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Abstract

Concrete shear walls are used as the seismic force resisting system in many high-rise
buildings in Western Canada. During earthquake, the response of a high-rise concrete
wall as it undergoes severe cracking of concrete and yielding of reinforcement is very
complex. In particular, the nonlinear shear behaviour of concrete shear walls is not well
known; therefore available analysis programs generally use very primitive models for
nonlinear shear behaviour. Gérin and Adebar (2004) quantified the observed
experimental results on reinforced concrete membrane elements and presented a smple
nonlinear shear model that included the influence of concrete diagonal cracking, yielding
of horizontal reinforcement and ultimate shear capacity.

There are a number of important issues in the design of high-rise concrete shear
walls where shear deformations play a very important role and hence nonlinear shear
behaviour will have a significant influence. In this dissertation, three different seismic
design issues where nonlinear shear response plays a significant role are investigated.

The first issue which is of considerable concern to designers is the large reverse
shear force in high-rise concrete walls due to rigid diaphragms below the flexural plastic
hinge. The nonlinear analyses that were carried out in this study show that diagona
cracking and yielding of horizontal reinforcement significantly reduce the magnitude of
reverse shear force compared to what is predicted by using linear analysis procedures.

A second issue where nonlinear shear behaviour has a significant influence is
associated with the shear force distribution between inter-connected high-rise walls of
different lengths. The results presented in this work, show that when diagonal cracking is
included in the analysis, significant redistribution of shear forces takes place between
walls and all walls do not necessarily yield at the same displacement.

The third issue is related to the dynamic shear demand caused by influence of
higher modes and the corresponding nonlinear action that takes place in tall cantilever
walls. According to the nonlinear dynamic analyses that were performed, the influence of
hysteretic shear response on the seismic demand of high-rise concrete walls was
investigated.
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1.1 High-rise concrete shear wall buildings

Most high-rise buildings in Western Canada are constructed of reinforced concrete, and
contain concrete shear walls as the seismic force resisting system. A typical concrete
high-rise building has core shear walls located near the centre of the building plan, and
has perimeter columns to support the flat plate floor slabs (see Fig. 1.1).

There are a number of architectural advantages of concrete shear wall buildings
over concrete frame buildings. For example, the absence of large moment-resisting
frames on the outside of the building means that larger windows can be provided around
the entire exterior of shear wall buildings. The construction of concrete shear wall
buildings is also known to be very competitive because simpler formwork and less

congested reinforcement lead to lower labour costs and generally faster construction.

1.2 Seismic design of high-rise concrete buildings

Concrete shear walls generally provide very good lateral drift control during earthquakes.

The seismic response of high-rise concrete walls during earthquakes — as it undergoes



severe cracking and localized damage — is very complex. For design, the response of

concrete shear walls is approximated using different analysis procedures.

Figure 1.1 Structural system in a typical high-rise concrete shear wall building including
the underground portion of the building.

Response spectrum analysis (RSA), which is a linear dynamic analysis procedure,
is commonly used in design to determine the global displacement demands and force
demands on individual components of concrete shear walls. In Canada, RSA is
commonly the only seismic analysis that is done for concrete shear wall buildings.

Nonlinear dynamic analysis, commonly called nonlinear time history analysis
(NTHA), is the most complete and sophisticated procedure to estimate the seismic
response of structures. Changes in stiffness of members due to material nonlinearity and
local damage caused by cracking of concrete and yielding of reinforcement can all be

accounted for when performing nonlinear time history analysis



Although nonlinear time history analysis is now more commonly used for design of
high-rise concrete wall buildings in the western U.S., it is rarely, if ever, used for design
in Canada. There are a number of issues regarding the use of nonlinear time history
analysis for design. NTHA is known to be record sensitive and therefore it is crucial to
use the appropriate ground motions based on the seismicity and soil characteristics of the
site. The results are also very depended on the nonlinear models that are used for the
structural members. Finally, considerable effort is needed to correctly interpret the large
amount of output results.

The nonlinear flexural behaviour of concrete shear walls is generally well known.
This behaviour can be defined in terms of bending moment-rotation or bending moment-
curvature response while accounting for axial force-bending moment interaction.
Available analysis programs that use fibre-section models for reinforced concrete walls
are able to accurately model the effects of cracking and reinforcement yielding, and are
capable of considering the interaction between bending moment and axial compression.
In comparison to flexure, the nonlinear shear behaviour of concrete shear walls is
generally much less well known, and available nonlinear time history analysis programs

use very primitive models for shear behaviour.

1.3 Nonlinear shear behaviour of concrete walls

It is commonly thought that the shear behaviour of reinforced concrete is linear until the
shear strength is reached, and that shear failure is always brittle. Tests on reinforced
concrete membrane elements subjected to shear at the University of Toronto by for
example Villani (1995), Stevens et al. (1991), Meyboom (1987) and Vecchio (1982),
have demonstrated that this is not the case. Membrane elements are similar to a portion of
a concrete shear wall.

Figure 1.2 shows the results obtained by Villani (1995) from testing of an element
with 1% vertical and horizontal reinforcement under reverse cyclic loading. The results
are presented in terms of average shear stress (shear force per unit area) and average

shear strain (shear displacement per unit length).



The initial shear stiffness of the element is approximately equal to the shear
modulus of the concrete G, = 10,200 MPa. After diagonal cracks form, the shear stiffness
of the element reduces. Before yielding of the reinforcement, the shear stiffness has
reduced to about 10% of the initial shear stiffness due to diagonal cracking.

Figure 1.2 is a close-up of the response prior to reinforcement yielding. Thus the
shear strain capacity of the element after reinforcement yielding is not shown. Tests on
membrane elements have demonstrated that reinforced concrete subjected to shear will
deform in a ductile manner after yielding of the reinforcement as long as there is an
appropriate amount of reinforcement. Reinforced concrete with inadequate reinforcement
will fail due to concrete diagonal tension at first cracking, whereas reinforced concrete
with too much reinforcement will fail due to diagonal compression in concrete. Typical

reinforced concrete shear walls will have considerable shear strain ductility.
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Figure 1.2 Shear stress versus shear strain response of a reinforced concrete element
tested by Villani (1995) (from Gérin, 2003).

Gérin and Adebar (2004) quantified the observed experimental results on
reinforced concrete membrane elements and presented a simple nonlinear shear model for
reinforced concrete walls that includes the influence of concrete cracking, yielding of
reinforcement, and maximum shear strain capacity. Figure 1.3 summarizes the simplified
envelope for nonlinear shear response of concrete walls. The shear force at concrete

cracking is called V., and the corresponding shear strain is y.,. The shear force capacity of



the element is called V,, while the shear strain at yielding of the reinforcement and the
shear strain capacity of the element are called y, and y,, respectively.

The commonly assumed linear—brittle behaviour in shear is labelled as Line 1
(dashed line) in Fig. 1.3. The slope of this line is equal to the gross shear stiffness of the
wall G, 4,,. Line 2 represents the effective shear stiffness of a fully cracked element. The
slope of this line can be determined from the shear strength of the element and the shear
strain at yielding. Gérin and Adebar (2004) presented a simplified procedure to estimate
the shear strain at yielding. A comparison between Line 1 and Line 2 shows the
significance of accounting for diagonal cracking in reinforced concrete walls. Gérin and
Adebar (2004) also presented an expression for shear strain capacity of reinforced
concrete. For a typical shear wall, the shear strain capacity is two to four times the shear

strain at yielding.
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Figure 1.3 Commonly assumed brittle shear behaviour (dashed line) versus the actual
shear behaviour of concrete shear walls according to the Gérin-Adebar model (solid line).

Different models for nonlinear shear response of concrete walls have been proposed
(i.e., Ozcebe and Saatcioglu 1989) and different models to simulate shear response are
also used in some computer programs such as Response-2000 (Bentz 2000). The
advantage of using the tri-linear shear model proposed by Gérin (2003) in this study is
the significance of considering three distinctive parameters associated with cracking of
concrete, yielding of horizontal reinforcement and ultimate shear strain capacity to

address important design issues in seismic design of high-rise concrete walls.



1.4 Seismic shear demand issuesin high-rise concrete buildings

The nonlinear shear response of reinforced concrete is very important whenever shear
deformations are significant. There are a number of important issues in the design of
high-rise concrete shear walls where shear deformations play a very important role, and
hence nonlinear shear behaviour will have a significant influence.

One example is the maximum shear force demand on concrete walls below the base
level during lateral ground motion (see Fig. 1.4). The perimeter foundation walls of a
typical high-rise building are orders of magnitude stiffer than the central core (tower)
walls extending to the top of the building. As a result, the lateral seismic forces in high-
rise walls are transferred to the perimeter foundation walls by interconnecting floor
diaphragms below the base. The multiple levels of floor diaphragms also transfer the
over-turning moments from the high-rise walls to the perimeter foundation walls. The
reduction in bending moment in the high-rise walls is accompanied by a corresponding
reverse shear force in the wall section below ground. When a building has tall walls
connected to large perimeter foundation walls by rigid floor diaphragms, linear analysis,
such as RSA, may indicate a reverse shear force that is many times larger than the base
shear force above the foundation walls. Figure 1.4 shows a simplified model of high-rise
wall including diaphragms and foundation wall below base level. Lateral seismic loads

corresponding to earthquake are also shown over the height of the wall.
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Figure 1.4 Seismic shear force demand below base level.



Different approaches are currently used to design high-rise walls for the large
reverse shear force below ground. One approach that has been used is to design the
concrete walls and floor diaphragms for the forces calculated in a linear analysis. Another
approach that is used is to completely ignore the reverse shear force altogether, and
design the entire below-ground portion of the wall for the base shear force and
corresponding bending moment calculated above the base. A third approach is to use
cracked-section stiffnesses for the diaphragm or the wall (or both) in order to reduce the
magnitude of the reverse shear force, and depending on what is assumed, this will give a
solution somewhere between the first two solutions.

The reverse shear force is the result of the compatibility of deformations. Thus,
when a concrete wall is designed for a higher shear force, the effective shear stiffness of
the wall will be larger and the reverse shear force demand will be larger. On the other
hand, if the wall is designed for a lower shear force, the effective shear stiffness of the
wall will be smaller and the reverse shear force will be smaller. While it is obvious that
the latter approach will result in a less expensive structure, what is not known is which of
these approaches will result in a better performance. To assess the performance of these
different design approaches requires a nonlinear analysis using an appropriate shear
model for the concrete walls as shear deformation is quite significant at the section of
core wall below ground level and hence consideration of nonlinear shear behaviour is
very important.

A second seismic shear demand issue where nonlinear shear response is expected to
have a significant influence is the distribution of shear forces between inter-connected
high-rise walls. In high-rise buildings, concrete walls are tied together over the height of
the wall by rigid floor plates at every floor level as shown in Fig. 1.5. At the upper levels
of the structure, the shear force distribution between walls depends primarily on the
relative flexural rigidity of the walls. In the lower levels of the building, the shear force

distribution depends more on the relative shear rigidity of the walls.
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Figure 1.5 Regions where flexure and shear stiffnesses influence the shear force
distribution in inter-connected high-rise walls, and self-equilibrating forces resulting from
flexural yielding in the longer wall.

Simple stiffness properties are usually used in a linear seismic analysis to account
for the presence of cracked regions of concrete members. The effective flexural rigidity
E.l, is normally a portion of the gross section flexural rigidity E./, of the walls. For
simplicity, one reduction factor, such as 70%, is normally used for all elements in the
structure. The effective shear rigidity of concrete walls is usually assumed to equal the
gross section shear rigidity G.4,. That is, the effect of shear cracking is usually not
accounted for. While these simple assumptions about effective member rigidities lead to
reasonable estimates of overall structural displacement, such as the displacement at the
top of concrete walls, they may result in poor estimates of shear force distribution
between concrete walls.

When one wall begins to yield prior to the other wall as shown in Fig. 1.5,
significant redistribution of shear forces will occur in the vicinity of the hinge. The
yielding wall will try to rotate as a rigid body about the hinge, while the non-yielding
wall will try to deform elastically. As a result, a set of self-equilibrating forces will be

transmitted between the walls causing the shear force distribution to change significantly.



To predict the shear force distribution in two inter-connected walls from the initial
uncracked state to when the system of walls fails, requires both a rigorous nonlinear
flexural model and a rigorous nonlinear shear model.

The third and final seismic shear demand issue in which nonlinear shear response is
expected to have a significant influence is shear force demand due to higher modes of
vibration in cantilever walls. Flexural yielding at the base of the cantilever wall is the
desired inelastic mechanism; however nonlinear dynamic analysis has shown that flexural
yielding of the wall does not necessarily limit the shear force in the wall near the base.
The shear force tends to increase as the magnitude of ground motion increases. This
phenomenon is often referred to as “dynamic shear amplification” Ghosh (1990),
Keintzel (1992), Eberhard and Sozen (1993), Priestley and Amaris (2003). The dynamic
shear amplification factor is the ratio of shear force demand obtained from nonlinear
analysis to shear demand obtained from a linear procedure such as the simplified code
procedure. This amplification, which can be as large as 2.0 or 3.0, is caused by the effect
of higher modes in tall structures.

Figure 1.6 shows a simple picture of the phenomenon. Deformation of a cantilever
wall is shown in its second vibration mode. Influence of higher modes is significant for
flexible structures with lower natural frequencies such as tall structural walls.
Contribution of higher modes of vibration would lower the point of application for the
resultant seismic loading. This means that a greater base shear is required to reach the
wall flexural yielding at the base.

In all previous studies on dynamic shear amplification, the shear response of the
concrete wall was assumed to be linear and the uncracked section shear rigidity was
typically used. It is expected that significant shear deformation of a concrete wall due to
diagonal cracking and yielding of horizontal reinforcement may reduce the dynamic

shear amplification.
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Figure 1.6 Shear force distributions in a cantilever high-rise concrete wall.

1.5 Thesis objectives

The objective of this thesis is to investigate how nonlinear shear response due to diagonal
cracking and yielding of horizontal reinforcement influences the seismic shear demand in

high-rise concrete structural walls.

Three specific seismic shear demand problems will be investigated:

1. The reverse shear force problem in high-rise concrete walls due to rigid diaphragms
below the flexural plastic hinge. It is expected that diagonal cracking and yielding of
horizontal reinforcement may significantly reduce the magnitude of reverse shear force

compared to what is predicted using linear analysis.

2. The shear force distribution between different length high-rise concrete walls inter-

connected by floor slabs, including the redistribution that occurs due to flexural cracking
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of walls and flexural yielding of walls. It is expected that diagonal cracking and yielding
of horizontal reinforcement may significantly change the shear force distribution in walls,
and may result in a very different failure mechanism of the wall system than is predicted

using linear analysis.

3. The dynamic shear amplification due to higher modes in high-rise concrete walls. It is
expected that the reduction in shear stiffness of concrete walls due to diagonal cracking
and yielding of horizontal reinforcement may significantly reduce the maximum seismic

shear demand in high-rise walls.

The approach taken throughout this research is to try to develop a simple understanding
of the physical phenomenon, and to use this understanding to develop simplified
procedures that can be used by design engineers. Where possible, procedures that can be

used with linear seismic analysis will be developed.

1.6 Thesis organization

Recent developments on nonlinear behaviour of high-rise walls during earthquake are
presented in Chapter 2. Nonlinear models in concrete walls are discussed in terms of
nonlinear flexural and nonlinear shear models. A brief summary of previous work on
investigating nonlinear dynamic response of high-rise concrete walls are presented in this
chapter.

Chapter 3 investigates the seismic shear demand on high-rise walls at below ground
level. This problem is also referred to as “Shear reversal” on high-rise walls at levels
below ground. The parameters which have significant influence on the magnitude of
reverse shear demand on wall are examined with the most important ones to be
addressed. Nonlinear dynamic response of the wall is studied and the findings are used to
assess the nonlinear shear performance of the wall at levels below ground.

In Chapter 4, seismic shear force distribution between two connected walls in a
high-rise is studied. Model definition for the problem is presented at the beginning,

followed by discussion on the input parameters and the nonlinear models used. The
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nonlinear analysis is performed for each case of analysis and the final results are
compared at the end.

Chapter 5 focuses on dynamic shear demand on a realistic model of high-rise
cantilever wall which is subjected to different earthquake events. Different cases for
variation of flexural strength over the height of wall are considered to investigate the
nonlinear effects on seismic shear force demand. A simplified method to account for
degradation of shear stiffness during earthquake is presented to study the seismic
response and finally the best available state of art hysteretic shear model for concrete
walls is use to study the problem in further details.

Conclusions and recommendations for future studies are presented in Chapter 6.
Ground motions used for nonlinear dynamic analysis and their corresponding response
spectra are given in an appendix. Analyses information which is not addressed in the text

is also presented in an appendix.
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Literaturereview

A brief introduction to available nonlinear models in reinforced concrete walls is
presented in this chapter. A short discussion on a flexural model is followed by a more
detailed explanation on the recent findings on nonlinear shear response of reinforced
concrete walls. Literature review presented in this chapter focuses on the three seismic
shear demand issues which were explained earlier as the scope of the present study. First,
review of previous studies on shear demand at below-ground sections of a high-rise core
wall is presented. Review of previous work on force distribution between inter-connected
high-rise walls is discussed next and finally in the last section of this chapter, review of
the past studies on dynamic shear demand in concrete walls during earthquake is

presented.

2.1 Nonlinear flexural responsein reinforced concrete walls

During lateral motion caused by earthquake, a high-rise structural wall deforms mainly
due to the bending behaviour. Flexural behaviour of concrete walls is known to be ductile
and therefore it is rational to ensure nonlinear behaviour is controlled by hinging
mechanism at the base of wall during ground motion.

In order to establish the nonlinear behaviour of structural walls, sectional analysis

is used to determine the bending moment and corresponding curvature carried by a
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reinforced concrete section under a certain axial loading. Several sectional analysis tools
are available for modeling the flexural behaviour in a reinforced concrete section.
Program Response-2000 (Bentz 2000) was used to build the moment-curvature response
for the structural walls in this study.

Figure 2.1 shows the initial part (before ultimate failure) of moment-curvature
diagram for a section of previously uncracked reinforced concrete wall at the base level.
The values are shown for a typical high-rise core wall to provide a realistic moment-
curvature relationship. Core wall considered has an I-shaped section with overall
dimensions of 9.0 m and has a uniform thickness of 750 mm as shown in Fig. 2.1. The
core wall has an average vertical reinforcement ratio of 1% in the flange area and an
average vertical reinforcement ratio of 0.5% in the web area with /=400 MPa. Concrete
strength was assumed to be f.’ =50 MPa and wall is subjected to an average axial
compression of P/4,=3.75 MPa. Solid line in Fig. 2.1 presents the actual response
obtained from Response-2000 using Vecchio-Collins model (1986) for compression
softening and Bentz model (1999) for tension stiffening. Dashed line presents a
corresponding simplified tri-linear model with an equal captured area under the moment-

curvature curve in comparison to the actual response.
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Figure 2.1 Moment-curvature response of a typical high-rise core wall.
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Two important points where the slope of curves changes suddenly are associated with
cracking of concrete and yielding of vertical reinforcement.

As illustrated in Fig. 2.1, the nonlinear flexural response of concrete walls can be
simplified by using a tri-linear moment-curvature curve. Ibrahim (2000) presented a
simplified method to estimate the moment-curvature response in the high-rise concrete
wall without using sectional analysis. It was observed that the secondary slope of the
moment-curvature curve beyond elastic portion of the curve is mainly dependent on the
section geometry and the amount of vertical reinforcement. This slope is parallel to the
well-known cracked-section stiffness which can be defined for two different states: one
when the section is previously uncracked and the other when the member is severely
cracked due to previous cycles of loading.

One important point on the moment-curvature curve is the point at which
reinforced concrete section reaches the maximum curvature capacity (not shown on Fig.
2.1). The ultimate curvature capacity of the wall (&,) is inversely proportional to the
depth of flexural compression zone. The depth of compression zone at maximum
curvature can be easily calculated and consequently ultimate curvature in reinforced
concrete walls can be estimated. Because of the ductile flexural behaviour, concrete walls
can deform a significant amount beyond yielding of vertical reinforcement before the
ultimate capacity is reached.

One of the major parameters affecting displacement ductility in walls is the length
of plastic hinge which cannot be defined with great precision; however improvement of
available fiber section models has led to a better estimate of nonlinear flexural response

in concrete walls by accounting for spread of plasticity in the plastic hinge zone.
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2.2 Nonlinear shear responsein reinforced concrete walls

In the past, very little was known about the nonlinear shear behaviour of reinforced
concrete walls. Until recently (Gérin 2003), available models for reinforced concrete
walls subjected to shear did not properly account for cracking of concrete and yielding of
horizontal reinforcement. In order to investigate the nonlinear shear response of concrete
walls, experimental tests were conducted on reinforced concrete panels subjected to pure
shear loading at the University of Toronto (Stevens et al. 1991 and Villani 1995).

Gérin (2003) studied the results obtained from testing of membrane elements to
investigate the nonlinear shear behaviour of reinforced concrete walls. He selected seven
specimens taken from three different research projects at the University of Toronto.
Three specimens, SE8, SE9 and SE10 which were heavily reinforced panels in horizontal
diction were tested under reverse-cyclic shear by Stevens (1991). Another set of
reinforced concrete wall elements namely PDV 1, PDV2 and PDV3 were tested by Villani
(1995) under monotonic shear, reverse-cyclic shear, and positive-only cyclic shear,
respectively. All tests were stress controlled and the load was applied until the specified
level of shear stress was reached. For monotonic tests, the load was gradually increased
until the specimen failed. For revere-cyclic tests, the load was gradually increased from
zero until it reached a target stress level; then it was reduced to zero and the same loading
was applied in the reverse direction to complete one full cycle. Typically, a number of
cycles were performed at a stress level below yielding of reinforcement recognized as
elastic cycles. The load was then cycled at a stress level causing yielding of the weaker
reinforcement and the cycles were continued until the element failed. For the tested PDV
elements weaker reinforcement ratio was 0.91%. This amount of horizontal
reinforcement is close to the typical reinforcement ratio of an existing core wall at its

base. Specifications of PDV elements are given in Table 2.1.
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Table 2.1 Specification of PDV elements tested by Villani (1995).

Parameter PDV1 PDV2 PDV3
size (mm) 890x890x70 890x890x70 890x890x70
shear load monotonic reverse-cyclic cyclic
axial load N=N,=-0.4V,, N=N,=-0.4V,, N~=N,=-0.4V,,
f' (MPa) 26.8 23.7 34.1
E. (MPa) 24480 23030 27620
f: (MPa) 1.7 1.6 1.9
Reinforcement
x-dir 6 mm @ @ 45mm 6 mm @ @ 45mm 6 mm @ @ 45mm
Dx 0.0182 0.0182 0.0182
y-dir 6 mm @ @ 89mm 6 mm @ @ 89mm 6 mm @ @ 89mm
Py 0.0091 0.0091 0.0091
PxPy 2:1 2:1 2:1

Results of testing of specimens PDV1, PDV2 and PDV3 are presented in Fig. 2.2
in terms of shear stress — shear strain of a reinforced concrete wall element. As shown in
Fig. 2.2 (a) for PDV1 element, the cracked shear modulus G, 4ckeq , 1S approximately 10%
of initial elastic shear modulus Gg,,. The first visible crack forms roughly at 45° to the
x-axis normal to the principal applied tension at the stress level of 2.6 MPa. As more
cracks form and the cracks widen, reinforcement starts to carry more of the load. At a
stress level of 6.2 MPa reinforcement yields and the shear strain increases more rapidly.
Yielding of horizontal reinforcement in the PDV1 element takes place at a shear strain
range between 0.003 and 0.004. Figure 2.2 (b) shows the reverse-cyclic response of
PDV2 element. Most of loading cycles occur under the cracking state for element PDV2.
For these cycles, the re-loading curve passes through the last point in the previous cycle
in the same direction. First cracking was observed at a shear stress level of 2.8 MPa
followed by development of more diagonal cracks until yielding of reinforcement
occurred at shear stress of 6.2 MPa and a shear strain of approximately 0.0035. Results
for PDV3 is shown in Fig. 2.2 (c) where the element is cycled in positive shear only and
all but one cycle happened before yielding. Concrete shear cracking and yielding of

reinforcement occurred at stress levels of 4.0 MPa and 6.5 MPa respectively.
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Figure 2.2 Shear stress-shear strain responses for shear wall elements:
a) PDV1, b) PDV2, ¢) PDV3 (from Gérin, 2003).
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Figure 2.3 Simplified predicted response as bi-linear and tri-linear envelopes:
a) PDV1, b) PDV2, ¢) PDV3 (from Gérin, 2003).
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A simplified way of accounting for concrete cracking in shear is to use effective
stiffness as a fraction of gross shear stiffness. Effective stiffness (G.4,,) may range from
a non-cracked state (Go4,,) to a fully cracked state (G..4,,) as shown in Fig. 2.2. Gérin
(2003) proposed a simplified model for the hysteretic shear response in terms of bi-linear
and tri-linear envelopes to fit the cyclic response as shown in Fig. 2.3.

Gérin (2003) observed that there is a linear relationship between shear strain
demand and the developed strain in the weaker reinforcement (first reinforcement to
yield). Shear deformation increases proportionally when the weaker reinforcement yields.
The pinching of the hysteretic loop was found to be a function of plastic strain in the
horizontal reinforcement and it becomes more pronounced as additional plastic strain
accumulates in the reinforcement.

A general model was formulated where deformations at cracks are separated from
deformation of concrete in-between cracks. Gérin (2003) observed that the strains in
concrete and reinforcement are directly related to the applied loads whereas strains at
cracks are related to the maintaining strain compatibility between the concrete and the
reinforcement. As proposed by Gérin (2003), the shear strain in reinforced concrete
section can be determined from compatibility of concrete and reinforcement strain as

given in Eq. 2.1.

Viw =€, TE, _2845 (21)

¢, and ¢, are the normal strains of reinforcement in the horizontal and vertical directions
respectively and &y is the strain at 45° to the reinforcement and in the direction closest to
the principal compression strain direction. Yielding of the element is defined as when the
horizontal reinforcement reaches the yield point. For simplicity this strain is assumed to
be equal the bare bar yield strain given by Eq. 2.2 where E; is the elastic modulus of steel

bars.

e = % 2.2)
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For simplicity, Gérin (2003) assumed that the concrete stresses consist of uniaxial
compression at 45° to the reinforcement and assumed a linear stress-strain relationship

for the vertical reinforcement. The strain in vertical reinforcing bars is given by Eq. 2.3.

£ = >0 (2.3)

v, is the applied shear stress at yield, » is the axial compressive stress in the section and p,

is the vertical reinforcement ratio. The strain at 45° at yield is obtained from Eq. 2.4.

£5 = L (2.4)

In Eq. 2.4, E. is the elastic modulus of concrete material. By combining previous

expressions, the shear strain at yield can be obtained by:

fy v, —n 4vy

" Es TE @3

With the condition that:

PP 2.6)
ESpV ES

Gérin (2003) observed that for typical design, developed shear strain at yield in a
reinforced concrete wall section ranges from 0.0021 to 0.0047 as shown in Fig. 2.4. Gérin
also investigated the fact that shear dominated elements with typical amount of
reinforcement can deform significantly beyond yielding of the horizontal reinforcement.

This suggests that shear walls possess considerable ductility in shear.
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Figure 2.4 Contribution to shear strain at yield for typical shear walls (from Gérin, 2004)

Another investigation by Gérin (2003) was to obtain a relationship between shear

strain ductility and applied shear stress. Figure 2.5 shows the relationship between shear

strain ductility and the shear stress at yielding as proposed by Gérin (2003) based on

results of experimental testing.
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The expression for shear strain ductility is given by Eq. 2.7.

1=4-12 v,/ fo 3 v,/ f1<0.25 2.7)

In order to construct the tri-linear shear stress — shear strain envelope for a given
reinforced concrete wall, shear stress at diagonal cracking of concrete and yielding of
horizontal reinforcement need to be determined. The shear force at cracking can be
estimated by using the expressions suggested in ACI 31/8-05 which are summarized
below.

For members subjected to axial compression load N,, shear strength provided by

concrete alone and for non-prestressed members is given by Eq. 2.8:

g N AT _
VC—(]+14Ag N Jbyd s (ACT11-4) (2.8)

In the expressions above, N, is the axial compressive force in the wall section, d is the
total shear depth of the section and b,, is the thickness of section considered. Equation
2.8 gives a lower bound for shear strength provided by concrete. In order to obtain an

upper bound estimate for shear strength, ACI 318-05 suggests using Eq. 2.9.

V,=03f/b,d 1+ OZN“ . (ACI 11-7) (2.9)
4

Provisions given by ACI318-05 for prestressed concrete members can be used for

non-prestressed members with minor adjustments for axial compression instead of pre-

stressing force as expressed by Eq. 2.10.

v, =03/ +%)de . (ACI 11-12) (2.10)
g
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The theoretical upper bound for strength of concrete at cracking based on basic principles

is expressed in Eq. 2.11.

V. =0.33 l+———=—b d; Upper bound limit 2.11
\/_\/ 33\/—14 pp (2.11)

Figure 2.6 compares each of the explained expressions to estimate shear strength of walls
at cracking. The horizontal axis in Fig. 2.6 corresponds to axial compression stress while

the vertical axis shows the shear stress level at cracking in the section of wall.
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Figure 2.6 Comparison between different estimates of shear stress at cracking.

Shear force at yielding can be considered equal to nominal shear strength by
assuming the strain hardening is insignificant. ACI318-05 recommends the upper limit

for the nominal shear strength of structural walls as:

V,= A (af +p.f): (ACI 21-7-4) (2.12)
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Where, A, is the effective shear area taken as b,d and p, is the horizontal steel ratio.
Coefficient o, is taken as 1/4 for A4,//,,<I.5 and is taken as 1/6 for A,/l,,>2.0.

Figure 2.7 shows the proposed tri-linear curve by Gérin (2004) and the
corresponding cyclic shear stress-shear strain curve according to the testing of SE8 wall
element. As shown, an envelope to fit the hysteretic response is defined by three specific
points; initiating of diagonal cracking in concrete at stress level of v, at the
corresponding shear strain of y. = vo/Ggross , yielding of horizontal reinforcement at
stress level of v, at an associated shear strain of y, and point of ultimate shear failure at
stress level of v, at an associated ultimate shear strain of y,. Note that in Fig. 2.7 strain
hardening was insignificant and therefore the shear stress value is assumed constant from

point of yielding to the point of ultimate failure.
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Figure 2.7 Proposed load-deformation curve for nonlinear static analysis by Gérin (2004),
shown for membrane element SES tested by Stevens et al. 1991.

In order to study the nonlinear dynamic response of the reinforced concrete walls,
a complete hysteretic behaviour is required for the stress-strain relationship in addition to
the specified tri-linear backbone. A simplified hysteretic shear model that was proposed

by Gérin (2004).
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Figure 2.8 Proposed simplified hysteretic model by Gérin (2004), shown for membrane
element SE8 (Stevens et al. 1991).

The simple hysteretic model shown in Fig. 2.8, assumes that yielding occurs at v,
for each cycle, unloading occurs at a constant slope equal to G, , and the plastic shear
strain y, remaining at the end of each unloading segment is cumulative from one direction
of loading to the other. The reloading curve accounts for the closing of diagonal cracks in
one direction and the simultaneous opening of diagonal cracks in the other direction in a

simple way. The shear strain at any applied shear stress level is computed by:

Y=vetkyp (2.13)

Where y. is the elastic shear strain equal to v /G, and ky, is the plastic portion of the shear
strain. The response predicted by the simple model was compared to the experimental
results from a large-scale membrane element test (Stevens et al. 1991) as shown in Fig.
2.8. Stiffness decay and pinching of the loops due to the accumulation of plastic strains in

the reinforcement were both well represented by the proposed model.
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2.3 Seismic shear force demand at levels below ground

There are a number of important issues in the design of high-rise concrete shear walls
where shear deformations are significant and therefore the influence of the nonlinear
shear response on the seismic force demand shall be investigated. The first topic of the
present work which will be discussed in Chapter 3 will investigate the nonlinear shear
response in the below-ground sections of a high-rise core wall where large reverse shear
forces due to presence of rigid diaphragms and foundation walls, is of considerable
concern to designers.

Bevan-Pritchard, Man and Anderson (1983) conducted a study on the force
distribution in a core wall at the subgrade levels of a high-rise concrete building subjected
to earthquake. Figure 2.9 shows the plan and elevation views of the model of building at

levels below ground.

PARKING SLAB I_. A
i e o — =4 M
I PARKING GARAGE _ /‘ﬁ
PERIMETER WALLS — !FLOOR

K

RETAINING WALL
AT PARKING LEVEL

L' SECTION A-A
A

Figure 2.9 Plan and elevation section of the subgrade structure which include core wall,
perimeter walls and parking slabs (from Bevan-Pritchard, Man and Anderson 1983).

The analytical model used for the subgrade structure is shown in Fig. 2.10. The
core wall and foundation walls were modeled by frame elements accounting for both
flexural and shear deformations. Line springs that attach the core wall to the foundation
walls below ground were used to account for in-plane bending, axial and shear

deformation of parking floor slabs.
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As linear analysis was used, the shear force and bending moment could be applied
separately, and the concept of applying a unit load was used. The applied base shear
force used in all analyses was 1 k, while the bending moment applied at the base was 100
k-ft. Assuming a linearly varying lateral load, the value of moment to shear ratio used in

analyses corresponds to a 150 ft high building.
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Figure 2.10 Model used to study force demand at subgrade structure by Bevan-Pritchard,
Man and Anderson (1983).

Analyses were performed to identify the parameters which most influence the
force distribution at subgrade levels of the core wall. In the first case, perimeter walls and
the floor diaphragms below ground were assumed to be infinitely rigid neglecting any
shear deformation in the core wall. Core wall had a 30' x 30' tubular section with an all
around thickness of 1'-0", resulting in a moment of inertia of /=3.38x10® in*. For this
case, the shear force value in the core wall at the first level below ground was 14 kips,
which is fourteen times the base shear associated with the applied bending moment.

In the next case, all the assumptions were similar to first case except that the shear
deformation of the core wall was included in the model considering an effective shear
area of 4,=8640 in’. The effect of shear deformation was examined in the core wall by
reducing and increasing the initial effective shear area by a factor of 10.

Influence of degree of fixity at the core wall’s footing was also examined by
assuming an extreme case of fully pinned support. Results for bending moment and shear

force at the core wall below ground are shown in Fig. 2.11.
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The developed overturning moment and shear force in the core wall below ground
showed that the influence of shear deformation was significant when perimeter

foundation walls and the parking slabs were assumed infinitely rigid.
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Figure 2.11 Moment distribution for applied concentrated moment at ground for rigid
perimeter walls (a) fixed footing (b) pinned footing (from Bevan-Pritchard, Man and
Anderson 1983).

Influence of flexibility of foundation walls and parking slabs on the magnitude of
developed shear force in the core wall was also investigated. Perimeter foundation walls
had a length of 100', a height of 9.0' floor to floor and a thickness of 8.0". Shear stiffness
for the core wall was assumed infinite in the first run. Results obtained from analysis
showed that due to the large stiffness of foundation walls relative to the core wall,
flexural and shear stiffnesses of foundation walls have little influence on the magnitude

shear force and bending moments developed in the core wall below ground.
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Part of this study proposed a formula for determining the stiffness of the springs
used to model the floor diaphragms. Upper and lower bounds equal to 100,000 kips/in
and 3,000 kips/in were used for diaphragm stiffnesses to study the distribution of shear
force and bending moment in the core wall below ground. Figure 2.12 shows the results
for the case when the influence of shear deformation is included in the core wall by
assuming A4,=8640 in”>. Comparison of obtained results showed that major influence on
shear force distribution was caused by diaphragm stiffness rather than the shear

deformation of core wall.

100 EFT 100 K-FT Es=100000K/in  jgp K.FT
/—\\ m =——— e=3000 E/in
JAE . _1E .
T 5 100 F p—f
P— 91 Eyg 51 \ss p—s
|  CORE —

I
84 !9? 95 1!"16.1 br_4

|_;;- ér—"""'llys 13 | .lizs.'f PN

CORE PERIMETER WALL 0
FIXED END

Figure 2.12 Influence of diaphragm stiffness on moment and shear force distribution
(from Bevan-Pritchard, Man and Anderson 1983).

Finally 100 k-ft moment and 1k shear force at the base were applied
simultaneously to a 30' x 30' core wall which represented a 20-storey building subjected
to lateral motion. Results for this case are shown in Fig. 2.13. The degree of fixity at the
core wall’s footing found to be the most important parameter with the second most
important parameter being the parking slab stiffness. Influence of core wall stiffness was
also studied by using 20'x20" and 40'x40" core sections with different combination of

applied moment and shear at the ground level to represent a 6-storey and a 35-storey
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building respectively. According to the analyses performed, as the core wall gets stiffer,
the effect of other parameters on the distribution of shear force and bending moment
below ground becomes less pronounced.

Table 2.2 shows the ratios of developed shear force at the first below-ground level

to the applied shear at the base (Vi/Vs) corresponding to different analysis cases

conducted by Bevan-Pritchard, Man and Anderson (1983).
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Figure 2.13 Influence of diaphragm stiffness on moment and shear force distribution for

simultaneously applied concentrated moment and shear at ground (from Bevan-Pritchard,
Man and Anderson 1983).

This study concluded that by using the assumption of rigid floor diaphragms,
actual behaviour of the sub-grade structure cannot be captured properly. Parking
diaphragm’s stiffnesses and degree of fixity at the core wall’s footing were found to be
the most important parameters that influence the distribution of shear force below
ground. It should be noted that the model used in this study was limited to only three
stories below ground while the influence of number of stories below ground was not
investigated. In fact most of high-rise buildings above 20 stories built today have more

than three underground levels to accommodate vehicle’s parking space.
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The study conducted by Bevan-Pritchard, Man and Anderson (1983) lead to
identify parameters that influence the seismic force demand at below-ground levels of the
core wall; however their study did not include any nonlinearity in the analytical model.
Nonlinear shear behaviour becomes important specially at below-ground levels where the
shear stiffness is quite high, furthermore hinging due to large bending moment demand
significantly influences the seismic response of core wall above ground.

The nonlinear flexural behaviour above ground as the plastic hinge forms at the
base of wall also influences the shear force demand at levels below ground. In the present
study, both nonlinear flexural response and nonlinear shear response will be used to

investigate the seismic shear demand at below-ground levels of high-rise core walls.
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Table 2.2 Ratio of shear force at the first below-ground level to base shear for different
analysis cases in study by Bevan-Pritchard, Man and Anderson (1983).

Case Core wall Perimeter walls Diaphragm Core moment | Core wall Footing at Vist/
dimension dimension stiffness of inertia shear area Core Vb
1 30'x30'x1' | infinitely rigid mf;‘%‘fgly 3.4x10°8ind | infinite fully fixed 14.1
30'x30'x1' | infinitely rigid mf;‘%‘fgly 3.4x10°8ind | 8640in2 | fully fixed 2.6
2 30'x30'x1' | infinitely rigid mf;‘%‘fgly 3.4x10°8ind | 86400in2 | fully fixed 7.9
30'x30'x1' | infinitely rigid mf;‘%‘fgly 3.4x10°8ind | 864 in2 fully fixed 0.3
30'x30'x1' | infinitely rigid mf;‘%‘fgly 3.4x10°8ind | 8640in2 | fully pinned 45
3 30'x30'x1' | infinitely rigid ‘nf;‘ir;‘itgly 3.4x10°8ind | 86400in2 | fully pinned 7.9
30'x30'x1' | infinitely rigid mf;‘%‘fgly 3.4x10°8ind | 864in2 | fully pinned 38
30'%30'x1" 100'8" 100,000 K/in | 3.4x10"8ind4 | infinite fully fixed 0.7
30'%30'x1" 100'8" 3,000K/in | 3.4x10°8ind4 | infinite fully fixed 0.8
4
30'%30'x1" 100'8" 100,000 K/in | 3.4x10"81in4 | infinite | fully pinned 2.8
30'%30'x1" 100'8" 3,000K/in | 3.4x10°8ind4 | infinite | fully pinned 2.1
30'%30'x1" 100'<8" 100,000 K/in | 3.4x10"81in4 | 8640in2 | fully fixed 0.4
30'%30'x1" 100'<8" 3,000K/in | 3.4x10°8ind4 | 8640in2 | fully fixed 0.8
5
30'%30'x1" 100'<8" 100,000 K/in | 3.4x10"81in4 | 8640in2 | fully pinned 3.0
30'%30'x1" 100'<8" 3,000K/in | 3.4x10°8ind4 | 8640in2 | fully pinned 2.1
30'%30'x1" 100'<8" 100,000 K/in | 3.4x10"8in4 | 8640in2 | fully fixed 0.4
30'%30'x1" 100'<8" 3,000K/in | 3.4x10°8ind4 | 8640in2 | fully fixed -0.6
6
30'%30'x1" 100'<8" 100,000 K/in | 3.4x10"81in4 | 8640in2 | fully pinned 3.0
30'%30'x1" 100'8" 3,000K/in | 3.4x10°8ind4 | 8640in2 | fully pinned 2.1
20'%20'x1" 100'8" 100,000 K/in | 9.5x10"7in4 | 5760in2 | fully fixed 0.4
20'%20'x1" 100'8" 3,000K/in | 9.5x10°7ind | 5760in2 | fully fixed 0.7
7
20'%20'x1" 100'<8" 100,000 K/in | 9.5x10°7in4 | 5760in2 | fully pinned 1.1
20'%20'x1" 100'<8" 3,000K/in | 9.5x10°7ind4 | 5760in2 | fully pinned 0.5
40'%40'x 1" 100'8" 100,000 K/in | 8.2x10°6in4 | 11520in2 | fully fixed 0.2
40'%40'x 1" 100'<8" 3,000K/in | 82x10°6ind4 | 11520in2 | fully fixed -0.9
8
40'%40'x 1" 100'<8" 100,000 K/in | 8.2x10°6in4 | 11520in2 | fully pinned 58
40'%40'x 1" 100'8" 3,000K/in | 82x10°6ind4 | 11520in2 | fully pinned 4.4
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2.4 Seismic shear forcedistribution between inter-connected walls

A second issue where nonlinear shear behaviour has a significant influence is associated
with the shear force distribution between inter-connected high-rise concrete walls of
different lengths. Chapter 4 of the present dissertation will investigate the shear force
distribution in inter-connected walls using both a rigorous nonlinear flexural model and a
rigorous nonlinear shear model.

Rutenberg (2004) studied the seismic shear force distribution between cantilever
walls with different lengths used in multi-storey buildings. Figure 2.14 shows the
building example that Rutenberg used in his study. The walls are attached to each other
with floor slabs and therefore restrained to displace the same amount horizontally at each
storey over the height. Wall 2 is twice the length of Wall 1 and the building considered

was 8 stories high.
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Figure 2.14 Example of building studied by Rutenberg (2004).

Ductile walls are generally designed to yield in flexure at their base and once
yielding occurs in one of the walls, the initial force distribution between the walls will
change. Since the curvature at yield is a function of wall lengths, walls of different length
will yield at different horizontal displacements. The formation of plastic hinge in one of
the walls lead to shear force transferring from the yielded wall to the un-yielded walls
while transfer of bending moment is mostly carried by the coupling action of floor

diaphragms. Rutenberg (2004) found that the force distribution after formation of plastic
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hinge in walls is a pure nonlinear phenomenon which cannot be detected by any means of
linear analysis.

Rutenberg (2004) carried out several numerical examples to study the force
distribution between walls by performing pushover analysis using an inverted triangular
loading pattern. Walls were modelled as column elements, and their moment-curvature
relationship were assumed to be bi-linear, with initial flexural stiffness evaluated as the
yield strength divided by the yield curvature and the post-yielding slope was assumed
equal to 1.5% and 1.9% of the elastic stiffness in the short wall and long wall
respectively. Figure 2.15 shows the bending moment and shear force distribution at the
base of walls with respect to the monitored roof displacement for an example of walls
shown in Fig. 2.14. Figure 2.15 shows the initial bending moment carried by the longer
wall is much larger than the bending moment carried by both of shorter walls due to the
relative flexural stiffness. At a roof displacement of 0.1 m, Wall 2 yielded in flexure
causing the extra moment to be transferred to Wall 1. Wall 1 continued to take extra
moment until it reached the yielding capacity in flexure leading to significant reduction in
the flexural stiffness. Shear force distribution between walls is shown in lower plot on
Fig. 2.15. By flexural yielding of Wall 2, shear force is transferred to the un-yielded
shorter wall. The shear demand on shorter walls increased rapidly as Wall 2 was unable
to carry the extra shear force until Wall 1 yields in flexure causing extra shear force be

transferred from Wall 1 to Wall 2.
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Figure 2.15 Moment and shear force distribution between structural walls in the model
shown in Fig. 2.14 by Rutenberg (2004).

The maximum shear force on the shorter wall after flexural yielding of longer
wall was observed to be greater than its value predicted by elastic analysis for the same
peak base moment. The study showed that the shear force demand on the shorter walls
can be underestimated when using a linear analysis as suggested by most design codes.

In the work done by Rutenberg (2004), nonlinear shear behaviour was neglected
in the model and only nonlinear flexural response was accounted for. Studying the actual
shear force distribution between connected walls in high-rise buildings requires
consideration for both nonlinear flexure and nonlinear shear behaviour in structural walls.
Since contribution of shear deformation is significant at the levels close to the base in
inter-connected walls, it is more appropriate to include nonlinear shear behaviour in the
numerical model.

In this thesis, investigation on shear force distribution between inter-connected
high-rise walls is done in a more accurate method by taking into account both nonlinear

flexural response and nonlinear shear response in the numerical model.
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2.5 Dynamic shear force demand on cantilever concrete walls

The third and final topic which covers Chapter 5 of the this dissertation is related to the
dynamic shear demand caused by the influence of higher modes and the corresponding
nonlinear action that takes place in tall cantilever walls.

Many building codes such as National Building Code of Canada (NBCC) suggest
using a simple pseudo-static procedure to estimate seismic shear demand in low-rise to
medium-rise buildings. For tall and irregular buildings, influence of higher modes of
vibration is significant and therefore dynamic analysis is often required to estimate the
force demand during earthquake. While linear dynamic analysis procedures is often used
for design purpose, a realistic seismic behaviour which accounts for the structural
damage can only be captured by performing nonlinear analysis.

Nonlinear dynamic analysis has shown that flexural yielding at the base of wall
does not necessarily limit the seismic shear force. The phenomenon that shear force tends
to increase as the magnitude of ground motion increases is often referred to as “dynamic
shear amplification” or “dynamic shear magnification”. Dynamic shear amplification
factor is defined as the ratio of shear force demand obtained from nonlinear analysis to
the shear demand obtained from a linear analysis procedure such as the pseudo-static
procedure. Dynamic shear amplification is mainly caused by the effect of higher modes
in tall buildings and can significantly influence the distribution of bending moment and
shear force over the height of structural walls.

Blakeley, Cooney and Megget (1975) were among the first who investigated the
seismic shear force demand for a certain flexural capacity at the base of a cantilever wall.
They observed that after yielding of wall at the base, predicted shear force demand by
nonlinear analysis is greater than the predicted shear force demand using linear pseudo-
static procedure. The study led to significant findings on nonlinear response of walls and

as a result, dynamic amplification factor was proposed to be estimated by using Eq. 2.13:

w,=0.9+n/10 ; n<6 (2.13)
w,=1.3+n/30<1.8 ; n>6
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o, 1s the dynamic shear amplification factor and #» is the number of stories above the base
level. Value of w, proposed in Eq. 2.13 needs not be greater than 1.8 for building over 15
stories high.

The International Federation for Structural Concrete (CEB) suggests a similar

expression to estimate the seismic shear demand on structural walls:

@,=0.9+n/10 ; n<j5 (2.14)
w,=1.2+0.04n<1.8 ; n>5

In the study by Blakeley, Cooney and Megget (1975) nonlinear response of cantilever
wall modeled to include flexural yielding at the plastic hinge near the base while shear
behaviour was assumed to remain elastic. Note that the expressions given in Eq. 2.13 and
Eq. 2.14 depend only on the number of stories.

Keintzel (1990) investigated the nonlinear behaviour of reinforced concrete walls
subjected to ground motion and he observed that shear force amplification caused by
influence of higher modes depends primarily on the g factor. ¢ factor is expressed as R
factor U.S. and Canada and accounts for the level of expected ductility in design. It was
observed that during nonlinear dynamic analysis, shear force fluctuates more rapidly than
overturning moment at the base of wall. Shear force continues to fluctuate after wall
yields at the base. Keintzel (1990) suggested use of amplification factor given in Eq. 2.15
to modify the results obtained from linear analysis to account for nonlinear action of the

wall.

®=qy|(M,/qM,)* +0.1(max$,, /S, (1)’ <q (2.15)

In Eq. 2.15, S.(T;) is the design value of the acceleration response spectrum for the
fundamental period of the structure, M, is the overturning moment at the base of wall due
to design seismic load for the fundamental mode and ¢ is known as the ratio between
linear demand and provided strength. y is a correction factor that is equal to 1.0 for
typical buildings. In Eq. 2.15, first term under square root accounts for the fundamental
period while the second term corresponds to the second mode of vibration. In this

procedure, the reduction of the elastic shear force by yielding is only applied to the
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fundamental mode of vibration. The expression given by Keintzel (1990) accounts for
different seismic parameters associated with dynamic characteristics of the structure and
is more refined compared to Eq. 2.13 and Eq. 2.14.

Ghosh (1992) studied the dynamic base shear in an isolated cantilever wall by
decomposing it into two components: one associated with the effect of first mode and the
other associated with the effect of higher modes. The study by Ghosh (1992) indicated
that it is possible to use less number of lumped mass rather than using mass for every
floor over the height of wall and yet capture the dynamic response. Four walls having 10,
20, 30 and 40 stories were analyzed using computer program DRAIN-2D (Kanaan &
Powell 1973). The program uses a concentrated hinge to model the nonlinear flexural
response. The moment-rotation characteristics of reinforced concrete beam-columns
elements were used with a basic bi-linear relationship that develops into a hysteretic loop
that follows the modified Takeda (1970) model for unloading and reloading path. It is
noted that in the study by Ghosh (1992), the effect of inelastic shear was not included in
the model. Based on numerical results of nonlinear dynamic analysis, the maximum shear
demand at the base of isolated walls was given by Eq. 2.16 which was also addressed by

Aoyama et al. (1987) .

Vinax=0.25 W agma/ g+M,/ 0.67h, (2.16)

W is the total weight of the building and agm. 1s the peak ground acceleration. M,, is the
moment capacity at yield and 4, is the total height. Equation 2.16 suggests that the
developed maximum shear force at the base of wall is equal to 25% of inertial force at
peak acceleration plus required shear force acting at two third of height to form plastic
hinge at the base of wall.

Eberhard and Sozen (1993) proposed Eq. 2.17 which is very similar to Eq. 2.16
by Ghosh (1992) to estimate the maximum seismic shear demand according to the results

obtained from nonlinear dynamic analysis of several reinforced concrete walls.

Vk: Vn+Dm-WAe (217)
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Vi is the estimated peak shear for the structure and V, is the base shear capacity
calculated by limit analysis assuming an inverted triangular force distribution. D,, is a
coefficient that varies from 0.27 to 0.30 for a nine storey building. W is the total weight
of the structure and 4. is the peak ground acceleration. In equations 2.16 and 2.17, the
maximum developed shear force is solely dependent on peak ground acceleration and
influence of parameters such as ductility and natural period were not included in
derivation of above expressions.

Seismic shear demand on cantilever structural walls was studied from a Canadian
Code prospective by Filiatrault et al. (1994). The expression given in NBCC to estimate
base shear was based only on the first mode of vibration. Due to higher modes effect, the
resultant of the seismic lateral loading would be considerably lower than two third of
height associated with the first mode inverted triangular loading pattern. Five wall-type
structures having 3, 6, 10, 15, and 25 stories that were designed in three different seismic
zones in Canada: Montreal (Z, > Z,), Vancouver (Z, = Z,), and Prince Rupert (Z, < Z,)
were modeled to perform time history analysis. Nonlinear flexural behaviour was
modeled using concentrated plastic hinges at both ends of elements while shear behaviour
was assumed to remain elastic. The elastic-perfectly plastic moment-rotation behaviour
was assigned to each hinge following Takeda stiffness degradation model (1970). A 5%
critical Rayleigh damping based on first two modes of vibration was considered and a
time-step increment of 0.0015 sec was used in all analysis cases. The analyses showed
that the flexural hinge location was different for different seismic zones. In Montreal and
Prince Rupert, the flexural hinge was formed at the base of wall whereas for Vancouver
the flexural hinge was formed at upper levels as well as base due to the effect of higher
modes. Note that the walls geometry and reinforcement changed over the wall’s height.
5% dynamic amplification factor was computed from the ratio of actual shear demand to
the probable shear strength at every level. The values of dynamic shear amplification
factor were found to be in agreement with the proposed values by the New Zealand code.
Dynamic shear amplification factor suggested by Filiatrault (1994) was equal 1.0 for Z,
>= 7, and equal to 1.50 for Z, < Z,.
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Seneviratna and Krawinkler (1994) studied the same problem to investigate the
shear force distribution over the height of wall. The influence of shear deformations in
the wall was neglected and walls were modeled using beam-column elements with
uniform stiffness over the height. Lumped mass was adjusted at every floor to result in a
certain fundamental period to study walls up to forty stories. Bi-linear moment-rotation
hysteretic characteristic was used for the plastic hinge at the base ignoring P-Delta effect
with o being the post-yielding slope. The results obtained from nonlinear time history
analysis were presented in terms of normalized shear force and bending moment
envelope over the height of wall.

The seismic design storey shear envelope based on UBC-1991 is also shown by the
dashed line. It was observed that in the upper quarter of the wall, the distribution of shear
force follows the path given by code’s provisions whereas in the lower three-quarter of
the height, the pattern are significantly different from the first mode estimate of building
code. For higher ductility factor in the analysis, moment in upper levels exceeded the
overturning moment at the base for the tall walls due to influence of higher modes of
vibration and therefore flexural hinge will likely form at upper levels as well as the base
of wall. Although higher modes effect in tall walls influenced the shear force demand
significantly, it had a less important effect on the global deformation demand. It was also
found that the contribution of plastic hinge rotation to the total drift was relatively a
stable parameter with a weak dependence on the fundamental period.

Tremblay, Leger and Tu (2001) studied the inelastic response of a 12-storey ductile
RC wall under strong ground motion to investigate the P-delta effects. The effective
bending stiffness for the model of wall in the analysis was considered E/.=0.7El,. Two
different sets of ground motions were considered according to the seismicity
characteristics of Montreal and Vancouver. A bi-linear moment-rotation model was
considered for the beam-column elements to represent the nonlinear behaviour of the
shear walls. The shear behaviour was assumed to remain elastic similar to previous
studies. It was observed that by satisfying the 2.0% inter-storey drift limit proposed by
NBCC, the P-Delta contribution becomes less pronounced in the seismic response.
Results obtained from nonlinear dynamic analyses also lead to important findings on

dynamic shear demand in medium-rise RC walls. It was concluded that pseudo-static
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procedure does not accurately capture the shear force distribution over the height of high-
rise walls. The seismic shear force demand obtained from inelastic response of the wall is
amplified at lower levels close to the base and also at the upper levels when compared to
the prediction of pseudo-static procedure.

The average dynamic shear magnification factors obtained at the base of wall
located in Montreal and Vancouver were found to be 1.54 and 1.70 respectively.
Maximum dynamic amplification was observed at higher levels rather than the base of
wall. This study showed that New Zealand provisions to account for dynamic shear
amplification were in agreement with the obtained results from nonlinear dynamic
analysis.

In a similar approach, Panneton, Legger and Tremblay (2006) investigated the
seismic response of an eight-storey building located in Montreal using a 3-D nonlinear
element. Interaction of axial force and bi-axial bending was considered in the model of
wall. Axial and flexural failure envelopes (CSI 2003) were used together with the
modified Takeda hysteretic model to represent the inelastic response of the plastic hinge
zone. Dynamic response of the building was studied using synthetic earthquakes
representative of credible magnitude-distance scenarios to match UHS seismic hazard of
Montreal. The program Ruaumoko-3D (Carr 2003) was used in this study to perform
three-dimensional nonlinear time history analyses. Panneton, Legger and Tremblay
(2006) also observed that the inelastic shear force and bending moment is underestimated
when using NBCC provisions for seismic design. The large shear force and bending
moment in the upper levels of wall indicated the importance of higher modes effect. A
mean value of dynamic shear amplification of 2.57 was calculated through the results of
inelastic dynamic analysis which was greater than the value 1.57 suggested by the New

Zealand code.
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Priestley and Amaris (2003) used a suite of five spectrum compatible earthquake
records scaled to different multiples of the design intensity from 0.5 to 2.0 in order to
study the dynamic response of concrete walls. The modified Takeda hysteretic model
(1970) for flexure was used to simulate the nonlinear behaviour of concrete walls with
different heights. A modified superposition method based on modal analysis was
proposed to obtain a better estimate of the response as was compared with the realistic
nonlinear behaviour. By performing nonlinear dynamic analyses and using available
capacity design methods, Priestley and Amaris (2003) found that both multi-mode
analysis and conventional capacity design methods were non-conservative in estimating
the seismic shear demand in high-rise concrete walls. The dynamic shear amplification in
walls was found to be highly dependent on the higher modes with second mode
dominating.

Rutenberg and Nsieri (2006) studied the seismic shear demand on cantilever walls.
Program Ruaumoko 2-D (Carr 2000) was used in the analysis assuming an elastic-
perfectly plastic flexural response to study the distribution of the shear force over the
height of isolated walls. Shear behaviour was assumed linear and only nonlinear flexural
behaviour was accounted for. Rutenberg and Nsieri (2006) proposed Eq. 2.18 to estimate
the dynamic shear force obtained from nonlinear time history analysis V, by
amplification of pseudo- static shear force V; which is taken as triangularly distributed
shear force to cause flexural yielding at the base as given by Eq. 2.19 with #n being the

number of stories above base level.
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Vy=[0.75+0.22(T+q+Tq)] Vy (2.18)
M
y—— (2.19)

2 1
—H(l1+—
3 ( Zn)

An envelope for shear force distribution over the height was also proposed by

Rutenberg and Nsieri (2006) which is shown in Fig. 2.16.
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Figure 2.16 Proposed envelope for dynamic shear demand by Rutenberg and Nsieri
(20006).

Parameter {used to define shear force envelope is given below:

E=1.0-03T>0.5 (2.20)

For which T is the fundamental period of the wall and w, is the dynamic shear

amplification factor as expressed in Eq. 2.18.
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It is noted that the dynamic shear amplification factor is mostly used to scale up the
shear force demand predicted by the simplified pseudo-static analysis that corresponds to
a triangular distribution of seismic forces over the height of building; however dynamic
shear amplification factor can also be used to modify the shear force demand obtained
through other types of linear analysis such as response spectrum analysis (RSA) or linear
response history analysis.

In order to compare different methods to estimate the dynamic shear amplification,
an example for several cantilever shear walls is presented here. Table 2.3 provides a
summary of assumptions used in deriving the available expressions to determine the
dynamic shear amplification factor. The methods described in Table 2.3 were used for the
purpose of comparison in the present example. Because of the similarities in the formulas
proposed by Aoyama et al. (1987), Ghosh (1992) and Eberhard et al. (1993), Eq. 2.17
suggested by Eberhard et al. (1993) was used which gives an upper-bound estimate for

dynamic amplification factor.

Table 2.3 Different procedures to determine dynamic shear amplification.

NZS-3101 (1982)

Keintzel (1990)

Eberhard et al. (1993)

Rutenberg (2006)

Flexural model

hinge at base

hinge at base

hinge at base

multiple hinging

Shear model

elastic shear

elastic shear

elastic shear

elastic shear

Application

pseudo-static

RSA

pseudo-static/RSA

pseudo-static

Equation

Eq.2.13

Eq.2.15

Eq.2.17

Eq.2.18

The height and the stiffness of walls in the example were varied, while the
concentrated mass at different levels was kept constant. The total weight used to calculate
the base shear is equal to the sum of concentrated masses at every story, which are 3.0 m
apart, plus the self weight of the wall. The example walls had a tubular (hollow-box)
section in which the length and thickness were adjusted so that the calculated natural
period of the wall is equal to the number of stories divided by 10. NBCC-2005 design
spectrum for Vancouver - site class C was used to determine the parameters required to
calculate the dynamic shear amplification factor using the formulas suggested by
Keintzel (1990) and Eberhard et al. (1993). According to the NBCC-2005 design

spectrum for Vancouver, peak ground acceleration and peak design acceleration were
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considered to be 0.46g and 0.94¢g respectively. Since all the proposed expressions except
Eq. 2.13 depend primarily on the ¢ factor (R factor in North America), values of ¢g=2.0
and ¢=3.5 for moderate and ductile shear walls were used for this example. In using the
formula by Eberhard et al. (2003), the response spectrum analysis (RSA) was carried out
to obtain the design bending moment and shear force at the base of walls. The flexural
yielding capacity for the example of walls was assumed to be the linear moment demand
obtained from response spectrum analysis divided by the g factor. Similarly the linear
shear force demand (V) required to calculate the dynamic amplification factor by using
Eq. 2.17 was assumed equal to the shear demand obtained from RSA divided by the ¢
factor.

Figure 2.17 presents a comparison of the dynamic amplification factors obtained
from the suggested methods described in Table 2.3. Both formulas given by Keintzel
(1990) and the one from NZS-3101 (1982) (originally taken from Blakeley, Cooney and
Megget (1975)), maintain an upper-limit for the dynamic shear amplification factor as
shown in Fig. 2.17. Dynamic amplification factor obtained by Keintzel’s formula is
always less than the ¢ factor while the formula from the New Zealand code limits the
amplification factor to the value of 1.8. Formulas proposed by Rutenberg (2006) and

Eberhard et al. (1993) have no upper limits for the value of dynamic amplification factor.
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Figure 2.17 Dynamic shear amplification factor e for the presented example.

For ¢=2.0, Rutenberg’s formula (Eq. 2.18) provides an upper-bound estimate of
the amplification factor, while the formula from New Zealand code presents a lower-
bound estimate. For low to moderately ductile concrete walls (¢<2), Eq. 2.13 from the
New Zealand code gives amplification values which are relatively in agreement with
other formulas. It should be noted that the formula from New Zealand code has been
developed for moderate ductile walls as it depends only on the number of stories and it
may not be suitable for prediction of dynamic shear amplification in ductile walls. This
fact is shown in Fig. 2.17 as Eq. 2.13 gives the lowest dynamic shear amplification factor
when compared to other formulas.

The results for the example presented in Fig. 2.17 shows that Eq. 2.17 proposed by
Eberhard et al. (1993) provides larger amplification factors for low-rise walls while Eq.
2.15 proposed by Keintzel (1990) gave more conservative values for medium-rise walls.
Use of equation 2.18 proposed by Rutenberg (2006) gives the largest amplification

factors for medium to high-rise walls in this example.
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In general, the methods summarized here for determination of dynamic shear
amplification are applicable when elastic models are used for the shear response of the
concrete walls. A common shortcoming of the previous studies on the dynamic response
of concrete walls was the lack of an appropriate nonlinear shear model in the numerical
example. Diagonal cracking in the section of wall during earthquake shaking reduces the
shear stiffness significantly which results in a reduction of dynamic shear demand. Since
the nonlinear shear behaviour was not accounted for previously, the proposed expressions
to determine dynamic shear amplification may not predict the seismic shear demand
appropriately. Consideration for the nonlinear shear behaviour in the model of high-rise
walls improves the numerical analysis and helps to achieve a better estimate of seismic
shear demand during earthquake shaking. The nonlinear seismic behaviour of the wall
and the shear amplification phenomenon has been addressed in Chapter 5 of the present

dissertation.
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Seismic shear demand
In high-rise walls below ground

3.1 Overview

Shear walls provide an efficient lateral force resisting system in seismic design of high-
rise concrete buildings. Large height to length ratio (H,/L,) in a typical high-rise shear
wall causes the flexural behaviour to dominate when the building is subjected to lateral
excitation. In upper levels of a high-rise wall deformations are controlled mainly by
flexural behaviour whereas in the lower levels the effect of shear deformations becomes
very significant. The central core shear wall system in a high-rise building is known to be
an efficient solution to architectural and structural demands. The core wall system with a
combination of flat floor slabs has been increasingly used in Western Canada; hence it is
important to understand the seismic behaviour of high-rise shear walls and their potential
in order to achieve a safer and more reliable structural performance.

In most high-rise buildings, there is a large underground area surrounded by rigid
perimeter retaining walls known as “foundation walls”. The purpose of underground area
is to provide required space for vehicle’s parking, shopping centers or commercial
facilities. The foundation walls possess high in-plane rigidity according to large
dimensions along the excavated underground area.

In practice engineers often use linear analysis procedures such as response

spectrum analysis for design of high-rise buildings. Presence of foundation walls and stiff
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diaphragms below ground will result in development of large shear force on the core wall
if response spectrum analysis is used. According to results obtained from RSA for some
cases, the reverse shear force magnitude increases up to several times the magnitude of
design base shear.

While use of linear methods can be time saving and easy to do, it may lead to
unrealistic estimate of response since the actual structural behaviour subjected to strong
ground motion, can only be captured by performing nonlinear analysis. Nonlinear
response of the shear walls during earthquake may reduce the magnitude of reverse shear
force while wall undergoes large shear deformation. The scope of this study is to provide
solutions to help improve the seismic design of high-rise shear walls based on both linear
and nonlinear analyses. A full 3-D model of a typical high-rise structure is shown in Fig.
3.1. Use of 3-D models in structural analysis can increase the accuracy of captured
response; however drawback would be timeliness and complexity of analysis procedure.
Since using simple structural models allows an in-depth exploration of the complex

problem a 2-D model of shear wall - foundation wall system was used to study the

seismic response of high-rise core walls below ground.
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Figure 3.1 Model of two typical high-rise buildings walls and the corresponding
simplified 2-D model.
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3.2 Model definition

A simplified 2-D model of high-rise core wall which is attached to the foundation walls
through below-ground diaphragms is shown in Fig. 3.2. In this model diaphragms can be
modeled either using the rigid-diaphragm assumption or by considering their actual in-
plane stiffness. The shear wall dimensions in this model were chosen based on real
design examples in high-rise concrete buildings.

A typical bending moment and shear force distribution over the height of wall is shown
in the Fig. 3.2. According to the linear analysis, the reverse shear force in the wall
section below ground can be several times greater than the base shear due to action of

diaphragms and foundation walls.

See

Fi 3.3
/lgure Linear Response

% Nonlinear Response

Foundation
Wall

R

Diaphragms

Figure 3.2 Shear reversal phenomenon in high-rise concrete walls and the corresponding
moment and shear distribution.

The foundation walls are numerous in size and stiffness according to the design
objectives in high-rise building. The lateral stiffness of the foundation wall is usually
large compared to that of a core wall. Because of the high in-plane stiffness of foundation
walls they are often considered as fully rigid in design practice. The assumption of
infinite rigidity for foundation walls simplifies their behaviour as fixed supports. We will
see later that this assumption would result in a small overestimation of forces in the core

wall below ground.
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Another influencing parameter on the magnitude of shear force below ground is the
stiffness of floor slabs or “below-ground diaphragms”. One common simplification in
analysis of high-rise buildings is the assumption of rigid diaphragms in modeling the
behaviour of floor slabs. In a 3-D model, rigid diaphragm provides two translational and
one rotational degree of freedom. In the case of a 2-D model, the number of degrees of
freedom at every floor reduces to one translational component. Concrete slabs usually
possess high axial rigidity; therefore many designers prefer using the rigid-diaphragm
assumption to reduce computational effort. While rigid-diaphragm model is reasonable to
model the floor slabs at levels above ground, it may not be suitable to represent the
behaviour of diaphragms below ground during earthquake. For cases concerned with high
reverse shear force in high-rise walls, the rigid-diaphragm assumption can cause
significant amplification to the reverse shear force; therefore accounting for the actual
diaphragm stiffness would result in a better estimate of core wall’s seismic response.

A high-rise wall shows a complicated dynamic response to seismic forces due to
the effect of higher modes of vibration. For any specific deformation one can find a
corresponding lateral loading pattern which is simply the product of mass and
acceleration over the height at every level. Unlike low-rise buildings in which the first
mode governs the total response, high-rise buildings behaviour is dependent on higher
modes as well first mode of vibration. Most of present building codes are based on
behaviour in the first mode of vibration with some adjustments to somehow account for
the effect of higher modes. While use of simplified methods for estimating seismic
demand is useful for low to medium-rise buildings, the design code suggests use of
dynamic analysis for tall and irregular buildings.

Finding the actual lateral loading pattern for seismic forces is not an easy task since
there are many parameters which affect the dynamic structural response. To assess the
seismic response, building codes propose a lateral loading pattern over the height of
structure is proposed based on the first natural mode of vibration. The code suggests a
linear distribution of loads over the height of building. For high-rise buildings with a
longer natural period, the seismic loading pattern is greatly dependent on the higher

modes. Dynamic response analysis for a number of earthquake events has indicated that
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the actual distribution of the seismic forces in high-rise buildings is not similar to the
prediction by design code which depends mainly on first mode.
For a single cantilever wall, the seismic lateral loading pattern can be represented

by two single parameters: Overturning moment at the base M, and base shear V.

Mp =Vp.h'
BASE LEVEL T&
| ’ B Vr+ Vh
h Diaphragm Stiffness
- { Vir-V
Y =
M

Figure 3.3 Diagram of forces at the below-ground section of wall.

Free body force diagram for a section of wall at below-ground levels is shown in
Fig. 3.3. The reverse shear force is dependent on the overturning moment at the base,
shear at the base and also the height of storey below ground. Diaphragms action is
modeled by uniaxial springs and the foundation wall is assumed fully rigid.

Equilibrium of the internal and external forces acting on the wall results in deriving

the following relationships:

w=Ms (3.1)
Vi
ﬂ:h_(]_ﬂ) (3.2)

Where /4 is the height of level below ground and %" is the ratio between overturning

moments and the shear force at the base of wall. Equation 3.2 shows that the reverse
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shear force magnitude is in proportion to the moment to shear ratio 4. Parameter A’
mainly depends on the characteristic of the ground motion as well as the wall dynamic
response. Moment to shear ratio at the base of cantilever high-rise walls will be studied as
thoroughly in Chapter 5 of this dissertation.

Flexural and shear strength of the wall section are important parameters to be
considered in this study. More flexural capacity means more overturning moment can be
transferred by the wall section below ground to the footing and higher shear strength in
wall means more shear can be resisted by the wall section below ground. It is important
to note that the reverse shear force and the overturning moment at the section below
ground work together to balance the forces acting on the base level. The bending moment
at the base can be carried by two different mechanisms: one by the bending in wall
section below ground and the other one is by the coupling action of forces developed in
the diaphragms above and below the specified section.

After a short introduction to the parameters which influence the reverse shear force,
a complete study on influence of these parameters on the developed reverse shear force

will be presented.
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3.2.1 Diaphragm stiffness below ground

In the present study a simply supported deep beam accounting for both bending and
shear deformations was considered to investigate the diaphragm rigidity below ground.
The rigid foundation walls are assumed to act as lateral supports due to their high lateral
stiffness. The core wall’s action is modeled by applying two concentrated loads at the
location of shear walls as shown on Fig. 3.4. Different thickness values of the diaphragm

similar to design practice have been examined according to Table 3.1.

Foundation Wall

Shear Wall I l l I

Diaphragm

Figure 3.4 Simplified model to determine the diaphragm stiffness.

Table 3.1 Possible diaphragm stiffness used in practice (values in MN/mm).

Diaphragm L/W ratio L/W=0.5 L/W=1 L/W=2
8" concrete slab 12.5 5.0 1.4
16" concrete slab 25 10 2.8

The out-of-plane stiffness of the foundation walls is ignored; furthermore the foundation
walls parallel to the shear forces are modeled as simple supports of the beam. Both
flexure and shear deformations of the beam have been included. The stiffness of the beam
depends on the span-to-depth ratio of the beam, which is equal to L/W for the diaphragm,
as well as the width of the beam, which is equal to the average thickness of the floor. The
stiffness of the diaphragm spring is the shear force applied per unit deflection of the beam
at the location of the applied shear force. In order to examine the influence of diaphragm

stiffness, three different diaphragms were used in the analyses. All diaphragms were
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assumed to be uncracked, and to be constructed from 30 MPa concrete with a Modulus of
Elasticity E. of 25,000 MPa, and a Shear Modulus G, of 10,000 MPa. Table 3.2 gives a

range of possible diaphragm stiffness used concrete high-rise buildings.

Table 3.2 Diaphragm stiffnesses used for analysis cases.

Case Diaphragm Type Stiffness (kN/m)
K30 High stiffness (Rigid) 30x10°
K10 Moderate stiffness (Stiff) 10x10°

KI Low stiffness (Soft) 1x10°

The most flexible diaphragm has an L/W ratio of 2 and an average thickness of 200 mm,
resulting in a diaphragm (spring) stiffness of about 1.0 MN/mm. The intermediate
diaphragm has an L/W ratio of 1.0, an average thickness of 400 mm, and a diaphragm
stiffness of 10 MN/mm. The stiffest diaphragm has an L/W ratio of 0.5, an average
thickness of 400 mm, and a diaphragm stiffness of 30 MN/mm. The three cases are
referred to as K/, K10 and K30, respectively in Fig. 3.5.

The results in Fig. 3.5 indicate that over the range considered, the diaphragm
stiffness has a very significant influence on the magnitude of the reverse shear force. It is
interesting to note that diagonal cracking of a diaphragm will reduce the shear stiffness of
a diaphragm to about 10% of the uncracked section stiffness. Thus cracking of a
diaphragm may have a very significant influence on the magnitude of the reverse shear
force. The diaphragm can have a very significant effect on the distribution of shear
forces. The flexibility of the diaphragms reduces the effect of shear reversal at the
underground levels; therefore, it would be reasonable to consider this flexibility effect in
the design to reduce the amount of shear reinforcement in the shear walls that may lead to
a brittle behaviour. Figure 3.5 also shows the variation of shear reversal ratio for possible

diaphragm stiffness as discussed in this section.
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Figure 3.5 Diaphragm stiffness effect on the shear force distribution for a 30-storey wall.
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3.2.2 Foundation wall influence

Foundation wall rigidity depends on the size and thickness of the wall. The out of plane
stiffness of wall is small and therefore ignored here. Foundation walls are connected to
the shear walls through diaphragms at the below-ground levels. The stiffness of the wall
has a direct influence on the magnitude of the developed reverse shear force at
underground area. For a specific seismic lateral force, the distribution of carried internal
forces by the wall and spring elements is proportional to their relative stiffness. In Fig.
3.6 the effect of foundation wall size on the shear force distribution is illustrated. This
plot is obtained for a 30-storey shear wall corresponding to a 4 /H ratio of 0.67, H being
the total height of wall. L;and L,, define the foundation wall and shear wall length. The

same thickness was used for both core wall and foundation wall for the entire analysis.

Base
|
.
I I
=== Lfﬁ.w=5 Pz
— — LfLw=10 ~
—Lf/Lw=inf
P23
e
|
I
-5 -4 -3 -2 -1 0 1 2
V./ V,

Figure 3.6 Foundation wall stiffness effect on the shear force distribution.

The analysis indicates that for the large ratios of foundation wall’s length to the shear

wall’s length, the foundation walls may be treated as fixed supports.
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3.2.3 Flexural and shear defor mation of the wall

The core-wall shape has a significant effect on the corresponding reverse shear force at
below-ground level. In order to investigate this effect, three different core-wall sections
have been selected to study the influence of flexural stiffness of section on the shear force
distribution below ground. The geometrical properties of the sections are given in Table
3.3. Wall /] is a rectangular wall having a length of 9.0 m and a thickness of 1.5 m. Wall
12 is a flange wall in which flanges are 4.5 m long with a thickness of 0.75 m and the web
is 9.0 m long with a thickness of 1.5 m . /3 is a wall with large flanges having a length of
9.0 m equal to the web length. The thickness of flanges in /3 is assumed 0.75 m and
thickness of web equal to 1.5 m. The purpose of selecting these wall section geometries
was to have a consistent shape with what exist in real buildings and also keep the
effective shear area constant in all three cases. A4,. is the effective shear area of the section

which was assumed equal to 80% of web area ignoring the flange area in flange sections.

Table 3.3 Wall sections used for analysis cases.

Wall Type I, (m*) Aye (M) Shape Section
11 91.125 13.5 Rectangular —
7 167.90 13.5 Short Flange =
13 283.07 13.5 Long Flange H:H
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Figure 3.7 Influence of flexural rigidity of wall below ground on the reverse shear force.

The flexural rigidity however is different in each wall to examine how the flexural
deformation influences the magnitude of the developed shear force at underground levels.
It is expected that the wall with large flange would carry more bending moment through
its section compared to two other walls having less moment of inertia about their bending
axis. Where the seismic demand is the same for all walls, the reverse shear force reduces
as the wall capacity in flexure increases. The results are shown for a 30-storey wall in
Fig. 3.7.

Figure 3.7 shows the effect of nonlinear flexure behaviour on the wall’s shear force
magnitude at the first below-ground level. It is observed that development of flexural
cracks due to bending action in shear walls does not have a significant influence on

increasing the shear reversal in the wall (e.g E1.=0.7E1).
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Figure 3.8 Increase in shear reversal due to reduction in effective flexural stiffness.

The influence of shear deformations is shown in Fig. 3.9. The results are shown for
wall 12 with section properties described in Table 3.3. Neglecting the shear deformation
(which is significant in the behaviour of concrete walls) would lead to overestimation of
response especially in levels below ground. It was also observed that reduction of shear
stiffness to 10% of gross shear stiffness significantly reduced the reverse shear force at

below-ground levels.
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Figure 3.9 Influence of shear rigidity of wall below ground on the reverse shear force.

3.2.4 Effect of wall footing partial fixity

It is a common assumption in practice to model the base of wall at footing as fully fixed.
This assumption basically eliminates the translational and rotational degrees of freedom
at the base of wall. Since there always can be a small amount of rotational freedom at the
wall base, the effect of partial fixity of the wall is important to be investigated.

In order to apply the effect of partial fixity in the simplified model, one can add a
single rotational spring to the base of walls; however obtaining the actual rotational
stiffness depends on geotechnical properties of underlying soil. In spite of difficulties in
determining the appropriate degree of fixity at footing, lower and upper bounds for
footing rotational fixity were defined by considering two cases of a fully restrained
(fixed) footing and a fully free (pinned) footing.

Using a set of linear analyses, the influence of footing rotation has been studied. In
the analysis, the foundation wall is assumed rigid, diaphragm stiffness “K30” has been
considered and the number of levels below ground has been varied from 1 storey to 6

stories to cover a possible range in typical high-rise buildings.
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Figure 3.10 Effect of number of stories below ground and the footing fixity on reverse
shear force at the first below-ground level.

Figure 3.10 shows the influence of the footing fixity on the magnitude of reverse shear
force with respect to number of below-ground levels. ¥, is the shear force at the section
below ground where the footing has no rotational constraint and ¥, is the shear force at
the section below ground when the core wall is fixed at the footing. The rotation of the
wall at the footing will result in an increase in the reverse shear force demand. This is
because of the fact that more moment can be carried by flexure of the wall section below
ground when it is restrained against rotation at footing and consequently less reverse
shear force is developed. Another parameter which influences the magnitude of shear
reversal would be the number of stories below ground. It was observed that the degree of
wall fixity at footing becomes less significant where the number of below-ground stories
increases.

For a typical high-rise building with more than 30 stories above ground, it is usual
to consider a minimum of four stories below ground and therefore the effect of partial
fixity at wall footing becomes less significant in the magnitude of developed shear

reversal as shown in Fig. 3.10.
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3.3 Dynamic response

After studying the influencing parameters in the magnitude of reverse shear force,
dynamic behaviour of the wall will be investigated. Seismic analysis was performed on
the model of core wall for both linear dynamic analysis and nonlinear dynamic analysis.
In order to study the dynamic response of high-rise walls, two simplified 2-D
models were considered as shown in Fig. 3.11. Stiffness and mass are adjusted to
represent a specific fundamental period for the wall. Where nonlinear analysis is
performed, the nonlinear hinge is considered at the base of wall as shown in Fig. 3.11
The model on the left shown in Fig. 3.11 is a cantilever wall which is referred to as
Model 1 and the model on the right is a combined model of high-rise wall and the below-
ground diaphragms which is referred to as Model 2 in this study.
Poor
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Figure 3.11 Left: Cantilever model of wall (Model 1), Right: Core wall and below-
ground diaphragms (Model 2).

In order to perform dynamic analysis on the models of high-rise concrete wall,
program SAP-2000 (CSI 2006) was used to perform response spectrum analysis and
direct-integration time history analysis. For more information regarding implementation

of dynamic analysis refer to “SAP-2000 Analysis and Theory Reference Manual 2006”.
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3.3.1 Linear dynamic response

Linear dynamic analysis was carried out to address some important issues on the
earthquake response of tall walls. In order to study the portion of buildings above ground,
a cantilever shear wall with adjusted mass to simulate the building response has been
considered as shown in Fig. 3.11.

Figure 3.12 shows distribution of normalized shear and moment by their peak
values at the base for 2 different heights of Model 1. Figure 3.12 also shows the effect of
higher modes for structures. The response spectrum considered is the 5% damped

spectrum associated with horizontal component of Northridge earthquake.
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Figure 3.12 RSA results for normalized shear force and overturning moment over the
height of a cantilever wall (Model 1).

It is noted that the final results of RSA are obtained by combination of peak
responses in each individual modes of vibration and since the peak response of different
modes are not likely to occur at the same time, the distribution of forces are not quite
similar to the actual response. In addition, RSA uses the absolute values for the final
combination and does not give a realistic force distribution over the height considering

the direction of developed forces.
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To investigate the possible values of /' through response spectrum analysis for
typical buildings with fundamental periods ranging from 7,=1 sec to 7,=5 sec, two
different design spectra of NBCC-1995 and IBC-2000 were chosen. The results are
shown in Fig. 3.13.

——NBCC95

h'/H

T (sec)

Figure 3.13 Moment to shear ratio at the base of cantilever wall having different
fundamental periods obtained from RSA (Model 1).

According to RSA, the parameter 4’ ranges between 0.2H to 0.7H for the high-rise to
low-rise walls. Possible values of 4’ obtained from linear time history analysis (LTHA)
and nonlinear time history analysis (NTHA) of high-rise cantilever walls will be
presented in Chapter 5 of the present document

Linear dynamic analyses in the form of RSA and time history analysis was
performed on the model of wall with 7,=3 sec. The Northridge earthquake acceleration
record was used for LTHA. /2 was used for wall section and the diaphragm stiffness was
assumed to be K30. Figure 3.14 shows the distribution of bending moment and shear

force over the height of wall for each type of linear dynamic analysis.
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Figure 3.14 Response spectrum analysis vs. Linear Time history analysis (Model 2).

NBCC-2005 response spectrum was considered for RSA to demonstrate the effect
of response spectrum used by the design code. As shown in the Fig. 3.14, use of design
spectrum results in a linearly varying bending moment diagram whereas use of LTHA for
specific record pronounces the influence of higher modes. A fair estimate of forces over
the height is essential to determine the location of potential hinges and other aspects of a

safe seismic design.

3.3.2 Nonlinear dynamic response

Both the core wall and diaphragm can undergo nonlinear behaviour during earthquake. In
some design procedures, the diaphragm is assumed to crack under severe ground motion.
This assumption can help reduce the shear reversal at the below-ground level; however
there is a question if this assumption would be applicable given the high in-plane rigidity
of diaphragms below ground.

In order to investigate the actual dynamic response of high-rise walls, a series of

nonlinear analyses were performed. It is reasonable to build up the model gradually to
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understand the nonlinear response transparently. For this purpose, dynamic response of a
cantilever wall subjected to horizontal component of El Centro ground motion was
studied. The dimension of wall and the concentrated mass associated with each level
were adjusted to represent a typical natural period corresponding to buildings with
different heights.

To simplify the nonlinear dynamic response, a rigid plastic hinge was considered to
form at the base of wall by neglecting strain hardening. The hysteretic behaviour
considered for the hinge at the base was Takeda model (1970) which was consistently
used in previous studies (see Fig. 3.15).

The analyses were performed for four levels of natural periods ranging from 7,=1
sec to 7,=4 sec. The time history values for the corresponding bending moment and shear
force at the base are shown in Fig. 3.16 through Fig. 3.19. These figures show the
normalized bending moment and shear force history at the base. All plots are given for
the first 20 seconds of the total response. Yielding points are shown as flat lines at peak
responses. The plots are magnified during periods of yielding to clearly show the

variation of shear force at the base of wall.
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Figure 3.15 Nonlinear Takeda model (1970) for the plastic hinge at the base of wall.

Once the flexural hinge forms at the base of wall, moment demand at the base
remains constant while the corresponding base shear varies with respect to time. As walls
are usually detailed for flexural yielding at the base, it is useful to study the variation of

moment and shear forces at the base of the wall during this event. For taller walls with a
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higher fundamental period of vibration, the shear force magnitude at the base can reach
zero during yielding at the base. This is due to effect of the higher modes and distribution
of the lateral forces along the height of building. In other words since there are many
modes of lateral force distribution over the height of wall, it is possible that at an instance
of time, shear forces acting on opposite directions would balance each other effect so that

the shear at the base of wall becomes very small.
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Figure 3.16 Normalized bending moment and shear force history at the base of a
cantilever wall with 7/=1 sec (Model 1).
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Figure 3.17 Normalized bending moment and shear force history at the base of a
cantilever wall with 7/=2 sec (Model 1).
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Figure 3.18 Normalized bending moment and shear force history at the base of a
cantilever wall with 7,=3 sec (Model 1).
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Figure 3.19 Normalized bending moment and shear force history at the base of a
cantilever wall with 7/=4 sec (Model 1).

73



After studying the behaviour of cantilever walls, a model of the concrete wall and
the sub-ground structure is considered for nonlinear dynamic analysis. The model
considered for nonlinear dynamic analysis is shown in Fig. 3.11 as Model 2. Nonlinear
flexural behaviour is considered by providing a concentrated hinge at the base of wall
similar to Model 1. The diaphragms and corresponding dead load of the floors are
modeled as concentrated masses throughout the height of wall. The wall’s height and
corresponding concentrated floor masses were adjusted for two fundamental periods of
T/=4 sec and T,=1 sec. Foundation walls were modeled as fixed supports and axial
springs were added to the section of wall below ground at various levels to represent the
influence of parking slabs as shown in Fig. 3.11. The K30 spring was chosen to provide
the extreme case corresponding to the magnitude of the developed reverse shear force.

A set of ten different ground motions was selected for performing nonlinear time
history analysis. The specification of the earthquake records are indicated in Table 3.4.
These records were chosen from recorded acceleration history presented in FEMA-440

library of ground motions for site class C.

Table 3.4 Ground motions used for NTHA.

ID Earthquake Station Date M a(gl\r/lllt)ude PGA, (cm/s?)
1 Morgan Hill | Gilroy #6, San ¥sidro | 45404 6.1 280.4
Microwave Site
2 Northridge Castaic Old Ridge Route | 01/17/94 6.8 557
3 Northridge Lake Hughes #1, Fire | 117,94 6.8 84.9
station #78
4 Loma Prieta Santa Cruz, UCSC 10/17/89 7.1 433.1
5 Loma Prieta Anderson Dam 10/17/89 7.1 239.4
(downstream)
6 Loma Prieta | 010y #6, San Ysidro 141769 7.1 166.9
Microwave site
. Gilroy, Gavilon college
7 Loma Prieta Phys Blde 10/17/89 7.1 349.1
8 Loma Prieta APEEL 7, Pulgas 10/17/89 7.1 153
9 Landers Yermo, Fire Station 06/28/92 7.5 240.3
10 Loma Prieta Saratoga, Aloha Ave. 10/17/89 7.1 494.5
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Variation of parameters V), and ¥V, have been studied throughout the nonlinear
analysis. It was observed that shear reversal magnitude at the below-ground level is
mainly influenced by the bending moment at the base. The magnitude of ¥}, was found to
have less pronounced influence on the developed reverse shear force. The amount of
bending moment that is transferred to the below-ground section of wall is the controlling
parameter on the magnitude of reverse shear force V. Higher base shear force (V}) would
push back the diaphragm at the base level so that more deformation is carried by the wall
and hence more bending moment is transmitted to the sections below ground which, in
turn, results in reduction of balancing reverse shear force. Figures 3.20 and 3.21, show
the developed reverse shear force at below-ground section of wall (V,,), shear force
developed at the base of wall (V) and the shear force developed in the diaphragm at
ground level (V). The vertical axis in the plots corresponds to the normalized shear force
as a ratio of (V' h /M,;) where h is the height of first level below ground and M, is the
yielding moment at the base. The horizontal axis is the duration of earthquake in seconds.
The critical case was observed for the developed maximum bending moment with
combination of minimum shear force at the base.

Note that the all the data in Fig. 3.20 and Fig. 3.21 correspond to the case where a
flexural hinge has been formed at the base of wall and therefore the overturning moment
at the base has reached its maximum value. The shear force carried by the diaphragm at
this point is simply the summation of ¥V, and Vj. Since diaphragm shear force is
dependent on both shear forces developed in the section of wall at the base and one level
below, and V. is mainly dependent on M} not V}, it can be concluded that the influence of
V, 1s more important on the total shear force developed in the diaphragm at the ground

level.
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Figure 3.20 Normalized shear force in the wall section and the diaphragm at yielding for
T1=4 sec (Model 2).
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Figure 3.21 Normalized shear force in the wall section and the diaphragm at yielding for
T/=1 sec (Model 2).
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Figure 3.22 Normalized shear force and bending moment in the wall section during
Northridge event for 7,=4 sec (Model 2).

Figure 3.22 shows the phenomenon in a similar way at the instant of yielding during the
Northridge earthquake. This figure shows three different curves; one defines the ratio of
overturning moment at the base to the maximum yielding moment while other curves
show the ratio of shear at the base and the shear at the first level below ground
normalized by their maximum envelope values.

Because of insignificant strain hardening, overturning moment at the base does not
change during the instant of yielding from =7.95 sec to about /=8.25 sec. During this
time the base shear forces in the wall fluctuates and it can be seen that V, reaches its
minimum value when Vj is at its peak and it reaches its minimum value when V7, value is
a maximum.

Figure 3.23 and Fig. 3.24 are presented to provide the information obtained from
nonlinear dynamic analysis of walls and substructure with fundamental periods of 7,=4
sec and 7,=1 sec respectively. From left to right each bar gives the results corresponding
to a specific earthquake in the order which it appears in Table 3.4 which are sorted in the
order of descending base shear for case of R=4 (See Fig. 3.23-b). R factor was assumed
equal to the linear peak overturning moment to the yielding overturning moment at the
base. Each vertical bar gives four statistical parameters. The middle horizontal bar shows

the mean value (averaged over the time of yielding) obtained during the nonlinear time
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history analysis. The top and bottom vertical lines give maximum and minimum values
observed during analysis and finally the standard deviation is also shown by half the
length of middle vertical bar.

In Fig. 3.23-a, normalized reverse shear force has been illustrated. The mean value
for V. h / M, 1s 0.2 and is inversely proportional to the base shear. Figure 3.23-b shows
the shear force at the base at instance of flexural yielding. The mean value for Vj, h / M,
ranges from 0.22 to 0.08 and correspondingly moment to shear ratio at the base ranges
from 0.12H to 0.35H for 7T;=4 sec.

Figure 3.23-c shows the result for shear force carried by the diaphragm at the base
level. The shear force in the diaphragm at the base is the sum of reverse shear force and
the base shear. Figure 3.24 shows the similar results for 7,=1 sec. The variation of shear
forces are very small compared to the case of 7,=4 sec. The observed mean value of
normalized reverse shear force (V. h / M,;) is equal to 0.19 where as mean value for
normalized base shear (V3 h / M,;) varies from 0.13 to 0.20 stating that moment to shear

ratio at the base ranges from ranges from 0.5H to 0.75H for T)=1 sec.
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Figure 3.23 Normalized shear force: a) wall section below-ground (top), b) base of wall
(middle), c¢) diaphragm at ground level (bottom) for 7,=4 sec (Model 2).

79



a)
Max.
sD
} Mean
S0
1
Min. b)
c)

Vr.h/Myb

-0.10 +

-0.20

Vb.h/Myb

Vd.h/Myb

0.60

0.50 -

0.40 +

0.30

0.20

0.10

0.00

0.60

0.50

0.40 +

0.30

0.20

0.10

0.00

=
-
o

0.00

-0.10

-0.20

Figure 3.24 Normalized shear force: a) wall section below-ground (top), b) base of wall

(middle), c) diaphragm at ground level (bottom) for 7,=1 sec (Model 2).
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Figure 3.25 shows the ratio of 4 /H for a 40-storey building with 7,=4 sec (Top)
and a 10-storey building with 7,=1 sec (bottom) at the time of hinge formation at the

base. It is interesting to see how the higher modes lower the point of application of

seismic lateral forces in high-rise shear walls.
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Figure 3.25 Normalized overturning moment to shear force ratio at the base of wall
during flexural yielding (Model 2).

Based on findings from NTHA for the model of high-rise wall, the critical case was

identified as when the shear force at the base in minimum at instance of flexural yielding

at the base.
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3.3.3 Shear -flexureinteraction

The research on finding the suitable models for shear-flexure interaction in reinforced
concrete walls is still in progress and a verified reliable shear-flexure interaction model
has not been identified or used in previous studies. Furthermore, none of the available
programs to perform nonlinear time history analysis has been developed to consider the
simultaneous nonlinear action in concrete walls due to bending and shear.

Program Response-2000 (Bentz 2000) was used to determine a simplified shear-
flexure interaction diagram as shown in Fig. 3.26. The plot is shown for the section of the
model of the flange-wall described in Section 2.1. The wall has vertical reinforcement
ratios equal to 2.5% at flange and 1% at the web. Horizontal reinforcement ratio in the
web of the core wall is equal to 1%. This section is also used for nonlinear time history
analyses performed in Chapter 5 of this dissertation (See section 5.6). The wall section is
subjected to a constant axial compression of 0.1f." consistent with the level of stress

expected to develop at the base of a typical high-rise core wall.
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Figure 3.26 Shear-flexure interaction diagram for the example of core wall (Response-
2000).

In Fig. 3.26 Horizontal axis shows the bending moment capacity of the wall while
the vertical axis shows the corresponding shear force strength. The thick solid line

corresponds to the actual interaction curve using Response-2000 and the thick dashed line
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corresponds to a simplified approximation of the actual interaction curve. Thin vertical
dashed line shows the limits for cracking of concrete due to bending and vertical thin
solid line shows the limit for yielding of vertical reinforcement. Similarly the horizontal
dashed line and solid line show the limits for cracking of concrete and yielding of
horizontal reinforcement under application of pure shear respectively. The specified
limits shown in Fig. 3.26 were used to build the nonlinear models for flexure and shear in
the present study. According to the shear-flexure interaction diagram, a strong interaction
between flexure and shear does not exist for the example of the core wall prior to yielding
of vertical reinforcement. Shear-flexure interaction causes a reduction of less than 20% in
the shear strength for the regions beyond flexural cracking (thin dashed line) up to
flexural ultimate capacity (thick dashed line). The interaction was noticeable when fan
action starts as the vertical reinforcement yields and that this gives away considerable
strength reserve.

A simple shear-flexure interaction model that is suitable for implementation into a
dynamic analysis is not readily available. In fact, a rational model to predict the shear
response in a wall associated with yielding of vertical reinforcement has not been
developed. Since the focus of the present work is to investigate nonlinear seismic
performance of large core walls in which the shear-flexure interaction is less pronounced
and also in order to simplify the complicated nonlinear response, independent flexural
and shear models were used to study the seismic demand on the example of high-rise

shear walls in the present work.

3.4 Nonlinear static analysis

Nonlinear static analysis provides useful information regarding nonlinear performance of
the wall and it is fairly easy to use in design practice. In the next stage of this study, the
nonlinear behaviour of a high-rise shear wall attached to a rigid foundation wall at the

underground levels will be investigated.

Gérin and Adebar (2004) studied the experimental results on shear response of

concrete walls and showed that a tri-linear calibrated shear stress—shear strain model can
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properly capture the nonlinear shear behaviour. This model presents the nonlinear shear
response while accounting for cracking of concrete and yielding of horizontal

reinforcement due to extensive shear deformations.
3.4.1 Nonlinear shear behaviour in concrete walls

Expressions used to present the nonlinear behaviour of concrete walls in shear will be
explained in this section.

ACI318 recommends the upper limit for the nominal shear strength of the wall as:
V, = A, (a1 +p.1,) (33)

Where, 4., is the effective shear area and p,, is the horizontal steel ratio in the wall
section. Coefficient a. is taken as 1/4 for A4,//,,<I.5 and is taken as 1/6 for A,/,,>2.0.
In addition to the above formula, the shear strength at yield point cannot exceed the

capacity of concrete in diagonal compression which is defined below.

v, =0.83,/fbh (ACI-318) (3.4)
V. =0.15/"bd (CSA-23.3) (3.5)

The width and height of section are shown by & and /4 in the above expression.
The shear strain of concrete member at yielding of horizontal reinforcement can be

estimated by following expression (Gérin and Adebar, 2004):

_ Sy v Ay
YT E E
pv S

s

(3.6.2)

c

With the following condition:
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(3.6.b)

/ 1s the stress at yielding and E; the modulus of elasticity for reinforcement steel. Shear
stress in concrete at yielding is shown by v, and axial compression stress by n. The
horizontal steel ratio is p, and the concrete modulus of elasticity is shown with E,. (units
in MPa).

The corresponding shear strain at yielding is a function of tensile strain of the
horizontal and vertical reinforcement as well as the compressive strain of concrete (Gérin
and Adebar 2004). According to this model, the shear strain varies between a range of
0.0021 and 0.0047 for typical shear wall sections. The shear strain ductility of concrete
walls in terms of shear strain can be estimated using following equation where y, is the
shear strain at shear failure. According to this, significant reserve ductility in shear is
expected in reinforced concrete walls unlike commonly assumed brittle behaviour in

shear for concrete columns.
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Figure 3.27 Proposed tri-linear model for shear in shear walls (Gérin and Adebar 2004).

Figure 3.28 presents five levels of nonlinear shear behaviour for the model of wall

used in nonlinear static analysis.
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Figure 3.28 Tri-linear shear force- shear strain (¥-y) Curves in present study.

For the purpose of nonlinear analysis, a computer code has been developed (Rad,
2005) to perform pushover analysis on the model of high-rise shear walls. This code uses
Visual basic programming language to perform the nonlinear static analysis similar to
pushover analysis procedure. The nonlinear shear model in terms of tri-linear shear force-
shear strain has been used to analyze the response of the wall below ground. Both
flexural and shear hinges can be defined for the frame elements by the user. The
advantage of this program compared to available commercial programs (at the time that
this study was conducted) is the capability of considering tri-linear shear backbone
developed by Gérin (2003) for the reinforced concrete walls.

In order to perform the nonlinear static analysis, a rectangular 9.0 mx0.75 m
section for shear wall model having a concrete compressive strength of f. =50 MPa has
been considered. The foundation wall is assumed to be rigid in all analysis cases. Four
levels of below-ground slabs were considered with a storey height of #=3 m. Figure 3.29
shows the model used to perform nonlinear static analysis where nonlinear shear

behaviour was considered in the core wall below ground.
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Figure 3.29 Model of wall below ground to perform nonlinear static analysis.

A procedure to run the nonlinear static analysis is provided in accordance with
information obtained from nonlinear dynamic analysis which was discussed in the
previous section. The “target overturning moment at the base” is defined as the yielding
moment demand at the base of wall. Analysis runs until the overturning moment at the
base reaches its specified target value. The target moment at the base corresponding to
the level of shear strength at the base of wall was determined by considering 4 */h ratio in
which A * is defined as the ratio of flexural to shear strength (4*=M,/V,) for the section of
wall at the base.

The shear strain developed in the below-ground section of is representative of the
level of damage due to nonlinear shear behaviour. When the shear strain reaches the
ultimate shear strain capacity of the wall, failure may be experienced. “Shear strain ratio”
is defined as the ratio of shear strain demand in the wall to the ultimate shear strain
capacity of the wall (y / y.;). In a similar way, “Shear strength ratio” is defined as the

level of shear stress at the wall’s section to the compressive strength of concrete (v./f.").
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Table 3.5 Target overturning moment (M,,) in kN.m at the base of wall for different cases
of nonlinear static analysis in this study.

Case 1 Case 2 Case 3 Case 4 Case 5
Vn 0.0501. 0.0751.' 0.100f.' 0.125f' 0.150 f'

V. (kN) 27,000 40,500 54,000 67,500 81,000
h*h=10 810,000 1,215,000 1,620,000 2,025,000 2,430,000
h*h=15 1,215,000 1,822,500 2,430,000 3,037,500 3,645,000
h*h=20 1,620,000 2,430,000 3,240,000 4,050,000 4,860,000
h*/h=25 2,025,000 3,037,500 4,050,000 5,062,500 6,075,000
h*h=30 2,430,000 3,645,000 4,860,000 6,075,000 7,290,000

In Table 3.5, the target overturning moment at the base are obtained according to
the level of shear strength at the base of wall. Figures 3.30 through 3.32 show the results
for the nonlinear analysis in terms of shear strain ratio vs. shear strength ratio explained
above for three different diaphragm stiffnesses. Data points in each figure include five
different cases of shear stress level and five h£*/h ratios. Each case of the analysis
represents a set of different wall capacities in shear. For example in the first case , the
shear strength of the shear wall at the base is assumed 27,000 kN, which corresponds to a
ductile wall with a low percentage of shear reinforcement whereas the fifth case shows a
heavily reinforced wall with a shear strength of 81,000 kN which is the maximum shear
strength allowed by CS4 23.3. The wall section is categorized as /3 and the diaphragm
type is chosen as K30. The results are shown for the ratio of developed shear strain to
ultimate shear strain (y/ y,) and also the ratio of developed shear strain to the yielding
shear strain ()/ y,) in the wall section below ground level. According to obtained results,
for higher diaphragm stiffness and 4%/ ratios, it is possible to encounter shear failure at
below-ground levels. In these cases the shear reversal problem becomes an important
issue and special provisions should be considered to achieve a safer seismic design for

the core wall below ground levels.
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Figure 3.30 Shear strain vs. shear strength of wall below ground at target moment for
different 4 */h ratio and for diaphragm stiffness K30.
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Figure 3.31 Shear strain vs. shear strength of wall below ground at target moment for
different 42 */h ratio and for diaphragm stiffness K10.
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Figure 3.32 Shear strain vs. shear strength of wall below ground at target moment for
different 4 */h ratio and for diaphragm stiffness K/.

Figure 3.30 shows the results of nonlinear analysis for diaphragm K30. Cracking,
yielding and ultimate capacity in shear are plotted by separate dashed lines. Each curve
shows a specific 2*/h ratio and each dot on the curve corresponds to a specific level of
shear strength at the base of wall (See table 3.5). In total, 25 different cases were
analyzed for each figure (Figures 3.29-3.31). In Fig. 3.30 in two of the cases (h*/h =25
and h*/h =30) section strain has exceeded the ultimate shear strain capacity and wall
section below ground has yielded in shear for 2%/ =15 and A*/h =20. In all 25 cases,
wall’s section has suffered diagonal cracking at levels below ground. Figure 3.31 shows
the analysis results for the case where diaphragm used was K70. Only one case of shear
failure was identified for this case (4#*h =30 and v/f. =0.15). For the case of diaphragm
K1 which has the lowest stiffness, wall did not reach shear yielding limit and the
magnitude of reverse shear force remained well below the specified shear capacity in all
cases as shown in Fig. 3.32.

According to the analysis results, for the cases where the diaphragm stiffness below
ground is large and the wall shear demand at the base is high, extra provision should be

made in order to make sure the wall below ground performs safe during earthquake.
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Having a well designed diaphragm with smallest possible in-plane stiffness may be a
suitable solution to large shear reversal problem.

Heavily reinforced wall sections possess a less ductile behaviour in shear which in
some cases can result in a poor shear performance. This study showed that among
parameters that influence the shear reversal magnitude in high-rise walls, the effect of
diaphragm stiffness is the most important .The results for the nonlinear analysis imply
that for tall buildings with relatively stiff diaphragms at underground levels, the shear
reversal effect is significant. In such cases an appropriate ductile shear design allows the
wall to deform beyond its yielding limit before reaching its ultimate shear capacity.

It was also found that any damage to the below-ground section of wall caused by
flexural cracking or yielding of longitudinal reinforcement would lead to a reduction in
flexural strength to carry the developed bending moment. In such cases an increase in
shear demand on wall below ground would lead to larger shear deformations that can

cause result in catastrophic shear failure.
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3.4.2 Shear reversal solution through a design example

By looking at a design example, alternative solutions for the shear reversal problem will
be discussed here.

The flanged walls shown in Fig. 3.33 are two realistic examples for geometry of
core walls used in high-rise buildings. Sections bend about their strong axis in this

example.

9000

—
—
—
—

1500 @ 750 +—¢

9000
9000

_4,,_| | _<,,_I—|

9000 | 4500 |
T T

——
-

Figure 3.33 Flanged section core walls considered in the present example (Left: Section
13, Right: Section /4).

Similar to what was explained earlier in this chapter, nonlinear static analysis will
be performed to reach a target moment at the base (M,=M,) with an h*/h ratio equal to 15
and a shear strength level of 0.1f, which is associated with a horizontal web
reinforcement ratio of 0.65%. The model used for performing nonlinear static analysis is
the same model as shown in Fig. 3.29. Diaphragm K/0 was used to model the floor slabs
at ground level and below.

According to practical design procedures, following design options provide

alternate solutions to the shear reversal problem:

Alternative I: Increasing the horizontal shear reinforcement without further increase in

the wall dimensions (Wall dimension is unchanged).
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In this case strengthening the wall below ground in shear is done by adding
horizontal shear reinforcement while initial wall dimension is unchanged. By doing this,
the initial effective flexural and shear stiffnesses of the wall’s section remain constant
and the only change is made to the level of shear strength by adding horizontal steel to
the wall section below ground.

The level of axial compressive stress was assumed equal to 0./f.". The concrete
compressive strength is assumed 50 MPa. Since the wall dimension is unchanged, the
cracking shear strength level in the section below ground is constant while the yielding
stress level increases by adding horizontal reinforcement. Figure 3.34 shows how this
design option influences the response of wall below ground. The dashed line shows the
result for initial wall at level P1 having a shear strength of 7,=27,000 kN and the solid
lines show the results for shear strengthened section of wall to a shear strength of
V,=54,000 kN which was achieved only by adding horizontal reinforcement to the web

of wall at levels below ground.
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Figure 3.34 Bending moment at the base vs. shear strain for section /4 (Alternative I).

As it is shown in Fig. 3.35, for an increase of about two times the initial shear
strength of wall by just adding horizontal steel, the reduction in the shear strain demand

was insignificant (less than 10%). However the increase in amount of reinforcement
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reduced the shear ductility significantly (more than 40%) as shown in Fig. 3.34 which

may ultimately lead to an undesirable shear failure in the section below ground.

According to results, this design alternative has the disadvantage of reducing shear

ductility in the section of wall.
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Figure 3.35 Shear strain vs. shear strength of wall section below ground (Alternative I)

a): Section /3, b): Section /4.
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Alternative II: Increasing the wall dimension and adding horizontal steel so that the level

of shear stress and ductility remain unchanged.

Fig. 3.36 shows the relationship between bending moment at the base vs. shear
strain at below ground levels for Alternative II. The dashed line represents initial section
of wall below ground having a shear strength equal to 7,=27000 kN. The solid lines
show the results for a section of wall which is strengthened in shear by increasing the
thickness as well as providing required horizontal reinforcement so that the level of shear
stress in the wall’s section remains constant to reach a shear strength of V,=54,000 kN.

The level of shear strain in the section of wall below ground reduced as the wall
was strengthened in shear by increasing the wall web thickness and adding horizontal
steel. All assumptions for this example were similar to Alternative I. The basic difference

was the change in wall dimension that influenced both cracking and yielding shear stress

levels.
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Figure 3.36 Bending moment at the base vs. shear strain for section /4 (Alternative II).

As it is shown in Fig. 3.37 the amount of reduction in shear strain demand in the
section of wall compared to its initial condition was about 28% while the wall initial level

of strain ductility was maintained by keeping the level of shear stress constant.
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By comparing the results from two different solutions, it can be found that

Alternative II gives a better overall shear response for the section of wall below ground

compared to Alternative I.
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Figure 3.37 Shear strain vs. shear strength of wall section below ground (Alternative II):

a) Section /3, b) Section /4.

In order to have a measure for amount of damage caused by shear deformation beyond

yielding of horizontal reinforcement, coefficient £ was introduced as follows:
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(3.8)

Where y is the strain demand in the wall section below ground and y, and y, are the shear
strain at yielding and shear strain at failure respectively. & ranges between 0 and 1.0 with
0 as an indication of yielding and 1.0 as an indication of shear failure. Figure 3.37 shows
how considering different effective shear stiffness for the wall’s section below ground
resulted in various levels of shear demand. The results were compared to the tri-linear
shear response of the wall. In order compare the nonlinear analysis solution to results
obtained from simplified linear analysis considering the effective shear stiffness of wall
section below-ground, three dashed lines are plotted on Fig. 3.38.

The upper dashed line presents the case where all the below ground sections of wall
have cracked with effective shear stiffness is equal to GA4,.=V,/,. The shear force
demand in the wall section below ground in this case is 54,000 kN which is about 35%
greater than the actual shear demand. The middle dashed line represents the case in which
the first level below ground has yielded and has reached 50% of reserved ductility in
shear beyond yielding point (k=0.5). This solution achieved the closest result to the actual
tri-linear behaviour and finally the lower dashed line represented a case where all the

sections reached their 50% reserve shear ductility (k=0.5).
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Figure 3.38 Shear force in the below-ground section vs. overturning moment at the base
of wall (Alternative II).

Although design Alternative II provided a promising solution to the shear reversal
problem, there is still very small change in shear strain demand for a relatively large
increase in shear strength. Alternative I provided a poor solution to reduce the shear

strain demand in the wall section.

Alternative III: Reduction in the shear force demand by allowing the diaphragms below

ground to crack in shear.

Another solution to the shear reversal problem could be carried out by allowance in
cracking of the diaphragms prior to the core wall. As discussed earlier, the diaphragm
stiffness below ground has a great influence on the shear force demand of the core wall.
Figure 3.39 shows how the diaphragm stiffness can influence the shear demand in the

wall below ground for the previous example.
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Figure 3.39 Shear stain in the wall section below ground vs. diaphragm stiffness at the
base level: a) Section 14, b) Section 13.

As shown in Fig. 3.39 in a case where the diaphragm has an initial uncracked in-plane
stiffness of about 30 MN/mm, shear cracking in diaphragm would reduce the stiffness to
about 10% of the initially un-cracked stiffness value which is 3 MN/mm. The amount of
reduction in the shear strain demand was found to be 40% in this case.

Alternative III provided an efficient solution to the shear reversal problem since no

further change in the core wall was required. However special detailing of diaphragms
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below ground to crack in shear while maintaining their stability should be considered
carefully to ensure a safer seismic design in high-rise buildings.
In order to achieve an appropriate design in accordance with Alternative III two methods
are suggested here:

- Provide special weak links in the diaphragm to control the cracking mechanism as
desired.

- Design the diaphragms below ground as optimized as possible so that cracking in
diaphragm reduces the seismic shear demand on high-rise core wall below ground.

Figure 3.40 shows the results of four example nonlinear static analyses on Model
shown in Fig. 3.29 where the diaphragm stiffness is K30. The vertical axis is the ratio of
reverse shear force couple V,xh to total applied bending moment at the base M, while
the horizontal axis is the corresponding shear strain of the tower wall at the below-ground
level. Two levels of flexural capacity 2*/h = 15 (solid lines) and 4 */h = 30 (dashed lines),
and two different percentages of horizontal reinforcement in the core wall corresponding
to shear stress ratios v/f.' = 0.15 (upper line) and v/f.' = 0.10 (lower line) are shown in
Fig. 3.40. Prior to diagonal cracking of walls, the reverse shear force times storey height
V,xh resists about 18% of the total applied bending moment M, in all four walls. After
diagonal cracking, the reverse shear force reduces depending on the amount of horizontal
shear reinforcement. There is a larger reduction in the walls with less horizontal
reinforcement (lower v/f.") because the cracked-section shear rigidity is lower in these
wall. At the shear strain corresponding to horizontal reinforcement yielding (0.0035), the
reverse shear force resists 8% of the applied bending moment in the wall with v/f.'=0.15
and about 6% of the bending moment in the wall with v/f." = 0.10. In only one of the
walls (h*/h = 15 and v/f." = 0.10) is the shear strain less than yielding (0.0035) when the
flexural capacity of the wall is reached. In the other three cases, the shear strain is

pushed beyond yielding.
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Figure 3.40 Results from four nonlinear static analyses showing reduction in reverse
shear force demand due to shear strain from diagonal cracking of wall, and yielding of
horizontal wall reinforcement.

3.5 Nonlinear shear response of concrete floor diaphragms

Cracking will reduce the stiffness of floor diaphragms, which will reduce the reverse
shear force. Unfortunately, the shear behaviour of floor diaphragms is very complex
making it difficult to use a simple model for the nonlinear shear behaviour of
diaphragms. Normally, it is conservative to use a simple model of force transfer in
complex concrete structures; but in this case, a simpler model will predict a lower
stiffness of floor diaphragms, which will result in an unsafe prediction of reverse shear
force. A simple model of the floor diaphragm is that it acts as a beam transmitting the
force entirely to the foundation walls that are parallel to the shear force in the walls, and
this was the model used earlier to estimate the stiffness of the uncracked diaphragms.
Depending on the relative dimensions (length-to-width) of the floor diaphragm, the
shear force in the walls may be transmitted primarily by compression stresses in the
diaphragm, which will result in less cracking and a stiffer response overall. If the

foundation walls are cast directly against the ground, the deformation of the diaphragm
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will be reduced by the out-of-plane walls bearing against the ground. Once diagonal
cracking does occur in the diaphragm, it is not clear how much reduction in shear
stiffness there will be as a significant reduction requires numerous closely spaced cracks.
The small percentage of reinforcement in floor slabs and the arrangement of this
reinforcement may result in poor crack control when the slab cracks due to in-plane shear
stresses. Floor beams further complicate the issue.

If it is reasonable to assume that the reverse shear force is transmitted primarily to
the in-plane foundation walls (parallel to shear force) by compression and tension stresses
that are relatively uniform over the diaphragm, and that there will be good crack control
in the diaphragm, the nonlinear shear model for shear walls can also be used for concrete
floor diaphragms. The shear force to cause cracking of diaphragms can be estimated from
Eq. 2.8 through Eq. 2.11 by substituting P/4, = 0, and by substituting the average
diaphragm thickness for b,, and length of diaphragm in the direction of shear force

(overall depth of equivalent beam representing diaphragm) for /.

3.6 Procedurefor design of the shear wall below ground

Step (1): Determine design forces at the base level (immediately above base
structure) using, for example, response spectrum analysis (RSA). As shear force reverses
below base level (this procedure is to deal with such cases), maximum bending moment
in tower wall occurs at the base level.

Step (2): Design tower walls for design bending moment at the base level.
Provide reinforcement over height of plastic hinge region of wall above base level, and
all the way down to the foundation. Refined analyses with appropriate stiffness
assumptions as per later steps could be used to avoid extending all wall reinforcement to
the foundation.

Step (3): As increased flexural deformations of tower wall below base level will
reduce flexural stiffness of tower wall, which will increase reverse shear force, provide
additional vertical reinforcement in tower wall below base level to ensure yielding will

not occur below base level and to increase flexural rigidity of wall below base level.
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Step (4): Determine probable flexural strength of wall M, at the base level taking
into consideration applied axial compression in wall at the base level and actual
reinforcement provided in wall. To ensure an upper-bound estimate, assume yield
strength of reinforcement is equal to 1.25 times specified yield strength.

Step (5): Design tower walls for shear force above base level (maximum base
shear). If RSA is used to determine the shear force, account for flexural overstrength plus
dynamic amplification of shear. Provide adequate wall thickness so that shear stress level

does not exceed ¢.0.15f.", where ¢ is the appropriate strength reduction factor for shear

(e.g., 0.75 in ACI 318, 0.65 in CS4 A23.3). Use this as the initial shear design of tower
wall below base level.

Step (6): Analyze interaction between tower walls and base structure using linear
static analysis. The applied forces at the base level are M), determined in Step 4 and V), =
0. Use uncracked shear rigidity G. 4,, of tower wall, and an appropriate model to
determine stiffness of uncracked floor diaphragms. To account for flexural cracking of
tower wall below base level, use an effective flexural rigidity equal to M, %[,/0.0025,
where M, is the nominal flexural capacity of the tower wall at the particular level and
0.0025/1,, 1s the curvature of the wall at initial yielding of vertical reinforcement (Adebar
and Ibrahim 2002). If maximum shear within tower wall below base level is less than
base shear V), the initial design from Step 5 is adequate, otherwise continue to next step.

Step (7): Determine if significant diagonal cracking of tower wall will
sufficiently reduce reverse shear force in tower wall below base. Repeat linear static
analysis of tower wall — base structure interaction as specified in Step (6) except use an
effective shear rigidity of tower wall equal to G, 4,. = V,,/0.003, where V, is the nominal
shear strength of tower wall using initial design determined in Step 5 and 0.003 is a
simple estimate of yield shear strain. A larger value of yield shear strain, which results in
less shear stiffness, can be determined from Eq. 3.6. If maximum shear force within
tower wall below base level is less than V,, the initial design from Step 5 is adequate,
otherwise continue to next step.

Step (8): Determine if cracking of floor diaphragms will sufficiently reduce
reverse shear force in tower wall. Caution is needed regarding an overly simplified model

that gives too low of an effective stiffness of the diaphragm. A nonlinear finite element
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model that correctly accounts for tension stiffening of cracked reinforced concrete is the
best approach for estimating the stiffness of cracked diaphragms. Repeat linear static
analysis of tower wall — base structure interaction as specified in Step (7) except use the
reduced stiffness of the diaphragms. If maximum shear force within tower wall below
base level is less than V, the initial design from Step 5 is adequate, otherwise continue to
next step.

Step (9): Increase shear strength of tower wall below base, providing adequate

wall thickness so that shear stress level does not exceed ¢, 0.15/.", where ¢. is the

appropriate strength reduction factor for shear. Repeat linear static analysis as in Step (8)
except using an effective shear rigidity of tower wall equal to G, A4,. = V,/y,, where V, is
the increased shear strength of tower wall and y, is the yield shear strain taken as 0.003 or
determined from Eq. 3.6. If maximum shear force within tower wall below base level is
less than V,, the revised design is adequate, otherwise modify design and repeat Step (9).
Note that increasing the shear strength of the tower wall also increases the effective shear
stiffness of the tower wall which results in a larger reverse shear force. If a reasonable
solution cannot be found by increasing the shear strength of the tower wall, continue to
next step.

Step (10): Either use refined analysis procedures to reduce calculated reverse
shear force or jump to next step and modify design of structure. Possible refinements in
analysis include: (i) NTHA to justify a lower design bending moment at the base level in
Step 1, (ii) NTHA to determine a larger minimum base shear (V3) in Step 6, (iii) use of a
higher effective flexural rigidity of tower wall below base in Step 6, (iv) use of more
sophisticated model that gives a lower stiffness of diaphragms, or (v) NTHA with
appropriate concrete models — particularly for the shear response of diaphragms and
tower walls — to determine the reverse shear force directly.

Step (11): Modify design of structure to reduce reverse shear force. Possible
solutions include: (i) reduce stiffness of floor diaphragms by modifying design of floor,
(i1) provide a gap in floor slabs around tower walls and support floor slabs on corbels
projecting from tower walls, (iii) increase height of critical stories in base structure, (iv)

modify design of tower walls to increase flexural stiffness of tower walls.
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3.7 Summary and Conclusions

The shear reversal problem and its corresponding design solution were studied in this
chapter. The magnitude of the wall reverse shear force below ground in tall buildings is
dependent on parameters such as foundation wall size, diaphragm stiffness below ground,
the developed maximum moment and shear at the base and the degree of fixity at footing.
The recently calibrated nonlinear model for shear proposed by Gérin and Adebar (2004)
was used to study the shear reversal problem in this chapter. As the performed analyses
indicated, among the parameters influencing the shear reversal, the effect of overturning
moment at the base had the most significant influence. The dynamic analysis of the
simplified model of wall showed that the maximum developed base moment with a
combination of minimum shear at the base will result in the largest reverse shear force at
the levels below ground. This fact was verified by the fact that more moment transmitted
to the section of wall below ground, the less shear force is developed to satisfy the
equilibrium of forces at the section of wall.

Although considering nonlinear shear behaviour can reduce the reverse shear force
demand, it may not be practical to design the walls for such high shear demand. The
study showed that a large increase in wall dimension is required in order to reach the
acceptable level of shear strain in the wall. A more convenient solution to this problem
would be allowing the diaphragm below ground to crack during strong earthquakes.
Cracking of the diaphragms below ground would reduce the reverse shear force demand
significantly. An appropriate design to allow cracking of diaphragm requires ductile
detailing of diaphragm at weak joints and avoiding using oversized below-ground slabs in
design of high-rise concrete buildings. In practice, when encountering huge shear reversal
demand in the high-rises, one needs to keep the diaphragm’s thickness below ground as
thin as possible to satisfy design requirements. Any flexural damage to the below ground
section of wall which would result in a reduction of wall effective stiffness would cause
an increase in the shear force demand.

A complete design procedure for design of the core wall’s section below the ground

level was proposed that can be used in design practice.
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Seismic shear demand
in inter-connected high-risewalls

4.1 Overview

In Chapter 3, the seismic shear demand was investigated at below-ground sections of a
core wall which is used as the main seismic force resisting system for typical high-rise
concrete buildings. It was observed that the nonlinear shear response significantly
influences the magnitude of the developed reverse shear force at the below-ground levels.

As the largest seismic shear force develops at below-ground levels of the core wall
for which the wall has to be designed, the seismic shear force at the base is the most
important parameter to design the wall above the ground level. Like the below-ground
sections of a high-rise core wall, shear deformation shares a significant part of the lateral
displacement in the above-ground sections of the wall near the base; therefore accounting
for the nonlinear shear response at the lower above-ground levels is equally important in
determination of seismic shear demand in concrete walls.

In high-rise buildings, concrete walls are tied together over the height by rigid floor
slabs at every floor level. The thickness of slabs is usually too small to prevent flexural
cracking of slabs at the face of concrete shear walls and columns due to high rotational
demand during an earthquake; however in-plane stiffness of floor slabs is large enough to
carry the load between the vertical members and would cause significant redistribution

between forces developed in different levels of the building.
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At the upper levels of a high-rise building, shear force distribution between walls
depends primarily on the relative flexural rigidity of the walls. In the lower levels of the
building however the shear force distribution depends more on the relative shear rigidity
of the walls. Due to cracking of concrete and yielding of reinforcement, the shear and
flexural rigidities of concrete walls will change as the wall is subjected to increasing
shear and bending moment demands.

In the design of high-rise concrete buildings, linear dynamic (response spectrum)
analysis is normally used to determine the displacement demands on the overall structure,
and the force demands on the individual components of the structure. During ground
motion the structural members which contribute to the stiffness of the lateral resisting
system would suffer some damage which would result in reduction of their initial
uncracked section stiffness. The stiffness properties used in the analysis model must
account for the presence of cracked regions of the concrete members.

The reduction factors to account for cracking of concrete members are proposed
by codes for columns, beams and shear walls. For simplicity, one reduction factor (e.g.,
70%) is normally used for all elements in the structure. The effective shear rigidity of
concrete walls is usually assumed to equal the gross section shear rigidity G.4,. which
means the effect of shear cracking is usually not accounted for. The reason is the
complicated unknown behaviour of reinforced concrete members in shear. Since the
shear failure is the most dramatic mode of failure in a structure, engineers often try to be
conservative in their design especially when it comes to the shear design of critical
elements to resist earthquake lateral motion such as shear walls.

While these simple assumptions about effective member rigidities lead to
reasonable estimates of overall structural displacement, such as the displacement at the
top of concrete walls, they may result in poor estimates of shear force distribution
between concrete walls. In this study, nonlinear analysis is used to make an accurate
estimate of the shear force distribution in high-rise concrete walls. Experimentally
calibrated models accounting for uncracked, cracked and post-yielding response of
reinforced concrete were used to determine both flexure and shear rigidities of concrete

walls.
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4.2 Modd of two walls

To investigate the issue of shear force distribution in high-rise concrete walls, a simple
two-wall example as shown in Fig. 4.1 was used. Walls are inter-connected through
diaphragms at levels above ground. The connections between walls and floor slabs are
not capable of resisting the existing overturning moments as they crack due to large
rotations during ground motion and hence are considered as pinned connections.
Connection of walls through rigid diaphragms would cause the lateral displacement at
each level to be identical for both walls. Lateral seismic resisting system of a typical
high-rise may be provided by a number of shear walls having different shapes and
dimensions. If two walls are identical in geometry, the distribution of forces between
them is almost identical since the walls possess the same lateral stiffness. This case is of
less interest in this study. On the other hand this uniform distribution between walls is
highly disturbed when walls have different geometry and size. Compressive strength of
concrete was assumed f.=50 MPa and a modulus of elasticity equal to £,=32000 MPa
was considered for the concrete walls.

In order to maximize the variation in shear force distribution, two walls were purposely
chosen to be very different. Wall W1/ is a 9.0 m long wall with large transverse walls
attached to the ends, i.e., a large flanged wall, while wall W2 is a rectangular wall that is
4.5 m long (half as long). Both walls have a “web” thickness of 0.75 m. Wall W]
represents a typical cantilever wall that is part of a building core. Same geometry for wall
W1 is used to study the dynamic response of a 30-story cantilever wall which will be
discussed in the next chapter of the present dissertation. As both walls have the same

overall height (81 m), wall W1 has half the height-to-length ratio of wall 2.
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Figure 4.1 Example of two-wall model used in the present study.

Table 4.1 Geometrical properties of the walls shown in Fig. 4.1.

Walls I, (m%) A, (m®) Ao (m?)
wi 222.32 19.125 6.75
w2 5.69 3.375 2.7

In order to make it a realistic example, the strengths of the walls were determined the
way it is done in practice, so the strengths are greater than or equal to the forces
determined from a linear analysis.

Response spectrum analysis (RSA) is the most common analysis method used in
Canadian design practice to estimate the seismic demand on high-rise buildings. Thus
this method was used to establish the relative strengths of the walls at the base of the
building. The RSA was conducted for the simple two-wall model by adjusting the
uniform mass over the height of the 30-storey building so that the fundamental period of
the two-wall model was 3 sec., which is the typical value for a complete 30-storey
concrete building. In other words, only the appropriate portion of the total mass of a
complete 30-storey building was applied to the two-wall model. The design spectrum

that was used for the RSA was Vancouver site class C. To account for the effect of
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flexural cracking in the concrete walls, the effective flexural rigidity E.l, was taken as
70% of the uncracked flexural rigidity E./, as is normally done in practice.

The shear forces and bending moment near the base of the walls determined from
the RSA are as follows. The factored bending moments in walls W1 and wall W2 are
M= 1,125,500 kNm and M»=49,000 kNm respectively. The factored shear force in wall
W1 at Level 1 Vy= 34,000 kN, while the factored shear force in wall W2 at Level 1 Vp=
7,100 kN. Note that the ratio of My; to My is 23.0, while the ratio of Vy; to Vp at Level 1
is 4.78. The ratio of (My; + Mp) to (Vi + Vy2) at the base is 28.5 m, note that the ratio of
developed forces in walls are controlled more by flexural action at the upper levels while
the shear deformations in walls become important in lower levels.

Two structural walls in the example were designed so that the resistances of the walls
were about equal to the forces determined in the RSA. Both walls were assumed to be
subjected to an axial compression equal to 0./ chg at the base of the walls, which for
wall W1 is 114,750 kN, and W2 is 20,250 kN. This value is a vertical load that a wall in
a high-rise building is subjected to. The reinforcement in the chosen walls in this study is
designed according to the wall force demand obtained from RSA and is similar to a real
case of wall detailing in practice. In order to have the required flexural capacity at the
base, wall WI required about 2.5% vertical reinforcement in the transverse walls
(flanges), and about 0.5% vertical reinforcement in the web. Wall W2 required 1%
vertical reinforcement over 15% of the wall length at each end of the wall. To have
adequate shear resistance, wall W1 required about 1% horizontal reinforcement at Level
2, while wall W2 required about 0.3% horizontal reinforcement at Level 1. The applied
shear forces cause shear stress ratios v/f; = 0.1 in wall W1 at Level 2, and v/f; = 0.045 in

wall W2 at Level 1.
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4.3 Nonlinear analysis

Nonlinear time history analysis is the most accurate procedure to assess the seismic
performance of a concrete building; however this type of analysis is not widely accepted
to be used in practice because of a number of disadvantages such as selection and scaling
of input ground motions, complex hysteretic models, timeliness of analysis procedure and
interpretation of output results. In order to study shear force distribution between walls
one does not require such a complex analysis. Other aspects of nonlinear shear behaviour
of concrete walls, such as the influence of higher modes on total shear demand on
concrete walls in a building must be investigated using nonlinear dynamic analysis. The
relative shear force distribution between walls depends only on the nonlinear material
behaviour of the concrete walls, and this can be investigated using nonlinear static
analysis. The advantage of nonlinear static analysis is the simplicity and transparency of
the analysis results which allows a complete understanding of the behaviour of the

structure.

4.3.1 Model assumptions

A uniformly distributed lateral load over a height of 62 m from the base (resultant lateral
load at 31 m from the base) was used for the static analysis. The resulting distribution of

bending moments and shear forces over lower stories of the building from the RSA and

the static analysis are compared in Fig. 4.2.
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Figure 4.2. Comparison of bending moment and shear force distributions over lower
floors from RSA (dashed lines) and linear static analysis (solid lines).

The shear forces and bending moments determined at the base of walls from
linear static analysis are summarized in Table 4.2. These are referred to as the factored
forces, analogous to factored forces in design, and are used to normalize the plots in the
results section. Note that the ratio of My to My, is 24.4 while the ratio of Vj; to Vp at
Level 1 and 2 are 4.64 and 14.5. The ratio of (My; + Mp) to (Vi + V) at the base is 31 m.
Note that seismic response of inter-connected walls is greatly dependent on the lateral
loading pattern that is used in the pushover analysis. An appropriate loading pattern
which is controlled by parameter 2'=M/V}, can be estimated using nonlinear time history

analysis which will be investigated in Chapter 5 of this dissertation.
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Table 4.2 Summary of forces determined at the base of walls from linear static analysis.

Factored Forces Wall 1 (W1) Wall 2 (W2)
VrLevel 2 (kN) 35,820 2,470
VrLevel 1 (kN) 33,000 7,100
M;base (kNm) 1,195,500 49,000

The nonlinear static analyses were done using the tri-linear models for flexure and shear

described above. A summary of the nonlinear model parameters are given in Table 4.3

and Table 4.4. The pushover analyses were performed using SAP-2000 (CSI 2006). The

flexural hinge length for walls was taken as the full storey height; in addition, sensitivity

analysis was conducted to determine parameters such as event tolerance and the total

number of analysis steps for the accuracy of results (See SAP-2000 Analysis and Theory

Reference Manual (2006) for more details). The walls were assumed to be fixed at the

base, and the structure below ground was not included in the current study.

Table 4.3 Nonlinear flexural model parameters used for analysis.

Tri-linear Flexural Model

Wall wi w2

M; (1000 kNm) 424.9 22.47
@, (rad/km) 0.047 0.113
M, (1000 kNm) 1,195 49.00
g, (rad/km) 0.393 1.200
M, (1000 kNm) 1,198 49.13
9, (rad/km) 3.889 7.778

Table 4.4 Nonlinear shear model parameters used for analysis.

Tri-linear Shear Model

wi w2
Level 1 2 1 2
V.. (1000 kN) 23.75 23.75 6.39 2.22
Yer % 1000 0.315 0.315 0.170 0.059
V, (1000 kN) 33.00 35.80 7.10 2.47
7, x 1000 2.705 2.765 2.305 2.105
V., (1000 kN) 33.03 35.82 7.12 2.49
7. < 1000 7.505 7.385 8.005 8.035
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4.3.2 Moment to shear ratio at the base

The seismic base moment to shear ratio (h'=M,/V}) is one important parameter which
determines the height at which the base shear V, generates the bending moment M, at the
base. Determination of this parameter, which refers to the point of application of the base
shear along the height of wall, depends mainly on the assumptions used for modelling
and the type of analysis. For example if a response spectrum analysis (RSA) is used for
design of low-rise walls, where moment to shear ratio at the base is influenced mainly by
the first mode response, it is reasonable to consider 4’ values close to 70% of the total
height. For high-rise buildings where the higher modes significantly contribute to the
seismic response, the point of application of base shear becomes lower along the height
compared to low-rise walls. As an example, the point of base shear resultant of for the
described model of a 30-storey wall was approximately at 40% of the total height based
on RSA..

It should be noted that since the force distribution between walls is the main point
of interest, only one base moment to shear ratio (%) associated with RSA (consistent with
design practice) was used to define the seismic loading pattern for pushover analysis of
the model of two walls in this Chapter.

The value of moment to shear ratio at the base also depend on the level of nonlinear
action in the section of wall. Nonlinear time history analysis (NTHA) that was performed
as a part of present work in Chapter 5 showed that formation of plastic hinge at the base
of wall further reduces the base moment to shear ratio as compared to linear analysis.

Chapter 5 will investigate the variation of the base moment to shear ratio for a
model of high-rise wall subjected to different earthquake accelerations while taking into
account a variety of nonlinear models associated with the provided flexural and shear

strengths at different sections of wall over the height.
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4.3.3 Analysis parameters and results

In order to understand how the nonlinear model influences the shear force distribution,
nonlinear static analyses were performed on the two-wall example using different
nonlinear models. Figure 4.3 summarizes these different models. For flexure, either bi-
linear or tri-linear models were used, while for shear, linear, bi-linear and tri-linear
models were used. In the case of the linear and bi-linear shear models, unlimited strength
was assumed as shown in Fig. 4.3. Combination of different flexural model and shear

models shown on Fig 4.3 are also summarized in Table 4.5.

Flexure Model (M-0) Shear Model (V-y)
Model 1 { { I
Model 2 { { I
Model 3 { {
Model 4 { i
Model 5 { i
Figure 4.3 Flexural and Shear models used in the present study.
Table 4.5 Nonlinear flexure and shear models used for analysis.
Model Flexure Shear Description
1 Bi-linear Linear Infinite shear strength
2 Tri-linear Linear Infinite shear strength
3 Tri-linear Bi-linear Infinite shear strength
4 Tri-linear Tri-linear Infinite shear strength
5 Tri-linear Tri-linear Limited shear strength
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A standard format is used in the figures to summarize the results. The dark blue
(darker color) lines in the plots shows the results for the longer wall (W1), while the
magenta lines (lighter color) indicate the results for the smaller wall (#2). Solid and
dashed lines represent the results for the first and second storey, respectively. Two
separate plots are given to present the flexure and shear demands on walls. The shear and
bending moment demands, shown on the vertical axes, have been normalized by the
forces determined in the linear static analysis and summarized in Table 4.2. In all cases,
the horizontal axis is the displacement at the top of walls. A summary of the important
points in the response is given in the tables corresponding to each figure.

The abbreviation used to indicate the nonlinear state of walls during analysis is
described as (A-B-#), in which “A” indicates either Flexure (F) or Shear (S) nonlinearity,
“B” indicates three possible states of Cracking (C) , Yielding (Y) or Failure (F) and “#”
indicates the level in which the nonlinearity has been monitored.

Figure 4.4 summarizes the results from Model 1 (see Fig. 4.3) in which the walls
are assumed to respond linearly in shear and bi-linearly (elastic-perfectly plastic) in
flexure. The analysis was performed using 0.7E ./, for effective flexural rigidity of the
walls as was done to determine the factored forces given in Table 4.2. Since the
stiffnesses are proportional to the strengths, the walls yield at the base at exactly the same
time. This simple response is what most engineers assume is happening in concrete walls.
Note that while the shear strengths of the walls are assumed to be unlimited, the shear
demand is limited by flexural yielding at the base. The shear force demand is limited
exactly to the shear force determined in the linear analysis. As the figure shows yielding
in both walls occur at a monitored top displacement of 0.38 m and beyond this point the

walls reach their flexural and shear capacity at the same time.
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Figure 4.4 Normalized shear and flexure demand predicted by Model 1.

Table 4.6 Nonlinear states captured by Model 1.

Top Displacement (m) State* Level
0.380 F-Y-1 1
0.380 F-Y-2 1

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

The results from Model 2 are shown in Fig. 4.5. The shear model is unchanged (linear
with unlimited strength), while the flexural model is now tri-linear. The initial flexural
rigidity is increased to the uncracked section rigidity E./, of the wall, but a significant
reduction in flexural rigidity occurs after cracking (see Fig. 4.3). The reduction in
flexural rigidity occurs at a curvature ¢J; in wall W1 that is less than half the @; of wall

W2 (0.047 versus 0.113; see Table 4.3).
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Figure 4.5 Normalized shear and flexure demand predicted by Model 2.

Table 4.7 Nonlinear states captured by Model 2.

Top Displacement (m) State* Level
0.097 F-C-1 1
0.118 F-C-2 1
0.118 F-C-1 2
0.219 F-C-2 2
0.385 F-Y-1 1
0.441 F-Y-2 1

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

As a result, flexural cracking occurs at the base of wall WI first at a top wall
displacement of 0.1 (0.097) m. At that point, the shear begins to redistribute so that wall
W2 picks up an increasing amount of the total shear. Flexural cracking at the base of wall
W2 occurs at a top displacement of 0.12 m, and at that point the shear force in wall W2 at

Level 1 (solid magenta line) begins to drop. Flexural cracking also occurs at that point in
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wall W1, Level 2, so the drop in shear in wall W2 at Level 2 is delayed until a top
displacement of 0.22 m when wall W2 cracks at that level. At a displacement of 0.27 m,
wall W2 cracks at level 3 causing the shear in wall W2 Level 2 to start increasing again.
Yielding of wall W1 occurs at a top displacement of 0.39 m, while yielding of wall W2
does not occur until a top displacement of 0.44 m. Note that according to the tri-linear
bending moment — curvature models that were assumed, yielding of wall W2 occurs at a
curvature ¢, that is about three times the yield curvature &, of wall W1 (1.20 versus 0.39;
see Table 4.3). Due to the large reduction in flexural rigidity at cracking in wall W2, wall
W1 is subjected to a shear force that is about 10% larger than what is estimated by a
linear analysis. As the wall W1 yields in flexure, the moment capacity is limited and
therefore the extra demand moment should be resisted by either wall W2 or the action of
floor slabs that would result in an excessive tensile force for the lower slabs. This tensile
force would increase the shear demand on the longer wall by 10% as illustrated in the
figure. Figure 4.6 presents the results from Model 3, which is the same as Model 2 (Fig.
4.5) except that the reduction in shear rigidity that occurs at shear cracking is now
included. The initial response in Fig. 4.6 is the same as the response in Fig. 4.5. At a top
displacement of 0.22 m, shear cracking occurs in wall W1 at both Level 1 and Level 2
where the shear is largest in that wall. Shortly after this event, W2 cracks in shear at
Level 2 causing the curve to get flat due to its low shear slope after cracking. W2 at Level
1 cracks in shear afterwards at a top displacement of 0.32 m and also suffers a flexural
yielding after this at top displacement of 0.34 m. The distribution of forces does not
change until W1 yields in flexure at Level 1 at a top displacement of 0.43 m. At this
instance of time, the curves go flat since the flexural mechanism has formed at the base
of walls due to yielding. Due to the shear deformations of wall W1 and the resulting shear
force redistribution, wall W2 yields at a top displacement of 0.34 m, while wall W1 yields
at a top displacement of 0.43 m. That is, the wall with a yield curvature that is three

times larger actually yields first. This is a very significant result.
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Top Displacement (m) State* Level
0.097 F-C-1 1
0.118 F-C-2 1
0.118 F-C-1 2
0.218 S-C-1 1
0.218 S-C-1 2
0.218 F-C-2 2
0.241 S-C-2 2
0.321 S-C-2 1
0.350 F-Y-2 1
0.433 F-Y-1 1
0.715 F-F-1 1

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).
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Figure 4.7 presents the results from Model 4 in which shear yielding is included. The
shear strengths of the walls were set equal to the shear demands determined from a linear
analysis and summarized in Table 4.3. Yielding of the horizontal reinforcement in the
wall, i.e., shear yielding of the wall, occurs in wall W1 at both Level 1 and Level 2 at a
top displacement of 0.42 m (see Table 4.9).

The distribution of forces in Model 4 is similar to Model 3 until walls reach a top
displacement of 0.42 m. At this stage W1 yields in both Level 1 and Level 2. W2 yields in
shear at Level 2 shortly after at a top displacement of 0.43 m has been reached and at the
same time W1 yields in flexure at Level 1. The flexural mechanism forms at the base of

walls at this point.
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Figure 4.7 Normalized shear and flexure demand predicted by Model 4.
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Table 4.9 Nonlinear states captured by Model 4.

Top Displacement (m) State* Level
0.097 F-C-1 1
0.118 F-C-2 1
0.118 F-C-1 2
0.218 S-C-1 1
0.218 S-C-1 2
0.218 F-C-2 2
0.241 S-C-2 2
0.313 S-C-2 1
0.350 F-Y-2 1
0.423 S-Y-1 1
0.423 S-Y-1 2
0.439 S-Y-2 2
0.439 F-Y-1 1
0.504 S-Y-2 1

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

The behaviour of walls in Model 5 is similar to Model 4 except that the walls have a
limited shear capacity rather than an infinite shear capacity assumed in Model 4. Walls
reached their ultimate capacity in shear at Level 2 at a corresponding top displacement of
0.50 m according to Model 5. This model shows that unlike the most common taught
about shear failure at the base of wall, it is possible to encounter shear failure even in
upper levels; therefore it is vital to estimate a realistic shear demand when using linear
dynamic analysis. The shear failure at Level 2 rather than first level which most

anticipated to fail is a quite significant finding in this case of analysis.
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Figure 4.8 Normalized shear and flexure demand predicted by Model 5.
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Table 4.10 Nonlinear states captured by Model 5.

Top Displacement (m) State™* Level
0.105 F-C-1 1
0.123 F-C-2 1
0.123 F-C-1 2
0.221 S-C-1 1
0.221 S-C-1 2
0.221 F-C-2 2
0.242 S-C-2 2
0.314 S-C-2 1
0.357 F-Y-2 1
0.426 S-Y-1 1
0.426 S-Y-1 2
0.442 S-Y-2 2
0.457 F-Y-1 1
0.475 S-Y-2 1
0.502 S-F-2 2
0.502 S-F-1 2

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

The influence of a 10% increase in the flexural capacity of wall W2 over the linear
flexural demand is investigated in Fig. 4.9 and Fig. 4.10. Figure 4.9 presents the results
from Model 1 (bi-linear flexure and linear shear), and thus should be compared with the
results in Fig. 4.4. Model 1 predicts about a 20% increase in shear demand at the first
level and about a 15% increase in shear demand at the second level due to the 10%

increase in flexural capacity.
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Figure 4.9 Influence of 10% flexural overstrength of W2 according to Model 1.

Table 4.11 Nonlinear states captured according to Fig. 4.9.

Top Displacement State* Level
0.380 F-C-1 1
0.391 F-C-2 1

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

Figure 4.10 presents the results from Model 3 (tri-linear flexure and bi-linear shear), and

should be compared with the results in Fig. 4.6. The figure shows that when the cracking

effects in shear are considered in the behaviour of walls, a significant change in shear

force demand was not observed. The behaviour in this model is similar to the behaviour

observed in Model 3 without any increase in flexural strength of walls (Fig. 4.6).
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Figure 4.10 Influence of 10% flexural overstrength of 2 according to Model 3.
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Table 4.12 Nonlinear states captured according to Fig. 4.10.

Top Displacement (m) State* Level
0.097 F-C-1 1
0.118 F-C-2 1
0.118 F-C-1 2
0.218 S-C-1 1
0.218 S-C-1 2
0.218 F-C-2 2
0.241 S-C-2 2
0.321 S-C-2 1
0.413 S-Y-1 1
0.413 F-Y-2 1
0.432 S-Y-1 2
0.434 F-Y-1 1

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).
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To summarize the findings from this set of analysis two important results are recalled:

- In a case where two walls having different lengths are connected together through
diaphragm slabs, it is possible for the shorter wall to yield in flexure prior to the
longer wall. This phenomenon is caused by the fact that longer wall takes more of
its total lateral deformation in the form of shear displacement whereas the shorter

wall deformation is mainly caused by bending behaviour.
- Two connected walls can reach their ultimate shear capacity in upper levels
earlier than the base. This is caused by the redistribution of forces due to changes

in the relative stiffness of walls when undergoing nonlinear deformation.

The best behaviour was observed in the case in which both walls yielded in flexure at the

base leading to a ductile flexural mechanism.
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4.4 Simplified effective stiffness approach

The next set of analyses investigates the problem using a simple linear approach. In this
part the initial tri-linear flexural and shear response curves are used to determine the
effective stiffnesses corresponding to a fully cracked section and then these values are
used to get a first trial estimate of shear forces and bending moments for the walls. For
the example of two walls, three symmetrical cross sections were considered as shown in

Fig. 4.11.

Case 1 — A
' —> c I I
ase 2 B
I L
Case 3 [ C
w1 w2 w1 w2

Figure 4.11 Sections of walls considered in the present example.

Section A corresponds to a rectangular section with a length of 4.5 m and a thickness of
0.75 m. Section B is an /-section with a flange length of 4.5 m and a web length of 7.0 m
and a uniform thickness of 0.75 m. Section C is also an /-section with larger dimensions
compared to section B. The length of web and flange is 9.0 m each and the thickness is
0.75 m everywhere. Section C is the same section that was considered for W1/ in the
previous example. More information about section properties of walls are given in Table

4.13.
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Table 4.13 Section properties for walls shown in Fig. 4.12.

Cross Section A Cross Section B Cross Section C

S 50 MPa 1 50 MPa S 50 MPa

E. 31820 MPa E. 31820 MPa E. 31820 MPa
L, 4.5 m L, 7.0 m L, 9.0 m
Ag 3375 m’ A, 10.875 m’ A 19.125 m’

I, 5.69 m* I, 76.63 m* I, 256.71 m*
Aye 2.81 m’ Ay 5.25 m’ Ayg 6.75 m’
El, 181,054 | MNm? El, | 2438351 | MNm® EI, | 8168462 | MNm®
GA,, | 35,765 MN GA,, | 66,821 MN GA,, | 850913 MN

In order to study the redistribution of forces between walls three different cases were

examined with different arrangement of wall sections as below:

Case 1: W1: Section C, W2: Section A.
Case 2: W1: Section C, W2: Section B.
Case 3: W1: Section C, W2: Section C.

Same material properties for the previous example have been considered for the
walls. Nonlinear behaviour for the walls is assumed to be a realistic tri-linear behaviour
for both flexure and shear. The values required to construct the tri-linear curve were
given in Table 4.3. In order to get an initial estimate of the moment and shear demand on
two walls, the cracked section stiffnesses were used in terms of £/, and GA,. which
correspond to the slope between origin and the yielding point. The same lateral loading
pattern was used as described in Fig. 4.2 to run a simple linear analysis while using the
cracked section stiffnesses (referred to as “Stage 2”).

Table 4.14 through Table 4.17 present the results for bending moment and shear
force values obtained according to use of both uncracked section stiffnesses (Stage 1) and
cracked section stiffnesses (Stage 2) in the linear analysis. Once the updated values of
bending moment and shear force were obtained using cracked section properties, the
walls’ strength were redesigned for new values and pushover analyses were performed
using the same lateral loading pattern described in Section 4.2. Figure 4.12 shows the

results for pushover analysis in Case 1.
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Casel

Table 4.14 Resulting moments and shear forces for W1 in Case 1.

Wi M(kNm) V(kN) EI/EI, GA./GA,
Level 1 1,194,855 32,506 1 1
Stage 1
Level 2 1,194,855 32,506 1 1
Level 1 1,196,000 33,514 0.33 0.12
Stage 2
Level 2 1,196,000 36,231 0.33 0.13

Table 4.15 Tri-linear flexural and shear models used for W1 in Case 1.

W1 Tri-linear M W1 Tri-linear V'
M(MNm) @ (rad/km) V.(MN) 711000 V1,(MN) 11,1000
Cr 424.9 0.047 23.75 0.315 23.75 0.315
Y 1,196 0.393 33.5 2.765 36.20 2.765
U 1,200 3.890 33.85 7.385 36.55 7.385
Table 4.16 Resulting moments and shear forces for W2 in Case 1.
w2 M 4 EL/EI, GA/GA,
Stage 1 Level 1 53,725 7,738 1 1
Level 2 53,725 3,133 1 1
Level 1 52,582 6,730 0.33 0.07
Stage 2
Level 2 52,582 2,182 0.33 0.03
Table 4.17 Tri-linear flexural and shear models used for W2 in Case 1.
W2 Tri-linear M W2 Tri-linear V
M(MNm) @ (rad/km) V,,(MN) 7.X1000 Vi,(MN) 11,1000
Cr 22.47 0.113 6.390 0.170 1.962 0.059
Y 52.58 1.200 6.730 2.305 2.180 2.105
U 53.00 7.778 6.797 8.005 2.202 8.035
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Figure 4.12 Moment and shear force demand according to Case 1.
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Table 4.18 Nonlinear states captured by Case 1 according to Fig. 4.12.

Top Displacement (m) State* Level
0.075 F-C-1 1
0.085 F-C-2 1
0.085 F-C-1 2
0.172 F-C-2 2
0.180 S-C-1 1
0.180 S-C-1 2
0.190 S-C-2 2
0.258 S-C-2 1
0.340 F-Y-2 1
0.361 S-Y-1 2
0.366 S-Y-2 2
0.379 S-F-1 2
0.392 S-F-2 2

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

Shear failure was observed in the second storey due to redistribution of forces in
Case 1 at a small top displacement of 0.37 m. Flexural cracking in W1 and W2 in first
level is followed by flexural cracking in second level as walls reach a top displacement of
0.17 m. Shear cracking occurs in W1 at Level 1 and Level 2 which is followed by
cracking in W2 at the second level and at the base. W2 suffers flexural yielding at first
level at a top displacement of 0.34 m. Shear yielding in both walls occur at about the
same top displacement at Level 2, leading to a shear failure at this level.

It is important to note that flexural yielding in W/ was not observed in this case
which is not quite the way commonly expected about behaviour of two wall system.
It 1s also important to note when cracked section stiffnesses were used, the longer wall
(W1) takes more of the forces due to redistribution compared to the initial uncracked
case. The ratios for section shear stiffnesses are 12% in W1 vs. 7% in W2 at the base and
13% in W1 vs. 3% in Level 2. This comparison shows the significant influence of shear
force redistribution at second level for the shorter wall (W2 with Section A). These
numbers show that after the walls crack, a larger portion of the shear force demand at
each level is carried by the stronger wall (W1 in this example).

Use of updated section stiffness values in Case 1 lead to an undesired shear failure
of walls in second level. A practical solution to improve the walls’ performance is

proposed here which is referred to as Case 1-2.
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Case 1-2 is similar to the Case 1 except that the shear strength in /2 was maintained over
the height for the first four lower stories. The results for this case are shown in Fig. 4.13.
Shear demand in W2 associated with Case 1-2 remained well below the ultimate shear

capacity compared to Case 1.
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Figure 4.13 Reduction of moment and shear force demand according to Case 1-2.
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Table 4.19 Nonlinear states captured by Case 1-2 according to Fig. 4.13.

Top Displacement (m) State* Level
0.075 F-C-1 1
0.085 F-C-2 1
0.085 F-C-1 2
0.172 F-C-2 2
0.180 S-C-1 1
0.180 S-C-1 2
0.272 S-C-2 1
0.296 F-Y-2 1
0.369 S-Y-1 1
0.377 F-Y-1 1
0.533 S-Y-2 1
0.662 F-F-1 1
0.770 F-F-2 1

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

No critical failure mode in shear was observed for Case 1-2 during pushover
analysis until the anticipated flexural hinging mechanism occurred in the base level. All
walls’ sections in first and second storey suffered cracking due to flexure and shear
response while yielding in W2 happened prior to W1 at the base level. A more ductile
behaviour can be achieved once the flexural mechanism forms compared to shear failure

observed in Case 1.
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Case?2

Table 4.20 Resulting moments and shear forces for W1 in Case 2.

wi M(kNm) V(kN) Ele/Elg GAe/GAg
Level 1 1,194,855 31,420 1 1
Stage 1
Level 2 1,194,855 32,580 1 1
Level 1 1,192,200 32750 0.33 0.12
Stage 2
Level 2 1,192,200 33540 0.33 0.13

Table 4.21 Tri-linear flexural and shear models used for W1 in Case 2.

W1 Tri-linear M W1 Tri-linear V
M(MNm) @ (rad/km) V,(MN) y.1%x1000 V,,(MN) y1:x1000
Cr 424.9 0.047 23.75 0.315 23.75 0.315
Y 1192.2 0.393 32.75 2.760 33.54 2.765
U 1200 3.890 33.07 7.380 33.87 7.385
Table 4.22 Resulting moments and shear forces for 2 in Case 2.
w2 M(kNm) V(kN) Ele/Elg GAe/GAg
Stage | Level 1 445,400 21,440 1 1
Level 2 445,400 17,870 1 1
Stage 2 Level 1 447,820 20,100 0.32 0.11
Level 2 447,820 16,920 0.32 0.09
Table 4.23 Tri-linear flexural and shear models used for W2 in Case 2.
W2 Tri-linear M W2 Tri-linear V
M(MNm) @ (rad/km) Vi (MN) y2:%1000 Vi,(MN) y12%1000
Cr 140.0 0.057 16.32 0.270 15.23 0.243
Y 447.8 0.571 20.10 2.305 16.92 2.105
U 450.0 7.778 20.30 8.005 17.08 8.035
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In Case 2 (See Fig. 4.14) W2 has a larger cross section compared to Case 1 as

shown in Fig. 4.12. Flexural cracking in W2 is followed by flexural cracking in W1 at

first level and also flexural cracking in both walls at second level at a top displacement of

0.09 m. From a top displacement of 0.2 m to a top displacement of 0.25 m, W1 and W2

undergo shear cracking in both first and second levels. Shear yielding in W2 happens at

both first and second level followed by the shear yielding in W1 at the base and flexural

yielding in W2. Shear yielding in W1 at second level happens at a top displacement of

0.38 m while W2 at this level has already suffered shear yielding. A shear failure

mechanism at second level was observed in this case which was similar to Case 1.
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Figure 4.14 Moment and shear force demand according to Case 2.
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Table 4.24 Nonlinear states captured by Case 2 according to Fig. 4.14.

Top Displacement (m) State* Level
0.069 F-C-2 1
0.093 F-C-1 1
0.093 F-C-1 2
0.093 F-C-2 2
0.204 S-C-1 2
0.213 S-C-1 1
0.244 S-C-2 1
0.259 S-C-2 2
0.370 S-Y-2 1
0.370 S-Y-2 2
0.374 S-Y-1 1
0.374 F-Y-2 1
0.380 S-Y-1 2
0.405 S-F-1 2
0.405 S-F-2 2

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

The shear force redistribution observed in Case 2 was not as significant as shown
for Case 1 due to the changes in walls’ geometrical properties. Wall B bending stiffness
is about one third of Wall C whereas Wall A bending stiffness is 45 times less than
bending stiffness in Wall C. The redistribution of forces after using the cracked section
stiffnesses would be dependent on the relative stiffness properties of walls which was
observed to be 0.12 in W1 vs. 0.11 in W2 at the base and 0.13 in W1 vs. 0.09 in W2 at
second level.

Figure 4.15 shows the pushover analysis results for the case when walls possess

similar section geometries.
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Case 3

Table 4.25 Tri-linear flexural and shear model for W1 and W2 in Case 3.

W1 & W2 Tri-linear M W1 & W2 Tri-linear V
M (%] Vi1 vl
Cr 424.9 0.047 23.75 0.315
Y 1195 0.393 38.5 2.76
U 1200 3.89 38.885 7.38
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Figure 4.15 Moment and shear force demand according to Case 3.
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Table 4.26 Nonlinear states captured by Case 2 according to Fig. 4.15.

Top Displacement (m) State* Level
0.074 F-C-1 1
0.074 F-C-2 1
0.092 F-C-1 2
0.092 F-C-2 2
0.169 S-C-1 1
0.169 S-C-2 1
0.181 S-C-1 2
0.181 S-C-2 2
0.354 S-Y-1 1
0.354 S-Y-2 1
0.358 F-Y-1 1
0.358 F-Y-2 1
0.645 F-F-1 1
0.645 F-F-2 1

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2).

No significant shear force distribution was observed for Case 3 in which both walls

have the same geometry. All the nonlinear stages happened simultaneously in both walls

leading to an ultimate yielding in flexure at the base of walls at a top displacement of
0.36 m.

In all cases changes in bending moment redistribution after using the cracked
section stiffness was not noticeable whereas this change for shear force redistribution was
significant especially for the case in which walls were different in size and shape. The
redistribution of forces in walls after using cracked section properties tends to increase
the shear force demand on the larger wall (W1 in this study). The amount of increase in
shear force on W1 after considering effective shear stiffness is given in Table 4.27 for

different analysis cases.

Table 4.27 Amount of increase in shear force demand in W1 relative to uncracked state.

Case Wall 1 at st level Wall 1 at 2nd level
1 13% 31%
2 2% 9%
3 0% 0%
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4.5 Conclusions

The simple model that is normally used for concrete shear walls is bi-linear (elastic—
plastic) in bending and linear until brittle failure in shear. If the strengths of the walls are
proportional to the stiffness, i.e., proportional to the results from a linear analysis, this
model predicts a simple response where the shear forces in all walls increase
proportionally until all walls yield at the same displacement. The actual bending moment
— curvature response of a concrete shear wall is close to tri-linear (Adebar and Ibrahim
2002), due to the significant reduction in flexural rigidity that occurs after flexural
cracking. When this is accounted for, the shear distribution in concrete shear walls
becomes much more complicated (see Fig. 4.5).

The shear force distribution changes significantly as the walls crack at various
levels. As a result of this redistribution, the shear force will be higher in some walls and
lower in other walls than predicted by a linear analysis. This higher demand requires
higher shear strength to avoid a shear failure. When diagonal cracks form in concrete
shear walls, the shear rigidity reduces significantly. Gérin and Adebar (2004) have
presented a simple tri-linear model to account for diagonal cracking in concrete shear
walls. When this is accounted for, very significant changes occur to the shear force
distribution.

The other very significant consequence of accounting for diagonal cracking is the
change in the displacement at which the walls yield in flexure. This can best be seen by
comparing the flexural results (right-hand side) of Figures 4.5 and 4.6. When the shear
deformations due to diagonal cracking are ignored, the predicted yield displacements of
wall W1 and W2 are 0.39 m and 0.44 m, respectively. When the additional shear
deformations are included, the yield displacement of wall W1 (longer wall) increases to
0.43 m, while the yield displacement of wall W2 actually reduces to 0.35 m. The reason
is the longer wall (W1) has much more shear deformation than wall 2 near the base of
the structure, and therefore significant shear is transferred to wall W2 locally at the base
of the wall. These high shear forces near the base (as opposed to shear applied near the

top of the wall) cause the wall to yield at a smaller displacement.
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The important observation that accounting for shear deformations from diagonal
cracking results in a shorter length wall yielding prior to a longer wall (both walls have
the same height) was subsequently confirmed by Bohl and Adebar (2007) using nonlinear
finite element analysis of cantilever concrete shear walls.

The fact that a shorter length wall yields prior to a longer wall is very significant
as it has been suggested by others (e.g., Paulay 2001) that cantilever shear walls can be
designed by assuming the yield displacement is proportional to wall length. Adebar et al.
(2005) have demonstrated that when high-rise cantilever walls are tied together by rigid
floor slabs at numerous levels, all walls yield at the same displacement (the system yield
displacement) regardless of wall length. The results presented in this study demonstrate
that when diagonal cracking is included in the analysis, all walls do not necessarily yield
at the same displacement due to the differing shear deformations; however the results do
reaffirm that the yield displacement of the walls is a system phenomenon and is not
proportional to wall length.

It 1s common practice to increase the shear demand proportional to any flexural
over-strength using the results from linear analysis. See for example Mitchell and Paultre
(2006). The results from the nonlinear analysis summarized in Figures 4.9 and 4.10
suggest that this may be unconservative as the increase in shear demand can be larger
than the increase in flexural capacity. According to the results obtained in this study more
care and attention should be made to the walls having a shorter length used as a part of
core shear wall systems.

Studying the simplified model of inter-connected walls through pushover analysis
showed that the shear failure can occur at the second level rather than the commonly
expected base level. This fact is caused by the redistribution of the shear forces when
diagonal cracking effects are included in the wall’s behaviour.

Based on the findings from the presented pilot study on the model of inter-
connected high-rise walls, if RSA is used for seismic design of the walls, it is
recommended that the horizontal reinforcement arranged for the base of the shorter walls
be extended over the height (i.e. 25% of the lower height should be designed for the shear

force demand at the base) so that the weaker wall at the lower levels above the base

141



maintains the required shear capacity to withstand extra shear demand caused by

nonlinear interaction between the inter-connected walls of different lengths.
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Dynamic shear demand
in high-rise cantilever walls

5.1 Overview

In the previous chapters, a nonlinear shear model was used to investigate two important
issues in the seismic design of high-rise walls. Chapter 3 investigated the nonlinear shear
response of the core wall at below-ground levels of a high-rise building, whereas Chapter
4 investigated the nonlinear force distribution between inter-connected shear walls above
the base level. In both of the previous chapters the simplified nonlinear model was used
in terms of tri-linear shear stress-shear strain envelope to study the seismic response of
concrete walls. In the present chapter a more sophisticated hysteretic shear model is used
to study the seismic shear demand in high-rise cantilever walls.

Dynamic shear demand in a high-rise shear wall building during earthquake is
greatly dependent on the nonlinear behaviour of the core wall. Previous studies indicated
that while yielding of longitudinal reinforcement at the plastic hinge zone limits the
flexural demand it does not limit the seismic shear demand at the base of wall. The
amount of increase in shear force at the plastic hinge is a nonlinear phenomenon which
can not be predicted by any of the linear analysis procedures. In order to account for this
in design practice, designers often use amplification factors to estimate the seismic shear

demand when linear analysis is used. Some building codes (i.e., NZS3101 1982-1995)
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suggest using certain amplification factors to account for the increase in the seismic shear
demand obtained from simplified pseudo-static procedures.

In order to study the seismic behaviour of a reinforced concrete wall, both
nonlinear flexural response and nonlinear shear response must be considered in the
analytical model. An appropriate nonlinear shear model for the concrete walls however
has not been available for many years and hence previous studies on nonlinear behaviour
of concrete walls were limited to nonlinear flexural behaviour neglecting any nonlinearity
due to shear cracking in concrete and yielding of horizontal reinforcement.

The focus of this Chapter is to use nonlinear shear behaviour proposed by Gérin

and Adebar (2004) to investigate the seismic shear demand in high-rise concrete walls.

5.2 Model of high-risewall in this study

A cantilever model of a 30-storey core wall similar to the flanged wall example described
in Chapter 4 was used for analyses. Parameters used for the modeling were chosen
according to realistic examples of core walls built in high-rise buildings. Figure 5.1
shows the cross section of the wall which is uniform over a total height of 81.0 m. The
wall has an I-shape section with a web length of 9.0 m, a flange length of 9.0 m and a
uniform thickness of 0.75 m. The concrete compressive strength is assumed £, =60 MPa.
A linearly varying axial compression is acting on the wall over its height with an axial
compression increasing from zero at the top section to a typical level of compression at

the base of high-rise core walls equal to n=0.1f"..

- 7.50

9.00

rt—q 12—

Figure 5.1 Section of the core wall used in dynamic analysis.
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Flexural strength of the wall is controlled by arrangement and quantity of
longitudinal reinforcement at the web and flange area. To represent wall’s behaviour,
beam-column frame elements were used in the finite element to include deformations
associated with bending and shear at every section of the core wall. Nonlinear models for
flexural and shear behaviour used in the NTHA of the high-rise cantilever wall will be
discussed later in this chapter. P-Delta effects were also considered in all the dynamic

analysis cases in this study to account for geometrical nonlinearity.

5.3 Ground motions used for dynamic analysis

In order to perform nonlinear time history analysis a set of ten recorded acceleration
history were chosen as the final selection of records from two likely seismic sources at
West Coast known as Crustal and Subduction earthquakes. The crustal records suite
consists of 20 ground motions recorded on National Earthquake Hazard Reduction
Program (NEHRP) for site class C. Information regarding characteristics of these records
is presented in Table 5.1. From the complete suite of 20 records, 7 earthquake events
recorded in California with magnitudes ranging from 6.0 to 7.5 were considered for
analysis. The procedure for selection of 7 crustal records will be discussed next in the

ground motion scaling section.
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Table 5.1 Set of recorded earthquakes used in FEMA-440 (ATC-2005) for site class C.

EQ. year Earl\tlr;?:eake Ms Station Name Di(s&qn)ce ((I:Drfl':\z) ('zrﬁ/\g) '(Dc?n?
1 1979 Imperial Valley | 6.8 El Centro, Parachute Test Facility 14.2 200.2 20 7.8
2 1971 San Fernando 6.5 Pasadena, CIT Athenaeum 31.7 107.9 14.7 6.6
3 1971 San Fernando 6.5 Pearblossom Pump 38.9 133.4 4.8 1.4
4 1992 Landers 7.5 Yermo, Fire Station 232 240.3 57.5 37.5
5 1989 Loma Prieta 7.1 APEEL 7, Pulgas 47.7 153 18.9 6.9
6 1989 Loma Prieta 7.1 Gilroy #6, San Ysidro Microwave site 19.4 166.9 14.9 2.9
7 1989 Loma Prieta 7.1 Saratoga, Aloha Ave. 13 494.5 50.3 14.9
8 1989 Loma Prieta 7.1 Gilroy, Gavilon college Phys Sch Bldg 11.6 349.1 21 5.5
9 1989 Loma Prieta 7.1 Santa Cruz, UCSC 17.9 433.1 20.6 6.7
10 1989 Loma Prieta 7.1 San Francisco, Dimond Heights 77 110.8 11.6 3.8
11 1989 Loma Prieta 7.1 Freemont Mission San Jose 43 121.6 12.1 4.8
12 1989 Loma Prieta 7.1 Monterey, City Hall 44.8 71.4 3.7 1.1
13 1989 Loma Prieta 7.1 Yerba Buena Island 80.6 66.5 8.5 2.8
14 1989 Loma Prieta 7.1 Anderson Dam (downstream) 21.4 239.4 20.4 6.8
15 1984 Morgan Hill 6.1 Gilroy Gavilon college Phys Scl Bldg 16.2 95 2.7 0.6
16 1984 Morgan Hill 6.1 Gilroy #6, San Ysidro Microwave Site 11.8 280.4 334 5.1
17 1986 Palm Springs 6 Fun Valley 15.8 126.5 7.9 1
18 1994 Northridge 6.8 Littlerock, Brainard Canyon 46.9 70.6 6.7 1.3
19 1994 Northridge 6.8 Castaic Old Ridge Route 22.6 557.2 43.1 8

20 1994 Northridge 6.8 Lake Hughes #1, Fire station #78 36.3 84.9 10.3 33

The peak ground acceleration for the complete set of crustal records range from

84.9 cm/s® to 557 cm/s>. These ground motions are the same records used in the

calibration of the displacement modification procedure included within FEMA-440 (ATC-

2005) for the site class C. The seismic hazard associated with the Cascadia subduction

zone has been addressed by Geological Survey of Canada. Therefore it is essential to

include the effect of Subduction zone in studying the dynamic behaviour of high-rise

shear walls. Since records from previous seismic activities in Canadian West Coast are

not available, recorded data from the 2003 Tokachi-Oki earthquake event was used in this

study. The Tokachi-Oki earthquake occurred near the island of Hokkaido in Northern

Japan having a moment magnitude of 8.0. This earthquake is very close in magnitude to

what is expected from the Cascadia subduction zone. There were 48 records available
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within 150 km of the epicenter from the Kyoshin Network (K-Net) and the Kiban-
Kyoshin Network (Kik-Net) from which a suite of ten records for subduction earthquake

on site class C were selected. Information regarding these records is given in Table 5.2.

Table 5.2 Selected subduction records from Tokachi-Oki earthquake.

Number Station Name Component Séaé(ij%n Di(i;n)ce (2?/22) (I;CT%) '(Dccr;n? NES||'-t|§ i
Class
1 OBIHIRO, K-Net E-W HKDO095 146.00 190.60 36.10 19.40 C
2 OBIHIRO, K-Net N-S HKD096 146.00 148.40 37.10 27.20 C
3 NAKASATSUNALI K-Net E-W HKDO096 128.00 199.00 33.90 16.00 C
4 NAKASATSUNALI K-Net N-S HKDO097 128.00 176.90 24.20 10.50 C
5 SAMANI, Kik-Net E-W HDKHO07 104.00 197.00 39.70 20.30 C
6 SAMANI, Kik-Net N-S HDKHO08 104.00 169.50 27.20 15.10 C
7 TAIKI, K-Net E-W HKDO098 103.00 345.50 91.40 31.50 C
8 TAIKI, K-Net N-S HKD099 104.00 365.30 75.30 38.70 C
9 MEGURO, K-Net E-W HKDI113 74.00 205.10 16.10 5.80 C
10 MEGURO, K-Net N-S HKDI114 75.00 156.20 13.50 7.70 C

The epicentral distance of these events ranges from 74 km to 146 km. Major
urban areas including Victoria, Vancouver, Seattle, and Portland fall within or just
outside this distance range from the Cascadia subduction zone. Significant damage has
been observed within or beyond this distance range for previous subduction earthquakes
(2004 Sumatra, 1985 Mexico, 1964 Alaska, and 1960 Chile). While epicentral distance is
not the ideal parameter for determining the distance from subduction sources, it provides

a reasonable distance parameter which is easily obtained

5.3.1 Ground motion scaling

Since the selected ground motions maintain different levels of acceleration magnitude,
scaling is done to bring the acceleration magnitudes to a target scaling level. Scaling is
usually done by comparison between the spectrum corresponding to the unscaled ground
motion and the target spectrum. Two different methods of spectrum scaling are widely

used in practice: Spectrum Matching and the Single Scale Factor methods.
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In the Spectrum Matching procedure, the initial recorded ground accelerations are
modified so that their corresponding response spectrum for a SDOF matches perfectly
with the specified target spectrum. In this procedure the frequency contents are changed
as sine and cosine waves are added to the initial unscaled record. In other word the only
way to have a perfectly matched spectrum is to modify the original properties of the
earthquake record. Since by use of spectrum matching procedure the original
characteristics of record are disturbed, there is a debate if this method is the appropriate
way of scaling the earthquake records (Naeim and Lew 1994).

Scaling in the single scale factor method is done by a single scale factor applied on
the whole record to scale it up or down to the desired level of target spectrum. The
advantage of this method is that it does not influence the seismic characteristics of motion
compared to Spectrum Matching procedure. The single scale factor method is often used
to match a specific range of interest over the spectrum. The basis for this procedure is to
scale the original spectrum so that it produces equal area under the range of interest
compared with the area under the target design spectrum curve.

For the structures with dominating first mode of vibration, considering a shorter
range of periods close to the fundamental period of vibration may be adequate for
scaling. In the case of high-rise buildings, the influence of higher modes of vibration is
very significant and therefore a wider range should be considered for scaling. Since a
two-dimensional model of high-rise wall is considered in the present study, the effect of
second mode is highly important in the seismic response. The range under consideration
for scaling must include the first and second mode of vibration in the model, therefore a
period range between 0.27; and 1.57; in which 77 is the fundamental period of vibration
has been considered for scaling of records in this study. This range corresponds to a
period range between 0.5 sec and 4.5 sec for the 30-storey model of wall with a
fundamental period of 7,=3.0 sec and the second mode period of 7,=0.57 sec. It is
desired to have a total number of 10 earthquake records for performing time history
analysis. Among ten records seven are selected from crustal records and three are picked
from the subduction category.

In order to select seven earthquakes from the complete set of records by A7TC

measured on site class C, all the spectra for 20 records given in Table 5.1 were scaled to
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match the NBCC-2005 Site class C design spectrum for Vancouver city within the
specified period range mentioned above. Figure 5.2 shows the scaled spectra with thin
solid lines, the NBCC-2005 design spectrum with a thick solid line and the average scaled
spectrum by a thick dashed line.

To choose the best three records from the subduction earthquakes all 10 records
presented in Table 5.2 are scaled to match the NBCC-2005 design spectrum for site class
C. The scaled spectra for Subduction earthquakes and the corresponding NBCC-2005 site
class C design spectrum for Vancouver are shown in Fig. 5.3. It should be noted that the
subduction records need also be scaled corresponding to a design spectrum which is
specifically developed for these types of ground motions; such a design spectrum was not
readily available at the time of this work and therefore same NBCC-2005 design

spectrum was also used for scaling of the subduction records.
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Figure 5.2 Scaled spectra within period range of 0.5 sec and 4.5 sec corresponding to
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Figure 5.3 Scaled spectra within period range of 0.5 sec and 4.5 sec corresponding to

subduction earthquakes given in Table 5.2.
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5.3.2 Acceleration records used for analysis

Once all the spectra corresponding to each acceleration record were scaled to match the
design spectrum, the best set of seven records from the crustal earthquakes and the best
set of three records from subduction earthquakes were selected. The set for each category
is selected based on the best fit obtained from the corresponding average scaled spectrum.

The spectra for final selection of crustal and subduction motions are shown in Fig. 5.4.

2.0

1.8 +

NBCC-2005 (Vancouver, Site C)

1.6 79| = = Average Response Spectrum

Acceleration (a/g)

0.0 : : : : : : — ‘

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 5.4 Scaled spectra within period range of 0.5 sec and 4.5 sec corresponding to
selected earthquakes and their corresponding average spectrum.

The original set of ten selected records and the corresponding information is presented in
Table 5.3. These records are scaled to match the target NBCC-2005 for site class C
design spectrum for Vancouver city over the range of 0.5 sec to 4.5 sec with the scaling

values presented in Table 5.4.
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Table 5.3 Final selection of records used for analysis.

EQ | Earthquake . Comp. | Distance PGA PGV PGD

D Name Category | (Ms) Station Name deg) | «km) | emi | @mig | (em)

C-1 Imperial Crustal 6.3 | FlCentro, Parachute Test | 5, 142 200.2 20 7.8
Valley Facility

c-2 San Crustal 6.5 Pasadena, CIT 90 317 107.9 14.7 6.6

Fernando Athenaeum
C-3 Loma Prieta Crustal 7.1 Saratoga, Aloha Ave. 0 13 494.5 50.3 14.9
C-4 | Loma Prieta Crustal 71 | SanFrancisco, Dimond 90 77 110.8 11.6 38
Heights
C-5 | Loma Prieta Crustal 7.1 Anderson Dam 270 21.4 239.4 20.4 6.8
(downstream)

C-6 Loma Prieta Crustal 7.1 Yerba Buena Island 90 80.6 66.5 8.5 2.8

C-7 Northridge Crustal 6.8 Castaic Old Ridge Route 360 22.6 557.2 43.1 8

S-1 | Tokachi-Oki | Subduction | 8 NAKASAI\TI;UNAI’ K- NS 128 176.9 24.2 10.5

S-2 | Tokachi-Oki | Subduction | 8 MEGURO, K-Net EW 74 205.1 16.1 5.8

S-3 | Tokachi-Oki | Subduction | 8 MEGURO, K-Net NS 74 156.2 13.5 7.7

Table 5.4 Scaling factors used for final selection of records.

C-1 C-2 C-3 C-4 C-5 C-6 C-7 S1 S2 S3

2.60 2.76 0.82 3.03 1.75 3.58 0.78 1.38 2.45 2.06

5.4 Linear timehistory analysis (LTHA) vs. response spectrum analysis (RSA)

Results obtained from two different linear dynamic analyses are compared here. The 30-
storey model of the wall as explained in Section 5.2 was used for performing linear
response history and response spectrum analysis. 5% viscous damping was also included
in the model of wall for linear time history analysis using Rayleigh damping for first and
second mode of vibration. The scaled records described in Section 5.3 were used to
perform linear dynamic analysis. Results from analyses were compared in terms of
bending moment and shear force demand over the height of wall.

Figure 5.5 shows the results for bending moment demand over the wall’s height.
The thick solid line illustrates the moment distribution associated with the response

spectrum analysis and the thick dashed line presents the envelope for the average bending
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moment obtained from LTHA. The envelopes for each of individual ground motions are
also shown by thin lines. Similar plots for shear force diagram over the height are shown
on Fig. 5.6. According to bending moment and shear force obtained from LTHA, the
averaged envelopes of both sets of ground motions are in good agreement with the results

obtained from RSA.
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Figure 5.5 Bending moment envelopes obtained from LTHA and RSA.

e+-—- ML

—cC1
—FC2

Cc3

Cc4
5 +—-————""- " """~~~ [ ~"~""~""~""~""~""~""~"~"“~"~"~"~"—"——————- 5 -
——C6

c7

S1

S2

S3
— — Average
——RSA

H (m)
&
ie

19 f - C -l

T
0 20,000 40,000 60,000 80,000 100,000 120,000
V (kN)

Figure 5.6 Shear force envelopes obtained from LTHA and RSA.
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5.5 Nonlinear time history analysis

In order to perform nonlinear dynamic analysis on the model of high-rise concrete wall,
program SAP-2000 (CSI 2006) was used to perform direct-integration time history
analysis. A variety of common methods are available for performing direct-integration
time history analysis. Hilber-Hughes-Taylor alpha (HHT) method was used to perform
direct-integration time history analysis in this study. The HHT method uses a single
parameter called alpha. This parameter may take values between 0 and -1/3. For alpha =
0, the method is equivalent to the Newmark method (1959) with gamma = 0.5 and beta =
0.25, which is the same as the average acceleration method (also called the trapezoidal
rule.) Using alpha = 0 offers the highest accuracy but may permit excessive vibrations in
the higher frequency modes, i.e., those modes with periods of the same order as or less
than the time-step size. For negative values of alpha, the higher frequency modes are
more severely damped. Different values of alpha and time-step size were examined in
this study to ensure that the solution is not too dependent upon these parameters. Similar
to any nonlinear analysis, iteration was used to make sure that equilibrium is achieved at
each step of the analysis. A relative convergence tolerance that was used in the analysis
controls the accuracy of analysis results by comparing the magnitude of force error with
the magnitude of the force acting on the structure. For time history analyses, the relative
convergence tolerance was set small enough so that the accuracy of output results is no
longer influenced by this parameter.

Viscous damping was used for all time history analysis cases which was also
referred to as effective damping. Rayleigh damping was used based on 5% critical
damping ratio for the first and the second mode of vibration for the 2-D model of wall.
Nonlinear elements that were used in the time-history analysis account for energy
dissipation in the elements directly and correctly take into account the effects of modal
cross-coupling.

Since direct integration results are extremely sensitive to time-step, this value was
decreased for the same analysis until the step size was small enough that the results were
no longer affected by it. The maximum value of the time-step that was used for nonlinear

time history analysis was t=0.001 sec for all analysis cases in the present study.
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5.5.1 Mod€l definition

Nonlinear “Link” element was used to model the nonlinearities associated with flexural
and shear behaviour for the model of high-rise wall. This nonlinear element is fully
described in SAP-2000 Reference Manual (2006).

A 3-D Link element is assumed to be composed of six separate “springs” one for
each of six deformational degrees of freedom (axial, shear, torsion, and pure bending).
Six independent internal deformations are defined for the 3-D Link element and are
calculated from the relative displacements of joint j with respect to joint i.

A 2-D Link is composed of three internal “springs” or “hinges” one for each of
three internal deformations. Figure 5.7 shows the 2-D Link element that was used in this
study. Deformation of the shear spring can be caused by rotations as well as translations
at the joints. The force in this spring will produce a linearly varying moment along the
length. This moment is taken to be zero at the shear spring, which acts as a moment
hinge. The moment due to shear is in dependent of and additive to the constant moment

in the element due to the pure bending spring.

Jointj

2
dj2
= - ©)
Axial Shear Pure
Bending
L
Joint i

Figure 5.7 2-D Link element used in SAP-2000 (CSI 2006).

In dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Link element is lumped at the joints i and j. Nonlinear force-

deformation relationships were assigned to all the link elements to simulate the nonlinear
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behaviour corresponding to flexure and shear. The linear effective stiffness was used for

the members that remain elastic during analysis.

5.5.2 Hysteretic models

In order to simulate the hysteretic response in the Link element, two different models
were used: one to model the hysteretic flexural response and one to model the hysteretic
shear response.

The hysteretic behaviour considered for the flexural hinge in this study was the
Multi-Linear Takeda model (1970) which was described in Section 3.3.2. In order to
simulate hysteretic shear response in the model of concrete wall in the present work, the
Multi-Linear Pivot model was used. The Multi-Linear Pivot hysteretic model is similar to
the Multi-Linear Takeda model, but has additional parameters to control the degrading
hysteretic loop. It is particularly well suited for reinforced concrete members, and is
based on the observation that unloading and reverse loading tend to be directed toward
specific points, called pivot points, in the force-deformation (or moment-rotation) plane.

This model is fully described in Dowell, Seible and Wilson (1998).

5.6 Influence of flexural strength distribution over the height

Section response analysis was used to determine nonlinear stress-strain relationship for
flexure of reinforced concrete section. Program “Response-2000” was used to determine
the nonlinear flexural behaviour in terms of moment-curvature response. Shear response
for the wall was assumed to be elastic for this case.

A typical example of core wall section provided in high-rise buildings was
considered for performing NTHA. Vertical reinforcement amount changes linearly at
different height intervals. Wall section is kept uniform over the height and the amount of
vertical reinforcement controls the flexural strength of wall in various heights. Wall
section has a 2.5% vertical reinforcement ratio in flange area and a 0.5% vertical
reinforcement ratio at the web area at its base. The vertical reinforcement amount was

reduced linearly every seven stories over the height reaching the minimum reinforcement
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amount allowed by the code (CSA 23.3) equal to 0.5% at the top section. Four different

sections with different reinforcement ratios were considered for the model of core wall in

this study as shown in Fig. 5.9. For modeling the nonlinear flexural behaviour of wall, the

tri-linear moment-curvature backbone was used as shown in Fig. 5.8 which includes the

cracking of concrete and yielding of vertical reinforcement for the reinforced concrete

section. These limits are also shown over different heights of wall in Fig. 5.9.

It should be noted that the model for flexural strength of the wall shown on Fig. 5.9

corresponds to an example of vertical reinforcement that is typically used in some of

existing core wall buildings in Vancouver, Canada but does not cover a complete range

of designed walls in practice.
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Figure 5.8 Moment-curvature backbone used for hysteretic flexural response.
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Table 5.5 Parameters used to define tri-linear moment-curvature response.

State M (kNm) @ (rad/km)

Cracking 178,880 0.022

Section 4 (Levels 22-30) Yielding 250,310 0.044
Ultimate 325,740 5.720

Cracking 288,500 0.044

Section 3 (Levels 15-21) Yielding 499,400 0.109
Ultimate 635,860 5.630

Cracking 367,700 0.044

Section 2 (Levels 8-14) Yielding 742,480 0.127
Ultimate 940,630 5.610

Cracking 456,240 0.056

Section 1 (Levels 1-7) Yielding 986,080 0.173
Ultimate 1,236,120 5.560

157




80 |
70 ! I — - - Cracking
I — — Yielding
60 1 P - Ultimate
50 - : | —RSA
= I I
& 40 - . L — —
T I I
30 - ' |
20 - I. —_ L — — — —
10 - ! |
0 T T I T T T T
0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000
M (kN.m)

Figure 5.9 Flexural limits over the height in the high-rise wall model.

In reality the flexural strength envelope is sloped between different sections. In
order to simplify the model of wall, the flexural strength is assumed to be constant over
each section as shown in Fig. 5.9. In order to improve the analysis and prevent problems
such as instability due to local failure, the moment-curvature response maintained its
strength beyond ultimate flexural failure point following the post-yielding strain
hardening slope. The ultimate curvature capacity increases with elevation and for the
model of wall ranged between 5.6 (Rad/km) for lower sections to 6.0 (Rad/km) in upper
sections.

In studying the nonlinear behaviour of concrete walls, it is generally assumed that
the nonlinear behaviour caused by yielding of longitudinal reinforcement occurs at the
plastic hinge zone near the base of wall. In low-rise buildings where seismic response is
significantly affected by the first mode response, bending moment diagram increases
consistently over the height from top level to its peak at the base of wall. In this case it is
not unrealistic to limit the nonlinear flexural behaviour to the base of wall.

In high-rise concrete walls, the influence of higher modes of vibration becomes
very significant. Large bending moment is developed at mid-height of the wall caused by
the effect of higher modes. This shows that in high-rise walls, the nonlinear flexural
behaviour takes place in various heights and one cannot assume that the nonlinear action

occurs only at the base of wall.
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Another important issue which must be accounted for in studying the nonlinear
response of concrete walls is the quantity and distribution of reinforcement over the
wall’s height. Most of high-rise concrete walls are designed by using the response
spectrum analysis (RSA). Use of a smooth design spectrum suggested by the codes would
lead to a linearly increasing bending moment diagram over the wall’s height. According
to the flexural demand obtained through use of response spectrum analysis, the flexural
strength provided by the reinforcement should change linearly form top to the base of
wall. In practice the reduction in strength takes place not for every single storey but rather
for a number of stories over the wall’s height. In order to compare the results obtained
from different analysis assumptions, nonlinear dynamic analysis was performed for two
different cases.

First case which is referred to as “Case SH” is the case where wall is allowed to
yield due to bending at the plastic hinge zone defined at the base as explained in Section
3.3.2. This model presents the commonly assumed nonlinear model for high-rise walls.
The length of hinge zone is controlled by the number of nonlinear Link elements
considered over a specific height of wall. The flexural hinge length can be extended up to
150% of the wall’s length. The rest of wall above plastic hinge was modeled elastic and
therefore no nonlinear behaviour was captured by the wall sections above the plastic
hinge zone. Nonlinear elements used in the model of wall were spread over a length equal
to 18.9 m (7 stories) above the base to ensure sufficient length for plastic hinge has been
considered. The nonlinear flexural model in the plastic hinge zone is described as
“Section 1 in Table 5.5.

The second case for nonlinear dynamic analysis referred to as “Case MH”
considers a more appropriate flexural behaviour compared to Case SH. In this case
nonlinear elements are considered over the wall’s height according to the specified
flexural strength of wall sections at different levels. The flexural strength increases from
top of the wall reaching its maximum at the base. Four different sections are defined
according to the information given in Table 5.5 for Sections 1-4 which is also shown on
Fig. 5.9. Unlike Case SH, wall is not restricted to undergo nonlinear behaviour only at its
base in the Case MH. In this case there is no restriction on the length and location at

which the nonlinear flexural action occurs over the wall’s entire height. Due to the effect

159



of higher modes and specially the second mode in the simplified 2-D model, the wall is
expected to develop large bending moment demand at the regions close to mid-height.

Time history analysis was done for a 30-storey wall having a fundamental period of
7,=3.0 sec. Time step used in the analysis was 0.001 sec and Takeda model (1970) was
used to simulate the hysteretic flexural behaviour.

Nonlinear time history analyses were performed for R=2.0, R= 3.5 and R=5.0.
Figure 5.9 through Fig. 5.16 show the envelope results for bending moment and shear
force demand over the wall’s height for two cases of R=2.0 and R=5.0 to consider a lower
and upper bound for this factor. As examples, the recommended R factors by Canadian
code (NBCC-2005) for moderate ductile and ductile shear walls are R=2.0 and R=3.5 (i.e.
Ry).

As explained, the results were compared for two different cases of nonlinear
flexural behaviour in the wall which are called “Case SH” and “Case MH”. SH stands for
single hinge at the base of wall and MH stands for multiple hinges over the wall’s height.
Figure 5.10 and Fig. 5.11 show the bending moment envelopes for seven crustal
earthquakes (R=2.0) for Case SH and Case MH respectively. The length of plastic hinge
zone for Case SH covers a height between base and 18.9 m shown on these plots. In Fig.
5.10, the bending moment is limited to the flexural yielding limit at the base only and
therefore the flexural demand has increased above the plastic hinge significantly. Figure
5.11 shows the similar moment envelope results for Case MH where the nonlinear
flexural response is not limited to a specific zone at the base of wall. Wall yielded in
flexure at four different zones according to specified flexural strength over the height.

To observe how the shear force demand was influenced by different flexural
responses in Case SH and Case MH, see Fig. 5.12 and Fig. 5.13 respectively. As
illustrated in these figures, the shear force demand is generally larger in Case SH when
compared with values obtained for Case MH. The amount of increase in shear demand
for Case SH is specially noticeable at the base and also upper quarter length of wall close
to the top. As shown in Fig. 5.13, the shear force demand at upper levels is limited by
influence of flexural yielding over the wall’s height. This is a very significant result. A
moderate increase in seismic shear force demand was observed for R=2.0 as shown in the

first set of figures from Fig. 5.10 through Fig. 5.13. The second set of figures show the
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result for a more severe case of R=5.0. Figure 5.14 through Fig. 5.17 present results of
NTHA for R=5.0.

Figure 5.14 shows the envelope of bending moment results for Case SH. As shown,
seismic bending moment demand at mid-height of the wall is larger than the demand at
the base of wall. The large value at mid-height is an effect of assuming an elastic
behaviour for the high-rise wall above the plastic hinge at the base. A more appropriate
flexural behaviour captured by Case MH is shown in Fig. 5.15 where wall yields at four
different regions over its height. Corresponding shear force diagrams are shown in Fig.
5.16 and Fig. 5.17. Again the shear force demand obtained at the base and upper levels
close to top of wall are significantly larger for Case SH shown in Fig. 5.16 compared

with Case MH shown in Fig. 5.17.
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Figure 5.10 Envelopes for bending moment over the height (Case SH-R=2.0).
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Figure 5.11 Envelopes for bending moment over the height (Case MH-R=2.0).
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Figure 5.12 Envelopes for shear force over the height (Case SH-R=2.0).
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Figure 5.14 Envelopes for bending moment over the height (Case SH-R=5.0).
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Figure 5.15 Envelopes for bending moment over the height (Case MH-R=5.0).
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Figure 5.17 Envelopes for shear force over the height (Case MH-R=5.0).
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Yielding in flexure which limits the bending moment demand at the plastic hinge zone
increases the curvature demand correspondingly. The amount of increase in the curvature
demand is proportional to the slope of the post yielding line in the moment-curvature
response. Since curvature demand is a very important parameter, the plots for curvature
over the wall height are given in Fig. 5.18 and Fig. 5.19. The curvature demand is largest
at the section close to the top which is caused by definition of flexural yielding limit as

shown in Fig. 5.9.
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Figure 5.18 Envelopes for curvature demand over the height (Case MH-R=2.0).
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Figure 5.19 Envelopes for curvature demand over the height (Case MH-R=5.0).
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Summary of shear force envelopes for two cases of analysis and three different values of
R factor are given in Table 5.6. Maximum shear force demands are presented at two
critical locations over the wall’s height. “Base” in this table corresponds to the region of
plastic hinge at the base of wall and “Top” in the table corresponds to region between El.
56.7 m and El. 75.6 m (Section 4) as described in Section 5.6. By comparison of values in
Table 5.6, it was observed that shear force values for Case SH is generally larger than the
corresponding values obtained for Case MH.

Table 5.7 provides a summary of the results in terms of the amount of increase in
shear force demand in Case SH with respect to the results obtained from Case MH.
According to the table, the amount of increase in shear force at the base for different R
factors ranged between 12% and 25% while this amount at upper levels ranged between

36% and 102%.

Table 5.6 Shear demand obtained from nonlinear dynamic analysis (values in kN).

R Case | Loc. C-1 c-2 C-3 C-4 C-5 C-6 Cc-7 S-1 S-2 S-3
| Top | 19,727 | 23,742 | 22,867 | 26,683 | 31,304 | 31,613 | 28447 | 16444 | 29,044 | 24,600
(SH) | Base | 45115 | 50499 | 57344 | 48492 | 63,083 | 51282 | 65954 | 40967 | 66448 | 58,165
2.0
) Top | 18,221 16429 | 17,705 | 19,759 | 19,933 | 18,748 | 19269 | 16,073 | 19,526 | 20,938
(MH)
Base | 48,809 | 42467 | 49,134 | 48297 | 52,711 | 43,155 | 53,820 | 40,016 | 57,767 | 51,002
| Top | 34,91 | 33,050 | 32,012 | 36,721 | 45431 | 52,926 | 50,521 | 23262 | 45511 | 42451
(SH) | Base | 81683 | 74508 | 89.632 | 82882 | 92348 | 81646 | 110401 | 58247 | 101521 | 92163
3.5
) Top | 24359 | 20359 | 20,649 | 23330 | 22,696 | 20,776 | 27,104 | 18,648 | 26255 | 22,742
(MH)
Base | 84,568 | 79,713 | 79,033 | 66,635 | 72483 | 56,198 | 71348 | 66,090 | 85,100 | 73,641
| Top | 47,919 | 44464 | 41,044 | 48927 | 62,062 | 67,081 | 70948 | 28489 | 62219 | 60,817
(SH) | Base | 112020 | 98861 | 121,567 | 110012 | 119970 | 109968 | 147,177 | 73,593 | 125246 | 122341
5.0
) Top | 26062 | 23645 | 25060 | 25462 | 30312 | 22,385 | 24244 | 21217 | 41,048 | 29363
(MH)
Base | 107,937 | 100,905 | 114,938 | 80,613 | 102,004 | 64,051 | 96,780 | 75234 | 118,747 | 76,276
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Table 5.7 Amount of shear demand increase in Case SH with respect to Case MH.

R Location C-1 C-2 C-3 C-4 C-5 C-6 Cc-7 S-1 S-2 S-3 Mean
Top 1.08 1.45 1.29 1.35 1.57 1.69 1.48 1.02 1.49 1.17 1.36
2.0
Base 0.92 1.19 1.17 1.00 1.20 1.19 1.23 1.02 1.15 1.14 1.12
Top 1.40 1.62 1.55 1.57 2.00 2.55 1.86 1.25 1.73 1.87 1.74
35
Base 0.97 0.94 1.13 1.24 1.27 1.45 1.55 0.88 1.19 1.25 1.19
Top 1.84 1.88 1.64 1.92 2.05 3.00 2.93 1.34 1.52 2.07 2.02
5.0
Base 1.05 0.98 1.06 1.36 1.18 1.72 1.52 0.98 1.05 1.60 1.25

The dynamic shear amplification factors obtained from NTHA are given in the Table 5.8.

The results for two cases of different flexural strength over the wall height are compared

at two different critical locations over the wall’s height. Amplification factors provided in

the Table present the ratio between shear forces obtained from NTHA to shear forces

obtained from RSA using NBCC-2005 design spectrum for Vancouver, site class C.

Dynamic amplification factor was larger in Case SH compared with Case MH. Case SH

indicates dynamic shear amplification factors ranging from 1.48 to 3.09 for the base

section and amplification factors ranging from1.53 to 3.21 for the top section. The

corresponding amplification factors for Case MH were observed to range from 1.32 to

2.53 at the base and from 1.12 to 1.61 at top section.

Table 5.8 Dynamic shear amplification for nonlinear response history analysis vs. RSA.

R Case At base section At top section
1 (SH) 1.48 1.53
2.0
2 (MH) 1.32 1.12
1 (SH) 2.34 2.38
3.5
2 (MH) 1.99 1.36
1 (SH) 3.09 3.21
5.0
2 (MH) 2.53 1.61
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This study showed that including the effect of flexural yielding over the entire
height of wall would result in reduction of seismic shear force demand. Based on findings
of this section, use of FE models of high-rise wall where the plastic hinge is only
considered at the base can lead to overestimation of shear force demand at the base and

the top levels of the wall.

5.7 Influence of effective shear stiffness dueto diagonal cracking

One simple approach to consider the influence of nonlinear shear behaviour associated
with cracking of reinforced concrete section is to use the effective shear stiffness.
Effective shear stiffness is often defined as a fraction of gross shear stiffness (G.4,,) in
the concrete walls. Depending on the amount of diagonal cracking caused by shear
deformation of wall, values of cracked shear stiffness varies. Fully cracked shear stiffness
is often considered as the slope of line from origin to the yielding of first horizontal
reinforcement in shear.

By considering equal area approach, the tri-linear shear stress-strain relationship
can be simplified to a bi-linear curve in which the effective shear stiffness is defined as
the slope of the line between origin and the point of yielding as shown in Fig. 5.20. An
appropriate estimate of effective shear stiffness can account for influence of diagonal
cracking in reinforced concrete walls in a simple way. Results obtained from testing of
RC panels were used to determine the effective shear stiffness of walls which possess

different sectional geometry and horizontal reinforcement.
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Figure 5.20 Use of equivalent area approach to estimate the effective shear stiffness.
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Villani (1995) observed that the shear stress at the point of yielding ranges between 5
MPa and 6 MPa with the corresponding shear strain ranging between 0.003 and 0.004.
The ratio of cracked section shear stiffness to the uncracked gross shear stiffness
(GAv/G:A,g) ranged between 0.067 and 0.011 for the above values. Considering the
realistic stress—strain relationship for concrete walls in a case where wall has suffered
significant diagonal cracking, a value of effective shear stiffness equal to 10% of initial
gross shear stiffness (G.4,.= 0.1G.A,,) may be used to get a rough estimate of effective
shear stiffness for the wall.

A wide range of effective shear stiffnesses was considered to investigate the
nonlinear response of the model of high-rise wall. Dynamic nonlinear analyses were
performed for different R factors equal to 2.0, 3.5 and 5.0 from a moderately ductile
behaviour to a highly ductile behaviour. R factor in this study was assumed to be the ratio
between the peak bending moment at the base of wall from linear time history analysis
(LTHA) to the yielding bending moment at the base obtained from nonlinear time history
analysis (NTHA). Since the wall geometry and strength properties were unchanged
during all cases of analysis, the acceleration records were scaled according to the desired
level of R factor. In order to study the effect of nonlinear shear behaviour in a simple
way, four levels of effective shear stiffness was used over the entire wall’s height. These
four levels of effective shear stiffness (G.4,.) were defined as 5%, 10%, 20% and 100%
of gross shear stiffness (G.4,4). A time step of /=0.001 sec was used for nonlinear time
history analysis. Results are shown in terms of envelopes for bending moment diagram,
shear force and curvature diagram over the height of wall in Figures 5.21 through 5.24.

Flexural model of wall for analysis was similar to the model used in Section 5.6
where the wall possesses four different steps in flexural strength over the entire height.
Figure 5.21 and Fig. 5.22 show the distribution of shear force demand over the height of
wall for R=2.0 and R=5.0 respectively. The plots shown are the average of envelope
values for the 10 selected earthquakes described in Section 5.3. According to the analyses
results, reduction of shear stiffness over the wall height would result in a lower estimate

of shear demand at the base of wall.
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Figure 5.22 Influence of effective shear stiffness on shear force demand (Average for all

earthquakes, R=5.0).
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Curvature demand tends to increase over the height and was observed to be largest
at three forth of total height. This is mainly caused by justification of yielding limits
shown on Fig. 5.9. It is noted that variation of flexural strength over the height shown in
Fig. 5.9 is very similar to design example of existing core walls in high-rise buildings in
Western Canada. Due to the reduction in axial compression over the height, the curvature
ductility was greater in the upper levels of the wall compared to the lower levels. The
results for curvature demand are shown in Fig. 5.23 and Fig. 5.24 for R=2.0 and for
R=5.0 respectively. Curvature demand was significant at the base and also the upper

levels of wall.
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Figure 5.23 Influence of effective shear stiffness on curvature demand (Average for all
earthquakes, R=2.0).
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Figure 5.24 Influence of effective shear stiffness on curvature demand (Average for all
earthquakes, R=5.0).

Influence of effective shear stiffness on the shear force demand is shown in Fig.
5.25 and Fig. 5.26. In these plots the reduction of shear force at the base obtained from
nonlinear response history analysis are shown with respect to the effective shear strength
over the wall’s height. The thin lines present the envelope values for 10 selected ground
motions and the thick dashed line presents the corresponding averaged envelope values.

The reduction in shear force demand caused by influence of diagonal cracking was
found to be insignificant for the lower levels of cracking where G.4,.>0.2G.A,,. For
higher levels of diagonal cracking where G.A4,.<0./GA,, the shear force reduction was
noticeable. Shear force demand in some cases reduced to values lower than prediction of
linear response spectrum analysis (i.e. Ge4,.=0.05G.A4,s). Any reduction in shear force
demand due to nonlinear behaviour is compensated by an increase in localized
deformations. According to results, a reduction of uncracked shear stiffness to an cracked
shear stiffness of G.4,.=0.1G.A,, caused a 30% reduction on shear force demand at the
base of the modeled high-rise wall compared to the case where shear behaviour is

assumed to remain elastic.
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A summary of the obtained results for the shear force demand at the base is
presented in Tables 5.9 through Table 5.11. Table 5.9 summarizes the shear force
demand at the base of wall obtained from nonlinear dynamic analysis with respect to
different effective shear stiffness and different R factors. The results presented in Table
5.9 and Table 5.10 correspond to the crustal and subduction earthquakes respectively.
Table 5.11 presents the mean values obtained from different earthquake events. Note that
term “C” in Tables corresponds to crustal and term “S” corresponds to subduction

earthquakes.

Table 5.9 Dynamic shear force demand at the base obtained from crustal events for
different effective shear stiffness (values in kN).

R GA,./GA,, C-1 C-2 C-3 C-4 C-5 C-6 Cc-7
1.00 48,809 42,467 49,134 48,297 52,711 43,155 53,820
0.20 38,810 50,198 36,733 30,683 40,347 27,916 50,684
20 0.10 47,117 31,671 33,749 32,225 35,647 28,743 30,833
0.05 28,933 34,469 28,621 26,195 26,772 27,701 35,054
1.00 84,568 79,713 79,033 66,635 72,483 56,198 71,348
0.20 62,624 65,387 71,287 58,234 67,855 44,561 64,339
> 0.10 44,758 43,200 55,017 55,687 54,737 50,967 | 44,505
0.05 41,124 42,142 38,502 46,498 44,249 44,093 37,022
1.00 107,937 | 100,905 | 114,938 | 80,613 102,004 | 64,051 96,780
0.20 85,256 88,023 86,082 72,531 83,155 63,458 86,750
>0 0.10 61,953 68,700 64,985 66,175 70,452 67,238 75,288
0.05 51,973 49,916 43,759 60,444 55,306 53,755 54,810
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Table 5.10 Dynamic shear force demand at the base obtained from subduction events for

different effective shear stiffness (values in kN).

R GA,/GA,, S-1 S-2 S-3
1.00 40,016 57,767 51,002
0.20 42,830 34,914 39,319
20 0.10 31,999 42,916 34,003
0.05 36,003 29,053 20,839
1.00 66,090 85,100 73,641
0.20 51,022 72,317 57,559
>3 0.10 51,466 57,546 46,902
0.05 42,934 42,771 33,770
1.00 75,234 118,747 76,276
0.20 67,213 113,043 66,832
>0 0.10 74,318 70,444 61,503
0.05 51,410 55,646 41,316

Table 5.11 Mean dynamic shear force demand at the base obtained from different

earthquake events for different effective shear stiffness (values in kN).

R GA,/GA,, Mean-C Mean-S Mean all
1.00 48,342 49,595 48,718
0.20 39,339 38,979 39,243
>0 0.10 33,134 36,306 34,890
0.05 29,489 28,632 29,364
1.00 72,854 74,944 73,481
0.20 62,041 60,299 61,518
3 0.10 49,769 51,971 50,479
0.05 41,214 39,812 41,310
1.00 95,318 90,086 93,748
0.20 80,751 82,362 81,234
>0 0.10 67,802 68,755 68,106
0.05 52,230 49,458 51,834
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Dynamic shear magnification factor is often expressed as the ratio between the

shear demand obtained from dynamic analysis considering only flexural nonlinearity to

the seismic shear demand obtained from simplified pseudo-static procedures. Dynamic

shear amplification is defined with respect to results obtained from response spectrum

analysis (RSA) in the present study. Dynamic shear amplification values are presented

for the shear force at the base of wall in Table 5.12. Values are given as mean values

obtained from influence of crustal and subduction earthquakes separately and also for all

earthquake records. Dynamic amplification factor for R=2.0 ranged between 1.48 and

0.79 for different effective shear stiffnesses. Results of NTHA for R=3.5 suggested

values for dynamic amplification which ranged from 2.34 to 1.12. Case R=5.0 resulted in

the greatest shear amplification factors which ranged from 3.09 to 1.40 for different

effective shear stiffnesses.

Table 5.12 Mean dynamic shear force amplification at the base with respect to shear
force demand obtained from RSA.

R GA,./GA,, Mean-C Mean-S Mean all
1.0-Case SH 1.47 1.49 1.48
1.0 1.31 1.34 1.32
2.0 0.2 1.06 1.05 1.06
0.1 0.90 0.98 0.94
0.05 0.80 0.77 0.79
1.0-Case SH 2.37 2.27 2.34
1.0 1.97 2.03 1.99
3.5 0.2 1.68 1.63 1.66
0.1 1.35 1.40 1.36
0.05 1.11 1.08 1.12
1.0-Case SH 3.17 2.89 3.09
1.0 2.58 243 2.53
5.0 0.2 2.18 2.23 2.20
0.1 1.83 1.86 1.84
0.05 1.41 1.34 1.40
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5.8 Influence of degrading hysteretic shear response

The final sets of analysis are performed using state-of-the-art nonlinear shear model in
reinforced concrete walls through hysteretic response proposed by Gérin (2003). Program
Response-2000 may also be used to predict nonlinear shear backbone for the section of
wall; however because of uncertainties in using many required parameters to construct
nonlinear shear response using Response-2000 and some of its shortcomings such as
modeling the appropriate strut action, a more transparent simplified tri-linear shear model

(Gérin 2003) was used in the present study.
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Figure 5.27 Hysteretic shear models in walls a) Experimental data (from Gérin, 2003) b)
Simplified Model used in this study using NLINK element (SAP-2000, CSI 2006).
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The hysteretic model for reverse cyclic shear that was used in this work is based on
experimental testing conducted at the University of Toronto. The considered test element
reinforcement ratio was similar to a section of high-rise wall at its base and therefore was
used for verification of numerical model in this study.

In order to construct the appropriate hysteretic shear model the NLINK nonlinear
element (SAP-2000, CSI 2006) was used and the actual hysteretic behaviour was
simulated using Pivot Model (Dowell, Seible and Wilson 1998). Figure 5.27 and Fig.
5.28 present comparisons between experimental test data and the simplified hysteretic
shear model used in this study. The backbone curve for hysteretic shear model was
constructed based on tri-linear shear model proposed by Gérin (2003) which defines
diagonal cracking of concrete and yielding limit for horizontal reinforcement for a given

reinforced concrete section.
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Figure 5.28 Hysteretic shear comparisons between experimental data and simplified
model used in this study.

The nonlinear shear behaviour for the high-rise concrete wall was simulated in two
different ways: one by using effective shear stiffness as a simplified method of
accounting for diagonal cracking and the other by using a complete hysteretic shear

model. Reliability of hysteretic shear model was also verified and validated by comparing
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the results obtained from using hysteretic shear model and the results of NTHA obtained

from using simplified shear stiffness properties for the model of high-rise wall.
5.8.1 Estimate of shear strength at cracking

In order to develop the tri-linear shear envelope used as the backbone of hysteretic
behaviour, a proper estimate of cracking and yielding point is required. Comparison
between values obtained from each of equations used to estimate V. is shown in Fig.
5.29. Equation 11-12 taken from ACI-318-05 was used for a lower-bound estimate of

shear strength at cracking of concrete.
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Figure 5.29 Shear at cracking for concrete walls predicted by ACI 318-05.

5.8.2 Estimate of shear strength at yielding

As designers typically use the RSA prediction for design of high-rise concrete walls,
similar procedure was used here to estimate the initial shear strength for the wall. Figure
5.30 shows the different design spectra used to perform RSA. Three different design
spectra was used which include NBCC-2005 design spectrum for Vancouver (site class

C), IBC-2006 spectrum for Site Class B with F,=F,=1.0 and UBC-97 spectrum with
C,~=C,~=0.4.
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The design spectra were scaled to result in the same overturning moment equal to
flexural strength at the base of the 30-storey model of wall with 7,=3.0 sec. The scaled
spectrum ended up having equal acceleration magnitude in a range between 7=2.5 sec

and 7=3.5 sec as shown in Fig. 5.30.
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Figure 5.30 Scaled design response spectra used for RSA.

The ratio between overturning moment and shear force at the base of wall was
also determined according to the results obtained from RSA. The normalized values of
h'/H= (My/Vp)/H are given in Table 5.13, also shown on Fig. 5.31. A"/H ratio was
obtained for linear time history analysis (LTHA) considering 10 different ground motions

used for this study. Table 5.14 presents the /4 /H values obtained from LTHA.

Table 5.13 Ratios of 4 /H for walls according to RSA of different design spectra.

T, 05s 10s 20s 30s 50s
IBC-2006 0.72 0.63 0.44 0.37 0.26
NBCC-2005 0.71 0.59 0.42 0.38 0.29
UBC-97 0.72 0.60 0.40 0.36 0.25
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Figure 5.31 Ratios of 4 /H for walls according to RSA of different design spectra.

Table 5.14 Ratios of /4 /H for walls according to LTHA for different earthquakes.

Earthquake My/Vp h'/H
C-1 38.15 0.47
C-2 25.19 0.31
C-3 28.60 0.35
C-4 29.31 0.36
C-5 20.32 0.25
C-6 33.65 0.42
C-7 17.45 0.22
S-1 47.32 0.58
S-2 26.90 0.33
S-3 31.94 0.39

Mean Value 29.88 0.37

The previous example of 30-storey wall had a flexural strength of A,=1,050,000
kNm. 4 /H ratio was assumed to be 0.37 corresponding to a 30-storey wall with 7,=3.0
sec. This value is associated with a design shear strength value of /;,=35,000 kN at the

base of wall.
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The distribution of seismic shear force demand over the height of wall is also
determined using RSA in practice. Distribution of bending moment and shear force over
the height of the 30-storey wall for the three different design spectra (see also Fig. 5.30)
is shown in Fig. 5.32.

Wall’s shear strength at every 7 storey reduces based on force distribution
obtained from RSA. The shear strength is controlled by providing horizontal steel at each
section. In total four different sections were considered over the wall’s height. The shear
strength changes every seven stories similar to the model used for flexural strength. The
shear strength for section 1 from the base to the 7t storey (ElL. 19.0) is equal to V;=V}.
shear strength for section 2 from the 8" storey to the 14™ storey (EL 38.0) is V;,=0.85V,
shear strength for section 3 from the 15™ storey to the 21* storey (El. 57.0) is V3=0.60V},
and the strength for section 4 from the 22 storey to top of wall (El. 81.0) is V3=0.45V.

The shear strength envelope for the example of wall is shown in Fig. 5.33.
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Figure 5.32 RSA prediction of bending moment and shear force over the height for
7,=3.0 sec.
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Figure 5.33 Shear strength envelopes over the height of the 30-storey wall model.

Tri-linear shear force-shear strain relationship was used for four different section of the
wall over its height. The tri-linear model for shear force-shear strain was used to model
the wall nonlinear behaviour in shear. The envelope of nonlinear shear force-shear strain
model for section of wall is shown in Fig. 5.34. Table 5.15 presents the parameters used

in defining the tri-linear shear force-shear strain backbone for hysteretic shear model.
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Figure 5.34 Shear force-shear strain envelope used for hysteretic shear response.
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Table 5.15 Nonlinear shear model used in the example of wall.

Ver (kN) Ver Vy (kN) P
Section 1 24,444 0.00028 37,037 0.00293
Section 2 21,913 0.00026 31,481 0.00312
Section 3 19,381 0.00023 22,222 0.00307
Section 4 15,833 0.00020 16,667 0.00366

The ultimate shear strength (¥,) was considered equal to 1.2V, in all cases (see
Fig. 5.33). The ultimate shear strain capacity was determined using expression proposed
by Gérin (2003). The nonlinear elements were considered over the entire height of wall
with strength changing at every seven stories. To model the nonlinear behaviour over the
height of wall two nonlinear spring elements to simulate the hysteretic flexural and shear
behaviour were used as shown in Fig. 5.35. The nonlinear spring elements are referred to
as NLINK in the program SAP-2000 (CSI 2006) that was used in this study. Tri-linear
envelope using Takeda model was used to incorporate moment-curvature response at the
section of wall. In order to simulate the nonlinear hysteretic shear response, the tri-linear
shear force—shear strain backbone was used with a combination of modified pivot model
accounting for pinching. The results from using this model were compared to the

experimental results shown in Fig. 5.28 earlier in this chapter.
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Figure 5.35 a): Model of the 30-storey wall and b): the nonlinear springs used to simulate
nonlinear flexure and shear model (NLINK, SAP-2000).
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5.9 Discussion of dynamic response dueto hysteretic shear model

Nonlinear time history analysis was performed for the selected ground motions using
program SAP-2000 (CSI 2006). Nonlinear flexural and shear models for the model of 30-
storey cantilever core wall were considered for analyses.

Nonlinear response history analysis was performed for ten earthquake records all
scaled to fit NBCC-2005 design spectrum as explained in Section 5.3. Three different R
factors were used as R=2.0, 3.5 and 5.0. The magnitude of the earthquakes are
proportional to the level of R factor and as the R factor increases, more damage is
expected in terms of deformations at the critical section of the reinforced concrete wall.
The wall’s shear strength over the height was defined according to values given in Table
5.15. In tables, SF stands for shear strength factor applied on the values given in Table
5.15, for example SF=1.5 means the shear strength values in Table 5.15 are multiplied by
a factor of 1.5 to set the shear strength of high-rise wall model in different sections.

The results for R=2.0 are shown in Fig. 5.36 through Fig. 5.39. Envelopes for
bending moment diagram are shown on Fig. 5.36. Thick dashed line shows the average
envelope for bending moment from all earthquake records. Flexural yielding limit at
different sections of wall over the height is also illustrated by thin dashed line. It was
observed that due to yielding of wall sections at different heights, bending moment
diagram over the height follows the flexural strength pattern.

Corresponding curvature demands are shown in Fig. 5.37. At the zones where
reinforced concrete wall yields, elongation of longitudinal reinforcement caused
significant rotation which can be expressed in terms of curvature demand at the plastic
hinge. The curvature demand was significant at the base and upper sections of wall.
Envelopes for shear force and shear strain demand are shown in Fig. 5.38 and Fig. 5.39
respectively.

Once wall reached the yielding capacity, the shear strain demand increased
significantly. Localization of shear strain for regions where there is a sudden change in
strength was noticeable. This also signifies the importance of considering the nonlinear

shear model for studying the seismic response of high-rise concrete walls.

187



-
&
T 37.8 -
— — Average
------- Yielding
18.9 -
0 e~
0 200,000 400,000 600,000 800,000 1,000,000 1,200,000
M (kN.m)
Figure 5.36 Envelope of bending moment for NTHA (R=2.0, SF=1.0).
756 T\~
567 |~ e e -
—2C1
Cc2
-~
§_ —C3
x 37.8 ca -
—C5
—C6
c7
18.9 - — st -
S2
S3
— — Awerage
0 :
0.0 3.0 35

75.6

56.7

@ (rad/km)

Figure 5.37 Envelope of curvature for NTHA (R=2.0, SF=1.0).
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Table 5.16 provides summary information on the obtained shear force demand from
NTHA. This table corresponds to the values shown on Fig. 5.36 through 5.39. Table 5.16
presents the results for R=2.0 and a shear strength factor of SF=1.0. The shear force
capacities of wall in different states are given on top rows of the table. In the Table “C”
stands for shear cracking, “Y” stands for shear yielding and “F” stands for shear failure.
Term “E” refers to elastic state at the wall section.

Shear force demands were obtained from NTHA for the selected crustal and
subduction earthquakes. By looking at the mean values, it was observed that the wall at
the base has just exceeded its yielding capacity in shear whereas upper sections of wall
have only passed their cracking limit in shear. Considering the significant reserve
ductility in shear beyond yielding point, the wall seismic performance in shear was at an
acceptable level and no significant shear damage was noticed for the case of R=2.0.

Table 5.17 provides results for R=3.5 similar to Table 5.16. Wall reached its
ultimate shear capacity at the base and yielded in shear at the upper section (Section 4).
This was a critical case for shear and the provided shear strength was found to be
inadequate for R=3.5. The result for the case of R=5.0 is shown in Fig. 5.40 through Fig.
5.43 The shear force demand was significantly large in this case and wall exceeded its
yielding shear capacity at various heights. The core wall reached its ultimate capacity at
the base. Table 5.18 provides information summary of the obtained results for the case of
R=5.0 with SF=1.0 at which the shear demand at the base was very large. A poor seismic

performance was observed in this case resulting in a shear failure at the base of wall.
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Table 5.16 Shear force demand and at different sections of wall for R=2.0 and SF=1.0.

Shear Strength Factor = 1.0 R=2.0

Section S1 Section S2 Section S3 Section S4
Cracking (C) (kN) 24,444 21,913 19,381 15,833
Yielding (Y) (kN) 37,037 31,481 22,222 16,667
Failure (F) (kN) 44,444 37,778 26,667 20,000
.l 32,595 25,305 19,476 15,857
C C C C
38,639 25,724 18,944 15,919
Cc-2
Y C E C
c.3 37,607 21,330 20,014 15,874
Y E C C
38,164 22,807 19,500 16,098
C-4
Y C C C
38,988 26,149 19,426 16,020
C-5
Y C C C
40,564 25,992 19,552 15,944
C-6
Y C C C
56,130 38,720 23,650 17,241
C-7
F F Y Y
o) 30,796 21,902 19,251 14,645
C E E E
5o 36,410 25,495 19,464 16,062
C C C C
<3 38,527 24,246 19,110 16,088
Y C E C
36,866 24,474 19,154 15,885
Mean
C C E C
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Table 5.17 Shear force demand at different sections of wall for R=3.5 and SF=1.0.

Shear Strength Factor = 1.0 R=3.5

Section S1 Section S2 Section S3 Section S4
Cracking (C) (kN) 24,444 21,913 19,381 15,833
Yielding (Y) (kN) 37,037 31,481 22,222 16,667
Failure (F) (kN) 44,444 37,778 26,667 20,000
40,645 30,277 20,671 16,297
C-1
Y C C C
44,117 32,262 20,486 17,073
Cc-2
Y Y C Y
48,544 33,088 19,508 17,771
C-3
F Y C Y
50,965 29,066 20,163 17,265
C-4
F C C Y
40,378 31,755 19,966 17,079
C-5
Y Y C Y
41,875 28,186 20,274 17,051
C-6
Y C C Y
46,049 30,556 19,589 16,529
C-7
F C C C
40,799 25,882 20,157 15,848
S-1
Y C C C
45,567 30,781 21,324 18,044
S-2
F C C Y
44,789 29,459 19,295 16,539
S-3
F C E C
44,296 30,131 20,080 16,948
Mean
Y C C Y
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Table 5.18 Shear force demand at different sections of wall for R=5.0 and SF=1.0.

Shear Strength Factor = 1.0 R=5.0

Section S1 Section S2 Section S3 Section S4
Cracking (C) (kN) 24,444 21,913 19,381 15,833
Yielding (Y) (kN) 37,037 31,481 22,222 16,667
Failure (F) (kN) 44,444 37,778 26,667 20,000
49,856 31,500 22,321 16,239
C-1
F Y Y C
48,689 32,503 23,217 19,367
Cc-2
F Y Y Y
56,030 37,833 22,324 19,576
C-3
F F Y Y
57,202 32,668 21,521 19,009
C-4
F Y C Y
52,931 34,454 23,086 19,123
C-5
F Y Y Y
51,951 31,580 21,377 19,168
C-6
F Y C Y
57,869 33,369 22,041 17,872
C-7
F Y C Y
51,493 31,716 20,447 17,193
S-1
F Y C Y
52,603 33,441 22,996 18,509
S-2
F Y Y Y
49,856 31,500 22,321 16,239
S-3
F Y Y C
52,847 33,056 22,165 18,174
Mean
F Y C Y
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In order to increase the shear strength, horizontal steel was added to the section of wall.
Shear strength of the section was increased by 50% corresponding to a shear strength
factor of SF=1.5.

Summary of results for R=3.5 and SF=1.5 is provided in Table 5.19. In order to
see the changes corresponding to a 50% increase in shear strength of wall, results given
for R=3.5 and SF=1.0 in Table 5.17 should be compared with values given in Table 5.19.
By comparing the mean values for crustal and subduction events from the tables, it was
observed that the wall performance has been improved from a undesirable shear failure at
the base to a safer yielding state with considerable amount of reserved ductility. Yielding
in upper sections of the wall for the case of SF=1.0 improved to a safer cracking state in
shear for the case of SF=1.5. Table 5.20 provides the results for the case of R=5.0 and
SF=1.5. Results in this table need to be compared with Table 5.18 for the case SF=1.0.

The shear performance was improved by moving from the shear failure state to a
post-yielding state very close to the ultimate shear capacity. Although the shear
performance of the wall has been improved by increasing the amount of horizontal
reinforcement in the section, a safe shear behaviour was not achieved. In order to increase
the wall shear strength in the case of R=5.0, the shear strength was increased by a factor
of two compared to the initial horizontal reinforcement provided at the section. The
results for this case is referred to as R=5.0 and SF=2 which are presented in Fig. 5.44
through Fig. 5.47. Table 5.21 provides a summary of obtained maximum shear demand at
different sections of wall over the height.

As it is shown in figures, by adding horizontal reinforcement, the wall shear
performance for SF=2.0 was further improved compared to the case of SF=1.5. An
acceptable seismic shear behaviour was achieved by increasing the wall shear strength
according to Table 5.21. The results show that increasing the amount of reinforcement for
large values of R factor is an effective solution to improve the wall’s shear performance

during earthquake.
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Table 5.19 Shear force demand at different sections of wall for R=3.5 and SF=1.5.

Shear Strength Factor = 1.5 — R=3.5

Section S1 Section S2 Section S3 Section §4
Cracking (C) (kN) 24,444 21,913 19,381 16,850
Yielding (Y) (kN) 55,556 47,222 33,333 25,000
Failure (F) (kN) 66,667 56,667 40,000 30,000
c 55,656 32,696 22,636 18,595
-1
Y C C C
58,324 39,480 29,686 18,725
c-2
Y C C C
61,709 42,299 25,814 18,013
C-3
Y C C C
58,709 28,952 23,434 19,936
Cc-4
Y C C C
54,153 39,841 27,680 19,387
c-5
C C C C
50,509 32,399 23,497 19,290
C-6
C C C C
56,848 36,722 26,884 19,214
C-7
Y C C C
o 51,443 33,308 21,485 16,743
] C C C E
o 56,712 34,532 26,203 19,390
) Y C C C
57,787 41,641 25,441 20,252
S-3
Y C C C
56,184 36,172 25,276 18,948
Mean
Y C C C
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Table 5.20 Shear force demand at different sections of wall for R=5.0 and SF=1.5.

Shear Strength Factor = 1.5 — R=5.0

Section S1 Section S2 Section S3 Section §4
Cracking (C) (kN) 24,444 21,913 19,381 16,850
Yielding (Y) (kN) 55,556 47,222 33,333 25,000
Failure (F) (kN) 66,667 56,667 40,000 30,000
c 63,310 40,058 25,481 20,344
-1
Y C C C
68,906 42,598 32,810 20,338
c-2
F C C C
71,637 45,811 34,524 20,856
C-3
F C Y C
64,958 34,929 31,885 23,236
Cc-4
Y C C C
68,013 42,218 34,447 22,493
c-5
F C Y C
58,131 39,372 29,002 19,593
C-6
Y C C C
69,187 42,370 33,502 20,515
C-7
F C Y C
o 59,902 40,679 21,345 18,385
] Y C C C
68,038 42,432 32,467 21,291
S-2
F C C C
o3 61,225 45,888 33,368 19,101
) Y C Y C
65,330 41,289 30,866 20,609
Mean
Y C C C
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Table 5.21 Shear force demand at different sections of wall for R=5.0 and SF=2.0.

Shear Strength Factor = 2.0 R=5.0

Section S1 Section S2 Section S3 Section S4
Cracking (C) (kN) 24,444 21,913 19,381 16,850
Yielding (Y) (kN) 74,074 62,963 44,444 33,333
Failure (F) (kN) 88,889 75,556 53,333 40,000
80,104 40,771 27,060 22,383
C-1
Y C C C
83,352 45,221 36,645 22,798
Cc-2
Y C C C
83,806 52,662 37,324 20,962
C-3
Y C C C
77,401 37,274 30,867 24,564
C-4
Y C C C
79,968 44,343 40,188 23,988
C-5
Y C C C
60,683 40,575 32,689 21,246
C-6
C C C C
83,209 53,532 34,758 22,316
C-7
Y C C C
66,705 43,053 22,534 19,543
S-1
C C C C
82,620 46,408 36,695 22,898
S-2
Y C C C
63,592 47,138 35,399 19,582
S-3
C C C C
76,143 44,994 33,279 21,999
Mean
Y C C C
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Figure 5.48 and Fig. 5.49 show the variation of shear strain demand at the base of
wall with respect to the increase in shear strength for R=3.5 and R=5.0 respectively.
These figures show how the shear strain demand at the base of wall reduced as the wall
was strengthened by adding horizontal reinforcement. In Fig. 5.48, the mean shear strain
demand was reduced from a shear strain at shear failure of 0.007 to a shear strain at
yielding equal to 0.0035 by a 50% increase in the amount of horizontal steel at the base
of wall. In Fig. 5.49 the initial value for mean shear strain demand was found to be 0.013
which was significantly larger than the ultimate shear strain of 0.007. Increasing the shear
strength of wall over its height by 50% reduced the shear strain demand to 0.007 and a
further 50% increase in shear strength resulted in a shear strain at the base equal to

0.0044.
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Figure 5.48 Shear strain vs. shear strength factor applied on initial design base shear for
R=3.5.
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Figure 5.50 Design shear force ratio vs. uniform effective stiffness used in the simplified
analysis.

Figure 5.50 shows a comparison of shear force demand at the base of wall based on
reduced effective shear stiffness method and nonlinear hysteretic shear model. These two
different procedures are described in Sections 5.7 and 5.8 respectively. For design

purpose, it is more convenient to avoid sophisticated hysteretic shear models while using
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hysteretic models for flexural behaviour that has long been used for NTHA. The complex
nonlinear shear model can be accounted for by using the reduced effective shear stiffness,
GcAye as a fraction of gross shear stiffness Gcd,,. In Fig. 5.50 dashed lines present the
mean shear strength demand at the base of wall when appropriate hysteretic shear model
was used. In the figure, data dots present the shear force demand predicted by simplified
effective shear stiffness method. According to results obtained from NTHA using the
hysteretic shear model, an acceptable seismic performance at the base of wall was
achieved by increasing the horizontal reinforcement. The amount of increase in shear
strength to reach an acceptable level of shear strain in the wall was 50% for the case of
R=3.5 and 100% for the case of R=5.0. In the case of R=2.0 wall seismic performance
was acceptable for the initially provided strength.

According to the results shown in Fig. 5.50, a reasonable estimate of shear force
demand at the base of wall through simplified reduced effective stiffness method can be
achieved by choosing a range of effective shear stiffness between 0./GcA4,; and 0.2G A,

for the model of high-rise wall used in this study.
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5.10 Summary and Conclusions

The scope of this study was to understand the appropriate nonlinear shear response in a
high-rise concrete wall subjected to ground motion. The example of wall used in this
study was similar to a core wall used as the primary lateral resisting system in high-rise
concrete buildings built in the Western Canada and particularly Vancouver city.

The nonlinear flexural behaviour in high-rise walls is relatively well known and
use of hysteretic flexural models such as degrading Takeda model (1970) has been long
recognized as an effective way of simulating nonlinear flexural behaviour in reinforced
concrete walls. Unlike flexural model, a reliable nonlinear shear model for reinforced
concrete walls was not developed for many years. Gérin and Adebar (2004) proposed a
tri-linear relationship which is appropriate for modeling the complicated stress-strain
response for shear. This state-of-the-art model was used to investigate the seismic shear
demand in high-rise concrete walls in the present work.

A set of ten ground motions were selected to run the nonlinear time history
analyses on a 30-storey model of high-rise shear wall. Ground motions were scaled to
match the target design spectrum for Vancouver site class C in a range between 0.27; and
1.57;. Seven of earthquake records used were selected from the complete set of crustal
ground motions for site class C used in ATC-40 (FEMA-440) project. Three other
earthquakes used in this study include the influence of subduction type earthquakes in
dynamic analysis and were selected from recorded accelerations during the Tokachi-Oki
event in Japan.

Three different R factors were used in studying the wall’s nonlinear dynamic
response. R was defined as the ratio between linear bending moment to the flexural
strength at the base of wall. Wall’s shear strength was set to match the shear force
demand predicted by response spectrum analysis as the wall strength was reduced from
the base toward upper levels. In most of previous studies, the nonlinear flexural
behaviour was limited to the plastic hinge at the base while the rest of wall above the
plastic hinge zone was assumed to remain elastic. The study on the model of wall showed
that the flexural yielding may occur not only at the base but also along the entire height

depending on how the flexural strength is set at different elevations. Yielding at mid-
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height can cause the shear force demand at upper levels to reduce significantly; therefore
it becomes important to model the flexural nonlinearities along the entire height of wall.
According to the analysis results, it was observed that modeling the flexural hinge only at
the base of wall would result in overestimation of the seismic shear force demand.

The influence of nonlinear shear behaviour was considered in two different ways:
First, the shear cracking effect was accounted for in a simplified way by reducing the
wall’s effective shear stiffness over the entire height in which four different levels of
effective shear stiffness were considered as a fraction of gross shear stiffness. The second
way was to use the hysteretic shear model for the concrete wall.

According to the obtained results from analysis of the simplified model of 30-
storey wall, the shear stiffness reduction can reduce the seismic shear force demand when
diagonal cracking is severe. The reduction however was not significant until
GeAve=0.2G Ay

After considering the reduced shear stiffness in a simple way, a more appropriate
hysteretic shear behaviour was considered. Nonlinear response history analysis was
performed for different ground motions considering three different R factors. Localized
shear deformations were observed over the wall’s height. The shear strains were largest at
the base in all cases. Large shear strain at upper levels where there is a sudden change in
strength was noticeable.

Increasing the shear capacity of the wall by adding horizontal steel was
considered as an alternate solution to improve the wall’s performance for the model that
was analyzed. This solution lead to a safer design in most of analysis cases , however in
one case the shear demand was so high that a very large amount of strength was required
in order to prevent shear failure. As the basis for performance based seismic design, the
wall should be designed to maintain adequate amount of ductility in regions where
localized damage is significant. These regions include the base of wall and the zones
where there is sudden change in strength over the wall height.

A comparison between the results obtained from hysteretic shear model and
results obtained from the simplified effective shear stiffness model confirmed that a good
estimate of shear force demand can be achieved by using effective shear stiffness equal to

20% of the gross shear stiffness for the considered model of high-rise wall in this study.
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Conclusions and recommendations

for future studies

6.1 Introduction

Concrete walls are a popular seismic force resisting system for high-rise buildings as they
provide good drift control and are simple to construct. Linear dynamic (response
spectrum) analysis is commonly used to estimate seismic design forces in tall buildings.
For many buildings, it is the only method of seismic analysis used. When nonlinear
response history analysis is used in design to ensure collapse prevention requirements are
satisfied, the results of response spectrum analysis are usually still used to first design the
structure for life safety requirements.

Nonlinear response of reinforced concrete walls during strong ground motions is
very complicated. Lateral deformation of a high-rise concrete wall under influence of
earthquake is due to two distinctive behaviours in flexure and shear. While flexure
dominates the overall lateral response of a high-rise shear wall, shear deformations
become extremely important at the lower heights of the wall and particularly at levels
below the base.

Nonlinear flexural response in a reinforced concrete wall associated with formation
of horizontal cracks and yielding of vertical reinforcement is generally a well-known

behaviour. The actual moment-curvature backbone for a given reinforced concrete
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section can be determined with great accuracy by use of available sectional analysis tools
(i.e., Response-2000, Bentz 2000). Furthermore, hysteretic models to simulate nonlinear
flexural response that account for degradation in strength and energy dissipation are
readily available (i.e., Takeda model 1970).

Unlike flexural response, the shear response in concrete walls is much less known
in practice. One of the most significant shortcomings of the previous studies on seismic
demand of high-rise concrete walls has been the lack of a reliable nonlinear shear model.
Majority of nonlinear analyses for high-rise concrete walls do not account for any
nonlinearity in shear at all. Gross shear stiffness (G.4,,) 1s used for most of nonlinear
dynamic analyses performed on concrete walls. Some designers account for diagonal
cracking of concrete walls by a reduction in effective shear stiffness used in the model.
Shear response of reinforced concrete is often thought to be linear elastic until brittle
shear failure occurs as the shear strength is reached. In reality, there are large shear
deformations when diagonal cracks form and when reinforcement yields. An appropriate
nonlinear shear model that accounts for reduced shear rigidity after diagonal cracking and
accounts for the shear strain capacity of a wall beyond yielding of horizontal
reinforcement was not readily available until recently.

Gérin and Adebar (2004) presented the nonlinear shear force — shear strain
envelope for concrete walls which they validated by comparing with a variety of tests on
wall elements subjected to reverse cyclic shear such as those conducted by Stevens et al.
(1991). The model accounts for initial uncracked shear rigidity, reduced shear rigidity
after diagonal cracking, and shear strain capacity of a wall with yielding horizontal
reinforcement. Prior to diagonal cracking, the shear rigidity is equal to G.4,;. Gérin
(2004) also presented an expression for shear strain capacity of a concrete wall y,, which
depends on the level of shear stress as a ratio of concrete compression strength and shear
strain at yielding.

In the present study the state-of-the-art nonlinear shear model for concrete walls
developed by Gérin (2004) was used to investigate three important issues related to
seismic design of concrete shear wall buildings. These issues will be described in the

following sections.
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6.2 Summary and conclusions of present study

All the recommendations presented here are based on the results obtained from analysis
of simplified models of high-rise concrete walls which were developed specifically for
the purpose of present study. Recommendations presented in this study apply to typical
high-rise concrete buildings constructed in Western Canada which are twenty to forty
stories tall. The nonlinear static analysis was used in some sections of this research and it
is recognized that further study using nonlinear dynamic analysis is required to validate
the conclusions based on nonlinear static analysis. Limitations of numerical models used
in this work (i.e. two-dimensional analysis) shall be considered in drawing out practical

recommendations.

6.2.1 Seismic shear demand below ground in high-rise concrete walls

High-rise concrete shear walls are usually supported below ground by floor diaphragms
connected to perimeter foundation walls, which may result in reverse shear forces below
the flexural plastic hinge that are much larger than the base shear above the plastic hinge.
The magnitude of the wall reverse shear force below ground in tall buildings is dependent
on parameters such as foundation wall size, diaphragm stiffness below ground, the
developed maximum moment and shear at the base and the degree of wall fixity at
footing. Among the parameters influencing the shear reversal, the effect of overturning
moment at the base has the most significant influence. The overturning moment at the
base of wall is carried by the combined action of diaphragms and the wall section in two
different ways. A part of seismic induced overturning moment at the base is carried by
the bending behaviour of the wall section below ground and the rest is carried by coupled
shear forces developed in diaphragms below ground.

In order to investigate the problem of shear reversal in depth, a simplified model of
the core wall and attached diaphragms below ground was developed in Chapter 3 of the
presented study. Results obtained from NTHA, showed that the magnitude of the

developed reverse shear force at the below-ground levels is dependent mainly on the

209



magnitude of base moment. The seismic base shear has an inverse influence on the
magnitude of the reverse shear force to a lesser extent.

Nonlinear shear response of the core wall at the levels below ground was
investigated by using the tri-linear shear model (Gérin 2003) for the shear stress-shear
strain backbone. The nonlinear shear performance of the wall section was studied by
monitoring the developed shear strain. The developed shear strain at the end of nonlinear
analysis was compared with the capacity of concrete section to undergo shear
deformations.

The dynamic analysis of the model of wall showed that the maximum developed
base moment with a combination of minimum shear at the base will result in the largest
reverse shear force at the levels below ground. Based on the findings from nonlinear time
history analysis, a simplified nonlinear analysis procedure was developed to investigate
the nonlinear shear behaviour at the core wall below ground.

Based on this study, a complete analysis/design procedure was proposed for
seismic design of the core walls at levels below ground. In this procedure, all the steps
required to design a wall for seismic shear demand is clearly explained. The unique
feature of this approach is that it builds up gradually from simplified analysis methods
toward more advanced analysis procedures in which the influence of nonlinear shear
behavior in reinforced concrete walls has been account for.

The study showed that a large increase in wall dimension is required in order to
reach the acceptable level of shear strain in the wall. A more convenient solution to this
problem would be allowing the diaphragm below ground to crack during strong
earthquakes. Cracking of the diaphragms below ground would reduce the reverse shear
force demand significantly. An appropriate design to allow cracking of diaphragm
requires ductile detailing of diaphragm at weak joints and avoiding using oversized
below-ground slabs in design of high-rise concrete buildings. In practice, when
encountering huge shear reversal demand in the high-rises, one needs to keep the
diaphragm’s thickness below ground as thin as possible to satisfy design requirements.
Any flexural damage to the below ground section of wall which would result in a

reduction of wall effective stiffness would cause an increase in the shear force demand.
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6.2.2 Seismic shear force distribution between connected high-risewalls

In high-rise buildings, concrete walls are tied together by rigid floor slabs at numerous
levels, which significantly influences the seismic shear force distribution in walls. In
Chapter 4 of the present dissertation, nonlinear static analysis was used to examine how
nonlinear behaviour of walls influences shear force distribution. Linear, bi-linear and tri-
linear models were used to determine both flexural and shear rigidity of the walls. When
the traditional bi-linear model is assumed for bending and strength is made proportional
to stiffness, the shear forces in all walls increase proportionally until all walls yield at the
same displacement. If a more realistic tri-linear bending moment — curvature model is
used, the shear force distribution becomes more complex, and the shear force will be
higher in some walls than predicted by a linear analysis. When the influence of diagonal
cracking is accounted for, the variation from linear analysis becomes greater.

Additional shear deformations due to diagonal cracking significantly influence the
displacement when walls yield in flexure. A shorter length wall will actually yield in
flexure at a smaller top wall displacement than a longer wall due to the increased shear
deformations in the longer wall causing a local redistribution of shear forces near the base
of the wall. This phenomenon was subsequently confirmed by Bohl and Adebar (2007)
using nonlinear finite element analysis of cantilever concrete shear walls. Adebar et al.
(2005) have demonstrated that when high-rise cantilever walls are tied together by rigid
floor slabs at numerous levels, all walls yield at the same displacement (the system yield
displacement) regardless of wall length. The results presented in this study demonstrate
that when diagonal cracking is included in the analysis, all walls do not necessarily yield
at the same displacement due to the differing shear deformations; however the results do
reaffirm that the yield displacement of the walls is a system phenomenon and is not
proportional to wall length.

It is common practice to increase the shear demand proportional to any flexural
over-strength using the results from linear analysis. See for example Mitchell and Paultre
(2006). The results from the nonlinear analysis summarized in Chapter 4 suggest that
this may be unconservative as the increase in shear demand can be larger than the

increase in flexural capacity.

211



According to the results obtained from this study if RSA is used to estimate the
seismic shear demand on a system of two-connected walls, the horizontal reinforcement
arranged for the base of shorter wall should be extended to a few upper levels (e.g. 25%
of lower height should be designed for the shear force demand at the base) so that the
weaker wall at the first lower levels above base maintain enough capacity in shear to

withstand extra shear demand caused by nonlinear action of the system.

6.2.3 Dynamic shear demand on high-rise concrete walls

Many high-rise concrete wall buildings are designed in North America by using only
response spectrum analysis (RSA) to determine the seismic forces acting on the walls
such as the bending moment and shear force envelopes. These buildings are designed
using ductility force reduction factors of up to 5. Thus the maximum bending moment at
the base of the wall determined by RSA is reduced by up to a factor of 5 because the wall
has adequate ductility, which means the displacement capacity of the wall after a plastic
hinge forms at the base is greater than the displacement demand. The design shear force
at the base of the wall has traditionally been reduced from the elastic shear force
determined from RSA by the same force reduction factor used to determine the design
bending moment.

Nonlinear dynamic analysis has shown that flexural yielding of a cantilever wall
does not limit the shear force in the wall. The shear force tends to increase as the
magnitude of ground motion is increased. This increase in shear force is often referred to
as “dynamic shear amplification”. The dynamic shear amplification factor is the ratio of
shear force demand obtained from nonlinear analysis to shear demand obtained from a
linear analysis procedure such as pseudo-static procedure or response spectrum analysis.
The amplification, which is attributed to the influence of higher modes on a cantilever
wall with a hinge at the base, can be as large as 3 or even more.

In Chapter 5, the influence of flexural yielding at multiple locations over the
wall’s height and influence of shear deformations due to diagonal cracking of the wall
were investigated. The results indicate that both significantly reduce the maximum shear

force in the wall. It was observed that the flexural yielding can also occur at upper levels
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in addition to the base of wall. This phenomenon would cause the shear force demand at
upper levels to drop significantly, therefore it is important to model the nonlinear
behaviour along the entire height where seismic force demand is large.

The influence of different effective shear stiffness for the wall section was
examined through the nonlinear time history analysis. This was done by using different
section shear stiffness (G.4,.) as a fraction of gross shear stiffness (G.4.g). According to
the obtained results from analyses, using the effective shear stiffness reduces the seismic
shear force demand when the diagonal cracking is severe. The reduction was not
noticeable for minor diagonal cracking in the wall.

An appropriate nonlinear shear behaviour was not previously used in studying the
nonlinear dynamic performance of concrete walls. Based on results from experimental
testing of reinforced concrete panels, the state-of-the-art hysteretic shear model (Gérin-
2003) was used in order to investigate the effect of higher modes on dynamic response of
high-rise concrete walls.

Results obtained from nonlinear dynamic analysis using the hysteretic shear
behaviour for the wall indicated localized shear deformation over the wall’s height while
diagonal cracking occurred over the entire height of wall. The shear strains were largest
at the base for all analysis cases and the magnitude of shear strain was noticeable
particularly where a sudden change in strength takes place over the height. Yielding in
flexure occurred at various heights in addition to the base of wall. Excessive shear
deformation of the section beyond yielding of horizontal reinforcement resulted in an
undesirable shear failure at the base of wall for some of analysis cases.

Because of the complexity of using the hysteretic shear model, a simplified
approach to account for nonlinear shear response was adopted in this study. For
simplification of the nonlinear shear response, and based on the current study of the
model of high-rise walls, G.4,.=0.2G.A,, may be used to account for nonlinear shear
behaviour in the sections of high-rise concrete walls above the ground level. This
recommendation applies to the walls which possess similar properties to the numerical

example used in the present work.
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6.3 Recommendations for future studies

The shear-flexure interaction is a complicated phenomenon that needs further
investigations through peer studies. The interaction between flexural and shear response
in concrete walls has not yet been quantified into a simplified and practical model. Once
a reliable model is developed, shear-flexure interaction should be used in future studies to
present the most accurate nonlinear model for reinforced concrete walls.

Fiber-section modeling is an appropriate way of considering the flexural-axial force
interaction in reinforced concrete walls. This model is able to capture the flexural
yielding over the entire height of reinforced concrete walls. The hysteretic model can be
separately defined for concrete and steel bar material and the resultant hysteretic model
for the component should be verified by the results of experimental testing on reinforced
concrete elements.

Using a 3-D model of the high-rise building has several advantages compared to 2-
D models. An appropriate 3-D model of the high-rise building accounting for the effect
of diaphragms at every level can improve the results obtained from this study further. A
3-D model can also account for the higher modes of vibration associated with torsion. A
comprehensive inspection is required to ensure all the assumptions in 3-D modeling are

reasonable and lead to a better estimate of seismic response.
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Appendices

Appendix A: Ground motions used for dynamic analysis
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Figure 1: Acceleration, velocity and displacement for Crustal record C-1.
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Appendix A: Ground motions used for dynamic analysis
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Figure 2: Acceleration, velocity and displacement for Crustal record C-2.

221



Appendix A: Ground motions used for dynamic analysis
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Figure 3: Acceleration, velocity and displacement for Crustal record C-3.
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Appendix A: Ground motions used for dynamic analysis
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Figure 4: Acceleration, velocity and displacement for Crustal record C-4.
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Appendix A: Ground motions used for dynamic analysis
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Figure 5: Acceleration, velocity and displacement for Crustal record C-5.
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Appendix A: Ground motions used for dynamic analysis

Acceleration (cm/s2)

Velocity (cm/s)

15000
10000 -
5000 -

-5000 -

-10000

45

30

20

10

Displacement (cm)

4000

3000 -

2000 -

|
|
|
|
|
|
o
S
==
S Q
5

T
S
S
S
®

S
S
S
b

45

15

Figure 6: Acceleration, velocity and displacement for Crustal record C-6.
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Appendix A: Ground motions used for dynamic analysis
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Figure 7: Acceleration, velocity and displacement for Crustal record C-7.
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Appendix A: Ground motions used for dynamic analysis
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Figure 8: Acceleration, velocity and displacement for Crustal record S-1.
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Figure 9: Acceleration, velocity and displacement for Crustal record S-2.
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Appendix B: Response spectra for selected ground motions
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Appendix C: Nonlinear time history analysisresults (See Section 3.3.2)
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Appendix D: Nonlinear time history analysis envelopes (See Section 5.8)
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