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ABSTRACT 

Grouting has been used over the past two centuries to increase the strength, decrease the 

deformation and reduce the permeability of soils or fractured rocks. Due to its significance in 

engineering and science predicting grout effectiveness in fractured rocks is of interest. There are 

different approaches to estimate the effectiveness of grouting, one of which is numerical 

modeling. Numerical models can simulate distribution of grout inside fractures by which the 

effectiveness of grout can be estimated. Few numerical studies have been carried out to model 

grout penetration in fractured rocks. Due to complexities of modeling grout and fracture most of 

these studies have either used simplifying assumptions or been bound to small sizes of fractures, 

both resulting in unrealistic simulations. 

 

The current work aims to eliminates some of the simplifying assumptions and develop a model 

that can improve the reliability of the results. In reality grouts are believed to behave as a 

Bingham fluid, but many models do not consider a full Bingham fluid flow solution due to its 

complexity. Also, real fractures have rough surfaces with randomly varying apertures. However, 

some models consider fractures as planes with two parallel sides and a constant aperture. In the 

current work the Bingham fluid flow equation are solved numerically over a stochastically 

varying aperture fracture. To simplify the equations and decrease the computational time the 

current model substitutes two-dimensional elements by one-dimensional pipes with equivalent 

properties.  The model is capable of simulating the time penetration of grout in a mesh of 

fracture over a rather long period of time. The results of the model can be used to predict the 

grout penetration for different conditions of fractures or grout. 
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1 INTRODUCTION 

1.1 Background to Grouting 

Grouting has been used for more than two centuries to improve the engineering 

properties of soils and rocks. Grouting has three main applications: 

 

Increasing strength: Strength improvement of the soil or rock is one of the most popular 

applications of grouting. A typical example for this purpose is grout injection under 

structure foundations to mitigate bearing failure.  

 

Decreasing deformation: Grouting is often performed to reduce soil and rock 

deformation, hence minimizing damage to adjacent structures.  Grouting immediately 

before tunnel boring in the vicinity of other tunnels or structures is a good example of this 

application.  

 

Reducing permeability: The other important use of grouting in both soils and rocks, and 

likely the most widespread use of grouting, is to reduce the permeability of the formation. 

 

Depending on the purpose of grouting and also conditions of soil or rock, the properties 

of grout such as viscosity, or setting time might be varied. These properties can be 

adjusted by changing the amount and/or type of the ingredients in grout mixture. 
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In a highly fractured and conductive rock undesirable fluid flow (typically water for 

geotechnical applications) is a common engineering problem. Typical examples of these 

unwanted flows include water flow under dams and leakage from oil wells. One method 

of reducing these flows is to seal the fractures with grout.  

 

How grout distributes itself inside individual rock fractures during injection is critical to 

grouting: the effectiveness of any grouting project is related to whether the grout forms a 

continuous sealing layer in the rock. Methods to estimate the grout effectiveness in a 

medium is non-trivial, and there are a range of approaches used for this purpose, 

including pre/post grouting tests and modeling.  

 

One of the most meaningful parameters in measuring the effectiveness of grouting is the 

penetration length of grout during the grouting process. However, the per/post grouting 

tests are not capable of accurate estimations of this key parameter. Numerical simulations 

can predict the grout penetration in different directions under different conditions of 

grouting. Depending on the input parameters of the model, the properties of grout or the 

media in which grout is injected can be set to required values. Due to their capabilities, 

numerical models are the best choice in simulating the grout distribution in fractured 

rocks. 

 

1.2 Objectives of the Research 

The primary aim of this study is to develop a code in order to determine the time 

dependent penetration distribution of a Bingham grout injected into a variable aperture 
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fracture. The ability to more accurately predict the grout spread in a fracture network is of 

great importance: it not only helps the grouting engineer to choose appropriate grout 

properties but also determines the effectiveness of grouting. The grout flow studies, 

including numerical and experimental studies, involve gaining realistic understandings of 

properties of the fluid, geometrical conditions of the fracture and the behavior of the flow 

inside the fracture. In this study the complexities of these components are combined to 

achieve a more realistic modeling of the grout flow.     

 

In practice grout penetration is mostly estimated by experimental methods such as 

pre/post grouting tests. Also, a few numerical models have been developed to study the 

penetration of grout inside fractured rocks. However, rheological properties of grout and 

geometric characteristic of fractures, the two factors that significantly derive the time 

variation and distribution of grout flow inside the fracture, provide a challenge for 

experimental setups and simplifications required for empirical estimates. Most of the 

existing numerical methods to our knowledge are not capable of simultaneous 

consideration of both rheological properties of grout and geometric features of fracture.  

The few available numerical studies that take both complex fluid properties and fracture 

stochastic characteristics into account have been restricted to small fracture sizes and 

short grouting periods due to computational resources limitations. The aim of the current 

study is to develop a numerical model which realistically represents the rheological 

properties of cementitious grout, and incorporates stochastic aperture distribution of a 

fracture.  The model should also be able to simulate a larger number of elements 
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compared to previous studies over a long enough period of time for grout to reach a large 

area of fracture.   

To numerically study the evolution of grout, a square mesh of one-dimensional channels 

is considered representing the fracture surface. Grout is injected from a certain point in 

the centre of the mesh. The choice of one-dimensional channels was adopted as it saves a 

considerable amount of computational time, making the model capable of simulating 

grouting in larger fractures over longer periods of time. The equations of grout flow 

networks are solved as an initial value problem knowing the injection flow rate at the 

borehole.  

 

The specific objectives of this study to consider the Bingham behavior of grout and 

complex geometrical properties of fracture simultaneously require some additional 

treatments. The behavior of the grouts especially the cementitious grout as a Bingham 

fluid is not as simple as a Newtonian fluid like water. Therefore, the equations of flow 

were derived to consider the complex behavior of grout. The variation of aperture over 

fracture surface is considered to be stochastic using spatially varying field, produced by a 

random generator.  

 

As grouting continues, grout flow extends to more elements in the network. Solution of 

the equations gives the penetration length for each element at any time. Having the 

penetration distribution and pressure of grout at each time step in the fracture, the grout 

effectiveness can be predicted. Grout spread under different grouting conditions can be 

studied by changing the input properties of the model. Therefore, the model can be used 
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to find the suitable properties of grout for defined penetration length in any specific 

fracture condition.  

 

1.3 Overview of the Research 

The present work includes 6 chapters, organized as follows. Modeling of grout flow in 

fractured rock requires an insight into three main areas: grout rheology, fracture 

geometrical properties and the grout flow in the fracture. Chapter  2 contains a review of 

relevant literature.  After a general background on grouting, an introduction to the 

properties of grout and fractures (essential to model the grout fracture penetration) is 

presented. Prior to development of numerical models, all grouting techniques were 

developed based on the knowledge gained from experimental and practical studies. 

Chapter  2 also gives a review of these studies including the grouting methods, materials 

and controlling experiments. The details on the theory and equations used to model the 

grout flow is given in Chapter  3. This chapter also presents the derivation of flow 

equations for a Bingham fluid. Chapter  4 focuses on the numerical modeling of the 

grouting in a single fracture. This chapter explains the methodology and algorithm 

adopted to model the grout penetration in a fracture. Verification cases to check the 

correctness of the numerical results are presented in  5 . 

 

Chapter  6 presents some sample simulations and compares the results of the code.  

 

Finally, the conclusions from the current work are presented in Chapter  7. 
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2 OVERVEIW OF GROUTING  

2.1 Grouting History 

Injecting a cementitious material in the soil for the purpose of improvement is believed to 

have first been used by the Frenchman Charles Berigny in 1802. Beringy used slurry to 

fill up the caves in the foundation of a sluice to increase the foundation strength and 

retrieve its bearing capacity. The settlement damaged foundation which was built on a 

layer of alluvial soils needed to be sealed to stabilize it. The first known grouting work 

sketch is from this job, and is shown in Figure  2.1 (Kutzner, 1996). 

  

 

Figure  2.1: Charles Beringy, about 1810 (Grouting Procedure) with a River Seine bridge, 

Sevres, France (modified from Kutzner, 1996). 
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Between 1802 and 1809 Berigny used grouting in construction of the harbor basin at 

Dieppe to decrease the permeability and reduce the inflow. This was the first time that 

grouting was used for construction purposes and not repair (Verfel, 1989).  

 

Grouting applications became much more popular after the development of hydraulic 

binders and the invention of Portland cement in 1821 (Kutzner, 1996). Before the 

invention of the Portland cement Pozzolana cement was mainly used, especially for 

works with water contact. Pozzolana cement had a much lower strength than Portland, 

which limited its application (Hall, 1976). Since the development of Portland cement the 

injection of cementitious grout has been widely used in the construction of many 

structures. In 1837, Rayal first used grouting to repair a masonry structure. In the years 

1856 to 1858 Kinipple experimented with the idea of strengthening masonry by filling 

the cracks with grout (Verfel, 1989). The first recorded use of grout in underground 

construction can be traced back to 1864, when Barlow filled the voids left by the tail of a 

tunnel shield with grout (Henn, 1996).  

 

The beginning of the rock grouting in United States dates back to 1893 when the rock 

joints at New Croton Dam were systematically sealed by grout injection. In this project 

there was a design for the arrangement and depth of the boreholes across the entire 

foundation. In this project grouting was used to seal fractures and decrease the uplift 

pressure under the dam (Verfel, 1989; Henn, 1996; Littlejohn, 2003). 
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Further developments of Grouting techniques were achieved between years 1900 and 

1920 by the improvement of grouting equipment. The grouting techniques introduced in 

Section  2.2  are basically defined by controlling the injection pressure, and grout 

properties like the fineness or viscosity of the grout and filtration of excess water from 

the grout.  

 

After 1920 a series of inventions had a considerable effect on the development of 

grouting. One of these significant forward steps was the invention of chemical grout 

materials by Joosten in 1926. Joosten injected highly concentrated sodium silicate and 

calcium chloride into gravel and coarse sands to form an impermeable sandstone. After 

World War II Chemical grouts with very low viscosity were developed to stabilize the 

soil under the damaged structures. Chemical grouts allow for stabilization of soils down 

to fine sand with a small content of silt. Another significant advance was made after the 

Second World War when the wooden pumps where replaced by modern high pressure 

hydraulic pumps. These new pumps not only enabled the use of higher pressures for 

grouting, but also allowed the grout pressure and discharge to be controlled much more 

precisely (Kutzner, 1996). 

 

Much of the grouting development in design, equipment and material are paralleled by 

advances in the design and building of dam foundations. One example of these advances 

is the development of arch dams. Since this kind of dams requires stronger foundation 

and abutments, more effective grouting over a larger area is required. In fact to have a 

stronger foundation grout should cover larger depths and penetrates more cracks. This 
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requires stronger apparatus with larger grouting pressures and also more penetrable 

grouting material (for more details on this subject see Jansen, 1988). Currently grouting 

is used for different purposes by employing different practical techniques.  

 

2.2 Grouting Techniques 

This section provides a brief introduction of some widely used grouting methods. 

Selection of the grouting technique depends on the properties of the soil or rock. In soils 

the preference for the grouting method is defined by factors like soil gradation, ground 

water level, depth of the structure below the surface, and surface or subsurface access for 

the grouting equipment. In rocks the same criteria, except the soil gradation, are valid and 

also the geology of the rock might determine which approach to use. 

 

2.2.1 Grouting in Soil 

This section describes different types of grouting in soils based on their methodology. 

The methodologies are varied by changing the grout properties, injection pressure, or the 

method of applying grout to the soil. 

 

Jet Grouting:  

Jet grouting, also called replacement grouting, is a relatively new technique building 

upon an idea proposed in Japan in 1965 (Xanthakos et al., 1994)). It is generally accepted 

that after early 1980’s this method became economic and practical. Jet grouting 
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developed in response to the need to treat soils ranging from gravels to clays to random 

fills in areas where environmental controls restricted the available soil improvement 

options. Right now it is arguably the fastest growing method of ground improvement. 

 

In this method the grout is ‘jetted’ into the ground under high pressure as illustrated in 

Figure  2.2.  The jet simultaneously excavates and mixes the soil with the grout and the 

nozzle injects high pressure slurry into the soil. To improve the cutting action of the jet 

compressed air is often added. The whole procedure results in a column of soil mixed 

with grout.  This grout-soil column is designed to have a lower permeability and higher 

strength than the virgin ground (Henn, 1996). 

 

Figure  2.2: Jet grouting technique (Henn, 1996). 

 

Jet grouting has been used widely in Canada. As discussed by Byrne et al. (1988) this 

method of grouting has been employed widely, including numerous excavation works in 

the Montreal region, and in creating a cut off wall under the John Hart Dam, B.C.. 
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Compaction Grouting: 

Compaction Grouting originated in California in the early 1950’s (Gallavresi, 1992). 

Brown and Warner presented the first report on the actual mechanism of compaction 

grouting using the data provided from excavations of previously grouted soils (Warner, 

2004). 

 

In this method a very stiff, low mobility soil cement mix is injected slowly into the soil at 

a high pressure level (up to 3.5 MPa). Grout remains in a homogeneous, expanding mass 

which compacts adjacent soil (Figure  2.3).   

 

 

Figure  2.3: Compaction grouting in soils (modified from Warner, 2004) 

  

Compaction grouting is performed at discrete locations in soft, loose or disturbed soils, as 

shown in Figure  2.4. Because of the low slump of the grout it does not enter the pores of 

the soil, so it forms a small coherent bulb near the injection point (Xanthakos, 1994). 
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Figure  2.4: Longitudinal view of compaction grouting used to control settlement in 

conjunction with excavation of soft ground tunnel (Henn, 1996) 

 

This technique of grouting is also used to stabilize the soil under residences and light 

commercial buildings. Since compaction grouting can result in the lifting of the ground 

surface if not monitored very carefully, this grouting technique might not be suitable for 

structures that can tolerate only the smallest differential movements (Gallavresi, 1992; 

Shrof and Shah, 1993). 

 

Permeation Grouting: 

Permeation grouting is the process of injecting flowable grout into the soil to strengthen 

and/or reduce the permeability of the soil by filling the existing voids and fissures. This 

method of grouting is performed at a low injection pressure not to cause major changes in 

the soil structure (Bruce, 2006). 
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Permeation grouting is particularly sensitive to the groutability of the soil. Groutability, 

which is explained in detail in Section  2.5.1, is the ability of the rock or soil to take the 

grout. This property is based on the grout type and the particle size of the soil as 

approximated in Figure  2.5 (Henn, 1996). 

 

In permeation grouting the aim is to fill the existing gaps with the minimum destruction 

of the soil structure. If the grout is not suitable for the soil and high pressure is used 

hydrofracturing might occur, leading to uncontrolled grout movement and the possibility 

of structure damage. Generally the grading of the soil defines the groutability of the 

material.  

 

 

Figure  2.5: Groutability based on grout type versus soil particle size (Henn, 1996) 

 

Permeation grouting technique is regarded as the oldest method of grouting (Warner, 

2004). In fact the permeation grouting was invented in the early 19th century when the 

initial idea of injecting a cementitious slurry into the soil was exploited for the first time.  
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Permeation grouting has a very low effect on the adjacent structures and the surrounding 

area, hence it has an extremely wide range of application. Some of the categories where 

this technique is useful are: different soil and rockv type, temporary or permanent works, 

remedial works, and also for the purpose of strengthening or water proofing (Xanthakos 

et al., 1994). 

 

Hydro fracture Grouting: 

As stated in the previous section, the primary aim of permeation grouting is to fill the 

existing fissures and pores with grout. In this process if the injection pressure increases 

the existing stresses in the surrounding area, some new fractures would be created and the 

grout would enter the new fractures. This phenomenon of forming fractures by the 

pressure of a fluid is known as hydro-fracture. If grouting is deliberately performed in 

very high pressures (up to 4MPa (Gallavresi, 1992)) to form fractures the grouting 

method would be called hydro-fracture grouting.  

 

Depending on the properties of the soil the pressure limit to form the fractures would 

vary. Generally hydrofracture would be initiated when the pressure applied by the grout 

exceeds the tensile strength of the soil. Since 1957 researchers have tried to develop 

simple models which can analyze the initiation of hydrofracture. According to Wong and 

Farmer (1971) among the earliest models developed included those by Hubbert and 

Willis (1957), Morgenstern and Vaughan (1963), Fairhurst (1964) and Cambefort (1964). 
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Control of the direction and penetration distance of the hydrofracture is difficult.  Thus in 

this method the grout may penetrate far from the injection point and as a result limiting 

the potential danger to adjacent structures can be very difficult. 

 

2.2.2 Grouting in Rock 

In this section methods of grouting in rocks are represented. These methods are listed by 

the purpose of the grouting by which grouting in rocks can be divided into two methods: 

consolidation grouting and curtain grouting. 

 

Consolidation Grouting: 

Consolidation grouting is the process of injecting a cement based grout into open joints, 

separated bedding planes, faulted zones and cavities in the rock mass for the purpose of 

improving the mechanical properties of the rock. The mechanical properties of interest 

include the rock permeability for the control of seepage flow, deformation characteristics 

of the rock mass, and strength of the material. In addition to reducing seepage, by 

reducing the permeability consolidation grouting can also reduce the uplift potential 

beneath the concrete due to water flow in the rock pores (Henn, 1996; Kikuchi et al., 

1997).  

 

According to Yesilnacar (2003) consolidation grouting around tunnels is performed in the 

regions determined to have weak rock conditions and leakage problems to provide the 

required stability of the rock outside the tunnel lining. This technique of grouting affects 
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the properties of the rock mass a minimum of one tunnel diameter beyond the excavation 

limit (Yesilnacar, 2003; Henn, 1996). 

 

Consolidation grouting is usually performed by drilling and grouting shallow holes in a 

grid pattern. But if there are some local weak zones there might be some off pattern holes 

as well (Bruce, 2006). 

 

Curtain Grouting 

Curtain grouting is the process of forming a water tight barrier by grouting in deep holes 

which is normally performed under the dams or in an abutment. The curtain seals seams, 

fissures, fault zones and cavities.  

 

This type of grouting is generally used in structures that transport or store water or any 

other fluid, such as natural gas or petroleum (Henn, 1966). 

 

In a typical curtain grouting hydraulic tests are carried out in pre-drilled boreholes to 

estimate the local in situ hydraulic conductivity. These tests may also be used to give an 

estimation on the amount of required grout in each borehole section. As discussed in the 

following chapters, the grout take of each fracture is related to the aperture of the 

fracture. In practice if the grout take is much lower than expected the grout is thinned to 

increase the grout take. The process of grouting will be continued until refusal (Houlsby, 

1990). 
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2.3 Grout Types Based on Rheological Behavior and Material 

Grouts can be divided into three groups based on their mechanical properties (AFTES, 

1991; Xanthakos et al., 1994). These three categories, listed in order of rheological 

performance (Figure  2.6) as classified by Xanthakos et al. (1994), are: 

 

1. Particulate grouts: Grouts with a Bingham performance, which are suspension or 

cementitious grouts. Bingham fluid behavior is explained in Section  2.3.1. 

 

2. Colloidal solutions: These grouts are silicate based chemical grouts which have an 

evolutive Newtonian behavior. As illustrated in Figure  2.6 an evolutive Newtonian 

fluid has an increasing viscosity over time. The silicate in the grout forms a gel which 

has properties that can seal fissures and improve the strength properties of the rock 

mass. 

 

3. Pure solutions: Resin chemical grouts are non-evolutive Newtonian solutions. In 

these grouts the viscosity remains constant until the grout sets. This category of grout, 

which is made by solution of organic products in water, has the lowest viscosity of 

the three types.  
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Figure  2.6: Rheological behavior of typical grouts (Mongilardi and Tornaghi, 1986). 

 

The difference between the rheological behaviors of a Newtonian and a Bingham fluid is 

also shown in Figure  2.7. This section is mainly focused on cementitious grouts, and the 

materials used to form cementitious grouts. 

 

 

Figure  2.7: Basic rheological concepts (modified after Lombardi, 1985) 
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2.3.1 Bingham Grout Materials 

Bingham grouts are composed of cement, water, fillers (e.g. sand) and some additives. By 

changing the relative weight of these ingredients in the mix and also using different types 

of cement, fillers or additives, grouts with different properties can be produced. The most 

important properties of grout are: 

 

• Cohesion: Also called yield stress, cohesion is the maximum shear stress that can be 

applied to grout in the static condition. In other words, to make the grout move an 

applied shear stress larger than this value is needed (see Figure  2.7).  

• Viscosity: The coefficient of internal grout resistance to flow (see Figure  2.7). 

Thicker grouts have larger viscosities, while thinner grouts have smaller viscosities 

and flow more easily. 

• Stability: Bruce (2006) defined this property as the ability of grout suspension to 

exhibit little or no settlement of particles, bleed (separation of water as a result of 

grout particles separation), or shrinkage (changes in the volume due to excess use of 

cement in grout mix). 

• Set time: Also referred to as gel time, the set time is defined as the time after which 

there is a considerable increase in grout shear strength, or the liquid changes into a 

plastic consistency. This property can be affected by temperature. 

 

Among the properties introduced here cohesion and viscosity are used in this study to 

model the flow of grout. Rombough (2006) performed a series of viscometer tests to 

measure the typical properties of Bingham grout material. Rombough’s tests included 
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three mixes with water:cement ratio of 0.8:1 using Type III, high early strength Portland 

cement. Two of these tests were performed on mixes with super-plasticizers. The other 

mix contained no admixture and was used as a baseline to be compared with other mixes 

(For the detail of tests see Rombough et al., 2006; Rombough 2006; Shuttle et al., 2007). 

Based on this study he suggested the ranges in Table  2.1 for cohesion and viscosity of a 

Bingham grout. 

 

Table  2.1: Typical range of properties for Bingham grout (Rombough, 2006) 

Yield Stress (c) 
Pa.s 

Viscosity(μ) 
Pa 

1-10 0.011-0.016 
 

Portland cement: 

Portland cement is the most popular cement used in cementitious grouts. This hydraulic 

cement is composed of hydraulic calcium silicate and hardens by the chemical process of 

“hydration”. Portland cement normally has a specific gravity of 3.15 gr/cm3 (Weaver, 

1991). 

 

ASTM Designation C150 “Standard Specification for Portland Cement” lists eight types 

of Portland cement: 

 

• Type I and II: Normal cement. A common cement for general purposes. Type II 

provides some degree of sulfate resistance. 

• Type III: high early strength and rapid set. Because it is a more finely ground cement, 

grout made with this type of cement has a much lower viscosity than types I and II. 
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The special properties of this cement make it more penetrable in fine fractures than 

types I and II. 

• Types IA, IIA, IIIA: The same properties as types I, II and III plus air entering. 

• Type IV: low heat of hydration. This type of cement is used when the rise in 

temperature or heat generated by the hydration process has a negative effect on the 

surrounding conditions. 

• Type V: Pozzolnic Portland cement which is highly sulfate resistant. Used where the 

concrete is exposed to aggressive water. 

 

Ultra fine Cement: 

Ultra fine cement, also called micro fine and super fine cement, is a Portland cement with 

an average particle size of 4 microns. This type of cement is used where very small 

openings have to be filled with a strong, durable, non polluting grout (Shimoda and 

Ohmori, 1982). 

 

Having extremely fine particles (100% finer than 15microns (Weaver, 1991)) the grout 

made with ultra-fine cement is much less viscous than other types of grout. The viscosity 

of MC-500 (micro-fine) grout with a water cement ratio of 2:1 is reported to be almost 

half of viscosity of the same grout with normal Portland cement (Clarke, 1987). 

 

Although ultra-fine cements are more expensive, their higher penetrability may reduce 

the number of boreholes required, and as a result may reduce the overall cost of grouting 

(Weaver, 1991).  
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To improve the properties of cementitious grout, such as corrosion resistance, stability, 

and also to reduce cost, different additives are often added to the grout mixture. 

 

Additives: 

Additives are materials, other than water, cement and fillers, added to the grout mixture 

to modify the physical and chemical properties of the grout in a desired way. The type 

and amount of additives added to a grout depend on the type of admixture and the 

recommendations provided by the manufacturer. The most popular additives are 

described in this section. 

 

Pozzolans: 

Pozzolans are silicates added to cement in order to increase resistance to chemical attacks 

by low PH and sulfate water. Different types of artificial or natural pozzolans are used in 

practice. The most popular ones are (Weaver, 1991): 

• Blast Furnace Slag. 

• Condensed Silica Fume. 

• Natural Pozzolans (volcanic ash, volcanic glasses …). 

 

Bentonite/Clay: 

Littlejohn and Bruce (1977) report that neat cement grouts are unstable with w/c ratios 

above about 0.4. Bentonite, a colloidal clay, is a very popular additive added to 

cementitious grouts to form a relatively stable suspension and increase grout stability. It 
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can absorb as much as five times its own weight in water (Brady and Clauser, 1986; 

Henn, 1996). By increasing the viscosity and cohesion of the grout, Bentonite decreases 

the settlement of cement particles in the mixture. Although Bentonite is not a lubricant, as 

was originally assumed (Deere and Lombardi, 1985), it limits the travel distance of the 

cement particles and as a result reduces the sedimentation or bleeding. 

 

Disparents:  

Disparents, also called as flocculants, are used in grouts to reduce the tendency of the 

cement particles to agglomerate or flocculate. By reducing the viscosity and cohesion of 

the grout, this additive increases the ability of the grout to penetrate tiny fractures and 

openings. Although disparents improve the penetrability of the grout, they retard the set 

time significantly. A delayed set time might cause problems in projects with limited 

working area at a single time. It is advantageous in hot weather though, where high 

temperature shortens the set time (Weaver, 1991; Henn, 1996). 

 

Accelerators: 

In order to have a faster grout set time, Type III Portland cement can be used, or an 

accelerator can be added to the grout. The most commonly used accelerators are calcium 

chloride, sodium chloride, sodium hydroxide and sodium silicate. 

• Calcium chloride should be added in solution form as a part of the mixing water. 

Calcium chloride can increase shrinkage and may corrode reinforcement. 

• Sodium chloride is often used when calcium chloride is not available. This 

accelerator is much less effective than calcium chloride. 
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• Sodium hydroxide is typically used when a very rapid set is needed. It is reported that 

by adding a 50% solution of sodium hydroxide to cement in a proportion of 2% by 

weight a set time of an hour or less would be achieved. The main disadvantage of 

sodium hydroxide is the extreme corrosivity, which limits the use of this chemical. 

• Sodium silicate is also a relatively fast acting accelerator. Because of its rapid effect it 

is normally added to the grout at the point of injection into the grout hole (Weaver, 

1991; Henn, 1996). 

 

Gas Producing Agents: 

These additives are basically finely divided metals such as zinc, aluminum and 

magnesium. Gas producing agents produce hydrogen gas through chemical reactions with 

alkalis. This property is used to reduce the effect of volume shrinkage after grout 

hardening (Weaver, 1991; Henn, 1996). 

 

Fillers (Sand): 

Fillers are cheap materials added to a grout to reduce the amount of cement required, and 

hence reduce cost. Sand is the most common filler used in practice because of its 

availability. Sand also has the advantage of reducing the shrinkage of the ‘in place’ 

hardened grout.  However, sand has some problems which limit its use as a filler. Sand 

particles are hard to hold in suspension and also because they do not dissolve in the 

mixture they can cause clogging in the pump and valves. To reduce this tendency more 

bentonite or fly ash, or a lower water cement ratio, is often used.  
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Sand is also abrasive, which might damage the grout distribution system (Henn, 1996;  

Weaver, 1991). In some cases clay is used instead of sand as a filler to form clay-cement 

grout. Clay-cement grouts were first developed in the Soviet Union, but this use has not 

been broadly documented in English technical journals (Weaver, 1991). Bozovic (1985) 

mentions that clay-cement grouts are not widely used because clay is not an industrial 

product. Not being an industrial material, clays have unknown and unpredictable 

properties which increase the risk of ruining grout properties (Weaver, 1991). 

 

Water: 

Generally any drinkable water which has no odor or taste can be used in grouts. 

 

2.4 Fracture Characterization 

The void geometry of fractures in hard rock is a complex three dimensional structure. 

The characteristics of this 3D geometry are mainly controlled by the chemical properties 

of the rock mass, stress conditions and geological history of the host rock. These three 

factors affect the pattern of the fractures by influencing the strength, weaknesses and 

sliding in the rock mass. The geometrical parameters of the fractures should be 

established in a way to make a quantitative description of the void space possible. 

Hakami (1995) introduces eight parameters which are believed to influence the 

mechanical and hydraulic behavior of the fracture. The primary advantage of these 

specified parameters is that they can be quantified by direct measuring. The eight 
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parameters introduced by Hakami (1995), and also shown in Figure  2.8, can be 

introduced as: 

 

• Aperture: The separation distance between the fracture surfaces. This is arguably the 

most important parameter in characterizing a fracture geometrically for grout 

filtration and/or distribution, and is described in detail in the next section. 

• Roughness: The shape of the surface which varies by the aperture distribution over 

the surface. As an example a fracture with a very high roughness has abrupt changes 

of aperture over surface.  

• Contact area: The area where the aperture becomes zero (or smaller than a specified 

threshold value chosen.  Over the contact area the fracture surfaces are assumed to be 

in contact (and therefore negligible or no flow can pass through this area). The 

threshold value mentioned above depends on the definition for negligible value of 

flow and might vary for different works. 

• Matedness: How well the surfaces of the fracture are matched. If the matedness in a 

fracture is high the aperture variations over the surface will be small. 

• Spatial correlation: The rate of aperture change from one point to another.  

• Tortuosity: Changes in the direction of the streamline due to the fracture aperture 

variations. 

• Channeling: Change in the flow velocity due to the fracture aperture variations along 

a specific path. 

• Stiffness: Stiffness is a representation of the mechanical strength of the fracture. 

Stiffness is affected by factors like the stress conditions in the rock mass, mineralogy 
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or geological history of the rock. It can be studied by measuring changes in the 

aperture at a certain point over time. The aperture changes are normally a result of 

changes in the normal stress applied to the fracture. 

 

All the above definitions are either directly or indirectly related to the fracture aperture 

and its variation. Therefore aperture and its variation is arguably the most important 

property of the fracture, and is a main focus of this research. Although aperture itself is 

dependent on the stress conditions of the fracture this effect is neglected here. 

 

 

Figure  2.8: Fracture properties determined by fracture void geometry (from Olsson and 

Barton 2001). 
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2.4.1 Fracture Aperture 

The meaning of the aperture can be defined by the sketch shown in Figure  2.9. If the 

centerline between the fracture surfaces is assumed to be parallel to the x-y plane, as 

shown in the Figure  2.9, the aperture at each point is equal to the separation distance 

between the two fracture surfaces in the z direction. 

 

 

Figure  2.9: Definition of aperture (Hakami and Larsson, 1996) 

 

In order to quantify the opening size of the fractures two different aperture 

measurements, based on the measuring methodology, are widely utilized. These two 

apertures are the mechanical and hydraulic apertures.  

 

Mechanical aperture: 

If two planes are drawn through the average of the highest and the lowest points along 

each of the surfaces of the fracture, then the perpendicular distance between the two 
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planes would be the mechanical aperture.  In Figure  2.10 this aperture is denoted by em. 

Usually the mechanical aperture is geometrically measured from a two dimensional (2D) 

joint section (Olsson and Barton, 2001). 

 

Figure  2.10: Illustration of mechanical aperture (modified from Evans et al, 1992) 

 

Hydraulic Aperture: 

Since direct measure of the fracture apertures inside a rock mass is not always practical 

another aperture, called the hydraulic aperture, was established. The hydraulic aperture is 

an equivalent measure of the aperture which assumes the “cubic law” (defined below) is 

valid. Hydraulic aperture (eh) can be determined both from laboratory fluid flow 

experiments and borehole pump tests in the field (Olsson and Barton, 2001). 

 

Measuring the hydraulic transmisivity of the fracture (T) in a flow test, the hydraulic 

aperture is obtained using the modified form of Darcy’s law (Cubic law). Cubic law can 

be derived assuming a 1D laminar flow of a Newtonian fluid in a plane parallel fracture 

(For the details of derivation see Fransson,1999 or Rasekh and Shuttle, 2006) 

 

 

Equation  2.1                               dl
dPweQ

μ12

3

=  
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In the above equation Q is the flow rate, w is the width of the flow and μ  is the dynamic 

viscosity of the fluid. 
dl
dP  is the pressure drop over the length l. Transmissivity in terms 

of flow rate and head loss would be: 

 

Equation  2.2                 
QT

dP dy
=  

 

Assuming a unit width of flow we would have:  

 

Equation  2.3                  3 12 Te μ=  

 

In real fracture systems the hydraulic aperture is smaller than mechanical aperture. The 

reason for the discrepancy between the two measurements is that smaller gaps have a 

disproportional effect on the head loss along a specific flow path; therefore the 

mechanical ‘average’ aperture is not the aperture controlling flow. There are a number of 

studies (e.g. Gale et al., 1990; Cook, 1992; Hakami, 1995) on the relation between 

mechanical and hydraulic aperture. However, hydraulic aperture is more popular because 

of the simplicity of its measuring methodology. Also hydraulic aperture is a 

representation of flow and since we are usually interested in flow behavior in the 

fractures, this type of aperture is used more than mechanical aperture.  
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A fracture can be represented using a frequency distribution of apertures.  The frequency 

distribution gives the probability that points with a certain aperture occur on the fracture 

surface. Knowing the aperture magnitude at each point over the surface of the fracture the 

surface texture can be reproduced.  

 

The frequency histogram of the aperture can be approximated by different mathematical 

probability functions such as normal, log normal or gamma distribution (Hakami and 

Larsson, 1996).  

 

2.5 Fluid Flow in Fractures 

2.5.1 Groutability 

Bruce (2006) defines groutability as the ability of soil or rock to accept grout. Based on 

this definition groutability of rock depends on the properties of the fracture and the 

injected grout.  

 

For a joint to be groutable the grout must fulfill the conditions of penetrability and 

flowability. Penetrability means the ability of the grout to enter an opening and 

flowability means the ability of the grout to flow inside the fracture. 
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Penetrability: 

Penetrability is most important for cement based grouts where the grout particles might 

be too large to enter the fracture. Partial penetration of a fracture is termed limited 

penetrability and is associated with filtration or clogging. Some researchers use a limit 

aperture below which the grout cannot penetrate into the joint (Hansson 1995, Amadei 

2000). By performing lab tests Hansson (1995) suggested that grouts with a d95 of less 

than 3 times of the hydraulic aperture have good penetrability. Eriksson and Stille (2004) 

introduce two aperture limits called bmin and bcritical. bmin is the lowest limit of aperture, 

under which no grout can enter the fracture. bcritical is a limit aperture above which there is 

an infinite penetration, meaning none of the grout particles will be stopped due to 

clogging. If the aperture is between these two limits there will be partial penetration and 

some filtration cakes will be formed. According to Eriksson and Stille (2004) these two 

limits depend on many factors, including time. Since the properties of the grout change 

over time, the size of apertures that grout can enter also varies over time. In order to be 

on the safe side, and ensure the aperture is bigger than the critical aperture, one simple 

solution is to use of micro-fine cement. But Eriksson et al. (1999) showed that there is a 

strong time dependency in the penetrability behavior of grouts based on a micro-fine 

cement (d95<12μm). Therefore, the use of micro-fine cement is not always an appropriate 

solution to poor penetrability. 

 

Flowability: 

The other condition for groutability of a joint is the flowability of the grout inside the 

joint. Grout is flowable when it has sufficient pressure to overcome the resistant forces 
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and move forward in the fracture. Based on this definition flowability should be defined 

by studying the active forces on the injecting grout. One of the simplest solutions on the 

flowability of the grout is presented by Gustafson and Stille (1996) where the authors use 

a simple force balance for Bingham fluid flow to get the grout penetration. At refusal the 

injection pressure is balanced by the shear stress towards the fracture walls. If the fracture 

is assumed to have parallel walls with an aperture e and the flow is assumed to be one 

dimensional along the length of the fracture, the penetration, L, can be calculated by the 

following equation. 

 

Equation   2.4               02).( τePPL wg −=  

 

In this equation gP  and wP  are grout and water pressure and 0τ  is the shear stress on the 

walls. These forces are shown in Figure  2.11.  

PwPg
e

0

τ 0

L  

Figure  2.11: Active forces on grout in a slot 
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The main difference between the ideal case shown above and reality is the random 

changes of the aperture over the fracture surface. To have more realistic results Gustafson 

and Stille (1996) introduce an effective aperture which is an equivalent for the aperture 

used in the previous equation. Gustafson and Stille (1996) suggest that the effective 

aperture is close to the harmonic mean of the aperture values. The harmonic mean is 

defined as (e.g. Singh, K., 2007): 

 

Equation  2.5    
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For some probabilistic distributions above equation can be simplified based on the 

properties of the distribution. As an example for a lognormal distribution the harmonic 

mean is calculated as: 

 

Equation   2.6        )2( 2σμ −= Expehm   

 

Where hme , μ  and σ  are the harmonic aperture, mean and standard deviation of the 

lognormal distribution. 
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2.6 Methods to Estimate the Grout Distribution in the Ground 

The effectiveness of grouting is related to the distribution of the grout in the ground. This 

section discusses several methods to estimate the penetration of grouting based on the site 

investigations.  

 

2.6.1 Pre and Post Grouting Tests 

Field tests in grouting projects before or after grout injection are quite popular.  

Performing pre-grouting tests helps the grouting design (i.e. deciding on the properties of 

grout and borehole arrangements). Results of testing performed after grouting can be 

compared with the pre-grouting test results to measure the effectiveness of grouting. 

Permeability tests are essential if a purpose of grouting is seepage control.  

Pre/Post grouting field tests, also called as water tests, can be for either: 

• Exploratory testing 

• Grout hole testing 

 

The aim of each kind of test is described later in this section. The results of water tests 

are commonly used to calculate Lugeon. This value is related to the crack conditions 

which can be used in choosing grout properties. In this section first the Lugeon concept is 

introduced and then the test methods. 
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Lugeon Unit 

Before the early 20th century dams were built in locations where there was no need to seal 

the foundation, and also these early dams were huge gravity structures under which the 

hydraulic gradient was less than one. In the early 20th century significant seepage 

developed through the subgrade of a few dams, including Janov Dam (1912 to 1914), 

after filling the basin.  Subsequently methods to predict the in situ permeability of rock 

were developed.  

 

One of the first and most practical evaluation systems was developed in 1933 by Swiss 

geologist Murice Lugeon, and has been used all over the world since its invention 

(Verfal, 1989). The idea of the method is to measure the quantity of water that can be 

forced out of a specific length of a drill hole in a unit of time under a set pressure. The 

amount of water is defined as a Lugeon unit. One Lugeon is 1 L of water per meter of the 

hole length per minute at a pressure of 10 bar (1 MPa). Based on the results criteria were 

proposed for admissible water loss, including those proposed by Lugeon, Jahde and 

Terzaghi (Verfal, 1989; Warner, 2004).   

 

Exploratory testing 

This type of water testing is performed to measure the permeability before, during or 

after grouting. Exploratory tests are normally performed in core drilling holes and their 

results are used for grout design. In the cases where no coring is required some water 

testing holes are drilled. 
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Houlsby (1990) introduces this water test method as five steps of applying water with 

different pressures right after each other without any pause in between: 

• Low pressure for ten minutes 

• Moderate pressure for the next ten minute 

• Peak pressure for next ten minutes 

• Back to Moderate pressure for next ten minutes 

• Low pressure for next ten minutes 

Then the Lugeon values are calculated for each of the steps. For the Low, Moderate and 

Peak pressure Houlsby (1990) gives the values in Figure  2.12. As illustrated in this figure 

the 10 bar pressure given by Lugeon is the maximum peak pressure here. Figure  2.12 

gives 10bar as the maximum pressure (used in third increment of the test) for depths 

larger than 44m. The reason that Lugeon used higher pressure is that the original water 

test, specified by Lugeon, was in the water wells while the current tests are performed in 

core drilled holes and 10 bars is a high pressure for this situation (Warner, 2004). 
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Figure  2.12: Pressures for each run of the five pressure water test (after Houlsby, 1990) 
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Grout hole testing 

This type of water testing is performed in the grouting boreholes right before the start of 

grouting at each stage to: 

• Estimate the likely grout take. 

• Determine effect of grout penetration from previous stages. 

• Check the values assumed in the design process. 

• Check for surface leaks, connections between holes and any other unpredicted 

happenings during grouting. 

 

One of the methods of performing this test is to inject water to the hole by a specific 

pressure. 5, 10, 15 minutes after reaching the defined pressure the amount of water 

entering the hole per unit time is recorded. Houlsby (1990) recommends 1 bar for the 

pressure in this test. 

 

There are lots of recommendations relating the rock mass permeability from water 

pressure tests to the need for grouting. For example, Lugeon proposed, based on the 

original Lugeon test with pressure equal to 10 bars, that if the measured Lugeon is less 

than the following values there is no need for grouting (Verfal, 1989): 

• 1 L/min/m  for dams higher that 30m 

• 3 L/min/m  for dams lower that 30m 

 

Houlsby (1990) also suggests that based on the proposed exploratory testing 

methodology given above where water is precious and a very low permeability is desired 
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the closure criteria for the grouting should be in the range of 1 to 3 Lugeons. But he does 

not give specific values for what he means by low permeability. 

 

Although the results of water tests are quite useful in providing a closure criteria for 

grouting, these results cannot be used to predict the grout penetration in fractured rock. 

Lombardi (1985) and Ewert (1997) discuss the reasons that the results of the water test 

are often not reliable as grout take estimations: 

• Grout is a Bingham fluid while water is a Newtonian one. 

• Grout is a suspension fluid with particles that may settle during grouting causing the 

grout properties to vary with time. 

• Due to the size of grout particles, grout cannot penetrate all of the fissures that water 

enters easily. 

• Grout has ‘cohesion’ and will arrive at a maximum penetration distance and stop if a 

constant pressure is applied. But under the same conditions water with no cohesion 

will flow continuously.  

 

2.6.2 Modeling 

Modeling is another approach in prediction of the grout distribution in fractures. To 

model grouting of a fractured rock, two media of grout and fracture should be modeled. 

Due to uncertainties and complexities in the modeling of both media simulating the grout 

spread in a fissured media is a challenge. Development of a model that is simple enough 

and does not require a considerable amount of computational resources is accompanied 

by making some simplifying assumptions. Each of the available numerical models has 
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some simplifying assumptions which make the calculations easier. As long as these 

assumptions do not result in unrealistic conditions, a numerical model can be used as a 

substitute to the experimental and/or empirical methods. Such models are powerful tools 

in gaining a better understanding of the penetration behavior and investigation of the 

effect of grout properties. The best known methods of modeling grouting in fractured 

rocks, as well as their simplifying assumptions, are reviewed and discussed in this 

section. The discussions in this section will provide grounds for the choice of methods in 

the present study. 

These studies consider simple fracture geometry (e.g. constant aperture) with complex 

grout properties (e.g. Bingham solution) or simple grout properties (e.g. considering only 

cohesion) with complex geometry (e.g. stochastic aperture changes). 

Grout Flow Simulation 

One of the complexities in modeling of grout penetration in a fractured rock is associated 

with the complicated behavior of grout. All researchers agree on the Non-Newtonian 

behavior of cementitious grouts (see Section  2.3 for a more detailed review).  Most of the 

previous studies indicate that the grout flow is governed by Bingham fluid equations (e.g. 

Hassler et al., 1992; Fransson, 1999; Shuttle and Glynn, 2003). Section  2.3 explained that 

Bingham fluids can be simulated using a dynamic viscosity and cohesion approximation. 

Gustafson and Stille (1996) calculate grout penetration based on a force equilibrium 

equation only considering cohesion for Bingham fluid and ignoring viscosity (for more 

details see Section  2.5.1).  Fransson (1999), Hassler et al. (1992) and Eriksson et al. 

(2000) use the same approach in predicting grout spread in a fracture. However, some 

researchers (e.g. Hakansson, 1993) believe that the Bingham model with constant 
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properties does not give an accurate description of cement based grout behavior. To 

improve the simulation Hassler et al. (1992) and Eriksson et al. (2000) used a Bingham 

model with time varying grout cohesion. Hassler et al. (1992) showed the significant 

effect of grout hardening on the penetration process for a long period of grouting. Their 

results show that considering the time dependency of grout cohesion can change 

penetration length results up to 30% after 2hrs of grouting. However, in shorter injection 

periods hardening does not affect the results significantly. Therefore, it can be concluded 

that assuming constant properties for the grout as a Bingham fluid is a reasonable 

assumption in a short grouting period.  

 

Although the studies discussed above give reasonable results, they are based on the 

modeling Bingham grout behavior as a cohesion and do not consider viscosity in their 

simulations. To model Bingham grout completely, both viscosity and cohesion should be 

considered in the simulations. The complete solution, discussed in Chapter  3, has been 

adopted in recent works including Shuttle et al. (2007) and Rasekh and Shuttle (2006) to 

predict grout penetration in a single fracture.   

 

Fracture Simulation 

Fractured rocks are generally simulated at two different scales. The first scale considers 

the whole rock mass as a grouting media. The properties of this media are defined by the 

fractures density (number of fractures in a specific space), pattern (e.g. parallel or 

perpendicular fractures) and fracture spacing. The second, smaller, scale considers a 

single fracture in rock, and focuses on the geometrical changes over the fracture surface. 
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The use of each approach in different studies is reviewed. Since this research is modeling 

the grout spread in a single fracture this chapter is mainly focused on the methods of 

modeling a single fracture. 

 

Fracture networks in rock masses: 

National Research Council (1996) classifies mathematical models of fractured geological 

media into three groups:  

• Equivalent continuum models 

• Discrete fracture network models  

• Hybrid models 

 

Equivalent continuum models divide the rock mass as blocks in the scale of interest and 

represent the properties of each block using equivalent properties (e.g. equivalent 

permeability or effective porosity). These properties, defined by deterministic or 

stochastic methods, are used to model fluid flow in the rock mass (NRC, 1996). The main 

attraction of equivalent continuum models is their simplicity. The complexity of flow 

patterns in random fracture network are avoided, as instead of going into the details of 

flow pattern, continuum models predict fluid flow behavior based on the equivalent 

properties of the rock mass. These properties are the inputs for the models. However, 

defining the input parameters for equivalent continuum models is difficult. To find a 

reasonable coefficient for rock mass the correct scale should be chosen to represent the 

rock mass in terms of uniform properties. The volume of rock needed for averaging, 

defined by REV (Representative Element Volume), should be larger in the cases with 
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smaller fractured densities. In such cases REV is bigger than the area covered by field 

measurements (Eriksson, 2002). Oda et al., 1987, recommend using this method for 

highly fractured rocks.   

 

The other method to simulate fractured rock masses is Discrete Fracture Network (DFN). 

In this method fractures are represented by polygons in 3D space (Figure  2.13). 

 

Figure  2.13: Fracture network model by DFN method (Shuttle and Glynn, 2003) 

  

In most large fracture systems, the DFN is constructed using a combination of 

deterministic fractures, conditioned fractures and purely stochastic fractures (Shuttle and 

Glynn, 2003). A deterministic fracture is a fracture with known properties, a conditioned 

fracture a fracture with partly known properties, and purely stochastic fractures are the 

ones with unknown properties and are generated based on statistical functions.  
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Due to the complexity of large DFN models, typically the grout flow component of the 

model is quite simple.  For example, Shuttle and Jefferies in The Practical Handbook of 

Grouting (Warner, 2004) provide examples where the grout flow in fractures is modeled 

without solving the flow equations.  

 

The two models discussed here differ in representation of the heterogeneity of the 

fractured rock. Both of the methods may use deterministic or stochastic properties to 

simulate a fractured rock mass. In comparison with the equivalent continuum models, 

DFN models are more realistic because volume averaging approximations is avoided in 

the fracture network scale. The third type of simulations adopts a combination of the first 

two approaches by using discrete network models in building continuum approximations 

(NRC, 1996).  

 

Modeling a Single Fracture: 

Single fracture models of grout penetration are used because: 

• Due to the smaller scale, it is possible to simulate the aperture variation and small 

scale roughness of the fracture surface. These variations control the grout penetration 

in a fracture (Eriksson et al., 2000). 

 

• At smaller scales, more realistic models of grout flow behavior are practically 

computable, such as the solution of Bingham fluid used by Shuttle et al. (2007), and 

which improve the accuracy of the grout penetration prediction.  
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Some of the models simulating grout spread in a single fracture are reviewed in this 

section. 

 

Shuttle et al. (2007) is a recent example of modeling grouting in a single fracture. They 

assume constant aperture over the surface of the fracture. The model adopts Bingham 

fluid solution for a cylindrical grout spread. To consider the aperture variations in a 

fracture, Fransson (1999) and Rasekh and Shuttle (2006) adopt probabilistic functions to 

generate the aperture distribution over the surface of fracture. Rasekh and Shuttle (2006) 

use a finite element based software (Comsol) to model grout penetration in the fracture 

with stochastic properties. This work considers variations of aperture over the surface of 

fracture as a log normal distribution. By solving Bingham equations for 2D elements the 

grout penetration in stochastic fractures is modeled. Solving 2D Bingham equations in 

small elements in fractures with different apertures gives precise predictions of fluid 

propagation in fractures. However, the size of fracture and number of elements was 

limited due to calculation capacity problems. Similar to Rasekh and Shuttle (2006), 

Fransson (1999) also simulated aperture variation with a lognormal distribution, but as 

described earlier in this chapter, used a simpler ‘cohesion only’ grout model.  

 

Solving the full Bingham equations in 2-D is computationally intensive, which places 

limitations on the number of elements in the model (e.g. Rasekh and Shuttle, 2006). To 

reduce the computational effort, some researchers (Hassler et al., 1992; Eriksson et al., 

2000) have simplified the elements by substituting them with one dimensional channels 

(which have a simple analytical solution for the Bingham equations) This simplification 
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builds upon the observation that fracture flow is reported to follow a limited number of 

paths (Eriksson et al., 2000), so the 1-D flow elements are used to represent these flow 

paths within a fracture. Using 1D channels to model the grout penetration has two main 

advantages in calculations from a simplicity point of view: 

 

• Use of 1D equations: If 2D elements are substituted by narrow channels, 1D 

equations can be used. Using 1D equations which are simpler than 2D ones, helps 

increasing the modeling capacity (i.e. being able to model larger fractures). 

 

• Modeling more than one fracture using the same algorithm: By changing the 

orientation of 1D channels in 3D space, more than one fracture crossing each other 

can be modeled. 

Hassler et al. (1992) and Eriksson et al. (2000) use force equilibrium equation in the 1D 

channels to predict the grout penetration. Similar to Fransson (1999) their models only 

consider cohesion of grout. 
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3 THEORETICAL MODEL FOR ONE DIMENSIONAL 

FRACTURE FLOW 

This chapter gives the details of the theory and equations used for the grout flow in a 

single fracture in the current work.  

 

To solve the fluid flow three main assumptions are made: 

• The grout flow is Laminar: Laminar flow has very low velocity and no turbulence. 

Grout velocity is generally less than 1m/min. Also, grout viscosity is typically around 

10mPa.s (almost 10 times the viscosity of water). Such conditions indicate Reynolds 

number less than 100 for the flow which is in the range of laminar flow. 

• Grout is an incompressible fluid: The amount of fluid entering a controlled volume is 

equal to the amount leaving that volume. During the injection time that the grout is 

flowing this is a valid assumption.  

• Grout is a Bingham fluid with constant properties over the grouting time: 

Cementitious grouts are regarded as Bingham fluids. Before grout set time the 

properties of grout can be assumed as constant. Therefore, in modeling short periods 

of grouting as in this work this is a valid assumption. 

 

The aim of solving the grout penetration in a network of channels is to calculate the 

unknowns in the system which are penetration length and also the grout flow rate in each 

channel. So the number of unknowns for each network is twice the number of pipes. To 

solve the system for these unknowns, generally two sets of equations can be used:  

• Continuity 
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• Force equilibrium 

 

Continuity equations: 

The basis of continuity equations in fluid mechanics is the conservation of mass in the 

control volume. This means that for an incompressible fluid the mass volume entering the 

control volume is equal to mass volume leaving the control volume.  

 

In a pipe network if a control volume is assumed at each of the nodes, the amount of fluid 

entering the control volume should be equal to the outgoing grout. 

Qi Q2

Q1

Q3

 

Figure  3.1: Schematic display of the inflow and outflow in a node 

 

Figure  3.1 shows a typical node in a pipe network. In this case the continuity equation 

will be: 

Equation   3.1          1 2 3iQ Q Q Q= + +  

 

To solve the whole network these equations should be satisfied for all of the available 

nodes. 
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Force equilibrium equations: 

Figure  3.2 shows the forces acting on an element of fluid inside a channel. Writing the 

force equilibrium equation for such an element gives: 

 

Equation  3.2     [ ] wLwyPPP yz ⋅⋅=⋅⋅Δ+− τ)(  

      yzy
L
P τ=⋅

Δ
−⇒  

 

Where w , L and y are the width, length and height of the element respectively. P  and 

PP Δ+  are the pressures applying at each of the faces of the element. yzτ  is the shear 

stress in the fluid at the height equal to y . 
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Figure  3.2: Forces in a flowing fluid inside a channel (modified from Chhabra and 

Richardson, 1999).  

 

It was shown in Figure  2.7 that in a Bingham fluid the shear stress is related to the shear 

strain rate by the viscosity and cohesion or yield stress of the fluid.  

 

The mathematical format of this definition is: 

 

Equation  3.3 
B

Byz dy
du

0τμτ +−=                 for   B
yz 0ττ ≥     

B
yz 0ττ =    ( 0=

dy
du

)               for   B
yz 0ττ ≤  

In the above equations Bμ  is the dynamic viscosity, dy
du

 is the rate of the shear strain 

and B
0τ is the yield stress. 

 

Substituting yzτ  by its mathematical definition for a Bingham fluid (Equation  3.3) in 

Equation  3.2, the fluid velocity can be calculated. Integring velocity over aperture gives 

the flow rate  per unit width, “q”, as: 

 

Equation  3.4      ⎟
⎠
⎞

⎜
⎝
⎛ −+

Δ
−= φφ

μ 2
3

2
11

3
21 33b

L
Pq
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Where        bLP

B

⋅Δ
−= 0τ

φ  
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b is the half aperture indicated in Figure  3.2. 

 

For an element with a length tending to zero, and width w, the total flow rate is given by: 

Equation  3.5      ⎟
⎠
⎞

⎜
⎝
⎛ −+−= φφ

μ 2
3

2
11

3
2 33b

dl
dPwQ

B
 

 

Equation  3.4 and Equation  3.5 are gives as standard equations for flow of a Bingham 

fluid through a smooth parallel sided aperture by Chhabra and Richardson (1999). 

For the case where 00 =Bτ  the Bingham fluid will be changed into a Newtonian one. In 

such a case Equation  3.5 will be identical to Equation  2.1 (i.e. the cubic law for a 

Newtonian fluid).  

If Equation  3.4 is rearranged it can be written as a standard cubic equation for φ .  

 

Equation  3.6      02
.

.33 2
0

3 =+⎟⎟
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q
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Solving this equation for φ  is standard and gives the relation between the pressure 

gradient and the flow rate in a pipe.  

 

Equation  3.7      )
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3
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Where:       
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The detailed derivations for all of the equations in this section are given in Appendix A. 

From Equation  3.7 if either pressure drop or flow rate is known the other can be 

calculated.  
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4 NUMERICAL MODELING OF GROUT PENETRATION 

IN A FRACTURE  

4.1 Objectives of the Model 

This study’s focus is the estimation of the penetration and distribution of grout inside a 

rock joint; considering different grout types and fracture properties. Following the aim of 

the research, a numerical model is required that is able to predict the propagation pattern 

and penetration length of the grout. This model should also be able to calculate changes 

of pressure over the fracture surface during grouting. The following sections describe 

how these objectives have been obtained. 

The model introduced in this chapter simulates a network of pipes with randomly 

distributed apertures representing the fracture surface with stochastic properties. Then the 

model uses the Bingham solution given in Chapter  3 to compute the grout spread in this 

stochastic fracture. This chapter describes how the model solves the Bingham 1D 

equation in the stochastic pipe network.  

 

4.2 Simplifying Assumptions in Simulation 

In order to provide a practical and simple model simplifying assumptions are made in the 

simulation process. This section describes the assumptions made in the model in 

simulation of grout properties, fracture geometry, flow behavior and boundary conditions 

of fracture. 
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4.2.1 Grout Property Assumptions 

 

• Particulate cementitous grout with a Bingham behavior. Cementitious grout is the 

most popular grout in rock grouting, and this type of grout is a Bingham fluid, 

therefore assuming grout is a Bingham fluid is a reasonable assumption. 

 

• Constant properties of the grout over grouting time: As discussed in Section  2.3, the 

rhelogical properties of the grout, for example viscosity, typically change over time. 

In the current model all of the properties of the grout are assumed to be constant over 

the grouting time. As discussed in Section  2.6.2, this is considered a reasonable 

assumption for the short grouting times considered where grout hardening does not 

have a significant effect on grout behavior. 

 

• All of the apertures are groutable: In the simulations presented here the apertures are 

chosen in the range of millimeters. Therefore, we can assume that the apertures are all 

above the critical limit defined in Section  2.5.1 and hence injectable. 

 

4.2.2 Fracture Geometry Assumptions 

• Constant aperture over the surface of each element:  Most of the geometrical 

properties of a fracture are related to the aperture changes over the surface of the 

fracture (see Section  2.4). In the current work the fracture is divided into a number of 

elements each of which has a different aperture. The random variations of these 
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apertures over the surface of the fracture represent the varying texture of the fracture 

in a simplified way. The aperture is assumed to be constant over the surface of each 

of these elements. 

 

• No change in the aperture resulting from the grout pressure: Depending on the 

strength of the rock and grouting pressure, there might be some changes in the 

fracture openings during grouting which are neglected here. 

 

4.2.3 Grout Flow Assumptions 

• Ignoring the water effect on the penetration surface of the grout: Many grouting 

projects, for example grouting to seal fractures under dams, are performed below the 

water table. In such cases fractures are filled with water. In this model the pressure at 

each point is assumed to be the grout pressure at that point relative to the water 

pressure. So the zero pressure at the grouting face means that the grout pressure is 

equal to the water pressure. 

 

4.2.4 Boundary Conditions Assumptions 

• Calculations are based on a constant injection flow rate: The input boundary 

condition for grouting is the constant grout injection flow rate, and the changes of 

pressure with time are calculated. 
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• ‘No flow’ outer boundaries: The outer boundaries of the model are assumed to be 

zero flow. This means any pipe intersecting the boundary is a dead end. 

 

4.2.5 Mesh Generation Assumptions 

• Use of 1D Bingham flow solution: The current research extends the work of Fransson 

(1999) who represented Bingham flow using only cohesion, by considering both the 

cohesion and viscosity of the grout in the Bingham idealization. The solution adopted 

here is for a 1D parallel walled channel.  

 

• Use of a “Finger Model” as the one dimensional pipe network: In this context a 

Finger Model means a network of pipes with flow in only one direction through each 

of the pipes. Considering N pipes connected to one node, only one pipe provides the 

inflow to the node, while N-1 of the pipes have grout outflow from the pipe.  

Qi QO2

QO1

QO3

 

Figure  4.1: Schematic display of finger model 
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4.3 Algorithm 

The current model is composed of two main codes which are the fracture generator and 

the solver. These two codes work in a sequence where the output of the first code 

(generator) is the input for the next code (solver). The algorithm of each of these codes is 

described in this section. Also, for more detail the reader is referred to Appendix C and 

Appendix D which contain a hardcopy of each of the codes. 

 

4.3.1 Random Fracture Generator 

In Section  2.4 parameters that characterize a joint in the rock such as aperture, aperture 

distribution, roughness and contact area were introduced. Among these parameters 

aperture and the aperture distribution were identified as the most useful ones to represent 

a fracture. This section gives the details on the methodology adapted to generate a 

random fracture by taking aperture and aperture distribution as inputs. 

  

The generator developed for this work is a Visual Basic Application (VBA) code.  It is 

capable of modeling fractures with assigned dimensions, number of elements and 

aperture distribution.  A normal distribution was chosen because of the following 

advantages: 

 

• Realistic results: This probability function was proven to be one of the best functions 

to model the real aperture variations over the surface of a fracture (see review of 

functions considered by Hakami and Larsson, 1996). 
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• Simplicity in defining the input parameters of the distribution: It will be explained 

later in this section that knowing the mean and minimum or maximum aperture a 

normal distribution can be generated. Since these properties are easy to define for a 

fracture (in comparison with standard deviation), this distribution is more user 

friendly. 

 

The normal distribution has the general form shown in Figure  4.2 (e.g. Galambos and 

Kotz, 1978). In this figure σ  is the standard deviation of distribution. The probability of 

a value σ3  less than mean in a normal distribution is 0.1%. Therefore, mean minus σ3  

may be regarded as an approximation for the minimum value (mean - σ3 ) in a normal 

distribution. This approximation is much more valid as the number of readings increases, 

for a limited data it is only a rough approximation. Since the shape of the normal 

distribution function is symmetric the same argument is valid for a value σ3  larger than 

mean, defining the maximum value. 
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Figure  4.2: General form of normal distribution (Galambos and Kotz, 1978). 
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Also based on the mathematical function for probability density function of normal 

distribution probability of any value in a normal distribution can be calculated. As an 

example probability of a value σ1 less than mean is 
σ
24 %  (Equation  4.1). Therefore, for 

a given set of numbers if the probability of each value matches the result from Equation 

 4.1it means the given set has a normal distribution. 
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Considering the mathematical properties of a normal distribution, if the mean and 

standard deviation of the distribution is known the minimum and maximum apertures can 

be calculated. Also by knowing mean and minimum or maximum aperture the standard 

deviation can be found.  

 

Equation  4.2                3
min−

=
meanσ  

                 
3

max mean−
=σ  

 

Figure  4.3 shows an example of the configuration of an input interface for the generator. 

For the normal distribution chosen in this example and the values shown the minimum 

and maximum aperture are: 
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• Maximum aperture: 1mm + 3(0.27mm)= 1.81mm 

• Minimum aperture: 1mm -  3(0.27mm)= 0.19mm 

 

 

Figure  4.3: Sample input for the fracture generator. 

 

In addition to the aperture distribution properties, the dimensions (length and width) and 

element properties (number of elements along each side and aperture of each element) of 

fractures are also defined as input parameters of the generator (Figure  4.3). Based on this 

input information, the code generates two outputs. The first one includes the properties of 

all 2D elements on the fracture surface as requested in the input. This output, which 

contains the location, dimensions and aperture of each 2D element, gives an insight into 

the two-dimensional variation of the aperture over a 2D plane. However, the information 

in this output file cannot directly be transferred to the solver since flow equations are 
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solved for 1D channels. The second output file contains properties of equivalent 1D 

elements, including their length, aperture and width. As will be described in the following 

section, the second output is an input for the solver. 

 

Figure  4.4 shows the output for the 2D elements, for the input properties given in Figure 

 4.3. The output file has been imported in AutoCAD and the figure is generated using this 

software. Different grey shades indicate the magnitude of the aperture in each of the 

elements. According to the input data the input mean and standard deviation are 1.0mm 

and 0.27mm, respectively. Therefore, ideally the minimum and maximum expected 

values are mean- σ3 =0.2 mm, and mean+ σ3 =1.8 mm. However, statistically these 

values are obtained only for an infinite number of elements.  In the shown example with 

150 elements the minimum and maximum values generated (0.29 to 1.78) are reasonably 

close to the theoretically predicted values. Although a larger number of elements will 

decrease the difference between requested properties and output values, the more 

computational time it imposes in solving the equations makes it an improper option 

regarding the objectives of the modeling.  
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2mm

1mm

0mm

 

Figure  4.4: Sample output of the 2D elements of the fracture generator. 

 

In order to be capable of solving large systems of fractures, and also keep the model as 

simple and computationally efficient as possible, 1D elements has been chosen for the 

network. As explained above the second output of the generator is a 1D pipe network 

which is an equivalent for the initially generated 2D mesh shown in Figure 4.3. Below 

the process of converting a randomly generated fracture aperture network of 2D elements 

to an equivalent network of 1D elements is explained in more detail. 

 

Figure  4.5 shows a typical 2D network and its equivalent 1D network. In this network 

each of the 1D equivalent pipes is located in between two adjacent elements connecting 

centers of those two elements (see the zoomed element in Figure  4.5). 
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Figure  4.5: Replacing 2D elements with equivalent 1D pipe network. 

 

Figure  4.6 shows the two adjacent 2D elements from the previous figure along with their 

geometrical properties. In this figure w, l and e are the width, length and aperture of the 

element. Equivalent properties of each horizontal/vertical 1D element are found based on 

the properties of left/bottom 2D element the pipe is passing through. For the given 2D 

elements properties in Figure  4.6, properties of the equivalent 1D element are found as: 

Equation  4.3    2
1wweq =  

     1lleq =   and 1eeeq =  

 

In the previous equations w, l and e are the width, length and aperture of the 1D element. 

The subscript “eq” stands for the equivalent property and physically shows the area that 

the 1D element represents. The reason half widths are used in the averaging equation is as 
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follows. In the mesh each 2D element is substituted by two one dimensional equivalent 

elements, one horizontal and one vertical (Figure  4.7). If the full width is considered in 

averaging, the total area covered by 1D elements will be two times the area of 2D 

elements. To avoid this, half width of 2D elements is used in computing the properties of 

1D elements.  

1 2

w1 w2

e1 e2

 

Figure  4.6: Averaging properties of adjacent elements. 

 

1D Equivalent 
Elements

 

Figure  4.7: 1D equivalent elements 
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These 1D elements are used in the solver as channels in which grout flows. Therefore, 

flow equations are solved only in one dimension, saving a considerable amount of 

computation. The process of modeling grout in these elements is described in the 

following section.  

  

4.3.2 Solver 

The solver, which is the main part of the code, solves the Bingham laminar flow 

equations for a network of pipes.  To solve the Bingham fluid flow in the pipe network 

the system in which the grout is flowing should be defined and updated during the 

grouting. Then the governing equations should be solved for the defined network.  The 

code uses the following steps to achieve these tasks: 

 

• Creating and updating the network at each time step: Creating the initial network at 

the first time step or adding new pipes to the end of the filled ones and deleting the 

dead pipes at later time steps. 

• Building up the matrix of equations and solving the governing equations for the 

whole network. 

• Updating the new conditions in each of the pipes. 

 

Followed each of these tasks will be explained in more detail. 
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Updating the network 

After generating the pipe network using the mesh generator (described in Section  4.3.1), 

the node to be used as the “injection point”, where the grout enters the fracture, is 

specified by the user. The solver reads the data for all of the pipes provided by the 

generator. These data include the location, width, length and aperture of each pipe. The 

initial mesh comprises only the pipes directly connected to the injection point.  In the 

example illustrated in Figure  4.8 this initial network comprises 4 pipes.  

 

Figure  4.8: The pipe network in the first time step. 

 

At the end of each calculation time step, the penetration distance in all of the pipes in the 

current network is checked. If any of the pipes is full, pipes attached to the end of the full 

pipe are added to the system. If the pipe is a dead end and no further pipes are attached, 

the pipe is reported as “dead” and it is deleted from the network.  Figure  4.9 shows the 

network from Figure  4.8 at time step n (n > 2) where additional pipes are added when a 

pipe becomes filled, and at time n+1 where the upper pipe is filled but no further pipes 

are attached (i.e. at a dead end). 
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Figure  4.9: Network update in each time step. 

 

This pipe network update is done at the beginning of each time step, so that in the 

calculations the equations for the new pipes are added to the system of equations and the 

flow is solved using the new network.  

 

Solving the network 

In Chapter  3 a detailed description of the governing equations for the laminar flow of a 

Bingham fluid was given. The solver builds up a matrix of equations based on these 

governing equations. The equations of a network include three sets of equations: 

 

• Continuity equation in each node. 

• Continuity equation in each pipe. 

• Equal head drop in the branches attached to a single node.  
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The system of governing equations which includes nonlinear equations should be solved 

by an iterative method. The details of the adopted iterative method are presented in 

Appendix B. 

 

The first two sets of equations are the continuity equations in each pipe as described in 

Chapter  3. The third set of equations is based on the known head drops in each branch. 

We know that the pressure at the penetration face (defined as the grout-water/air 

interface) is equal to zero, or in the cases where grouting is under water table the pressure 

at this point is equal to the water pressure. So starting from a node like injection node 

(shown in Figure  4.10 by a black shaded circle) and following the grout path in each of 

the branches to the interface with air (or water) the head drop should be equal in all of the 

routes starting from the same node (Figure  4.10).  

 

Figure  4.10: Pressure drop in the pipe network. 
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In Figure  4.10 the pressure at the injection point is defined as P0 and the pressure at the 

penetration surface in each of the branches is zero. Therefore, the total head drop is: 

 

Equation  4.4       00 −=Δ PPtot  

 

Considering two different routes starting from the same node (see Figure  4.10): 

                   

Equation  4.5           batot PPP Δ+Δ=Δ  

            edctot PPPP Δ+Δ+Δ=Δ  

 

Therefore, the equal head drop in different branches can be written as: 

 

Equation  4.6                          edcba PPPPP Δ+Δ+Δ=Δ+Δ  

 

Knowing the flow rate in each pipe, PΔ  in each of the pipes can be calculated using 

Equation  3.7. 
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The equations for a general network shown in Figure  4.11 (where the letters show the 

node labels) is: 

 

Figure  4.11: A general form of pipe network. 

 

1. Continuity equation in each grid: 

Equation  4.7               ∑
−+

=

=
1Nm

mk
jkij QQ  , (N=number of branches at node j) 

 

Where ijQ  indicated the flow rate in the pipe between grid i and grid j. 

 

2. Continuity equation in each pipe: 

Equation  4.8       t
A
Q

ll
jk

jk
jktttjk Δ+= Δ− .)(  

             If  jstjs ll >  ( 1−+≤≤ Nmsm ) then    jstjs ll =  
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Where tjkl  is the penetration length at time step t in the pipe connecting nodes j and k. 

Also jkl is the length of the pipe between nodes j and k. 

 

3. Equal head drop in the branches attached to a single grid: 

 

Equation  4.9  ntjmnjmtjmjmtjmjm lQflQflQfP ++++ ====Δ ).(...).().( 11  

If  jstjs ll >  ( 1−+≤≤ Nmsm ) then: 

tjkjktsrsrjsjs lQflQflQfP ).().().( =+=Δ  

( Nmkm +≤≤  and sk ≠ ) 

 

For a Bingham Fluid above parameters are: 

Equation  4.10                             
φ

τ
.2

2)( 0

bl
PQf

B

−=
Δ

=  

))27((cos
3
1cos(.

3
2 3

1 πα
αφ +

−
−

= −  

             Bwb
Q

0
24
.123
τ

μα −−=  

 

These three sets of equations show that for a network with “n” pipes there will be “2n” 

unknowns and “2n” equations. Some of these equations are not linear or simple ones. 

Therefore, this is a system of 2n nonlinear equations with 2n unknowns which has to be 

solved by iterative methods. The requirement to use an iterative method to solve the 

system is one reason the solution is complicated. There are a number of iterative methods 
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available to solve such a system of equations. In the current work Newton’s method was 

used. The details of the Newton method and the solution to this system of non-linear 

equations are presented in Appendix B. In this iterative method a value is assumed for the 

flow rate and penetration length in each pipe of the network at the beginning of each time 

step. These flow rates and penetration lengths are improved in iterations. A good initial 

value saves the number of iterations and running time. In the current code values from the 

previous time step are considered as the initial assumptions. In small time intervals the 

changes of grout flow (i.e. flow rate and penetration length) in each pipe is so small that 

the previous time step values as the initial input for the iterative solution are close to the 

new results.  

 

Another difficulty in solving grout penetration, is building head drop equations for the 

whole system. Equation  4.9 shows that when further branches are added to the end of a 

pipe these new branches should be considered in the head drop equations for all the nodes 

connected directly or indirectly to the new pipes. In other words, to write the head drop 

equations all of the grout routes from each node should be considered. Since these routes 

change during grouting time by adding or deleting pipes, they should be checked and 

updated in each time step.  

     

Updating the conditions in each of the pipes for the calculated values 

In this stage the pressure, flow rate and penetration length in each of the pipes has been 

calculated. So the values from the previous time step should be replaced by these new 
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values and also the penetration lengths should be corrected if they are larger than the 

length of the pipe.  

 

Finally the developed solver gives an output at each time step which includes the flow 

rate, penetration length and pressure in each of the pipes. The main advantage of this 

solver is that it can model the grout penetration as a Bingham fluid over a fracture with 

stochastic properties and reasonable dimensions.  As explained in Section  2.6.2, most of 

the previous models consider either the stochastic fracture properties (e.g. Fransson, 

1999) or Bingham fluid solution (Shuttle et al., 2007). The ones which consider a realistic 

model for both components at the same time (e.g. Rasekh and Shuttle, 2006) have 

calculation capacity problems which make these models only able to simulate small 

fractures in short grouting times. 
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5 VERIFICATION CASES 

5.1 Overview of the Chapter 

To verify the correctness of calculations and suitability of the model, four simple 

verification cases were performed. The first verification case examines the generator 

results by comparing the properties of generated set with the requested properties in the 

input. The other cases check the solver outputs. As explained in Section  4.3.2, the solver 

solves three sets of equations to compute the penetration and pressure distribution in the 

fracture. Each verification case is intended to verify the solution of at least one of these 

sets of equations. The solver results are compared against independent hand calculations. 

The last case is brought to verify the code for a Newtonian fluid like water which is in 

fact a Bingham fluid with zero cohesion. 

 

5.2 Verification Case I: Fracture Generator 

To check the generator results the distribution type, mean and standard deviation of the 

apertures given by the generator should be compared with the properties requested in the 

input. Figure  5.1 shows the input for the generator, showing the mean aperture of fracture 

and standard deviation of normal distribution as three and one respectively. The standard 

deviation for a normal distribution is defined as: Standard deviation = (mean aperture – 

min aperture)/3. According to this definition for the input properties shown in Figure  5.1 

the minimum and maximum apertures are 0 and 6. 
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 Figure  5.1: Sample input for the random generator.  

 

Running the generator for the input given in Figure  5.1, 400 elements with random 

apertures is generated over a square with side length of five.  

 

Figure  5.2 shows the distribution of the random values generated as the apertures over a 

single fracture for this input. The curve illustrates a normal distribution with an average 

equal to 3.0. Since the difference between mean aperture and min aperture is 3.0 (Figure 

 5.2) standard deviation (σ) of this distribution is 1.0. These properties are the same as the 

ones requested in the input file. Also, the probability of 2, which is (mean - 1σ), is 24/σ% 

equal to 24%. As discussed in section 4.3.1 this is another indication of the correctness of 

the generated normal distribution. 
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Figure  5.2: Distribution of the aperture values generated for Verification Case I.  

 

5.3 Verification Case II: Continuity Equations in the Solver 

The first solver verification checks the solution of the continuity equations in the code. In 

this case a network including four pipes is considered (Figure  5.3). All pipes have 

identical properties, which are given in Table  5.1. The grouting properties are shown in 

Figure  5.4. The flow rate given in this figure is the injection flow rate which is applied to 

Node 1.  
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Figure  5.3: Pipe network for verification case II with four similar pipes. 

 

 

Figure  5.4: The input file containing grout and grouting properties for verification case II. 

 

Table  5.1: The input properties of the pipe network for verification case II. 

 

 

Since the pipes have identical properties there will be an equal flow rate in all of them. 

Knowing the flow rate in each of the pipes, which is the total flow rate from the input 

divided by four, the penetration length and pressure can be calculated in each time step. 
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The penetration length and pressure are computed using Equation  4.8 and Equation  4.10. 

As an example for the first time step in pipe 12: 

Equation  5.1            
s

mQ
Q injected

3

12 001.0
4
004.0

4
===  

Equation  5.2         s
crementsnumberofin

totaltimet 1
5
5

===Δ  

Equation  5.3         mt
A
Qll 5.01

1001.02
001.00.

12
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12012 =×

××
+=Δ+=  

Knowing Q, PΔ  can be calculated from Equation  4.10, using two mathematical 

parameters α  and φ : 

Equation  5.4   33
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Equation  5.5 
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This process of calculation is performed for each time step. Since the pipes are similar the 

calculated values in all of them are the same. The summary of the results based on these 

equations is given in Table  5.3 to be compared to the results of the code shown in Table 

 5.2.  
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The outputs show a close match in the results from both methods. The penetration lengths 

and pressures are identical. Also the pressure values which are rounded to 2 significant 

figures in both tables are the same. The pressure column show the pressure values at the 

beginning of each pipe. Since in this case all of the pipes start from the same node which 

is Node 1, pressures given in the results are equal in all of the pipes at each time step.  

 

Table  5.2: Code results for verification case II. 
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Table  5.3: Hand calculation results for verification case II. 

 

 

5.4 Verification Case III: Head Drop Equations in the Solver 

and Network Update. 

This case verifies the head drop in the branches attached to a single node. This 

verification case also checks the network updating when the pipes become full or dead. 

Figure  5.5 shows the pipe network. Three pipes with different apertures are attached to 

the injection point at Node 1. Pipe 45 (the pipe connecting Node 4 to Node 5) is attached 

to the end of pipe 14. This pipe is added to the system when pipe 14 is full. 

 

The grout and network properties are given in Figure  5.6 and Table  5.4. In the first time 

step grout flows in three pipes (pipes 12, 13, 14) two of which have the same aperture. 
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Knowing that the flow rate is equal in pipes 13 and 14 and also setting the pressure drop 

equal in pipes 12 and 13 the penetration length and flow rate are calculated in the first 

two time steps using equations that are the same as for the previous verification case. In 

the second time step pipe 13 becomes full. Since it does not have any extensions it is 

removed from the system and the grout flows in the other two pipes from time step 3. In 

time step 3 the penetration length in pipe 14 becomes larger than the pipe length. So the 

extension is added to the end of the pipe. Flow rate and penetration length is computed in 

each of the pipes using the equations given in Section  4.3.2 . The same process as 

described here is done in the code to compute the results shown in Table  5.5. To verify 

the penetration lengths and injection pressure hand calculated results are shown in Table 

 5.6. 

 

Figure  5.5: Pipe network for verification case III. 

 

 

Figure  5.6: The input file containing grout and grouting properties for verification case 

III. 
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Table  5.4: The input properties of the pipe network for verification case III. 

 

 

Similar to the Verification Case I, the results from the code and hand calculations are 

identical, except for small differences in the computed pipe pressure. To minimize the 

size of outputs the values are rounded to 2 significant figures when writing into output 

files. In this case this rounding causes a subtle difference between the code results and 

hand calculations.  

 

Table  5.5: Code results for verification case III. 
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Table  5.6: Hand calculation results for verification case III. 

 

 

5.5 Verification Case IV: Water Case 

If the initial yield stress ( B
0τ ) of a Bingham fluid is set to zero the fluid will behave as a 

Newtonian fluid and the Bingham flow equations will be simplified into the Newtonian 

fluid flow equations. To verify the solution for a Newtonian fluid a small value for the 

yield stress is used with injection into a pipe network identical to that used in Verification 

Case II (see Figure  5.7). It should be noted that to avoid mathematical divide by zero 

errors, the yield stress is set at a value close to zero, but not zero. 

 

The results are verified by comparing the theoretical transmissivity for a parallel plate 

fracture (derived from the cubic law) with the transmissivity computed based on the 

results of the code. 
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Based on the definition tranmissivity is: 

 Equation  5.7              
)/( Lh

qT
Δ

=  

q is the flow rate per unit width. Lh /Δ  is the hydraulic gradient which is equal to
gL
P

ρ
Δ

. 

The transmissivity based on the cubic law for a Newtonian fluid is calculated as: 

Equation  5.8         
μ

ρ
12

3ge
Tcubic =  

 

And based on the results from the code is: 

Equation  5.9         
LP

gq
Tcode /Δ

=
ρ

 

 

Figure  5.7: Pipe network for verification case IV with four similar pipes. 

 

Figure  5.8 shows the input properties for the grouting. The input properties for the 

network are also in Table  5.7. These data illustrate that all of the input parameters are 

identical to the verification case II except for the yield stress which is equal to 10-8 Pa. 
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Figure  5.8: The input file containing grout and grouting properties for verification case 

IV. 

 

Table  5.7: The input properties of the pipe network for verification case IV. 

 

 

The results from the code again give identical values to the hand calculations, except for 

the pressure in the pipes which is slightly different due to rounding errors.  
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Table  5.8: Code results for verification case IV. 
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Table  5.9: Hand calculation results for verification case IV. 

 
 

To calculate transmissivity, density ( ρ ) and gravitational acceleration ( g ) are assumed 

as 1000kg/m3 and 9.81m/s. The computed transmissivity values in different time steps are 

shown in Table  5.10. this table also shows the relative error which is computed by the 

following equation: 

 

Equation  5.10            100×
−

=
HandCalc

HandCalcCode

T
TTError  

 

CodeT  and HandCalcT  in this equation are transmissivity from code results and hand 

calculations. Results show a maximum 0.336% error in the transmissivity values. 
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Table  5.10: Transmissivity in different time steps from the code result and hand 

calculations. 
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6 SAMPLE SIMULATIONS AND RESUTLS 

6.1 Overview of the Chapter 

This chapter presents a few sample simulations by the model. These examples are 

intended to show some sample results from the code.  Input properties chosen for the 

simulations are reviewed at the beginning of this chapter. Output of the model contains 

the variations of pressure, injected flow rate and penetration length of grout over grouting 

time, giving the capability to present the results in many different ways. In this chapter 

different methods of analyzing the results based on the results of the code are introduced. 

The outputs of the sample simulations are presented by different figures to compare the 

results from different aspects. The results are also compared against the results of a 

constant aperture fracture model.  

  

6.2 Input Properties for Simulations 

Fracture Geometry and Mesh Properties: 

As discussed in Section  4.3.1, the required input parameters for the fracture generator are 

dimensions of the fracture, aperture distribution over the surface of the fracture, and 

number of 2D elements. The properties assumed for the simulation here are: 

 

• Fracture and element dimensions: The dimensions of the fracture are chosen based on 

the computing capacities of the code. In all of the simulations fractures are 3m* 3m 

squares which are divided into 400 square elements with constant apertures over the 
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surface of each of the elements. In all of the simulations the location of the borehole 

is assumed to be at the center of the fracture. 

• Aperture size and distribution: Normal distributions with a mean of 0.5 to 2mm and a 

Coefficient of Variation (COV) equal to Standard deviation/mean of 0.03 to 0.3 were 

used to simulate the fracture surface. The range of mean aperture is chosen similar to 

the values used by Rasekh and Shuttle (2006), Rombough (2006) and Fransson 

(1999).  

 

Grout Material Properties: 

Grout properties chosen for simulations are shown in Table  6.1. To have realistic results 

these properties are consistent with the range of values obtained by Rombough (2006) 

from viscometer tests.  

 

Table  6.1: Grout material properties used in the simulations 

Material 
Property 

Injection Flow 
Rate (l/min) 

Viscosity 
(Pa.s) 

Yield 
Stress (Pa) 

Range of 
values 0.22 0.011 1 - 10 

 

6.3 Analyzing the Results 

Since the output of the code gives penetration length in each element and also pressure 

and the injected volume in each time step the results can be compared in different ways. 

In this section four different methods are presented: 

• Comparing grout spread in the fracture over time. 
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• Comparing P versus penetration length against that for constant aperture (constant 

aperture model results). 

• Comparing pressure changes over grouting time. 

• Comparing penetration length versus P.V against that for constant aperture (constant 

aperture model results). 

 

Grout Penetration Diagram 

One of the methods to present the code results is the grout propagation diagram over the 

surface of the fracture in each time step for each of the cases. These diagrams which 

show the limits of grout at each time step, illustrate the grout penetration patterns.  These 

diagrams are most useful in cases where the effect of a blocking zone, for example an 

area with a smaller aperture, is studied.  

 

 

Penetration Length from the Code Results 

To calculate the code ‘penetration length’ a circular penetration is assumed. The volume 

at each time step is computed by multiplying the injection flow rate by the elapsed time. 

The penetration length derived from the computed volume would be: 

 

Equation  6.1         
e

VL
π

=  
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 e in Equation  6.1 the is the effective aperture. In the literature different suggestion for 

this value is proposed. As it is explained in  2.5.1 Gustafson and Stille (1996) suggest the 

harmonic mean as the effective aperture for the random distributions used to simulate the 

fracture surface. In the current examples average aperture for the whole fracture surface 

is assumed as the effective aperture. However, in the future works the results of this 

model can be used to give suggestions on this issue. 

 

Penetration Length Based on Constant Aperture Model Assuming Cylindrical 

Penetration 

In Chapter  3 the one dimensional solution of Bingham fluid is presented. Shuttle et al. 

(2007) employed this solution in a VBA code to calculate penetration length of grout for 

a cylindrical penetration shown in Figure  6.1. In this figure Lg, rBH and e are penetration 

length of grout, borehole radius and aperture. Pg and C are injection pressure and 

cohesion of grout.  

 

Figure  6.1: Cylindrical penetration of grout. 

 

This model assumes fracture as an infinite plane with two parallel sides and a constant 

aperture. The code takes the grout properties and a constant aperture as input and 

calculates the penetration length of grout for different pressures during grouting.  
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Similar properties as given in Table  6.2 are used in the simulations with this model. The 

only difference is in the fracture properties. This model takes a single value for aperture 

which is the average aperture here, to simulate the fracture. 

   

Pressure Changes Over Time 

The code gives the grout pressure at the beginning of each of the pipes. To compare the 

changes of grout pressure over time the injection pressure which is the pressure at the 

borehole node is considered.  

 

Pressure Changes for Different Penetration Lengths 

The constant aperture code (Shuttle et al., 2007) gives the penetration length by varying 

the injection pressure. To compare these results against the current code, injection 

pressure versus penetration length curves are presented. 

 

6.4 Sample Simulations 

6.4.1 Overview of the Simulations 

This section presents the results of some simulations from the code. These results are 

meant to show some sample simulations of the model and also the variation of the results 

for different input parameters. Table  6.2 gives a summary of the parameters used in these 

simulations. In each of the simulation sets all of the parameters are kept constant except 

one to focus on the individual influence of each input. All cases were specified to inject 
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grout for 1200 s (20min), however case 4 was stopped before the end of the simulation 

because the whole fracture was filled with grout.    

 

Table  6.2: Summary of the simulations 

 

 

The simulations presented are samples to presents outputs of the code – a comprehensive 

set of analyses was not the intent. Hence although these results might give some ideas 

about the effect of each input parameter on the grouting results, no general conclusions 

can be derived based on the presented figures. 

 

6.4.2 Grout Penetration for Different COV Values  

In this section three different Coefficients of Variation are considered. These three 

fractures are generated entering different standard deviations, resulting in three different 

minimum and maximum values of aperture while the average aperture is the same in all 

three cases. These values are shown in Table  6.1.  
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Table  6.3: Input properties for random fracture generation. 

COV mean aperture 
(mm)  

Minimum 
aperture (mm) 

Maximum 
aperture (mm)  

    
0.03 1.0 0.92 1.11 
0.15 1.0 0.60 1.45 
0.30 1.0 0.06 1.82 

 

Figure  6.2 shows the distribution of aperture over the surface of fracture and also 

contours of grout penetration for a two minute interval in each case. These contours 

indicate the penetration limits of grout at a specific time. As expected changing the 

coefficient of variation has a considerable effect on the shape of grout spread. 

 

The other observation in Figure  6.2 is the square shape of grout penetration contours. 

This is also observed in all other cases presented in this chapter. These square shaped 

contours are obtained based on the penetration length in each 1D element. Although the 

area inside each contour is close to the injected volume of grout divided by the average 

aperture over the area, the shape is not a circle. The reason is the use of 1D pipes which 

are connected to each node in form of a cross representing a 2D element. While drawing 

the contours the only data available for the penetration of grout is the penetration length 

in each of these pipes. Therefore, connecting the penetration points to each other forms a 

square rather than a circle. 
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(a) Aperture distribution over the 
surface of fracture for COV=0.03. 

(b) Grout penetration contours 
for COV=0.03.  

 
(c) Aperture distribution over the 
surface of fracture for COV=0.15. 

(d) Grout penetration contours 
for COV=0.15.  

 
(e) Aperture distribution over the 
surface of fracture for COV=0.30. 

(f) Grout penetration contours 
for COV=0.30.  

  
Figure  6.2: Generated aperture distribution (a), (c), (e) and grout penetration contours for 

2 minute (120s) intervals (b), (d) and (e) for different Coefficients of Variation. 
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Figure  6.3 shows changes of pressure at the injection point versus penetration length. 

These results are also compared with the result of constant aperture model. In the 

fractures with lower COV the apertures in different elements are much closer to the 

average value. Therefore, it is expected that in such cases the results are much closer to 

the constant aperture. But Figure  6.3 shows that the code results indicate a higher 

injection pressure than the constant aperture model throughout the simulation.  

Comparing the stochastic aperture results, initially the higher COV is associated with a 

higher injection pressure, but with increasing injection volume the three results from all 

COV converge and above an injection radius of approximately 0.4m are not very 

sensitive to COV. Since decreasing COV does not give closer values to the constant 

aperture model results, the differences should be attributed to other reasons such as 

solving the equations for 1D pipes rather than a 2D case. The current model considers 

summation of penetration lengths times widths of filling pipes in the network as the 

injected grout volume, rather than considering a circular area considered in a pure radial 

flow model. This results in deviation of the simulations by the current model from pure 

radial flow simulations.  However, any conclusion on the reason for this difference 

requires further studies on this subject. 
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Figure  6.3: Changes of injection pressure with grout penetration for different Coefficients 

of Variation. 

 

Changes of injection pressure over time are illustrated in the following figure. This figure 

can be used to study the effect of COV changes on the injection pressure at any time 

during grouting.  
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Figure  6.4: Changes of injection pressure over time for different Coefficients of 

Variation. 

 

Figure  6.5 displays the changes of penetration length versus P.V for three different COV 

values. As it can be observed from the results similar to Figure  6.3 the current results 

show that in all of the cases Stochastic aperture model is giving lower penetration lengths 

than Shuttle et al. (2007) results for a specific P.V and these curves are not very sensitive 

to the changes of COV. The same discussion as Figure  6.3 is valid for these observations.   
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Figure  6.5: Penetration length of grout for different Coefficients of Variation. 

 

6.4.3 Grout Penetration for Different Fracture Apertures 

In this section the results of three simulations with three apertures of 0.5, 1 and 2 mm and 

coefficient of variation of 0.14 are presented. In order not to have the effect of changes in 

the aperture distribution over the fracture surface one set of elements with a mean 

aperture equal to 1mm is generated and each of apertures is multiplied by 0.5 and 2 in the 

other two cases (Figure  6.6).  

 

Figure  6.6 shows that changes of aperture have considerable effect on penetration length 

of grout over time. However, as expected the results of the current simulations indicate 

little effect of mean aperture changes on the grout spread pattern. 
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(a) Aperture distribution over the surface 

of the fracture for aperture=0.5mm. 
(b) Grout penetration contours 

for aperture=0.5mm.  

 
(c) Aperture distribution over the surface 

of the fracture for aperture=1.0mm. 
(d) Grout penetration contours 

for aperture=1.0mm.  

 
(e) Aperture distribution over the surface 

of the fracture for aperture=2.0mm. 
(f) Grout penetration contours 

for aperture=2.0mm.  
  

Figure  6.6: Generated aperture distribution (a), (c), (e) and grout penetration contours for 
2 minute (120s) intervals (b), (d) and (e) for different fracture apertures. 
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Figure  6.7 shows the penetration pressure versus penetration length based on the results 

of simulations and also the curves based on the results of constant aperture model. The 

curves show that larger apertures have closer results to the constant aperture code results 

in the current case.  

 

 

Figure  6.7: Changes of injection pressure with grout penetration for different apertures. 

 

As it is shown in Figure  6.8 pressures in the fracture with smaller aperture is much higher 

than the pressure in fractures with larger openings. Also, Figure  6.8 shows a sudden 

increase in the grout pressure around 1100 sec which is a boundary effect corresponding 

to the time grout is blocked by fracture outer boundaries. This stepwise increase in 

pressure as the grout reached the boundaries of the fracture is because of applying no 

flow boundary conditions for the outer boundaries of the fracture. Since this effect will 
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cause getting unrealistic results the dimensions of fracture has to be chosen large enough 

to avoid being filled with grout. The fractures in the simulations are chosen based on the 

capacities of the code which is larger than previous studies with stochastically varying 

aperture (e.g. Rasekh and Shuttle, 2006). To be able to model larger fractures increasing 

the code capacities is highly recommended for future work. There are a few methods to 

raise the capacity of the code like making the computing matrices in the code diagonal or 

reducing the number of equations solved in the code by some simplifying assumptions. 

 

 

Figure  6.8: Changes of injection pressure over time for different fracture apertures. 

 

Figure  6.9 shows the penetration lengths versus P.V along with the curves based on the 

results of constant aperture model. Similar to Figure  6.7 these curves become closer to 
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the constant aperture code results when fractures with larger average aperture are 

modeled. 

 

 

Figure  6.9: Penetration length of grout for different fracture apertures. 

 

6.4.4 Grout Penetration for Different Yield Stresses 

In this section the results of three sample simulations with three different yield stresses of 

grout are presented. In this case except yield stress of the grout, all of the other input 

parameters including fracture properties are identical in all of the cases. Figure  6.10 

shows the grout spread diagram for different yield stresses. Grout yield stress has no 

significant effect on the penetration length and pattern of the grout over time in these 
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examples. The penetration diagram for the middle yield stress value (τ0=5 Pa) is not 

displayed due to similarities in the other two figures. 

 

 
(a) Aperture distribution over the 

surface of the fracture. 
(b) Grout penetration contours 

for τ0=1Pa. 

 
(c) Grout penetration contours for 

τ0=10Pa. 
 

 

Figure  6.10: Generated aperture distribution (a) and grout penetration contours for 2 

minute (120s) intervals for different yield stresses (b) and (c). 

 

Figure  6.11 shows pressure versus penetration length for each of the cases from both 

results of current code and constant aperture code. By changing yield stress the pressure-
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penetration length curves based on simulation results does not become considerably 

closer to or farther from the constant aperture results.  

 

Figure  6.11: Changes of injection pressure with grout penetration for different yield 

stresses (cohesions). 

 

Unlike the little effect of yield stress changes on the penetration length of grouting over 

time, cohesion has a large effect on the pressure changes during grouting in these sample 

simulations. Figure  6.12 shows that larger yield stresses give larger pressures at any time 

during grouting. 
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Figure  6.12: Changes of injection pressure over time for different yield stresses 

(cohesions). 

 

Figure  6.13 shows penetration length versus P.V curves. Contrary to Figure  6.11 these 

curves illustrate by increasing the yield stress of the grout the constant aperture results 

and current simulation results give closer values for the penetration length of the grout. 

This might be due to the decrease in velocity as the yild stresses increases, which makes 

it closer to an ideal laminar flow. 
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Figure  6.13: Penetration length of grout for different yield stresses (cohesions). 
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7 SUMMARY AND CONCLUSION 

 

Predicting the grout penetration in fractured rocks is of interest because of its significance 

in engineering and scientific applications. Although popular empirical and experimental 

methods give approximate solutions for the grout penetration, to date few models have 

been developed to improve these predictions. The main problems with modeling grouting 

in fractured rocks are the complexities of grout behavior and fracture geometry.  

 

The model developed in this study provides an improved simulation of grout spread in a 

single fracture by: 

 

• Solving the Bingham flow equations over the grouting time to simulate fluid flow. 

Unlike many previous models which simulate grout only based on cohesion of the 

fluid, this model simulates grout by taking both viscosity and cohesion into account. 

 

• Simulating fractures with randomly changing aperture which is more realistic than 

constant aperture. In reality grout follows certain paths while penetrating a fracture. 

Since these routes are highly affected by the aperture changes over the surface of 

fracture, considering fracture stochastic properties gives more realistic results. 

  

These methodologies help to get a more realistic simulation of each of the two phases of 

grouting. Previously using these two approaches at the same time caused some 

limitations in the maximum fracture size and grouting time the model can simulate. To 
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solve this problem, 1D equations in stochastic 1D channels are used instead of 2D ones. 

This simplification improves the computation capacity limits mentioned above by saving 

a considerable amount of computation. Although this simplification is a great changes 

from solving 2D equations in 2D elements, since in reality grout flows in thin routes, this 

assumption is not far from the real physics of the flow.  

 

The model gives the penetration length, pressure and injected grout volume in each of the 

elements at each time step. This data can be used in different combinations to illustrate 

the physics of the grouting.  A careful post-processing of the numerical data provides a 

useful tool in comparing the results from different aspects. The current code provides 

information to study grout penetration under different conditions by comparing: 

• Grout penetration pattern over time. 

• Pressure changes over time at any point in fracture. 

• Pressure changes for different penetration lengths. 

• Penetration length for different pressure x volume. 

 

Considering the features of the present model in simulating fracture and grout and also 

giving a variety of outputs, this model can be used for any study on grouting in fractures 

such as sensitivity analysis on both grout and fracture properties.  
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APPENDIX A : DERIVATION OF THE BINGHAM FLUID 

EQUATIONS 

Figure A.1 shows the forces in an element of flowing fluid in a pipe. Based on this figure 

the force equilibrium equations can be written as: 

 

Equation A.1                                                     [ ] wLwyPPP yz ××=××Δ+− τ)(  

         yzy
L
P τ=×

Δ
−⇒  

Where w, L and y are the width, length and height of the element. P  and PP Δ+  are the 

pressures applying at each of the faces of the element. yzτ  is the shear stress in the fluid 

at the height equal to y. 

 

Figure A.1: Forces in a flowing fluid inside a channel 

 

The mathematical equations for a Bingham fluid behavior is: 

Equation A. 2       B
Byz dy

du
0τμτ +−=                 for   B

yz 0ττ ≥     

  B
yz 0ττ =    ( 0=

dy
du )               for   B

yz 0ττ ≤  
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In the above equations Bμ  is the dynamic viscosity, 
dy
du  is the rate of the shear strain and 

B
0τ is the yield stress. 

Replacing yzτ  by its mathematical definition for a Bingham fluid in the Equation A.1 the 

fluid velocity equation can be derived. Based on these equations the injection rate per 

unit width would be: 

For   B
yz 0ττ ≤  we have:  
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Knowing the velocity at each level over the height of the pipe the flow rate can be 

calculated. Flow rate will be the integration of the velocity over the height of the channel. 

Since half of the pipe is considered in all of the equations until now, the total q will be 

twice the integration of u over b. 
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q is the grout injection rate per unit width. To get the grout injection rate, q can be 

multiplied by w. 
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Equation A. 10        02
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Equation A.1 is a cubic polynomial which has three roots, one of which is accepted as our 

solution. 
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The first root of the above standard equation is: 
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APPENDIX B : NEWTON’S METHOD FOR THE 

SOLUTION OF PIPE NETWORK EQUATIONS 

 

Newton’s method is one of the simplest methods in solving a set of nonlinear equations. 

In the mathematical language Newton’s method is: 

 

Equation B. 1            [ ] [ ] ( )[ ] ( )[ ]ccc xfxfxx .1' −

+ −=  

 

In the above equation: 

+x : The root of the equations. 

 cx : Initial assumption for the root. 

( )cxf ' : Jacobean matrix of the given equations for the initial assumption. 

( )cxf : The value of the equations given in Section  4.3.2 for the initial assumption. 

The brackets in Equation B.1 indicate that all of these variables are matrices. 

The detailed theory, advantages and disadvantages of the method can be found in 

“Iterative Methods for Linear and Nonlinear Equations.” by C.T. Kelley (1995). 

 

For the current case where we have 2n unknowns for a general network with n pipes the 

previous equation can be written as: 
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Equation B. 2    
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All of the equations and matrices in this section are for a single grid. In the current code 

such matrices for all of the grids are assembled to form a matrix for the whole system of 

pipes. 

 For a grid that “n+1” pipes are attached to it (1 inflow and n outflow), the governing 

equations are in the following order: 

1. 01 == ∑Qf  

 

2. For a half full pipe: 

     0.)(1...2 =Δ−−= Δ−+ t
A
Q

llf tttn  (n=number of pipes with outflow) 

     For the filled pipe with the equation number m ( 12 +≤≤ nm ): 

    0=−= pipemtm llf  

 

3. For a half full pipe: 
     0).().(2...2 =−=+ tikiktijijnn lQflQff  

 

     For the filled pipe with the equation number m+n ( nnmn 22 ≤+≤+ ) 
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0).().().( =−+=+ tikiktjljlpipemijnm lQflQflQff  (“jl” is the extension attached to the 

full pipe)  

 

The variables also are assumed in the following order: 
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For the filled pipe: 
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The Jacobean matrix for the general case given above will be:  
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The differentiation equation (
Q∂

∂φ
) in the above equation is derived as follows: 
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APPENDIX C :  RANDOM FRACTURE GENERATOR 
 
Option Explicit 
Option Base 1 
Dim ApertDrawing(20000, 10), LineDrawing(200000, 10), PipeProp(200000, 10), Elemprop(10000, 10) 
 
 
Sub RandomNetworkGenerator() 
 
Dim OutWorksheet, OutWorksheet1 As Range 
 
'Input Variables 
Dim Length, Width, minaperture, Maxaperture, Meanaperture As Single 
Dim Nlength, Nwidth, i, j As Integer 
Dim Distribution As String 
 
'Calculation variables 
Dim Sigma, x, y, xl(1000, 1000), yl(1000, 1000), Dw, Dl As Single 
Dim R, Apert(1000, 1000) As Double 
Dim L, Output(10000, 10), K, M, N As Integer 
 
'*****READING FRACTURE DATA (DIMENSIONS OF THE FRACTURE AND THE REQUIRED MESH) , 
FILE="FRACTUREDATA" 
 
Length = Sheet1.Range("c2") 
Width = Sheet1.Range("c3") 
Sigma = Sheet1.Range("c5") 
Meanaperture = Sheet1.Range("c6") 
Nlength = Sheet1.Range("c8") 
Nwidth = Sheet1.Range("c9") 
Distribution = Sheet1.Range("c11") 
 
'Mesh Dimentions 
Dl = Length / Nlength 
Dw = Width / Nwidth 
 
'Calculating the fracture properties 
For i = 1 To Nlength 
    xl(1, i) = 0# 
Next i 
For i = 1 To Nwidth 
    yl(i, 1) = 0# 
Next i 
x = Dw / 2 
K = 1 
M = 1 
N = 1 
For i = 1 To Nwidth 
    y = 0# 
    For j = 1 To Nlength 
       If Distribution = "Uniform" Then 
         R = Rnd 
         Apert(i, j) = Meanaperture * R / 2 
       End If 
       If Distribution = "Normal" Then 
         R = Application.WorksheetFunction.NormInv(Rnd, Meanaperture, Sigma) 
         Apert(i, j) = R 
       End If 
       If i = 1 Then 
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         xl(i + 1, j) = xl(i, j) + Dw / 2 
       Else 
         xl(i + 1, j) = xl(i, j) + Dw 
       End If 
       If j = 1 Then 
         yl(i, j + 1) = yl(i, j) + Dl / 2 
       Else 
         yl(i, j + 1) = yl(i, j) + Dl 
       End If 
       If j > 1 Then 
         PipeProp(N, 1) = xl(i, j) 
         PipeProp(N, 2) = yl(i, j) 
         PipeProp(N, 3) = xl(i + 1, j) 
         PipeProp(N, 4) = yl(i, j) 
         PipeProp(N, 5) = xl(i + 1, j) - xl(i, j) 
         If i = 1 Then 
            PipeProp(N, 6) = Apert(i, j - 1) 
         Else 
            PipeProp(N, 6) = Apert(i - 1, j - 1) 
         End If 
         PipeProp(N, 7) = Dl / 2 
         PipeProp(N, 8) = "0" 
         
         LineDrawing(M, 1) = "Pline" 
         M = M + 1 
         LineDrawing(M, 1) = PipeProp(N, 1) 
         LineDrawing(M, 2) = "," 
         LineDrawing(M, 3) = PipeProp(N, 2) 
         M = M + 1 
         LineDrawing(M, 1) = PipeProp(N, 3) 
         LineDrawing(M, 2) = "," 
         LineDrawing(M, 3) = PipeProp(N, 4) 
         M = M + 1 
         LineDrawing(M, 1) = "" 
         M = M + 1 
         N = N + 1 
       End If 
       If i > 1 Then 
         PipeProp(N, 1) = xl(i, j) 
         PipeProp(N, 2) = yl(i, j) 
         PipeProp(N, 3) = xl(i, j) 
         PipeProp(N, 4) = yl(i, j + 1) 
         PipeProp(N, 5) = yl(i, j + 1) - yl(i, j) 
         If j = 1 Then 
            PipeProp(N, 6) = Apert(i - 1, j) 
         Else 
            PipeProp(N, 6) = Apert(i - 1, j - 1) 
         End If 
         PipeProp(N, 7) = Dw / 2 
         PipeProp(N, 8) = "1" 
         LineDrawing(M, 1) = "Pline" 
         M = M + 1 
         LineDrawing(M, 1) = PipeProp(N, 1) 
         LineDrawing(M, 2) = "," 
         LineDrawing(M, 3) = PipeProp(N, 2) 
         M = M + 1 
         LineDrawing(M, 1) = PipeProp(N, 3) 
         LineDrawing(M, 2) = "," 
         LineDrawing(M, 3) = PipeProp(N, 4) 
         M = M + 1 
         LineDrawing(M, 1) = "" 
         M = M + 1 
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         N = N + 1 
       End If 
        
       Elemprop(j + (i - 1) * Nlength, 1) = x 
       Elemprop(j + (i - 1) * Nlength, 2) = y 
       Elemprop(j + (i - 1) * Nlength, 3) = x 
       Elemprop(j + (i - 1) * Nlength, 4) = y + Dl 
       Elemprop(j + (i - 1) * Nlength, 5) = Apert(i, j) 
        
       L = 250 * R / (0.002) 
       ApertDrawing(K, 1) = "Cecolor" 
       K = K + 1 
       ApertDrawing(K, 1) = "RGB:" 
       ApertDrawing(K, 2) = Round(L, 0) 
       ApertDrawing(K, 3) = "," 
       ApertDrawing(K, 4) = Round(L, 0) 
       ApertDrawing(K, 5) = "," 
       ApertDrawing(K, 6) = Round(L, 0) 
       K = K + 1 
       ApertDrawing(K, 1) = "trace" 
       K = K + 1 
       ApertDrawing(K, 1) = Dw 
       K = K + 1 
       ApertDrawing(K, 1) = x 
       ApertDrawing(K, 2) = "," 
       ApertDrawing(K, 3) = y 
       y = y + Dl 
       K = K + 1 
       ApertDrawing(K, 1) = x 
       ApertDrawing(K, 2) = "," 
       ApertDrawing(K, 3) = y 
       K = K + 1 
       ApertDrawing(K, 1) = "" 
       K = K + 1 
     
    Next j 
    x = x + Dw 
Next i 
 
'Output Results for the Aperture Drawing 
 
Sheet2.Select 
 
Set OutWorksheet = Sheet2.Range(Cells(4, 2), Cells(3 + K, 7)) 
 
' and copy the data across 
OutWorksheet.Value = ApertDrawing 
 
'Output Results for Linear Elements Drawing 
 
Sheet3.Select 
Set OutWorksheet1 = Sheet3.Range(Cells(4, 2), Cells(3 + M, 4)) 
 
' and copy the data across 
OutWorksheet1.Value = LineDrawing 
 
'Output Results for Linear Elements Properties 
Sheet4.Select 
Sheet4.Range("B1") = "NTOTAL" 
Sheet4.Range("B2") = N - 1 
Set OutWorksheet = Sheet4.Range(Cells(4, 2), Cells(3 + N, 9)) 
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' and copy the data across 
OutWorksheet.Value = PipeProp 
 
'Output Results for 2D Elements Properties 
Sheet5.Select 
Set OutWorksheet1 = Sheet5.Range(Cells(4, 2), Cells(3 + Nwidth * Nlength, 6)) 
 
' and copy the data across 
OutWorksheet1.Value = Elemprop 
 
Sheet1.Select 
 
End Sub 
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APPENDIX D :  PIPE NETWORK SOLVER CODE 

 

    
  PROGRAM PIPENETWORK 
C 
C*****THIS PROGRAM CALCULATES THE PENETRATION OF GROUT IN A PIPE NETWORK  
C WITH  
C DIFFERENT PIPE PROPERTIES 
C  
C  
C 
 
      REAL PIPELENGTH(740,740),PIPEAPERTURE(740,740) 
     1 ,PIPEWIDTH(740,740),Q(740,740,300),ELEMDATA(801,10) 
      REAL LENGTHT(740,740,300) 
       
      INTEGER PIPENUM,INCREMENTNUM,TIMESTEP, ROW(800), NOUT(800,6) 
     1 ,NIN(740),NTOTAL 
      DOUBLE PRECISION PI,PHI(740),PHI0(740) 
     2  ,X0(670),PHI1,PHI2 
     &  ,ALPHA(740),ALPHA1,ALPHA2,Q0 
 1  ,SIGMA, DT,THAW0, Q00,TIME,MU0,DP0, DP1, PRESSURE(740) 
     1  ,APERTURE(740),XNODE(740),YNODE(740),XBH,YBH 
 INTEGER    ROWNUM, J, K,ACTIVEPIPES 
C 
C EQUATION SOLVER VARIABLES 
  
 DOUBLEPRECISION FVEC(670),FJAC(670,670),X(670),S(670) 
 DOUBLEPRECISION R,NORM,TOLR,TOL0,RR,EPS,DELTA,DPHIDQ,DALPHADQ 
 INTEGER N 
 CHARACTER FLAG(740,740,300)*4 
 
C  
C NIN(I):        INDEX OF THE PIPE WITH INFLOW ATTACHED TO A NODE 
C          I:NODE NUMBER 
C NOUT(I,J):     INDEX OF THE PIPE WITH OUTFLOW ATTACHED TO A NODE 
C          I:NODE NUMBER, N(I,6):NUMBER OF ATTACHED PIPES 
C Q(I,J,T):      THE FLOW RATE BETWEEN TWO NODES OF I AND J AT THE  
C          TIME INCREMENT OF T 
C LENGTHT(I,J,T):THE PENETRATION LENGTH BETWEEN TWO NODES OF I AND J AT THE  
C          TIME INCREMENT OF T 
C 
C*****READING GROUTING AND FLOW PROPERTIES, FILE="GROUTINGDATA" 
C 
  
      OPEN (10,FILE='GROUTINGDATA',STATUS='OLD',ACCESS='SEQUENTIAL', 
     1FORM='FORMATTED') 
 
      READ (10,*) XBH,YBH 
 READ (10,*) THAW0 
 READ (10,*) MU0 
 READ (10,*) Q00 
 READ (10,*) TIME, INCREMENTNUM 
 WRITE(*,33)XBH,YBH,"THAW0:",THAW0,"Mu0:",MU0,"Q0:",Q00 
     1 ,"GROUTINGTIME:",TIME,"INCREMENTNUM:",INCREMENTNUM 
33 FORMAT("BOREHOLE LOCATION:",F5.2,",",F5.2,A9,F5.2,A5,G9.3,A5,G9.3 
     1  ,A16,F8.2,A16,I3) 
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 WRITE(*,*) 
 
 CLOSE (10,STATUS='KEEP') 
  
C 
C*****READING NETWORK DATA, FILE="NETWORKDATA" 
C 
      EPS=-0.00000 
 DELTA=10000000 
  
 
 OPEN (5,FILE='NETWORK',STATUS='OLD',ACCESS='SEQUENTIAL', 
     1FORM='FORMATTED') 
  
 READ (5,*) 
 READ (5,*)NTOTAL 
 READ (5,*) 
  
C 
C ELEMDATA(N,1-4): X,Y OF THE STARTING AND ENDING POINT OF THE ELEMENT 
C ELEMDATA(N,5):   LENGTH OF THE ELEMENT 
C ELEMDATA(N,6):   APERTURE OF THE ELEMENT 
C ELEMDATA(N,7):   WIDTH OF THE ELEMENT 
C ELEMDATA(N,8):   DIRECTION OF THE ELEMENT (0:HORIZONTAL, 1:VERTICAL) 
C ELEMDATA(N,9-10):START AND END NODE NUMBER OF THE ELEMENT 
C 
 DO 10 N=1, NTOTAL 
  READ(5,*) ELEMDATA(N,1),ELEMDATA(N,2) 
     1         ,ELEMDATA(N,3),ELEMDATA(N,4),ELEMDATA(N,5) 
     1      ,ELEMDATA(N,6),ELEMDATA(N,7),ELEMDATA(N,8) 
 
10 CONTINUE 
 CLOSE (5,STATUS='KEEP') 
 
 ROW(1)=0 
  
 CALL NETWORKDATA(1,1,XBH,YBH,ELEMDATA,NTOTAL,PIPENUM,PIPELENGTH 
     1    ,PIPEAPERTURE,PIPEWIDTH,NIN,NOUT,ROW,XNODE,YNODE 
     1    ,ACTIVEPIPES) 
 
 
 NODENUM=PIPENUM+1 
  
 OPEN (20,FILE='RESULTS',STATUS='NEW',ACCESS='SEQUENTIAL', 
     1FORM='FORMATTED')  
 OPEN (30,FILE='Jacobian',STATUS='NEW',ACCESS='SEQUENTIAL', 
     1FORM='FORMATTED')  
  
 WRITE(20,106)"STEP","I","J","XI","YI","XJ","YJ","Q","PENET","PRES" 
 WRITE(*,106) "STEP","I","J","XI","YI","XJ","YJ","Q","PENET","PRES" 
  
106   FORMAT(7A5,3A7) 
C  
C*****FINDING ALL THE NODES CONNECTED TO A SPECIFIC NODE 
C DEFINING THE PIPES WITH INFLOW AND OUTFLOW 
C 
 PI=4.0*ATAN(1.0) 
 DT=TIME/INCREMENTNUM 
  
 DO 45 I=1,2*ACTIVEPIPES 
  X(I)=0.0 
  X0(I)=0.0 
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45 CONTINUE 
 
C 
C*****CALCULATING PENETRATION LENGTH AND Q FOR EACH PIPE 
C 
C 
C COMPUTING THE ROOTS OF THE CONTROLING EQUATIONS IN EACH TIMESTEP  
C BY THE USE OF NEWTON ITERATIVE METHOD 
 
C 
C DEFINING NUMBER OF UNKNOWNS AND PRECISION FACTORS 
  
 DO 50 TIMESTEP=1,INCREMENTNUM 
  
 TOLR=0.001*Q00 
 TOL0=0.001*Q00 
 
 DO 62 L=1,2*ACTIVEPIPES 
  FVEC(L)=0.0 
     DO 620 LL=1,2*ACTIVEPIPES 
       FJAC(L,LL)=0.0 
  620     CONTINUE 
   
  X0(L)=X(L) 
 
  62  CONTINUE 
C  
C ASSEMBLING THE NETWORK MATRIX 
C        
  ROWNUM=0 
  DO 60 I=1,NODENUM 
C 
C NUMBER OF UNKNOWNS AT EACH GRID 
C 
   ROWNUM=ROW(I) 
   N=2*NOUT(I,6) 
   IF (N .EQ. 0) GOTO 60 
C 
C SETTING THE INITIAL VALUES FOR X AND OTHER VECTORS 
  
   DO 65 L=1,NOUT(I,6) 
 
  IF (TIMESTEP .EQ. 1) THEN 
    X(ROWNUM+L)=0.0 
    X(ROWNUM+L+NOUT(I,6))=0.0 
    GOTO 67 
     ENDIF 
 
  X(ROWNUM+L)=Q(I, NOUT(I,L), TIMESTEP-1) 
  IF (I .GT. 1 .AND. FLAG(NIN(I), I, TIMESTEP-1) .NE. 'FULL') 
     1       X(ROWNUM+L+NOUT(I,6))=0.0 
  IF (FLAG(I, NOUT(I,L), TIMESTEP-1) .EQ. 'FULL') THEN 
        X(ROWNUM+L+NOUT(I,6))=PIPELENGTH(I,NOUT(I,L)) 
     SIGMA=0.0 
 
C CALCULATING THE INITIAL ASSUMPTION FOR THE FLOW RATE IN THE PIPES ACCORDING TO 
THEIR APPERTURE 
C  NOT TO HAVE ZERO VAKLUES IN THE SYSTEM OF EQUATIONS AT THE BEGINNING 
OF THE CALCULATIONS 
 
     DO 6501 INEW=1, NOUT(NOUT(I,L),6) 
                SIGMA=SIGMA+PIPEAPERTURE(NOUT(I,L),NOUT(NOUT(I,L),INEW)) 
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6501     CONTINUE    
     DO 6502 INEW=1, NOUT(NOUT(I,L),6) 
           Q(NOUT(I,L),NOUT(NOUT(I,L),INEW),TIMESTEP-1)= 
     1            Q(I,NOUT(I,L),TIMESTEP-1) 
     1   *PIPEAPERTURE(NOUT(I,L),NOUT(NOUT(I,L),INEW)) 
     1   /SIGMA 
     X(ROW(NOUT(I,L))+INEW) 
     1            =Q(NOUT(I,L),NOUT(NOUT(I,L),INEW),TIMESTEP-1) 
     X(ROW(NOUT(I,L))+INEW+NOUT(NOUT(I,L),6)) 
     1            =X(ROW(NOUT(I,L))+INEW)*DT 
     1   /PIPEAPERTURE(NOUT(I,L),NOUT(NOUT(I,L),INEW)) 
6502         CONTINUE 
  ENDIF 
 
67  APERTURE(ROWNUM+L)=PIPEAPERTURE(I, NOUT(I,L)) 
65   CONTINUE 
    
C 
C DEFINING THE EQUATIONS 
C 
   Q0=Q00 
   IF (I.GT.1 .AND. TIMESTEP.NE.1) Q0=Q(NIN(I), I, TIMESTEP-1)    
   IF (I.GT.1 .AND. TIMESTEP.EQ.1) Q0=0 
        IF (I.GT.1 .AND. TIMESTEP.NE.1 .AND. FLAG(NIN(I),I,TIMESTEP-1) 
     1  .NE. 'FULL') Q0=0   
        FVEC(ROWNUM+1)=-Q0 
    
   DO 100 K=1,N/2 
  FVEC(ROWNUM+1)=FVEC(ROWNUM+1)+X(ROWNUM+K) 
  FVEC(ROWNUM+K+1)=X(ROWNUM+K+N/2)-X0(ROWNUM+K+N/2) 
     1     -X(ROWNUM+K)/APERTURE(ROWNUM+K)/PIPEWIDTH(I,NOUT(I,K))*DT 
  IF(TIMESTEP .GT. 1) THEN 
   IF(FLAG(I,NOUT(I,K),TIMESTEP-1).EQ.'FULL') THEN 
   FVEC(ROWNUM+K+1)=0.0 
         X0(ROWNUM+K+N/2)=X(ROWNUM+K+N/2) 
   ENDIF 
  ENDIF 
  ALPHA(ROWNUM+K)=-3-12*MU0*X(ROWNUM+K)/4/PIPEWIDTH(I,NOUT(I,K)) 
     1  /APERTURE(ROWNUM+K)**2/THAW0 
  PHI(ROWNUM+K)=2*(-ALPHA(ROWNUM+K)/3)**.5 
     1               *COS((ACOS((-27/ALPHA(ROWNUM+K)**3)**.5)+PI)/3) 
  IF (K .EQ. 1) GOTO 100 
  DP0=2*THAW0/2/APERTURE(ROWNUM+K-1)/PHI(ROWNUM+K-1) 
     1  *X(ROWNUM+K-1+N/2) 
  DP1=2*THAW0/2/APERTURE(ROWNUM+K)/PHI(ROWNUM+K) 
     1  *X(ROWNUM+K+N/2) 
  IF(TIMESTEP .EQ. 1) GOTO 99 
  IF(FLAG(I,NOUT(I,K-1),TIMESTEP-1).EQ.'FULL')THEN 
   IEXTENSION=NOUT(I,K-1) 
97   ALPHA1=-3-12*MU0*X(ROW(IEXTENSION)+1)/4 
     1   /PIPEWIDTH(IEXTENSION,NOUT(IEXTENSION,1)) 
     1         /PIPEAPERTURE(IEXTENSION,NOUT(IEXTENSION,1))**2/THAW0 
   PHI1=2*(-ALPHA1/3)**.5*COS((ACOS((-27/ALPHA1**3)**.5)+PI)/3) 
   DP0=DP0 
     1  +2*THAW0/2/PIPEAPERTURE(IEXTENSION,NOUT(IEXTENSION,1)) 
     1        /PHI1*X(ROW(IEXTENSION)+1+NOUT(IEXTENSION,6)) 
      IF(FLAG(IEXTENSION,NOUT(IEXTENSION,1),TIMESTEP-1).EQ.'FULL')THEN 
        IEXTENSION=NOUT(IEXTENSION,1) 
     GOTO 97 
   ENDIF    
  ENDIF 
  IF(FLAG(I,NOUT(I,K),TIMESTEP-1).EQ.'FULL')THEN 
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      IEXTENSION=NOUT(I,K) 
98   ALPHA2=-3-12*MU0*X(ROW(NOUT(I,K))+1)/4 
     1      /PIPEWIDTH(NOUT(I,K),NOUT(NOUT(I,K),1)) 
     1   /PIPEAPERTURE(NOUT(I,K),NOUT(NOUT(I,K),1))**2/THAW0 
   PHI2=2*(-ALPHA2/3)**.5*COS((ACOS((-27/ALPHA2**3)**.5)+PI)/3) 
   DP1=DP1 
     1   +2*THAW0/2/PIPEAPERTURE(NOUT(I,K),NOUT(NOUT(I,K),1)) 
     1         /PHI2*X(ROW(NOUT(I,K))+1+NOUT(NOUT(I,K),6)) 
  IF(FLAG(IEXTENSION,NOUT(IEXTENSION,1),TIMESTEP-1).EQ.'FULL')THEN 
        IEXTENSION=NOUT(IEXTENSION,1) 
     GOTO 98 
   ENDIF 
  ENDIF 
99  FVEC(ROWNUM+K+N/2)=DP1-DP0 
100   CONTINUE 
 
60    CONTINUE  
C 
C DEFINING THE DIFFERENTIATION OF UNKNOWNS  
C IN THE JACOBIAN MATRIX 
C 
 ITERATION=0 
 lgt=0 
111 ROWNUM=0 
 DO 6000 I=1,NODENUM 
  ROWNUM=ROW(I) 
       N=NOUT(I,6)*2 
  DO 150 K=1,N/2 
  
   ALPHA(ROWNUM+K)=-3-12*MU0*X(ROWNUM+K)/4/PIPEWIDTH(I,NOUT(I,K)) 
     1         /APERTURE(ROWNUM+K)**2/THAW0 
   ALPHA0=-3-12*MU0*X0(ROWNUM+K)/4/PIPEWIDTH(I,NOUT(I,K)) 
     1         /APERTURE(ROWNUM+K)**2/THAW0 
   PHI(ROWNUM+K)=2*(-ALPHA(ROWNUM+K)/3)**.5 
     1                *COS((ACOS((-27/ALPHA(ROWNUM+K)**3)**.5)+PI)/3) 
  PHI0(ROWNUM+K)=2*(-ALPHA0/3)**.5*COS((ACOS((-27/ALPHA0**3)**.5)+PI)/3) 
  
   FJAC(ROWNUM+1,ROWNUM+K)=1 
   FJAC(ROWNUM+K+1,ROWNUM+K)=-DT/APERTURE(ROWNUM+K) 
     1       /PIPEWIDTH(I,NOUT(I,K)) 
   IF(TIMESTEP .GT. 1) THEN 
      IF(FLAG(I,NOUT(I,K),TIMESTEP-1).EQ.'FULL')THEN 
         FJAC(ROWNUM+K+1,ROWNUM+K)=EPS 
    FJAC(ROW(NOUT(I,K))+1,ROWNUM+K)=-1 
      ENDIF 
   ENDIF 
   FJAC(ROWNUM+K+1,ROWNUM+K+N/2)=1 
    
   IF (K.EQ.N/2) GOTO 1500 
 
   IF (X(ROWNUM+K) .EQ. 0) THEN 
    FJAC(ROWNUM+K+N/2+1,ROWNUM+K)=EPS 
   ELSE 
 
   DALPHADQ=-12*MU0/4/PIPEWIDTH(I,NOUT(I,K)) 
     1     /(APERTURE(ROWNUM+K))**2/THAW0 
   DPHIDQ=-((-3*ALPHA(ROWNUM+K))**(-.5) 
     1       *COS((ACOS((-27/ALPHA(ROWNUM+K)**3)**.5)+PI)/3) 
     1          -(-ALPHA(ROWNUM+K)/3)**.5 
     1          *SIN((ACOS((-27/ALPHA(ROWNUM+K)**3)**.5)+PI)/3) 
     1    *(-27/ALPHA(ROWNUM+K)**5)**.5 
     1          /(1-ABS(-27/ALPHA(ROWNUM+K)**3))**.5)*DALPHADQ 



 

  138

 
        FJAC(ROWNUM+K+N/2+1,ROWNUM+K)=2*THAW0*DPHIDQ 
     1   /2/APERTURE(ROWNUM+K)/PHI(ROWNUM+K)**2*X(ROWNUM+K+N/2) 
 
   ENDIF 
 
       
   IF (X(ROWNUM+K+1) .EQ. 0) THEN 
    FJAC(ROWNUM+K+N/2+1,ROWNUM+K+1)=EPS 
   ELSE 
 
   DALPHADQ=-12*MU0/4/PIPEWIDTH(I,NOUT(I,K+1)) 
     1     /(APERTURE(ROWNUM+K+1))**2/THAW0 
   DPHIDQ=-((-3*ALPHA(ROWNUM+K+1))**(-.5) 
     1       *COS((ACOS((-27/ALPHA(ROWNUM+K+1)**3)**.5)+PI)/3) 
     1          -(-ALPHA(ROWNUM+K+1)/3)**.5 
     1          *SIN((ACOS((-27/ALPHA(ROWNUM+K+1)**3)**.5)+PI)/3) 
     1    *(-27/ALPHA(ROWNUM+K+1)**5)**.5 
     1          /(1-ABS(-27/ALPHA(ROWNUM+K+1)**3))**.5)*DALPHADQ 
 
        FJAC(ROWNUM+K+N/2+1,ROWNUM+K+1)=-2*THAW0*DPHIDQ 
     1   /2/APERTURE(ROWNUM+K+1)/PHI(ROWNUM+K+1)**2*X(ROWNUM+K+N/2+1) 
 
   ENDIF 
         
   FJAC(ROWNUM+K+N/2+1,ROWNUM+K+N/2)=-2*THAW0/2 
     1  /APERTURE(ROWNUM+K)/PHI(ROWNUM+K) 
 
   FJAC(ROWNUM+K+N/2+1,ROWNUM+K+N/2+1)=2*THAW0/2 
     1  /APERTURE(ROWNUM+K+1)/PHI(ROWNUM+K+1) 
 
    
1500   IF (TIMESTEP .EQ. 1) GOTO 150 
 
   IF (NOUT(I,K) .EQ. 0) GOTO 25  
   IF(FLAG(I,NOUT(I,K),TIMESTEP-1).EQ.'FULL' .AND. K .LT. N/2) THEN 
    IEXTENSION=I 
    ICOLUMN=K+N/2 
     NEXTENSION=K 
159    FJAC(ROW(I)+K+N/2+1,ROW(IEXTENSION)+ICOLUMN)=EPS 
    
         IF(X(ROW(NOUT(IEXTENSION,NEXTENSION))+1) .EQ. 0.0 .OR.  
     1      PHI(ROW(NOUT(IEXTENSION,NEXTENSION))+1).EQ.0.0) THEN  
     FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION))+1)=EPS 
       ELSE 
          
    DALPHADQ=-12*MU0/4/PIPEWIDTH(NOUT(IEXTENSION,NEXTENSION) 
     1    ,NOUT(NOUT(IEXTENSION,NEXTENSION),1))/(APERTURE( 
     1    ROW(NOUT(IEXTENSION,NEXTENSION))+1))**2/THAW0 
    DPHIDQ=-((-3*ALPHA(ROW(NOUT(IEXTENSION,NEXTENSION))+1))**(-.5) 
     1        *COS((ACOS((-27/ALPHA(ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1     +1)**3)**.5)+PI)/3)-(-ALPHA(ROW(NOUT(IEXTENSION 
     1     ,NEXTENSION))+1)/3)**.5*SIN((ACOS((-27/ALPHA(ROW( 
     1     NOUT(IEXTENSION,NEXTENSION))+1)**3)**.5)+PI)/3) 
     1     *(-27/ALPHA(ROW(NOUT(IEXTENSION,NEXTENSION))+1)**5)**.5 
     1     /(1-ABS(-27/ALPHA(ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1     +1)**3))**.5)*DALPHADQ 
  
    FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION))+1) 
     1  =2*THAW0*DPHIDQ/2/APERTURE(ROW(NOUT 
     1  (IEXTENSION,NEXTENSION))+1)/PHI(ROW(NOUT(IEXTENSION 
     1  ,NEXTENSION))+1)**2*X(ROW(NOUT(IEXTENSION,NEXTENSION)) 
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     1  +1+NOUT(NOUT(IEXTENSION,NEXTENSION),6)) 
 
       ENDIF 
     
            IF(PHI(ROW(NOUT(IEXTENSION,NEXTENSION))+1) .EQ. 0.0) THEN  
      FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1   +1+NOUT(NOUT(IEXTENSION,NEXTENSION),6))=EPS 
       ELSE 
         FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1   +1+NOUT(NOUT(IEXTENSION,NEXTENSION),6))= 
     1      -2*THAW0/2/APERTURE(ROW(NOUT(IEXTENSION,NEXTENSION))+1) 
     1   /PHI(ROW(NOUT(IEXTENSION,NEXTENSION))+1) 
       ENDIF 
    IF(FLAG(NOUT(IEXTENSION,NEXTENSION),NOUT(NOUT(IEXTENSION 
     1   ,NEXTENSION),1),TIMESTEP-1).EQ.'FULL')THEN 
   FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION))+1 
     1    +NOUT(NOUT(IEXTENSION,NEXTENSION),6))=EPS 
   ICOLUMN=1+NOUT(NOUT(IEXTENSION,NEXTENSION),6) 
   IEXTENSION=NOUT(IEXTENSION,NEXTENSION) 
      NEXTENSION=1 
   GOTO 159 
    ENDIF          
 
   ENDIF 
 
25   IF (NOUT(I,K+1) .EQ. 0) GOTO 150  
 
   IF(FLAG(I,NOUT(I,K+1),TIMESTEP-1).EQ.'FULL' .AND. K .LT. N/2) THEN 
 
         IEXTENSION=I 
    ICOLUMN=K+N/2+1 
    NEXTENSION=K+1 
149    FJAC(ROW(I)+K+N/2+1,ROW(IEXTENSION)+ICOLUMN)=EPS 
     
        IF(X(ROW(NOUT(IEXTENSION,NEXTENSION))+1) .EQ. 0.0 .OR.  
     1      PHI(ROW(NOUT(IEXTENSION,NEXTENSION))+1).EQ.0.0) THEN  
         FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION))+1)=EPS 
     ELSE 
          
 
   DALPHADQ=-12*MU0/4/PIPEWIDTH(NOUT(IEXTENSION,NEXTENSION) 
     1    ,NOUT(NOUT(IEXTENSION,NEXTENSION),1))/(APERTURE( 
     1    ROW(NOUT(IEXTENSION,NEXTENSION))+1))**2/THAW0 
            
   DPHIDQ=-((-3*ALPHA(ROW(NOUT(IEXTENSION,NEXTENSION))+1))**(-.5) 
     1      *COS((ACOS((-27/ALPHA(ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1   +1)**3)**.5)+PI)/3)-(-ALPHA(ROW(NOUT(IEXTENSION 
     1   ,NEXTENSION))+1)/3)**.5*SIN((ACOS((-27/ALPHA(ROW( 
     1   NOUT(IEXTENSION,NEXTENSION))+1)**3)**.5)+PI)/3) 
     1   *(-27/ALPHA(ROW(NOUT(IEXTENSION,NEXTENSION))+1)**5)**.5 
     1   /(1-ABS(-27/ALPHA(ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1   +1)**3))**.5)*DALPHADQ 
  
   FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION))+1) 
     1  =-2*THAW0*DPHIDQ/2/APERTURE(ROW(NOUT 
     1  (IEXTENSION,NEXTENSION))+1)/PHI(ROW(NOUT(IEXTENSION 
     1  ,NEXTENSION))+1)**2*X(ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1  +1+NOUT(NOUT(IEXTENSION,NEXTENSION),6)) 
 
        ENDIF 
 
   IF(PHI(ROW(NOUT(IEXTENSION,NEXTENSION))+1) .EQ. 0.0) THEN  
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    FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1   +1+NOUT(NOUT(IEXTENSION,NEXTENSION),6))=EPS 
 
   ELSE 
      FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION)) 
     1   +1+NOUT(NOUT(IEXTENSION,NEXTENSION),6))= 
     1      2*THAW0/2/APERTURE(ROW(NOUT(IEXTENSION,NEXTENSION))+1) 
     1   /PHI(ROW(NOUT(IEXTENSION,NEXTENSION))+1) 
    ENDIF 
    IF(FLAG(NOUT(IEXTENSION,NEXTENSION),NOUT(NOUT(IEXTENSION 
     1   ,NEXTENSION),1),TIMESTEP-1).EQ.'FULL')THEN 
   FJAC(ROW(I)+K+N/2+1,ROW(NOUT(IEXTENSION,NEXTENSION))+1 
     1    +NOUT(NOUT(IEXTENSION,NEXTENSION),6))=EPS 
   ICOLUMN=1+NOUT(NOUT(IEXTENSION,NEXTENSION),6) 
   IEXTENSION=NOUT(IEXTENSION,NEXTENSION) 
      NEXTENSION=1 
   GOTO 149 
  ENDIF   
        ENDIF 
 
150  CONTINUE   
 
6000 CONTINUE 
 
 RR=0.0 
 DO 110 II=1,2*ACTIVEPIPES 
 RR=RR+FVEC(II)**2 
110 CONTINUE 
  
 RR=SQRT(RR) 
 IF (RR .EQ. 0.0) GOTO 435 
 
C CALCULATING NEW X VALUES  
  
 CALL LINEAREQUATION(2*ACTIVEPIPES,FJAC,FVEC,S) 
  
 DO 220 M=1,2*ACTIVEPIPES 
  X(M)=X(M)-S(M) 
220 CONTINUE 
 
C  
C CALCULATING THE NEW VARIABLE VALUES 
C      
 ROWNUM=0   
 
 DO 6450 I=1,NODENUM 
   ROWNUM=ROW(I) 
   Q0=Q00 
   IF (I.GT.1 .AND. TIMESTEP.NE.1) Q0=Q(NIN(I), I, TIMESTEP)    
   IF (I.GT.1 .AND. TIMESTEP.EQ.1) Q0=0 
        IF (I.GT.1 .AND. TIMESTEP.NE.1 .AND. FLAG(NIN(I),I,TIMESTEP-1) 
     1  .NE. 'FULL') Q0=0   
 
  DO 6510 L=1,NOUT(I,6) 
  IF (X(L+ROWNUM) .GT. Q0) X(L+ROWNUM)=Q0 
  IF (X(L+ROWNUM) .LT. 0) then 
  X(L+ROWNUM)=PIPEWIDTH(I,NOUT(I,L))*APERTURE(ROWNUM+L)**2/THAW0 
     1     /MU0*10e-12 
     end if 
  Q(I, NOUT(I,L), TIMESTEP)=X(L+ROWNUM) 
  IF (X(L+ROWNUM+NOUT(I,6)) .LT. 0) X(L+ROWNUM+NOUT(I,6))=0  
  LENGTHT(I, NOUT(I,L), TIMESTEP)=X(ROWNUM+L+NOUT(I,6)) 
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6510  CONTINUE 
6450 CONTINUE 
 
  ROWNUM=0 
  DO 60000 I=1,NODENUM 
C 
C NUMBER OF UNKNOWNS AT EACH GRID 
C 
   N=NOUT(I,6)*2 
   ROWNUM=ROW(I) 
   IF (N .EQ. 0) GOTO 60000   
    
C 
C DEFINING THE EQUATIONS 
 
   Q0=Q00 
   IF (I.GT.1 .AND. TIMESTEP.NE.1) Q0=Q(NIN(I), I, TIMESTEP)    
   IF (I.GT.1 .AND. TIMESTEP.EQ.1) Q0=0 
        IF (I.GT.1 .AND. TIMESTEP.NE.1 .AND. FLAG(NIN(I),I,TIMESTEP-1) 
     1  .NE. 'FULL') Q0=0   
 
   FVEC(ROWNUM+1)=-Q0 
  
   DO 1100 K=1,N/2 
  FVEC(ROWNUM+1)=FVEC(ROWNUM+1)+X(ROWNUM+K) 
  FVEC(ROWNUM+K+1)=X(ROWNUM+K+N/2)-X0(ROWNUM+K+N/2) 
     1 -X(ROWNUM+K)/APERTURE(ROWNUM+K)/PIPEWIDTH(I,NOUT(I,K))*DT 
   
  IF(TIMESTEP .GT. 1) THEN 
   IF(FLAG(I,NOUT(I,K),TIMESTEP-1).EQ.'FULL') THEN 
   FVEC(ROWNUM+K+1)=0.0 
         X(ROWNUM+K+N/2)=X0(ROWNUM+K+N/2) 
   ENDIF 
  ENDIF 
 
  ALPHA(ROWNUM+K)=-3-12*MU0*X(ROWNUM+K)/4/PIPEWIDTH(I,NOUT(I,K)) 
     1     /APERTURE(ROWNUM+K)**2/THAW0 
  PHI(ROWNUM+K)=2*(-ALPHA(ROWNUM+K)/3)**.5 
     1                  *COS((ACOS((-27/ALPHA(ROWNUM+K)**3)**.5)+PI)/3) 
  IF (K .EQ. 1) GOTO 1100 
 
  DP0=2*THAW0/2/APERTURE(ROWNUM+K-1)/PHI(ROWNUM+K-1) 
     1  *X(ROWNUM+K-1+N/2) 
  DP1=2*THAW0/2/APERTURE(ROWNUM+K)/PHI(ROWNUM+K) 
     1  *X(ROWNUM+K+N/2) 
  IF(TIMESTEP .EQ. 1) GOTO 990 
  IF(FLAG(I,NOUT(I,K-1),TIMESTEP-1).EQ.'FULL')THEN 
   IEXTENSION=NOUT(I,K-1) 
970   ALPHA1=-3-12*MU0*X(ROW(IEXTENSION)+1)/4 
     1   /PIPEWIDTH(IEXTENSION,NOUT(IEXTENSION,1)) 
     1         /PIPEAPERTURE(IEXTENSION,NOUT(IEXTENSION,1))**2/THAW0 
   PHI1=2*(-ALPHA1/3)**.5*COS((ACOS((-27/ALPHA1**3)**.5)+PI)/3) 
   DP0=DP0 
     1  +2*THAW0/2/PIPEAPERTURE(IEXTENSION,NOUT(IEXTENSION,1)) 
     1        /PHI1*X(ROW(IEXTENSION)+1+NOUT(IEXTENSION,6)) 
   IF(FLAG(IEXTENSION,NOUT(IEXTENSION,1),TIMESTEP-1).EQ.'FULL')THEN 
        IEXTENSION=NOUT(IEXTENSION,1) 
     GOTO 970 
   ENDIF 
  ENDIF 
  IF(FLAG(I,NOUT(I,K),TIMESTEP-1).EQ.'FULL')THEN 
      IEXTENSION=NOUT(I,K) 
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980   ALPHA2=-3-12*MU0*X(ROW(IEXTENSION)+1)/4 
     1   /PIPEWIDTH(IEXTENSION,NOUT(IEXTENSION,1)) 
     1      /PIPEAPERTURE(IEXTENSION,NOUT(IEXTENSION,1))**2/THAW0 
   PHI2=2*(-ALPHA2/3)**.5*COS((ACOS((-27/ALPHA2**3)**.5)+PI)/3) 
   DP1=DP1 
     1   +2*THAW0/2/PIPEAPERTURE(IEXTENSION,NOUT(IEXTENSION,1)) 
     1         /PHI2*X(ROW(IEXTENSION)+1+NOUT(IEXTENSION,6)) 
   IF(FLAG(IEXTENSION,NOUT(IEXTENSION,1),TIMESTEP-1).EQ.'FULL')THEN 
        IEXTENSION=NOUT(IEXTENSION,1) 
     GOTO 980 
   ENDIF 
  ENDIF 
990  FVEC(ROWNUM+K+N/2)=DP1-DP0 
1100   CONTINUE 
 PRESSURE(I)=DP0 
60000 CONTINUE 
 
  
 NORM=0.0 
 DO 330 M=1,2*ACTIVEPIPES 
 NORM=NORM+FVEC(M)**2 
330 CONTINUE 
 
 NORM=SQRT(NORM) 
 ITERATION=ITERATION+1 
 IF (ITERATION .GT. 40) THEN  
  TOL0=TOL0*10 
  TOLR=TOLR*10 
  ITERATION=1 
 ENDIF  
 IF (NORM.GT.TOLR*RR+TOL0) GOTO 111 
 
C 
C*****WRITING NEW VALUES AND DEFINING THE CHANGES IN THE PIPE CONDITIONS 
C  
435 ROWNUM=0 
  
 DO 645 I=1,NODENUM 
  ROWNUM=ROW(I) 
   Q(I, NOUT(I,L), TIMESTEP)=X(L+ROWNUM) 
  LENGTHT(I, NOUT(I,L), TIMESTEP)=X(ROWNUM+L+NOUT(I,6)) 
  FLAG(I, NOUT(I,L), TIMESTEP)='FILLIN' 
 
  IF(LENGTHT(I,NOUT(I,L),TIMESTEP).GE.(1-1e-5)*PIPELENGTH(I,NOUT(I,L)) 
     1  .AND. NOUT(I,6).GT. 0) THEN 
           FLAG(I, NOUT(I,L), TIMESTEP)='FULL' 
   LENGTHT(I, NOUT(I,L), TIMESTEP)=PIPELENGTH(I,NOUT(I,L)) 
   IF (NOUT(NOUT(I,L),6) .EQ. 0)THEN 
             CALL NETWORKDATA(NOUT(I,L),NODENUM,XNODE(NOUT(I,L)) 
     1     ,YNODE(NOUT(I,L)),ELEMDATA,NTOTAL,PIPENUM,PIPELENGTH 
 1  ,PIPEAPERTURE,PIPEWIDTH,NIN,NOUT,ROW,XNODE,YNODE,ACTIVEPIPES) 
     NODENUM=PIPENUM+1 
     DO 1361 K=1,2*NOUT(NOUT(I,L),6) 
            X(ROW(NOUT(I,L))+K)=0 
      X(ROW(NOUT(I,L))+NOUT(NOUT(I,L),6)+K)=0 
1361     CONTINUE 
   ENDIF   
  ENDIF 
  IF(LENGTHT(I,NOUT(I,L),TIMESTEP).GE.(1-1e-5)*PIPELENGTH(I,NOUT(I,L)) 
     1  .AND. NOUT(NOUT(I,L),6).EQ.0) 
     1      FLAG(I, NOUT(I,L), TIMESTEP)='DEAD' 
  IF (I .EQ. 1) GOTO 650 
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  IF(LENGTHT(I, NOUT(I,L), TIMESTEP).EQ. 0 .AND.  
     1  FLAG(NIN(I), I,TIMESTEP).NE. 'FULL')  
     1        FLAG(I, NOUT(I,L), TIMESTEP)='EMPTY' 
650  CONTINUE 
 
645 CONTINUE 
  
C  
C*****WRITING THE OUTPUT DATA 
C 
  
 DO 6449 I=1,NODENUM 
  DO 6448 L=1,NOUT(I,6) 
   WRITE(20,107)TIMESTEP,I,NOUT(I,L),XNODE(I),YNODE(I) 
     1   ,XNODE(NOUT(I,L)),YNODE(NOUT(I,L)),Q(I,NOUT(I,L),TIMESTEP) 
 1   ,LENGTHT(I,NOUT(I,L),TIMESTEP),PRESSURE(I) 
     1      ,FLAG(I,NOUT(I,L),TIMESTEP) 
   WRITE(*,107) TIMESTEP,I,NOUT(I,L),XNODE(I),YNODE(I) 
     1   ,XNODE(NOUT(I,L)),YNODE(NOUT(I,L)),Q(I,NOUT(I,L),TIMESTEP) 
 1   ,LENGTHT(I,NOUT(I,L),TIMESTEP),PRESSURE(I) 
     1      ,FLAG(I,NOUT(I,L),TIMESTEP) 
   
6448  CONTINUE 
6449 CONTINUE 
 WRITE (20,*) 
 WRITE(*,*) 
 
107 FORMAT(I3,2I4,4F6.2," ",G9.3," ",G9.3," ",G9.3 ,A15) 
 
C 
C OMITING THE DEAD PIPES FROM THE NETWORK 
C 
64511 DO 6451 I=1,NODENUM 
 L=1 
649 IF (NOUT(I,L) .EQ. 0) GOTO 6451 
 IF (FLAG(I, NOUT(I,L), TIMESTEP) .EQ. 'DEAD')THEN 
    Q(I, NOUT(I,L), TIMESTEP)=0.0 
    LENGTHT(I, NOUT(I,L), TIMESTEP)=PIPELENGTH(I,NOUT(I,L)) 
 
    DO 6500 LL=L,NOUT(I,6) 
  NOUT(I,LL)=NOUT(I,LL+1) 
6500    CONTINUE    
   DO 6505 LL=ROW(I)+L,2*ACTIVEPIPES 
  X(LL+NOUT(I,6))=X(LL+NOUT(I,6)+1) 
  X(LL)=X(LL+1) 
  X0(LL+NOUT(I,6))=X0(LL+NOUT(I,6)+1) 
  X0(LL)=X0(LL+1)      
6505   CONTINUE  
    NOUT(I,6)=NOUT(I,6)-1 
    L=L-1 
 DO 6452 LL=2,NODENUM 
  IF (ROW(LL) .GT. ROW(I).AND. LL .NE. I) ROW(LL)=ROW(LL)-2 
6452  CONTINUE 
    IF (NOUT (I,6) .EQ. 0 .AND. I .GT. 1)THEN 
          FLAG(NIN(I),I,TIMESTEP)='DEAD' 
  GOTO 64511 
    ENDIF 
    IF(I .EQ. 1 .AND. NOUT(I,6) .EQ. 0)THEN 
     WRITE(*,*) "ALL PIPES ARE FULL, STOP GROUTING!!!!!!!" 
  READ (*,*) 
  STOP  
    ENDIF 



 

  144

 
      ENDIF 
  
 L=L+1 
 IF (L .LE. NOUT(I,6)) GOTO 649  
6451 CONTINUE 
 
C*****FINDING THE NUMBER OF THE ACTIVE PIPES TO HAVE THE NUMBER OF UNKNOWNS 
 ACTIVEPIPES=0 
 
  DO 6455 I=1,NODENUM 
   ACTIVEPIPES=ACTIVEPIPES+NOUT(I,6) 
6455   CONTINUE 
50 CONTINUE 
 read(*,*) 
 STOP 
 END 
 
  
  
  
 SUBROUTINE LINEAREQUATION(N,COEF,FVEC,X) 
  
C THIS SUBROUTINE CALCULATES THE ROOTS OF A LINEAR SYSTEM OF EQUATIONS  
  
 INTEGER N,M(670) 
 DOUBLEPRECISION A(670,670),COEF(670,670),FVEC(670),X(670) 
 REAL C 
 
C  
C***** A IS THE MATRIX WHICH INCLUDES ALL THE COEFFICIENTS AND F VALUES 
C***** M IS THE ARRAY WHICH KEEPS TRACK OF THE ROWS WHICH ARE MOVED 
C 
 DO 10 I=1,N 
  DO 20 J=1,N 
  A(I,J)=COEF(I,J) 
20  CONTINUE 
  A(I,N+1)=FVEC(I) 
10 CONTINUE 
 
 DO 1 I=1,N 
  ISUBSTITUTE=I+1 
11  C=A(I,I) 
  IF (C .EQ. 0) THEN 
   DO 121 MM=I,N+1 
     C= A(I,MM) 
     A(I,MM)= A(ISUBSTITUTE,MM) 
  A(ISUBSTITUTE,MM)= C 
121     CONTINUE 
     M(ISUBSTITUTE)=I 
     M(I)= ISUBSTITUTE 
  ISUBSTITUTE=ISUBSTITUTE+1 
     GOTO 11 
  ENDIF   
 
  DO 30 K=I,N+1 
  A(I,K)=A(I,K)/C 
   30  CONTINUE 
  IF (I.LT.2) GOTO 2 
  DO 40 J=1,I-1 
  C=A(J,I) 
   DO 50 K=I,N+1 
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    A(J,K)=-A(I,K)*C+A(J,K) 
   50   CONTINUE  
   40  CONTINUE 
2  DO 60 J=I+1,N 
   C=A(J,I) 
   DO 70 K=I,N+1 
   A(J,K)=-A(I,K)*C+A(J,K) 
   70   CONTINUE 
   60  CONTINUE 
   1 CONTINUE 
 DO 80 I=1,N 
  X(I)=A(I,N+1) 
   80 CONTINUE 
 
 RETURN 
 END 
 
C 
C 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@ 
C 
      SUBROUTINE NETWORKDATA(STARTPOINT,NODENUM,XI,YI,ELEMDATA,NTOTAL 
     1         ,PIPENUM,PIPELENGTH,PIPEAPERTURE,PIPEWIDTH,NIN,NOUT,ROW 
 1   ,XNODE,YNODE,ACTIVEPIPES) 
C 
C*****THIS SUBROUTINE READS AND UPDATES THE NETWORK DATA FROM THE NPUT DATA  
C  
C 
 DOUBLE PRECISION XNODE(740),YNODE(740),XI,YI 
 REAL PIPELENGTH(740,740),PIPEAPERTURE(740,740) 
     1     ,PIPEWIDTH(740,740),ELEMDATA(801,10) 
 INTEGER NTOTAL,I,J,K,NOUT(800,6),NIN(740),PIPENUM,STARTPOINT 
     1  ,NODENUM,ROW(800),MAXROW,ACTIVEPIPES  
 
 
 K=1 
 I=STARTPOINT 
 J=NODENUM+1 
 XNODE(I)=XI 
 YNODE(I)=YI 
 DO 10 N=1, NTOTAL 
   
  IF (ELEMDATA(N,1).EQ.XI .AND. ELEMDATA(N,2).EQ.YI 
     1  .AND. ELEMDATA(N,9).EQ.0)THEN 
   ELEMDATA(N,9)=I 
   ELEMDATA(N,10)=J 
   XNODE(J)=ELEMDATA(N,3) 
   YNODE(J)=ELEMDATA(N,4) 
   
   PIPELENGTH(I,J)=ELEMDATA(N,5) 
   PIPEAPERTURE(I,J)=ELEMDATA(N,6) 
   PIPEWIDTH(I,J)=ELEMDATA(N,7) 
   NIN(J)=I 
   NOUT(I,K)=J 
   K=K+1 
   J=J+1 
  END IF 
  IF (ELEMDATA(N,3).EQ.XI .AND. ELEMDATA(N,4).EQ.YI 
     1  .AND. ELEMDATA(N,9).EQ.0)THEN 
   ELEMDATA(N,9)=I 
   ELEMDATA(N,10)=J 
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   XNODE(J)=ELEMDATA(N,1) 
   YNODE(J)=ELEMDATA(N,2) 
 
   PIPELENGTH(I,J)=ELEMDATA(N,5) 
   PIPEAPERTURE(I,J)=ELEMDATA(N,6) 
   PIPEWIDTH(I,J)=ELEMDATA(N,7) 
   NIN(J)=I 
   NOUT(I,K)=J 
   K=K+1 
   J=J+1 
  END IF 
   
10 CONTINUE 
 NOUT(I,6)=K-1 
 PIPENUM=PIPENUM+NOUT(I,6) 
 ACTIVEPIPES=ACTIVEPIPES+NOUT(I,6) 
 MAXROW =0 
 IMAXROW=1 
 DO 51 N=1,NTOTAL 
  IF (ROW(N) .GT. MAXROW)THEN  
   MAXROW=ROW(N) 
   IMAXROW=N 
  ENDIF 
  IF (ROW(N).EQ.MAXROW .AND. NOUT(N,6).GE.NOUT(IMAXROW,6))THEN  
   MAXROW=ROW(N) 
   IMAXROW=N 
  ENDIF 
51 CONTINUE 
  
 RETURN  
 END 


