to 
adjust brightness and contrast. The histogram is used to select brightness threshold values 
to convert grayscale images into binary images [Russ, 1999]. 
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2.3.2.  Morphology 
In biology, morphology deals with the form and structure of plants and animals. In the 
field of imaging, morphology is more specifically used to describe an extensive class of 
nonlinear image processing and analysis operations [Dougherty and Lotufo, 2003]. 
Mathematical morphology was developed by Matheron and Serra at the Ecole des Mines 
in Paris for analyzing the geometric structure of geological data and materials [Serra, 
1982]. Mathematical morphology is based on Minkowski set theory and the theory of 
finite lattices. 
 
An image is a mapping, I, from a set, Sp of pixel coordinates to a set, G, of values such 
that for every coordinate vector, p=(r,c) in Sp, there is a value I(p) drawn from G. Sp is 
also called the image plane. A binary image has 2 values, thus G={νfg, νbg}, where νfg is 
called the foreground value and νbg is called the background value. The foreground is the 
set of locations, p, where I(p) = νfg; 
 

{ }fgp pIScrppIIFG ν=∈== )(),(),(}{ .    (2.3) 

 
Similarly, the background is 
 

{ }bgp pIScrppIIBG ν=∈== )(),(),(}{ .    (2.4) 

 
A structuring element (SE) is a small image whose foreground identifies neighbours to a 
given point in the image plane. Figure 2.10 shows an example of two structuring 
elements. In this figure the origin of the SE is marked with a circle, and the foreground of 
the element is indicated with gray pixels. 
 
The translate of a structuring element Z to a location p in Sp is denoted Z+p, and refers to 
a position of Z where the origin of Z coincides with location p in Sp. The Z-
neighbourhood of p in I, N{I,Z}, refers to the set of locations in the image delineated by 
Z+p. 
 

 
Z4 

 
Z8 

Figure 2.10. Structuring elements 

 
Dilation is an operation that effectively enlarges the foreground by adding pixels to the 
perimeter. A definition of dilation (Figure 2.11.a) is 
 



2.   Background 
 

  36

( )U
}{ZFGp

pIZI
∈

+=⊕ . 

 
Erosion is an operation that effectively reduces the size of the foreground by removing 
pixels at the perimeter. A definition of erosion (Figure 2.11.b) is 
 
 { }IpZSpZI p ⊂+∈=− . 
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a. dilation 
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result 

d. closing 

Figure 2.11. Morphological operations (SE=Z8) 

 
Opening is defined as an erosion followed by a dilation (Figure 2.11.c). Closing is 
defined as a dilation followed by a erosion (Figure 2.11.d). Opening and closing 
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operations are used extensively in image processing to filter noise, smooth edges, fill 
holes, and to separate or connect multiple shapes. 
 

2.3.3.  Thinning 
A recurring problem in image processing and analysis is to simplify images while 
retaining their essential geometric information. Thinning is a technique that reduces a 
pattern to a thin-line representation, and is used to facilitate pattern recognition and 
provide data compression [Blum, 1967]. Thinning is used in some automatic character 
recognition systems to simplify characters prior to processing. A commonly used 
thinning procedure is skeletonization, which is based on the concept of maximal disks. 
Given a point interior to a binary image, there exists a largest disk, the maximal disk, 
having the point at its center and also lying within the image. The centers of all maximal 
disks comprise the skeleton, or medial axis of the image [Blum, 1973]. An example of a 
skeleton is shown in Figure 2.12.a. 
 
Because of the value of thinning in pattern recognition and data compression, thinning 
algorithms have been studied extensively [Lam et al., 1992]. Thinning algorithms can be 
categorized according to whether they use the definition of medial axis given above. As 
defined, skeletons tend to have numerous spurious branches because of boundary 
irregularities. Also, the skeletonization process tends to disconnect connected sets. This 
effect is similar to that shown in Figure 2.11.b, where erosion causes continuous 
foreground objects to break into separate objects. If the structuring element is large 
enough or if erosion is repeated, the foreground objects may disappear completely. As an 
alternative to computing the medial axis, morphological “hit-or-miss” operators can 
ensure that no foreground pixels are changed where that change would create a disjointed 
object [Zhang, 1997]. 
 

              
            a. skeleton           b. distance map     c. projection 
Figure 2.12. Image processing operations 

 

2.3.4.  Distance Map 
The Euclidean distance map (EDM) produces a grayscale image from a binary image 
[Danielsson, 1980]. The brightness of a pixel in the grayscale image represents the 
distance the pixel lies from the nearest boundary. Figure 2.12.b shows the EDM of the 
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image of a character, calculated using the algorithm of Borgefors [Borgefors, 1986]. The 
darkest points on the EDM plot define a ridge that is equidistant from at least 2 points on 
the boundary of the feature. This ridge is the medial axis, and can be extracted from the 
EDM by applying an edge detection method, such as the Laplacian operator.  
 

2.3.5.  Hit-or-Miss Operators 
Although it is possible to isolate the medial axis from the grayscale distance map, this 
approach is more complex than using a morphological hit-or-miss algorithm like the one 
used to generate the skeleton in Figure 2.12.a. The hit-or-miss transform is a general 
binary morphological operator that can be used to identify particular patterns of 
foreground and background pixels in an image. The structuring element used in the hit-
or-miss transform is similar to those used in erosion and dilation, except that background 
pixels are used as well as foreground pixels. The hit-or-miss operation is performed by 
translating the origin of the structuring element to all points in the image, and then 
comparing the structuring element with the underlying image pixels. Figure 2.13 contains 
several examples of structuring elements used in hit-or-miss operations. Figure 2.13.a 
indicates conditions where the central pixel should be retained in a thinning operation. 
Deleting the central pixel would break up the image, and lead to further disintegration 
with subsequent passes of a thinning algorithm. Figure 2.13.b identifies conditions under 
which the central pixel could be deleted without affecting the connectivity of the 
foreground (assuming 8-connectivity, or that pixels sharing a corner constitutes 
connectivity). Figure 2.13.c shows how structuring elements may be used to identify 
intersection points between line-like foreground features. 
 

   
   a. retain during thinning    b. remove during thinning    c. node identification            
Figure 2.13. Hit-or-miss structuring elements 

 

2.3.6.  Projection 
The projection of a 3D object of optical transparency V(x,y,z) to an image f(x,y) is defined 
by 

 ∫= zzyxVyxf d),,(),(       (2.5) 

 
where the integration takes place over the volume of V, and the object is illuminated 
along the z axis. Radiography (x-ray imaging) is an example of projection. The projection 
of a planar image f(x,y) corresponds to illuminations of objects along a cross-section, and 
is given in cartesian coordinates by 
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 ∫= yyxfxp d),()( .       (2.6) 

 
Projections describe the intersection length of a series of section lines, and transform 
plane regions into plane curves. By intersecting an object in different directions, strong 
angular features in the object appear as peaks in the projection. An example of cartesian 
projection is shown in Figure 2.12.c.  
 

2.3.7.  Hough Transform 
The Hough transform is a method used to detect imperfect instances of objects in images 
[Hough, 1959; Duda and Hart, 1972]. In its initial form, the Hough transform was used to 
identify lines, but it has since been extended to detect general parametric shapes such as 
circles and ellipses. The transform converts an input image into n-dimensional 
accumulator space, where n is the number of parameters used to describe a class of 
object. For line detection, 2 parameters are used to describe a line so the output is a 2D 
image of the accumulator space (Figure 2.14). A line may be represented by the 
parameters of slope m and intercept b as y=mx+b. An alternative form which is 
computationally simpler is: 
 

 





+
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where r is the distance between the line and the origin, and θ is the angle of the vector 
from the origin to the closest point on the line. 
 

 
             a. input image   b. transform output 
Figure 2.14. Hough transform 

 

angle θ 

di
st

an
ce

 r 



2.   Background 
 

  40

 Each line in the image is associated with a unique couple (r,θ) in accumulator, or Hough 
space. At each point (xo,yo) in the image plane, an infinite number of lines with varying 
slope may exist.  In accumulator space, the lines have the equation 
 

 θθθ sincos)( oo yxr += ,      (2.8) 

 
which defines a sinusoid unique to each point (xo,yo). If two points in the image space lie 
on the same line, the line is defined by the intersection point of the corresponding 
sinusoids in accumulator space. To identify imperfect lines, the image is processed pixel 
by pixel. If a pixel belongs to the foreground, that pixel “votes” in accumulator space for 
the set of potential lines passing through that point. To limit the number of potential lines, 
the accumulator space is discretized into bins. Dominant lines in image space appear as 
local maxima in accumulator space, as shown by the bright points in Figure 2.14.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15. Fourier transform 
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2.3.8.  Fourier Transform 
The Fourier transform is used to decompose an image into sinusoidal components, 
providing insight into the overall periodicity and directionality of the image. The Discrete 
Fourier Transform (DFT) of a discrete 2D spatial domain image f(x,y) of width M and 
height N is 
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where the values F(u,v) are the DFT coefficients of f(x,y). The transform produces a 
complex number valued image of size M x N, where M and N correspond to the number 
of discrete frequencies in the x and y directions. The Fourier transform thus represents a 
transformation from the spatial domain to the frequency domain. 
 
The output from the Fourier transform can be displayed as a pair of images, either as the 
real and imaginary parts, or as the magnitude and phase components. In image 
processing, often only the magnitude is displayed, as it contains most of the information 
on the geometric structure of the spatial domain image.  
 
In Figure 2.15, the Fourier transforms of two spatial images are shown. The output is 
plotted on a logarithmic scale, with the center of the plot representing zero frequency 
(DC) components. The Fourier coefficients capture the periodicity of the input image in 
different directions, and are commonly used in pattern recognition schemes. 
 

2.4.  Pattern Recognition 
Pattern recognition techniques seek to describe and classify data from a wide range of 
sources. Often the data are 2D images: aerial and satellite images, radiograph and 
computed tomography (x-ray and CAT scan) images, scanned books or handwritten 
letters, microscopic images of amoebas or crystals. One dimensional waveforms such as 
seismographs and electrocardiogram traces, and 3D images from magnetic resonance 
imaging are other data sources. Data are described and classified using a set of reference 
patterns, which are either predefined or derived from similarities within the data. Pattern 
classes may be established a priori by experts, usually with a training set, during 
supervised learning. Alternatively, classes are based on statistical regularities in large sets 
of data, using unsupervised learning. 
 

2.4.1.  Overview 
A complete pattern recognition system has the following components: a sensor to collect 
data, a feature extractor to identify numeric or symbolic features in the data, and a 
description or classification scheme based on a set of patterns. Image processing 
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techniques are frequently used to remove noise from sensor data or enhance the raw data 
in other ways before features are extracted. There are two main approaches to pattern 
recognition. The classical approach follows a “Gestalt” view where the raw data is 
represented by an array of numbers representing various measurements performed on 
objects. If the numbers are the coordinates of points in space, then points which are 
geometrically close to each other represent similar objects. The problem of pattern 
recognition is to identify the regions in space where points from a single pattern lie. 
Ideally, the points corresponding to a pattern are tightly clustered and distinct from other 
patterns. Often, techniques from probability, statistics and decision theory are used, so 
this method is called statistical pattern recognition or decision theoretic pattern 
recognition. A limitation of the statistical method is the difficulty in selecting an effective 
set of measurements, particularly when patterns are complex or there a large number of 
pattern classes. Syntactic pattern recognition or structural pattern recognition is based on 
the concept that a complex pattern could be described in terms of simpler patterns. 
Similarly, complex phrases can be broken down into words, and letters of the alphabet 
can be described using strokes. Many techniques from the study of formal languages are 
used in syntactic pattern recognition, which is also known as linguistic pattern 
recognition. 
 
Much of pattern recognition is dedicated to finding a compact representation of data. 
Image data is particularly dense and direct comparison and classification of images is 
computationally expensive. Pattern recognition uses mathematical techniques to 
compactly represent image data and support symbolic reasoning with images. Patterns are 
represented as feature vectors, strings, or relational graphs. In the classical decision 
theoretic approach, each pattern is represented by an n-dimensional feature vector, and 
patterns are recognized by applying techniques in discriminant analysis and statistical 
decision theory. For complex patterns, the number of features n required for recognition 
becomes large, and the decision theoretic technique may become ineffective. In this case, 
complex patterns can be represented by simpler subpatterns, where decision theoretic 
methods are used on the subpatterns [e.g. Pavlidis, 1977]. In syntactic pattern 
recognition, the relationship between the subpatterns is encoded using strings or graphs. 
 

2.4.2.  Regions 
Images may be analyzed using global or local analysis methods. Global methods include 
the Fourier transform and the colour histogram. The Fourier transform produces a sparse 
matrix representation of an image, which can be used as elements of a feature vector. 
Global analysis is limited in the ability to capture local features of an image, which are 
often important in discriminating between images.  
 
Local analysis methods isolate uniform regions or features in an image which can be used 
with syntactic pattern recognition methods. A common method in pattern recognition is 
to identify homogeneous regions of texture and colour, a process called segmentation. 
For example, texture captures the granularity or repetitive patterns of surfaces within an 
image. In satellite imaging, differences in texture are used to distinguish water from 



2.   Background 
 

  43

grassland, and woodlands from urban areas [Haralick et al., 1973]. Regions of similar 
colour or intensity are identified using thresholding. Once images are segmented into 
regions, those regions can be characterized by a number of different methods. Regions 
can be described by scalar quantities, such as the ratio of the perimeter squared to the 
area, or by vector quantities, such as centroids. Formulations exist for moments that are 
invariant with respect to scale, position and rotation [Hu, 1962; Wood, 1996]. Scalars and 
vector quantities are incorporated into the feature vector.  Regions are also described by 
projections, or by the analytical representation of their boundaries or skeletons. 
 
Cartesian projections have been used to describe the shape of typewritten letters 
[Pavlidis, 1977] and polar projections through a common point have been used in the 
recognition of chromosomes [Rutovitz, 1970]. Discrete projections may be used directly 
as a feature vector for describing the shape of regions. They may be also processed 
syntactically to extract key features from the region. 
 

2.4.3.  Boundaries and Curves 
Region boundaries, skeletons, and curves in general are compactly represented using a 
range of different curve fitting techniques.  Although higher order polynomials and 1D 
Fourier transforms can be used to fit curves, these are global techniques that may miss 
important local features. A more effective method in pattern recognition is to use a linear 
piecewise continuous approximation or spline. A number of different algorithms are 
available for piecewise curve fitting, many of which use the techniques of iterative 
splitting and merging. In splitting, the input is repeatedly subdivided into smaller 
segments until the approximation error is below a specified threshold. In merging, 
segments are iteratively joined until no further segments can be joined without exceeding 
an error limit. 
 
The Hough transform may be used to extract parametric features from an image, such as 
lines, circles and ellipses. In the content-based retrieval of line drawings, the angles as 
well as locations of strong linear features are stored in a feature vector [e.g., Franti et al., 
2000]. 
 

2.4.4.  Structural Descriptions 
Syntactic or structural descriptions produce compact representations of shapes without 
using high level, or semantic information. They deal strictly with local features and the 
relationships between them. The earliest examples are the syntactic descriptions of 
Ledley [Ledley, 1964], and those based on the Freeman chain code [Freeman, 1961]. The 
earliest application of Freeman chain codes was to the encoding of line drawings, as 
shown in Figure 2.16. Assuming a rectangular grid, eight basic directions are defined. A 
line superimposed on the grid is represented by a series of moves from one square to 
another; thus the line in Figure 2.16 is represented by the string of numbers 
44445707670.  
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Figure 2.16. Freeman chain code [after Pavlidis, 1977] 

 
In general, the encoding of a shape into a string with symbols from a fixed “alphabet” has 
the advantages of fast algorithms, compact storage, and well-developed methods such as 
the theory of formal languages. The limitations of chain code are that they are not 
rotationally invariant, and become complex when describing global features like the 
closing of boundaries. In a slightly higher level of encoding than Freeman, Ledley uses a 
finite set of symbols to represent arcs, where for example, “a” is a convex arc of high 
curvature and “b” is a straight line [Ledley, 1964]. 
 
 
 
 
 
 
 
 
 
 
 
 

  Dp = {P, RP} 
P = {P1, P2, P3, P4, P5} 

PR = {(Left, Left_P), (Above, Above_P)} 
Left_P = {(P1, P4), (P4, P3)} 

Above_P = {(P2, P4), (P4, P5)} 
P1 = {(shape, rectangular), (colour, white)} 
P2 = {(shape, triangular)} 
P3 = {(shape, rectangular)} 
P4 = {(shape, circular)} 
P5 = {(colour, black)} 

Figure 2.17. Structural description example 

 
In a generalization of the above methods, a structural description D of an object is 
formulated as a pair D = (P, R), where P = {P1, ... , Pn} is a set of primitives [Shapiro and 
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Haralick, 1981]. Each primitive Pi is a binary relation Pi ⊆ A × V, where A is a set of 
possible attributes and V is a set of possible values. R = {PR1, ... PRK} is a set of named 
N-ary relations over P. For each k = 1, ... , K, PRk is a pair (NRk, Rk) where NRk is a name 
for relation Rk, and for some positive integer Mk, Rk ⊆ PMk. Thus, set P represents the 
parts of an object, and set R represents the relationships between the parts. The elements 
of any relation Rk may include as components primitives, attributes, values and any 
symbols necessary to specify the given relationship. An example of a structural 
description using the above syntax is shown in Figure 2.17. 
 

2.4.5.  Relational Graphs 
The structural description may be realized as an attributed relational graph (ARG) 
[Eshera and Fu, 1986; Foggia et al., 1999]. The ARG is defined as G = (V, E, AV, AE, αV, 
αE) where V and E are respectively the sets of the vertices and the edges of the ARG; AV 
and AE are the sets of the vertex and edge attributes, and αV and αE are the functions 
associating to each vertex or edge the corresponding attributes. The attributes of a node 
or edge have the form t(p1, ..., Pkt), where t is a type chosen over a finite alphabet T, and 
(p1, ..., pkt) are a tuple of parameters, also from finite sets ''

1 ,..., ktPP . Both the number of 
parameters kt and the sets they belong to depend on the type of attribute, and for some 
type kt may be equal to 0 (the attribute has no parameters). The type information 
discriminates amoung different kinds of nodes or edges, and the parameters characterize 
the nodes or edges of a given type. Usually the nodes of a graph represent the primitives 
of the structural descriptions, and the edges represent the relations between the 
primitives. The graph definition is often abbreviated as G=(V,E). The numbers of vertices 
and edges have been expressed as |V| and |E|  in the literature. 
 
 

 
Figure 2.18. Attributed relational graph 
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Relational attributes such as Left and Above, shown in Figure 2.18,  are frequently used in 
pattern recognition.  Since the attributes have no associated numerical values, only binary 
values, their expressive power is limited. If additional relations such as Above_Left and 
Touches are added, understanding similarities between objects becomes more difficult. 
Alternatively, spatial relationships between primitives may be represented by a single 
character hexadecimal direction code in the range [0, ..., f], which allows for a 
compatibility function that can discern similarity by numerical difference [Blake, 1994]. 
This definition still does not express the spatial distance between primitives. [Thoresen, 
2007] proposes the use of an n-dimensional vector d as edge attribute, where n is the 
number of spatial dimensions in the image. In a computer vision application where the 
vertices represent regions, d = c2 – c1,  where c1 and c2 are the centroids of the regions. 
 

2.4.6.  Output 
Given an input image, the goal of pattern recognition is generally to describe or classify 
the image. A description in this context usually means a natural language representation 
in text, or another language that can be easily converted to such a form. A goal in 
machine vision, for example, is to describe all the relevant information in a scene, 
including the types of objects in the scene and the spatial relationships between those 
objects. The goal of classification is to assign an image, or parts of it, to a class. Classes 
may be defined by a formal description, or more commonly, by a set of example images 
from each class. Classification is closely linked to inference and learning. Where no 
formal definition of a class exists, it is necessary to infer the definition from the 
examples. Related to classification, clustering is the process of determining similarity 
between images. 
 
Using pattern recognition techniques, images may be represented in a number of different 
formats, including feature vectors, character strings, and relational graphs. The ease with 
which images support description, classification, learning and clustering strongly depends 
on the representation format.  
 
Classification using feature vectors is a well developed subject in pattern recognition. 
Statistical pattern classification determines the probability P(c|x) that an object 
represented by a vector x belongs to class c. This probability may be estimated using 
Bayes’ theorem, given that a set of objects with known classification is available. 
Similarity between feature vectors is readily assessed using a nearest neighbour 
algorithm, often just the Euclidean distance between vectors. The description of an image 
using feature vectors is more problematic than classification or clustering, because they 
often lack the ability to represent structural relationships. 
 
Character string representations of images support both classification and description, 
provided the string elements come from a finite set. In this case, the theory of formal 
languages can be used for pattern recognition. Inference using strings is more difficult, 
and clustering is often limited by a lack of meaningful similarity measures. 
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For graphs, the classification, description, learning and clustering problems are generally 
more difficult than for vectors or strings. Graphs may be classified by first constructing a 
feature vector from the graph. The vector may contain graph theoretic properties, such as 
the maximum degree of nodes, connectivity and number of branches, or graph label 
information. To generate descriptions from graphs, graph languages and grammars have 
been developed. For classification, methods used for strings may be applied. Similarity 
measures for graphs have been widely studied; this is the graph matching problem. 
 

2.4.7.  Graph Matching 
Since the early 1970s when relational graphs were first used to represent 2D scenes in 
machine vision [Barrow and Popplestone, 1971], there has been a strong interest in 
developing practical methods to determine the similarity between graphs. An important 
property of graphs in pattern recognition is that by definition they are invariant with 
respect to transformation, rotation and scaling2. The graph isomorphism problem is to 
determine whether two graphs are the same. Another, more common problem is to 
determine whether one graph is part of another graph. This is the subgraph isomorphism 
problem, where a subgraph is obtained from a graph by deleting vertices. The subgraph 
isomorphism problem is stated as follows [Cook, 1971]: 
 

Given graphs G=(V1,E1), H=(V2,E2), 
does G contain a subgraph isomorphic to H, i.e. a subset V ⊆ V1 and a 
subset E ⊆ E1 such that |V|=|V2|, |E|=|E2|, and there exists a one-to-one 
function f:V2→V satisfying {u,v} ∈ E2 if and only if {f(u),f(v)} ∈ E? 

 
The subgraph isomorphism problem is computationally demanding because of its 
combinatorial nature, and has been proven to be NP-complete [Garey and Johnson, 
1979]. Using a brute-force matching algorithm, the computing time increases 
exponentially with the size of the graphs, restricting graph-based techniques to graphs 
with a relatively small number of vertices and edges. A procedure that significantly 
reduces is the size of the search space is the backtracking algorithm of [Ullmann, 1976], 
still commonly used today. To reduce the complexity, researchers have imposed 
topological restrictions to planar graphs [Hopcroft and Wong, 1974] or trees, or have 
employed pruning methods [Corneil and Gotlieb, 1970]. 
 
Where solutions to the graph isomorphism and subgraph isomorphism problems do not 
exist, the maximum common subgraph gives a measure of similarity between graphs. A 
common subgraph of two graphs G1 and G2 is a graph G3 such that there are subgraph 
isomorphisms from G3 to G1, and from G3 to G2. A common subgraph G3 of G1 and G2 is 
called a maximum common subgraph if there is no other common subgraph of G1 and G2 
                                                 
2 Invariance is not always desirable; in character recognition, the characters ‘6’ and ‘9’ 
are similar under rotational invariance. Note if vertex or edge attributes contain absolute 
position information, then the graph is not invariant to translation, scale and rotation. 
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that has more vertices than G3. Note that the maximum common subgraph is usually not 
unique.  
 
In practical pattern recognition applications, noise and error are often present. The 
methods discussed up to this point describe exact graph matching techniques. Inexact 
graph matching is concerned with determining the similarity between graphs where exact 
matches do not exist. Most of the classical methods for error-tolerant graph matching 
[e.g. Shapiro and Haralick, 1981], are variations of the A* search procedure, a tree search 
incorporating heuristic lookahead. The similarity between two graphs is often expressed 
as a distance measurement [e.g. Eshera and Fu, 1984]; the smaller the distance, the more 
similar the graphs. The distance between graphs is commonly defined as the minimum 
cost of a sequence of operations that transforms one graph to another. The minimum cost 
subgraph isomorphism problem may be formulated as: 
 

Given graphs G=(V1,E1), H=(V2,E2) where |V1|<=|V2|, a vertex cost 
metric Ev(vi,vj) for associating a vertex vi ∈ V1 to a vertex vj ∈ V2, and an 
edge cost metric Ee(ek,el) for associating an edge ek ∈ E1 to an edge el ∈ 
E2, what is the minimum cost subgraph isomorphism from graph G to 
graph H? 

 
In an alternative formulation, graph edit distances [Bunke, 1998] measures similarities 
through a series of graph edit operations. Typical operations are the insertion, deletion 
and substitution of vertices and edges. Bunke shows that graph edit distance computation 
is equivalent to solving the maximum common subgraph problem. 
 
Morphological graph matching and elastic graph matching are other inexact matching 
techniques. Elastic graph matching takes into account the potential deformation of objects 
during recognition; in a two step process objects are first matched to a rigid grid, and the 
grid is then deformed using operations such as rotation and scaling. This method has been 
used for identification and tracking of cyclones [Lee and Liu, 1999]. In morphological 
graph matching, hyperplanes or deformable spline-based models are applied to the 
skeletons of non-rigid discrete objects [di Ruberto and Dempster, 2001]. Morphological 
graph matching has been applied to shape recognition from large image libraries [Huet 
and Hancock, 1999]. 
 
Graph matching is an inherently intractable problem, and there are many different 
approaches in the literature that attempt to reduce the complexity. Approximate methods 
can reduce the complexity in most cases from exponential to polynomial, however they 
do not guarantee an optimal solution. Graph matching methods have used heuristics, 
probability-theory based approaches, fuzzy set theory, genetic algorithms, neural 
networks, decision trees, clustering techniques and constraint satisfaction methods, 
amoung others.  
 
Probability theory has been applied by many researchers. A general review on 
probabilistic graph matching can be found in [Farmer, 1999]. One of the first uses of 
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probability theory in graph matching was in an iterative approach called probabilistic 
relaxation [Hancock and Kittler, 1990]. Fuzzy set theory has been used to represent 
distance between objects in images [Bloch, 1999]. [Messmer and Bunke, 1991] applied 
decision trees to the computation of error-correcting graph isomorphisms. Neural 
networks were used in a face authentication system with deformable graphs [Duc et al., 
1999]. [Fan et al., 1998] employ clustering techniques in the automatic recognition of 
form documents. [Cross, Wilson and Hancock, 1996] describe a framework for 
performing relational graph matching using genetic search with Bayesian consistency 
measures. Graph matching is formulated as a constraint satisfaction problem in [Yaner 
and Goel, 2003]. 
 

2.5.  Structural Stability 
Structural stability is a term often used to describe the essential characteristic that 
separates structures from mechanisms. In this boundary region between the traditional 
disciplines of structural and mechanical engineering, several other terms are used to 
describe the same characteristic, including mobility, rigidity, and kinematic determinacy. 
Stability in this context must be distinguished from the more common usage of stability 
in structural engineering, in the context of the buckling of compressive elements. While 
the distinction between a structure and a mechanism is often obvious to the human 
designer, such a distinction is not readily made by the computer. In developing a 
computational system to assist conceptual structural design, the notion of stability must 
be studied more closely. This section outlines several different approaches to stability, 
including Maxwell’s rule, linear structural analysis, and mathematical rigidity theory. 
 
From the beginning, a single geometric shape has been central to the study of structural 
stability: the triangle. In a mechanics textbook from 1868, the following guidance was 
given to ensure the rigidity of a truss: 
 

The word truss is applied in carpentry and iron framing to a triangular 
frame, and to a polygonal frame to which rigidity is given by staying and 
bracing, so that its figure shall be incapable of alteration by turning of the 
bars about their joints. If each joint were [...] like a hinge, incapable of 
offering any resistance to alteration of the relative angular position of the 
bars connected by it, it would be necessary, in order to fulfill the condition 
of rigidity, that every polygonal frame should be divided by the lines of 
resistance of stays and braces into triangles and other polygons so 
arranged, that every polygon of four or more sides should be surrounded 
by triangles on all but two sides and the included angle at farthest. For 
every unstayed polygon of four sides or more, with flexible joints, it is 
flexible, unless all the angles except one be fixed by being connected with 
triangles. 

         [Macquorn Rankine and Millar, 1868] 
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Such geometric rules for stability are still widely used, and can be exploited during 
conceptual design. In addition, several mathematical approaches to stability are available.  
 

2.5.1.  Maxwell’s Rule 
In 1864, James Clerk Maxwell published an algebraic rule specifying a condition for a 
pin-jointed frame composed of b rigid bars and j joints to be both statically and 
kinematically determinate3. The number of bars needed to stiffen a two-dimensional 
frame free to translate and rotate on a plane as a rigid body is given by 
 
 b = 2j – 3        (2.10) 
 
The physical reasoning behind the rule is that each added bar links two joints and 
removes at most one internal degree of freedom. The rule just equates the number of 
external and internal degrees of freedom. Maxwell’s rule for three dimensions can be 
more generally written as 
 
 b = 3j – c        (2.11) 
 
where c is the number of kinematic constraints (c  ≥ 6 in three dimensions) [Maxwell, 
1864]. As Maxwell noted, this equation is a necessary, but not a sufficient condition for 
establishing determinacy. As an example, both structures shown in Figure 2.19 comply 
with Maxwell’s rule, but the one on the left is obviously stable while the right one 
contains a mechanism. Maxwell also observed there were special assemblies, with fewer 
than 2j-3 bars, that tighten up as its mechanisms are mobilized, warning that the stiffness 
of these assemblies is “of an inferior order” and that “a small disturbing force may 
produce a displacement infinite in comparison to itself” [Calladine and Pellegrino, 1991].  
 

 
Figure 2.19. Limitation of Maxwell’s rule 

 

2.5.2.  Gruebler’s Equation 
In a well-known kinematics approach, Gruebler’s equation [Gruebler, 1885] defines the 
degree of freedom, or mobility M, of a planar assembly as 
                                                 
3 Although the rule commonly bears Maxwell’s name, this algebraic relationship was known at least as 
early as 1837 (Möbius, A.F., Lehrbuch der Statik, Vol. 2, Leipzig, Göschen). 
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 M = 3(L-1) – 2J       (2.12) 
 
for an assembly with L rigid links and J joints. If M is positive, the assembly is a 
mechanism, and if not, the assembly is a structure. Although a degree of freedom equal to 
or less than zero is necessary for immobility of the structure, this does not guarantee the 
structure is not mobile. Even more sophisticated formulae for the degree of freedom, such 
as the one derived by Kutzbach [Norton, 2003], represents only a necessary condition, 
but not a sufficient condition. 
 

2.5.3.  Static and Kinematic Indeterminacy 
Structures are referred to as statically indeterminate if there is a unique solution to the 
equilibrium equations for any applied loading. A statically indeterminate structure will 
admit different states of self-stress, where the structure can be stressed against itself, even 
in the absence of external loads. In practical terms, if the bars of a statically indeterminate 
truss are not fabricated to precise lengths, force will be required to fit the bars, resulting 
in a self-stressed structure.  
 
Structures are termed kinematically indeterminate if there is a unique solution to the 
compatibility equations for any set of internal extensions of the bars. If a structure is 
kinematically indeterminate, then there will be certain movements of the joints, where, at 
least to the first-order approximation, there are no changes in bar lengths. Kinematically 
indeterminate structures are mechanisms. Traditionally, structural engineers avoid 
mechanisms, and redesign structures with mechanisms to avoid instability and large 
motion. The assumption of first-order joint displacements has a practical significance. 
Small-displacement, linear finite element analysis is widely used in engineering practice, 
and this method is limited to kinematically determinate structures. In the special case of 
prestressed structures, however, mechanisms play an important role. The development of 
cable nets, fabric roofs and tensegrity structures [Fuller, 1975] in the 1970s led to a 
renewed interest in the theoretical aspects of prestressed mechanisms [Kuznetzov, 1975; 
Calladine, 1978; Pellegrino and Calladine, 1986]. 
 

2.5.4.  Linear Structural Analysis 
This section gives an overview of the linear structural analysis of pin-jointed bar 
frameworks. The analysis concerns a three dimensional assembly with j joints connected 
by b pin-jointed bars; a total number of c kinematic constraints prevent the joints from 
moving. 
 
In linear structural analysis, three principles must be satisfied; that internal forces t are in 
equilibrium with the applied forces f, that any internal deformation e is compatible with 
external displacements d, and that internal forces t and elongations e are related by a 
material law. The (3j-c)-dimensional nodal load vector f contains the x-, y- and z-
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components of the external forces applied at each node of the assembly. The b axial 
forces are assembled in the tension vector t, where the axial force in bar i, ti, is positive if 
tensile. The x-, y- and z-components of the displacement of each node, excluding 
kinematically constrained directions, are assembled in the (3j-c)-dimensional nodal 
displacements vector d. The elongation vector e consists of the b bar elongations, with 
the convention that the elongation of bar i, ei, is positive for an increase in length. 
 
For small perturbations about the initial equilibrium configuration of a structure, these 
relationships can be linearized as three matrix relationships: 
 
 f = At         (2.13) 
  
 e = Cd         (2.14) 
 
 t = Ge         (2.15) 
 
where the (3j-c×b) coefficient matrix A is the equilibrium matrix, the (b×3j-c) coefficient 
matrix C is the compatibility matrix, and G is a diagonal matrix with element stiffnesses 
EA/L on the diagonal.  
 
The static-kinematic duality of the above equations can be demonstrated using the 
principle of virtual work. Equating internal and external work, 
 
 δWint = δWext , or        (2.16) 
 
 δeTt = δdTf ,        (2.17) 
 
and substituting equations 2.13 and 2.14 this becomes 
 
 δdTCTt = δdTAt ,       (2.18) 
 
which is valid for any displacement δd, and results in  
 
 CT = A.        (2.19) 
 
Using the stiffness method, the internal forces are condensed out of the above equations 
(2.13-2.15) to form a single stiffness relationship which relates external forces to nodal 
displacements. Substituting equations (2.15), (2.14) and (2.19) into equation (2.13), 
 
 f = AGATd = Kod ,       (2.20) 
 
where Ko is the linear stiffness matrix. If a system is to be stable, the matrix Ko must be 
positive definite, or equivalently, of full rank, where r(Ko) = 3j – c. It will be shown, 
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however, that determining the rank of the equilibrium matrix is sufficient to establish the 
stability of the system [Deng and Kwan, 2005].  
 
 Ko = AGAT = A(G*G*T)AT = (AG*)(AG*)T    (2.21) 
 
where G* is also a diagonal matrix. For regular bar frameworks, all elements in G are 
positive, so the rank of AG* takes its value from the rank of A. Furthermore, since the 
rank of a matrix X is the same as that of XXT, then 
 
 r(Ko) = r[(AG*)(AG*)T] = r(AG*) = r(A) = r.    (2.22) 
 
Therefore, whether Ko is positive definite can be judged from the rank of the equilibrium 
matrix A3j-c×b. 
 

2.5.5.  Equilibrium matrix analysis 
A detailed analysis of the equilibrium matrix yields considerable insight into the 
characteristics of a structure, as shown by [Pellegrino and Calladine, 1986]. The 
equilibrium matrix A can be considered a linear operator between two vector spaces, the 
bar space ℜb and the joint space ℜ3j-c. The four fundamental subspaces associated with A 
have the following properties.  
 

• If the Nullspace of A has dimension s=0, then the structure is statically 
determinate. 

• If s>0 then the assembly is statically indeterminate, and s=b-r is the number of 
independent states of self-stress it admits. 

• If the Left-nullspace of A has dimension m=0, then any load f can be equilibrated 
by the assembly in its initial condition, and the assembly is kinematically 
determinate. 

• If m>0 the assembly is kinematically indeterminate, and m=3j-c-r is the number 
of independent inextensional mechanisms. 

 
Note that these subspaces coincide with the subspaces associated with the compatibility 
matrix C(=AT). Also, note that the dimensions of the four subspaces can easily be 
computed once the rank r of the equilibrium matrix is known. 
 
The value of r can be determined in several different ways, but using the Singular Value 
Decomposition (SVD) on the equilibrium matrix also gives orthogonal sets of m 
inextensional mechanisms and s states of stress. Note that algorithms to compute the 
SVD are part of commercially-available software such as MATLAB. 
 
 A = U Σ VT        (2.23) 
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where U={u1,u2,...,u3j-c} consists of a set of left singular vectors, V={v1,v2,...,vb} contains 
a set of right singular vectors, and a set of singular values is found in the first r non-zero 
diagonal elements of Σ. 
 
The singular vectors, all of unit norm, can be grouped into the following submatrices 
 
 Ur={u1,u2,...,ur} Um={ur+1,...,u3j-c} 
 Vr={v1,v2,...,vr} Vs={vr+1,...,vb} 
 
which have the following interpretations: 
 

• Ur contains modes of extensional deformation (i.e. loads that can be equilibrated 
by the structure in its current configuration); 

• Um contains modes of inextensional deformation, i.e. mechanisms (i.e. loads that 
cannot be equilibrated by the structure in its current configuration); 

• Vr contains set of kinematically compatible extensions corresponding, through the 
singular values, to the extensional modes in Ur; 

• Vs contains sets of kinematically incompatible extensions (i.e., states of self-
stress). 

 
The basis for states of self-stress is often referred to as  
 

SS = [vr+1,...,vb]       (2.24) 
 
and the basis for the mechanisms is  
 
 D = [ur+1,...,u3j-c].       (2.25) 
 
The mechanisms in D can be either internal mechanisms or rigid-body mechanisms, as a 
result of inadequate kinematic constraints on the structure. A scheme to separate the 
internal mechanisms from the rigid-body ones was proposed by [Pellegrino and 
Calladine, 1986], and it can accommodate up to six rigid-body mechanisms. 
 

2.5.6.  Mechanisms 
A kinematically indeterminate structure with internal mechanisms is not necessarily 
unstable. If the structure tightens up as the mechanism is displaced, because of second-
order or higher order bar length changes, the mechanism is called infinitesimal. If the 
structure does not tighten up, the mechanism is called finite. Infinitesimal mechanisms 
have been classified according to the order to which the changes of bar length relate to 
the displacements [e.g. Vassart et al., 2000]. First-order infinitesimal mechanisms, where 
displacements are related to second-order bar length changes, may be stabilized by a state 
of self-stress, in which case the structure is termed prestress stable. 
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The stiffness of mechanisms can be assessed using geometrically nonlinear iterative 
methods, so-called large displacement analysis. Another approach is to use the product 
forces to calculate the geometric loads associated with an inextensional mechanism 
[Pellegrino and Calladine, 1986; Pellegrino, 1990]. This method has been found to be a 
special case of the geometrically nonlinear tangent stiffness matrix found in nonlinear 
FEA [Deng and Kwan, 2005]. 
 
The rigidity or stability of mechanisms is also covered by mathematical Rigidity Theory 
[Connelly and Whiteley, 1992], using different terminology.  A tensegrity framework 
G(P) is defined by a graph G on P=[p1,p2,...,pn], where each edge is either a cable, strut or 
bar. Cables cannot increase in length, struts cannot decrease in length, and bars cannot 
change length. A broadly defined term rigidity incorporates all frameworks that do not 
have finite mechanisms. Since rigidity theory is not directly linked to the physical 
realization of structures, stability is established independent of material properties and 
member cross-sectional properties. 
 
The structural synthesis of kinematic mechanisms uses computational methods to 
enumerate all mechanisms having a specified number of links, degrees of freedom, and 
types of joints. Graph theoretical techniques are used to detect rigid, or degenerate, 
mechanisms [e.g. Davies, 1968; Lee and Yoon, 1992]. Many of these techniques are 
limited to mechanisms satisfying Gruebler’s equation, to planar mechanisms, or planar 
graphs of mechanisms. 
 

2.6.  Summary 
This section summarizes the research background covered in this Chapter, highlighting 
the gaps in the existing body of research and the need for further work.  
 
Early artificial intelligence methods such as expert systems have not found successful 
application in conceptual structural design, primarily because of the lack of well accepted 
domain models for design synthesis. Expert systems for design have largely been 
supplanted by case-based reasoning, which has the potential to leverage the vast amount 
of information contained in past experiences. Research in CBR for design applications 
has yielded effective methods of human-computer interaction, particularly in creative 
disciplines like architecture, where it is important for the user to retain control of the 
design process. A major shortcoming of CBR in conceptual structural design is the lack 
of support for visual information. Existing CBR systems for conceptual design use 
primarily textual attributes or simplified geometric attributes. Although sophisticated 
text-based case retrieval methods have been developed, these methods cannot fully 
represent the visual and graphical information that is an important part of conceptual 
structural design. One of the goals of this research is to apply visual case-based reasoning 
techniques to conceptual structural design. 
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The conceptual design of buildings has been extensively covered in the literature, given 
the obvious economic implications. Computer systems that support conceptual building 
design generally use geometric reasoners with limited capabilities. The reasoners are 
limited to the relatively simple spatial relationships found in economical buildings based 
on a rectilinear grid system with conventional column and beam construction. Although 
there are many potential applications for such systems, they are generally not suitable for 
the free-form, curvilinear construction that is common in modern architecture. This 
research proposes a system that is useful for a wide range of structural applications, 
including scientific instruments, industrial equipment supports, bridges and buildings. 
 
Sophisticated graphical user interfaces have been developed in fields such as architecture 
and industrial design, where natural, pen-based applications simulate sketching, clay 
modeling and other creative form-finding methods. Unfortunately, such applications do 
not recognize content such as the meaning of elements and relationships between them.  
Symbolic sketch recognition computer programs have been developed in architecture and 
mechanical design. For mechanism design, there are diagrammatic reasoning systems that 
convert unlabeled line drawings into a description of a physical system. The systems infer 
structural components, connections, causal interactions, processes and functionality from 
drawings. No similar applications exist in the field of conceptual structural design. 
 
Major commercial CAD software applications now support natural input methods such as 
sketching. A significant drawback of such applications is that they do not understand the 
language of requirements, and require the user to interpret these in the form of well-
defined design concepts. The framework proposed in this research directly interprets 
design requirements, synthesizes new concepts, and evaluates these concepts even though 
they are not precisely defined. 
 
Of the vast number of computer applications for engineering optimization, topology 
optimization methods are most applicable to conceptual structural design. Continuum 
topology optimization methods are used for the design of plate, shell and solid structures. 
Truss and frame topology optimization methods are used for the design of skeletal 
structures consisting of an assemblage of discrete members. For truss topology 
optimization, one of the most general methods is the ground structure approach, which 
starts with a large number of potential design configurations. This method is known to be 
computationally demanding, particularly for a fully connected ground structure with fine 
node spacing. In practical applications, the ground structure is therefore relatively coarse, 
and must be carefully selected based on both domain- and problem-specific 
considerations. Truss topology optimization is complicated by the fact that even small 
changes in topology can lead to large differences in stiffness, limiting the use of classical 
gradient-based optimization techniques. Global optimization methods such as 
evolutionary computing have been found to be effective for discrete topology 
optimization. For design problems that are highly nonlinear or nonconvex, global 
optimization methods may be the only practical solution technique. Methods that use 
randomly generated ground structures to generate initial populations represent some of 
the most flexible and efficient evolutionary computing techniques for conceptual 
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structural design. Such methods are particularly useful when the search space is complex 
or poorly-understood, and they can be used as a tool to explore and gain a better 
understanding of that space. If the search space contains structure that can be exploited 
by special-purpose search techniques, the use of evolutionary methods is generally 
computationally less efficient than those techniques [De Jong, 1990]. There is a need for 
efficient methods for finding and optimizing the topology of discrete structures. This 
research proposes an efficient, special-purpose framework for rapidly generating discrete 
topology at the conceptual design stage. 
 
Continuum topology optimization methods are efficient, well-established, and 
commercially available. The major drawback is that the output of such methods is not 
directly suitable for fabrication, particularly at scales larger than a few meters. Research 
in continuum topology optimization has appeared to shift towards micro- and nano-scale 
fabrication and material design. Some researchers suggest that the difficulties with 
fabricating the shapes produced by topology optimization will lessen as manufacturing 
capabilities are improved, a clear reference to micro- and nanotechnology [e.g. Rozvany, 
2009]. Changes in manufacturing techniques for large scale structures do not occur as 
quickly, and the limitations in applying continuum topology optimization to such 
structures are expected to persist for some time. The framework presented in this research 
leverages the efficiency of continuum optimization methods, and extends their range of 
applicability to large scale structures. Although other research has been done in this area, 
the work proposed here represents a wider approach that integrates topology generation 
with visual case-based reasoning and visual inference methods. Also the this work 
proposes an efficient method for generating stable skeletal structures. 
 
Although methods for verifying structural stability are well established, efficient methods 
for generating stable structures are not. In truss topology optimization, stability is 
generally ensured using heuristics and generate-and-test methods. A common heuristic is 
to add sufficient members to ensure that all polygonal cells are triangular. Generate-and-
test refers to the generation of a large number of different topological configurations, and 
filtering out the ones that are unstable. This work proposes an efficient method for 
generating stable skeletal structures using classical mathematical optimization methods. 
The stability optimization method presented here produces information that directly 
supports the detailed analysis and design of economical connections between members. 
 
Given the importance of visual and graphical information during conceptual design, it is 
remarkable that few computational tools for conceptual structural design exploit this 
information. In the fields of image processing and pattern recognition, there are well-
established, rigourous techniques for manipulating graphical information. Such 
techniques have been applied for many years in areas such as medical imaging, remote 
sensing, and maufacturing, but few of these techniques have been applied to conceptual 
structural design. The framework presented here makes extensive use of these methods to 
generate conceptual designs and reason with those designs at relatively high levels of 
abstraction. 
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3.  Framework 
 
 
 
 
This chapter gives an overview of a proposed framework for the conceptual design of 
structures. The overview is followed by a detailed discussion on the components making 
up the framework. 
 

3.1.  Overview 
The conceptual design of structures is a fluid process. Concepts are repeatedly 
synthesized, dissolved, combined and evolved. To effectively explore a wide expanse of 
design space requires rapid evaluation of concepts. Evaluation at this stage of design is 
more subtle than at later stages. The concepts are still abstract and lacking numerical 
certainty, and often requirements are not completely formed. Compounding this, there are 
many different possible views of an abstract concept, reflecting the varied experiences of 
the participants. Conceptual design is a highly visual and symbolic process, where 
sketches and diagrams are essential tools to crystallize design from ideas. 
 
The most important creative force during conceptual design is the human designer. To 
effectively aid the designer, computational tools should recognize the key processes a 
human designer uses. These processes include the retrieval of past experience, and the 
evaluation and modification of design concepts. Evaluation techniques are generally 
qualitative, but quantitative methods are also used. Qualitative evaluation includes the 
use of logic and heuristics. Conceptual design requires reasoning at high levels of 
uncertainty and abstraction. Inferential reasoning is important in applying past 
experiences, provided there is a mechanism for understanding similarity between 
concepts. Throughout the design process, the designer modifies, combines and 
reevaluates existing concepts to produce new ones. Once a concept has been selected, the 
designer acquires additional knowledge as the design is developed to the detail stage, 
then fabricated, installed and put in service. This knowledge becomes part of the store of 
experience for future designs. 
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The framework proposed here has been developed to support the conceptual design of 
structures by enabling the rapid generation of new designs, and by facilitating the reuse 
of past designs. Visual reasoning techniques are central to the framework, and are used to 
evaluate, describe, classify and learn from the forms that embody structural design 
concepts. A formal computational framework to support design may be described in 
terms of a design process model, a representation model, and a set of problem-solving 
methods. 
 
The design process model is centered on the generation or synthesis of alternative 
conceptual forms. Conceptual structural design starts with a set of design requirements, 
from which lower level specifications or expectations are formulated. A conceptual 
design description is typically developed through a cycle, where a concept is proposed, 
its behaviour is analyzed, and this behaviour is compared to expected behaviour. In the 
design process model proposed here, generation relies heavily on mathematical 
optimization methods. Optimization is a constrained, stepwise search for an optimal 
configuration. In a design problem, the meaning of the term optimal is provided by the 
requirements and specifications. At each optimization step, analysis is performed to 
determine a new search direction and step size. Although optimization is a widely-used 
strategy for problem solving in general, this work uses optimization methods that are 
specifically suited to conceptual structural design, including topology optimization. 
 
Design creativity, unlike design analysis, is a process that is not readily learned in the 
classroom. While reliable procedures can be described to do analysis, creativity is almost 
always learned by example. The most creative designers draw heavily from a range of 
personal experiences and observations, often applying knowledge from past situations in 
a new context. Case-based reasoning is a computational paradigm for reuse of past 
experiences. The design process model described here relies on case-based reasoning 
techniques to classify, store and retrieve past design experiences. Case-based reasoning 
has been used in several research systems for conceptual structural design. In those 
systems, the emphasis is has been textual information. In contrast, this work focuses on 
visual case-based reasoning, which uses images and shapes, in addition to text. Visual 
case-based reasoning overlaps the related areas of pattern recognition and content-based 
image retrieval. 
 
Reasoning at multiple levels of abstraction, using incomplete and uncertain information, 
is a fundamental requirement during conceptual design. A flexible data representation 
model is needed to support this type of reasoning. Abstraction is an important concept for 
organization, classification and retrieval of data. Hierarchical data models are often used 
to represent data abstraction. Object-oriented programming methods support hierarchy 
and abstraction through techniques such as inheritance. For effective retrieval of cases 
from a case-based reasoning system, concepts should be related at different levels of 
abstraction. This is because different users will view the same concept at different levels 
of abstraction, or with differences in specific terminology. In this work, abstraction is 
supported at a number of levels. For example, images of specific forms are generalized 
into symbolic structures, such as relational graphs. Also, images are viewed at multiple 
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levels of resolution to enable higher level, content-based comparisons. Using abstraction, 
comparisons between concepts can be made at several different levels, supporting 
learning by inference. 
 
 

 
 

Figure 3.1. Overview of conceptual design generation 

 
All stages of the design process have uncertainty, but none more so than early design. In 
the final stages of design, much of the uncertainty is random in nature. In contrast, the 
bulk of the uncertainty during conceptual design is due to a lack of information. As 
design concepts are incrementally refined, more detailed information is added. A flexible 
representation model is required to represent both early abstract concepts and later 
detailed information, and allow for a seamless transition from one to the other. 
 

Requirements 

Synthesis Phase 

Structure Graph 

Refinement Phase 

Finite Element 
Model 

Optimization Phase

Conceptual  
Design Model 

Reformulation 

Evaluation and 
Selection Phase 



3.   Framework 
 

  61

 The design framework uses a number of different problem-solving methods from a range 
of disciplines, including structural analysis, mathematical programming, image 
processing and pattern recognition. The finite element analysis method, the workhorse of 
the structural design office, is used in this work for different purposes, at varying levels 
of abstraction. Finite element methods are used to evaluate the objective function during 
structural topology optimization. For certain objectives, such as minimum compliance, 
topology optimization requires very few details on the specific material and load values, 
and is an ideal tool for conceptual design. In this work, finite element methods are also 
used to generate a series of potential stable design configurations, and to evaluate 
objective functions in multiobjective optimization. This framework also utilizes a range 
of tools from image processing and pattern recognition to incrementally convert an image 
of a specific structural form to a more abstract representation of its content. 
 
Using the framework, a design is initiated using one of two methods: by the design 
generation method, or by case-based reasoning. The design generation uses methods in 
structural topology optimization to synthesize a structural form from a set of 
requirements. In case-based reasoning, a structural form is retrieved from a library and is 
used as the basis for a new design. Forms may be retrieved by supplying a set of 
requirements, or by specifying a form or shape to match. An overview of the design 
generation method is given in Figure 3.1. This method is covered in detail in Section 3.2 
through 3.4. Alternate generation methods are presented in Section 3.6. Case-based 
reasoning is discussed starting in Section 3.7. 
 

3.2.  Synthesis Phase 
The goal of the Synthesis Phase is to transform design requirements into a design 
description. In this case the design description is embodied by a description of the 
structural topology. Specifically, in this framework structural topology is limited to 
planar skeletal structures. Skeletal structures are structures that can be decomposed into a 
set of linear structural elements whose cross-sectional dimensions are relatively small 
compared to their length. The term skeletal is meant to include both classical trusses with 
frictionless pin joints, as well as moment frames. The rationale for this terminology is 
related to the interpretation of topology optimization output, which is discussed in the 
following sections. 
 
An overview of the Synthesis Phase is shown in Figure 3.2. The components of this 
phase will be discussed in detail in the subsequent sections. Synthesis begins by 
translating design requirements into specifications, which are then used to define a 
topology optimization problem. The result of topology optimization is a structural form. 
Using image processing and pattern recognition techniques, the form is described at 
progressively higher levels of abstraction. These higher level form descriptions have 
several purposes. They support analogical reasoning, which is important in learning and 
retrieving similar scenarios. Also, form descriptions support the effective use of multiple 
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criteria optimization, to incorporate objectives related to detail design, fabrication, and 
end use. 
 

 
 
Figure 3.2. Framework overview – Synthesis Phase 

 

3.2.1.  Design Formulation 
In design, the process of formulation, describes how general design requirements are 
translated into specifications. Formulation has been described as the process of 
“transforming function to expected behaviours”, where “the expected behaviour provides 
the syntax by which the semantics represented by function can be achieved” [Gero, 
1990]. Formulation can be one of the more challenging tasks in early design, particularly 
for complex designs involving more than one discipline. Design requirements often 
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conflict with each other, and establishing the relative importance of requirements is not 
straightforward. Requirements may have different levels of “firmness”, from “soft” 
requirements or mere goals at one extreme, to essential or non-negotiable “hard” 
requirements at the other. Techniques of multiobjective optimization have been used to 
give a mathematical description of varying levels of firmness, but this approach is not 
always useful. In architectural applications, for example, the overall vision of the 
designer or particular aesthetic qualities are not easily translated into specifications. In 
practice, formulation is a process that is repeated several times as more knowledge about 
the potential performance of a design is gained through analysis. Formulation and 
reformulation usually requires the direct involvement of designers, end users, and other 
participants. 
 
The framework described here is designed for situations in which requirements can be 
described primarily using geometric constraints. All this does not cover all situations, a 
vast range of conceivable design problems can be formulated in this way. The shape of 
bridges is constrained geometrically by the potential abutment locations and the clear 
space to allow for the flow of traffic on and below the bridge. The layout of telescope 
support structures is limited by the light path volumes defined by the optical 
configuration. Even in expressive, free-form architectural applications, geometric 
constraints can be applied by mathematically sculpting a permissible design space from a 
block of available space. 
 

3.2.2.  Representation Model 
The notion of the design domain is prominent in the framework. In this work, the design 
domain is a data model that represents the space available for design, the material, and 
the boundary conditions. The available space may be shaped using a set of applied 
geometric constraints. The material is assumed to be isotropic. Boundary conditions are 
used to specify loading and support conditions 
 
The domain data model is used not just in the Synthesis Phase, but in all other stages 
including the Refinement, Optimization, and Case-based Reasoning Phases. The design 
domain is a high-level construct that does not presuppose the topology or details of the 
structure that is synthesized, making it an effective representation for conceptual design. 
 
An overview of the Domain data model is shown in Table 3.1. In two dimensions, the 
reference domain is constructed from a rectangular bounding box defining a planar area. 
The domain is associated with an isotropic material, whose properties are stored in the 
data model. The domain area is discretized; this discretization defines the finite element 
model used in subsequent topology optimization. 
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Domain 
 Size 
  Width 
  Height 
 ElementSize 

Material  
 Bounds 
  BoundPoints 
  BoundLines                
 Forces 
  ForcePoints 
  ForceLines                 
 SubtractedAreas 
  Circle 
  Rectangle 
  

 
 
 
 
 
 

Line 
 
 
 
 
included 
subtracted 

 

 

 
 RetainedAreas 
  Circle 
  Rectangle 
  Line 

 
 
 
 
included 
solid 

 

 

 
Table 3.1. Design domain representation 
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Boundary conditions are applied to the domain at a series of individual points, or 
distributed along a line. Point supports and point loads are specified using the cartesian 
coordinates of a point on the domain. For supports the fixity type (translation in x- or y-
directions) is supplied. For forces, the direction (x or y) and the magnitude is specified. 
Geometric constraints on the domain are applied using a set of basic operations, as shown 
in Table 3.1. 
 
During the design synthesis process, a structural configuration is created using the 
available material. Initially, the available material is defined by a rectangular bounding 
area. Voids in the design domain can be specified using the SubtractedArea construct. 
Areas of solid material are included using the RetainedArea item. Using circular, 
rectangular and triangular areas as primitives, the design domain can be shaped with 
varying levels of complexity. 

 

3.2.3.  Topology Optimization 
Structural topology optimization is well suited to the conceptual design phase. Topology 
optimization starts with the essential elements of a structural design problem: the spatial 
constraints and boundary conditions. Structural optimization techniques may be classified 
under refinement methods or synthesis methods. While refinement methods start with a 
configuration and incrementally improve it, synthesis methods create a new configuration 
using a minimal set of assumptions. Topology optimization methods do not assume a 
predefined design configuration. The structural configuration is synthesized by using 
mathematical techniques to optimally distribute material to where it is most efficiently 
used, and remove where it is not needed. The synthesized shape may be a new and 
unexpected shape. Topology optimization methods thus support the creative process of 
conceptual design by creating new configurations and suggesting alternative directions 
for the designer to pursue. 
 
The framework synthesizes design configurations using continuum topology optimization 
methods. The domain representation model described in the previous section is directly 
applicable to such problems. The subject of continuum topology optimization is well 
developed. Many different problem formulations have been developed, depending on the 
optimization objectives and the mathematical techniques used. Common objectives 
include minimizing compliance, maximizing natural frequency, satisfying stress and 
buckling constraints, or meeting reliability targets. The goal of this work is not to suggest 
new topology optimization techniques but to leverage this powerful method to for wider 
use in conceptual design work. 
 
The conceptual design synthesis approach described here emphasizes the minimum 
compliance objective. Compliance minimization has several advantages over other 
topology optimization formulations. The input requirements are relatively simple, 
compared to the stress constraint formulation, for example. The only inputs are the 
boundary conditions and a volume reduction fraction. The volume fraction sets a target 
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for the ratio of the volume in the structure to the volume of the reference domain. For a 
single load case, the results are independent of the magnitude of the load. For multiple 
loads, only the ratio between load vectors is important and precise magnitudes need not 
be entered. At the conceptual stage, where exact load values are usually not known, 
topology optimization can still be performed. 
 
A sample design problem will be used to illustrate the application of the framework. The 
problem is to design a cantilever structure with maximum compliance for a given volume 
of material. This relatively simple problem will be used throughout this Chapter to 
illustrate the sequence of processes and flow of data through the different phases of the 
framework. More detailed design problems are given in Chapter 4. The input to the 
cantilever structure problem is shown in Figure 3.3. The reference domain has a width 80 
units and height 20 units. The domain is discretized into elements of size one unit 
squared. A downward load is applied at the tip. The material has Poisson’s ratio 0.3, and 
the specified volume ratio is 0.3, indicating the structure should have a weight equal to 
30% of the weight of the full design domain. 

 
Figure 3.3. Cantilever beam sample problem domain definition 

 

 
Figure 3.4. Topology optimization output 

 
The output of topology optimization is a raster image, where each pixel corresponds to a 
finite element. In this work, the material density method is used, and the output for each 
element is a value between 0 and 1. Using the SIMP interpolation method [Bendsøe and 
Sigmund, 2004], intermediate densities are penalized, so most of the values fall close to 0 
or 1. Since the interpolation function is continuous, however, intermediate values do 
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exist. These intermediate values are converted to 0 or 1 by selecting an appropriate 
threshold level. The topology optimization output for the sample problem is shown in 
Figure 3.4, and the results after thresholding are shown in Figure 3.5 and Figure 3.6. 
Changing the threshold level changes how the topology optimization output is 
interpreted. Figure 3.6 uses a higher threshold value, which filters out the lighter 
grayscale values from the topology optimization output shown in Figure 3.4. As a result, 
Figure 3.6 implies a skeletal structure with at least one less member than Figure 3.5. 

 
Load cases in topology optimization generally have a strong influence on the results. 
Where a single load case is used, the resulting structures may only be stable under the 
given set of loads. Single load cases often produce skeletal structures that are not fully 
triangulated. Topology optimization under multiple load cases is usually required to 
produce realistic structures. Multiple load cases can be applied simultaneously or 
combined using a method such as the minimization of a weighted average of the 
compliances. Different topologies result, depending on the method, so consideration 
should be given to whether loading is in fact simultaneous. 
 

 
Figure 3.5. Topology optimization output in binary form (threshold 0.2) 

 

 
Figure 3.6. Topology optimization output in binary form (threshold 0.5) 

 
Topology optimization results are sensitive to the density of the finite element mesh. As 
mesh size is decreased, the topology changes as more detailed features are formed. In 
practical macro-scale applications, a lower bound on the feature size is usually sought. 
Also, it is preferable to use mesh refinement to produce smoother boundaries on existing 
topology rather than create completely new topology. For these reasons, many topology 
optimization codes include mesh-independence filters. This method takes a parameter 
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called the filter radius, which sets the minimum length scale. The example shown here 
uses the method introduced by [Sigmund, 1997], with a filter radius equal to 1.5 times the 
element size. 
 
Multiple design configurations may be generated in the framework by using a range of 
threshold values to interpret the topology optimization output. Multiple designs may also 
be generated by varying other parameters of the topology optimization, such as the 
volume fraction, the mesh independency filter radius, and the convergence tolerance. 
Variations in the loading configuration also can be used to produce a range of different 
topologies for subsequent processing. 
 
The structure represented in Figure 3.5 could simply be converted to a CAD format by 
fitting curves to the boundaries. A CAD representation does not capture the essential 
characteristics of the structure and cannot be used for further reasoning. For example, a 
simple interpretation of the boundaries does not readily support decisions on the selection 
and optimization of fabrication and assembly processes. The proposed framework 
processes the topology image to produce a parametric model that supports practical 
design decisions. 
 
Topology optimization supports the fabrication of structures at virtually any scale. The 
method has been used in the design of micro-electro-mechanical systems (MEMS), where 
microscale devices are fabricated using techniques such as etching, deposition and 
lithography. Topology optimization has also been used extensively in the automobile and 
aircraft industries.  A structure like the one represented in Figure 3.5, for scales ranging 
from a few centimeters to several meters, is often fabricated by removing material from a 
slab or plate by machining or cutting. For example, laser, plasma, and water-jet cutting 
equipment can produce such shapes relatively economically, if the material thickness is 
within limits. On the other hand, if there is a high proportion of a void to solids, this 
method produces considerable waste. Structures can also be made by building up material 
using solid freeform fabrication processes such as selective laser sintering, electron beam 
melting or welding, however these processes are often prohibitively expensive and 
unsuited to structures more than about one meter in size. 
 
For many fabrication processes, particularly at scales larger than a few meters, the most 
economical approach is to assemble a structure from components. For example, 
economical truss-like forms are frequently produced by joining a number of straight or 
curved segments together. The segments are made by cutting lengths of rolled or 
extruded shapes. Decomposition is the process used to interpret a monolithic structure 
like the one shown in Figure 3.5 as an assembly of smaller components. This method 
obviously becomes increasingly cost effective as the similarity between components 
increases. To decompose the topology image and construct a higher level parametric 
model, the framework employs image processing techniques. 
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3.2.4.  Image Processing 
The field of image processing offers a range of techniques to improve, simplify and 
compress images, and to facilitate further processing such as pattern recognition. 
Topology optimization output is easily converted to a binary image using a thresholding 
process. 
 
The following sections describe how the topology image is transformed into a simplified 
representation that preserves the essential information contained in the image. 
 

3.2.4.1.  Thinning 
Continuum topology optimization under low volume fractions produces distinct truss-like 
structural forms. Such forms are characterized by linear elements with cross-section 
dimensions that are small relative to the length of the element. Thinning is an image 
processing technique aimed at producing a simplified representation of line-like or curve-
like features. 
 
The framework implements a morphological hit-or-miss thinning algorithm based on 
[Zhang, 1997] to produce a skeleton representation of the structural form. This is an 
efficient algorithm that generates one-pixel wide skeletons directly. An overview of the 
algorithm is presented here. 
 
An binary image is a mapping, I, from a set, Sp of pixel coordinates to a set B={0,1} of 
values such that for every coordinate vector, p=(r,c) in Sp, there is a value I(p) drawn 
from B. The foreground set (or black pixel set) FG is the set of locations, p, where I(p) = 
1. The complement set will be termed the background set (or white pixel set). 
 

{ }1)(),(),(}{ =∈== pIScrppIIFG p .    (3.1) 
 
The neighbourhood of p, N(p), is the set of all neighbours of p in a 3x3 window, shown in 
Figure 3.7.a.  
 

 
       a.               b. WN(p)=76           c. WN(p)=88 
Figure 3.7. Thinning algorithm definitions 
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For a 3x3 window, there are 28 = 256 possible combinations of neighbouring pixel values 
{0,1}. The weight number of p is defined as 
 

∑
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The neighbour number of p is the number of nonzero neighbours of the current pixel p: 
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The thinning algorithm is an iterative process, where pixels are incrementally removed 
from the boundary of the shape represented by the foreground set. Each foreground pixel 
of the image is examined, and compared along with its neighbours to a set of 3x3 
thinning templates. The thinning templates define the pixel patterns in the neighbourhood 
of p which allow the removal of p from the foreground. For example, the pattern of 
neighbouring pixels in Figure 3.7.c would match such a template, while the pattern in 
Figure 3.7.b would not. Removal of the central pixel in Figure 3.7.b would disconnect 
pixels of the foreground set, leading to eventual removal of the entire foreground. 
Removing the central pixel in Figure 3.7.c refines the foreground shape towards an 8-
connected, single pixel width skeleton. A globally removable set (GRS) of points is 
constructed, which contains the weight numbers corresponding to the thinning templates. 
For example, the GRS contains the weight number WN(p)=88, but not WN(p)=76. 
 
The procedure described up to this point simply recapitulates existing thinning 
algorithms. A key difference between existing thinning methods and the one used in this 
framework lies in the treatment of pixels with a single neighbouring foreground pixel, the 
case where NN(p)=1. In the framework, foreground pixels with one neighbour are deleted 
unless a boundary condition is applied near that pixel. The boundary conditions are 
stored as part of the domain representation model, which is available to the thinning 
algorithm. The rationale for removing singly connected branches is that such branches, 
unless connected to a point where a boundary condition is applied, carry no load and have 
no structural function. The thinning algorithm thus returns a skeleton that requires no 
further processing to clean up small branches that are a feature of many thinning 
algorithms, except near points where boundary conditions are applied. These points can 
be handled in subsequent processing using methods that operate locally in a region near 
support points or points where forces are applied. 

The output of the thinning algorithm, superimposed on a grayscale version of the binary 
topology image, is shown in Figure 3.8. 
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Figure 3.8. Skeleton 

 

3.2.4.2.  Vertex Identification 
Starting with a single pixel wide skeleton, the process of identifying connections between 
branches, or vertices, is similar to the thinning process. A morphological hit-or-miss 
procedure is used, along with 3x3 templates used to identify patterns such as those shown 
in Figure 3.9. The pixel coordinates of the node point, the central pixel in the 3x3 
neighbourhood, is stored for further processing. Figure 3.10 shows the skeleton from 
Figure 3.8 with vertex points superimposed. 
 

 
Figure 3.9. Vertex identification  

 

 
Figure 3.10. Skeleton with vertices identified 
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3.2.4.3.  Path Tracing 
Once the vertex points defining intersection points and endpoints of paths are identified, 
the paths are processed. Starting at a vertex, each path leading from that vertex is traced, 
adding the coordinate vector pi=(xi,yi) of every pixel on the path to an ordered set 
PA={p1,p2,...,pn}. Each path is terminated when a pixel previously identified as a vertex 
has been reached. Pixels are marked as the paths are traced to prevent paths from being 
retraced. 
 

 
 a. ε1lim=0.025L; ε1lim=0.05L 

 
 b. ε1lim=0.025L; ε1lim=0.25L 
Figure 3.11. Vector approximation to skeleton 

 
The representation of paths as the set of all discrete points on the path is memory 
intensive and cumbersome. A more compact path representation that preserves the critical 
information in the skeleton is sought. Each path is processed using a split and merge 
algorithm, which approximates the path using piecewise continuous line segments. Two 
parameters control the accuracy of the fitting, as shown in Figure 3.11. The first stage in 
the split and merge algorithm is a recursive splitting process. For each point in the path, 
the distance ε1 between the point and a line joining the path endpoints is computed. If the 
maximum distance ε1max exceeds a threshold ε1lim, a vertex is added at the midpoint of the 
path, creating two subpaths. The subpaths are processed in a recursive manner, 
calculating the maximum deviation from a line segment, and dividing the subpaths if 
necessary. The splitting stage is complete when all the fitted line segments deviate from 
the path by less than ε1lim. The next stage of the fitting algorithm, merging, attempts to 
reduce the number of line segments by merging nearly colinear adjacent segments. Pairs 
of adjacent segments are analyzed, and the distance ε2 between the common vertex and a 
straight line segment is calculated. If the distance ε2 is less than a threshold ε2lim, the 
common vertex is deleted. The process continues until ε2 ≤ ε2lim for all pairs of adjacent 
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segments. Figure 3.11 shows the results of the algorithm using the skeleton in the sample 
problem. The fitting parameters ε1lim and ε2lim are specified in terms of the image 
dimension L, which is the image width or height, whichever is larger. In total, there are 
three parameters which control the curve fitting: ε1lim, ε2lim, and a path curvature limit 
(ε1/d)lim. The path curvature is calculated as the ratio of ε1 to the segment length d, and is 
designed to prevent the elimination of short, highly curved paths. For both examples in 
Figure 3.11, (ε1/d)lim is set to 0.4. 
 
As shown in Figure 3.11, the paths making up the skeleton can be closely approximated 
with a relatively small number of additional vertices. The skeleton in vector format is a 
compact representation that preserves the critical content of the original skeleton. 
 

3.2.4.4.  Distance Map 
The Euclidean distance map (EDM) is a grayscale image in which the pixel intensity 
reflects the distance the pixel lies from the nearest boundary. Figure 3.12 shows the EDM 
of the binary image in Figure 3.5, calculated using the algorithm of [Borgefors, 1986]. 
 

 
Figure 3.12. Distance transform of binary image 

 

 
Figure 3.13. Vector skeleton with element thickness superimposed 

 
In the framework, the EDM is used to augment the vector skeleton with width 
information. The process for extracting segment width information from the EDM is 
described here. The path information in pixel coordinate format (PA) is overlaid on the 
EDM, and the segment width at each pixel along the path is retrieved. The average path 
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width is calculated and stored as a property of the line segments that make up the vector 
skeleton. Figure 3.13 shows the sample design problem with line segment width 
information superimposed on the vector skeleton. 
 

3.2.5.  Relational Graph 
Given a skeleton in vector form, the skeleton is easily converted into a relational graph 
G=(V,E). The set of graph vertices V corresponds directly to the vertices of the skeleton, 
and the set of edges E consists of the segments connecting pairs of vertices. At this stage, 
the elements have a single attribute, the segment width. The attributes of the vertices are 
the coordinate vector pi=(xi,yi), and the vertex type, which reflects boundary conditions 
applied at the vertex. There are three types: fixity, representing displacement boundary 
conditions; force, indicating applied forces; and default, where no boundary conditions 
are applied. A graph of the vector skeleton developed for the sample problem is shown in 
Figure 3.14.  
 
 

 
 
Figure 3.14. Relational graph of vector skeleton 

 
In Figure 3.14, nodes with fixity are drawn as squares, and the node with force applied is 
shown as a diamond, while default nodes are circles. The vertices are assigned types 
using information from the domain definition. The entities BoundPoints, BoundLines, 
ForcePoints and ForceLines contain the coordinates and values of boundary conditions 
applied at points and along lines. Through the topology optimization and skeletonization 
processes, vertices do not necessarily occur at the same coordinates as the points where 
boundary conditions are defined. Point boundary conditions are associated with vertices 
by locating the closest vertex to the point. Line boundary conditions are matched to 
vertices by first finding the closest vertex, calculating the distance from that vertex to the 
line, then finding all vertices within that distance, plus or minus a specified tolerance. 
 

3.2.6.  Discussion 
The relational graph is a relatively compact representation that retains the essential 
geometry and connectivity of the topology image. The binary image of Figure 3.5 has a 
size of 840x240 pixels, requiring about 24 kB of storage (840 x 240 x 1 bit/pixel / 1024). 
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The vector skeleton, consisting of 19 vertices and 22 segments, requires only 1.11 kB 
(assuming 16-bit integers for vertex coordinates, and 8-bit integers for vertex numbers). 
The storage requirements for the graph are therefore only about 5% of the requirements 
for the binary image. Although storage and processing requirements are less for the more 
compact graph format, the main advantage is that the topology image is now represented 
at a higher level of abstraction, one more suited to pattern matching and other reasoning 
techniques. 
 
The vector skeleton shown in Figure 3.13 still appears to be relatively complicated 
compared to the topology optimization output. There are a number of shorter segments 
and kinks that are remnants of the thinning process. These features appear to have no 
structural benefit, and further investigation is required to see if the structure can be 
simplified further. This is the goal of the Refinement Phase, the next phase in the 
framework. 
 
The framework follows an essentially top-down process, where a structural form is first 
synthesized by removing parts of the design domain. The form is then decomposed or 
deconstructed through subsequent phases of the framework. It will be illustrated that the 
decomposition has two purposes: most importantly, it supports a formal representation, 
but it also provides insight into how the form will eventually be produced. The formal 
representation is composed of primitives and the relationships between them. At a high 
level this supports reasoning using linguistic-based methods, such as syntactic pattern 
recognition. The decomposition into primitives mirrors the fabrication process, where 
pieces are assembled to make the whole structure. 
 

3.3.  Refinement Phase 
In the Refinement Phase, the objective is to improve the structural skeleton generated in 
the previous phase. Techniques of mathematical optimization will be used extensively in 
the search for a new layout. There are two major guiding principles during the 
Refinement Phase: simplicity and stability. These are high level concepts that are often 
implicit in structural design.  
 
Cost minimization is an objective of almost all structural design work. The cost 
associated with a design is strongly driven by its complexity, through all phases of 
design. More complex structures take longer to design, detail, fabricate, handle and 
install, leading to greater labour costs than simpler structures. The more complex the 
structure, the greater the probability of errors and rework.  
 
Stability must be considered in the design of all structures. Stability is of special concern 
when generating structural configurations using topology optimization methods. 
Topology optimization is known to produce configurations, than when interpreted as a 
truss, are stable only under the given set of loads. When using topology optimization, an 
early and systematic consideration of overall stability is warranted. 
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In the Refinement Phase, the structural skeleton from the previous phase is simplified 
using a geometric optimization procedure, and minimum stability requirements are 
assessed using a separate optimization method. Both procedures are implemented using 
nonlinear mathematical programming techniques, supported by finite element analysis. 
 

3.3.1.  Finite Element Modeling 
The relational graph constructed in the previous phase is readily transformed into a finite 
element model. The vertices correspond directly to nodes, and edges correspond to 
elements. Boundary conditions were matched to vertices in the previous stage, and these 
can in turn be applied to the finite element model.  
 
The purpose of using finite element modeling in this context is quantitative conceptual 
design evaluation. The results of finite element analysis, together with other quantitative 
and qualitative information, are later used by the designer to compare multiple concepts 
(see Section 3.5). The detail level of the modeling, as well as the analysis procedures, 
reflect the level of detail available during the conceptual design stage. Although finite 
element analysis is a tool that is often used at the most detailed levels of design, it is also 
useful in earlier stages of design. Finite element methods are not essential to the 
refinement stage, however, and approximate analysis methods could be used as well.  
 
Initially, beam elements are used for all elements of the structure, since pin-ended truss 
elements may lead to an unstable structure. During stability analysis (Section 3.3.3), 
various combinations of beam and truss elements are studied. During the refinement 
phase, optimization is performed using comparative compliance analysis. This means that 
absolute values of deflection, force and stress are not evaluated. The element cross-
sections during refinement are assumed to have unit width, and depth equal to the 
segment width obtained from the Euclidean distance map. 
 

3.3.2.  Layout Optimization 
An overview of the refinement phase is given in Figure 3.15. In the Layout Optimization 
Phase, a high resolution finite element model (FEM) is simplified into a low resolution 
model. The high resolution model corresponds to the vector skeleton resulting from the 
Synthesis Phase. During Layout Optimization, truss geometry optimization is alternated 
with topology modification. In geometry optimization, the design variables are node 
positions. Once geometric optimization reaches a solution, the resulting configuration of 
nodes and elements is examined. Closely spaced nodes are merged, and nodes that join 
nearly colinear elements are deleted, thus changing the connectivity, or topology of the 
structure. 
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Figure 3.15. Framework overview – Refinement Phase 

 
 
The geometric optimization problem is formulated for a plane frame (c=2 dimensions) 
consisting of m elements and N node points, with d=3 displacement coordinates at each 
node. Support conditions are given in the form of ss fixed nodal displacement directions. 
External nodal forces are applied in sf nodal displacement directions. Analysis is 
conducted in a global reduced set of displacement coordinates, with n1=N·d-ss degrees of 
freedom. The design variables are the subset of nodal coordinates with no applied 
boundary conditions,  
 

{ }
2

,...,, 21 nxxxx = ,  n2=N·d-ss-sf.     (3.4) 
 
Constraints are applied to limit node positions to within the reference domain. In the 
simplest case in two dimensions, with no subtracted areas, the nodal coordinates are 
limited to within a rectangle with width Domain.Width and height Domain.Height. 
Formulating these constraints as inequalities, 
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More complex geometric constraints may be specified by removing areas from the 
domain with the SubtractedAreas field. 
 
The objective of the optimization is to minimize the compliance of the structure. 
Compliance minimization is formulated as 
 

,)(min ufxW T=        (3.6) 
 
where f is external static load vector applied at the node points, and u is the nodal 
displacement vector. Nodal displacements are calculated using the stiffness method. The 
stiffness matrix is built in global reduced coordinates using the standard assumptions of 
linear elastic material, linearized strain, and small displacements: 
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where k(E,Ai,Ii,x) are the local stiffness matrices for each element. Material is defined by 
Young’s modulus E. Each element has cross-sectional area Ai and moment of inertia Ii. 
Nodal displacements are calculated by solving the equation 
 
 fuxK =)(         (3.8) 
 
A common formulation for geometric optimization is to minimize compliance subject to 
a constraint on the volume V, where 
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for elements with length Li(x). 
 
In the framework, an alternative problem formulation is used where compliance and 
volume are both included in the objective function: 
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where Wo and Vo are the compliance and volume of the initial structural configuration. 
This formulation allows the volume of the structure to increase, provided the increase is 
offset by a comparable decrease in compliance.  
 
The problem as formulated is a constrained nonlinear optimization problem. In the 
framework, the Sequential Quadratic Programming (SQP) method is used to solve the 
problem. The principal idea behind SQP is the formulation of a Quadratic Programming 
(QP) subproblem based on a quadratic approximation of the Lagrangian function. An 
overview of SQP is given by [Gill et al., 1981; Powell, 1983; and Fletcher, 1987]. The 
framework uses the MATLAB implementation of SQP. There are three main stages to the 
implementation. First, at each major iteration a positive definite quasi-Newton 
approximation of the Hessian is calculated using the method of Broydon, Fletcher, 
Goldfarb and Shanno (BFGS). The QP problem is then solved using an active set strategy 
(also known as a projection method), following the approach of [Gill et al., 1984; 1991].  
Finally, a line search is conducted in which a step length is determined that produces a 
sufficient decrease in a merit function. The merit function in this implementation is due 
to [Han, 1977] and [Powell, 1978]. 
 
An overview of the Layout Optimization process is given in Algorithm 1. At each 
iteration step of the optimization, the minimum distance between any pair of nodes, dmin, 
is calculated. If dmin is less than a specified tolerance dlim, then the optimization loop is 
terminated. If no nodes are closer than dlim, optimization continues until first order 
optimality conditions are satisfied. 
 
Following geometric optimization, nodes and elements are examined to identify two 
possible conditions: closely spaced nodes, and nearly colinear elements. Nodes that 
connect exactly two elements are inspected, and the angular distance between the element 
segments is computed. If the elements are colinear, within a tolerance θlim, the node and 
the shorter element are deleted. The structure is again examined for colinear elements, 
and the node deletion process continues until no pairs of elements are within the 
colinearity tolerance. Next, the distances between all pairs of nodes is calculated. Nodes 
closer than a specified distance dlim are merged together, deleting one of the nodes along 
with the element between the nodes. The process is continued until no pair of nodes in 
the structure is closer together than dlim.  
 
The Layout Optimization process is illustrated using the sample problem in Figure 3.16. 
As the optimization progresses, nodes tend towards the domain boundaries, and towards 
each other. The limiting distance for node merging is specified as 0.9wmin, where wmin is 
the minimum width of any element. The colinearity tolerance is assumed to be 0.2 
radians (about 11.5 degrees). The resulting structure is shown in the bottom right hand 
corner of Figure 3.16. For these parameters, the number of nodes is reduced from 19 to 7, 
and the number of elements from 22 to 10, compared to the input structure. 
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Algorithm 1 Layout Optimization 

1: assign nodal coordinates to design variable vector x 
2: calculate the initial volume Vo=ΣAiLi(x) 
3: solve K(x)u=f for u 
4: calculate the initial compliance Wo=fTu 
5: status = 0 
6: repeat 
7:  assign updated nodal coordinates to design variable vector x 
8:  set constraints on xi to lie within domain (0:width,0:height) 
9:  sub min W(x)V(x)/(WoVo) using SQP; computing at each step: 

10:   V=ΣAiLi(x) 
11:   K(x)u=f ; solve for u 
12:   W=fTu 
13:   W(x)V(x)/(WoVo) 
14:   minimum separation dmin between any 2 nodes 
15:   if dmin < dlim then terminate optimization 
16:  end sub 
17:  repeat 
18:   ndelete=0 
19:   for all nodes connecting 2 elements do 
20:    if angle between elements < θlim then 
21:     delete node 
22:     ndelete = ndelete + 1 
23:     status = 1 
24:    end 
25:   end for 
26:  while ndelete > 0 
27:  repeat 
28:   ndelete=0 
29:   for all nodes closer than dlim do 
30:    merge nodes 
31:    ndelete = ndelete + 1 
32:    status = 1 
33:   end for 
34:  while ndelete > 0 
35: while status > 0 
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Iteration 001 Iteration 218 

Iteration 310 Iteration 350 

  
Iteration 422 Iteration 466 

Figure 3.16. Geometric optimization - pin support condition (dlim=0.9wmin, θlim=0.2) 

 
The optimization history is shown in Figure 3.17 and 3.18. In Figure 3.17, the cantilever 
tip displacement history is plotted against the left hand scale, and the structure volume is 
plotted on the right. The displacement decreases by about 18% and the volume increases 
by around 7%. The objective function decreases from a value of 1.0 to 0.88, a decrease of 
12%. The objective function value is shown to decrease steadily, except at points where 
nodes or elements are deleted. 
 
A second example of geometric optimization is shown in Figure 3.19. This case is 
identical to the previous one, except that rotational constraints have been added to the 
existing support nodes. The resulting structure is similar, except that two diagonals that 
were previously connected to the support node now connect to a node some distance from 
the support. The objective function value decreases by 14% over the optimization, so the 
structure is lighter than the pin support case, as expected. 
 
The use of alternating topology modification and geometric optimization is essentially a 
heuristic optimization method, and does not guarantee a globally optimal solution. 
Nonetheless, a good argument can still be made that the method is suitable in this 
application, where it is applied after continuum topology optimization, and in the 
conceptual design stage. Continuum topology optimization has performed some level of 
global optimization, and the frame layout optimization can be viewed as a refinement to 
this solution.  
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Figure 3.17. Geometric optimization – displacement and volume history 

 

 
Figure 3.18. Geometric optimization – objective function history 
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Iteration 001 Iteration 050 

Iteration 071 Iteration 081 

Iteration 112 Iteration 221 

Figure 3.19. Cantilever beam geometric optimization (fixed support condition)  

 
The governing principle followed in Layout Optimization is that of simplification, or: 
 

If two structural configurations have similar performance, the 
configuration with fewer elements is preferred. 

 
As indicated previously, simplification affects many aspects of the overall cost of a 
design. If performance can be maintained while achieved greater simplicity, this is 
viewed as the improvement of a design concept. 
 
For the two examples used to illustrate layout optimization, considerable simplification 
was achieved. Such results cannot be expected in all cases with a single set of algorithm 
parameters. For example, the colinearity tolerance may need to be adjusted to avoid 
straightening arch segment by deleting intermediate nodes. Optimal structures such as 
Michell trusses often contain curved elements.  
 

3.3.3.  Stability Optimization 
Interpreting the results of topology optimization as a truss often results in an unstable 
structure, particularly where a single load case has been analyzed. Using the classical 
definition, a truss consists of axially-loaded members joined with frictionless pins. In 
contrast, a frame is a structure where the members transmit bending moments as well as 
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axial loads. In the literature, structures with a combination of bending members and axial 
members are sometimes called hybrid structures. This will be the convention used in this 
framework.  
 
In other applications where continuum topology optimization is processed as skeletal 
structures [e.g. Chirehdast et al., 1992], stability of truss structures is ensured by adding 
members using heuristics. In contrast, the method in this framework is to formulate the 
stability problem as an optimization problem. The input to the problem is a frame 
structure. The objective of the optimization is to find the maximum number of moment 
releases that can be introduced in the frame while still ensuring stability. The result of the 
optimization is thus a hybrid structure with both moment and pin connections.  
 
There are several reasons for formulating the stability problem as an optimization 
problem. First, the topology optimization results may be closely approximated, while still 
ensuring stability. One of the strengths of topology optimization is the ability to restrict 
the domain to an arbitrary form, and to generate a structural solution that complies with a 
relatively complex set of geometric constraints. For example, if a large void space is 
required in a domain, it is not possible to simply add a brace that crosses the void to 
ensure stability. As geometric constraints are added to a domain, it is more likely that the 
optimal solution will use beam elements as opposed to truss elements. A second reason 
for using a stability optimization method is that frame structures are generally stiffer than 
truss structures, for a given amount of material. Finally, most practical structures are 
hybrid or frame structures, as opposed to classical trusses. Real structures use 
connections with various levels of rotational stiffness. The overall cost of fabricating and 
installing the structure is largely determined by the connections, and the cost of 
connections is closely related to the level of rotational stiffness provided. In general, but 
not always, connections with low rotational stiffness are more cost effective than 
connections with high stiffness. A trivial exception is given by a truss with straight 
chords of uniform cross-section. In this case a classical truss implies pin connections 
between chord member segments, where it is obviously more economical to use a 
continuous, single member. The degree of stiffness provided by connections also has 
implications for erection of the structure. Connections with low stiffness may require 
more bracing and falsework to provide stability during erection, resulting in higher 
overall costs than if stiffer connections were used. 
 
Stability optimization generally produces a structure that is just stable. In other words, if 
one release were to be added the structure would lose stability. In subsequent design 
phases, some of the added joint releases could be eliminated, without affecting overall 
stability. The stability optimization thus provides the designer with the minimum stiffness 
requirements for the joints, giving them the freedom to select from a range of different 
connection rigidities and types, depending on cost and fabrication criteria. 
 
To illustrate the challenges in stability optimization, the sample cantilever problem is 
studied using combinatorial optimization. In this study, all elements of the structure are 
modeled using beam finite elements with end moment releases. Four different instances 
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of the element are available: fixed at both ends (fix-fix), fixed at one end and released at 
the other (fix-pin and pin-fix), and released at both ends, like a truss element (pin-pin). 
Using as input the result of geometric optimization in Figure 3.19, the input structure has 
12 elements. Evaluating all different combinations of the four element types would 
require 412, or 1.7x107 evaluations, a huge number for such a simple structure.  To reduce 
the complexity of the problem, using the two element types with identical conditions at 
each end (fix-fix and pin-pin) results in 212 = 4096 combinations. 
 
Stability is assessed by constructing the stiffness matrix K and computing the Singular 
Value Decomposition (SVD) of K: 
 
 K = U Σ VT        (3.11) 
 
where U={u1,u2,...,u3j-c} consists of a set of left singular vectors, V={v1,v2,...,vb} contains 
a set of right singular vectors, and a set of singular values is found in the first r non-zero 
diagonal elements of Σ. The condition number is calculated as the ratio of the largest 
diagonal element of Σ to the smallest. Large condition numbers indicate a nearly singular 
stiffness matrix, implying that the structure contains an internal or rigid body mechanism. 
Note that stability can also be determined by just using the equilibrium matrix, instead of 
the full stiffness matrix (as indicated in Section 2.5.4). 
 
The results of the combinatorial stability evaluation of the sample cantilever problem are 
shown in Figure 3.20. Stiffness matrices were constructed for each of the 4096 different 
combinations of fix-fix and pin-pin members. The condition number for each 
configuration was calculated, and values over 1x1016 were labeled unstable. Nine stable 
configurations resulted, and these are all shown in Figure 3.20. Pin-ended members are 
indicated by arcs at both ends of the member. Note that each node is connected to at least 
one fixed-ended element, in order to ensure rotational equilibrium of the node. The 
combinatorial approach provides some insight into the stability problem, however it is 
inefficient. A solution to the inefficiency is to formulate the problem using continuous 
design variables rather than discrete variables. This alternative approach is described in 
the following paragraphs. 
 

The stability optimization problem is next formulated with continuous design variables 
representing the member end release conditions. For a plane frame consisting of m 
elements, the design variables are parameters representing the degree of release at the two 
member ends, 
 

{ }mrrrr 221 ,...,,= ,    ri ∈ ℜ.      (3.12) 
 
The release values are constrained such that 0 ≤ ri ≤ 1, where ri=0 represents a pin-end 
condition, and ri=1 indicates a fixed end. 
 



3.   Framework 
 

  86

 
 

Figure 3.20. Cantilever beam combinatorial stability study 

 

The objective of the optimization is to maximize the number of end releases in the 
structure or, equivalently, to find 
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The stiffness matrix is built in global reduced coordinates using the standard assumptions 
of linear elastic material, linearized strain, and small displacements: 
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where k(E,Ai,Ii,x) are the local stiffness matrices for each element. The element stiffness 
matrix takes the form: 
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where ri represents the release at end i of the member, and rj the release at the opposite 
end. For example, ri = rj = 1 leads to 
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the familiar stiffness matrix for a beam fixed at both ends. Setting ri = rj = 0 gives 
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the stiffness matrix for a beam with moments released at both ends. 
 
The optimization problem is solved using Sequential Quadratic Programming. At each 
iteration, the stiffness matrix (3.14)  is constructed and evaluated for stability. If the 
condition number of the stability matrix indicates the matrix is nonsingular, then nodal 
displacements are calculated by solving 
 
 fuxK =)( .        (3.18) 
 
If the matrix is singular displacements are set to an arbitrarily large value. The nodal 
displacements are constrained to lie within a specified tolerance 
 
 )1( δ+⋅≤ uu        (3.19) 
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where u  is the set of displacements for the initial frame structure, with all fixed ended 
beams, and is δ  the tolerance. 
 

 
Figure 3.21. Cantilever beam SQP stability optimization 

 

Element ri rj 

1 0.24 4.46E-10 
2 4.46E-10 4.46E-10 
3 6.29E-10 4.46E-10 
4 4.46E-10 4.46E-10 
5 4.46E-10 4.46E-10 
6 4.46E-10 4.46E-10 
7 4.46E-10 4.46E-10 
8 4.46E-10 4.46E-10 
9 4.46E-10 4.46E-10 

10 4.46E-10 4.46E-10 
11 4.46E-10 0.11 
12 4.46E-10 1.53E-08 

Table 3.2. Cantilever beam stability optimization results 

 
The results of the optimization are given in Figure 3.21 and Table 3.2. Elements 1 and 11 
transfer moments at the support. Otherwise, all other elements have small numbers for 
their end release coefficients, suggesting pin-ended members can be used in most 
locations. The values of the small release coefficients are controlled by the termination 
tolerances for the SQP solver, and can be made smaller with a larger number of 
iterations. Note that a tolerance value of δ=0.05 was used for this analysis, indicating that 
the nodal displacements in the optimal structure are no more than 5% greater than the 
corresponding displacements for a frame with full end restraint. 
 
The stability optimization routine may lead to a number of similar solutions. To limit the 
number of solutions, a modified objective function incorporating weighted end release 
coefficients is a simple extension. For example, larger member cross-sections could carry 
a heavier weighting factor to capture the higher costs associated with larger members. A 
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characteristic of stability optimization is that solutions may exist where all joints have a 
small stiffness, just large enough to ensure a nonsingular stiffness matrix. In many cases 
it is preferred to have either no joint release or full release; in these cases a penalty 
function may be formulated to guide the release coefficients to a 0 or 1 value, similar to 
the SIMP method of topology optimization. Finally, it should be noted that stability 
optimization can produce configurations that are relatively flexible for load cases other 
than the one considered. Additional small magnitude loads can be used to produce 
structures that are both numerically stable and relatively rigid.  
 
In a conceptual design system that also interprets the output of continuum topology 
optimization [Chirehdast et al., 1992], a two step process is used to ensure stability. First, 
a mobility detection algorithm [Chirehdast and Papalambros, 1991] is used to determine 
whether the structure is a mechanism. The mobility detection algorithm is based only on 
the geometry of the structure. If mobility is detected, two rules are used to automatically 
generate immobile structures: 1) nodes connected to only one other node are connected to 
a node where a boundary condition is applied, and 2) polygonal cells in the structure are 
converted to sets of triangles. Such rules are difficult to apply when there are voids in the 
reference domain. Also, these rules are more likely to lead to nonoptimal structures, in 
terms of both performance and cost, than the stability optimization method used here. 
 

3.3.4.  Relational Graph 
After Layout Optimization and Stability Optimization are performed, the corresponding 
relational graph is updated. Vertex positions and edge connectivity is modified to reflect 
the results of Layout Optimization, and member end release information is added to the 
list of edge attributes. The updated relational graph for the sample cantilever problem is 
shown in Figure 3.22.  
 

 
 

Figure 3.22. Relational graph of cantilever beam output 

 

3.3.5.  Discussion 
The first two phases of the framework have used a minimal number of specific input 
parameters. The essential input consists of the domain area and boundary conditions, 
along with a set of relative load values. Layout Optimization is based on comparative 
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analysis, seeking to improve a structure generated by topology optimization. With little 
input other than the geometry, Stability Optimization finds a stable configuration and 
determines the minimum requirements for joint stiffness to ensure stability. The output of 
the current phase, the Refinement Phase, includes a low resolution finite element model 
and a corresponding relational graph. These two representations support a range of 
options for further optimization and more detailed analysis. 
 
 

 
 
Figure 3.23. Framework overview – Optimization Phase  

3.4.  Optimization Phase 
The goal of the Optimization Phase is to incorporate the information required to 
implement the design in a specific domain. An overview of the Optimization Phase is 
given in Figure 3.23. While general goals have guided the design concept up to this point, 
more specific information relating to design, fabrication, shipping, assembly and use are 
required for effective conceptual design. The specific information may be formulated as 
the objectives and constraints of a multiobjective optimization problem. There are many 
ways to formulate a specific multiobjective optimization problem. This description of the 
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Optimization Phase uses a practical example to show how multiobjective optimization 
may be used in the context of the proposed framework. 
 
The example used to illustrate multiobjective optimization is the tubular cantilever frame 
shown in Figure 3.24. Tubular structures such as this provide a practical example of 
competing, multiple objectives in structural design. 
 
 

 

 
Figure 3.24. Tubular truss design problem 

 

3.4.1.  Objectives 
A common objective of structural design is to minimize cost. Other objectives, depending 
on the domain, include maximizing performance, aesthetic values, service life, or 
maintenance access.   
 
Fabrication costs are primarily a function of the labour hours required. Apparent savings 
by virtue of minimum material used may result in a much higher overall cost. At current 
(2009) shop labour rates and tubular material prices, the cost of one hour of fabrication is 
roughly equivalent to 40 kg of material. Some research has shown that the tonnages for 
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different designs performing the same function vary by about 20-30%, while fabrication 
costs can vary by a factor of three or four [Firkins and Hemphill, 1990]. Even though 
such estimates are closely related to the construction type and shop setup, they emphasize 
the importance of considering cost during conceptual design. 
 
The labour costs to deliver a design are not limited to costs on the shop floor. Labour 
costs arise in all stages of construction, including design, detailing, sourcing, handling, 
fitting, welding, painting, shipping and installation. The features of a design the most 
strongly drive labour cost are the piece count, the degree of similarity between pieces, 
and the accuracy requirements. The piece count generally has a direct affect on the cost, 
since total cost is estimated by multiplying the number of pieces by the unit cost. 
Similarity between pieces decreases design and detailing time, and improves efficiency 
and reduces fabrication errors. Geometric accuracy requirements dictate the fabrication 
method. More restrictive tolerances increase fabrication cost, because of additional 
adjustment and correction labour,  additional jigs and fixtures, and higher value 
fabrication methods such as precision machining. 
 
Increased simplification and a reduced piece count was one of the goals of the 
Refinement Phase. The Optimization Phase quantifies the number and type of elements 
and joints, along with the associated fabrication costs. Stability Optimization generated 
information on minimum joint stiffness requirements, which is useful in selecting the 
type of joint and the method of fabrication. 
 
Piece similarity may be quantified in a number of different ways. One method is to 
generate a histogram of piece characteristics, such as their length and cross-section type. 
A more effective method, proposed as part of this framework, is to use a procedure 
similar to the Hough transform. An example is shown in Figure 3.25. The input to the 
procedure is a structural description, including the node coordinates and member 
topology. A normalized length L= SL /  (0≤L≤1) and orientation angle θ (0≤θ<π) are 
calculated for each member, where L  is the member length and S is the largest overall 
dimension of the structure. An accumulator space is created in two dimensions, 
corresponding to normalized length and orientation angle. The length and angle ranges 
are discretized into bins. For simplicity, an equivalent number of bins may be chosen for 
the length and the orientation angle. Each member is processed, and the pair (L,θ) is used 
to cast a vote in accumulator space. The accumulator space is represented by an image, 
where the pixel intensity reflects the number of votes cast. A large number of elements 
with similar length and angle produce a bright spot on the accumulator image. In Figure 
3.25, two different accumulator images are shown for the structure shown at the top. The 
image on the left uses an angular resolution of 5 degrees; the resolution in the right hand 
image is 10 degrees. Members 2 and 6 are similar in terms of both length and angle. In 
the left hand accumulator image, every member is shown as separate pixel, all of equal 
intensity, because no two members are close enough in angle or length to be assigned to 
the same bin. When the resolution is 10 degrees, members 2 and 6 are assigned to the 
same pixel. Similarly, member 1 and 10 share the same pixel, which appears white. The 
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remaining pixels are gray because they each correspond to only one member. The 
brightest pixels thus identify the largest groups of similar members. As the resolution of 
the accumulator space is increased, more members appear similar. If the geometry of the 
structure can be modified to make the similar members identical, then the cost can be 
decreased. A larger accumulator resolution thus corresponds to a lower cost structure. 
The problem of making compatible geometric adjustments to the structure is addressed in 
Section 3.4.3. 
 

 
 

            
Figure 3.25. Hough style plot of element length and angle 

 

3.4.2.  Constraints 
The tubular frame in Figure 3.24 is to be designed to satisfy the strength limit state, for a 
static load P. In the strength design of tubular structures, the member design is tightly 
coupled to the connection design. The minimum cost design of the members does not 
necessarily correspond to the minimum overall cost. 
 
For minimum weight design of tubes in compression, large diameter, thin-walled sections 
are preferred to maximize the radius of gyration. On the other hand, thin-walled chords 
produce lower connection strength because of the higher probability of localized buckling 
and yielding of the tube wall. The wall may be reinforced with a doubler plate or other 

angle θ 

le
ng

th
 L

 

angle θ 

le
ng

th
 L

 

1 2 6 

5 4 7 

3 

4 1 

5 

8 

9 10 

2 6 
3 

7 

2 

6 

2 6 



3.   Framework 
 

  94

reinforcement, however such reinforcement is expensive due to the additional labour and 
material required. Also note that surface preparation and coating costs are higher for 
larger diameters. 
 
Connection strength is  a function of the layout of the member centerlines and node 
positions. The connection strength is generally lower for a gap connection (g >0 in Figure 
3.24) than for conditions where the web members overlap. From a cost viewpoint 
however, gap connections are usually less expensive. Gap connections offer greater 
flexibility during fit-up, and welding access is easier. In overlapping connections, the 
overlapped member must often be welded before the overlapping member is fitted. In 
most shops, it is more cost effective to do final welding after all fit-up and tack welding is 
complete. 
 
The strength design of tubular connections generally uses a set of empirically or 
theoretically derived formulae [e.g., Packer and Henderson, 2003]. Empirically derived 
formulae often have limited ranges of applicability because they are based on a limited 
number of experimental test configurations. These ranges of applicability may be applied 
as constraints in a multiobjective optimization. Constraints are also derived from practical 
limitations of the design, fabrication or installation phases.  
 
Examples of constraints in the design and fabrication of tubular structures like the one in 
Figure 3.24 include [Packer and Henderson, 2003] 
 

• Angles of less than 30 degrees between the web and chord create significant 
difficulties due to poor welding access 

• Web to chord diameter ratio limit: 0.12.0 1 ≤<
od

d  

• Nodal eccentricity limit: 25.055.0 ≤≤−
od
e  

• Overlap and gap: overlap > 25%; g > t1 + t2 
 
A common constraint in structural design is that materials are available only in discrete 
sizes. Tubular shapes are produced in a limited number of diameter and wall thickness 
combinations. Of the set of shapes that are regularly produced, only a subset of these may 
be readily available due to variations in demand and production. In multiobjective 
optimization, discrete sizes are often represented using a continuous curve. Figure 3.26 
shows a continuous curve representing the weight of common pipe sizes used in tubular 
construction. 
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Figure 3.26. Discrete tubular sections 

 

3.4.3.  Multiobjective Optimization 
For a typical multiobjective optimization problem in structural design, the design 
variables include node positions, member topology, member cross-sections, joint types, 
and the number of joints. The node positions and member connectivity have a 
considerable influence on the overall design. The node and member geometry limits the 
types of joints, and influences the overall piece count and similarity of components. 
 
Within the framework, geometric domain constraints originating in the Synthesis Phase 
may be applied during multiobjective optimization. Another feature of the framework is 
that constraints may be inferred from similar applications using case-based reasoning, 
and applied to the design case. This is discussed further in Section 3.6.  
 
A common challenge in multiobjective optimization is formulating and assessing the 
importance of the objective functions. Often the objectives are competing and their 
relative importance must be weighed  in order to make tradeoffs. The relative importance 
of the objectives is generally not known in advance, and some analysis is usually done to 
assess the capabilities of a system before tradeoffs are made.  
 
The results of multiobjective optimization are used to update the relational graph 
structure developed during the Synthesis and Refinement Phases. The vertex attributes 
are updated with node positions, and new attributes are added for joint design 
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information. The edge attributes are updated with member cross-section information. The 
relational graph is used in case-based reasoning, as discussed in Section 3.6. 
 

3.4.4.  Discussion 
While the form of the structure can be represented in a generic way, domain specific 
information is more difficult to standardize. Ideally, domain specific design procedures 
should be stored in a library from which they can be retrieved and reused. One method is 
to separate design process knowledge and data, and to store process knowledge in a 
hierarchically organized structure, such as in SEED [Fenves et al., 2000]. Once the 
knowledge is stored, protocols must be developed to maintain and update the knowledge. 
The authors of SEED propose a repository or brokerage for design process knowledge. 
Recent developments in semantic networks for mathematical problem solving may be 
applicable in this context [Wolfram, 2009]. 
 
In the context of this framework, multiobjective optimization is intended as an evaluation 
tool to assist the user in differentiating between multiple designs on the basis of 
fabrication cost, installation cost, and other practical criteria. Multiobjective optimization 
is a well established branch of optimization, and range of different tools are available. 
This framework does not propose any new multiobjective optimization methods. Rather, 
the intent here is to show how the framework generates a structural model in a form that 
is directly suited to domain-specific multiobjective optimization.  
 

3.5.  Evaluation and Selection Phase 
During the Synthesis Phase, multiple design configurations may be generated. Multiple 
designs result from using different topology optimization parameters (volume fraction, 
filter radius, or convergence criterion), different thresholds in interpreting the topology 
optimization output, or through variations in the configuration of boundary conditions. 
The framework specifies an Evaluation and Selection Phase, during which human users 
evaluate and compare the designs that were generated, and select a subset of the designs 
for further, more detailed, design work. In Figure 3.1, the Evaluation and Selection Phase 
occurs after the Optimization Phase. Given the importance during conceptual design of 
direct control by the human user, the framework also supports early selection and 
reformulation of the problem, as indicated by the dashed lines in Figure 3.1.  
 
Evaluation may be either qualitative or quantitative in nature. Quantitative measures are 
readily developed for structural performance and cost. For example, finite element 
analysis provides performance data such as stress and deflection. Cost estimates provide 
numerical values which may also be used to compare competing designs.  
 
Qualitative evaluation is required when numerical values cannot easily be assigned to a 
design, such as when a structure is evaluated according to aesthetic criteria. Experienced 
designers use intuition to evaluate designs, and during conceptual design they often rank 
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concepts based on incomplete information, before detailed numerical analysis results are 
available. Even if a numerical value can be assigned, most practical design situations 
involve multiple participants, with different sets of experience, values and tastes. For 
example, participants in building design include architects, structural engineers, 
mechanical engineers, building envelope specialists, and the owner, amoung others. In 
telescope design, participants include structural engineers, mechanical engineers, control 
system engineers, scientists, operations specialists, maintenance personnel, and 
fabrication specialists. Achieving agreement between multiple participants is a 
complicated task to automate, and is often most efficiently achieved through direct 
communication between participants. Evaluation is the process of comparing a design to 
the set of requirements, specifications, and overall expectations of the participants. If 
none of the candidate designs meet the required criteria, then the criteria should be 
reviewed and if necessary, the design problem should be reformulated. Otherwise, a 
subset of the candidate designs is selected for more detailed design work. 
 

3.6.  Alternate Generation Methods 
The preceding description of the framework uses topology optimization methods to 
generate structural forms. Forms may be input to the framework using alternative 
methods, such as from photographs or hand sketches, as shown in Figure 3.27. Although 
these are not necessarily sources for “optimal” structures, their information content can 
be leveraged to assist the conceptual design process.  
 
Arbitrary shapes and forms can be interpreted as structures. Images of shapes and forms 
generally contain no explicit information about how such a structure would be loaded or 
supported, or what its function would be. This information has to be supplied by the user. 
Using the proposed framework, high contrast or binary images can be opened, converted 
to a skeleton, a graph and a finite element model. At this stage, boundary conditions can 
be added to the model to begin optimizing the shape under structural design criteria. 
Converting an arbitrary shape to a graph opens up further possibilities, however, when 
one considers the capabilities of pattern recognition and visual case-based reasoning. The 
graph can be used to retrieve similar images, and with those images an associated case 
containing information about boundary conditions, function, behaviour, and other 
information. Examples of sketch input and image input are given in Figures 3.28 and 
Figure 3.29. 
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Figure 3.27. Alternate input paths  
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Figure 3.28. Sketch input example 
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Figure 3.29. Image input example 
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3.7.  Case-based Reasoning 
The framework uses case-based reasoning techniques to classify, store and retrieve past 
design experiences. In contrast to many other research systems for conceptual structural 
design that rely primarily on textual information, this work emphasizes visual 
information about structures. Techniques from visual case-based reasoning are used, a 
field which overlaps the related areas of pattern recognition and content-based image 
retrieval. 
 
 

 
 

Figure 3.30. Overview of case-based reasoning  

 
An overview of the case-based reasoning process is shown in Figure 3.30. In this case-
based reasoning application, a case encapsulates information about the structural form. 
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the system. The target case is compared to a library of source cases, and similar cases are 
returned from the library with a ranking. The user chooses a single case which most 
closely matches the target case, and this case is adapted for a new design situation. A 
case-based reasoning system requires a definition of what constitutes a case, a means of 
determining similarity between cases, mechanisms for retrieving and adapting existing 
cases, and a method for archiving new cases. 
 

3.7.1.  Case Representation 
A central aspect of this framework is the representation of structural form within the case 
definition. The form is encapsulated using the relational graph format, which includes 
information from the Synthesis, Refinement, and Optimization Phases. The relational 
graph models the structural topology through its vertices and edges, along with additional 
information stored as attributes. In addition to topology, the design domain may also be 
represented as a relational graph for use in case-based reasoning, where graph vertices 
represent domain geometry and boundary conditions, and edges represent the spatial 
relationships between them. Both the structure and domain are also stored in image 
format to support image-based pattern recognition techniques. Similar to other case-based 
reasoning systems, cases also include a textual representation of high level requirements, 
performance evaluation, and feedback from fabrication, installation, use, maintenance 
and decommissioning. An overview of the elements of the case representation is given in 
Table 3.3. 
 

Case Description 
 Structure graph  
 Structure image  
 Domain graph  
 Domain image  
 Requirements  
 Evaluation  

Table 3.3. Case representation 

 
A structural description D = (P, R) consists of a set of primitives P and the set of 
relationships R between them [Shapiro and Haralick, 1981]. As described in Section 
2.4.4, a structural description may be realized as an attributed relational graph (ARG). An 
ARG is defined as G = (V, E, AV, AE, αV, αE), where V and E are respectively the sets of 
the vertices and the edges of the graph; AV and AE are the sets of the vertex and edge 
attributes, and αV and αE are the functions associating to each vertex or edge the 
corresponding attributes [Eshera and Fu, 1986]. Usually the nodes of a graph represent 
the primitives of the structural descriptions, and the edges represent the relations between 
the primitives. 
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The structural topology is represented as ARG where the vertices represent structural 
nodes and edges represent the topology of the connecting elements. The nodes are the 
primitives of the structural description, identifying the locations of key geometric features 
such as member intersections and discontinuities, and points where boundary conditions 
are applied.  The vertex attributes include the node position, joint type, parameters 
describing the joint, nodal loads, and boundary conditions (Table 3.4). 
 
The design domain is represented using a structural description in which the primitives 
are the geometric features composing the domain, as well as boundary conditions. For 
example, the geometric features include the design extents (a rectangle) along with the 
primitive shapes, such as circles and rectangles, that are subtracted from the extents to 
create voids. The relationships between the primitives represent spatial relationships, 
such as Left, Right, Above, Below, and Contains. 
 

Structure Graph 
 Vertex Attributes 
  Node position 
  Joint type 
  Joint parameters 
  Nodal loads 
  Boundary conditions 
 Edge Attributes 
  Cross-section type 
  Section parameters 
  End releases 

 

 

Domain Graph 
 Vertex Attributes 
  Domain extents 
  Subtracted Areas 
  Retained Areas 
  Boundary conditions 
 Edge Attributes 
  Spatial relationships 

 

Table 3.4. Relational graph representation in cases 
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3.7.2.  Case Input 
Case-based reasoning within the framework operates in three modes, depending on the 
type of input. In Synthesis Mode, a new case is directly constructed from the graphs, 
images and performance information developed during the Synthesis, Refinement, and 
Optimization Phases. In Image Mode, an image representing the target structure is 
processed to produce a graph, which is used with the image to retrieve suitable source 
cases from the case base. In Text Mode, keywords are used to guide the search for 
matching source cases, using the methods of document retrieval and conventional case-
based reasoning. The three modes may be used in combination to improve search 
efficiency. 

3.7.2.1.  Synthesis Mode 
In Synthesis Mode, the target case contains information on the shape of the structure, the 
boundary conditions, the connections, and expected performance. Source cases stored in 
the case base include such information, along with a range of other valuable information. 
Source cases include fully developed sets of requirements and specifications, 
performance measures from a range of different analyses, and evaluation data. For 
example, a source case could contain feedback from the fabrication shop, such as how a 
particular welded joint design contributed to geometric errors due to weld shrinkage. The 
source case may also contain design specifications or analysis results which are 
applicable to the target case. 

3.7.2.2.  Image Mode 
In Image Mode, the target case contains only information on the shape of the structure, 
with no knowledge of boundary conditions and functionality. The goal in case-based 
reasoning is to infer the missing information from similarly-shaped structures. In a 
variation of Image Mode, a sketch-based interface could simply be used to aid in 
browsing the case base, and to retrieve similar structures. 

3.7.2.3.  Text Mode 
In Text Mode, words or phrases at various levels of abstraction are used to retrieve 
applicable cases. The input text may refer to requirements, behaviour, or evaluation 
results. 
 

3.7.3.  Classification and Indexing 
The organization of cases to enable efficient and accurate retrieval is a important issue in 
case-based reasoning. Classification is the process of arranging objects into classes, and 
indexing is the assignment of meaningful labels to objects. Effective indexing schemes 
need to work at several different levels of abstraction and support multiple views. The 
indexes must be abstract enough to cover a wide enough range of instances, but concrete 
enough to be recognizable. Indexes may need to account for the fact that different terms 
may refer to the same concept, depending on the user. Classification and indexing 
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schemes are often hierarchically organized, to capture a range of abstraction levels and 
enable efficient retrieval. Closely related to classification and indexing is the notion of 
clustering. Inductive clustering methods generally look for similarities over a series of 
instances and form categories based on those similarities. When clusters are subdivided, 
hierarchies are formed. 
 
The degree of similarity between objects is determined by the similarity between features 
of the objects. Therefore, in order to cluster, classify and index objects, a set of features 
describing the object is required. In case-based reasoning, features are commonly 
represented using attribute-value pairs. In design case representation, features may 
describe all aspects of the design, including function, structure and behaviour. In the 
relational graph representation developed in this framework, the vertex and edge 
attributes may be used for conventional classification and indexing. For example, the type 
and configuration of joints could be used to classify the structure as a truss, a braced 
frame, or a moment frame.  
 
Techniques from image processing and pattern recognition are used to extract features 
from images. Table 3.5 lists a number of such features. 
 

Feature Description 

 domain aspect ratio ratio of domain width to height 
 node count total number of nodes 
 total path length ratio of total member length to domain perimeter 
 average path length ratio of average member length to domain perimeter 
 enclosed area ratio of area enclosed by shape to domain area 
 bounding box ratio of bounding box area to domain area 
 moments normalized centroid location 
 Fourier descriptors frequency content 

Table 3.5. Image features 

 
Images may be described in a compact form using feature vectors or histograms. 
Projections are used to characterize predominating directions of angular elements in 
images, as shown in Figure 3.31. Projections are generated at discrete angles, and the 
highest peaks identified (shown as the circled peaks in Figure 3.31). At a minimum, the 
directions with the highest peaks may be recorded in a feature vector. Another alternative 
is to decrease the resolution of the projection, and store the projection for each discrete 
angle as a histogram. In Figure 3.31, the skeleton is captured in the projection. 
Projections may also be developed to capture the distribution of vertices. Histograms are 
also used to plot the distribution lengths or angles of lines in the image. 
 
Simple methods exist for measuring similarity between graphs based on global features. 
For example, similarity can be determined based on the number of vertices or edges, or 
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on the degree of connectivity. More sophisticated graph matching techniques are 
discussed in Section 3.6.4. 
 

3.7.4.  Retrieval and Selection 
During case retrieval, the target case is compared to source cases in the case base and the 
most similar cases are returned. The retrieved cases are then ranked to assist in the case 
selection process. Design case retrieval is usually concerned with finding partial rather 
than exact matches. The degree of matching depends on the level of abstraction at which 
the comparison is made; objects may be in the same category at a high level of 
abstraction, but not at a more specific level.  
 
 

 
Figure 3.31. Projections of cantilever skeleton 

 
 
In a simple serial search, the target case is compared sequentially to the source cases. A 
more efficient method is to structure the case base hierarchically using clustering 
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methods, and to limit the search to the portion of the case base that is most likely to 
return a matching case. 
 
Different techniques are used for matching, depending on the case content. This 
framework uses three methods, depending on whether a feature vector, image or graph is 
to be matched. These methods return a numerical measure of similarity, which is used to 
rank the retrieved cases. For certain types of case content, such as design functionality, 
numerical similarity measures are difficult to establish. Heuristic methods may be 
employed in those situations. 

3.7.4.1.  General Matching 
A common numerical matching method used in case-based reasoning is the nearest-
neighbour technique, which calculates a weighted sum of the differences between feature 
values. Different weighting factors are applied to each feature, depending on the 
importance of the feature in the match. The aggregate match score S comparing input and 
retrieved cases with n features is  
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where wi is the weighting factor for feature i, sim is the similarity function for features, 
and fi

I are the values for feature fi in the input and retrieved cases, respectively. 

3.7.4.2.  Image Matching 
A potential measure of similarity between images is to directly calculate the sum of 
differences between corresponding pixel intensity values. A difficulty with this method is 
that images with very similar content can have large differences when compared pixel by 
pixel.  
 
The Object Density Map (ODM) [Coulon and Steffens, 1994], is an effective method for 
determining the similarity between two images. A low resolution grid is overlaid on the 
image, and the density within each grid square is calculated. For each square, the density 
is mapped to a pair of discrete density values drawn from a set of seven overlapping 
intervals. To compare two images, the images are first aligned using their centroids as a 
common reference point. The ODM is generated for each image, and the corresponding 
grid squares are compared. If the two grid squares have at least one density value in 
common, then the squares are assumed to have equal density. Otherwise, the minimum 
difference between density values is calculated. A similarity measure for the two images 
is taken as a normalized sum of differences over all the grid squares, resulting in a 
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number between 0 and 1. Images with identical ODMs have a difference of 0, and 
completely dissimilar images have a difference of 1. Two examples of image comparison 
using ODMs are shown in Figure 3.32 and 3.33. In each of these figures, the input image 
is shown at the top with the ODM grid superimposed. The ODM is shown below each 
input image. The similarity measure shown in the figure caption is calculated between the 
left and right ODM. 
 
In the framework, the technique is used to compare both structure images and domain 
images for similarity. 
 
 
      
 
 
      
 
 
 
 
 
 
Figure 3.32. Similarity using ODM (difference measure = 0.034) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.33. Similarity using ODM (difference measure = 0.009)  

 

3.7.4.3.  Graph Matching 
Graph matching has been studied extensively and many different approaches are found in 
the literature. The characteristics of the graph representation used in this framework limit 
the selection of graph matching methods somewhat. Since exact matches between 
structural graphs are unlikely, an inexact method is required. Another feature of this 
application is that large training set for developing class definitions are not available, as 
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in character recognition, for example. The emphasis in this framework is on using graph 
matching for measuring similarity between patterns, rather than on classification.  
 
In the framework, the solution to the minimum cost subgraph isomorphism problem, as 
formulated by [Thoresen, 2007], is proposed for graph matching. Unlike other graph 
matching algorithms, this approximate method takes advantage of the fact that nodal 
coordinates are stored as graph attributes. For such spatially coherent graphs, the method 
uses the vector between nodes as the edge attributes. The algorithm exploits the 
connectivity of the graph to produce sufficiently accurate solutions in lower time-
complexity time than other published subgraph isomorphism algorithms. 
 

 
Figure 3.34. Graph matching sample result 
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The results of graph matching may be displayed as a grid of thumbnail images, similar to 
Figure 3.34, where the proximity of images indicates the degree of similarity. In Figure 
3.34, the numerical similarity measure is plotted on the vertical axis, and the number of 
elements in the structure are plotted on the horizontal axis. Since similarity measures are 
calculated, a numerical ranking may be provided to the user to assist in the selection of a 
relevant design case. 
 

3.7.5.  Adaptation 
Structural design is an iterative process where a design concept is incrementally changed 
to satisfy a set of design constraints. For designs that have been successfully executed 
and stored as cases, it is assumed that all constraints have been satisfied. Past designs 
therefore encapsulate a substantial amount of work. One of the goals of case-based 
reasoning is to take advantage of that work in creating new designs, rather than create 
designs from scratch. Adaptation is the process in case-based reasoning where past 
designs are modified for use in a new application. 
 
In the framework, the focus of case-based reasoning is to use similarity between cases to 
infer missing information in the current case from past design cases. Requirements, 
constraints or feedback from stored design cases can be incorporated early in the 
conceptual design phase to accelerate the design process and allow more alternatives to 
be explored. When adaptation is existing cases is necessary, the method of derivational 
replay is proposed. 
 
Derivational replay is an adaptation method where the process used to derive a previous 
solution is reused in a new situation [Kolodner, 1993]. Given that design procedures are 
stored in the framework, and given that design parameters are stored with cases, all the 
necessary information exists to reuse procedures in new designs. 
 

3.7.6.  Discussion 
The central issue in case-based reasoning in the context of this framework is the 
measurement of similarity between structural forms. The image matching techniques 
presented here, the Object Density Map and projections, work at multiple levels of 
abstraction. Setting the ODM grid resolution to a coarser value increases the level of 
abstraction, and increases the possibility of a match. Similarly, projections summarize 
characteristics at discrete angular increments, and the resolution of the increment can be 
used to control matching. Drawing similarities between objects at different levels of 
resolution is an important feature in inductive learning. Inductive learning is the process 
that allows properties of source cases to be assigned to the target case, leveraging the 
experience and knowledge of the case base. 
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4.  Case Studies 
 
 
 
 
This chapter describes a number of case studies that illustrate the application of the 
framework to conceptual design problems. Several of the case studies compare the 
performance of the framework against benchmark problems. Other studies show the 
potential application to real-world conceptual design tasks. 
 

4.1.  Cantilever 
In a well-known example from structural optimization, the minimum weight is sought for 
a cantilever truss supporting a vertical load, as shown in Figure 4.1.  All members have 
unit allowable stress in tension and compression, and unit density. Buckling and 
displacement constraints are not considered. The “exact” solution to the problem is 
generally attributed to Michell, developed using the theory of “truss-like” continua, rather 
than discrete members [Michell, 1904]. Since structures developed using this theory 
consist of an infinite number of bars of nonstandard length, they cannot be fabricated 
using practical methods, but they do serve as interesting benchmark cases. For this 
problem, the solution has been shown to be 4.5 (Figure 4.1.b) [e.g., Lewinski et al, 1994]. 
Discrete truss topology optimization has also been used to solve this example. Kirsch 
obtained an 8-bar truss topology with weight 4.59 using mathematical programming 
techniques (Figure 4.1.c) [Kirsch, 1993]. [Azid et al., 2002] found a slightly improved 
solution using an evolutionary approach, with weight 4.57 (Figure 4.2). 
 
The problem is solved using the framework presented here by first formulating the 
specifications. The problem domain is assumed to be a grid of square elements 30 wide 
by 20 high (Figure 4.3.a). A line boundary condition, with fixity in x- and y-directions, is 
applied to the left edge of the domain. A point load is applied at midheight on the right 
edge. Topology optimization is run with Poisson’s ratio ν=0.3 and volume fraction 0.15. 
The resulting image is shown in Figure 4.3.b. The image suggests a truss-like structure 
with similar topology to that obtained by Kirsch. A significant difference is that short 
beam elements are indicated adjacent to the two support points.  
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a) Problem specification 

 
 b) Michell truss solution 

 
 c) Solution of [Kirsch, 1993] (weight = 4.59) 
Figure 4.1. Cantilever beam example 
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Figure 4.2. Cantilever beam solution by [Azid et al., 2002] 

 
 
 

     
a) Problem specification   b) Topology optimization output 

           
c) Skeleton     d) Element model 
Figure 4.3. Cantilever beam model generation 
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Figure 4.4. Cantilever geometric optimization – displacement and volume history 

 

 
Figure 4.5. Cantilever geometric optimization – objective function history 
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The topology optimization image is converted to binary formal and a skeleton is 
generated as shown in Figure 4.3.c. The skeleton is traced to produce the element model 
in Figure 4.3.d.  
 
In the Refinement Phase, geometric optimization is used to shift node positions in a way 
the minimizes the product of compliance and volume. Pairs of nodes are merged if they 
move close enough to each other, and are deleted when they produce a pair of nearly 
colinear elements. As shown in Figure 4.5, after about 86 iterations of geometric 
optimization, the 8-member truss topology found by Kirsch emerges. To achieve the 8-
member topology, a significant increase in volume is required, about 7%. This increase in 
volume is accompanied by a 17% decrease in deflection, representing a significant 
increase in performance. As the performance increases, the geometry of the structure 
becomes simpler, with the elimination of 2 nodes and 2 elements. The reduction of the 
node and element count results in immediate cost savings in design, fabrication and 
installation. 
 

                  
Figure 4.6. Cantilever beam solution 

 
During the refinement phase, no additional information on member cross-sections or 
stress limits was introduced. With the limited data used to define the problem domain and 
boundary conditions, a layout similar to that obtained using discrete truss optimization 
methods was found. To compare the performance of the truss generated using this 
framework to the benchmark cases, further processing is required. Using the topology 
and geometry produced during the Refinement Phase as input, member sizing 
optimization was run. In sizing optimization, the design variables are the member cross-
sections, and a constraint was applied to limit tensile and compressive stress to 1.0. 
Member sizing optimization results in a structure with mass 4.58, as shown in Figure 4.6. 
To improve on this result, sizing optimization and geometric optimization can be run 
simultaneously. This procedure produces a layout similar to that obtained by Azid, with 
the same mass of 4.57, as indicated in Figure 4.6 (identified as the ‘Layout’ 
configuration).  

Kirsch (4.59) 
Sizing (4.58) 
Layout (4.57) 
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The cantilever example demonstrates that the framework can be used to generate a 
structure with performance similar to that achieved using both classical mathematical 
programming methods and more recent evolutionary methods. The framework has 
advantages over both these approaches. Classical optimization methods are generally 
problem specific and require more effort to implement than the general approach used in 
the framework. Evolutionary methods generally require much more computational effort 
than deterministic procedures such as the one implemented in the framework. Speed and 
simplicity are important properties of computational tools for conceptual design, allowing 
the user to quickly reformulate the design parameters and evaluate the impact of changes 
on the resulting structure. 
  

4.2.  Bridge 
In an example problem in bridge design, a minimum-weight truss-like structure is 
required for a single, simply-supported span. This problem has been used by researchers 
to evaluate discrete truss topology optimization with evolutionary algorithms. For 
example, [Shrestha and Ghaboussi, 1998] used a genetic algorithm and [Yang and Soh, 
2002] employed genetic programming. Both of these approaches were notable in that 
they did not use a conventional ground structure consisting of a predefined grid of node 
points. Initial populations are generated through randomly generated patterns of nodes. 
The lack of a ground structure facilitates a general, domain-independent approach to 
topology optimization that is suited to conceptual design work. Similar to the approach 
used in the framework presented here, a general design domain representing the extents 
of the structure is used as input. 
 
The bridge structure is required to span 70 meters, as shown in Figure 4.7. The depth of 
the structure is limited to 10 meters. Four vertical, evenly spaced point loads are applied 
on the span. The truss members are to be selected from a set of 30 standard AISC wide 
flange steel sections [AISC, 1989], from W14x22 through W14x426. The material 
properties are those of steel (E = 201 GPa, fy = 248.8 MPa, ρ = 7851.03 kg/m3). The 
following AISC design specifications [AISC, 1989] are applied: 

• the allowable tensile stress is 0.6fy 
• the allowable member slenderness is 300 for tension members and 200 for 

compression members 
• member length is to be between 5 m and 35 m 
• the allowable joint displacement is limited to 1/1000 of span, or 70 mm 
• the allowable compressive stress b

iσ  of member i is determined from buckling 
considerations as follows: 

o if λi > C (elastic buckling), 2

2
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o if λi < C (plastic buckling), 
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where λi = Li/ri, yfEC /2π= , and Li and ri are the length and radius of 
gyration of member i, respectively. 

 
The optimal topology derived by [Yang and Soh, 2002], is shown in Figure 4.8. Detailed 
member sizes and node positions are given in Table 4.1. 
 
                 

 
Figure 4.7. Bridge problem specification 

 
 

 
Figure 4.8. Bridge design result [Yang and Soh, 2002] (45 404 kg) 

 
To solve the problem using the framework, the domain is first defined. A domain 
consisting of 140 x 20 square elements is used, as shown in Figure 4.9.a. The appropriate 
point boundary conditions are applied at each end and 4 point loads are applied along the 
bottom edge of the domain. Topology optimization is run for a volume fraction of 0.3; 
the resulting image is shown in Figure 4.9.b. The skeleton derived from the topology 
optimization output (Figure 4.9.c) and the element model (Figure 4.9.d) are also given. 
 
 

7 spans @ 10m = 70m

P P P P P P

10m design domain 

P = 500kN
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a) Problem specification 

 
b) Topology optimization output 

 
c) Skeleton 

 
d) Element model 
Figure 4.9. Bridge model generation 

 
Geometric optimization is applied to simplify the topology of the element model. After a 
mere 73 iterations, the optimal topology is achieved (Figure 4.10 and Figure 4.11). The 
topology matches the result obtained by [Yang and Soh, 2002] (Figure 4.12).  
 
Sizing optimization is conducted to select member sizes for the truss in accordance with 
the problem constraints. Sizing optimization uses continuous design variables 
representing the section number, which ranges from 1 to 30. Both the area and radius of 
gyration of the cross-sections are expressed as continuous functions of the section 
number. The area is represented by a cubic polynomial (Figure 4.13). The radius of 
gyration is approximated using piecewise continuous cubic polynomials (Figure 4.14). 
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Figure 4.10. Bridge geometric optimization – displacement and volume history 

 

 
Figure 4.11. Bridge geometric optimization – objective function history 
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Figure 4.12. Bridge design result 
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Figure 4.13. Bridge member cross-section area 
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Figure 4.14. Bridge member cross-section radius of gyration 

 
Table 4.1 summarizes the results of the bridge design example, and compares the results 
to those obtained by other researchers. The results for the genetic algorithm of [Shrestha 
and Ghaboussi, 1998] and the genetic programming approach of [Yang and Soh, 2002] 
are markedly different in terms of both optimum weight and computational efficiency. 
The genetic algorithm used in this comparison produces a weight 30% higher using over 
five times the number of total iteration steps of the genetic programming method. 
 
Running the example with the framework described in this work, the optimal weight is 
within 0.6% of the result obtained using genetic programming. A notable difference 
between the solutions is that only 395 iteration steps are required using the framework, 
where each iteration step corresponds to a single finite element run. For the continuum 
topology optimization stage, 35 iterations are completed. A further 73 iterations are 
required for geometric optimization, and 287 iterations are used for the final member 
sizing optimization. The number of finite element runs is several orders of magnitude less 
than the number required for the genetic programming method for this example.  
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Result  

Shrestha & 
Ghaboussi 

[1998] 
Yang & Soh 

[2002] This work 
Member sections 1-2 NA W14×68 W14×53 
 2-3 NA W14×109 W14×132 
 3-4 NA W14×132 W14×211 
 4-9 NA W14×233 W14×193 
 1-5 NA W14×132 W14×90 
 5-6 NA W14×132 W14×120 
 6-7 NA W14×176 W14×193 
 7-8 NA W14×193 W14×257 
 2-5 NA W14×61 W14×68 
 2-6 NA W14×74 W14×61 
 3-6 NA W14×82 W14×68 
 3-7 NA W14×82 W14×68 
 4-7 NA W14×90 W14×43 
 4-8 NA W14×61 W14×30 
Node coordinates (m) x5 NA 4.0 3.71 
 y5 NA 5.5 5.92 
 x6 NA 13.0 12.2 
 y6 NA 9.0 9.45 
 x7 NA 24.0 24.3 
 y7 NA 10.0 10.0 
 x8 NA 35.0 35.0 
 y8 NA 10.0 10.0 
Weight (kg)  60 329 45 404 45 677 
Total iteration steps  975 400 166 000 395 

      Note: NA indicates that results are not available 

Table 4.1. Bridge design result 

 
A common limitation of the genetic algorithm in truss topology optimization is the fixed 
length chromosome. Efforts to find efficient methods to represent a wide range of 
different topologies with varying complexity using a fixed length string have not been 
completely successful. The approach of [Shrestha and Ghaboussi, 1998] uses relatively 
long chromosomes, and requires a large number of iterations to converge. One of the 
strengths of genetic algorithms is their simplicity, but it is difficult to implement simple 
crossover and mutation methods that do not produce unstable offspring with disconnected 
members. [Yang and Soh, 2002] encode the structural configuration using two-
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dimensional, varied length parse trees, which can more flexibly represent a diverse range 
of topologies than fixed length chromosomes. 
 
Evolutionary computing techniques are a very effective approach to global optimization 
in problems that are highly nonlinear or nonconvex. The previous two examples show 
that, for some problems, it is possible to generate optimal topologies more efficiently 
using an approximate, deterministic optimization procedure. The examples show the 
approximate results are more than sufficient for conceptual design purposes. The ability 
to generate solutions efficiently and quickly is seen as a major advantage in conceptual 
design, where a computational tool can rapidly provide feedback to a human designer as 
they explore a range of possible solutions. 
 

4.3.  Bicycle 
The bicycle frame problem shown in Figure 4.15 has been used by researchers 
[Rasmussen and Olhoff, 1992; Chirehdast et al., 1994] as a test case for topology 
optimization. The objective is to optimize the rigidity of a bicycle frame with no 
predefined topology. The input to the problem is a rectangular design domain, a load 
case, and support conditions. Loads are applied to the top of the seat tube (A), the head 
tube (B), and the bottom bracket (C). 
 

 
Figure 4.15. Bicycle frame problem specification 

 
To solve the problem, a domain consisting of 44 x 26 square elements is formed, with 
each element 25 mm in size. Six point loads are applied and three nodal degrees of 
freedom are constrained as shown in Figure 4.16.a. The frame is pin supported at the rear 
wheel, and a horizontal roller support is used at the front wheel.  Topology optimization 
is run for a volume fraction of 0.15 (Figure 4.16.b).  
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a) Problem specification 
 

 
b) Topology optimization output    c) Skeleton 
 

 
d) Element model 
Figure 4.16. Bicycle frame model generation 
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The topology optimization output suggests the familiar diamond-shaped bicycle frame, 
with the exception that the front fork is connected to the bottom bracket. The frame in 
this case has no steering functionality, as in the two examples given in the literature. 
 
In the Refinement Phase, the number of nodes is reduced from 20 to 5 and the maximum 
displacement decreases by about 27%. The resulting frame is shown in Figure 4.18, a 
simple truss structure with the minimum number of possible nodes. Also shown in Figure 
4.18 is the topology found by [Chirehdast et al., 1994]. 
 

   
Figure 4.17. Bicycle frame design result 

 
In an approach similar to that used in the framework described here, [Chirehdast et al., 
1994] extract truss or frame structures from continuum topology optimization output 
using image processing techniques. There are several major differences between the 
system of Chirehdast, called ISOS, and the one presented here. First, the approach used in 
this framework is to trace the skeleton paths to an arbitrary level of accuracy, adding as 
many nodes as necessary to follow the path. The resulting topology is then simplified 
using mathematical optimization. In contrast, ISOS uses heuristics derived from 
elementary mechanics and engineering intuition to interpret a truss or frame structure. In 
this framework, nodes may be added at intermediate points between path junctions. This 
allows the framework to model arches and other curvilinear elements. In ISOS, nodes are 
located only at path junctions, so curvilinear elements cannot be modeled. Another 
difference between this framework and ISOS is in the treatment of stability. ISOS 
interprets a skeletal structure as either a truss or frame structure. If the truss interpretation 
is unstable, then heuristic methods are used to add members to ensure stability. In 
contrast, this framework generates stable hybrid structures with joints of variable 
flexibility, from rigid beam connections to frictionless pin connections. The configuration 
of pins and moment connections is established using a mathematical optimization 
procedure. Finally, this framework introduces a number of methods that are not part of 

Chirehdast et al., 1994 
This work 
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ISOS, including visual case-based reasoning, structural similarity measures, and 
boundary condition inference. 
 
To further the design of the bicycle frame, member cross-sections are selected using a 
sizing optimization procedure. The frame is assumed to consist of beam elements, with 
one design variable per element. The members have tubular cross section with wall 
thickness equal to one tenth of the outer radius. The design variable is the outer radius of 
the tube. Initially, each member is a tube with radius 10 mm, and cross-sectional area 
59.69 mm2. The material is assumed to be the same for all members, with maximum 
permitted stress 50 MPa in tension and compression, and density 7800 kg/m3. Using a 
Sequential Quadratic Programming (SQP) method, this framework produces a 
configuration with weight 2.34 kg (Figure 4.18, in black). In [Chirehdast et al., 1994], 
ISOS is shown to generate a comparable solution that weighs 4.29 kg. In that paper, the 
results of simultaneous sizing and geometric optimization are also presented. This 
optimization procedure results in a structure weighing 2.25 kg (Figure 4.18, in gray).  
 
Some discussion on the difference between the two solutions presented in Figure 4.17 is 
warranted. The framework formulates the topology optimization problem as a 
minimization of a weighted average of the compliance corresponding to each load 
component. This approach to multiple load topology optimization is more likely to result 
in stable trusses than optimization as a single load case [e.g., Bendsøe and Sigmund, 
2004]. This method also tends to produce structures in which the stiffness is less sensitive 
to the direction of loading. In Figure 4.17, the Chirehdast design is highly dependent on 
the orientation of the load vector at the top of the seat post. Multiple load optimization is 
well suited to practical conceptual design, since real-world structures are typically 
designed using load cases that are characterized by a significant degree of uncertainty. 
Along with the benefit of reduced sensitivity to load direction, the bicycle frame 
configuration produced in this work has fewer nodes and elements than the Chirehdast 
design. Design and fabrication costs of skeletal structures are highly dependent on the 
number of joints. In terms of cost, the advantage of a 4% weight saving (2.25 kg vs. 2.34 
kg) is insignificant compared to a 25% increase in the number of joints (5 vs. 4). 
 
Conceptual structural design is an iterative process where designers evolve and 
reformulate requirements as they gain knowledge about the design space. The following 
examples demonstrate how a user might interact with the framework to advance a 
conceptual design towards a practical final design. 
 
In the bicycle frame shown in Figure 4.17, the axle of the front wheel is connected to the 
bottom bracket, preventing the bicycle from steering. To remove this connection, material 
is removed from the design domain, as shown in Figure 4.18.a. This change results in a 
vertical fork (Figure 4.18.b and 4.18.c). This configuration enables steering, but it implies 
a vertical steering axis, and very little trail (the distance from the front wheel contact 
point to the steering axis). Although this arrangement was used on some of the earliest 
bicycles, it is now well known that both stability and handling are much improved by 
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using an inclined steering axis. An inclined axis produces greater trail, which allows for a 
self-centering caster effect.  
 

 
a) Problem specification 

 
b) Topology optimization output 

 
c) Skeleton 
Figure 4.18. Bicycle frame respecification with steering 

 

material 
removed
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a) Problem specification 

 
b) Topology optimization output 

 

 
b) Skeleton 
Figure 4.19. Bicycle frame respecification with fork 
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Figure 4.20. Bicycle frame and fork element model 

 
To incorporate handling as a design requirement, an inclined steering axis and fork is 
incorporated in the design domain definition, as shown in Figure 4.19.a. The darker gray 
elements indicate that during topology optimization, these elements are constrained to 
have the full material density. The resulting topology of the frame changes (Figure 4.19.b 
and Figure 4.19.c) to provide increased stiffness in response to bending moments caused 
by wheel reactions on the fork. Tracing the path of the skeleton in Figure 4.19.c, results 
in the element model shown in Figure 4.20. Geometric optimization produces the design 
in Figure 4.21. 

 
Figure 4.21. Bicycle frame redesign result 

 
Stability optimization is performed on the redesigned bicycle frame in order to 
understand joint design requirements. The results are shown in Figure 4.22, where circles 
at the end of each member represent the required joint stiffness. The circles are filled with 
shades of gray corresponding to stiffness values ranging from zero (pinned) to one 
(rigid). Such information is an important consideration in designing cost effective joints. 
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Note that the stability optimization ensures that the stiffness of the frame with flexible 
joints is within 5% of the stiffness calculated assuming rigid joints. 
 

 
Figure 4.22. Bicycle frame stability analysis result 

 
Visual case-based reasoning may be used during conceptual design to retrieve relevant 
information from a database of past design cases. The bicycle frame example is further 
expanded to demonstrate the application of the framework to visual case-based reasoning. 
An essential requirement in visual case retrieval is the measurement of similarity between 
forms. In order to form a database of design cases, two additional bike frame designs are 
generated by refining design requirements. 
 
The shape of racing bicycle frames is driven in part by established regulations. 
Overcoming aerodynamic drag forces requires a significant portion of rider effort. Riders 
can substantially reduce effort by closely following in the slipstream of the rider ahead. 
This practice, called drafting, is well established in road racing but is prohibited in some 
forms of bicycle racing, such as in triathlons. Aerodynamic considerations are therefore 
of more importance in triathlon racing than road racing, and significantly influence the 
design of the bicycle. For triathlon racing, improved aerodynamics are achieved by 
rotating the position of the rider forward compared to road racing.  As the position of the 
rider is rotated forward, the handlebars drop and the head tube becomes shorter. Also as 
the rider is rotated forward, the rider center of gravity shifts forward, and weight shifts 
from the rear wheel to the front. The weight redistribution is partially countered by 
moving the rear wheel forward. The wheelbase of the triathlon design is lengthened to 
improve handling with the changed weight distribution. 
 
Figure 4.23 gives an example of the design of a road and triathlon bicycle frame, 
reflecting the differing requirements for these two applications. Figure 4.23.a and 4.23.b 
show the design domain for the road frame and triathlon frame, respectively. For the 
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triathlon frame, there is a steeper angle between the seat and bottom bracket, the 
handlebars are lower, and the wheelbase is longer. Areas near the top of the frame are 
removed from the design domain to accommodate standover clearance requirements. 
Figure 4.23.c shows the binary topology optimization results and skeletons, and Figure 
4.23.d contains the element models for the two frame styles. 
  

    
a) Road design    b) Triathlon design 

 
c) Skeletons 

 
d) Element models 
Figure 4.23. Bicycle frame generation for two designs 

 
Figure 4.24 shows binary images of two commercially-available frame designs, one for 
road racing and the other for triathlon. Note the similarity between these designs and the 
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designs generated in Figure 4.23. The triathlon design appears thicker in profile primarily 
because the tubes have a more aerodynamic profile than the road bike tubes. 

 
a) Road design    b) Triathlon design 
Figure 4.24. Bicycle frame commercial designs 

 
To demonstrate the retrieval of similar designs in visual case-based reasoning, a case base 
of several different bicycle frame designs is assembled, as shown in Table 4.2. The 
source case corresponds to the road frame designed to the requirements of Figure 4.23.a. 
The target cases consist of previous examples from this Chapter, along with some test 
cases to demonstrate more dissimilar structures. The target image for the commercial 
design in Figure 4.24 is obtained by finding the image skeleton and performing path 
tracing to extract a simplified unit width representation. This processing is intended to 
highlight the key topology rather than member sizes. 
 
 The source case is sequentially compared to each target case in the case base, and the 
similarity between source and target cases is measured. The similarity is measured using 
the Object Density Map (ODM). The image resolution is 480 x 288 pixels in each case, 
with a grid size of 24 pixels. The ODM returns a number between 0 and 1, where 0 
indicates the images are identical, and 1 signifies that one image is the negative of the 
other. To verify the algorithm, the source image is compared to itself and the similarity is 
zero, indicating a perfect match (Table 4.2.a.). The similarity measure for each source-
target pair is presented in the right hand column of Table 4.2. The lowest similarity 
measure indicates the closest match between a source and target. The table indicates that 
the source image of the road frame derived using topology optimization most closely 
matches the commercial road design frame, as shown in Table 4.2.c. This shows the 
ODM algorithm is effective at calculating a quantitative measure of similarity between 
images of the kind used in structural conceptual design.  
 
For visual  case-based reasoning with practical cases, an effective similarity algorithm 
would need to deal with images of multiple size, as well as shifted or rotated images. 
Fortunately, image processing and pattern recognition research has produced many tools 
to deal with problems such as this. 
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Design ODM Similarity Measure and Map 

a. Source: Road design (Figure 4.23.a) 

 

0.0 

 

b. Target: Triathlon design (Figure 4.23.b) 

 

0.0597 

 
c. Target: Road design (Figure 4.24.a) 

 

0.0427 

 
d. Target: Bicycle frame (Figure 4.21) 

 
 
 

0.0513 

 



4.   Case Studies 
 
 

  134

Design ODM Similarity Measure and Map 

e. Target: Bicycle frame (Figure 4.18) 

 

0.0747 

 
f. Target: Cantilever truss (Figure 4.6) 

 

0.0735 

 
g. Target: One-bay braced frame 

 

0.0796 

 
h. Target: Four-bay braced frame 

 

0.171 

 
Table 4.2. Bicycle frame case retrieval 
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In Table 4.2, the conventional diamond frame designs with an articulating fork (Table 
4.2.b-d) have similarity values which are fair closely clustered, between 0.04 and 0.06. 
Interestingly, some relatively different topologies also have clustered values. For 
example, Table 4.2.e-g have values between 0.74 and 0.80. A much different 
configuration, the four-bay braced frame in Figure 4.2.h, has a measure of 0.17. These 
results indicate that for images of skeletal structures, which consist mostly of background 
pixels, similarity measurements will be generally closer to zero on the similarity scale 
than to one. 
 

 
Figure 4.25. Bicycle frame retrieval results 

 
The case retrieval process should be an interactive one which facilitates the discovery of 
existing cases. Ideally, the process should return several cases which are similar, so that 
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the user can browse and select an appropriate case. To facilitate the presentation of 
multiple target cases, retrieved images may be displayed in two or three dimensions, with 
one dimension used for the similarity measure and the other dimensions used for 
appropriate quantitative comparison values. In Figure 4.25, the similarity measure is 
plotted against the node count for each target case. The similarity measure is plotted on 
the ordinate, so the most similar designs appear closer to the bottom of the chart. In an 
interactive conceptual design system, it would be possible for the user to navigate a chart 
like Figure 4.25, panning across the case base and focusing in on cases of interest. 
 
Visual case-based retrieval represents a potentially powerful method of using past design 
cases to assist in conceptual design. For the example given here, a bicycle frame image 
generated by topology optimization is matched with an image of an existing commercial 
frame design. Such an existing design could be stored with a large amount of information 
relating to design, fabrication, maintenance, and user feedback. For example, all the load 
cases and associated boundary conditions could be stored in the case base. Bicycles are 
typically designed for a number of load cases which are prohibitively time consuming to 
compute during conceptual design. Such cases include front wheel impact, rear wheel 
skidding, hill climbing and starting, high speed bump, and fatigue cases. Information on 
which load cases and combinations were critical in past work can be used to assist in 
effective and rapid evaluation of new design concepts. Visual case-based retrieval 
methods may also be applied to the input domain image, as opposed to the structural 
image. For example, the design domain image in Figure 4.19.a. could be used to retrieve 
past design cases with similar design domains, and similar requirements, to the target 
case. 
 

4.4.  Telescope 
The conceptual design of large telescope structures is a complex task. This case study 
concerns the design of a ground-based optical telescope with a thirty meter diameter 
segmented primary mirror. To date, the largest optical telescope has a ten meter primary, 
so the 30-meter telescope represents a large step forward, with ten times the light 
collecting area and over ten times the number of actuated primary segments. Given the 
unprecedented size of such a telescope, it is difficult to adapt specifications from existing 
telescopes. The telescope design concept must evolve with the requirements as more is 
learned about the potential performance and range of potential configurations. The 
telescope support structure payload includes almost 500 primary mirror segments 
weighing a total of 120 tonnes, an actuated secondary mirror (6 tonnes), an actuated 
tertiary mirror (10 tonnes), and instruments (170 tonnes).  
 
A general requirement is that the support structure should be as stiff as possible in order 
to maintain the accurate alignment of the telescope optics. Although some optics 
components are actuated to compensate for telescope deformation under gravity, thermal 
and wind loads, increasing the actuator range increases the cost of the actuators and 
decreases their accuracy.  
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a) Telescope overall assembly 

 

   
b) Telescope azimuth assembly 
Figure 4.26. Telescope structure 
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Figure 4.27. TMT telescope azimuth structure front view 

 
In addition, it is generally cost-prohibitive to make all optics degrees of freedom active, 
so some deformation components are uncorrected and have a direct impact on the 
performance of the telescope. Even for the active degrees of freedom, a more flexible 
structure requires more frequent motion of the actuators, resulting in a more complex 
control system design. 
 
The full telescope assembly is shown in Figure 4.26.a. The telescope has two drive axes: 
the vertical azimuth axis (±270º) and the horizontal elevation axis (0 to 90º from the 
horizon). The subassembly that rotates about the elevation axis, the elevation structure, 
supports the major optics systems. The azimuth structure (Figure 4.26.b. and Figure 4.27) 
supports the elevation structure and most of the instruments.  
 
For the design of the telescope structure, the two most important objectives are to 
minimize compliance and mass. These two objectives are obviously in conflict, since 
adding mass to a structure, if done efficiently, will result in a decrease in compliance.  An 
effective approach to developing a structural concept is to fix the mass and search for a 
configuration that minimizes compliance. The intent of the search is therefore to find the 
configuration that extracts the maximum stiffness per unit of mass. Although the 
concepts of minimizing compliance or maximizing stiffness sound simple, in large 
telescope structural design they are relatively complicated to implement. A large 
telescope has thousands of degrees of freedom. Some deflection components have 
relatively benign consequences on the optical performance of the telescope. Some 
deflections may be corrected by moving optical components with actuators. In some 
cases, the telescope may be relatively flexible in a given direction, but no significant 
loads are applied in that direction. 
 
In telescope design it is important to distinguish between quasi-static and dynamic 
stiffness. Quasi-static stiffness refers to the stiffness of the structure in response to 
relatively slowly changing loads, such as gravity or thermal loads. As the telescope 
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rotates in elevation, the direction of the gravity load vector relative to the optical 
components changes, resulting in changes to the deflected shape. One of the functions of 
the optical actuators is to change the position of the mirrors to compensate for these 
deflections. The required actuator range, or stroke, is directly related to quasi-static 
stiffness. 
 
Dynamic stiffness refers to the stiffness of the structure in response to dynamic loading. 
In large telescope structures, the primary source of dynamic loading is wind. The 
response of the telescope to wind load is related to both the structural system and the 
control system. In general, increasing the first natural frequency of the structural system 
allows for greater control system bandwidth, and an increased ability to reject 
disturbances caused by wind loads. In some cases, vibration modes other than the first 
mode drive the design of the control system. In detailed design, it is therefore important 
to understand how the various vibration modes of the structure respond to drive system 
inputs.  
 
Mass minimization is an objective in telescope structural design for several reasons. 
Reducing the mass of the structure lowers its cost, within limits. As structures become 
increasingly lighter, at some point fabrication costs begin to increase. For example, 
lightweighting a material through the added fabrication step of cutting holes increases 
cost. More important reasons for minimizing telescope structure mass are to reduce 
thermal and mechanical inertia. Temperature control of telescope structures is extremely 
important to their performance, and reduced thermal mass allows temperature to be more 
easily controlled. Larger structural mass and inertia increase the initial cost and operating 
cost of mechanical systems such as drive motors. 
 
In optimizing the structure for minimum compliance and mass, a large number of design 
constraints must also be considered. The major constraints relate to geometry, member 
resistance and acceleration.  
 
Geometric constraints ensure the telescope structure subassemblies achieve the required 
range of motion without interference. For example, clearances between the elevation and 
azimuth structures must be maintained through the full 90 degree elevation angle range. 
The telescope enclosure represents a significant portion of overall observatory costs, and 
its costs are strongly dependent on the size of the telescope swept volume. To reduce 
costs, the swept volume should be minimized. An important goal of telescope structure 
design is to ensure that light paths between various optical elements are as unobstructed 
as possible, so the paths constrain the placement of structural material. Finally, since 
wind loads tend to degrade telescope performance, they should be minimized. This 
objective is often interpreted as a geometric constraint on the size and shape of member 
cross-sections, since both size and shape influence aerodynamic drag forces. 
 
Stress constraints are applied to ensure that the telescope structure remains elastic under 
“operating basis earthquakes”, to reduce the amount of downtime required to bring the 



4.   Case Studies 
 
 

  140

telescope back into operation after smaller earthquakes. For larger earthquakes, some 
damage is expected, however the design intent is usually to limit the damage to more 
easily replaceable elements. Acceleration constraints are used to limit the transmission of 
damaging seismic acceleration components to sensitive on-board optical systems. 
Deflection constraints are often required at critical structural-mechanical interfaces. For 
example, hydrostatic bearing systems operate on a thin film of oil which is compromised 
by structural deflections. The deflections should be constrained to maintain the required 
oil gap and ensure the system performs as expected. 
 
The specific telescope case study described in this section concerns the conceptual design 
of the azimuth structure for the thirty-meter telescope. Obviously, it is a challenge to 
address all elements of the complex set of requirements described above at the conceptual 
design stage. As a starting point, the framework described in this work can be used to 
generate a number of topologies that represent optimal, minimum compliance structures 
for a range of different loading conditions.  
 
For initial conceptual design, a two dimensional model of a vertical section through the 
azimuth structure is studied. Three different load cases are presented in Figure 4.28 
through figure 4.30. Figure 4.28.a defines the geometric constraints and boundary 
conditions.  The design domain is shaped by three geometric constraints; these include 
subtracted areas for elevation structure clearance and azimuth track clearance, and 
retained areas at the top level of the azimuth structure which contains instrument 
interfaces. The three load cases in Figure 4.28 through Figure 4.30 represent different 
combinations of dead load and simulated dynamic loads. All load cases are analyzed 
statically. Simulated dynamic loads are applied to increase stiffness in a given direction, 
resulting in increased natural frequencies. Static load cases may be used in this way to 
influence frequencies for mode shapes that are expected to create difficulties for the 
control system. Although this approach is approximate, it is suited to the conceptual 
design stage, where the designer seeks an understanding of how topology affects stiffness 
in various directions. 
 
Figure 4.31 presents the results of node position optimization using topology generated in 
Figure 4.28 through Figure 4.30. The resulting designs are seen to have a relatively 
strong dependence on the load case. By applying different load cases and combinations, 
the designer gains insight into potential design configurations that are candidates for 
more detailed analysis and design. 
 
A stability analysis was conducted for Case 3. Connection stiffness requirements are 
shown in Figure 4.32. The grayscale value in the filled circles represents the release 
values at each member endpoint.  
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a) Problem specification 

 
b) Skeleton 

 
c) Element model 
Figure 4.28. Telescope load case 1 
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a) Problem specification 

 
b) Skeleton 

 
c) Element model 
Figure 4.29. Telescope load case 2 
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a) Problem specification 

 
b) Skeleton 

 
c) Element model 
Figure 4.30. Telescope load case 3 
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a) Case 1 
 

 
b) Case 2 
 

 
c) Case 3 
Figure 4.31. Telescope topology after Refinement Phase 
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Figure 4.32. Telescope Case 3 stability analysis results 

 
The required connection stiffness has significant implications for overall design and cost. 
Large optical telescope structures are typically installed at remote, high elevation sites, 
where working conditions are difficult. Large telescope structures are generally pre-
assembled at the fabrication shop to verify the fit of the components. The rationale for 
trial assembly is that fabrication errors can be corrected more economically at the shop 
than in the field. For telescopes in the 30-meter class and larger, trial assembly is a very 
significant part of the overall fabrication budget. In order to reduce costs, there is 
pressure to reduce the amount of trial assembly required. Large telescope structures often 
use tubular members with bolted flange connections, as shown in Figure 4.33. To ensure 
predictable and repeatable performance of the structure, flange connections require 
accurate alignment, resulting in relatively uniform contact pressure and bolt tension. To 
verify the alignment of bolted flange connections, this type of connection requires trial 
assembly, which often incorporates some final adjustment and fit-up.  
 

 
Figure 4.33. Telescope bolted flange connection 
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As an alternative to flange connections, bolted shear connections can be employed. Shear 
connections allow a larger degree of field adjustment than flange connections, and may 
be used strategically to reduce the size of the trial assembly units. Connection stiffness 
requirements similar to those presented in Figure 4.32 may be used to guide the selection 
of joint designs to reduce overall connection costs and trial assembly costs. 
 

 
Figure 4.34. Telescope bolted shear connection 

 
Multiple design configurations may be generated by modifying the parameters 
controlling topology synthesis. Figure 4.35 shows a series of designs produced by 
varying the threshold levels used in converting topology optimization output to a binary 
image. Figure 4.36 shows a range of designs produced by varying the volume fraction 
used in topology optimization. The topology optimization produces more “truss-like” 
structures for low volume fractions and high thresholds. For higher volume fractions, the 
members become thicker and bending stiffness becomes more significant. If the volume 
fraction is too high, then voids are filled and large solid areas are produced. If the volume 
fraction is too low or the threshold too high, then areas become disconnected and 
relatively weak or unstable structures may result. For most of the examples presented 
here, volume fractions between 0.1 and 0.3, and a threshold of 0.2 were used. For 
practical topology optimization, the output generally includes a range of different 
grayscale values. In the telescope example, the central portion of the structure contains 
large, heavy members, while smaller members are required under the cantilevered 
instrument platforms. When a single threshold value is used, the threshold value is 
usually determined by the finer structural elements, represented by the lighter grayscale 
values, in order to avoid losing such structures during binary conversion. The result is 
that the darker elements become thicker when converted to binary format, and carry a 
larger proportion of bending than the lighter elements.  
 
Each design is processed using the techniques of this framework. Designers select the 
most appropriate concepts for detail design work, based on both quantitative and 
qualitative evaluation criteria. 
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Figure 4.35. Telescope configurations for threshold variation 
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Volume fraction 0.06 
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Figure 4.36. Telescope configurations for volume fraction variation 
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4.5.  Roof 
In a case study in architecture, conceptual designs are generated for a roof system 
covering the platforms of a train station. This example was inspired by the design of the 
Lisbon Orient train station by the architect Calatrava, shown in Figure 4.37. The problem 
is formulated as shown in Figure 4.38. The domain represents and area 16 meters wide by 
20 meters high. A large architectural clearance area is specified above the station 
platforms and rails. Another clearance area defines the architectural roof line. A linear 
retained area is defined along the roof line, to provide support for roof cladding. The 
design objective is to find a series of topologies that minimize the compliance for a given 
structural weight. 
 
Three load cases are studied, as presented in Figure 4.39 through 4.41. The load cases 
correspond to gravity load (Figure 4.39), wind load (Figure 4.40) and a combination of 
gravity, wind and seismic load (Figure 4.41). The critical load combination cannot be 
definitively established until the detailed design stage. At the conceptual stage, the 
critical combinations need to be estimated.  
 

 
Figure 4.37. Lisbon Orient train station by architect Calatrava 

 
As in the previous case study, the resulting topology is strongly dependent on the loading 
configuration. The results show that the proposed framework can generate designs that 
are architecturally varied and in some cases unexpected, and can be an extremely 
powerful tool in supporting creative conceptual design work. 
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Figure 4.38. Roof problem specification 
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a) Problem specification   b) Topology optimization output 
 

 
c) Skeleton     d) Element model 
Figure 4.39. Roof load case 1 
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a) Problem specification   b) Topology optimization output 
 

 
c) Skeleton     d) Element model 
Figure 4.40. Roof load case 2 
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a) Problem specification   b) Topology optimization output 
 

 
c) Skeleton     d) Element model 
Figure 4.41. Roof load case 3 
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4.6.  Inference 
a) Input 

 
c) Case base 

 

 
 
 

b) Output 

 

 
 

Figure 4.42. Visual inference example 
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To illustrate the potential application of visual case-based reasoning and visual inference, 
a simple example is presented in Figure 4.42. A sample image of a tree (Figure 4.42.a.) is 
provided as the input case, or target case. The goal is to retrieve a case from a design case 
base that best matches the input case. Since two structures similar in appearance may 
share similar design requirements, it may be possible to apply knowledge from the stored 
case to the input case to assist in the conceptual design of the input case. A shown in 
Figure 4.42.c., there are two source cases in the case base. The first case, the tree-like 
roof structure from the previous case study, is more similar to the input case than the 
second case, from the telescope example. Similarity is determined using the Object 
Density Map, graph matching, or other methods. The most similar cases are retrieved 
from the case base for the user to review and determine whether the cases are in fact 
similar enough to assist in the design of the input case. Stored cases can include 
information on loading and support conditions. As part of the retrieval process, boundary 
conditions for the source cases may overlaid onto the input case to determine if 
corresponding structure exists in the input case. Based on user judgment and the 
similarity of structure at boundary condition locations, boundary conditions may be 
transferred from the source case to the input case (Figure 4.42.b.). In this way, an 
arbitrary image may be interpreted as a structure, and knowledge may be gained about 
that image by inference from similar structures. This feature represents a powerful 
technique for learning about structures, and efficiently leveraging information from a 
database of stored experience for use in conceptual design. 
 
Sketch input is processed in the same way as the image in Figure 4.42. This capability 
supports the use of natural user interfaces, including pen-based input. Using visual case-
based reasoning, stored design cases similar to the sketch may be retrieved and used as 
the basis for conceptual design. Also, probable boundary conditions and design 
requirements can be inferred from target cases to assist in refining the design domain for 
a new conceptual design case. 
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5.  Computer Application 
 
 
 
 
This chapter describes a proof-of-concept computer application developed as part of this 
research. An overview of the principles guiding the development of the application is 
given first, followed by a description of system components and usage. 
 

5.1.  Design Principles 
In order to focus research efforts on the concepts behind the framework, existing software 
and algorithms were used where possible. The intent in developing the application was 
not to produce a commercial program nor to develop a sophisticated user interface, but 
simply to verify proposed concepts. 
 

5.2.  Components 
The main module of the application, including the user interface, was developed in 
Microsoft Visual C++ 2005 Express Edition, available as a free download. The main 
module implements image processing functions, aided by an open source computer vision 
library, OpenCV. The main module also calls MATLAB for image processing, linear 
analysis, SQP optimization, and topology optimization. 
 

5.2.1.  Topology Optimization 
Topology optimization was performed in MATLAB, with an algorithm developed by 
[Sigmund, 2001]. The algorithm uses an optimality criteria method, and includes a mesh 
independency filter. 
 

5.2.2.  Image Processing 
Image processing functions from the OpenCV computer vision library were used. 
OpenCV is open source software, originally developed by Intel, and now released under 
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the terms of the BSD. The functions used from OpenCV were limited to image resizing 
and scaling, thresholding, erosion and dilation, distance transformation, pixel access, and 
file access. MATLAB was used for additional image processing. 
 

5.2.3.  Geometric Optimization 
The Sequential Quadratic Programming algorithm from the MATLAB Optimization 
Toolkit was used for geometric and stability optimization. Linear structural analysis in 
MATLAB was done using the G2 Matrix Structural Analysis software [Fenves, 1999]. 
 

5.2.4.  Stability Optimization 
The author implemented a G2 element with variable end releases for stability 
optimization. 
 

5.2.5.  Pattern Recognition 
The author implemented image projections, the Object Density Map, and the Hough 
transform method for structural similarity in MATLAB.  
 

5.3.  Usage 

5.3.1.  Synthesis Phase 
The Synthesis Phase is initiated by defining the design domain. Figure 5.1 shows the 
domain definition dialog box, which contains fields for the overall domain dimensions, 
the subtracted and retained areas within the domain, and the boundary conditions. The 
dialog box also contains the parameters controlling topology synthesis, such as the 
volume fraction and convergence tolerance for topology optimization. For a simple 
example as shown in Figure 5.1, the minimum input is the length and width of the 
domain rectangle, a support boundary condition, and an applied load case. After the 
domain parameters are entered in the dialog box, an image of the design domain is 
displayed, as shown in Figure 5.2. 
 
More complex design domains may be specified, as shown in Figure 5.3, which contains 
a number of applied loads, support boundary conditions, and subtracted areas. This figure 
shows the domain definition for the Telescope example in Chapter 4. The resulting 
domain figure is displayed in Figure 5.4. 
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Figure 5.1. Domain definition form 

 

 
Figure 5.2. Domain image 
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Figure 5.3. Domain definition for Telescope example 

 

 
Figure 5.4. Domain image for Telescope example 
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Topology optimization is initiated using the menu bar of the main application, as shown 
in Figure 5.5.  
 

 
Figure 5.5. Running topology optimization 

 
Topology optimization is executed interactively, and the user can view the emergence of 
structural form frame-by-frame. Some sample frame captures for a typical example are 
given in Figure 5.6. The frames are displayed in a MATLAB window, and are produced 
by subroutines developed by [Sigmund, 2001]. When the topology optimization routine 
converges, the results are displayed in the main application window (Figure 5.7). Image 
processing routines are applied automatically to the topology optimization output. The 
output is converted to binary format (Figure 5.8), the skeleton is calculated, the skeleton 
paths are traced and a vector skeleton is generated (Figure 5.9). Member widths are 
calculated, and the resulting element model is created (Figure 5.10). These different 
views or representations of the structure are accessible through a tree-like index, called 
the navigation window. Views are displayed in the image window, so different views are 
easily compared by scrolling vertically through the tree. 
 
The main application supports multiple design configurations, as illustrated in Figure 
5.11. In the navigation window, the top level items represent the design configuration, 
and the lower level items access the different views of the design configuration. Figure 
5.11 shows a navigation window with two configurations, with the binary image of the 
second design configuration displayed in the image window. 
 
Once the element model has been created, a finite element analysis may be performed. 
The loads and boundary conditions are transferred from the domain definition to the 
element model, and a finite element analysis is run. The resulting deflected shape is then 
included as a view in the navigation window, as shown in Figure 5.12. 
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Figure 5.6. Topology optimization frames 
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Figure 5.7. Topology optimization output 

 

 
Figure 5.8. Binary image of topology optimization output 

navigation window image window 
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Figure 5.9. Vector skeleton view 

 

 
Figure 5.10. Element view 
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Figure 5.11. Multiple design views 

 

 
Figure 5.12. Linear analysis results 
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5.3.2.  Refinement Phase 
As a first step in the Refinement Phase, geometric optimization is performed on the finite 
element model. Geometric optimization is performed in MATLAB using Sequential 
Quadratic Programming routines from the MATLAB Optimization Toolbox. An image of 
the structure is updated with each optimization iteration, allowing the user to interactively 
view the changes occurring in the structure. Node repositioning, node deletion and node 
merging are all visible as they occur. Some sample frames from geometric optimization 
are shown in Figure 5.13. 
 

  

  

Figure 5.13. Geometric optimization frames 



5.   Computer Application 
 
 

  166

 
Figure 5.14. Geometric optimization objective function history 

 
Figure 5.15. Geometric optimization status 
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At the completion of geometric optimization, the objective function value is plotted for 
each iteration (Figure 5.14). Similarly, other key optimization results, such as deflection 
and volume are plotted. The MATLAB window contains a log of the optimization 
process, including information on node merging and deletions (Figure 5.15).  
 
Stability optimization results are displayed in the MATLAB window, as shown in Figure 
5.16. The results are summarized in a listing containing the release values ri at the ends of 
each member (shown as Ri and Rj in Figure 5.16). 
 

 
Figure 5.16. Stability optimization results 

 

5.3.3.  Case-based Reasoning Phase 
A critical element in visual case-based reasoning is image matching, used for the retrieval 
of similar images from the case base. Image matching using the Object Density Map 
(ODM) is implemented in MATLAB, where the source and target images are represented 
as 2D arrays. The source and target images are processed similarly. An output image is 
created for each image by scaling the input images sufficiently to clearly show the 
superimposed sampling grid and ODM grayscale values. The pixels in each grid square 
are counted and the sum of the pixels is used to select the ODM grayscale values. The 
grayscale values are plotted as triangular-shaped overlapping intervals. 
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Figure 5.17. Object density map 
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Image matching results are presented as shown in Figure 5.17. In this figure, the left and 
right columns of images correspond to the source and target images. The three images 
shown in sequence from top to bottom are 1) the input image, 2) the input image with 
superimposed sampling grid and 3) the ODM output. Further details of the image 
matching are provided in the MATLAB window (Figure 5.18), which displays a 2D array 
showing the numerical difference between corresponding grid square values. Finally, the 
MATLAB window displays the overall difference between images as a single, real-
valued number (shown as difMeasure in Figure 5.18). 
 

 
Figure 5.18. Object density map results 
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6.  Conclusions 
 
 
 
 
This chapter summarizes the main features of the proposed framework, discusses general 
features and specific research contributions, comments on how well overall research 
objectives were satisfied, and gives recommendations for further research. 
 
This dissertation describes a computational framework for assisting the structural 
designer during the conceptual design phase. A central idea in the framework is that the 
form of structures holds valuable information which can support visual reasoning at 
different levels of abstraction. The framework supports both the generation of new 
concepts as well as the use of past designs. In generation mode, a top-down process is 
first used to synthesize conceptual forms. Forms may be synthesized from a simple set of 
inputs representing a plain block of material, or from a complex set of geometric 
constraints representing an expressive shape. The form is then decomposed or 
deconstructed into a set of primitives and their relationships, a representation that 
supports high-level reasoning using techniques from linguistics and pattern recognition. 
The decomposition into primitives mirrors the fabrication process, where pieces are 
assembled to build a structure. The decomposition thus supports intelligent decision-
making about potential detail design, fabrication and assembly options at the conceptual 
stage. For design reuse, the framework supports visual case-based reasoning as a means 
for retrieving similar designs. A novel feature of the framework is that arbitrary images 
of shapes may be interpreted as structures by using visual similarity to infer potential 
boundary conditions, functionality, and behaviour for those shapes. 
 

6.1.  Main Features 
The main features of the work are summarized in the following paragraphs. 
 
Visual reasoning 
The use of visual reasoning methods is central to this research. The objective of 
conceptual structural design is to create forms. For human designers, this is a highly 
visual and symbolic process, particularly in the early stages of conceptual design. Formal 
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methods for reasoning with images, shapes and patterns are effective in a system that 
provides computational support for conceptual design. Many existing conceptual design 
systems reason with concepts represented by textual information or a limited set of 
spatial relationships. The framework is specifically developed to leverage the information 
content of structural forms in all phases. 
 
Automation 
The framework has been developed to assist the designer, rather than generate design 
concepts in a fully automatic process. The most important creative force during 
conceptual design is the human designer. The framework mirrors the approach of 
experienced designers, who rely heavily on visual and symbolic information, and the 
store of past experience.  
 
Synthesis 
Conceptual design synthesis is a creative process.  A key objective is to synthesize new 
designs that uniquely reflect the particular requirements of a given design problem. 
Sometimes the results are unexpected, which is a characteristic of all creative processes. 
The framework uses topology optimization methods to create new forms, sometimes 
from a minimal set of inputs. The framework also supports the ability to respond to an 
expressive and complex set of geometric constraints, which may arise in architectural 
design, for example. Through case-based reasoning, the new concepts can be refined with 
the benefit of experience from past design work. 
 
Speed 
Using a minimal amount of user input, the proposed methodology can be used to rapidly 
transform problem requirements into a concept-level finite element model. The model is 
developed using optimization techniques which simplify the geometry and guarantee 
stability. The model can be used directly in detailed, domain specific optimization 
procedures. Retrieval and reuse of past design information using case-based reasoning 
methods also reduces the time to develop design concepts. 
 
Abstraction 
Viewing concepts at multiple levels of abstraction is important during conceptual design.  
Conceptual design is characterized by incomplete and uncertain information, and detailed 
evaluation methods may be inefficient and ineffective. Similarity between concepts 
depends on the abstraction level at which they are viewed. Measures of similarity, which 
are essential to inferential learning, are more effective when they handle different 
abstraction levels. Multiple abstraction levels are featured throughout the framework. 
Images are represented at different levels of resolution. Symbolic representations are 
extracted from images through incremental changes in the abstraction level. Comparative 
finite element analysis techniques are used, as opposed to methods seeking absolute 
performance measures. Nondimensional or scale-invariant measures are used where 
possible to compare designs. 
 



6. Conclusions 
 
 

  172

General optimization methods 
The framework utilizes commercially-available mathematical optimization algorithms.  
This reduces the time needed to program specific optimization algorithms, which may be 
an important practical consideration. Optimization methods can readily be updated as 
more efficient ones become available. Mathematical optimization algorithms require a 
clear, concise, and general problem formulation, supporting independent verification and 
future research. 
 
Multiobjective optimization 
The framework directly supports the development of practical and cost-effective design 
concepts with multiobjective optimization. The framework emphasizes simplicity as a 
design objective, and decomposes the structure into components in a way that mirrors the 
fabrication process. Design, fabrication and assembly related constraints that apply to 
components and connections can readily be incorporated. 
 

6.2.  Contributions 
This research draws heavily on the work of others in the fields of structural engineering, 
mechanical engineering, image processing and pattern recognition. Contributions to the 
conceptual design of structures are summarized here. 
 
General topology optimization for large-scale structures 
This framework proposes a method for efficiently generating discrete topology during 
conceptual structural design. The framework is particularly suited to the design and 
fabrication of large-scale skeletal structures. Such structures consist of an assemblage of 
discrete members, and connections between the members have a significant impact on the 
overall performance and cost of the structure. The framework describes a general method 
for generating topology for a wide range of potential applications using a minimal 
amount of input. The system is useful for a wide range of structural applications, 
including scientific instruments, industrial equipment supports, bridges and buildings.  
 
A large number of computer applications for structural topology optimization are 
described in the literature. Continuum topology optimization methods are used for the 
design of plate, shell and solid structures. Truss and frame topology optimization 
methods are used for the design of skeletal structures. For truss topology optimization, 
one of the most general methods is the ground structure approach, which starts with a 
large number of potential design configurations. This method is known to be 
computationally demanding, particularly for a fully connected ground structure with fine 
node spacing. In practical applications, the ground structure is therefore relatively coarse, 
and must be carefully selected based on both domain- and problem-specific 
considerations. Truss topology optimization is complicated by the fact that even small 
changes in topology can lead to large differences in stiffness, limiting the use of classical 
gradient-based optimization techniques. Global optimization methods such as 
evolutionary computing have been found to be effective for discrete topology 
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optimization. For design problems that are highly nonlinear or nonconvex, global 
optimization methods may be the only practical solution technique. Methods that use 
randomly generated ground structures to generate initial populations represent some of 
the most flexible and efficient evolutionary computing techniques for conceptual 
structural design. Such methods are particularly useful when the search space is complex 
or poorly-understood, and they can be used as a tool to explore and gain a better 
understanding of that space. If the search space contains structure that can be exploited 
by special-purpose search techniques, the use of evolutionary methods is generally 
computationally less efficient [De Jong, 1990] than those techniques. The framework 
proposed here is such a special-purpose technique that takes advantage of the underlying 
principles of engineering mechanics to efficiently generate design concepts. 
 
Continuum topology optimization methods are efficient, well-established, and 
commercially available. The major drawback is that the output of such methods is not 
directly suitable for fabrication, particularly at scales larger than a few meters. Recent 
research has tended to focus on applications to microtechnology, nanotechnology, and 
material design. The framework presented in this research leverages the efficiency of 
continuum optimization methods, and extends their range of applicability to large scale 
structures. Although other research has been done in this area, the work proposed here 
represents a wider approach that integrates topology generation with visual case-based 
reasoning and visual inference methods. Also the this work proposes an efficient method 
for generating stable skeletal structures.  
  
The conceptual design of buildings has been extensively covered in the literature, given 
the obvious economic implications. Computer systems that support conceptual building 
design generally use geometric reasoners with limited capabilities. The reasoners are 
restricted to the relatively simple spatial relationships found in economical buildings 
based on a rectilinear grid system with conventional column and beam construction. 
Although there are many potential applications for such systems, they are generally not 
suitable for the free-form, curvilinear construction that is common in modern 
architecture. This research proposes a system that is useful for a wide range of structural 
applications. 
 
Automated generation of stable skeletal structures 
Although methods for verifying structural stability are well established, efficient methods 
for generating stable structures are not. In truss topology optimization, stability is 
generally ensured using heuristics and generate-and-test methods. A common heuristic is 
to add sufficient members to ensure that all polygonal cells are triangular. Generate-and-
test refers to the generation of a large number of different topological configurations, and 
filtering out the ones that are unstable. This work proposes an efficient method for 
generating stable skeletal structures using classical mathematical optimization methods. 
The stability optimization method presented here produces information that directly 
supports the detailed analysis and design of economical connections between members. 
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Visual case-based reasoning 
Existing CBR systems for conceptual design use primarily textual attributes or simplified 
geometric attributes. Although sophisticated text-based case retrieval methods have been 
developed, these methods cannot fully represent the visual and graphical information that 
is an important part of conceptual structural design. The framework described here 
applies visual case-based reasoning techniques to conceptual structural design. Such 
methods have been applied to mechanical engineering and other fields, but there are 
apparently no existing applications to conceptual structural design.  
 
Pattern recognition  
Given the importance of visual and graphical information during conceptual design, it is 
remarkable that few computational tools for conceptual structural design exploit this 
information. In the fields of image processing and pattern recognition, there are well-
established, rigourous techniques for manipulating graphical information. Such 
techniques have been applied for many years in areas such as medical imaging, remote 
sensing, and maufacturing, but few of these techniques have been applied to conceptual 
structural design. The framework presented here makes extensive use of these methods to 
generate conceptual designs and reason with those designs at relatively high levels of 
abstraction. 
  
Structural similarity 
This research introduces measures of similarity between structural design concepts using 
image processing methods. The framework represents images of structures at various 
levels of abstraction, which is key to identifying similarities between complex, dissimilar 
forms. The methods used include a Hough transform approach, discrete projections, and 
the Object Density Map. 
  
Visual inference 
Using structural similarity measures, the characteristics of one structural form can be 
inferred from those of another. In the framework, images containing arbitrary forms can 
be interpreted as structures. Similarity between the forms can be use to infer boundary 
conditions, design constraints and functionality from other structures. 
 
Sophisticated graphical user interfaces have been developed in fields such as architecture 
and industrial design, where natural, pen-based applications simulate sketching, clay 
modeling and other creative form-finding methods. Unfortunately, such applications do 
not recognize content such as the meaning of elements and relationships between them. 
Symbolic sketch recognition computer programs have been developed in architecture and 
mechanical design. For mechanism design, there are diagrammatic reasoning systems that 
convert unlabeled line drawings into a description of a physical system. The framework 
described here is capable of providing high level descriptions of the functionality and 
performance of structures described by a sketch. No similar applications in the field of 
conceptual structural design are apparent in the literature. 
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Using methods similar to those used to process sketches, the framework has the 
capability to process photographs and other images of structures, and generate high level 
descriptions of the probable functionality and a performance of the structures represented 
in the images. 
 

6.3.  Objectives 
The main objective of this research was to develop computational techniques to support 
the conceptual design of structures by enabling the rapid generation and evaluation of 
new designs, and by facilitating the reuse of past designs. The framework described here 
accomplishes that objective. To generate or synthesize new designs, the framework uses a 
combination of mathematical optimization, image processing and pattern recognition 
methods. The reuse of past designs is implemented using visual case-based reasoning 
methods. During synthesis, forms are initially created using topology optimization 
methods; these forms are processed to extract high level information that supports further 
structural optimization, including the assessment of stability and relative cost. The high 
level information is used to describe, classify and store conceptual forms for case-based 
reasoning. These techniques were implemented in a proof-of-concept computer 
application, and several examples were presented that illustrate the effectiveness of the 
proposed framework. 
 
The specific objectives of this research have largely been accomplished, as discussed in 
the following paragraphs. 
 
Apply visual case-based reasoning to conceptual structural design 
A central feature of visual case-based reasoning is the retrieval of cases on the basis of 
the similarity of form. This research effectively implements a method for evaluating 
similarity between structural concepts. Reuse and modification of past design cases uses 
existing state-of-the-art case-based reasoning procedures.  
 
Develop a framework for general conceptual structural design 
Many existing conceptual design systems have been developed for buildings with 
simplified geometry based on rectilinear grids. The framework proposed here is useful 
for a wide range of structural applications, including scientific instruments, industrial 
equipment supports, and geometrically complex bridges and buildings. 
 
Incorporate natural user input in conceptual structural design 
The framework proposed here accepts natural input in the form of sketches. The 
framework uses sketches in two different modes. In the first mode, sketches are directly 
converted to finite element models which are subsequently processed by the framework 
to simplify form and ensure stability. In the second mode, sketches may be used to 
retrieve structural designs with similar form from a database of design cases. 
Simplification in the first mode produces a more abstract representation of the structure 
that supports a more effective search for similar designs in the second mode. 
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Apply visual inference to conceptual structural design 
The research described here presents a method for determining visual similarity between 
two structural design concepts. Evaluating similarity between concepts is a key 
requirement for applying the process of inference.  
 
Rapidly generate discrete topology in conceptual structural design 
Case studies show that the framework presented here is capable of generating discrete 
structural topology more efficiently than some of the most efficient existing methods. 
The rapid generation of discrete topology is particularly important for the conceptual 
design of large structures with consideration to practical fabrication methods. 
 
Extend continuum topology optimization to large scale structures 
The framework described here uses efficient, well-established, and commercially 
available continuum topology optimization methods, which are currently more suited to 
relatively small-scale fabrication. The framework successfully applies these methods to 
large scale structures such as bridges, architectural structures, and large telescopes.  
 
Establish an efficient method for developing a stable discrete structure 
This work presents an efficient method for generating stable skeletal structures using 
classical mathematical optimization methods. 
 
Generate and reason with conceptual designs at a high level of abstraction 
The framework employs techniques of image processing and pattern recognition to 
manipulate graphical information at high levels of abstraction. The use of multiple 
abstraction levels is emphasized throughout the description of the framework. 
 
Revisiting the main hypothesis, that “patterns exist that relate structural forms to design 
requirements”, this research has developed methods to process structural forms and 
identify patterns. The secondary hypothesis, that “a formal language exists to describe 
structural form,” is more ambitious, and verification requires further study using methods 
like the ones described in this work.  
 

6.4.  Recommendations for Further Work 
The framework described here introduces several novel concepts in the conceptual design 
of structures. Further work is required to validate the overall framework in a practical, 
multi-user setting. A proof-of-concept software application which validates the major 
components of the framework, is also described here. Further work would be required to 
develop the proof-of-concept application into a commercial application. Other 
recommendations for further work are outlined in the following list. 
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Visual case base of structural designs 
A practical structural design case base containing visual information would be useful in 
validating several aspects of the framework. A large database of design cases should be 
used to evaluate the practical effectiveness of case retrieval. Also, such a case base 
should be used to further test the inference of boundary conditions and other information 
from stored cases to arbitrary images, such as sketches and photographs. 
 
Sensitivity Analysis 
Although some effort was made in this work to evaluate the sensitivity of the derived 
forms to changes in input and control parameters, further sensitivity analysis is required. 
Sensitivity analysis may be used to improve control parameter settings, and to assist the 
user in efficiently exploring the input parameter space. Control parameters include the 
binary conversion threshold for topology optimization grayscale output, the volume 
fraction for topology optimization, and curve-fitting parameters for skeleton generation. 
Sensitivity to changes in input parameters such as boundary conditions and loads should 
be investigated further, with the possibility of developing qualitative and quantitative 
measures to describe the sensitivity of form to input values. Further research could be 
conducted into the sensitivity of performance to form. For example, is it possible to 
understand the general conditions under which large changes in topology produce 
relatively small changes in performance? 
 
Automatic Control Parameters 
Using the results of sensitivity analysis, schemes could be established for automatic 
adjustment of control parameters such as the binary conversion threshold. For example, 
the threshold could be automatically adjusted to reliably produce skeleton structures with 
the expected overall characteristics, such as connectivity. 
 
Extension to Three Dimensions 
Both topology optimization and pattern recognition methods are well established in 3D. 
Further work is required to extend the framework to accommodate 3D design, and to test 
the performance with a range of practical problems. 
 
Human Interaction 
Further work is required to understand how effective such a framework would be in 
supporting multiple human users during conceptual design. For example, architects, 
owners and engineers participate in the conceptual design of buildings, and each 
participant evaluates concepts using different quantitative and qualitative criteria. The 
interactive navigation, exploration, and selection of designs from a set of retrieved cases 
should be investigated further. A wide range of software and hardware tools have been 
developed to support the intuitive browsing and organization of visual information, and 
these may be used in conceptual structural design. Support for natural interfaces such as 
pen-based input could be expanded. For example, intelligent sketch recognition could be 
used to differentiate between structure, loads and support conditions in a schematic 
sketch of a structure. 
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