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Abstract 
 

The simplest shear problem involves a two-dimensional rectangular element with 

uniformly distributed reinforcement parallel to the element sides, and subjected to 

uniform normal stresses and shear stress. Such a uniform shear element will have uniform 

average stresses in reinforcement and concrete. The simplest model for elements 

subjected to shear force and bending moment that leads to code provisions uses one 

uniform shear element. Shear force is assumed to be resisted by a central portion of the 

cross-section acting as a uniform shear element, while bending moment is assumed to be 

resisted by the flexural tension reinforcement and concrete compression zone at the cross-

section ends. In this thesis, the shear strength of bridge girders and squat shear walls are 

evaluated using a uniform shear element approach. 

Current code shear design provisions for beams are necessarily simplified procedures that 

are generally conservative. While the extra costs are small for new design, it may lead to 

unnecessary load restrictions on bridges or unnecessary retrofitting when used for shear 

strength evaluation. A new shear strength evaluation procedure for structural concrete girders 

is proposed.  The procedure accounts for the influence of more parameters and provides more 

insight into the failure mode than code design methods. To verify the procedure, predicted 

trends are compared with Modified Compression Field theory (MCFT) for uniform shear 

elements, and Response-2000 for beam elements subjected to combined shear and bending 

moment.  Shear strength predictions are also compared with results from strength tests on 

reinforced and prestressed concrete beams, together with predictions from current code shear 

design provisions.  

The current Canadian building code CSA A23.3 2004 contains new provisions for the 
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seismic design of squat walls that were developed using a uniform shear element 

approach. These new code provisions are rigorously evaluated for the first time in this 

study. A new method to account for the flexure-shear interaction at the base of squat shear 

walls is proposed as well as refinements to the 2004 CSA A23.3 shear strength provisions for 

squat shear walls. These are verified by comparing the predicted trends with the predictions 

of MCFT-based nonlinear finite element program VecTor 2. 
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vN , vcN = Resultant of nv , nvc stress assumed uniform over effective depth dnv; 

P  = Wall panel strength in squat shear wall,  

sP  =Axial load is squat shear wall, 
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s  = Spacing of transverse reinforcement, 

maxs  = Maximum spacing of transverse reinforcement, 

xs , zs  = Crack spacing parameter in x-direction, z-direction; 

xeS  = Crack spacing parameter dependent on crack control characteristics of 

longitudinal reinforcement and aggregate size, 

θs  = Crack spacing, 

T  = Force in the flexural tension chord, 

dT  = Resultant force in the distributed vertical reinforcement in web of squat shear 

wall, 

t  = Thickness of squat shear wall, 

v   = Total shear stress, 

cv , sv  = Shear stress attributed to concrete, stirrups; 

civ  = Concrete stress transferred along the cracks by aggregate interlock, 

2civ  = Shear stress on cracks required to achieve biaxial yielding of reinforcement, 

maxciv  = Maximum concrete stress that can be transferred by aggregate interlock, 

V  = Total shear resistance,  

biaxialV  = Shear resistance when both longitudinal and transverse reinforcement yield, 

cV , sV  = Shear resistance attributed to concrete, stirrups; 

crushV  = Shear resistance at concrete crushing, 

yieldV  = Shear resistance at yielding of transverse reinforcement, 

Vp = Shear force resisted by inclined prestressing tendons, 

uV  = Total shear resistance at ultimate limit state, 

w  = Crack width,  

 z  = Bending moment lever-arm in deep beam, 

α  = Concrete tension strength factor, portion of the total amount of distributed 

vertical reinforcement that contributes to the flexural capacity in squat shear 

wall, 

cα  = Coefficient defining the relative contribution of concrete to shear resistance of 
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concrete shear wall, 

β  = Concrete shear contribution factor, 

vn∆  = Predicted rate of change of nv per unit εx, 

θ∆  = Predicted rate of change of θ per unit εx, 

sδ  = Shear stain caused by crack slip, 

pε  = Strain of prestressing tendons, 

xε  = Average longitudinal strain over depth of member, 

yε  = Yield strain of transverse reinforcement, 

zε  = Strain of transverse (z-direction) reinforcement, 

1ε , 2ε  = Concrete tensile, compressive strain in the principal direction; 

'cε  = Concrete strain corresponding to concrete peak compressive stress, 

cφ  = Concrete resistance factor, 

pφ  = Prestressed reinforcing steel resistance factor, 

sφ  = Nonprestressed reinforcing steel resistance factor, 

w0φ  =Overstrength factor in New Zealand Standards, 

γ , xzγ  = Shear strain in x-z plane, 

λ , pλ  = Ratio dd pw / , 

sλ  = Ratio ddw / , 

piλ   = Ratio dd pwi / , 

jλ   = Ratio ddwj / , 

 µ  = Ductility Factor in New Zealand Standards, 

θ  = Angle of inclination of principle compression stress (diagonal cracks), 

oθ  = Predicted value of θ at εx = 0, 

pθ  = Angle of prestressing tendons to horizontal axis (x-direction), 

hρ  = Ratio of distributed horizontal reinforcement to concrete area in squat shear   

wall, 
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vρ  = Ratio of distributed vertical reinforcement to concrete area in squat shear wall, 

xρ  = Ratio of distributed longitudinal (x-dir.) reinforcement area to concrete area, 

zρ  = Ratio of transverse (z-dir.) reinforcement area to concrete area, 

minzρ  = Minimum transverse reinforcement ratio, 

yσ   = Yield stress of squat shear wall reinforcing steel,  
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Chapter 1. Introduction 

1.1. Shear in Concrete Structures 

The shear behaviour of structural concrete is a complex phenomenon. One approach to 

developing a theory for shear behaviour is to use the results of beam tests such as the one 

shown in Figure 1-1. While such tests are appropriate for pure flexure behaviour, as the 

region between the point loads is subjected to uniform bending moment, they cannot be 

easily used to develop a general shear theory. The reason is that the sections in the shear 

spans between the point loads and supports are subjected to varying bending moment 

even though they are subjected to constant shear as shown by the free body diagram in 

Figure 1-1(b). As the applied force P is increased, shear force together with bending 

moment and bending moment gradient along the shear span all increase, which makes it 

hard to extract shear deformations from total deformations. The fact that transverse 

reinforcement strain is not uniform over the beam depth complicates the matter further. 

 
Fig. 1-1  Reinforced concrete simply supported beam subjected to shear and moment. 
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An alternate approach for developing a general shear theory is to use idealized 

elements with uniform distributed reinforcement in two directions (e.g., vertical and 

horizontal) subjected to uniform shear and normal stresses (uniform strains) and no 

bending moments (Fig. 1-2). Such elements are simpler than beams and their complete 

behaviour can be more easily investigated from experimental results.  

 

 

Fig. 1-2  Uniform shear elements.   

 

 

1.2. Modified Compression Field Theory 

The Modified Compression Field Theory (MCFT, Vecchio and Collins 1983) is a 

smeared crack – rotating angle model that was developed from tests performed on 

uniform shear elements. It predicts the behaviour of uniform shear elements throughout 

the whole range of loading from first cracking until failure.  MCFT equations include 

equilibrium equations, compatibility equations, and material constitutive relationships.  

MCFT has also been used for the sectional analysis of beams under combined axial 

load, bending moment and shear, as well as the nonlinear finite element analysis of 

concrete structures. For sectional analysis, the beam section is divided into layers, and 
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each of these layers is assumed to act as a uniform shear element. The layers are then 

linked by satisfying global equilibrium of the section in addition to compatibility 

requirements such as the well known assumption of plane sections remain plane. The 

procedure was implemented in computer programs such as Response 2000 (Bentz 2000) 

and verified against significant number of experimental results of beams. Response 2000 

and equivalent programs are sophisticated research tools that provide considerable 

information such as stress profiles, strain profiles, and failure mechanisms.  

VecTor 2 (Wong and Vecchio, 2002) is a nonlinear finite element program that 

employs the MCFT as constitutive relationships for uniform stress – uniform strain 

elements. VecTor2 can be used to analyze a variety of different concrete structures 

including beams and squat shear walls. 

MCFT has also been used for simplified shear design procedures that utilize a single 

uniform shear element to approximately describe the complete sectional shear behaviour. 

The American Association of State Highway and Transportation Officials (AASHTO) 

Load and Resistance Factor Design (LRFD) bridge codes and the Canadian Highway 

Bridge Design Code (CHBDC) CSA S6 and the Canadian code for concrete building 

structures CSA A23.3 use MCFT-based methods in their shear design provisions. 

1.3. Simplified Shear Analysis 

Simplified shear analysis can be done by using a single uniform shear element to 

represent the behaviour of the shear resisting portion of a concrete structure. This 

approach can be applied to a beam as shown Fig. 1-3.  The web of the beam is assumed 

to resist uniform shear stress over the shear depth of the beam (the uniform shear 

element), while compression and tension chords are assumed to resist the applied bending 
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moment. The idealized compression chord is the flexural compression zone of the beam, 

while the tension chord is the zone containing concentrated flexural reinforcement. 

 The single element shear analysis can also be applied to concrete shear walls such as 

the squat shear wall shown in Fig. 1-4. A certain length of the wall is assumed to resist 

uniform shear stress (the uniform shear element), while the ends of the wall are assumed 

to resist the overturning. The application of single uniform shear analysis to these two 

types of concrete structures are investigated in the current thesis. 

 

 

Fig. 1-3  Predicting beam shear behaviour with one uniform shear element. 
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Fig. 1-4  Predicting squat shear wall behaviour with one uniform shear element. 

1.4. Shear Strength Evaluation of Bridge Girders 

The strength of existing concrete bridge girders (see Fig. 1-5) need to be evaluated in 

order to determine the load capacity rating of bridges because of increased traffic loads, 

or deterioration of bridges. The shear strength of concrete bridge girders often limits the 

load capacity ratings of bridges. 

Current bridge design codes such as 2007 AASHTO LRFD and the 2006 CHBDC 

include simplifications that generally result in safe designs. The additional construction 

costs are justified by the reduced chance of a design error. On the other hand, the 

consequence of these same simplifications may be greater when a simplified shear design 

method is used to evaluate existing girders that cannot be made a little stronger. The 

simplifications may result in unnecessary load restrictions on bridges or unnecessary 
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repairs of bridge girders. Thus more complex procedures are justified for shear strength 

evaluation. 

 According to shear design procedures based on the MCFT, such as AASHTO LRFD 

and 2006 CHBDC, the shear strength of a girder is a function of axial strain, which 

depends on a number of factors including the applied shear force. Using such a design 

procedure to evaluate strength requires trial-and-error as the applied shear force at failure 

is needed to calculate shear strength. 

 An alternative approach for shear strength evaluation is a computer program such as 

Response 2000, which applies the MCFT. This would provide considerable insight such 

as whether the failure mode will be ductile (due to reinforcement yielding), or brittle (due 

to diagonal crushing of concrete). While such computer methods are very useful for 

special investigations, the complexity of data input and output makes it difficult to use 

such programs to check numerous sections along a bridge, the program options may 

result in different users reaching different conclusions for the same girder, and it is not 

possible to confirm results of such programs using hand calculations.  

 There is a need for a shear strength evaluation procedure that accounts for more of the 

complexities than a design method does and gives some insight into the shear failure 

mode; but yet is simple enough that a user can implement the procedure into a small 

computer program for checking numerous sections along a bridge, and can confirm the 

results of the computer program by hand calculations. Developing such a method is the 

objective of the current thesis. 
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Fig. 1-5 An example of an existing concrete bridge (BC Ministry of Transportation). 

 

1.5. Design of Squat Shear Walls  

Clause 21 of the 2004 edition of the Canadian concrete code CSA A23.3 contains new 

provisions for the seismic shear design of squat walls that were developed using the 

MCFT to describe the behaviour of a single uniform shear element. These new design 

provisions have not been rigorously evaluated by comparing designs resulting from the 
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procedure with the results of tests on squat walls or the results of nonlinear finite element 

analysis.  

 The American Concrete Institute model building code ACI 318 and New Zealand 

Concrete code NZS 3101 use empirical equations for the shear strength of squat shear 

walls that were developed from test data. Test results may not represent the true lower-

bound strength that is desired in codes. For example, in almost all squat wall tests, the 

shear force was applied at the top of the wall to a load transfer beam that can significantly 

enhance the shear capacity of the wall.  The diaphragm that transfers the force in a real 

squat wall may provide much less horizontal restraint at the top of the wall. 

Squat walls are significantly restrained at the base due to the large foundation that 

typically supports the wall. Treating the wall as a uniform shear element may result in 

overly conservative designs. For example, Clause 21.7.4.7 of the 2004 CSA A23.3 states 

that the vertical tension force required to resist overturning at the base of squat walls shall 

be provided by concentrated reinforcement and vertical distributed reinforcement in 

addition to the amount required to resist shear.  This requirement has greatly increased 

the required amount of vertical reinforcement in squat walls compared to traditional 

designs. If fan action can develop in squat walls, this requirement is too conservative. 

The shear behaviour of squat walls needs to be investigated using a state-of-the-art 

nonlinear finite element analysis program such as VecTor 2. Of particular interest is the 

horizontal restraint provided at the top of the wall by loading beams used during testing, 

and the horizontal restraint provided at the base of the wall by real foundations. Such an 

analysis can be used to identify any refinements that should be made to the seismic shear 

design provisions in the 2004 CSA A23.3 developed from a single shear element 
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analysis. 

1.6. Research Objectives 

This thesis consists of two parts. The objective of the first, and larger of two parts, is to 

develop a shear strength evaluation procedure for concrete bridge girders. The evaluation 

procedure should give insight into the shear failure mode of concrete bridge girders and 

yet be simple enough that a user can implement it into a small computer program for 

checking numerous sections along a bridge, and can confirm the results of such a 

computer program by hand calculations. The procedure must be validated by comparing 

predictions with results from strength tests on a significant number of reinforced and 

prestressed concrete beams. Predictions from the procedure for actual existing bridge 

girders should also be compared with predictions from the more complex evaluation 

procedure that results from using Response 2000.  

 In addition to developing a standalone shear strength evaluation procedure, any 

refinements that can be made to the shear design procedure in the 2006 CHBDC so that 

the procedure is more appropriate for shear strength evaluation should also be made. An 

obvious possibility is to develop a refined procedure to calculate the axial strain used in 

the uniform shear element of bridge girders. Any such proposals must also be validated 

by comparing with test results and Response 2000 predictions. 

 The objective of the second part of the thesis is to investigate the shear behaviour of 

squat shear walls using nonlinear finite element analysis. The investigation should 

include the influence of the horizontal restraint provided at the top of the wall by loading 

beams used during testing, and the horizontal restraint provided at the base of the wall by 

real foundations. The analysis can be used to identify refinements that can be made to the 
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seismic shear design provisions for squat walls in the 2004 CSA A23.3 such as the 

requirement for vertical reinforcement for shear all along the base of the wall. Typical 

designs from the 2004 CSA A23.3 method need to be compared with designs using ACI 

318 and NZS 3101.   

1.7. Thesis Organization 

This thesis contains 10 chapters and six appendices. Part 1 of the thesis, which involves 

the shear strength evaluation of concrete bridge girders, is presented in Chapters 2 to 6. 

Part 2, which involves the shear design of squat shear walls, is presented in Chapters 7 to 

9. The detailed organization of the thesis is given below. 

Chapter 2 presents a brief review of general literature on the shear strength of beams 

and bridge girders and a summary of the relevant research that has recently been done.  

Chapter 3 discusses uniform shear elements and the MCFT, as well as MCFT-based 

design methods in the 2006 CHBDC and 2007 AASHTO LRFD shear design provisions. 

It presents new MCFT-based methods for shear evaluation of members with and without 

transverse reinforcement and compares predictions from these methods with predictions 

of the 2006 CHBDC and the 2007 AASHTO LRFD shear design methods. 

Chapter 4 presents the application of the proposed uniform shear element method 

presented in Chapter 3 to beam elements. To validate the method, results from the 

procedure are compared with the results from Response 2000, the 2006 CHBDC and 

2007 AASHTO LRFD design methods for three existing concrete bridges.  

Chapter 5 compares results from large-scale tests with the proposed method 

predictions for both beams with and without transverse reinforcement. Chapter 6 presents 

the proposed refined CHBDC shear design method and its validation against test data. 
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Chapter 7 begins Part 2 of the thesis by presenting a summary of the previous work 

done on shear strength of squat shear walls. Chapter 8 briefly explains the finite element 

program used to predict nonlinear behaviour of squat shear walls and compares its 

predictions with three tests from the literature. The effect of a rigid loading beam as 

typically used in previous experimental work is also investigated. 

Chapter 9 presents a new method to calculate flexural strength of squat walls 

accounting for shear – flexure interaction at base of the walls as well as the 2004 CSA 

A23.3 refined method for shear strength of those walls, while Chapter 10 presents 

summary and conclusions of the thesis. 

Two Excel Spreadsheets are included with this report (Appendix A).  The first is for 

shear strength evaluation according to the method described in Chapter 3 and 4. The 

second is for the refined shear design procedure described in Chapter 6. 

Appendix B contains detailed instructions on how to apply the shear strength 

evaluation procedures described in Chapter 3.  Sufficient detail is provided so that anyone 

can write their own spreadsheet to apply the method, or check any step in the spreadsheet 

provided in Appendix A.  

Appendix C presents three worked examples of shear strength evaluation of actual 

concrete bridge girders. Appendix D provides details of rating trucks used in the bridge 

examples presented in Chapter 4. 

Appendix E presents information on the tests used to verify the proposed methods in 

Chapter 5 and 6. In addition, proposed method predictions as well as other code 

predictions are given. Appendix F provides additional plots for comparison of test data 

with the proposed method and code design methods predictions. The plots illustrate the 
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trend of test-to-predicted shear strength ratios with important parameters in shear such as 

shear stress ratio, effective depth, concrete compressive strength, and longitudinal 

reinforcement ratio. 
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Chapter 2. Literature Review: Beam Shear Strength  

2.1. Review of Previous Studies 

Ritter (1899) and later Mörsch (1920, 1922) introduced the 45 degree truss angle to 

predict shear behaviour of concrete beams. The model assumes that force flow can be 

idealized by a truss in which concrete flexural compression chord is the horizontal 

compression member, longitudinal tensile reinforcement is the horizontal tensile element, 

compression elements formed between the cracks are the inclined elements, and stirrups 

are vertical elements and the angle of inclined cracks is assumed to be 45 degrees. In this 

method, vertical components of inclined compression forces in the diagonal struts are 

assumed to be balanced by stirrup forces only and no post cracking resistance is 

considered for concrete at the cracks. 

Withey (1906, 1907) and Talbot (1909) performed experimental investigation and 

showed that 45 degree truss model is too conservative.  This led to evaluation of 45 

degree truss model by a number of researchers and the idea of contribution of concrete to 

shear resistance of beams and the traditional formulation of: 

[2-1] sc VVV +=  

[2-2] 
s

dfA
V

vyv

s

θcot
=  

in which Vc is concrete contribution to shear resistance, Vs is stirrup contribution to shear 

resistance,  Av is the area of transverse shear reinforcement within a distance s along the 

member, fy is the yield strength of the transverse reinforcement, dv is the effective shear 

depth of the member traditionally assumed equal to depth from compression face to 

centroid of flexural tension reinforcement d, and θ is the angle of inclination (measured 
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from the longitudinal axis) of the concrete principal diagonal compressive stress, i.e., 

angle of critical diagonal crack traditionally assumed equal to 45 degrees. 45 degree truss 

model plus concrete contribution to shear Vc is also referred to as modified truss analogy 

in the literature. 

Consequently, many researchers such as Morrow and Viest (1957), Bresler and Pister 

(1958), Hanson (1958), Guralnick (1959), Viest (1959) investigated cracked concrete 

contribution to shear strength of the beams and proposed different equations to quantify 

Vc. ACI-ASCE shear committee 326 (1962), based on available experimental 

investigations, suggested the following formula for shear strength of reinforced concrete 

beam elements. 

[2-3] dbfdb
M

Vd
fV wcwwc '5.3)2500'9.1( ≤+= ρ   in psi units  

where 'cf  is compressive strength of concrete, ρw is ratio of flexural tension 

reinforcement area to concrete area, bw is web width, d is depth from compression face to 

centroid of flexural tension reinforcement, and M and V are factored bending moment and 

shear force acting at the section of interest. This formulation is still in AASHTO 

standards as well as ACI 318. For ordinary RC beams, Bresler and Scordelis (1963) 

proposed the following simple equation for Vc. 

[2-4] dbfV wcc '2=  in psi units       ( dbfV wcc '17.0=  in MPa unis) 

In 1962, Leohardt and Walters explained the shear failure modes of beam action and 

arch action through a series of tests. They showed that deep beams can transfer shear to 

the supports by compressive stresses in concrete whose flow is like an arch. Thus deep 

beams have a higher shear resistance compared to shallow beams. Later, Kani (1964) 
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introduced his comb theory and tooth failure mechanism to predict the shear strength of 

beams. In his model, inclined shear cracks along a beam would form a comb whose base 

is the beam top compression chord and teeth are reinforced concrete between the cracks. 

Shear failure then happens due to cracking of the root of one tooth as a consequence of 

the force caused by longitudinal reinforcement due to shear.  

For prestressed concrete beams, McGregor (1960) introduced the idea of using the 

lesser of web shear cracking load Vcw and flexural shear cracking load Vci for concrete 

contribution to shear strength by testing prestressed beams subjected to moving loads. 

The idea was to identify the probable cracking mode and determine concrete shear force 

accordingly. Two types of cracking were noticed in experimental results. Some cracks 

called web-shear cracking initiated in an angle at almost mid-depth of web and extended 

toward both compression and tension chords. Some others called flexural shear cracking 

initiated from flexural cracks and inclined toward the web.  This was further investigated 

and refined by other researchers such as Hernandez et al. (1960) and Mattock and Kaar 

(1961), MacGregor et al. (1965 and 1966), Oleson and Sozen (1967), and MacGregor and 

Hanson (1969). These studies led to the following Vci , Vcw formulas, which are semi 

theoretical/experimental and are still in the current AASHTO Standard Specifications and 

ACI 318.   

[2-5] dbf
M

MV
VdbfV wc

cri

dwcci '7.1'6.0
max

≥++=  in psi units  

 [2-6] pwpeccw VdbffV ++= )3.0'5.3(  in psi units  

where  Vd is dead load shear force at the section of interest, Mmax is maximum factored 

moment at the section due to externally applied load, Vi is factored shear force at the 
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section due to externally applied load corresponding to Mmax, Mcr is the external moment 

which causes initial flexural cracking of the section, fpe is the effective stress in the 

prestressing steel after losses, and Vp  is the vertical component of inclined prestressing 

force.  

European researchers introduced the variable angle truss model. The model is similar 

to the traditional 45 degree truss model but assumes angle of inclination of diagonal 

compression is variable. Angle of inclination of cracked concrete could not be 

determined by equilibrium equations because there were three equilibrium equations 

versus four unknowns. Therefore,  Kupfer (1964) and  some others solved the problem 

using the principle of minimum energy while other researchers such as Leonhardt and 

Walter (1964), Kuyt (1972), Nielsen and Braestrup (1975), Thürlimann (1979), 

Thürlimann et al. (1983), and Nielsen (1984) took the plasticity approach for this 

purpose. It is worth mentioning that solving truss model using equilibrium approach is a 

lower-bound approach based on the theory of plasticity; thus, a range of possible angle of 

inclination may be used to determine a conservative prediction for shear strength of a 

concrete member. 

Mitchell and Collins (1974) and Collins (1978) developed the Compression Field 

Theory (CFT). The theory solves equilibrium equations making use of additional 

equations of material constitutive relationships and compatibility equations and is capable 

of predicting the shear behaviour of concrete beam elements in the entire range of loading 

up to failure. Collins (1978) verified CFT by an experimental investigation. It should be 

mentioned that CFT assumes that concrete is incapable of carrying tension stresses after 

cracking.  
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Vecchio and Collins (1983) developed the Modified Compression Filed Theory 

(MCFT) for uniform shear elements (rectangular shear elements with uniform stresses 

and strains in every direction). Similar to CFT, MCFT accounts for compatibility of 

strains, material constitutive relationships and equilibrium equations, but it also accounts 

for concrete contribution in tension after cracking (tension stiffening effect) as well as the 

effect of biaxial strains on the concrete stress-strain relationship when concrete is in 

compression. The theory was developed based on experimental results of the tests 

performed on uniform shear elements. MCFT includes two sets of equilibrium equations 

namely average stress equations and equations of stresses at cracks to ensure that average 

stresses can be transferred at cracks by aggregate interlock.  It is worth mentioning that 

both CFT and MCFT assume that the directions of principal average stresses and 

principal average strains in concrete coincide; thus, crack angle changes throughout the 

loading after cracking. Later MCFT was used to develop more practical and simpler 

equations for shear design. Amongst those are the AASHTO LRFD and the 2006 CHBD 

(Canadian Highway Bridge Design) code approaches which were developed by Collins et 

al. (1996) and Bentz et al. (2006), respectively. The 2006 CHBD and 2007 AASHTO 

LRFD shear design methods are explained later in this chapter and Chapter 3. 

Vecchio and Collins (1986) explained how uniform shear elements can be used to 

predict the behaviour of beam elements under shear. They used multi-layer analysis and 

linked the layers by the assumptions of plane sections remain plane and satisfying 

equilibrium at dual sections of the beam which are closely spaced. They also explained 

that by assuming a certain shape for shear flow profile (rectangular, parabolic, etc) the 
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procedure is simplified to one section rather than dual sections; however the results are 

approximate.  

Vecchio and Collins (1988) method was later employed in computer programs 

Response (Felber, 1990) and Small (Ho, 1994) to predict the behaviour of concrete 

sections under shear force, bending moment and axial force. Bentz (2000) developed 

Response 2000 that also predicts the response of beam sections. Response 2000, which is 

the most complete program of its kind, is significantly improved in numerical techniques 

and is a sophisticated research tool. It provides detail information about the behavior of 

concrete beam sections subjected to bending moment, shear and axial force. The 

information, which is provided  throughout the entire range of loading up to failure, 

include load-deformation curves, steel and concrete stress and strain profiles, shear stress 

on cracks, crack directions and widths, and etc. Bentz (2000) verified Response 2000 

against the 534 tests reported in the literature.  More details about Response 2000 are 

provided in Chapter 4. 

Between 1987 and 1997, Hsu together with other researchers developed two methods 

called the Rotating Angle Softened-Truss Model (RA-STM) and the Fixed Angle 

Softened-Truss Model (FA-STM) to predict shear behaviour of uniform shear elements. 

Both methods predict the behaviour of uniform shear elements by solving equilibrium 

equations making use of compatibility and constitutive relations.  Like MCFT, RA-STM 

assumes that the directions of principal stresses and strains coincide while FA-STM 

assumes that after cracking crack angle does not change; thus, principal compression 

stress does not coincide with crack direction. Both methods use different material 
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constitutive laws from the ones used in MCFT and account for local stress effect at 

cracks by reducing the average strength of reinforcement. 

Other researchers such as Loov (1978, 1998), Gambarova (1987), Reineck and 

Hardjasaputra (1990), Reineck (1991), and Loov and Patnaik (1994) took the truss model 

with crack friction approach to solve shear problems of beams. In this model, two forces 

parallel (friction force) and perpendicular to crack surface in addition to stirrup forces are 

assumed to act on the shear crack plane of the beam. The summation of the vertical 

components of these two forces is concrete contribution to shear Vc. The equilibrium 

equations are solved using the constitutive laws for the transfer of forces across the 

cracks by friction which depend on shear load level, strain level and crack spacing. The 

simplified crack friction models use a constant Vc which is mostly a function of 

longitudinal reinforcement ratio, beam size and material properties. 

2.2. Recent Code Approaches 

In this section some of the recent code provisions for shear design of concrete beams are 

reviewed. 

2.2.1. ACI 318-05 and 2002 AASHTO Standards  

ACI 318-05 and 2002 AASHTO Standards assume that shear failure happens at crack 

angle of 45 deg and concrete contribution to shear at failure is equal to the load at which 

diagonal cracking is expected to occur. The method assumes shear strength is 

proportional to the member depth thus does not include size effect. Both codes use 

Eqs.[2-1] and [2-2] for shear strength of beams where θ =45 deg, dv=d, Vc is calculated 

from Eq. [2-4] for reinforced concrete members and the lesser of Eqs.[2-5] and [2-6] for 
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prestressed concrete members. Both codes limit the shear strength of a beam to 

dbfV wcc '8+ (in psi units) to prevent concrete crushing. 

2.2.2. AASHTO LRFD 2007  

2007 AASHTO LRFD shear design method, which is still present in the 2008 AASHTO 

LRFD as an alternative method, was derived from MCFT assuming uniform shear flow 

along the beam effective shear depth dv assumed to be 0.9 d. While the longitudinal strain 

varies over the beam depth, the method uses one longitudinal strain εx at a certain depth 

of the beam to determine the shear strength using a uniform shear element approach. The 

shear strength is given by: 

[2-7] p

vyv

vwcpsc V
s

dfA
dbfVVVV ++=++= θβ cot'  

where concrete contribution factor β and angle of principal compression θ are functions 

of longitudinal strain εx and shear stress ratio 
'cf

v
 for members with transverse 

reinforcement, while they are functions of εx and crack spacing parameter Sxe (a function 

of beam size and maximum concrete aggregate size) for members without transverse 

reinforcement. The values of β and  θ are given in tables. The longitudinal strain εx is 

determined from: 

[2-8]
)(2

cot5.0/

ppss

ppv

x
AEAE

AfVdM

+

−+
=

θ
ε    : for members with transverse reinforcement 

[2-9]
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cot5.0/

ppss

ppv

x
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where: M = bending moment at section of interest; V= shear strength at the section of 

interest; fp = effective prestressing force; As, Ap = area of nonprestressed and prestressed 

flexural tension reinforcement; and Es, Ep = Modulus of Elasticity of nonprestressed and 

prestressed reinforcement, respectively. 

The εx equations are different for members with and without transverse reinforcement 

by a factor of 2 as the longitudinal strain is taken at mid-depth for members with 

transverse reinforcement, and at the centroid of flexural tension reinforcement for 

members without transverse reinforcement. If the longitudinal strain is negative in the 

2007 AASHTO LRFD method, the concrete compression stiffness must be added to the 

denominator of Eqs. [2-8] and [2-9].  

2007 AASHTO LRFD method requires trial-and-error for design since εx, which is 

not known initially, is needed to determine β and θ  values from the tables. In this 

method, it is also necessary to check if there is sufficient strength in the longitudinal 

reinforcement to resist the extra demand caused by shear. Also shear stress is limited to 

'25.0 cf  to avoid concrete crushing in the web prior to stirrup yielding. More details about 

this method is given in Chapter 3. 

2.2.3. 1994 CSA A23.3 and CHBDC 2000 

1994 CSA A23.3 method for shear design of beams, which is the same as 2000 Canadian 

Highway Bridge Design Code (CHBDC)  method, is essentially the same as 2007 

AASHTO LRFD method except it uses the longitudinal strain at the centroid of flexural 

tension reinforcement Eq. [2-9] for both members with and without transverse 
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reinforcement. In addition, the method does not allow negative longitudinal strains unlike 

2007 AASHTO LRFD that allows negative εx values. 

2.2.4. 2004 CSA A23.3, CHBDC 2006, and AASHTO LRFD 2008 

Similar to 2007 AASHTO LRFD method, this method is based on MCFT and uses Eq. 

[2-7] to determine shear strength of beams, but it provides equations for β and  θ rather 

than tabulated values. Further simplifications in this method resulted in equations for β 

and  θ  that are not functions of shear stress ratio 
'cf

v
 for members with transverse 

reinforcement. β and  θ  are functions of longitudinal strain εx only. In addition, the 

equations for β and  θ  are the same for both members with and without transverse 

reinforcement. The equations are: 

[2-10]
xex s+

⋅
+

=
1000

1300

15001

8.4

ε
β  in psi units   

[2-11] deg75)
2500

88.0)(700029( ≤++= xe
x

s
εθ  

where sxe is the size effect parameter taken as 300 mm for members with transverse 

reinforcement and varies for members without transverse reinforcement depending on 

depth of elements, vertical spacing of longitudinal reinforcement layers, and concrete 

maximum aggregate size. In 2008 AASHTO LRFD and 2004 CSA 23.3, Eq. [2-11] is 

conservatively simplified to xεθ 700029 +=  for members without transverse 

reinforcement. 

The method assumes that mid-depth strain is the reference strain for both members 

with and without transverse reinforcement. In addition, it simplifies Eq. [2-8] by 
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substituting θcosV  with 2V in the numerator to avoid trial-and-error procedure for 

design purposes. εx is given by: 

[2-12]
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The strain εx used in 2008 AASHTO LRFD equations for β and  θ  is exactly twice 

the value used in 2004 CSA A23.3 and 2006 CHBDC (Eq. 2-12), and thus xε1500  in Eq. 

[2-10] is replaced by xε750 , and xε7000 in Eq. [2-11] is replaced by xε3500 . As a result, 

the methods final predictions for shear strength of beams remain the same. This method 

uses the same equations and limits as 2007 AASHTO LRFD method to check the 

sufficiency of longitudinal reinforcement for shear and avoid concrete crushing. More 

details are provided in Chapter 3. 

 The 2008 AASHTO LRFD also has a simple design procedure that was proposed by 

Hawkins et al. (2005). This method is discussed in Section 2-3. 

2.3. Recent Studies  

Oh and Kim (2004)  

They tested two full-scale post-tensioned prestressed concrete girders that were 10600 

mm long and 1200 mm deep, and had web transverse reinforcement and web width of 

180 mm. The geometry of the beams were the same but one of them was high strength 

concrete ( 'cf = 60 MPa) while the other one was normal strength concrete ( 'cf = 40 

MPa). 12 seven strand prestressing tendons with 12.7 mm diameter and the prestressing 

force of 1007.9 MPa were used in the girders. Girders were loaded by an asymmetrical 

point load up to failure. They calculated principal strains, shear strain and angle of 
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inclination based on the measured strains in the horizontal, vertical and 45 degree 

directions.  

Based on experimental results, they concluded that the concept of compatibility of 

strains and rotation of crack angle throughout loading was well suited for predicting 

prestressed concrete beam behaviour in shear for both normal strength and high strength 

concrete. 

Cladera and Marı´ (2004 and 2005) 

They proposed simplified shear design procedures for concrete beams with and without 

transverse reinforcement. For beams with transverse reinforcement, they used available 

shear test results of 123 reinforced concrete beams in the literature and employed 

Artificial Neural Networks (ANNs) to develop their proposed shear design procedure.  

The selected database had shear span-to-depth ratio a/d equal to or greater than 2.49, 

'cf  from 21 to 125 MPa (less then 80 MPa in 80% of the tests), effective depth from 198 

to 925 mm (depth of less than 600 in. in 90% of the tests), transverse reinforcement 

yz fρ from 0.33 to 3.57 MPa, and longitudinal reinforcement from 0.5% to 5.8%. It was 

observed that AASHTO LRFD predictions were the closest to ANNs results compared to 

EC2 and ACI predictions. As a result, they used AASHTO LRFD tabulated values for θ 

to develop the following equation for members with web reinforcement, which was 

believed to be conservative compared to the AASHTO LRFD tabulated values: 

[2-13] 
'

451520
c

x
f

τ
εθ ++=  

In the above equation, εx is mid-depth strain, and τ is shear stress equal to V/bwdv. They 

used the same formula as in the 2004 CSA A23.3 for εx. 
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For concrete contribution Vc in members with web reinforcement, they developed a 

formula with the same format as in EC2 but the influence of some parameters were 

changed based on ANNs results. Their proposed formula for Vc was: 

[2-14] vwcpclc dbfV ]15.0')1000(17.0[ 3/12.02/1 στρξ +=  

where ρl is ratio of flexural tension reinforcement area to concrete area, σcp is normal 

stress due to prestressing or axial load, and ξ is the size effect parameter equal to: 

[2-15] 75.2
200

1 ≤+=
xs

ξ  

in which sx is the lesser of dv or spacing of longitudinal vertical reinforcement in the web. 

Finally, they verified their proposed method for members with stirrups against 162 

reinforced concrete beams and 40 prestressed concrete beams reported in the literature.  

Kuchma et al. (2005) (NCHRP Project 12-56) 

As part of a National Cooperative Highway Research Program (NCHRP) Project 12-56, 

Kuchma et al. tested 6 high-strength prestresssed concrete girders to investigate the 

applicability of available shear design procedures especially the AASHTO LRFD method 

for high strength prestressed concrete. They tested specimens that had 50 ft clear span, 

'cf  from 10 to18 ksi, depth of 73 in., and 26 to 42 prestressing strands of 0.6 inch 

diameter. All girders had transverse reinforcement and were subjected to uniform load 

(see Kim 2004 for more details).  

Some of the important conclusions from the study are:  

• Draped strands (6 draped strands were used) improved the cracking shear strength 

16%-23%, as well as the ultimate shear strength 15%-16%. 

• Draped strands and horizontal web strands provided good crack control. 
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• Welded wire reinforcement (WWR) improved the ability of tested beams in 

redistribution of shear forces between stirrups. This is because WWR could sustain 

large strains. 

• A sudden increase in transverse strain was noticed immediately after cracking. 

• A number of the specimens failed due to web crushing at the base of the web over the 

support.  The failure indicated that the shear stresses were not uniform over the depth; 

but were concentrated in a compression strut.  The AASHTO LRFD approach of 

limiting the shear stress – assumed to be uniform over the shear depth – to 0.25 'cf  

results in a safe prediction of these tests as well. 

• AASHTO LRFD method provided accurate predictions for the shear strength of the 

specimens.  The ratios of measured to predicted strengths for the 20 tests ranged from 

0.97 to 1.29, had an average value of 1.12 and a COV of 0.09. 

Hawkins et al. (NCHRP Report 549, 2005) 

This project involved evaluating the most prevalent shear design procedures including the 

shear provisions in AASHTO LRFD, 2004 CSA A23.3, ACI 318 as well as JSCE (Ref. 

44), EC2 (Ref. 28) and DIN (Ref. 27) against 1359 test results available in the literature. 

They found that among all the shear design procedures in building codes, AASHO LRFD 

and the 2004 CSA A23.3 provide the best predictions with only 10% probability of being 

unconservative. Based on their evaluation results, they recommended that one use either 

the 2004 CSA A23.3 provisions or the following modified ACI procedure:  

• For reinforced concrete beams, θ = 45 deg. and 

[2-16] vwcc dbfV '9.1=   (in psi units) 

• For prestressed concrete beams,θ = 45 deg. if cwci VV ≥  or cru MM ≥  otherwise:   
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[2-17]  
'
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and Vc is the lesser of: 

[2-18] vwc

cri

dvwcci dbf
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MV
VdbfV '9.1'632.0
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≥++=  (in psi units) 

[2-19] pvwpeccw VdbffV ++= )3.0'9.1(  (in psi units) 

where: dv is the effective shear depth of the member which may be taken as 0.9d.  

Vcw in Eq. [2-25] is significantly reduced from the traditional ACI 318 web shear 

cracking expression.  

Hawkins et al. compared predictions from the proposed simplified method above with 

the results of 147 tests they selected from a database of 1359 shear tests. They selected 

test data of members that contained minimum transverse reinforcement ( yz fρ >50 psi 

[0.35 MPa]), had an overall depth of at least 20 inches (500 mm), and were cast from 

concrete having a compressive strength of at least 4 ksi (28 MPa). They excluded tests in 

which anchorage or flexural failure occurred.  The results showed that the 2006 CHBD 

and AASHTO LRFD shear design provisions gave the best predictions compared to the 

test results; however, their proposed method had considerably better predictions than 

those from ACI 318. Hawkins et al. also compared the predictions of Response 2000 with 

test results and reported that Response 2000 predictions were better than the predictions 

of evaluated codes. 

2.4. Concluding Remarks 

Recent studies (Hawkins et al. 2005, Kuchma et al. 2005, Cladera and Marı´ 2004 and 

2005) have shown that the 2007 AASHTO LRFD and 2006 CHBDC shear design 
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methods which were developed based on MCFT are two of best methods compared to 

other evaluated code methods when their predictions are compared with experimental 

results. Response 2000 which performs sophisticated MCFT-based sectional analysis for 

beams and explicitly accounts for moment shear interaction has also been evaluated and 

found to be better than MCFT-based simplified methods in 2007 AASHTO LRFD and 

the 2006 CHBDC (Hawkins et al. 2005). On the other hand, modified truss analogy 

which uses the 45 angle truss model in addition to concrete contribution to shear such as 

shear design methods in ACI 318 and EC2 was found not to be as consistent with 

experimental results (Hawkins et al. 2005, Cladera and Marı´ 2004 and 2005). As a 

result, MCFT as well as MCFT-based sectional analysis for beams (Response 2000) are 

used in this study to develop a new procedure for shear evaluation of concrete bridges. In 

addition, the predictions of the proposed procedure are compared to 2007 AASHTO 

LRFD, 2006 CHBDC, and ACI 318, which is one of the modified truss analogy methods 

in the literature that has been used for many years. Finally, the proposed equations are 

verified against numerous test results reported in the literature.  
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Chapter 3. Uniform Shear Elements 

3.1.  General 

 

A uniform shear element has uniformly distributed reinforcement in two directions 

parallel to the element sides and is subjected to uniform shear and normal stresses. Such 

elements are simpler than beams and their complete behaviour can be more easily 

investigated from experimental results. This chapter presents methods that can be used to 

predict the behaviour of uniform shear elements. How the shear behaviour of beams can 

be approximated using a single uniform shear element is discussed in Chapter 4.  

 The Modified Compression Field Theory (MCFT, Vecchio and Collins 1983) is one 

of the theories used that can predict the behaviour of uniform shear elements. It is a 

smeared rotating crack angle model that was developed from tests. MCFT is discussed in 

this chapter. In addition, simplified MCFT-based methods available in codes and the 

literature are reviewed and discussed. A new shear evaluation procedure for uniform 

shear elements is proposed. The proposed evaluation procedure is compared with MCFT 

and the predictions from the code simplified procedures. 

3.2.  Uniform Shear Element 

Uniform shear element is a rectangular membrane element (subjected to in-plane shear 

and axial stresses) with uniformly spaced longitudinal (x-direction) and transverse (z-

direction) reinforcement, no inclined prestressing tendons, and subjected to uniform 

applied normal stresses fx and fz and shear stress v. Such an element will have uniform 

reinforcement stresses fsx and fsz, and uniform concrete stresses fcx, fcz and vc=v as shown 

in Fig. 3-1. Figure 3-1 also shows that this element may be used to model a portion of an 

I-girder subjected to in-plane shear and moment.   
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Fig. 3-1 Element of reinforced concrete subjected to uniform shear and normal stresses. 

 

3.3.  Modified Compression Field Theory (MCFT) 

 

Modified Compression Field Theory (MCFT) was developed by Vecchio and Collins 

(1986) from testing reinforced concrete elements subjected to uniform shear stress. It is a 

smeared, rotating crack model where the inclination of diagonal cracks is determined by 

combining equilibrium requirements, strain compatibility assumptions and empirical 

average stress – average strain relationships for cracked concrete and reinforcement.  

The MCFT can be used to predict the shear stress – shear strain relationships of 

structural concrete membrane elements with different amounts of transverse (z-direction) 

and longitudinal (x-direction) reinforcement.  Any structure in which forces are primarily 

transferred through in-plane action can be idealized as a combination of uniform shear 

elements. In the following sections, MCFT equations for material constitutive 
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relationships, equilibrium equations, and compatibility are explained. 

3.3.1. Material Constitutive Relationships 

Parabolic stress-strain relationship as shown in Fig. 3-2 is considered for concrete in 

compression in the principal direction. Cracked concrete softens when subjected to 

biaxial strains compared to concrete uniaxial stress-strain relationship. As a result, the 

principal compressive strength (peak stress) may be significantly lower than the uniaxial 

strength when concrete is subjected to significant tension strain transverse to the principal 

compression. Vecchio and Collins (1986) showed that the reduction in concrete strength 

(peak stress) in such cases can be predicted by the following equation: 
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where max2cf  is  concrete peak stress under biaxial strains, 1ε  is concrete principal tensile 

strain, 'cf   is concrete peak stress under uniaxial compression and 'cε  is concrete strain 

corresponding to concrete peak compressive stress. Therefore, a parabolic stress-strain 

relationship of concrete in the principal compressive direction can be expressed as: 
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in which 2cf  is concrete compressive stress in the principal direction and 2ε  is concrete 

compressive strain in the principal direction. 
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Fig. 3-2 Concrete average stress-strain relationship in compression (Vecchio and Collins, 

1986). 

 

One of the important aspects of MCFT is the model for principal concrete tension 

stresses. It accounts for concrete contribution to reinforcing bar stiffness after cracking, 

which is called tension stiffening and has significant influence on concrete contribution to 

shear strength of a reinforced concrete element. In MCFT concrete model, concrete 

tension stress increases linearly until cracking. After cracking, concrete continues to 

resist an average tension stress but it reduces as the principal tensile principal strain 

increases. The original concrete tensile stress-strain relationship in MCFT is shown in 

Fig. 3-3 and is given by: 

 

[ 3-3] 11 .εcc Ef =                         crεε ≤1  
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Fig. 3-3 Concrete average stress-strain relationship in tension (Vecchio and           

Collins, 1986). 

 

 

Eq. [3-4] was later changed to a more conservative equation (Collins et. al 1996, Rahal 

and Collins 1999, Bentz et. al 2006, and Bentz and Collins 2006) as: 

[ 3-5]
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The stress-strain relationship expressed by Eqs. [3-3] to [3-5] accounts for average tensile 

stress in concrete in the principal direction and is valid if aggregate interlock in addition 

to stress increase in the reinforcing steel at the cracks are capable of equilibrating average 

stresses. Otherwise, tensile stress must be reduced accordingly. 

The maximum shear stress that can be resisted by aggregate interlock along a crack is 

given by: 

[ 3-6] 
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where ga is concrete maximum aggregate size, and w is crack width determined from: 

[ 3-7] 1εθsw =  
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in which θs  is crack spacing and is assumed equal to: 

[ 3-8] 
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where xs is crack control parameter of x-direction reinforcement, and zs is crack control 

parameter of z-direction reinforcement. For members with at least minimum amount of 

reinforcement, crack spacing may be conservatively assumed as θs =300 mm (Collins et. 

al 1996, Rahal and Collins 1999, Bentz et. al 2006, and Bentz and Collins 2006).  

A bilinear stress-strain relationship is used for reinforcing steel. Prior to yielding of 

reinforcement, the steel stress is assumed to be ssE ε  where Es is the Modulus of 

Elasticity of steel (200000 MPa) and εs is the average strain of reinforcement. After 

yielding, the steel stress remains constant and equal to yf (steel yield stress) – no strain 

hardening is assumed. 

3.3.2. Equilibrium Equations 

Equilibrium equations of MCFT can be expressed by Mohr circles of stresses as shown in 

Figure 3-4. Mohr circle of cracked reinforced concrete stresses is a summation of Mohr 

circles of reinforcement stresses and concrete stresses. Reinforcement is considered to 

take axial load in the direction of the reinforcement, and thus does not resist shear stress. 

As a result, the shear stress in Mohr circle of concrete stresses is equal to the one in Mohr 

circle of reinforced concrete stresses. Mohr circles of stresses shown in Fig. 3-4 can be 

formulated as: 

[ 3-9] ccsxxx vfff θρ cot1 −+=  
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[ 3-10] ccszzz vfff θρ tan1 −+=  

[ 3-11] )cot/(tan)( 21 cccc ffv θθ ++=  

where xf and zf are normal stresses in x and z-directions, xρ and zρ are reinforcement ratios 

in x and z-directions, sxf and szf are reinforcement stresses in x and z-directions, and  cθ  is 

concrete angle of principal direction of stresses. 

The equilibrium equations above are in terms of average stresses. It is also necessary 

to check stresses at the cracks. Fig. 3-5 compares the free body diagram of a uniform 

shear element on average and at the cracks.  At the cracks, concrete tension stress in the 

principal direction 1cf  becomes zero and aggregate interlock stress civ contributes to 

equilibrium instead. In addition, reinforcing steel stresses may be higher at the cracks 

compared to the average stresses. Equilibrium equations at the cracks are: 

[ 3-12] cccisxcrxx vvff θθρ cotcot −−=    

[ 3-13] ccciszcrzz vvff θθρ tantan −+=       

                                                                                     

 

                 Reinforcement                       Concrete                             Reinforced Concrete    

Fig. 3-4 Mohr circle of stress for cracked reinforced concrete (adopted from Vecchio and 

Collins, 1986). 
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Fig. 3-5 Free body diagram of a uniform shear element in the crack direction for average 

stresses and local stresses at the cracks (Collins et. al 1996). 

 

 

where civ  is stress along the cracks due to aggregate interlock, and sxcrf and szcrf are 

reinforcement stresses at the cracks in x and z-directions, respectively. The following 

conditions need to be checked in order to determine  whether the average tensile concrete 

stress can be equilibrated at the cracks or the average tensile stress in concrete needs to be 

reduced (Bentz 2000). 

[ 3-14] ccszszcrzsxsxcrxci ffffv θθρρ cossin)()(2 −−−=  

[ 3-15] cszszcrzcsxsxcrxc fffff θρθρ 22

1 sin)(cos)( −+−≤  

[ 3-16] ccicisxsxcrxc vvfff θρ cot),min()( 2max1 +−≤  

[ 3-17] cciciszszcrzc vvfff θρ tan),min()( 2max1 +−≤  
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In the equations above, 2civ is the shear stress on cracks required to achieve biaxial 

yielding of reinforcement and maxciv is the aggregate interlock capacity determined from 

Equation [3-6].  

3.3.3. Compatibility Equations 

Although cracks in concrete represent discontinuities, the average strains over a length 

containing a number of cracks are considered to satisfy requirements of continuous 

materials in MCFT. Consequently, like all other continuous materials, compatibility in 

reinforced concrete is expressed by Mohr circle of strains as shown in Figure 3-6. Some 

important compatibility equations are: 

 

Fig. 3-6 Mohr circle of strains for reinforced concrete (adopted from Vecchio and 

Collins, 1986). 
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[ 3-20] θεεγ cot)(2 2+= xxz  

[ 3-21] θεθεε 2

2

2

1 cot)cot1( ++= x  

where 1ε  and 2ε  are strains in principal directions, xε and zε are strains in x and z-

directions, xzγ is shear strain, and θ is principal compression strain direction to x axis. It 

should be mentioned that MCFT assumes the direction of principal strain coincides with 

the direction of principal average stress. In other words, MCFT assumes θc = θ. 

3.3.4. Solution of MCFT Equations 

Determining stresses given strains using MCFT equations is an easy task; however, 

calculating strains from given forces is tedious and requires trial-and-error. For the latter 

case, two unknowns are estimated in the beginning and solving equations verifies 

whether the estimated values are correct or need to be changed. For example, one 

solution strategy is to estimate concrete stresses in the x and z-directions. Then, calculate 

steel stresses in the x and z-directions in addition to concrete angle of inclination θ and 

principal stresses from equilibrium equations. Subsequently, determine strains in the 

principal, x and z-directions using material constitutive laws for concrete and steel. At 

this stage, crack equilibrium conditions should be checked and principal tension strain 

should be adjusted accordingly. The calculated strains should then satisfy compatibility 

equations otherwise the estimated concrete stresses should be revised and the procedure 

should be repeated until compatibility equations are satisfied.  

3.3.5. Experimental Verification 

MCFT was developed (Vecchio and Collins, 1986) based on experimental tests 

performed on 30 uniform shear elements under the variety of uniform biaxial stresses. 
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Recently, Bentz et al.(2006) have compared the experimental results of 100 uniform 

shear element tests available in the literature with MCFT predictions and concluded that 

MCFT predicts the behaviour of such elements with an average test-to-predicted shear 

strength ratio of 1.01 and coefficient of variation of 12.2%. As shown in Fig. 3-7, Bentz 

et al. (2006) also compared experimental results of shear stress-shear strain relationship 

from six tested elements with the predictions of MCFT. The six elements consisted of 

two elements tested at the University of Toronto (Kirschner and Collins 1986, and 

Khalifa 1986) and four elements tested at the University of Houston (Pang and Hsu, 

1995). University of Toronto tests are labeled by SE and University of Houston tests are 

labeled by A and B in Figure 3-7. The reasonable agreement of MCFT predictions with 

the experimental results is evident. 

 

  

Fig. 3-7 Comparison of predicted and observed shear stress – shear strain response of six 

uniform shear elements (Bentz et al. 2006). 
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3.3.6. MCFT and Traditional Shear Design Formulation 

In traditional shear design approach, the shear resistance of a structural concrete member 

is expressed as the sum a concrete contribution Vc, a stirrup contribution Vs and the 

vertical component of inclined prestressing force Vp in the general form: 

[ 3-22]  p

vyv

vwcpsc V
s

dfA
dbfVVVV ++=++=

θ
β

cot
'  

where β is the concrete contribution factor accounting for the shear resistance of cracked 

concrete, 'cf  is the compressive strength of concrete, bw is the web width, dv is the 

effective shear depth of the member, Av is the area of transverse shear reinforcement 

within a distance s along the member, fy is the yield strength of the transverse 

reinforcement and θ is the angle of inclination (measured from the longitudinal axis) of 

the concrete principal diagonal compressive stress, i.e., angle of critical diagonal crack. 

 The concrete contribution is traditionally taken equal to the shear force at first 

diagonal cracking. For prestressed concrete members, β depends on the moment-to-shear 

ratio and level of prestress in the traditional equations.  For a small member (no size-

effect reduction), a conservative lower-bound value for Vc results from assuming  β = 2 

psi (0.17 MPa) and dv = d. The transverse reinforcement contribution Vs has traditionally 

been calculated assuming θ = 45 deg (cot θ = 1.0), and dv = d. 

 For a uniform shear element, Equation [3-22] can be modified by eliminating Vp and 

dividing the remaining shear force components by the shear area bw dv:  

 [ 3-23] θρβ cot' yzcsc ffvvv +=+=  

 

where ρz is the transverse reinforcement ratio Av /bws. Assuming clamping stress fz  is 

equal to zero and transverse reinforcement has yielded, MCFT equilibrium equation 
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Eq.[3-10] can also be rearranged in the same format as Eq. [3-23] where:  

[ 3-24] θβ cot1cf=  

MCFT assumes '33.0 ccr ff = ; thus, from average stresses (Eq. 3-5), β  can be 

calculated from: 

[ 3-25] 

15001

cot33.0

ε

θ
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+
=  

But β is also limited depending on the maximum stresses that can be transferred at the 

cracks. The concrete contribution factor β and angle of inclination θ change from element 

to element as well as throughout the loading stages of one element after cracking up to 

failure.  

Figure 3-8(a) depicts how MCFT predicts the shear stress – shear strain relationships 

of structural concrete elements with different amounts of transverse and longitudinal 

reinforcement in addition to the corresponding concrete contribution factors βs  and crack 

angles θs ( from horizontal axis) of concrete for different loading stages. Notice that until 

concrete cracks, the inclination of diagonal compression θ  in elements subjected to pure 

shear is 45 degrees.  After cracking, θ  reduces depending on the relative amount of 

reinforcement ρz /ρx, and the shear stress ratio '/ cfv . After transverse (z-dir.) 

reinforcement yields, shear strain γ increases, longitudinal strain εx increases, inclination 

of diagonal compression θ reduces, and concrete contribution factor β reduces.  As vc 

reduces and vs increases, the total shear may reduce, stay constant or increase, depending 

on the amount of transverse reinforcement as shown in Fig. 3-8(a).  The point at which 

diagonal compression stresses in concrete reaches the crushing strength of concrete is 

also shown on each curve.  After this point, the shear strength of the element reduces.  
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For the element (with ρz = 0.005, ρx = 0.02) where all the reinforcement is already 

yielding, the strength reduction is sudden. 

For members without transverse reinforcement, ρz becomes zero thus MCFT Eq.[3-

23] can be presented by concrete contribution only as 'cfv β=  similar to traditional 

method. The MCFT can predict the complete shear stress – shear strain relationships of 

such elements as well. It was used to predict the response of elements with no transverse 

(z-direction) reinforcement and 3% distributed longitudinal (x-direction) reinforcement 

subjected to different levels of longitudinal axial stress fx, and the results are shown in 

Fig. 3-8(b). One element was subjected to constant axial compression stress fx of 3 MPa, 

the second element was subjected to pure shear (fx=0), and the third element was 

subjected to a constant axial tension stress of 1.5 MPa. The element subjected to shear 

and axial tension can be considered to represent the lower portion of a web subjected to 

shear and bending moment – the flexural stresses cause axial tension in the lower part of 

the web. The cracking point (indicated by a round dot in Fig. 3-8b) is very strongly 

influenced by the magnitude of axial stress.  Axial tension reduces the shear force at 

cracking, while axial compression increases the shear force at cracking. 

According to the MCFT, the concrete contribution Vc is not the shear force at 

diagonal cracking; but is the additional shear force beyond that resisted by yielding 

stirrups that can be transferred across diagonal cracks by interlock of rough crack 

surfaces. For a member without transverse reinforcement subjected to combined shear 

and axial tension (representing the influence of bending moment), Adebar and Collins
 

(1996) showed that the critical point is when transfer of shear across diagonal cracks 

initially limits the applied stresses. In other words, the critical point is when θ  and β 
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correspond to the solution in which β calculated from average stresses Eq. [3-25] is equal 

to the upper limit due to aggregate interlock capacity calculated from Equation [3-6]. 

This point is indicated by a square dot in Figure 3-8(b). 
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Fig. 3-8 MCFT predictions of shear response of uniform shear elements for: (a) members 

with transverse reinforcement, (b) members without transverse reinforcement. 
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It is worth mentioning that at the critical point, β and angle θ are not functions of 'cf  

because ε 2 is relatively small and negligible compared to ε 1 in Eq. [3-21] and therefore 

both βs associated with average stress condition (Eq. 3-25) and aggregate interlock 

capacity (Eq. 3-6) are only functions of θ  at a given longitudinal strain εx. 

3.4.  2007 AASHTO LRFD Method 

The shear design method given in the 2007 and older versions of AASHTO LRFD was 

developed based on MCFT analysis of uniform shear elements. The derivation of this 

method was presented by Collins et al. (1996). The method uses the traditional shear 

design formula (Eq. 3-22) and includes tables with values of β and θ. MCFT analysis 

assumptions used in the derivation of the method are: clamping stress zf =0, the crack 

spacing sθ for members with transverse reinforcement is 300 mm, concrete maximum 

aggregate size is 19 mm, and the cracking stress of concrete is fcr = '33.0 cf  in MPa 

units. Analyses were performed at a given longitudinal strains εx assuming that 

longitudinal reinforcement had sufficient capacity to provide the required axial 

compression force to transfer shear at the cracks. Another check as part of the method is 

performed to confirm this assumption.  

For members with at least minimum transverse reinforcement, it was assumed that 

transverse reinforcement had yielded. Thus, the crack check equation for both members 

with at least minimum and without transverse reinforcement is Eq. [3-17] which can be 

rewritten as: 

[ 3-26] 
)]16/(24[3.0

18.0

1 ++
≤

gasθε
β  
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β is obtained from Eq.[ 3-25] but reduced if Eq.[3-26] is not satisfied.  

For members with at least minimum transverse reinforcement, the tabulated values of 

β and θ   depend on longitudinal strain εx and shear stress ratio '/ cfv  according to 

MCFT. As for design of members with transverse reinforcement, the desired shear 

strength of an element can be achieved with different relative amount of transverse and 

longitudinal reinforcement, the values of θ and β provided in the tables for such members 

correspond to one particular solution. This solution uses a cost function to determine θ  

and corresponding β  that are associated with minimum cost for the amount of 

longitudinal and transverse reinforcement needed for shear.  

According to the AASHTO LRFD tables, for εx from -0.0002 to +0.001, and '/ cfv  

from 0.075 to 0.250, θ varies from 22 to 37 deg., and β varies from 0.13 to 0.53 in MPa 

units for members with transverse reinforcement. To ensure that transverse reinforcement 

yields prior to concrete crushing, the shear strength is limited to 25.0
'
=

cf

v
.  

For members without transverse reinforcement, as discussed earlier, critical shear 

strength is reached when θ  and β correspond to the solution in which β calculated from 

average stresses Eq. [3-25] is initially limited by aggregate interlock capacity expressed 

by Eq [3-26]. The tabulated values of θ and β  correspond to the critical point mentioned 

above. They are functions of longitudinal strain εx and effective crack spacing parameter 

Sxe that is given by:  

[ 3-27] 
16

35

+
=

g

x

xe
a

s
S  
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It should be noted that crack spacing of members without transverse reinforcement is 

determined by
θθ

sin

xss =  since crack spacing parameter in z-direction is assumed to be 

infinity in Eq. [3-8] for such members.  

According to AASHTO LRFD tables for members without transverse reinforcement, 

εx varies from -0.0002 to +0.002, and for small members (Sxe = 300 mm), θ  varies from 

25 to 37 deg and β  varies from 0.53 to 0.17 (in MPa units) over that range. For very 

large members (Sxe = 2000 mm), θ  is about double, and β is about half.  Specifically, 

θ  varies from 44 to 72 deg and β varies from 0.26 to 0.05 (in MPa units) over the same 

range. 

As discussed earlier, MCFT analyses were done at a given longitudinal strain 

assuming that longitudinal reinforcement had sufficient strength to transfer shear at 

cracks. To check the validity of this assumption, 2007 AASHTO LRFD method uses Eq. 

[3-28], which is derived from MCFT Eqs. [3-12] & [3-13] when 0== yx ff .  

[ 3-28] θθ cot)5.0(2cot)2(* sscv vvvvn −=+=  

In the equation above, *vn  is the required axial strength (force per unit area) provided by 

longitudinal reinforcement to transfer shear at the crack and reinforcing steel force per 

unit area in the z-direction θρ cotyzs fv = . *vn  should be less than available longitudinal 

reinforcement strength per unit area for shear to ensure that the assumption explained 

above is valid. 
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3.5.  2006 CHBDC Method 

The 2006 CHBDC shear design procedure, which is the same as the 2004 CSA A23.3 

shear design procedure, was developed by Bentz et al. (2006) and Bentz and Collins 

(2006) and is again based on MCFT with the same assumptions as the ones used for 2007 

AASHTO LRFD method. The method does not include tables but provides equations for 

θ and β instead. These equations are: 

[ 3-29] 
xex S+

⋅
+

=
1000

1300

15001

4.0

ε
β  

[ 3-30] deg75)
2500

88.0)(700029( ≤++= xe
x

S
εθ  

 Similar to 2007 AASHTO LRFD method, θ and β equations are functions of crack 

spacing parameter and longitudinal strain for members without transverse reinforcement. 

For members with at least minimum transverse reinforcement, θ and β equations are 

functions of εx only and are independent of shear stress ratio '/ cfv  unlike the 2007 

AASHTO LRFD method. This is because the equation for β was developed for no 

transverse reinforcement (low shear stress ratio), and the solution for θ  was developed 

for high shear stress ratio '/ cfv = 0.25.  Combining these θ  and β equations results in a 

simpler design procedure than using the tables in 2007 AASHTO LRFD. 

 First part of Eq. [3-29] )
15001

4.0
(

xε+
was derived from Eq. [3-6] assuming 

300=xeS mm and xw ε10002.0 += mm, which is in good agreement with the MCFT 

predictions of crack width w when no transverse reinforcement is present. The second 

part of Eq. [3-29] is a correction factor when Sxe is different than 300 mm.  
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As mentioned earlier, Eq. [3-30] was developed for heavily reinforced sections where 

'/ cfv = 0.25. Figure 3-9 presents the variation of angle θ  with longitudinal strain εx for 

such elements at yielding of transverse reinforcement and crushing of concrete based on 

MCFT. As shown, the 2006 CHBDC equation for angle θ  falls in the region where 

transverse reinforcement has yielded but concrete has not crushed when 25.0
'
=

cf

v
. 

Bentz et al. (2006) explained that Eqs. [3-29] and [3-30] is a linear relationship 

between shear strength and transverse reinforcement ratio assuming constant longitudinal 

strain while in reality this relationship is concave downwards based on plastic analyses as 

shown in Figure 3-10. As a result, they concluded that using Eqs. [3-29] and [3-30] for 

members with traditional amount of transverse reinforcement is conservative and 

appropriate for design.    

 

 

Fig. 3-9 Developing procedure of CHBDC 2006/CSA A23.3-04 equation for angle of 

inclination of principal compression (Bentz et al., 2006). 
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Fig. 3-10 Shear strength relation with transverse reinforcement ratio (Bentz et al., 2006). 

 

Bentz et al. (2006) compared the 2006 CHBDC equations for θ and β with MCFT 

for members without transverse reinforcement and with different crack spacing 

parameters for longitudinal strains varying from -0.0002 to 0.0025 as shown in Figure 3-

11. The MCFT results correspond to the point when cv is maximum. The 2006 CHBDC 

equation for β  gives a good estimate of β at large longitudinal strains but does not give a 

good estimate of β  at low longitudinal strains. The 2006 CHBDC equation for θ is not in 

good agreement with MCFT predictions over a wide range of longitudinal strains. 

However, θ  is less important than β  for members without transverse reinforcement 

because shear capacity of these elements is a function of β not θ. The angle of principal 

compression θ is only used to determine the demand on longitudinal reinforcement 

imposed by shear. Therefore, the lower the angle, the more conservative the results.  
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Fig. 3-11 Comparison of θ  and β   values given by CHBDC 2006/ CSA A23.3-04 with 

values determined from MCFT for elements without transverse reinforcement (Bentz and 

Collins, 2006). 
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Shown in Fig. 3-12, Bentz et al. (2006) also compared the 2006 CHBDC equation 

for θ and β  with MCFT for members with different amount of transverse reinforcement 

for longitudinal strains ranged from -0.0002 to 0.0025. Once again, the MCFT 

predictions correspond to maximum cv contribution to shear strength. Figure 3-12 shows 

that the 2006 CHBDC equation for θ  is conservative compared to MCFT predictions 

except for a few cases. The 2006 CHBDC equation for β  is also conservative except for 

the cases where xε is low. For such cases, however, Bentz et al. (2006) explained that 

conservative estimate of θ  could compensate for the unconservative estimate of β .  

In the 2006 CHBDC method, shear strength is also limited to 25.0
'
=

cf

v
 to avoid 

concrete crushing prior to transverse reinforcement yielding. Moreover, the same 

equation as in 2007 AASHTO LRFD method (Eq. 3-28) is used to check the sufficiency 

of longitudinal reinforcement strength to transfer shear at cracks. 

3.6.  Proposed Evaluation Method for Members With at Least Minimum 

Transverse Reinforcement 

 

2007 AASHTO LRFD and the 2006 CHBDC methods are intended for the design of new 

structures. The methods assume that the required shear capacity of a section is given and 

the amount of transverse reinforcement needs to be determined. As a result, the 2007 

AASHTO LRFD is based on a particular MCFT solution for a given required shear 

capacity aimed at the cost effective combination of longitudinal and transverse 

reinforcement. The 2006 CHBDC uses simplified equations for angle of inclination θ  

and the axial stress required to transfer shear that are independent of the amount of 

transverse reinforcement to avoid iteration. 
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Fig. 3-12 Comparison of θ  and β   values given by CHBDC 2006/ CSA A23.3-04 with 

values determined from MCFT for elements with at least minimum transverse 

reinforcement (Bentz and Collins, 2006). 
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In contrast to design, shear evaluation deals with cases where amount of 

reinforcement is known and shear capacity of the section needs to be determined. As a 

result, applying the shear design provisions of 2007 AASHTO LRFD or 2006 CHBDC to 

evaluation problems require trial-and-error. Moreover, the relative amount of longitudinal 

and transverse reinforcement cannot be changed; therefore, the θ and β that result in a 

certain relative amount of reinforcement may not be the best solution. Ignoring the effect 

of some of parameters such as transverse reinforcement ratio on angle of principal 

compression and axial compression required for shear could result in conservative 

estimate of shear capacity which is acceptable for design but could lead to unnecessary 

posting of bridge load limit, retrofit or replacement of existing bridges.  

In this section, a new procedure that is specifically intended for shear strength 

evaluation problems is presented. The method presented here is for members with at least 

minimum transverse reinforcement only. Section 3-7 presents a similar method for 

members without transverse reinforcement. 

 As was done to develop the shear design methods in AASHTO LRFD and 2006 

CHBDC, it is assumed that in members with at least minimum transverse reinforcement, 

the diagonal crack spacing is 300 mm, concrete maximum aggregate size is 19 mm, and 

concrete cracking stress is '33.0 cf  in MPa units.  To develop equations that can be 

applied to beams, it is assumed that the longitudinal strain εx of the uniform shear 

element is constant, and the required longitudinal reinforcement is available in the beam 

to equilibrate the longitudinal concrete compression.  A separate check is done in the 

evaluation procedure to ensure that this is the case. 
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 Figure 3-13 presents a variety of results from MCFT. Specifically, it presents the 

influence of axial strain εx and transverse strain εz on (a) shear stress v, (b) angle of 

inclination of principal average compressive stress θ  and (c) axial compression stress in 

concrete fcx all for an element with ρz = 0.005.  Figure 3-8(a) demonstrates how the axial 

strain εx increases as the shear stress applied to an element with a given amount of 

longitudinal reinforcement ρx. The curves shown in Fig. 3-13 are for different constant εx 

values, and are plotted over the range of εz from transverse reinforcement yielding to 

concrete crushing. 

Figure 3-13(a) illustrates how a larger εx results in a lower shear stress at first yielding 

of transverse reinforcement (εz=0.002) and lower shear stress at concrete crushing 

(maximum εz which corresponds to ε2 = -0.002).  A larger εx also results in a higher shear 

stress increase after yielding of transverse reinforcement. For example, when εx = 0, the 

shear stress at εz=0.002 is the maximum shear stress, while when εx = 0.001, the shear 

stress at εz=0.002 is about 80 % of the maximum shear stress. Figure 3-13(b) suggests the 

reason for this is that the higher εx results in a larger compression angle θ at first yielding 

of the transverse reinforcement and hence less stirrup contribution.  While θ varies from 

24.4 to 36.7 deg at first yielding of transverse reinforcement, it varies from only 21.3 to 

24.3 deg at concrete crushing. 

 Figure 3-13(c) gives the concrete longitudinal compression stress fcx required to 

maintain the specified axial strain εx.  For an element with large εx (e.g., 0.001), there is 

lower fcx at transverse reinforcement yielding (εz=0.002) and a larger increase in fcx as εz 

increases. For an element with small εx (e.g., εx = 0), there is higher fcx at εz=0.002 and a  
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Fig. 3-13 Influence of longitudinal strain xε and transverse strain zε on: (a) shear stress, 

(b) angle of inclination of diagonal compression, (c) longitudinal compression stress in 

concrete for an element with zρ  = 0.005, 'cf  = 40 MPa, f y = 400 MPa.  
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small increase in fcx as εz increases. 

As shown in Figure 3-13 (a), maximum shear strength of a member is generally close 

to the shear strength that corresponds to either yielding of transverse reinforcement or 

concrete crushing. However, the MCFT analyses are based on the assumption that 

longitudinal reinforcement does not yield as explained before. In some cases the element 

does not reach its maximum capacity at yielding of transverse reinforcement or crushing 

of concrete due to yielding of longitudinal reinforcements at cracks. For instance, the 

element with ρz = 0.005 and ρx = 0.02 shown in Fig. 3-8(a) reaches the maximum shear 

stress when the longitudinal reinforcement yields at εx = 0.002. As a result, in the 

proposed evaluation method, the strength is evaluated at three possible failure points.  

Yielding of transverse reinforcement and concrete crushing are two of the failure modes 

and the third failure mode involves yielding of both the transverse and longitudinal 

reinforcement. 

 

3.6.1. Proposed Equations for Angle of Inclination of Principal 
Compression 

 

Figure 3-14 shows the relationship between θ  and the axial strain εx for different 

quantities of transverse reinforcement ρz , 'cf  = 40 MPa, and f y = 400 MPa at yielding of 

transverse reinforcement and concrete crushing stage. The solid lines show the 

relationships given by MCFT, which is approximately linear for a constant ρz.  The 

relationships are very different at yielding of transverse reinforcement (Fig. 3-14a), and 

concrete crushing (Fig. 3-14b).   
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Fig. 3-14 Comparison of predicted angleθ with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf = 40 MPa, f y = 400 MPa. 
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The 2006 CHBDC method has one equation for θ as a function εx, and this is shown 

in Fig. 3-14 as a dotted line. As the 2006 CHBDC approximate value for θ is generally 

larger than the actual value, it results in a smaller Vs than actual and is generally 

conservative. The 2006 CHBDC approximate value for θ  is smaller than the actual value 

when εx is large at the point of transverse yielding (right-hand side of Fig. 3-14a); but as 

discussed with reference to Fig. 3-13(a), there will be a significant shear strength increase 

after yielding for large εx, and the 2006 CHBDC approximate angle is very conservative 

for all concrete crushing cases (Fig. 3-14b).  The 2006 CHBDC approximate angle is also 

very conservative at transverse reinforcement yielding for members with low amounts of 

transverse reinforcement. 

  More accurate equations for θ were developed for the proposed method. This was 

done by looking at a significant number of MCFT predictions of shear strength for 

uniform shear elements with different amount of transverse reinforcement and material 

properties at traverse reinforcement yielding and concrete crushing. As indicated by the 

AASHTO LRFD method, the angle θ depends on the shear stress ratio '/ cfv .  In design, 

the shear stress v is known; but not during strength evaluation. Thus the parameter 

'/ cyz ffρ  was used in place of '/ cfv . It was also found that angle θ  at yielding of 

transverse reinforcement is a function of transverse steel strain at yielding εy. The 

proposed equation for θ is: 

[ 3-31] 45≤∆+= xo εθθθ  

where at yielding of transverse reinforcement: 

[ 3-32] )1.150)(3.19
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θ ; 002.0≤yε  
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[ 3-33] ])4.1200(5.37[1000 oy θεθ −+−=∆  

in which εy is the reinforcing steel yield strain and shall not be taken greater than 0.002  

and at concrete crushing:  

[ 3-34] 615119 .
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o +=
ρ

θ  
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f
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θ  

 The angles predicted by these equations are also shown in Figs. 3-14(a) and (b) as 

dashed lines, and they are clearly in good agreement with MCFT.  When the longitudinal 

strain equals the transverse strain, the MCFT angle is equal to 45 deg. For 400 MPa grade 

reinforcement, the transverse reinforcement yields at a strain of 0.002, thus the angles 

converge to 45 deg. in Fig. 3-14(a) at a longitudinal strain of 0.002. The largest 

longitudinal strain used in the shear analysis of beams is 0.001, and at this strain, the 

MCFT angles have almost converged.  For simplicity, Eqs. [3-32] and [3-33] predicted 

angles converge at a longitudinal strain of 0.001, and for 400 MPa grade reinforcement, 

that angle is 37.5 deg. 

 Figures 3-15 to 3-18 are similar to Fig. 3-14 except they involve steel grades 250 

MPa and 600 MPa, or concrete compression strengths 30 MPa and 60 MPa. Figures 3-14 

to 3-18 illustrate that the proposed equations adequately capture the effect of concrete 

strength 'cf and steel grade on the angle of inclination θ at both yielding of transverse 

reinforcement and crushing of concrete. This validates the approach of using the 

parameters '/ cyz ffρ and εy in the proposed equations for angle θ. 
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Fig. 3-15 Comparison of predicted angleθ with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf = 30 MPa, f y = 400 MPa. 
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Fig. 3-16 Comparison of predicted angleθ with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf = 60 MPa, f y = 400 MPa. 
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Fig. 3-17 Comparison of predicted angleθ with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf = 40 MPa, f y = 250 MPa. 
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Fig. 3-18 Comparison of predicted angleθ with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf = 40 MPa, f y = 600 MPa. 
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 Figure 3-17(a) indicates that the predicted angles at εx=0 from the proposed equations 

are slightly smaller than the MCFT results for lower grade steel 250 MPa (fy = 250 MPa ) 

and thus are slightly unconservative; this compensates for the conservative estimate of 

proposed β equation for such steel as will be discussed later in this chapter. MCFT results 

showed that angle θ  is not significantly sensitive to steel grade at yielding of transverse 

reinforcement once steel grade is higher than 400 MPa; thus εy shall not be taken greater 

than 0.002 in the proposed method equations. This is, however, ignored in the proposed 

method when applied to beam elements due to the fact that concrete crushing is normally 

the governing failure mode at larger strains. 

  Figure 3-18 shows that the proposed method predicted angles at yielding of 

transverse reinforcement are slightly conservative for steel grade 600 MPa. It will be 

shown later in this chapter that the unconservative prediction of concrete contribution 

factor β compensates for it. Notice in Fig. 3-18 that MCFT predictions had to stop for 

lower strains and higher transverse reinforcement ratios because concrete crushing 

happened prior to yielding of transverse reinforcement. Shown in Figs. 3-17(b) and 3-

18(b), the proposed method equation of angle at concrete crushing is in good agreement 

with MCFT predictions for different steel grades. 

 Figure 3-15 to 3-18 show that the 2006 CHBDC predictions of angle are always 

smaller and thus conservative compared to the MCFT predictions at crushing of concrete 

while they are mostly conservative but sometimes unconservative compared to MCFT 

predictions at yielding of transverse reinforcement. 
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3.6.2. Proposed Equations for Concrete Contribution Factor  

The solid lines in Figs. 3-19 show the concrete contribution factor β according to MCFT 

at yielding of transverse reinforcement (Fig. 3-19a) and concrete crushing (Fig. 3-19b) 

for 40 MPa concrete and 400 MPa reinforcing steel. The 2006 CHBDC approximate β 

value is shown as a dotted line. As this equation was developed for members without 

transverse reinforcement, it gives unconservative values of β for low εx values in 

members with at least minimum transverse reinforcement. Bentz et al. (2006) explained 

that the unconservative estimate of Vc in these members, compensates for the 

conservative estimate of Vs due to the larger than actual value of θ. 

Figure 3-19(a) indicates that the concrete contribution factor β does not vary 

significantly at transverse reinforcement yielding. It will be shown later that the concrete 

contribution factor β does vary with steel grade for steel grades lower than 400 MPa. As 

was done to develop the equations for θ, the proposed equations for β were developed by 

looking at a significant number of MCFT results for uniform shear elements with varying 

amount of transverse reinforcement and different material properties. The proposed 

equation for concrete contribution factor at yielding of transverse reinforcement is: 

[ 3-36] )6.1300(18.0 +−= yεβ  in MPa units 

Figure 3-19(b) indicates that β does vary somewhat more at concrete crushing.  The 

2007 AASHTO LRFD method assumes β is a function of both εx and '/ cfv .  As 

described above in reference to the proposed expression for θ, using '/ cfv  would require 

iteration in evaluation, thus the parameter '/ cyz ffρ  was substituted for '/ cfv .  For 

simplicity, β was not made a function of εx.   
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Fig. 3-19 Comparison of predicted β  with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf  = 40 MPa, f y = 400 MPa. 
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The proposed expression for concrete contribution factor at concrete crushing is:  

[ 3-37] 03.0
'

65.0 +=
c

yz

f

fρ
β  in MPa units 

Figure 3-19 shows the proposed expressions are conservative and agree well with MCFT.  

Figures 3-20 to 3-23 examine the proposed equations for concrete contribution factor 

β and compare them with MCFT and the 2006 CHBDC method when concrete 

compressive strength is 30 and 60 MPa, or steel grade is 250 and 600 MPa. The same 

trend as in Fig. 3-19 is noticed in Figs.3-20 and 3-21 in which the concrete compressive 

strength is 30 and 60 MPa, respectively. Once again, the current CHBDC predictions are 

unconservative for low longitudinal strains and the proposed method is conservative and 

consistent with MCFT results. 

For steel grade 250 MPa shown in Fig. 3-22(a), the trend is somewhat different at 

yielding of transverse reinforcement as the variation of concrete contribution factor with 

longitudinal strain is more significant. As a result, the proposed method equation is 

conservative for low longitudinal strains. However, this is compensated for by the 

slightly unconservative estimate of angle as explained in the previous section. The 2006 

CHBDC predictions are more consistent with MCFT at yielding of transverse 

reinforcement for 250 MPa reinforcing steel compared to those for 400 and 600 MPa 

steel grades. As shown in Figs. 3-23, the concrete contribution factors given by the 

proposed equation for steel grade 600 MPa are unconservative but this is compensated 

for by the conservative estimate of corresponding angles as mentioned before. Figs. 3-

22(b) and 3-23(b) illustrate that the proposed equation for concrete contribution factor at 

concrete crushing is consistent with the MCFT. 
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Fig. 3-20 Comparison of predicted β  with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf  = 30 MPa, f y = 400 MPa. 
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Fig. 3-21 Comparison of predicted β  with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf  = 60 MPa, f y = 400 MPa. 
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Fig. 3-22 Comparison of predicted β  with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf  = 40 MPa, f y = 250 MPa. 
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Fig. 3-23 Comparison of predicted β  with MCFT result at: (a) yielding of transverse 

reinforcement, (b) crushing of concrete for 'cf  = 40 MPa, f y = 600 MPa. 
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3.6.3. Predicted Total Shear Stress  

 

Total shear stress v is the sum of the concrete contribution vc, which depends on β and the 

stirrup contribution vs, which depends on the angle θ. As different combinations of θ and 

β can result in the same total shear stress, different methods can be really compared by 

comparing the predictions for total shear stress. Figures 3-24 to 3-28 compare MCFT 

predictions of total shear stress with the results from the proposed method at transverse 

reinforcement yielding and concrete crushing for concrete compressive strength of 30, 

40, and 60 MPa and steel grade of 250, 400, and 600 MPa.  In all cases, the proposed 

method agrees better with MCFT results than the 2006 CHBDC. Generally, the 2006 

CHBDC predictions are unconservative for low longitudinal strains but it becomes less 

unconservative for concrete strength of 60 MPa. The 2006 CHBDC predictions are 

mostly conservative compared to MCFT results at concrete crushing except for low 

longitudinal strains.  

As explained before, the 2006 CHBDC limits the maximum shear strength to 

'25.0 cf to ensure that concrete crushing occurs after yielding of transverse reinforcement. 

Figures 3-28 proves that this is consistent with MCFT results, and thus this is adopted in 

the proposed method. Notice that for 40 MPa concrete and 600 MPa reinforcing steel, 

concrete crushing and steel yielding coincide at shear stress of 9.3 MPa and 10.3 MPa for 

transverse reinforcing steel ratios of ρz = 0.007 and 0.010, respectively. This is close to 

'25.0 cf  = 10 MPa predicted by the 2006 CHBDC.  
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Fig. 3-24  Comparison of predicted shear stress with MCFT result at: (a) yielding of 

transverse reinforcement, (b) crushing of concrete for 'cf  = 40 MPa, f y = 400 MPa. 
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Fig. 3-25  Comparison of predicted shear stress with MCFT result at: (a) yielding of 

transverse reinforcement, (b) crushing of concrete for 'cf  = 30 MPa, f y = 400 MPa. 
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Fig. 3-26  Comparison of predicted shear stress with MCFT result at: (a) yielding of 

transverse reinforcement, (b) crushing of concrete for 'cf  = 60 MPa, f y = 400 MPa. 
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Fig. 3-27  Comparison of predicted shear stress with MCFT result at: (a) yielding of 

transverse reinforcement, (b) crushing of concrete for 'cf  = 40 MPa, f y = 250 MPa. 

 



77 

0

2

4

6

8

10

12

14

0 0.0002 0.0004 0.0006 0.0008 0.001

Longitudinal strain    εεεε x 

S
h
e
a
r 
s
tr
e
s
s
 v
 
(M
P
a
)

CHBDC 2006

MCFT

Proposed

ρρρρ z = 0.010

ρρρρ z = 0.007

ρρρρ z = 0.005

ρρρρ z = 0.002

Maximum shear stress 

allowed by CHBDC 2006

(a)

 

Crushing 

0

2

4

6

8

10

12

14

0 0.0002 0.0004 0.0006 0.0008 0.001

Longitudinal strai    εεεε x 

S
h
e
a
r 
s
tr
e
s
s
 v
 (
M
P
a
)

CHBDC 2006

MCFT

Proposed

ρρρρ z = 0.010

ρρρρ z = 0.007

ρρρρ z = 0.005

ρρρρ z = 0.002

Maximum shear stress 

allowed by CHBDC 2006

  Yielding and crushing coincidence

(b)

 

Fig. 3-28  Comparison of predicted shear stress with MCFT result at: (a) yielding of 

transverse reinforcement, (b) crushing of concrete for 'cf  = 40 MPa, f y = 600 MPa. 
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3.6.4. Proposed Equations for Longitudinal Concrete Compression 
Stress 

 

The resultant of the longitudinal concrete compression stress fcx is the axial compression 

force Nv required in a beam web to resist shear, thus this stress is also referred to as vn . In 

order to estimate εx, which influences β and θ, an estimate of nv is needed. As the 

longitudinal compression nv in concrete must be balanced by tension in steel, nv is equal 

to ρxfs where ρx is the reinforcement ratio in the x-direction and fs is the stress in the 

horizontal reinforcement. As xss Ef ε= , εx for a uniform shear element is given by: 

[ 3-38] 
sx

v

x
E

n

ρ
ε =  

 

In the 2007 AASHTO LRFD shear design method, it is assumed for simplicity that  

nv = v cot θ, while in the 2006 CHBDC shear design method, this has been further 

simplified to nv = 2v. According to MCFT, substituting for 1cf  in Eq. [3-10] from Eq. [3-

9] and assuming fx = fz =0, the actual relationship is: 

 [ 3-39] θρθ 2cot2cot2 yzcv fvn +=  

To simplify this equation in the proposed method, θ2cot  and θ2cot have been 

approximated as linear functions for θ >25 deg and θ ≤25 deg as illustrated in in Fig. 3-

29. Substituting these linear functions, as well as vc = 'cfβ , and Eq. [3-31] forθ  as a 

function of εx gives: 

[ 3-40] xvvov nnn ε∆+=  
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Fig. 3-29 Bilinear approximation of: (a) cot2θ, (b) cot2θ used to approximate Eq. [3-39]. 
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where for  25>θ  deg: 

[ 3-41] θ∆ρβ∆ )f.'f.(n yzcv 200090 −−=   

[ 3-42] yzco
v

vo f.'f.
n

n ρβθ
θ∆

∆
4904 ++=    

and for 25≤θ deg: 

[ 3-43] θ∆ρβ∆ )f.'f.(n yzcv 770150 −−=   

[ 3-44] yzco
v

vo f.'f.
n

n ρβθ
θ∆

∆
62355 ++=   

A simplification that avoids trial-and-error is to only use Eqs. [3-41] and [3-42] for 

transverse reinforcement yielding, use Eqs. [3-43] and [3-44] if 23≤oθ deg and use Eqs. 

[3-41] and [3-42] if 23>oθ deg for concrete crushing. Although this simplification 

results in slightly unconservative estimate of axial compression stress at reinforcement 

yielding for members with low amount of transverse reinforcement and low longitudinal 

strain (members with angle of principal compression of less than 25 deg), this 

unconservatism is compensated for by conservative estimate of β for such elements as 

shown in Figures 3-19 to 3-23. At concrete crushing, angle rate of change with 

longitudinal strain is not high (see Figs. 3-14 to 3-18); thus oθ  is a good representative of 

θ . For average strain of εx = 0.005, oθ  is almost 2 deg smaller than θ (see Figs. 3-14 to 3-

18). In addition, approximated linear functions of θ2cot  and θ2cot  for θ >25 deg 

shown in Fig. 3-29 are still consistent with actual values at θ = 23 degrees.  

The nv calculated from MCFT as well as estimated by Eqs. [3-40] to [3-44] together 

with the simplification explained above are compared at yielding of transverse 

reinforcement in Fig. 3-30(a) and concrete crushing in Fig. 3-30(b).  
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Fig. 3-30  Comparison of predicted longitudinal concrete compression stress with MCFT 

result at: (a) yielding of transverse reinforcement, (b) crushing of concrete for 'cf  = 40 

MPa, f y = 400 MPa. 
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The 2006 CHBDC approximation of nv = 2v is generally conservative (larger estimate of 

nv than actual) at yielding of transverse reinforcement. Thus the estimated axial tension 

force in the longitudinal reinforcement that balances the axial compression force Nv will 

be larger than actual, and the estimated axial strain εx will be larger than actual. When 

this trend is combined with the trend shown in Fig. 3-24, the 2006 CHBDC method 

generally gives conservative predictions of shear strength for a member with a given 

amount of longitudinal reinforcement. The predictions of the proposed equations for nv 

are not compared with the MCFT predictions for other material properties since the 

proposed equation has been directly derived from the MCFT actual equation. 

3.6.5. Longitudinal Reinforcement Yielding 

There are some cases where an element cannot reach the capacity at yielding of 

transverse reinforcement or concrete crushing because the longitudinal reinforcement 

does not have the capacity – beyond that needed to resist the applied bending moment – 

to equilibrate the longitudinal compression stress in concrete due to shear. The average 

longitudinal compression stress nv which influences the strain of the member was 

discussed above. This average stress is reduced by the ability of cracked concrete to resist 

some average tension stresses.  The axial compression stress required locally at diagonal 

cracks to resist shear is considerably larger and is given by Eq. [3-28] as discussed 

before. The concrete contribution factor β and angle of principal compression θ 

determined at transverse reinforcement yielding and concrete crushing can be used in Eq. 

[3-28] to determine the longitudinal compression at diagonal cracks that must be 

balanced by tension in longitudinal reinforcement; but as shown in Fig. 3-8(a), yielding 

of longitudinal reinforcement may occur somewhere between the point of transverse 
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reinforcement yielding and concrete crushing.  

Rather than determine a third pair of β and θ values associated with the point of 

longitudinal reinforcement yielding, a simpler approach is to ignore the concrete 

contribution when determining the shear to cause yielding of both the transverse and 

longitudinal reinforcement.  Setting vc=0 in Eqs. [3-23] and [3-28], and solving these two 

equations for v (eliminating θ ) results in the following expression for shear strength 

given the maximum nv* controlled by the capacity of distributed longitudinal 

reinforcement denoted nvc: 

 [ 3-45] vcyz nfv ρ=   

Actual concrete contribution cannot be determined by equilibrium equations only and 

require more complicated analysis using material constitutive relations and compatibility 

equations. However, concrete contribution is small in common cases at biaxial yielding 

of reinforcement as both transverse and longitudinal strains are large at this stage and 

thus the stress that can be resisted by aggregate interlock is very small.  

Figure 3-31 illustrates the variation of angle θ and shear strength per unit area with 

shear stress resisted by concrete vc ranging from 0% to 40% of the shear strength when 

the longitudinal compression stress nv is 3 MPa and 6 MPa. θs and βs shown in Fig. 3-31 

were determined from equilibrium equations. From equilibrium, v is given by Eq. [3-23] 

and nv is given by Eq. [3-28]. Substituting for vc and nv, the equations can be solved for 

angle θ  and shear stress v.  
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Fig. 3-31 Variation of: (a) angle, (b) shear stress with concrete contribution from variable 

angle truss model. 
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Figure 3-31 shows that angle is steeper when concrete contribution is higher; therefore 

shear does not change significantly with concrete contribution. Notice that there is only 

an increase of less than 10% in shear strength once concrete contribution changes from 0 

to 40%.  

3.7.  Proposed  Evaluation  Method  for Members  Without  Transverse  

Reinforcement 

 

Members without transverse reinforcement behave differently than members with at least 

minimum transverse reinforcement. As a result, the proposed evaluation procedure for 

members without transverse reinforcement is different from the procedure for members 

with at least minimum transverse reinforcement.   

 Figures 3-8(a) and 3-8(b) show the predicted shear behaviour of both members with 

at least minimum and without transverse reinforcement, and these are clearly different. 

Figure 3-8(b) illustrates that after cracking of concrete, there is a sudden drop in shear 

stress; however, the shear stress normally increases as the stress resisted by aggregate 

interlock increases. Adebar and Collins (1996) showed that the critical point is when 

transfer of shear across diagonal cracks initially limits the applied stresses. The 

corresponding shear stress is taken as the shear strength per unit area of a uniform shear 

element without transverse reinforcement. The proposed evaluation procedure to 

determine the shear strength at this critical point is presented here. 

At the critical failure points (shown as square dots in Fig. 3-8b), a diagonally cracked 

element with only longitudinal reinforcement – no stirrups – resists shear by a 

combination of diagonal compression and tension stresses that must satisfy two 

requirements. The first is that the resultant normal stress on any horizontal plane must be 
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zero as there is no transverse reinforcement to balance concrete normal stress.  The 

second requirement is that the resultant stresses acting on a plane parallel to the assumed 

crack direction θ must be the required combination of shear and compression stress 

needed to transmit the shear across the crack.  As a result of these two requirements, axial 

compression stress will exist on vertical planes in the element, and the resultant              

of the axial compression nv must be equilibrated by tension in the                               

longitudinal reinforcement. According to the MCFT nv is given by Eq.[3-39].                                 

As discussed earlier, this has been simplified to nv = v cot θ  in the AASHTO LRFD 

shear design method, which is a reasonable simplification for members with significant 

transverse reinforcement, and in the 2006 CHBDC shear design method, this has been 

further simplified to nv = 2v. For members without transverse reinforcement, vs = 0 and v 

= vc. As the axial strain of a member depends on the magnitude of nv, which is a function 

of the applied shear stress, shear strength evaluation requires trial-and-error for the 

2007AASHTO LRFD and 2006 CHBDC methods. 

 Fig. 3-32 compares the axial compression stress nv from the two code approximate 

expressions, and the MCFT for two different sized members (Sxe = 300 and 2000 mm) 

without transverse reinforcement. As vc is proportional to 'cf , the ratio '/ cv fn  plotted 

in Fig. 3-32 is independent of 'cf .  The two code approximate expressions for nv, which 

are used for both members with and without transverse reinforcement, give much higher 

compression stress than MCFT predictions for members without transverse 

reinforcement. In the proposed evaluation method for members without transverse 

reinforcement, it is assumed that nv = 0. This is a better approximation and greatly 

simplifies the shear strength evaluation of such members and also removes the need for 
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trail-and-error procedure. 
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Fig. 3-32  Comparison of predicted axial compression stress ratio '/ cv fn  (in MPa 

units) with MCFT for members without transverse reinforcement. 

 

 The expression for concrete contribution factor β was selected to compensate for the 

assumption of zero longitudinal compression stress nv, and was adjusted to give a good fit 

with test results on girders. The proposed expression is: 

[ 3-46] 
)5.0500(

400

)1.2600(1

35.0

xexxe SS +
≤

++
=

ε
β           (in MPa units)    

The limit imposed on Eq. [3-46] is a cut-off for large members with very low longitudinal 

strain as shown for Sxe= 2000 in Figure 3-34. This prevents Eq. [3-46] predictions from 

being unconservative compared to MCFT for such members.                                                                        

 Fig. 3-33 compares β from Eq. [3-46] with that from the MCFT and the 2007 

AASHTO LRFD table and 2006 CHBDC Eq. [3-29]. As the 2006 CHBDC method was 

primarily developed for Sxe = 300 mm, its predictions are in good agreement with MCFT 
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for that size member. The 2007 AASHTO LRFD values for β are almost exactly the same 

as the MCFT as the tabulated values were derived from the MCFT. 2007 AASHTO 

LRFD curves shown in Fig. 3-33 are based on linear interpolation between tabulated 

values. 
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Fig. 3-33  Comparison of predicted concrete contribution β (in MPa units) with MCFT 

for members without transverse reinforcement. 

 

 For members without transverse reinforcement, the angle θ is only used to determine 

the demand imposed on longitudinal reinforcement by shear. As shown in Fig. 3-34, the 

2007 AASHTO LRFD tabulated values are essentially identical to the MCFT. As the 

2006 CHBDC expression for θ  is a simple linear function of axial strain, it does not fit 

nearly as well to the MCFT values.  The proposed expression for inclination of average 

principal compression stress in concrete, which is assumed to be parallel to the critical 

diagonal cracks is: 
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[ 3-47] )02.06.0)(700035( xex S++= εθ              (in MPa units)         

The predictions of Eq. [3-47] are also shown in Figure 3-34. The predictions are closer to 

MCFT results compared to the 2006 CHBDC predictions for longitudinal strains of 

greater than xε = 0.0004. Longitudinal reinforcement unlikely yield at cracks once the 

strain is lower.                                                                                   

 As in members with transverse reinforcement, in some cases, yielding of longitudinal 

reinforcement will limit the shear capacity of an element because the longitudinal 

reinforcement does not have the capacity to equilibrate the longitudinal compression 

stress in concrete due to shear. The average longitudinal compression stress nv that 

influences the strain of the member was discussed above. This average stress is reduced 

by average tension stresses in cracked concrete.  The axial compression stress required 

locally at diagonal cracks to resist shear is considerably larger. For members without 

transverse reinforcement it is given by: 

[ 3-48] θcot2* cv vn =                                                                                                                                                    

The vc and θ determined for maximum post-cracking capacity of an element can be used 

in Eq. [3-48] to determine the longitudinal compression at diagonal cracks that must be 

balanced by tension in longitudinal reinforcement. How the demand on longitudinal 

reinforcement from shear is combined with the demand from bending moment is 

explained in Chapter 4.  
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Fig. 3-34  Comparison of predicted angle θ  with MCFT for members without transverse 

reinforcement. 
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Chapter 4. Beam Elements 
 

4.1.  General 

A rigorous analysis of a beam subjected to axial load, bending moment and shear force 

can be done using a multi-layer analysis where the response of each layer is modeled as a 

uniform shear element. Response 2000 is a computer program that does such analyses. A 

simpler shear analysis can be done by using a single uniform shear element to 

approximate the complete shear behavior of a beam and this is consistent with shear 

design provisions in 2007 AASHTO LRFD and 2006 CHBDC. 

In this chapter, the multi-layer analysis procedure for beams subjected to shear is 

briefly reviewed, and the simplified procedures used in 2007 AASHTO LRFD and 2006 

CHBDC are summarized. The proposed procedure to apply the uniform shear element 

model from Chapter 3 is introduced and the predictions from the proposed procedure are 

compared with predictions using the shear design provisions in 2007 AASHTO LRFD 

and 2006 CHBDC, and the predictions from Response 2000. 

4.2.  Exact Solution 

The procedure explained here was developed by Vecchio and Collins (1986). To account 

for moment-shear interaction at a beam section, a beam cross-section is divided to 

multiple layers as shown in Figure 4-1. Each layer is assumed to behave like a uniform 

shear element i.e. undergoes uniform stresses and strains in every direction. As a result, 

the MCFT formulation explained in Chapter 3 can be applied to each individual layer. 

Each layer may have different stresses, strains and angle of principal compression. To 

link the layers in this procedure, the well known assumption of plane sections remain 
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plane is used. In addition, global equilibrium should be satisfied meaning that stresses 

acting on the layers should balance bending moment, shear, and axial force acting at the 

cross-section. It is worth mentioning that any shear flow distribution at the section can 

result in a set of stresses in beam layers which satisfy both section equilibrium and 

compatibility assumption of plane sections remain plane. Consequently, one other check 

is needed to ensure that the assumed shear flow distribution would not violate 

equilibrium between the beam sections. This check is done by looking at the second 

section close to the primary one assuming that the second section has to have the same 

shear flow distribution as in the primary section. As shown in Figure 4-2, the normal 

stresses calculated at individual layers should then be consistent with the assumed shear 

flow distribution determined from the equilibrium of each layer between the dual 

sections.  Shown in Fig. 4-2, Vecchio and Collins (1986) suggested that the second 

section should be spaced about d/6 from the primary one. 

 
 

 

Fig. 4-1 Appliction of MCFT to beam elements using multi-layer analysis (Vecchio and 

Collins, 1986). 
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Fig. 4-2 Equilibrium of the dual sections in MCFT exact solution for beam elements 

(Vecchio and Collins, 1986). 
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Figure 4-3 presents the algorithm of the procedure as presented by Vecchio and 

Collins (1986). In summary, a shear flow distribution is assumed in the beginning. Then, 

longitudinal strain profiles (which are linear) are adjusted at the dual sections in a way 

that MCFT equations for individual layers, as well as global sectional equilibrium at both 

sections, are satisfied. Note that dual sections might have different longitudinal strain 

profiles but they have the same shear flow profile. In addition, shear force remains the 

same at both sections but moment varies to comply with equilibrium. Once longitudinal 

strain profiles and normal stresses are determined at all layers for both sections, shear 

flow distribution may then be calculated by looking at equilibrium of each layer between 

the sections as illustrated in Figure 4-2. The procedure should be repeated until the 

calculated shear flow profile is the same as the assumed one. 

The procedure is complicated since it involves multi-layer MCFT analysis of two 

sections and trial-and-error. Vecchio and Collins (1986) explained that the procedure 

might be simplified by assuming an approximate shear flow profile or approximate shear 

strain profile. Common assumptions are constant shear flow (uniform shear flow) or 

parabolic shear strain profiles. This reduces the analysis procedure to one section only but 

the results are approximate. Vecchio and Collins (1986) compared the shear-moment 

interaction predictions from the exact method with predictions assuming constant shear 

flow and parabolic shear strain profile for three different concrete sections. In all cases, 

the approximate predictions using the assumption of constant shear flow gave similar 

results to the exact procedure. As it will be shown later in this thesis, the constant shear 

flow is the basic assumption of the 2007 AASHTO LRFD and the 2006 CHBDC shear 

provisions for beam elements. 
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Fig. 4-3 Algorithm of MCFT exact solution procedure for beam elements (Vecchio and 

Collins, 1986). 
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4.2.1. Response 2000 

Response 2000 (Bentz, 2000) is a computer program that applies the MCFT to beams 

using a multi-layer analysis. The unique aspect of Response 2000 is that instead of using 

dual sections to predict the shear flow distribution over the depth of a beam section, it 

uses tangent stiffness of layers meaning that it looks at two sections with infinitesimal 

distance apart instead. Response begins the analysis with an assumed shear flow 

distribution to determine the strains and stresses in the layers. Knowing strain condition 

of layers, stiffness of each layer can be determined using material constitutive laws of 

steel and concrete explained in Chapter 3. The layers tangent stiffness matrix will then be 

integrated over the depth to determine global stiffness matrix of the section which is then 

used to calculate shear strain and shear flow profiles from external forces acting at the 

section. The calculated shear strain profile is the assumed shear strain profile for the next 

iteration and the procedure is repeated until convergence is reached.  

Response 2000 is a sophisticated research tool that provides detailed output of results 

including concrete and steel stresses and strains, shear on cracks, concrete angle of 

principal compression, crack spacing at all layers, and force deformation plots as well as 

shear-moment interaction diagrams. Figures 4-4 and 4-5 present some example output 

plots from Response 2000 for a typical prestressed I-girder cross-section used in bridges. 

The depth with darker color in the cross-section is an uncracked depth and the portion of 

transverse reinforcement that is yielding is also shown in darker color. Among other 

plots, Figure 4-4 shows the sectional profiles for principal compression stress and shear 

stress on cracks.  
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Fig. 4-4 Some output plots from computer program Response 2000. 
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Fig. 4-5 Some output plots from computer program Response 2000.  
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The allowable stresses are also shown in a different color on the same plots. Two shear 

stress profiles in different colors are also provided. One is determined from MCFT 

equations for individual layers and the other one is determined from tangent stiffness 

method explained previously. As shown, the two profiles should be close if the analysis 

procedure has reached convergence.  

Bentz (2000) verified Response 2000 against 534 tests reported in the literature on a 

variety of member types, and found a mean ratio of measured to predicted shear strength 

of 1.05 and a COV of 12%. In the report on the shear strength of bridge girders, Hawkins 

et al. (2005) compared Response 2000 predictions with the results of 149 tests they 

selected from a database of 1359 shear tests. They selected members that contained 

minimum transverse reinforcement ( yz fρ >50 psi [0.35 MPa]), had an overall depth of at 

least 500 mm, and were cast from concrete having a compressive strength of at least 28 

MPa. Also, tests in which anchorage or flexural failure occurred were not included.  The 

149 tests they selected included 85 prestressed concrete girders. They found a mean ratio 

of measured to predicted shear strength of 1.02 and 1.11, and a COV of 11% and 17% for 

reinforced and prestressed girders, respectively.  

Response 2000 is not as appropriate for design and evaluation since different users 

may get different results by adjusting parameters such as material constitutive models and 

crack spacing options available in the program. Also, as the program was developed for 

investigating a number of sections in detail, it is not ideal for evaluating many different 

sections in a normal design office environment. 
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4.3.  Simplified Procedures for Design 

The shear design procedures in both the 2007 AASHTO LRFD and 2006 CHBDC are 

based on a single-layer shear analysis. The shear stress is assumed to be uniform over the 

shear depth dv, which is estimated as 0.9d.  Similarly, the principal average compression 

stress (diagonal crack) angle θ  and the longitudinal compression stress in concrete due to 

shear stress nv are also both assumed to be constant over the shear depth dv.  For members 

with transverse reinforcement, the longitudinal strain εx used in the shear analysis is taken 

as the average value over the section, and for simplicity, this is estimated as half the 

strain of the flexural tension reinforcement. The longitudinal strain εx used in the shear 

analysis for members without transverse reinforcement is different in the two codes. It is 

equal to the maximum longitudinal strain in the 2007 AASHTO LRFD, while it is taken 

as the average longitudinal strain over the section in the 2006 CHBDC. 

Both codes assume that bending moment is carried by the concrete compression 

chord and the tension chord reinforcement and the flexural internal lever-arm is equal to 

effective shear depth ( vdjd = ). As a result of the assumption of uniform longitudinal 

compression stress over dv, half of longitudinal compression force required for shear Nv is 

carried by the tension chord reinforcement and the other half is carried by the 

compression chord. These assumptions are shown in Figure 4-6. 

 As mentioned previously, both 2007 AASHTO LRFD and 2006 CHBDC methods 

assume that the effective shear depth can be idealized as one uniform shear element thus 

one longitudinal strain is needed to determine the maximum shear force taken by the 

effective shear depth. In 1994 AASHTO LRFD and the 2000 CHBDC, this strain was the 

maximum longitudinal strain over the shear depth, which is equal to the longitudinal 
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strain at the center of the flexural reinforcement, but this was later found to be too 

conservative for members with at least minimum transverse reinforcement. 

Consequently, the mid-depth strain was chosen as the longitudinal strain in the 2007 

AASHTO LRFD and the 2006 CHBDC for members with at least minimum transverse 

reinforcement. In both codes, the mid-depth strain is approximated by half  the maximum 

strain at the center of flexural tension reinforcement.  

 

 
 
                    Cross-section                            Strain                            Forces  

 

 

Fig. 4-6  2007 AASHTO LRFD and 2006 CHBDC approximate sectional model for 

beams subjected to shear and moment. 

 

 

The maximum longitudinal strain is given by: 
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in which M/jd+0.5Nv is the force in the flexural tension reinforcement, fpAp is prestressing 

force at zero longitudinal strain, and (EsAs+EpAp) is the stiffness of flexural tension 

reinforcement. The mid-depth strain, which is taken as half the maximum longitudinal 

strain, is calculated from: 

 [ 4-2]   
)(2

5.0

ppss

ppv

x
AEAE

AfN
jd

M

+

−+
=ε     

where: M = bending moment at section of interest; jd = internal flexural lever-arm (M/jd 

= flexural tension force); vN = axial compression force needed to resist shear in web; As, 

Ap = area of nonprestressed and prestressed flexural tension reinforcement; and Es, Ep = 

Modulus of Elasticity of nonprestressed and prestressed reinforcement, respectively.  

As explained in Chapter 3, 2007 AASHTO LRFD and the 2006 CHBDC use Eqs. [4-

3] and [4-4] for Nv, respectively. These equations are presented in the form of stresses in 

Chapter 3. 

[ 4-3] θcotVN v =  

[ 4-4] VN v 2=  

For members without transverse reinforcement, the 2006 CHBDC still uses the mid-

depth strain thus uses Eq. [4-2] to calculate the longitudinal strain. In contrast, 2007 

AASHTO LRFD uses the maximum longitudinal strain over the section depth given by 

Eq. [4-1].  

To design a section by 2007 AASHTO LRFD, mid-depth strain is estimated to 

determine θ and β values from tables. The longitudinal strain εx can then be calculated 

from Eqs. [4-1] or [4-2]. This is repeated until the calculated εx is equal or less than the 
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estimated εx. Knowing θ and β, the required amount of transverse reinforcement can be 

calculated using Eq.[3-22]. In contrast, the 2006 CHBDC shear provisions do no require 

trial-and-error for design since εx is not a function of θ . εx is calculated from Eq. [4-2] 

where Nv is obtained from Eq. [4-4], θ and β are determined from Eqs. [3-30] and [3-29], 

and the required amount of transverse reinforcement is then given by Eq.[3-22]. Both 

methods require trial-and-error for shear strength evaluation as the longitudinal strain εx 

is a function of shear resistance (shear force at failure level) and shear resistance is not 

known until the evaluation is complete. 

As stated earlier, θ s and β s in the 2007 AASHTO LRFD and the 2006 CHBDC are 

based on the assumption that there is enough capacity provided in the axial direction by 

longitudinal reinforcement at the cracks. To check the validity of this assumption, the 

codes require that:  

[ 4-5] θcot)5.0( sl VV
jd

M
F −+=  

be equal to or greater than the top and the bottom chord longitudinal reinforcement 

capacity. The bending moment is negative if the equation is used for compression chord. 

In Eq. [4-5], M/jd is the demand on the flexural reinforcement due to the bending 

moment and θcot)5.0( sVV −  is the demand on the flexural reinforcement due to the 

shear force. The demand θcot)5.0( sVV −  due to the shear force is half the demand in 

uniform shear elements given by Eq. [3-28] as half Nv is assumed to be resisted by the 

flexural reinforcement in beam elements (see Fig. 4-6).  
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4.4.  Proposed Evaluation Method for Members With At Least 

Minimum Transverse Reinforcement 

 

Figure 4-7 shows the Response 2000 predictions for a typical prestressed I-girder at the 

point of transverse reinforcement yielding (dotted line) and concrete crushing (solid line). 

Information about the I-girder is provided in Section 4-7. The longitudinal strains vary 

linearly over the depth as shown in Fig. 4-7(b).  The transverse shear flow (Fig. 4-7d) 

varies in a complex nonlinear way with the maximum value being in the deck slab, which 

is modeled composite with the girder. The inclination of the principal compression stress 

(Fig. 4-7c) varies from 0 on the top of the deck slab to 90 deg at the bottom face of the 

girder. Over the height of the web, the angle generally varies between 27 and 39 deg at 

transverse reinforcement yielding and between 24 and 26 deg at concrete crushing.  The 

longitudinal concrete normal stress is multiplied by width of member (analogous to shear 

flow) in Fig. 4-7(e) to facilitate comparison with the proposed method prediction, which 

assumes a constant web width. 

 The proposed method uses a single shear analysis and thus assumes uniform shear 

stress over the shear depth dv. The mid-depth strain is used as the longitudinal strain in 

the shear analysis. The actual shear stress is not uniform as shown in Fig. 4-7(d); 

however, the shear stress at mid-height is a reasonable estimate of the average shear 

stress. In the 2007 AASHTO LRFD and 2006 CHBDC simplified design procedures, the 

longitudinal concrete compression stress nv required to resist shear is also assumed to be 

uniform over the shear depth dv. Figure 4-7(e) indicates that nv at mid-height is a 

reasonable estimate of nv over the web region of the member; but is not a good estimate 

of the average nv over the complete shear depth.  The shear depth extends well into the 

deck slab, the maximum shear flow occurs in this region; however this portion of the  
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Fig. 4-7  Variation of shear response over depth of prestressed I-girder with composite deck 

slab: (a) cross-section, (b) longitudinal strain, (c) angleθ , (d) shear flow, (e) normal stress 

multiplied by width. 
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member does not experience any diagonal cracking and thus does not develop the 

additional longitudinal concrete compressive stresses nv due to shear.  There is flexural 

compression in the deck slab that is balanced by flexural tension and therefore should not 

be part of Nv.  The longitudinal concrete compressive stresses due to shear nv also do not 

extend down into the flexural tension flange.  The concrete in this region is in tension, 

which helps to stiffen the reinforcement.  Thus the nv estimated at section mid-height is 

assumed to be uniform over a reduced depth nvd  from top of bottom flange to the bottom 

of top flange (see Fig. 4-7e). As a result, Nv is determined by longitudinal compression 

stress calculated from Eq. [3-40] multiplied by the effective area of bw dnv. The proposed 

equation for Nv is:  

[ 4-6] nvwxvvv dbnnN )( 0 ε∆+=  

The tension stiffening effect of concrete in the tension flange of the girder, which has 

a cross-sectional area of Atf, is also accounted for in the proposed method. This is done by 

assuming an average concrete tension force of Ft = tfc A'fα  over this area; where α = 

0.165 in MPa units (0.0125 in psi units). α is calculated from Eq. [3-5] assuming 

longitudinal strain of 0.002 at the center of flexural tension reinforcement. Another 

refinement in the proposed method is to accurately account for reinforcement in the web, 

which may be in any number of layers and be located at any elevations. 

 Figure 4-8 shows the beam approximate sectional model that is used in the proposed 

method. One layer of web nonprestressed reinforcement distanced wd from the 

compression face and one layer of web prestressed reinforcement distanced pwd  from the 

compression face are shown. The longitudinal strain at the center of web nonprestressed 
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                     Cross-section                           Strain                               Forces 

Fig. 4-8  Approximate beam strain profile and forces in the proposed method. 

 

reinforcement is swε  and at the center of web prestressed reinforcement is cpwε . Thus the 

forces in the web nonprestressed and prestressed reinforcement are: 

[ 4-7] swswssw AEF ε=  

[ 4-8] ppwcpwpwppw fAAEF += ε  

where Asw is web nonprestressed reinforcement area, Apw is web prestressed 

reinforcement area, and fp is prestressing force at zero strain. From strain compatibility 

and assuming extreme compression fiber strain is equal to zero: 

[ 4-9] x
w

sw
d

d
εε 2=  

[ 4-10] x

pw

cpw
d

d
εε 2=  

A factor of 2.0 in Eqs. [4-9] and [4-10] comes from the assumption of mid-depth 

longitudinal strain xε is half the longitudinal strain at the center of the flexural tension 
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reinforcement. Substituting for swε and cpwε  from Eqs. [4-9] and [4-10] in Eqs. [4-7] and 

[4-8]: 

[ 4-11] xswsssw AEF ελ2=  

[ 4-12] ppwxpwpppw fAAEF += ελ2  

where 
d

dw
s =λ and 

d

d pw

p =λ . Force T in the flexural tension reinforcement shown in 

Fig. 4-8 is determined from taking moments about the point of application of 

compression force Cc: 

[ 4-13] pwpswsv FFN
jd

M
T λλ −−+= 5.0  

In deriving Eq. [4-13], it is assumed that the distance from the point of application of Cc 

to the compression face is very small and almost equal to zero. Substituting for Fsw and 

Fpw from Eqs. [4-11] and [4-12] and for Nv from Equation [4-6]: 

[ 4-14] −∆++= nvwxvv dbnn
jd

M
T )(5.0 0 ε ppwpxpwppxswss fAAEAE λελελ −− 22 22  

The mid-depth longitudinal strain, which is assumed to be equal to half the longitudinal 

strain at the center of flexural tension reinforcement, is determined from: 

[ 4-15] 
)(2

'
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AfAfT
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−−
=

α
ε  

where, as explained previously, tfc Af 'α  is the force in the tension chord resisted by 

concrete tension stiffening and fpAp is the force in the prestressed reinforcement at zero 

longitudinal strain. Substituting for T from Eq. [4-14] and solving for εx, the proposed 

equation for mid-depth strain is: 
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 The longitudinal strain at section mid-height is assumed to be half the strain of the 

flexural tension reinforcement.  This is generally a conservative assumption as the strain 

on the opposite face is usually compressive (see Fig. 4-7b).  If the bending moment is 

small and the shear force is large, the section may be subjected to tension strains over the 

full depth.  This would be the case if total force in compression chord Cc shown in Fig. 4-

8 is greater than zero. In that case, the section mid-height strain calculated by Eq. [4-16] 

should be multiplied by 2. From Equilibrium and strain compatibility using the same 

procedure used to determine T, Cc is given by: 

[4-17] 

ppwpxpwpppxswsssnvwxvvc fAAEAEdbnn
jd

M
C )1()1(2)1(2)(5.0 0 λελλελλε −−−−−−∆++−=

 

For typical problems, nonprestressed reinforcement may be assumed to be uniformly 

distributed over the full web centered at mid-depth.  For such cases, Eqs. [4-16] and [4-

17] can be simplified to: 

[ 4-18] 
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[ 4-19]  

ppwpxpwpppxswsnvwxvvc fAAEAEdbnn
jd

M
C )1()1(25.0)(5.0 0 λελλεε −−−−−∆++−=  

Note area of flexural tension reinforcement As in denominator of Eq. [4-18] is multiplied 

by a factor of 4 compared to area of longitudinal reinforcement Asw centered in the web. 

A factor of 2 comes from the assumption that mid-height strain is half the strain of the 

flexural tension reinforcement and a second factor of 2 comes from the need to provide 
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twice as much reinforcement at section mid-depth to resist bending compared 

reinforcement on the flexural tension face. 

Unlike the other simplified procedures, εx equation in the proposed method is not a 

function of shear resistance but is a function of section geometry, amount of 

reinforcement and material properties. These variables are known in evaluation problems 

thus εx can be determined without a need for trial-and-error. Once εx is known β and θ are 

known from Eq. [3-31] to [3-37]; therefore section shear strength can be calculated from 

Eq. [3-22] without trial-and-error. Note that εx and the corresponding shear strength 

should be evaluated at yielding of transverse reinforcement and concrete crushing failure 

modes using the same equations for εx and θ ( Eqs. 4-16 and 3-31), but the parameters β, 

nv0, ∆nv, θ0, ∆θ have different values at each failure mode (see Eqs. 3-32 to 3-37 and 3-41 

to 3-44). For yielding of longitudinal reinforcement, another approach explained in the 

next section is used. 

In the case of multiple layers of nonprestressed and prestressed reinforcement in the 

web, Eqs. [4-16] and [4-17]  can be expressed in a more general form as: 

 [ 4-20]
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where m and n are number of layers of nonprestressed and prestressed reinforcement in 

the web, Apwi and Aswj are total area of the i
th
 and j

th
 layer of prestressed and 
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nonprestressed reinforcement. The parameters dd pwipi /=λ  and ddwjj /=λ  are used to 

account for the location of prestressed and nonprestressed reinforcement in the web 

where pwid   is the distance from the flexural compression face to centroid of i
th
 layer of 

web prestressed reinforcement and dwj is the distance from the flexural compression face 

to centroid of j
th
 layer of web nonprestressed reinforcement. 

4.4.1. Evaluation at Yielding of Longitudinal Reinforcement  

In the proposed method, shear strength of a section is limited to the shear force causing 

biaxial yielding of reinforcement at the crack. The stress corresponding to this shear force 

is determined from Eq. [3-45]. Expressing Eq. [3-45] in terms of forces, the shear force 

which causes biaxial yielding of reinforcement is given by: 

[ 4-21] vcvwyz NdbfV )(ρ≤  

where Nvc is the longitudinal compression force reserved for shear. Assuming all 

longitudinal nonprestressed reinforcement has yielded and all longitudinal prestressed 

reinforcement has reached their capacity fpr in Figure 4-8: 

[ 4-22] prpys fAfAT +=   

[ 4-23] yswsw fAF =  

[ 4-24] prpwpw fAF =   

Substituting for T, Fsw, and Fpw in Eq. [4-13] and solving for Nv, the axial compression 

force reserved for shear in the flexural tension reinforcement is given by: 

[ 4-25] ]/)()([2 jdMAAfAAfN pwppprswssyvc −+++= λλ  
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Similarly, the same procedure for the compression side results in Eq. [4-26] for the axial 

compression force reserved for shear in the flexural reinforcement in the compression 

chord. 

[ 4-26] ]/)1())1(([2 jdMAfAAfN pwpprswsscyvc +−+−+= λλ  

Equation [4-21] must be evaluated separately for the flexural tension and flexural 

compression sides of the member and the smaller value controls the shear strength.  

In Eqs. [4-25] and [4-26], the internal flexural lever-arm jd has a direct influence on 

longitudinal reinforcement force and therefore the reserved capacity in longitudinal 

reinforcement to resist shear. In the 2006 CHBDC, jd is estimated as 0.9d. Response 

2000 predictions for numerous sections that failed due to biaxial yielding of 

reinforcement showed that a more accurate estimate is given by: 

[ 4-27] 
fc

syppr

bf

AfAf
djd

'2.1

+
−=  

where bf  is the compression face width of the section. In Eq. [4-27], the average flexural 

compression stress over the concrete flexural compression zone is assumed to be '6.0 cf .  

4.4.2. Governing Failure Mode  

Figure 4-9 depicts typical shear stress-shear strain relationships for reinforced concrete 

beams. Solid lines show the typical curves if yielding of longitudinal reinforcement does 

not limit the shear strength. Such cases involve yielding of transverse reinforcement and 

concrete crushing failure modes and the higher of these two is the governing failure mode 

that determines the shear strength. Dashed lines illustrate possible changes in the curves 

if longitudinal reinforcement yields prior to yielding of transverse reinforcement or after 

yielding of transverse reinforcement. In the upper curve shown in Fig. 4-9 the shear stress 
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increases after yielding of transverse reinforcement until concrete crushes. In the lower 

curve the shear stress reduces after yielding of transverse reinforcement. When 

longitudinal reinforcement yields before yielding of transverse reinforcement in both 

curves, the shear stress increases up until yielding of transverse reinforcement and then 

remains constant. In such cases, biaxial yielding of reinforcement failure mode is the 

highest shear stress throughout the loading and thus is the governing failure mode.  

 
 

 

Fig. 4-9  Typical shear stress-strain relationships for beams. 

 

Another possibility is that longitudinal reinforcement yields after transverse 

reinforcement yielding. If this happens, shear stress remains almost unchanged after 

longitudinal reinforcement yielding until concrete crushes (see Fig. 4-9). However, this 

shear stress is only the highest and governing shear stress throughout the load 

deformation curve if the concrete crushing shear stress is higher than the shear stress 
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corresponding to yielding of transverse reinforcement (curve type 1). For the type 2 

curve, on the other hand, yielding of transverse reinforcement is the governing failure 

mode since it corresponds to the highest shear stress in the load deformation curve.  

If the shear strength corresponding to the biaxial yielding of reinforcement is lower 

than yielding of transverse reinforcement shear stress for curve type2, the problem would 

be how to determine whether longitudinal reinforcement yielding has happened prior to 

or after yielding of transverse reinforcement. This can be examined by checking the 

condition given by Eq. [4-5] at transverse reinforcement yielding stage; longitudinal 

reinforcement will yield after transverse reinforcement yielding if the condition is 

satisfied. Since curve type 2 corresponds to sections with low amount of transverse 

reinforcement close to minimum in which concrete crushing shear stress is not 

significantly lower than transverse reinforcement yielding shear stress, the proposed 

method uses the biaxial reinforcement yielding shear strength as the governing shear 

strength if it is lower than any of the other two failure modes. In summary, the governing 

failure mode in the proposed method is: 

- Vyield  if greater than Vcrush and less than Vbiaxial 

- Vcrush  if greater than Vyield and less than Vbiaxial 

- Vbiaxial  if less than Max (Vyield ,  Vcrush ) 

where Vyield, Vcrush, and  Vbiaxial  are the beam shear strength corresponding to  yielding of 

transverse reinforcement, crushing of concrete, and biaxial yielding of reinforcement, 

respectively. As explained in Chapter 3, the governing failure mode should not be greater 

than vwc dbf '25.0 to avoid concrete crushing prior to transverse reinforcement yielding. 
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4.5.  Proposed  Evaluation  Method  for  Members  Without  Transverse 

Reinforcement 

 

Fig. 4-10 shows the Response 2000 predictions for a reinforced concrete beam (Fig. 4-

10a) without transverse reinforcement at the maximum applied shear force. The 

longitudinal strains are assumed to vary linearly over the depth (Fig. 4-10b), while the 

transverse strain (Fig. 4-10c) is highly nonlinear and the maximum value is mid-way 

between the flexural tension reinforcement and the section mid-depth. The shear stress 

distribution (Fig. 4-10d) is not uniform; but can be reasonably approximated as uniform 

over the shear depth dv.  

Fig. 4-10(e) examines the distribution of longitudinal normal stress over the beam 

depth. The flexural compression over the top third of the beam is very prominent.  The 

tension force needed to equilibrate this compression is calculated as part of the flexural 

analysis.  Immediately below the flexural compression zone, there is a peak tension 

stress, and below that, the beam is diagonally cracked.  Over the diagonally cracked 

portion of the beam, there are small longitudinal compression stresses.  In fact, the 

tension stresses above the diagonal cracks and the tension stiffening (average tension 

stresses in cracked concrete) around the longitudinal reinforcement are larger than the 

longitudinal compression.  In Chapter 3, it is shown that the longitudinal compression 

stress nv is small and can be assumed equal to zero for a uniform shear element without 

transverse reinforcement. The assumption of no longitudinal compression force due to 

shear in a diagonally cracked member without transverse reinforcement is even more 

valid for a beam than a uniform shear element as shown in Figure 4-10(e). 

Numerous analyses of members without stirrups (similar to that shown in Fig. 4-10) 

indicated that the maximum transverse strain typically occurs mid-way between the level  
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Fig. 4-10  Response 2000 predictions for variation of shear response over the depth of a 

beam, M/V = 2.0 m , fy =  550 MPa, 'cf  = 20 MPa. 
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of the flexural tension reinforcement and the section mid-depth as shown in Fig. 4-10(c). 

Thus in the proposed procedure, the longitudinal strain εx used in the shear analysis for 

members without stirrups is the maximum longitudinal strain divided by 1.5. As in the 

2006 CHBDC and 2007 AASHTO LRFD methods, the shear flow is uniform over the 

effective shear depth dv . 

Assuming the axial compression force due to shear and tension stiffening force in the 

tension chord are zero, accounting for the tension force resisted by distributed non-

pressed reinforcement, and accounting for the prestressing tendons in the web, the same 

procedure used to derive Eq. [4-18] results in the following proposed longitudinal strain:                                   

[ 4-28] 
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Since εx is not a function of shear demand or angle of principal compression, the 

proposed method does not require trial-and-error for evaluation.  

While the influence of longitudinal compression due to shear is negligible in the 

proposed method when calculating the axial strain of the member, it cannot be ignored 

when checking whether the longitudinal reinforcement yields at a diagonal crack. The 

longitudinal compression stress required locally at diagonal cracks to resist shear is much 

larger than the average longitudinal compression stress, and is given by MCFT as: 

[ 4-29] θcot2* cv VN =                                                                                                                        

Thus the longitudinal reinforcement yields if this axial compression force ( *vN ) is 

greater than reserved axial compression force in the tension or compression chords given 

by Equations [4-25] and [4-26]. For cases in which longitudinal reinforcement yields, the 

shear strength is taken as: 
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[ 4-30] 
2

vcN
V =                                                                                                                                  

which is determined by solving Eq. [4-29] for Vc with θ equal to 45 degrees. MCFT 

results shown in Fig. 3-34 indicate that angle of principal compression is mostly greater 

than 45 degrees thus 45 deg is generally a conservative assumption.  Note that the higher 

the angle, the more conservative the predictions for members with no stirrups. This is 

because the angle for such members is only used to determine shear demand on 

longitudinal reinforcement. 

4.6.  Members With Less than Minimum Transverse Reinforcement 

In the 2006 CHBDC and 2007 AASHTO LRFD shear design provisions, minimum 

amounts of transverse reinforcement are different. Thus one of these minimum amounts 

was selected to be used in the proposed method. The 2006 CHBDC requirements for 

minimum amount of transverse reinforcement ρzmin and maximum transverse 

reinforcement spacing smax are: 

[ 4-31] 
y

c

z
f

f '
060.0min =ρ                                                                                                                    

[ 4-32] 60075.0max ≤= vds mm for '10.0 cu fv <   

[ 4-33] 30033.0max ≤= vds mm for '10.0 cu fv ≥  

The minimum percentage of transverse reinforcement is 38% larger in 2007 AASHTO 

LRFD but the maximum permitted spacing of this reinforcement is slightly larger. 

Comparison of shear strength predictions from the proposed method with beam test 

results in Chapter 5 shows that the proposed evaluation procedure can reasonably predict 

the shear strength of beams with transverse reinforcement amount as low as the 2006 
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CHBDC minimum amount. Consequently, the 2006 CHBDC minimum amount of 

transverse reinforcement was adopted in the proposed method. 

In the 2006 CHBDC and 2007 AASHTO LRFD shear design provisions, if a section 

has less than the minimum amount of transverse reinforcement, the shear strength is 

calculated assuming no transverse reinforcement. Angelakos et al. (2001) found that this 

approach results in a conservative estimate of shear strength for members with slightly 

less than the minimum transverse reinforcement. Based on the results of 21 large 

reinforced concrete beam tests, they proposed that the shear strength increase linearly 

from the shear strength of a member with no stirrups to the shear strength of the member 

with minimum stirrups. In the evaluation section, the 2006 CHBDC recommends the 

same approach; but the linear increase in shear strength starts when the member has more 

than one-third of the minimum transverse reinforcement.  Members with less than one 

third of minimum transverse reinforcement are assumed to have the same shear strength 

as members with no transverse reinforcement. In the proposed method, the 2006 CHBDC 

linear approach was adopted for members with less than minimum transverse 

reinforcement based on comparison of the shear strength predictions from the proposed 

method with the experimental results that is presented in Chapter 5.  

4.7.  Example Evaluations of Bridge Girder With at Least Minimum 

Transverse Reinforcement 

 

The trends predicted by the proposed expressions for inclination of diagonal cracks θ, 

concrete contribution factor β, total shear stress v, and longitudinal compression stress nv 

for an element subjected to uniform shear were compared with MCFT in Chapter 3. In 

order to verify the complete shear strength evaluation procedure including the 
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assumptions used to apply the uniform shear approach to bridge girders, the results 

obtained for three example bridge girders are compared with the results obtained using 

computer program Response 2000. The predicted shear strengths determined from the 

2007 AASHTO LRFD, 2006 CHBDC, and ACI 318 shear design methods are also 

presented. Note that the 2008 AASHTO LRFD shear design provisions are similar to the 

2006 CHBDC shear design provisions. 

 Figure 4-11 shows the cross-sections of the three different girders in the three bridges. 

The following material properties were assumed in all cases: fc' = 40 MPa, fy = 400 MPa, 

fpu = 1860 MPa, and Ep = Es = 200000 MPa. In order to compare resistances from 

different codes, the nominal resistances (without resistance factors) were calculated.   

 The I-girder bridge is a 21 m single span bridge with six prestressed concrete I-girders 

spaced at 2 m. The cross-section of the girders near the support is shown in Fig. 4-11(a). 

The four prestressing tendons near the top of the web are draped toward the bottom 

flange at 7.75 m from the support. The bridge transverse reinforcement ratios change 

from ρz = 0.834% to 0.437% and from ρz = 0.437% to 0.327% at locations of 7.32 m and 

8.69 m from the supports. The box-girder bridge has a single span of 29.80 m and 

consists of nine prestressed concrete box girders. The cross-section of the girders near the 

support is shown in Fig. 4-11(b). The 16 prestressing tendons distributed over the web are 

draped toward the bottom half of the web at 11.91 m from the support. The channel-

girder (Fig. 4-11c) bridge consists of 14 precast nonprestressed channel girders 

interconnected by reinforcing bars grouted in place. Each of the simple spans of this 

multi-span bridge is 8.40 m.  
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(a) I-girder 
 

 
 

(b) Box-girder 
 

 
(c) Channel-girder 

 

Fig. 4-11 Cross-sections of girders in example bridges. 
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The bridge girder amounts of transverse reinforcement change from ρz = 0.588% to 

0.294% and from ρz = 0.294% to 0.098% at locations of 1.39 m and 1.75 m from the 

supports. All bridges had two traffic lanes. 

Bridge live load (truck load) for I-girder Bridge consisted of CHBDC standard truck 

with five axels and total weight of 625 kN in addition to one special permit truck with 

eight or  11 axles and total weight of 839 kN (85.5 tonnes) or 1699 kN (173.2 tonnes). 

For the other two bridges, however, the CHBDC standard truck or 839 kN (85.5 tonnes) 

permit truck were only used. Lane load and dynamic allowance factor, as well as a multi-

lane reduction factor were included as per the 2006 CHBDC. The load factors were based 

on the 2006 CHBDC for Level 2 Inspection. Live load was transversely distributed 

according to the 2006 CHBDC. Factored moment and shear envelope diagrams for all 

three bridges are shown in Figure 4-12. Appendix D includes information of the trucks 

used for evaluation in this thesis. 

The bridge girders were evaluated at a number of sections along the span. At 

locations where the spacing of transverse reinforcement changes, the shear strength was 

assumed to linearly vary from shear strength of the section with lower amount of 

transverse reinforcement to shear strength of the section with higher amount of transverse 

reinforcement over the length dv centered at the location of change in the amount of 

transverse reinforcement. This is permitted in the 2006 CHBDC evaluation section. 

At each section, evaluation was done at a constant moment equal to the factored 

moment demand corresponding to maximum shear demand acting at that section. To 

evaluate the example bridge girders by the 2006 CHBDC method, shear capacity was 

estimated and εx was calculated accordingly.  
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(a) I-girder shear and moment envelopes 
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(b) Box-girder shear and moment envelopes 
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(c) Channel-girder shear and moment envelopes 

 

Fig. 4-12  Moment and shear envelopes of evaluated bridges with minimum stirrups. 
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Using εx, θ and β were determined, and shear capacity was calculated. The same 

procedure was repeated until the estimated shear capacity was equal to the calculated 

shear capacity.  

 To evaluate example bridge girders by the 2007 AASHTO method, θ  and β were 

first estimated. Shear capacity was then calculated using the estimated θ , β . 

Subsequently, εx was determined substituting the calculated shear capacity and estimated 

angle in the equation for longitudinal strain εx. Entering the tables with εx  and shear 

capacity ratio ( '/ cfv ), θ and β  were determined; linear interpolation was used for 

intermediate values. The same procedure was repeated until the estimated θ and β  were 

equal to the θ and β  extracted from the tables.  

 To evaluate prestressed bridge girders by the ACI 318 shear design method, the well 

known Vci , Vcw approach was used to determine the concrete contribution. For Vci 

calculations, it was assumed that top deck concrete weight as well as girder weight is 

supported by girders only while other added load (wearing and live loads) are supported 

by composite action of deck and girders. For the channel-girder bridge, which was 

nonprestressed, Vc was assumed to be dbf wc '2  in psi units ( dbf wc '17.0 in MPa units) 

as specified by ACI 318.  

4.7.1. Comparison of Results for I-girder Bridge 

The variation of predicted strengths over about half the span of the I-girder is shown in 

Fig. 4-13. Both the proposed method and Response 2000 can predict the shear strength at 

yielding of transverse reinforcement and crushing of concrete.  
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Fig. 4-13 Comparison of predicted shear strengths along span of I-girder bridge: (a) 

Response 2000 and proposed method, (b) Response 2000 and code design methods. 
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Figure 4-13(a) compares the shear strength determined from Response 2000 and the 

proposed method for the concrete crushing mode (solid lines) and transverse 

reinforcement yielding mode (dashed lines). Generally, there is very good agreement 

along the span. Note that the information presented in Fig. 4-7 is for the I-girder 

explained here at 7.92 m from the support. 

 Fig. 4-13(b) compares the shear strength from Response 2000 with shear strengths 

according to the 2007 AASHTO LRFD, 2006 CHBDC and ACI 318 shear design 

methods.  2007 AASHTO LRFD gives a safe prediction almost all along the span; the 

predictions become slightly unconservative near the support. The 2006 CHBDC shear 

design method gives an unsafe prediction near the support where the axial strains are very 

low.  On the other hand, the method gives a very low prediction at 4.21 m from the 

support, where the predicted strength is 778 kN while the shear strength according to 

Response 2000 is 938 kN at transverse reinforcement yielding and 1032 kN at concrete 

crushing.  Near mid-span, the 2006 CHBDC prediction corresponds well with transverse 

reinforcement yielding. The ACI 318 shear design method gives very unsafe predictions 

where Vcw controls the shear strength from the support up to 6.10 m from the support. 

This equation was previously recognized as being unsafe (Hawkins et al. 2005).  

Figure 4-14 compares the Response 2000 predictions for mid-depth strain over about 

half the span with the predictions from 2007 AASHTO LRFD, 2006 CHBDC, and the 

proposed method. Similar to Response 2000, the proposed method can predict the mid-

depth strains at yielding of transverse reinforcement and crushing of concrete. The 2006 

CHBDC and 2007 AASHTO LRFD can only predict one mid-depth strain at a section.  

The proposed method predictions agree well with the predictions from Response 2000 
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both at yielding of transverse reinforcement and crushing of concrete. The 2006 CHBDC 

and 2007 AASHTO LRFD predictions are significantly larger than Response 2000  
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Fig. 4-14 Comparison of Response 2000 predicted mid-depth strain along span of I-

girder bridge with proposed and code design methods. 

 

 

predictions at yielding of transverse reinforcement; however, the predicted shear forces at 

failure (shear strength) from the 2006 CHBDC and 2007 AASHTO LRFD are slightly 

lower than the Response 2000 predictions at yielding of transverse reinforcement.  This 

suggests that both 2007 AASHTO LRFD and 2006 CHBDC methods conservatively 

estimate the mid-depth longitudinal strain. The predictions from the 2007 AASHTO 

LRFD method are less conservative compared to the predictions from the 2006 CHBDC 

method.  Notice that shear strength at yielding of transverse reinforcement from the 

proposed method (Fig. 4-13a) is greater than the shear strength at concrete crushing near 
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the support where the predicted longitudinal strain (Fig. 4-14) is small and almost zero. 

This was also noticed in MCFT predictions for uniform shear elements presented in 

Chapter 3 (see Fig. 3-13a). 

4.7.2. Comparison of Results for Box-girder Bridge 

In Fig. 4-15(a), the proposed method predictions of shear strength for the box-girder 

along almost half the span are compared with the Response 2000 predictions at yielding 

of transverse reinforcement and concrete crushing. The proposed method predictions 

compare well with the predictions from Response 2000. In the proposed method 

predictions, shear strength at transverse reinforcement yielding governs at sections that 

are near the support as it is greater than the shear strength corresponding to the crushing 

of concrete. This is consistent with Response 2000 predictions. Figure 4-15(b) compares 

the shear strength predictions from Response 2000 with the predictions from 2007 

AASHTO LRFD, 2006 CHBDC, and ACI 318. As also noticed in the I-girder, ACI 318 

method results in unconservative shear strength predictions for sections that are close to 

the support (up to 3.7 m from support). The ACI 318 method predictions become 

conservative for sections close to mid-span compared to the predictions from Response 

2000. The 2006 CHBDC method predictions are unconservative close to the support; 

however, become conservative near mid-span compared to the Response 2000 

predictions at crushing of concrete.   

 Figures 4-16(a) and 4-16(b) present Response 2000 predicted mid-depth strains and 

flexural reinforcement strains (strain at the center of flexural tension reinforcement) for 

the box-girder over about half the span with the predictions from the proposed method.  
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Fig. 4-15 Comparison of predicted shear strengths along span of box-girder bridge: (a) 

Response 2000 and proposed method, (b) Response 2000 and code design methods. 

 



130 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

Distance from left support (m)

S
tr
a
in
 (
m
m
/m
)

Response (Crushing)

Response (Yielding)

Proposed (Crushing)

Proposed (Yielding)

CHBDC 2006

AASHTO 2007

(a)
 

 

-0.5

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

Distance from left support (m)

S
tr
a
in
 (
m
m
/m
)

Response (Crushing)
Response (Yielding)
Proposed (Crushing)
Proposed (Yielding)
CHBDC 2006
AASHTO 2007

(b)
 

 

Fig. 4-16 Comparison of Response 2000 predicted (a) mid-depth strain, (b) flexural 

tension reinforcement strain along span of box-girder bridge with proposed and code 

design methods. 
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The predictions from 2007 AASHTO LRFD, and the 2006 CHBDC methods are also 

presented. The proposed method predictions of mid-depth strain (Fig. 4-16a) are the 

closest to those predicted by Response 2000 but the difference is still significant. The 

difference, however, is due to the assumption of mid-depth strain is half the strain at the 

center of flexural tension reinforcement. As shown in Fig. 4-16(b), the predictions of 

flexural tension reinforcement strain from the proposed method agree well with Response 

2000 predictions.  

 The 2007 AASHTO LRFD predictions for flexural tension reinforcement stain 

compare well with the Response 2000 predictions at yielding of transverse reinforcement 

but are lower than Response 2000 predictions at concrete crushing. The 2006 CHBDC 

predictions of flexural tension reinforcement strain are conservative and even larger than 

Response 2000 predictions at concrete crushing along a significant portion of the span. 

4.7.3. Comparison of Results for Channel-girder Bridge 

Shear strength predictions of Response 2000 for almost half the span of the channel-

girder bridge are shown with the predictions from the proposed method in Fig. 4-17(a), 

and with the predictions from 2007 AASHTO LRFD, 2006 CHBDC, and ACI 318 in 

Figure 4-17(b). Figure 4-17(a) illustrates that Response 2000 predictions of shear strength 

are compatible with those predicted by the proposed method both at yielding of 

transverse reinforcement and crushing of concrete. Near mid-span, the proposed method 

shear strength predictions at yielding of transverse reinforcement is higher than those at 

concrete crushing since the amount of transverse reinforcement is low (0.098%) and 

slightly higher than the 2006 CHBDC minimum amount (0.095%). Similar trend is also 

noticed but is less significant in the Response 2000 predictions.  
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Fig. 4-17 Comparison of predicted shear strengths along span of channel-girder bridge: 

(a) Response2000 and proposed method, (b) Response 2000 and code design methods. 
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The 2006 CHBDC predictions are slightly lower than the 2007AASHTO LRFD 

predictions and ACI 318 predictions are too conservative except for the portion of the 

span that is near mid-span. 2007 AASHTO LRFD predictions as well as predictions from 

the proposed method are slightly unsafe (with Response 2000-to-predicted shear strength 

ratio of about 0.95) near mid-span. Response 2000 results showed that yielding of 

transverse reinforcement does not extend over the full effective shear depth as the amount 

of transverse reinforcement is low. This does not cause significant reduction in shear 

strength for members containing minimum transverse reinforcement as shown in Fig. 4-

17(b). Notice that the predictions from the proposed method are not significantly higher 

than Response 2000 predictions near mid-span. 

 In Fig. 4-18, Response 2000 predictions of channel girder mid-depth strain over about 

half the span with the predictions from the proposed method, and from the 2007 

AASHTO LRFD and the 2006 CHBDC methods are presented. The proposed method 

predictions are the closest to Response 2000 predictions. The 2007 AASHTO LRFD 

predictions are better than the 2006 CHBDC predictions compared to Response 2000 

predictions. It should be mentioned that the large mid-depth strains predicted by the 

codes as well as the proposed method near the support is because the axial force Nv due to 

shear has caused tension in the compression chord. The same trend is also noticed in 

Response 2000 predictions. 
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Fig. 4-18 Comparison of Response 2000 predicted mid-depth strain of I-girder bridge 

with proposed and code design methods. 

 

 

4.7.4. Summary of Results for Example Bridge Girders 

The predicted shear strengths at three sections along each of the three bridge girders are 

summarized in Table 4-1. For each bridge, one section is located in the low-moment 

region close to the support, another section is located in the high-moment region near 

mid-span, and the third section was located between the other two.  The shear strength at 

transverse reinforcement yielding and concrete crushing according to Response 2000 are 

both shown, and the lower (critical) one is identified (*). Unlike the shear design 

methods, the proposed method also gives two shear strengths, and these generally agree 

well with Response 2000 results.   
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Table 4-1 Summary of predictions for example bridge girders with at least 

minimum transverse reinforcement. 

     

Section information Predicted shear strength (kN) 
(ratio Response 2000 shear to predicted shear) 

Proposed 

Response 2000 
shear strength (kN) 

Bridge 

Dist. 
from 
supp. 
(m) 

ρρρρz 
(%) 

Vu 
(kN) 

Mu 

 (kNm) 
AASHTO 
2007 

CHBDC 
2006 

ACI 
318 Yielding Crushing Yielding Crushing 

1.50 0.87 783.7 1211 
1155.8 
(1.01) 

1261.8 
(0.92) 

1230.6 
(0.95) 

1158.6* 
(1.01) 

1105.0 1164.8 1166.2* 

5.22 0.87 139.3 3213 
830.3 
(1.22) 

776.6 
(1.30) 

1107.9 
(0.91) 

865.2 
959.4* 
(1.05) 

878.1 1011.0* I-girder 

7.91 0.44 83.7 3719 
470.2 
(1.40) 

441.2 
(1.49) 

628.1 
(1.05) 

493.0 
587.4* 
(1.12) 

535.8 658.7* 

2.98 0.80 514.6 1610 
1693.0 
(1.04) 

1807.8 
(0.98) 

1820.8 
(0.97) 

1689.8* 
(1.05) 

1614.6 1766.7* 1727.5 

5.96 0.80 410.1 2830 
1392.6 
(1.12) 

1348.8 
(1.16) 

1316.3 
(1.19) 

1413.2 
1487.9* 
(1.05) 

1542.5 1561.6* 
Box-
girder 

8.94 0.80 304.3 3610 
1237.8 
(1.17) 

1156.1 
(1.25) 

1133.7 
(1.25) 

1248.4 
1398.3* 
(1.03) 

1363.9 1442.7* 

0.63 0.59 157.9 130 
492.2 
(1.22) 

462.2 
(1.30) 

465.8 
(1.29) 

581.8 
603.6* 
(1.00) 

576.5 600.6* 

1.39 0.29 139.3 208 
375.6 
(1.14) 

351.1 
(1.22) 

305.9 
(1.40) 

360.4 
405.4* 
(1.06) 

344.6 429.2* 
Channel-
girder 

3.34 0.10 83.7 328 
209.1 
(0.95) 

193.2 
(1.03) 

199.3 
(0.99) 

206.1* 
(0.96) 

165.4 192.3* 191.3 

Mean 1.14 1.18 1.11 1.04 - 

COV (%) 11.8 15.4 15.9 4.3 - 

 

 The ratios of Response 2000 shear strengths to predicted shear strengths are shown 

within brackets.  For the proposed method, the  ratios vary from 0.96 to 1.12, and have a 

mean of 1.04 and a COV of 4.3%.  For the 2007 AASHTO LRFD shear design method 

the ratios vary from 0.92 to 1.40, with a mean of 1.14 and a COV of 11.8%. The ratios 

from the 2006 CHBDC shear design method vary from 0.92 to 1.49, with a mean of 1.18 

and COV of 15.4%.  Finally, for the ACI 318 method, the ratios vary from 0.91 to 1.40; 

have a mean of 1.11, and a COV of 15.9%. Note that 2007 AASHTO LRFD and the 

proposed method predictions are slightly unsafe only for the third section of the channel 

girder bridge that contains very low amount of transverse reinforcement close to the 2006 
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CHBDC minimum amount. The CHBDC and ACI 318 methods, however, resulted in 

unsafe estimate of shear strength at the first two sections of the I-girder and channel 

girder bridges where the moment shear ratios were low. 

4.8.  Example Evaluation for Bridge Girder With Less than Minimum 

Transverse Reinforcement 

 

To demonstrate the proposed evaluation method, it was also applied to T-girders with less 

than minimum transverse reinforcement in a two-span continuous bridge with a span of 

24.7 m. The 8.8 m wide bridge has two lanes of traffic, and four girders. The girders are 

1067 mm deep at the ends of the bridge, and are haunched to 2286 mm deep over a 9.754 

m length near the middle support. The girders were strengthened by post-tensioned 32 

mm Dywidag bars located near the top flange and attached to the girders by steel 

diaphragms.  

The results from the shear strength evaluation at the section located 4.67 m from the 

middle support are discussed below. The details of the section at that location are shown 

in Fig. 4-19. At this section, the amount of transverse reinforcement in the girders was ρz 

= 0.042%, which is 62% of the 2006 CHBDC minimum transverse reinforcement ρzmin = 

0.068%.  The 610 mm spacing of the stirrups is exactly the maximum allowed spacing. 

The concrete cylinder compression strength 'cf = 21 MPa and reinforcement yield 

strength fy = 400 MPa. The longitudinal crack spacing parameter at the section of interest 

is Sxe = 1469 mm. 

Bridge live load (truck load) consisted of CHBDC standard truck with total weight of 

625 kN as well as 3 special permit trucks with 7, 8 and 9 axles and total weights of 750 

kN (76.5 ton), 839 kN (85.5 ton) and 819 kN (83.5 ton). In addition, a 6-axle mobile 
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crane with 118 kN (12 ton) axle load was considered. Lane load and dynamic allowance 

factor, as well as a multi-lane reduction factor were included as per the 2006 CHBDC. 

The load factors were based on the 2006 CHBDC for Level 2 Inspection. Live load was 

transversely distributed according to the 2006 CHBDC. Factored moment and shear 

envelope values at the section of interest were Mu = -2628 kNm,  Vu =662.4 kN. Truck 

details are presented in Appendix D. 

 

 
 

Fig. 4-19  Cross-section of the evaluated bridge girder example at 4.67 m from mid-

support (Mu = -2628 kNm,  Vu =662.4 kN). 

 

 

Table 4-2 compares the shear strength predictions for the critical section of the 

bridge girders. The first row of predictions are assuming the amount of transverse 

reinforcement is less than minimum, and therefore Vc is calculated assuming no 

transverse reinforcement and Vs = 0. The second row of predictions was made assuming 

the section had minimum stirrups ρzmin = 0.068% even though the actual stirrups were 

only 62% of this amount.  The third row gives the predicted strength using the 2006 
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CHBDC linear interpolation method. As the actual amount of transverse reinforcement 

(ρz = 0.042%) is a 43% increase from one-third minimum to minimum (ρz = 0.068%), the 

shear strength in row three is equal to the value in row one plus 43% of the difference 

between rows one and two. The prediction given in the third row of the column for 

Response 2000 is the prediction using the actual amount of reinforcement. For the ACI 

318 predictions, the external prestressing was treated as an axial compression. 

 

Table 4-2 Comparison of nominal shear strength predictions (kN) for bridge girder 

example ignoring shear resisted by inclined flexural compression. 

 

 
AASHTO 

2007 

2006 

CHBDC  
ACI 318 Proposed 

Response 

2000 

Assuming no stirrups 1028 787 825 1210 1201 

Assuming min. stirrups 1319 1729 1067 1235 1220 

Using 2006 CHBDC 

Interpolation 
1152 1189 928 1221 1216

(1)
 

 

(1)
 Based on actual amount of stirrups not CHBDC interpolation method. 

 

 

 

The 2006 CHBDC prediction for the section without transverse reinforcement is 787 

kN, which is significantly lower than all other predictions, and the 2006 CHBDC 

prediction for the section with minimum transverse reinforcement is 1729 kN, which is 

significantly higher than all other predictions. There are two reasons for this. First, the 

predicted longitudinal strain εx that influences the shear response is very small for which 

the 2006 CHBDC values of β are conservative for large members without stirrups (see 

Fig. 3-33). Secondly, the 2006 CHBDC uses the same β equation for members with 

transverse reinforcement (Eq. 3-29) except Sxe becomes 300 mm, which results in a 
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significantly higher β value for a large member with transverse reinforcement compared 

to the same member without transverse reinforcement.  The predictions from the 

proposed method are similar to the Response 2000 results in all cases. 

It is interesting to note that the evaluated section was within the hunched portion of 

the girder. As a result, the inclined flexural compression force contributes to the shear 

strength of the bridge. Accounting for this effect results in 222 kN additional shear 

strength using simple hand calculations assuming jd=0.9d, and 547 kN additional shear 

strength using Program Response 2000. The Response 2000 prediction is much higher 

because a considerable portion of the section is in compression and therefore jd is smaller 

and hence the flexural compression is larger. 
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Chapter 5. Comparison with Beam Test Results 
 

5.1.  General 

 

In this chapter, the proposed shear evaluation method is verified by comparing 

predictions of shear strength with the measured shear strengths of beams that failed in 

shear. The shear strengths of the beams were also predicted using the shear design 

provisions of 2007 AASHTO LRFD, 2006 CHBDC, and ACI 318. 

 The minimum amount of transverse reinforcement required in the shear design 

provisions of 2006 CHBDC and 2007 AASHTO LRFD are different. Results from tests 

on beams with a low percentage of transverse reinforcement are used in this chapter to 

show the 2006 CHBDC limit is appropriate for use with the proposed method. The 2006 

CHBDC has an interpolation procedure that can be used to evaluate the shear strength of 

a member with less than the minimum percentage of transverse reinforcement. The 

results from tests on beams with a low percentage of transverse reinforcement are also 

used to show this procedure is appropriate for use with the proposed method. 

5.2.  Members With at Least Minimum Transverse Reinforcement 

 

To verify the proposed method for members with at least minimum transverse 

reinforcement, predictions for 80 reinforced concrete beams and 88 prestressed concrete 

beams with at least minimum transverse reinforcement as specified by 2006 CHBDC 

(
y

c

z
f

f '
06.0≥ρ  in MPa units ) were compared with the measured test results. The 

selected tests were mostly extracted from the shear database collected for National 

Cooperative Highway Research Program (NCHRP) Project 12-61 (Hawkins et al. 2005) 
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and presented by Kim (2004). The shear database includes 160 reinforced concrete beams 

with transverse reinforcement, and 164 prestressed concrete beams with transverse 

reinforcement. A total of 156 of these beams that had a depth of at least 300 mm and 

transverse reinforcement ratio not greater than 0.015 were selected from the database. 

Among the tests selected for comparison are ten prestressed I-girders that were 73 in. 

(1854 mm) deep tested for NCHRP project 12-56 at the University of Illinois (Kim 2004, 

Kuchma et al. 2005) as well as seven prestressed I-girders that were 44 in. (1118 mm) 

tested by the Structural Research Center in Florida (Shahawy and Batchelor, 1996). In 

addition to the results from the database, seven reinforced concrete beams tested by 

Mphonde and Frantz (1985) and five reinforced concrete beams tested by Rahal and Al-

Shaleh (2004) were included. 

To predict the shear strength of the tested beams using the proposed method, 2007 

AASHTO LRFD, and 2006 CHBDC, trial-and-error is needed as the applied moment-to-

applied shear force ratio is known at the critical section. Evaluation of a bridge girder 

using the proposed method does not need trial-and-error as the accompanying bending 

moment is known in this case. Trail-and-error is not needed to predict the shear strength 

of tested beams using ACI 318 as the shear strength is a function of applied moment-to-

applied shear force ratio in the method.  Linear interpolation was used to determine β and 

θ values from the tables provided in the 2007 AASHTO LRFD shear design provisions. 

The loading for most of the tests consisted of one or two concentrated loads. The 

critical shear section for these was assumed to be at a distance d (effective depth) from 

the concentrated load toward the support. For tests with uniformly distributed loading, the 

critical section was assumed to be at distance d from the support or from the location of 
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change in the amount of transverse reinforcement toward mid-span. For beams with 

inclined tendons, the vertical component of the effective prestressing force Vp was added 

to the shear strength.  

Figures 5-1(a) and (b) present the cumulative frequency diagrams of test-to-

predicted shear strength ratios of 80 reinforced concrete (RC) beams and 88 prestressed 

concrete (PC) beams, respectively.  These diagrams show the number of ratios (as a 

portion of the total number) that are equal to or less than the corresponding test-to-

predicted ratio on the horizontal axis. A “perfect model” would have a cumulative 

frequency of zero for a ratio of test-to-predicted less than 1.0, and a cumulative frequency 

of 1.0 for a ratio of test-to-predicted greater than 1.0. The closer the actual result is to 

this, the better is the prediction. 

Figure 5-1(a) shows that the proposed method has the largest (safest) minimum test-

to-predicted shear strength ratio of 0.88 compared to 0.84, 0.72, and 0.80 which are the 

minimum test-to-predicted shear strength ratios associated with ACI 318, 2007 AASHTO 

LRFD, and 2006 CHBDC predictions, respectively. Figure 5-1(a) also shows that about 

20% of predictions of the proposed method, as well as the 2006 CHBDC and AASHTO 

LRFD methods have test-to-predicted ratios below 1.0. However, only about 10% of 

proposed method and 2006 CHBDC test-to-predicted ratios are below 0.95 while about 

15% of test-to-predicted ratios from 2007 AASHTO LRFD are less than 95% of the 

actual test results.   

Beyond test-to-predicted shear strength ratio of 1.0, the proposed method and the 

2007 AASHTO LRFD ratios have the closest cumulative frequency diagram to the 

“perfect” prediction.  ACI 318 predictions are the safest as only 7% of the predicted  
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Fig. 5-1  Cumulative frequency of test-to-predicted ratios of proposed and code methods: 

(a) RC beams, (b) PC beams. 
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values have a test-to-predict shear strength ratio less than 1.0, but the method is generally 

overly conservative compared to the other methods. For example, ACI 318 has a 

maximum test-to-predicted ratio of 2.1, while all other methods have a maximum ratio 

less than about 1.8. The proposed method has a mean value of test-to-predicted shear 

strength ratios of 1.15 and COV of 16.5%. The mean values of test-to-predicted shear 

strength ratios are 1.15, 1.19, and 1.32 for 2007 AASHTO LRFD, 2006 CHBDC, and 

ACI 318, and the corresponding COV of ratios are 18.0%, 17.6%, and 18.7%, 

respectively. 

Figure 5-1(b) compares the cumulative frequency distribution of test-to-predicted 

shear strength for 88 PC beams, and once again, the proposed method gives the closest to 

the “perfect” prediction. For the ratios of less than 1.0, the 2006 CHBDC and the 

proposed method test-to-predicted ratios show almost the same cumulative frequency 

distribution while 2007 AASHTO LRFD predictions are safer. However, only 10% of the 

2006 CHBDC and the proposed method predictions are less than actual test results, which 

is reasonably acceptable given the fact that their minimum actual test-to-predicted shear 

strength ratios are about 0.85. About 50% of the ACI 318 predictions are unsafe (have 

test-to-predicted ratios less than 1.0). The mean values of test-to-predicted shear strength 

ratios are 1.07, 1.27, 1.32, 1.31 for ACI 318, the proposed method, 2007 AASHTO 

LRFD, and CHBDC 2006 predictions. Also, the corresponding COV of test-to-predicted 

shear strength ratios are 24.8%, 16.7%, 16.0%, 15.8%. 

The difference of the proposed method predictions with the 2006 CHBDC and 2007 

AASHTO LRFD predictions could be more significant in real bridge girders than what is 

shown in Figure 5-1 as was shown in the bridge examples in Chapter 4. This is due to the 
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fact that a significant number of the tested reinforced concrete beams had transverse 

reinforcement amount of less than two times the minimum amount specified by 2006 

CHBDC whereas in real practice, reinforced concrete bridge girders often contain 

significantly more transverse reinforcement. There were only 26 RC members among the 

examined tests that had at least two times the minimum amount of transverse 

reinforcement for which the cumulative frequency distribution of test-to-predicted shear 

strength ratios from the proposed method as well as from the code methods are shown in 

Figure 5-1(a). The proposed method predictions are the closest to a “perfect model” 

predictions. The mean of ratios are 1.14, 1.18, 1.23 while COV of ratios are 9.1%, 7.8%, 

8.4% for the proposed method, the 2007 AASHTO LRFD and the 2006 CHBDC, 

respectively.  

Most tested prestressed concrete beams had a very low predicted mid-depth strain 

(almost zero) but many real prestressed concrete bridge girders are expected to 

experience larger strains at mid-depth especially for sections that are close to mid-span. 

The reason is that in the tested beams, failure usually occurs at section close to the 

support whereas in bridge girders failure can also happen close to mid-span at locations 

where amount of transverse reinforcement changes. 

There were only 22 tests which had the predicted mid-depth strain higher than 

0.0001 from the proposed method. The cumulative frequency distribution of test-to-

predicted ratios of those tests is also shown in Figure 5-1(b). Notice that the median of 

the proposed method ratios is 1.24 (cumulative frequency value corresponding to test-to-

predicted ratio of 0.5) while it is 1.34 and 1.36 from the 2007 AASHTO LRFD and the 

2006 CHBDC methods. The mean of test-to-predicted ratios are 1.20, 1.30, and 1.33 for 
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the proposed method, 2007 AASHTO LRFD, and 2006 CHBDC predictions. The 

corresponding COV of ratios are 11.0%, 10.5%, and 9.8%, respectively. 

In summary, the proposed method predictions for the tested beams with at least 

minimum amount of transverse reinforcement are in better agreement with the test results 

compared to the predictions from the 2006 CHBDC shear design procedure, which is the 

same as 2008 AASHTO LRFD shear design procedure. The test-to-predicted shear 

strength ratios from the proposed method are on average about 4% lower than the 

predictions from the 2006 CHBDC method for both RC and PC beams and they are still 

reasonably conservative. As the amount of transverse reinforcement increases to two 

times the minimum amount and more, the proposed method predictions are even better 

and the difference with the predictions from the 2006 CHBDC method becomes more 

significant. In case of PC beams, as the mid-depth predicted strain gets larger, the 

proposed method predictions compare better with the test results. In real bridge girders, 

shear failure can happen close to mid-span at locations where the amount of transverse 

reinforcement changes. At these locations, the mid-depth longitudinal strain is large.  

5.3.  Members Without Transverse Reinforcement 

 

To verify the proposed method for members without transverse reinforcement, 

predictions for 132 reinforced concrete beams and 131 prestressed concrete beams 

without transverse reinforcement were compared with the measured test results. The 

selected tests were extracted from the same database used for members with transverse 

reinforcement (Kim 2004). The reinforced concrete members that were selected had a 

minimum depth of 380 mm, while the prestressed members had a minimum depth of 300 

mm and a minimum effective prestressing stress of 550 MPa. The reinforced concrete 
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members included a number of tests with a depth of about 1000 mm and up to a depth of 

2000 mm. In contrast, the depth of the prestressed members ranged from 300 mm to 

about 460 mm. The shear span-to-depth ratios of all the members ranged from 2.5 to 8.0.  

As in members with minimum transverse reinforcement, the loading for most of the 

tests consisted of one or two concentrated loads, and again, the critical shear section for 

these was assumed to be at a distance d (effective depth) from the concentrated load 

toward the support. For test with uniformly distributed loading, the critical section was 

assumed to be at distance d from the support or from the location of change in transverse 

reinforcement amount toward mid-span. For beams with inclined tendons, the vertical 

component of the effective prestressing force Vp was included in the calculated shear 

strength.  

Fig. 5-2 presents the cumulative frequency distribution of the test-to-predicted shear 

strength ratios.  As explained previously, a “perfect prediction” would have a cumulative 

frequency of zero for test-to-predicted shear strength ratios less than 1.0, and a 

cumulative frequency of 1.0 for test-to-predicted shear strength ratios greater than 1.0. 

Fig. 5-2(a) shows that ACI 318 predictions are unsafe (test-to-predicted shear 

strength ratios less than 1.0) for about 45% of the tests (cumulative frequency of 0.45) on 

reinforced concrete beams without stirrups. This well known issue is because ACI 318 

ignores size effect in members without stirrups.  The proposed method and 2006 CHBDC 

predictions are similar – the predicted shear strengths for about 15% of the tests are 

somewhat unsafe. The 2007 AASHTO LRFD shear strength predictions are a little lower. 

The proposed method has a mean value of test-to-predicted strength of 1.17 and COV of 

17.3%. The mean values of test-to-predicted shear strength are 1.05, 1.26, and 1.16 for  
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Fig. 5-2 Cumulative frequency of test-to-predicted ratios of proposed and code methods: 

(a) 132 reinforced concrete (RC) beams, (b) 131 prestressed concrete (PC) beams. 
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ACI 318, 2007 AASHTO LRFD, and 2006 CHBDC, and the COV are 30.3%, 18.5%, 

and 17.8%, respectively. 

Fig. 5-2(b) indicates that the ACI 318 method gives the best predictions for the 131 

prestressed concrete beams that are not very large. The proposed method does better than 

2006 CHBDC and 2007 AASHTO LRFD. Mean of test-to-predicted shear strength ratios 

is 1.17 from ACI 318, 1.57 from 2007 AASHTO LRFD, 1.37 from the proposed method, 

1.55 from the 2006 CHBDC. The COV of these ratios is 16% from ACI 318, 17% from 

the proposed method, and about 23.1%  and 23.2% from 2007 AASHTO LRFD and the 

2006 CHBDC. 

5.4.  Effect of Important Parameters  

To ensure that the proposed method accurately captures the effect of important 

parameters in shear, the test-to-predicted shear strength ratios presented in Sections 5-2 

and 5-3 were plotted versus a number of parameters and also compared with ratios from 

the codes. 80 plots are presented in Appendix F and only 6 of these are presented here in 

Figures 5-3 and 5-4. Appendix F includes plots for RC and PC beams both with and 

without transverse reinforcement. Five parameters including beam depth, shear stress 

ratio
'cf

v
, shear span-to-depth ratio, longitudinal reinforcement ratio, and effective 

prestressing force were looked at and the results are presented in Appendix F. 

Figure 5-3 shows test-to-predicted shear strength ratios from ACI 318, 2006 

CHBDC and the proposed method versus shear stress ratios (
'cf

v
) for 88 prestressed 

concrete beams with minimum amount of transverse reinforcement.  
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Fig. 5-3 Test-to-predicted ratios of proposed and code methods versus shear stress ratio 

'/ cfv  for 88 prestressed concrete beams with transverse reinforcement. 
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To calculate actual shear stress ratios, shear strength from the actual test results was 

divided by the beam effective shear area ( vwdb ) and concrete compressive strength 'cf . 

As shown in Fig. 5-3(a), ACI 318 is unconservative over the whole range of practical 

shear stress ratio ( 25.0
'
≤

cf

v
), but conservative for higher shear ratios. The reason is that 

ACI 318 assumes that concrete contribution to the shear strength is equal to cracking 

strength of concrete whereas concrete contribution decreases after cracking due to 

increase in strains and therefore reduction in aggregate interlock capacity. 

Figures 5-3(b) and (c) illustrate that both 2006 CHBDC and the proposed method 

reasonably predict shear strength of the tested beams over the entire range of shear stress 

ratios. Notice that as shear stress ratio increases (transverse reinforcement ratio 

increases), the proposed method predictions are  closer to actual test results compared to 

the predictions from the 2006 CHBDC. 

Figure 5-4 presents the variation of test-to-predicted shear strength ratios of the 131 

reinforced concrete beams with beam depth for ACI 318, 2006 CHBDC, and the 

proposed method. As shown in Fig. 5-4(a) and explained before, ACI 318 predictions 

becomes highly unconservative as beam depth increases since it fails to account for beam 

size effect in shear. Both 2006 CHBDC and the proposed method reasonably capture the 

effect of beam size on shear strength of the tested beams as shown in Figures 5-4(b) and 

(c).  
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Fig. 5-4 Test-to-predicted ratios of proposed and code methods versus effective depth for 

132 reinforced concrete beams without transverse reinforcement. 



153 

5.5. Minimum Transverse Reinforcement and Transition Between 

Members With and Without Minimum Transverse Reinforcement 

 

As explained previously in Chapter 4, the 2006 CHBDC minimum transverse 

reinforcement ratio is
y

c

z
f

f '
06.0min =ρ .  This minimum amount is 30% higher than the 

minimum amount specified by the 2007 AASHTO LRFD method. 

Codes normally treat members with less than minimum transverse reinforcement 

as members with none. Based on the experimental study by Angelakos et al. (2001), the 

2006 CHBDC uses a different approach in the evaluation section. According to the 2006 

CHBDC evaluation section, shear strength of lightly reinforced members with less than 

one third of minimum amount of transverse reinforcement is the same as members with 

no transverse reinforcement. The shear strength increases linearly from the shear strength 

of the member with no stirrups to the shear strength of the member with minimum 

stirrups as the transverse reinforcement amount increase from one third of minimum to 

minimum.  

To investigate if the 2006 CHBDC minimum transverse reinforcement ratio (ρzmin) 

may be adopted in the proposed method and if the 2006 CHBDC linear approach for 

members with less than minimum transverse reinforcement is appropriate for use with the 

proposed method, predictions of proposed method were compared with reinforced 

concrete beam test results containing transverse reinforcement ratio ranging from 

0.49ρzmin to 1.8ρzmin. 76 beams were selected from the shear database (Kim 2004) and 9 

reinforced concrete beams tested by Rahal and Al-Shaleh (2004) were included. 50 of the 

selected beams contained more than the 2006 CHBDC minimum transverse 
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reinforcement and the remaining 26 tests contained less than minimum transverse 

reinforcement.  

Figure 5-5 examines the variation of test-to-predicted shear strength ratios from the 

proposed method with transverse reinforcement amount as a ratio of minimum transverse 

reinforcement specified by the 2006 CHBDC. In Fig. 5-5(a) members with less than 

minimum transverse reinforcement is treated as members without transverse 

reinforcement, while in Fig. 5-5(b) the linear interpolation approach permitted by 2006 

CHBDC is used for members with less than minimum transverse reinforcement. For 

members with more than minimum transverse reinforcement, the predictions in Figs. 5-

5(a) and 5-5(b) are the same. For those members, 12 tests out of 50 tests have ratios of 

less than 1.0 for which the predictions are unsafe; however, only 5 of them (10%) have 

ratios of less than 0.95. This is also consistent with predictions from the proposed method 

for the 80 reinforced concrete beams in Fig. 5-1(a) meaning that the safety level of the 

predictions would not change significantly as the transverse reinforcement amount 

decreases to the 2006 CHBDC minimum transverse reinforcement ratio. As a result, the 

2006 CHBD minimum transverse reinforcement is adopted in the proposed method. 

In Figs. 5-5(a) and 5-5(b) members with less than minimum amount of transverse 

reinforcement have ρz/ρmin<1.0. Figure 5-5(a) shows treating these members as members 

without stirrups leads to conservative estimates of shear strength for members with 

transverse reinforcement amount of less but close to minimum amount. In Fig. 5-5(b), in 

which the linear interpolation approach is used, a more uniform trend is observed. Notice 

that the overall consistency of the predictions with the actual test results has been 

improved considerably. Seven predictions out of 26 predictions (28%) are unsafe but  
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Fig. 5-5 Test-to-predicted shear strength ratios for 76 lightly reinforced tested beams: (a) 

assuming no stirrups, (b) using linear interpolation approach, for members with less than 

minimum stirrups. 
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only two predictions (7.7%) are less than 95% of the actual test results. This is again 

consistent with the safety level of the proposed method predictions for the 80 reinforced 

concrete tested beams with more than minimum transverse reinforcement. 
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Chapter 6. Refined 2006 CHBDC Method for Shear Design 
 

6.1.  General 

 

The 2006 CHBDC shear design provisions include an equation for mid-depth 

longitudinal strain εx that is simplified and conservative; however, the code permits the 

use of more accurate procedures to determine mid-depth longitudinal strain. The 

proposed method for shear strength evaluation presented in Chapters 3 and 4 includes a 

more accurate equation for mid-depth longitudinal strain that is not a function of applied 

shear force. In this chapter a similar equation for mid-depth longitudinal strain for shear 

design, which is a function of applied shear force, is presented. It is investigated whether 

the more accurate equation is appropriate for use in shear design using the 2006 CHBDC 

shear design provisions. The predicted longitudinal strains in bridge girders are compared 

with strains determined using Response 2000. In addition, predictions of shear strength 

from the 2006 CHBDC with the proposed equation for mid-depth longitudinal strain εx 

are compared with available test results. 

 

6.2.  Refined CHBDC Approach for Members With at Least Minimum 

Transverse Reinforcement 

  

Some of the refinements introduced in Chapter 3 for the proposed method namely the 

assumption of nv acts over a depth of dnv that can be different from effective shear depth 

dv, accounting for tension stiffening effect in the tension chord, and how to include the 

effect of web nonprestressed and prestressed reinforcement can well be implemented in εx 

equation of the 2006 CHBDC without any changes. However, the proposed Nv equation 

used to derive εx equation in Chapter 4 is for evaluation problems and thus is a function 
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of transverse reinforcement amount. For design, εx equation and thus Nv equation should 

be a function of applied shear force to avoid iteration.  

As explained in Chapter 3, the 2006 CHBDC uses the approximation of 2v for axial 

compression stress needed to transfer shear along the cracked depth nv, which is too 

conservative. In contrast, 2007 AASHTO LRFD uses a more accurate approximation 

vcotθ. Figure 6-1 compares the 2006 CHBDC and 2007 AASHTO LRFD predictions of 

nv with MCFT for varying concrete contribution and angle of inclination of 29 and 36 

deg, which are the corresponding angles to εx = 0 and εx = 0.001 in the 2006 CHBDC 

method, respectively. As illustrated, 2007 AASHTO LRFD approximate equation for nv 

is more accurate; thus is used to develop a refined equation for εx.  

Using vcotθ  to approximate nv in the εx equation requires trial-and-error in design 

since θ is not initially known. To overcome this problem, as shown in Figure 6-2, cotθ  

may be replaced with a linear function of θ  given below for the range of θs between 28 

and 40 deg, which is the suggested range of θ  by the 2006 CHBDC equation (Eq. 3-30).  

[6-1] θθ 056.04.3cot −=  

Substituting for cotθ  from Eq. [6-1] and θ  from Eq. [3-30],  vcotθ can be approximated 

as: 

[6-2] xv vvvn εθ 3928.1cot −==  

Using the same procedure as used to derive Eq. [4-18] but using the nv equation above 

results in the following εx equation for design. 

[6-3] 
vnvpwpppswss

pwppptfcvnv

x
dVdAAEAAE

AAfAfdVdjdM

/196)]()25.0([2

)('/9.0/
2 ++++

+−−+
=

λ

λα
ε  
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Fig. 6-1 Comparison of code predicted axial compression stresses nv with MCFT for 

different concrete contributions to shear stress. 
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Fig. 6-2  Linear approximation of cotθ.    
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where V is the applied shear force. The more general form of Eq. [6-2] for m layers of 

web nonprestressed reinforcement and n layers of web prestressed reinforcement is: 

 

[6-4] 

vnv

n

i
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m

j

swjjss

n

i
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x

dVdAAEAAE

AAfAfdVdjdM

/196)]()([2

)('/9.0/

1

2

1

2

1

++++

+−−+
=

∑∑

∑

==

=

λλ

λα
ε  

in which Aswj is total area of the j 
th
 layer of web nonprestressed reinforcement, Apwi is 

total area of the  i 
th
 layer of web prestressed reinforcement. λj and λpi are the ratios of 

dd pwi /  and ddwj /  in which dpwi and dwj are the distances from the centroids of the i 
th
 

layer of web prestressed reinforcement and the j 
th
 layer of web nonprestressed 

reinforcement to the flexural compression face, respectively.  

6.3.  Bridge Examples 

 

Figures 6-3 to 6-5 compare Eq. [6-2] and the 2006 CHBDC equation for εx with 

Response 2000 predictions for the same three bridge girders that were evaluated with the 

proposed evaluation method in Chapter 4. Comparisons are made at yielding of 

transverse reinforcement stage since, as shown in Chapter 4, the 2006 CHBDC 

predictions of shear strength is close to that stage. In other words, shear strength at 

yielding of transverse reinforcement given by Response 2000 is used in Eq. [6-2] and the 

εx equation of 2006 CHBDC and the results are compared with Response 2000 

predictions of mid-depth strain at yielding of transverse reinforcement.  
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Fig. 6-3  Comparison of I-girder predicted mid-depth strain along the bridge span. 

 

 

As shown in Figures 6-3 to 6-5, the refined εx equation is closer to the Response 

predictions in all cases. The refined equation improves the predictions of strains up to 

40%, 35%, and 15% for I-girder, box-girder, and channel-girder bridges compared to the 

2006 CHBDC εx equation, respectively. Figure 6-4 also includes the comparison of 

Response 2000 predictions of flexural tension reinforcement strain with those from the 

2006 CHBDC and the refined εx equation for the box-girder. Note that the flexural 

tension reinforcement strain is two times the mid-depth strain in the 2006 CHBDC 

method. The refined εx equation for mid-depth strain is also half the refined εx equation 

for flexural tension reinforcement strain.  
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Fig. 6-4 Comparison of box-girder predicted (a) mid-depth strain (b) flexural tension 

reinforcement strain along the bridge span. 
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Fig. 6-5 Comparison of channel-girder predicted mid-depth strain along the bridge span. 

 

 

Notice that the refined equation adequately estimates the flexural tension reinforcement 

strain compared to the Response 2000 results (Fig. 6-4b). The refined equation prediction 

of mid-depth strains shown in Fig. 6-4(a) is not as good due to the approximation of mid-

depth strain is half the flexural tension reinforcement strain.  

6.4.  Comparison with Experimental Results 

 

To verify if the refined εx equation can be used in the 2006 CHBDC shear design 

procedure, the shear strength predictions of the refined 2006 CHBDC method, in which 

the original εx equation is replaced with Eq. [6-2], are compared with experimental results 

from the 80 reinforced concrete beams and 88 prestressed concrete beams. The results are 

also compared with the shear strength predictions from the 2006 CHBDC method.  



164 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.6 0.8 1 1.2 1.4 1.6 1.8

Test-to-predicted shear strength ratio

C
u
m
u
la
ti
v
e
 f
re
q
u
e
n
c
y

(a)

                    Refind CHBDC 2006

                    CHBDC 2006

                    

80 RC beams

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.6 0.8 1 1.2 1.4 1.6 1.8

Test-to-predicted shear strength ratio

C
u
m
u
la
ti
v
e
 f
re
q
u
e
n
c
y

(b)

88 PC beams

                    Refined CHBDC 2006

                    CHBDC 2006

               

 
Fig. 6-6  Cumulative frequency of test-to-predicted ratios of refined CHBDC 2006 and 

CHBDC 2006 methods: (a) 80 RC beams, (b) 88 PC beams, with stirrups. 
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Note that the same experimental results were also used to verify the proposed evaluation 

method in Chapter 5. 

Figure 6-6 compares the cumulative frequency diagram of the test-to-predicted shear 

strength ratios from the refined 2006 CHBDC method with the one from the 2006 

CHBDC method. Fig. 6-6(a) shows that the refined εx equation does not have a 

significant effect on the predictions for reinforced concrete beams. As also explained in 

Chapter 5, the reason is there were not many tested beams with transverse reinforcement 

amount more than twice the minim amount specified by the 2006 CHBDC while bridge 

girders generally contain higher amount of transverse reinforcement. Note that more 

amount of reinforcement results in higher shear strength thus higher longitudinal strain 

due to shear. As a result, the higher the transverse reinforcement, the more significant the 

influence of the proposed refined εx equation on the predicted shear strength.  

As shown in Fig. 6-6(b), the refined εx equation does improve the 2006 CHBDC 

predictions for prestressed members. Using the refined εx equation in the 2006 CHBDC 

shear design procedure improves the average test-to-code predicted shear strength ratio 

from 1.31 to 1.26 while the COV of ratios remains about the same. Although Figure 6-

6(b) shows that refined εx equation increases the cumulative frequency values of the test-

to-predicted ratios of less than 1.00, 14% of the refined method predictions are unsafe 

and only less than 5% of the ratios are below 0.90. This is still reasonable and even safer 

than the 2006 CHBDC prediction for the 80 RC members shown in Figure 6-6(a).  

To more accurately predict the longitudinal strain of members with no stirrups in the 

2006 CHBDC method, one can replace the simplified equation of VN v 2=  with the one 

from MCFT θ2cot2VN v =  in the 2006 CHBDC equation for εx. This was done to 
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predict shear strength of the 132 reinforced concrete tested beams with no stirrups, which 

were also used to verify the proposed evaluation method in Chapter 5.  

The cumulative frequency diagram of the test-to-predicted shear strength ratios from 

the refined 2006 CHBDC method is shown together with the one from the original 2006 

CHBDC in Figure 6-7.  
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Fig. 6-7  Cumulative frequency of test-to-predicted ratios of refined CHBDC 2006 and 

CHBDC 2006 methods for 132 RC beams without stirrups. 

 

 

As shown, the refined εx equation increases the number of unsafe predictions from 18% 

to 32% of the tested beams. It is due to the reason that the 2006 CHBDC uses the mid-

depth longitudinal strain to predict the shear strength of a beam while Response 2000 

shows that failure usually occurs at locations closer to flexural tension chord (see Fig. 4-

10).  The 2006 CHBDC uses a simplified equation for axial compression which is overly 
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conservative for members without stirrups and this compensates for the unconservative 

approach of using the mid-depth longitudinal strain in the shear analysis. Consequently, it 

is not recommended to use a more accurate εx in the 2006 CHBDC shear design 

provisions for members with no stirrups.  
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Chapter 7. Literature Review: Squat Shear Walls 

7.1.  Shear Strength of Squat Shear Walls 

 

Benjamin and Williams (1953-1958) studied the behaviour of reinforced concrete squat 

walls at the Stanford University. In their experimental program, they tested walls 

surrounded by concrete frames and applied a monotonic concentrated lateral load at the 

tension side of the wall (top of tensile column). Some of their findings were size effect 

was not significant, vertical reinforcement had more influence on shear strength than 

horizontal reinforcement, and shear strength was considerably higher for the walls with 

smaller height-to-length ratios. Their last version of proposed empirical equation to 

estimate shear strength of squat shear walls is: 

[ 7-1] PC

C

P
Vu 2.2

1.0
+=  

where: 

[ 7-2] 


















+=
2

9.115'
H

L
fAC cs  

[ 7-3] tLP yρσ=  

in which L is wall length, H is wall height, ρ is distributed reinforcement ratio which is 

the same for both vertical and horizontal directions, t is wall thickness, As is compression 

column total reinforcement area, yσ  is wall reinforcement yield stress, P is wall panel 

strength, and C is compression column strength. The limitations they identified for their 

equations are as follows: %5.1≤ρ , 5242 ≤≤ yσ  ksi, 3/9.0 ≤≤ HL , 26.3/ ≤CP . 

Later an extension of Benjamin and William’s research was conducted at the 

Massachusetts Institute of Technology (MIT) whose results were reported by Antebi et 
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al. (1960). The primary aim of the program was to predict the shear strength of low rise 

walls under blast loading. Once again, the walls were surrounded by concrete frames. The 

majority of walls were tested under blast loading while a few of them were tested under 

monotonic static loading.  

Using results of the tests done at Stanford University and MIT, Antebi et al. (1960) 

proposed two sets of empirical equations to predict the shear strength of low rise walls 

under static and dynamic (blast) loading. Based on the proposed equations, shear strength 

of low rise walls was a function of height-to-length ratio, frame reinforcement area and 

yield stress, and amount of equal vertical and horizontal distributed reinforcement in the 

wall. They also identified limitations in their method; however, these were less restricting 

than those identified by Benjamin and Williams. 

dePaiva and Seiss (1965) conducted a series of tests of simply supported deep beams 

with applied concentrated load at the top. They found that in deep beams, stirrups would 

not engage appreciably in shear force transfer since load was directly transferred to the 

supports by concrete compression struts (arch action). These results on deep beams led to 

a number of recommendations in the 1960s for shear strength of shear walls. For 

example, Uniform Building Code (UBC 1967) shear wall provisions considered no steel 

contribution in walls with height-to-length ratio equal to or less than 1.0 and limited total 

shear stress of walls with height-to-length ratio equal to or greater than 2.0 to 

'10 cu fv ≤  in psi units. On the other hand, it considered concrete contribution of 

'4.5 cc fv =   in psi units for walls with height-to-length ratio equal to or less than 1.0 

and '2 cc fv =  in psi units (as in shallow beams) for walls with height-to-length ratio of 

equal to or greater than 2.7. Linear interpolation was used for intermediate values.  
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Additional tests on deep beams by Crist (1966) and Leonhardt and Walther (1966) 

showed that arch action (a direct strut from the load to the support) depends upon how the 

load is applied. In deep beams, the load is usually applied on the compression face which 

results in significant arch action.  When a deep beam is loaded indirectly using a 

transverse beam, the arch action is greatly reduced and the quantity of stirrups becomes 

very important.  

In 1971, shear wall provisions first appeared in ACI 318. The background to these 

provisions was presented by Cardenas et al. (1973). Steel contribution in shear was 

developed based on truss analogy which resulted in the same formula as for steel 

contribution in shallow beams. Concrete contribution was developed to be the lesser of 

shear forces that resulted in web cracking and flexural shear cracking. Below is ACI 318-

71 shear provisions for shear walls in psi units. 
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[ 7-7] yhs fv ρ=  

[ 7-8] '10 csc fvv ≤+  

[ 7-9] hdvvV scu )( +=  

in which Vu is ultimate shear strength, h is wall thickness, lw is wall length, ρh is 

horizontal reinforcement ratio, d is distance from extreme compression fiber to centroid 
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of concentrated flexural reinforcement, and Ag is wall cross-section gross area. The above 

equations are still in the current ACI non-seismic shear design provisions for walls. 

Equation [7-4] is the shear stress causing web cracking, which almost always 

governed for low rise walls, while Eq. [7-5] is shear stress causing flexural shear 

cracking. In ACI 318-71, the concrete contribution to shear strength in walls is not taken 

less than the concrete contribution in shallow beams as given by Eq. [7-6]. Total shear 

stress was limited to avoid diagonal crushing of concrete (Eq. 7-8). Cardenas et al. (1973) 

compared the predictions from ACI 318-71 with previous test data and found that ACI 

318-71 predictions were safe and satisfactory. 

Barda (1972) conducted tests on eight squat shear walls which had flanges and top 

concrete beam to transfer the load to the top edged of the wall. Six walls were tested 

under cyclic loding while the remaining two were subjected to monotonic loading. Barda 

investigated the effect of wall aspect ratio, flexural reinforcement, horizontal and vertical 

distributed reinforcement ratios on shear strength of squat walls and proposed the 

following equation: 

[ 7-10] hdffV yncu )95.0'4.8( ρ+=     (in psi units) 

where h is wall thickness, and ρn is vertical reinforcement ratio. Later Barda et al. (1977) 

proposed another equation that accounted for the influence of wall aspect ratio and axial 

force. 
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where hw is wall height, lw is wall length and Nu is wall axial compression force. 
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Park and Paulay (1975) and Paulay et al. (1982), based on walls tested at the 

University of Canterbury, reported that ductile behaviour of squat shear walls were 

achievable if horizontal shear reinforcement was sufficient to avoid shear failure at 

flexural capacity level. They also proposed no reliance on concrete contribution to shear 

strength of squat shear walls should be made if ductile behaviour was desired. From their 

experimental program, Paulay et al. (1982) concluded that diagonal bars at the base of 

squat shear walls avoided sliding shear failure under load reversals thus improved the 

ductile behaviour of squat shear walls. 

Hernandez (1980) tested 23 walls all with top slab and some with intermediate slabs 

under cyclic loading. He investigated the effect of wall aspect ratio, horizontal and 

vertical reinforcement ratios, concrete compressive strength, axial load, and boundary 

conditions. Based on the results, Hernandez proposed the following equations to 

determine shear strength of walls. 
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[ 7-14] )( ys fAV ρ=   

where σ is wall compressive stress (axial force/ gross concrete area), A is area of wall 

cross-section, ρ is vertical reinforcement ratio if 1/ ≤ww lh  or horizontal reinforcement 

ratio otherwise. In these equations, all forces are in kgf, stresses are in kgf/cm
2
, and 

lengths are in cm. 
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Seven rectangular squat walls with aspect ratio of 1.0 were tested by Cardenas et al. 

(1980). The load was transferred to the top edge of the wall by means of a stiff beam at 

the top. All walls were subjected to monotonic load except one, which was subjected to 

cyclic loading. They concluded that ACI318-77 design provisions for squat shear walls 

were reasonably safe for monotonic loading as well as cyclic loading. Furthermore, both 

horizontal and vertical reinforcement were found to contribute to shear strength of the 

tested walls.  

Maier and Thürlimann (1985) tested ten flanged squat shear walls with height-to-

length ratio of 1.0 and concluded horizontal reinforcement influence on shear resistance 

of squat walls was negligible, and cyclic loading did not reduce shear capacity of tested 

walls considerably. The dominant mode of failure in their test was crushing of concrete at 

the base.  

Between 1985 and 1994, Saatciuglu together with other researchers tested 8 squat 

shear walls under cyclic loading to investigate the effect of vertical and horizontal 

reinforcement, aspect ratio, and reinforcement detailing at the base. All walls had top 

rigid beams and did not have flanges. The results were presented in a number of 

publications including Wirandianta (1985), Wirandianta and Saatciuglu (1986), Pielette 

(1987), Wasiewicz (1988), Mohammadi-Doostdar (1994). They concluded that shear 

strength of squat shear walls were mostly influenced by the wall aspect ratio and base 

sliding due to shear was more critical for squat walls with height-to-length ratio of 0.25. 

They also concluded that special detailing at the base could improve shear sliding 

behaviour that would result in a more ductile behaviour of walls. 
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Wirandianta (1985) proposed a modification to ACI 318-83 special provisions for 

earthquake (which is still the same in ACI 318-05) to explicitly account for aspect ratio 

when determining concrete contribution to shear strength of walls. His proposed equation 

was: 

[ 7-15] 'ccc fv α=    (in psi units) 

where 
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Wood (1990) compared ACI 318 shear strength predictions for 143 previously tested 

squat shear walls with test results. She concluded that ACI 318 predictions were safe for 

walls with horizontal reinforcement ratio of 1.2≤yh fρ  MPa, which could be as little as 

1.5 times the minimum reinforcement, while they became unsafe for other walls. She also 

concluded that modified truss analogy which assumes a constant concrete contribution in 

addition to steel contribution corresponding to a constant angle i.e. 45 degrees was not 

consistent with test results. She showed that shear strength of tested walls was 

considerably less sensitive to the amount of horizontal reinforcement compared to the 

predictions from the modified truss analogy. Based on experimental data and shear 

friction model, Wood proposed a lower-bound semi-empirical equation for shear strength 

prediction of squat walls: 

[ 7-17] 
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where Avf is shear reinforcement area crossing the shear plane at the base, and Acv is wall 

cross-section gross area. 
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Lefas et al. (1990) and Lefas and Kotsovos (1990) conducted a series of testes on 

seventeen reinforced concrete squat walls with height-to-length ratio of 1.0 and 2.0 under 

cyclic and monotonic loading. Walls included different amount of concentrated flexural 

reinforcement as well as vertical and horizontal distributed reinforcement and load was 

transferred to the walls by means of a rigid beam built on each wall top edge. From their 

experimental program, they concluded that dominant failure mode was vertical tension 

splitting of the concrete compression zone near the wall compression face at the base. 

Vertical reinforcement did not have a significant effect.  

26 squat shear walls tested under cyclic loading were tested by Hidalgo et al. (1998, 

2002). They evaluated the method proposed by Wood (1990) as well as ACI 318-95 

provisions by comparing the predictions with the results they obtained. Their study 

showed that horizontal reinforcement had insignificant influence on the wall shear 

resistance. ACI predictions were conservative and satisfactory, but Wood’s method 

predictions were slightly better. 

Gulec et al. (2008) compared test results of 120 rectangular squat shear walls reported 

in the literature with predictions from Barda (1977) method, Wood (1990) method, and 

ACI 318-05 shear design provisions. The walls had minimum thickness of 51 mm, no 

diagonal reinforcement or additional reinforcement to control sliding shear, and height-

to-length ratio of less than 2.0. It was concluded that sliding of the wall base was the 

dominant failure mode in the tested walls. The scatter in shear strength test-to-predicted 

ratios was substantial for all methods and Wood (1990) predictions were the best 

compared to experimental results. While ACI 318 predictions were conservative, Barda 

(1977) method predictions consistently overestimated the shear capacity of walls. It was 
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also seen that most of the conservative predictions of shear strength were associated with 

lightly reinforced walls. 

7.2.  Summary of Observed Behaviour  

In all available test results reviewed in the literature, load was introduced at the top edge 

of the wall by a rigid beam. As a result, it is not surprising that many researches such as 

Benjamin and Williams (1953-1958), Barda (1972), Lefas et al. (1990), Wood (1990), 

and Hidalgo et al. (1998, 2002) have found the effect of horizontal reinforcement to be 

insignificant in shear and others such as Gulec et al. (2008) identified that base sliding 

was the dominant failure mode. If the top beam had been removed in the tests and load 

was distributed at top of the wall, it could have resulted in a larger contribution of 

horizontal reinforcement, as well as failure at lower load levels due to diagonal tension 

rather than at the base at higher load levels. 

Although such a rigid beam increases the wall shear strength mostly against diagonal 

tension failure, such rigidity is not always available in real structures especially in the 

case of flexible diaphragms. The effect of such beams is investigated in the next chapter. 

In contrast to diagonal tension failure mode, base sliding failure mode is not sensitive 

to how the load is applied at top of the wall. Based on comparisons made with 

experimental results of tested walls which generally had a top loading beam, current ACI 

code provisions have been found to conservatively capture this failure mode by many 

researchers such as Cardenas et al. (1980), Hidalgo et al. (1998, 2002), and (Gulec et al. 

2008); thus should also be appropriate for walls without a top loading beam and with 

distributed load at top. 
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The most common shear failure modes of squat shear walls reported in the literature 

are diagonal tension failure mode, diagonal concrete crushing failure mode, and base 

sliding shear failure mode. These failure modes, which are explained in Paulay et al. 

(1982), are shown in Figure 7-1. 

Diagonal tension failure mode (Fig. 7-1a) occurs when there is an insufficient amount 

of horizontal reinforcement to balance the diagonal compression force that does not go 

directly to the base. The diagonal tension failure plane that will develop is shown in 

Figure 7-1(a).  

When there is sufficient distributed reinforcement to transfer shear, squat shear walls 

may fail in diagonal crushing of concrete which mostly happens near the compression 

face of wall base as shown in Figure 7-1(b). This usually happens in walls with large 

horizontal reinforcement ratio and large flexural capacity. Diagonal concrete crushing 

failure is undesirable since it is a sudden and brittle failure mode. 

Third failure mode which is called base sliding failure mode is caused by cyclic 

loading. As a consequence of cyclic loading, compression face of the wall which had 

been in significant tension when the load was reversed, is cracked and thus the wall slides 

along the base (Fig. 7-1c) when it experiences high shear force and a significant number 

of load cycles.  

The last two failure modes are controlled in the codes by limiting the total shear 

stress. Some codes suggest using diagonal reinforcement at the base- foundation interface 

to avoid base sliding failure. 
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(a) Diagonal tension failure 

 
(b) Concrete crushing failure 

 
(c) Base sliding shear failure 

 

 

Fig. 7-1 Squat walls shear failure modes. 
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7.3.  Recent Code Approaches 

7.3.1. ACI 318-05 

The non-seismic provisions for the shear strength of squat walls in ACI 318 are the same 

approach as in ACI 318-71 given by Eqs. [7-4] to [7-9]. It also requires the same 

minimum amount of distributed vertical reinforcement as in the 1971 edition: 

[ 7-18] 0025.0)0025.0)(5.2(5.00025.0 ≥−−+= h

w

w

n
l

h
ρρ  

where ρn is distributed vertical reinforcement ratio and ρh is distributed horizontal 

reinforcement ratio.  ρn  need not to be taken greater than ρh. 

In the additional requirements for seismic design, ACI 318 provides the following 

equation for shear strength of squat shear walls. 

[ 7-19] )'( yhcccvn ffAV ρα +=     (in psi units) 

where Acv is the total area of wall cross-section, αc=3.0 for 5.1/ ≤ww lh , and αc=2.0 for 

0.2/ ≥ww lh . For intermediate values, linear interpolation is used. Based on ACI 318, 

vertical reinforcement ratio may not be less than horizontal reinforcement ratio. 

To avoid concrete crushing, the total shear force is limited to '8 ccv fA  for all wall 

piers sharing a common lateral force and to '10 ccv fA for individual wall piers. A wall 

pier refers to a vertical wall segment between two openings. 

7.3.2. New Zealand Standards (NZS 3101-95) 

According to NZS 3101, the shear strength of squat shear walls is:  

[ 7-20] dbvvdvbVVV wscwsc )( +==+=  
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[ 7-22] yhs fv ρ=  

where N* is axial force, Ag is gross area of the wall cross-section, bw is wall thickness, 

and effective depth d is equal to 0.8 lw in which lw is wall length. Moreover, the total 

shear stress v is limited to the lesser of '2.0 cf , '1.1 cf , and 9 MPa. 

In the seismic provisions, shear stress provided by concrete is given by  
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where µ is ductility factor and limited to 3.0 for squat shear walls. Concrete crushing is 

avoided by:          

[ 7-25] ')15.0( 0
c

w fv +≤
µ

φ
      (in MPa units) 

where w0φ is overstrength factor. 

7.3.3. 2004 CSA A23.3 

In the 2004 CSA A23.3, the same equation as the one given for beams is used to 

determine shear strength of squat shear walls: 

[ 7-26] θρβ cot' vwyhvwc dbfdbfV +=   

where shear length dv = 0.8 lw in which lw is wall length, concrete contribution factor β = 

0, bw is wall thickness, ρh is horizontal reinforcement ratio, and angle of principal 

compression θ  can be freely chosen between 30 and 45 deg. The chosen angle is then 
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used to determine the amount of distributed vertical reinforcement from the following 

equation. 

[ 7-27] 
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where ρh is the horizontal reinforcement ratio, Ps is axial load, and Ag is wall gross cross-

section area. To avoid concrete crushing in the 2004 CSA A23.3, shear strength is limited 

to: 

[ 7-28] vwc dbfV '15.0≤  

According to the 2004 CSA A23.3, distributed vertical reinforcement needed for 

shear given by Eq. [7-27] does not contribute to the wall flexural capacity. As a result, 

additional vertical reinforcement for flexure must be provided in addition to the 

distributed vertical reinforcement needed for shear. 
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Chapter 8. Comparison of NLFE Predictions with 
Experimental Results of Squat Shear 
Walls 

8.1.  General 

 

In this chapter, experimental results of three squat shear wall tests reported in the 

literature are compared with nonlinear finite element predictions. The walls had different 

aspect ratios and different reported failure modes. 

A brief introduction to the nonlinear finite element program VecTor 2 used in this 

study is given. The finite element program predicted behaviour for the squat shear walls 

is then presented. The implementation of the program is verified by comparing the finite 

element predictions with the wall test results. In addition, the influence of the top loading 

beam on the wall strength is studied. This is done by presenting the finite element results 

for the same three walls in which the top loading beam was removed and the load was 

distributed along the wall top edge.  

8.2.  Finite Element Program 

 

Program VecTor2 developed by Wong and Vecchio (2002) at the University of Toronto 

was used for nonlinear finite element analysis. The program performs nonlinear finite 

element analysis of concrete structures and explicitly accounts for interaction of moment 

and shear. Although VecTor 2 has simple elements and employs simple numerical 

techniques, it uses the state of the art material models to relate biaxial element strains to 

biaxial element stresses. In-plane elements of uniform stress and strain field are used in 

the program.  
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Two models for cracked reinforced concrete subjected to biaxial strains have been 

implemented in VecTor 2. One of the models is MCFT, which was explained in Chapter 

3, and the other one is Disturbed Stress Field Model DSFM (Vecchio 2000). DSFM is 

conceptually similar to MCFT but it allows different orientations for the principal stress 

and strain directions. DSFM determines the difference between principal stress and 

principal strain orientations by calculating additional strains caused by crack slip. MCFT 

and DSFM predictions of shear strength are basically the same for ordinary structures. 

DSFM becomes more accurate for structural concrete that is heavily or very lightly 

reinforced in the orthogonal directions (Vecchio 2000).  

Palermo and Vecchio (2004) verified VecTor 2 for shear walls. They compared the 

program predictions for four slender walls and two squat walls with the experimental 

results. All walls were subjected to cyclic loadings. The walls included two slender 

barbell shaped walls with height-to-length ratio of 2.4 (height = 4570 mm, width = 1910 

mm) tested by Portland Cement Association (Oesterle et al. 1976),  two rectangular 

slender walls with concealed end columns and height-to-length ratio of 2.0 (height = 

1200 mm, length= 600 mm) tested by Pilakoutas and Elnashai (1995), and two flanged 

squat walls with height-to-length ratios of   0.70 and 0.67 (height = 2020 mm, width = 

2885 mm and 3045 mm) tested at the University of Toronto (Palermo and Vecchio, 

2002). The finite element predictions were in good agreement with the test results, As an 

example, comparison of the predicted load displacement curve with the test results for 

one of the squat walls (height = 2020 mm, width = 2885 mm) is shown in Figure 8-1. 
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Fig. 8-1 Load-deformation responses of wall DP1: (a) observed, (b) calculated (Palermo 

and Vecchio, 2004). 
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8.3.  Comparison with Wall Test Results 

 

The squat shear walls that were previously tested generally had a rigid loading beam at 

the top. While such a rigid beam allows redistribution of shear force at top and therefore 

can significantly increase the shear resistance of a wall, it is not guaranteed that such a 

top rigidity or strength is available in real squat walls. Codes, however, should provide 

lower-bound predictions, which are not unconservative in any cases, thus for shear design 

purposes it is reasonable to ignore any top rigidity in squat walls.  

The main purpose of this section is to show how the top loading beam in the tested 

walls may have influenced the shear capacity of walls and what type of failure is mostly 

affected by such a beam. Experimental results of three previously tested walls are 

compared with the finite element predictions for the walls with and without the top 

loading beam. In the walls without the top beam, the load is uniformly applied along the 

top of the wall.  

Wall details as well as material properties are presented in Figure 8-2. The walls were 

tested by Wiradinata and Saatcioglu (1986), Kuang and Ho (2008), and                      

Lefas et al. (1990) and had height-to-length ratios of 0.5, 1.0, and 2.0, respectively. The 

first two walls were tested under cyclic loading while the third one was tested under 

monotonic loading. They were selected since they had different reported failure modes 

i.e. diagonal tension failure (yielding of horizontal reinforcement), flexural failure 

(yielding of vertical reinforcement), and diagonal crushing of concrete. In the finite 

element analysis, all walls were monotonically loaded and shear force was applied in the 

left-to-right direction. The results presented hereafter are separated based on the wall 

reported failure modes. 
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Geometry and Material Properties 
 

Researcher 

Name 
Specimen 

hw 
(mm) 

lw 
(mm) 

lc 
(mm) 

t 

(mm) 

hb 
(mm) 

wb 

(mm) 
ρv 
(%) 

ρh 
(%) 

ρl 

(%) 

fvy 
(MPa) 

fhy 
(MPa) 

'cf  

(MPa) 

Wiradinata, 

Saatcioglu 

(1986) 

Wall 1 1000 2000 - 100 300 500 0.80 0.25 - 435 425 25.0 

Kuang, Ho 

(2008) 
U1.0 1200 1200 - 100 300 300 0.92 1.05 - 520 520 30.4 

Lefas et al. 

(1990) 
SW26 1300 650 140 65 150 200 2.5 0.40 3.3 470 520 25.0 

 

 

Fig. 8-2  Details of the three previously tested walls in the literature examined to compare 

experimental results with finite element predictions. 
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8.3.1. Diagonal Tension Failure  

This wall tested by Wiradinata and Saatcioglu (1986) had a height-to-length ratio of 0.5. 

Figure 8-3 presents the load-displacement curves for the wall from the experimental 

results (dotted line) as well as finite element predictions (solid line). Finite element 

predictions are in reasonably good agreement with the experimental results. Sectional 

analysis for pure flexure assuming plane sections remain plane (plane section analysis) 

predicts the flexural capacity of the wall is at V= 544 kN. Actual wall maximum strength 

was reached at V=575 kN and the reported failure mode was diagonal tension. In 

comparison, finite element prediction of wall maximum strength is V= 527 kN.  
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Fig. 8-3 Comparison of experimental load-top displacement curve with finite element 

prediction for wall tested by Wiradinata and Saatcioglu (1986). 

 

 

 

As was mentioned above, wall strength from test results is higher than those predicted 

by the plane section analysis for pure flexure and finite element analysis. The reason 
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might be the strain hardening in the vertical reinforcement. As the steel strain hardening 

information was not reported, finite element analysis as well as plane section analysis 

were done assuming no strain hardening for steel.  

Finite element prediction of load-displacement curve for the same wall in which the 

top beam was removed and shear force was uniformly distributed over the wall top edge 

is also presented (dashed line). Displacements correspond to the wall top edge mid-point 

as the top wall displacement varies over the wall top edge because there is not a rigid 

beam at top to make the top displacement uniform over the wall top edge. Notice that the 

wall strength is reduced to 408 kN due to diagonal tension shear failure, which is 23% 

reduction in strength compared to finite element predictions for the wall with the top 

beam.  

The reason is examined in Figure 8-4, which shows sectional shear stress 

distributions of both walls (with and without a top beam) at top, mid-height, and base of 

the walls prior to failure. Shear is redistributed by the top beam toward the left side of the 

wall (Fig. 8-4a) in order to be transferred through diagonal struts that go directly to the 

base without a need for horizontal reinforcement. This is not the case in the wall without 

the top beam and therefore it reaches its strength earlier due to yielding of horizontal 

reinforcement (diagonal tension shear failure). Figures 8-4(b) and 8-4(c) show that shear 

stress distributions at the mid-height and the base are more uniform for the wall without 

the top beam.  
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Fig. 8-4 Comparison of finite element predictions of shear stress profiles along (a) top 

section, (b) mid-height section, (c) base section of the wall tested by Wiradinata and 

Saatcioglu (1986) and the same wall without the top beam and distributed force applied at 

top.  
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In Figure 8-5 the vertical steel stress profiles at the base immediately prior to failure 

are compared. The wall with the top beam reaches the flexural capacity while the other 

wall does not. Notice that all vertical reinforcement has yielded in the flexural tension 

side of the wall with the top beam. 
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Fig. 8-5 Comparison of finite element predictions of vertical reinforcement stresses at the 

base of the wall tested by Wiradinata and Saatcioglu (1986) and the same wall without 

the top beam and distributed force applied at top.  
 

8.3.2. Yielding of Vertical Reinforcement Failure 

The wall tested by Kuang and Ho (2008) had a height-to-length ratio of 1.0. It was 

expected to fail in flexure since a sufficient amount of horizontal reinforcement was 

provided for shear. As opposed to the other two walls discussed in this chapter which did 

not have axial compression, this wall was subjected to an axial compression of 300 kN.  

Figure 8-6 compares the actual load-deformation curve with the finite element 

predictions. Sectional analysis for pure flexure assuming plane sections remain plane 

predicts a shear force at flexural capacity equal to 321 kN. The actual wall strength and 
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the finite element predicted strength are also about 330 and 325 kN. Finite element 

predictions for the same wall with no top beam and distributed force at top are also 

shown in Figure 8-6 (dashed line). It is shown that the top beam does not significantly 

influence the flexural capacity and load deformation curve of the wall if shear 

reinforcement is sufficient.  
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Fig. 8-6 Comparison of experimental load-top  displacement curve with finite element 

prediction for wall tested by Kuang and Ho (2008). 

 

 

Figure 8-7 shows finite element predictions of sectional shear stress distributions for 

walls with and without top beam at top, mid-height, and base of the walls prior to their 

failure. Once again, shear is redistributed toward left side of the wall at top of the wall  
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Fig. 8-7 Comparison of finite element predictions of shear stress profiles along (a) top 

section, (b) mid-height section, (c) base section of the wall tested by Kuang and Ho 

(2008) and the same wall without the top beam and distributed force applied at top. 
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with the top beam (Fig. 8-7a). This does not influence the shear distribution at mid-height 

and the base as shown in Figures 8-7(b) and 8-7(c) thus does not affect the flexural 

strength. 

Figure 8-8 illustrates the vertical steel stress profiles at base of the walls prior to 

failure. As shown, both walls are predicted to fail in flexure since a significant portion of 

vertical reinforcement at the tension side of the wall is yielding. 
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Fig. 8-8 Comparison of finite element predictions of vertical reinforcement stress at the 

base of the wall tested by Kuang and Ho (2008) and the same wall without the top beam 

and distributed force applied at top. 
 

 

8.3.3. Concrete Crushing Failure 

Leftas et al. (1990) reported that their wall specimen SW26  failed due to crushing of the 

concrete at compression side of the wall base. Finite element analysis also predicts the 

same failure mode for the wall. The experimental load-deformation curve and the finite 

element prediction are presented in Fig.8-9. Finite element predictions and experimental 
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results are in good agreement. Finite element prediction of shear strength is V=110 kN. 

This is less than the shear force at flexural failure predicted by the plane section analysis 

for pure flexure, which is equal to 124 kN. The reason is that concrete crushes in the 

principal direction at the compression side of the base. Finite element predictions for the 

same wall without the top beam and distributed force at top are also shown in Figure 8-9. 

Finite element predicted failure mode for the latter wall is also crushing of concrete and 

as shown shear strength is not highly affected by the top beam. 
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Fig. 8-9  Comparison of experimental load- top displacement curve with finite element 

prediction for wall tested by Lefas et al. (1990). 

 

 

Figure 8-10 compares the finite element predictions of sectional shear profiles at top, 

mid-height, and base for the walls with and without the top beam. Notice again that the 

wall with the top beam carries significant portion of shear by redistributing the shear 

toward the left side at top and therefore making use of diagonal concrete struts that go  
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Fig. 8-10 Comparison of finite element predictions of shear stress profiles along (a) top 

section, (b) mid-height section, (c) base section of the wall tested by Lefas et al. (1990) 

and the same wall without the top beam and distributed force applied at top. 
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directly to the support. On the other hand, the shear distribution at top is more uniform 

for the wall without the top beam (see Fig. 8-10a). Top beam, however, does not 

significantly influence the shear stress distribution at mid-height or the base of the wall 

(see Fig. 8-10b and 8-10c) thus the wall shear strength is not significantly influenced by 

the top beam. 

Sectional models for shear predict insignificant contribution of flexural compression 

chord in shear. This is not true at the base of a squat wall as shown in Fig. 8-10(c). 

Compression stress in the principal direction is maximum in the compression zone at the 

base of the wall due to the combination of stresses caused by flexure and shear. This 

results in concrete crushing in the wall compression zone at the base for highly reinforced 

walls.  

In conclusion, comparison of finite element program (VecTor 2) predictions with the 

actual behaviour of three previously tested walls presented in this chapter show that the 

shear strength at diagonal tension shear failure (yielding of horizontal reinforcement) 

may be greatly increased by the top rigid loading beam commonly used in the squat shear 

wall tests to transfer shear to the wall top edge. In contrast, flexural failure as well as 

concrete crushing shear failure is not significantly influenced by the top beam. It can also 

be concluded that base sliding shear failure is not influenced by the top beam. In highly 

reinforced walls where horizontal reinforcement does not yield, shear distribution at the 

base is not significantly influenced by the top loading beam.  
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Chapter 9. Analytical Study of Flexural and Shear 
Resistance of Squat Shear Walls 

9.1.  General 

 

This chapter involves flexural and shear resistance of squat shear walls. The brief 

background of some available methods to predict the shear strength of squat shear walls 

is presented. In addition, nonlinear finite element analysis (VecTor 2) is used to 

determine shear and flexural capacity of such walls and the results are compared with the 

code predictions. A new method to determine the flexural resistance of squat shear walls 

which accounts for flexure-shear interaction at the wall base is presented and the 

predictions are compared with the finite element results. Proposed refinements to the 

2004 CSA A23.3 provisions for squat shear walls are also introduced.  

As explained earlier in Chapters 7 and 8, tested squat shear walls generally had a top 

loading beam which increases the shear resistance of such walls if they fail due to 

horizontal reinforcement yielding. In the walls analyzed here, shear force is uniformly 

distributed over the wall top edge and no top loading beam is included since the purpose 

is to determine the lower-bound resistance of the walls.  

9.2.  Traditional Approach for Flexural Resistance of Deep Beams 

Leonhardt and Walther (1966) performed linear finite element analysis of uncracked 

concrete to determine flexural capacity of single span deep beams. They concluded that 

internal flexural lever-arm for a deep beam is less than what is predicted by the plane 

section analysis. This phenomenon resulted in lower flexural capacity of such beams 

compared to the plane section analysis predictions. They proposed equations for internal 

flexural lever-arm of a deep beam. In the proposed equations, internal flexural lever-arm 
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is equal to 0.6 times beam height for a deep beam with span-to-height ratio less than or 

equal to 1.0 and is equal to 0.8 times the beam height for a beam with span-to-height ratio 

of 2.0 and linearly varies from a beam with span-to-height ratio of 1.0 to a beam with 

span-to-height ratio of 2.0.  

Half of a single span deep beam has a similar geometry and similar boundary 

conditions as a squat shear wall. A deep beam and a squat shear wall are shown in Figs. 

9-1(a) and (b). While parameters shown in Fig. 9-1(a) are the ones used by Leonhardt and 

Walther (1966) equations, parameters shown in Fig. 9-1(b) are the parameters commonly 

used for squat shear walls.  To apply the Leonhardt and Walther (1966) equations to a 

squat shear wall, internal flexural lever-arm z in Fig. 9-1(a) becomes jd shown in Fig. 9-

1(b) (z = jd), beam span l in Fig. 9-1(a) becomes two times wall height hw shown in Fig. 

9-1(b) ( l = 2hw), and beam height h  in Fig. 9-1(a) becomes wall length lw shown in Fig. 

9-1(b) ( h = lw). Leonhardt and Walther (1966) equations for internal flexural lever-arm 

applied to a squat shear wall are: 

[ 9-1] )(4.0 ww lhjd +=     where   0.15.0 ≤≤
w

w

l

h
 

[ 9-2] whjd 2.1=      where    5.0<
w

w

l

h
 

 

in which lw is wall length, hw is wall height, and jd is internal flexural lever-arm at the 

base of the wall.  Leonhardt and Walther (1966) also proposed that the flexural tension 

zone of a deep beam is small; therefore, flexural tension reinforcement should be 

concentrated at the flexural tension face.  
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(a) Deep beam 

 
(b) Squat shear wall 

 

  Fig. 9-1  Comparison of a deep beam and a squat shear wall. 
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9.3. 2004 CSA A23.3 Approach for Flexural and Shear Resistance of 
Squat Shear Walls 

 

The 2004 CSA A23.3 requires that a squat shear wall behaves as a single uniform shear 

element. Figure 9-2 shows a truss model for uniform shear stress distribution in a squat 

shear wall when the axial force is small and therefore neglected.  

 

 

Fig. 9-2  Uniformly distributed force flow in squat shear walls. 

 

 

 

The web is assumed to resist shear along the length dv taken as 0.8 lw in the 2004 CSA 

A23.3. Thus vertical reinforcement distributed over the shear length is required to 

balance the vertical component of diagonal compression force needed for shear as shown 
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in Figure 9-2. In the model shown in Fig. 9-2, the overturning moment is resisted by the 

concentrated vertical reinforcement force T and the compression force Cc. The 2004 CSA 

A23.3 requires that the distributed vertical reinforcement needed for shear not contribute 

to the flexural capacity of squat shear walls. The requirement for additional vertical 

reinforcement for shear can also be expressed as a reduced internal flexural lever-arm as 

was done for deep beams by Leonhardt and Walther (1966). 

When shear stress is uniformly distributed, there is an infinite number of possible 

failure planes with horizontal reinforcement yielding; however, all planes correspond to 

the same total force applied to the wall. One such failure plane is shown in Figure 9-3(a). 

Fig.9-3(b) illustrates the free body diagram of the element bounded by the failure plane. 

The horizontal force wwyh hbfρ and vertical force θρ tanwwyh hbf  are the resultant forces 

resisted by distributed horizontal and vertical reinforcement, respectively. ρh and ρv are 

distributed horizontal and vertical reinforcement ratios, and bw is wall thickness. In the 

free body diagram shown in Fig. 9-3(b), the force due to aggregate interlock at the crack 

is not included as it is ignored by the 2004 CSA A23.3.  

As shear stress is uniformly distributed (Fig. 9-3a), the wall shear strength V is 

determined from: 

[ 9-3] vwdvbV =  

where v is shear stress. From equilibrium in the horizontal direction in Fig.9-3(b): 

[ 9-4] θρ cotyh fv =  
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(a) Failure plane 

 

(b) Free body diagram of wall element bounded by failure plane 

 

Fig. 9-3  Horizontal reinforcement yielding shear failure of squat shear walls as in 2004 

CSA A23.3. 
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Substituting v from Eq. [9-4] in Eq. [9-3] results in the following shear strength equation 

for squat shear walls given in the 2004 CSA A23.3. 

[ 9-5] θρ cotvwyh dbfV =  

The relationship between the amount of distributed horizontal and vertical 

reinforcement can be obtained by taking moments about the point of application of 

concrete compression force Cc in Figure 9-3(b). 

[ 9-6] θρρ 2cothv =  

 2004 CSA A23.3 allows any angle θ between 30 and 45 deg in Eq. [9-5] as long as 

distributed vertical reinforcement needed for shear, given by Eq. [9-6], is calculated using 

the same angle. When θ = 45 deg, distributed vertical reinforcement ratio is equal to the 

distributed horizontal reinforcement ratio while when θ = 30 deg, distributed vertical 

reinforcement ratio is 3 times the distributed horizontal reinforcement ratio.  

In the above derivations wall is not subjected to axial force for simplicity. For walls  

with gross cross-section area Ag and subjected to axial force Ps, the amount of distributed 

vertical reinforcement given by Eq. [9-6] is reduced by 
gy

s

Af

P
. The reason is part of axial 

force needed for shear is provided by the applied axial force and the remaining part is 

resisted by the distributed vertical reinforcement. As explained in Chapter 7, the 2004 

CSA A23.3 limits the shear strength to vwc dbf '15.0   to avoid concrete crushing. 
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9.4.  Finite Element Analysis of Squat Shear Walls Failing in Flexure 

 

A total of 42 walls in four groups with aspect ratios of hw/lw=0.3, 0.5, 1.0, and 2.0 were 

analyzed. Concrete compressive strength of 'cf = 40 MPa and steel yield stress of yf = 

400 MPa without strain hardening were assumed. The walls were designed to fail due to 

yielding of vertical reinforcement at the base of the wall according to the 2004 CSA 

A23.3 predictions. Typical details of the walls that were analyzed in this study are shown 

in Figure 9-4. Wall cross-sections were uniform along the wall height and no top loading 

beam was assumed.  

All walls were monotonically loaded and the load was applied from left-to-right 

uniformly distributed over the wall top edge. To achieve a lower-bound solution, the 

contribution of the compression zone was minimized by placing the minimum amount of 

concentrated reinforcement permitted by the 2004 CSA A23.3 in 10% of the wall length 

on the compression side. In order to increase the flexural capacity of the walls, a large 

amount of concentrated vertical reinforcement was placed on the tension side of the wall. 

Table 9-1 presents the concentrated and distributed vertical reinforcement ratios as 

well as the distributed horizontal reinforcement ratios of the 42 walls that were analyzed. 

The concentrated vertical reinforcement ratios lρ  in the tension zone, which is the ratio of 

the total amount of concentrated reinforcement over the tension zone, ranged from 0.5% 

to the maximum of 3.0% depending on the height-to-length ratios. The ratio of the total 

amount of concentrated reinforcement over the compression zone '

lρ was kept constant 

and equal to the minimum amount according to the 2004 CSA A23.3 ( '

lρ = 0.5%).  
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Fig. 9-4 Typical detail of walls analyzed to investigate flexural capacity of squat shear 

walls. 

 

 

Horizontal reinforcement ratios were varied from 0.25% to 1.0% for every 

combination of aspect ratio and concentrated vertical reinforcement except for a few in 

which distributed horizontal reinforcement ratios of 0.25% and slightly higher caused 

shear failure. For walls with height-to-length ratio of 2.0, distributed vertical  
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Table  9-1  Summary of walls analyzed to investigate flexural capacity of squat shear 

walls. 

 

hw /lw ρρρρl (%) ρρρρh (%) ρρρρv (%) ρρρρ'l (%) 

0.50 0.40 0.40 0.50 

0.50 0.50 0.50 0.50 

0.50 0.75 0.75 0.50 
0.3 

0.50 1.00 1.00 0.50 

0.50 0.25 0.25 0.50 

0.50 0.50 0.50 0.50 

0.50 0.75 0.75 0.50 

0.50 1.00 1.00 0.50 

1.00 0.45 0.45 0.50 

1.00 0.75 0.75 0.50 

0.5 

1.00 1.00 1.00 0.50 

0.50 0.25 0.25 0.50 

0.50 0.50 0.50 0.50 

0.50 0.75 0.75 0.50 

0.50 1.00 1.00 0.50 

1.00 0.25 0.25 0.50 

1.00 0.50 0.50 0.50 

1.00 0.75 0.75 0.50 

1.00 1.00 1.00 0.50 

2.00 0.45 0.45 0.50 

2.00 0.75 0.75 0.50 

1.0 

2.00 1.00 1.00 0.50 

0.50 0.25 0.25 0.50 

0.50 0.50 0.50 0.50 

0.50 0.75 0.75 0.50 

0.50 1.00 1.00 0.50 

1.00 0.25 0.25 0.50 

1.00 0.50 0.50 0.50 

1.00 0.75 0.75 0.50 

1.00 1.00 1.00 0.50 

2.00 0.25 0.25 0.50 

2.00 0.50 0.50 0.50 

2.00 0.75 0.75 0.50 

2.00 1.00 1.00 0.50 

3.00 0.33 0.33 0.50 

3.00 0.50 0.50 0.50 

3.00 0.75 0.75 0.50 

3.00 1.00 1.00 0.50 

3.00 0.25 0.75 0.50 

3.00 0.50 1.50 0.50 

3.00 0.75 2.25 0.50 

2.0 

3.00 1.00 3.00 0.50 

ρl = concentrated flexural reinforcement ratio, ρ'l  =concentrated reinforcement ratio in concrete 

compression zone, ρv = distributed vertical reinforcement ratio, ρh = distributed horizontal 
reinforcement ratio 
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reinforcement ratios were assumed to be either equal to the distributed horizontal 

reinforcement ratio (ρv /ρh =1.0) or 3 times the horizontal reinforcement ratio (ρv /ρh 

=3.0).  For all other walls, the amount of distributed vertical reinforcement was equal to 

the amount of distributed horizontal reinforcement as distributed reinforcement amounts 

of ρv /ρh =3.0 caused shear failure. 

9.4.1. Finite Element Model 

 

Uniform shear elements discussed in Chapter 8 were used. All walls were modeled with 

30 square elements along the length while number of elements along the height was 

varied depending on the wall aspect ratio. 60 elements were used over the height of walls 

with height-to-length ratio of 2.0, while nine elements were used over the height of walls 

with height-to-length ratio of 0.3. All nodes along the wall  base were constrained in both 

vertical and horizontal directions and no other constraint was provided. As was explained 

previously, the applied shear force at the top was uniformly distributed over the wall 

length and a top loading beam was not provided. 

9.4.2. Finite Element Results 

 

Figure 9-5 presents the shear stress and principal compression stress distributions 

immediately prior to flexural failure in the wall with 0.5% distributed horizontal and 

vertical reinforcement ratio and height-to-length ratio of 0.5. At that load level, the wall 

had experienced lots of cracking and reinforcement was yielded over a significant portion 

of the wall in both horizontal and vertical directions. Stress flow is shown by stress 

contours which connect the equal stress points in the wall. 



208 

 

  

 

 

Fig. 9-5 Concrete stress contour diagrams based on finite element analysis of a squat 

shear wall with 0.5% distributed reinforcement in both directions and height-to-length 

ratio of 0.5 immediately prior to flexural failure. 

 

(a) Shear stress (MPa) 

(b) Principal compression stress (MPa) 
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As shown, shear stress distribution is not uniform at the base even though shear is applied 

uniformly at the top. Shear stress at the base is almost zero along the tension side to mid-

length beyond where it increases as it approaches the flexural compression zone. The 

same trend is also noticed in the distribution of concrete principal stress. Concrete 

principal stress is almost zero in the triangular area in the tension side of the wall 

separated by a line from left top corner to the wall base mid-length.   

The reason can be examined in Fig. 9-6, which illustrates the stress in the vertical and 

horizontal reinforcement at cracks for the same wall. The 2004 CSA A23.3 assumes 

shear force carried by horizontal reinforcement is transferred to the concentrated flexural 

reinforcement and then directed to the base by concrete diagonal struts (see Fig. 9-1). In 

contrast, Fig. 9-6(a) presents a different distribution predicted by the finite element 

analysis. Horizontal reinforcement transfers the shear to concrete diagonal struts before it 

reaches the concentrated flexural reinforcement. Notice that horizontal reinforcement 

stress is less than 100 MPa on left side of the wall over the considerable portion of the 

length except close to the wall base where forces are redistributed to provide more 

flexural capacity. 

Figure 9-6(b) examines stress distribution in the vertical reinforcement of the same 

wall. Vertical distributed reinforcement has mostly yielded. Flexural concentrated 

reinforcement has also yielded at the base and yielding has extended well over almost 

half of wall height. This is again due to the fact that horizontal reinforcement is anchored 

in the concrete diagonal struts and does not transfer the load to the concentrated vertical 

reinforcement.  



210 

 

 

 

Fig. 9-6  Steel stress contour diagrams based on finite element analysis of a squat shear 

wall with 0.5% distributed reinforcement in both directions and height-to-length ratio of 

0.5 immediately prior to flexural failure. 

 

(a) Horizontal steel stress at cracks (MPa) 

(b) Vertical steel stress at cracks (MPa) 
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The shear stress distributions at the base of four walls are examined in Figure 9-7. 

The walls all had a same cross-section with horizontal and vertical reinforcement ratio of 

0.5% and had different aspect ratios of hw/lw = 0.3, 0.5, 1.0, and 2.0. The results shown in 

Fig. 9-7 correspond to the load level immediately prior to flexural failure. As the height-

to-length ratio decreases, shear is carried by a larger portion of wall length at the base. 

For example, for the wall with hw/lw=0.3, about 60% of the wall length is subjected to 

significant shear. For the wall with hw/lw=0.5, shear is resisted over about 40% of the wall 

length. For walls with height-to-length ratios of 1.0 and 2.0, almost all shear force is 

resisted by the compression zone. This means that the demand on distributed vertical 

reinforcement due to shear is not significant, thus reduction of flexural capacity due to 

shear is also not significant.  
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Fig. 9-7  Finite element predictions for shear stress distributions at base of four squad 

shear walls immediately prior to flexural failure. 
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Figure 9-8 shows total normal stress (vertical force per unit length divided by 

thickness of wall) distributions of the same walls at the base. The total normal stress is 

equal to the vertical compression stress in concrete nv plus the stress sv fρ that is resulted 

from steel stress fs. When vertical reinforcement is yielding and there is no vertical 

compression stress due to shear, the total normal stress is equal to yv fρ . Vertical 

reinforcement ratio is 0.5%, thus total normal stress of yv fρ = 2.0 MPa is the maximum 

tensile stress which corresponds to yielding of vertical reinforcement. For walls with 

height-to-length ratios of 1.0 and 2.0, normal stress in a significant portion of the wall 

from the tension face to the flexural compression zone reaches the maximum value of 2.0 

MPa which again suggests an insignificant reduction in flexural capacity due to shear.  
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Fig. 9-8  Finite element predictions for total normal stress distributions at base of four 

squad shear walls immediately prior to flexural failure. 
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In the wall with height-to-length ratio of 0.3, the total shear stress equals yv fρ (2.0 

MPa) at about 0.4lw from the tension face. For the wall with an aspect ratio of 0.5, the 

total normal stress equals  yv fρ  (2.0 MPa) at about 0.6lw from the tension face. This is 

the consequence of shear being present in the rest of wall portion at the base that results 

in normal compression stresses that balances diagonal compression stresses. This results 

in a reduction of the moment capacity of the walls with low height-to-length ratios 

compared to the walls with height-to-length ratios of 1.0 or higher. 

Finite element predicted moment capacities of 16 walls with %5.0=lρ  are presented 

in Figure 9-9 (solid lines with markers). The predictions of plane section analysis 

(Response 2000) are also shown as a dotted line. The amount of distributed vertical 

reinforcement in these walls was equal to the amount of distributed horizontal 

reinforcement and ranged from 0.25% to 1.0%. The predicted flexural capacity from 

plane section analysis depend only on the amount of distributed vertical reinforcement, 

which is equal to the amount of distributed horizontal reinforcement. Walls with height-

to-length ratios of 1.0 and 2.0 almost reach the capacity predicted by plane section 

analysis. In contrast, walls with height-to-length ratios of 0.3 and 0.5 have relatively less 

flexural capacity due to the influence of shear. The flexural strength reduction is more 

significant as the wall height-to-length ratio decreases. 

 



214 

0

50

100

150

200

250

300

350

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Horizontal reinforcement ratio ρρρρ h

M
o
m
e
n
t 
(k
N
m
)

 ρ v =ρ h , ρ l = 0.005

Pure flexure 

(Response 2000)

Finite element

h w /l w = 0.3

h w /l w = 0.5

h w /l w = 2.0

h w /l w = 1.0

 

Fig. 9-9 Predicted moment capacities of 16 squat shear walls. 

 

 

 

The ratios of finite element predictions of moment capacity to the plane section 

analysis predictions of moment capacity for the 42 walls are illustrated in Figure 9-10. 

Once again the reduction of moment due to shear is insignificant for the walls with 

height-to-length ratios of 1.0 and 2.0 while it becomes more significant for the walls with 

height-to-length ratio of 0.3. For example, the reduction in moment capacity with respect 

to the plane section analysis predictions is about 9% for the walls with height-to-length 

ratio of 0.5 and about 27% for the walls with height-to-length ratio of 0.3. 
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Fig. 9-10 Ratios of finite element predicted moment capacity to the plane section analysis 

predicted moment capacity for the 42 squat walls failing in flexure. 

 

 

Leonhardt and Walther (1966) presented equations for the internal flexural lever-arm 

in deep beams that can be applied to squat shear walls. As Leonhardt and Walther 

solution does not include the contribution of distributed vertical reinforcement, the 

predictions of flexural capacity from their equations could be very different compared to 

the nonlinear finite element predictions. Finite element analysis, as explained previously, 

shows that distributed vertical reinforcement contributes to the wall flexural strength. 

However, if the predictions of both methods are converted to the ratio of flexural capacity 

with respect to the capacity predicted by the plane section analysis, there are similarities 

between nonlinear finite element predictions for squat walls and Leonhardt and Walther 

linear solution for deep beams. Assuming that internal lever-arm is about 80% of the wall 
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length from the plane section analysis, the reduction in moment capacity with respect to 

the plane section analysis can be assumed to be proportional to the reduction in the 

flexural lever-arm and this is presented in Figure 9-10. Both Leonhardt and Walther 

equations and finite element predict no reduction in flexural capacity for walls with hw/lw 

greater than or equal to 1.0. 

9.4.3. Presentation of NLFE with Simple Truss Model 

 

This section explains how the force flow in squat shear walls predicted by the finite 

element analysis can be presented using simple truss models in which reinforcing steel is 

assumed to resist all tension and concrete resists diagonal compression.  

The forces in a wall with height-to-length ratio of 0.5 are presented in Figure 9-11. 

Fig. 9-11(a) presents the forces in the horizontal reinforcement in addition to the 

horizontal components of the diagonal member forces, while the forces in the vertical 

reinforcement and vertical components of the diagonal member forces are shown in 

Figure 9-11(b). Horizontal elements are the distributed horizontal reinforcement, tensile 

vertical elements are the concentrated vertical reinforcement and distributed vertical 

reinforcement, and elements in compression represent concrete. Uniformly distributed 

shear force is applied over the effective shear length dv = 0.8lw along the top. Unit 

horizontal force is applied on each node of the truss along the top. All forces in truss 

members relate to this unit force, which represents shear resisted by each member if the 

shear is uniformly distributed.  
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(a) Horizontal components of diagonal compression forces and tension forces in 

horizontal reinforcement 

 

 
(b) Vertical components of diagonal compression forces and tension forces in vertical 

reinforcement 

 

 

Fig. 9-11 Truss model for a squat wall with height-to-length ratio of 0.5.  
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As was noticed in the finite element results, the truss model shows that forces 

carried by horizontal reinforcement could be anchored in the diagonal struts and do not 

need to be transferred to the tensile concentrated vertical reinforcement. This is possible 

because the direction of diagonal struts change to balance the horizontal force that is 

carried by the horizontal reinforcement. Notice in Fig. 9-11 that the first two diagonal 

struts at the top of the wall on the left side as well as the one below them change direction 

to balance the horizontal forces as they cross the vertical elements. This results in an 

increase in the diagonal strut force due to the increase of its horizontal component only. 

Figure 9-11 also shows that from 6 vertical elements in the wall web representing 

distributed vertical reinforcement, 4.8 of them (80%) contribute to the flexural capacity 

of the wall. Furthermore, as was also seen in finite element results, shear at the base is 

resisted by only a portion of the wall length on the compression side. 

In Fig. 9-12, another truss example for a wall with height-to-length ratio of 0.3 is 

provided. The same trend is noticed; however, shear is resisted by a larger portion of the 

wall length at the base and less contribution of the distributed vertical reinforcement to 

the flexural capacity is noticed compared to the wall with height-to-length ratio of 0.5 

shown in Figure 9-11. About 50% of the distributed vertical reinforcement contributes to 

the flexural capacity of the wall based on the truss model shown in Figure 9-12. It is 

worth mentioning that the magnitude of vertical component of diagonal struts remains 

constant throughout the height of the wall even though the diagonal struts, which go 

directly to the base, change direction as they cross the horizontal reinforcement. 
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(a) Horizontal components of diagonal compression forces and tension forces in 

horizontal reinforcement 

 

 

(b) Vertical components of diagonal compression forces and tension forces in vertical 

reinforcement 

 

Fig. 9-12  Truss model for a squat wall with height-to-length ratio of 0.3.  
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9.5.  Proposed Sectional Model for Flexural Capacity 

 

This section presents a proposed sectional model that includes the influence of shear on 

the flexural capacity of squat shear walls. As was noticed in the finite element results and 

was later presented by simple truss models, distribution of normal compression stress at 

the base of a squat shear wall is over a longer length than predicted by plane section 

analysis. This phenomenon, which results in a reduction of wall moment capacity 

compared to what is predicted by the plane section analysis, is more significant when the 

wall height-to-length ratio is small. It becomes insignificant for walls with height-to-

length ratios close to 1.0 or greater. The proposed model can capture this behaviour by 

including an axial force Nv  in addition to the other forces that act at the wall base. Nv , 

which is the force needed for shear, is zero for walls with greater height-to-length ratios 

and becomes significant as the wall height-to-length ratio becomes smaller. For Nv equal 

to zero, the model becomes the same as sectional analysis under pure flexure and thus no 

reduction due to shear is calculated.  

Figure 9-13 shows the proposed sectional model at the base to calculate flexural 

capacity of squat shear walls. T in Figure 9-13 is the force in the concentrated 

reinforcement and Td is the resultant force in the distributed vertical reinforcement. At 

flexural capacity, T is equal to the area of concentrated reinforcement times steel yield 

stress. Assuming distributed reinforcement yields over the wall entire length, Td can also 

be reasonably approximated by total area of distributed vertical reinforcement times steel 

yield stress.  

Axial force Nv is the resultant force of the normal stress acting over a portion of wall 

length dnv at the base. As was presented by the truss model in Fig. 9-12, rotation of 
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diagonal struts that go directly to the wall base does not affect the magnitude of Nv per 

unit length. Notice in Fig. 9-12(b) that the magnitude of the vertical components of all 

diagonal struts that go directly to the base is equal to 1.0 and it does not increase as they 

rotate. This suggests that normal stress at the base is equal to the normal stress at the top 

of the wall. One good approximation, as explained in previous chapters, for the normal 

stress needed for shear is θcotv  and thus: 

[ 9-7]  )(cot nvwv dbvN θ=  

 

Fig. 9-13  Proposed sectional model for flexural capacity of squat shear walls. 

                          

In which angle θ is the angle of diagonal compression and 
vwdb

V
v = . In the proposed 

model, angle of inclination is determined from the 2004 CSA A23.3 equilibrium-based 

equation Eq. [7-27] given the amount of distributed vertical and horizontal reinforcement 

and wall axial force. The model becomes similar to the 2004 CSA A23.3 when dnv=dv 
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and it becomes a typical sectional analysis under pure flexure when dnv=0. Based on the 

finite element results, dnv is a function of wall aspect ratio. The proposed dnv shown in 

Fig. 9-13 is given by: 

[ 9-8] 0≥−= wvnv hdd     

In the proposed model shown in Fig. 9-13, the magnitude and location of Cc is 

determined from equilibrium in the vertical direction using the equivalent stress block for 

concrete compression stress in the flexural compression zone. Moment capacity is then 

determined from moment equilibrium at the base. This is an iterative procedure for a 

given wall with a given amount of distributed reinforcement because the wall flexural 

capacity as well as shear force corresponding to the wall flexural capacity is unknown. 

Notice that flexural capacity is a function of shear force at flexural capacity in the 

proposed model. For design, however, the procedure is not iterative as the applied 

bending moment and shear force are known. 

9.6.  Comparison of Finite Element Results with the Predictions of 

Proposed Method for Flexural Capacity of Squat Shear Walls 

 

Figures 9-14 to 9-17 compare the finite element predictions for the flexural capacity of 

the 42 squat shear walls failing in flexure with the predictions of the 2004 CSA A23.3 as 

well as the proposed method predictions. In these figures, the relationship between the 

average shear stress over the wall length 
wwlb

V
 immediately prior to flexural failure with 

the horizontal reinforcement ratio is presented.  
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Fig. 9-14  Comparison of finite element predictions for shear force at flexural capacity of 

squat shear walls with hw/lw=2.0, with 2004 CSA A23.3 and proposed method 

predictions. 
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Fig. 9-15  Comparison of finite element predictions of shear force at flexural capacity of 

squat shear walls with hw/lw=1.0, with 2004 CSA A23.3 and proposed method 

predictions. 
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Fig. 9-16  Comparison of finite element predictions for shear force at flexural capacity of 

squat shear walls with hw/lw=0.5, with 2004 CSA A23.3 and proposed method 

predictions. 
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Fig. 9-17  Comparison of finite element predictions for shear force at flexural capacity of 

squat shear walls with hw/lw=0.3, with 2004 CSA A23.3 and proposed method 

predictions. 
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Finite element predictions are shown with thick solid lines with markers, while the 

proposed method predictions are presented by the thinner solid lines. The predictions of 

the 2004 CSA A23.3 method are shown by dashed lines. To determine the flexural 

capacity of the walls according to the 2004 CSA A23.3 method, only the portion of 

distributed vertical reinforcement that is not needed for shear was included in the 

sectional analysis. This was an iterative procedure because the wall flexural capacity was 

not known and therefore shear at flexural capacity was also unknown. 

Figures 9-14 and 9-15 compare the finite element predictions with those from the 

2004 CSA A23.3 and the proposed method for the walls with height-to-length ratios of 

2.0 and 1.0. The proposed method predictions compare well with the finite element 

results. Note that the proposed method predictions are so close to the finite element 

predictions in some cases that the lines cannot be distinguished. The 2004 CSA A23.3 

predictions are conservative as it totally excludes the contribution of distributed vertical 

reinforcement needed for shear. 

Figures 9-16 and 9-17 present the finite element predictions with the 2004 CSA 

A23.3 and the proposed method predictions for the walls with height-to-length ratios of 

0.5 and 0.3. The 2004 CSA A23.3 predictions are conservative. The proposed method 

predictions are in reasonably good agreement with the finite element predictions. 

9.6.1. Simplified Proposed Method 

A simpler model than the proposed model presented in Section 9.5 is to use a reduced 

amount of distributed vertical reinforcement when calculating the flexural capacity at the 

base of a squat shear wall. For example, the current CSA A23.3 does not use any of the 

distributed reinforcement needed for shear. The model is shown in Fig. 9-18 where Td is 
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again the resultant tension force in the distributed vertical reinforcement assumed to be 

yielding over the wall length and α is the portion of the total amount of distributed 

vertical reinforcement that contributes to the flexural capacity of the wall.  While α =1.0 

means that all of the distributed vertical reinforcement contributes to the flexural 

capacity, α = 0 means none of the distributed vertical reinforcement contributes to the 

flexural capacity. In order to get the same results from the model presented here in Fig. 9-

18 and the proposed model presented before in Fig. 9-13, taking moments about the point 

of application of compression force Cc in both models should yield equal moments. Thus: 

[ 9-9] )5.0()5.0()5.0( nvvvdvd dNdTdT −=α  

Substituting for vwyvd dbfT ρ=  and solving for α : 

[ 9-10] )(1
v

nv

vwyv

v

d

d

dbf

N

ρ
α −=   

                            

 

Fig. 9-18  Proposed simple model for flexural capacity of squat shear walls. 
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Substituting for Nv  from Eq. [9-7], Eq. [9-10] can be written as: 

[ 9-11] 

2

cot
1 


















−=

v

nv

yv d

d

f

v

ρ
θ

α      

 

Assuming flexural and shear failure occur at the same load level and 0=cv  as assumed 

by the current CSA A23.3, from equilibrium: 

[ 9-12] θρ tanyv fv =                                                                        

Substituting v from Eq. [9-12] in Eq. [9-11] results in the following simplified equation: 

[ 9-13]  

2

1 







−=

v

nv

d

d
α                                                                     

in which dnv is determined from Eq. [9-8] and α is the portion of distributed vertical 

reinforcement needed for shear that contributes to the flexural capacity. dnv can be 

expressed as a function of wall aspect ratio 
w

w

l

h
 assuming dv= 0.8lw as in the 2004 

CSAA23.3. Substituting dv= 0.8lw  in Equation [9-8]: 

[ 9-14]  0)8.0( ≥−=
w

w

w

nv

l

h

l

d
 

As 
w

w

l

h
 increases 

v

nv

d

d
 decreases thus the reduction of flexural capacity due to shear also 

decreases. For walls with 8.0≥
w

w

l

h
, no reduction in flexural capacity due to shear is 

predicted by the proposed simplified method since dnv becomes zero. Substituting dnv 

from Eq. [9-14] in Eq. [9-13], α is given as a function of wall aspect ratio 
w

w

l

h
: 
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[ 9-15] 0.156.15.2 ≤







−=

w

w

w

w

l

h

l

h
α                                      

This function is plotted in Figure 9-19 (solid line).  As shown, about 80% and 40% of 

distributed vertical reinforcement needed for shear contribute to the flexural capacity for  

walls with 
w

w

l

h
=0.5 and 0.2, respectively. No reduction in flexural capacity due to shear 

for walls with 8.0≥
w

w

l

h
 is predicted. Equation [9-15] can be conservatively approximated 

by Eq. [9-16] which is also plotted in Figure 9-19. 

[ 9-16] 0.15.1 ≤=
w

w

l

h
α      
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Fig. 9-19  Variation of the portion of distributed vertical reinforcement α that contributes 
to the flexural capacity of walls.  
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A simpler approach for code provisions is to use all of the distributed vertical 

reinforcement in walls with 8.0≥
w

w

l

h
  and use none of vertical distributed reinforcement 

needed for shear in walls with 8.0<
w

w

l

h
  when calculating flexural capacity of a squat 

shear wall. 

9.7.  Finite Element Analyses of Squat Shear Walls Failing in Shear 

 

44 walls were designed to fail in shear and analyzed by VecTor 2. The walls, which were 

monotonically loaded at the top from the left-to-right direction, had aspect ratios of 

hw/lw=0.3, 0.5, 1.0, and 2.0, with concrete compressive strength of 'cf = 40 MPa and steel 

yield stress of yf = 400 MPa. Typical wall details are shown in Figure 9-20. Two types of 

cross-sections were used. Type 1 cross-section, which was rectangular, was used for 

height-to-length ratios of 0.3 and 0.5 while Type 2 cross-section, which included a flange 

on the flexural tension side, was used for the remaining taller walls to avoid flexural 

failure. A wall with a flange on one side only is perhaps unrealistic but gives a lower-

bound shear strength. Previous studies have shown that if a squat shear wall has a flange 

on the compression side, the compression zone contribution to the wall shear resistance 

significantly increases and thus the shear resistance of the wall increases. All walls had 

uniform cross-sections over the height, and no top beam was provided.  

Table 9-2 presents the wall cross-section details including concentrated and 

distributed vertical reinforcement ratios and distributed horizontal reinforcement ratios. 

Once again, to minimize the contribution of the flexural compression zone to the  
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Fig. 9-20 Typical details of walls analyzed to investigate shear strength of squat shear 

walls. 
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Table  9-2  Summary of walls analyzed to investigate shear strength of squat shear walls. 

 

hw /lw Wall type tf / lw bf / bw    ρρρρl (%) ρρρρh (%) ρρρρv (%) ρρρρ'l (%) 

1 - - 1.00 0.25 0.25 0.50 

1 - - 1.00 0.50 0.50 0.50 

1 - - 1.50 0.75 0.75 0.50 

1 
1 
1 

- 
- 
- 

- 
- 
- 

2.00 
2.50 
3.00 

1.00 
1.25 
1.50 

1.00 
1.25 
1.50 

0.50 
0.50 
0.50 

1 - - 1.00 0.25 0.75 0.50 

1 - - 1.33 0.50 1.50 0.50 

1 - - 2.00 0.75 2.25 0.50 

0.3 

1 
1 

- 
- 

- 
- 

2.66 
3.33 

1.00 
1.25 

3.00 
3.75 

0.50 
0.50 

1 - - 1.00 0.25 0.25 0.50 

1 - - 1.00 0.50 0.50 0.50 

1 - - 1.50 0.75 0.75 0.50 

1 
1 
1 

- 
- 
- 

- 
- 
- 

2.00 
2.50 
3.00 

1.00 
1.25 
1.50 

1.00 
1.25 
1.50 

0.50 
0.50 
0.50 

1 - - 1.00 0.25 0.75 0.50 

1 - - 1.33 0.50 1.50 0.50 

1 - - 2.00 0.75 2.25 0.50 

0.5 

1 
1 

- 
- 

- 
- 

2.66 
3.33 

1.00 
1.25 

3.00 
3.75 

0.50 
0.50 

2 0.1 4.0 1.25 0.25 0.25 0.50 

2 0.1 4.0 1.25 0.50 0.50 0.50 

2 0.1 4.0 1.88 0.75 0.75 0.50 

2 
2 
2 

0.1 
0.1 
0.1 

4.0 
4.0 
4.0 

2.50 
3.13 
3.75 

1.00 
1.25 
1.50 

1.00 
1.25 
1.50 

0.50 
0.50 
0.50 

2 0.1 4.0 1.25 0.25 0.75 0.50 

2 0.1 4.0 1.25 0.50 1.50 0.50 

2 0.1 4.0 1.88 0.75 2.25 0.50 

1.0 

2 
2 

0.1 
0.1 

4.0 
4.0 

2.50 
3.13 

1.00 
1.25 

3.00 
3.75 

0.50 
0.50 

2 0.2 4.0 1.25 0.25 0.25 0.50 

2 0.2 4.0 1.25 0.50 0.50 0.50 

2 0.2 4.0 1.88 0.75 0.75 0.50 

2 
2 
2 

0.2 
0.2 
0.2 

4.0 
4.0 
4.0 

2.50 
3.13 
3.75 

1.00 
1.25 
1.50 

1.00 
1.25 
1.50 

0.50 
0.50 
0.50 

2 0.2 4.0 1.25 0.25 0.75 0.50 

2 0.2 4.0 1.25 0.50 1.50 0.50 

2 0.2 4.0 1.88 0.75 2.25 0.50 

2.0 

2 
2 

0.2 
0.2 

4.0 
4.0 

2.50 
3.13 

1.00 
1.25 

3.00 
3.75 

0.50 
0.50 

 
 
ρl = concentrated flexural reinforcement ratio, ρ'l  =concentrated reinforcement ratio in concrete 

compression zone, ρv = distributed vertical reinforcement ratio, ρh = distributed horizontal 
reinforcement ratio. 
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shear resistance, concentrated vertical reinforcement ratio in the compression zone was 

taken equal to the 2004 CSA A23.3 minimum ratio of 0.5%. In addition, concentrated 

vertical reinforcement was placed over only 10% of the wall length on the wall 

compression side.  

Distributed horizontal reinforcement ratios were varied from 0.25% to 1.5%. 

According to the 2004 CSA A23.3 provisions, diagonal compression angle θ is freely 

chosen from 30 to 45 degrees. If θ =45 deg is chosen and there is no axial compression, 

the amount of distributed vertical reinforcement needed for shear is equal to the amount 

of distributed horizontal reinforcement (see Eq. [9-6]). If θ =30 deg is chosen, the amount 

of distributed vertical reinforcement needed for shear is 3.0 times the amount of 

distributed horizontal reinforcement (see Eq. [9-6]). Thus distributed vertical 

reinforcement ratios were either equal to the distributed horizontal reinforcement ratios 

(ρv /ρh =1.0) or 3.0 times the horizontal reinforcement ratios  (ρv /ρh =3.0). The same 

finite element mesh discussed for walls failing in flexure (Section 9.4.1) was used. 

9.7.1. Comparison of Finite Element Results with Code Predictions 

Figure 9-21 compares the finite element predictions (solid lines with markers) for shear 

strength of the walls failing in shear with the predictions of ACI 318 (dashed line), NZS 

3101 (dashed-dotted line), and the 2004 CSA A23.3 (dotted line). While Fig. 9-21(a) 

presents the results for walls with equal amount of distributed reinforcement in both 

directions, Fig. 9-21(b) shows the results for the walls with distributed vertical 

reinforcement ratios of 3 times horizontal distributed reinforcement ratios. NZS 3101 

predictions were determined assuming ductility factor of 2.0 and overstrength factor of 
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1.0. NZS 3101 method is explained in Section 7.3.2. Note that the 2005 National 

Building Code of Canada specifies a ductility factor of 2.0 for squat shear walls. 
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Fig. 9-21 Comparison of finite element predictions for shear strength with code 

predictions for squat walls with: (a) ρv=ρh, (b) ρv=3ρh.   
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The end horizontal lines in the code prediction curves in Figs. 9-21(a) and (b) 

correspond to the code total shear force limits to avoid concrete crushing and base sliding 

due to shear. These limits are explained in Chapter 7. The change in the slopes of finite 

element curves beyond horizontal reinforcement ratio of about 0.008 in Fig. 9-21(b) is 

also due to the change of failure mode from diagonal tension shear failure to concrete 

crushing failure. 

ACI 318 and NZS 3101 predictions are the same in Figs. 9-21(a) and 9-21(b) as they 

are not influenced by ρv /ρh  ratios. In contrast, the 2004 CSA A23.3 predictions are 

higher in Fig. 9-21(b) compared to Fig. 9-21(a) that is consistent with the finite element 

results. ACI 318 predictions are consistently unconservative for  ρv /ρh =1.0 until they 

reach concrete crushing limit. NZS 3101 predictions are less unconservative for ρv /ρh 

=1.0; they are slightly unconservative for the taller walls with horizontal reinforcement 

ratios of less than 0.008.   

For walls with ρv /ρh =3.0 (Fig. 9-21b), ACI 318 predictions are in better agreement 

with the finite element results compared to those for the walls with ρv /ρh =1.0 (Fig. 9-

21a), but they are still unconservative in some cases. NZS 3101 predictions are highly 

conservative for walls with ρv /ρh =3.0. The 2004 CSA A23.3 trend of predictions is 

similar to that from the finite element results, but they are conservative in all cases. While 

the 2004 CSA A23.3 predictions are closer to the finite element results for walls with 

height-to-length ratios of 1.0 and 2.0, they become more conservative for walls with 

height-to-length ratio of 0.3. 

Shear stress distributions at the wall base and mid-height are shown in Figs. 9-22 (a) 

and (b) for the four walls with ρv=ρz=0.005. Shear stress at base (Fig. 9-22a) is not  
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Fig. 9-22 Finite element predictions for shear stress distribution in squat walls with 

ρv=ρh=0.005 immediately prior to shear failure: (a) at base of wall, (b) at mid-height.   
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uniform; shear is mostly carried by compression side of the wall especially in the taller 

walls. Maximum shear stress in the compression side of the walls is as high as 17 MPa in 

the wall with height-to-length ratio of 0.3. 

Mid-height shear stress distributions (Fig. 9-22b) are closer to uniform distribution. 

As the wall height-to-length ratios decrease, contribution of the compression side of the 

walls to shear resistance is more significant. The 2004 CSA A23.3 assumes that shear is 

resisted by 80% of the wall length (dv=0.8lw) which is conservative since the compression 

zone significantly contributes to the wall shear strength especially for walls with a height-

to-length ratio of 0.3.  

Aggregate interlock contribution to shear resistance was found to be negligible in the 

finite element results. This is shown in Fig. 9-23(a), which illustrates the stress contour 

diagram of shear stress on cracks together with approximate failure plane based on the 

finite element results. Notice that shear stress on cracks is less than 0.1 MPa in the region 

that failed in shear. This confirms that the assumption of Vc=0 in the 2004 CSA A23.3 is 

reasonable. 

 Figure 9-23(b), which illustrates the stress contour diagram of total shear stress, 

shows that the shear flow pattern is the same as the one for the wall failing in flexure 

shown in Figure 9-5(a). Fig. 9-23(b) also illustrates that shear stress in the compression 

zone is significant, thus it significantly contributes to the shear strength of squat walls. 

The 2004 CSA A23.3 ignores the compression zone contribution to shear strength as it 

assumes that shear force is resisted by 80% of the wall length. It was found that the 

significant increase in the finite element predicted shear strength of squat  
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Fig. 9-23  Concrete shear stress contour diagrams based on finite element analysis of a 

squat shear wall with 0.5% distributed reinforcement in both directions and height-to-

length ratio of 0.5 prior to diagonal tension shear failure. 

 

(a) Shear stress on cracks vc (MPa) 

(b) Shear stress (MPa) 
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walls with height-to-length ratio of 0.3 compared the shear strength of the taller walls 

was due to the compression zone contribution to shear resistance.  

To include the effect of compression zone in shear resistance, the free body diagram 

shown in Fig. 9-3(b) can be revised as shown in Fig. 9-24(b). 

 
(a) Failure plane 

 
(b) Free body diagram of wall element bounded by failure plane 

 

Fig. 9-24  Diagonal tension failure of low rise shear walls accounting for compression 

zone contribution. 
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According to equilibrium equation in the horizontal direction: 

[ 9-17] chwwyhchshww FhbfFVhvb +=+= ρθtan  

Fch is a function of compression zone length which in turn is a function of wall length and 

concrete cracking stress. Concrete cracking stress is a function of 'cf , thus Fch can be 

estimated as: 

[ 9-18] wwcch lbfF 'κ=  

where κ  is a coefficient. Substituting Fch from Eq. [9-18] in Eq. [9-17] and solving for v:   

[ 9-19] vw

w

w

ccyhvw db
h

l
ffdvbV ]'cot[ 








+== αθρ  

in which αc is another coefficient equal to θκ cot . Eq. [9-17] is similar to the ACI 318 

shear strength equation for squat shear walls and other proposed methods in the literature 

such as the method proposed by Wirandianta (1985). It includes a steel contribution Vs 

that is equal to vwyh dbf θρ cot and is independent of wall aspect ratio, and concrete 

contribution vw

w

w

ccc db
h

l
fV )('α=  which is a function of wall aspect ratio. αc = 0.1 in 

Eq. [9-19] results in predictions that are in good agreement with the finite element results 

for the 44 walls failing in shear when θ is determined from the 2004 CSA A23.3 equation 

Eq. [7-27].  As it will be shown later, compression zone contribution to shear is 

significantly reduced if localized sliding along previously existing cracks at the base is 
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modeled in the finite element analysis, and thus the model explained above is not 

advocated in this thesis. 

9.7.2. Sliding along Previously Existing Cracks  

As described earlier, it was assumed in the finite element analysis that the wall base was 

fully constrained in the horizontal direction. As a result of this assumption, finite element 

predictions of shear stress carried at the base in the compression zone region was as high 

as 17 MPa in some cases. Such a high shear stress is appropriate for reinforced concrete 

that is monotonically loaded; however, under load reversals, the compression zone will 

have horizontal cracks as it was the tension zone in the reverse direction of loading thus 

may not be able to resist such a high shear stress. 

Equation [3-6], which was developed from experimental results, gives the maximum 

shear stress that can be transferred across cracks. This equation limits the shear stress of 

cracked concrete to 0.58 'cf  (3.7 MPa for 40 MPa concrete) when the crack width is 

zero. NZS 3101, on the other hand, limits the shear stress on walls to 0.65 'cf   (4.1 MPa 

for 40 MPa concrete) for a wall with overstrength factor of 1.0 and ductility factor of 2.0 

(see Eq. 7-25), while the 2004 CSA A23.3 limits the shear stress to 0.15 'cf  (6 MPa for 

40 MPa concrete). A similar limit in ACI 318 is 0.83 'cf  for individual wall piers, 

which is 5.25 MPa for 40 MPa concrete.  Based on these numbers, it was decided to limit 

the shear stress of walls to the conservative value of 4 MPa for 40 MPa concrete to 

account for sliding along previously existing cracks. Only three walls with horizontal and 

vertical distributed reinforcement ratios of 0.005 were analyzed in this way.  
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VecTor 2 is not capable of limiting the horizontal shear stress in an element to a 

specified value. Thus the analysis was done using VecTor 2 together with an event-to-

event procedure that was manually carried out. The analysis started for the case where all 

nodes along the wall base were constrained both in vertical and horizontal directions. The 

analysis was then stopped when reaction at any node at the base reached the magnitude 

that corresponds to 4 MPa shear stress in the horizontal direction. The node constraint in 

the horizontal direction was then removed and the force corresponding to 4MPa shear 

stress was applied at the node. The analysis continued until the reaction at the next node 

reached the magnitude corresponding to 4MPa shear stress. The procedure was repeated 

until all reactions at the nodes had the magnitude of less than or equal to the magnitude 

corresponding to 4 MPa shear stress. 

Figure 9-25 shows the finite element predictions of load-displacement relationships 

for the walls with height-to-length ratios of 0.3 (Fig 9-25a), 0.5 (Fig. 9-25b), and 1.0 (Fig. 

9-25c) when horizontal shear stress is limited to 4MPa. The finite element predictions 

when shear stress is not limited are also presented. The results show that the shear 

strength of the wall with height-to-length ratio of 0.3 is significantly affected by limiting 

the shear stress in the compression zone, while the shear strength of the wall with height-

to-length ratio of 1.0 is not affected significantly. When the shear stress in the 

compression zone is limited, the finite element predicted shear strength for the wall with 

height-to-length ratio of 0.3, shown in Fig. 9-25(a), is only 10% greater than the finite 

element predicted shear strength of the wall with height-to-length ratio of 1.0 shown in 

Figure 9-25(c). This indicates that wall aspect ratio does not significantly influence the  



242 

0

1

2

3

4

0 2 4 6 8 10 12

Right edge top displacement (mm)

S
h
e
a
r 
s
tr
e
s
s
 V
/ b
w
l w
 (
M
P
a
)

Without limit

ACI 318 shear strength

2004 CSA A23.3 shear strength

Refined 2004 CSA A23.3 (d v = 0.9 l w )

h w /l w  = 0.3

(a)

Limit shear in comp. zone

 

0

1

2

3

4

0 2 4 6 8 10 12 14 16

Right edge top displacement (mm)

S
h
e
a
r 
s
tr
e
s
s
 V
/ b
w
l w
 (
M
P
a
)

Without limit

Limit shear in comp. zone

ACI 318 shear strength

2004 CSA A23.3 shear strength

Refined 2004 CSA A23.3 (d v = 0.9 l w )

h w /l w  = 0.5

(b)

 

0

1

2

3

4

0 5 10 15 20 25

Right edge top displacement (mm)

S
h
e
a
r 
s
tr
e
s
s
 V
/ b
w
l w
 (
M
P
a
)

Without limit

ACI 318 shear strength

2004 CSA A23.3 shear strength

Refined 2004 CSA A23.3 (d v = 0.9l w )

h w /l w  = 1.0

(c)

Limit shear in comp. zone

 
Fig. 9-25  Localized sliding effect on load-displacement curve of squat shear walls with 

ρz = ρv = 0.005 and height-to-length ratio of: (a) 0.3, (b) 0.5, (c) 1.0. 
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shear strength of squat shear walls when the shear stress in the compression zone is 

limited. This is consistent with the 2004 CSA A23.3 provisions. 

Figure 9-26 illustrates base shear stress distributions of the walls when shear stress is 

limited together with the distributions for the walls when shear stress is not limited. As 

expected, shear stress is more uniform for walls in which shear stress is limited. The mid-

height shear stress distributions of the walls are examined in Figure 9-27. It is evident 

that the compression zone contribution to shear resistance is highly reduced due to 

limiting the shear stress in the compression zone for the wall with height-to-length ratio 

of 0.3 while it does not have an influence for the wall with height-to-length ratio of 1.0.  

As shown in Fig. 9-27, shear stress is still considerable in the compression zone for 

all walls, but this shear stress is not accounted for in the 2004 CSA A23.3; it assumes 

only 80% of the wall lengths contribute to shear resistance. To account for the influence 

of compression zone on the shear resistance, it is proposed to take dv=0.9lw rather than 

dv=0.8lw as in the 2004 CSA A23.3. The resulted predictions of shear strength are 

compared with finite element predictions in Figure 9-25. The good agreement between 

the finite element predictions of shear strength when shear stress in the compression zone 

is limited and the predictions from the 2004 CSA A23.3 method with the proposed 

refinement is evident. 

9.7.3. Comparison of Finite Element Results with the 2004 CSA A23.3 

Refined Method 

As explained in the previous section, the proposed refinement to the CSA A23.3 

provisions for shear strength of squat shear walls is to use an effective shear length              

dv=0.9lw. In the current provisions, dv=0.8lw. In this section, the finite element predictions  
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Fig. 9-26  Localized sliding effect on base shear stress distribution of squat shear walls 

with ρz = ρv = 0.005 and height-to-length ratio of: (a) 0.3, (b) 0.5, (c) 1.0. 
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Fig. 9-27  Localized sliding effect on mid-height shear stress distribution of squat shear 

walls with ρz = ρv = 0.005 and height-to-length ratio of: (a) 0.3, (b) 0.5, (c) 1.0. 
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of shear strength for the 44 walls failing in shear are compared with the predictions from 

the 2004 CSA A23.3 with the proposed refinement. 

Figure 9-28 compares the finite element predictions of shear strength with the 2004 

CSA A23.3 predictions using dv=0.9lw for the 44 walls failing in shear in which shear 

stress is not limited. The horizontal axis is the wall height-to-length ratio while the 

vertical axis is the ratio of finite element predicted shear strength to the 2004 CSA A23.3 

predicted shear strength using dv=0.9lw. Clearly using dv=0.9lw in the 2004 CSA A23.3 is 

conservative as the ratios vary from about 1.0 to about 1.60.  

The finite element predictions compare well with the revised 2004 CSA A23.3 

method for walls with height-to-length ratios of 1.0 and 2.0. The shear strength ratios are 

below 1.25 in most cases. Note that in walls with height-to-length ratios of 1.0 and 2.0 

limiting the shear stress in the compression zone has insignificant influence on shear 

strength as shown in the previous section. Only one wall with a height-to-length ratio of 

1.0 and one wall with a height-to-length ratio of 2.0 has a high shear strength ratio close 

to 1.50. Those two walls had a low amount of distributed reinforcement – 0.25% in both 

horizontal and vertical directions. The strength of the two walls are significantly higher 

than the 2004 CSA A23.3 refined method predictions because their shear strength at 

concrete diagonal cracking was higher than shear strength at yielding of horizontal 

reinforcement.  

The 2004 CSA A23.3 revised method becomes more conservative for walls with 

smaller height-to-length ratios especially for those with height-to-length ratio of 0.3. For 

those walls, limiting the shear stress in the compression zone decreases the shear strength 

about 15% as shown in the previous section. Thus, it could be concluded that the 2004 
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CSA A23.3 method with the proposed refinement can reasonably predict the shear 

strength of squat shear walls. Limiting the shear stress in the compression zone is very 

time consuming and therefore it was not possible to repeat the predictions for all walls 

accounting for this. 
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Fig. 9-28  Ratios of finite element analysis-to-2004 CSA A23.3 refined method predicted 

shear strength for the 44 walls failing in shear.  
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Chapter 10. Summary and Conclusions 

10.1. General 

This thesis involves two related topics which are shear strength of concrete bridge girders 

and strength of squat shear walls. The summary and conclusions for the two topics are 

reported separately below. 

10.2. Shear Strength Evaluation of Bridge Girders 

Beam shear design provisions of AASHTO LRFD and the 2006 CHBDC are based on 

simplified versions of Modified Compression Field Theory (MCFT, Vecchio and Collins 

1983) which is one of the theories developed to predict the behaviour of uniform shear 

elements. As a result of simplifications for design, these methods are conservative which 

is preferred for design; but may cause unnecessary bridge load restrictions or retrofit 

when these methods are used for evaluation.  

Response 2000 (Bentz 2000), which performs beam sectional analysis employing a 

smeared layered approach, provides a more accurate prediction for beam shear strength 

and is able to predict the behaviour of beams throughout the entire range of loading. 

While such a computer program is a powerful research tool, it is not convenient for 

engineering practice since it requires advanced knowledge of shear and high level of 

judgment. It requires a significant number of input parameters and includes different 

material models and the results cannot be easily checked by hand calculations. Use of 

Response 2000 for evaluation of numerous sections of a bridge is also time consuming 

since it requires detailed information of each cross-section and provides significant 

amount of information from which user should extract the needed information.  
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10.2.1. Proposed Evaluation Method 

A new method for shear evaluation of beams was developed and is presented in this 

thesis. The new method accounts for the effect of more parameters in shear, provides 

more insight than other simplified approaches, and still is simple enough to be easily 

implemented in an Excel spreadsheet. Also, the results can be easily checked by hand 

calculations. The proposed evaluation procedure, which is different for members with 

and without stirrups, was developed so that trial-and-error is not required; but also 

includes a number of refinements such as accounting for: (i) influence of Vc (concrete 

tension stresses) on average longitudinal compression force Nv required to resist shear in 

a diagonally cracked web (Vc reduces average tension strain of member), (ii) difference 

between total shear depth dv and depth of diagonally cracked web dnv, (iii) tension force 

resisted by distributed longitudinal reinforcement in web, (iv) location of prestressed 

tendons in web, and (v) tension-stiffening provided by cracked concrete in tension chord. 

The procedure was verified by comparing predictions of shear strength for members 

with and without stirrups with the MCFT predictions for a single uniform shear element. 

The proposed method predictions were in better agreement with MCFT predictions 

compared to the 2006 CHBDC method for both members with and without transverse 

reinforcement.  

To further validate the method, shear strength predictions for four existing bridge 

girders were compared with the results from Response 2000.  The girders in three of 

these bridges had more than minimum transverse reinforcement while the girders in the 

fourth had less than minimum transverse reinforcement. Three of the bridges had 

prestressed concrete girders. Predictions of the 2007 AASHTO LRFD, 2006 CHBDC, 
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and ACI 318-05 were also compared with the results from the proposed method. The 

proposed method predictions were found to be closer to Response 2000 predictions 

compared to the code predictions. For example, Response 2000 predictions for the nine 

evaluated sections of the three girders with more than minimum transverse reinforcement 

were on average only 4% higher than the results from proposed method. The COV of the 

ratios of Response 2000 predicted shear strength to the predicted shear strength from the 

proposed method was only 4%. Among the evaluated code methods, the 2007 AASHTO 

LRFD procedure was the most consistent with Response 2000. The predictions were on 

average 13% higher than the Response 2000 predictions and COV of predicted shear 

strength ratios was 11%. ACI 318-05 had the largest deviation from Response 2000 with 

COV of predicted shear strength ratios equal to 16%. Further verification of the method 

by comparing with experimental results is summarized in Section 10.2.3 

10.2.2. Proposed Refinement for the 2006 CHBDC Shear Design 
Method 

 

In the 2006 CHBDC and 2004 CSA A23.3 codes, the shear resistance of a beam with 

or without transverse reinforcement is a function of mid-depth longitudinal strain εx. 

These codes provide a simple equation to estimate εx, and allow the use of a more 

sophisticated procedure to determine εx; but do not describe how this procedure is to be 

done. One approach that could be used to estimate the mid-depth longitudinal strain is a 

sectional analysis using Response 2000. 

A more complex version of the code equation for εx was developed as part of this 

thesis.  This equation includes a better estimate of the axial compression force needed in 

the web of a girder to resist shear. It also rigorously accounts for the influence of 
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distributed longitudinal reinforcement in the web and tension stiffening of the flexural 

tension reinforcement. A comparison with the mid-depth longitudinal strain determined 

with Response 2000 indicates the proposed equation for εx is more accurate than the code 

simplified equation. The mid-depth longitudinal strains predicted by the simple equation 

in the codes were up to 40% larger than predicted by the proposed equation and Response 

2000. It is recommended that when the 2006 CHBDC method is used to evaluate the 

shear strength of an existing bridge girder with transverse reinforcement, the proposed 

equation for εx be used to obtain a higher shear strength estimate. 

While 2006 CHBDC and 2004 CSA A23.3 codes permit the use of a more 

sophisticated procedure to determine εx in members without transverse shear 

reinforcement, a comparison with test results has shown that this may be unsafe. This is 

explained in Section 10.2.3.    

10.2.3. Comparison of Predictions with Experimental Results 

Members with at least minimum transverse reinforcement  

 

The proposed shear evaluation method for members with transverse reinforcement was 

verified against actual shear strengths determined from tests of 80 reinforced concrete 

beams and 88 prestressed concrete beams reported in the literature. Comparisons with 80 

reinforced concrete beam tests showed that the predictions from the proposed evaluation 

method are the closest to the test results compared to the 2006 CHBDC, 2007 AASHTO 

LRFD, and ACI 318 design methods.  

Only 26 of the 80 reinforced concrete beams that have been previously tested had 

transverse reinforcement ratios more than twice the minimum, while most existing bridge 

girders have more than twice the minimum transverse reinforcement. For the 26 beams 
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with more than twice the minimum transverse reinforcement, predictions from the 

proposed method compare even better with the test results than the code methods.  

The proposed evaluation method predictions were also in better agreement with 

experimental results than the code design methods for the 88 prestressed concrete beam 

tests with stirrups. As was also determined in previous studies (Hawkins et. al, 2005), 

ACI 318 method is unsafe with about 50% of the shear strength predictions being greater 

than the actual test results.  

Of the 88 prestressed concrete beams, only 22 beams had a predicted mid-depth 

longitudinal strain higher than 0.0001. While the proposed method shear strength 

predictions for those members were in good agreement with actual test results, the 2006 

CHBDC gave on average 13% more conservative results for those beams compared to 

the proposed method predictions.  

The 2006 CHBDC shear strength predictions with the proposed refined εx equation 

was validated against the same 80 reinforced concrete and 88 prestressed concrete tested 

beams. Using the proposed εx equation in the 2006 CHBDC shear design provision 

improved the average test-to-code predicted shear strength ratio from 1.31 to 1.26 in 

prestressed concrete members while the COV of shear strength ratios remained about the 

same. 

 

Members without transverse reinforcement 

The proposed procedure for members without transverse reinforcement was validated by 

comparing shear strength predictions with test results for 132 reinforced concrete and 131 
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prestressed concrete beams. The proposed evaluation method gave the best overall 

agreement with test results.  

For the reinforced concrete beams, the proposed method had an average value of 

test-to-predicted shear strength ratio of 1.17 and COV of 17.3%. The average values of 

test-to-predicted shear strength ratios were 1.26 and 1.16 for the 2007 AASHTO LRFD 

and 2006 CHBDC methods, respectively. The COV of these ratios were 18.5% and 

17.8%, respectively. The ACI 318 predictions for the shear strength of beams without 

transverse reinforcement were very unsafe due to the well known size effect 

phenomenon.  

For the prestressed concrete beams, the average test-to-predicted shear strength 

ratios were 1.37 for the proposed method, 1.55 for 2006 CHBDC, 1.57 for 2007 AAHTO 

LRFD, and 1.17 for ACI 318. The corresponding COV of these ratios were 17%, 23.2%, 

23.1%, and 16%, respectively. 

Using a more refined equation for xε to predict the shear strength of 132 reinforced 

concrete beams without stirrups increased the number of unsafe predictions from the 

2006 CHBDC from 18% to 32% of the tests. The reason is that the 2006 CHBDC method 

uses the mid-depth longitudinal strain to predict shear strength, but Response 2000 results 

show that shear failure initiates closer to flexural tension reinforcement where the 

longitudinal strain is larger. The conservative simple equation given for the mid-depth 

longitudinal strain in the 2006 CHBDC compensates for the unconservative assumption 

of using mid-depth strain to determine shear strength. Therefore, the use of more accurate 

εx in the 2006 CHBDC shear design provision may result in unconservative shear 

strength predictions for members without transverse reinforcement. It is recommended 
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that the 2006 CHBDC and the 2004 CSA A23.3 code shear design provisions be 

modified so as not to permit the use of a refined procedure to calculate εx  for members 

without transverse reinforcement. 

 

Members with less than minimum transverse reinforcement 

Although the 2006 CHBDC and 2008 AASHTO LRFD shear design provisions are 

similar procedures that are both based on MCFT, the 2006 CHBDC minimum transverse 

reinforcement is 30% lower than the 2008 AASHTO LRFD minimum transverse 

reinforcement. An investigation was made to determine which minimum transverse 

reinforcement should be used in the proposed evaluation method. This was done by 

comparing predictions from the proposed method with the test results for 76 tested beams 

which were lightly reinforced for shear. The predictions of the propose method were still 

consistent with test results for beams with transverse reinforcement as low as the 2006 

CHBDC minimum. Thus, the 2006 CHBDC lower minimum amount of transverse 

reinforcement was adopted in the proposed evaluation method.  

In the code shear design procedures, beams with less than minimum stirrups are often 

assumed to have the same shear strength as members with no stirrups. In the section on 

evaluation, the 2006 CHDBC assumes that members with less than one third of minimum 

transverse reinforcement shall have the same shear strength as members with no stirrups. 

For higher amount of transverse reinforcement, it assumes that shear strength of a section 

increases linearly from the strength with no transverse reinforcement to the strength with 

minimum transverse reinforcement as transverse reinforcement amount varies from one 

third of minimum reinforcement to the minimum amount. This procedure was examined 
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and found to be consistent with experimental results from the 76 beams with light amount 

of stirrups. 

10.3. Strength of Squat Shear Walls 

ACI 318 building code and New Zealand concrete code (NZS 3101) shear design 

provisions for squat shear walls are empirical procedures determined from squat shear 

wall tests. Such tests might not represent the lower-bound shear strength of actual squat 

shear walls in buildings because the test specimens typically had very large load transfer 

beams at the top of the walls.  

In this study, it was examined how the top load transfer beams may have influenced 

the shear strength of such walls. This was done by comparing the behaviour of three 

previously tested walls with the nonlinear finite element predictions. In one case, the 

walls were analyzed with the top load transfer beam as in the test, while in the other case, 

the top beam was removed and the shear force was uniformly distributed over the wall 

length at the top of the wall. Finite element results showed that the top load transfer 

beams could considerably enhance the shear capacity of such walls where diagonal 

tension failure mode is the governing failure mode. In contrast, it does not have a 

significant effect on the wall flexural capacity, and the wall shear capacity when diagonal 

concrete crushing is the governing shear failure mode. 

The 2004 CSA A23.3 uses a single uniform shear element to predict the shear 

behaviour of squat shear walls. As a result, the vertical distributed reinforcement needed 

for shear should be provided in addition to the distributed vertical reinforcement 

considered to resist flexure in the 2004 CSA A23.3 provisions. In other words, the 2004 

CSA A23.3 provisions do not allow using vertical distributed reinforcement needed for 
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shear to resist flexure at the wall base. This was investigated using nonlinear finite 

element method and was found to be conservative especially for walls with height-to-

length ratios equal to and greater than 1.0. Finite element analyses were performed on 42 

different walls that were shear dominated but the capacity of the wall was limited by 

yielding of the vertical reinforcement at the base. These walls did not have a top loading 

beam. The results showed all or part of vertical distributed reinforcement is available to 

resist flexure depending on the wall aspect ratio. A truss model to explain why all or part 

of distributed vertical reinforcement is not needed for shear was presented. 

A method to determine flexural strength of squat shear walls accounting for flexure 

shear interaction at the wall base was proposed. The method accounts for the effect of 

wall height-to-length ratio and allows full contribution of vertical distributed shear 

reinforcement in flexure for walls with height-to-length ratios of equal to or greater than 

0.8. The proposed method was verified against finite element predictions for the 42 shear 

dominated walls where the capacity was limited by yielding of vertical reinforcement. 

The walls had height-to-length ratios of 2.0, 1.0, 0.5 and 0.3 and had varying amounts of 

distributed horizontal reinforcement, distributed vertical reinforcement, and concentrated 

vertical reinforcement.  

The shear design provisions for squat shear walls of ACI 318, NZS 3101, 2004 CSA 

A23.3 were evaluated by comparing predictions with the finite element predictions of 44 

walls failing in shear, which were monotonically loaded and subjected to uniformly 

distributed horizontal load at top. The walls had height-to-length ratios of 2.0, 1.0, 0.5 

and 0.3, did not contain a top load transfer beam, and had varying amounts of distributed 
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horizontal reinforcement, distributed vertical reinforcement, and concentrated vertical 

reinforcement.  

The results showed that ACI 318-05 shear strength predictions were unconservative 

especially for walls with the same percentage of distributed horizontal and vertical 

reinforcement. NZS 3101 predictions were also unconservative but closer to the finite 

element results compared to ACI318-05. The 2004 CSA A23.3 predictions were always 

conservative and were increasingly conservative for walls with lower height-to-length 

ratios. The 2004 CSA A23.3 predictions were in reasonably good agreement for walls 

with height-to-length ratios equal to and greater than 1.0. Finite element results indicated 

that the increase in the shear strength of walls compared to the single uniform shear 

prediction, which is the basis for the 2004 CSA A23.3 equations for shear strength of 

squat shear walls, is due to the contribution of the flexural compression zone in shear.  

The flexural compression zone in one direction of loading will be the flexural tension 

zone in the reverse direction of loading. Thus the flexural compression zone will likely 

have previously existing horizontal cracks that are closed by the vertical compression. 

Under high shear stress, these cracks may slip locally and thus the shear resisted by the 

compression zone will be reduced. This is a complex phenomenon that is not modeled by 

the nonlinear finite element program that was used. In order to investigate the influence 

of local slip along previously existing cracks in the compression zone a simple model was 

used. The shear stress at any point was limited to 10% of the concrete compressive 

strength.  As CSA A23.3 limits the average shear stress across the shear length of a squat 

wall to 15% of the concrete compressive strength, the lower limit on local shear stress is 

clearly conservative. Three walls were analyzed and the results were compared with the 
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finite element results for the same walls in which shear stress at base was not limited as 

well as the predictions from the 2004 CSA A23.3. Localized sliding resulted in a 

significant reduction in shear strength of the walls with low height-to-length ratios, while 

it did not influence the shear strength of the wall with height-to-length ratio of 1.0. When 

localized sliding was accounted for, the 2004 CSA A23.3 predictions were in better 

agreement with the finite element predictions but they were still conservative as the 

contribution from the compression zone was still significant. A refinement to the 2004 

CSA A23.3 shear strength method for squat shear walls was proposed.  The proposed 

refinement accounts for the contribution of flexural compression zone in shear by 

assuming shear is resisted by 90% of the wall length while the current CSA A23.3 

assumes shear is resisted by only 80% of the wall length. 

10.4. Recommendations for Future Work 

10.4.1. Bridge Girders 

As part of this study, many test results were reviewed and it was observed that the 

available results are from beams that are generally very similar. Thus, there is a need for 

additional tests to verify new shear design methods and shear strength evaluation 

procedures for bridge girders.  

Many tested reinforced concrete beams with stirrups had an amount of transverse 

reinforcement close to the minimum. Available test results for shear strength of 

reinforced concrete beams that contain more than two times the minimum transverse 

reinforcement are very limited. In real bridges, on the other hand, transverse 

reinforcement is often more than twice the minimum amount. Of 720 tests available for 
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reinforced concrete beams in the literature only 26 had a depth equal to or greater than 

300mm and had more than twice the minimum amount of stirrups. 

 Available test results for prestressed concrete beams are from beams in which the 

predicted mid-depth longitudinal strain is very small. Of 88 prestressed concrete beams 

only 23 beams had a predicted mid-depth longitudinal strain greater than 0.0001. The 

reason for this was that the critical section for shear was generally close to the support 

where the moment-to-shear ratio was small and thus the longitudinal strain was small. In 

real bridge girders, failure could happen close to mid-span at locations where the amount 

of transverse reinforcement changes. At these locations, the moment-to-shear ratio may 

be much larger and thus the mid-depth longitudinal strain will be much larger.  

10.4.2. Squat Shear Walls 

Squat shear walls that were tested generally had a large loading beam that introduced the 

load on the wall top. As shown in this study, such a load transfer beam will strengthen the 

wall top and thus significantly increase the shear strength of the walls. In real buildings, 

load is transferred to the shear walls by means of diaphragms. Diaphragms may not have 

the same strength and stiffness as the loading beams used in the tests. The current study 

looked at the lower-bound strength when the load is assumed to be uniformly distributed 

over the wall top edge. A study is needed to investigate the influence of different types of 

diaphragms on the load distribution over the wall top edge as well as the wall shear 

strength. This could be done making use of nonlinear finite element analysis and squat 

shear wall tests. 

Concrete slabs, which are assumed to be rigid diaphragms, are very stiff and strong 

when they remain uncracked. However, they might be cracked and thus their stiffness 
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could be greatly reduced because they are lightly reinforced. Cracking of slabs need not 

always be due to the externally applied loads and could also be due to other effects such 

as shrinkage. As a result of cracking, concrete slabs might not have the same stiffness and 

strength as the large top loading beams used in the tests. 

Flexible diaphragms such as steel deck diaphragms do not have sufficient strength to 

transfer the loads to the top of shear wall. The load is normally transferred to the wall by 

a steel angle that is connected to the wall. Depending on the stiffness of this angle and the 

spacing of the connections, the load distribution could be very different from the 

distribution in the top loading beam commonly used in the wall tests.  
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Appendix A:  Excel Spreadsheets for the Proposed Evaluation Methods and the Refined 

CHBDC Method 
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Appendix B: Detailed Steps in Proposed Evaluation Procedures 

 

Required Information 

 
1- Loading information:  

 

fM  = Factored bending moment at the section of interest,  

fN  = Factored axial force at the section of interest. 

 

2- Material properties:  
 

'cf  = Specified compressive strength of concrete,  

yf  = Yield stress of reinforcing steel, 

puf  = Ultimate strength of prestressing tendons,   

prf  = Stress in prestressing tendons at maximum flexural resistance. 

cφ  = Concrete resistance factor 

sφ  = Nonprestressed reinforcing steel resistance factor 

pφ  = Prestressed reinforcing steel resistance factor 

 

3- Concrete section geometry:  
 

H  = Height of beam     

vd  = Depth of uniform shear stress = jd (may be taken as 0.9d),  

nvd  = Depth of uniform compression stress nv over diagonally cracked web   

= (section height) – (tension flange depth) – (uncracked compression chord 

depth). It is recommended to take nvd as distance from top of tension flange to 

bottom of top deck for I-girders having composite action with top deck and 

distance from top of tension flange to bottom of compression flange for box-

girders. For rectangular sections dnv should be taken equal to dv. 

wb  = Width of web  

tfA  = Area of concrete surrounding flexural tension reinforcement (tension flange 

area), equals to zero for rectangular sections. 

pwd  = Depth from compression face to centroid of web prestressing tendon.  

 

4- Reinforcement:   
 

sA  = Area of longitudinal reinforcement in flexural tension chord, 

scA  = Area of longitudinal reinforcement in flexural compression chord,  

swA  = Total area of distributed longitudinal reinforcement centered in web, 

vA  = Area of transverse reinforcement (spaced at s),   

s  = Spacing of transverse reinforcement,  
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Appendix B: Detailed Steps in Proposed Evaluation Procedures (cont.) 

 

xeS  = Effective crack spacing parameter as in 2006 CHBDC and AASHTO LRFD. 

 

5- Prestressing tendons: 
 

pA  = Area of prestressed reinforcement in flexural tension chord, 

pwA  = Area of prestressed reinforcement in web, 

pθ  = Angle of inclination of draped prestressed reinforcement, 

  pf  = Effective stress of prestressing. 

 

Evaluation Procedure for Members With at Least Minimum Stirrups 

 
1- Calculate additional parameters. 
 

• Calculate jd = dv form 

 

     )72.09.0min( Hddjd v ===  

 

• Calculate ρ z from  

 

sb

fA

w

yv

z =ρ  

 

• Calculate Vp from 

 

ppwppp AfV θφ sin=  

 

• Calculate λ  from 

 

 
d

d pw
=λ  

 

• Set α = 0.165 in MPa units (2.0 in psi units) 

 

2- Calculate shear strength at yielding of transverse reinforcement Vyield. 
 

• Calculate  β from 
 

18.0)6.1300(18.0 ≥+−= yεβ  in MPa units  
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Appendix B: Detailed Steps in Proposed Evaluation Procedures (cont.) 

 

• Calculate 0θ  and θ∆  from  

)1.150)(3.19
'

85(0 +−+= y

c

yz

f

f
ε

ρ
θ  

])4.1200(5.37[1000 oy θεθ −+−=∆  

 

• Calculate vn∆  and 0vn  from      

   

    θρφβφ ∆−−=∆ )20.0'09.0( yzsccv ffn  

yzscso
v

vo ff
n

n ρφβφθ
θ

4.9'0.4 ++
∆

∆
=  

 

• Calculate εx from  

 

( )

nvwvpwppswss

fpwpptfccnvwvo

x
dbnAAEAAE

NAAfAfdbnjdM

∆−+++

++−−+
=

5.0)]()25.0([2

5.0'5.0/
2λ

λαφ
ε  

 

• Calculate force in the compression chord Cc  from 

 

fpwp

pwpswsnvwvxnvwvoc

NAf

AEAEdbndbnjdMC

5.0)1(

])1(25.05.0[5.0/

+−−

−−−∆++−=

λ

λλε
 

 

• Multiply εx by 2 if there is tension in comp. chord (if Cc is positive).  

 

• Calculate angle θ  from  

 

xo εθθθ ∆+=   

 

• Calculate transverse reinforcement yielding shear strength from  

 

p

vyv

svwccpscyield V
s

dfA
dbfVVVV ++=++=

θ
φβφ

cot
'  

 

3- Calculate shear strength at crushing of concrete Vcrush. 
 

• Calculate β from 

 

 03.0
'

65.0 +=
c

yz

f

fρ
β  in MPa units   
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• Calculate 0θ  and θ∆  from 

 

615119 .
'f

f

c

yz

o +=
ρ

θ  

 

2000
'

15000 +=∆
c

yz

f

fρ
θ  

 

• Calculate vn∆  and 0vn  from   

 

For 230 >θ : 

θρφβφ ∆−−=∆ )20.0'09.0( yzsccv ffn  

yzscso
v

vo ff
n

n ρφβφθ
θ

4.9'0.4 ++
∆

∆
=  

 

For 230 ≤θ : 

θρφβφ ∆−−=∆ )77.0'15.0( yzsccv ffn  

yzscco
v

vo ff
n

n ρφβφθ
θ

6.23'5.5 ++
∆

∆
=  

 

• Calculate εx from  

 

( )

nvwvpwppswss

fpwpptfccnvwvo

x
dbnAAEAAE

NAAfAfdbnjdM

∆−+++

++−−+
=

5.0)]()25.0([2

5.0'5.0/
2λ

λαφ
ε  

 

• Calculate force in the compression chord Cc  from 

 

fpwp

pwpswsnvwvxnvwvoc

NAf

AEAEdbndbnjdMC

5.0)1(

])1(25.05.0[5.0/

+−−

−−−∆++−=

λ

λλε
 

 

• Multiply εx by 2 if there is tension in comp. chord (if Cc is positive).  

 

• Calculate angle θ  from  

 

xo εθθθ ∆+=   

 

• Calculate shear strength from  

 

p

vyv

svwccpsc V
s

dfA
dbfVVVV ++=++=

θ
φβφ

cot
'  
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Appendix B: Detailed Steps in Proposed Evaluation Procedure (cont.) 

 

4- Calculate shear strength at biaxial yielding of reinforcement Vbiaxial. 
 

• Calculate jd form 

 

fcc

fsyspprp

bf

NAfAf
djd

'2.1 φ

φφ −+
−=  

 

• Calculate longitudinal reinforcement capacity reserved in the comp. chord Nvcc from 

 

]5.0/))1()5.0([2 fpwprswscysvcc NjdMAfAAfN −+−++= λφ  

 

• Calculate longitudinal reinforcement capacity reserved in the tension chord Nvct from 

 

]5.0/)()5.0([2 fpwpprswsysvct NjdMAAfAAfN −−+++= λφ  

 

• Determine  axial force reserved capacity Nvc from 

 

),min( vctvccvc NNN =  

 

• Calculate shear strength from 

 

pvcvwyzs VNdbfV += )(ρφ  

 

5- Determine governing shear strength. 
 

• Vyield  is governing failure mode if greater than Vcrush, and less than Vbiaxial. 

• Vcrush  is governing failure mode if greater than Vyield and less than Vbiaxial. 

• Vbiaxial  is governing failure mode if less than Max (Vyield ,  Vcrush ). 

• pvwcc VdbfV += '25.0max φ   
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Appendix B: Detailed Steps in Proposed Evaluation Procedures (cont.) 

 

Evaluation Procedure for Members Without Stirrups 

 
1- Calculate additional parameters. 

 

• Calculate jd = dv form 

 

     )72.09.0min( Hddjd v ===  

 

• Calculate Vp from 

 

ppwppp AfV θφ sin=  

 

• Calculate λ  from 

 

 
d

d pw
=λ  

 

2- Calculate shear strength at maximum concrete contribution Vc .  
 

• Calculate εx from  

 

( )
)]()25.0([5.1

/
2

pwppswss

pwpp

x
AAEAAE

AAfjdM

λ

λ
ε

+++

+−
=   

 

• Calculate β  from  

 

)5.0500(

400

)1.2600(1

35.0

xexxe SS +
≤

++
=

ε
β    in MPa units 

 

• Calculate shear strength from 

 

pvwccpc VdbfVVV +=+= 'βφ   

 

3- Check for yielding of long. reinforcement and determine shear strength. 
  

• Calculate θ from 

 

)02.06.0)(700035( xex S++= εθ   in MPa units 

 

• Calculate demand on the longitudinal reinforcement due to shear 
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Appendix B: Detailed Steps in Proposed Evaluation Procedures (cont.) 

 

θcot2* cv VN =  

 

• Calculate longitudinal reinforcement capacity reserved in the comp. chord Nvcc from 

 

]5.0/))1()5.0([2 fpwprswscysvcc NjdMAfAAfN −+−++= λφ  

 

• Calculate longitudinal reinforcement capacity reserved in the tension chord Nvct from 

 

]5.0/)()5.0([2 fpwpprswsysvct NjdMAAfAAfN −−+++= λφ  

 

• Determine  axial force reserved capacity Nvc from 

 

),min( vctvccvc NNN =  

 

• If *vvc NN ≥ , shear strength is equal to Vc , otherwise determine shear strength from  

 

2

vcN
V =  
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Appendix B: Detailed Steps in Proposed Evaluation Procedures 

(Summary Sheet for Proposed Method for Members With at Least Min Stirrups) 
 

YIELDING OF TRANSVERSE REINFORCEMENT AND CONCRETE CRUSHING  

Yielding of stirrups: 

 

18.0)6.1300(18.0 ≥+−= yεβ  (MPa units) 
 

)501.1)(3.19
'

85( y

c

yz

o
f

f
ε

ρ
θ −+=  

 
])2004.1(5.37[1000 oy θεθ −−=∆  

 

Concrete crushing after stirrup yielding: 

03.0
'

65.0 +=
c

yz

f

fρ
β   (MPa units) 

615119 .
'f

f

c

yz

o +=
ρ

θ  

2000
'

15000 +=∆
c

yz

f

fρ
θ  

Yielding of stirrups, and concrete crushing if 

230 >θ  deg: 

Concrete crushing if  230 ≤θ deg: 

θρβ ∆−−=∆ )20.0'09.0( yzcv ffn  

yzco
v

vo ff
n

n ρβθ
θ

4.9'0.4 ++
∆

∆
=  

 

θρβ ∆−−=∆ )77.0'15.0( yzcv ffn  

yzco
v

vo ff
n

n ρβθ
θ

6.23'5.5 ++
∆

∆
=  

( )

nvwvpwppswss

pwpptfcnvwvov

x
dbnAAEAAE

AAfAfdbndM

∆−+++

+−−+
=

5.0)]()25.0([2

'25.0/
2λ

λ
ε  

 
Multiply εx by 2.0 if 0>cC  where 

pwppwpswsnvwvxnvwvovc AfAEAEdbndbndMC )1(])1(25.05.0[5.0/ λλλε −−−−−∆++−=  
 

xo εθθθ ∆+=  
 

pvyvvwcpscn VsdfAdbfVVVV ++=++= θβ cot)/('  
 

Governing Vn is the greater of stirrups yielding and concrete crushing shear strength 
 

CHECKS 

  Longitudinal reinforcement yielding 
 

pvcvwyzn VNdbfV +≤ )(ρ  
 

where ),min( vctvccvc NNN =  

]/))1()5.0([2 jdMAfAAfN pwprswscyvcc +−++= λ

 

]/)()5.0([2 jdMAAfAAfN pwpprswsyvct −+++= λ

 
 

                       where
fc

syppr

bf

AfAf
djd

'2.1

+
−=   

Concrete crushing before stirrups yield 
 

vwcn dbfV '25.0≤  

 
PARAMETERS (TOP CHORD IN COMP.) 

 

 

) , max(   0.72H 0.9ddv =

ddpw /=λ  

s)bA    wvz /(=ρ  
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Appendix C: Detailed Examples of Proposed Evaluation Procedure for Members With 

Stirrups 

  
Example 1: Prestressed Concrete I-girder Bridge at 7.91 m from the support. 

 

 

 

 

 
 

 

 

 

=fM 3720 kNm 

 

=fV 415 kN 

 

=fN 0 

 

=yf 400 MPa 

 

='cf 40 MPa 

 

=puf 1860 MPa 

 

=pθ  0 
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Appendix C: Detailed Examples of Proposed Evaluation Procedure (cont.) 

 

Solution of Example 1: 
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Appendix C: Detailed Examples of Proposed Evaluation Procedure (cont.) 

 

Solution of Example 1 (cont.): 
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Appendix C: Detailed Examples of Proposed Evaluation Procedure (cont.) 

 

 

Example 2: Prestressed Concrete Box-girder Bridge at 8.94 m from the support. 

 

 

 

 

 

 
 

 

=fM 3607.6 kNm 

 

=fV 304.3 kN 

 

=fN 0 

 

=yf 400 MPa 

 

='cf 40 MPa 

 

=puf 1860 MPa 

 

=pθ  1.3 deg. (20 web tendons are draped) 
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Appendix C: Detailed Examples of Proposed Evaluation Procedure (cont.) 

 

 

Solution of Example 2: 
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Appendix C: Detailed Examples of Proposed Evaluation Procedure (cont.) 

 

Solution of Example 2 (cont.): 
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Appendix C: Detailed Examples of Proposed Evaluation Procedure (cont.) 

 

Example 3: Reinforced Concrete channel-girder Bridge at 1.39 m from the support. 

 

 

 

 
 

 

=fM 207.6 kNm 

 

=fV 139.3 kN 

 

=fN 0 

 

=yf 400 MPa 

 

='cf 40 MPa 

 

Average assumed bw = 381 mm 
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Appendix C: Detailed Examples of Proposed Evaluation Procedure (cont.) 

 
Solution of Example 3: 
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Appendix C: Detailed Examples of Proposed Evaluation Procedure (cont.) 

 

Solution of Example 3 (cont.): 

 
 



 294 

Appendix D: Rating Trucks Used for Example Evaluations of Bridge Girder 

(BC Ministry of Transportation). 
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Appendix D: Rating Trucks Used for Example Evaluations of Bridge Girder 

(BC Ministry of Transportation). 
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