

A FRAMEWORK FOR FORM-BASED CONCEPTUAL DESIGN
IN STRUCTURAL ENGINEERING

by

Michael Gedig

B.A.Sc., The University of British Columbia, 1992
M.A.Sc., The University of British Columbia, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(Civil Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)

April 2010

© Michael Gedig, 2010

 ii

Abstract

Conceptual structural design is a process through which structural forms are created. The
forms are shaped by a set of design requirements representing the expected function, and
by constraints that reflect physical laws and practical limitations. There is no direct
mathematical transformation from requirements to a form; the conceptual design process
is nonlinear and iterative. Like all creative processes, it is most effective when ideas can
be rapidly synthesized, dissolved, combined and evolved. In structural design, these ideas
need to be evaluated in the context of performance, functionality, and cost. Conceptual
design, compared to later design stages, is characterized by a high degree of uncertainty
and a general lack of knowledge. A key objective in conceptual structural design is
therefore to rapidly create, modify and evaluate vague or abstract structural forms.

This work describes a computational framework to support conceptual structural design,
emphasizing the importance of form. Techniques from image processing, pattern
recognition and linguistics are used to describe, classify, and reason with forms at high
levels of abstraction. Most other computer applications in conceptual structural design
describe design concepts in terms of words or through simplified spatial relationships.
This work highlights the central role that visual information plays in formulating ideas in
conceptual design.

The major contributions of this work are an efficient method for synthesizing conceptual
designs of discrete structures, and the application of pattern recognition and visual case-
based reasoning techniques to conceptual structural design. The framework is directed
towards large-scale discrete structures characterized by interconnected linear elements.
During synthesis, forms are initially created using topology optimization methods; these
forms are processed to extract high level information that supports further structural
optimization, including the assessment of stability and relative cost. The high level
information is used to describe, classify and store conceptual forms for case-based
reasoning. A novel feature of the work is that arbitrary images of shapes may be
interpreted as structures by using visual similarity to infer potential boundary conditions,
functionality, and behaviour for those shapes.

Abstract

 iii

This dissertation gives a complete description of the framework, along with sample
applications. A proof-of-concept computer application is also described.

 iv

Table of Contents

Abstract ... ii
Table of Contents... iv
List of Tables .. vii
List of Figures .. viii
Acknowledgements.. xi
1. Introduction... 1
2. Background... 6

2.1. Conceptual Design .. 6
2.1.1. Expert Systems.. 7
2.1.2. Qualitative Reasoning... 8
2.1.3. Design Prototypes ... 8
2.1.4. Case-based Reasoning .. 10
2.1.5. Building Design .. 14
2.1.6. Commercial Software ... 15
2.1.7. Visual Case-Based Reasoning .. 16
2.1.8. User Interfaces .. 19
2.1.9. Mechanical Design.. 20
2.1.10. Conceptual Analysis Methods .. 20

2.2. Optimization ... 21
2.2.1. General Optimization.. 21
2.2.2. Multiobjective Optimization... 23
2.2.3. Structural Optimization... 24
2.2.4. Postprocessing... 33

2.3. Image Processing .. 34
2.3.1. General.. 34
2.3.2. Morphology... 35
2.3.3. Thinning.. 37
2.3.4. Distance Map .. 37
2.3.5. Hit-or-Miss Operators... 38
2.3.6. Projection .. 38

Table of Contents

 v

2.3.7. Hough Transform.. 39
2.3.8. Fourier Transform... 41

2.4. Pattern Recognition... 41
2.4.1. Overview... 41
2.4.2. Regions ... 42
2.4.3. Boundaries and Curves ... 43
2.4.4. Structural Descriptions.. 43
2.4.5. Relational Graphs.. 45
2.4.6. Output ... 46
2.4.7. Graph Matching .. 47

2.5. Structural Stability .. 49
2.5.1. Maxwell’s Rule... 50
2.5.2. Gruebler’s Equation .. 50
2.5.3. Static and Kinematic Indeterminacy... 51
2.5.4. Linear Structural Analysis .. 51
2.5.5. Equilibrium matrix analysis.. 53
2.5.6. Mechanisms .. 54

2.6. Summary ... 55
3. Framework .. 58

3.1. Overview... 58
3.2. Synthesis Phase... 61

3.2.1. Design Formulation .. 62
3.2.2. Representation Model ... 63
3.2.3. Topology Optimization... 65
3.2.4. Image Processing .. 69
3.2.5. Relational Graph ... 74
3.2.6. Discussion... 74

3.3. Refinement Phase.. 75
3.3.1. Finite Element Modeling .. 76
3.3.2. Layout Optimization ... 76
3.3.3. Stability Optimization... 83
3.3.4. Relational Graph ... 89
3.3.5. Discussion... 89

3.4. Optimization Phase ... 90
3.4.1. Objectives ... 91
3.4.2. Constraints .. 93
3.4.3. Multiobjective Optimization... 95
3.4.4. Discussion... 96

3.5. Evaluation and Selection Phase .. 96
3.6. Alternate Generation Methods.. 97
3.7. Case-based Reasoning .. 101

3.7.1. Case Representation.. 102
3.7.2. Case Input ... 104
3.7.3. Classification and Indexing... 104
3.7.4. Retrieval and Selection ... 106

Table of Contents

 vi

3.7.5. Adaptation... 110
3.7.6. Discussion... 110

4. Case Studies .. 111
4.1. Cantilever.. 111
4.2. Bridge.. 116
4.3. Bicycle .. 123
4.4. Telescope .. 136
4.5. Roof... 149
4.6. Inference ... 154

5. Computer Application... 156
5.1. Design Principles .. 156
5.2. Components .. 156

5.2.1. Topology Optimization... 156
5.2.2. Image Processing .. 156
5.2.3. Geometric Optimization.. 157
5.2.4. Stability Optimization... 157
5.2.5. Pattern Recognition... 157

5.3. Usage... 157
5.3.1. Synthesis Phase... 157
5.3.2. Refinement Phase.. 165
5.3.3. Case-based Reasoning Phase .. 167

6. Conclusions... 170
6.1. Main Features.. 170
6.2. Contributions... 172
6.3. Objectives ... 175
6.4. Recommendations for Further Work .. 176

7. Bibliography ... 178

 vii

List of Tables

Table 3.1. Design domain representation ... 64
Table 3.2. Cantilever beam stability optimization results... 88
Table 3.3. Case representation .. 102
Table 3.4. Relational graph representation in cases.. 103
Table 3.5. Image features.. 105
Table 4.1. Bridge design result ... 122
Table 4.2. Bicycle frame case retrieval... 134

 viii

List of Figures

Figure 2.1. Model of design as a process [Gero, 1990] .. 9
Figure 2.2. Set of gestalts in FABEL [Gebhardt et al., 1997]... 17
Figure 2.3. Representing gestalts with successive abstraction [Gebhardt et al., 1997] 17
Figure 2.4. Similarity of object density maps [based on Gebhardt et al., 1997]............... 18
Figure 2.5. Michell structure [from Rozvany, 1997] .. 25
Figure 2.6. Ground structure... 26
Figure 2.7. Solution using ground structure method [after Rozvany, 1997] 26
Figure 2.8. Continuum topology optimization problem ... 30
Figure 2.9. Continuum topology optimization output .. 31
Figure 2.10. Structuring elements... 35
Figure 2.11. Morphological operations (SE=Z8) .. 36
Figure 2.12. Image processing operations .. 37
Figure 2.13. Hit-or-miss structuring elements .. 38
Figure 2.14. Hough transform... 39
Figure 2.15. Fourier transform.. 40
Figure 2.16. Freeman chain code [after Pavlidis, 1977] ... 44
Figure 2.17. Structural description example ... 44
Figure 2.18. Attributed relational graph ... 45
Figure 2.19. Limitation of Maxwell’s rule.. 50
Figure 3.1. Overview of conceptual design generation .. 60
Figure 3.2. Framework overview – Synthesis Phase .. 62
Figure 3.3. Cantilever beam sample problem domain definition...................................... 66
Figure 3.4. Topology optimization output .. 66
Figure 3.5. Topology optimization output in binary form (threshold 0.2) 67
Figure 3.6. Topology optimization output in binary form (threshold 0.5) 67
Figure 3.7. Thinning algorithm definitions... 69
Figure 3.8. Skeleton .. 71
Figure 3.9. Vertex identification... 71
Figure 3.10. Skeleton with vertices identified .. 71
Figure 3.11. Vector approximation to skeleton .. 72

List of Figures

 ix

Figure 3.12. Distance transform of binary image ... 73
Figure 3.13. Vector skeleton with element thickness superimposed 73
Figure 3.14. Relational graph of vector skeleton.. 74
Figure 3.15. Framework overview – Refinement Phase... 77
Figure 3.16. Geometric optimization - pin support condition (dlim=0.9wmin, θlim=0.2)..... 81
Figure 3.17. Geometric optimization – displacement and volume history 82
Figure 3.18. Geometric optimization – objective function history................................... 82
Figure 3.19. Cantilever beam geometric optimization (fixed support condition)............. 83
Figure 3.20. Cantilever beam combinatorial stability study ... 86
Figure 3.21. Cantilever beam SQP stability optimization .. 88
Figure 3.22. Relational graph of cantilever beam output.. 89
Figure 3.23. Framework overview – Optimization Phase .. 90
Figure 3.24. Tubular truss design problem ... 91
Figure 3.25. Hough style plot of element length and angle .. 93
Figure 3.26. Discrete tubular sections... 95
Figure 3.27. Alternate input paths... 98
Figure 3.28. Sketch input example ... 99
Figure 3.29. Image input example .. 100
Figure 3.30. Overview of case-based reasoning ... 101
Figure 3.31. Projections of cantilever skeleton... 106
Figure 3.32. Similarity using ODM (difference measure = 0.034)................................. 108
Figure 3.33. Similarity using ODM (difference measure = 0.009)................................. 108
Figure 3.34. Graph matching sample result .. 109
Figure 4.1. Cantilever beam example ... 112
Figure 4.2. Cantilever beam solution by [Azid et al., 2002]... 113
Figure 4.3. Cantilever beam model generation... 113
Figure 4.4. Cantilever geometric optimization – displacement and volume history 114
Figure 4.5. Cantilever geometric optimization – objective function history 114
Figure 4.6. Cantilever beam solution.. 115
Figure 4.7. Bridge problem specification ... 117
Figure 4.8. Bridge design result [Yang and Soh, 2002] (45 404 kg).............................. 117
Figure 4.9. Bridge model generation .. 118
Figure 4.10. Bridge geometric optimization – displacement and volume history 119
Figure 4.11. Bridge geometric optimization – objective function history...................... 119
Figure 4.12. Bridge design result .. 120
Figure 4.13. Bridge member cross-section area.. 120
Figure 4.14. Bridge member cross-section radius of gyration.. 121
Figure 4.15. Bicycle frame problem specification.. 123
Figure 4.16. Bicycle frame model generation... 124
Figure 4.17. Bicycle frame design result .. 125
Figure 4.18. Bicycle frame respecification with steering ... 127
Figure 4.19. Bicycle frame respecification with fork ... 128
Figure 4.20. Bicycle frame and fork element model .. 129
Figure 4.21. Bicycle frame redesign result ... 129
Figure 4.22. Bicycle frame stability analysis result.. 130

List of Figures

 x

Figure 4.23. Bicycle frame generation for two designs .. 131
Figure 4.24. Bicycle frame commercial designs... 132
Figure 4.25. Bicycle frame retrieval results.. 135
Figure 4.26. Telescope structure... 137
Figure 4.27. TMT telescope azimuth structure front view ... 138
Figure 4.28. Telescope load case 1 ... 141
Figure 4.29. Telescope load case 2 ... 142
Figure 4.30. Telescope load case 3 ... 143
Figure 4.31. Telescope topology after Refinement Phase .. 144
Figure 4.32. Telescope Case 3 stability analysis results... 145
Figure 4.33. Telescope bolted flange connection ... 145
Figure 4.34. Telescope bolted shear connection... 146
Figure 4.35. Telescope configurations for threshold variation 147
Figure 4.36. Telescope configurations for volume fraction variation 148
Figure 4.37. Lisbon Orient train station by architect Calatrava...................................... 149
Figure 4.38. Roof problem specification .. 150
Figure 4.39. Roof load case 1 ... 151
Figure 4.40. Roof load case 2 ... 152
Figure 4.41. Roof load case 3 ... 153
Figure 4.42. Visual inference example ... 154
Figure 5.1. Domain definition form.. 158
Figure 5.2. Domain image .. 158
Figure 5.3. Domain definition for Telescope example ... 159
Figure 5.4. Domain image for Telescope example ... 159
Figure 5.5. Running topology optimization.. 160
Figure 5.6. Topology optimization frames ... 161
Figure 5.7. Topology optimization output .. 162
Figure 5.8. Binary image of topology optimization output .. 162
Figure 5.9. Vector skeleton view .. 163
Figure 5.10. Element view.. 163
Figure 5.11. Multiple design views... 164
Figure 5.12. Linear analysis results .. 164
Figure 5.13. Geometric optimization frames .. 165
Figure 5.14. Geometric optimization objective function history.................................... 166
Figure 5.15. Geometric optimization status.. 166
Figure 5.16. Stability optimization results.. 167
Figure 5.17. Object density map ... 168
Figure 5.18. Object density map results.. 169

 xi

Acknowledgements

I would like to thank my supervisor during this work, Dr. Siegfried Stiemer, for his
invaluable insight and criticism, and overall for his enduring mentorship.

From my supervisory committee, I am especially indebted to David Halliday for his
support throughout this endeavour. I would also like to thank Dr. Reza Vaziri, Dr.
Farrokh Sassani, and Dr. Ricardo Foschi for their invaluable guidance.

I am very grateful to Empire Dynamic Structures for giving me the opportunity to pursue
this work. Many of these ideas were inspired by the unique and challenging projects
undertaken at EDSL, and by the work of my very creative and skilled colleagues.

I am grateful for the support and encouragement of Laura and Sven Eriksson.

I would like to thank my mother, Lydia Miller, for showing me the meaning of courage
and tenacity.

I am thankful for my son Jakob for helping me keep things in perspective.

Above all, this work simply would not have been possible without my wife, Ann Marie.
You have shown me patience and love in infinite measure.

 1

1. Introduction

Conceptual structural design may be described as a process used to create structural
forms. In general, design is the process by which a set of requirements are transformed
into a description. Conceptual design is concerned with the early phases of the overall
design process, where the emphasis is the interpretation of requirements and the
exploration of multiple design ideas. In contrast, the later phases of design are concerned
with detailed analysis and description, usually of a single concept. In structural design,
the goal of the detailed design phase is to produce detailed models, drawings and
instructions that can be used to fabricate the structure. In conceptual structural design, the
objective is to produce structural forms that are likely to satisfy the requirements once
detailed analysis and description have been completed.

The conceptual design phase is an important part of the life cycle of a project. Decisions
made earlier in the design process have a proportionally higher impact on overall cost and
schedule than later decisions. Conceptual design is a fluid process where design forms
may be readily synthesized, dissolved, combined and evolved. As design progresses,
concepts become more solidified and entrenched, and more difficult and expensive to
change.

As a creative process, conceptual design becomes more effective as a wider a range of
different configurations is investigated. The effective and rapid evaluation of design
concepts, in terms of performance, functionality and cost, is therefore important in
conceptual design. Although there are many tools available to evaluate structural systems
in the later design stages, far fewer methods are applicable to conceptual design.

The conceptual design stage, compared to later design stages, is characterized by a higher
degree of uncertainty and a greater lack of knowledge. At the conceptual stage,
requirements may be flexible, vague, and subject to various interpretations. In complex or
unique projects, the requirements are often refined as more information is gained about
the potential performance of the system. Most analysis and design applications are
designed to be used in the later design stages, where there is less uncertainty. Most

1. Introduction

 2

applications do not explicitly model numerical uncertainty, and are not designed to
handle incomplete or partially-specified input data. For example, analysis programs often
require the user to make specific assumptions where data is not known, and do not accept
a range of input values for an uncertain parameter, nor do they inform the user of the
sensitivity of the result to such parameters. Most computer-aided design (CAD) programs
force the user to enter a specific set of dimensions for an object, rather than allow the user
to express the fact that a range of dimensions are acceptable. At the conceptual design
stage, the ability to express and reason with uncertain or partially specified information is
more important than in the latter design stages.

Conceptual structural design is a highly visual and symbolic process, where sketches and
diagrams are essential tools to crystallize structural forms from ideas. The form of a
structure is the most elemental constituent of a conceptual design solution. It is the form
that is captured in the first quick hand sketches, before calculations and models are made.
Human designers are very effective at remembering and manipulating concepts in their
visual forms. Large databases of images can be quickly scanned to locate a specific
image. Viewing an image or diagram initiates the recall of experiences from memory and
suggests new areas of design exploration. More abstract images, such as rough sketches,
are often more effective than precise drawings in conceptual design because they suggest
different ideas to different viewers, opening up a wider expanse of design space.

Most other work to develop computer applications in conceptual structural design
describes design concepts in terms of words or through simplified spatial relationships. A
common feature of these applications is that designs are classified and indexed using
words and text. Although some of these systems employ sophisticated hierarchical
classification schemes capable of working at several different levels of abstraction
simultaneously, the underlying nature of the classification is textual rather than visual.

A major objective in conceptual structural design is therefore to rapidly create, modify
and evaluate vague or abstract structural forms. Although research in conceptual
structural design has been ongoing for several decades, there appear to be few tools on
the horizon to support the practicing structural designer in the conceptual stages.
Currently, the engineer has few structured techniques to augment experience and intuition
in this phase.

The main objective of this research is to develop a form-based framework that supports
the conceptual design of structures. As a goal, the framework would enable the rapid
generation and evaluation of new designs, and facilitate the reuse of past designs. The
concept of form is intended to be central to the development of the framework, for both
the generation and reuse of design concepts. Ideally, the framework would support the
rapid transformation from design requirements to conceptual design form.

The framework developed in this research has been developed to test the following main
hypothesis:

1. Introduction

 3

Patterns exist that relate structural forms to design requirements.

As a secondary hypothesis, it is proposed that:

A formal language exists to describe structural form.

To guide the development of the framework, a more specific set of objectives has been
established. These objectives address current limitations in the conceptual structural
design and propose solutions to overcome these limitations. Specific objectives are listed
here.

• Case-based reasoning systems are a paradigm for applying past design experience to

new design scenarios. A major shortcoming of case-based reasoning systems in
structural design is the inability to index and retrieve cases on the basis of visual
information. An objective of this research is to apply visual case-based reasoning
methods to conceptual structural design.

• The conceptual design of buildings has been widely covered in the literature.
Computer applications for conceptual building design are generally limited to
buildings with simplified geometric relationships, such as rectilinear grids of beams
and columns. An objective of this research is to develop a more general system that is
useful for a wide range of structural applications, including scientific instruments,
industrial equipment supports, and geometrically complex bridges and buildings.

• Sophisticated graphical user interfaces have been developed in the fields of
architecture and industrial design, where natural, pen-based applications simulate
sketching, clay modeling and other creative form-finding methods. Unfortunately,
such applications do not recognize content such as the meaning of elements and
relationships between them. Symbolic sketch recognition computer programs have
been developed in architecture and mechanical design, but no such applications exist
in structural design. An objective of this research is to establish techniques to develop
conceptual structural designs from natural user input such as hand sketches.

• The form of many existing natural and human-made objects is intrinsically connected
to an explicit or implicit set of constraints, including loads, support conditions, and
functional and geometric constraints. Given two objects with similar form, it seems
reasonable to ask whether those objects have other similarities. For example, do the
objects have similar support conditions? In the case of human-made objects, do two
designed artifacts have similar design requirements? An objective of this research is
to develop visual similarity measures for structural design concepts. Used with a
database of design cases, such similarity measures would be used to automate the
retrieval of designs with similar form and enable other design features to be
compared.

• Of the vast number of computer applications for engineering optimization, topology
optimization methods are most applicable to conceptual structural design. Topology

1. Introduction

 4

optimization seeks the optimal connectivity and layout of members in discrete
structures (trusses), and the optimal material distribution in continuum structures
(plates or solids). Truss topology optimization is known to be computationally
demanding, and is complicated by the fact that small changes, such as removing a
single bar, may lead to large differences in overall stiffness. There is a need for
efficient methods for finding and optimizing the topology of discrete structures. One
of the objectives of this research is to develop an efficient framework for rapidly
generating discrete topology at the conceptual design stage.

• Continuum topology optimization methods are efficient, well-established, and
commercially available. The major drawback is that the output of such methods is not
directly suitable for fabrication, particularly at scales larger than a few meters. For
small scale fabrication of arbitrary shapes, material removal or deposition methods
are common. At larger scales, structures are more often built up from discrete
components. An objective of this research is to utilize the efficiency of continuum
topology optimization methods, and extend the range of their applicability to large
scale structures.

• Although methods for verifying structural stability are well established, efficient
methods for generating stable structures are not. In truss topology optimization,
stability is generally ensured using heuristics and generate-and-test methods. A
common heuristic is to add sufficient members to ensure that all polygonal cells are
triangular. Generate-and-test refers to the generation of a large number of different
topological configurations, and filtering out the ones that are unstable. An objective
of this work is to develop an efficient method for developing a stable configuration of
discrete structural elements.

• Given the importance of visual and graphical information during conceptual design, it
is remarkable that few computational tools for conceptual structural design exploit
this information. In the fields of image processing and pattern recognition, there are
well-established, rigourous techniques for manipulating graphical information. Such
techniques have been applied for many years in areas such as medical imaging,
remote sensing, and maufacturing, but few of these techniques have been applied to
conceptual structural design. An objective of this research is to use such methods to
generate conceptual designs and reason with those designs at relatively high levels of
abstraction.

This work describes a computational framework that has been developed to support the
conceptual design of structures, emphasizing the importance of form. Visual reasoning
techniques are central to the framework. Methods from image processing, pattern
recognition and linguistics are used to describe, classify, and reason with forms at high
levels of abstraction.

In the framework, new conceptual design are generated, or synthesized, using a
combination of mathematical optimization, image processing and pattern recognition
methods. The reuse of past designs is implemented using visual case-based reasoning

1. Introduction

 5

methods. During synthesis, forms are initially created using topology optimization
methods; these forms are processed to extract high level information that supports further
structural optimization, including the assessment of stability and relative cost. The high
level information is used to describe, classify and store conceptual forms for case-based
reasoning.

The intent of creating the framework is not to replace the designer or to develop a fully
automated conceptual design system. Rather, the goal is to provide support during the
design process and to augment the designer’s intuition. The most important creative force
during conceptual design is the human designer. The methods implemented in the
framework draw from our understanding of the cognitive processes used by experienced
designers. These processes include the retrieval of past experience, and the evaluation
and modification of design concepts. The process of inferential reasoning is important in
applying past experiences, given a mechanism for representing similarity between
concepts.

The framework was not developed for all types of structures. Specifically the framework
is designed to handle larger scale steel structures which are assembled from linear
elements. Such “skeletal” structures are typically found in a wide range of applications,
including bridges, buildings, towers, industrial and scientific equipment. The work was
initially inspired by the challenges of designing a support structure for a 30-meter
diameter optical telescope [Szeto et al., 2008]. Several existing conceptual design
research systems have been developed for conventional buildings. In contrast, this work
is more applicable to architectural applications requiring curvilinear and other more
complex forms.

The main intent in developing the framework was to form the basis for a computer
application to assist the practicing structural engineer during conceptual design. Another
potential application for the framework is in education. Conceptual design is a skill that is
learned primarily through experience. A system that allows students to draw high level
connections between structural design requirements and the resulting forms could be a
useful tool to assist in the teaching of conceptual design.

 6

2. Background

This work draws from sources in a range of disciplines, including design theory,
structural and mechanical engineering, image processing, pattern recognition, cognitive
science and linguistics. This chapter describes the research background and context in
which this work was developed.

2.1. Conceptual Design
The act of designing exists because of the human desire to change the world around us.
Although design has been practiced for millennia, the study of design is a relatively new
field. From antiquity, architects were the master builders responsible for design and
execution of buildings, bridges, and other structures. The Roman architect Vitruvius left
one of the earliest surviving major books on architecture, The Ten Books on Architecture,
in which he asserted that a structure must exhibit the three qualities of firmitas, utilitas,
and venustas – strength, utility and beauty [Vitruvius, 1999].

At the turn of the century, ideas began to germinate about the design of mass-produced
goods. What was the meaning of mass-produced ornament and how could useful and
beautiful products be created in a fragmented system where parts were made in different
factories and assembled into a whole? The Arts and Crafts movement in England and the
Bauhaus and De Stijl schools in Europe developed in response to the desire to imbue
architecture and machine-produced goods with the care and intent of the master
craftsman. In America, architect Louis Sullivan proclaimed “form ever follows function”,
and this credo had a strong influence on design at least until the 1930s.

During World War II the discipline of operations research was born and with it, close
scrutiny of the design of products and the means and methods of production became the
norm. Mathematical programming methods, such as the Simplex Method [Dantzig,
1963], were developed around this time, heralding the use of generalized optimization
methods. Where design changes the world by making artifacts, the goal of optimization is
to make those artifacts better.

2. Background

 7

With the advent of high speed electronic computing in the 1950s, computational methods
began to have a profound impact on design. Since then, innumerable applications have
been developed to aid in the design process. Although these applications may free the
designer from tedious calculations and repetitious drawings, in most cases they are not
designed to help the designer at the conceptual stage.

Many of the systems developed to provide support for the conceptual stage of design had
their origins in the field of artificial intelligence, a term coined in 1956 [Sriram, 2006].
Research in artificial intelligence in the 1960s and 1970s sought to expand the application
of computers from repetitive numerical computations into reasoning, knowledge,
planning and learning. Notes on the Synthesis of Form, a book about the process of
design by the mathematician and architect Christopher Alexander [Alexander, 1964], had
considerable influence in computer science, in the areas of object-oriented programming
and pattern languages. In it, Alexander calls design “the process of inventing things
which display new physical order, organization, form, in response to function.” Areas of
artificial intelligence that have been applied to conceptual design include knowledge
representation, logic programming, expert systems, case-based reasoning, qualitative
reasoning, grammars, shape annealing, and evolutionary algorithms.

2.1.1. Expert Systems
The first systems to provide computational support for engineering design, other than
drafting and analysis, were knowledge-based expert systems. Expert systems aim to
simulate the knowledge and analytical skills of human experts by reasoning from a
database of stored heuristics (“rules of thumb”), textbook knowledge, standards and
engineering experience. The architecture of an expert system involves two principal
components: a problem-dependent set of data declarations called the knowledge base or
rule base, and a problem independent program called the inference engine. The inference
engine uses deductive reasoning to apply a series of inference rules until a desired goal is
reached.

Expert systems were the first commercially successful applications of artificial
intelligence. The rule-oriented description of human expertise and rule-based inference
techniques have been brought to the industrial standard level in domains such as medical
diagnosis and computer configuration.

Examples of expert systems in engineering design are HI-Rise [Maher et al., 1988], Tall-
D [Ravi and Bédard, 1993], DOLMEN [Harty and Danaher, 1994], and an expert system
to select structural systems for large span systems [Golabchi, 1997]. Other, more
complex research systems that take into account the interdisciplinary nature of building
design include DICE [Sriram et al., 1992], IBDE [Fenves et al., 1994], and ACL
[Flemming et al., 1996].

2. Background

 8

Expert systems have been most successful where the domain model is well defined. They
are notoriously brittle outside their narrow domain of application. Rule bases are difficult
to expand with new data, and validation of existing rules is difficult. The efficiency of
expert systems decreases with knowledge base size, and often a large amount of tedious
general knowledge needs to be incorporated to provide common sense responses to
queries. For these reasons, expert systems are rarely used in the structural engineering
office.

Limited success has been achieved with expert systems in conceptual design. This is
likely due to the lack of well accepted domain models of design synthesis [Maher and de
Silva Garza, 1997]. Expert systems in engineering design have been largely supplanted
by case-based reasoning, and an emphasis on experience rather than expertise.

2.1.2. Qualitative Reasoning
In the late 1970s, a group of artificial intelligence researchers sought to develop a
knowledge representation capable of describing human commonsense reasoning and
explanation about physical systems. De Kleer developed a framework for causal
reasoning in which a qualitative description of the behaviour of a system is derived from
a qualitative description of its structure [De Kleer, 1977; De Kleer, 1979; Kuipers, 1984].
The framework included a functional description that makes explicit which behaviours
are possible for a system.

Research in qualitative reasoning influences conceptual engineering design in several
ways. The conceptual design stage is characterized by uncertainty, and incomplete and
imprecise information. Qualitative reasoning is a method of analyzing designs using non-
numeric computations. Qualitative reasoning has also influenced the theory of design
processes by providing a better understanding of how function, behaviour and structure
are related in physical systems.

2.1.3. Design Prototypes
In the late 1980s, Gero developed semiformal computational models for the design
process based on the concept of design prototypes. The models draw from concepts in
artificial intelligence and prototype theory [Osherson and Smith, 1981]. It is based on the
idea that designers organize their individual experiences into schema or classes consisting
of abstract concepts. Gero defined a design prototype [Gero, 1990] as a conceptual
schema for representing a class of elements derived from similar design cases, which
provides a basis to initiate and continue design.

The design prototype model included a classification scheme for design knowledge,
where function (F), behaviour (B), and structure (S) are the three most important classes.
The prototype model is sometimes referred to as simply the FBS framework [Gero,
1990]. Design knowledge was also classified into relational knowledge between function,

2. Background

 9

behaviour and structure; qualitative knowledge, computational knowledge, contextual
knowledge, and other forms of knowledge. Using this computational model, the design
process is initiated with a set of required functions and structures. These requirements are
then used to initiate a search for candidate prototypes which are indexed using
requirements. Once a prototype is selected from the search results, a design instance is
created and used as the basis for a new design.

Design may be generally described as a process that transforms functions (F) into design
descriptions (D). Design descriptions contain the information required to manufacture the
artifact, such as drawings and documents. Gero noted that in general no direct
transformation between function and description exists. The transformation between
function and description occurs indirectly through behaviour and structure, as suggested
in Figure 2.1. The transformation from structure to description is today typically carried
out by computer-aided drafting (CAD) systems. Function represents the design intent,
which is usually transformed into a set of expected behaviours (Be), which expresses that
intent. “The expected behaviour provides the syntax by which the semantics represented
by the function can be achieved,” notes Gero. In practice, function is transformed to
expected behaviour through the process of formulation or specification. The actual
behaviour (Bs) is derived from the structure through the process of analysis.

Figure 2.1 illustrates a number of key concepts in the design process. The comparison
between expected and actual behaviour is called evaluation in design. The process of
design synthesis involves transforming function to expected behaviour, then selecting or
combining structure to satisfy that behaviour. When structures are synthesized, they
produce their own behaviours which may change the expected behaviours and lead to a
change in the function, called a reformulation. Reformulation also occurs when no
structure can be found that produces the expected behaviour. Design is an iterative
process that follows a series of synthesis, analysis, evaluation and reformulation loops
until a satisfactory solution is found.

Figure 2.1. Model of design as a process [Gero, 1990]

The FBS model is a commonly-used representation of the overall design process, and
contains the elements necessary to represent the conceptual design process. Since its
development, Gero has coupled the design prototype representation with a number of

F Function

Be
Expected
Behaviour

S Structure

Bs
Actual
Behaviour

D Description

Key
 transformation
 occasional transformation
 comparison

2. Background

 10

different process models to support early architectural design. The prototype model was
coupled with an evolutionary process [Gero, 1996], and with the creative design
processes of combination, transformation, analogy, emergence and first principles [Gero,
2000].

2.1.4. Case-based Reasoning
Human designers draw heavily from past experiences when synthesizing new designs.
Case-based reasoning represents a range of computational methods based on the recall
and reuse of specific past experiences, called cases. The methods are analogous to the
processes humans use to organize memory, and to recall information to solve problems
and generate explanations. Case-based reasoning has been applied to a wide range of
fields, including architecture, engineering, medicine and law. Two major considerations
in applying case-based reasoning to design are the representation of design cases and
process models for recalling and adapting design cases.

To represent design cases to support reasoning, experience must be abstracted into a
symbolic form. A range of different approaches and models are described in the
literature. In general, an effective design case representation considers the problem, the
context, the solution, and the outcome. Design experience may be recorded as stories,
sketches, drawings, charts, photographs, or video.

Design case recall involves finding a suitable case for solving the design problem at
hand. In case-based reasoning, design cases are organized in a library, or case base. Since
cases are represented in a symbolic form, the problem must also be formalized. The
problem is called the target case, while the cases in the case base are called source cases.
Design case recall consists of the subtasks of indexing, retrieval and selection. Indexing
describes how source cases are identified and organized. Retrieval identifies which
source cases have features that are relevant to the target case. Selection evaluates the
retrieved cases so they can be ranked.

Case adaptation identifies the differences between a selected case and the target case, and
changes the selected case to synthesize a solution that matches the target case. Changing
the selected case involves evaluation to check the feasibility of the modified case as a
design solution.

Designed artifacts influence us in many different ways. From their conception, through
their design, manufacture, use and eventual destruction, these artifacts give us different
experiences, depending on our viewpoint. Design cases are often complex, and the design
case representation must be capable of supporting different perspectives, and different
levels of abstraction. For complex cases, it is sometimes necessary to decompose the
problem into multiple subcases, or to select and modify multiple source cases. Multiple
subcases can be combined iteratively, one case at a time, by extending single case
adaptation. Multiple source cases can be adapted iteratively, or simultaneously.

2. Background

 11

In domains where analytical or heuristic knowledge is available, the notion of design
cases can be extended to include generalized design knowledge. For example, causal
models can be used in the design of physical devices, and geometric information can be
used in the design of buildings.

A key difference between rule-based reasoning (used in expert systems) and case-based
reasoning relates to the size of information blocks. Rule-based systems are built from
short clauses such as ‘if p then q’, called Horn clauses. In contrast, case-based systems
reason with larger clusters of information in the form of cases. One of the limitations of
expert systems is the difficulty in representing trivial or commonsense knowledge. Cases
include such basic knowledge. Design cases encapsulate the tradeoffs, errors, revisions,
iterations and lessons that are an intrinsic part of the design of real artifacts. While rule-
based reasoning build solutions to a problem from scratch, case-based systems start with
an existing solution to a similar problem, and then attempt to modify that solution to
solve the problem at hand.

A number of case-based reasoning systems have been developed for architectural and
structural engineering applications. A selection of these systems is presented in the
following sections. A survey of case-based reasoning applications in design is found in
Maher [Maher and de Silva Garza, 1997]. A survey of case-based reasoning systems for
building design is found in [Rivard and Fenves, 2000a] and [Watson and Perera, 1997]

STRUPLE (STRUctural PLanning from Experience) is an early attempt to demonstrate
the use of case-base reasoning in building design [Zhao and Maher, 1988]. The system
proposes high-level structural subsystems from past experiences based on a problem
description.

Architectural design is a challenging domain for case-base reasoning applications
because of the lack of formal knowledge, which makes it difficult to develop a consistent
design case representation. ARCHIE is an interactive system to aid architects in building
design. The design case structure represents goals, constraints, outcomes and lessons at
the conceptual design level. In response to a query, the system returns multiple cases, and
can combine cases to create a high-level qualitative design that meets the intended goals.
The system evaluates goals, plans and outcomes using a domain model, which captures
causal relationships between case concepts. The work is extended in ARCHIE-2
[Domeshek and Kolodner, 1991; 1992], which augments cases with multimedia.

Research with ARCHIE highlighted several of the practical difficulties in developing
architectural case-based reasoning systems. One of the findings was that users engaged in
a creative process want to be in control of the process. User interfaces in creative
applications should be interactive, providing ideas and alternatives but allowing the user
to make design decisions. A strength of ARCHIE was the ability to store and index the
work of previous architects, making the range of past design solutions more accessible to
the user. One of the limitations of the system is that concepts are primarily expressed in

2. Background

 12

textual, rather than visual form, which is a more natural mode of representation in
architecture.

CADSYN (CAse-based reasoning for Design and SYNthesis) uses design cases and
generalized knowledge to assist designers in conceptual structural design [Maher and
Zhang, 1993]. CADSYN uses a hierarchical decomposition to represent design cases. The
generalized knowledge includes decomposition information, structural design constraints,
and procedural functions. The decomposition hierarchy can be used to generate a new
design or adapt an inconsistent solution using constraint satisfaction methods. CADSYN
does not emphasize user interaction and graphics.

CASECAD integrates case-based reasoning and model-based computer-aided design
(CAD) techniques to assist structural designers during conceptual design [Maher and
Balachandran, 1994]. The design case representation includes design indices, CAD
drawings, and graphical illustrations of behaviours of design cases. CASECAD uses a
flexible indexing system to provide multiple access paths to cases. Design cases are
organized using a hierarchical decomposition and the function-behaviour-structure, or
FBS, framework [Gero, 1990]. The FBS models identify a range of allowable values for
each variable, providing generalized heuristic knowledge. CASECAD performs case
retrieval and selection, but requires the user to perform case adaptation.

CADRE is a case-based reasoning system in which cases are geometric models of the
conceptual structural and architectural layouts of a building [Bailey and Smith, 1994].
Cases represent building floor plans at different levels of abstraction, topological and
dimensional. The system solves a system of constraints consisting of user-specified
constraints and constraints that are generated from the architectural and structural layouts
and their relationship to each other. The solution process uses two transformation
adaptation methods: dimensional and topology adaptation. Dimensional adaptation
involves the solution of a set of linear and nonlinear constraints on parameters used to
describe the building. Topology adaptation uses a rule-based system to change the
geometry. The system focuses on the representation and adaptation of cases rather than
indexing and retrieval.

SEED (Software Environment to support the Early phases of building design) is a
multidisciplinary effort aimed at providing computational support for the conceptual
design of buildings [Flemming and Woodbury, 1995]. The emphasis of SEED is on
supporting early design exploration through the rapid generation and evaluation of
alternative concepts. The SEED-Config module within SEED supports the design of
three-dimensional building elements in terms of spaces, subsystems and physical
elements [Woodbury and Chang, 1995]. The module represents the overall form or
massing of the building, the structural system, and the enclosure. The intent is to assist
designers in generating designs, not to generate design automatically [Fenves et al.,
2000]. SEED-Config includes case-based reasoning functionality to provide designers
with initial potential solutions [Rivard and Fenves, 2000a].

2. Background

 13

Cases in SEED are formalized in a generic information model called BENT, the Building
Entity and Technology model [Rivard and Fenves, 2000b]. In BENT a building is
represented as a set of building entities, which can be systems, subsystems, parts, a
feature of a part, a space or joint [Gielingh, 1988]. Each building entity is a generic
container that stores the entity’s geometry, classifiers, properties, relationships, and
design knowledge. Properties are named attribute-value pairs, grouped into three subsets:
the functional unit (FU), the design unit (DU), and the evaluation unit (EU). The
functional unit stores properties related to the intended purposes, requirements and
constraints. The design unit captures properties required for design, such as material and
shape characteristics. The evaluation unit represents the behaviour of the entity and
records feedback on a design that has been implemented. Properties may be added to the
building entity as the design progresses, supporting design evolution and exploration.
Two kinds of relationships are modeled: the containment relationship models the
hierarchical decomposition of design problems, and domain specific relationships store
other essential relationships such as “support” and “connect” in structural engineering.
Spatial relationships are not stored in the information model, because these are obtained
directly from a geometric modeler. Design information is represented by a technology
graph. The graph consists of technology nodes, each of which represents a known design
alternative, the constraints that determine its applicability, and the computational
procedure needed to assign values to the attributes defining that alternative.

Case retrieval in SEED is an interactive process in which the designer is in control of all
steps. The user initiates the case-based reasoning process by selecting a building entity
and activating the case retrieval process. The user has three options for preparing a query,
one based on the selected entity, a second based on the hierarchical decomposition of the
case, and a customized query using SQL/X. SEED uses the faceted classification scheme,
where each building entity has a set of associated categories. Categories are
hierarchically organized semantic networks, which provide an efficient mechanism for
reasoning at a range of different abstraction levels.

Case adaptation in SEED uses the derivational replay method, which reproduces an
existing set of reasoning steps in a new situation. This method is particularly well suited
to SEED, where technology nodes record all the steps in the design process. Case
accumulation and learning in SEED is also facilitated by the information model. Each
building entity is essentially a self-contained case, because it includes its problem
statement (the functional unit), the design solution (the design unit), the design process
(the references to the technology nodes), and the design outcome (the evaluation unit).

SEED supports the reuse of both design information and design procedures. This
capability distinguishes it from most other case-based reasoning applications, which
reuse one or the other but not both. SEED includes conceptual design capabilities beyond
case-based reasoning. These are discussed in a later section.

2. Background

 14

2.1.5. Building Design
Due to the importance of the building construction sector, much of the research into
computational support of conceptual design has been in this area. Early collaboration
between architects and engineers remains a challenging problem. Conceptual building
design is a complex multidisciplinary activity characterized by rapidly changing and
imprecise information, and a relatively high level of abstraction. Researchers have used
several different approaches to assist the architect and engineer at the conceptual stage of
building design. Early computer applications viewed building design as a planning
problem, and drew heavily from research in artificial intelligence. More recent
approaches favour model-based representation and reasoning.

Work in artificial intelligence has inspired a range of research applications for conceptual
building design. Such applications use techniques such as formal logic and engineering
first principles [e.g. Jain et al., 1991; Fuyama et al., 1997; Eisfeld and Scherer, 2003],
grammars and shape annealing [Meyer, 1995; Shea and Cagan, 1999], fuzzy logic [Shen
et al., 2001], and genetic algorithms [Krishnamoorthy and Rajeev, 2000; Grierson and
Khajehpour, 2002; Sisk et al., 2003; Rafiq et al., 2003; de Silva Garza and Maher, 1996;
Soibelman and Peña-Mora, 2003].

Given the importance of geometric modeling in the later stages of building design, some
research programs have attempted to apply model-based reasoning to conceptual design.
One example is SEED, a conceptual design system for buildings that integrates model-
based reasoning and case-based reasoning. The SEED project highlights a number of
important features in a conceptual building design system. Such a system should support
design synthesis, design evolution, design exploration, multiple views, and be extensible
[Rivard and Fenves, 2000b]. In addition, the system supports the rapid generation and
evaluation of alternative design concepts, and reasoning at multiple levels of abstraction.
SEED uses a three level information model: an object-oriented data model, an
information model (BENT) that stores and shares design data, and acts as a case library,
and a conceptual model [Rosenman and Gero, 1996]. The conceptual model defines the
types of objects, relationships and data needed to fully represent the information in a
given design domain. Effectively, the conceptual model specifies the semantics of the
design domain using the syntax in the information model [Rivard and Fenves, 2000b].

The design process is alternately a top-down and a bottom-up process. Bottom-up design
starts with the definition of components and connections, followed by aggregation into
subassemblies. In contrast, top-down design starts with an overall definition which is
refined into functional subsystems and assemblies, and physical components. A top-down
method is often favoured for conceptual design because it supports successive design
refinements [Martini and Powell, 1990]. An early approach to top-down design in
buildings was the “total system” approach [Lin and Stotesbury, 1988], which starts with a
3D structural mass that observes the architectural space-form requirements, then proceeds
to structural subsystems consisting of 2D elements and finally to 1D structural
connections. Other top down models include those of [Sauce et al., 1992], [Hauser and

2. Background

 15

Scherer, 1997], and [Sacks and Warszawski, 1997]. While many researchers view the
design process as primarily a top-down process, others see design as a nonlinear process
that involves reasoning at alternating levels of detail, and in practice involves
backtracking.

Geometric modelers in conceptual building design systems often have very limited
modeling capabilities. The geometric modeler implemented in SEED is limited to
geometric objects that are rectilinear in shape and positioned orthogonal to the global
axes. In many building applications, the hierarchy and semantics of structural elements is
well defined. Each structural element in a building is relatively easy to classify as a beam,
a column, or a brace. Structural elements in general structural applications are not so
readily classified as in buildings. The strength of SEED lies in the support of recurring
building types rather than in support of universal structural configurations [Fenves et al.,
1995].

Applications to support building design use a range of user interface approaches.
Different views are often required to suit the various needs of users, including architects,
structural engineers and mechanical engineers. Other differences between applications
relate to the balance between user control and automation. For example, StAr (Structure-
Architecture) [Mora et al., 2005; 2008] uses an interactive algorithmic process controlled
by the engineer. Other researchers favour more automated approaches such as automated
reasoning and generative structural design [e.g. Meyer, 1995; Krishnamoorthy and
Rajeev, 2000; Hofmeyer et al., 2006].

Early collaboration between architects and engineers provides useful insights into
conceptual structural design. While architects are trained in design synthesis, the bulk of
engineering education focuses on analysis. Concepts relating to the overall appearance
and layout of structures, like repetition, visual rhythm, order, modularity, symmetry,
balance, scale, proportion and unity are familiar to the architect [Mora et al., 2003]. The
architect’s terminology reflects a level of abstraction that is useful in effectively
synthesizing a range of conceptual design configurations.

2.1.6. Commercial Software
In the latter phases of building construction, highly detailed building information models
are commercially-available and in common use. Current versions of industry-standard
CAD applications such as Autodesk Revit provide some support for conceptual design of
buildings, and integrate architectural and structural models [Mora et al., 2008]. Neutral
file formats transfer information between participants in the construction process. For
example, the CIMsteel Integration Standard CIS/2 supports information transfer between
detail design, fabrication, and erection of steel structures. Efforts have been made to
extend existing information models and CAD applications upstream to support the
conceptual design of buildings, however such efforts have not been completely
successful. The standard building information models are bottom-up models built
element by element that were not designed to support higher level concepts like structural

2. Background

 16

subsystems and assemblies. Effective conceptual design requires a top-down approach,
with representations that support higher levels of abstraction.

Support for conceptual design by commercial CAD software programs has improved in
recent years but the rapid generation and evaluation of imprecisely specified concepts is
still not possible with these programs. The CAD software market is dominated by a
relatively small number of major vendors. Although new software versions are released
regularly, the basic functionality of CAD software in producing working drawings has
remained unchanged for some time. Many of the new features that have been added relate
to interoperability between different software applications. All the major CAD programs
directly support a range of analysis applications, such as finite element analysis,
kinematic simulation, and thermal analysis. Integration between CAD applications and
production software is highly advanced, particularly in structural steel design and
fabrication. The CIS/2 standard defines a neutral file format that allows steel detailing
information to be transferred directly from the CAD package into cost estimating and
production tracking applications, as well as computer controlled fabricating equipment.
With such an advanced level of support for the latter stages of the design process,
developers of CAD programs have begun to focus more attention on the conceptual
stages. Intuitive sketch-based user interfaces have been developed or acquired by the
major commercial CAD packages (e.g. Autodesk Alias and Google SketchUp). Such
interfaces are generally not well integrated into the CAD production environment, which
limits their effectiveness as conceptual design tools. Support for design synthesis is the
part of conceptual design that is most lacking from commercial applications. Although
improved user interfaces make it quicker to transfer ideas to models and to analyze those
ideas, they will not generate new concepts. Commercial CAD applications do not
understand the language of requirements and specifications, and require the designer to
interpret these in the form of well defined design concepts. The framework presented in
this research directly interprets design requirements, synthesizes new concepts, and
evaluates those concepts even though they are not precisely defined.

2.1.7. Visual Case-Based Reasoning
Many applications in case-based reasoning retrieve cases based on matching of indexed
attribute-value pairs. Even in domains where visual and geometric information is
essential, such as architecture, case retrieval on textual attributes is frequently used.
Although sophisticated methods of text-based case retrieval have been developed in the
field of document processing, such retrieval methods have limitations in dealing with
primarily graphic data:

 "It is hard to capture geometric relationships by means of attribute and attribute
values; it is even harder and in most cases practically impossible to base retrieval
on such a description since the names of the involved objects are irrelevant and
mostly unknown; what matters are the relationships between corresponding
objects in the query and source cases. Therefore one has to adopt specialized
retrieval methods.” [Gebhardt et al., 1997, p.65]

2. Background

 17

FABEL is an architectural case-based reasoning system that reasons with building floor
plans [Gebhardt et al., 1997]. FABEL uses specialized geometric case retrieval methods
to reason with cases that contain diagrammatic or geometric information. These
specialized methods include the concept of gestalts, the Object Density Map, and graph
matching algorithms. A central feature of these methods is the use of multiple views at
different levels of abstraction.

A general definition of gestalt is a “symbolic configuration or pattern of elements so
unified as a whole that its properties cannot be derived from a simple summation of its
parts.” In FABEL, gestalts are characteristic geometric arrangements of certain
components in a building. It was observed that a limited number of gestalts represents a
large number of specific configurations, illustrating that gestalts are a useful method to
generalize geometric layouts. The set of gestalts used in FABEL is shown in Figure 2.2.

Figure 2.2. Set of gestalts in FABEL [Gebhardt et al., 1997]

Figure 2.3. Representing gestalts with successive abstraction [Gebhardt et al., 1997]

Figure 2.3 illustrates the process of developing a gestalt from specific configurations of
objects using a series of successive abstraction operations. Figure 2.3.a identifies a group
of objects, where each ellipse represents a bounding box that contains a building
component, such as a room1. The configuration shown in Figure 2.3 is commonly
referred to as a quadrangle in architecture. Figure 2.3.b shows the centers of the objects,
and Figure 2.3.c adds alignment information. Bars represent objects with an alignment,
and circles indicate objects without alignment. Figure 2.3.d show a sketch which uses a
grid to abstract from scale, and from distortion. Finally, Figure 2.3.e indicates an
abstraction which neglects the exact position and number of objects. In FABEL, gestalts

1 Ellipses, as opposed to rectangles, are used to represent bounding boxes because large number of
rectangles that share edges are indistinguishable.

a b c d e

2. Background

 18

are detected by an algorithm that compares stored patterns, like the one in Figure 2.3.e,
with patterns generated from the design object under consideration. Matching gestalts are
attached to the case as descriptors, or index terms.

FABEL uses another geometric abstraction method, the Object Density Map (ODM)
[Coulon and Steffens, 1994], to view specific architectural layouts at different levels of
resolution. When images are compared on a pixel-by-pixel basis, large differences may
exist even when images convey very similar information. An ODM is constructed by
overlaying a low resolution grid over an image. The number of image pixels in each grid
square is counted and used to calculate the image density, a number between 0 and 1. The
image density on each grid square is represented using a set of overlapping grayscale
intervals, as shown in Figure 2.4. The intervals are narrower at lower density to bring
better definition to sparse images [Rosenfeld, 1969]. Two images are considered similar
if every set of corresponding grid squares share at least one interval of grayscale values.
The similarity function is symmetric, but not transitive, however it is invariant with
respect to rotation, translation, or sizing. A numerical value for the similarity between
two images is calculated with a normalized sum of differences between the corresponding
pixels.

Figure 2.4. Similarity of object density maps [based on Gebhardt et al., 1997]

A third method for determining similarity between two cases in FABEL uses graph
matching algorithms. Relational graphs can be used to produce an abstract representation
of a configuration of physical objects. [Winston, 1975] used a version of relational graphs
to describe structures, such as arches and towers, for the purpose of generalizing and
classifying images. TOPO [Börner et al., 1996], a subsystem of FABEL, detects spatial
relationships between two objects by comparing the graph representation of those objects.
TOPO uses the maximum common subgraph (MCS) to measure the degree of structural
similarity between cases. The maximum common subgraph algorithm is NP-complete, so
the time for computing similarities between cases may be prohibitive. In alternative
approach, constraint satisfaction methods were applied in a visual case-based reasoning
system for the retrieval of 2D line drawings [Yaner and Goel, 2003].

a: 0-0.001

c: 0.03-0.1

e: 0.2-0.4

g: 0.5-0.75

b:]0-0.05

d: 0.07-0.25

f: 0.33-0.55

h: 0.66-1
≈

2. Background

 19

Case-based reasoning has been integrated with image processing methods in fields such
as medical diagnosis [e.g. Plaza and López de Mántaras, 1990] and molecular biology
[e.g. Jurisica and Glasgow, 2004]. A common approach is to use image processing to
compute a vector of numerical features for each case image. The feature vectors of two
cases are compared to determine similarity. The degree of structural similarity is
determined indirectly, in contrast to the direct comparisons used in FABEL.

In the application of case-based reasoning to visual information such as images and
diagrams, the methods of pattern recognition are important. These methods are discussed
in more detail in a later section.

In architecture [Gross and Do, 1995] describe a method for retrieving images from a
database using a freehand sketch as input. This method uses a relatively simple heuristic:
given two drawings, it compares the type and number of spatial elements and spatial
relations by counting.

2.1.8. User Interfaces
Drawings in their various forms are an essential part of the design process. In the later
stages of design, highly specific and detailed fabrication drawings provide precise
instructions on how to manufacture an artifact. In the embryonic stages of design,
unstructured, informal sketches assist the designer in retrieving images from long-term
memory [Simon, 1969]. Sketches support reasoning at a number of different levels of
abstraction. They may be relatively unconstrained and ambiguous, encouraging
reinterpretation and the emergence of new concepts. The role of sketching in design and
its relationship to cognitive processes has been studied by researchers in design and
cognitive science [Purcell and Gero, 1998].

Computational support for drawings is well established in the latter stages of design.
Support in the early stages has received much less attention. Design is a process of
incremental formalization proceeding from abstract to more specific forms. Paper-like or
pen-based computer applications in architecture, industrial design and graphic design
have been commercially available for some time (e.g. Autodesk Alias and Google
SketchUp), but most do not recognize content, such as the meaning of the elements and
the relationships between them. The Electronic Cocktail Napkin [Gross, 1996]
application is a prototype pen-based interface to allow architects to sketch with various
degrees of precision or ambiguity. The system recognizes hand-drawn multi-stroke
symbols (glyphs), spatial relationships between symbols, and identifies matching
configurations from a library. The EsQUIsE prototype [Leclercq, 1999] interprets
architect’s sketches, and extracts concepts such as walls, functional spaces and space
topology.

2. Background

 20

2.1.9. Mechanical Design
Qualitative reasoning about the behaviour of mechanical and other physical systems
developed as a field of artificial intelligence research [e.g. De Kleer, 1979; Kuipers,
1984]. Causal and heuristic knowledge about such systems were incorporated into early
case-based reasoning systems such as KRITIK and KRITIK II [Goel, 1989], and CADET
[Navinchandra et al., 1991].

Given a drawing of a new device, human experts are capable of understanding the
components of the device (structure), as well as what the device does (function) and how
it works (behaviour). Several systems have been developed to attempt to formalize the
interpretation of drawings. GeoRep is a diagrammatic reasoning system that takes an
arbitrary 2D line drawing as input and produces a description of the physical system in
the drawing [Ferguson and Forbus, 2000]. Some applications have also used structure-
mapping to use analogy to make inferences at the structural level [Falkenhainer et al.,
1990]. With the ARCHYTAS system [Yaner and Goel, 2007], the goal is use visual
analogy to infer structural components, connections, causal interactions, processes, and
functionality from 2D unlabeled drawings.

2.1.10. Conceptual Analysis Methods
Many computational analysis procedures have been developed for the latter stages of
design, in which the design problem has been well specified and the input is complete. In
contrast, the conceptual design phase is characterized by incomplete, uncertain and
imprecise information. Conceptual design therefore requires a different set of analysis
methods than those used in preliminary and final design. The analysis methods must not
only handle uncertainty, they must provide solutions quickly. Effective conceptual design
synthesis requires rapid analysis procedures that allow the designer to easily explore a
broad expanse of design space and to evolve concepts.

Approximate analysis techniques are widely used by experienced designers. Before the
advent of computers, approximate techniques were essential. A broad range of
computational analysis techniques are used to handle uncertainty and provide for rapid
assessment of conceptual designs. Examples of approximate analysis in computer-
supported conceptual design of buildings are found in [Ravi and Bédard, 1993] and
[Fuyama et al., 1997].

Where the finite element method is used for analysis, structural reanalysis methods may
be used for exploring design variations. Both exact and approximate reanalysis methods
are available; most of the exact methods are based on the Sherman-Morrison-Woodbury
formulae [Sherman and Morrison, 1949; Woodbury, 1950].

A range of methods are used to deal with uncertainty in engineering applications. The
most common approach is to use probability theory. Many processes in nature are
characterized by random uncertainty, and are well represented by probability

2. Background

 21

distributions. Probability theory is best suited to model the uncertainty related to naturally
random behaviour, called aleatory uncertainty. During conceptual design, however, much
uncertainty is characterized by the simple lack of information, or epistemic uncertainty.
Approaches such as interval analysis [Moore, 1966] and constraint satisfaction methods,
are often more appropriate under conditions of epistemic uncertainty. Evidence theory (or
Dempster-Shafer theory) is a generalization of classical probability and possibility theory
that can represent probability distributions, membership functions (from fuzzy set
theory), and intervals [Shafer, 1976].

2.2. Optimization
Optimization aims to find the best configuration of a system given a set of constraints.
What is the best configuration depends on the context and the overall objective in
improving the current configuration. In aerospace engineering, a common objective is to
minimize the mass. In civil and automotive engineering, the objective is usually to
minimize cost. In light of the impact of production of artifacts on our environment, and
due to shortages of energy, material, and labour, the optimization problem now generally
reduces to one of achieving the maximum of benefit from limited resources.

2.2.1. General Optimization
Classical optimization was largely concerned with finding an optimum function that
satisfies a differential equation, the distributed parameter problem. An example is
seeking the optimal moment of inertia along the length of a beam, subject to the
governing beam equation. With the advent of high speed computation and techniques
such as finite element analysis, differential equations were largely replaced by algebraic
equations, and discrete parameter formulations became more common. Discrete
parameter optimization refers to systems described by a set of variables that vary
continuously within a given range. Another optimization method, integer or
combinatorial optimization, refers to problems where variables may only take on discrete
values. Mathematical programming refers to the general study of problems in which one
seeks to minimize a real function by choosing the values of real or integer variables from
an allowed set. Many practical problems involve integer parameters, often due to
production limitations. For example, steel mills produce a limited selection of sizes of
rolled steel shapes. Since integer problems are computationally more difficult than
problems with continuous variables, it is quite common in practical optimization to
substitute discrete functions with continuous approximations.

Classical optimization deals with exact, analytical solutions to optimization problems.
Although many practical problems are not amenable to closed-form solutions, classical
techniques still play an important role in optimization. Most importantly, these
techniques give insight into the existence and uniqueness of solutions to optimization
problems. For general solutions to most real-world optimization problems, computer-
based mathematical programming methods are used.

2. Background

 22

Optimization methods are used to find a set of design parameters, x = {x1,x2,...,xn} that
define an optimal configuration. A general problem in optimization is stated as:

 minimize: f(x)
 subject to: equality constraints Gi(x)=0, i=1,...,me
 inequality constraints Gi(x)≤0 i=me+1,...,m

where x is the vector of length n design parameters, f(x) is the objective function, which
returns a scalar value, and the vector function G(x) returns a vector of length m
containing the values of the equality and inequality constraints evaluated at x.

The selection of an appropriate procedure depends on the nature of the variables, the
objective function and constraints. In a linear programming problem, both the objective
function and constraints are linear functions of the design variable. A quadratric
programming problem concerns the minimization or maximization of a quadratic
objective function with linear constraints. In a more general nonlinear programming (NP)
problem, the objective function and constraints are nonlinear functions of the design
variables. The solution to the NP problem generally requires an iterative procedure
involving the solution of an LP, QP or unconstrained subproblem.

A wide range of solutions exists for unconstrained optimization problems. Practical
design, however, is generally concerned with constrained optimization. The general
approach in constrained optimization is to transform the problem into simpler
subproblems and to solve the subproblems as part of an iterative algorithm. A class of
efficient solutions employs the Kuhn-Tucker (KT) equations, which are necessary
conditions for optimality for a constrained optimization problem. For a convex
programming problem, where f(x) and Gi(x), i=1,...,m are convex functions, the KT
equations are both necessary and sufficient conditions for a global solution point.

In practice, most optimization problems cannot be shown to be convex, and have several
local minima. Mathematical programming techniques are typically local in nature and
return only one of these local minima. In order to find the global minimum, nonconvex
problems can be formulated using a series of convex approximations. For example, in
sequential linear programming (SLP) a linear approximation of the objective function
and constraints produces a linear programming problem. Similar methods, such as
sequential quadratic programming (SQP) and the method of moving asymptotes (MMA),
have been used in structural optimization.

For problems that are highly nonconvex or nonlinear, classical optimization methods
often fail and more robust, global optimization techniques are required. While most
global methods still cannot guarantee a global optimum and are often computationally
inefficient, they may be the only methods available for some problems, and therefore are
useful in many complex, practical problems. Evolutionary computing (EC) methods fall
in the category of global optimization methods. Inspired by the biological processes of

2. Background

 23

evolution and selection, evolutionary computing may be understood as a parallel,
stochastic optimization process in which a population of solutions undergoes a process of
gradual change [Kicinger et al., 2005]. Evolutionary computing encompasses a range of
optimization methods which are classified as one of four main evolutionary algorithms
[e.g., Rafiq et al., 2005]: the genetic algorithm (GA) [Holland, 1975], the evolutionary
strategy (ES) [Rechenberg, 1965], evolutionary programming (EP) [Fogel et al., 1966]
and genetic programming (GP) [Koza, 1992]. All four of these algorithms have been
applied to engineering design, however the GA and GP are the most common. All EC
methods start with the generation of an initial population of solutions. Then, over a
sequence of generations, parent solutions are selected and reproduced, and offspring are
selected for continued reproduction based on their fitness. After a number of generations,
the process is expected to converge to a solution with “maximum fitness”. Genetic
algorithms generally encode design variables as fixed length binary strings, or genotypes.
Genetic programming is similar to genetic algorithms, except that parse trees are used
instead of fixed length strings.

2.2.2. Multiobjective Optimization
The general problem formulation optimizes a single objective function. Practical design
problems require that a number of objectives be addressed simultaneously. Multiobjective
optimization involves the minimization of a vector of objectives F(x), where the problem
stated as:

 minimize: F(x)

subject to: Gi(x) = 0, i=1,...,me
 Gi(x) <= 0, i=me+1,...,m

Often the objectives are competing and their relative importance must be weighed in
order to make tradeoffs. The relative importance of the objectives is generally not known
in advance, and some analysis is usually done to assess the capabilities of a system before
tradeoffs are made.

Since F(x) is a vector of objectives, if any of the objectives are competing, there is no
unique solution to the problem. In this case, the concept of noninferiority [Zadeh, 1963],
or Pareto optimality [Da Cunha and Polak, 1967; Censor, 1977], is used to assess
multiple objectives. A vector of design variables x* is said to be noninferior if, for any
other vector x either the values of all the objective functions remain the same, or at least
one of them degrades compared with its value at x*. Multiobjective optimization is
concerned with the generation and selection of noninferior solution points. There is a
wide range of techniques for multiobjective optimization. Two of the most common are
the weighted sum method, and the goal attainment method.

The weighted sum strategy creates a single objective function by constructing a weighted
sum of all the objectives. The vector of objectives F(x) is thus converted into a scalar. An
advantage of the weighted sum approach is that the single objective function can be

2. Background

 24

handled using the GP formulation. There are several challenges in using this approach,
however. The selection of appropriate weighting coefficients is often difficult, since the
coefficients do not necessarily correspond directly to the relative importance of
objectives. Also, they are not able to clearly express tradeoffs between objectives.
Another limitation is that certain points on the noninferior solution boundary may be
inaccessible.

The goal attainment method [Gembicki, 1974] avoids some of the difficulties of the
weighted sum method, while still using standard optimization procedures. The method
specifies a set of design goals related to the objectives, allowing objectives to be over- or
under-achieved. A set of weighting parameters allows the user to specify the relative
importance of the goals.

In multiobjective design optimization problems, the goal is generally to find a large
number of widely differentiated Pareto-optimal solutions. Classical optimization methods
like the weighted sum and goal attainment method are limited because most of them
produce only one solution on the Pareto front. Also, such methods are sensitive to the
shape and continuity of the front. Evolutionary algorithms are well-suited to
multiobjective optimization problems because they are population-based, and therefore
can generate an entire set of Pareto-optimal solutions in a single run. Also, evolutionary
algorithms are more robust than classical methods, and are less sensitive to the shape of
the front. There has been a significant amount of research in the area of Multi-Objective
Evolutionary Algorithms (MOEA). For an overview of MOEAs, see, for example,
[Coello, 2006].

2.2.3. Structural Optimization
Mathematical optimization techniques have been used in a wide range of structural
design and analysis applications. Many early applications dealt with exact, analytical
solutions for specific problems. Computer-based methods expanded the range of potential
optimization problems, and several general structural optimization methods have
emerged. These general methods are particularly important in the conceptual design
stage, and are emphasized in this overview.

Most early structural optimization methods sought to minimize the weight or volume of
the structure considering constraints on member stresses or overall deflection. Methods
have now been developed to handle more complex constraints related to buckling, cost,
plasticity, and reliability.

2.2.3.1. Truss Optimization
Some of the earliest applications in structural optimization were to truss and truss-like
structures. In 1904, Michell developed a theory for the layout of minimum weight
structures composed of axially loaded bars [Michell, 1904]. The bars are perpendicular to
each other, and follow the lines of maximum tensile and compressive stress (Figure 2.5).

2. Background

 25

Michell structures are of more interest in theory than in practice. They are designed for
only one loading case, and consist of an infinite number of bars of nonstandard length.

Figure 2.5. Michell structure [from Rozvany, 1997]

The most basic truss optimization method is sizing optimization, where the design
parameters are the truss member cross-sectional areas. In geometry optimization, the
design variables are the truss node positions. Topology optimization seeks the optimal
pattern of connectivity or spatial sequence of members in a structure. The optimization of
cross-sectional area, node position, and topology is termed layout optimization or
configuration optimization.

The truss sizing problem was the subject of much analytical work in the 1960s and 1970s.
Generally, the goal was to find an assignment of cross-sectional areas that produced the
minimum weight structure, subject to stress or displacement constraints. This is a
nonconvex problem which may be solved using a constrained optimization algorithm
together with finite element solver. For example, the optimality criterion method has been
used for the sizing problem [e.g. Taylor and Rossow, 1977; Rozvany, 1989]

Truss topology optimization commonly uses the ground structure [Dorn et al., 1964],
consisting of a grid of nodes and potential structural members (Figure 2.6). The task is to
find an optimal truss structure that satisfies all load and support conditions, and consists
of a subset of the potential members. Topology optimization is inherently a discrete
problem, but can be handled as a continuous sizing problem that allows for zero cross-
sectional areas. In contrast to the standard sizing problem, there are major differences.
The number of design parameters is much larger than the number of degrees of freedom.
The use of zero cross-sectional area can lead to a singular stiffness matrix, if the complete
ground structure is considered. Since most optimal designs have a singular stiffness
matrix, standard structural optimization procedures cannot be used.

2. Background

 26

Figure 2.6. Ground structure

Figure 2.7. Solution using ground structure method [after Rozvany, 1997]

Different computational procedures may be used to solve the topology problem,
depending on the formulation of the problem [Bendsøe and Sigmund, 2004]. An example
of a solution is given in Figure 2.7. Early researchers [e.g. Dorn et al., 1964] assumed a
plastic design constraint, leading to a linear problem that was solved using the Simplex
method. The problem of finding the stiffest truss for a given volume, the minimum
compliance problem, may be solved using optimality criteria methods. This approach can
be interpreted as an implementation of a sequential quadratic programming technique
[Svanberg, 1994]. For more general design situations involving stress and displacement
constraints, problems are large scale and non-convex. The truss topology problem may
also be solved using a discrete optimization approach, using such techniques as simulated
annealing [Reddy and Cagan, 1995] and evolutionary methods, which are discussed later
in this section.

It was observed early on that the ground structure approach can lead to mechanisms
which are in equilibrium under the given loads [Dorn et al., 1964]. In these cases overall
stability can be ensured by adding infinitesimal members, or by using multiple loads.
Also, truss members may contain interior nodes, which must be removed to ensure
stability.

2. Background

 27

The optimal topology is sensitive to the number of nodes, particularly for coarse grids.
For finer grids, the results are less sensitive, however the number of potential members
increases quickly with decreasing grid spacing. The ground structure method can be
augmented with node position design variables, allowing the use of coarser grids, but this
also leads to a highly nonlinear objective function [Topping, 1983], and increased
computational difficulty. [Bendsøe and Sigmund, 2004] outline computational procedures
for several different formulations of the truss topology optimization problem, noting that
the truss topology design problem is a “very challenging mathematical problem”.

The truss geometry optimization problem seeks the optimum positions of nodes that
satisfy a set of constraints on a structure. Since both displacements and stress are
nonlinear functions of node position, the problem is nonlinear. [Svanberg, 1982] used
mathematical programming methods and finite element models to solve the geometry
problem. As nodes are repositioned during truss geometry optimization, nodes may move
close together. [Pedersen, 1992] used a two stage algorithm where the first stage
performs geometry optimization, the second stage merges nodes when element lengths
are below a given threshold.

Evolutionary computing methods have been studied extensively in structural optimization
applications. Geometric and topology optimization of discrete structures pose
computational difficulties for gradient-based methods. In layout optimization, even small
changes in topology can lead to significant changes in behaviour. For example, removing
a single member can change a highly statically indeterminate structure into a mechanism.
Evolutionary computing methods such as genetic algorithms are suited to such
applications because they do not require gradient information. Another advantage of
evolutionary methods is that they naturally handle discrete variables, such as member
sizes, which arise frequently in practical engineering applications.

Some of the earliest applications of evolutionary computing to structural engineering
were in the sizing and geometric optimization of trusses. [Goldberg and Samtami, 1986]
appear to have first suggested the use of a GA for structural optimization, and applied the
method to a 10-bar plane truss problem. [Jenkins, 1991] employed a GA for discrete
problems involving both sizing and geometric variables. [Rajeev and Krishnamoorthy,
1992] used a GA with a penalty function to perform truss sizing optimization with stress
and displacement constraints. [Adeli and Cheng, 1993] used a penalty function approach
to handle constraints on cross-sectional area, stress and displacement. [Grierson and Pak,
1993] applied a GA to layout optimization of skeletal building structures, using an
approximate analysis method to improve efficiency. [Koumousis and Georgiou, 1994]
solved a mixed sizing and layout problem in steel roof truss design with constraints on
stress, deflection, and connection types. [Rajeev and Krishnamoorthy, 1997] applied a
variable string length genetic algorithm (VGA) to represent topology variations in truss
layout optimization. [Louis and Zhao, 1995] used a GA, augmented with engineering
heuristics, to do truss layout optimization. The heuristics ensure that during topology
generation, members are connected so that the truss is, with high probability,

2. Background

 28

triangularized and stable. Mutation sometimes leads to unstable structures, which are
made stable by adding bracing. [Soh and Yang, 2001] used genetic programming for
truss layout optimization, in which truss topology is encoded in the form of parse trees.
The genetic programming method is shown to be flexible in handling topology variations,
and the strategy is claimed to be valid for frames, trusses, plates and shells. Examples are
given for a 10-bar planar truss and a 25-bar 3D transmission tower with stress and
displacement constraints.

There are several examples in the literature of the use of evolutionary computing in the
structural optimization of high-rise building frames. [Arciszewski et al., 1994] include
general bracing system parameters in a demonstration of machine learning. [Murawski et
al., 2000] used evolutionary algorithms to seek optimal designs for a 3-bay, 26-story
building with design variables representing the connectivity of beams, columns and
supports. [Kicinger et al., 2003] use an evolutionary method to generate structural
configurations for tall buildings, assuming a regular spacing of stories and bays, six
different types of diagonals, and two types of beams (rigid and hinged). [Kicinger, 2004]
combines cellular automata and a GA to generate and optimize designs, observing
emergent behaviour. [Baldock et al., 2005] applied a modified pattern search algorithm to
optimize lengths of bracing spirals on a tall building. [Baldock and Shea, 2006] optimize
the bracing configuration of a high rise building using genetic programming. In contrast
to the work of [Soh and Yang, 2001], this approach evolves programs for generating
designs, rather than simply evolving tree representations of designs. The genetic
programming approach is demonstrated to generate a relatively wide variety of layouts,
which include variation in the size of basic bracing units.

Many of the previous evolutionary computing methods are relatively problem-specific in
nature. For example, trusses and high-rise buildings are generally assumed to have a
fixed number of panels or bays, and the methods optimize bracing layouts or some basic
overall shape parameters. More general discrete optimization techniques, similar to the
ground structure approach of [Dorn et al., 1964], have seen less research than the
problem-specific methods. [Hajela and Lee, 1995] developed a two-stage genetic
algorithm for general topology design based on the ground structure approach. The
method generates kinematically stable configurations in the first stage, and optimizes for
response constraints (such as stress) in the second stage. Hajela and Lee used a fixed
length bit string, which increases in size as the number of possible member connections
increases, and as the resolution of the node positions is increased. To lessen the impact of
node position encoding, the resolution is successively increased using a multistage
approach [Lin and Hajela, 1993]. [Rajan, 1995] proposes an alternative ground structure
method that applies a penalty term to unstable structures. [Leung and Nevill, 1994] used a
2D binary array, with the problem domain limited to bars of equal length. [Nakanishi and
Nakagiri, 1996; 1997] used a similarly restrictive approach to 2D topology optimization
of frames and panel structures.

The use of evolutionary computing with fully-connected ground structures has significant
practical limitations. The major limitation is the difficulty in efficiently encoding a wide

2. Background

 29

variety of different topological configurations. The underlying grid limits the topology to
the fineness of the chosen grid, and coarse grids severely restrict the topological freedom.
The optimum design is highly dependent on the choice of ground structure [Yang and
Soh, 2002]. Given that fine grids are usually not possible, the ground structures become
problem-dependent and different designers will choose different initial configurations. A
number of researchers have proposed more general evolutionary topology optimization
methods that do not make use of ground structures [e.g. Shrestha and Ghaboussi, 1998].
[Azid and Kwan, 1999] describe the complexity of developing an efficient encoding
scheme that handles a range of topologies and produces structurally meaningful
topologies after modification by mutation and crossover operations. Azid and Kwan
assert that crossover should produce structures that bear some architectural similarity to
their parents, even when the parents have much different complexity. [Azid and Kwan,
1999] describe a GA-inspired method with crossover and mutation algorithms that work
directly with the structural configuration rather than an encoded representation. The
initial population is constructed using a randomly generated pattern of nodes. Members
are added to connect the nodes, guided by heuristics based on bar lengths, joint
complexity, and bar colinearity. The approach is extended to 3D truss optimization in
[Azid et al., 2002]. [Yang and Soh, 2002] developed a general approach to discrete
topology optimization using genetic programming. Compared to the fixed length
chromosomes used in most GA applications, genetic programming uses 2D variable
length parse strings which have the ability to dynamically evolve and represent a broad
range of different topologies.

2.2.3.2. Continuum Optimization
In the analysis of continua, such as plates, shells and solids, optimization is generally
classified into sizing optimization, shape optimization and topology optimization. In
sizing optimization, the design variables are the thickness of plate and shell elements.
The computational methods for continuum sizing optimization are similar to those used
for truss sizing. Shape optimization concerns the description of external and internal
boundaries, which are parametric functions of the design variables. Topology
optimization refers to the distribution or arrangement of material within a structure.
Combined shape and topology optimization is called generalized shape optimization.

Much of the research in shape optimization relates to finite element analysis techniques,
in particular the remeshing of models as the boundaries change. During optimization,
sensitivity derivatives are calculated to guide the search direction. A critical aspect of
shape optimization is distinguishing sensitivity to changes in the boundary as from errors
related to the accuracy of the mesh. The development of robust automatic mesh
generators, while not eliminating sensitivity errors, has improved the performance of
shape optimization techniques. Shape optimization is more effective as a tool for refining
existing designs rather than synthesizing new designs. The generation of design concepts
is one of the strengths of topology optimization.

2. Background

 30

The goal of topology optimization is to find the optimal distribution of material within a
general design domain, such as the shape of the external boundary, the number, size and
shape of holes, and the overall connectivity. While shape optimization starts with a
predefined parametric description of the boundaries of a structure, topology optimization
starts with a more general set of structural requirements. The only inputs to the topology
optimization are the applied loads, the possible support conditions, the volume of the
structure to be constructed, and restrictions on where material should or should not be
located. In shape optimization the design variables represent the domain through the
parametric representation of boundaries. In topology optimization, the design domain is
fixed, and the shape and size of the structure are defined by a set of distributed functions
defined on the domain. These functions represent a parameterization of the stiffness
tensor of the continuum.

The early development of topology optimization methods for continuum structures is
closely linked with theoretical work in composite materials. In the homogenization
approach [Bendsøe and Kikuchi, 1988], the design variable is the continuous density of
the base material in the composites. In this representation, the composite material consists
of an infinite number of infinitely small holes periodically distributed through the base
material. The material is parameterized through the material density ρ, where ρ=0
corresponds to a void, ρ=1 to material, and 0<ρ<1 to porous composites.

For continuum topology optimization problems involving isotropic material, a simpler
approach called the material distribution method is available. In this formulation, each
point in the design domain is either on structure or in a void. The geometry of the
structure is defined by the subset of all the points in the domain that have material. On a
domain discretized using finite elements, the structure can be viewed as a black and white
image where the pixels of the image are the elements. In contrast, structures produced
using the homogenization approach correspond to grayscale images, where the shade
represents material density. The material distribution method is formulated as a
distributed, discrete-value design problem, or a 0-1 problem.

Figure 2.8. Continuum topology optimization problem

load Γt

domain Ω

void

support Γu

2. Background

 31

Figure 2.9. Continuum topology optimization output

The topology optimization problem is defined as the problem of finding the optimal
choice of stiffness tensor Eijkl(x) which is a variable over the reference domain Ω (Figure
2.8). The goal is to determine the optimal subset Ωmat of points consisting of material.
This implies that the set of admissible stiffness tensors consists of those tensors for which

01 ijklijkl EE matΩ= and

Ω∉
Ω∈=Ω mat

mat

x
x

mat
 if 0
 if 11 . (2.1)

A common approach to this problem is to replace the integer variables with continuous
variables and use a penalty function to steer the solution to discrete 0-1 values. The
design variable then becomes a continuous function that is interpreted as the density of
the material. The penalty function is used to avoid regions of intermediate “density”,
since the stiffness is small compared to the cost or volume of material. An efficient and
commonly-used interpolation method is found in the penalized, proportional stiffness
model (SIMP) [Bendsøe, 1989]:

 1,)()(0 >= pExxE ijkl

p
ijkl ρ , (2.2)

 Ω∈≤≤≤Ω∫Ω
xxVx ,1)(0;d)(ρρ .

For p > 1, intermediate densities are treated as unfavourable. To obtain true black and
white (binary) designs, p ≥ 3 is usually required. With the current technology for
producing advanced composite materials, intermediate densities are not necessarily
uneconomical. For conventional construction techniques for the large scale structures
considered in this work, however, binary designs are preferred. Because the interpolation
function is continuous, intermediate zones between the existence and non-existence of
material are still present, so the final useful geometry is usually obtained by filtering or
interpretation using threshold values.

Compared to conventional structural optimization, topology problems have a large
number of variables but relatively few constraints, so efficient computational methods are

2. Background

 32

required. The two main classes for solving the material distribution problem are
optimality criteria methods [e.g. Olhoff, 1970; Taylor and Rossow, 1977; Rozvany and
Zhou, 1991] and mathematical programming techniques, such as CONLIN [Fleury, 1993]
and the Method of Moving Asymptotes (MMA) [Svanberg, 1987]. Similar in nature to
Sequential Linear Programming (SLP) and Sequential Quadratic Programming (SQP),
CONLIN and MMA use separable and convex approximations to solve smooth, nonlinear
optimization problems.

A typical result of topology optimization, obtained using optimality criteria methods, is
shown in Figure 2.9. The constraints for this problem are to minimize compliance for a
given volume fraction (or ratio of optimized volume to available volume). Figure 2.9
shows a characteristic result of the material distribution method; that low volume
fractions result in truss-like structures. The material distribution method predicts similar
forms to those obtained using classical analytical methods, such as the forms developed
by Michell in the study of grid-like continua. For certain conditions, namely the
minimum compliance constraint with a single load case, it has been shown that at low
volume fractions, the optimal solution for plates in plane stress tends to that of least-
weight trusses [e.g. Rozvany et al., 1985].

Two important complications arise in the use of the material distribution method for
topology optimization. These are the mesh-dependency of results and the appearance of
checkerboard patterns. Mesh-dependency refers to the effect that different finite element
discretizations of the domain can produce qualitatively different results. In practical
applications it is preferable to have a finer element mesh result in more clearly defined
boundaries, rather than a qualitatively different structure. The mesh-dependency problem
has been solved, and the methods used fall into three categories. These consist of adding
constraints to the optimization, directly reducing the parameter space, or applying filters
as part of the optimization procedure. The checkerboard problem refers to alternating
solid and void elements arranged in a checkerboard-like pattern, and is related to the
finite element discretization. The techniques for reducing mesh-dependency also decrease
the likelihood of checkerboard problems. Higher order finite elements, additional
constraints, and filters are other ways to eliminate the formation of checkerboard patterns.

Evolutionary computing methods have been applied to continuum optimization problems.
Although not based on evolutionary computing principles, the so-called Evolutionary
Structural Optimization (ESO) method [Xie and Stevens, 1992] is a heuristic method that
involves the sequential removal of lightly-stress elements. Some researchers have shown
that ESO may produce highly nonoptimal designs [Zhou and Rozvany, 2001]. A true
evolutionary computing approach to continuum optimization was developed by
[Sandgren et al., 1990] and [Jensen, 1992]. Their work was extended by [Chapman et al.,
1994] to optimized finely-discretized design domains. [Liang et al., 1999] present a
method, based on ESO, for developing minimum-weight topologies for continuum
structures under stress constraints. [Mijar et al., 1998] and [Liang et al., 2000] use
continuum topology optimization to evolve bracing systems for simple 2D multistory
frames. [Bentley and Wakefield, 1996] use a GA with a primitive building block

2. Background

 33

representation to form a system of clipped and stretched cuboids. [Griffiths and Miles,
2003] apply a GA to the problem of finding the optimal cross-section of a beam as a
shape and discovery problem. More recently, more advanced representation schemes
have been developed, including Voronoi-based representations [Periaux and Winter,
1995; Schoenauer, 1996] and representations based on fractal theory [Hamda et al.,
2002].

2.2.3.3. Commercial Applications
The major commercial finite element analysis packages, such as ANSYS and
MSC.Nastran include continuum topology optimization routines. For example, ANSYS
uses a material distribution method based on energy methods [Mlejnek et al., 1993].
Specialized structural optimization programs include Quint OptiShape, Altair OptiStruct,
and Vanderplaats Genesis. These software packages each have the capability to do
topology, shape and sizing optimization. Some commercial optimization programs have
interfaces to major CAD applications; for example, Altair OptiStruct can run topology
optimization on Pro/Engineer models using their HyperShape/Pro product.

2.2.4. Postprocessing
The layouts resulting from structural optimization must be processed to put them in a
form suitable for manufacturing. At a minimum, the layouts are manually converted into
a CAD format for detailing. In combined topology and shape optimization, the rough
boundaries produced by topology optimization are represented using smooth parametric
descriptions, which are more suitable for manufacturing. In a further level of
postprocessing, the topology optimization output may be used as the input for
multiobjective optimization to include a range of manufacturing, assembly, cost and other
criteria.

Design for Manufacturing (DFM) and Design for Assembly (DFA) methods provide a
systematic procedure for analyzing a proposed design from manufacturing and assembly
viewpoints [Boothroyd et al., 1994]. The goal of DFM and DFA is to produce simpler
and more reliable products which are less expensive to fabricate. More specifically, some
of the objectives are to maximize standardization (of materials, concepts, components,
tools and fixtures), to simplify manufacturing, to enhance uniformity, to support
parallelism (e.g. concurrent engineering and simultaneous manufacturing), and to
minimize resource requirements. Modularity is a systematic approach to designing
products that share interchangeable components. Modularity shortens the product
development cycle by reusing existing components, and by enabling simultaneous work
in design and manufacturing.

[Yetis and Saitou, 2002] proposed a systematic method for the decomposition of a
complex structure obtained from structural topology optimization using image processing
algorithms. Decomposition is framed as a graph partitioning problem, and solved using a
genetic algorithm. The objective function considers strength reduction and

2. Background

 34

assembleability criteria related to the number and similarity of welds. [Cetin and Saitou,
2004] extend this method to include modularity criteria, based on the similarity of the
components.

[Chickermane and Gea, 1997] present a method for optimal layout topology of
multicomponent structural systems connected by joints (or fasteners). The input consists
of design domains for each component, an initial distribution of joints, and a target
number of joints. Joints are represented using a microstructure-based model.
Optimization results in the topology of each component, along with the optimal joint
locations.

[Chirehdast et al., 1992; 1994] propose a four-phase design process called the Integrated
Structural Optimization System (ISOS). In Phase I, an optimal initial topology is created
as a gray-scale image using a homogenization method [Bendsøe and Kikuchi, 1988]. In
Phase II, the image is transformed into a simpler parametric model using image
processing techniques. In this phase, rules derived from elementary mechanics and
engineering intuition are used to delete nodes and add or remove elements. For example,
zero force truss elements are deleted, and elements are added to triangulate polygonal
cells and ensure stability. Phase III implements truss geometry and sizing optimization
using SAPOP [Bremicker et al., 1990; 1991]. In Phase IV the resulting design is either
refined or manufactured.

2.3. Image Processing
Image processing is the manipulation and analysis of image data, and is used in many
fields, including medicine, astronomy, microscopy, seismology, defense, industrial
quality control, and aerial and satellite imagery. Although image processing may be
broadly defined, in this context the term is used to refer to operations on digital images
where the input and output are both in the form of images. The analysis of images to
produce measurements or high level descriptions is discussed in the following section
under the topic of pattern recognition. Image processing commonly involves 2D images,
but is increasingly being used on 3D data sets, such as those generated using magnetic
resonance imaging (MRI) in medical imaging. More generally, image processing is signal
processing using 2D or 3D signals. Many of the algorithms applicable to image
processing, such as filtering, were developed in the signal processing field.

2.3.1. General
Image processing is used to enhance images, using techniques such as brightness
adjustment, contrast adjustment and noise filtering. A brightness histogram is a plot of
the distribution of pixel brightness in an image. The histogram may be manipulated to
adjust brightness and contrast. The histogram is used to select brightness threshold values
to convert grayscale images into binary images [Russ, 1999].

2. Background

 35

2.3.2. Morphology
In biology, morphology deals with the form and structure of plants and animals. In the
field of imaging, morphology is more specifically used to describe an extensive class of
nonlinear image processing and analysis operations [Dougherty and Lotufo, 2003].
Mathematical morphology was developed by Matheron and Serra at the Ecole des Mines
in Paris for analyzing the geometric structure of geological data and materials [Serra,
1982]. Mathematical morphology is based on Minkowski set theory and the theory of
finite lattices.

An image is a mapping, I, from a set, Sp of pixel coordinates to a set, G, of values such
that for every coordinate vector, p=(r,c) in Sp, there is a value I(p) drawn from G. Sp is
also called the image plane. A binary image has 2 values, thus G={νfg, νbg}, where νfg is
called the foreground value and νbg is called the background value. The foreground is the
set of locations, p, where I(p) = νfg;

{ }fgp pIScrppIIFG ν=∈==)(),(),(}{ . (2.3)

Similarly, the background is

{ }bgp pIScrppIIBG ν=∈==)(),(),(}{ . (2.4)

A structuring element (SE) is a small image whose foreground identifies neighbours to a
given point in the image plane. Figure 2.10 shows an example of two structuring
elements. In this figure the origin of the SE is marked with a circle, and the foreground of
the element is indicated with gray pixels.

The translate of a structuring element Z to a location p in Sp is denoted Z+p, and refers to
a position of Z where the origin of Z coincides with location p in Sp. The Z-
neighbourhood of p in I, N{I,Z}, refers to the set of locations in the image delineated by
Z+p.

Z4

Z8

Figure 2.10. Structuring elements

Dilation is an operation that effectively enlarges the foreground by adding pixels to the
perimeter. A definition of dilation (Figure 2.11.a) is

2. Background

 36

()U
}{ZFGp

pIZI
∈

+=⊕ .

Erosion is an operation that effectively reduces the size of the foreground by removing
pixels at the perimeter. A definition of erosion (Figure 2.11.b) is

 { }IpZSpZI p ⊂+∈=− .

original

+ dilation

result

a. dilation

original

+ erosion

result

b. erosion

original

+ erosion

+ dilation

result

c. opening

original

+ dilation

+ erosion

result

d. closing

Figure 2.11. Morphological operations (SE=Z8)

Opening is defined as an erosion followed by a dilation (Figure 2.11.c). Closing is
defined as a dilation followed by a erosion (Figure 2.11.d). Opening and closing

2. Background

 37

operations are used extensively in image processing to filter noise, smooth edges, fill
holes, and to separate or connect multiple shapes.

2.3.3. Thinning
A recurring problem in image processing and analysis is to simplify images while
retaining their essential geometric information. Thinning is a technique that reduces a
pattern to a thin-line representation, and is used to facilitate pattern recognition and
provide data compression [Blum, 1967]. Thinning is used in some automatic character
recognition systems to simplify characters prior to processing. A commonly used
thinning procedure is skeletonization, which is based on the concept of maximal disks.
Given a point interior to a binary image, there exists a largest disk, the maximal disk,
having the point at its center and also lying within the image. The centers of all maximal
disks comprise the skeleton, or medial axis of the image [Blum, 1973]. An example of a
skeleton is shown in Figure 2.12.a.

Because of the value of thinning in pattern recognition and data compression, thinning
algorithms have been studied extensively [Lam et al., 1992]. Thinning algorithms can be
categorized according to whether they use the definition of medial axis given above. As
defined, skeletons tend to have numerous spurious branches because of boundary
irregularities. Also, the skeletonization process tends to disconnect connected sets. This
effect is similar to that shown in Figure 2.11.b, where erosion causes continuous
foreground objects to break into separate objects. If the structuring element is large
enough or if erosion is repeated, the foreground objects may disappear completely. As an
alternative to computing the medial axis, morphological “hit-or-miss” operators can
ensure that no foreground pixels are changed where that change would create a disjointed
object [Zhang, 1997].

 a. skeleton b. distance map c. projection
Figure 2.12. Image processing operations

2.3.4. Distance Map
The Euclidean distance map (EDM) produces a grayscale image from a binary image
[Danielsson, 1980]. The brightness of a pixel in the grayscale image represents the
distance the pixel lies from the nearest boundary. Figure 2.12.b shows the EDM of the

2. Background

 38

image of a character, calculated using the algorithm of Borgefors [Borgefors, 1986]. The
darkest points on the EDM plot define a ridge that is equidistant from at least 2 points on
the boundary of the feature. This ridge is the medial axis, and can be extracted from the
EDM by applying an edge detection method, such as the Laplacian operator.

2.3.5. Hit-or-Miss Operators
Although it is possible to isolate the medial axis from the grayscale distance map, this
approach is more complex than using a morphological hit-or-miss algorithm like the one
used to generate the skeleton in Figure 2.12.a. The hit-or-miss transform is a general
binary morphological operator that can be used to identify particular patterns of
foreground and background pixels in an image. The structuring element used in the hit-
or-miss transform is similar to those used in erosion and dilation, except that background
pixels are used as well as foreground pixels. The hit-or-miss operation is performed by
translating the origin of the structuring element to all points in the image, and then
comparing the structuring element with the underlying image pixels. Figure 2.13 contains
several examples of structuring elements used in hit-or-miss operations. Figure 2.13.a
indicates conditions where the central pixel should be retained in a thinning operation.
Deleting the central pixel would break up the image, and lead to further disintegration
with subsequent passes of a thinning algorithm. Figure 2.13.b identifies conditions under
which the central pixel could be deleted without affecting the connectivity of the
foreground (assuming 8-connectivity, or that pixels sharing a corner constitutes
connectivity). Figure 2.13.c shows how structuring elements may be used to identify
intersection points between line-like foreground features.

 a. retain during thinning b. remove during thinning c. node identification
Figure 2.13. Hit-or-miss structuring elements

2.3.6. Projection
The projection of a 3D object of optical transparency V(x,y,z) to an image f(x,y) is defined
by

 ∫= zzyxVyxf d),,(),((2.5)

where the integration takes place over the volume of V, and the object is illuminated
along the z axis. Radiography (x-ray imaging) is an example of projection. The projection
of a planar image f(x,y) corresponds to illuminations of objects along a cross-section, and
is given in cartesian coordinates by

2. Background

 39

 ∫= yyxfxp d),()(. (2.6)

Projections describe the intersection length of a series of section lines, and transform
plane regions into plane curves. By intersecting an object in different directions, strong
angular features in the object appear as peaks in the projection. An example of cartesian
projection is shown in Figure 2.12.c.

2.3.7. Hough Transform
The Hough transform is a method used to detect imperfect instances of objects in images
[Hough, 1959; Duda and Hart, 1972]. In its initial form, the Hough transform was used to
identify lines, but it has since been extended to detect general parametric shapes such as
circles and ellipses. The transform converts an input image into n-dimensional
accumulator space, where n is the number of parameters used to describe a class of
object. For line detection, 2 parameters are used to describe a line so the output is a 2D
image of the accumulator space (Figure 2.14). A line may be represented by the
parameters of slope m and intercept b as y=mx+b. An alternative form which is
computationally simpler is:

+

−=

θθ
θ

sinsin
cos rxy , (2.7)

where r is the distance between the line and the origin, and θ is the angle of the vector
from the origin to the closest point on the line.

 a. input image b. transform output
Figure 2.14. Hough transform

angle θ

di
st

an
ce

 r

2. Background

 40

 Each line in the image is associated with a unique couple (r,θ) in accumulator, or Hough
space. At each point (xo,yo) in the image plane, an infinite number of lines with varying
slope may exist. In accumulator space, the lines have the equation

 θθθ sincos)(oo yxr += , (2.8)

which defines a sinusoid unique to each point (xo,yo). If two points in the image space lie
on the same line, the line is defined by the intersection point of the corresponding
sinusoids in accumulator space. To identify imperfect lines, the image is processed pixel
by pixel. If a pixel belongs to the foreground, that pixel “votes” in accumulator space for
the set of potential lines passing through that point. To limit the number of potential lines,
the accumulator space is discretized into bins. Dominant lines in image space appear as
local maxima in accumulator space, as shown by the bright points in Figure 2.14.

Figure 2.15. Fourier transform

x

y

u

v
-1

4

3

2

1

0

5

u

v

-1

4

3

2

1

0

5

x

y

2. Background

 41

2.3.8. Fourier Transform
The Fourier transform is used to decompose an image into sinusoidal components,
providing insight into the overall periodicity and directionality of the image. The Discrete
Fourier Transform (DFT) of a discrete 2D spatial domain image f(x,y) of width M and
height N is

 ∑∑
−

=

−

=

 +−

=
1

0

1

0

2
),(11),(

M

x

N

y

N
vy

M
uxi

eyxf
NM

vuF
π

;
1,...,0
1,...,0

−=
−=

Nv
Mu

, (2.9)

where the values F(u,v) are the DFT coefficients of f(x,y). The transform produces a
complex number valued image of size M x N, where M and N correspond to the number
of discrete frequencies in the x and y directions. The Fourier transform thus represents a
transformation from the spatial domain to the frequency domain.

The output from the Fourier transform can be displayed as a pair of images, either as the
real and imaginary parts, or as the magnitude and phase components. In image
processing, often only the magnitude is displayed, as it contains most of the information
on the geometric structure of the spatial domain image.

In Figure 2.15, the Fourier transforms of two spatial images are shown. The output is
plotted on a logarithmic scale, with the center of the plot representing zero frequency
(DC) components. The Fourier coefficients capture the periodicity of the input image in
different directions, and are commonly used in pattern recognition schemes.

2.4. Pattern Recognition
Pattern recognition techniques seek to describe and classify data from a wide range of
sources. Often the data are 2D images: aerial and satellite images, radiograph and
computed tomography (x-ray and CAT scan) images, scanned books or handwritten
letters, microscopic images of amoebas or crystals. One dimensional waveforms such as
seismographs and electrocardiogram traces, and 3D images from magnetic resonance
imaging are other data sources. Data are described and classified using a set of reference
patterns, which are either predefined or derived from similarities within the data. Pattern
classes may be established a priori by experts, usually with a training set, during
supervised learning. Alternatively, classes are based on statistical regularities in large sets
of data, using unsupervised learning.

2.4.1. Overview
A complete pattern recognition system has the following components: a sensor to collect
data, a feature extractor to identify numeric or symbolic features in the data, and a
description or classification scheme based on a set of patterns. Image processing

2. Background

 42

techniques are frequently used to remove noise from sensor data or enhance the raw data
in other ways before features are extracted. There are two main approaches to pattern
recognition. The classical approach follows a “Gestalt” view where the raw data is
represented by an array of numbers representing various measurements performed on
objects. If the numbers are the coordinates of points in space, then points which are
geometrically close to each other represent similar objects. The problem of pattern
recognition is to identify the regions in space where points from a single pattern lie.
Ideally, the points corresponding to a pattern are tightly clustered and distinct from other
patterns. Often, techniques from probability, statistics and decision theory are used, so
this method is called statistical pattern recognition or decision theoretic pattern
recognition. A limitation of the statistical method is the difficulty in selecting an effective
set of measurements, particularly when patterns are complex or there a large number of
pattern classes. Syntactic pattern recognition or structural pattern recognition is based on
the concept that a complex pattern could be described in terms of simpler patterns.
Similarly, complex phrases can be broken down into words, and letters of the alphabet
can be described using strokes. Many techniques from the study of formal languages are
used in syntactic pattern recognition, which is also known as linguistic pattern
recognition.

Much of pattern recognition is dedicated to finding a compact representation of data.
Image data is particularly dense and direct comparison and classification of images is
computationally expensive. Pattern recognition uses mathematical techniques to
compactly represent image data and support symbolic reasoning with images. Patterns are
represented as feature vectors, strings, or relational graphs. In the classical decision
theoretic approach, each pattern is represented by an n-dimensional feature vector, and
patterns are recognized by applying techniques in discriminant analysis and statistical
decision theory. For complex patterns, the number of features n required for recognition
becomes large, and the decision theoretic technique may become ineffective. In this case,
complex patterns can be represented by simpler subpatterns, where decision theoretic
methods are used on the subpatterns [e.g. Pavlidis, 1977]. In syntactic pattern
recognition, the relationship between the subpatterns is encoded using strings or graphs.

2.4.2. Regions
Images may be analyzed using global or local analysis methods. Global methods include
the Fourier transform and the colour histogram. The Fourier transform produces a sparse
matrix representation of an image, which can be used as elements of a feature vector.
Global analysis is limited in the ability to capture local features of an image, which are
often important in discriminating between images.

Local analysis methods isolate uniform regions or features in an image which can be used
with syntactic pattern recognition methods. A common method in pattern recognition is
to identify homogeneous regions of texture and colour, a process called segmentation.
For example, texture captures the granularity or repetitive patterns of surfaces within an
image. In satellite imaging, differences in texture are used to distinguish water from

2. Background

 43

grassland, and woodlands from urban areas [Haralick et al., 1973]. Regions of similar
colour or intensity are identified using thresholding. Once images are segmented into
regions, those regions can be characterized by a number of different methods. Regions
can be described by scalar quantities, such as the ratio of the perimeter squared to the
area, or by vector quantities, such as centroids. Formulations exist for moments that are
invariant with respect to scale, position and rotation [Hu, 1962; Wood, 1996]. Scalars and
vector quantities are incorporated into the feature vector. Regions are also described by
projections, or by the analytical representation of their boundaries or skeletons.

Cartesian projections have been used to describe the shape of typewritten letters
[Pavlidis, 1977] and polar projections through a common point have been used in the
recognition of chromosomes [Rutovitz, 1970]. Discrete projections may be used directly
as a feature vector for describing the shape of regions. They may be also processed
syntactically to extract key features from the region.

2.4.3. Boundaries and Curves
Region boundaries, skeletons, and curves in general are compactly represented using a
range of different curve fitting techniques. Although higher order polynomials and 1D
Fourier transforms can be used to fit curves, these are global techniques that may miss
important local features. A more effective method in pattern recognition is to use a linear
piecewise continuous approximation or spline. A number of different algorithms are
available for piecewise curve fitting, many of which use the techniques of iterative
splitting and merging. In splitting, the input is repeatedly subdivided into smaller
segments until the approximation error is below a specified threshold. In merging,
segments are iteratively joined until no further segments can be joined without exceeding
an error limit.

The Hough transform may be used to extract parametric features from an image, such as
lines, circles and ellipses. In the content-based retrieval of line drawings, the angles as
well as locations of strong linear features are stored in a feature vector [e.g., Franti et al.,
2000].

2.4.4. Structural Descriptions
Syntactic or structural descriptions produce compact representations of shapes without
using high level, or semantic information. They deal strictly with local features and the
relationships between them. The earliest examples are the syntactic descriptions of
Ledley [Ledley, 1964], and those based on the Freeman chain code [Freeman, 1961]. The
earliest application of Freeman chain codes was to the encoding of line drawings, as
shown in Figure 2.16. Assuming a rectangular grid, eight basic directions are defined. A
line superimposed on the grid is represented by a series of moves from one square to
another; thus the line in Figure 2.16 is represented by the string of numbers
44445707670.

2. Background

 44

Figure 2.16. Freeman chain code [after Pavlidis, 1977]

In general, the encoding of a shape into a string with symbols from a fixed “alphabet” has
the advantages of fast algorithms, compact storage, and well-developed methods such as
the theory of formal languages. The limitations of chain code are that they are not
rotationally invariant, and become complex when describing global features like the
closing of boundaries. In a slightly higher level of encoding than Freeman, Ledley uses a
finite set of symbols to represent arcs, where for example, “a” is a convex arc of high
curvature and “b” is a straight line [Ledley, 1964].

 Dp = {P, RP}
P = {P1, P2, P3, P4, P5}

PR = {(Left, Left_P), (Above, Above_P)}
Left_P = {(P1, P4), (P4, P3)}

Above_P = {(P2, P4), (P4, P5)}
P1 = {(shape, rectangular), (colour, white)}
P2 = {(shape, triangular)}
P3 = {(shape, rectangular)}
P4 = {(shape, circular)}
P5 = {(colour, black)}

Figure 2.17. Structural description example

In a generalization of the above methods, a structural description D of an object is
formulated as a pair D = (P, R), where P = {P1, ... , Pn} is a set of primitives [Shapiro and

P2

P4

P3

P1

P5

4 4 4 4
5

7
0

7
6

7 0

0

1
2

3

4

5
6

7

2. Background

 45

Haralick, 1981]. Each primitive Pi is a binary relation Pi ⊆ A × V, where A is a set of
possible attributes and V is a set of possible values. R = {PR1, ... PRK} is a set of named
N-ary relations over P. For each k = 1, ... , K, PRk is a pair (NRk, Rk) where NRk is a name
for relation Rk, and for some positive integer Mk, Rk ⊆ PMk. Thus, set P represents the
parts of an object, and set R represents the relationships between the parts. The elements
of any relation Rk may include as components primitives, attributes, values and any
symbols necessary to specify the given relationship. An example of a structural
description using the above syntax is shown in Figure 2.17.

2.4.5. Relational Graphs
The structural description may be realized as an attributed relational graph (ARG)
[Eshera and Fu, 1986; Foggia et al., 1999]. The ARG is defined as G = (V, E, AV, AE, αV,
αE) where V and E are respectively the sets of the vertices and the edges of the ARG; AV
and AE are the sets of the vertex and edge attributes, and αV and αE are the functions
associating to each vertex or edge the corresponding attributes. The attributes of a node
or edge have the form t(p1, ..., Pkt), where t is a type chosen over a finite alphabet T, and
(p1, ..., pkt) are a tuple of parameters, also from finite sets ''

1 ,..., ktPP . Both the number of
parameters kt and the sets they belong to depend on the type of attribute, and for some
type kt may be equal to 0 (the attribute has no parameters). The type information
discriminates amoung different kinds of nodes or edges, and the parameters characterize
the nodes or edges of a given type. Usually the nodes of a graph represent the primitives
of the structural descriptions, and the edges represent the relations between the
primitives. The graph definition is often abbreviated as G=(V,E). The numbers of vertices
and edges have been expressed as |V| and |E| in the literature.

Figure 2.18. Attributed relational graph

P3

P2

P4 Left_P
Left_P

Above_P

Above_P

P3

P3

2. Background

 46

Relational attributes such as Left and Above, shown in Figure 2.18, are frequently used in
pattern recognition. Since the attributes have no associated numerical values, only binary
values, their expressive power is limited. If additional relations such as Above_Left and
Touches are added, understanding similarities between objects becomes more difficult.
Alternatively, spatial relationships between primitives may be represented by a single
character hexadecimal direction code in the range [0, ..., f], which allows for a
compatibility function that can discern similarity by numerical difference [Blake, 1994].
This definition still does not express the spatial distance between primitives. [Thoresen,
2007] proposes the use of an n-dimensional vector d as edge attribute, where n is the
number of spatial dimensions in the image. In a computer vision application where the
vertices represent regions, d = c2 – c1, where c1 and c2 are the centroids of the regions.

2.4.6. Output
Given an input image, the goal of pattern recognition is generally to describe or classify
the image. A description in this context usually means a natural language representation
in text, or another language that can be easily converted to such a form. A goal in
machine vision, for example, is to describe all the relevant information in a scene,
including the types of objects in the scene and the spatial relationships between those
objects. The goal of classification is to assign an image, or parts of it, to a class. Classes
may be defined by a formal description, or more commonly, by a set of example images
from each class. Classification is closely linked to inference and learning. Where no
formal definition of a class exists, it is necessary to infer the definition from the
examples. Related to classification, clustering is the process of determining similarity
between images.

Using pattern recognition techniques, images may be represented in a number of different
formats, including feature vectors, character strings, and relational graphs. The ease with
which images support description, classification, learning and clustering strongly depends
on the representation format.

Classification using feature vectors is a well developed subject in pattern recognition.
Statistical pattern classification determines the probability P(c|x) that an object
represented by a vector x belongs to class c. This probability may be estimated using
Bayes’ theorem, given that a set of objects with known classification is available.
Similarity between feature vectors is readily assessed using a nearest neighbour
algorithm, often just the Euclidean distance between vectors. The description of an image
using feature vectors is more problematic than classification or clustering, because they
often lack the ability to represent structural relationships.

Character string representations of images support both classification and description,
provided the string elements come from a finite set. In this case, the theory of formal
languages can be used for pattern recognition. Inference using strings is more difficult,
and clustering is often limited by a lack of meaningful similarity measures.

2. Background

 47

For graphs, the classification, description, learning and clustering problems are generally
more difficult than for vectors or strings. Graphs may be classified by first constructing a
feature vector from the graph. The vector may contain graph theoretic properties, such as
the maximum degree of nodes, connectivity and number of branches, or graph label
information. To generate descriptions from graphs, graph languages and grammars have
been developed. For classification, methods used for strings may be applied. Similarity
measures for graphs have been widely studied; this is the graph matching problem.

2.4.7. Graph Matching
Since the early 1970s when relational graphs were first used to represent 2D scenes in
machine vision [Barrow and Popplestone, 1971], there has been a strong interest in
developing practical methods to determine the similarity between graphs. An important
property of graphs in pattern recognition is that by definition they are invariant with
respect to transformation, rotation and scaling2. The graph isomorphism problem is to
determine whether two graphs are the same. Another, more common problem is to
determine whether one graph is part of another graph. This is the subgraph isomorphism
problem, where a subgraph is obtained from a graph by deleting vertices. The subgraph
isomorphism problem is stated as follows [Cook, 1971]:

Given graphs G=(V1,E1), H=(V2,E2),
does G contain a subgraph isomorphic to H, i.e. a subset V ⊆ V1 and a
subset E ⊆ E1 such that |V|=|V2|, |E|=|E2|, and there exists a one-to-one
function f:V2→V satisfying {u,v} ∈ E2 if and only if {f(u),f(v)} ∈ E?

The subgraph isomorphism problem is computationally demanding because of its
combinatorial nature, and has been proven to be NP-complete [Garey and Johnson,
1979]. Using a brute-force matching algorithm, the computing time increases
exponentially with the size of the graphs, restricting graph-based techniques to graphs
with a relatively small number of vertices and edges. A procedure that significantly
reduces is the size of the search space is the backtracking algorithm of [Ullmann, 1976],
still commonly used today. To reduce the complexity, researchers have imposed
topological restrictions to planar graphs [Hopcroft and Wong, 1974] or trees, or have
employed pruning methods [Corneil and Gotlieb, 1970].

Where solutions to the graph isomorphism and subgraph isomorphism problems do not
exist, the maximum common subgraph gives a measure of similarity between graphs. A
common subgraph of two graphs G1 and G2 is a graph G3 such that there are subgraph
isomorphisms from G3 to G1, and from G3 to G2. A common subgraph G3 of G1 and G2 is
called a maximum common subgraph if there is no other common subgraph of G1 and G2

2 Invariance is not always desirable; in character recognition, the characters ‘6’ and ‘9’
are similar under rotational invariance. Note if vertex or edge attributes contain absolute
position information, then the graph is not invariant to translation, scale and rotation.

2. Background

 48

that has more vertices than G3. Note that the maximum common subgraph is usually not
unique.

In practical pattern recognition applications, noise and error are often present. The
methods discussed up to this point describe exact graph matching techniques. Inexact
graph matching is concerned with determining the similarity between graphs where exact
matches do not exist. Most of the classical methods for error-tolerant graph matching
[e.g. Shapiro and Haralick, 1981], are variations of the A* search procedure, a tree search
incorporating heuristic lookahead. The similarity between two graphs is often expressed
as a distance measurement [e.g. Eshera and Fu, 1984]; the smaller the distance, the more
similar the graphs. The distance between graphs is commonly defined as the minimum
cost of a sequence of operations that transforms one graph to another. The minimum cost
subgraph isomorphism problem may be formulated as:

Given graphs G=(V1,E1), H=(V2,E2) where |V1|<=|V2|, a vertex cost
metric Ev(vi,vj) for associating a vertex vi ∈ V1 to a vertex vj ∈ V2, and an
edge cost metric Ee(ek,el) for associating an edge ek ∈ E1 to an edge el ∈
E2, what is the minimum cost subgraph isomorphism from graph G to
graph H?

In an alternative formulation, graph edit distances [Bunke, 1998] measures similarities
through a series of graph edit operations. Typical operations are the insertion, deletion
and substitution of vertices and edges. Bunke shows that graph edit distance computation
is equivalent to solving the maximum common subgraph problem.

Morphological graph matching and elastic graph matching are other inexact matching
techniques. Elastic graph matching takes into account the potential deformation of objects
during recognition; in a two step process objects are first matched to a rigid grid, and the
grid is then deformed using operations such as rotation and scaling. This method has been
used for identification and tracking of cyclones [Lee and Liu, 1999]. In morphological
graph matching, hyperplanes or deformable spline-based models are applied to the
skeletons of non-rigid discrete objects [di Ruberto and Dempster, 2001]. Morphological
graph matching has been applied to shape recognition from large image libraries [Huet
and Hancock, 1999].

Graph matching is an inherently intractable problem, and there are many different
approaches in the literature that attempt to reduce the complexity. Approximate methods
can reduce the complexity in most cases from exponential to polynomial, however they
do not guarantee an optimal solution. Graph matching methods have used heuristics,
probability-theory based approaches, fuzzy set theory, genetic algorithms, neural
networks, decision trees, clustering techniques and constraint satisfaction methods,
amoung others.

Probability theory has been applied by many researchers. A general review on
probabilistic graph matching can be found in [Farmer, 1999]. One of the first uses of

2. Background

 49

probability theory in graph matching was in an iterative approach called probabilistic
relaxation [Hancock and Kittler, 1990]. Fuzzy set theory has been used to represent
distance between objects in images [Bloch, 1999]. [Messmer and Bunke, 1991] applied
decision trees to the computation of error-correcting graph isomorphisms. Neural
networks were used in a face authentication system with deformable graphs [Duc et al.,
1999]. [Fan et al., 1998] employ clustering techniques in the automatic recognition of
form documents. [Cross, Wilson and Hancock, 1996] describe a framework for
performing relational graph matching using genetic search with Bayesian consistency
measures. Graph matching is formulated as a constraint satisfaction problem in [Yaner
and Goel, 2003].

2.5. Structural Stability
Structural stability is a term often used to describe the essential characteristic that
separates structures from mechanisms. In this boundary region between the traditional
disciplines of structural and mechanical engineering, several other terms are used to
describe the same characteristic, including mobility, rigidity, and kinematic determinacy.
Stability in this context must be distinguished from the more common usage of stability
in structural engineering, in the context of the buckling of compressive elements. While
the distinction between a structure and a mechanism is often obvious to the human
designer, such a distinction is not readily made by the computer. In developing a
computational system to assist conceptual structural design, the notion of stability must
be studied more closely. This section outlines several different approaches to stability,
including Maxwell’s rule, linear structural analysis, and mathematical rigidity theory.

From the beginning, a single geometric shape has been central to the study of structural
stability: the triangle. In a mechanics textbook from 1868, the following guidance was
given to ensure the rigidity of a truss:

The word truss is applied in carpentry and iron framing to a triangular
frame, and to a polygonal frame to which rigidity is given by staying and
bracing, so that its figure shall be incapable of alteration by turning of the
bars about their joints. If each joint were [...] like a hinge, incapable of
offering any resistance to alteration of the relative angular position of the
bars connected by it, it would be necessary, in order to fulfill the condition
of rigidity, that every polygonal frame should be divided by the lines of
resistance of stays and braces into triangles and other polygons so
arranged, that every polygon of four or more sides should be surrounded
by triangles on all but two sides and the included angle at farthest. For
every unstayed polygon of four sides or more, with flexible joints, it is
flexible, unless all the angles except one be fixed by being connected with
triangles.

 [Macquorn Rankine and Millar, 1868]

2. Background

 50

Such geometric rules for stability are still widely used, and can be exploited during
conceptual design. In addition, several mathematical approaches to stability are available.

2.5.1. Maxwell’s Rule
In 1864, James Clerk Maxwell published an algebraic rule specifying a condition for a
pin-jointed frame composed of b rigid bars and j joints to be both statically and
kinematically determinate3. The number of bars needed to stiffen a two-dimensional
frame free to translate and rotate on a plane as a rigid body is given by

 b = 2j – 3 (2.10)

The physical reasoning behind the rule is that each added bar links two joints and
removes at most one internal degree of freedom. The rule just equates the number of
external and internal degrees of freedom. Maxwell’s rule for three dimensions can be
more generally written as

 b = 3j – c (2.11)

where c is the number of kinematic constraints (c ≥ 6 in three dimensions) [Maxwell,
1864]. As Maxwell noted, this equation is a necessary, but not a sufficient condition for
establishing determinacy. As an example, both structures shown in Figure 2.19 comply
with Maxwell’s rule, but the one on the left is obviously stable while the right one
contains a mechanism. Maxwell also observed there were special assemblies, with fewer
than 2j-3 bars, that tighten up as its mechanisms are mobilized, warning that the stiffness
of these assemblies is “of an inferior order” and that “a small disturbing force may
produce a displacement infinite in comparison to itself” [Calladine and Pellegrino, 1991].

Figure 2.19. Limitation of Maxwell’s rule

2.5.2. Gruebler’s Equation
In a well-known kinematics approach, Gruebler’s equation [Gruebler, 1885] defines the
degree of freedom, or mobility M, of a planar assembly as

3 Although the rule commonly bears Maxwell’s name, this algebraic relationship was known at least as
early as 1837 (Möbius, A.F., Lehrbuch der Statik, Vol. 2, Leipzig, Göschen).

2. Background

 51

 M = 3(L-1) – 2J (2.12)

for an assembly with L rigid links and J joints. If M is positive, the assembly is a
mechanism, and if not, the assembly is a structure. Although a degree of freedom equal to
or less than zero is necessary for immobility of the structure, this does not guarantee the
structure is not mobile. Even more sophisticated formulae for the degree of freedom, such
as the one derived by Kutzbach [Norton, 2003], represents only a necessary condition,
but not a sufficient condition.

2.5.3. Static and Kinematic Indeterminacy
Structures are referred to as statically indeterminate if there is a unique solution to the
equilibrium equations for any applied loading. A statically indeterminate structure will
admit different states of self-stress, where the structure can be stressed against itself, even
in the absence of external loads. In practical terms, if the bars of a statically indeterminate
truss are not fabricated to precise lengths, force will be required to fit the bars, resulting
in a self-stressed structure.

Structures are termed kinematically indeterminate if there is a unique solution to the
compatibility equations for any set of internal extensions of the bars. If a structure is
kinematically indeterminate, then there will be certain movements of the joints, where, at
least to the first-order approximation, there are no changes in bar lengths. Kinematically
indeterminate structures are mechanisms. Traditionally, structural engineers avoid
mechanisms, and redesign structures with mechanisms to avoid instability and large
motion. The assumption of first-order joint displacements has a practical significance.
Small-displacement, linear finite element analysis is widely used in engineering practice,
and this method is limited to kinematically determinate structures. In the special case of
prestressed structures, however, mechanisms play an important role. The development of
cable nets, fabric roofs and tensegrity structures [Fuller, 1975] in the 1970s led to a
renewed interest in the theoretical aspects of prestressed mechanisms [Kuznetzov, 1975;
Calladine, 1978; Pellegrino and Calladine, 1986].

2.5.4. Linear Structural Analysis
This section gives an overview of the linear structural analysis of pin-jointed bar
frameworks. The analysis concerns a three dimensional assembly with j joints connected
by b pin-jointed bars; a total number of c kinematic constraints prevent the joints from
moving.

In linear structural analysis, three principles must be satisfied; that internal forces t are in
equilibrium with the applied forces f, that any internal deformation e is compatible with
external displacements d, and that internal forces t and elongations e are related by a
material law. The (3j-c)-dimensional nodal load vector f contains the x-, y- and z-

2. Background

 52

components of the external forces applied at each node of the assembly. The b axial
forces are assembled in the tension vector t, where the axial force in bar i, ti, is positive if
tensile. The x-, y- and z-components of the displacement of each node, excluding
kinematically constrained directions, are assembled in the (3j-c)-dimensional nodal
displacements vector d. The elongation vector e consists of the b bar elongations, with
the convention that the elongation of bar i, ei, is positive for an increase in length.

For small perturbations about the initial equilibrium configuration of a structure, these
relationships can be linearized as three matrix relationships:

 f = At (2.13)

 e = Cd (2.14)

 t = Ge (2.15)

where the (3j-c×b) coefficient matrix A is the equilibrium matrix, the (b×3j-c) coefficient
matrix C is the compatibility matrix, and G is a diagonal matrix with element stiffnesses
EA/L on the diagonal.

The static-kinematic duality of the above equations can be demonstrated using the
principle of virtual work. Equating internal and external work,

 δWint = δWext , or (2.16)

 δeTt = δdTf , (2.17)

and substituting equations 2.13 and 2.14 this becomes

 δdTCTt = δdTAt , (2.18)

which is valid for any displacement δd, and results in

 CT = A. (2.19)

Using the stiffness method, the internal forces are condensed out of the above equations
(2.13-2.15) to form a single stiffness relationship which relates external forces to nodal
displacements. Substituting equations (2.15), (2.14) and (2.19) into equation (2.13),

 f = AGATd = Kod , (2.20)

where Ko is the linear stiffness matrix. If a system is to be stable, the matrix Ko must be
positive definite, or equivalently, of full rank, where r(Ko) = 3j – c. It will be shown,

2. Background

 53

however, that determining the rank of the equilibrium matrix is sufficient to establish the
stability of the system [Deng and Kwan, 2005].

 Ko = AGAT = A(G*G*T)AT = (AG*)(AG*)T (2.21)

where G* is also a diagonal matrix. For regular bar frameworks, all elements in G are
positive, so the rank of AG* takes its value from the rank of A. Furthermore, since the
rank of a matrix X is the same as that of XXT, then

 r(Ko) = r[(AG*)(AG*)T] = r(AG*) = r(A) = r. (2.22)

Therefore, whether Ko is positive definite can be judged from the rank of the equilibrium
matrix A3j-c×b.

2.5.5. Equilibrium matrix analysis
A detailed analysis of the equilibrium matrix yields considerable insight into the
characteristics of a structure, as shown by [Pellegrino and Calladine, 1986]. The
equilibrium matrix A can be considered a linear operator between two vector spaces, the
bar space ℜb and the joint space ℜ3j-c. The four fundamental subspaces associated with A
have the following properties.

• If the Nullspace of A has dimension s=0, then the structure is statically
determinate.

• If s>0 then the assembly is statically indeterminate, and s=b-r is the number of
independent states of self-stress it admits.

• If the Left-nullspace of A has dimension m=0, then any load f can be equilibrated
by the assembly in its initial condition, and the assembly is kinematically
determinate.

• If m>0 the assembly is kinematically indeterminate, and m=3j-c-r is the number
of independent inextensional mechanisms.

Note that these subspaces coincide with the subspaces associated with the compatibility
matrix C(=AT). Also, note that the dimensions of the four subspaces can easily be
computed once the rank r of the equilibrium matrix is known.

The value of r can be determined in several different ways, but using the Singular Value
Decomposition (SVD) on the equilibrium matrix also gives orthogonal sets of m
inextensional mechanisms and s states of stress. Note that algorithms to compute the
SVD are part of commercially-available software such as MATLAB.

 A = U Σ VT (2.23)

2. Background

 54

where U={u1,u2,...,u3j-c} consists of a set of left singular vectors, V={v1,v2,...,vb} contains
a set of right singular vectors, and a set of singular values is found in the first r non-zero
diagonal elements of Σ.

The singular vectors, all of unit norm, can be grouped into the following submatrices

 Ur={u1,u2,...,ur} Um={ur+1,...,u3j-c}
 Vr={v1,v2,...,vr} Vs={vr+1,...,vb}

which have the following interpretations:

• Ur contains modes of extensional deformation (i.e. loads that can be equilibrated
by the structure in its current configuration);

• Um contains modes of inextensional deformation, i.e. mechanisms (i.e. loads that
cannot be equilibrated by the structure in its current configuration);

• Vr contains set of kinematically compatible extensions corresponding, through the
singular values, to the extensional modes in Ur;

• Vs contains sets of kinematically incompatible extensions (i.e., states of self-
stress).

The basis for states of self-stress is often referred to as

SS = [vr+1,...,vb] (2.24)

and the basis for the mechanisms is

 D = [ur+1,...,u3j-c]. (2.25)

The mechanisms in D can be either internal mechanisms or rigid-body mechanisms, as a
result of inadequate kinematic constraints on the structure. A scheme to separate the
internal mechanisms from the rigid-body ones was proposed by [Pellegrino and
Calladine, 1986], and it can accommodate up to six rigid-body mechanisms.

2.5.6. Mechanisms
A kinematically indeterminate structure with internal mechanisms is not necessarily
unstable. If the structure tightens up as the mechanism is displaced, because of second-
order or higher order bar length changes, the mechanism is called infinitesimal. If the
structure does not tighten up, the mechanism is called finite. Infinitesimal mechanisms
have been classified according to the order to which the changes of bar length relate to
the displacements [e.g. Vassart et al., 2000]. First-order infinitesimal mechanisms, where
displacements are related to second-order bar length changes, may be stabilized by a state
of self-stress, in which case the structure is termed prestress stable.

2. Background

 55

The stiffness of mechanisms can be assessed using geometrically nonlinear iterative
methods, so-called large displacement analysis. Another approach is to use the product
forces to calculate the geometric loads associated with an inextensional mechanism
[Pellegrino and Calladine, 1986; Pellegrino, 1990]. This method has been found to be a
special case of the geometrically nonlinear tangent stiffness matrix found in nonlinear
FEA [Deng and Kwan, 2005].

The rigidity or stability of mechanisms is also covered by mathematical Rigidity Theory
[Connelly and Whiteley, 1992], using different terminology. A tensegrity framework
G(P) is defined by a graph G on P=[p1,p2,...,pn], where each edge is either a cable, strut or
bar. Cables cannot increase in length, struts cannot decrease in length, and bars cannot
change length. A broadly defined term rigidity incorporates all frameworks that do not
have finite mechanisms. Since rigidity theory is not directly linked to the physical
realization of structures, stability is established independent of material properties and
member cross-sectional properties.

The structural synthesis of kinematic mechanisms uses computational methods to
enumerate all mechanisms having a specified number of links, degrees of freedom, and
types of joints. Graph theoretical techniques are used to detect rigid, or degenerate,
mechanisms [e.g. Davies, 1968; Lee and Yoon, 1992]. Many of these techniques are
limited to mechanisms satisfying Gruebler’s equation, to planar mechanisms, or planar
graphs of mechanisms.

2.6. Summary
This section summarizes the research background covered in this Chapter, highlighting
the gaps in the existing body of research and the need for further work.

Early artificial intelligence methods such as expert systems have not found successful
application in conceptual structural design, primarily because of the lack of well accepted
domain models for design synthesis. Expert systems for design have largely been
supplanted by case-based reasoning, which has the potential to leverage the vast amount
of information contained in past experiences. Research in CBR for design applications
has yielded effective methods of human-computer interaction, particularly in creative
disciplines like architecture, where it is important for the user to retain control of the
design process. A major shortcoming of CBR in conceptual structural design is the lack
of support for visual information. Existing CBR systems for conceptual design use
primarily textual attributes or simplified geometric attributes. Although sophisticated
text-based case retrieval methods have been developed, these methods cannot fully
represent the visual and graphical information that is an important part of conceptual
structural design. One of the goals of this research is to apply visual case-based reasoning
techniques to conceptual structural design.

2. Background

 56

The conceptual design of buildings has been extensively covered in the literature, given
the obvious economic implications. Computer systems that support conceptual building
design generally use geometric reasoners with limited capabilities. The reasoners are
limited to the relatively simple spatial relationships found in economical buildings based
on a rectilinear grid system with conventional column and beam construction. Although
there are many potential applications for such systems, they are generally not suitable for
the free-form, curvilinear construction that is common in modern architecture. This
research proposes a system that is useful for a wide range of structural applications,
including scientific instruments, industrial equipment supports, bridges and buildings.

Sophisticated graphical user interfaces have been developed in fields such as architecture
and industrial design, where natural, pen-based applications simulate sketching, clay
modeling and other creative form-finding methods. Unfortunately, such applications do
not recognize content such as the meaning of elements and relationships between them.
Symbolic sketch recognition computer programs have been developed in architecture and
mechanical design. For mechanism design, there are diagrammatic reasoning systems that
convert unlabeled line drawings into a description of a physical system. The systems infer
structural components, connections, causal interactions, processes and functionality from
drawings. No similar applications exist in the field of conceptual structural design.

Major commercial CAD software applications now support natural input methods such as
sketching. A significant drawback of such applications is that they do not understand the
language of requirements, and require the user to interpret these in the form of well-
defined design concepts. The framework proposed in this research directly interprets
design requirements, synthesizes new concepts, and evaluates these concepts even though
they are not precisely defined.

Of the vast number of computer applications for engineering optimization, topology
optimization methods are most applicable to conceptual structural design. Continuum
topology optimization methods are used for the design of plate, shell and solid structures.
Truss and frame topology optimization methods are used for the design of skeletal
structures consisting of an assemblage of discrete members. For truss topology
optimization, one of the most general methods is the ground structure approach, which
starts with a large number of potential design configurations. This method is known to be
computationally demanding, particularly for a fully connected ground structure with fine
node spacing. In practical applications, the ground structure is therefore relatively coarse,
and must be carefully selected based on both domain- and problem-specific
considerations. Truss topology optimization is complicated by the fact that even small
changes in topology can lead to large differences in stiffness, limiting the use of classical
gradient-based optimization techniques. Global optimization methods such as
evolutionary computing have been found to be effective for discrete topology
optimization. For design problems that are highly nonlinear or nonconvex, global
optimization methods may be the only practical solution technique. Methods that use
randomly generated ground structures to generate initial populations represent some of
the most flexible and efficient evolutionary computing techniques for conceptual

2. Background

 57

structural design. Such methods are particularly useful when the search space is complex
or poorly-understood, and they can be used as a tool to explore and gain a better
understanding of that space. If the search space contains structure that can be exploited
by special-purpose search techniques, the use of evolutionary methods is generally
computationally less efficient than those techniques [De Jong, 1990]. There is a need for
efficient methods for finding and optimizing the topology of discrete structures. This
research proposes an efficient, special-purpose framework for rapidly generating discrete
topology at the conceptual design stage.

Continuum topology optimization methods are efficient, well-established, and
commercially available. The major drawback is that the output of such methods is not
directly suitable for fabrication, particularly at scales larger than a few meters. Research
in continuum topology optimization has appeared to shift towards micro- and nano-scale
fabrication and material design. Some researchers suggest that the difficulties with
fabricating the shapes produced by topology optimization will lessen as manufacturing
capabilities are improved, a clear reference to micro- and nanotechnology [e.g. Rozvany,
2009]. Changes in manufacturing techniques for large scale structures do not occur as
quickly, and the limitations in applying continuum topology optimization to such
structures are expected to persist for some time. The framework presented in this research
leverages the efficiency of continuum optimization methods, and extends their range of
applicability to large scale structures. Although other research has been done in this area,
the work proposed here represents a wider approach that integrates topology generation
with visual case-based reasoning and visual inference methods. Also the this work
proposes an efficient method for generating stable skeletal structures.

Although methods for verifying structural stability are well established, efficient methods
for generating stable structures are not. In truss topology optimization, stability is
generally ensured using heuristics and generate-and-test methods. A common heuristic is
to add sufficient members to ensure that all polygonal cells are triangular. Generate-and-
test refers to the generation of a large number of different topological configurations, and
filtering out the ones that are unstable. This work proposes an efficient method for
generating stable skeletal structures using classical mathematical optimization methods.
The stability optimization method presented here produces information that directly
supports the detailed analysis and design of economical connections between members.

Given the importance of visual and graphical information during conceptual design, it is
remarkable that few computational tools for conceptual structural design exploit this
information. In the fields of image processing and pattern recognition, there are well-
established, rigourous techniques for manipulating graphical information. Such
techniques have been applied for many years in areas such as medical imaging, remote
sensing, and maufacturing, but few of these techniques have been applied to conceptual
structural design. The framework presented here makes extensive use of these methods to
generate conceptual designs and reason with those designs at relatively high levels of
abstraction.

 58

3. Framework

This chapter gives an overview of a proposed framework for the conceptual design of
structures. The overview is followed by a detailed discussion on the components making
up the framework.

3.1. Overview
The conceptual design of structures is a fluid process. Concepts are repeatedly
synthesized, dissolved, combined and evolved. To effectively explore a wide expanse of
design space requires rapid evaluation of concepts. Evaluation at this stage of design is
more subtle than at later stages. The concepts are still abstract and lacking numerical
certainty, and often requirements are not completely formed. Compounding this, there are
many different possible views of an abstract concept, reflecting the varied experiences of
the participants. Conceptual design is a highly visual and symbolic process, where
sketches and diagrams are essential tools to crystallize design from ideas.

The most important creative force during conceptual design is the human designer. To
effectively aid the designer, computational tools should recognize the key processes a
human designer uses. These processes include the retrieval of past experience, and the
evaluation and modification of design concepts. Evaluation techniques are generally
qualitative, but quantitative methods are also used. Qualitative evaluation includes the
use of logic and heuristics. Conceptual design requires reasoning at high levels of
uncertainty and abstraction. Inferential reasoning is important in applying past
experiences, provided there is a mechanism for understanding similarity between
concepts. Throughout the design process, the designer modifies, combines and
reevaluates existing concepts to produce new ones. Once a concept has been selected, the
designer acquires additional knowledge as the design is developed to the detail stage,
then fabricated, installed and put in service. This knowledge becomes part of the store of
experience for future designs.

3. Framework

 59

The framework proposed here has been developed to support the conceptual design of
structures by enabling the rapid generation of new designs, and by facilitating the reuse
of past designs. Visual reasoning techniques are central to the framework, and are used to
evaluate, describe, classify and learn from the forms that embody structural design
concepts. A formal computational framework to support design may be described in
terms of a design process model, a representation model, and a set of problem-solving
methods.

The design process model is centered on the generation or synthesis of alternative
conceptual forms. Conceptual structural design starts with a set of design requirements,
from which lower level specifications or expectations are formulated. A conceptual
design description is typically developed through a cycle, where a concept is proposed,
its behaviour is analyzed, and this behaviour is compared to expected behaviour. In the
design process model proposed here, generation relies heavily on mathematical
optimization methods. Optimization is a constrained, stepwise search for an optimal
configuration. In a design problem, the meaning of the term optimal is provided by the
requirements and specifications. At each optimization step, analysis is performed to
determine a new search direction and step size. Although optimization is a widely-used
strategy for problem solving in general, this work uses optimization methods that are
specifically suited to conceptual structural design, including topology optimization.

Design creativity, unlike design analysis, is a process that is not readily learned in the
classroom. While reliable procedures can be described to do analysis, creativity is almost
always learned by example. The most creative designers draw heavily from a range of
personal experiences and observations, often applying knowledge from past situations in
a new context. Case-based reasoning is a computational paradigm for reuse of past
experiences. The design process model described here relies on case-based reasoning
techniques to classify, store and retrieve past design experiences. Case-based reasoning
has been used in several research systems for conceptual structural design. In those
systems, the emphasis is has been textual information. In contrast, this work focuses on
visual case-based reasoning, which uses images and shapes, in addition to text. Visual
case-based reasoning overlaps the related areas of pattern recognition and content-based
image retrieval.

Reasoning at multiple levels of abstraction, using incomplete and uncertain information,
is a fundamental requirement during conceptual design. A flexible data representation
model is needed to support this type of reasoning. Abstraction is an important concept for
organization, classification and retrieval of data. Hierarchical data models are often used
to represent data abstraction. Object-oriented programming methods support hierarchy
and abstraction through techniques such as inheritance. For effective retrieval of cases
from a case-based reasoning system, concepts should be related at different levels of
abstraction. This is because different users will view the same concept at different levels
of abstraction, or with differences in specific terminology. In this work, abstraction is
supported at a number of levels. For example, images of specific forms are generalized
into symbolic structures, such as relational graphs. Also, images are viewed at multiple

3. Framework

 60

levels of resolution to enable higher level, content-based comparisons. Using abstraction,
comparisons between concepts can be made at several different levels, supporting
learning by inference.

Figure 3.1. Overview of conceptual design generation

All stages of the design process have uncertainty, but none more so than early design. In
the final stages of design, much of the uncertainty is random in nature. In contrast, the
bulk of the uncertainty during conceptual design is due to a lack of information. As
design concepts are incrementally refined, more detailed information is added. A flexible
representation model is required to represent both early abstract concepts and later
detailed information, and allow for a seamless transition from one to the other.

Requirements

Synthesis Phase

Structure Graph

Refinement Phase

Finite Element
Model

Optimization Phase

Conceptual
Design Model

Reformulation

Evaluation and
Selection Phase

3. Framework

 61

 The design framework uses a number of different problem-solving methods from a range
of disciplines, including structural analysis, mathematical programming, image
processing and pattern recognition. The finite element analysis method, the workhorse of
the structural design office, is used in this work for different purposes, at varying levels
of abstraction. Finite element methods are used to evaluate the objective function during
structural topology optimization. For certain objectives, such as minimum compliance,
topology optimization requires very few details on the specific material and load values,
and is an ideal tool for conceptual design. In this work, finite element methods are also
used to generate a series of potential stable design configurations, and to evaluate
objective functions in multiobjective optimization. This framework also utilizes a range
of tools from image processing and pattern recognition to incrementally convert an image
of a specific structural form to a more abstract representation of its content.

Using the framework, a design is initiated using one of two methods: by the design
generation method, or by case-based reasoning. The design generation uses methods in
structural topology optimization to synthesize a structural form from a set of
requirements. In case-based reasoning, a structural form is retrieved from a library and is
used as the basis for a new design. Forms may be retrieved by supplying a set of
requirements, or by specifying a form or shape to match. An overview of the design
generation method is given in Figure 3.1. This method is covered in detail in Section 3.2
through 3.4. Alternate generation methods are presented in Section 3.6. Case-based
reasoning is discussed starting in Section 3.7.

3.2. Synthesis Phase
The goal of the Synthesis Phase is to transform design requirements into a design
description. In this case the design description is embodied by a description of the
structural topology. Specifically, in this framework structural topology is limited to
planar skeletal structures. Skeletal structures are structures that can be decomposed into a
set of linear structural elements whose cross-sectional dimensions are relatively small
compared to their length. The term skeletal is meant to include both classical trusses with
frictionless pin joints, as well as moment frames. The rationale for this terminology is
related to the interpretation of topology optimization output, which is discussed in the
following sections.

An overview of the Synthesis Phase is shown in Figure 3.2. The components of this
phase will be discussed in detail in the subsequent sections. Synthesis begins by
translating design requirements into specifications, which are then used to define a
topology optimization problem. The result of topology optimization is a structural form.
Using image processing and pattern recognition techniques, the form is described at
progressively higher levels of abstraction. These higher level form descriptions have
several purposes. They support analogical reasoning, which is important in learning and
retrieving similar scenarios. Also, form descriptions support the effective use of multiple

3. Framework

 62

criteria optimization, to incorporate objectives related to detail design, fabrication, and
end use.

Figure 3.2. Framework overview – Synthesis Phase

3.2.1. Design Formulation
In design, the process of formulation, describes how general design requirements are
translated into specifications. Formulation has been described as the process of
“transforming function to expected behaviours”, where “the expected behaviour provides
the syntax by which the semantics represented by function can be achieved” [Gero,
1990]. Formulation can be one of the more challenging tasks in early design, particularly
for complex designs involving more than one discipline. Design requirements often

Requirements

Structure Image

Specification

Topology
Optimization

Domain Definition

Skeletonization

Vertex
Identification

Relational Graph

Distance
Transform

Path Tracing

Boundary
Conditions

3. Framework

 63

conflict with each other, and establishing the relative importance of requirements is not
straightforward. Requirements may have different levels of “firmness”, from “soft”
requirements or mere goals at one extreme, to essential or non-negotiable “hard”
requirements at the other. Techniques of multiobjective optimization have been used to
give a mathematical description of varying levels of firmness, but this approach is not
always useful. In architectural applications, for example, the overall vision of the
designer or particular aesthetic qualities are not easily translated into specifications. In
practice, formulation is a process that is repeated several times as more knowledge about
the potential performance of a design is gained through analysis. Formulation and
reformulation usually requires the direct involvement of designers, end users, and other
participants.

The framework described here is designed for situations in which requirements can be
described primarily using geometric constraints. All this does not cover all situations, a
vast range of conceivable design problems can be formulated in this way. The shape of
bridges is constrained geometrically by the potential abutment locations and the clear
space to allow for the flow of traffic on and below the bridge. The layout of telescope
support structures is limited by the light path volumes defined by the optical
configuration. Even in expressive, free-form architectural applications, geometric
constraints can be applied by mathematically sculpting a permissible design space from a
block of available space.

3.2.2. Representation Model
The notion of the design domain is prominent in the framework. In this work, the design
domain is a data model that represents the space available for design, the material, and
the boundary conditions. The available space may be shaped using a set of applied
geometric constraints. The material is assumed to be isotropic. Boundary conditions are
used to specify loading and support conditions

The domain data model is used not just in the Synthesis Phase, but in all other stages
including the Refinement, Optimization, and Case-based Reasoning Phases. The design
domain is a high-level construct that does not presuppose the topology or details of the
structure that is synthesized, making it an effective representation for conceptual design.

An overview of the Domain data model is shown in Table 3.1. In two dimensions, the
reference domain is constructed from a rectangular bounding box defining a planar area.
The domain is associated with an isotropic material, whose properties are stored in the
data model. The domain area is discretized; this discretization defines the finite element
model used in subsequent topology optimization.

3. Framework

 64

Domain
 Size
 Width
 Height
 ElementSize

Material
 Bounds
 BoundPoints
 BoundLines
 Forces
 ForcePoints
 ForceLines
 SubtractedAreas
 Circle
 Rectangle

Line

included
subtracted

 RetainedAreas
 Circle
 Rectangle
 Line

included
solid

Table 3.1. Design domain representation

3. Framework

 65

Boundary conditions are applied to the domain at a series of individual points, or
distributed along a line. Point supports and point loads are specified using the cartesian
coordinates of a point on the domain. For supports the fixity type (translation in x- or y-
directions) is supplied. For forces, the direction (x or y) and the magnitude is specified.
Geometric constraints on the domain are applied using a set of basic operations, as shown
in Table 3.1.

During the design synthesis process, a structural configuration is created using the
available material. Initially, the available material is defined by a rectangular bounding
area. Voids in the design domain can be specified using the SubtractedArea construct.
Areas of solid material are included using the RetainedArea item. Using circular,
rectangular and triangular areas as primitives, the design domain can be shaped with
varying levels of complexity.

3.2.3. Topology Optimization
Structural topology optimization is well suited to the conceptual design phase. Topology
optimization starts with the essential elements of a structural design problem: the spatial
constraints and boundary conditions. Structural optimization techniques may be classified
under refinement methods or synthesis methods. While refinement methods start with a
configuration and incrementally improve it, synthesis methods create a new configuration
using a minimal set of assumptions. Topology optimization methods do not assume a
predefined design configuration. The structural configuration is synthesized by using
mathematical techniques to optimally distribute material to where it is most efficiently
used, and remove where it is not needed. The synthesized shape may be a new and
unexpected shape. Topology optimization methods thus support the creative process of
conceptual design by creating new configurations and suggesting alternative directions
for the designer to pursue.

The framework synthesizes design configurations using continuum topology optimization
methods. The domain representation model described in the previous section is directly
applicable to such problems. The subject of continuum topology optimization is well
developed. Many different problem formulations have been developed, depending on the
optimization objectives and the mathematical techniques used. Common objectives
include minimizing compliance, maximizing natural frequency, satisfying stress and
buckling constraints, or meeting reliability targets. The goal of this work is not to suggest
new topology optimization techniques but to leverage this powerful method to for wider
use in conceptual design work.

The conceptual design synthesis approach described here emphasizes the minimum
compliance objective. Compliance minimization has several advantages over other
topology optimization formulations. The input requirements are relatively simple,
compared to the stress constraint formulation, for example. The only inputs are the
boundary conditions and a volume reduction fraction. The volume fraction sets a target

3. Framework

 66

for the ratio of the volume in the structure to the volume of the reference domain. For a
single load case, the results are independent of the magnitude of the load. For multiple
loads, only the ratio between load vectors is important and precise magnitudes need not
be entered. At the conceptual stage, where exact load values are usually not known,
topology optimization can still be performed.

A sample design problem will be used to illustrate the application of the framework. The
problem is to design a cantilever structure with maximum compliance for a given volume
of material. This relatively simple problem will be used throughout this Chapter to
illustrate the sequence of processes and flow of data through the different phases of the
framework. More detailed design problems are given in Chapter 4. The input to the
cantilever structure problem is shown in Figure 3.3. The reference domain has a width 80
units and height 20 units. The domain is discretized into elements of size one unit
squared. A downward load is applied at the tip. The material has Poisson’s ratio 0.3, and
the specified volume ratio is 0.3, indicating the structure should have a weight equal to
30% of the weight of the full design domain.

Figure 3.3. Cantilever beam sample problem domain definition

Figure 3.4. Topology optimization output

The output of topology optimization is a raster image, where each pixel corresponds to a
finite element. In this work, the material density method is used, and the output for each
element is a value between 0 and 1. Using the SIMP interpolation method [Bendsøe and
Sigmund, 2004], intermediate densities are penalized, so most of the values fall close to 0
or 1. Since the interpolation function is continuous, however, intermediate values do

3. Framework

 67

exist. These intermediate values are converted to 0 or 1 by selecting an appropriate
threshold level. The topology optimization output for the sample problem is shown in
Figure 3.4, and the results after thresholding are shown in Figure 3.5 and Figure 3.6.
Changing the threshold level changes how the topology optimization output is
interpreted. Figure 3.6 uses a higher threshold value, which filters out the lighter
grayscale values from the topology optimization output shown in Figure 3.4. As a result,
Figure 3.6 implies a skeletal structure with at least one less member than Figure 3.5.

Load cases in topology optimization generally have a strong influence on the results.
Where a single load case is used, the resulting structures may only be stable under the
given set of loads. Single load cases often produce skeletal structures that are not fully
triangulated. Topology optimization under multiple load cases is usually required to
produce realistic structures. Multiple load cases can be applied simultaneously or
combined using a method such as the minimization of a weighted average of the
compliances. Different topologies result, depending on the method, so consideration
should be given to whether loading is in fact simultaneous.

Figure 3.5. Topology optimization output in binary form (threshold 0.2)

Figure 3.6. Topology optimization output in binary form (threshold 0.5)

Topology optimization results are sensitive to the density of the finite element mesh. As
mesh size is decreased, the topology changes as more detailed features are formed. In
practical macro-scale applications, a lower bound on the feature size is usually sought.
Also, it is preferable to use mesh refinement to produce smoother boundaries on existing
topology rather than create completely new topology. For these reasons, many topology
optimization codes include mesh-independence filters. This method takes a parameter

3. Framework

 68

called the filter radius, which sets the minimum length scale. The example shown here
uses the method introduced by [Sigmund, 1997], with a filter radius equal to 1.5 times the
element size.

Multiple design configurations may be generated in the framework by using a range of
threshold values to interpret the topology optimization output. Multiple designs may also
be generated by varying other parameters of the topology optimization, such as the
volume fraction, the mesh independency filter radius, and the convergence tolerance.
Variations in the loading configuration also can be used to produce a range of different
topologies for subsequent processing.

The structure represented in Figure 3.5 could simply be converted to a CAD format by
fitting curves to the boundaries. A CAD representation does not capture the essential
characteristics of the structure and cannot be used for further reasoning. For example, a
simple interpretation of the boundaries does not readily support decisions on the selection
and optimization of fabrication and assembly processes. The proposed framework
processes the topology image to produce a parametric model that supports practical
design decisions.

Topology optimization supports the fabrication of structures at virtually any scale. The
method has been used in the design of micro-electro-mechanical systems (MEMS), where
microscale devices are fabricated using techniques such as etching, deposition and
lithography. Topology optimization has also been used extensively in the automobile and
aircraft industries. A structure like the one represented in Figure 3.5, for scales ranging
from a few centimeters to several meters, is often fabricated by removing material from a
slab or plate by machining or cutting. For example, laser, plasma, and water-jet cutting
equipment can produce such shapes relatively economically, if the material thickness is
within limits. On the other hand, if there is a high proportion of a void to solids, this
method produces considerable waste. Structures can also be made by building up material
using solid freeform fabrication processes such as selective laser sintering, electron beam
melting or welding, however these processes are often prohibitively expensive and
unsuited to structures more than about one meter in size.

For many fabrication processes, particularly at scales larger than a few meters, the most
economical approach is to assemble a structure from components. For example,
economical truss-like forms are frequently produced by joining a number of straight or
curved segments together. The segments are made by cutting lengths of rolled or
extruded shapes. Decomposition is the process used to interpret a monolithic structure
like the one shown in Figure 3.5 as an assembly of smaller components. This method
obviously becomes increasingly cost effective as the similarity between components
increases. To decompose the topology image and construct a higher level parametric
model, the framework employs image processing techniques.

3. Framework

 69

3.2.4. Image Processing
The field of image processing offers a range of techniques to improve, simplify and
compress images, and to facilitate further processing such as pattern recognition.
Topology optimization output is easily converted to a binary image using a thresholding
process.

The following sections describe how the topology image is transformed into a simplified
representation that preserves the essential information contained in the image.

3.2.4.1. Thinning
Continuum topology optimization under low volume fractions produces distinct truss-like
structural forms. Such forms are characterized by linear elements with cross-section
dimensions that are small relative to the length of the element. Thinning is an image
processing technique aimed at producing a simplified representation of line-like or curve-
like features.

The framework implements a morphological hit-or-miss thinning algorithm based on
[Zhang, 1997] to produce a skeleton representation of the structural form. This is an
efficient algorithm that generates one-pixel wide skeletons directly. An overview of the
algorithm is presented here.

An binary image is a mapping, I, from a set, Sp of pixel coordinates to a set B={0,1} of
values such that for every coordinate vector, p=(r,c) in Sp, there is a value I(p) drawn
from B. The foreground set (or black pixel set) FG is the set of locations, p, where I(p) =
1. The complement set will be termed the background set (or white pixel set).

{ }1)(),(),(}{ =∈== pIScrppIIFG p . (3.1)

The neighbourhood of p, N(p), is the set of all neighbours of p in a 3x3 window, shown in
Figure 3.7.a.

 a. b. WN(p)=76 c. WN(p)=88
Figure 3.7. Thinning algorithm definitions

p

p[0] p[1] p[7]

p[6] p[2]

p[5] p[4] p[3]

3. Framework

 70

For a 3x3 window, there are 28 = 256 possible combinations of neighbouring pixel values
{0,1}. The weight number of p is defined as

∑
=

⋅=
7

0

2][)(
k

kkppWN . (3.2)

The neighbour number of p is the number of nonzero neighbours of the current pixel p:

∑
=

=
7

0

][)(
k

kppNN (3.3)

The thinning algorithm is an iterative process, where pixels are incrementally removed
from the boundary of the shape represented by the foreground set. Each foreground pixel
of the image is examined, and compared along with its neighbours to a set of 3x3
thinning templates. The thinning templates define the pixel patterns in the neighbourhood
of p which allow the removal of p from the foreground. For example, the pattern of
neighbouring pixels in Figure 3.7.c would match such a template, while the pattern in
Figure 3.7.b would not. Removal of the central pixel in Figure 3.7.b would disconnect
pixels of the foreground set, leading to eventual removal of the entire foreground.
Removing the central pixel in Figure 3.7.c refines the foreground shape towards an 8-
connected, single pixel width skeleton. A globally removable set (GRS) of points is
constructed, which contains the weight numbers corresponding to the thinning templates.
For example, the GRS contains the weight number WN(p)=88, but not WN(p)=76.

The procedure described up to this point simply recapitulates existing thinning
algorithms. A key difference between existing thinning methods and the one used in this
framework lies in the treatment of pixels with a single neighbouring foreground pixel, the
case where NN(p)=1. In the framework, foreground pixels with one neighbour are deleted
unless a boundary condition is applied near that pixel. The boundary conditions are
stored as part of the domain representation model, which is available to the thinning
algorithm. The rationale for removing singly connected branches is that such branches,
unless connected to a point where a boundary condition is applied, carry no load and have
no structural function. The thinning algorithm thus returns a skeleton that requires no
further processing to clean up small branches that are a feature of many thinning
algorithms, except near points where boundary conditions are applied. These points can
be handled in subsequent processing using methods that operate locally in a region near
support points or points where forces are applied.

The output of the thinning algorithm, superimposed on a grayscale version of the binary
topology image, is shown in Figure 3.8.

3. Framework

 71

Figure 3.8. Skeleton

3.2.4.2. Vertex Identification
Starting with a single pixel wide skeleton, the process of identifying connections between
branches, or vertices, is similar to the thinning process. A morphological hit-or-miss
procedure is used, along with 3x3 templates used to identify patterns such as those shown
in Figure 3.9. The pixel coordinates of the node point, the central pixel in the 3x3
neighbourhood, is stored for further processing. Figure 3.10 shows the skeleton from
Figure 3.8 with vertex points superimposed.

Figure 3.9. Vertex identification

Figure 3.10. Skeleton with vertices identified

3. Framework

 72

3.2.4.3. Path Tracing
Once the vertex points defining intersection points and endpoints of paths are identified,
the paths are processed. Starting at a vertex, each path leading from that vertex is traced,
adding the coordinate vector pi=(xi,yi) of every pixel on the path to an ordered set
PA={p1,p2,...,pn}. Each path is terminated when a pixel previously identified as a vertex
has been reached. Pixels are marked as the paths are traced to prevent paths from being
retraced.

 a. ε1lim=0.025L; ε1lim=0.05L

 b. ε1lim=0.025L; ε1lim=0.25L
Figure 3.11. Vector approximation to skeleton

The representation of paths as the set of all discrete points on the path is memory
intensive and cumbersome. A more compact path representation that preserves the critical
information in the skeleton is sought. Each path is processed using a split and merge
algorithm, which approximates the path using piecewise continuous line segments. Two
parameters control the accuracy of the fitting, as shown in Figure 3.11. The first stage in
the split and merge algorithm is a recursive splitting process. For each point in the path,
the distance ε1 between the point and a line joining the path endpoints is computed. If the
maximum distance ε1max exceeds a threshold ε1lim, a vertex is added at the midpoint of the
path, creating two subpaths. The subpaths are processed in a recursive manner,
calculating the maximum deviation from a line segment, and dividing the subpaths if
necessary. The splitting stage is complete when all the fitted line segments deviate from
the path by less than ε1lim. The next stage of the fitting algorithm, merging, attempts to
reduce the number of line segments by merging nearly colinear adjacent segments. Pairs
of adjacent segments are analyzed, and the distance ε2 between the common vertex and a
straight line segment is calculated. If the distance ε2 is less than a threshold ε2lim, the
common vertex is deleted. The process continues until ε2 ≤ ε2lim for all pairs of adjacent

3. Framework

 73

segments. Figure 3.11 shows the results of the algorithm using the skeleton in the sample
problem. The fitting parameters ε1lim and ε2lim are specified in terms of the image
dimension L, which is the image width or height, whichever is larger. In total, there are
three parameters which control the curve fitting: ε1lim, ε2lim, and a path curvature limit
(ε1/d)lim. The path curvature is calculated as the ratio of ε1 to the segment length d, and is
designed to prevent the elimination of short, highly curved paths. For both examples in
Figure 3.11, (ε1/d)lim is set to 0.4.

As shown in Figure 3.11, the paths making up the skeleton can be closely approximated
with a relatively small number of additional vertices. The skeleton in vector format is a
compact representation that preserves the critical content of the original skeleton.

3.2.4.4. Distance Map
The Euclidean distance map (EDM) is a grayscale image in which the pixel intensity
reflects the distance the pixel lies from the nearest boundary. Figure 3.12 shows the EDM
of the binary image in Figure 3.5, calculated using the algorithm of [Borgefors, 1986].

Figure 3.12. Distance transform of binary image

Figure 3.13. Vector skeleton with element thickness superimposed

In the framework, the EDM is used to augment the vector skeleton with width
information. The process for extracting segment width information from the EDM is
described here. The path information in pixel coordinate format (PA) is overlaid on the
EDM, and the segment width at each pixel along the path is retrieved. The average path

3. Framework

 74

width is calculated and stored as a property of the line segments that make up the vector
skeleton. Figure 3.13 shows the sample design problem with line segment width
information superimposed on the vector skeleton.

3.2.5. Relational Graph
Given a skeleton in vector form, the skeleton is easily converted into a relational graph
G=(V,E). The set of graph vertices V corresponds directly to the vertices of the skeleton,
and the set of edges E consists of the segments connecting pairs of vertices. At this stage,
the elements have a single attribute, the segment width. The attributes of the vertices are
the coordinate vector pi=(xi,yi), and the vertex type, which reflects boundary conditions
applied at the vertex. There are three types: fixity, representing displacement boundary
conditions; force, indicating applied forces; and default, where no boundary conditions
are applied. A graph of the vector skeleton developed for the sample problem is shown in
Figure 3.14.

Figure 3.14. Relational graph of vector skeleton

In Figure 3.14, nodes with fixity are drawn as squares, and the node with force applied is
shown as a diamond, while default nodes are circles. The vertices are assigned types
using information from the domain definition. The entities BoundPoints, BoundLines,
ForcePoints and ForceLines contain the coordinates and values of boundary conditions
applied at points and along lines. Through the topology optimization and skeletonization
processes, vertices do not necessarily occur at the same coordinates as the points where
boundary conditions are defined. Point boundary conditions are associated with vertices
by locating the closest vertex to the point. Line boundary conditions are matched to
vertices by first finding the closest vertex, calculating the distance from that vertex to the
line, then finding all vertices within that distance, plus or minus a specified tolerance.

3.2.6. Discussion
The relational graph is a relatively compact representation that retains the essential
geometry and connectivity of the topology image. The binary image of Figure 3.5 has a
size of 840x240 pixels, requiring about 24 kB of storage (840 x 240 x 1 bit/pixel / 1024).

3
15

7

5

17

6

9 19

16
4 2 11 12

14

8

17

1

10

13

3. Framework

 75

The vector skeleton, consisting of 19 vertices and 22 segments, requires only 1.11 kB
(assuming 16-bit integers for vertex coordinates, and 8-bit integers for vertex numbers).
The storage requirements for the graph are therefore only about 5% of the requirements
for the binary image. Although storage and processing requirements are less for the more
compact graph format, the main advantage is that the topology image is now represented
at a higher level of abstraction, one more suited to pattern matching and other reasoning
techniques.

The vector skeleton shown in Figure 3.13 still appears to be relatively complicated
compared to the topology optimization output. There are a number of shorter segments
and kinks that are remnants of the thinning process. These features appear to have no
structural benefit, and further investigation is required to see if the structure can be
simplified further. This is the goal of the Refinement Phase, the next phase in the
framework.

The framework follows an essentially top-down process, where a structural form is first
synthesized by removing parts of the design domain. The form is then decomposed or
deconstructed through subsequent phases of the framework. It will be illustrated that the
decomposition has two purposes: most importantly, it supports a formal representation,
but it also provides insight into how the form will eventually be produced. The formal
representation is composed of primitives and the relationships between them. At a high
level this supports reasoning using linguistic-based methods, such as syntactic pattern
recognition. The decomposition into primitives mirrors the fabrication process, where
pieces are assembled to make the whole structure.

3.3. Refinement Phase
In the Refinement Phase, the objective is to improve the structural skeleton generated in
the previous phase. Techniques of mathematical optimization will be used extensively in
the search for a new layout. There are two major guiding principles during the
Refinement Phase: simplicity and stability. These are high level concepts that are often
implicit in structural design.

Cost minimization is an objective of almost all structural design work. The cost
associated with a design is strongly driven by its complexity, through all phases of
design. More complex structures take longer to design, detail, fabricate, handle and
install, leading to greater labour costs than simpler structures. The more complex the
structure, the greater the probability of errors and rework.

Stability must be considered in the design of all structures. Stability is of special concern
when generating structural configurations using topology optimization methods.
Topology optimization is known to produce configurations, than when interpreted as a
truss, are stable only under the given set of loads. When using topology optimization, an
early and systematic consideration of overall stability is warranted.

3. Framework

 76

In the Refinement Phase, the structural skeleton from the previous phase is simplified
using a geometric optimization procedure, and minimum stability requirements are
assessed using a separate optimization method. Both procedures are implemented using
nonlinear mathematical programming techniques, supported by finite element analysis.

3.3.1. Finite Element Modeling
The relational graph constructed in the previous phase is readily transformed into a finite
element model. The vertices correspond directly to nodes, and edges correspond to
elements. Boundary conditions were matched to vertices in the previous stage, and these
can in turn be applied to the finite element model.

The purpose of using finite element modeling in this context is quantitative conceptual
design evaluation. The results of finite element analysis, together with other quantitative
and qualitative information, are later used by the designer to compare multiple concepts
(see Section 3.5). The detail level of the modeling, as well as the analysis procedures,
reflect the level of detail available during the conceptual design stage. Although finite
element analysis is a tool that is often used at the most detailed levels of design, it is also
useful in earlier stages of design. Finite element methods are not essential to the
refinement stage, however, and approximate analysis methods could be used as well.

Initially, beam elements are used for all elements of the structure, since pin-ended truss
elements may lead to an unstable structure. During stability analysis (Section 3.3.3),
various combinations of beam and truss elements are studied. During the refinement
phase, optimization is performed using comparative compliance analysis. This means that
absolute values of deflection, force and stress are not evaluated. The element cross-
sections during refinement are assumed to have unit width, and depth equal to the
segment width obtained from the Euclidean distance map.

3.3.2. Layout Optimization
An overview of the refinement phase is given in Figure 3.15. In the Layout Optimization
Phase, a high resolution finite element model (FEM) is simplified into a low resolution
model. The high resolution model corresponds to the vector skeleton resulting from the
Synthesis Phase. During Layout Optimization, truss geometry optimization is alternated
with topology modification. In geometry optimization, the design variables are node
positions. Once geometric optimization reaches a solution, the resulting configuration of
nodes and elements is examined. Closely spaced nodes are merged, and nodes that join
nearly colinear elements are deleted, thus changing the connectivity, or topology of the
structure.

3. Framework

 77

Figure 3.15. Framework overview – Refinement Phase

The geometric optimization problem is formulated for a plane frame (c=2 dimensions)
consisting of m elements and N node points, with d=3 displacement coordinates at each
node. Support conditions are given in the form of ss fixed nodal displacement directions.
External nodal forces are applied in sf nodal displacement directions. Analysis is
conducted in a global reduced set of displacement coordinates, with n1=N·d-ss degrees of
freedom. The design variables are the subset of nodal coordinates with no applied
boundary conditions,

{ }
2

,...,, 21 nxxxx = , n2=N·d-ss-sf. (3.4)

Constraints are applied to limit node positions to within the reference domain. In the
simplest case in two dimensions, with no subtracted areas, the nodal coordinates are
limited to within a rectangle with width Domain.Width and height Domain.Height.
Formulating these constraints as inequalities,

High Resolution
Frame FEM

Node Shifting

Low Resolution
Frame FEM

Low Resolution
Hybrid FEM

Stability
Evaluation

Node Deletion

Add Releases

Layout
Optimization

Stability
Optimization

Relational Graph

3. Framework

 78

.,...,1,.

;,...2,1,.
;,...,2,1,0

2

2

nssNiHeightDomainx

ssNiWidthDomainx
nix

fsi

fsi

i

+−−=≤

−−=≤
=≤−

 (3.5)

More complex geometric constraints may be specified by removing areas from the
domain with the SubtractedAreas field.

The objective of the optimization is to minimize the compliance of the structure.
Compliance minimization is formulated as

,)(min ufxW T= (3.6)

where f is external static load vector applied at the node points, and u is the nodal
displacement vector. Nodal displacements are calculated using the stiffness method. The
stiffness matrix is built in global reduced coordinates using the standard assumptions of
linear elastic material, linearized strain, and small displacements:

∑
=

=
m

i
ii xIAkxK

1

),,()((3.7)

where k(E,Ai,Ii,x) are the local stiffness matrices for each element. Material is defined by
Young’s modulus E. Each element has cross-sectional area Ai and moment of inertia Ii.
Nodal displacements are calculated by solving the equation

 fuxK =)((3.8)

A common formulation for geometric optimization is to minimize compliance subject to
a constraint on the volume V, where

 ∑
=

=
m

i
ii xLAV

1

)(, (3.9)

for elements with length Li(x).

In the framework, an alternative problem formulation is used where compliance and
volume are both included in the objective function:

oo V
xV

W
xW)()(min (3.10)

3. Framework

 79

where Wo and Vo are the compliance and volume of the initial structural configuration.
This formulation allows the volume of the structure to increase, provided the increase is
offset by a comparable decrease in compliance.

The problem as formulated is a constrained nonlinear optimization problem. In the
framework, the Sequential Quadratic Programming (SQP) method is used to solve the
problem. The principal idea behind SQP is the formulation of a Quadratic Programming
(QP) subproblem based on a quadratic approximation of the Lagrangian function. An
overview of SQP is given by [Gill et al., 1981; Powell, 1983; and Fletcher, 1987]. The
framework uses the MATLAB implementation of SQP. There are three main stages to the
implementation. First, at each major iteration a positive definite quasi-Newton
approximation of the Hessian is calculated using the method of Broydon, Fletcher,
Goldfarb and Shanno (BFGS). The QP problem is then solved using an active set strategy
(also known as a projection method), following the approach of [Gill et al., 1984; 1991].
Finally, a line search is conducted in which a step length is determined that produces a
sufficient decrease in a merit function. The merit function in this implementation is due
to [Han, 1977] and [Powell, 1978].

An overview of the Layout Optimization process is given in Algorithm 1. At each
iteration step of the optimization, the minimum distance between any pair of nodes, dmin,
is calculated. If dmin is less than a specified tolerance dlim, then the optimization loop is
terminated. If no nodes are closer than dlim, optimization continues until first order
optimality conditions are satisfied.

Following geometric optimization, nodes and elements are examined to identify two
possible conditions: closely spaced nodes, and nearly colinear elements. Nodes that
connect exactly two elements are inspected, and the angular distance between the element
segments is computed. If the elements are colinear, within a tolerance θlim, the node and
the shorter element are deleted. The structure is again examined for colinear elements,
and the node deletion process continues until no pairs of elements are within the
colinearity tolerance. Next, the distances between all pairs of nodes is calculated. Nodes
closer than a specified distance dlim are merged together, deleting one of the nodes along
with the element between the nodes. The process is continued until no pair of nodes in
the structure is closer together than dlim.

The Layout Optimization process is illustrated using the sample problem in Figure 3.16.
As the optimization progresses, nodes tend towards the domain boundaries, and towards
each other. The limiting distance for node merging is specified as 0.9wmin, where wmin is
the minimum width of any element. The colinearity tolerance is assumed to be 0.2
radians (about 11.5 degrees). The resulting structure is shown in the bottom right hand
corner of Figure 3.16. For these parameters, the number of nodes is reduced from 19 to 7,
and the number of elements from 22 to 10, compared to the input structure.

3. Framework

 80

Algorithm 1 Layout Optimization

1: assign nodal coordinates to design variable vector x
2: calculate the initial volume Vo=ΣAiLi(x)
3: solve K(x)u=f for u
4: calculate the initial compliance Wo=fTu
5: status = 0
6: repeat
7: assign updated nodal coordinates to design variable vector x
8: set constraints on xi to lie within domain (0:width,0:height)
9: sub min W(x)V(x)/(WoVo) using SQP; computing at each step:

10: V=ΣAiLi(x)
11: K(x)u=f ; solve for u
12: W=fTu
13: W(x)V(x)/(WoVo)
14: minimum separation dmin between any 2 nodes
15: if dmin < dlim then terminate optimization
16: end sub
17: repeat
18: ndelete=0
19: for all nodes connecting 2 elements do
20: if angle between elements < θlim then
21: delete node
22: ndelete = ndelete + 1
23: status = 1
24: end
25: end for
26: while ndelete > 0
27: repeat
28: ndelete=0
29: for all nodes closer than dlim do
30: merge nodes
31: ndelete = ndelete + 1
32: status = 1
33: end for
34: while ndelete > 0
35: while status > 0

3. Framework

 81

Iteration 001 Iteration 218

Iteration 310 Iteration 350

Iteration 422 Iteration 466

Figure 3.16. Geometric optimization - pin support condition (dlim=0.9wmin, θlim=0.2)

The optimization history is shown in Figure 3.17 and 3.18. In Figure 3.17, the cantilever
tip displacement history is plotted against the left hand scale, and the structure volume is
plotted on the right. The displacement decreases by about 18% and the volume increases
by around 7%. The objective function decreases from a value of 1.0 to 0.88, a decrease of
12%. The objective function value is shown to decrease steadily, except at points where
nodes or elements are deleted.

A second example of geometric optimization is shown in Figure 3.19. This case is
identical to the previous one, except that rotational constraints have been added to the
existing support nodes. The resulting structure is similar, except that two diagonals that
were previously connected to the support node now connect to a node some distance from
the support. The objective function value decreases by 14% over the optimization, so the
structure is lighter than the pin support case, as expected.

The use of alternating topology modification and geometric optimization is essentially a
heuristic optimization method, and does not guarantee a globally optimal solution.
Nonetheless, a good argument can still be made that the method is suitable in this
application, where it is applied after continuum topology optimization, and in the
conceptual design stage. Continuum topology optimization has performed some level of
global optimization, and the frame layout optimization can be viewed as a refinement to
this solution.

3. Framework

 82

Figure 3.17. Geometric optimization – displacement and volume history

Figure 3.18. Geometric optimization – objective function history

3. Framework

 83

Iteration 001 Iteration 050

Iteration 071 Iteration 081

Iteration 112 Iteration 221

Figure 3.19. Cantilever beam geometric optimization (fixed support condition)

The governing principle followed in Layout Optimization is that of simplification, or:

If two structural configurations have similar performance, the
configuration with fewer elements is preferred.

As indicated previously, simplification affects many aspects of the overall cost of a
design. If performance can be maintained while achieved greater simplicity, this is
viewed as the improvement of a design concept.

For the two examples used to illustrate layout optimization, considerable simplification
was achieved. Such results cannot be expected in all cases with a single set of algorithm
parameters. For example, the colinearity tolerance may need to be adjusted to avoid
straightening arch segment by deleting intermediate nodes. Optimal structures such as
Michell trusses often contain curved elements.

3.3.3. Stability Optimization
Interpreting the results of topology optimization as a truss often results in an unstable
structure, particularly where a single load case has been analyzed. Using the classical
definition, a truss consists of axially-loaded members joined with frictionless pins. In
contrast, a frame is a structure where the members transmit bending moments as well as

3. Framework

 84

axial loads. In the literature, structures with a combination of bending members and axial
members are sometimes called hybrid structures. This will be the convention used in this
framework.

In other applications where continuum topology optimization is processed as skeletal
structures [e.g. Chirehdast et al., 1992], stability of truss structures is ensured by adding
members using heuristics. In contrast, the method in this framework is to formulate the
stability problem as an optimization problem. The input to the problem is a frame
structure. The objective of the optimization is to find the maximum number of moment
releases that can be introduced in the frame while still ensuring stability. The result of the
optimization is thus a hybrid structure with both moment and pin connections.

There are several reasons for formulating the stability problem as an optimization
problem. First, the topology optimization results may be closely approximated, while still
ensuring stability. One of the strengths of topology optimization is the ability to restrict
the domain to an arbitrary form, and to generate a structural solution that complies with a
relatively complex set of geometric constraints. For example, if a large void space is
required in a domain, it is not possible to simply add a brace that crosses the void to
ensure stability. As geometric constraints are added to a domain, it is more likely that the
optimal solution will use beam elements as opposed to truss elements. A second reason
for using a stability optimization method is that frame structures are generally stiffer than
truss structures, for a given amount of material. Finally, most practical structures are
hybrid or frame structures, as opposed to classical trusses. Real structures use
connections with various levels of rotational stiffness. The overall cost of fabricating and
installing the structure is largely determined by the connections, and the cost of
connections is closely related to the level of rotational stiffness provided. In general, but
not always, connections with low rotational stiffness are more cost effective than
connections with high stiffness. A trivial exception is given by a truss with straight
chords of uniform cross-section. In this case a classical truss implies pin connections
between chord member segments, where it is obviously more economical to use a
continuous, single member. The degree of stiffness provided by connections also has
implications for erection of the structure. Connections with low stiffness may require
more bracing and falsework to provide stability during erection, resulting in higher
overall costs than if stiffer connections were used.

Stability optimization generally produces a structure that is just stable. In other words, if
one release were to be added the structure would lose stability. In subsequent design
phases, some of the added joint releases could be eliminated, without affecting overall
stability. The stability optimization thus provides the designer with the minimum stiffness
requirements for the joints, giving them the freedom to select from a range of different
connection rigidities and types, depending on cost and fabrication criteria.

To illustrate the challenges in stability optimization, the sample cantilever problem is
studied using combinatorial optimization. In this study, all elements of the structure are
modeled using beam finite elements with end moment releases. Four different instances

3. Framework

 85

of the element are available: fixed at both ends (fix-fix), fixed at one end and released at
the other (fix-pin and pin-fix), and released at both ends, like a truss element (pin-pin).
Using as input the result of geometric optimization in Figure 3.19, the input structure has
12 elements. Evaluating all different combinations of the four element types would
require 412, or 1.7x107 evaluations, a huge number for such a simple structure. To reduce
the complexity of the problem, using the two element types with identical conditions at
each end (fix-fix and pin-pin) results in 212 = 4096 combinations.

Stability is assessed by constructing the stiffness matrix K and computing the Singular
Value Decomposition (SVD) of K:

 K = U Σ VT (3.11)

where U={u1,u2,...,u3j-c} consists of a set of left singular vectors, V={v1,v2,...,vb} contains
a set of right singular vectors, and a set of singular values is found in the first r non-zero
diagonal elements of Σ. The condition number is calculated as the ratio of the largest
diagonal element of Σ to the smallest. Large condition numbers indicate a nearly singular
stiffness matrix, implying that the structure contains an internal or rigid body mechanism.
Note that stability can also be determined by just using the equilibrium matrix, instead of
the full stiffness matrix (as indicated in Section 2.5.4).

The results of the combinatorial stability evaluation of the sample cantilever problem are
shown in Figure 3.20. Stiffness matrices were constructed for each of the 4096 different
combinations of fix-fix and pin-pin members. The condition number for each
configuration was calculated, and values over 1x1016 were labeled unstable. Nine stable
configurations resulted, and these are all shown in Figure 3.20. Pin-ended members are
indicated by arcs at both ends of the member. Note that each node is connected to at least
one fixed-ended element, in order to ensure rotational equilibrium of the node. The
combinatorial approach provides some insight into the stability problem, however it is
inefficient. A solution to the inefficiency is to formulate the problem using continuous
design variables rather than discrete variables. This alternative approach is described in
the following paragraphs.

The stability optimization problem is next formulated with continuous design variables
representing the member end release conditions. For a plane frame consisting of m
elements, the design variables are parameters representing the degree of release at the two
member ends,

{ }mrrrr 221 ,...,,= , ri ∈ ℜ. (3.12)

The release values are constrained such that 0 ≤ ri ≤ 1, where ri=0 represents a pin-end
condition, and ri=1 indicates a fixed end.

3. Framework

 86

Figure 3.20. Cantilever beam combinatorial stability study

The objective of the optimization is to maximize the number of end releases in the
structure or, equivalently, to find

 ∑
=

=
m

i
irrf

2

1

)(min . (3.13)

The stiffness matrix is built in global reduced coordinates using the standard assumptions
of linear elastic material, linearized strain, and small displacements:

1 2 3 8

7 5 6 9

4

Input 1

2 3

4 5

6 7

8 9

3. Framework

 87

∑
=

=
m

i
ii xIAkxK

1

),,()((3.14)

where k(E,Ai,Ii,x) are the local stiffness matrices for each element. The element stiffness
matrix takes the form:

+

+

=

L
EA

rr
L
EIrr

L
EI

rr
L
EIrr

L
EI

rIAEk ijji

jiji

00

0)3(2

02)3(

),,,((3.15)

where ri represents the release at end i of the member, and rj the release at the opposite
end. For example, ri = rj = 1 leads to

=

LEA
LEILEI
LEILEI

k
/00

0/4/2
0/2/4

, (3.16)

the familiar stiffness matrix for a beam fixed at both ends. Setting ri = rj = 0 gives

=

LEA
k

/00
000
000

, (3.17)

the stiffness matrix for a beam with moments released at both ends.

The optimization problem is solved using Sequential Quadratic Programming. At each
iteration, the stiffness matrix (3.14) is constructed and evaluated for stability. If the
condition number of the stability matrix indicates the matrix is nonsingular, then nodal
displacements are calculated by solving

 fuxK =)(. (3.18)

If the matrix is singular displacements are set to an arbitrarily large value. The nodal
displacements are constrained to lie within a specified tolerance

)1(δ+⋅≤ uu (3.19)

3. Framework

 88

where u is the set of displacements for the initial frame structure, with all fixed ended
beams, and is δ the tolerance.

Figure 3.21. Cantilever beam SQP stability optimization

Element ri rj

1 0.24 4.46E-10
2 4.46E-10 4.46E-10
3 6.29E-10 4.46E-10
4 4.46E-10 4.46E-10
5 4.46E-10 4.46E-10
6 4.46E-10 4.46E-10
7 4.46E-10 4.46E-10
8 4.46E-10 4.46E-10
9 4.46E-10 4.46E-10

10 4.46E-10 4.46E-10
11 4.46E-10 0.11
12 4.46E-10 1.53E-08

Table 3.2. Cantilever beam stability optimization results

The results of the optimization are given in Figure 3.21 and Table 3.2. Elements 1 and 11
transfer moments at the support. Otherwise, all other elements have small numbers for
their end release coefficients, suggesting pin-ended members can be used in most
locations. The values of the small release coefficients are controlled by the termination
tolerances for the SQP solver, and can be made smaller with a larger number of
iterations. Note that a tolerance value of δ=0.05 was used for this analysis, indicating that
the nodal displacements in the optimal structure are no more than 5% greater than the
corresponding displacements for a frame with full end restraint.

The stability optimization routine may lead to a number of similar solutions. To limit the
number of solutions, a modified objective function incorporating weighted end release
coefficients is a simple extension. For example, larger member cross-sections could carry
a heavier weighting factor to capture the higher costs associated with larger members. A

1 2 3 8

7 5 6 9

4
1

5 2

11

6

9

10 12

3 7
4

8

3. Framework

 89

characteristic of stability optimization is that solutions may exist where all joints have a
small stiffness, just large enough to ensure a nonsingular stiffness matrix. In many cases
it is preferred to have either no joint release or full release; in these cases a penalty
function may be formulated to guide the release coefficients to a 0 or 1 value, similar to
the SIMP method of topology optimization. Finally, it should be noted that stability
optimization can produce configurations that are relatively flexible for load cases other
than the one considered. Additional small magnitude loads can be used to produce
structures that are both numerically stable and relatively rigid.

In a conceptual design system that also interprets the output of continuum topology
optimization [Chirehdast et al., 1992], a two step process is used to ensure stability. First,
a mobility detection algorithm [Chirehdast and Papalambros, 1991] is used to determine
whether the structure is a mechanism. The mobility detection algorithm is based only on
the geometry of the structure. If mobility is detected, two rules are used to automatically
generate immobile structures: 1) nodes connected to only one other node are connected to
a node where a boundary condition is applied, and 2) polygonal cells in the structure are
converted to sets of triangles. Such rules are difficult to apply when there are voids in the
reference domain. Also, these rules are more likely to lead to nonoptimal structures, in
terms of both performance and cost, than the stability optimization method used here.

3.3.4. Relational Graph
After Layout Optimization and Stability Optimization are performed, the corresponding
relational graph is updated. Vertex positions and edge connectivity is modified to reflect
the results of Layout Optimization, and member end release information is added to the
list of edge attributes. The updated relational graph for the sample cantilever problem is
shown in Figure 3.22.

Figure 3.22. Relational graph of cantilever beam output

3.3.5. Discussion
The first two phases of the framework have used a minimal number of specific input
parameters. The essential input consists of the domain area and boundary conditions,
along with a set of relative load values. Layout Optimization is based on comparative

5 7

8
4

1 2 3

6 9

3. Framework

 90

analysis, seeking to improve a structure generated by topology optimization. With little
input other than the geometry, Stability Optimization finds a stable configuration and
determines the minimum requirements for joint stiffness to ensure stability. The output of
the current phase, the Refinement Phase, includes a low resolution finite element model
and a corresponding relational graph. These two representations support a range of
options for further optimization and more detailed analysis.

Figure 3.23. Framework overview – Optimization Phase

3.4. Optimization Phase
The goal of the Optimization Phase is to incorporate the information required to
implement the design in a specific domain. An overview of the Optimization Phase is
given in Figure 3.23. While general goals have guided the design concept up to this point,
more specific information relating to design, fabrication, shipping, assembly and use are
required for effective conceptual design. The specific information may be formulated as
the objectives and constraints of a multiobjective optimization problem. There are many
ways to formulate a specific multiobjective optimization problem. This description of the

Low Resolution
Hybrid FEM

Add Design
Fabrication &

Assembly
Constraints

Conceptual
Design Model

Cost
Evaluation

Multiobjective
Optimization

Strength
Evaluation

Stiffness
Evaluation

Stability
Evaluation

3. Framework

 91

Optimization Phase uses a practical example to show how multiobjective optimization
may be used in the context of the proposed framework.

The example used to illustrate multiobjective optimization is the tubular cantilever frame
shown in Figure 3.24. Tubular structures such as this provide a practical example of
competing, multiple objectives in structural design.

Figure 3.24. Tubular truss design problem

3.4.1. Objectives
A common objective of structural design is to minimize cost. Other objectives, depending
on the domain, include maximizing performance, aesthetic values, service life, or
maintenance access.

Fabrication costs are primarily a function of the labour hours required. Apparent savings
by virtue of minimum material used may result in a much higher overall cost. At current
(2009) shop labour rates and tubular material prices, the cost of one hour of fabrication is
roughly equivalent to 40 kg of material. Some research has shown that the tonnages for

d

P

4L

L/4 TYP. DETAIL

Ødo, to

Ød1, t1

L

e

g

3. Framework

 92

different designs performing the same function vary by about 20-30%, while fabrication
costs can vary by a factor of three or four [Firkins and Hemphill, 1990]. Even though
such estimates are closely related to the construction type and shop setup, they emphasize
the importance of considering cost during conceptual design.

The labour costs to deliver a design are not limited to costs on the shop floor. Labour
costs arise in all stages of construction, including design, detailing, sourcing, handling,
fitting, welding, painting, shipping and installation. The features of a design the most
strongly drive labour cost are the piece count, the degree of similarity between pieces,
and the accuracy requirements. The piece count generally has a direct affect on the cost,
since total cost is estimated by multiplying the number of pieces by the unit cost.
Similarity between pieces decreases design and detailing time, and improves efficiency
and reduces fabrication errors. Geometric accuracy requirements dictate the fabrication
method. More restrictive tolerances increase fabrication cost, because of additional
adjustment and correction labour, additional jigs and fixtures, and higher value
fabrication methods such as precision machining.

Increased simplification and a reduced piece count was one of the goals of the
Refinement Phase. The Optimization Phase quantifies the number and type of elements
and joints, along with the associated fabrication costs. Stability Optimization generated
information on minimum joint stiffness requirements, which is useful in selecting the
type of joint and the method of fabrication.

Piece similarity may be quantified in a number of different ways. One method is to
generate a histogram of piece characteristics, such as their length and cross-section type.
A more effective method, proposed as part of this framework, is to use a procedure
similar to the Hough transform. An example is shown in Figure 3.25. The input to the
procedure is a structural description, including the node coordinates and member
topology. A normalized length L= SL / (0≤L≤1) and orientation angle θ (0≤θ<π) are
calculated for each member, where L is the member length and S is the largest overall
dimension of the structure. An accumulator space is created in two dimensions,
corresponding to normalized length and orientation angle. The length and angle ranges
are discretized into bins. For simplicity, an equivalent number of bins may be chosen for
the length and the orientation angle. Each member is processed, and the pair (L,θ) is used
to cast a vote in accumulator space. The accumulator space is represented by an image,
where the pixel intensity reflects the number of votes cast. A large number of elements
with similar length and angle produce a bright spot on the accumulator image. In Figure
3.25, two different accumulator images are shown for the structure shown at the top. The
image on the left uses an angular resolution of 5 degrees; the resolution in the right hand
image is 10 degrees. Members 2 and 6 are similar in terms of both length and angle. In
the left hand accumulator image, every member is shown as separate pixel, all of equal
intensity, because no two members are close enough in angle or length to be assigned to
the same bin. When the resolution is 10 degrees, members 2 and 6 are assigned to the
same pixel. Similarly, member 1 and 10 share the same pixel, which appears white. The

3. Framework

 93

remaining pixels are gray because they each correspond to only one member. The
brightest pixels thus identify the largest groups of similar members. As the resolution of
the accumulator space is increased, more members appear similar. If the geometry of the
structure can be modified to make the similar members identical, then the cost can be
decreased. A larger accumulator resolution thus corresponds to a lower cost structure.
The problem of making compatible geometric adjustments to the structure is addressed in
Section 3.4.3.

Figure 3.25. Hough style plot of element length and angle

3.4.2. Constraints
The tubular frame in Figure 3.24 is to be designed to satisfy the strength limit state, for a
static load P. In the strength design of tubular structures, the member design is tightly
coupled to the connection design. The minimum cost design of the members does not
necessarily correspond to the minimum overall cost.

For minimum weight design of tubes in compression, large diameter, thin-walled sections
are preferred to maximize the radius of gyration. On the other hand, thin-walled chords
produce lower connection strength because of the higher probability of localized buckling
and yielding of the tube wall. The wall may be reinforced with a doubler plate or other

angle θ

le
ng

th
 L

angle θ

le
ng

th
 L

1 2 6

5 4 7

3

4 1

5

8

9 10

2 6
3

7

2

6

2 6

3. Framework

 94

reinforcement, however such reinforcement is expensive due to the additional labour and
material required. Also note that surface preparation and coating costs are higher for
larger diameters.

Connection strength is a function of the layout of the member centerlines and node
positions. The connection strength is generally lower for a gap connection (g >0 in Figure
3.24) than for conditions where the web members overlap. From a cost viewpoint
however, gap connections are usually less expensive. Gap connections offer greater
flexibility during fit-up, and welding access is easier. In overlapping connections, the
overlapped member must often be welded before the overlapping member is fitted. In
most shops, it is more cost effective to do final welding after all fit-up and tack welding is
complete.

The strength design of tubular connections generally uses a set of empirically or
theoretically derived formulae [e.g., Packer and Henderson, 2003]. Empirically derived
formulae often have limited ranges of applicability because they are based on a limited
number of experimental test configurations. These ranges of applicability may be applied
as constraints in a multiobjective optimization. Constraints are also derived from practical
limitations of the design, fabrication or installation phases.

Examples of constraints in the design and fabrication of tubular structures like the one in
Figure 3.24 include [Packer and Henderson, 2003]

• Angles of less than 30 degrees between the web and chord create significant
difficulties due to poor welding access

• Web to chord diameter ratio limit: 0.12.0 1 ≤<
od

d

• Nodal eccentricity limit: 25.055.0 ≤≤−
od
e

• Overlap and gap: overlap > 25%; g > t1 + t2

A common constraint in structural design is that materials are available only in discrete
sizes. Tubular shapes are produced in a limited number of diameter and wall thickness
combinations. Of the set of shapes that are regularly produced, only a subset of these may
be readily available due to variations in demand and production. In multiobjective
optimization, discrete sizes are often represented using a continuous curve. Figure 3.26
shows a continuous curve representing the weight of common pipe sizes used in tubular
construction.

3. Framework

 95

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Section

W
ei

gh
t (

kg
/m

)

Figure 3.26. Discrete tubular sections

3.4.3. Multiobjective Optimization
For a typical multiobjective optimization problem in structural design, the design
variables include node positions, member topology, member cross-sections, joint types,
and the number of joints. The node positions and member connectivity have a
considerable influence on the overall design. The node and member geometry limits the
types of joints, and influences the overall piece count and similarity of components.

Within the framework, geometric domain constraints originating in the Synthesis Phase
may be applied during multiobjective optimization. Another feature of the framework is
that constraints may be inferred from similar applications using case-based reasoning,
and applied to the design case. This is discussed further in Section 3.6.

A common challenge in multiobjective optimization is formulating and assessing the
importance of the objective functions. Often the objectives are competing and their
relative importance must be weighed in order to make tradeoffs. The relative importance
of the objectives is generally not known in advance, and some analysis is usually done to
assess the capabilities of a system before tradeoffs are made.

The results of multiobjective optimization are used to update the relational graph
structure developed during the Synthesis and Refinement Phases. The vertex attributes
are updated with node positions, and new attributes are added for joint design

3. Framework

 96

information. The edge attributes are updated with member cross-section information. The
relational graph is used in case-based reasoning, as discussed in Section 3.6.

3.4.4. Discussion
While the form of the structure can be represented in a generic way, domain specific
information is more difficult to standardize. Ideally, domain specific design procedures
should be stored in a library from which they can be retrieved and reused. One method is
to separate design process knowledge and data, and to store process knowledge in a
hierarchically organized structure, such as in SEED [Fenves et al., 2000]. Once the
knowledge is stored, protocols must be developed to maintain and update the knowledge.
The authors of SEED propose a repository or brokerage for design process knowledge.
Recent developments in semantic networks for mathematical problem solving may be
applicable in this context [Wolfram, 2009].

In the context of this framework, multiobjective optimization is intended as an evaluation
tool to assist the user in differentiating between multiple designs on the basis of
fabrication cost, installation cost, and other practical criteria. Multiobjective optimization
is a well established branch of optimization, and range of different tools are available.
This framework does not propose any new multiobjective optimization methods. Rather,
the intent here is to show how the framework generates a structural model in a form that
is directly suited to domain-specific multiobjective optimization.

3.5. Evaluation and Selection Phase
During the Synthesis Phase, multiple design configurations may be generated. Multiple
designs result from using different topology optimization parameters (volume fraction,
filter radius, or convergence criterion), different thresholds in interpreting the topology
optimization output, or through variations in the configuration of boundary conditions.
The framework specifies an Evaluation and Selection Phase, during which human users
evaluate and compare the designs that were generated, and select a subset of the designs
for further, more detailed, design work. In Figure 3.1, the Evaluation and Selection Phase
occurs after the Optimization Phase. Given the importance during conceptual design of
direct control by the human user, the framework also supports early selection and
reformulation of the problem, as indicated by the dashed lines in Figure 3.1.

Evaluation may be either qualitative or quantitative in nature. Quantitative measures are
readily developed for structural performance and cost. For example, finite element
analysis provides performance data such as stress and deflection. Cost estimates provide
numerical values which may also be used to compare competing designs.

Qualitative evaluation is required when numerical values cannot easily be assigned to a
design, such as when a structure is evaluated according to aesthetic criteria. Experienced
designers use intuition to evaluate designs, and during conceptual design they often rank

3. Framework

 97

concepts based on incomplete information, before detailed numerical analysis results are
available. Even if a numerical value can be assigned, most practical design situations
involve multiple participants, with different sets of experience, values and tastes. For
example, participants in building design include architects, structural engineers,
mechanical engineers, building envelope specialists, and the owner, amoung others. In
telescope design, participants include structural engineers, mechanical engineers, control
system engineers, scientists, operations specialists, maintenance personnel, and
fabrication specialists. Achieving agreement between multiple participants is a
complicated task to automate, and is often most efficiently achieved through direct
communication between participants. Evaluation is the process of comparing a design to
the set of requirements, specifications, and overall expectations of the participants. If
none of the candidate designs meet the required criteria, then the criteria should be
reviewed and if necessary, the design problem should be reformulated. Otherwise, a
subset of the candidate designs is selected for more detailed design work.

3.6. Alternate Generation Methods
The preceding description of the framework uses topology optimization methods to
generate structural forms. Forms may be input to the framework using alternative
methods, such as from photographs or hand sketches, as shown in Figure 3.27. Although
these are not necessarily sources for “optimal” structures, their information content can
be leveraged to assist the conceptual design process.

Arbitrary shapes and forms can be interpreted as structures. Images of shapes and forms
generally contain no explicit information about how such a structure would be loaded or
supported, or what its function would be. This information has to be supplied by the user.
Using the proposed framework, high contrast or binary images can be opened, converted
to a skeleton, a graph and a finite element model. At this stage, boundary conditions can
be added to the model to begin optimizing the shape under structural design criteria.
Converting an arbitrary shape to a graph opens up further possibilities, however, when
one considers the capabilities of pattern recognition and visual case-based reasoning. The
graph can be used to retrieve similar images, and with those images an associated case
containing information about boundary conditions, function, behaviour, and other
information. Examples of sketch input and image input are given in Figures 3.28 and
Figure 3.29.

3. Framework

 98

Figure 3.27. Alternate input paths

Low Resolution
Hybrid FEM

Conceptual
Design Model

High Resolution
Frame FEM

Structure Image

Skeletonization

Vertex
Identification

Graph

Distance
Transform

Path Tracing

Sketch Image Photograph

Binary
ConversionClosing

Requirements

Boundary
Conditions

3. Framework

 99

Input Image

Thresholding
and Erosion

Thinning

Vector
Skeleton

Figure 3.28. Sketch input example

3. Framework

 100

Input Image

Thresholding

Thinning

Vector Skeleton

Figure 3.29. Image input example

3. Framework

 101

3.7. Case-based Reasoning
The framework uses case-based reasoning techniques to classify, store and retrieve past
design experiences. In contrast to many other research systems for conceptual structural
design that rely primarily on textual information, this work emphasizes visual
information about structures. Techniques from visual case-based reasoning are used, a
field which overlaps the related areas of pattern recognition and content-based image
retrieval.

Figure 3.30. Overview of case-based reasoning

An overview of the case-based reasoning process is shown in Figure 3.30. In this case-
based reasoning application, a case encapsulates information about the structural form.
To initiate the case-based reasoning process, a target case is prepared and submitted to

Target Case

Retrieved Cases

Case Base

Retrieve

Adapted Case

Reuse

Revise

Conceptual
Design Model

Retain

Requirements

Evaluation and
Selection

3. Framework

 102

the system. The target case is compared to a library of source cases, and similar cases are
returned from the library with a ranking. The user chooses a single case which most
closely matches the target case, and this case is adapted for a new design situation. A
case-based reasoning system requires a definition of what constitutes a case, a means of
determining similarity between cases, mechanisms for retrieving and adapting existing
cases, and a method for archiving new cases.

3.7.1. Case Representation
A central aspect of this framework is the representation of structural form within the case
definition. The form is encapsulated using the relational graph format, which includes
information from the Synthesis, Refinement, and Optimization Phases. The relational
graph models the structural topology through its vertices and edges, along with additional
information stored as attributes. In addition to topology, the design domain may also be
represented as a relational graph for use in case-based reasoning, where graph vertices
represent domain geometry and boundary conditions, and edges represent the spatial
relationships between them. Both the structure and domain are also stored in image
format to support image-based pattern recognition techniques. Similar to other case-based
reasoning systems, cases also include a textual representation of high level requirements,
performance evaluation, and feedback from fabrication, installation, use, maintenance
and decommissioning. An overview of the elements of the case representation is given in
Table 3.3.

Case Description
 Structure graph
 Structure image
 Domain graph
 Domain image
 Requirements
 Evaluation

Table 3.3. Case representation

A structural description D = (P, R) consists of a set of primitives P and the set of
relationships R between them [Shapiro and Haralick, 1981]. As described in Section
2.4.4, a structural description may be realized as an attributed relational graph (ARG). An
ARG is defined as G = (V, E, AV, AE, αV, αE), where V and E are respectively the sets of
the vertices and the edges of the graph; AV and AE are the sets of the vertex and edge
attributes, and αV and αE are the functions associating to each vertex or edge the
corresponding attributes [Eshera and Fu, 1986]. Usually the nodes of a graph represent
the primitives of the structural descriptions, and the edges represent the relations between
the primitives.

3. Framework

 103

The structural topology is represented as ARG where the vertices represent structural
nodes and edges represent the topology of the connecting elements. The nodes are the
primitives of the structural description, identifying the locations of key geometric features
such as member intersections and discontinuities, and points where boundary conditions
are applied. The vertex attributes include the node position, joint type, parameters
describing the joint, nodal loads, and boundary conditions (Table 3.4).

The design domain is represented using a structural description in which the primitives
are the geometric features composing the domain, as well as boundary conditions. For
example, the geometric features include the design extents (a rectangle) along with the
primitive shapes, such as circles and rectangles, that are subtracted from the extents to
create voids. The relationships between the primitives represent spatial relationships,
such as Left, Right, Above, Below, and Contains.

Structure Graph
 Vertex Attributes
 Node position
 Joint type
 Joint parameters
 Nodal loads
 Boundary conditions
 Edge Attributes
 Cross-section type
 Section parameters
 End releases

Domain Graph
 Vertex Attributes
 Domain extents
 Subtracted Areas
 Retained Areas
 Boundary conditions
 Edge Attributes
 Spatial relationships

Table 3.4. Relational graph representation in cases

3. Framework

 104

3.7.2. Case Input
Case-based reasoning within the framework operates in three modes, depending on the
type of input. In Synthesis Mode, a new case is directly constructed from the graphs,
images and performance information developed during the Synthesis, Refinement, and
Optimization Phases. In Image Mode, an image representing the target structure is
processed to produce a graph, which is used with the image to retrieve suitable source
cases from the case base. In Text Mode, keywords are used to guide the search for
matching source cases, using the methods of document retrieval and conventional case-
based reasoning. The three modes may be used in combination to improve search
efficiency.

3.7.2.1. Synthesis Mode
In Synthesis Mode, the target case contains information on the shape of the structure, the
boundary conditions, the connections, and expected performance. Source cases stored in
the case base include such information, along with a range of other valuable information.
Source cases include fully developed sets of requirements and specifications,
performance measures from a range of different analyses, and evaluation data. For
example, a source case could contain feedback from the fabrication shop, such as how a
particular welded joint design contributed to geometric errors due to weld shrinkage. The
source case may also contain design specifications or analysis results which are
applicable to the target case.

3.7.2.2. Image Mode
In Image Mode, the target case contains only information on the shape of the structure,
with no knowledge of boundary conditions and functionality. The goal in case-based
reasoning is to infer the missing information from similarly-shaped structures. In a
variation of Image Mode, a sketch-based interface could simply be used to aid in
browsing the case base, and to retrieve similar structures.

3.7.2.3. Text Mode
In Text Mode, words or phrases at various levels of abstraction are used to retrieve
applicable cases. The input text may refer to requirements, behaviour, or evaluation
results.

3.7.3. Classification and Indexing
The organization of cases to enable efficient and accurate retrieval is a important issue in
case-based reasoning. Classification is the process of arranging objects into classes, and
indexing is the assignment of meaningful labels to objects. Effective indexing schemes
need to work at several different levels of abstraction and support multiple views. The
indexes must be abstract enough to cover a wide enough range of instances, but concrete
enough to be recognizable. Indexes may need to account for the fact that different terms
may refer to the same concept, depending on the user. Classification and indexing

3. Framework

 105

schemes are often hierarchically organized, to capture a range of abstraction levels and
enable efficient retrieval. Closely related to classification and indexing is the notion of
clustering. Inductive clustering methods generally look for similarities over a series of
instances and form categories based on those similarities. When clusters are subdivided,
hierarchies are formed.

The degree of similarity between objects is determined by the similarity between features
of the objects. Therefore, in order to cluster, classify and index objects, a set of features
describing the object is required. In case-based reasoning, features are commonly
represented using attribute-value pairs. In design case representation, features may
describe all aspects of the design, including function, structure and behaviour. In the
relational graph representation developed in this framework, the vertex and edge
attributes may be used for conventional classification and indexing. For example, the type
and configuration of joints could be used to classify the structure as a truss, a braced
frame, or a moment frame.

Techniques from image processing and pattern recognition are used to extract features
from images. Table 3.5 lists a number of such features.

Feature Description

 domain aspect ratio ratio of domain width to height
 node count total number of nodes
 total path length ratio of total member length to domain perimeter
 average path length ratio of average member length to domain perimeter
 enclosed area ratio of area enclosed by shape to domain area
 bounding box ratio of bounding box area to domain area
 moments normalized centroid location
 Fourier descriptors frequency content

Table 3.5. Image features

Images may be described in a compact form using feature vectors or histograms.
Projections are used to characterize predominating directions of angular elements in
images, as shown in Figure 3.31. Projections are generated at discrete angles, and the
highest peaks identified (shown as the circled peaks in Figure 3.31). At a minimum, the
directions with the highest peaks may be recorded in a feature vector. Another alternative
is to decrease the resolution of the projection, and store the projection for each discrete
angle as a histogram. In Figure 3.31, the skeleton is captured in the projection.
Projections may also be developed to capture the distribution of vertices. Histograms are
also used to plot the distribution lengths or angles of lines in the image.

Simple methods exist for measuring similarity between graphs based on global features.
For example, similarity can be determined based on the number of vertices or edges, or

3. Framework

 106

on the degree of connectivity. More sophisticated graph matching techniques are
discussed in Section 3.6.4.

3.7.4. Retrieval and Selection
During case retrieval, the target case is compared to source cases in the case base and the
most similar cases are returned. The retrieved cases are then ranked to assist in the case
selection process. Design case retrieval is usually concerned with finding partial rather
than exact matches. The degree of matching depends on the level of abstraction at which
the comparison is made; objects may be in the same category at a high level of
abstraction, but not at a more specific level.

Figure 3.31. Projections of cantilever skeleton

In a simple serial search, the target case is compared sequentially to the source cases. A
more efficient method is to structure the case base hierarchically using clustering

3. Framework

 107

methods, and to limit the search to the portion of the case base that is most likely to
return a matching case.

Different techniques are used for matching, depending on the case content. This
framework uses three methods, depending on whether a feature vector, image or graph is
to be matched. These methods return a numerical measure of similarity, which is used to
rank the retrieved cases. For certain types of case content, such as design functionality,
numerical similarity measures are difficult to establish. Heuristic methods may be
employed in those situations.

3.7.4.1. General Matching
A common numerical matching method used in case-based reasoning is the nearest-
neighbour technique, which calculates a weighted sum of the differences between feature
values. Different weighting factors are applied to each feature, depending on the
importance of the feature in the match. The aggregate match score S comparing input and
retrieved cases with n features is

∑

∑

=

=

×

= n

i
i

n

i

R
i

I
ii

w

ffsimw

S

1

1

),(

, (3.20)

where wi is the weighting factor for feature i, sim is the similarity function for features,
and fi

I are the values for feature fi in the input and retrieved cases, respectively.

3.7.4.2. Image Matching
A potential measure of similarity between images is to directly calculate the sum of
differences between corresponding pixel intensity values. A difficulty with this method is
that images with very similar content can have large differences when compared pixel by
pixel.

The Object Density Map (ODM) [Coulon and Steffens, 1994], is an effective method for
determining the similarity between two images. A low resolution grid is overlaid on the
image, and the density within each grid square is calculated. For each square, the density
is mapped to a pair of discrete density values drawn from a set of seven overlapping
intervals. To compare two images, the images are first aligned using their centroids as a
common reference point. The ODM is generated for each image, and the corresponding
grid squares are compared. If the two grid squares have at least one density value in
common, then the squares are assumed to have equal density. Otherwise, the minimum
difference between density values is calculated. A similarity measure for the two images
is taken as a normalized sum of differences over all the grid squares, resulting in a

3. Framework

 108

number between 0 and 1. Images with identical ODMs have a difference of 0, and
completely dissimilar images have a difference of 1. Two examples of image comparison
using ODMs are shown in Figure 3.32 and 3.33. In each of these figures, the input image
is shown at the top with the ODM grid superimposed. The ODM is shown below each
input image. The similarity measure shown in the figure caption is calculated between the
left and right ODM.

In the framework, the technique is used to compare both structure images and domain
images for similarity.

Figure 3.32. Similarity using ODM (difference measure = 0.034)

Figure 3.33. Similarity using ODM (difference measure = 0.009)

3.7.4.3. Graph Matching
Graph matching has been studied extensively and many different approaches are found in
the literature. The characteristics of the graph representation used in this framework limit
the selection of graph matching methods somewhat. Since exact matches between
structural graphs are unlikely, an inexact method is required. Another feature of this
application is that large training set for developing class definitions are not available, as

3. Framework

 109

in character recognition, for example. The emphasis in this framework is on using graph
matching for measuring similarity between patterns, rather than on classification.

In the framework, the solution to the minimum cost subgraph isomorphism problem, as
formulated by [Thoresen, 2007], is proposed for graph matching. Unlike other graph
matching algorithms, this approximate method takes advantage of the fact that nodal
coordinates are stored as graph attributes. For such spatially coherent graphs, the method
uses the vector between nodes as the edge attributes. The algorithm exploits the
connectivity of the graph to produce sufficiently accurate solutions in lower time-
complexity time than other published subgraph isomorphism algorithms.

Figure 3.34. Graph matching sample result

10 15 20 25 30 35
0.0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Elements

Si
m

ila
rit

y
M

ea
su

re

3. Framework

 110

The results of graph matching may be displayed as a grid of thumbnail images, similar to
Figure 3.34, where the proximity of images indicates the degree of similarity. In Figure
3.34, the numerical similarity measure is plotted on the vertical axis, and the number of
elements in the structure are plotted on the horizontal axis. Since similarity measures are
calculated, a numerical ranking may be provided to the user to assist in the selection of a
relevant design case.

3.7.5. Adaptation
Structural design is an iterative process where a design concept is incrementally changed
to satisfy a set of design constraints. For designs that have been successfully executed
and stored as cases, it is assumed that all constraints have been satisfied. Past designs
therefore encapsulate a substantial amount of work. One of the goals of case-based
reasoning is to take advantage of that work in creating new designs, rather than create
designs from scratch. Adaptation is the process in case-based reasoning where past
designs are modified for use in a new application.

In the framework, the focus of case-based reasoning is to use similarity between cases to
infer missing information in the current case from past design cases. Requirements,
constraints or feedback from stored design cases can be incorporated early in the
conceptual design phase to accelerate the design process and allow more alternatives to
be explored. When adaptation is existing cases is necessary, the method of derivational
replay is proposed.

Derivational replay is an adaptation method where the process used to derive a previous
solution is reused in a new situation [Kolodner, 1993]. Given that design procedures are
stored in the framework, and given that design parameters are stored with cases, all the
necessary information exists to reuse procedures in new designs.

3.7.6. Discussion
The central issue in case-based reasoning in the context of this framework is the
measurement of similarity between structural forms. The image matching techniques
presented here, the Object Density Map and projections, work at multiple levels of
abstraction. Setting the ODM grid resolution to a coarser value increases the level of
abstraction, and increases the possibility of a match. Similarly, projections summarize
characteristics at discrete angular increments, and the resolution of the increment can be
used to control matching. Drawing similarities between objects at different levels of
resolution is an important feature in inductive learning. Inductive learning is the process
that allows properties of source cases to be assigned to the target case, leveraging the
experience and knowledge of the case base.

 111

4. Case Studies

This chapter describes a number of case studies that illustrate the application of the
framework to conceptual design problems. Several of the case studies compare the
performance of the framework against benchmark problems. Other studies show the
potential application to real-world conceptual design tasks.

4.1. Cantilever
In a well-known example from structural optimization, the minimum weight is sought for
a cantilever truss supporting a vertical load, as shown in Figure 4.1. All members have
unit allowable stress in tension and compression, and unit density. Buckling and
displacement constraints are not considered. The “exact” solution to the problem is
generally attributed to Michell, developed using the theory of “truss-like” continua, rather
than discrete members [Michell, 1904]. Since structures developed using this theory
consist of an infinite number of bars of nonstandard length, they cannot be fabricated
using practical methods, but they do serve as interesting benchmark cases. For this
problem, the solution has been shown to be 4.5 (Figure 4.1.b) [e.g., Lewinski et al, 1994].
Discrete truss topology optimization has also been used to solve this example. Kirsch
obtained an 8-bar truss topology with weight 4.59 using mathematical programming
techniques (Figure 4.1.c) [Kirsch, 1993]. [Azid et al., 2002] found a slightly improved
solution using an evolutionary approach, with weight 4.57 (Figure 4.2).

The problem is solved using the framework presented here by first formulating the
specifications. The problem domain is assumed to be a grid of square elements 30 wide
by 20 high (Figure 4.3.a). A line boundary condition, with fixity in x- and y-directions, is
applied to the left edge of the domain. A point load is applied at midheight on the right
edge. Topology optimization is run with Poisson’s ratio ν=0.3 and volume fraction 0.15.
The resulting image is shown in Figure 4.3.b. The image suggests a truss-like structure
with similar topology to that obtained by Kirsch. A significant difference is that short
beam elements are indicated adjacent to the two support points.

4. Case Studies

 112

a) Problem specification

 b) Michell truss solution

 c) Solution of [Kirsch, 1993] (weight = 4.59)
Figure 4.1. Cantilever beam example

1.0

1.5

σ ≤ 1.0

1.0

4. Case Studies

 113

Figure 4.2. Cantilever beam solution by [Azid et al., 2002]

a) Problem specification b) Topology optimization output

c) Skeleton d) Element model
Figure 4.3. Cantilever beam model generation

Kirsch (4.59)
Azid et al. (4.57)

4. Case Studies

 114

Figure 4.4. Cantilever geometric optimization – displacement and volume history

Figure 4.5. Cantilever geometric optimization – objective function history

4. Case Studies

 115

The topology optimization image is converted to binary formal and a skeleton is
generated as shown in Figure 4.3.c. The skeleton is traced to produce the element model
in Figure 4.3.d.

In the Refinement Phase, geometric optimization is used to shift node positions in a way
the minimizes the product of compliance and volume. Pairs of nodes are merged if they
move close enough to each other, and are deleted when they produce a pair of nearly
colinear elements. As shown in Figure 4.5, after about 86 iterations of geometric
optimization, the 8-member truss topology found by Kirsch emerges. To achieve the 8-
member topology, a significant increase in volume is required, about 7%. This increase in
volume is accompanied by a 17% decrease in deflection, representing a significant
increase in performance. As the performance increases, the geometry of the structure
becomes simpler, with the elimination of 2 nodes and 2 elements. The reduction of the
node and element count results in immediate cost savings in design, fabrication and
installation.

Figure 4.6. Cantilever beam solution

During the refinement phase, no additional information on member cross-sections or
stress limits was introduced. With the limited data used to define the problem domain and
boundary conditions, a layout similar to that obtained using discrete truss optimization
methods was found. To compare the performance of the truss generated using this
framework to the benchmark cases, further processing is required. Using the topology
and geometry produced during the Refinement Phase as input, member sizing
optimization was run. In sizing optimization, the design variables are the member cross-
sections, and a constraint was applied to limit tensile and compressive stress to 1.0.
Member sizing optimization results in a structure with mass 4.58, as shown in Figure 4.6.
To improve on this result, sizing optimization and geometric optimization can be run
simultaneously. This procedure produces a layout similar to that obtained by Azid, with
the same mass of 4.57, as indicated in Figure 4.6 (identified as the ‘Layout’
configuration).

Kirsch (4.59)
Sizing (4.58)
Layout (4.57)

4. Case Studies

 116

The cantilever example demonstrates that the framework can be used to generate a
structure with performance similar to that achieved using both classical mathematical
programming methods and more recent evolutionary methods. The framework has
advantages over both these approaches. Classical optimization methods are generally
problem specific and require more effort to implement than the general approach used in
the framework. Evolutionary methods generally require much more computational effort
than deterministic procedures such as the one implemented in the framework. Speed and
simplicity are important properties of computational tools for conceptual design, allowing
the user to quickly reformulate the design parameters and evaluate the impact of changes
on the resulting structure.

4.2. Bridge
In an example problem in bridge design, a minimum-weight truss-like structure is
required for a single, simply-supported span. This problem has been used by researchers
to evaluate discrete truss topology optimization with evolutionary algorithms. For
example, [Shrestha and Ghaboussi, 1998] used a genetic algorithm and [Yang and Soh,
2002] employed genetic programming. Both of these approaches were notable in that
they did not use a conventional ground structure consisting of a predefined grid of node
points. Initial populations are generated through randomly generated patterns of nodes.
The lack of a ground structure facilitates a general, domain-independent approach to
topology optimization that is suited to conceptual design work. Similar to the approach
used in the framework presented here, a general design domain representing the extents
of the structure is used as input.

The bridge structure is required to span 70 meters, as shown in Figure 4.7. The depth of
the structure is limited to 10 meters. Four vertical, evenly spaced point loads are applied
on the span. The truss members are to be selected from a set of 30 standard AISC wide
flange steel sections [AISC, 1989], from W14x22 through W14x426. The material
properties are those of steel (E = 201 GPa, fy = 248.8 MPa, ρ = 7851.03 kg/m3). The
following AISC design specifications [AISC, 1989] are applied:

• the allowable tensile stress is 0.6fy
• the allowable member slenderness is 300 for tension members and 200 for

compression members
• member length is to be between 5 m and 35 m
• the allowable joint displacement is limited to 1/1000 of span, or 70 mm
• the allowable compressive stress b

iσ of member i is determined from buckling
considerations as follows:

o if λi > C (elastic buckling), 2

2

23
12

i

b
i

E
λ

πσ =

4. Case Studies

 117

o if λi < C (plastic buckling),

3

3

2

2

88
3

3
5

2
1

CC

f
C

ii

y
i

b
i λλ

λ

σ
−+

−

=

where λi = Li/ri, yfEC /2π= , and Li and ri are the length and radius of
gyration of member i, respectively.

The optimal topology derived by [Yang and Soh, 2002], is shown in Figure 4.8. Detailed
member sizes and node positions are given in Table 4.1.

Figure 4.7. Bridge problem specification

Figure 4.8. Bridge design result [Yang and Soh, 2002] (45 404 kg)

To solve the problem using the framework, the domain is first defined. A domain
consisting of 140 x 20 square elements is used, as shown in Figure 4.9.a. The appropriate
point boundary conditions are applied at each end and 4 point loads are applied along the
bottom edge of the domain. Topology optimization is run for a volume fraction of 0.3;
the resulting image is shown in Figure 4.9.b. The skeleton derived from the topology
optimization output (Figure 4.9.c) and the element model (Figure 4.9.d) are also given.

7 spans @ 10m = 70m

P P P P P P

10m design domain

P = 500kN

4. Case Studies

 118

a) Problem specification

b) Topology optimization output

c) Skeleton

d) Element model
Figure 4.9. Bridge model generation

Geometric optimization is applied to simplify the topology of the element model. After a
mere 73 iterations, the optimal topology is achieved (Figure 4.10 and Figure 4.11). The
topology matches the result obtained by [Yang and Soh, 2002] (Figure 4.12).

Sizing optimization is conducted to select member sizes for the truss in accordance with
the problem constraints. Sizing optimization uses continuous design variables
representing the section number, which ranges from 1 to 30. Both the area and radius of
gyration of the cross-sections are expressed as continuous functions of the section
number. The area is represented by a cubic polynomial (Figure 4.13). The radius of
gyration is approximated using piecewise continuous cubic polynomials (Figure 4.14).

4. Case Studies

 119

Figure 4.10. Bridge geometric optimization – displacement and volume history

Figure 4.11. Bridge geometric optimization – objective function history

4. Case Studies

 120

Figure 4.12. Bridge design result

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30

Section Number

A
re

a
[m

^2
]

AISC W14
Approximation

Figure 4.13. Bridge member cross-section area

Yang & Soh This work

A = (2.58s3 – 16.8s2 + 832s + 3329) x 106

6

5

4

7 8

1

2 3 9

4. Case Studies

 121

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 5 10 15 20 25 30

Section Number

R
ad

iu
s o

f G
yr

at
io

n
[m

AISC W14
Approximation

Figure 4.14. Bridge member cross-section radius of gyration

Table 4.1 summarizes the results of the bridge design example, and compares the results
to those obtained by other researchers. The results for the genetic algorithm of [Shrestha
and Ghaboussi, 1998] and the genetic programming approach of [Yang and Soh, 2002]
are markedly different in terms of both optimum weight and computational efficiency.
The genetic algorithm used in this comparison produces a weight 30% higher using over
five times the number of total iteration steps of the genetic programming method.

Running the example with the framework described in this work, the optimal weight is
within 0.6% of the result obtained using genetic programming. A notable difference
between the solutions is that only 395 iteration steps are required using the framework,
where each iteration step corresponds to a single finite element run. For the continuum
topology optimization stage, 35 iterations are completed. A further 73 iterations are
required for geometric optimization, and 287 iterations are used for the final member
sizing optimization. The number of finite element runs is several orders of magnitude less
than the number required for the genetic programming method for this example.

4. Case Studies

 122

Result

Shrestha &
Ghaboussi

[1998]
Yang & Soh

[2002] This work
Member sections 1-2 NA W14×68 W14×53
 2-3 NA W14×109 W14×132
 3-4 NA W14×132 W14×211
 4-9 NA W14×233 W14×193
 1-5 NA W14×132 W14×90
 5-6 NA W14×132 W14×120
 6-7 NA W14×176 W14×193
 7-8 NA W14×193 W14×257
 2-5 NA W14×61 W14×68
 2-6 NA W14×74 W14×61
 3-6 NA W14×82 W14×68
 3-7 NA W14×82 W14×68
 4-7 NA W14×90 W14×43
 4-8 NA W14×61 W14×30
Node coordinates (m) x5 NA 4.0 3.71
 y5 NA 5.5 5.92
 x6 NA 13.0 12.2
 y6 NA 9.0 9.45
 x7 NA 24.0 24.3
 y7 NA 10.0 10.0
 x8 NA 35.0 35.0
 y8 NA 10.0 10.0
Weight (kg) 60 329 45 404 45 677
Total iteration steps 975 400 166 000 395

 Note: NA indicates that results are not available

Table 4.1. Bridge design result

A common limitation of the genetic algorithm in truss topology optimization is the fixed
length chromosome. Efforts to find efficient methods to represent a wide range of
different topologies with varying complexity using a fixed length string have not been
completely successful. The approach of [Shrestha and Ghaboussi, 1998] uses relatively
long chromosomes, and requires a large number of iterations to converge. One of the
strengths of genetic algorithms is their simplicity, but it is difficult to implement simple
crossover and mutation methods that do not produce unstable offspring with disconnected
members. [Yang and Soh, 2002] encode the structural configuration using two-

4. Case Studies

 123

dimensional, varied length parse trees, which can more flexibly represent a diverse range
of topologies than fixed length chromosomes.

Evolutionary computing techniques are a very effective approach to global optimization
in problems that are highly nonlinear or nonconvex. The previous two examples show
that, for some problems, it is possible to generate optimal topologies more efficiently
using an approximate, deterministic optimization procedure. The examples show the
approximate results are more than sufficient for conceptual design purposes. The ability
to generate solutions efficiently and quickly is seen as a major advantage in conceptual
design, where a computational tool can rapidly provide feedback to a human designer as
they explore a range of possible solutions.

4.3. Bicycle
The bicycle frame problem shown in Figure 4.15 has been used by researchers
[Rasmussen and Olhoff, 1992; Chirehdast et al., 1994] as a test case for topology
optimization. The objective is to optimize the rigidity of a bicycle frame with no
predefined topology. The input to the problem is a rectangular design domain, a load
case, and support conditions. Loads are applied to the top of the seat tube (A), the head
tube (B), and the bottom bracket (C).

Figure 4.15. Bicycle frame problem specification

To solve the problem, a domain consisting of 44 x 26 square elements is formed, with
each element 25 mm in size. Six point loads are applied and three nodal degrees of
freedom are constrained as shown in Figure 4.16.a. The frame is pin supported at the rear
wheel, and a horizontal roller support is used at the front wheel. Topology optimization
is run for a volume fraction of 0.15 (Figure 4.16.b).

650 mm

956 N
142 N

1000 N

150 N

7500 N

5000 N

design
domain

R340

1100 mm

AB

C

4. Case Studies

 124

a) Problem specification

b) Topology optimization output c) Skeleton

d) Element model
Figure 4.16. Bicycle frame model generation

4. Case Studies

 125

The topology optimization output suggests the familiar diamond-shaped bicycle frame,
with the exception that the front fork is connected to the bottom bracket. The frame in
this case has no steering functionality, as in the two examples given in the literature.

In the Refinement Phase, the number of nodes is reduced from 20 to 5 and the maximum
displacement decreases by about 27%. The resulting frame is shown in Figure 4.18, a
simple truss structure with the minimum number of possible nodes. Also shown in Figure
4.18 is the topology found by [Chirehdast et al., 1994].

Figure 4.17. Bicycle frame design result

In an approach similar to that used in the framework described here, [Chirehdast et al.,
1994] extract truss or frame structures from continuum topology optimization output
using image processing techniques. There are several major differences between the
system of Chirehdast, called ISOS, and the one presented here. First, the approach used in
this framework is to trace the skeleton paths to an arbitrary level of accuracy, adding as
many nodes as necessary to follow the path. The resulting topology is then simplified
using mathematical optimization. In contrast, ISOS uses heuristics derived from
elementary mechanics and engineering intuition to interpret a truss or frame structure. In
this framework, nodes may be added at intermediate points between path junctions. This
allows the framework to model arches and other curvilinear elements. In ISOS, nodes are
located only at path junctions, so curvilinear elements cannot be modeled. Another
difference between this framework and ISOS is in the treatment of stability. ISOS
interprets a skeletal structure as either a truss or frame structure. If the truss interpretation
is unstable, then heuristic methods are used to add members to ensure stability. In
contrast, this framework generates stable hybrid structures with joints of variable
flexibility, from rigid beam connections to frictionless pin connections. The configuration
of pins and moment connections is established using a mathematical optimization
procedure. Finally, this framework introduces a number of methods that are not part of

Chirehdast et al., 1994
This work

4. Case Studies

 126

ISOS, including visual case-based reasoning, structural similarity measures, and
boundary condition inference.

To further the design of the bicycle frame, member cross-sections are selected using a
sizing optimization procedure. The frame is assumed to consist of beam elements, with
one design variable per element. The members have tubular cross section with wall
thickness equal to one tenth of the outer radius. The design variable is the outer radius of
the tube. Initially, each member is a tube with radius 10 mm, and cross-sectional area
59.69 mm2. The material is assumed to be the same for all members, with maximum
permitted stress 50 MPa in tension and compression, and density 7800 kg/m3. Using a
Sequential Quadratic Programming (SQP) method, this framework produces a
configuration with weight 2.34 kg (Figure 4.18, in black). In [Chirehdast et al., 1994],
ISOS is shown to generate a comparable solution that weighs 4.29 kg. In that paper, the
results of simultaneous sizing and geometric optimization are also presented. This
optimization procedure results in a structure weighing 2.25 kg (Figure 4.18, in gray).

Some discussion on the difference between the two solutions presented in Figure 4.17 is
warranted. The framework formulates the topology optimization problem as a
minimization of a weighted average of the compliance corresponding to each load
component. This approach to multiple load topology optimization is more likely to result
in stable trusses than optimization as a single load case [e.g., Bendsøe and Sigmund,
2004]. This method also tends to produce structures in which the stiffness is less sensitive
to the direction of loading. In Figure 4.17, the Chirehdast design is highly dependent on
the orientation of the load vector at the top of the seat post. Multiple load optimization is
well suited to practical conceptual design, since real-world structures are typically
designed using load cases that are characterized by a significant degree of uncertainty.
Along with the benefit of reduced sensitivity to load direction, the bicycle frame
configuration produced in this work has fewer nodes and elements than the Chirehdast
design. Design and fabrication costs of skeletal structures are highly dependent on the
number of joints. In terms of cost, the advantage of a 4% weight saving (2.25 kg vs. 2.34
kg) is insignificant compared to a 25% increase in the number of joints (5 vs. 4).

Conceptual structural design is an iterative process where designers evolve and
reformulate requirements as they gain knowledge about the design space. The following
examples demonstrate how a user might interact with the framework to advance a
conceptual design towards a practical final design.

In the bicycle frame shown in Figure 4.17, the axle of the front wheel is connected to the
bottom bracket, preventing the bicycle from steering. To remove this connection, material
is removed from the design domain, as shown in Figure 4.18.a. This change results in a
vertical fork (Figure 4.18.b and 4.18.c). This configuration enables steering, but it implies
a vertical steering axis, and very little trail (the distance from the front wheel contact
point to the steering axis). Although this arrangement was used on some of the earliest
bicycles, it is now well known that both stability and handling are much improved by

4. Case Studies

 127

using an inclined steering axis. An inclined axis produces greater trail, which allows for a
self-centering caster effect.

a) Problem specification

b) Topology optimization output

c) Skeleton
Figure 4.18. Bicycle frame respecification with steering

material
removed

4. Case Studies

 128

a) Problem specification

b) Topology optimization output

b) Skeleton
Figure 4.19. Bicycle frame respecification with fork

4. Case Studies

 129

Figure 4.20. Bicycle frame and fork element model

To incorporate handling as a design requirement, an inclined steering axis and fork is
incorporated in the design domain definition, as shown in Figure 4.19.a. The darker gray
elements indicate that during topology optimization, these elements are constrained to
have the full material density. The resulting topology of the frame changes (Figure 4.19.b
and Figure 4.19.c) to provide increased stiffness in response to bending moments caused
by wheel reactions on the fork. Tracing the path of the skeleton in Figure 4.19.c, results
in the element model shown in Figure 4.20. Geometric optimization produces the design
in Figure 4.21.

Figure 4.21. Bicycle frame redesign result

Stability optimization is performed on the redesigned bicycle frame in order to
understand joint design requirements. The results are shown in Figure 4.22, where circles
at the end of each member represent the required joint stiffness. The circles are filled with
shades of gray corresponding to stiffness values ranging from zero (pinned) to one
(rigid). Such information is an important consideration in designing cost effective joints.

4. Case Studies

 130

Note that the stability optimization ensures that the stiffness of the frame with flexible
joints is within 5% of the stiffness calculated assuming rigid joints.

Figure 4.22. Bicycle frame stability analysis result

Visual case-based reasoning may be used during conceptual design to retrieve relevant
information from a database of past design cases. The bicycle frame example is further
expanded to demonstrate the application of the framework to visual case-based reasoning.
An essential requirement in visual case retrieval is the measurement of similarity between
forms. In order to form a database of design cases, two additional bike frame designs are
generated by refining design requirements.

The shape of racing bicycle frames is driven in part by established regulations.
Overcoming aerodynamic drag forces requires a significant portion of rider effort. Riders
can substantially reduce effort by closely following in the slipstream of the rider ahead.
This practice, called drafting, is well established in road racing but is prohibited in some
forms of bicycle racing, such as in triathlons. Aerodynamic considerations are therefore
of more importance in triathlon racing than road racing, and significantly influence the
design of the bicycle. For triathlon racing, improved aerodynamics are achieved by
rotating the position of the rider forward compared to road racing. As the position of the
rider is rotated forward, the handlebars drop and the head tube becomes shorter. Also as
the rider is rotated forward, the rider center of gravity shifts forward, and weight shifts
from the rear wheel to the front. The weight redistribution is partially countered by
moving the rear wheel forward. The wheelbase of the triathlon design is lengthened to
improve handling with the changed weight distribution.

Figure 4.23 gives an example of the design of a road and triathlon bicycle frame,
reflecting the differing requirements for these two applications. Figure 4.23.a and 4.23.b
show the design domain for the road frame and triathlon frame, respectively. For the

0.82

1.0 0.91

0.98

1.0
1.0

1.0

1.0

0.0
0.0

1.0

0.26

0.0

0.0
1.0

0.66 0.0
0.89

0 – 0.1
0.1 – 0.2
0.2 – 0.3
0.3 – 0.4
0.4 – 0.5
0.5 – 0.6
0.6 – 0.7
0.7 – 0.8
0.8 – 0.9
0.9 – 1.0

Pinned

Rigid

4. Case Studies

 131

triathlon frame, there is a steeper angle between the seat and bottom bracket, the
handlebars are lower, and the wheelbase is longer. Areas near the top of the frame are
removed from the design domain to accommodate standover clearance requirements.
Figure 4.23.c shows the binary topology optimization results and skeletons, and Figure
4.23.d contains the element models for the two frame styles.

a) Road design b) Triathlon design

c) Skeletons

d) Element models
Figure 4.23. Bicycle frame generation for two designs

Figure 4.24 shows binary images of two commercially-available frame designs, one for
road racing and the other for triathlon. Note the similarity between these designs and the

4. Case Studies

 132

designs generated in Figure 4.23. The triathlon design appears thicker in profile primarily
because the tubes have a more aerodynamic profile than the road bike tubes.

a) Road design b) Triathlon design
Figure 4.24. Bicycle frame commercial designs

To demonstrate the retrieval of similar designs in visual case-based reasoning, a case base
of several different bicycle frame designs is assembled, as shown in Table 4.2. The
source case corresponds to the road frame designed to the requirements of Figure 4.23.a.
The target cases consist of previous examples from this Chapter, along with some test
cases to demonstrate more dissimilar structures. The target image for the commercial
design in Figure 4.24 is obtained by finding the image skeleton and performing path
tracing to extract a simplified unit width representation. This processing is intended to
highlight the key topology rather than member sizes.

 The source case is sequentially compared to each target case in the case base, and the
similarity between source and target cases is measured. The similarity is measured using
the Object Density Map (ODM). The image resolution is 480 x 288 pixels in each case,
with a grid size of 24 pixels. The ODM returns a number between 0 and 1, where 0
indicates the images are identical, and 1 signifies that one image is the negative of the
other. To verify the algorithm, the source image is compared to itself and the similarity is
zero, indicating a perfect match (Table 4.2.a.). The similarity measure for each source-
target pair is presented in the right hand column of Table 4.2. The lowest similarity
measure indicates the closest match between a source and target. The table indicates that
the source image of the road frame derived using topology optimization most closely
matches the commercial road design frame, as shown in Table 4.2.c. This shows the
ODM algorithm is effective at calculating a quantitative measure of similarity between
images of the kind used in structural conceptual design.

For visual case-based reasoning with practical cases, an effective similarity algorithm
would need to deal with images of multiple size, as well as shifted or rotated images.
Fortunately, image processing and pattern recognition research has produced many tools
to deal with problems such as this.

4. Case Studies

 133

Design ODM Similarity Measure and Map

a. Source: Road design (Figure 4.23.a)

0.0

b. Target: Triathlon design (Figure 4.23.b)

0.0597

c. Target: Road design (Figure 4.24.a)

0.0427

d. Target: Bicycle frame (Figure 4.21)

0.0513

4. Case Studies

 134

Design ODM Similarity Measure and Map

e. Target: Bicycle frame (Figure 4.18)

0.0747

f. Target: Cantilever truss (Figure 4.6)

0.0735

g. Target: One-bay braced frame

0.0796

h. Target: Four-bay braced frame

0.171

Table 4.2. Bicycle frame case retrieval

4. Case Studies

 135

In Table 4.2, the conventional diamond frame designs with an articulating fork (Table
4.2.b-d) have similarity values which are fair closely clustered, between 0.04 and 0.06.
Interestingly, some relatively different topologies also have clustered values. For
example, Table 4.2.e-g have values between 0.74 and 0.80. A much different
configuration, the four-bay braced frame in Figure 4.2.h, has a measure of 0.17. These
results indicate that for images of skeletal structures, which consist mostly of background
pixels, similarity measurements will be generally closer to zero on the similarity scale
than to one.

Figure 4.25. Bicycle frame retrieval results

The case retrieval process should be an interactive one which facilitates the discovery of
existing cases. Ideally, the process should return several cases which are similar, so that

3 4 5 6 7 8 9 10 11
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of Nodes

O
D

M
 S

im
ila

rit
y

M
ea

su
re

b

c

d

g

e
f

4. Case Studies

 136

the user can browse and select an appropriate case. To facilitate the presentation of
multiple target cases, retrieved images may be displayed in two or three dimensions, with
one dimension used for the similarity measure and the other dimensions used for
appropriate quantitative comparison values. In Figure 4.25, the similarity measure is
plotted against the node count for each target case. The similarity measure is plotted on
the ordinate, so the most similar designs appear closer to the bottom of the chart. In an
interactive conceptual design system, it would be possible for the user to navigate a chart
like Figure 4.25, panning across the case base and focusing in on cases of interest.

Visual case-based retrieval represents a potentially powerful method of using past design
cases to assist in conceptual design. For the example given here, a bicycle frame image
generated by topology optimization is matched with an image of an existing commercial
frame design. Such an existing design could be stored with a large amount of information
relating to design, fabrication, maintenance, and user feedback. For example, all the load
cases and associated boundary conditions could be stored in the case base. Bicycles are
typically designed for a number of load cases which are prohibitively time consuming to
compute during conceptual design. Such cases include front wheel impact, rear wheel
skidding, hill climbing and starting, high speed bump, and fatigue cases. Information on
which load cases and combinations were critical in past work can be used to assist in
effective and rapid evaluation of new design concepts. Visual case-based retrieval
methods may also be applied to the input domain image, as opposed to the structural
image. For example, the design domain image in Figure 4.19.a. could be used to retrieve
past design cases with similar design domains, and similar requirements, to the target
case.

4.4. Telescope
The conceptual design of large telescope structures is a complex task. This case study
concerns the design of a ground-based optical telescope with a thirty meter diameter
segmented primary mirror. To date, the largest optical telescope has a ten meter primary,
so the 30-meter telescope represents a large step forward, with ten times the light
collecting area and over ten times the number of actuated primary segments. Given the
unprecedented size of such a telescope, it is difficult to adapt specifications from existing
telescopes. The telescope design concept must evolve with the requirements as more is
learned about the potential performance and range of potential configurations. The
telescope support structure payload includes almost 500 primary mirror segments
weighing a total of 120 tonnes, an actuated secondary mirror (6 tonnes), an actuated
tertiary mirror (10 tonnes), and instruments (170 tonnes).

A general requirement is that the support structure should be as stiff as possible in order
to maintain the accurate alignment of the telescope optics. Although some optics
components are actuated to compensate for telescope deformation under gravity, thermal
and wind loads, increasing the actuator range increases the cost of the actuators and
decreases their accuracy.

4. Case Studies

 137

a) Telescope overall assembly

b) Telescope azimuth assembly
Figure 4.26. Telescope structure

4. Case Studies

 138

Figure 4.27. TMT telescope azimuth structure front view

In addition, it is generally cost-prohibitive to make all optics degrees of freedom active,
so some deformation components are uncorrected and have a direct impact on the
performance of the telescope. Even for the active degrees of freedom, a more flexible
structure requires more frequent motion of the actuators, resulting in a more complex
control system design.

The full telescope assembly is shown in Figure 4.26.a. The telescope has two drive axes:
the vertical azimuth axis (±270º) and the horizontal elevation axis (0 to 90º from the
horizon). The subassembly that rotates about the elevation axis, the elevation structure,
supports the major optics systems. The azimuth structure (Figure 4.26.b. and Figure 4.27)
supports the elevation structure and most of the instruments.

For the design of the telescope structure, the two most important objectives are to
minimize compliance and mass. These two objectives are obviously in conflict, since
adding mass to a structure, if done efficiently, will result in a decrease in compliance. An
effective approach to developing a structural concept is to fix the mass and search for a
configuration that minimizes compliance. The intent of the search is therefore to find the
configuration that extracts the maximum stiffness per unit of mass. Although the
concepts of minimizing compliance or maximizing stiffness sound simple, in large
telescope structural design they are relatively complicated to implement. A large
telescope has thousands of degrees of freedom. Some deflection components have
relatively benign consequences on the optical performance of the telescope. Some
deflections may be corrected by moving optical components with actuators. In some
cases, the telescope may be relatively flexible in a given direction, but no significant
loads are applied in that direction.

In telescope design it is important to distinguish between quasi-static and dynamic
stiffness. Quasi-static stiffness refers to the stiffness of the structure in response to
relatively slowly changing loads, such as gravity or thermal loads. As the telescope

4. Case Studies

 139

rotates in elevation, the direction of the gravity load vector relative to the optical
components changes, resulting in changes to the deflected shape. One of the functions of
the optical actuators is to change the position of the mirrors to compensate for these
deflections. The required actuator range, or stroke, is directly related to quasi-static
stiffness.

Dynamic stiffness refers to the stiffness of the structure in response to dynamic loading.
In large telescope structures, the primary source of dynamic loading is wind. The
response of the telescope to wind load is related to both the structural system and the
control system. In general, increasing the first natural frequency of the structural system
allows for greater control system bandwidth, and an increased ability to reject
disturbances caused by wind loads. In some cases, vibration modes other than the first
mode drive the design of the control system. In detailed design, it is therefore important
to understand how the various vibration modes of the structure respond to drive system
inputs.

Mass minimization is an objective in telescope structural design for several reasons.
Reducing the mass of the structure lowers its cost, within limits. As structures become
increasingly lighter, at some point fabrication costs begin to increase. For example,
lightweighting a material through the added fabrication step of cutting holes increases
cost. More important reasons for minimizing telescope structure mass are to reduce
thermal and mechanical inertia. Temperature control of telescope structures is extremely
important to their performance, and reduced thermal mass allows temperature to be more
easily controlled. Larger structural mass and inertia increase the initial cost and operating
cost of mechanical systems such as drive motors.

In optimizing the structure for minimum compliance and mass, a large number of design
constraints must also be considered. The major constraints relate to geometry, member
resistance and acceleration.

Geometric constraints ensure the telescope structure subassemblies achieve the required
range of motion without interference. For example, clearances between the elevation and
azimuth structures must be maintained through the full 90 degree elevation angle range.
The telescope enclosure represents a significant portion of overall observatory costs, and
its costs are strongly dependent on the size of the telescope swept volume. To reduce
costs, the swept volume should be minimized. An important goal of telescope structure
design is to ensure that light paths between various optical elements are as unobstructed
as possible, so the paths constrain the placement of structural material. Finally, since
wind loads tend to degrade telescope performance, they should be minimized. This
objective is often interpreted as a geometric constraint on the size and shape of member
cross-sections, since both size and shape influence aerodynamic drag forces.

Stress constraints are applied to ensure that the telescope structure remains elastic under
“operating basis earthquakes”, to reduce the amount of downtime required to bring the

4. Case Studies

 140

telescope back into operation after smaller earthquakes. For larger earthquakes, some
damage is expected, however the design intent is usually to limit the damage to more
easily replaceable elements. Acceleration constraints are used to limit the transmission of
damaging seismic acceleration components to sensitive on-board optical systems.
Deflection constraints are often required at critical structural-mechanical interfaces. For
example, hydrostatic bearing systems operate on a thin film of oil which is compromised
by structural deflections. The deflections should be constrained to maintain the required
oil gap and ensure the system performs as expected.

The specific telescope case study described in this section concerns the conceptual design
of the azimuth structure for the thirty-meter telescope. Obviously, it is a challenge to
address all elements of the complex set of requirements described above at the conceptual
design stage. As a starting point, the framework described in this work can be used to
generate a number of topologies that represent optimal, minimum compliance structures
for a range of different loading conditions.

For initial conceptual design, a two dimensional model of a vertical section through the
azimuth structure is studied. Three different load cases are presented in Figure 4.28
through figure 4.30. Figure 4.28.a defines the geometric constraints and boundary
conditions. The design domain is shaped by three geometric constraints; these include
subtracted areas for elevation structure clearance and azimuth track clearance, and
retained areas at the top level of the azimuth structure which contains instrument
interfaces. The three load cases in Figure 4.28 through Figure 4.30 represent different
combinations of dead load and simulated dynamic loads. All load cases are analyzed
statically. Simulated dynamic loads are applied to increase stiffness in a given direction,
resulting in increased natural frequencies. Static load cases may be used in this way to
influence frequencies for mode shapes that are expected to create difficulties for the
control system. Although this approach is approximate, it is suited to the conceptual
design stage, where the designer seeks an understanding of how topology affects stiffness
in various directions.

Figure 4.31 presents the results of node position optimization using topology generated in
Figure 4.28 through Figure 4.30. The resulting designs are seen to have a relatively
strong dependence on the load case. By applying different load cases and combinations,
the designer gains insight into potential design configurations that are candidates for
more detailed analysis and design.

A stability analysis was conducted for Case 3. Connection stiffness requirements are
shown in Figure 4.32. The grayscale value in the filled circles represents the release
values at each member endpoint.

4. Case Studies

 141

a) Problem specification

b) Skeleton

c) Element model
Figure 4.28. Telescope load case 1

Ø30 m
Ø35m azimuth rail

Ø50 m

4 m

12 m

elevation
structure mass

elevation structure
clearance envelope

azimuth axis

1000 kN

1000 kN
4000 kN

1000 kN instruments

4. Case Studies

 142

a) Problem specification

b) Skeleton

c) Element model
Figure 4.29. Telescope load case 2

1000 kN

1000 kN
4000 kN

1000 kN

4. Case Studies

 143

a) Problem specification

b) Skeleton

c) Element model
Figure 4.30. Telescope load case 3

4000 kN

4. Case Studies

 144

a) Case 1

b) Case 2

c) Case 3
Figure 4.31. Telescope topology after Refinement Phase

4. Case Studies

 145

Figure 4.32. Telescope Case 3 stability analysis results

The required connection stiffness has significant implications for overall design and cost.
Large optical telescope structures are typically installed at remote, high elevation sites,
where working conditions are difficult. Large telescope structures are generally pre-
assembled at the fabrication shop to verify the fit of the components. The rationale for
trial assembly is that fabrication errors can be corrected more economically at the shop
than in the field. For telescopes in the 30-meter class and larger, trial assembly is a very
significant part of the overall fabrication budget. In order to reduce costs, there is
pressure to reduce the amount of trial assembly required. Large telescope structures often
use tubular members with bolted flange connections, as shown in Figure 4.33. To ensure
predictable and repeatable performance of the structure, flange connections require
accurate alignment, resulting in relatively uniform contact pressure and bolt tension. To
verify the alignment of bolted flange connections, this type of connection requires trial
assembly, which often incorporates some final adjustment and fit-up.

Figure 4.33. Telescope bolted flange connection

0 – 0.1
0.1 – 0.2
0.2 – 0.3
0.3 – 0.4
0.4 – 0.5
0.5 – 0.6
0.6 – 0.7
0.7 – 0.8
0.8 – 0.9
0.9 – 1.0

Pinned

Rigid

4. Case Studies

 146

As an alternative to flange connections, bolted shear connections can be employed. Shear
connections allow a larger degree of field adjustment than flange connections, and may
be used strategically to reduce the size of the trial assembly units. Connection stiffness
requirements similar to those presented in Figure 4.32 may be used to guide the selection
of joint designs to reduce overall connection costs and trial assembly costs.

Figure 4.34. Telescope bolted shear connection

Multiple design configurations may be generated by modifying the parameters
controlling topology synthesis. Figure 4.35 shows a series of designs produced by
varying the threshold levels used in converting topology optimization output to a binary
image. Figure 4.36 shows a range of designs produced by varying the volume fraction
used in topology optimization. The topology optimization produces more “truss-like”
structures for low volume fractions and high thresholds. For higher volume fractions, the
members become thicker and bending stiffness becomes more significant. If the volume
fraction is too high, then voids are filled and large solid areas are produced. If the volume
fraction is too low or the threshold too high, then areas become disconnected and
relatively weak or unstable structures may result. For most of the examples presented
here, volume fractions between 0.1 and 0.3, and a threshold of 0.2 were used. For
practical topology optimization, the output generally includes a range of different
grayscale values. In the telescope example, the central portion of the structure contains
large, heavy members, while smaller members are required under the cantilevered
instrument platforms. When a single threshold value is used, the threshold value is
usually determined by the finer structural elements, represented by the lighter grayscale
values, in order to avoid losing such structures during binary conversion. The result is
that the darker elements become thicker when converted to binary format, and carry a
larger proportion of bending than the lighter elements.

Each design is processed using the techniques of this framework. Designers select the
most appropriate concepts for detail design work, based on both quantitative and
qualitative evaluation criteria.

4. Case Studies

 147

Threshold 0.4

Threshold 0.3

Threshold 0.2

Threshold 0.1

Threshold 0.02

Figure 4.35. Telescope configurations for threshold variation

4. Case Studies

 148

Volume fraction 0.06

Volume fraction 0.08

Volume fraction 0.10

Volume fraction 0.12

Figure 4.36. Telescope configurations for volume fraction variation

4. Case Studies

 149

4.5. Roof
In a case study in architecture, conceptual designs are generated for a roof system
covering the platforms of a train station. This example was inspired by the design of the
Lisbon Orient train station by the architect Calatrava, shown in Figure 4.37. The problem
is formulated as shown in Figure 4.38. The domain represents and area 16 meters wide by
20 meters high. A large architectural clearance area is specified above the station
platforms and rails. Another clearance area defines the architectural roof line. A linear
retained area is defined along the roof line, to provide support for roof cladding. The
design objective is to find a series of topologies that minimize the compliance for a given
structural weight.

Three load cases are studied, as presented in Figure 4.39 through 4.41. The load cases
correspond to gravity load (Figure 4.39), wind load (Figure 4.40) and a combination of
gravity, wind and seismic load (Figure 4.41). The critical load combination cannot be
definitively established until the detailed design stage. At the conceptual stage, the
critical combinations need to be estimated.

Figure 4.37. Lisbon Orient train station by architect Calatrava

As in the previous case study, the resulting topology is strongly dependent on the loading
configuration. The results show that the proposed framework can generate designs that
are architecturally varied and in some cases unexpected, and can be an extremely
powerful tool in supporting creative conceptual design work.

4. Case Studies

 150

Figure 4.38. Roof problem specification

20 m

16 m

2 m

12 m

4 m

R4.5 m

8 m

architectural
clearance

roof line
clearance

4. Case Studies

 151

a) Problem specification b) Topology optimization output

c) Skeleton d) Element model
Figure 4.39. Roof load case 1

4. Case Studies

 152

a) Problem specification b) Topology optimization output

c) Skeleton d) Element model
Figure 4.40. Roof load case 2

4. Case Studies

 153

a) Problem specification b) Topology optimization output

c) Skeleton d) Element model
Figure 4.41. Roof load case 3

4. Case Studies

 154

4.6. Inference
a) Input

c) Case base

b) Output

Figure 4.42. Visual inference example

Match

Transfer boundary
conditions

4. Case Studies

 155

To illustrate the potential application of visual case-based reasoning and visual inference,
a simple example is presented in Figure 4.42. A sample image of a tree (Figure 4.42.a.) is
provided as the input case, or target case. The goal is to retrieve a case from a design case
base that best matches the input case. Since two structures similar in appearance may
share similar design requirements, it may be possible to apply knowledge from the stored
case to the input case to assist in the conceptual design of the input case. A shown in
Figure 4.42.c., there are two source cases in the case base. The first case, the tree-like
roof structure from the previous case study, is more similar to the input case than the
second case, from the telescope example. Similarity is determined using the Object
Density Map, graph matching, or other methods. The most similar cases are retrieved
from the case base for the user to review and determine whether the cases are in fact
similar enough to assist in the design of the input case. Stored cases can include
information on loading and support conditions. As part of the retrieval process, boundary
conditions for the source cases may overlaid onto the input case to determine if
corresponding structure exists in the input case. Based on user judgment and the
similarity of structure at boundary condition locations, boundary conditions may be
transferred from the source case to the input case (Figure 4.42.b.). In this way, an
arbitrary image may be interpreted as a structure, and knowledge may be gained about
that image by inference from similar structures. This feature represents a powerful
technique for learning about structures, and efficiently leveraging information from a
database of stored experience for use in conceptual design.

Sketch input is processed in the same way as the image in Figure 4.42. This capability
supports the use of natural user interfaces, including pen-based input. Using visual case-
based reasoning, stored design cases similar to the sketch may be retrieved and used as
the basis for conceptual design. Also, probable boundary conditions and design
requirements can be inferred from target cases to assist in refining the design domain for
a new conceptual design case.

 156

5. Computer Application

This chapter describes a proof-of-concept computer application developed as part of this
research. An overview of the principles guiding the development of the application is
given first, followed by a description of system components and usage.

5.1. Design Principles
In order to focus research efforts on the concepts behind the framework, existing software
and algorithms were used where possible. The intent in developing the application was
not to produce a commercial program nor to develop a sophisticated user interface, but
simply to verify proposed concepts.

5.2. Components
The main module of the application, including the user interface, was developed in
Microsoft Visual C++ 2005 Express Edition, available as a free download. The main
module implements image processing functions, aided by an open source computer vision
library, OpenCV. The main module also calls MATLAB for image processing, linear
analysis, SQP optimization, and topology optimization.

5.2.1. Topology Optimization
Topology optimization was performed in MATLAB, with an algorithm developed by
[Sigmund, 2001]. The algorithm uses an optimality criteria method, and includes a mesh
independency filter.

5.2.2. Image Processing
Image processing functions from the OpenCV computer vision library were used.
OpenCV is open source software, originally developed by Intel, and now released under

5. Computer Application

 157

the terms of the BSD. The functions used from OpenCV were limited to image resizing
and scaling, thresholding, erosion and dilation, distance transformation, pixel access, and
file access. MATLAB was used for additional image processing.

5.2.3. Geometric Optimization
The Sequential Quadratic Programming algorithm from the MATLAB Optimization
Toolkit was used for geometric and stability optimization. Linear structural analysis in
MATLAB was done using the G2 Matrix Structural Analysis software [Fenves, 1999].

5.2.4. Stability Optimization
The author implemented a G2 element with variable end releases for stability
optimization.

5.2.5. Pattern Recognition
The author implemented image projections, the Object Density Map, and the Hough
transform method for structural similarity in MATLAB.

5.3. Usage

5.3.1. Synthesis Phase
The Synthesis Phase is initiated by defining the design domain. Figure 5.1 shows the
domain definition dialog box, which contains fields for the overall domain dimensions,
the subtracted and retained areas within the domain, and the boundary conditions. The
dialog box also contains the parameters controlling topology synthesis, such as the
volume fraction and convergence tolerance for topology optimization. For a simple
example as shown in Figure 5.1, the minimum input is the length and width of the
domain rectangle, a support boundary condition, and an applied load case. After the
domain parameters are entered in the dialog box, an image of the design domain is
displayed, as shown in Figure 5.2.

More complex design domains may be specified, as shown in Figure 5.3, which contains
a number of applied loads, support boundary conditions, and subtracted areas. This figure
shows the domain definition for the Telescope example in Chapter 4. The resulting
domain figure is displayed in Figure 5.4.

5. Computer Application

 158

Figure 5.1. Domain definition form

Figure 5.2. Domain image

5. Computer Application

 159

Figure 5.3. Domain definition for Telescope example

Figure 5.4. Domain image for Telescope example

5. Computer Application

 160

Topology optimization is initiated using the menu bar of the main application, as shown
in Figure 5.5.

Figure 5.5. Running topology optimization

Topology optimization is executed interactively, and the user can view the emergence of
structural form frame-by-frame. Some sample frame captures for a typical example are
given in Figure 5.6. The frames are displayed in a MATLAB window, and are produced
by subroutines developed by [Sigmund, 2001]. When the topology optimization routine
converges, the results are displayed in the main application window (Figure 5.7). Image
processing routines are applied automatically to the topology optimization output. The
output is converted to binary format (Figure 5.8), the skeleton is calculated, the skeleton
paths are traced and a vector skeleton is generated (Figure 5.9). Member widths are
calculated, and the resulting element model is created (Figure 5.10). These different
views or representations of the structure are accessible through a tree-like index, called
the navigation window. Views are displayed in the image window, so different views are
easily compared by scrolling vertically through the tree.

The main application supports multiple design configurations, as illustrated in Figure
5.11. In the navigation window, the top level items represent the design configuration,
and the lower level items access the different views of the design configuration. Figure
5.11 shows a navigation window with two configurations, with the binary image of the
second design configuration displayed in the image window.

Once the element model has been created, a finite element analysis may be performed.
The loads and boundary conditions are transferred from the domain definition to the
element model, and a finite element analysis is run. The resulting deflected shape is then
included as a view in the navigation window, as shown in Figure 5.12.

5. Computer Application

 161

Figure 5.6. Topology optimization frames

5. Computer Application

 162

Figure 5.7. Topology optimization output

Figure 5.8. Binary image of topology optimization output

navigation window image window

5. Computer Application

 163

Figure 5.9. Vector skeleton view

Figure 5.10. Element view

5. Computer Application

 164

Figure 5.11. Multiple design views

Figure 5.12. Linear analysis results

first configuration

second configuration

5. Computer Application

 165

5.3.2. Refinement Phase
As a first step in the Refinement Phase, geometric optimization is performed on the finite
element model. Geometric optimization is performed in MATLAB using Sequential
Quadratic Programming routines from the MATLAB Optimization Toolbox. An image of
the structure is updated with each optimization iteration, allowing the user to interactively
view the changes occurring in the structure. Node repositioning, node deletion and node
merging are all visible as they occur. Some sample frames from geometric optimization
are shown in Figure 5.13.

Figure 5.13. Geometric optimization frames

5. Computer Application

 166

Figure 5.14. Geometric optimization objective function history

Figure 5.15. Geometric optimization status

5. Computer Application

 167

At the completion of geometric optimization, the objective function value is plotted for
each iteration (Figure 5.14). Similarly, other key optimization results, such as deflection
and volume are plotted. The MATLAB window contains a log of the optimization
process, including information on node merging and deletions (Figure 5.15).

Stability optimization results are displayed in the MATLAB window, as shown in Figure
5.16. The results are summarized in a listing containing the release values ri at the ends of
each member (shown as Ri and Rj in Figure 5.16).

Figure 5.16. Stability optimization results

5.3.3. Case-based Reasoning Phase
A critical element in visual case-based reasoning is image matching, used for the retrieval
of similar images from the case base. Image matching using the Object Density Map
(ODM) is implemented in MATLAB, where the source and target images are represented
as 2D arrays. The source and target images are processed similarly. An output image is
created for each image by scaling the input images sufficiently to clearly show the
superimposed sampling grid and ODM grayscale values. The pixels in each grid square
are counted and the sum of the pixels is used to select the ODM grayscale values. The
grayscale values are plotted as triangular-shaped overlapping intervals.

5. Computer Application

 168

Figure 5.17. Object density map

5. Computer Application

 169

Image matching results are presented as shown in Figure 5.17. In this figure, the left and
right columns of images correspond to the source and target images. The three images
shown in sequence from top to bottom are 1) the input image, 2) the input image with
superimposed sampling grid and 3) the ODM output. Further details of the image
matching are provided in the MATLAB window (Figure 5.18), which displays a 2D array
showing the numerical difference between corresponding grid square values. Finally, the
MATLAB window displays the overall difference between images as a single, real-
valued number (shown as difMeasure in Figure 5.18).

Figure 5.18. Object density map results

 170

6. Conclusions

This chapter summarizes the main features of the proposed framework, discusses general
features and specific research contributions, comments on how well overall research
objectives were satisfied, and gives recommendations for further research.

This dissertation describes a computational framework for assisting the structural
designer during the conceptual design phase. A central idea in the framework is that the
form of structures holds valuable information which can support visual reasoning at
different levels of abstraction. The framework supports both the generation of new
concepts as well as the use of past designs. In generation mode, a top-down process is
first used to synthesize conceptual forms. Forms may be synthesized from a simple set of
inputs representing a plain block of material, or from a complex set of geometric
constraints representing an expressive shape. The form is then decomposed or
deconstructed into a set of primitives and their relationships, a representation that
supports high-level reasoning using techniques from linguistics and pattern recognition.
The decomposition into primitives mirrors the fabrication process, where pieces are
assembled to build a structure. The decomposition thus supports intelligent decision-
making about potential detail design, fabrication and assembly options at the conceptual
stage. For design reuse, the framework supports visual case-based reasoning as a means
for retrieving similar designs. A novel feature of the framework is that arbitrary images
of shapes may be interpreted as structures by using visual similarity to infer potential
boundary conditions, functionality, and behaviour for those shapes.

6.1. Main Features
The main features of the work are summarized in the following paragraphs.

Visual reasoning
The use of visual reasoning methods is central to this research. The objective of
conceptual structural design is to create forms. For human designers, this is a highly
visual and symbolic process, particularly in the early stages of conceptual design. Formal

6. Conclusions

 171

methods for reasoning with images, shapes and patterns are effective in a system that
provides computational support for conceptual design. Many existing conceptual design
systems reason with concepts represented by textual information or a limited set of
spatial relationships. The framework is specifically developed to leverage the information
content of structural forms in all phases.

Automation
The framework has been developed to assist the designer, rather than generate design
concepts in a fully automatic process. The most important creative force during
conceptual design is the human designer. The framework mirrors the approach of
experienced designers, who rely heavily on visual and symbolic information, and the
store of past experience.

Synthesis
Conceptual design synthesis is a creative process. A key objective is to synthesize new
designs that uniquely reflect the particular requirements of a given design problem.
Sometimes the results are unexpected, which is a characteristic of all creative processes.
The framework uses topology optimization methods to create new forms, sometimes
from a minimal set of inputs. The framework also supports the ability to respond to an
expressive and complex set of geometric constraints, which may arise in architectural
design, for example. Through case-based reasoning, the new concepts can be refined with
the benefit of experience from past design work.

Speed
Using a minimal amount of user input, the proposed methodology can be used to rapidly
transform problem requirements into a concept-level finite element model. The model is
developed using optimization techniques which simplify the geometry and guarantee
stability. The model can be used directly in detailed, domain specific optimization
procedures. Retrieval and reuse of past design information using case-based reasoning
methods also reduces the time to develop design concepts.

Abstraction
Viewing concepts at multiple levels of abstraction is important during conceptual design.
Conceptual design is characterized by incomplete and uncertain information, and detailed
evaluation methods may be inefficient and ineffective. Similarity between concepts
depends on the abstraction level at which they are viewed. Measures of similarity, which
are essential to inferential learning, are more effective when they handle different
abstraction levels. Multiple abstraction levels are featured throughout the framework.
Images are represented at different levels of resolution. Symbolic representations are
extracted from images through incremental changes in the abstraction level. Comparative
finite element analysis techniques are used, as opposed to methods seeking absolute
performance measures. Nondimensional or scale-invariant measures are used where
possible to compare designs.

6. Conclusions

 172

General optimization methods
The framework utilizes commercially-available mathematical optimization algorithms.
This reduces the time needed to program specific optimization algorithms, which may be
an important practical consideration. Optimization methods can readily be updated as
more efficient ones become available. Mathematical optimization algorithms require a
clear, concise, and general problem formulation, supporting independent verification and
future research.

Multiobjective optimization
The framework directly supports the development of practical and cost-effective design
concepts with multiobjective optimization. The framework emphasizes simplicity as a
design objective, and decomposes the structure into components in a way that mirrors the
fabrication process. Design, fabrication and assembly related constraints that apply to
components and connections can readily be incorporated.

6.2. Contributions
This research draws heavily on the work of others in the fields of structural engineering,
mechanical engineering, image processing and pattern recognition. Contributions to the
conceptual design of structures are summarized here.

General topology optimization for large-scale structures
This framework proposes a method for efficiently generating discrete topology during
conceptual structural design. The framework is particularly suited to the design and
fabrication of large-scale skeletal structures. Such structures consist of an assemblage of
discrete members, and connections between the members have a significant impact on the
overall performance and cost of the structure. The framework describes a general method
for generating topology for a wide range of potential applications using a minimal
amount of input. The system is useful for a wide range of structural applications,
including scientific instruments, industrial equipment supports, bridges and buildings.

A large number of computer applications for structural topology optimization are
described in the literature. Continuum topology optimization methods are used for the
design of plate, shell and solid structures. Truss and frame topology optimization
methods are used for the design of skeletal structures. For truss topology optimization,
one of the most general methods is the ground structure approach, which starts with a
large number of potential design configurations. This method is known to be
computationally demanding, particularly for a fully connected ground structure with fine
node spacing. In practical applications, the ground structure is therefore relatively coarse,
and must be carefully selected based on both domain- and problem-specific
considerations. Truss topology optimization is complicated by the fact that even small
changes in topology can lead to large differences in stiffness, limiting the use of classical
gradient-based optimization techniques. Global optimization methods such as
evolutionary computing have been found to be effective for discrete topology

6. Conclusions

 173

optimization. For design problems that are highly nonlinear or nonconvex, global
optimization methods may be the only practical solution technique. Methods that use
randomly generated ground structures to generate initial populations represent some of
the most flexible and efficient evolutionary computing techniques for conceptual
structural design. Such methods are particularly useful when the search space is complex
or poorly-understood, and they can be used as a tool to explore and gain a better
understanding of that space. If the search space contains structure that can be exploited
by special-purpose search techniques, the use of evolutionary methods is generally
computationally less efficient [De Jong, 1990] than those techniques. The framework
proposed here is such a special-purpose technique that takes advantage of the underlying
principles of engineering mechanics to efficiently generate design concepts.

Continuum topology optimization methods are efficient, well-established, and
commercially available. The major drawback is that the output of such methods is not
directly suitable for fabrication, particularly at scales larger than a few meters. Recent
research has tended to focus on applications to microtechnology, nanotechnology, and
material design. The framework presented in this research leverages the efficiency of
continuum optimization methods, and extends their range of applicability to large scale
structures. Although other research has been done in this area, the work proposed here
represents a wider approach that integrates topology generation with visual case-based
reasoning and visual inference methods. Also the this work proposes an efficient method
for generating stable skeletal structures.

The conceptual design of buildings has been extensively covered in the literature, given
the obvious economic implications. Computer systems that support conceptual building
design generally use geometric reasoners with limited capabilities. The reasoners are
restricted to the relatively simple spatial relationships found in economical buildings
based on a rectilinear grid system with conventional column and beam construction.
Although there are many potential applications for such systems, they are generally not
suitable for the free-form, curvilinear construction that is common in modern
architecture. This research proposes a system that is useful for a wide range of structural
applications.

Automated generation of stable skeletal structures
Although methods for verifying structural stability are well established, efficient methods
for generating stable structures are not. In truss topology optimization, stability is
generally ensured using heuristics and generate-and-test methods. A common heuristic is
to add sufficient members to ensure that all polygonal cells are triangular. Generate-and-
test refers to the generation of a large number of different topological configurations, and
filtering out the ones that are unstable. This work proposes an efficient method for
generating stable skeletal structures using classical mathematical optimization methods.
The stability optimization method presented here produces information that directly
supports the detailed analysis and design of economical connections between members.

6. Conclusions

 174

Visual case-based reasoning
Existing CBR systems for conceptual design use primarily textual attributes or simplified
geometric attributes. Although sophisticated text-based case retrieval methods have been
developed, these methods cannot fully represent the visual and graphical information that
is an important part of conceptual structural design. The framework described here
applies visual case-based reasoning techniques to conceptual structural design. Such
methods have been applied to mechanical engineering and other fields, but there are
apparently no existing applications to conceptual structural design.

Pattern recognition
Given the importance of visual and graphical information during conceptual design, it is
remarkable that few computational tools for conceptual structural design exploit this
information. In the fields of image processing and pattern recognition, there are well-
established, rigourous techniques for manipulating graphical information. Such
techniques have been applied for many years in areas such as medical imaging, remote
sensing, and maufacturing, but few of these techniques have been applied to conceptual
structural design. The framework presented here makes extensive use of these methods to
generate conceptual designs and reason with those designs at relatively high levels of
abstraction.

Structural similarity
This research introduces measures of similarity between structural design concepts using
image processing methods. The framework represents images of structures at various
levels of abstraction, which is key to identifying similarities between complex, dissimilar
forms. The methods used include a Hough transform approach, discrete projections, and
the Object Density Map.

Visual inference
Using structural similarity measures, the characteristics of one structural form can be
inferred from those of another. In the framework, images containing arbitrary forms can
be interpreted as structures. Similarity between the forms can be use to infer boundary
conditions, design constraints and functionality from other structures.

Sophisticated graphical user interfaces have been developed in fields such as architecture
and industrial design, where natural, pen-based applications simulate sketching, clay
modeling and other creative form-finding methods. Unfortunately, such applications do
not recognize content such as the meaning of elements and relationships between them.
Symbolic sketch recognition computer programs have been developed in architecture and
mechanical design. For mechanism design, there are diagrammatic reasoning systems that
convert unlabeled line drawings into a description of a physical system. The framework
described here is capable of providing high level descriptions of the functionality and
performance of structures described by a sketch. No similar applications in the field of
conceptual structural design are apparent in the literature.

6. Conclusions

 175

Using methods similar to those used to process sketches, the framework has the
capability to process photographs and other images of structures, and generate high level
descriptions of the probable functionality and a performance of the structures represented
in the images.

6.3. Objectives
The main objective of this research was to develop computational techniques to support
the conceptual design of structures by enabling the rapid generation and evaluation of
new designs, and by facilitating the reuse of past designs. The framework described here
accomplishes that objective. To generate or synthesize new designs, the framework uses a
combination of mathematical optimization, image processing and pattern recognition
methods. The reuse of past designs is implemented using visual case-based reasoning
methods. During synthesis, forms are initially created using topology optimization
methods; these forms are processed to extract high level information that supports further
structural optimization, including the assessment of stability and relative cost. The high
level information is used to describe, classify and store conceptual forms for case-based
reasoning. These techniques were implemented in a proof-of-concept computer
application, and several examples were presented that illustrate the effectiveness of the
proposed framework.

The specific objectives of this research have largely been accomplished, as discussed in
the following paragraphs.

Apply visual case-based reasoning to conceptual structural design
A central feature of visual case-based reasoning is the retrieval of cases on the basis of
the similarity of form. This research effectively implements a method for evaluating
similarity between structural concepts. Reuse and modification of past design cases uses
existing state-of-the-art case-based reasoning procedures.

Develop a framework for general conceptual structural design
Many existing conceptual design systems have been developed for buildings with
simplified geometry based on rectilinear grids. The framework proposed here is useful
for a wide range of structural applications, including scientific instruments, industrial
equipment supports, and geometrically complex bridges and buildings.

Incorporate natural user input in conceptual structural design
The framework proposed here accepts natural input in the form of sketches. The
framework uses sketches in two different modes. In the first mode, sketches are directly
converted to finite element models which are subsequently processed by the framework
to simplify form and ensure stability. In the second mode, sketches may be used to
retrieve structural designs with similar form from a database of design cases.
Simplification in the first mode produces a more abstract representation of the structure
that supports a more effective search for similar designs in the second mode.

6. Conclusions

 176

Apply visual inference to conceptual structural design
The research described here presents a method for determining visual similarity between
two structural design concepts. Evaluating similarity between concepts is a key
requirement for applying the process of inference.

Rapidly generate discrete topology in conceptual structural design
Case studies show that the framework presented here is capable of generating discrete
structural topology more efficiently than some of the most efficient existing methods.
The rapid generation of discrete topology is particularly important for the conceptual
design of large structures with consideration to practical fabrication methods.

Extend continuum topology optimization to large scale structures
The framework described here uses efficient, well-established, and commercially
available continuum topology optimization methods, which are currently more suited to
relatively small-scale fabrication. The framework successfully applies these methods to
large scale structures such as bridges, architectural structures, and large telescopes.

Establish an efficient method for developing a stable discrete structure
This work presents an efficient method for generating stable skeletal structures using
classical mathematical optimization methods.

Generate and reason with conceptual designs at a high level of abstraction
The framework employs techniques of image processing and pattern recognition to
manipulate graphical information at high levels of abstraction. The use of multiple
abstraction levels is emphasized throughout the description of the framework.

Revisiting the main hypothesis, that “patterns exist that relate structural forms to design
requirements”, this research has developed methods to process structural forms and
identify patterns. The secondary hypothesis, that “a formal language exists to describe
structural form,” is more ambitious, and verification requires further study using methods
like the ones described in this work.

6.4. Recommendations for Further Work
The framework described here introduces several novel concepts in the conceptual design
of structures. Further work is required to validate the overall framework in a practical,
multi-user setting. A proof-of-concept software application which validates the major
components of the framework, is also described here. Further work would be required to
develop the proof-of-concept application into a commercial application. Other
recommendations for further work are outlined in the following list.

6. Conclusions

 177

Visual case base of structural designs
A practical structural design case base containing visual information would be useful in
validating several aspects of the framework. A large database of design cases should be
used to evaluate the practical effectiveness of case retrieval. Also, such a case base
should be used to further test the inference of boundary conditions and other information
from stored cases to arbitrary images, such as sketches and photographs.

Sensitivity Analysis
Although some effort was made in this work to evaluate the sensitivity of the derived
forms to changes in input and control parameters, further sensitivity analysis is required.
Sensitivity analysis may be used to improve control parameter settings, and to assist the
user in efficiently exploring the input parameter space. Control parameters include the
binary conversion threshold for topology optimization grayscale output, the volume
fraction for topology optimization, and curve-fitting parameters for skeleton generation.
Sensitivity to changes in input parameters such as boundary conditions and loads should
be investigated further, with the possibility of developing qualitative and quantitative
measures to describe the sensitivity of form to input values. Further research could be
conducted into the sensitivity of performance to form. For example, is it possible to
understand the general conditions under which large changes in topology produce
relatively small changes in performance?

Automatic Control Parameters
Using the results of sensitivity analysis, schemes could be established for automatic
adjustment of control parameters such as the binary conversion threshold. For example,
the threshold could be automatically adjusted to reliably produce skeleton structures with
the expected overall characteristics, such as connectivity.

Extension to Three Dimensions
Both topology optimization and pattern recognition methods are well established in 3D.
Further work is required to extend the framework to accommodate 3D design, and to test
the performance with a range of practical problems.

Human Interaction
Further work is required to understand how effective such a framework would be in
supporting multiple human users during conceptual design. For example, architects,
owners and engineers participate in the conceptual design of buildings, and each
participant evaluates concepts using different quantitative and qualitative criteria. The
interactive navigation, exploration, and selection of designs from a set of retrieved cases
should be investigated further. A wide range of software and hardware tools have been
developed to support the intuitive browsing and organization of visual information, and
these may be used in conceptual structural design. Support for natural interfaces such as
pen-based input could be expanded. For example, intelligent sketch recognition could be
used to differentiate between structure, loads and support conditions in a schematic
sketch of a structure.

 178

7. Bibliography

Adeli, H., and Cheng, N.T., 1993. Integrated Genetic Algorithms for Optimisation of Space
Structures. Journal of Aerospace Engineering, 6(4):315-328.

AISC, 1989. Manual of Steel Construction: Allowable stress design, 9th ed., American Institute of
Steel Construction.

Alexander, C., 1964. Notes on the synthesis of form, Harvard University Press.

Arciszewski, T., Bloedorn, E., Michalski, R.S., Mustafa, M., Wnek, J., 1994. Machine learning of
design rules: methodology and case study. ASCE J. Comp. Civ. Engrg. 8(2):286-309.

Azid, I.A. and Kwan, A.S.K., 1999. A layout optimisation technique with displacement
constraint. In Topping and Kumar (eds.), Optimization and Control in Civil and Structural
Engineering, Civil-Comp UK 1999, 71-77.

Azid, I.A., Kwan, A.S.K. and Seetharamm, K.N., 2002. An evolutionary approach for layout
optimization of a three-dimensional truss. Structural and Multidisciplinary Optimization, 24(4):
333-337.

Bailey, S.F., and Smith, I.F., 1994. Case-based preliminary building design. ASCE Journal of
Computing in Civil Engineering, 8(4):454-467.

Baldock, R., Shea, K., Eley, D., 2005. Evolving optimized braced steel frameworks for tall
buildings using modified pattern search. ASCE Conference on Computing in Civil Engineering,
Cancun, Mexico.

Baldock, R., and Shea, K., 2006. Structural Topology Optimization of Braced Steel Frameworks
Using Genetic Programming. European Group for Intelligent Computing in Engineering, 13th
EG-ICE Workshop, 25-30 June 2006 Monte Verità, Ascona, Switzerland.

Barrow, H.G., and Popplestone, R.J., 1971. Relational descriptions in picture processing.
Machine Intelligence, 5:377-396.

Bibliography

 179

Bendsøe, M.P., and Kikuchi, N. 1988. Generating Optimal Topologies in Structural Design Using
a Homogenization Method. Computer Methods in Applied Mechanics and Engineering, 71:197-
224.

Bendsøe, M.P. 1989. Optimal Shape Design as a Material Distribution Problem. Structural
Optimization, 1:193-202.

Bendsøe, M.P., and Sigmund, O. 2004. Topology Optimization. Theory, Methods and
Applications, 2nd Ed., Springer-Verlag, Berlin.

Bentley, P. and Wakefield, J., 1996. The Evolution of Solid Object Design Using Genetic
Algorithms. Modern Heuristic Search Methods, 197-211.

Blake, R.E., 1994. Partitioning graph matching with constraints. Pattern Recognition, 27(3):439-
446.

Bloch, I., 1999. On fuzzy distances and their use in image processing under imprecision. Pattern
Recognition, 32(11):1873-1895.

Blum, H. 1967. A transformation for extracting new descriptions of shape. Models for the
Perception of Speech and Visual Form, MIT Press, 362-380.

Blum, H. 1973. Biological shape and visual science. Journal of Theoretical Biology, 38:205-287.

Börner, K., Pippig, E., Tammer, E.-C., Coulon, C.-H., 1996. Structural Similarity and Adaptation.
In Proceedings, Advances in case-based reasoning: Third European Workshop, EWCBR-96,
Lausanne, Switzerland, Nov. 14-16, 1996, I. Smith, B. Faltings, eds.

Boothroyd, G., Dewhurst, P., Knight, W., 1994. Product Design for Manufacture and Assembly,
Marcel Dekker.

Borgefors, G. 1986. Distance Transformations in Digital Images. Computer Vision, Graphics and
Image Processing, 34:344-371.

Bremicker, M., Eschenauer, H.A., Post, P.U., 1990. Optimization Procedure SAPOP – A General
Tool for Multicriteria Structural Designs. In Multicriteria Design Optimization: Procedures and
Applications, H. Eschenauer, J. Koski, A. Osyczka, eds., Springer-Verlag, Berlin.

Bremicker, B., Chirehdast, M., Kikuchi, N., Papalambros, P.Y., 1991. Integrated Topology and
Shape Optimization in Structural Design. Mechanics of Structures and Machines, 19(4):551-587.

Bunke, H., 1998. Error-tolerant graph matching: a formal framework and algorithms. In Advances
in Pattern Recognition, A. Amin, D. Dori, P. Pudil and H. Freeman, eds., LNCS 1451, Springer
Verlag, 1-14.

Calladine, R.B., 1978. Buckminster Fuller’s “Tensegrity” structures and Clark Maxwell’s rules
for the construction of stiff frames. International Journal of Solids and Structures, 14:161-172.

Bibliography

 180

Calladine, C.R., and Pellegrino, S., 1991. First-order infinitesimal mechanisms. International
Journal of Solids and Structures, 27(4):505-515.

Censor, Y., 1977. Pareto Optimality in Multiobjective Problems. Appl. Math. Optimiz., 4:41-59.

Cetin, O.L., and Saitou, K., 2004. Decomposition-Based Assembly Synthesis for Maximum
Structural Strength and Modularity. ASME Journal of Mechanical Design, 126:244-253.

Chapman, C., Saitou, K. and Jakiela, M., 1993. Genetic algorithms as an approach to
configuration and topology design. Advances in Design Automation, 65:485-498.

Chapman, C.D., Saitou, K., and Jakiela, M.J., 1994. Genetic algorithm as an approach to
configuration and topology design. Journal of Mechanical Design, 116, 1005-1012.

Chickermane, H., and Gea, H.C., 1997. Design of Multi-component Structural Systems for
Optimal Layout Topology and Joint Locations. Engineering with Computers, 13:235-243.

Chirehdast, M., and Papalambros, P., 1991. A note on automated detection of mobility of skeletal
structures. Tech. Report UM-MEAM-91-09, Department of Mechanical Engineering and Applied
Mechanics, The University of Michigan, Ann Arbor, MI.

Chirehdast, M., Linder, B., Yang, J., and Papalambros, P., 1992. Concurrent Engineering in
Optimal Structural Design. In Concurrent Engineering: Automation, Tools, and Techniques, A.
Kusiak, ed., John Wiley and Sons, New York.

Chirehdast, M., Gea, H.-C., Kikuchi, N., Papalambros, P.Y., 1994. Structural Configuration
Examples of an Integrated Optimal Design Process. ASME Journal of Mechanical Design,
116(4):997-1004.

Coello, C.A.C., 2006. Evolutionary Multi-Objective Optimization: A Historical View of the
Field. IEEE Computational Intelligence Magazine, February, pp. 28-36.

Connelly, R., and Whiteley, W., 1992. The stability of tensegrity frameworks. International
Journal of Space Structures 7(2):153-163.

Cook, S.A., 1971. The complexity of theorem-proving procedures. In Proc. 3rd Ann. ACM Symp.
on Theory of Computing, 151-158.

Corneil, D.G., and Gotlieb, C.C., 1970. An efficient algorithm for graph isomorphism. Journal of
the Association for Computing Machinery, 17:51-64.

Coulon, C.-H., and Steffens, R., 1994. Comparing fragments by their images. In Similarity
Concepts and Retrieval Methods, A. Voβ, ed., Fabel-Reports, Volume 13, GMD, Sankt Augustin,
36-44.

Cross, A.D.J., Wilson, R.C., Hancock, E.R., 1997. Inexact graph matching using genetic search.
Pattern Recognition, 30(6):953-970.

Bibliography

 181

Da Cunha, N.O., and Polak, E., 1967. Constrained Minimization Under Vector-valued Criteria in
Finite Dimensional Spaces. J. Math. Anal. Appl. 19:103-124.

Danielsson, P.-E. 1980. Euclidean Distance Mapping. Computer Graphics and Image Processing
14(3):227-248.

Dantzig, G.B., 1963. Linear Programming and Extensions. Princeton, NJ: Princeton University
Press.

Davies, T.H., 1968. An extension of Manolescu’s classification of planar kinematic chains and
mecanisms of mobility M>=1 using graph theory. Journal of Mechanisms, 3:87-100.

De Jong, K.A., 1990. Introduction to the second special issue on genetic algorithms. Machine
Learning, 5(4):351-353.

De Kleer, J., 1977. Multiple representations of knowledge in a mechanics problem-solver. In
Proceedings, Fifth International Joint Conference on Artificial Intelligence, Cambridge, MA.

De Kleer, J., 1979. The origin and resolution of ambiguities in causal arguments. In Proceedings,
Sixth International Joint Conference on Artificial Intelligence, Tokyo, Japan, 197-203.

de Silva Garza, A.G., Maher, M.L., 1996. The Adaptation of Structural System Designs using
Genetic Algorithms. Proc. Int. Conf. Information Technology in Civil and Structural Engineering
Design, Elsevier Science, New York, 189-196.

Deng, H., Kwan, A.S.K., 2005. Unified classification of stability of pin-jointed bar assemblies.
International Journal of Solids and Structures, 42 (15), 4393-4413.

di Ruberto, C., and Dempster, A., 2001. Attributed skeleton graphs using mathematical
morphology. Electronics Letters, 37(22):1325-1327.

Domeshek, E.A., and Kolodner, J.L., 1991. Toward a case-based aid for conceptual design.
International Journal of Expert Systems, 4(2):201-220.

Domeshek, E.A., and Kolodner, J.L., 1992. A Case-Based Design Aid for Architecture. In
Artificial Intelligence in Design '92, J. Gero, ed., Kluwer Academic Publishers, Boston, 497-516.

Dorn, W.S., Gomory, R.E., Greenberg, H.J., 1964. Automatic design of optimal structures, J. de
Mecanique, 3:25-52.

Dougherty, R.D. and Lotufo, R.A. 2003. Hands-on Morphological Image Processing, SPIE
Press, Bellingham, WA, USA.

Duc, B., Fischer, S., Bigun, J., 1999. Face authentification with Gabor information on deformable
graphs. IEEE Transactions on Image Processing, 8(4):504-516.

Duda, R.O., Hart, P.E., 1972. Use of the Hough Transformation to Detect Lines and Curves in
Pictures. Comm. ACM, 15:11–15.

Bibliography

 182

Eisfeld, M., and Scherer, R., 2003. Assisting conceptual design of building structures by an
interactive description logic based planner. Advanced Engineering Informatics, 17:41-57.

Eshera, M.A., and Fu, K.S., 1984. A graph distance measure for image analysis. IEEE Trans.
SMC, 14:398-408.

Eshera, M.A. and Fu, K.S., 1986. An image understanding system using attributed symbolic
representation and inexact graph matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 8(5):604-617.

Falkenhainer, B., Forbus, K.D., Gentner, D., 1990. The structure-mapping engine: Algorithm and
examples. Artificial Intelligence, 41:1-63.

Fan, K., Lu, J., Chen, G., 1998. A feature point clustering approach to the recognition of form
documents. Pattern Recognition, 31(9):1205-1220.

Farmer, S.-J., 1999. Probabilistic graph matching. Unpublished manuscript. University of York,
UK.

Fenves, S.J., Flemming, U., Hendrickson, C., Maher, M.L., Quadrel, R., Terk, M., Woodbury, R.,
1994. Concurrent computer-integrated building design, Prentice-Hall, Englewood Cliffs, NJ.

Fenves, S.J., Rivard, H., Gomez, N., Chiou, S.-C., 1995. Conceptual Structural Design in SEED.
Journal of Architectural Engineering, 1(4):179-186.

Fenves, G.L., 1999. G2 - Matrix Structural Analysis with Matlab, Version 0.1 [software].
University of California, Berkeley, CA.

Fenves, S.J., Rivard, H., Gomez, N., 2000. SEED-Config: a tool for conceptual structural design
in a collaborative building design environment, Artificial Intelligence in Engineering, 14:233-
247.

Ferguson, R.W. and Forbus, K.D., 2000. GeoRep: A flexible tool for spatial representation of line
drawings. In Proceedings, AAAI-2000, Austin, Texas, AAAI Press.

Firkins, A., and Hemphill, D., 1990. Fabrication cost of structural steelwork. Steel Construction,
Australian Institute of Steel Construction, 24(2):2-14.

Flemming and Woodbury, 1995. Software Environment to Support Early Phases in Building
Design (SEED): Overview. Journal of Architectural Engineering, 1(4):147-152.

Flemming, U., Aygen, Z., Tsai, J., 1996. A2: an architectural agent in a collaborative engineering
environment. Technical Report 48-38-96, Engineering Design Research Center, Carnegie Mellon
University, Pittsburgh.

Fletcher, R., 1987. Practical Methods of Optimization, John Wiley and Sons.

Bibliography

 183

Fleury, C., 1993. Mathematical programming methods for constrained optimization: Dual
methods. In Structural Optimization - Status and Promise, M.P. Kamat, ed., Vol. 150 of Progress
in Astronautics and Aeronautics, AIAA, 123-150.

Fogel, L.J., Owens, A.J., Walsh, M.J., 1966. Artificial Intelligence through Simulated
Evolution,Wiley, New York.

Foggia, P., Genna, R., Vento, M., 1999. Introducing generalized attributed relational graphs
(gargs) as prototypes of args. In Proceedings of the 2nd IAPR Workshop on Graph-based
Representations (GbR99), Haindorf, Austria.

Franti, P., Mednonogov, A., Kalviainen, H., 2000. Hough transform for rotation invariant
matching of line-drawing images. Proceedings, 15th International Conference on Pattern
Recognition, Pattern Recognition, 4(2):389-392.

Freeman, H., 1961. On encoding arbitrary geometric configurations. IRE Trans. Electron.
Comput. 10:260-268.

Fuller, R.B., 1975. Synergetics, 2nd Ed., Macmillan, NY.

Fuyama, H., Law, K., Krawinkler, H., 1997. An Interactive Computer-Assisted System for
Conceptual Structural Design of Steel Buildings. Computers and Structures, 63(4):647-662.

Garey, M.R. and Johnson, D.S., 1979. Computers and Intractibility: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Co., NY.

Gebhardt, F., Voβ, A., Gräther, W., Schmidt-Belz, B., 1997. Reasoning with Complex Cases,
Kluwer Academic Publishers.

Gembicki, F.W., 1974. Vector Optimization for Control with Performance and Parameter
Sensitivity Indices, PhD Thesis, Case Western Reserve Univ., Cleveland Ohio.

Gero, J.S., 1990. Design Prototypes: A Knowledge Representation Schema for Design, Artificial
Intelligence Magazine, 11(4):26-36.

Gero, J.S., 1996. Creativity, emergence and evolution in design, Knowledge-Based Systems,
Elsevier Science, 9:435-448.

Gero, J.S., 2000. Computational Models of Innovative and Creative Design Processes.
Technological Forecasting and Social Change, Elsevier Science, 64:183-196.

Gielingh, W., 1988. General AEC Reference Model. ISO TC 184/SC4/WG1 Document 3.2.2.1,
TNO Report BI-88-150.

Gill, P.E., Murray, W., Wright, M.H., 1981. Practical Optimization. Academic Press, London.

Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H., 1984. Procedures for Optimization
Problems with a Mixture of Bounds and General Linear Constraints. ACM Trans. Math. Software,
10:282-298.

Bibliography

 184

Gill, P.E., Murray, W., Wright, M.H., 1991. Numerical Linear Algebra and Optimization,
Volume 1, Addison Wesley.

Goel, A., 1989. Integration of case-based reasoning and model-based reasoning for adaptive
design problem solving, PhD Dissertation, Department of Computer and Information Science,
The Ohio State University.

Golabchi, M., 1997. Development of an expert system to select the appropriate structural systems
for large span structures. Proceedings of the ECCE Symposium, RIL, Finland, 248-252.

Goldberg, D.E. and Samtami, M.P., 1986. Engineering optimization via genetic algorithm. In:
Ninth Conference on Electronic Computation. New York, ASCE, pp. 471-482.

Grierson, D.E. and Pak, W.H., 1993. Optimal sizing, geometrical and topological design using a
genetic algorithm. Structural Optimization 6:151-159.

Grierson, D. and Khajehpour, S., 2002. Method for Conceptual Design applied to Office
Buildings. Journal of Computing in Civil Engineering, ASCE, 16(2):83-103.

Griffiths, D.R. and Miles, J.C., 2003. Determining the optimal cross-section of beams. Advanced
Engineering Informatics, 17:59-76.

Gross, M.D. and Do, E.Y.-L., 1995. Diagram query and image retrieval in design. In
Proceedings, Second International Conference on Image Processing, Crystal City, VA, IEEE
Computer Society Press.

Gross, M.D., 1996. The Electronic Cocktail Napkin - a computational environment for working
with design diagrams. Design Studies, 17:53-69.

Gruebler, M., 1885. Allgemeine eigenschaften der zwanglaufigen ebenen kinematischen ketten.
Civilingenieur, 29:167-200.

Hajela, P. and Lee, E. 1995 Genetic algorithms in truss topological optimization. Int. J. Solids
Structures, 32(22):3341-3357.

Hamda, H., Jouve, F., Lutton, E., Schoenauer, M., Sebag, M., 2002. Compact unstructured
representations for evolutionary topological optimum design. Applied Intelligence, 16:139-155.

Han, S.P., 1977. A Globally Convergent Method for Nonlinear Programming. J. Optimization
Theory and Applications, 22:297.

Hancock, E.R. and Kittler, J., 1990. Edge-labeling using dictionary-based relaxation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(2):165-181.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural Features for Image Classification.
IEEE Trans., Systems, Man, and Cybernetics, 3(6):610-621.

Bibliography

 185

Harty, N., and Danaher, M., 1994. A knowledge-based approach to preliminary design of
buildings. Proceedings of the Institution of Civil Engineers, 104:135-144.

Hauser, M., and Scherer, R.J., 1997. Application of intelligent CAD paradigms to preliminary
structural design. Journal of Artificial Intelligence in Engineering, 11(3):217-229.

Hofmeyer, H., Rutten, H., Fijneman, H., 2006. Interaction of spatial design and structural design,
an automated approach. Journal of Design Studies 27(4):423-524.

Holland, J.H., 1975. Adaptation in Natural and Artifical Systems. The University of Michigan
Press, Ann Arbor, MI.

Hopcroft, J.E., and Wong, J.K., 1974. Linear time algorithm for isomorphism of planar graphs.
Proc., 6th Annual ACM Symposium on Theory of Computing, 172-184.

Hough, P.V.C, 1959. Machine Analysis of Bubble Chamber Pictures. Proc., Int. Conf. High
Energy Accelerators and Instrumentation.

Hu, M.-K., 1962. Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory, 8(2):179-187.

Huet, B., Hancock, E.R. 1999. Shape recognition from large image libaries by inexact graph
matching. Pattern Recognition Letters, 20:1259-1269.

Jain, D., Krawinkler, H., Law, K., 1991. Logic-based Conceptual Structural Design of Steel
Office Buildings, Technical Report, Center for Integrated Facility Engineering, Stanford
University, CA.

Jenkins, W.M., 1991. Towards Structural Optimization via the Genetic Algorithm. Computers
and Structures 40(5):1321-1327.

Jensen, E.D., 1992. Topological structural design using genetic algorithms, PhD Dissertation,
Purdue University, Lafayette, IN.

Jurisica, I., and Glasgow, J., 2004. Applications of Case-Based Reasoning in Molecular Biology.
AI Magazine, 25(1):85-95.

Kicinger, R., Arciszewski, T., and De Jong, K., 2003. Conceptual design in structural
engineering: an evolutionary computation approach. Proceedings of the 2nd International
Specialty Conference on the Conceptual Approach to Structural Design, Milan, Italy, July 1-2,
2003. CI-Premier PTE Ltd., Singapore, 529-536.

Kicinger, R., 2004. Emergent engineering design: design creativity and optimality inspired by
nature. PhD Thesis, George Mason University.

Kicinger, R., Arciszewski, T., De Jong, K.A., 2005. Evolutionary computation and structural
design: a survey of the state of the art. Computers and Structures, 83(23-24):1943-1978.

Kirsch, U., 1993. Structural optimization: fundamentals and applications, Springer, New York.

Bibliography

 186

Kolodner, J., 1993. Case-Based Reasoning, Morgan Kaufmann, San Mateo, CA.

Koumousis, V.K. and Georgiou, P.G., 1994. Genetic Algorithms in Discrete Optimization of
Steel Truss Roofs. Computing in Civil Engineering, 8(3):309-325.

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge, MA.

Krishnamoorthy, C.S., and Rajeev, S., 2000. Artificial Intelligence and Expert Systems for
Engineers, CRC Press, Boca Raton.

Kuipers, B., 1984. Commonsense Reasoning about Causality: Deriving Behavior from Structure,
Artificial Intelligence, 24:169-203.

Kuznetsov, E.N., 1975. Statical-kinematic analysis of spatial systems. In Proc. Second Int. Conf.
on Space Structures, W.J. Supple, ed., University of Surrey, Guildford, 123-127.

Lam, L., Lee, S.W., Suen, C.Y. 1992. Thinning Methodologies - a Comprehensive Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(9):869-885.

Leclerq, P., 1999. Interpretive Tool for Architectural Sketches. In Visual and Spatial Reasoning
in Design, J. Gero, B. Tversky, eds., Key Centre of Design Computing and Cognition, University
of Sydney, 1-11.

Ledley, R.S., 1964. High-speed automatic analysis of biomedical pictures. Science,
146(3641):216-223.

Lee, H.J., and Yoon, Y.S., 1992. Detection of rigid structure in enumerating basic kinematic
chain by sequential removal of binary link string. JSME International Journal, 35(4):647-651.

Lee, R., and Liu, J., 1999. An automatic satellite interpretation of tropical cyclone patterns using
elastic graph matching dynamic link model. International Journal of Pattern Recognition and
Artificial Intelligence, 13(8):1251-1270.

Leung, M., Nevill, G.E., Jr., 1994. Genetic algorithms for preliminary 2-D structural design.
AIAA 2287-2291 (AIAA-94-1602-CP).

Lewinski, T., Zhou, M., Rozvany, G.I.N., 1994. Extended least-weight truss layouts. Part I:
cantilever with a horizontal axis of symmetry. Int. J. Mech. Sci. 36:375-398.

Liang, Q.Q., Xie, Y.M., Steven, G.P., 1999. Optimal selection of topologies for the minimum-
weight design of continuum structures with stress constraints. Journal of Mechanical Engineering
Science, Proceedings of the Institution of Mechanical Engineers, UK, Part C, 23(C8):755-762.

Liang, Q.Q., Xie, Y.M., Steven, G.P., 2000. Optimal topology design of bracing systems for
multistory steel frames. J. Struct. Engrg., 126(7):823-829.

Bibliography

 187

Lin, C.-Y. and Hajela, P., 1993. Genetic search strategies in large scale optimization. Proc. 34th
AIAA/ASME/ASCE/AHS/ASC SDM Conf., La Jolla, CA.

Lin, T.Y., and Stotesbury, S.D., 1988. Structural Concepts and Systems for Architects and
Engineers, 2nd Ed., Van Nostrand Reinhold, New York.

Louis, S.J., and Zhao, F., 1995. Domain Knowledge for Genetic Algorithms. International
Journal of Expert Systems, 8(3):195-212.

Macquorn Rankine, W.J., and Millar, W.J., 1868. Manual of Applied Mechanics. Charles Griffin
and Company, London.

Maher, M.L., Fenves, S.J., Garrett, J.H., 1988. Expert systems for structural design. In Expert
Systems in Construction and Structural Engineering, H. Adeli, ed., Chapman and Hall, New
York, NY.

Maher, M.L. and Zhang, D.M., 1993. CADSYN: A case-based design process model, AI EDAM,
7(2):97-110.

Maher, M.L., and Balachandran, M.B., 1994. Multimedia approach to case-based structural
design. Journal of Computing in Civil Engineering, 8(3):359-376.

Maher, M.L., and de Silva Garza, A.G., 1997. Case-Based Reasoning in Design. IEEE Expert,
12(2):34-41.

Martini, K., and Powell, G.H., 1990. Geometric modeling requirements for structural design.
Engineering with Computers 6:93-102.

Maxwell, J.C., 1864. On the calculation of equilibrium and stiffness of frames. Phil. Mag. 27 (4th
Series), 294-299.

Messmer, B.T. and Bunke, H., 1998. Error-correcting graph isomorphism using decision trees.
International Journal of Pattern Recognition and Artificial Intelligence, 12(6):721-742.

Meyer, S, 1995. A Description of the Structural Design of Tall Buildings through the Grammar
Paradigm, PhD Thesis, Department of Civil Engineering, Carnegie Institute of Technology,
Carnegie-Mellon University, Pittsburgh, PA.

Michell, A.G.M., 1904. The Limits of Economy in Frame Structures. Philosophical Magazine,
Series 6, Vol. 8, No. 47, 589-597.

Mijar, A.R., Swan C.C., Arora, J.S., Kosaka, I., 1998. Continuum topology optimization for
concept design of frame bracing systems. J. Struct. Engrg. 5:541-550.

Mlejnek, H.P., Schirrmacher, R. 1993. An Engineer's Approach to Optimal Material Distribution
and Shape Finding, Computer Methods in Applied Mechanics and Engineering, 106(1-2):1-26.

Moore, R.E., 1966. Interval Analysis, Prentice Hall.

Bibliography

 188

Mora, R., Bédard, C., Rivard, H., 2003. Integrated Computer-Based Approach for Conceptual
Structural Design. Proceedings of the Architectural Engineering 2003 Conference, "Building
Integration Solutions", ASCE, Mingsheng Lui and Kevin M. Parfitt, eds., September 17-20, 2003,
Austin, Texas, 97-101.

Mora, R., Rivard, H., Bédard, C., 2005. From Architectural Sketch to Feasible System Solution,
Proceedings of 2005 ASCE International Conference on Computing in Civil Engineering.

Mora, R., Bédard, C., Rivard, H., 2008. A geometric modeling framework for conceptual
structural design from early digital architectural models, Advanced Engineering Informatics,
22:254-270.

Murawski, K., Arciszewski, T., De Jong, K., 2000. Evolutionary computation in structural design.
Engineering with Computers, 16:275-286.

Nakanishi, Y. and Nakagiri, S. 1996. Optimization of frame topology using boundary cycle and
genetic algorithms. JSME International Journal, Series A, 39:279-285.

Nakanishi, Y. and Nakagiri, S. 1997. Structural optimization under topological constraint
represented by homology groups. JSME International Journal, Series A, 40:219-227.

Navinchandra, D., Sycara, K., Narasimhan, S., 1991. Behavioral Synthesis in CADET, a case-
based design tool. In Proceedings of the Seventh IEEE Conference on AI Applications, Miami.
IEEE Press.

Norton, R.L., 2003. Design of Machinery: An Introduction to the Synthesis and Analysis of
Mechanisms and Machines, 3rd. Ed. McGraw-Hill.

Olhoff, N., 1970. Optimal design of vibrating circular plates. Int. J. Solids Struct, 6:139-156.

Osherson, D.N., and Smith, E.E., 1981. On the adequacy of prototype theory as a theory of
concepts. Cognition 9(1):35-38.

Packer, J.A., and Henderson, J.E., 2003. Hollow Structural Sections, Connections and Trusses,
Second Ed., Canadian Institute of Steel Construction.

Pavlidis, T., 1977. Structural Pattern Recognition, Springer, New York.

Pedersen, P. 1992. Topology optimization of three-dimensional trusses. In Topology Designs of
Structures, NATO ASI Series – NATO Advanced Research Workshop, Kluwer Academic
Publishers, 19-30.

Pellegrino, S., Calladine, C.R., 1986. Matrix analysis of statically and kinematically
indeterminate frameworks. International Journal of Solids and Structures, 22(4):409-428.

Pellegrino, S., 1990. Analysis of prestressed mechanisms. International Journal of Solids and
Structures, 26(12):1329-1350.

Bibliography

 189

Periaux, J., Winter, G. (eds.), 1995. Genetic algorithms in engineering and computer science.
Chichester, UK, John Wiley.

Plaza, E., and López de Mántaras, R., 1990. A case-based apprentice that learns from fuzzy
examples. In Methodologies for Intelligent Systems, Z. Ras, M. Zemankova, M.L. Emrich, eds.,
North Holland, 420-427.

Powell, M.J.D., 1978. A Fast Algorithm for Nonlinearly Constrained Optimization Calculations.
Numerical Analysis, G.A. Watson, ed., Lecture Notes in Mathematics, Vol. 630, Springer-Verlag.

Powell, M.J.D., 1983. Variable Metric Methods for Constrained Optimization. Mathematical
Programming: The State of the Art, A. Bachem, M. Grotschel, B. Korte, Eds., Springer-Verlag,
288-311.

Purcell, A.T. and Gero, J.S., 1998. Drawings and the design process. Design Studies, 19:389-430.

Rafiq, M.Y., Matthews, J.D., Bullock, G.N., 2003. Conceptual Building Design – Evolutionary
Approach, Journal of Computing in Civil Engineering, ASCE, 17(3):150-158.

Rafiq, Y., Beck, M., Packham, I, Denhan, S., 2005. Evolutionary Computation and Visualisation
as Decision Support Tools for Conceptual Building Design. Innovation in Civil and Structural
Engineering, B.H.V. Topping (ed.), Saxe-Coburg Publications, pp. 49-74.

Rajan, S.D., 1995. Sizing, shape and topology design optimization of trusses using genetic
algorithm. Journal of Structural Engineering, 121, 1480-1487.

Rajeev, S., and Krishnamoorthy, C.S., 1992. Discrete Optimization of Structures Using Genetic
Algorithms. The Structural Engineer, 118(5):418-422.

Rajeev, S. and Krishnamoorthy, C.S., 1997. Genetic algorithms-based methodologies for design
optimization of trusses. Journal of Structural Engineering, 123(3):350-358.

Rasmussen, J., and Olhoff, N., 1992. Status and Promise of Optimum Design System in
Denmark. Structural Optimization – Status and Promise, M. Kamat, ed.

Ravi, M., and Bédard, C., 1993. Approximate methods of structural analysis and design in a
knowledge-based environment. Artificial Intelligence in Engineering, 8(4):271-275.

Rechenberg, I., 1965. Cybernetic Solution Path of an Experimental Problem. Report No. 1122,
Royal Aircraft Establishment, Farnborough, Hampshire, UK.

Reddy, G., and Cagan, J. 1995. An improved shape annealing algorithm for truss topology. ASME
Journal of Mechanical Design, 117, 2A, 315-321.

Rivard, H., and Fenves, S.J., 2000a. A Representation for Conceptual Design of Buildings.
Journal of Computing in Civil Engineering, ASCE, 14(3):151-159.

Bibliography

 190

Rivard, H., and Fenves, S.J., 2000b. SEED-Config: A Case-based Reasoning System for
Conceptual Building Design. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 14:415-430.

Rosenfeld, A., 1969. Picture Processing by Computer, Computer Science and Applied
Mathematics, Springer, Berlin, 196p.

Rosenman, M.A., and Gero, J.S., 1996. Modelling multiple views of design objects in a
collaborative CAD environment. Computer-Aided Design, 28(3):193-205.

Rozvany, G.I.N., Olhoff, N., Bendsøe, M.P., Ong, T.G., Szeto, W.T., 1985. Least-weight design
of perforated elastic plates. DCAMM Report No. 306. Technical University of Denmark, Lyngby.

Rozvay, G.I.N., 1989. Structural design via optimality criteria, Kluwer, Dordrecht.

Rozvany, G.I.N., 1997. Aims, Scope, Basic Concepts and Methods of Topology Optimization. In
Topology Optimization in Structural Mechanics, G.I.N. Rozvany, ed., Springer-Verlag, Vienna.

Rozvany, G.I.N., 2009. A critical review of established methods of structural topology
optimization. Struct. Multidisc. Optim., 37(3):217-237.

Rozvany, G.I.N., and Zhou, M., 1991. The COC Algorithm, Part I: Cross-section Optimization or
Sizing. Computer methods in Applied Mechanics and Engineering, 89:281-308.

Russ, J.C. 1999. The Image Processing Handbook, Third Ed., CRC Press.

Rutovitz, D., 1970. Centromere finding: Some shape descriptors for small chromosome outlines.
Machine Intelligence, 5:435-562.

Sacks, R., and Warszawski, A., 1997. A project model for an automated building system: design
and planning phases. Journal of Automation in Construction, 7(1):21-34.

Sandgren, E., Jensen, E.D., and Welton, J., 1990. Topological design of structural components
using genetic optimization methods. In Sensitivity Analysis and Optimization with Numerical
Methods, AMD Vol. 115, Proceedings of the Winter Annual Meeting of the American Society of
Mechanical Engineers, Dallas, TX, 31-43.

Sauce, R., Martini, K., Powell, G.H., 1992. Object-oriented approaches for integrated engineering
design systems. ASCE Journal of Computing in Civil Engineering, 6(3):248-265.

Schoenauer, M., 1996. Shape representations and evolution schemes. In L.J. Fogel, P.J. Angeline
and T. Bäck (eds.), Proceedings of the Fifth Annual Conference on Evolutionary Programming,
San Diego, CA, USA.

Serra, J., 1982. Image Analysis and Mathematical Morphology, Academic Press, London, UK.

Shafer, G., 1976. A mathematical theory of evidence, Princeton University Press, Princeton, NJ.

Bibliography

 191

Shapiro, L.G., and Haralick, M. 1981. Structural descriptions and inexact matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 3(5):504-519.

Shea, K., and Cagan, J., 1999. The Design of Novel Roof Trusses with Shape Annealing:
Assessing the Ability of a Computational Method in Aiding Structural Designers with Varying
Design Intent. Design Studies, 20:3-23.

Shen, Y.C., Bonissone, P.P., Feeser, L.J., 2001. Conceptual Modeling for Design Formulation.
Engineering with Computers, 17:95-111.

Sherman, J., and Morrison, W.J., 1949. Adjustments of an inverse matrix corresponding to
changes in elements of a given column or a given row of the original matrix. Ann. Math. Statist.,
20:621.

Shrestha, S.M., Ghaboussi, J., 1998. Evolution of optimum structures using genetic algorithm. J.
Struct. Engrg. ASCE, 124(11):1331-8.

Sigmund, O., 1997. On the design of compliant mechanisms using topology optimization.
Mechanics of Structures and Machines, 25(4):493-524.

Sigmund, O., 2001. A 99 line topology optimization code written in MATLAB. Structural and
Multidisciplinary Optimization, 21:120-127.

Simon, H.A., 1969. The Sciences of the Artificial, Cambridge, MIT.

Sisk, G, Miles, J., Moore, C., 2003. Designer Centered Development of GA-Based DSS for
Conceptual Design of Buildings. Journal of Computing in Civil Engineering, ASCE, 17(3):159-
166.

Soh, C.K. and Yang, Y., 2001. Genetic programming-based approach for structural optimization.
Journal of Computing in Civil Engineering, 31, 31-37.

Soibelman, L., and Peña-Mora, F., 2003. Distributed Multi-Reasoning Mechanism to Support
Conceptual Structural Design. Journal of Structural Engineering, ASCE, 126(6):733-742.

Sriram, D., Logcher, R.D., Groleau, N., Cherneff, J., 1992. DICE: an object-oriented
programming environment for cooperative engineering design. In Artificial Intelligence in
Engineering Design, D. Sriram, C. Tong, ed., Academic Press, New York.

Sriram, D., 2006. Artificial intelligence in engineering: Personal reflections. Advanced
Engineering Informatics, Elsevier Science, 20:3-5.

Svanberg, K., 1982. Optimal geometry in truss design. In Foundations of Structural
Optimization: A Unified Approach, A.J. Morris, ed., Wiley, New York, 513-544.

Svanberg, K., 1987. The method of moving asymptotes - A new method for structural
optimization. International Journal for Numerical Methods in Engineering, 24:359-373.

Bibliography

 192

Svanberg, K., 1994. Global convergence of the stress ratio method for truss sizing. Struct. Optim.,
8:60-68.

Szeto, K., Roberts, S., MacMynowski, D., Sirota, M., Stepp, L., Gedig, M., Lagally, C., Tsang,
D., 2008. TMT Telescope Structure System: Design and Development Progress Report. Proc. of
SPIE, 7012-88.

Taylor, J.E., Rossow, M.P. 1977. Optimal truss design based on an algorithm using optimality
criteria. Int. J. Solids Struct. 13, 913-923.

Thoresen, S., 2007. An Efficient Solution to Inexact Graph Matching with Application to
Computer Vision. Doctoral thesis, Department of Computer and Information Science, Norwegian
University of Science and Technology, Trondheim, Norway.

Topping, B.H.V., 1983. Shape Optimization of Skeletal Structures: A Review. Journal of
Structural Engineering, 109(8):1933-1951.

Ullmann, J.R., 1976. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31-42.

Vassart, N., Laporte, R., Motro, R., 2000. Determination of mechanism’s order for kinematically
and statically indetermined systems. International Journal of Solids and Structures, 37, 3807-
3839.

Vitruvius, 1999. Vitruvius: Ten Books on Architecture. Translated by I.D. Rowland with
commentary by T.N. Howe, I.D. Rowland, and M.J. Dewar. Cambridge University Press,
Cambridge.

Watson, I., and Perera, S., 1997. Case-based design: A review and analysis of building design
applications. AI-EDAM 11(1):59-87.

Winston, P.H., 1975. Learning structural descriptions from examples. In The Psychology of
Computer Vision, P.H. Winston, ed., McGraw-Hill, New York, 157-209.

Wolfram, 2009. Wolfram|Alpha computational knowledge engine, www.wolframalpha.com.

Wood, J. 1996. Invariant pattern recognition: A review. Pattern Recognition, 29(2):1-17.

Woodbury, M., 1950. Inverting modified matrices. Statistical Research Group, Princeton
University, MR 42, Princeton, NJ.

Woodbury, R. and Chang, T.-W., 1995. Massing and enclosure design with SEED-Config.
Journal of Architectural Engineering, ASCE, 1(4):170-178.

Xie, Y.M. and Steven, G.P., 1992. Shape and layout optimization via an evolutionary procedure.
In Proceedings of the International Conference on Computational Engineering Science, Hong
Kong University of Science and Technology, Hong Kong.

Yaner, P.W., and Goel, A.K., 2003. Visual Case-Based Reasoning I: Memory and Retrieval.
Proceedings of the First Indian International Conference on Artificial Intelligence.

Bibliography

 193

Yaner, P.W., and Goel, A.K., 2007. Visual Analogies at Multiple Levels of Abstraction.
Proceedings, 29th Annual Meeting of the Cognitive Science Society, CogSci-07.

Yang, Y. and Soh, C.K., 2002. Automated optimum design of structures using genetic
programming. Computers and Structures 80(18-19):1537-1546.

Yetis, F.A., and Saitou, K., 2002. Decomposition-Based Assembly Synthesis Based on Structural
Considerations. Journal of Mechanical Design, 124:593-601.

Zadeh, L.A., 1963. Optimality and Nonscalar-valued Performance Criteria. IEEE Trans. Automat.
Contr. Vol. AC-8, p.1.

Zhang, Y.Y. 1997. Redundancy of parallel thinning. Pattern Recognition Letters, 18:27-35.

Zhao, F., and Maher, M.L., 1988. Using analogical reasoning to design buildings. Engineering
with Computers, 4(3):107-119.

Zhou, M., Rozvany, G.I.N., 2001. On the validity of ESO type methods in topology optimization.
Struct. Multidisp. Optim. 21(1):80-83.

