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Abstract 

 
Concrete shear walls are used as the seismic force resisting system in many high-rise 

buildings in Western Canada. During earthquake, the response of a high-rise concrete 

wall as it undergoes severe cracking of concrete and yielding of reinforcement is very 

complex. In particular, the nonlinear shear behaviour of concrete shear walls is not well 

known; therefore available analysis programs generally use very primitive models for 

nonlinear shear behaviour. Gérin and Adebar (2004) quantified the observed 

experimental results on reinforced concrete membrane elements and presented a simple 

nonlinear shear model that included the influence of concrete diagonal cracking, yielding 

of horizontal reinforcement and ultimate shear capacity.  

There are a number of important issues in the design of high-rise concrete shear 

walls where shear deformations play a very important role and hence nonlinear shear 

behaviour will have a significant influence. In this dissertation, three different seismic 

design issues where nonlinear shear response plays a significant role are investigated.  

The first issue which is of considerable concern to designers is the large reverse 

shear force in high-rise concrete walls due to rigid diaphragms below the flexural plastic 

hinge. The nonlinear analyses that were carried out in this study show that diagonal 

cracking and yielding of horizontal reinforcement significantly reduce the magnitude of 

reverse shear force compared to what is predicted by using linear analysis procedures.  

A second issue where nonlinear shear behaviour has a significant influence is 

associated with the shear force distribution between inter-connected high-rise walls of 

different lengths. The results presented in this work, show that when diagonal cracking is 

included in the analysis, significant redistribution of shear forces takes place between 

walls and all walls do not necessarily yield at the same displacement. 

The third issue is related to the dynamic shear demand caused by influence of 

higher modes and the corresponding nonlinear action that takes place in tall cantilever 

walls. According to the nonlinear dynamic analyses that were performed, the influence of 

hysteretic shear response on the seismic demand of high-rise concrete walls was 

investigated. 
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1 

 

 

Introduction 

 

 

 

1.1 High-rise concrete shear wall buildings 

 

Most high-rise buildings in Western Canada are constructed of reinforced concrete, and 

contain concrete shear walls as the seismic force resisting system. A typical concrete 

high-rise building has core shear walls located near the centre of the building plan, and 

has perimeter columns to support the flat plate floor slabs (see Fig. 1.1).  

There are a number of architectural advantages of concrete shear wall buildings 

over concrete frame buildings. For example, the absence of large moment-resisting 

frames on the outside of the building means that larger windows can be provided around 

the entire exterior of shear wall buildings. The construction of concrete shear wall 

buildings is also known to be very competitive because simpler formwork and less 

congested reinforcement lead to lower labour costs and generally faster construction. 

 

1.2 Seismic design of high-rise concrete buildings 

 

Concrete shear walls generally provide very good lateral drift control during earthquakes. 

The seismic response of high-rise concrete walls during earthquakes – as it undergoes 
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severe cracking and localized damage – is very complex. For design, the response of 

concrete shear walls is approximated using different analysis procedures.   

 

 
Figure 1.1 Structural system in a typical high-rise concrete shear wall building including 

the underground portion of the building. 

 

Response spectrum analysis (RSA), which is a linear dynamic analysis procedure, 

is commonly used in design to determine the global displacement demands and force 

demands on individual components of concrete shear walls. In Canada, RSA is 

commonly the only seismic analysis that is done for concrete shear wall buildings. 

Nonlinear dynamic analysis, commonly called nonlinear time history analysis 

(NTHA), is the most complete and sophisticated procedure to estimate the seismic 

response of structures. Changes in stiffness of members due to material nonlinearity and 

local damage caused by cracking of concrete and yielding of reinforcement can all be 

accounted for when performing nonlinear time history analysis  
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Although nonlinear time history analysis is now more commonly used for design of 

high-rise concrete wall buildings in the western U.S., it is rarely, if ever, used for design 

in Canada. There are a number of issues regarding the use of nonlinear time history 

sensitive and therefore it is crucial to 

se the 

hile accounting for axial force-bending moment interaction. 

Avail

gener

 

f an element 

with 1% vertical and horizontal reinforcement under reverse cyclic loading. The results 

are presented in terms of average shear stress (shear force per unit area) and average 

shear strain (shear displacement per unit length). 

analysis for design. NTHA is known to be record 

u appropriate ground motions based on the seismicity and soil characteristics of the 

site. The results are also very depended on the nonlinear models that are used for the 

structural members.  Finally, considerable effort is needed to correctly interpret the large 

amount of output results. 

The nonlinear flexural behaviour of concrete shear walls is generally well known. 

This behaviour can be defined in terms of bending moment-rotation or bending moment-

curvature response w

able analysis programs that use fibre-section models for reinforced concrete walls 

are able to accurately model the effects of cracking and reinforcement yielding, and are 

capable of considering the interaction between bending moment and axial compression. 

In comparison to flexure, the nonlinear shear behaviour of concrete shear walls is 

ally much less well known, and available nonlinear time history analysis programs 

use very primitive models for shear behaviour. 

 

1.3 Nonlinear shear behaviour of concrete walls 
  

It is commonly thought that the shear behaviour of reinforced concrete is linear until the 

shear strength is reached, and that shear failure is always brittle. Tests on reinforced 

concrete membrane elements subjected to shear at the University of Toronto by for 

example Villani (1995), Stevens et al. (1991), Meyboom (1987) and Vecchio (1982), 

have demonstrated that this is not the case. Membrane elements are similar to a portion of 

a concrete shear wall. 

Figure 1.2 shows the results obtained by Villani (1995) from testing o

 3



The initial shear stiffness of the element is approximately equal to the shear 

modulus of the concrete Gc = 10,200 MPa. After diagonal cracks form, the shear stiffness 

of the element reduces. Before yielding of the reinforcement, the shear stiffness has 

reduced to about 10% of the initial shear stiffness due to diagonal cracking. 

 Figure 1.2 is a close-up of the response prior to reinforcement yielding. Thus the 

shear strain capacity of the element after reinforcement yielding is not shown. Tests on 

membrane elements have demonstrated that reinforced concrete subjected to shear will 

deform in a ductile manner after yielding of the reinforcement as long as there is an 

appropriate amount of reinforcement. Reinforced concrete with inadequate reinforcement 

will fail due to concrete diagonal tension at first cracking, whereas reinforced concrete 

with too much reinforcement will fail due to diagonal compression in concrete. Typical 

reinforced concrete shear walls will have considerable shear strain ductility. 

  
Figure 1.2 Shear stress versus shear strain response of a reinforced concrete element 

tested by Villani (1995) (from Gérin, 2003). 
 

Gérin and Adebar (2004) quantified the observed experimental results on 

reinforced concrete membrane elements and presented a simple nonlinear shear model for 

reinforced concrete walls that includes the influence of concrete cracking, yielding of 

reinforcement, and maximum shear strain capacity. Figure 1.3 summarizes the simplified 

envelope for nonlinear shear response of concrete walls. The shear force at concrete 

cracking is called Vcr and the corresponding shear strain is γcr. The shear force capacity of 
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the element is called Vn, while the shear strain at yielding of the reinforcement and the 

ashed line) in Fig. 1.3. The slope of this line is equal to the gross shear stiffness of the 

wall G

s the shear 

shear strain capacity of the element are called γy and γu, respectively. 

The commonly assumed linear–brittle behaviour in shear is labelled as Line 1 

(d

c Avg. Line 2 represents the effective shear stiffness of a fully cracked element. The 

slope of this line can be determined from the shear strength of the element and the shear 

strain at yielding.  Gérin and Adebar (2004) presented a simplified procedure to estimate 

the shear strain at yielding. A comparison between Line 1 and Line 2 shows the 

significance of accounting for diagonal cracking in reinforced concrete walls. Gérin and 

Adebar (2004) also presented an expression for shear strain capacity of reinforced 

concrete.  For a typical shear wall, the shear strain capacity is two to four time

strain at yielding. 

 
Figure 1.3 Commonly assumed brittle shear behaviour (dashed line) versus the actual 
shear behaviour of concrete shear walls according to the Gérin-Adebar model (solid line). 

 

Different models for nonlinear shear response of concrete walls have been proposed 

(i.e., Ozcebe and Saatcioglu 1989) and different models to simulate shear response are 

also used in some computer programs such as Response-2000 (Bentz 2000). The 

advantage of using the tri-linear shear model proposed by Gérin (2003) in this study is 

the significance of considering three distinctive parameters associated with cracking of 

concrete, yielding of horizontal reinforcement and ultimate shear strain capacity to 

address important design issues in seismic design of high-rise concrete walls.  
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1.4 Seismic shear demand issues in high-rise concrete buildings 

 

The nonlinear shear response of reinforced concrete is very important whenever shear 

deformations are significant. There are a number of important issues in the design of 

high-rise concrete shear walls where shear deformations play a very important role, and 

hence nonlinear shear behaviour will have a significant influence.  

One example is the maximum shear force demand on concrete walls below the base 

level during lateral ground motion (see Fig. 1.4). The perimeter foundation walls of a 

typical high-rise building are orders of magnitude stiffer than the central core (tower) 

walls extending to ces in high-

rise w

w base level. Lateral seismic loads 

corres

the top of the building. As a result, the lateral seismic for

alls are transferred to the perimeter foundation walls by interconnecting floor 

diaphragms below the base. The multiple levels of floor diaphragms also transfer the 

over-turning moments from the high-rise walls to the perimeter foundation walls. The 

reduction in bending moment in the high-rise walls is accompanied by a corresponding 

reverse shear force in the wall section below ground. When a building has tall walls 

connected to large perimeter foundation walls by rigid floor diaphragms, linear analysis, 

such as RSA, may indicate a reverse shear force that is many times larger than the base 

shear force above the foundation walls. Figure 1.4 shows a simplified model of high-rise 

wall including diaphragms and foundation wall belo

ponding to earthquake are also shown over the height of the wall.  

 
Figure 1.4 Seismic shear force demand below base level. 
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Different approaches are currently used to design high-rise walls for the large 

reverse shear force below ground. One approach that has been used is to design the 

concrete walls and floor diaphragms for the forces calculated in a linear analysis. Another 

approach that is used is to completely ignore the reverse shear force altogether, and 

design the entire below-ground portion of the wall for the base shear force and 

corresponding bending moment calculated above the base. A third approach is to use 

cracked-section stiffnesses for the diaphragm or the wall (or both) in order to reduce the 

agnitude of the reverse shear force, and depending on what is assumed, this will give a 

olution somewhere between the first two solutions.  

The reverse shear force is the result of the compatibility of deformations. Thus, 

hand, if the wall is designed for a lower shear force, the effective shear stiffness of the 

wall w

se buildings, concrete walls are tied together over the height of 

the w

m

s

when a concrete wall is designed for a higher shear force, the effective shear stiffness of 

the wall will be larger and the reverse shear force demand will be larger. On the other 

ill be smaller and the reverse shear force will be smaller. While it is obvious that 

the latter approach will result in a less expensive structure, what is not known is which of 

these approaches will result in a better performance. To assess the performance of these 

different design approaches requires a nonlinear analysis using an appropriate shear 

model for the concrete walls as shear deformation is quite significant at the section of 

core wall below ground level and hence consideration of nonlinear shear behaviour is 

very important. 

A second seismic shear demand issue where nonlinear shear response is expected to 

have a significant influence is the distribution of shear forces between inter-connected 

high-rise walls. In high-ri

all by rigid floor plates at every floor level as shown in Fig. 1.5.  At the upper levels 

of the structure, the shear force distribution between walls depends primarily on the 

relative flexural rigidity of the walls.  In the lower levels of the building, the shear force 

distribution depends more on the relative shear rigidity of the walls. 
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Figure 1.5 Regions where flexure and shear stiffnesses influence the shear force 
distribution in inter-connected high-rise walls, and self-equilibrating forces resulting from 
flexural yielding in the longer wall. 

 

Simple stiffness properties are usually used in a linear seismic analysis to account 

for the presence of cracked regions o

igidity GcAve That is, the effect of shear cracking is usually not 

or.  While these simple assumptions about effective member rigidities lead to 

reasonable estimates of overall structural displacement, such as the displacement at the 

top of concrete walls, they may result in poor estimates of shear force distribution 

between concrete walls.  

When one wall begins to yield prior to the other wall as shown in Fig. 1.5, 

significant redistribution of shear forces will occur in the vicinity of the hinge. The 

yielding wall will try to rotate as a rigid body about the hinge, while the non-yielding 

wall will try to deform elastically. As a result, a set of self-equilibrating forces will be 

transmitted between the walls causing the shear force distribution to change significantly. 

f concrete members.  The effective flexural rigidity 

EcIe is normally a portion of the gross section flexural rigidity EcIg of the walls.  For 

simplicity, one reduction factor, such as 70%, is normally used for all elements in the 

structure.  The effective shear rigidity of concrete walls is usually assumed to equal the 

gross section shear r

accounted f
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To predict the shear force distribution in two inter-connected walls from the initial 

uncracked state to when the system of walls fails, requires both a rigorous nonlinear 

flexural model and a rigorous nonlinear shear model. 

The third and final seismic shear demand issue in which nonlinear shear response is 

expected to have a significant influence is shear force demand due to higher modes of 

vibration in cantilever walls. Flexural yielding at the base of the cantilever wall is the 

desired inelastic mechanism; however nonlinear dynamic analysis has shown that flexural 

yielding of the wall does not necessarily limit the shear force in the wall near the base. 

The shear force tends to increase as the magnitude of ground motion increases. This 

phenomenon is often referred to as “dynamic shear amplification” Ghosh (1990), 

Keintzel (1992), Eberhard and Sozen (1993), Priestley and Amaris (2003).  The dynamic 

shear amplification factor is the ratio of shear force demand obtained from nonlinear 

analysis to shear demand obtained from a linear procedure such as the simplified code 

procedure fect 

f higher modes in tall structures.  

Figure 1.6 shows a simple picture of the phenomenon. Deformation of a cantilever 

cond vibration mode. Influence of higher modes is significant for 

exible structures with lower natural frequencies such as tall structural walls. 

In all previous studies on dynamic shear amplification, the shear response of the 

n shear rigidity was 

pically used. It is expected that significant shear deformation of a concrete wall due to 

. This amplification, which can be as large as 2.0 or 3.0, is caused by the ef

o

wall is shown in its se

fl

Contribution of higher modes of vibration would lower the point of application for  the 

resultant seismic loading. This means that a greater base shear is required to reach the 

wall flexural yielding at the base.  

concrete wall was assumed to be linear and the uncracked sectio

ty

diagonal cracking and yielding of horizontal reinforcement may reduce the dynamic 

shear amplification.  
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Figure 1.6 Shear force distributions in a cantilever high-rise concrete wall. 

Three spec

 

 

 

1.5 Thesis objectives 

 

The objective of this thesis is to investigate how nonlinear shear response due to diagonal 

cracking and yielding of horizontal reinforcement influences the seismic shear demand in 

high-rise concrete structural walls.  

 

ific seismic shear demand problems will be investigated: 

 

1. The reverse shear force problem in high-rise concrete walls due to rigid diaphragms 

below the flexural plastic hinge. It is expected that diagonal cracking and yielding of 

horizontal reinforcement may significantly reduce the magnitude of reverse shear force 

compared to what is predicted using linear analysis. 

2. The shear force distribution between different length high-rise concrete walls inter-

connected by floor slabs, including the redistribution that occurs due to flexural cracking 
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of walls and flexural yielding of walls.  It is expected that diagonal cracking and yielding 

of horizontal reinforcement may significantly change the shear force distribution in walls, 

and m

   

ign engineers.  Where possible, procedures that can be 

used with linear seismic analysis will be developed.  

 

1.6 Thesis organization  

 

Recent developments on nonlinear behaviour of high-rise walls during earthquake are 

presented in Chapter 2. Nonlinear models in concrete walls are discussed in terms of 

nonlinear flexural and nonlinear shear models. A brief summary of previous work on 

investigating nonlinear dynamic response of high-rise concrete walls are presented in this 

chapter.  

hapter 3 investigates the seismic shear demand on high-rise walls at below ground 

level. This problem is also referred to as “Shear reversal” on high-rise walls at levels 

below ground. The parameters which have significant influence on the magnitude of 

reverse shear demand on wall are examined with the most important ones to be 

addressed. Nonlinear dynamic response of the wall is studied and the findings are used to 

assess the nonlinear shear performance of the wall at levels below ground.  

 Chapter 4, seismic shear force distribution between two connected walls in a 

high-rise is studied. Model definition for the problem is presented at the beginning, 

followed by discussion on the input parameters and the nonlinear models used. The 

ay result in a very different failure mechanism of the wall system than is predicted 

using linear analysis.  

 

3. The dynamic shear amplification due to higher modes in high-rise concrete walls. It is 

expected that the reduction in shear stiffness of concrete walls due to diagonal cracking 

and yielding of horizontal reinforcement may significantly reduce the maximum seismic 

shear demand in high-rise walls. 

The approach taken throughout this research is to try to develop a simple understanding 

of the physical phenomenon, and to use this understanding to develop simplified 

procedures that can be used by des

C

In
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nonlinear analysis is performed for each case of analysis and the final results are 

mpared at the end. 

Chapter 5 focuses on dynamic shear demand on a realistic model of high-rise 

ntilever wall which is subjected to different earthquake events. Different cases for 

ariation of flexural strength over the height of wall are considered to investigate the 

onlinear effects on seismic shear force demand. A simplified method to account for 

ic 

response and finally the best tic shear model for concrete 

alls is use to study the problem in further details.  

Conclusions and recommendations for future studies are presented in Chapter 6. 

round motions used for nonlinear dynamic analysis and their corresponding response 

ectra are given in an appendix. Analyses information which is not addressed in the text 

 

 

 

co

ca

v

n

degradation of shear stiffness during earthquake is presented to study the seism

available state of art hystere

w

G

sp

is also presented in an appendix.  
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2 
 
 
 

e scope of the present study. First, 

review of previous studies on shear demand at below-ground sections of a high-rise core 

wall is presented. Review of previous work on force distribution between inter-connected 

high-rise walls is discussed next and finally in the last section of this chapter, review of 

the past studies on dynamic shear demand in concrete walls during earthquake is 

presented.  

 

2.1 Nonlinear flexural response in reinforced concrete walls 

 

During lateral motion caused by earthquake, a high-rise structural wall deforms mainly 

due to the bending behaviour. Flexural behaviour of concrete walls is known to be ductile 

and therefore it is rational to ensure nonlinear behaviour is controlled by hinging 

mechanism at the base of wall during ground motion. 

In order to establish the nonlinear behaviour of structural walls, sectional analysis 

is used d by a 

 
Literature review 

 

 

 

 

A brief introduction to available nonlinear models in reinforced concrete walls is 

presented in this chapter. A short discussion on a flexural model is followed by a more 

detailed explanation on the recent findings on nonlinear shear response of reinforced 

concrete walls. Literature review presented in this chapter focuses on the three seismic 

shear demand issues which were explained earlier as th

to determine the bending moment and corresponding curvature carrie
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reinforced concrete section under a certain axial loading. Several sectional analysis tools 

are available for modeling the flexural behaviour in a reinforced concrete section. 

Program

 in the web area with fy=400 MPa. Concrete 

strength

 Response-2000 (Bentz 2000) was used to build the moment-curvature response 

for the structural walls in this study.  

Figure 2.1 shows the initial part (before ultimate failure) of moment-curvature 

diagram for a section of previously uncracked reinforced concrete wall at the base level. 

The values are shown for a typical high-rise core wall to provide a realistic moment-

curvature relationship. Core wall considered has an I-shaped section with overall 

dimensions of 9.0 m and has a uniform thickness of 750 mm as shown in Fig. 2.1. The 

core wall has an average vertical reinforcement ratio of 1% in the flange area and an 

average vertical reinforcement ratio of 0.5%

 was assumed to be fc′ =50 MPa and wall is subjected to an average axial 

compression of P/Ag=3.75 MPa. Solid line in Fig. 2.1 presents the actual response 

obtained from Response-2000 using Vecchio-Collins model (1986) for compression 

softening and Bentz model (1999) for tension stiffening. Dashed line presents a 

corresponding simplified tri-linear model with an equal captured area under the moment-

curvature curve in comparison to the actual response.  

 Figure 2.1 Moment-curvature response of a typical high-rise core wall.  
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Two important points where the slope of curves changes suddenly are associated with 

As illustrated in Fig. 2.1, the nonlinear flexural response of concrete walls can be 

es: one 

when

 

 

 

 

cracking of concrete and yielding of vertical reinforcement.  

simplified by using a tri-linear moment-curvature curve. Ibrahim (2000) presented a 

simplified method to estimate the moment-curvature response in the high-rise concrete 

wall without using sectional analysis. It was observed that the secondary slope of the 

moment-curvature curve beyond elastic portion of the curve is mainly dependent on the 

section geometry and the amount of vertical reinforcement. This slope is parallel to the 

well-known cracked-section stiffness which can be defined for two different stat

 the section is previously uncracked and the other when the member is severely 

cracked due to previous cycles of loading.  

One important point on the moment-curvature curve is the point at which 

reinforced concrete section reaches the maximum curvature capacity (not shown on Fig. 

2.1). The ultimate curvature capacity of the wall (Øy) is inversely proportional to the 

depth of flexural compression zone. The depth of compression zone at maximum 

curvature can be easily calculated and consequently ultimate curvature in reinforced 

concrete walls can be estimated. Because of the ductile flexural behaviour, concrete walls 

can deform a significant amount beyond yielding of vertical reinforcement before the 

ultimate capacity is reached. 

One of the major parameters affecting displacement ductility in walls is the length 

of plastic hinge which cannot be defined with great precision; however improvement of 

available fiber section models has led to a better estimate of nonlinear flexural response 

in concrete walls by accounting for spread of plasticity in the plastic hinge zone.  
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2.2 Nonlinear shear response in reinforced concrete walls 

 

In the past, very little was known about the nonlinear shear behaviour of reinforced 

con lls. Until rin 2003), dels for reinforced concrete 

walls subjected to shear did not properly account for cracking of concrete and yielding of 

horizontal reinforcement. In order to investigate the nonlinear shear response of concrete 

walls, experimental tests were conducted on reinforced concrete panels subjected to pure 

shear lo g at the University of Toronto (Stev

rin (2003) studi results obtained f sting of membrane elements to 

inves  the nonli iour of r te walls en 

specim  t fferent research projects at the University of Toronto. 

Three specimens, SE8, SE9 and SE10 which were h ily reinforced panels in horizontal 

diction were tested under reverse-cyclic shear by Stevens (1991). Another set of 

reinforc

crete wa recently (Gé available mo

adin ens et al. 1991 and Villani 1995). 

Gé ed the rom te

tigate near shear behav einforced concre . He selected sev

ens taken from hree di

eav

ed concrete wall elements namely PDV1, PDV2 and PDV3 were tested by Villani 

(1995) under monotonic shear, reverse-cyclic shear, and positive-only cyclic shear, 

respectively. All tests were stress controlled and the load was applied until the specified 

level of shear stress was reached. For monotonic tests, the load was gradually increased 

until the specimen failed. For revere-cyclic tests, the load was gradually increased from 

zero until it reached a target stress level; then it was reduced to zero and the same loading 

was applied in the reverse direction to complete one full cycle. Typically, a number of 

cycles were performed at a stress level below yielding of reinforcement recognized as 

elastic cycles. The load was then cycled at a stress level causing yielding of the weaker 

reinforcement and the cycles were continued until the element failed. For the tested PDV 

elements weaker reinforcement ratio was 0.91%. This amount of horizontal 

reinforcement is close to the typical reinforcement ratio of an existing core wall at its 

base. Specifications of PDV elements are given in Table 2.1.  
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Table 2.1 Specification of PDV elements tested by Villani (1995).  
 

Parameter PDV1 PDV2 PDV3 

size (mm  ) 890x890x70 890x890x70 890x890x70

shear load cyclic monotonic reverse-cyclic 

axial load Nx=Ny=-0.4Vxy Nx=Ny=-0.4Vxy Nx=Ny=-0.4Vxy

fc′ (MPa) 26.8 23.7 34.1 

Ec (MPa) 24480 23030 27620 

ft (MPa) 1.7 1.6 1.9 

Reinforcement 

x-dir 6 mm Ф @ 45mm 6 mm Ф @ 45mm 6 mm Ф @ 45mm 

ρx 0.0182 0.0182 0.0182 

y-dir 6 mm Ф @ 89mm 6 mm Ф @ 89mm 6 mm Ф @ 89mm 

ρy 0.0091 0.0091 0.0091 

ρx:ρy 2:1 2:1 2:1 

 

Results of testing of specimens PDV1, PDV2 and PDV3 are presented in Fig. 2.2 

in terms of shear stress – shear strain of a reinforced concrete wall element. As shown in 

Fig. 2.2 (a) for PDV1 element, the cracked shear modulus Gcracked , is approximately 10% 

of initial elastic shear modulus Ggross. The first visible crack forms roughly at 45° to the 

x-axis normal to the principal applied tension at the stress level of 2.6 MPa. As more 

cracks form and the cracks widen, reinforcement starts to carry more of the load. At a 

stress level of 6.2 MPa reinforcement yields and the shear strain increases more rapidly.  

Yielding of horizontal reinforcement in the PDV1 element takes place at a shear strain 

range between 0.003 and 0.004. Figure 2.2 (b) shows the reverse-cyclic response of 

PDV2 element. Most of loading cycles occur under the cracking state for element PDV2. 

For these cycles, the re-loading curve passes through the last point in the previous cycle 

in the same direction. First cracking was observed at a shear stress level of 2.8 MPa 

followed by development of more diagonal cracks until yielding of reinforcement 

occurred at shear stress of 6.2 MPa and a shear strain of approximately 0.0035. Results 

for PDV3 is shown in Fig. 2.2 (c) where the element is cycled in positive shear only and 

all but one cycle happened before yielding. Concrete shear cracking and yielding of 

reinforcement occurred at stress levels of 4.0 MPa and 6.5 MPa respectively. 
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Figure 2.2 Shear stress-shear strain responses for shear wall elements: 

a) PDV1, b) PDV2, c) PDV3 (from Gérin, 2003). 
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Figure 2.3 Simplified predicted response as bi-linear and tri-linear envelopes: 

a) PDV1, b) PDV2, c) PDV3 (from Gérin, 2003). 
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A simplified way of accounting for concrete cracking in shear is to use effective 

st

 non-cracked state (GgAvg) to a fully cracked state (GcrAvg) as shown in Fig. 2.2. Gérin 

Gérin (2003) observed that there is a linear relationship between shear strain 

demand and the developed strain in the weaker reinforcement (first reinforcement to 

yield). Shear ment y

The pinching of the hysteretic loop was found to be a function of plastic strain in the 

orizontal reinforcement and it becomes more pronounced as additional plastic strain 

ns at cracks are separated from 

eformation of concrete in-between cracks. Gérin (2003) observed that the strains in 

co

racks are related to the maintaining strain compatibility between the concrete and the 

sed by Gérin (2003), the shear strain in reinforced concrete 

ction can be determined from compatibility of concrete and reinforcement strain as 

given in Eq. 2.1.   

 

iffness as a fraction of gross shear stiffness. Effective stiffness (GeAvg) may range from 

a

(2003) proposed a simplified model for the hysteretic shear response in terms of bi-linear 

and tri-linear envelopes to fit the cyclic response as shown in Fig. 2.3. 

 deformation increases proportionally when the weaker reinforce ields. 

h

accumulates in the reinforcement.  

A general model was formulated where deformatio

d

ncrete and reinforcement are directly related to the applied loads whereas strains at 

c

reinforcement. As propo

se

45vhhv 2εεεγ −+=   (2.1) 

 

rain is assumed to 

be equal the bare bar yield strain given by Eq. 2.2 where Es is the elastic modulus of steel 

bars. 

        

εh and εv are the normal strains of reinforcement in the horizontal and vertical directions 

respectively and ε45 is the strain at 45° to the reinforcement and in the direction closest to 

the principal compression strain direction. Yielding of the element is defined as when the 

horizontal reinforcement reaches the yield point. For simplicity this st

 

s

y

E
    (2.2) 

f
h =ε
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For simplicity, Gérin (2003) assumed that the concrete stresses consist of uniaxial 

compression at 45° to the reinforcement and assumed a linear stress-strain relationship 

for the vertical reinforcement. The strain in vertical reinforcing bars is given by Eq.  2.3. 

 

0≥
−

=
vs

y
v E

nv
ρ

ε   (2.3) 

 

vy is the applied shear stress at yield, n is the axial compressive stress in the section and ρv 

is the vertical reinforcement ratio. The strain at 45° at yield is obtained from Eq. 2.4.  

 

c

y
45 E

v2−
=ε   (2.4) 

 

In Eq. 2.4, Ec is the elastic modulus of concrete material. By combining previous 

exp

 

ressions, the shear strain at yield can be obtained by:  

0
4

≥+
−

+= yyy vnvf
γ   

cvss
y EEE ρ

(2.5) 

ith the condition that: 

 

 

W

s

y

vs

y

E
f

E
nv

0 ≤
−

≤
ρ

  (2.6) 

 

Gérin (2003) observed that for typical design, developed shear strain at yield in a 

reinforc

typical amount of 

reinforcement can deform significantly beyond yielding of the horizontal reinforcement.  

This suggests that shear walls possess considerable ductility in shear.  

ed concrete wall section ranges from 0.0021 to 0.0047 as shown in Fig. 2.4. Gérin 

also investigated the fact that shear dominated elements with 
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Figure 2.4 Contribution to shear strain at y

 
ield for typical shear walls (from Gérin, 2004) 

Another investigation by Gérin (2003) was to obtain a relationship between shear 

rain ductility and the shear stress at yielding as proposed by Gérin (2003) based on 

strain ductility and applied shear stress. Figure 2.5 shows the relationship between shear 

st

results of experimental testing. 

 
Figure 2.5 Shear strain ductility with respect to developed shear stress (from Gérin, 

2004). 
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The expression for shear strain ductility is given by Eq. 2.7. 

 

 µγ=4-12 νy / f'c  ;  νy / f'c≤0.25  (2.7) 

 

In order to construct the tri-linear shear stress – shear strain envelope for a given 

reinforced concrete wall, shear stress at diagonal cracking of concrete and yielding of 

horizontal reinforcement need to be determined. The shear force at cracking can be 

estimated by using the expressions suggested in ACI 318-05 which are summarized 

below. 

For members subjected to axial compression load Nu, shear strength provided by 

concrete alone and for non-prestressed members is given by Eq. 2.8:  

 

db)
6
fN cu ′

)(
A14

1( w
g

c +=  : (ACI 11-4)   (2.8) 

 

tal shear d .  Equation 

2.8 gives a lower bound for shear strength prov

V

In the expressions above, Nu is the axial compressive force in the wall section, d is the 

epth of the section and bw is the thickness of section consideredto

ided by concrete. In order to obtain an 

upper bound estimate for shear strength, ACI 318-05 suggests using Eq. 2.9. 

 

g

u
wcc 1dbf3.0V ′=

A
N3.0

+  :  (ACI 11-7)                                                                   (2.9) 

 Provisions given by ACI318-05 for prestressed concrete members can be used for 

non-prestressed members with minor adjustments for axial compression instead of pre-

stressing force as expressed by Eq. 2.10.  

 

 

db
A
N

fV w
g

u
ccw )(3.0 +′=        :  (ACI 11-12)                                                               (2.10) 
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The theoretical upper bound for strength of concrete at cracking based on basic principles 

is expressed in Eq. 2.11.  

 

db
Af

N
fV w

gc

u
cc ′

+′=
33.0

133.0 ;   Upper bound limit                                            (2.11) 

 

Figure 2.6 compares each of the explained expressions to estimate shear strength of walls 

at cracking. The horizontal axis in Fig. 2.6 corresponds to axial compression stress while 

the vertical axis shows the shear stress level at cracking in the section of wall.  

 

 
Figure 2.6 Comparison between different estimates of shear stress at cracking.  

 

 Shear force at yielding can be considered equal to nominal shear strength by 

assuming the strain hardening is insignificant. ACI318-05 recommends the upper limit 

for the nominal shear strength of structural walls as: 

 

)( yncccvn ffAV ρα +′=  :  (ACI 21-7-4) (2.12) 
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Where, Acv is the effective shear area taken as bwd and ρn is the horizontal steel ratio. 

oefficient αc is taken as 1/4 for hw/lw≤1.5 and is taken as 1/6 for hw/lw≥2.0.  

 associated ultimate shear strain of γu. Note that in Fig. 2.7 strain 

harde

C

 Figure 2.7 shows the proposed tri-linear curve by Gérin (2004) and the 

corresponding cyclic shear stress-shear strain curve according to the testing of SE8 wall 

element. As shown, an envelope to fit the hysteretic response is defined by three specific 

points; initiating of diagonal cracking in concrete at stress level of vcr at the 

corresponding shear strain of γcr = vcr/Ggross , yielding of horizontal reinforcement at 

stress level of vy at an associated shear strain of γy and point of ultimate shear failure at 

stress level of vu at an

ning was insignificant and therefore the shear stress value is assumed constant from 

point of yielding to the point of ultimate failure. 

  

 
F  igure 2.7 Proposed load-deformation curve for nonlinear static analysis by Gérin (2004),

shown for membrane element SE8 tested by Stevens et al. 1991. 
 

In order to study the nonlinear dynamic response of the reinforced concrete walls, 

a complete hysteretic behaviour is required for the stress-strain relationship in addition to 

the specified tri-linear backbone. A simplified hysteretic shear model that was proposed 

by Gérin (2004).   
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Figure 2.8 Proposed simplified hysteretic model by Gérin (2004), shown for membrane 

element SE8 (Stevens et al. 1991). 
 

y

for each cycle, unloading occurs at a constant slope equal to Gcr , and the plastic shear 

strain γ

Where 

s in 

the reinforcem

 

The simple hysteretic model shown in Fig. 2.8, assumes that yielding occurs at v  

p remaining at the end of each unloading segment is cumulative from one direction 

of loading to the other. The reloading curve accounts for the closing of diagonal cracks in 

one direction and the simultaneous opening of diagonal cracks in the other direction in a 

simple way. The shear strain at any applied shear stress level is computed by: 

 

γ=γe+kγp             (2.13) 

 

γe is the elastic shear strain equal to v /Gcr and kγp is the plastic portion of the shear 

strain. The response predicted by the simple model was compared to the experimental 

results from a large-scale membrane element test (Stevens et al. 1991) as shown in Fig. 

2.8. Stiffness decay and pinching of the loops due to the accumulation of plastic strain

ent were both well represented by the proposed model. 
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2.3 Sei

ncrete shear walls 

where shear deformations are significant and therefore the influence of the nonlinear 

shear response on the seismic force demand shall be investigated. The first topic of the 

present work which will be discussed in Chapter 3 will investigate the nonlinear shear 

response in the below-ground sections of a high-rise core wall where large reverse shear 

forces due to presence of rigid diaphragms and foundation walls, is of considerable 

concern to designers. 

Bevan-Pritchard, Man and Anderson (1983) conducted a study on the force 

distribution in a core wall at the subgrade levels of a high-rise concrete building subjected 

to earthquake. Figure 2.9 shows the plan and elevation views of the model of building at 

levels below ground. 

 

smic shear force demand at levels below ground  

 

There are a number of important issues in the design of high-rise co

 

Figure 2.9 Plan and elevation section of the subgrade structure which includ
perimeter walls and parking slabs (from Bevan-Pritchard, Man and Anders

e core wall, 
on 1983). 

 

The analytical model used for the subgrade structure is shown in Fig. 2.10. The 

core wall and foundation walls were modeled by frame elements accounting for both 

flexural and shear deformations. Line springs that attach the core wall to the foundation 

walls below ground were used to account for in-plane bending, axial and shear 

deformation of parking floor slabs. 
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As linear analysis was used, the shear force and bending moment could be applied 

separately, and the concept of applying a unit load was used.  The applied base shear 

force used in all analyses was 1 k, while the bending moment applied at the base was 100 

k-ft. Assuming a linearly varying lateral load the value of moment to shear ratio used in 

analyses corresponds to a 150 ft high building. 

, 

 

 

Figure 2.10 Model used to study force demand at subgrade structure by Bevan-Pritchard, 
Man and Anderson (1983). 

 

Analyses were performed to identify the parameters which most influence the 

force d

0' tubular section with an all 

around thickness of 1'-0", resulting in a moment of inertia of I=3.38×108 in4. For this 

case, the shear force value in the core wall at the first level below ground was 14 kips, 

which is fourteen times the base shear associated with the applied bending moment. 

In the next case, all the assumptions were similar to first case except that the shear 

deformation of the core wall was included in the model considering an effective shear 

area of Av=8640 in2. The effect of shear deformation was examined in the core wall by 

reducing and increasing the initial effective shear area by a factor of 10.  

Influence of degree of fixity at the core wall’s footing was also examined by 

assuming an extreme case of fully pinned support. Results for bending moment and shear 

force at the core wall below ground are shown in Fig. 2.11.  

istribution at subgrade levels of the core wall. In the first case, perimeter walls and 

the floor diaphragms below ground were assumed to be infinitely rigid neglecting any 

shear deformation in the core wall. Core wall had a 30' × 3
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The developed overturning moment and shear force in the core wall below ground 

showed that the influence of shear deformation was significant when perimeter 

foundation walls and the parking slabs were assumed infinitely rigid.  

 

 

Figure 2.11 Moment distribution for applied concentrated moment at ground for rigid 
perimeter walls (a) fixed footing (b) pinned footing (from Bevan-Pritchard, Man and 
Anderson 1983). 
 

 the core wall, 

flexura

Influence of flexibility of foundation walls and parking slabs on the magnitude of 

developed shear force in the core wall was also investigated. Perimeter foundation walls 

had a length of 100', a height of 9.0' floor to floor and a thickness of 8.0". Shear stiffness 

for the core wall was assumed infinite in the first run. Results obtained from analysis 

showed that due to the large stiffness of foundation walls relative to

l and shear stiffnesses of foundation walls have little influence on the magnitude 

shear force and bending moments developed in the core wall below ground. 
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Part of this study proposed a formula for determining the stiffness of the springs 

used to model the floor diaphragms. Upper and lower bounds equal to 100,000 kips/in 

and 3,000 kips/in were used for diaphragm stiffnesses to study the distribution of shear 

force and bending moment in the core wall below ground. Figure 2.12 shows the results 

for the case when the influence of shear deformation is included in the core wall by 

assuming Av=8640 in2. Comparison of obtained results showed that major influence on 

shear force distribution was caused by diaphragm stiffness rather than the shear 

deform ion of core wall. 

 

at

 

Figure 2.12 Influence of diaphragm stiffness on moment and shear force distribution 
(f

F 00 en   ba ap

simultaneously to a 30' × 30' core wall which represented a 20-storey building subjected 

to lateral motion. Results for this case are shown in Fig. 2.13. The degree of fixity at the 

core wall’s footing found to be t  important parameter with the second most 

important parameter being the parking slab stiffness. Influence of core wall stiffness was 

also studied by using 20'×20' and  core sections with different combination of 

applied moment and shear at the ground level to represent a 6-storey and a 35-storey 

rom Bevan-Pritchard, Man and Anderson 1983).  

 

inally 1  k-ft mom t and 1k shear force at the se were plied 

he most

4 '0'×40
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building el  to lys d, cor  sti

the effe er pa s on u ar nd mom t 

below ground becomes onou

Table 2.2 shows the ratios of developed shear

to the applied shear at the base ( ) corresponding to different analysis cases 

conducted by Bevan-Pritchard, Man and Anderson (1983).  

 

 respectiv y. According  the ana es performe as the e wall gets ffer, 

ct of oth rameter  the distrib tion of she force a  bending en

 less pr nced.  

 force at the first below-ground level 

V1st/Vb

 

Figure 2 ence hragm s o an orce distribution for 
si ltaneously applied concentrated moment and shear at ground (from Bevan-Pritchard, 
Man and n 19

 

floor diaphragms, 

actual behaviour of the sub-grade structure cannot be captured properly. Parking 

h-rise buildings above 20 stories built today have more 

than t

.13 Influ of diap  stiffnes n moment d shear f
mu

 Anderso 83).   

This study concluded that by using the assumption of rigid 

diaphragm’s stiffnesses and degree of fixity at the core wall’s footing were found to be 

the most important parameters that influence the distribution of shear force below 

ground. It should be noted that the model used in this study was limited to only three 

stories below ground while the influence of number of stories below ground was not 

investigated. In fact most of hig

hree underground levels to accommodate vehicle’s parking space.  
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The study conducted by Bevan-Pritchard, Man and Anderson (1983) lead to 

identify parameters that influence the seismic force demand at below-ground levels of the 

core wall; however their study did not include any nonlinearity in the analytical model. 

Nonlinear shear behaviour becomes important specially at below-ground levels where the 

shear stiffness is quite high, furthermore hinging due to large bending moment demand 

significantly 

The nonlinear flexural behaviour above ground as the plastic hinge forms at the 

base o

influences the seismic response of core wall above ground.  

f wall also influences the shear force demand at levels below ground. In the present 

study, both nonlinear flexural response and nonlinear shear response will be used to 

investigate the seismic shear demand at below-ground levels of high-rise core walls. 
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Table 2.2 Ratio of shear force at the first below-ground level to base shear for different 
analysis cases in study by Bevan-Pritchard, Man and Anderson (1983). 

 
Case Core wall 

dimension 
Perimeter walls 

dimension 
Diaphragm 

stiffness 
Core moment 

of inertia 
Core wall 
shear area 

Footing at 
Core 

V1st / 
Vb 

1 30'×30'×1' infinitely rigid infinitely 
rigid 3.4x10^8 in4 infinite fully fixed 14.1 

30'×30'×1' infinitely rigid infinitely 
rigid 3.4x10^8 in4 8640 in2 fully fixed 2.6 

30'×30'×1' infinitely rigid infinitely 
rigid 3.4x10^8 in4 86400 in2 fully fixed 7.9 2 

30'×30'×1' infinitely rigid infinitely 
rigid 3.4x10^8 in4 864 in2 fully fixed 0.3 

30'×30'×1' infinitely rigid infinitely 
rigid 3.4x10^8 in4 8640 in2 fully pinned 4.5 

30'×30'×1' infinitely rigid infinitely 
rigid 3.4x10^8 in4 86400 in2 fully pinned 7.9 3 

30'×30'×1' infinitely rigid infinitely 
rigid 3.4x10^8 in4 864 in2 fully pinned 3.8 

30'×30'×1' 100'×8" 100,000 K/in 3.4x10^8 in4 infinite fully fixed 0.7 

30'×30'×1' 100'×8" 3,000 K/in 3.4x10^8 in4 infinite fully fixed -0.8 

30'×30'×1' 100'×8" 100,000 K/in 3.4x10^8 in4 infinite fully pinned 2.8 
4 

30'×30'×1' 100'×8" 3,000 K/in 3.4x10^8 in4 infinite fully pinned 2.1 

30'×30'×1' 100'×8" 100,000 K/in 3.4x10^8 in4 8640 in2 fully fixed 0.4 

30'×30'×1' 100'×8" 3,000 K/in 3.4x10^8 in4 8640 in2 fully fixed -0.8 

30'×30'×1' 100'×8" 100,000 K/in 3.4x10^8 in4 8640 in2 fully pinned 3.0 
5 

30'×30'×1' 100' fully pinned 2.1 ×8" 3,000 K/in 3.4x10^8 in4 8640 in2 

30'×30'×1' 100'×8" 100,000 K/in 3.4x10^8 in4 8640 in2 fully fixed 0.4 

30'×30'×1' 100'×8" 3,000 K/in 3.4x10^8 in4 8640 in2 fully fixed -0.6 

30'×30'×1' 100'×8" 100,000 K/in 3.4x10^8 in4 8640 in2 fully pinned 3.0 
6 

30'×30'×1' 100'×8" 3,000 K/in 3.4x10^8 in4 8640 in2 fully pinned 2.1 

20'×20'×1' 100'×8" 100,000 K/in 9.5x10^7 in4 5760 in2 fully fixed 0.4 

20'×20'×1' 100'×8" 3,000 K/in 9.5x10^7 in4 5760 in2 fully fixed 0.7 

20'×20'×1' 100'×8" 100,000 K/in 9.5x10^7 in4 5760 in2 fully pinned 1.1 
7 

20'×20'×1' 100'×8" 3,000 K/in 9.5x10^7 in4 5760 in2 fully pinned 0.5 

40'×40'×1' 100'×8" 100,000 K/in 8.2x10^6 in4 11520 in2 fully fixed 0.2 

40'×40'×1' 100'×8" 3,000 K/in 8.2x10^6 in4 11520 in2 fully fixed -0.9 

40'×40'×1' 100'×8" 100,000 K/in 8.2x10^6 in4 11520 in2 fully pinned 5.8 
8 

40'×40'×1' 100'×8" 3,000 K/in 8.2x10^6 in4 11520 in2 fully pinned 4.4 
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2.4 Sei

nce is associated 

ith the shear force distribution between inter-connected high-rise concrete walls of 

stigate the shear force 

distribution in inter-connected walls using both a rigorous nonlinear flexural model and a 

ildings. Figure 2.14 shows the 

buildi

smic shear force distribution between inter-connected walls 

 

A second issue where nonlinear shear behaviour has a significant influe

w

different lengths. Chapter 4 of the present dissertation will inve

rigorous nonlinear shear model. 

Rutenberg (2004) studied the seismic shear force distribution between cantilever 

walls with different lengths used in multi-storey bu

ng example that Rutenberg used in his study. The walls are attached to each other 

with floor slabs and therefore restrained to displace the same amount horizontally at each 

storey over the height. Wall 2 is twice the length of Wall 1 and the building considered 

was 8 stories high.  

 
Figure 2.14 Example of building studied by Rutenberg (2004). 

 
 

Ductile walls are generally designed to yield in flexure at their base and once 

yielding occurs in one of the walls, the initial force distribution between the walls will 

change. Since the curvature at yield is a function of wall lengths, walls of different length 

will yield at different horizontal displacements. The formation of plastic hinge in one of 

the walls lead to shear force transferring from the yielded wall to the un-yielded walls 

while transfer of bending moment is mostly carried by the coupling action of floor 

diaphragms. Rutenberg (2004) found that the force distribution after formation of plastic 
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hinge in walls is a pure nonlinear phenomenon which cannot be detected by any means of 

everal numerical examples to study the force 

istribution between walls by performing pushover analysis using an inverted triangular 

divided by the yield curvature and the post-yielding slope was assumed 

equal 

e distribution at the 

base of walls with respect to the monitored roof displacement for an example of walls 

ent carried by both of shorter walls due to the 

lative flexural stiffness. At a roof displacement of 0.1 m, Wall 2 yielded in flexure 

ar force is transferred to the un-yielded 

shorter

linear analysis.  

Rutenberg (2004) carried out s

d

loading pattern. Walls were modelled as column elements, and their moment-curvature 

relationship were assumed to be bi-linear, with initial flexural stiffness evaluated as the 

yield strength 

to 1.5% and 1.9% of the elastic stiffness in the short wall and long wall 

respectively. Figure 2.15 shows the bending moment and shear forc

 

shown in Fig. 2.14. Figure 2.15 shows the initial bending moment carried by the longer 

wall is much larger than the bending mom

re

causing the extra moment to be transferred to Wall 1. Wall 1 continued to take extra 

moment until it reached the yielding capacity in flexure leading to significant reduction in 

the flexural stiffness. Shear force distribution between walls is shown in lower plot on 

Fig. 2.15. By flexural yielding of Wall 2, she

 wall. The shear demand on shorter walls increased rapidly as Wall 2 was unable 

to carry the extra shear force until Wall 1 yields in flexure causing extra shear force be 

transferred from Wall 1 to Wall 2. 
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Figure 2.15 Moment and shear force distribution between structural walls in the model 

shown in Fig. 2.14 by Rutenberg (2004).  
 

The maximum shear force on the shorter wall after flexural yielding of longer 

wall was observed to be greater than its value predicted by elastic analysis for the same 

peak base moment. The study showed that the shear force demand on the shorter walls 

can be underestimated when using a linear analysis as suggested by most design codes.  

In the work done by Rutenberg (2004), nonlinear shear behaviour was neglected 

in the m ral response was accounted for. Studying the actual 

shear force distribution between connected walls in high-rise buildings requires 

ince contribution of shear deformation is significant at the levels close to the base in 

inear shear response in the numerical model. 

 

odel and only nonlinear flexu

consideration for both nonlinear flexure and nonlinear shear behaviour in structural walls. 

S

inter-connected walls, it is more appropriate to include nonlinear shear behaviour in the 

numerical model.  

In this thesis, investigation on shear force distribution between inter-connected 

high-rise walls is done in a more accurate method by taking into account both nonlinear 

flexural response and nonl
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2.5 Dyn

ted to the 

dynami  shear demand caused by the influence of higher modes and the corresponding 

Many building codes such as National Building Code of Canada (NBCC) suggest 

s has shown that flexural yielding at the base of wall 

does 

amic shear force demand on cantilever concrete walls 

 

The third and final topic which covers Chapter 5 of the this dissertation is rela

c

nonlinear action that takes place in tall cantilever walls. 

using a simple pseudo-static procedure to estimate seismic shear demand in low-rise to 

medium-rise buildings. For tall and irregular buildings, influence of higher modes of 

vibration is significant and therefore dynamic analysis is often required to estimate the 

force demand during earthquake. While linear dynamic analysis procedures is often used 

for design purpose, a realistic seismic behaviour which accounts for the structural 

damage can only be captured by performing nonlinear analysis.  

Nonlinear dynamic analysi

not necessarily limit the seismic shear force. The phenomenon that shear force tends 

to increase as the magnitude of ground motion increases is often referred to as “dynamic 

shear amplification” or “dynamic shear magnification”. Dynamic shear amplification 

factor is defined as the ratio of shear force demand obtained from nonlinear analysis to 

the shear demand obtained from a linear analysis procedure such as the pseudo-static 

procedure. Dynamic shear amplification is mainly caused by the effect of higher modes 

in tall buildings and can significantly influence the distribution of bending moment and 

shear force over the height of structural walls. 

Blakeley, Cooney and Megget (1975) were among the first who investigated the 

seismic shear force demand for a certain flexural capacity at the base of a cantilever wall. 

They observed that after yielding of wall at the base, predicted shear force demand by 

nonlinear analysis is greater than the predicted shear force demand using linear pseudo-

static procedure. The study led to significant findings on nonlinear response of walls and 

as a result, dynamic amplification factor was proposed to be estimated by using Eq. 2.13: 

 

ωv=0.9+n/10                 ;                n<6        (2.13) 

ωv=1.3+n/30<1.8         ;                n>6 
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ωv is the dynamic shear amplification factor and n is the number of stories above the base 

level. Value of ωv proposed in Eq. 2.13 needs not be greater than 1.8 for building over 15 

stories high.   

The International Federation for Structural Concrete (CEB) suggests a similar 

expre

r of stories. 

ssion to estimate the seismic shear demand on structural walls: 

 

ωv=0.9+n/10                  ;    n<5        (2.14) 

ωv=1.2+0.04n<1.8   ;   n>5  

 

In the study by Blakeley, Cooney and Megget (1975) nonlinear response of cantilever 

wall modeled to include flexural yielding at the plastic hinge near the base while shear 

behaviour was assumed to remain elastic. Note that the expressions given in Eq. 2.13 and 

Eq. 2.14 depend only on the numbe

Keintzel (1990) investigated the nonlinear behaviour of reinforced concrete walls 

subjected to ground motion and he observed that shear force amplification caused by 

influence of higher modes depends primarily on the q factor. q factor is expressed as R 

factor U.S. and Canada and accounts for the level of expected ductility in design. It was 

observed that during nonlinear dynamic analysis, shear force fluctuates more rapidly than 

overturning moment at the base of wall. Shear force continues to fluctuate after wall 

yields at the base. Keintzel (1990) suggested use of amplification factor given in Eq. 2.15 

to modify the results obtained from linear analysis to account for nonlinear action of the 

wall.  

qTSSqMMq adadIy ≤+= 2
1

2 ))(/(max1.0)/(γω       (2.15) 

In Eq. 2.15, Sad(T1) is the design value of the acceleration response spectrum for the 

fundamental period of the structure, M1 is the overturning moment at the base of wall due 

to design seismic load for the fundamental mode and q is known as the ratio between 

linear demand and provided strength. γ is a correction factor that is equal to 1.0 for 

typical buildings. In Eq. 2.15, first term under square root accounts for the fundamental 

period while the second term corresponds to the second mode of vibration. In this 

procedure, the reduction of the elastic shear force by yielding is only applied to the 
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fundamental mode of vibration. The expression given by Keintzel (1990) accounts for 

different seismic parameters associated with dynamic characteristics of the structure and 

is more refined compared to Eq. 2.13 and Eq. 2.14.   

Ghosh (1992) studied the dynamic base shear in an isolated cantilever wall by 

decomposing it into two components: one associated with the effect of first mode and the 

other associated with the effect of higher modes. The study by Ghosh (1992) indicated 

that it is possible to use less number of lumped mass rather than using mass for every 

floor over the height of wall and yet capture the dynamic response. Four walls having 10, 

20, 3

 in the study by Ghosh (1992), the effect of inelastic shear was not included in 

the mo

onlinear dynamic analysis of several reinforced concrete walls. 

Vk = Vn  Dm .W. Ae             (2.17) 

0 and 40 stories were analyzed using computer program DRAIN-2D (Kanaan & 

Powell 1973). The program uses a concentrated hinge to model the nonlinear flexural 

response. The moment-rotation characteristics of reinforced concrete beam-columns 

elements were used with a basic bi-linear relationship that develops into a hysteretic loop 

that follows the modified Takeda (1970) model for unloading and reloading path. It is 

noted that

del. Based on numerical results of nonlinear dynamic analysis, the maximum shear 

demand at the base of isolated walls was given by Eq. 2.16 which was also addressed by 

Aoyama et al. (1987) .  

 

Vmax=0.25 W agma x / g+My / 0.67hn         (2.16) 

 

W is the total weight of the building and agmax is the peak ground acceleration. My is the 

moment capacity at yield and hn is the total height.  Equation 2.16 suggests that the 

developed maximum shear force at the base of wall is equal to 25% of inertial force at 

peak acceleration plus required shear force acting at two third of height to form plastic 

hinge at the base of wall. 

Eberhard and Sozen (1993) proposed Eq. 2.17 which is very similar to Eq. 2.16 

by Ghosh (1992) to estimate the maximum seismic shear demand according to the results 

obtained from n

 

 +
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Vk is the estimated peak shear for the structure and Vn is the base shear capacity 

calculated by limit analysis assuming an inverted triangular force distribution. Dm is a 

coeffi

da: Montreal (Za > Zv), Vancouver (Za = Zv), and Prince Rupert (Za < Zv) 

were 

per levels as well as base due to the effect of higher 

odes. Note that the walls geometry and reinforcement changed over the wall’s height. 

5% dynamic amplification factor was computed from the ratio of actual shear demand to 

e probable shear strength at every level. The values of dynamic shear amplification 

ctor were found to be in agreement with the proposed values by the New Zealand code. 

mic shear amplification factor suggested by Filiatrault (1994) was equal 1.0 for Za 

>= Zv and equal to 1.50 for Za < Zv. 

cient that varies from 0.27 to 0.30 for a nine storey building. W is the total weight 

of the structure and Ae is the peak ground acceleration. In equations 2.16 and 2.17, the 

maximum developed shear force is solely dependent on peak ground acceleration and 

influence of parameters such as ductility and natural period were not included in 

derivation of above expressions. 

Seismic shear demand on cantilever structural walls was studied from a Canadian 

Code prospective by Filiatrault et al. (1994). The expression given in NBCC to estimate 

base shear was based only on the first mode of vibration. Due to higher modes effect, the 

resultant of the seismic lateral loading would be considerably lower than two third of 

height associated with the first mode inverted triangular loading pattern. Five wall-type 

structures having 3, 6, 10, 15, and 25 stories that were designed in three different seismic 

zones in Cana

modeled to perform time history analysis. Nonlinear flexural behaviour was 

modeled using concentrated plastic hinges at both ends of elements while shear behaviour 

was assumed to remain elastic. The elastic-perfectly plastic moment-rotation behaviour 

was assigned to each hinge following Takeda stiffness degradation model (1970). A 5% 

critical Rayleigh damping based on first two modes of vibration was considered and a 

time-step increment of 0.0015 sec was used in all analysis cases. The analyses showed 

that the flexural hinge location was different for different seismic zones. In Montreal and 

Prince Rupert, the flexural hinge was formed at the base of wall whereas for Vancouver 

the flexural hinge was formed at up

m

th

fa

Dyna
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Seneviratna and Krawinkler (1994) studied the same problem to investigate the 

ear force distribution over the height of wall. The influence of shear deformations in 

e wall was neglected and walls were modeled using beam-column elements with 

uniform stiffness over the height. Lumped mass was adjusted at every floor to result in a 

. Bi-linear moment-ro

h

with ope. The results obtained from nonlinear time history 

analy

he seismic design storey shear envelope based on UBC-1991 is also shown by the 

dashed line. It was observed that in the upper quarter of the wall, the distribution of shear 

force follows the path given by code’s provisions whereas in the lower three-quarter of 

the height, the pattern are significantly different from the first mode estimate of building 

code. For higher ductility factor in the analysis, moment in upper levels exceeded the 

overturning moment at the base for the tall walls due to influence of higher modes of 

vibration and therefore flexural hinge will likely form at upper levels as well as the base 

of wall. Although higher modes effect in tall walls influenced the shear force demand 

significantly, it had a less important effect on the global deformation demand. It was also 

at the contribution of plastic hinge rotation to the total drift was relatively a 

table parameter with a weak dependence on the fundamental period.  

se of a 12-storey ductile 

C wall under strong ground motion to investigate the P-delta effects. The effective 

odel of wall e considered EIe=0.7EIg. Two 

A bi-linear moment-rotation model was 

-column elements to represent the nonlinear behaviour of the 

 The shear behaviour was assumed to remain elastic similar to previous 

udies. It was observed that by satisfying the 2.0% inter-storey drift limit proposed by 

tion becomes less pronounced in the seismic response. 

tained from nonlinear dynamic analyses also lead to important findings on 

ynamic shear demand in medium-rise RC walls. It was concluded that pseudo-static 

sh

th

certain fundamental period to study walls up to forty stories tation 

ysteretic characteristic was used for the plastic hinge at the base ignoring P-Delta effect 

α being the post-yielding sl

sis were presented in terms of normalized shear force and bending moment 

envelope over the height of wall.  

T

found th

s

Tremblay, Leger and Tu (2001) studied the inelastic respon

R

bending stiffness for the m in th  analysis was 

different sets of ground motions were considered according to the seismicity 

characteristics of Montreal and Vancouver. 

considered for the beam

shear walls.

st

NBCC, the P-Delta contribu

Results ob

d
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procedure does not accurately capture the shear force distribution over the height of high-

se walls. The seismic shear force demand obtained from inelastic response of the wall is 

ampli

that New Zealand provisions to account for dynamic shear 

ampli

the building was studied using synthetic earthquakes 

repres ntative of credible magnitude-distance scenarios to match UHS seismic hazard of 

Mont  perform 

three-dimensional nonlinear time hi es. r  

bserv inelastic  and ben nt is u  

when using NBCC s for se gn. The  force a g 

m the upp f wall indi  the importance of higher mod  

mean value of dynam plification of

inelas

ri

fied at lower levels close to the base and also at the upper levels when compared to 

the prediction of pseudo-static procedure.  

The average dynamic shear magnification factors obtained at the base of wall 

located in Montreal and Vancouver were found to be 1.54 and 1.70 respectively. 

Maximum dynamic amplification was observed at higher levels rather than the base of 

wall. This study showed 

fication were in agreement with the obtained results from nonlinear dynamic 

analysis. 

In a similar approach, Panneton, Legger and Tremblay (2006) investigated the 

seismic response of an eight-storey building located in Montreal using a 3-D nonlinear 

element. Interaction of axial force and bi-axial bending was considered in the model of 

wall. Axial and flexural failure envelopes (CSI 2003) were used together with the 

modified Takeda hysteretic model to represent the inelastic response of the plastic hinge 

zone. Dynamic response of 

e

real. The program Ruaumoko-3D (Carr 2003) was used in this study to

story analys  Panneton, Legge and Tremblay

(2006) also o ed that the  shear force ding mome nderestimated

 provision ismic desi large shear nd bendin

oment in er levels o cated es effect. A

ic shear am  2.57 was calculated through the results of 

tic dynamic analysis which was greater than the value 1.57 suggested by the New 

Zealand code.  
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Priestley and Amaris (2003) used a suite of five spectrum compatible earthquake 

records scaled to different multiples of the design intensity from 0.5 to 2.0 in order to 

study the dynamic response of concrete walls. The modified Takeda hysteretic model 

(1970) for flexure was used to simulate the nonlinear behaviour of concrete walls with 

different heights. A modified superposition method based on modal analysis was 

proposed to obtain a better estimate of the response as was compared with the realistic 

nonlinear behaviour. By performing nonlinear dynamic analyses and using available 

capacity design methods, Priestley and Amaris (2003) found that both multi-mode 

analysis and conventional capacity design methods were non-conservative in estimating 

the seismic shear demand in high-rise concrete walls. The dynamic shear amplification in 

walls was found to be highly dependent on the higher modes with second mode 

dominating.  

numb  of stories above base level. 

 

 

 

 

 

 

 

 

Rutenberg and Nsieri (2006) studied the seismic shear demand on cantilever walls. 

Program Ruaumoko 2-D (Carr 2000) was used in the analysis assuming an elastic-

perfectly plastic flexural response to study the distribution of the shear force over the 

height of isolated walls. Shear behaviour was assumed linear and only nonlinear flexural 

behaviour was accounted for. Rutenberg and Nsieri (2006) proposed Eq. 2.18 to estimate 

the dynamic shear force obtained from nonlinear time history analysis Va by 

amplification of pseudo- static shear force Vd which is taken as triangularly distributed 

shear force to cause flexural yielding at the base as given by Eq. 2.19 with n being the 

er

 43



Va=[0.75+0.22(T+q+Tq)]Vd  (2.18) 

)
n2

11(H
3
2

M
V y

d
+

=   (2.19) 

 

An envelope for shear force distribution over the height was also proposed by 

Rutenberg and Nsieri (2006) which is shown in Fig. 2.16. 

 

 
Figure 2.16 Proposed envelope for dynamic shear demand by Rutenberg and Nsieri 
(2006). 
 

Parameter ζ used to define shear force envelope is given below: 

 

5.0T3.00.1 ≥−=ξ                                               (2.20) 
  

For which T is the fundamental period of the wall and ωv
* is the dynamic shear 

ampli

 

 

 

 

fication factor as expressed in Eq. 2.18.  
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It is noted that the dynamic shear amplification factor is mostly used to scale up the 

shear force demand predicted by the simplified pseudo-static analysis that corresponds to 

a triangular distribution of seismic forces over the height of building; however dynamic 

shear amplification factor can also be used to modify the shear force demand obtained 

through other types of linear analysis such as response spectrum analysis (RSA) or linear 

response history analysis. 

In order to compare different methods to estimate the dynamic shear amplification, 

an example for several cantilever shear walls is presented here. Table 2.3 provides a 

summary of assumptions used in deriving the available expressions to determine the 

dynamic shear amplification factor. The methods described in Table 2.3 were used for the 

purpose of comparison in the present example. Because of the similarities in the formulas 

proposed by Aoyama et al. (1987), Ghosh (1992) and Eberhard et al. (1993), Eq. 2.17 

suggested by Eberhard et al. (1993) was used which gives an upper-bound estimate for 

ynamic amplification factor. 

 

Table 2.3 Different procedures to determine dynamic shear amplification. 

 NZS-3101 (1982) Keintzel (1990) Eberhard et al. (1993) Rutenberg (2006) 

d

Flexural model hinge at base hinge at base hinge at base multiple hinging 

Shear model elastic shear elastic shear elastic shear elastic shear 

Application pseudo-static RSA pseudo-static/RSA pseudo-static 

Equation Eq. 2.13 Eq. 2.15 Eq. 2.17 Eq. 2.18 

 

The height and the stiffness of walls in the example were varied, while the 

oncentrated mass at different levels was kept constant. The total weight used to calculate 

the base shear is equal to the sum of concentrated masses at every story, which are 3.0 m 

part, plus the self weight of the wall. The example walls had a tubular (hollow-box) 

ction in which the length and thickness were adjusted so that the calculated natural 

ual to the number of stories divided by 10. NBCC-2005 design 

 for Vancouver - site class C was used to determine the parameters required to 

alculate the dynamic shear amplification factor using the formulas suggested by 

eintzel (1990) and Eberhard et al. (1993). According to the NBCC-2005 design 

spectrum for Vancouver, peak ground acceleration and peak design acceleration were 

c

a

se

period of the wall is eq

spectrum

c

K
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considered to be 0.46g and 0.94g respectively. Since all the proposed expressions except 

2.13 depend primarily on the q factor (R factor in North America), values of q=2.0 

and q=3.5 for moderate and ductile shear walls were used for this example. In using the 

formula by Eberhard et al. (2003), the response spectrum analysis (RSA) was carried out 

to obtain the design bending moment and shear force at the base of walls. The flexural 

yielding capacity for the e  linear moment demand 

obtained from response spectrum  

shear force demand n factor by using 

q. 2.17 was assumed equal to the shear demand obtained from RSA divided by the q 

 Figure 2.17 presents a comparison of the dynamic amplification factors obtained 

om the suggested methods described in Table 2.3. Both formulas given by Keintzel 

one from NZS-3101 (1982) (originally taken from Blakeley, Cooney and 

egget (1975)), maintain an upper-limit for the dynamic shear amplification factor as 

Eq. 

xample of walls was assumed to be the

 analysis divided by the q factor. Similarly the linear

 (Vl) required to calculate the dynamic amplificatio

E

factor. 

fr

(1990) and the 

M

shown in Fig. 2.17. Dynamic amplification factor obtained by Keintzel’s formula is 

always less than the q factor while the formula from the New Zealand code limits the 

amplification factor to the value of 1.8. Formulas proposed by Rutenberg (2006) and 

Eberhard et al. (1993) have no upper limits for the value of dynamic amplification factor.  
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Figure 2.17 Dynamic shear amplification factor ω for the presented example. 

 

For q=2.0,  Rutenberg’s formula (Eq. 2.18) provides an upper-bound estimate of 

the amplification factor, while the formula from New Zealand code presents a lower-

bound estimate. For low to moderately ductile concrete walls (q≤2), Eq. 2.13 from the 

New Zealand code gives amplification values which are relatively in agreement with 

other formulas. It should be noted that the formula from New Zealand code has been 

developed for moderate ductile walls as it depends only on the number of stories and it 

may not be suitable for prediction of dynamic shear amplification in ductile walls. This 

fact is shown in Fig. 2.17 as Eq. 2.13 gives the lowest dynamic shear amplification factor 

when compared to other formulas. 

The results for the example presented in Fig. 2.17 shows that Eq. 2.17 proposed by 

Eberhard et al. (1993) provides larger amplification factors for low-rise walls while Eq. 

2.15 proposed by Keintzel (1990) gave more conservative values for medium-rise walls. 

Use of equation 2.18 proposed by Rutenberg (2006) gives the largest amplification 

factors for medium to high-rise walls in this example.  
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In general, the methods summarized here for determination of dynamic shear 

mplification are applicable when elastic models are used for the shear response of the 

for previously, the proposed expressions 

haking. The nonlinear seismic behaviour of the wall 

nd the shear amplification phenomenon has been addressed in Chapter 5 of the present 

dissertation. 

 

a

concrete walls. A common shortcoming of the previous studies on the dynamic response 

of concrete walls was the lack of an appropriate nonlinear shear model in the numerical 

example. Diagonal cracking in the section of wall during earthquake shaking reduces the 

shear stiffness significantly which results in a reduction of dynamic shear demand. Since 

the nonlinear shear behaviour was not accounted 

to determine dynamic shear amplification may not predict the seismic shear demand 

appropriately. Consideration for the nonlinear shear behaviour in the model of high-rise 

walls improves the numerical analysis and helps to achieve a better estimate of seismic 

shear demand during earthquake s

a
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 3 
 
 

Seismic shear demand  
in high-rise walls below ground 

 

 

 

3.1 Overview 

 

Shear

 walls and their potential 

in ord

by rigid 

perim ter retaining walls known as “foundation walls”. The purpose of underground area 

is to provide required space for vehicle’s parking, shopping centers or commercial 

facilities. The foundation walls possess high in-plane rigidity according to large 

dimensions along the excavated underground area.  

In practice engineers often use linear analysis procedures such as response 

spectrum analysis for design of high-rise buildings. Presence of foundation walls and stiff 

 walls provide an efficient lateral force resisting system in seismic design of high-

rise concrete buildings. Large height to length ratio (Hw/Lw) in a typical high-rise shear 

wall causes the flexural behaviour to dominate when the building is subjected to lateral 

excitation. In upper levels of a high-rise wall deformations are controlled mainly by 

flexural behaviour whereas in the lower levels the effect of shear deformations becomes 

very significant. The central core shear wall system in a high-rise building is known to be 

an efficient solution to architectural and structural demands. The core wall system with a 

combination of flat floor slabs has been increasingly used in Western Canada; hence it is 

important to understand the seismic behaviour of high-rise shear

er to achieve a safer and more reliable structural performance.  

In most high-rise buildings, there is a large underground area surrounded 

e
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diaphragms below ground will result in development of large shear force on the core wall 

if response spectrum analysis is used. According to results obtained from RSA for some 

cases, the reverse shear force magnitude increases up to several times the magnitude of 

design base shear.  

While use of linear methods can be time saving and easy to do, it may lead to 

unrealistic estimate of response since the actual structural behaviour subjected to strong 

ground motion, can only be captured by performing nonlinear analysis. Nonlinear 

response of the shear walls during earthquake may reduce the magnitude of reverse shear 

force while wall undergoes large shear deformation. The scope of this study is to provide 

solutions to help improve the seismic design of high-rise shear walls based on both linear 

and nonline wn in Fig. 

odels in structural analysis can increase the accuracy of captured 

response; however draw

ar analyses. A full 3-D model of a typical high-rise structure is sho

3.1. Use of 3-D m

back would be timeliness and complexity of analysis procedure. 

Since using simple structural models allows an in-depth exploration of the complex 

problem a 2-D model of shear wall - foundation wall system was used to study the 

seismic response of high-rise core walls below ground. 

 

   
Figure 3.1 Model of two typical high-rise buildings walls and the corresponding 

simplified 2-D model. 
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3.2 Model definition  

 

A simplified 2-D model of high-rise core wall which is attached to the foundation walls 

through below-ground diaphragms is shown in Fig. 3.2.  In this model diaphragms can be 

modeled either using the rigid-diaphragm assumption or by considering their actual in-

plane stiffness. The shear wall dimensions in this model were chosen based on real 

design examples in high-rise concrete buildings. 

A typ

nd can be several times greater than the base shear due to action of 

diaphragms and foundation walls. 

 

ical bending moment and shear force distribution over the height of wall is shown 

in the Fig. 3.2.  According to the linear analysis, the reverse shear force in the wall 

section below grou

Figure 3.2 Shear reversal phenomenon in high-rise concrete walls and the corresponding 
moment and shear distribution.   

 

he foundation walls are numerous in size and stiffness according to the design 

teral stiffness of the foundation wall is usually 

rge compared to that of a core wall. Because of the high in-plane stiffness of foundation 

walls

T

objectives in high-rise building. The la

la

 they are often considered as fully rigid in design practice. The assumption of 

infinite rigidity for foundation walls simplifies their behaviour as fixed supports. We will 

see later that this assumption would result in a small overestimation of forces in the core 

wall below ground. 
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Another influencing parameter on the magnitude of shear force below ground is the 

stiffness of floor slabs or “below-ground diaphragms". One common simplification in 

analysis of high-rise buildings is the assumption of rigid diaphragms in modeling the 

behaviour of floor slabs. In a 3-D model, rigid diaphragm provides two translational and 

one rotation egrees of 

freedom at every floor reduces to one translational component. Concrete slabs usually 

d-diaphragm 

assu tational e  model is reasonable to 

model  levels above d, it may not be suitable to represent the 

behavi earthquake. For cases concerned with high 

verse shear force in high-rise walls, the rigid-diaphragm assumption can cause 

suggests use of 

ynamic analysis for tall and irregular buildings.  

c forces is not an easy task since 

there are many parameters whic ic structural response. To assess the 

seismic r se, building co oading pattern o eight of 

structure is proposed based on the f  The code suggests a 

linear distribution of loads over the height of building.  For high-rise buildings with a 

 

al degree of freedom. In the case of a 2-D model, the number of d

possess high axial rigidity; therefore many designers prefer using the rigi

mption to reduce compu ffort. While rigid-diaphragm

the floor slabs at groun

our of diaphragms below ground during 

re

significant amplification to the reverse shear force; therefore accounting for the actual 

diaphragm stiffness would result in a better estimate of core wall’s seismic response.  

A high-rise wall shows a complicated dynamic response to seismic forces due to 

the effect of higher modes of vibration. For any specific deformation one can find a 

corresponding lateral loading pattern which is simply the product of mass and 

acceleration over the height at every level. Unlike low-rise buildings in which the first 

mode governs the total response, high-rise buildings behaviour is dependent on higher 

modes as well first mode of vibration.  Most of present building codes are based on 

behaviour in the first mode of vibration with some adjustments to somehow account for 

the effect of higher modes. While use of simplified methods for estimating seismic 

demand is useful for low to medium-rise buildings, the design code 

d

Finding the actual lateral loading pattern for seismi

h affect the dynam

espon des propose a lateral l ver the h

irst natural mode of vibration. 

longer natural period, the seismic loading pattern is greatly dependent on the higher

modes. Dynamic response analysis for a number of earthquake events has indicated that 
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the actual distribution of the seismic forces in high-rise buildings is not similar to the 

prediction by design code which depends mainly on first mode. 

For a single cantilever wall, the seismic lateral loading pattern can be represented 

by two single parameters: Overturning moment at the base Mb and base shear Vb. 

 

 
Figure 3.3 Diagram of forces at the below-ground section of wall. 

 

Free body force diagram for a section of wall at below-ground levels is shown in 

Fig. 3.3. The reverse shear force is dependent on the overturning moment at the base, 

shear at the base and also the height of storey below ground. Diaphragms action is 

modeled by uniaxial springs and the foundation wall is assumed fully rigid. 

Equilibrium of the internal and external forces acting on the wall results in deriving 

the following relationships: 

 

     
b

b

V
M

h =′           (3.1) 

)
M
M1(

h
h

V
V

bb

r −
′

=           (3.2) 

here h is the height of level below ground and h´ is the ratio between overturning 

oments and the shear force at the base of wall. Equation 3.2 shows that the reverse 

 

W

m
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shear force magnitude is in proportion to the moment to shear ratio h´. Parameter h′ 

ainly depends on the characteristic of the ground motion as well as the wall dynamic 

sponse. Moment to shear ratio at the base of cantilever high-rise walls will be studied as 

oroughly in Chapter 5 of this dissertation.  

Flexural and shear strength of the wall section are important parameters to be 

onsidered in this study. More flexural capacity means more overturning moment can be 

ansferred by the wall section below ground to the footing and higher shear strength in 

all means more shear can be resisted by the wall section below ground. It is important 

 note that the reverse shear force and the overturning moment at the section below 

round work together to balance the forces acting on the base level. The bending moment 

t the base can be carried by two different mechanisms: one by the bending in wall 

ction below ground and the other one is by the coupling action of forces developed in 

e diaphragms above and below the specified section.  

After a short introduction to the parameters which influence the reverse shear force, 

 complete study on influence of these parameters on the developed reverse shear force 
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will be presented.  
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3.2.1 Diaphragm stiffness below ground  

 

In the present study a simply supported deep beam accounting for both bending and 

ear deformations was considered to investigate the diaphragm rigidity below ground. 

he rigid foundation walls are assumed to act as lateral supports due to their high lateral 

 applying two concentrated loads at the 

cation of shear walls as shown on Fig. 3.4. Different thickness values of the diaphragm 

sh

T

stiffness. The core wall’s action is modeled by

lo

similar to design practice have been examined according to Table 3.1.  

 

 
Figure 3.4 Simplified model to determine the diaphragm stiffness.  

 

Table 3.1 Possible diaphragm stiffness used in practice (values in MN/mm). 

Diaphragm  L/W ratio L/W=0.5 L/W=1 L/W=2 

8″  concrete slab 12.5 5.0 1.4 

16″ concrete sla 1b 25 0 2.8 
 

The ou -plane stiffn  foundati ls is igno

walls parallel to the shear forces are m  as simp  the beam. Both 

flexure and shear deform fness of the beam 

depends on the span-to-depth ratio of the beam, which is equal to L/W for the diaphragm, 

as well as the width of the beam, which is equal to the average thickness of the floor. The 

stiffness of the diaphragm spring is the shear force applied per unit deflection of the beam 

at the location of the applied shear force. In order to examine the influence of diaphragm 

stiffness, three different diaphragms were used in the analyses. All diaphragms were 

t-of ess of the on wal red; furthermore the foundation 

odeled le supports of

ations of the beam have been included. The stif
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assumed to be uncracked, and to be constructed from 30 MPa concrete with a Modulus of 

Elasticity Ec of 25,000 MPa, and a Shear Modulus Gc of 10,000 MPa. Table 3.2 gives a 

range of possible diaphragm stiffness used concrete high-rise buildings. 
 
Table 3.2 Diaphragm stiffnesses used for analysis cases. 

 

The most flexible diaphragm has an L/W ratio of 2 and an average thickness of 200 mm, 

resulting in a diaphragm (spring) stiffness of about 1.0 MN/mm. The intermediate 

diaphragm

stiffn

m to about 10% of the uncracked section stiffness. Thus cracking of a 

diaph

nsider this flexibility effect in 

the design to reduce the amount of shear reinforcement in the shear walls that may lead to 

a brittle behaviour. Figure 3.5 also shows the variation of shear reversal ratio for possible 

diaphragm stiffness as discussed in this section. 

Case Diaphragm Type Stiffness (kN/m) 

K30 High stiffness (Rigid) 30×106  

K10 Moderate stiffness (Stiff) 10×106

K1 Low stiffness (Soft) 1×106   

 has an L/W ratio of 1.0, an average thickness of 400 mm, and a diaphragm 

ess of 10 MN/mm. The stiffest diaphragm has an L/W ratio of 0.5, an average 

thickness of 400 mm, and a diaphragm stiffness of 30 MN/mm. The three cases are 

referred to as K1, K10 and K30, respectively in Fig. 3.5.  

 The results in Fig. 3.5 indicate that over the range considered, the diaphragm 

stiffness has a very significant influence on the magnitude of the reverse shear force. It is 

interesting to note that diagonal cracking of a diaphragm will reduce the shear stiffness of 

a diaphrag

ragm may have a very significant influence on the magnitude of the reverse shear 

force. The diaphragm can have a very significant effect on the distribution of shear 

forces. The flexibility of the diaphragms reduces the effect of shear reversal at the 

underground levels; therefore, it would be reasonable to co
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 Figure 3.5 Diaphragm stiffness effect on the shear force distribution for a 30-storey wall. 
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3.2.2 F

the developed reverse shear force at 

under

´/H ratio of 0.67, H being 

the total height of wall. Lf and Lw define the foundation wall and shear wall length.  The 

same thickness was used for both core wall and foundation wall for the entire analysis. 

oundation wall influence 

 

Foundation wall rigidity depends on the size and thickness of the wall. The out of plane 

stiffness of wall is small and therefore ignored here. Foundation walls are connected to 

the shear walls through diaphragms at the below-ground levels. The stiffness of the wall 

has a direct influence on the magnitude of 

ground area. For a specific seismic lateral force, the distribution of carried internal 

forces by the wall and spring elements is proportional to their relative stiffness. In Fig. 

3.6 the effect of foundation wall size on the shear force distribution is illustrated. This 

plot is obtained for a 30-storey shear wall corresponding to a h

 
Figure 3.6 Foundation wall stiffness effect on the shear force distribution. 

 

The analysis indicates that for the large ratios of foundation wall’s length to the shear 

wall’s length, the foundation walls may be treated as fixed supports. 
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3.2.3 Flexural and shear deformation of the wall 

 

The core-wall shape has a significant effect on the corresponding reverse shear force at 

below-ground level. In order to investigate this effect, three different core-wall sections 

have 

es are 4.5 m long with a thickness of 0.75 m and the web 

is 9.0 m long with a thickness of 1.5 m . I3 is a wall with large flanges having a length of 

9.0 m equal to the web length. The thickness of flanges in I3 is assumed 0.75 m and 

o 1.5 m. The purpose of selecting these wall section geometries 

as to have a consistent shape with what exist in real buildings and also keep the 

Table

been selected to study the influence of flexural stiffness of section on the shear force 

distribution below ground. The geometrical properties of the sections are given in Table 

3.3. Wall I1 is a rectangular wall having a length of 9.0 m and a thickness of 1.5 m. Wall 

I2 is a flange wall in which flang

 

thickness of web equal t

w

effective shear area constant in all three cases. Ave is the effective shear area of the section 

which was assumed equal to 80% of web area ignoring the flange area in flange sections. 
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 3.3 Wall sections used for analysis cases. 

Wall Type Ig (m4) Ave (m2) Shape Section 

I1 91.125  13.5  Rectangular 

I2 167.90  13.5  Short Flange 

I3 283.07  13.5  Long Flange 
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Figure 3.7 Influence of flexural rigidity of wall below ground on the reverse shear force. 

The flexural rigidity however is different ine how the flexural 

mation influences the magnitude of the developed shear force at underground levels. 

It is expected that the wall with large fl

EIe=0.7EIg).  

 

 in each wall to exam

defor

ange would carry more bending moment through 

its section compared to two other walls having less moment of inertia about their bending 

axis. Where the seismic demand is the same for all walls, the reverse shear force reduces 

as the wall capacity in flexure increases. The results are shown for a 30-storey wall in 

Fig. 3.7.  

Figure 3.7 shows the effect of nonlinear flexure behaviour on the wall’s shear force 

magnitude at the first below-ground level. It is observed that development of flexural 

cracks due to bending action in shear walls does not have a significant influence on 

increasing the shear reversal in the wall (e.g 
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Figure 3.8 Increase in shear reversal due to reduction in effective flexural stiffness.  

 

The influence of shear deformations is shown in Fig. 3.9. The results are shown for 

wall I2 with section properties described in Table 3.3.  Neglecting the shear deformation 

(which is significant in the behaviour of concrete walls) would lead to overestimation of 

response especially in levels below ground. It was also observed that reduction of shear 

stiffness to 10% of gross shear stiffness significantly reduced the reverse shear force at 

below-ground levels.  
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wall below ground on the reverse shear force. Figure 3.9 Influence of shear rigidity of 

 the base of wall at footing as fully fixed. 

This 

 actual rotational 

tiffness depends on geotechnical properties of underlying soil. In spite of difficulties in 

determining the appropriate degree of fixity at footing, lower and upper bounds for 

footing rotational fixity were defined by c

(fixed) footing and a fully free (pinned) footing.  

Using a set of linear analyses, the influence of footing rotation has been studied. In 

the analysis, the foundation wall is assumed rigid, diaphragm stiffness “K30” has been 

considered and the number of levels below ground has been varied from 1 storey to 6 

stories to cover a possible range in typical high-rise buildings.  

 

 
3.2.4 Effect of wall footing partial fixity 

 

It is a common assumption in practice to model

assumption basically eliminates the translational and rotational degrees of freedom 

at the base of wall. Since there always can be a small amount of rotational freedom at the 

wall base, the effect of partial fixity of the wall is important to be investigated.  

In order to apply the effect of partial fixity in the simplified model, one can add a 

single rotational spring to the base of walls; however obtaining the

s

onsidering two cases of a fully restrained 
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Figure 3.10 Effect of number of stories below ground and the footing fixity on reverse

shear force at the first below-ground level. 
 

igure 3.10 shows the influence of the footing fixity on the magnitude of reverse shear 

force 

strained against rotation at footing and consequently less reverse 

shear force is developed. Another parameter which influences the magnitude of shear 

ories below ground. It was observed that the degree of 

all fixity at footing becomes less significant where the number of below-ground stories 

  

 

F

with respect to number of below-ground levels. Vrp is the shear force at the section 

below ground where the footing has no rotational constraint and Vrf is the shear force at 

the section below ground when the core wall is fixed at the footing. The rotation of the 

wall at the footing will result in an increase in the reverse shear force demand. This is 

because of the fact that more moment can be carried by flexure of the wall section below 

ground when it is re

reversal would be the number of st

w

increases. 

For a typical high-rise building with more than 30 stories above ground, it is usual 

to consider a minimum of four stories below ground and therefore the effect of partial 

fixity at wall footing becomes less significant in the magnitude of developed shear 

reversal as shown in Fig. 3.10.
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3.3 Dynamic response 

 

After studying the influencing parameters in the magnitude of reverse shear force, 

dynamic behaviour of the wall will be investigated.  Seismic analysis was performed on 

the model of core wall for both linear dynamic analysis and nonlinear dynamic analysis.  

ered at the base of wall as shown in Fig. 3.11 

The m

In order to study the dynamic response of high-rise walls, two simplified 2-D 

models were considered as shown in Fig. 3.11. Stiffness and mass are adjusted to 

represent a specific fundamental period for the wall. Where nonlinear analysis is 

performed, the nonlinear hinge is consid

odel on the left shown in Fig. 3.11 is a cantilever wall which is referred to as 

Model 1 and the model on the right is a combined model of high-rise wall and the below-

ground diaphragms which is referred to as Model 2 in this study.   

 
 

Figure 3.11 Left: Cantilever model of wall (Model 1), Right: Core wall and below-
ground diaphragms (Model 2). 

 

In order to perform dynamic analysis on the models of high-rise concrete wall, 

program SAP-2000 (CSI 2006) was used to perform response spectrum analysis and 

direct-integration time history analysis. For more information regarding implementation 

of dynamic analysis refer to “SAP-2000 Analysis and Theory Reference Manual 2006”.  
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3.3.1 Linear dynamic response 

 

Linear dynamic analysis was carried out to address some important issues on the 

earthquake response of tall walls. In order to study the portion of buildings above ground, 

a cantilever shear wall with adjusted mass to simulate the building response has been 

considered as shown in Fig. 3.11.  

igure 3.12 shows distribution of normalized shear and moment by their peak 

nt heights of Model 1. Figure 3.12 also shows the effect of 

higher modes for structures. The response spectrum considered is the 5% damped 

pectrum associated with horizontal component of Northridge earthquake. 

F

values at the base for 2 differe

s

Figure 3.12 RSA results for normalized shear force and overturning moment over the 
height of a cantilever wall (Model 1).  

 

It is noted that the final results of RSA are obtained by combination of peak 

responses in each individual modes of vibration and since the peak response of different 

modes are not likely to occur at the same time, the distribution of forces are not quite 

similar to the actual response. In addition, RSA uses the absolute values for the final 

combination and does not give a realistic force distribution over the height considering 

the direction of developed forces.  
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To investigate the possible values of h′ through response spectrum analysis for 

typical buildings with fundamental periods ranging from T1=1 sec to T1=5 sec, two 

different design spectra of NBCC-1995 and IBC-2000 were chosen. The results are 

shown in Fig. 3.13. 

 

 
Figure 3.13 Moment to shear ratio at the base of cantilever wall having different 

fundamental periods obtained from RSA (Model 1). 
 

According to RSA, the parameter h′ ranges between 0.2H to 0.7H for the high-rise to 

low-rise walls. Possible values of h′  obtained from linear time history analysis (LTHA) 

and nonlinear time history analysis (NTHA) of high-rise cantilever walls will be 

presented in Chapter 5 of the present document 

Linear dynamic analyses in the form of RSA and time history analysis was 

perform tion 

record was used for LTH iaphragm stiffness was 

assumed to be K30. Figure 3.14 shows the distribution of bending moment and shear 

force over the height of wall for each type of linear dynamic analysis. 
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ed on the model of wall with T1=3 sec. The Northridge earthquake acce ra

A. I2 was used for wall section and the d
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Figure 3.14 Response spectrum analysis vs. Linear Time history analysis (Model 2). 

 

NBCC-2005 response spectrum was considered for RSA to demonstrate the effect 

of response spectrum used by the design code. As shown in the Fig. 3.14, use of design 

spectrum results in a linearly varying bending moment diagram whereas use of LTHA for 

specific record pronounces the influence of higher modes. A fair estimate of forces over 

the height is essential to determine the location of potential hinges and other aspects of a 

safe seismic design. 

 

3.3.2 Nonlinear dynamic response  
 

Both the core wall and diaphragm can undergo nonlinear behaviour during earthquake. In 

some design procedures, the diaphragm is assumed to crack under severe ground motion. 

This assumption can help reduce the shear reversal at the below-ground level; however 

there is a question if this assumption would be applicable given the high in-plane rigidity 

of diaphragms below ground. 

In order to investigate the actual dynamic response of high-rise walls, a series of 

nonlinear analyses were performed. It is reasonable to build up the model gradually to 
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unde f a 

cantilever wall subjected to horizontal co otion was 

studied. The dimension of wall and the concentrated mass associated with each level 

were adjusted to represent a typical natural period corresponding to buildings with 

different heights.  

To simplify the nonlinear dynamic response, a rigid plastic hinge was considered to 

form at the base of wall by neglecting strain hardening. The hysteretic behaviour 

considered for the hinge at the base was Takeda model (1970) which was consistently 

used in previous studies (see Fig. 3.15).  

The analyses were performed for four levels of natural periods ranging from T1=1 

sec to T1=4 sec. The time history values for the corresponding bending moment and shear 

force at the base are shown in Fig. 3.16 through Fig. 3.19. These figures show the 

normalized bending moment and shear force history at the base. All plots are given for 

the first 20 seconds of the total response.  Yielding points are shown as flat lines at peak 

responses. The plots are magnified during periods of yielding to clearly show the 

variation of shear force at the base of wall.  

rstand the nonlinear response transparently. For this purpose, dynamic response o

mponent of El Centro ground m

 
Figure 3.15 Nonlinear Takeda model (1970) for the plastic hinge at the base of wall.  

 

Once the flexural hinge forms at the base of wall, moment demand at the base 

remains constant while the corresponding base shear varies with respect to time. As walls 

are usually detailed for flexural yielding at the base, it is useful to study the variation of 

moment and shear forces at the base of the wall during this event. For taller walls with a 
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high ach 

zero during yielding at the base. This is due to odes and distribution 

of the lateral forces along the height of building. In other words since there are many 

modes of lateral force distribution over the height of wall, it is possible that at an instance 

of time, shear forces acting on opposite directions would balance each other effect so that 

the shear at the base of wall becomes very small.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

er fundamental period of vibration, the shear force magnitude at the base can re

 effect of the higher m
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Figure 3 lized nd rce his  at the bas  

cantilever w 1=1 sec (Model 1). 
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Figure 3.17 Normalized bending moment and shear force history at the base of a 

cantilever wall with T1=2 sec (Model 1). 
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1

 
Figure 3.18 Normalized bending moment and shear force history at the base of a 

cantilever wall with T =3 sec (Model 1). 



 

 

 

 

 
 

Figure 3.19 Normalized bending moment and shear force history at the base of a 
cantilever wall with T1=4 sec (Model 1). 
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After studying the behaviour of cantilever walls, a model of the concrete wall and 

the sub-ground structure is considered for nonlinear dynamic analysis. The model 

considered for nonlinear dynamic analysis is shown in Fig. 3.11 as Model 2. Nonlinear 

flexural behaviour is considered by providing a concentrated hinge at the base of wall 

similar to Model 1. The diaphragms and corresponding dead load of the floors are 

modeled as concentrated masses throughout the height of wall. The wall’s height and 

corresponding concentrated floor masses were adjusted for two fundamental periods of 

T1=4 sec and T1=1 sec. Foundation walls were modeled as fixed supports and axial 

springs were added to the section of wall below ground at various levels to represent the 

influence of parking slabs as shown in Fig. 3.11. The K30 spring was chosen to provide 

the extreme case corresponding to the magnitude of the developed reverse shear force.  

 set of ten different ground motions was selected for performing nonlinear time 

history analysis. The specification of the earthquake records are indicated in Table 3.4. 

These records were chosen from recorded acceleration history presented in FEMA-440 

library of ground motions for site class C. 

Table 3.4 Ground motions used for NTHA. 
 

ID Earthquake Station Date Magnitude 

A

 

(Ms)
PGA, (cm/s2) 

1 Morgan Hill Gilroy #6, San Ysidro 
Microwave Site 04/24/84 6.1 280.4 

2 Northridge Castaic Old Ridge Route 01/17/94 6.8 557 

3 Northridge Lake Hughes #1, Fire 
station #78 01/17/94 6.8 84.9 

4 Loma Prieta Santa Cruz, UCSC 10/17/89 7.1 433.1 

5 Loma Prieta Anderson Dam 
(downstream) 10/17/89 7.1 239.4 

6 Loma Prieta Gilroy #6, San Ysidro 
Microwave site 10/17/89 7.1 166.9 

7 Loma Prieta Gilroy, Gavilon college 
Phys Bldg 10/17/89 7.1 349.1 

8 Loma Prieta APEEL 7, Pulgas 10/17/89 7.1 153 

9 Landers Yermo, Fire Station 06/28/92 7.5 240.3 

10 Loma Prieta Saratoga, Aloha Av 10/17/89 7.1 494.5 e. 
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Variation of parameters Vb and Vr have been studied throughout the nonlinear 

nalysis. It was observed that shear reversal magnitude at the below-ground level is 

mainly influenced by the bending moment at the base. The magnitude of Vb was found to 

have less pronounced influence on the developed reverse shear force. The amount of 

bending moment that is transferred to the below-ground section of wall is the controlling 

parameter on the magnitude of reverse shear force Vr. Higher base shear force (Vb) would 

push back the diaphragm at the base level so that more deformation is carried by the wall 

and hence more bending moment is transmitted to the sections below ground which, in 

turn, results in reduction of balancing reverse shear force. Figures 3.20 and 3.21, show 

the developed reverse shear force at below-ground section of wall (Vr,), shear force 

developed at the base of wall (Vb) and the shear force developed in the diaphragm at 

ground level (Vd). The vertical axis in the plots corresponds to the normalized shear force 

as a ratio of  (V h / Myb) where h is the height of first level below ground and Myb is the 

yielding moment at the base. The horizontal axis is the duration of earthquake in seconds. 

The critical case was observed for the developed maximum bending moment with 

combination of minimum shear force at the base.    

Note that the all the data in Fig. 3.20 and Fig. 3.21 correspond to the case where a 

flexural hinge has been formed at the base of wall and therefore the overturning moment 

at the base has reached its maximum value. The shear force carried by the diaphragm at 

this point is simply the summation of Vr and Vb. Since diaphragm shear force is 

dependent on both shear forces developed in the section of wall at the base and one level 

below, and Vr is mainly dependent on Mb not Vb, it can be concluded that the influence of 

Vb is more important on the total shear force developed in the diaphragm at the ground 

level.  

 

a
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Figure 3.20 Normalized shear force in the wall section and the diaphragm at yielding for 
T1=4 sec (Model 2).  
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Figure 3.21 Normalized shear force in the wall section and the diaphragm at yielding for 
T1=1 sec (Model 2). 
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Figure 3.22 Normalized shear force and bending moment in the wall section during 

Northridge event for T1=4 sec (Model 2). 
 

Figure 3.22 shows the phenomenon in a similar way at the instant of yielding during the 

Northridge earthquake. This figure shows three different curves; one defines the ratio of 

overturning moment at the base to the maximum yielding moment while other curves 

show the ratio of shear at the base and the shear at the first level below ground 

normalized by their maximum envelope values. 

Because of insignificant strain hardening, overturning moment at the base does not 

change during the instant of yielding from t=7.95 sec to about t=8.25 sec. During this 

time the base shear forces in the wall fluctuates and it can be seen that Vr reaches its 

minimum value when Vb is at its peak and it reaches its minimum value when Vb value is 

a maximum.  

Figure 3.23 and Fig. 3.24 are presented to provide the information obtained from 

nonlinear dynamic analysis of walls and substructure with fundamental periods of T1=4 

sec and T1=1 sec respectively. From left to right each bar gives the results corresponding 

to a specific earthquake in the order which it appears in Table 3.4 which are sorted in the 

order of descending base shear for case of R=4 (See Fig. 3.23-b). R factor was assumed 

equal to the linear peak overturning moment to the yielding overturning moment at the 

base. Each vertical bar gives four statistical parameters. The middle horizontal bar shows 

the mean value (averaged over the time of yielding) obtained during the nonlinear time 
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history analysis. The top and bottom vertical lines give maximum and minimum values 

observed during analysis and finally the standard deviation is also shown by half the 

length of middle vertical bar.  

In Fig. 3.23-a, normalized reverse shear force has been illustrated.  The mean value 

rsely proportional to the base shear. Figure 3.23-b shows 

e shear force at the base at instance of flexural yielding. The mean value for Vb h / Myb 

t the base is the sum of reverse shear force and 

e base shear. Figure 3.24 shows the similar results for T1=1 sec. The variation of shear 

forces

 

 

 

 

 

for Vr h / Myyb is 0.2 and is inve

th

ranges from 0.22 to 0.08 and correspondingly moment to shear ratio at the base ranges 

from 0.12H to 0.35H for T1=4 sec. 

Figure 3.23-c shows the result for shear force carried by the diaphragm at the base 

level. The shear force in the diaphragm a

th

 are very small compared to the case of T1=4 sec. The observed mean value of 

normalized reverse shear force (Vr h / Myyb) is equal to 0.19 where as mean value for 

normalized base shear (Vb h / Myb) varies from 0.13 to 0.20 stating that moment to shear 

ratio at the base ranges from ranges from 0.5H to 0.75H for T1=1 sec. 
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a) 

 b) 

 c) 

Figure 3.23 Normalized shear force: a) wall section below-ground (top), b) base of wall 
(middle), c) diaphragm at ground level (bottom) for T =4 sec (Model 2). 

 
1
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a) 

b)  

 
Figure 3.24 Normalized shear force: a) wall section below-ground (top), b) base of wall 

(middle), c) diaphragm at ground level (bottom) for T1=1 sec (Model 2). 

 

c) 



Figure 3.25 shows the ratio of h´/H for a 40-storey building with T1=4 sec (Top) 

and a at the 

base. It is interesting to see how the higher modes lower the point of application of 

seism

 10-storey building with T1=1 sec (bottom) at the time of hinge formation 

ic lateral forces in high-rise shear walls.  

a)    

 
Figure 3.25 N ed overt moment r force r he base 

during flexural yielding (Model 2).  
 

d on om NTHA for the mo h-rise  critic s 

identified  when the sh in m m at instance of flexural yielding 

at the base. 

 

b) 

ormaliz urning  to shea atio at t of wall 

Base findings fr del of hig  wall, the al case wa

 as ear force at the base inimu
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3.3.3 Shear-flexure interaction  

 

The research on finding the suitable models for shear-flexure interaction in reinforced 

concrete walls is still in progress and a verified reliable shear-flexure interaction model 

has not been identified or used in previous studies. Furthermore, none of the available 

programs to perform nonlinear time history analysis has been developed to consider the 

simultaneous nonlinear action in concrete walls due to bending and shear.  

Program Response-2000 (Bentz 2000) was used to determine a simplified shear-

flexure interaction diagram as shown in Fig. 3.26. The plot is shown for the section of the 

model of the flange-wall described in Section 2.1. The wall has vertical reinforcement 

ratios equal to 2.5% at flange and 1% at the web. Horizontal reinforcement ratio in the 

web of the core wall is equal to 1%. This section is also used for nonlinear time history 

analyses performed in Chapter 5 of this dissertation (See section 5.6). The wall section is 

subjected to a constant axial compression of 0.1fc′ consistent with the level of stress 

expected to develop at the base of a typical high-rise core wall.  

 
Figure 3.26 Shear-flexure interaction diagram for the example of core wall (Response-

2000).  
 

In Fig. 3.26 Horizontal axis shows the bending moment capacity of the wall while 

the vertical axis shows the corresponding shear force strength. The thick solid line 

corresponds to the actual interaction curve using Response-2000 and the thick dashed line 
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corresponds to a simplified approximation of the actual interaction curve. Thin vertical 

dashed line shows the limits for cracking of concrete due to bending and vertical thin 

solid line shows the limit for yielding of vertical reinforcement. Similarly the horizontal 

dashed line and solid line show the limits for cracking of concrete and yielding of 

horizontal reinforcement under application of pure shear respectively. The specified 

limits shown in Fig. 3.26 were used to build the nonlinear models for flexure and shear in 

the present study. According to the shear-flexure interaction diagram, a strong interaction 

between flexure and shear does not exist for the example of the core wall prior to yielding 

of vertical reinforcement. Shear-flexure interaction causes a reduction of less than 20% in 

the shear strength for the regions beyond flexural cracking (thin dashed line) up to 

flexural ultimate capacity (thick dashed line). The interaction was noticeable when fan 

action starts as the vertical reinforcement yields and that this gives away considerable 

strength reserve.  

 

dynamic analysis predict the shear 

sponse in a wall associated with yielding of vertical reinforcement has not been 

developed. Since the focus of the present work is to investigate nonlinear seismic 

pe d 

and also in order ependent flexural 

nd shear models were used to study the seismic demand on the example of high-rise 

shear walls in the present work.  

 

3.4 Nonlinear static analysis 

 

Nonlinear static analysis provides useful information regarding nonlinear performance of 

the wall and it is fairly easy to use in design practice. In the next stage of this study, the 

nonlinear behaviour of a high-rise shear wall attached to a rigid foundation wall at the 

underground levels will be investigated. 

 

Gérin and Adebar (2004) studied the experimental results on shear response of 

concrete walls and showed that a tri-linear calibrated shear stress–shear strain model can 

A simple shear-flexure interaction model that is suitable for implementation into 

is not readily available.  In fact, a rational model to 

a

re

rformance of large core walls in which the shear-flexure interaction is less pronounce

to simplify the complicated nonlinear response, ind

a
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properly capture the nonlinear shear behaviour. This model presents the nonlinear shear 

response while accounting for cracking of concrete and yielding of horizontal 

reinforcement due to extensive shear deformations. 

 

3.4.1 Nonlinear shear behaviour in concrete walls 

 

Expressions used to present the nonlinear behaviour of concrete walls in shear will be 

explained in this section.  

ACI318 recommends the upper limit for the nominal shear strength of the wall as: 

 

)ff(AV yncccvn ρα +′=      (3.3) 

 

Where, Acv is the effective shear area and ρn is the horizontal steel ratio in the wall 

se

n addition to the annot exceed the 

capac

ction. Coefficient αc is taken as 1/4 for hw/lw≤1.5 and is taken as 1/6 for hw/lw≥2.0.  

above formula, the shear strength at yield point cI

ity of concrete in diagonal compression which is defined below.  

 

bhfV cn ′= 83.0                                              (ACI-318) (3.4) 

bdfV cn .15.0 ′=                                               (CSA-23.3) (3.5) 

 

The width and height of section are shown by b and h in the above expression. 

The shear strain of concrete member at yielding of horizontal reinforcement can be 

estimated by following expression (Gérin and Adebar, 2004): 
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With the following condition:  
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érin 

and A

nlike commonly assumed brittle behaviour in 

shear for concrete columns. 

   

fy is the stress at yielding and Es the modulus of elasticity for reinforcement steel. Shear 

stress in concrete at yielding is shown by νy and axial compression stress by n. The 

horizontal steel ratio is ρv and the concrete modulus of elasticity is shown with Ec (units 

in MPa). 

The corresponding shear strain at yielding is a function of tensile strain of the 

horizontal and vertical reinforcement as well as the compressive strain of concrete (G

debar 2004). According to this model, the shear strain varies between a range of 

0.0021 and 0.0047 for typical shear wall sections. The shear strain ductility of concrete 

walls in terms of shear strain can be estimated using following equation where γu is the 

shear strain at shear failure. According to this, significant reserve ductility in shear is 

expected in reinforced concrete walls u

cy
y

u f ′−== /124 ν
γ
γµγ           (3.7) 

 
Figure 3.27 Proposed tri-linear model for shear in shear walls (Gérin and Adebar 2004). 

  Figure 3.28 presents five levels of nonlinear shear behaviour for the model of wall 

used in nonlinear static analysis.  

 

 85



 

 
Figure 3.28 Tri-linear shear force- shear strain (V-γ) Curves in present study. 

 

For the purpose of nonlinear analysis, a computer code has been developed (Rad, 

2005) to perform pushover analysis on the model of high-rise shear walls. This code uses 

Visual basic programming language to perform the nonlinear static analysis similar to 

pusho

onse of the wall below ground. Both 

flexural and shear hinges can be defined for the frame elements by the user. The 

sidering tri-linear shear backbone 

eveloped by Gérin (2003) for the reinforced concrete walls. 

form nonlinear static analysis where nonlinear shear 

behav

ver analysis procedure. The nonlinear shear model in terms of tri-linear shear force-

shear strain has been used to analyze the resp

advantage of this program compared to available commercial programs (at the time that 

this study was conducted) is the capability of con

d

In order to perform the nonlinear static analysis, a rectangular 9.0 m×0.75 m 

section for shear wall model having a concrete compressive strength of fc´=50 MPa has 

been considered. The foundation wall is assumed to be rigid in all analysis cases. Four 

levels of below-ground slabs were considered with a storey height of h=3 m. Figure 3.29 

shows the model used to per

iour was considered in the core wall below ground. 
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Figure 3.29 Model of wall below ground to perform nonlinear static analysis. 

 

A procedure to run the nonlinear static analysis is provided in accordance with 

information obtained from nonlinear dynamic analysis which was discussed in the 

previous section. The “target overturning moment at the base” is defined as the yielding 

moment demand at the base of wall. Analysis runs until the overturning moment at the 

base reaches its specified target value. The target moment at the base corresponding to 

the level of shear strength at the base of wall was determined by considering h*/h ratio in 

f 

wall a

 section to the compressive strength of concrete (νc / fc´).  

 

 

 

 

which h* is defined as the ratio of flexural to shear strength (h*=Mn/Vn) for the section o

t the base.  

The shear strain developed in the below-ground section of is representative of the 

level of damage due to nonlinear shear behaviour. When the shear strain reaches the 

ultimate shear strain capacity of the wall, failure may be experienced. “Shear strain ratio” 

is defined as the ratio of shear strain demand in the wall to the ultimate shear strain 

capacity of the wall (γ / γult). In a similar way, “Shear strength ratio” is defined as the 

level of shear stress at the wall’s
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Table 3.5 Target overturning moment (Mn) in kN.m at the base of wall for different cases 
of nonlinear static analysis in this study.  
 

 Case 1 Case 2 Case 3 Case 4 Case 5 

νn 0.050fc′ 0.075fc′ 0.100 fc′ 0.125 fc′ 0.150 fc′ 

Vn (kN) 27,000 40,500 54,000 67,500 81,000 

h*/h=10 810,000 1,215,000 1,620,000 2,025,000 2,430,000 

h*/h=15 1,215,000 1,822,500 2,430,000 3,037,500 3,645,000 

h*/h=20 1,620,000 2,430,000 3,240,000 4,050,000 4,860,000 

h*/h=25 2,025,000 3,037,500 4,050,000 5,062,500 6,075,000 

h*/h=30 2,430,000 3,645,000 4,860,000 6,075,000 7,290,000 

 

the level of shear strength at t hrough 3.32 show the results 

r the nonlinear analysis in terms of shear strain ratio vs. shear strength ratio explained 

ree different diaphragm stiffnesses. Data points in each figure include five 

ifferent cases of shear stress level and five h*/h ratios. Each case of the analysis 

ed 27,000 kN, which corresponds to a 

 shear reinforcement whereas the fifth case shows a 

heavi

below

In Table 3.5, the target overturning moment at the base are obtained according to 

he base of wall. Figures 3.30 t

fo

above for th

d

represents a set of different wall capacities in shear. For example in the first case , the 

shear strength of the shear wall at the base is assum

ductile wall with a low percentage of

ly reinforced wall with a shear strength of 81,000 kN which is the maximum shear 

strength allowed by CSA 23.3. The wall section is categorized as I3 and the diaphragm 

type is chosen as K30. The results are shown for the ratio of developed shear strain to 

ultimate shear strain (γ/ γu) and also the ratio of developed shear strain to the yielding 

shear strain (γ/ γy) in the wall section below ground level. According to obtained results, 

for higher diaphragm stiffness and h*/h ratios, it is possible to encounter shear failure at 

-ground levels. In these cases the shear reversal problem becomes an important 

issue and special provisions should be considered to achieve a safer seismic design for 

the core wall below ground levels.  
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Figure 3.30 Shear strain vs. shear strength of wall below ground at target moment for 

different h*/h ratio and for diaphragm stiffness K30. 

 

 
Figure 3.31 Shear strain vs. shear strength of wall below ground at target moment for 

different h*/h ratio and for diaphragm stiffness K10. 
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Figure 3.32 Shear strain vs. shear strength of wall below ground at target moment for 

different h*/h ratio and for diaphragm stiffness K1. 
 

Figure 3.30 shows the results of nonlinear analysis for diaphragm K30. Cracking, 

yielding and ultimate capacity in shear are plotted by separate dashed lines. Each curve 

shows a specific h*/h ratio and each dot on the curve corresponds to a specific level of 

shear strength at the base of wall (See table 3.5). In total, 25 different cases were 

analyzed for each figure (Figures 3.29-3.31). In Fig. 3.30 in two of the cases (h*/h =25 

a  

sect on below ground has yielde  and h*/h =20. In all 25 cases, 

wall’s section has suffered diagonal cracki

the analysis results for the 

, wall did not reach shear yielding limit and the 

ained well below the specified shear capacity in all 

es where the diaphragm stiffness below 

r demand at the base is high, extra provision should be 

ade in order to make sure the wall below ground performs safe during earthquake. 

nd h*/h =30) section strain has exceeded the ultimate shear strain capacity and wall

d in shear for h*/h =15i

ng at levels below ground. Figure 3.31 shows 

case where diaphragm used was K10. Only one case of shear 

failure was identified for this case (h*/h =30 and v/fc´=0.15). For the case of diaphragm 

K1 which has the lowest stiffness

agnitude of reverse shear force remm

cases as shown in Fig. 3.32. 

According to the analysis results, for the cas

ground is large and the wall shea

m
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Havin

magnitude in high-rise walls, the effect of 

diaphragm stiffness is the most important .The results for the nonlinear analysis imply 

that for tall buildings with relatively stiff diaphragms at underground levels, the shear 

reversal effect is significant. In such cases an appropriate ductile shear design allows the 

wall to deform beyond its yielding limit before reaching its ultimate shear capacity. 

It was also found that any damage to the below-ground section of wall caused by 

flexural cracking or yielding of longitudinal reinforcement would lead to a reduction in 

flexural strength to carry the developed bending moment. In such cases an increase in 

shear demand on wall below ground would lead to larger shear deformations that can 

cause result in catastrophic shear failure. 

 

 

 

 

g a well designed diaphragm with smallest possible in-plane stiffness may be a 

suitable solution to large shear reversal problem. 

Heavily reinforced wall sections possess a less ductile behaviour in shear which in 

some cases can result in a poor shear performance. This study showed that among 

parameters that influence the shear reversal 
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3.4.2 S

By loo

hear reversal solution through a design example 

 

king at a design example, alternative solutions for the shear reversal problem will 

be discussed here. 

The flanged walls shown in Fig. 3.33 are two realistic examples for geometry of 

core walls used in high-rise buildings. Sections bend about their strong axis in this 

example.  

 
 

Figure 3.33 Flanged section core walls considered in the present example (Left: Section 
I3, Right: Section I4). 

 

Similar to what was explained earlier in this chapter, nonlinear static analysis will 

e performed to reach a target moment at the base (Mb=Mn) with an h*/h ratio equal to 15 

and a shear strength level of 0.1f'c which is associated with a horizontal web 

reinforcement ratio of 0.65%.  The model used for performing nonlinear static analysis is 

the same model as shown in Fig. 3.29. Diaphragm K10 was used to model the floor slabs 

at ground level and below.   

According to practical design procedures, following design options provide 

alternate solutions to the shear reversal problem: 

 

Alternative I: Increasing the horizontal shear reinforcement without further increase in 

the wall dimensions (Wall dimension is unchanged). 

 

b
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In this case strengthening the wall below ground in shear is done by adding 

horizontal shear reinforcement while initial wall dimension is unchanged. By doing this, 

the initial effective flexural and shear stiffnesses of the wall’s section remain constant 

and the only change is made to the level of shear strength by adding horizontal steel to 

the wall section below ground.  

The level of axial compressive stress was assumed equal to 0.1fc′. The concrete 

compressive strength is assumed 50 MPa. Since the wall dimension is unchanged, the 

cracking shear strength level in the section below ground is constant while the yielding 

stress level increases by adding horizontal reinforcement. Figure 3.34 shows how this 

design option influences the response of wall below ground. The dashed line shows the 

result for initial wall at level P1 having a shear strength of Vn=27,000 kN and the solid 

lines show the results for shear strengthened section of wall to a shear strength of 

Vn=54,000 kN which was achieved only by adding horizontal reinforcement to the web 

of wall at levels below ground. 

 
Figure 3.34 Bending moment at the base vs. shear strain for section I4 (Alternative I

 
). 

As it is shown in Fig. 3.35, for an increase of about two times the initial shear 

strength of wall by just adding horizontal steel, the reduction in the shear strain demand 

was insignificant (less than 10%). However the increase in amount of reinforcement 
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reduced the shear ductility significantly (more than 40%) as shown in Fig. 3.34 which 

may ultimately lead to an undesirable shear failure in the section below ground. 

According to results, this design alternative has the disadvantage of reducing shear 

ductility in the section of wall.  

 

 
Figure 3.35 Sh

b) 

ear strain vs. shear strength of wall section below ground (Alternative I) 

a) 

a): Section I3, b): Section I4. 
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Alterna

 base vs. shear 

strain a

ui

r strain in the section of wall below ground reduced as the wall 

was str

tive II: Increasing the wall dimension and adding horizontal steel so that the level 

of shear stress and ductility remain unchanged. 

 

Fig. 3.36 shows the relationship between bending moment at the

t below ground levels for Alternative II. The dashed line represents initial section 

of wall below ground having a shear strength equal to Vn=27000 kN. The solid lines 

show the results for a section of wall which is strengthened in shear by increasing the 

thickness as well as providing req red horizontal reinforcement so that the level of shear 

stress in the wall’s section remains constant to reach a shear strength of  Vn=54,000 kN.  

The level of shea

engthened in shear by increasing the wall web thickness and adding horizontal 

steel. All assumptions for this example were similar to Alternative I. The basic difference 

was the change in wall dimension that influenced both cracking and yielding shear stress 

levels.  

 
 

Figure 3.36 Bending moment at the base vs. shear strain for section I4 (Alternative II). 
 

As it is shown in Fig. 3.37 the amount of reduction in shear strain demand in the 

section of wall compared to its initial condition was about 28% while the wall initial level 

of strain ductility was maintained by keeping the level of shear stress constant.  
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By comparing the results from two different solutions, it can be found that 

Alternative II gives a better overall shear response for the section of wall below ground 

compared to Alternative I.    

 a) 

 
 

Figure 3.37 Shear strain vs. shear strength of wall section below ground (Alternative II): 
a) Section I3, b) Section I4. 

 
 

In order to have a measure for amount of damage caused by shear defor

b) 

mation beyond 

yielding of horizontal reinforcement, coefficient k was introduced as follows: 
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yγγ
k

yu γγ −

 

Where γ is the strain demand in the wall section below ground and γy and γu are the shear 

strain at yielding and shear strain at failure respectively. k ranges between 0 and 1.0 with 

0 as an indication of yielding and 1.0 as an indication of shear failure.  Figure 3.37 shows 

how considering different effective shear stiffness for the wall’s section below ground 

resulted in various levels of shear demand. The results were compared to the tri-linear 

shear response of the wall. In order compare the nonlinear analysis solution to results 

obtained from simplified linear analysis considering the effective shear stiffness of wall 

section below-ground, three dashed lines are plotted on Fig. 3.38.  

The upper dashed line presents the case where all the below ground sections of wall 

have cracked with effective shear stiffness is equal to GAve=Vn/γy. The shear force 

demand in the wall section below ground in

−
=          (3.8) 

 this case is 54,000 kN which is about 35% 

greater than the actual shear demand. The middle dashed line represents the case in which 

the first level below ground has yielded and has reached 50% of reserved ductility in 

shear beyond yielding point (k=0.5). This solution achieved the closest result to the actual 

tri-linear behaviour and finally the lower dashed line represented a case where all the 

sections reached their 50% reserve shear ductility (k=0.5).  
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tion vs. overturning moment at the base 

increase in shear strength. 

carried out by allowance in 

cracking of the diaphrag

Figure 3.38 Shear force in the below-ground sec
of wall (Alternative II). 

 

Although design Alternative II provided a promising solution to the shear reversal 

problem, there is still very small change in shear strain demand for a relatively large 

Alternative I provided a poor solution to reduce the shear 

strain demand in the wall section. 

 

Alternative III: Reduction in the shear force demand by allowing the diaphragms below 

ground to crack in shear. 

 

Another solution to the shear reversal problem could be 

ms prior to the core wall. As discussed earlier, the diaphragm 

stiffness below ground has a great influence on the shear force demand of the core wall. 

Figure 3.39 shows how the diaphragm stiffness can influence the shear demand in the 

wall below ground for the previous example. 
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a) 
 

 
Figure 3.39 Shear stain in the wall section be

b) 
low ground vs. diaphragm stiffness at the 

base level: a) Section I4, b) Section I3. 
 

As shown in Fig. 3.39 in a case where the diaphragm has an initial uncracked in-plane 

stiffness of about 30 MN/mm,  shear cracking in diaphragm would reduce the stiffness to 

about 10% of the initially un-cracked stiffness value which is 3 MN/mm. The amount of 

reduction in the shear strain demand was found to be 40% in this case. 

Alternative III provided an efficient solution to the shear reversal problem since no 

further change in the core wall was required. However special detailing of diaphragms 
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below ground to crack in shear while maintaining their stability should be considered 

arefully to ensure a safer seismic design in high-rise buildings.  

walls, the reverse shear force times storey height 

5) when the 

flexural capacity of the wall is reached.  In the other three cases, the shear strain is 

pushed beyond yielding. 

 
 

c

In order to achieve an appropriate design in accordance with Alternative III two methods 

are suggested here: 

- Provide special weak links in the diaphragm to control the cracking mechanism as 

desired. 

- Design the diaphragms below ground as optimized as possible so that cracking in 

diaphragm reduces the seismic shear demand on high-rise core wall below ground.   

Figure 3.40 shows the results of four example nonlinear static analyses on Model 

shown in Fig. 3.29 where the diaphragm stiffness is K30. The vertical axis is the ratio of 

reverse shear force couple Vr×h to total applied bending moment at the base Mb, while 

the horizontal axis is the corresponding shear strain of the tower wall at the below-ground 

level. Two levels of flexural capacity h*/h = 15 (solid lines) and h*/h = 30 (dashed lines), 

and two different percentages of horizontal reinforcement in the core wall corresponding 

to shear stress ratios v/fc' = 0.15 (upper line) and v/fc' = 0.10 (lower line) are shown in 

Fig. 3.40. Prior to diagonal cracking of 

Vr×h resists about 18% of the total applied bending moment Mb in all four walls. After 

diagonal cracking, the reverse shear force reduces depending on the amount of horizontal 

shear reinforcement.  There is a larger reduction in the walls with less horizontal 

reinforcement (lower v/fc') because the cracked-section shear rigidity is lower in these 

wall. At the shear strain corresponding to horizontal reinforcement yielding (0.0035), the 

reverse shear force resists 8% of the applied bending moment in the wall with v/fc' = 0.15 

and about 6% of the bending moment in the wall with v/fc' = 0.10. In only one of the 

walls (h*/h = 15 and v/fc' = 0.10) is the shear strain less than yielding (0.003
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Figure 3.40 Results from four nonlinear static analyses showing reduction in reverse 
shear force demand due to shear strain from diagonal cracking of wall, and yielding of 
horizontal wall reinforcement.  
 

3.5 Nonlinear shear response of concrete floor diaphragms 

 

Cracking will reduce the stiffness of floor diaphragms, which will reduce the reverse 

shear force. Unfortunately, the shear behaviour of floor diaphragms is very complex 

making it difficult to use a simple model for the nonlinear shear behaviour of 

diaphra

ression stresses in the 

diaphragm, which will result in less cracking and a stiffer response overall. If the 

foundation walls are cast directly against the ground, the deformation of the diaphragm 

gms. Normally, it is conservative to use a simple model of force transfer in 

complex concrete structures; but in this case, a simpler model will predict a lower 

stiffness of floor diaphragms, which will result in an unsafe prediction of reverse shear 

force. A simple model of the floor diaphragm is that it acts as a beam transmitting the 

force entirely to the foundation walls that are parallel to the shear force in the walls, and 

this was the model used earlier to estimate the stiffness of the uncracked diaphragms. 

Depending on the relative dimensions (length-to-width) of the floor diaphragm, the 

shear force in the walls may be transmitted primarily by comp
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will be reduced by the out-of-plane walls bearing against the ground. Once diagonal 

cracking does occur in the diaphragm, it is not clear how much reduction in shear 

stiffness there will be as a significant reduction requires numerous closely spaced cracks. 

The small percentage of reinforcement in floor slabs and the arrangement of this 

reinforcement may result in poor crack control when the slab cracks due to in-plane shear 

stresses. Floor beams further complicate the issue. 

If it is reasonable to assume that the reverse shear force is transmitted primarily to 

the in-plane foundation walls (parallel to shear force) by compression and tension stresses 

that are relatively uniform over the diaphragm, and that there will be good crack control 

in the diaphragm, the nonlinear shear model for shear walls can also be used for concrete 

floor diaphragms. The shear force to cause cracking of diaphragms can be estimated from 

Eq. 2.8 through Eq. 2.11 by substituting P/Ag = 0, and by substituting the average 

diaphragm thickness for bw and length of diaphragm in the direction of shear force 

(overall depth of equivalent beam representing diaphragm) for lw. 

.6 Procedure for design of the shear wall below ground 

Step (1): Determine design forces at the base level (immediately above base 

ructure) using, for example, response spectrum analysis (RSA). As shear force reverses 

elow base level (this procedure is to deal with such cases), maximum bending moment 

e base level.  

Step (2): Design tower walls for design bending moment at the base level. 

 

3

 

st

b

in tower wall occurs at th

Provide reinforcement over height of plastic hinge region of wall above base level, and 

all the way down to the foundation. Refined analyses with appropriate stiffness 

assumptions as per later steps could be used to avoid extending all wall reinforcement to 

the foundation. 

Step (3): As increased flexural deformations of tower wall below base level will 

reduce flexural stiffness of tower wall, which will increase reverse shear force, provide 

additional vertical reinforcement in tower wall below base level to ensure yielding will 

not occur below base level and to increase flexural rigidity of wall below base level.  
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Step (4): Determine probable flexural strength of wall Mpr at the base level taking 

into consideration applied axial compression in wall at the base level and actual 

reinforcement provided in wall.  To ensure an upper-bound estimate, assume yield 

strength of reinforcement is equal to 1.25 times specified yield strength.  

Step (5): Design tower walls for shear force above base level (maximum base 

determine the shear force, account for flexural overstrength plus 

ynamic amplification of shear. Provide adequate wall thickness so that shear stress level 

shear). If RSA is used to 

d

does not exceed cφ 0.15fc', where cφ  is the appropriate strength reduction factor for shear 

(e.g., 0.75 in ACI 318, 0.65 in CSA A23.3). Use this as the initial shear design of tower 

wall below base level. 

Step (6): Analyze interaction between tower walls and base structure using linear 

atic analysis.  The applied forces at the base level are Mpr determined in Step 4 and Vb = 

0. Use uncracked shear rigidity Gc Avg of tower wall, and an appropriate model to 

determine stiffness of uncracked floor diaphragms. To account for flexural cracking of 

tower wall below base level, use an effective flexural rigidity equal to Mn×lw/0.0025, 

where Mn is the nominal flexural capacity of the tower wall at the particular level and 

0.0025/lw is the curvature of the wall at initial yielding of vertical reinforcement (Adebar 

and Ibrahim 2002). If maximum shear within tower wall below base level is less than 

base shear Vb, the initial design from Step 5 is adequate, otherwise continue to next step.  

Step (7): Determine if significant diagonal cracking of tower wall will 

sufficiently reduce reverse shear force in tower wall below base.  Repeat linear static 

analysis of tower wall – base structure interaction as specified in Step (6) except use an 

 5 and 0.003 is a 

mple estimate of yield shear strain.  A larger value of yield shear strain, which results in 

less sh

st

effective shear rigidity of tower wall equal to Gc Ave = Vn/0.003, where Vn is the nominal 

shear strength of tower wall using initial design determined in Step

si

ear stiffness, can be determined from Eq. 3.6. If maximum shear force within 

tower wall below base level is less than Vn, the initial design from Step 5 is adequate, 

otherwise continue to next step. 

Step (8): Determine if cracking of floor diaphragms will sufficiently reduce 

reverse shear force in tower wall. Caution is needed regarding an overly simplified model 

that gives too low of an effective stiffness of the diaphragm. A nonlinear finite element 
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model that correctly accounts for tension stiffening of cracked reinforced concrete is the 

best approach for estimating the stiffness of cracked diaphragms. Repeat linear static 

analysis of tower wall – base structure interaction as specified in Step (7) except use the 

r  

base leve e initial design f adequate, oth ue to 

next step. 

St shear strength of  below base, prov dequate 

wall thickness so that shear stress level does not exceed

educed stiffness of the diaphragms. If maximum shear force within tower wall below

l is less than Vn, th rom Step 5 is erwise contin

ep (9): Increase to llwer wa iding a

 cφ 0.15fc', where cφ  is the 

, continue to 

ext step.  

Step ted reverse 

shear force or jump to next ste cture. Possible refinements in 

analysis include: (i) NTHA to justify a lower design bending moment at the base level in 

Step 1, (ii) NTHA to determine a larger mi Vb) in Ste ) use of a 

higher l rigidity of tower low base in Step 6,  of more 

sophistic at gives a lower s  of diaphragms, or (v) NTHA with 

appropr dels – particularly e shear response of gms and 

tower wa ine the reverse shear irectly. 

Step ce. Possible 

solutions include: (i) reduce stiffness of floor diaphragms by modifying design of floor, 

(ii) provide a gap in floor slabs around tower walls and support floor slabs on corbels 

projecting from tower walls, (iii) increase height of critical stories in base structure, (iv) 

modify design of tower walls to increase flexural stiffness of tower walls. 

 

appropriate strength reduction factor for shear. Repeat linear static analysis as in Step (8) 

except using an effective shear rigidity of tower wall equal to Gc Ave = Vn/γy, where Vn is 

the increased shear strength of tower wall and γy is the yield shear strain taken as 0.003 or 

determined from Eq. 3.6. If maximum shear force within tower wall below base level is 

less than Vn, the revised design is adequate, otherwise modify design and repeat Step (9). 

Note that increasing the shear strength of the tower wall also increases the effective shear 

stiffness of the tower wall which results in a larger reverse shear force. If a reasonable 

solution cannot be found by increasing the shear strength of the tower wall

n

 (10):  Either use refined analysis procedures to reduce calcula

p and modify design of stru

nimum base shear ( p 6, (iii

effective flexura wall be (iv) use

ated model th tiffness

iate concrete mo  for th diaphra

lls – to determ  force d

(11): Modify design of structure to reduce reverse shear for
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3.7 Summary and Conclusions 

 

The shear reversal problem and its correspond re studied in this 

chapter itude of the verse shear force below ground in tall buildings is 

dependent on parameters such as foundation w  diaphrag ness below ground, 

the deve mum mome shear at  and the of fixity ng.  

The r ted nonline

 hapter. A erformed analyses 

dicated, among the parameters influencing the shear reversal, the effect of overturning 

f the diaphragms below ground would reduce the reverse shear force demand 

signif

eep the diaphragm’s thickness below ground as 

thin a

und 

level 

ing design solution we

. The magn wall re

all size, m stiff

loped maxi nt and the base degree at footi

ecently calibra ar model for shear proposed by Gérin and Adebar (2004) 

was used to study the shear reversal problem in this c s the p

in

moment at the base had the most significant influence. The dynamic analysis of the 

simplified model of wall showed that the maximum developed base moment with a 

combination of minimum shear at the base will result in the largest reverse shear force at 

the levels below ground. This fact was verified by the fact that more moment transmitted 

to the section of wall below ground, the less shear force is developed to satisfy the 

equilibrium of forces at the section of wall.  

Although considering nonlinear shear behaviour can reduce the reverse shear force 

demand, it may not be practical to design the walls for such high shear demand. The 

study showed that a large increase in wall dimension is required in order to reach the 

acceptable level of shear strain in the wall. A more convenient solution to this problem 

would be allowing the diaphragm below ground to crack during strong earthquakes. 

Cracking o

icantly. An appropriate design to allow cracking of diaphragm requires ductile 

detailing of diaphragm at weak joints and avoiding using oversized below-ground slabs in 

design of high-rise concrete buildings. In practice, when encountering huge shear reversal 

demand in the high-rises, one needs to k

s possible to satisfy design requirements. Any flexural damage to the below ground 

section of wall which would result in a reduction of wall effective stiffness would cause 

an increase in the shear force demand.  

A complete design procedure for design of the core wall’s section below the gro

was proposed that can be used in design practice.   
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4 
 
 

Seismic shear demand 
ected high-rise walls 

hear response significantly 

agnitude of the developed reverse shear force at the below-ground levels.  

As the largest sei ps at below-ground levels of the core wall 

for which the wall has to be designed, the seismic shear force at the base is the most 

im arameter to design the wall above the ground level. Like the below-ground 

sections of a high-rise core wall, shear deformation shares a significant part of the lateral 

di t in the above-ground sections of the wall near the base; therefore accounting 

for the nonlinear shear response at the lower above-ground levels is equally im ortant in 

de n of seismic shear demand in concrete walls. 

In high-rise buildings, concrete walls are tied together over the height by rigid floor 

slabs at every floor level. The thickness of slabs is usually too small to prevent flexural 

cracking of slabs at the face of concrete shear walls and columns due to high rotational 

demand during an earthquake; however in-plane stiffness of floor slabs is large enough to 

carry the load between the vertical members and would cause significant redi tion 

between forces developed in different levels of the building.  

 in inter-conn
 

 

4.1 Overview 
 

 

In Chapter 3, the seismic shear demand was investigated at below-ground sections of a 

core wall which is used as the main seismic force resisting system for typical high-rise 

concrete buildings. It was observed that the nonlinear s

influences the m

smic shear force develo

portant p

splacemen

p

terminatio

stribu
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At the ween walls 

depend rily on the rel ural rigidity walls.  In the of the 

building however the shear force distribution dep ore on the relative shear rigidity 

of the walls.  Due to crack crete and y of reinfo  

flexural r dities of concr ill chang all is  

shear and bending moment

on factor (e.g., 

70%) i

rs in shear. Since the 

shear fa

 upper levels of a high-rise building, shear force distribution bet

s prima ative flex  of the lower levels 

ends m

ing of con ielding rcement, the shear and

igi ete walls w e as the w subjected to increasing

 demands. 

In the design of high-rise concrete buildings, linear dynamic (response spectrum) 

analysis is normally used to determine the displacement demands on the overall structure, 

and the force demands on the individual components of the structure. During ground 

motion the structural members which contribute to the stiffness of the lateral resisting 

system would suffer some damage which would result in reduction of their initial 

uncracked section stiffness. The stiffness properties used in the analysis model must 

account for the presence of cracked regions of the concrete members.  

 The reduction factors to account for cracking of concrete members are proposed 

by codes for columns, beams and shear walls. For simplicity, one reducti

s normally used for all elements in the structure.  The effective shear rigidity of 

concrete walls is usually assumed to equal the gross section shear rigidity GcAve which 

means the effect of shear cracking is usually not accounted for.  The reason is the 

complicated unknown behaviour of reinforced concrete membe

ilure is the most dramatic mode of failure in a structure, engineers often try to be 

conservative in their design especially when it comes to the shear design of critical 

elements to resist earthquake lateral motion such as shear walls.  

While these simple assumptions about effective member rigidities lead to 

reasonable estimates of overall structural displacement, such as the displacement at the 

top of concrete walls, they may result in poor estimates of shear force distribution 

between concrete walls. In this study, nonlinear analysis is used to make an accurate 

estimate of the shear force distribution in high-rise concrete walls.  Experimentally 

calibrated models accounting for uncracked, cracked and post-yielding response of 

reinforced concrete were used to determine both flexure and shear rigidities of concrete 

walls. 
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4.2 Model of two walls 

 

To investigate the issue of shear force distribution in high-rise concrete walls, a simple 

two-wall example as shown in Fig. 4.1 was used. Walls are inter-connected through 

diaphragms at levels above ground. The connections between walls and floor slabs are 

not capable of resisting the existing overturning moments as they crack due to large 

rotations during ground motion and hence are considered as pinned connections. 

Connection of walls through rigid diaphragms would cause the lateral displacement at 

each level to be identical for both walls. Lateral seismic resisting system of a typical 

high-rise may be provided by a number of shear walls having different shapes and 

dimensio etween 

em is almost identical since the walls possess the same lateral stiffness. This case is of 

less interest in this n between walls is 

highly disturbed when walls have different geometry and size. Compre trength of 

concrete was assumed fc
′=50 MPa and a lus of elasticity equal to E 32000 MPa 

aximize the variation in shear force distribution, two walls were purposely 

t dissertation. As both walls have the same 

overall height (81 m), wall W1 has half the height-to-length ratio of wall W2. 

ns. If two walls are identical in geometry, the distribution of forces b

th

study. On the other hand this uniform distributio

ssive s

 modu c=

was considered for the concrete walls.  

In order to m

chosen to be very different.  Wall W1 is a 9.0 m long wall with large transverse walls 

attached to the ends, i.e., a large flanged wall, while wall W2 is a rectangular wall that is 

4.5 m long (half as long).  Both walls have a “web” thickness of 0.75 m.  Wall W1 

represents a typical cantilever wall that is part of a building core. Same geometry for wall 

W1 is used to study the dynamic response of a 30-story cantilever wall which will be 

discussed in the next chapter of the presen
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Figure 4 t study.    

 

le 4.1 Geometrical prope  the walls shown in Fig. 4.

Wa Ig (m4) Ag (m2)  (m2) 

.1 Example of two-wall model used in the presen

 
Tab rties of 1. 

lls Ave

W 222.32 19.125 1 6.75 
W 5.69 3.375 2.7 2 

 

 

In order to make it a realistic example, the strengths of the walls were determined the 

way it is done in practice, so the strengths are greater than or equal to the forces 

determined from a linear analysis.  

Response spectrum analysis (RSA) is the most common analysis method used in 

Canadian design practice to estimate the seismic demand on high-rise buildings.  Thus 

this method was used to establish the relative strengths of the walls at the base of the 

building. The RSA was conducted for the simple two-wall model by adjusting the 

uniform mass over the height of the 30-storey building so that the fundamental period of 

the two-wall model was 3 sec., which is the typical value for a complete 30-storey 

concrete building.  In other words, only the appropriate portion of the total mass of a 

complete 30-storey building was applied to the two-wall model.  The design spectrum 

that was used for the RSA was Vancouver site class C.  To account for the effect of 
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flexural cracking in the concrete walls, the effective flexural rigidity EcIe was taken as 

70% of the uncracked flexural rigidity EcIg as is normally done in practice. 

The shear forces and bending moment near the base of the walls determined from 

the RSA are as follows. The factored bending moments in walls W1 and wall W2 are 

Mf1= 1,125,500 kNm and Mf2=49,000 kNm respectively.  The factored shear force in wall 

W1 at Level 1 Vf1= 34,000 kN, while the factored shear force in wall W2 at Level 1 Vf2= 

7,100 kN.  Note that the ratio of Mf1 to Mf2 is 23.0, while the ratio of Vf1 to Vf2 at Level 1 

is 4.78.  The ratio of (Mf1 + Mf2) to (Vf1 + Vf2) at the base is 28.5 m, note that the ratio of 

developed forces in walls are controlled more by flexural action at the upper levels while 

the shear deformations in walls become important in lower levels. 

Two structural walls in the example were designed so that the resistances of the walls 

were about equal to the forces determined in the RSA.  Both walls were assumed to be 

subjected to an axial compression equal to 0.1 fc
′Ag at the base of the walls, which for 

wall W1 is 114,750 kN, and W2 is 20,250 kN.  This value is a vertical load that a wall in 

a high-rise building is subjected to. The reinforcement in the chosen walls in this study is 

designed according to the wall force demand obtained from RSA and is similar to a real 

case of wall detailing in practice. In order to have the required flexural capacity at the 

base, wall W1 required about 2.5% vertical reinforcement in the transverse walls 

(flanges), and about 0.5% vertical reinforcement in the web. Wall W2 required 1% 

vertical reinforcement over 15% of the wall length at each end of the wall.  To have 

adequate shear resistance, wall W1 required about 1% horizontal reinforcement at Level 

2, while wall W2 required about 0.3% horizontal reinforcement at Level 1.  The applied 

shear forces cause shear stress ratios v/ fc
′ = 0.1 in wall W1 at Level 2, and v/ fc

′ = 0.045 in 

wall W2 at Level 1. 
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4.3 Nonlinear analysis 

 

Nonlinear istory analysis is the m ccurate procedure to assess the seismic 

performanc  concrete building; howe is type of analysis is not widely accepted 

to be used in practice because of a numbe sadvantages such as selection and scaling 

of input ground motions, complex hystere dels, timeliness of analysis procedure and 

interpretati output results. In order y shear force distribution between walls 

one does not require such a complex analysis. Other aspects of nonlinear shear behaviour 

shear demand on 

oncrete walls in a building must be investigated using nonlinear dynamic analysis. The 

 

e base) was used for the static analysis. The resulting distribution of 

bending moments and shear forces over lower stories of the building from the RSA and 

the static analysis are compared in Fig. 4.2.  

 

time h ost a

e of a ver th

r of di

tic mo

on of to stud

of concrete walls, such as the influence of higher modes on total 

c

relative shear force distribution between walls depends only on the nonlinear material 

behaviour of the concrete walls, and this can be investigated using nonlinear static 

analysis.  The advantage of nonlinear static analysis is the simplicity and transparency of 

the analysis results which allows a complete understanding of the behaviour of the 

structure.  

4.3.1 Model assumptions 

 

A uniformly distributed lateral load over a height of 62 m from the base (resultant lateral 

load at 31 m from th
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near static analysis are summarized in Table 4.2. These are referred to as the factored 

rces, analogous to factored forces in design, and are used to normalize the plots in the 

results section. Note that the ratio of Mf1 to Mf2 is 24.4 while the ratio of Vf1 to Vf2 at 

Level 1 and 2 are 4.64 and 14.5.  The ratio of (Mf1 + Mf2) to (Vf1 + Vf2) at the base is 31 m. 

Note that seismic response of inter-connected walls is greatly dependent on the lateral 

loading pattern that is used in the pushover analysis. An appropriate loading pattern 

which is controlled by parameter h′=Mb/Vb can be estimated using nonlinear time history 

analysis which will be investigated in Chapter 5 of this dissertation. 

RSA

L2

L1

 
Figure 4.2. Comparison of bending moment and shear force distributions over lower 
floors from RSA (dashed lines) and linear static analysis (solid lines). 
 

The shear forces and bending moments determined at the ba
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Table 4.2 Summary of forces determined at the base of walls from linear static analysis. 

Factored Forces Wall 1 (W1) Wall 2 (W2) 
Vf Level 2 (kN) 35,820 2,470 
Vf Level 1 (kN) 33,000 7,100 
Mf base (kNm) 1,195,500 49,000 

 

The nonlinear static analyses were done using the tri-linear models for flexure and shear 

described above. A summary of the nonlinear model parameters are given in Table 4.3 

and Table 4.4. The pushover analyses were performed using SAP-2000 (CSI 2006). The 

flexural hinge length for walls was taken as the full storey height; in addition, sensitivity 

analysis was conducted to determine parameters such as event tolerance and the total 

number of analysis steps for the accuracy of results (See SAP-2000 Analysis and Theory 

Reference Manual (2006) for more details). The walls were assumed to be fixed at the 

base, and the structure below ground was not included in the current study.  

 

Table 4.3 Nonlinear flexural model parameters used for analysis. 

Tri-linear Flexural Model 
Wall W1 W2 

Ml    (1000 kNm) 424.9 22.47 
Øl     (rad/km) 0.047 0.113 

Mn   (1000 kNm) 1,195 49.00 
Øy    (rad/km) 0.393 1.200 

Mu   (1000 kNm) 1,198 49.13 
Øu    (rad/km) 3.889 7.778 

 
Table 4.4 Nonlinear shear model parameters used for analysis. 

Tri-linear Shear Model 
 W1 W2 

Level 1 2 1 2 
Vcr  (1000 kN) 23.75 23.75 6.39 2.22 
γcr × 1000 0.315 0.315 0.170 0.059 

Vn   (1000 kN) 33.00 35.80 7.10 2.47 
γy × 1000 2.705 2.765 2.305 2.105 

Vu   (1000 kN) 33.03 35.82 7.12 2.49 
γu × 1000 7.505 7.385 8.005 8.035 

 113



4.3.2 Moment to shear ratio at the base 

 

Th ent to shear rat Mb/Vb) is one important parameter which 

determine eight at which the base b generates the bending moment Mb at the 

base. Dete tion of this parameter, which refers to the point of application of the base 

shear alon height of wall, depends ly on the assumptions used for modelling 

and the type of analysis. For example if a re nse spectrum analysis (RSA) is used for 

design of low-rise walls, where moment to shear ratio at the base is influenced mainly by 

the first m esponse, it is reasonable to consider h′ values close to 70% of the total 

height. Fo -rise buildings where odes significantly contribute to the 

seismic re , the point of applicatio ase shear becomes lower along the height 

compared to low-rise walls. As an exam the point of base shear resultant of for the 

described  of a 30-storey wall wa imately at 40% of the total height based 

on RSA..  

s is the main point 

f interest, only one base moment to shear ratio (h′) associated with RSA (consistent with 

 moment to shear ratio as compared to linear analysis. 

Chapter 5 will investigate the variation of the base moment to shear ratio for a 

odel of high-rise wall subjected to different earthquake accelerations while taking into 

ccount a variety of nonlinear models associated with the provided flexural and shear 

rengths at different sections of wall over the height. 
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It should be noted that since the force distribution between wall

o

design practice) was used to define the seismic loading pattern for pushover analysis of 

the model of two walls in this Chapter.  

The value of moment to shear ratio at the base also depend on the level of nonlinear 

action in the section of wall. Nonlinear time history analysis (NTHA) that was performed 

as a part of present work in Chapter 5 showed that formation of plastic hinge at the base 

of wall further reduces the base

m

a

st
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4.3.3 Analysis parameters and results 

 

In order to understand how the nonlinear model influences the shear force distribution, 

nonlinear static analyses were performed on the two-wall example using different 

nonlinear models.  Figure 4.3 summarizes these different models.  For flexure, either bi-

linear or tri-linear models were used, while for shear, linear, bi-linear and tri-linear 

models were used.  In the case of the linear and bi-linear shear models, unlimited strength 

was assumed as shown in Fig. 4.3. Combination of different flexural model and shear 

models shown on Fig 4.3 are also summarized in Table 4.5. 

 

 Flexure Model (M-Ø ) Shear Model (V-γ) 

Model 1 
  

Model 2 
  

Model 3 
  

Model 4 
  

Model 5 
  

 
Figure 4.3 Flexural and Shear models used in the present study. 

 

Table 4.5 Nonlinear flexure and shear models used for analysis. 

Model Flexure Shear Description 
1 Bi-linear Linear Infinite shear strength 
2 Tri-linear Linear Infinite shear strength 
3 Tri-linear Bi-linear Infinite shear strength 
4 Tri-linear Tri-linear Infinite shear strength 
5 Tri-linear Tri-linear Limited shear strength 
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A standard format is used in the figures to summarize the results.  The dark blue 

(darker color) lines in the plots shows the results for the longer wall (W1), while the 

magenta lines (lighter color) indicate the results for the smaller wall (W2). Solid and 

dashed lines represent the results for the first and second storey, respectively. Two 

separate plots are given to present the flexure and shear demands on walls. The shear and 

bending moment demands, shown on the vertical axes, have been normalized by the 

forces determined in the linear static analysis and summarized in Table 4.2.  In all cases, 

the horizontal axis is the displacement at the top of walls. A summary of the important 

points in the response is given in the tables corresponding to each figure.  

The abbreviation used to indicate the nonlinear state of walls during analysis is 

described as (A-B-#), in which “A” indicates either Flexure (F) or Shear (S) nonlinearity, 

“B” indicates three possible states of Cracking (C) , Yielding (Y) or Failure (F) and “#” 

indicates the level in which the nonlinearity has been monitored.  

Figure 4.4 summarizes the results from Model 1 (see Fig. 4.3) in which the walls 

are assumed to respond linearly in shear and bi-linearly (elastic-perfectly plastic) in 

flexure. The analysis was performed using 0.7EcIg for effective flexural rigidity of the 

walls as was done to determine the factored forces given in Table 4.2. Since the 

stiffnesses are proportional to the strengths, the walls yield at the base at exactly the same 

time lls.  

ote that while the shear strengths of the walls are assumed to be unlimited, the shear 

demand is lim nd is limited 

exac e determined in t ar analysis. As the figure shows yielding 

in both wa ur at a monitored top di ent of 0.38 m and beyond this point the 

walls reach their flexural and shear capacity at the same time.  

 

. This simple response is what most engineers assume is happening in concrete wa

N

ited by flexural yielding at the base.  The shear force dema

tly to the shear forc he line

lls occ splacem
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Figure 4.4 Normalized shear and flexure demand predicted by Model 1. 

Table 4.6 Nonlinear states captured by Model 1. 

Top Displacement (m) State* Level 

 

0.380 F-Y-1 1 
0.380 F-Y-2 1 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

he results from Model 2 are shown in Fig. 4.5.  The shear model is unchanged (linear 

ith unlimited strength), while the flexural model is now tri-linear.  The initial flexural 

gidity is increased to the uncracked section rigidity EcIg of the wall, but a significant 

duction in flexural rigidity occurs after cracking (see Fig. 4.3).  The reduction in 

exural rigidity occurs at a curvature Øl in wall W1 that is less than half the Øl of wall 

2 (0.047 versus 0.113; see Table 4.3).   
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Figure 4.5 Norm
 

 
alized shear and flexure demand predicted by Model 2. 

Table 4.7 Nonlinear states captured by Model 2. 

Top Displacement (m) State* Level 
0.097 F-C-1 1 
0.118 F-C-2 1 
0.118 F-C-1 2 
0.219 F-C-2 2 
0.385 F-Y-1 1 
0.441 F-Y-2 1 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

lt, flexural cracking occurs at the base of wall W1 first at a top wall 

ent of 0.1 (0.097) m. At that point, the shear begins to redistribute so that wall 

2 picks up an increasing amount of the total shear.  Flexural cracking at the base of wall 

 occurs at a top displacement of 0.12 m, and at that point the shear force in wall W2 at 

Level 1 (solid magenta line) begins to drop. Flexural cracking also occurs at that point in 

As a resu

displacem

W

W2
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wall W1, Leve ed until a top 

displace  when wall W2 evel.  At a disp 7 m, 

wal 2 cra  lev ausing all W vel 2 t tart inc sing . 

Yielding of wall W1 oc rs at a t displa ent of 0.39 m, w  yield f wall 2 

doe ot oc til a  displac nt of 0.44 m.  Note that ac ding  tri-linear 

bending mom – cur re models that were assum  yieldin  wall ccurs a 

curvature Ø  a ree tim he a y of w 1 (1.20 versus 0.39; 

le 4.  larg r on ral ity  g in wall W2 l 

capacity is limited and 

erefore the extra demand moment should be resisted by either wall W2 or the action of 

sive tensile force for the lower slabs. This tensile 

 on the longer wall by 10% as illustrated in the 

om Model 3, which is the same as Model 2 (Fig.  

.5) except that the reduction in shear rigidity that occurs at shear cracking is now 

includ

mechanism has formed at the base 

of wa

l 2, so the drop in shear in wall W2 at Level 2 is delay

ment of 0.22 m  cracks at  that l lacement of 0.2

l W c tks a el 3 c  the shear in w 2 Le o s rea again

cu op cem hile ing o  W

s n cur un top eme cor  to the

ent vatu ed, g of  W2 o  at 

y that is bout th es t  yield curv ture Ø all W

see Tab 3). Due to the e educti in flexu rigid at crackin , wal

W1 is subjected to a shear force that is about 10% larger than what is estimated by a 

linear analysis. As the wall W1 yields in flexure, the moment 

th

floor slabs that would result in an exces

force would increase the shear demand

figure. Figure 4.6 presents the results fr

4

ed.  The initial response in Fig. 4.6 is the same as the response in Fig. 4.5.  At a top 

displacement of 0.22 m, shear cracking occurs in wall W1 at both Level 1 and Level 2 

where the shear is largest in that wall.  Shortly after this event, W2 cracks in shear at 

Level 2 causing the curve to get flat due to its low shear slope after cracking. W2 at Level 

1 cracks in shear afterwards at a top displacement of 0.32 m and also suffers a flexural 

yielding after this at top displacement of 0.34 m.  The distribution of forces does not 

change until W1 yields in flexure at Level 1 at a top displacement of 0.43 m. At this 

instance of time, the curves go flat since the flexural 

lls due to yielding. Due to the shear deformations of wall W1 and the resulting shear 

force redistribution, wall W2 yields at a top displacement of 0.34 m, while wall W1 yields 

at a top displacement of 0.43 m.  That is, the wall with a yield curvature that is three 

times larger actually yields first. This is a very significant result.  
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Figure alized shear and flexure demand predicted by Model 3. 

 

le 4.8 N ar state red by Mo . 

Top Displacement (m) State* Level 

4.6 Norm

Tab online s captu del 3

0.097 F-C-1 1 
0.118 F-C-2 1 
0.118 F-C-1 2 
0.218 S-C-1 1 
0.218 S-C-1 2 
0.218 F-C-2 2 
0.241 S-C-2 2 
0.321 S-C-2 1 
0.350 F-Y-2 1 
0.433 F-Y-1 1 
0.715 F-F-1 1 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 
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Figure 4.7 presents the results from Model 4 in which shear yielding is included.  The 

shear strengths of the walls were set equal to he shear demands determined from a linear 

analysis and summarized in Table 4.3. Yielding of the horizontal reinforcement in the 

wall, i.e., shear yielding of the wall, occurs in wall W1 at both Level 1 and Level 2 at a 

top displacement of 0.42 m (see Table 4.9).   

The distribution of forces in Model 4 is similar to Model 3 until walls reach a top 

displacement of 0.42 m. At this stage W1 yields in both Level 1 and Level 2. W2 yields in 

shear at Level 2 shortly after at a top displacement of 0.43 m has been reached and at the 

same time W1 yields in flexure at Level 1. The flexural mechanism forms at the base of 

walls at this point.  

 

 t

 
 

Figure 4.7 Normalized shear and e demand predicted by Model 4. 

 

 

flexur
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Table 4.9 Nonlinear s aptured by Model 4. 

Top Displacement (m) Level 

tates c

State* 
0.097 F-C-1 1 
0.118 F-C-2 1 
0.118 F-C 1 2 -
0.218 S-C-1 1 
0.218 S-C-1 2 
0.218 F-C-2 2 
0.241 S-C-2 2 
0.313 S-C-2 1 
0.350 F-Y-2 1 
0.423 S-Y-1 1 
0.423 S-Y-1 2 
0.439 S-Y-2 2 
0.439 F-Y-1 1 
0.504 S-Y-2 1 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

 

The behaviour of walls in Model 5 is similar to Model 4 except that the walls have a 

limited shear capacity rather than an infinite shear capacity assumed in Model 4. Walls 

reached their ultimate capacity in shear at Level 2 at a corresponding top displacement of 

0.50 m according to Model 5. This model shows that unlike the most common taught 

about shear failure at the base of wall, it is possible to encounter shear failure even in 

upper levels; therefore it is vital to estimate a realistic shear demand when using linear 

dynamic analysis. The shear failure at Level 2 rather than first level which most 

anticipated to fail is a quite significant finding in this case of analysis.  
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alized shear and  demand predicted by Model 5. 
 

 

 

 

 

 

 

 

 

 
Figure 4.8 Norm  flexure

 

 



Table 4.10 Nonlinear states captured by Model 5. 

Top Displacement (m) State* Level 
0.105 F-C-1 1 
0.123 F-C-2 1 
0.123 F-C-1 2 
0.221 S-C-1 1 
0.221 S-C-1 2 
0.221 F-C-2 2 
0.242 S-C-2 2 
0.314 S-C-2 1 
0.357 F-Y-2 1 
0.426 S-Y-1 1 
0.426 S-Y-1 2 
0.442 S-Y-2 2 
0.457 F-Y-1 1 
0.475 S-Y-2 1 
0.502 S-F-2 2 
0.502 S-F-1 2 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

he influence of a 10% increase in the flexural capacity of wall W2 over the linear 

exural demand is investigated in Fig. 4.9 and Fig. 4.10.  Figure 4.9 presents the results 

om Model 1 (bi-linear flexure and linear shear), and thus should be compared with the 

sults in Fig. 4.4.  Model 1 predicts about a 20% increase in shear demand at the first 

d about a 15% increase in shear demand at the second level due to the 10% 

crease in flexural capacity.  
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Figure 4.9 Influence of 10% flexural overstrength of W2 according to Model 1. 

 

Table 4.11 Nonlinear states captured according to Fig. 4.9. 

Top Displacement State* Level 
0.380 F-C-1 1 
0.391 F-C-2 1 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

 

Figure 4.10 presents the results from Model 3 (tri-linear flexure and bi-linear shear), and 

should be compared with the results in Fig. 4.6.  The figure shows that when the cracking 

effects in shear are considered in the behaviour of walls, a significant change in shear 

force demand was not observed. The behaviour in this model is similar to the behaviour 

observed in Model 3 without any increase in flexural strength of walls (Fig. 4.6).  
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Figure 4.10 Influence of 10% flexural overstrength of W2 according to Model 3. 

 

ble 4.12 Nonlinear states red according to Fig. 4.10. 

Top Displacement (m) Level 

Ta  captu

State* 
F-C-1 1 0.097 
F-C-2 1 0.118 
F-C-1 2 0.118 
S-C-1 1 0.218 
S-C-1 2 0.218 

0.218 F-C-2 2 
0.241 S-C 2 2 -
0.321 S-C 2 1 -
0.413 S-Y-1 1 
0.413 F-Y-2 1 
0.432 S-Y-1 2 
0.434 F-Y-1 1 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 
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To summarize the findings from this set of analysis two important results are recalled: 

 

- 

 possible for the shorter wall to yield in flexure prior to the 

longer wall. This phenomenon is caused by the fact that longer wall takes more of 

its total lateral deformation in the form of shear displacement whereas the shorter 

wall deformation is mainly caused by bending behaviour.  

 

- Two connected walls can reach their ultimate shear capacity in upper levels 

earlier than the base. This is caused by the redistribution of forces due to changes 

in the relative stiffness of walls when undergoing nonlinear deformation.  

 

he best behaviour was observed in the case in which both walls yielded in flexure at the 

ding to a ductile flexural mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In a case where two walls having different lengths are connected together through 

diaphragm slabs, it is

T

base lea
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4.4 Simplified effective stiffness approach  
 

The next set of analyses investigates the problem using a simple linear approach. In this 

part the initial tri-linear flexural and shear response curves are used to determine the 

effective stiffnesses corresponding to a fully cracked section and then these values are 

used to get a first trial estimate of shear forces and bending moments for the walls. For 

the example of two walls, three symmetrical cross sections were considered as shown in 

Fig. 4.11.  

 
re 4.11 Sections of walls ered in the present exampl

 

Section A ponds to a rectangular se ith a length of 4.5 m and a thic

0.75 m. Section B is an I-section with a flange length of 4.5 m and a web length 

and a uniform thickness of 0.75 m. Section C is also an I-section with larger dim

compared ion B. The length of we flange is 9.0 m each and the thi

0.75 m ev ere. Section C is the sa tion that was considered  W

previous e e. More information abou on properties of walls are given
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Table 4.13 Section properties for walls shown in Fig. 4.12. 

Cross Section A 
f'c 50 MPa 
Ec 31820 MPa 
Lw 4.5 m 
Ag 3.375 m2

Ig 5.69 m4

Avg 2.81 m2

EIg 181,054 MN

Cross Section B 
f'c 50 MPa 
Ec 31820 MPa 
Lw 7.0 m 
Ag 10.875 m2

Ig 76.63 m4

Avg 5.25 m2

Cross Section C 
f'c 50 MPa 
Ec 31820 MPa 
Lw 9.0 m 
Ag 19.125 m2

Ig 256.71 m4

Avg 6.75 m2

m2

GA 35,765 MN 
EIg 2,438,351 MNm2

GAvg 66,821 MN  vg 
EIg 8,168,462 MNm2

GAvg 85,913 MN  
 

e 

examined with different arrangement  as below:  

 

Case 1: W1: Section C, W2: Section A. 

Case 2: W1: Section C, W2: Section B. 

W1: Section C, W2: Section C. 

Same material properties for the previous example have been considered for the 

racked section stiffnesses (Stage 1) and 

cracked

In order to study the redistribution of forces between walls three different cases wer

 of wall sections

Case 3: 

 

walls. Nonlinear behaviour for the walls is assumed to be a realistic tri-linear behaviour 

for both flexure and shear. The values required to construct the tri-linear curve were 

given in Table 4.3.  In order to get an initial estimate of the moment and shear demand on 

two walls, the cracked section stiffnesses were used in terms of EIe and GAve which 

correspond to the slope between origin and the yielding point. The same lateral loading 

pattern was used as described in Fig. 4.2 to run a simple linear analysis while using the 

cracked section stiffnesses (referred to as “Stage 2”).  

Table 4.14 through Table 4.17 present the results for bending moment and shear 

force values obtained according to use of both unc

 section stiffnesses (Stage 2) in the linear analysis. Once the updated values of 

bending moment and shear force were obtained using cracked section properties, the 

walls’ strength were redesigned for new values and pushover analyses were performed 

using the same lateral loading pattern described in Section 4.2. Figure 4.12 shows the 

results for pushover analysis in Case 1. 
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Case 1 

 

Table 4.14 Resulting moments and shear forces for W1 in Case 1.  

   W1 M(kNm) V(kN) EIe/EIg GAe/GAg

Level 1 1,194,855 32,506 1 1 
Stage 1 

Level 2 1,194,855 32,506 1 1 
Level 1 1,196,000 33,514 0.33 0.12 

Stage 2 
Level 2 1,196,000 36,231 0.33 0.13 

 

 

Table 4.15 Tri-linear flexural and shear models used for W1 in Case 1. 

W1 Tri-linear M W1 Tri-linear V 
  M(MNm) Ø (rad/km) VL1(MN) γL1×1000 VL2(MN) γL2×1000 

Cr 424.9 0.047 23.75 0.315 23.75 0.315 
Y 1,196 0.393 33.5 2.765 36.20 2.765 
U 1,200 3.890 33.85 7.385 36.55 7.385 

 

 

Table 4.16 Resulting moments and shear forces for W2 in Case 1.  

   W2 M V EIe/EIg GAe/GAg

Level 1 53,725 7,738 1 1 
Stage 1 

Level 2 53,725 3,133 1 1 
Level 1 52,582 6,730 0.33 0.07 

Stage 2 
Level 2 52,582 2,182 0.33 0.03 

 

 

Table 4.17 Tri-linear flexural and shear models used for W2 in Case 1.  

W2 Tri-linear M W2 Tri-linear V 
  M(MNm) Ø (rad/km) VL1(MN) γL1×1000 VL2(MN) γL2×1000 

Cr 22.47 0.113 6.390 0.170 1.962 0.059 
Y 52.58 1.200 6.730 2.305 2.180 2.105 
U 53.00 7.778 6.797 8.005 2.202 8.035 
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Figure 4.12 Moment and shear force demand according to Case 1. 
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Table 4.18 Nonlinear states captured by Case 1 according to Fig. 4.12. 

Top Displacement (m) State* Level 
0.075 F-C-1 1 
0.085 F-C-2 1 
0.085 F-C-1 2 
0.172 F-C-2 2 
0.180 S-C-1 1 
0.180 S-C-1 2 
0.190 S-C-2 2 
0.258 S-C-2 1 
0.340 F-Y-2 1 
0.361 S-Y-1 2 
0.366 S-Y-2 2 
0.379 S-F-1 2 
0.392 S-F-2 2 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

 
Shear failure was observed in the second storey due to redistribution of forces in 

Case 1 at a small top displacement of 0.37 m. Flexural cracking in W1 and W2 in first 

level is followed by flexural cracking in second level as walls reach a top displacement of 

0.17 m. Shear cracking occurs in W1 at Level 1 and Level 2 which is followed by 

cracking in W2 at the sec lexural yielding at first 

level at a top displace ls occur at about the 

same top displacement at Level 2, leading to a shear failure at this level.  

It is important to note that flexural yielding in W1 was not observed in this case 

hich is not quite the way commonly expected about behaviour of two wall system.  

 is also important to note when cracked section stiffnesses were used, the longer wall 

re of the forces due to redistribution compared to the initial uncracked 

case. The ratios for section shear stiffnesses are 12% in W1 vs. 7% in W2 at the base and 

W1 vs. 3% in Level 2. This comparison shows the significant influence of shear 

ond level and at the base. W2 suffers f

ment of 0.34 m. Shear yielding in both wal

w

It

(W1) takes mo

13% in 

force redistribution at second level for the shorter wall (W2 with Section A). These 

numbers show that after the walls crack, a larger portion of the shear force demand at 

each level is carried by the stronger wall (W1 in this example).  

Use of updated section stiffness values in Case 1 lead to an undesired shear failure 

of walls in second level. A practical solution to improve the walls’ performance is 

proposed here which is referred to as Case 1-2. 
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Case 1-2 is similar to the Case 1 except that the shear strength in W2 was maintained over 

the height for the first four lower stories. The results for this case are shown in Fig. 4.13. 

Shear demand in W2 associated with Case 1-2 remained well below the ultimate shear 

capacity compared to Case 1.   

 

 

 
Figure 4.13 Reduction of moment and shear force demand according to Case 1-2. 
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Table 4.19 Nonlinear states captured by Case 1-2 according to Fig. 4.13. 

Top Displacement (m) State* Level 
0.075 F-C-1 1 
0.085 F-C-2 1 
0.085 F-C-1 2 
0.172 F-C-2 2 
0.180 S-C-1 1 
0.180 S-C-1 2 
0.272 S-C-2 1 
0.296 F-Y-2 1 
0.369 S-Y-1 1 
0.377 F-Y-1 1 
0.533 S-Y-2 1 
0.66 1 2 F-F-1 
0.7  70 F-F-2 1

* (A-B

pared to shear failure 

observed in Case 1.  

-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

 

No critical failure mode in shear was observed for Case 1-2 during pushover 

analysis until the anticipated flexural hinging mechanism occurred in the base level. All 

walls’ sections in first and second storey suffered cracking due to flexure and shear 

response while yielding in W2 happened prior to W1 at the base level. A more ductile 

behaviour can be achieved once the flexural mechanism forms com
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Case 2 

Table 4.20 Resulting moments and shear forces for W1 in Case 2. 

   W1 M(kNm) V(kN) EIe/EIg GAe/GAg 

 

 

Level 1 1,194,855 31,420 1 1 
Stage 1 

Level 2 1,194,855 32,580 1 1 
Level 1 1,192,200 32750 0.33 0.12 

Stage 2 
Level 2 1,192,200 33540 0.33 0.13 

 

 

W1 W1 T  V

Table 4.21 Tri-linear flexural and shear models used for W1 in Case 2. 

 Tri-linear M ri-linear  
  M(M Ø /km 000 VL2(M ×1000Nm)  (rad ) VL1(MN) γL1×1 N) γL2  

Cr 424.9 0.047 23.75 0.315 23.75 0.315 
Y 119 3 760 33. .765 2.2 0.39 32.75 2. 54 2
U 12 0 7.380 33. .385 00 3.89 33.07 87 7

 

 

Table 4.22 Resulting m  in Case 2. 

  Ig G GAg 

oments and shear forces for W2

 W2 M(kNm) V(kN) EIe/E Ae/

Level 1 445,40 0   0 21,44 1 1
Stag

44  
e 1 

Level 2 5,400 17,870 1 1

Level 1 447 1 ,820 20,100 0.32 0.1
Stag

447,82 0 2 
e 2 

Level 2 0 16,92 0.3 0.09 

 

 

ab i-l r f sed 2 in se 2

W2  Tri-lin V 

T le 4.23 Tr inea lexural and shear models u for W  Ca . 

Tri-linear M W2 ear 

  M(MNm) Ø (rad/km) V (MN) γ ×1000 VL2(MN) γ ×1000 L1 L1 L2

Cr 140.0 0.057 16.32 0.270 15.23 0.243 

Y 447.8 0.571 20.10 2.305 16.92 2.105 

U 450.0 7.778 20.30 8.005 17.08 8.035 

 

 

 135



 

In Case 2 (See Fig. 4.14) W2 has a larger cross section compared to Case 1 as 

shown in Fig. 4.12. Flexural cracking in W2 is followed by flexural cracking in W1 at 

first level and also flexural cracking in both walls at second level at a top displacement of 

0.09 m.  From a top displacement of 0.2 m to a top displacement of 0.25 m, W1 and W2 

undergo shear cracking in both first and second levels. Shear yielding in W2 happens at 

both first and second level followed by the shear yielding in W1 at the base and flexural 

yielding in W2. Shear yielding in W1 at second level happens at a top displacement of 

0.38 m while W2 at this level has already suffered shear yielding. A shear failure 

mechanism at second level was observed in this case which was similar to Case 1.  

 

 
 

Figure 4.14 Moment and shear force demand according to Case 2. 
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Table 4.24 Nonlinear states captured by Case 2 according to Fig. 4.14. 

Top Displacement (m) State* Level 
0.069 F-C-2 1 
0.093 F-C-1 1 
0.093 F-C-1 2 
0.093 F-C-2 2 
0.204 S-C-1 2 
0.213 S-C-1 1 
0.244 S-C-2 1 
0.259 S-C-2 2 
0.370 S-Y-2 1 
0.370 S-Y-2 2 
0.374 S-Y-1 1 
0.374 F-Y-2 1 
0.380 S-Y-1 2 
0.405 S-F-1 2 
0.405 S-F-2 2 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

 

The shear force redistribution observed in Case 2 was not as significant as shown 

for Case 1 due to the changes in walls’ geometrical properties. Wall B bending stiffness 

is about one third of Wall C whereas Wall A bending stiffness is 45 times less than 

bending stiffness in Wall C. The redistribution of forces after using the cracked section 

stiffnesses would be dependent on the rela

 

 

tive stiffness properties of walls which was 

observed to be 0.12 in W1 vs. 0.11 in W2 at the base and 0.13 in W1 vs. 0.09 in W2 at 

second level.  

Figure 4.15 shows the pushover analysis results for the case when walls possess 

similar section geometries.  
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Case 3 

 

 Table 4.25 Tri-linear flexural and shear model for W1 and W2 in Case 3. 
 

W1 & W2 Tri-linear M W1 & W2 Tri-linear V 
  M Ø V1 γ1 

Cr 424.9 0.047 23.75 0.315 
Y 1195 0.393 38.5 2.76 
U 1200 3.89 38.885 7.38 

 

 

 

 
 

Figure 4.15 Moment and shear force demand according to Case 3. 
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Table 4.26 Nonlinear states captured by Case 2 according to Fig. 4.15. 
 

Top Displacement (m) State* Level 
0.074 F-C-1 1 
0.074 F-C-2 1 
0.092 F-C-1 2 
0.092 F-C-2 2 
0.169 S-C-1 1 
0.169 S-C-2 1 
0.181 S-C-1 2 
0.181 S-C-2 2 
0.354 S-Y-1 1 
0.354 S-Y-2 1 
0.358 F-Y-1 1 
0.358 F-Y-2 1 
0.645 F-F-1 1 
0.645 F-F-2 1 

* (A-B-#) A: (Flexure, Shear), B: (Cracking, Yielding, Failure), #: (Wall 1, Wall 2). 

 

No significant shear force distribution was observed for Case 3 in which both walls 

ha s 

ading to an ultimate yielding in flexure at the base of walls at a top displacement of 

0.36 m.  

section stiffness was no rce redistribution was 

gnificant especially for the case in which walls were different in size and shape. The 

redistribution of forces in walls after using cracked section properties tends to increase 

and on the larger wall (W1 in this study). The amount of increase in 

W1 after considering effective shear stiffness is given in Table 4.27 for 

ve the same geometry. All the nonlinear stages happened simultaneously in both wall

le

In all cases changes in bending moment redistribution after using the cracked 

t noticeable whereas this change for shear fo

si

the shear force dem

shear force on 

different analysis cases. 

 

Table 4.27 Amount of increase in shear force demand in W1 relative to uncracked state. 

Case Wall 1 at 1st level Wall 1 at 2nd level 

1 13% 31% 

2 2% 9% 

3 0% 0% 
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4.5 Conclusions 
 

The simple model that is normally used for concrete shear walls is bi-linear (elastic–

plastic) in bending and linear until brittle failure in shear.  If the strengths of the walls are 

proportional to the stiffness, i.e., proportional to the results from a linear analysis, this 

model predicts a simple response where the shear forces in all walls increase 

proportionally until all walls yield at the same displacement. The actual bending moment 

– curvature response of a concrete shear wall is close to tri-linear (Adebar and Ibrahim 

2002), due to the significant reduction in flexural rigidity that occurs after flexural 

cracking.  When this is accounted for, the shear distribution in concrete shear walls 

becomes much more complicated (see Fig. 4.5).   

The shear force distribution changes significantly as the walls crack at various 

levels.  As a result of this redistribution, the shear force will be higher in some walls and 

lower in other walls than predicted by a linear analysis.  This higher demand requires 

hi e 

shear walls, 2004) have 

ple tri-linear model to account for diagonal cracking in concrete shear 

 the walls yield in flexure.  This can best be seen by 

omparing the flexural results (right-hand side) of Figures 4.5 and 4.6.  When the shear 

eformations due to diagonal cracking are ignored, the predicted yield displacements of 

wall W1 and W2 additional shear 

r re included, the yield displacement l ng all) ea o 

0.43 m  the yield displace ct  re s to  m

is the longer wall (W1) has much more shear deformation than wall W2 near the base of 

the structure, and therefore significant shear is transferred to wall W2 locally at the base 

of the wall.  These high shear forces near the base (as opposed to shear applied near the 

top of the wall) cause the wall to yield at a smaller disp ent.   

gher shear strength to avoid a shear failure. When diagonal cracks form in concret

 the shear rigidity reduces significantly.  Gérin and Adebar (

presented a sim

walls.  When this is accounted for, very significant changes occur to the shear force 

distribution.   

The other very significant consequence of accounting for diagonal cracking is the 

change in the displacement at which

c

d

 are 0.39 m and 0.44 m, respectively.  When the 

defo mations a of wal

ually

 W1 (lo

duce

er w

 0.35

 incr

.  The reason 

ses t

, while ment of wall W2 a

lacem
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The important observation that accounting fo hear orma s fr

ki s in rte ng pri o a longer wall (both walls have 

the sam t) seq entl oh nd A ar (2  usi on ar 

f  cantilever concrete shear walls. 

The fact that a shorter length wall yields prior to a longer wall is very significant 

as it has been suggested by others (e.g., Paulay 2001) that cantilever shear walls can be 

designed by assum t al. 

(2005) have demonstrated that when high-rise cantilever walls are tied together by rigid 

floor slabs at nume d at the sam ent (the system eld 

displacem ega  of len he ts p ted s st em

 diagonal cracking is included in the analysis, all walls do not necessarily yield 

e displacement due to the differing shear deformations; however the results do 

lower height should be designed for the shear 

force demand at the base) so that the weaker wall at the lower levels above the base 

r s  def tion om diagonal 

crac ng result  a sho r le th wall yielding or t

e heigh was sub u y confirmed by B l a deb 007) ng n line

inite element analysis of

ing the yield displacement is proportional to wall length.  Adebar e

rous levels, all walls yiel e displacem  yi

ent) r rdless  wall gth. T resul resen in thi udy d onstrate 

that when

at the sam

reaffirm that the yield displacement of the walls is a system phenomenon and is not 

proportional to wall length. 

It is common practice to increase the shear demand proportional to any flexural 

over-strength using the results from linear analysis.  See for example Mitchell and Paultre 

(2006).  The results from the nonlinear analysis summarized in Figures 4.9 and 4.10 

suggest that this may be unconservative as the increase in shear demand can be larger 

than the increase in flexural capacity. According to the results obtained in this study more 

care and attention should be made to the walls having a shorter length used as a part of 

core shear wall systems.  

Studying the simplified model of inter-connected walls through pushover analysis 

showed that the shear failure can occur at the second level rather than the commonly 

expected base level. This fact is caused by the redistribution of the shear forces when 

diagonal cracking effects are included in the wall’s behaviour. 

Based on the findings from the presented pilot study on the model of inter-

connected high-rise walls, if RSA is used for seismic design of the walls, it is 

recommended that the horizontal reinforcement arranged for the base of the shorter walls 

be extended over the height (i.e. 25% of the 
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maintains the required shear capacity to withstand extra shear demand caused by 

nonlinear interaction between the inter-connected walls of different lengths.   
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5 
 

 

Dynamic shear demand  
in high-rise cantilever walls 

 
 

 

5.1 O

mportant 

esign of high-rise walls. Chapter 3 investigated the nonlinear shear 

sponse of the core wall at below-ground levels of a high-rise building, whereas Chapter 

lope to study the seismic response of 

concr

dies indicated 

that w

verview 

 

In the previous chapters, a nonlinear shear model was used to investigate two i

issues in the seismic d

re

4 investigated the nonlinear force distribution between inter-connected shear walls above 

the base level. In both of the previous chapters the simplified nonlinear model was used 

in terms of tri-linear shear stress-shear strain enve

ete walls. In the present chapter a more sophisticated hysteretic shear model is used 

to study the seismic shear demand in high-rise cantilever walls.   

  Dynamic shear demand in a high-rise shear wall building during earthquake is 

greatly dependent on the nonlinear behaviour of the core wall. Previous stu

hile yielding of longitudinal reinforcement at the plastic hinge zone limits the 

flexural demand it does not limit the seismic shear demand at the base of wall. The 

amount of increase in shear force at the plastic hinge is a nonlinear phenomenon which 

can not be predicted by any of the linear analysis procedures. In order to account for this 

in design practice, designers often use amplification factors to estimate the seismic shear 

demand when linear analysis is used. Some building codes (i.e., NZS3101 1982-1995) 
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suggest using certain amplification factors to account for the increase in the seismic shear 

demand obtained from simplified pseudo-static procedures.  

In order to study the seismic behaviour of a reinforced concrete wall, both 

nonlinear flexural response and nonlinear shear response must be considered in the 

analytical model. An appropriate nonlinear shear model for the concrete walls however 

has not been available for many years and hence previous studies on nonlinear behaviour 

of concrete walls were limited to nonlinear flexural behaviour neglecting any nonlinearity 

due to shear cracking in concrete and yielding of horizontal reinforcement.  

The focus of this Chapter is to use nonlinear shear behaviour proposed by Gérin 

and Adebar (2004) to investigate the seismic shear demand in high-rise concrete walls.  

 

5.2 M

uilt in high-rise buildings. Figure 5.1 

shows the cross section of the wall which is uniform over a total height of 81.0 m. The 

tion with a web length of 9.0 m, a flange length of 9.0 m and a 

uniform thickness of 0.75 m. The concrete compressive strength is assumed fc
'=60 MPa. 

ise core walls equal to n=0.1f΄c.  

alysis.  

odel of high-rise wall in this study 

 

A cantilever model of a 30-storey core wall similar to the flanged wall example described 

in Chapter 4 was used for analyses. Parameters used for the modeling were chosen 

according to realistic examples of core walls b

wall has an I-shape sec

A linearly varying axial compression is acting on the wall over its height with an axial 

compression increasing from zero at the top section to a typical level of compression at 

the base of high-r

 

 
Figure 5.1 Section of the core wall used in dynamic an
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Flexural strength of the wall is controlled by arrangement and quantity of 

sent wall’s behaviour, 

beam e elements were used in the finite element to include deformations 

l nonlinearity. 

 

 

 

 

 

 

 

longitudinal reinforcement at the web and flange area. To repre

-column fram

associated with bending and shear at every section of the core wall.  Nonlinear models for 

flexural and shear behaviour used in the NTHA of the high-rise cantilever wall will be 

discussed later in this chapter. P-Delta effects were also considered in all the dynamic 

analysis cases in this study to account for geometrica

 

5.3 Ground motions used for dynamic analysis  

 

In order to perform nonlinear time history analysis a set of ten recorded acceleration 

history were chosen as the final selection of records from two likely seismic sources at 

West Coast known as Crustal and Subduction earthquakes. The crustal records suite 

consists of 20 ground motions recorded on National Earthquake Hazard Reduction 

Program (NEHRP) for site class C. Information regarding characteristics of these records 

is presented in Table 5.1.  From the complete suite of 20 records, 7 earthquake events 

recorded in California with magnitudes ranging from 6.0 to 7.5 were considered for 

analysis. The procedure for selection of 7 crustal records will be discussed next in the 

ground motion scaling section. 
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Tab s C. 
EQ. year Earthquake Ms Station me Distance PGA 

2
PGV PGD 

(cm) 

le 5.1 Set of recorded earthquakes used in FEMA-440 (ATC-2005) for site clas

Name (km) (cm/s ) (cm/s) Na

1 1 7.8 979 Imperial Valley 6.8 El Centro, Parachute Test  Facility 14.2 200.2 20 

2 1971 San Fernando 6.5 Pasadena, enaeum 107.9 6.6  CIT Ath 31.7 14.7 

3 1971 San Fernando 6.5 Pear mp 133.4 1.4 blossom Pu 38.9 4.8 

4 1992 Yerm n 240.3 37.5 Landers 7.5 o, Fire Statio 23.2 57.5 

5 1989 Loma Prieta 7.1 APE as 153 6.9 EL 7, Pulg 47.7 18.9 

6 1 Gilroy #6, San icrowave site 166.9 2.9 989 Loma Prieta 7.1  Ysidro M 19.4 14.9 

7 1989 Loma Prieta 7.1 Sarato Ave. 494.5 14.9 ga, Aloha 13 50.3 

8 1989 Gilroy, Gavilo hys Sch Bldg 349.1 5.5 Loma Prieta 7.1 n college P 11.6 21 

9 1989 Loma Prieta 7.1 Sant SC 433.1 6.7 a Cruz, UC 17.9 20.6 

10 1989 Loma Prieta 7.1 San Franci d Heights 110.8 3.8 sco, Dimon 77 11.6 

11 19 Freemon an Jose 121.6 4.8 89 Loma Prieta 7.1 t Mission S 43 12.1 

12 1989 Loma Prieta 7.1 Mon 71.4 1.1 terey, City Hall 44.8 3.7 

13 Loma Prieta 7.1 Yerba Buena Island 80.6 66.5 8.5 2.8 1989 

14 1989 Loma Prieta 7.1 Anderson Dam ( eam) 21.4 239.4 20.4 6.8 downstr

15 2.7 0.6 1984 Morgan Hill 6.1 Gilroy Gavilon college Phys Scl Bldg 16.2 95 

16 33.4 5.1 1984 Morgan Hill 6.1 Gilroy #6, San Ysidro Microwave Site 11.8 280.4 

17 1986 Palm Springs 6 Fun Valley 15.8 126.5 7.9 1 

18 1994 Northridge 6.8 Littlerock, Brainard Canyon 46.9 70.6 6.7 1.3 

19 1994 Northridge 6.8 Castaic Old Ridge Route 22.6 557.2 43.1 8 

20 1994 Northridge 6.8 Lake Hughes #1, Fire station #78 36.3 84.9 10.3 3.3 

 

The peak ground acceleration for the complete set of crustal records range from 

84.9 cm/s2 to 557 cm/s2. These ground motions are the same records used in the 

calibration of the displacement modification procedure included within FEMA-440 (ATC- 

2005) for the site class C. The seismic hazard associated with the Cascadia subduction 

zone has been addressed by Geological Survey

magnitude to 

what is expected from the Cascadia subduction zone. There were 48 records available 

 of Canada. Therefore it is essential to 

include the effect of Subduction zone in studying the dynamic behaviour of high-rise 

shear walls. Since records from previous seismic activities in Canadian West Coast are 

not available, recorded data from the 2003 Tokachi-Oki earthquake event was used in this 

study. The Tokachi-Oki earthquake occurred near the island of Hokkaido in Northern 

Japan having a moment magnitude of 8.0. This earthquake is very close in 
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within

uction records from Tokachi-Oki earthquake. 

Number Station 

 150 km of the epicenter from the Kyoshin Network (K-Net) and the Kiban-

Kyoshin Network (Kik-Net) from which a suite of ten records for subduction earthquake 

on site class C were selected. Information regarding these records is given in Table 5.2.   

 

Table 5.2 Selected subd

Name Component Station 
Code 

Distance 
(km) 

PGA 
(cm/s2) 

PGV 
(cm/s) 

PGD 
(cm) 

NEHRP 
Site 

Class 

1 OBIHIRO, K-Net E-W HKD095 146.00 190.60 36.10 19.40 C 

2 OBIHIRO, K-Net N-S HKD096 146.00 148.40 37.10 27.20 C 

3 NAKASATSUNAI, K-Net E-W HKD096 128.00 199.00 33.90 16.00 C 

4 NAKASATSUNAI, K-Net N-S HKD097 128.00 176.90 24.20 10.50 C 

5 SAMANI, Kik-Net E-W HDKH07 104.00 197.00 39.70 20.30 C 

6 SAMANI, Kik-Net N-S HDKH08 104.00 169.50 27.20 15.10 C 

7 TAIKI, K-Net E-W HKD098 103.00 345.50 91.40 31.50 C 

8 TAIKI, K-Net N-S HKD099 104.00 365.30 75.30 38.70 C 

9 MEGURO, K-Net E-W HKD113 74.00 205.10 16.10 5.80 C 

10 MEGURO, K-Net N-S HKD114 75.00 156.20 13.50 7.70 C 

 

The epicentral distance of these events ranges from 74 km to 146 km. Major 

urban areas including Victoria, Vancouver, Seattle, and Portland fall within or just 

outside this distance range from the Cascadia subduction zone. Significant damage has 

been observed within or beyond this distance range for previous subduction earthquakes 

(2004 Sumatra, 1985 Mexico, 1964 Alaska, and 1960 Chile). While epicentral distance is 

not the ideal parameter for determining the distance from subduction sources, it provides 

a reasonable distance parameter which is easily obtained  

 

5.3.1 Ground motion scaling  

 

Since the selected ground motions maintain different levels of acceleration magnitude, 

scaling is done to bring the acceleration magnitudes to a target scaling level. Scaling is 

usually done by comparison between the spectrum corresponding to the unscaled ground 

motion and the target spectrum. Two different methods of spectrum scaling are widely 

used in practice: Spectrum Matching and the Single Scale Factor methods.  
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In the Spectrum Matching procedure, the initial recorded ground accelerations are 

modified so that their corresponding response spectrum for a SDOF matches perfectly 

with the specified target spectrum. In this procedure the frequency contents are changed 

as sine and cosine waves are added to the initial unscaled record. In other word the only 

way to have a perfectly matched spectrum is to modify the original properties of the 

earthquake record. Since by use of spectrum matching procedure the original 

characteristics of record are disturbed, there is a debate if this method is the appropriate 

way o

esired level of target spectrum. The 

advan

For the structures with dominating first mode of vibration, considering a shorter 

range

ry 

analy

f scaling the earthquake records (Naeim and Lew 1994).  

Scaling in the single scale factor method is done by a single scale factor applied on 

the whole record to scale it up or down to the d

tage of this method is that it does not influence the seismic characteristics of motion 

compared to Spectrum Matching procedure. The single scale factor method is often used 

to match a specific range of interest over the spectrum. The basis for this procedure is to 

scale the original spectrum so that it produces equal area under the range of interest 

compared with the area under the target design spectrum curve. 

 of periods close to the fundamental period of vibration may be adequate for 

scaling. In the case of high-rise buildings, the influence of higher modes of vibration is 

very significant and therefore a wider range should be considered for scaling. Since a 

two-dimensional model of high-rise wall is considered in the present study, the effect of 

second mode is highly important in the seismic response. The range under consideration 

for scaling must include the first and second mode of vibration in the model, therefore a 

period range between 0.2T1 and 1.5T1 in which T1 is the fundamental period of vibration 

has been considered for scaling of records in this study. This range corresponds to a 

period range between 0.5 sec and 4.5 sec for the 30-storey model of wall with a 

fundamental period of T1=3.0 sec and the second mode period of T2=0.57 sec. It is 

desired to have a total number of 10 earthquake records for performing time histo

sis. Among ten records seven are selected from crustal records and three are picked 

from the subduction category.  

In order to select seven earthquakes from the complete set of records by ATC 

measured on site class C, all the spectra for 20 records given in Table 5.1 were scaled to 
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match the NBCC-2005 Site class C design spectrum for Vancouver city within the 

specified period range mentioned above. Figure 5.2 shows the scaled spectra with thin 

solid lines, the NBCC-2005 design spectrum with a thick solid line and the average scaled 

spectrum by a thick dashed line.  

To choose the best three records from the subduction earthquakes all 10 records 

presented in Table 5.2 are scaled to match the NBCC-2005 design spectrum for site class 

C. The scaled spectra for Subduction earthquakes and the corresponding NBCC-2005 site 

class 

 

C design spectrum for Vancouver are shown in Fig. 5.3. It should be noted that the 

subduction records need also be scaled corresponding to a design spectrum which is 

specifically developed for these types of ground motions; such a design spectrum was not 

readily available at the time of this work and therefore same NBCC-2005 design 

spectrum was also used for scaling of the subduction records. 
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Figure 5.2 Scaled spectra within period range of 0.5 sec and 4.5 sec corresponding to 

crustal earthquakes given in Table 5.1.  
 

 
Figure 5.3 Scaled spectra within period range of 0.5 sec and 4.5 sec corresponding to 

subduction earthquakes given in Table 5.2.  
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5.3.2 Acc

 

Once all the spectra corresponding to each acceleration record were scaled to match the 

design s he best 

set of three records from subduction earthquakes were selected. The set for each category 

 selected based on the best fit obtained from the corresponding average scaled spectrum. 

The spectra for final selection of crustal and subduction motions are shown in Fig. 5.4.  

eleration records used for analysis 

pectrum, the best set of seven records from the crustal earthquakes and t

is
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Figure 5.4 Scaled spectra within period range of 0.5 sec and 4.5 sec corresponding to 
selected earthquakes and their corresponding average spectrum. 

 

The original set of ten selected records and the corresponding information is presented in 

able 5.3. These records are scaled to match the target NBCC-2005 for site class C 

design spectrum for Vancouver city over the range of 0.5 sec to 4.5 sec with the scaling 

values presented in Table 5.4.  

 

 

T

 151



Table 5.3 Final selection of records used for analysis. 
EQ 
ID 

Earthquake 
Name Category (Ms) Station Name Comp. 

(deg) 
Distance 

(km) 
PGA 

(cm/s2) 
PGV 
(cm/s) 

PGD 
(cm) 

C-1 Imperial 
Valley Crustal 6.8 El Centro, Parachute Test  

Facility 315 14.2 200.2 20 7.8 

C-2 San 
Fernando Crustal 6.5 Pasadena, CIT 

Athenaeum 90 31.7 107.9 14.7 6.6 

C-3 Loma Prieta Crustal 7.1 Saratoga, Aloha Ave. 0 13 494.5 50.3 14.9 

C-4 Loma Prieta Crustal 7.1 San Francisco, Dimond 
Heights 90 77 110.8 11.6 3.8 

C-5 Loma Prieta Crustal 7.1 Anderson Dam 
(downstream) 270 21.4 239.4 20.4 6.8 

C-6 Loma Prieta Crustal 7.1 Yerba Buena Island 90 80.6 66.5 8.5 2.8 

C-7 Northridge Crustal 6.8 Castaic Old Ridge Route 360 22.6 557.2 43.1 8 

S-1 Tokachi-Oki Subduction 8 NAKASATSUNAI, K-
Net NS 128 176.9 24.2 10.5 

S-2 Tokachi-Oki Subduction 8 MEGURO, K-Net EW 74 205.1 16.1 5.8 

S-3 Tokachi-Oki Subduction 8 MEGURO, K-Net NS 74 156.2 13.5 7.7 

 
 

Table 5.4 Scaling factors used fo

C-1 C-2 C-3 C-4 C-5 C-6 C-7 S-1 S-2 S-3 

r final selection of records. 

2.60 2.76 0.82 3.03 1.75 3.58 0.78 1.38 2.45 2.06 

 

bration. The scaled records described in Section 5.3 were used to 

erform linear dynamic analysis. Results from analyses were compared in terms of 

ending moment and shear force demand over the height of wall.  

Figure 5.5 shows the results for bending moment demand over the wall’s height. 

he thick solid line illustrates the moment distribution associated with the response 

ectrum analysis and the thick dashed line presents the envelope for the average bending 

 

5.4 Linear time history analysis (LTHA) vs. response spectrum analysis (RSA) 

 

Results obtained from two different linear dynamic analyses are compared here. The 30- 

storey model of the wall as explained in Section 5.2 was used for performing linear 

response history and response spectrum analysis. 5% viscous damping was also included 

in the model of wall for linear time history analysis using Rayleigh damping for first and 

second mode of vi

p

b

T

sp

 152



moment obtained from LTHA. The envelopes for each of individual ground motions are 

lso shown by thin lines. Similar plots for shear force diagram over the height are shown 

n Fig. 5.6. According to bending moment and shear force obtained from LTHA, the 

veraged envelopes of both sets of ground motions are in good agreement with the results 

btained from RSA.  
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Figure 5.5 Bending moment envelopes obtained from LTHA and RSA. 
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Figure 5.6 Shear force envelopes obtained from LTHA and RSA. 
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5.5 Nonlinear time history analysis 

 

In ord

time history analysis in this study. The HHT method uses a single 

param  

0, the method is equivalent to the Newmark method (1959) with gamma = 0.5 and beta = 

ration me idal 

 Using alpha = 0 offers the highest accuracy but may permit excessive vibrations in 

the higher frequency modes, i.e., those modes with periods of the same order as or less 

ize. For negative values of alpha, the higher frequency modes are 

more severely damped. Different values of alpha and time-step size were examined in 

tudy to ensure that the solution is not too dependent upon these parameters. Similar 

to any nonlinear analysis, iteration was used to make sure that equilibrium is achieved at 

step of the analysis. A relative convergence tolerance that was used in the analysis 

controls the accuracy of analysis results by comparing the magnitude of force error with 

agnitude of the force acting on the structure. For time history analyses, the relative 

convergence tolerance was set small enough so that the accuracy of output results is no 

r influenced by this parameter. 

Viscous damping was used for all time history analysis cases which was also 

ping. Rayleigh damping was used based on 5% critical 

amping ratio for the first and the second mode of vibration for the 2-D model of wall. 

onlinear elements that were used in the time-history analysis account for energy 

issipation in the elements directly and correctly take into account the effects of modal 

cro

ec g n ts x ely si o -s thi lu

decreased for the same si til ste e sm no  th e ts  

no longer affected by it.  m u lu  th e-step that was used for nonlinear 

 hist analy wa 0.0 ec all lys se the se ud

er to perform nonlinear dynamic analysis on the model of high-rise concrete wall, 

program SAP-2000 (CSI 2006) was used to perform direct-integration time history 

analysis. A variety of common methods are available for performing direct-integration 

time history analysis. Hilber-Hughes-Taylor alpha (HHT) method was used to perform 

direct-integration 

eter called alpha. This parameter may take values between 0 and -1/3. For alpha =

0.25, which is the same as the average accele thod (also called the trapezo

rule.)

than the time-step s

this s

each 

the m

longe

referred to as effective dam

d

N

d

ss-coupling. 

Since dir t inte ratio resul are e trem  sen tive t time tep, s va e was 

analy s un  the p siz was all e ugh at th resul were

 The axim m va e of e tim

time ory sis s t= 01 s  for  ana is ca s in  pre nt st y. 
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5.5.1 Mo

 

ent was used to mod e lin ies oc  w flex  

odel of high-rise wall. This nonlinear element is fully 

r spring, which acts as a moment 

inge. The moment due to shear is in dependent of and additive to the constant moment 

i

 

 
Figure 5.7 2-D Link element used in SAP-2000 (CSI 2006). 

 

del definition 

Nonlinear “Link” elem el th non earit  ass iated ith ural

and shear behaviour for the m

described in SAP-2000 Reference Manual (2006). 

A 3-D Link element is assumed to be composed of six separate “springs” one for 

each of six deformational degrees of freedom (axial, shear, torsion, and pure bending). 

Six independent internal deformations are defined for the 3-D Link element and are 

calculated from the relative displacements of joint j with respect to joint i.  

A 2-D Link is composed of three internal “springs” or “hinges” one for each of 

three internal deformations. Figure 5.7 shows the 2-D Link element that was used in this 

study. Deformation of the shear spring can be caused by rotations as well as translations 

at the joints. The force in this spring will produce a linearly varying moment along the 

length. This moment is taken to be zero at the shea

h

n the element due to the pure bending spring. 

In dynamic analysis, the mass of the structure is used to compute inertial forces. 

The mass contributed by the Link element is lumped at the joints i and j. Nonlinear force-

deformation relationships were assigned to all the link elements to simulate the nonlinear 
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behaviour corresponding to flexure and shear. The linear effective stiffness was used for 

the m bers that remain elastic during analysis.  

aviour considered for the flexural hinge in this study was the 

Multi

 (or moment-rotation) plane. 

This model is fully described in Dowell, Seible and Wilson (1998). 

 

5.6 Influence of flexural strength distribution over the height  

 

Section response analysis was used to determine nonlinear stress-strain relationship for 

flexure of reinforced concrete section. Program “Response-2000” was used to determine 

the nonlinear flexural behaviour in terms of moment-curvature response. Shear response 

for the wall was assumed to be elastic for this case. 

was 

onsidered for performing NTHA. Vertical reinforcement amount changes linearly at 

n

em

 

5.5.2 Hysteretic models 

 

In order to simulate the hysteretic response in the Link element, two different models 

were used: one to model the hysteretic flexural response and one to model the hysteretic 

shear response.  

The hysteretic beh

-Linear Takeda model (1970) which was described in Section 3.3.2. In order to 

simulate hysteretic shear response in the model of concrete wall in the present work, the 

Multi-Linear Pivot model was used. The Multi-Linear Pivot hysteretic model is similar to 

the Multi-Linear Takeda model, but has additional parameters to control the degrading 

hysteretic loop. It is particularly well suited for reinforced concrete members, and is 

based on the observation that unloading and reverse loading tend to be directed toward 

specific points, called pivot points, in the force-deformation

A typical example of core wall section provided in high-rise buildings 

c

different height intervals. Wall section is kept uniform over the height and the amount of 

vertical reinforcement controls the flexural strength of wall in various heights. Wall 

section has a 2.5% vertical reinforcement ratio in flange area and a 0.5% vertical 

reinforceme t ratio at the web area at its base. The vertical reinforcement amount was 

reduced linearly every seven stories over the height reaching the minimum reinforcement 
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amount allowed by the code (CSA 23.3) equal to 0.5% at the top section. Four different 

sections with different reinforcement ratios were considered for the model of core wall in 

this study as shown in Fig. 5.9. For modeling the nonlinear flexural behaviour of wall, the 

tri-linear moment-curvature backbone was used as shown in Fig. 5.8 which includes the 

cracking of concrete and yielding of vertical reinforcement for the reinforced concrete 

section. These limits are also shown over different heights of wall in Fig. 5.9. 

It should be noted that the model for flexural strength of the wall shown on Fig. 5.9 

corresponds to an example of vertical reinforcement that is typically used in some of 

existing core wall buildings in Vancouver, Canada but does not cover a complete range 

of designed walls in practice. 

 
Figure 5.8 Moment-curvature backbone used for hysteretic flexural response. 

 
Table 5.5 Parameters used to define tri-linear moment-curvature response. 

 State M (kNm) Ø (rad/km) 

Cracking 178,880 0.022 

Yielding 250,310 0.044 Section 4 (Levels 22-30) 
Ultimate 325,740 5.720 

Cracking 288,500 0.044 

Yielding 499,400 0.109 Section 3 (Levels 15-21) 
Ultimate 635,860 5.630 

Cracking 367,700 0.044 

Yielding 742,480 0.127 Section 2 (Levels 8-14) 
Ultimate 940,630 5.610 

Cracking 456,240 0.056 

Yielding 986,080 0.173 Section 1 (Levels 1-7) 
Ultimate 1,236,120 5.560 
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Figure 5.9 Flexural limits over the height in the high-rise wall model. 

 

In reality the flexural stren  between different sections. In 

order to simplify the model of wall, the flexural strength is assumed to be constant over 

each section as shown in Fig. 5.9. In order to improve the analysis and prevent problems 

such as instability due to local failure, the moment-curvature response maintained its 

s

hardening slope. The ultimate cu ases with elevation and for the 

model of wall ranged between 5.6 (Rad/km) for lower sections to 6.0 (Rad/km) in upper 

sections.  

gher modes. This shows that in high-rise walls, the nonlinear flexural 

behaviour takes place in various heights and one cannot assume that the nonlinear action 

occurs only at the base of wall.   

gth envelope is sloped

trength beyond ultimate flexural failure point following the post-yielding strain 

rvature capacity incre

In studying the nonlinear behaviour of concrete walls, it is generally assumed that 

the nonlinear behaviour caused by yielding of longitudinal reinforcement occurs at the 

plastic hinge zone near the base of wall. In low-rise buildings where seismic response is 

significantly affected by the first mode response, bending moment diagram increases 

consistently over the height from top level to its peak at the base of wall. In this case it is 

not unrealistic to limit the nonlinear flexural behaviour to the base of wall.  

In high-rise concrete walls, the influence of higher modes of vibration becomes 

very significant. Large bending moment is developed at mid-height of the wall caused by 

the effect of hi
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Another important issue which must be accounted for in studying the nonlinear 

response of concrete walls is the quantity and distribution of reinforcement over the 

wall’s height. Most of high-rise concrete walls are designed by using the response 

spectrum analysis (RSA). Use of a smooth design spectrum suggested by the codes would 

lead to a linearly increasing bending moment diagram over the wall’s height. According 

to the flexural demand obtained through use of response spectrum analysis, the flexural 

strength provided by the reinforcement should change linearly form top to the base of 

wall. In practice the reduction in strength takes place not for every single storey but rather 

for a number of stories over the wall’s height. In order to compare the results obtained 

from different analysis assumptions, nonlinear dynamic analysis was performed for two 

different cases.  

First case which is referred to as “Case SH” is the case where wall is allowed to 

y  

3.3.2. his model presents the co inear model for high-rise walls. 

The length of hinge zone is controlled by the number of nonlinear Link elements 

considered over a specific height of wall. The flexural hinge length can be extended up to 

150% of the wall’s length. The rest of wall above plastic hinge was modeled elastic and 

therefore no nonlinear behaviour was captured by the wall sections above the plastic 

h  

to 18.9 m (7 stories) above the base to ensure sufficient length for plastic hinge has been 

consi

 

ield due to bending at the plastic hinge zone defined at the base as explained in Section

mmonly assumed nonl T

inge zone. Nonlinear elements used in the model of wall were spread over a length equal

dered. The nonlinear flexural model in the plastic hinge zone is described as 

“Section 1” in Table 5.5.  

The second case for nonlinear dynamic analysis referred to as “Case MH” 

considers a more appropriate flexural behaviour compared to Case SH. In this case 

nonlinear elements are considered over the wall’s height according to the specified

flexural strength of wall sections at different levels. The flexural strength increases from 

top of the wall reaching its maximum at the base. Four different sections are defined 

according to the information given in Table 5.5 for Sections 1-4 which is also shown on 

Fig. 5.9. Unlike Case SH, wall is not restricted to undergo nonlinear behaviour only at its 

base in the Case MH. In this case there is no restriction on the length and location at 

which the nonlinear flexural action occurs over the wall’s entire height. Due to the effect 
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of higher modes and specially the second mode in the simplified 2-D model, the wall is 

expected to develop large bending moment demand at the regions close to mid-height.  

Time history analysis was done for a 30-storey wall having a fundamental period of 

T1=3.0 sec. Time step used in the analysis was 0.001 sec and Takeda model (1970) was 

sed to simulate the hysteretic flexural behaviour.   

Nonlinear time history analyses were performed for R=2.0, R= 3.5 and R=5.0. 

igure 5.9 through Fig. 5.16 show the envelope results for bending moment and shear 

force demand over the wall’s height for two cases of R=2.0 and R=5.0 to consider a lower 

and upper bound for this factor. As examples, the recommended R factors by Canadian 

code (NBCC-2005) for moderate ductile and ductile shear walls are R=2.0 and R=3.5 (i.e. 

Rd).  

As explained, the results were compared for two different cases of nonlinear 

flexural behaviour in the wall which are called “Case SH” and “Case MH”. SH stands for 

single hinge at the base of wall and MH stands for multiple hinges over the wall’s height. 

Figure 5.10 and Fig. 5.11 show the bending moment envelopes for seven crustal 

earthquakes (R=2.0) for Case SH and Case MH respectively. The length of plastic hinge 

zone for Case SH covers a height between base and 18.9 m shown on these plots. In Fig. 

5.10, the bending moment is limited to the flexural yielding limit at the base only and 

th  

5.11 shows the similar moment envelope re where the nonlinear 

ited to a specific zone at the base of wall. Wall yielded in 

exure at four different zones according to specified flexural strength over the height.  

To observe how the shear force dem nd was influenced by different flexural 

re  

illustrated in these figures, the shear for nd is generally larger in Case SH when 

ompared with values obtained for Case MH. The amount of increase in shear demand 

for C

u

F

erefore the flexural demand has increased above the plastic hinge significantly. Figure

sults for Case MH 

flexural response is not lim

fl

a

sponses in Case SH and Case MH, see Fig. 5.12 and Fig. 5.13 respectively. As

ce dema

c

ase SH is specially noticeable at the base and also upper quarter length of wall close 

to the top. As shown in Fig. 5.13, the shear force demand at upper levels is limited by 

influence of flexural yielding over the wall’s height. This is a very significant result. A 

moderate increase in seismic shear force demand was observed for R=2.0 as shown in the 

first set of figures from Fig. 5.10 through Fig. 5.13. The second set of figures show the 

 160



result for a more severe case of R=5.0. Figure 5.14 through Fig. 5.17 present results of 

NTHA for R=5.0.  

Figure 5.14 shows the envelope of bending moment results for Case SH. As shown, 

seismic bending moment demand at mid-height of the wall is larger than the demand at 

the tic 

ehaviour for the hi  more appropriate 

flexural behaviour captured by Case MH is shown in Fig. 5.15 where wall yields at four 

different reg over i ht. Corresponding shear force di  are shown in Fig. 

5. nd Fig 7. Ag sh e d  obtained at the base and upper levels 

close to top all ar ica rge ase ow ig. om

with Case MH shown in Fig. 5.17. 

 

 

 

 

 

 

 

 

 base of wall. The large value at mid-height is an effect of assuming an elas

gh-rise wall above the plastic hinge at the base. Ab

ions ts heig agrams

16 a . 5.1 ain the ear forc emand

of w e signif ntly la r for C  SH sh n in F  5.16 c pared 
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Figure 5.10 Envelopes for bending moment over the height (Case SH-R=2.0). 
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Figure 5.11 Envelopes for bending moment over the height (Case MH-R=2.0). 
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Figure 5.12 Envelopes for shear force over the height (Case SH-R=2.0). 
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Figure 5.13 Envelopes for shear force over the height (Case MH-R=2.0). 
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Figure 5.14 Envelopes for bending moment over the height (Case SH-R=5.0).  
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Figure 5.15 Envelopes for bending moment over the height (Case MH-R=5.0).  
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Figure 5.16 Envelopes for shear force over the height (Case SH-R=5.0).  
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Figure 5.17 Envelopes for shear force over the height (Case MH-R=5.0).  
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Yielding in flexure which limits the bending moment demand at the plastic hinge zone 

increases the curvature demand correspondingly. The amount of increase in the curvature 

demand is proportional to the slope of the post yielding line in the moment-curvature 

response. Since curvature demand is a very important parameter, the plots for curvature 

over the wall height are given in Fig. 5.18 and Fig. 5.19. The curvature demand is largest 

at the section close to the top which is caused by definition of flexural yielding limit as 

shown in Fig. 5.9.  
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Figure 5.18 Envelopes for curvature demand over the height (Case MH-R=2.0).  
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Figure 5.19 Envelopes for curvature dem r the height (Case MH- =5.0).  
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Summary of shear force envelopes for two cases of analysis and three different values of 

R factor are given in Table 5.6. Maxim ear force demands are presented at two 

critical locations over the wall’s height. “Base” in this table corresponds to the region of 

plastic hinge at the base of wall and “Top” in the table corresponds to region between El. 

 (Section 4) as described in Section 5.6. By comparison of values in 

and in Case SH with respect to the results obtained from Case MH. 

 
and obtained from nonlinear dynamic analysis (values in kN). 

R se 

um sh

56.7 m and El. 75.6 m

Table 5.6, it was observed that shear force values for Case SH is generally larger than the 

corresponding values obtained for Case MH.  

Table 5.7 provides a summary of the results in terms of the amount of increase in 

shear force dem

According to the table, the amount of increase in shear force at the base for different R 

factors ranged between 12% and 25% while this amount at upper levels ranged between 

36% and 102%.  

Table 5.6 Shear dem

Ca Loc. C-1 C-2 C-3 C-4 C-5 C-6 C-7 S-1 S-2 S-3 

Top 19,727 23,742 22,867 26,683 31,304 31,613 28,447 16,444 29,044 24,600 1 
(SH) Base 45,115 50,499 57,344 48,492 63,083 51,282 65,954 40,967 66,448 58,165 

Top 18,221 16,429 17,705 19,759 19,933 18,748 19,269 16,073 19,526 20,938 
2.0 

2 
(MH) Base 48,809 42,467 49,134 48,297 52,711 43,155 53,820 40,016 57,767 51,002 

Top 34,191 33,050 32,012 36,721 45,431 52,926 50,521 23,262 45,511 42,451 1 
(SH) Base 81,683 74,808 89,632 8 ,882 92,348 81,646 110,401 58,247 101,521 92,163 2

Top 24,359 20,359 20,649 23,330 22,696 20,776 27,104 18,648 26,255 22,742 
3.5 

0 85,100 73,641 

2 
(MH) Base 84,568 79,713 79,033 66,635 72,483 56,198 71,348 66,09

Top 47,919 44,464 41,044 48,927 62,062 67,081 70,948 28,489 62,219 60,817 1 
(SH) Base 112,929 98,861 121,567 110,012 119,970 109,968 147,177 73,593 125,246 122,341 

Top 26,062 23,645 25,060 25,462 30,312 22,385 24,244 21,217 41,048 29,363 
5.0 

2 
(MH) Base 107,937 100,905 114,938 80,613 102,004 64,051 96,780 75,234 118,747 76,276 
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Table 5.7 Amount of shear demand increase in Case SH with respect to Case MH. 

R Location C-1 C-2 C-3 C-4 C-5 C-6 C-7 S-1 S-2 S-3 Mean 

Top 1.08 1.45 1.29 1.35 1.57 1.69 1.48 1.02 1.49 1.17 1.36 
2.0 

Base 0.92 1.19 1.17 1.00 1.20 1.19 1.23 1.02 1.15 1.14 1.12 

Top 1.40 1.62 1.55 1.57 2.00 2.55 1.86 1.25 1.73 1.87 1.74 
3.5 

Base 0.97 0.94 1.13 1.24 1.27 1.45 1.55 0.88 1.19 1.25 1.19 

Top 1.84 1.88 1.64 1.92 2.05 3.00 2.93 1.34 1.52 2.07 2.02 
5.0 

Base 1.05 0.98 1.06 1.36 1.18 1.72 1.52 0.98 1.05 1.60 1.25 

 

The dynamic shear amplification factors obtained from NTHA are given in the Table 5.8. 

The results for two cases of different flexural strength over the wall height are compared 

at two different critical locations over the wall’s height. Amplification factors provided in 

the Table present the ratio between shear forces obtained from NTHA to shear forces 

obtained from RSA using NBCC-2005 design spectrum for Vancouver, site class C. 

Dy H 

indicates dynamic shear amplification factors ranging from 1.48 to 3.09 for the base 

sect he 

orresponding amplification factors for Case MH were observed to range from 1.32 to 

namic amplification factor was larger in Case SH compared with Case MH. Case S

ion and amplification factors ranging from1.53 to 3.21 for the top section. T

c

2.53 at the base and from 1.12 to 1.61 at top section.  

 

Table 5.8 Dynamic shear amplification for nonlinear response history analysis vs. RSA. 

R Case At base section At top section 

1 (SH) 1.48 1.53 
2.0 

2 (MH) 1.32 1.12 

1 (SH) 2.34 2.38 
3.5 

2 (MH) 1.99 1.36 

1 (SH) 3.09 3.21 
5.0 

2 (MH) 2.53 1.61 
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This study showed that including the effect of flexural yielding over the entire 

height of wall would result in reduction of seismic shear force demand. Based on findings 

of this section, use of FE models of high-rise wall where the plastic hinge is only 

considered at the base can lead to overestimation of shear force demand at the base and 

the top levels of the wall. 

5.7 Influence of effective shear stiffness due to diagonal cracking 
 

One ed 

ith cracking of reinforced concrete section is to use the effective shear stiffness. 

ffective shear stiffness is often defined as a fraction of gross shear stiffness (GcAvg) in 

e concrete walls. Depending on the amount of diagonal cracking caused by shear 

eformation of wall, values of cracked shear stiffness varies. Fully cracked shear stiffness 

is often cons t horizontal 

rein t in shear.

sidering e ea approa ri-linear s ess-strain hip 

can ied to a r curve in which the effective shear stiffness i  as 

the slope of the line between origin and the

ppropr

 
igure 5.20 Use of equivalent area approach to estimate the effective shear stiffness. 

 simple approach to consider the influence of nonlinear shear behaviour associat

w

E

th

d

idered as the slope of line from origin to the yielding of firs

forcemen   

By con qual ar ch, the t hear str relations

be simplif bi-linea s defined

 point of yielding as shown in Fig. 5.20. An 

a iate estimate of effective shear stiffness can account for influence of diagonal 

cracking in reinforced concrete walls in a simple way. Results obtained from testing of 

RC panels were used to determine the effective shear stiffness of walls which possess 

different sectional geometry and horizontal reinforcement.  

F



 

Villani (1995) observed that the shear stress at the point of yielding ranges between 5 

MPa and 6 MPa with the corresponding shear strain ranging between 0.003 and 0.004. 

The ratio of cracked section shear stiffness to the uncracked gross shear stiffness 

(GcAve/GcAvg) ranged between 0.067 and 0.011 for the above values. Considering the 

realistic stress–strain relationship for concrete walls in a case where wall has suffered 

significant diagonal cracking, a value of effective shear stiffness equal to 10% of initial 

hear stiffness fo

A wide range of effective shear stiffnesses was considered to investigate the 

onlinear response of the model of high-rise wall. Dynamic nonlinear analyses were 

erformed for different R factors equal to 2.0, 3.5 and 5.0 from a moderately ductile 

med to be the ratio 

etween the peak bending moment at the base of wall from linear time history analysis 

scaled according to the desired 

level 

ht of 

wall f

 

gross shear stiffness (GcAve= 0.1GcAvg) may be used to get a rough estimate of effective 

r the wall.  s

n

p

behaviour to a highly ductile behaviour. R factor in this study was assu

b

(LTHA) to the yielding bending moment at the base obtained from nonlinear time history 

analysis (NTHA). Since the wall geometry and strength properties were unchanged 

during all cases of analysis, the acceleration records were 

of R factor. In order to study the effect of nonlinear shear behaviour in a simple 

way, four levels of effective shear stiffness was used over the entire wall’s height. These 

four levels of effective shear stiffness (GcAve) were defined as 5%, 10%, 20% and 100% 

of gross shear stiffness (GcAvg). A time step of t=0.001 sec was used for nonlinear time 

history analysis. Results are shown in terms of envelopes for bending moment diagram, 

shear force and curvature diagram over the height of wall in Figures 5.21 through 5.24.  

Flexural model of wall for analysis was similar to the model used in Section 5.6 

where the wall possesses four different steps in flexural strength over the entire height. 

Figure 5.21 and Fig. 5.22 show the distribution of shear force demand over the heig

or R=2.0 and R=5.0 respectively. The plots shown are the average of envelope 

values for the 10 selected earthquakes described in Section 5.3. According to the analyses 

results, reduction of shear stiffness over the wall height would result in a lower estimate 

of shear demand at the base of wall.  
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Figure 5.21 Influence of effective shear stiffness on shear force demand (Average for all 

 
 
 
 

earthquakes, R=2.0).  
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Figure 5.22 Influence of effective shear stiffness on shear force demand (Average for all 

 

 

earthquakes, R=5.0). 
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Curvature demand tends to increase over the height and was observed to be largest 

at three fort ding limits 

own on Fig. 5.9. It is noted that variation of flexural strength over the height shown in 

ig. 5.9 is very similar to design example of existing core walls in high-rise buildings in 

Western Canada. Due to the reduction in axial compression over the height, the curvature 

ductility was greater in the upper levels of the wall compared to the lower levels. The 

results for curvature demand are shown in Fig. 5.23 and Fig. 5.24 for R=2.0 and for 

R=5.0 respectively. Curvature demand was significant at the base and also the upper 

levels of wall.  

h of total height. This is mainly caused by justification of yiel

sh

F

18.9

37.8

56.7

75.6

H
 (m

) GAe=1.0GAg
GAe=0.2GAg
GAe=0.1GAg
GAe=0.05GAg

0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ф (rad/km)

Figure 5.23 Influence of effective shear stiffness on curvature demand (Average for all 
earthquakes, R=2.0).  
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Figure 5.24 Influence of effective shear stiffness on curvature demand (Average for all 
earthquakes, R=5.0).  

fluence of effective shear stiffness on the shear force demand is shown in Fig. 

5.25 and Fig. 5.26. In these plots the reduction of shear force at the base obtained from 

onlinear response history analysis are shown with respect to the effective shear strength 

he thin lines present the envelope values for 10 selected ground 

motions and the thick dashed line presents the corresponding averaged envelope values.  

The reduction in shear force demand caused by influence of diagonal cracking was 

fo r 

igher levels of diagonal cracking where GcAve≤0.1GAvg the shear force reduction was 

noticeable. Shear force dema lues lower than prediction of 

linear response spectru Gc cAvg). Any reduction in shear force 

dem ur is compensated by e in localized 

d ccordin ults, a redu f uncracked stiffness to an cracked 

shear stiffness of GcAve Avg caused reduction r force dem  the 

base of the modeled high-rise wall comp d to the case where shear beh our is 

assume  remain elast

 

 

 

In

n

over the wall’s height. T

 

und to be insignificant for the lower levels of cracking where GcAve≥0.2GcAvg. Fo

h

nd in some cases reduced to va

m analysis (i.e. A =0.05Gve

and due to nonlinear behavio  an increas

eformations. A g to res ction o  shear 

=0.1Gc a 30% on shea and at

are avi

d to ic.   
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Figure 5.25 Dynamic shear demand at the base for nonlinear response history analysis, 
R=2.0. 
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Figure 5.26 Dynamic shear demand at the base for nonlinear response history analysis, 
R=5.0. 
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A summary of the obtained results for the shear force demand at the base is 

present in Tables 5. gh Table able 5.9 rizes the s orce 

demand at the base of wall obtained from nlinear dynam analysis with r ect to 

differe fective shear ss and diff  factors. The results presented in Table 

5.9 and Table 5.10 correspond to the crustal and subduction earthquakes respectively. 

Table 5.11 presents the m  values obtaine  different earthquake events. Note that 

term “C” in Tables co nds to cru  term “S” corresponds to subduction 

earthquakes.   

Table 5.9 Dynamic shear force demand at the base obtained from crustal events for 
dif ffective she ness (value ). 

 
R GAve/GAvg C-2 C-4 5 C-6 -7 

ed 9 throu 5.11. T summa hear f

 no ic esp

erent Rnt ef  stiffne

ean d from

rrespo stal and

 

ferent e ar stiff s in kN

C-1 C-3 C-  C

1.00 48  42,467 34 48,297 ,711 43,155 3,820 ,809 49,1 52 5

0.20 50,198  30,683 47 27,91  38,810 36,733 40,3 6 50,684

0.10 47  31,671 49 32,225 ,647 28,743 0,833 ,117 33,7 35 3
2.0 

0.05 28,933 34,469 28,621 26,195 26,772 27,701 35,054 

1.00 84,568 79,713 79,033 66,635 72,483 56,198 71,348 

0.20 62,624 65,387 71,287 58,234 67,855 44,561 64,339 

0.10 44,758 43,200 55,017 55,687 54,737 50,967 44,505 
3.5 

0.05 41,124 42,142 38,502 46,498 44,249 44,093 37,022 

1.00 107,937 100,905 114,938 80,613 102,004 64,051 96,780 

0.20 85,256 88,023 86,082 72,531 83,155 63,458 86,750 

0.10 61,953 68,700 64,985 66,175 70,452 67,238 75,288 
5.0 

0.05 51,973 49,916 43,759 60,444 55,306 53,755 54,810 
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Table 5.10 Dynamic shear force demand at the base obtained from subduction events for 

different effective shear stiffness (values in kN). 
 

R GAve/GAvg S-1 S-2 S-3 

1.00 40,016 57,767 51,002 

0.20 42,830 34,914 39,319 

0.10 31,999 42,916 34,003 
2.0 

0.05 36,003 29,053 20,839 

1.00 66,090 85,100 73,641 

0.20 51,022 72,317 57,559 

0.10 51,466 57,546 46,902 
3.5 

0.05 42,934 42,771 33,770 

1.00 75,234 118,747 76,276 

0.20 67,213 113,043 66,832 

0.10 74,318 70,444 61,503 
5.0 

0.05 51,410 55,646 41,316 

 

 
 

Table 5.11 Mean dynamic shear force demand at the base obtained from different 
earthquake events for different effective shear stiffness (values in kN). 

 
R GAve/GAvg Mean-C Mean-S Mean all 

1.00 48,342 49,595 48,718 

0.20 39,339 38,979 39,243 

0.10 33,134 36,306 34,890 
2.0 

0.05 29,489 28,632 29,364 

1.00 72,854 74,944 73,481 

0.20 62,041 60,299 61,518 

0.10 49,769 51,971 50,479 
3.5 

0.05 41,214 39,812 41,310 

1.00 95,318 90,086 93,748 

0.20 80,751 82,362 81,234 

0.10 67,802 68,755 68,106 
5.0 

0.05 52,230 49,458 51,834 
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Dynamic shear magnification factor is often expressed as the ratio between the 

ear demand obtained from dynamic analysis considering only flexural nonlinearity to 

the seismic shear demand obtained from simplified pseudo-static procedures.  Dynamic 

ear amplification is defined with respect to results obtained from response spectrum 

na ed 

for the shear force at the ba ean values 

obtained rom influenc al and s earthqu ately an all 

e ds. Dy amplification factor for R=2.0 ranged between 1.48 and 

0.79 for different effective shear stiffnesses. Results of NTHA for R=3.5 suggested 

values for dynamic amplification which ranged from 2.34 to 1.12. Case R=5.0 resulted in 

the greatest shear amplification factors which ranged from 3.09 to 1.40 for different 

effective shear stiffness

 

Tab .12 Mean dyn ear force a ation at the base with respect to shear 
rce demand obtained from RSA. 

 
G vg Mean 

sh

sh

a lysis (RSA) in the present study. Dynamic shear amplification values are present

se of wall in Table 5.12. Values are given as m

 f e of crust ubduction akes separ d also for 

arthquake recor namic 

es.  

le 5 amic sh mplific
fo

R A /GA Mean-C Mean-S all ve

1.0-C  SH 47  ase 1. 1.49 1.48
1.0 1.31 1.34 1.32 
0.2 06 5  1. 1.0 1.06
0.1 0.90 0.98 0.94 

2.0 

0  80 7  .05 0. 0.7 0.79
1.0-C H ase S 2.37 2.27 2.34 

1.0 1.97 2.03 1.99 
0.2 68 3  1. 1.6 1.66
0.1 1.35 1.40 1.36 

3.5 

0  11 8  .05 1. 1.0 1.12
1. H  0-Case S 3.17 2.89 3.09 

1.0 58 3  2. 2.4 2.53
0.2 2.18 2.23 2.20 
0.1 1.83 1.86 1.84 

5.0 

0  41 4 1  .05 1. 1.3 .40
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5.8 Influence of degrading hysteretic shear response  

y also be used to predict nonlinear shear backbone for the section of 

 

The final sets of analysis are performed using state-of-the-art nonlinear shear model in 

reinforced concrete walls through hysteretic response proposed by Gérin (2003). Program 

Response-2000 ma

wall; however because of uncertainties in using many required parameters to construct 

nonlinear shear response using Response-2000 and some of its shortcomings such as 

modeling the appropriate strut action, a more transparent simplified tri-linear shear model 

(Gérin 2003) was used in the present study.  

 

 
Figure 5.27 Hysteretic shear models in walls a) Experimental data (from Gérin, 2003) b) 

Simplified Model used in this study using NLINK element (SAP-2000, CSI 2006).  
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The hysteretic model for reverse cyclic shear that was used in this work is based on 

xperimental testing conducted at the University of Toronto. The considered test element 

rein as 

sed for verification of numerical m

In rder to cons ppropria tic shea e NLIN ar 

e 00, C 6) was used and the actual hysteretic behaviour was 

s Pivot M (Dowell, Seible and Wilson Figure 5.2 Fig. 

5.28 present compariso een exper  test data and the simplified hysteretic 

shear el used in th y. The ba  curve for tic shear was 

constructed based on tri-linear shear mode  

diagonal cracking of concrete and yielding li it for horizontal reinforcement for a given 

reinforced concrete sect

e

forcement ratio was similar to a section of high-rise wall at its base and therefore w

u odel in this study. 

 o truct the a te hystere r model th K nonline

lement (SAP-20 SI 200

imulated using odel 1998). 7 and 

ns betw imental

mod is stud ckbone hystere model 

l proposed by Gérin (2003) which defines

m

ion.  

 
Figure 5.28 Hysteretic shear comparisons between experimental data and simplified 

model used in this study. 
 

The nonlinear shear behaviour for the high-rise concrete wall was simulated in two 

different ways: one by using effective shear stiffness as a simplified method of 

accounting for diagonal cracking and the other by using a complete hysteretic shear 

model. Reliability of hysteretic shear model was also verified and validated by comparing 

 180



the results obtained from using hysteretic shear model and the results of NTHA obtained 

from using simplified shear stiffness properties for the model of high-rise wall. 

 

5.8.1 Estimate of shear strength at cracking  

 

In order to develop the tri-linear shear envelope used as the backbone of hysteretic 

behaviour, a proper estimate of cracking and yielding point is required. Comparison 

between values obtained from each of equations used to estimate Vc is shown in Fig. 

5.29. Equation 11-12 taken from ACI-318-05 was used for a lower-bound estimate of 

shear strength at cracking of concrete.  
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Figure 5.29 Shear at cracking for concrete walls predicted by ACI 318-05. 

 

5.8.2 Estimate of shear strength at yielding  

 

As designers typically use the RSA prediction for design of high-rise concrete walls, 

similar procedure was used here to estimate the initial shear strength for the wall. Figure 

5.30 shows the different design spectra used to perform RSA. Three different design 

spectra was used which include NBCC-2005 design spectrum for Vancouver (site class 

C), IBC-2006 spectrum for Site Class B with Fa=Fv=1.0 and UBC-97 spectrum with 

Ca=Cv=0.4.   
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 The design spectra were scaled to result in the same overturning moment equal to 

flexural strength at the base of the 30-storey model of wall with T1=3.0 sec. The scaled 

spectrum ended up having equal acceleration magnitude in a range between T=2.5 sec 

and T=3.5 sec as shown in Fig. 5.30. 
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Figure 5.30 Scaled design response spectra used for RSA. 
 
 The ratio between overturning moment and shear force at the base of wall was 

also determined according to the results obtained from RSA. The normalized values of 

h΄/H= (Mb/Vb)/H are given in Table 5.13, also shown on Fig. 5.31.  h΄/H ratio was 

obtained for linear time history analysis (LTHA) considering 10 different ground motions 

used for this study. Table 5.14 presents the h΄/H values obtained from LTHA.  

 

 
Table 5.13 Ratios of h΄/H for walls according to RSA of different design spectra. 

 T1 0.5 s 1.0 s 2.0 s 3.0 s 5.0 s 

IBC-2006 0.72 0.63 0.44 0.37 0.26 

NBCC-2005 0.71 0.59 0.42 0.38 0.29 

UBC-97 0.72 0.60 0.40 0.36 0.25 
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Figure 5.31 Ratios of h΄/H for walls according to RSA of different design spectra.  
 
 
  

Table 5.14 Ratios of h΄/H for walls according to LTHA for different earthquakes. 

Earthquake Mb/Vb h'/H 

C-1 38.15 0.47 

C-2 25.19 0.31 

C-3 28.60 0.35 

C-4 29.31 0.36 

C-5 20.32 0.25 

C-6 33.65 0.42 

C-7 17.45 0.22 

S-1 47.32 0.58 

S-2 26.90 0.33 

S-3 31.94 0.39 

Mean Value 29.88 0.37 

  

 The previous example of 30-storey wall had a flexural strength of Mb=1,050,000 

kNm. h΄/H ratio was assumed to be 0.37 corresponding to a 30-storey wall with T1=3.0 

sec. This value is associated with a design shear strength value of Vb=35,000 kN at the 

base of wall.  
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 The distribution of seismic shear force demand over the height of wall is also 

determined using RSA in practice. Distribution of bending moment and shear force over 

the height of the 30-storey wall for the three different design spectra (see also Fig. 5.30) 

is shown in Fig. 5.32. 

 Wall’s shear strength at every 7 storey reduces based on force distribution 

obtained from RSA. The shear strength is controlled by providing horizontal steel at each 

section. In total four different sections were considered over the wall’s height. The shear 

strength changes every seven stories similar to the model used for flexural strength. The 

shear strength for section 1 from the base to the 7th storey (El. 19.0) is equal to Vs1=Vb. 

shear strength for section 2 from the 8th storey to the 14th storey (El. 38.0) is Vs2=0.85Vb, 

shear strength for section 3 from the 15th storey to the 21st storey (El. 57.0) is Vs3=0.60Vb 

and the strength for section 4 from the 22nd storey to top of wall (El. 81.0) is Vs3=0.45Vb. 

The shear strength envelope for the example of wall is shown in Fig. 5.33.  
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Figure 5.32 RSA prediction of bending moment and shear force over the height for 
T1=3.0 sec. 
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Figure 5.33 Shear strength envelopes over the height of the 30-storey wall model.  

 

Tri-linear shear force-shear strain relationship was used for four different section of the 

wall over its height. The tri-linear model for shear force-shear strain was used to model 

the wall nonlinear behaviour in shear. The envelope of nonlinear shear force-shear strain 

model for section of wall is shown in Fig. 5.34. Table 5.15 presents the parameters used 

in defining the tri-linear shear force-shear strain backbone for hysteretic shear model. 

 

 
Figure 5.34 Shear force-shear strain envelope used for hysteretic shear response.   
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Table 5.15 Nonlinear shear model used in the example of wall. 
 Vcr (kN) γcr Vy (kN) γy

Section 1 24,444 0.00028 37,037 0.00293 
Section 2 21,913 0.00026 31,481 0.00312 
Section 3 19,381 0.00023 22,222 0.00307 
Section 4 15,833 0.00020 16,667 0.00366 

 
 
 The ultimate shear strength (Vu) was considered equal to 1.2Vy in all cases (see 

Fig. 5.33). The ultimate shear strain capacity was determined using expression proposed 

by Gérin (2003). The nonlinear elements were considered over the entire height of wall 

with strength changing at every seven stories. To model the nonlinear behaviour over the 

height of wall two nonlinear spring elements to simulate the hysteretic flexural and shear 

behaviour were used as shown in Fig. 5.35. The nonlinear spring elements are referred to 

as NLINK in the program SAP-2000 (CSI 2006) that was used in this study. Tri-linear 

envelope using Takeda model was used to incorporate moment-curvature response at the 

section of wall. In order to simulate the nonlinear hysteretic shear response, the tri-linear 

shear force–shear strain backbone was used with a combination of modified pivot model 

accounting for pinching. The results from using this model were compared to the 

experimental results shown in Fig. 5.28 earlier in this chapter. 

 

 

 

a) b) 

Figure 5.35 a): Model of the 30-storey wall and b): the nonlinear springs used to simulate 
nonlinear flexure and shear model (NLINK, SAP-2000).  

 

 

 



 

5.9 Discussion of dynamic response due to hysteretic shear model  

 

Nonlinear time history analysis was performed for the selected ground motions using 

program SAP-2000 (CSI 2006). Nonlinear flexural and shear models for the model of 30-

storey cantilever core wall were considered for analyses.  

Nonlinear response history analysis was performed for ten earthquake records all 

scaled to fit NBCC-2005 design spectrum as explained in Section 5.3. Three different R 

factors were used as R=2.0, 3.5 and 5.0. The magnitude of the earthquakes are 

proportional to the level of R factor and as the R factor increases, more damage is 

expected in terms of deformations at the critical section of the reinforced concrete wall. 

The wall’s shear strength over the height was defined according to values given in Table 

5.15. In tables, SF stands for shear strength factor applied on the values given in Table 

5.15, for example SF=1.5 means the shear strength values in Table 5.15 are multiplied by 

a factor of 1.5 to set the shear strength of high-rise wall model in different sections.  

The results for R=2.0 are shown in Fig. 5.36 through Fig. 5.39. Envelopes for 

bending moment diagram are shown on Fig. 5.36. Thick dashed line shows the average 

envelope for bending moment from all earthquake records. Flexural yielding limit at 

different sections of wall over the height is also illustrated by thin dashed line. It was 

observed that due to yielding of wall sections at different heights, bending moment 

diagram over the height follows the flexural strength pattern.  

Corresponding curvature demands are shown in Fig. 5.37. At the zones where 

reinforced concrete wall yields, elongation of longitudinal reinforcement caused 

significant rotation which can be expressed in terms of curvature demand at the plastic 

hinge. The curvature demand was significant at the base and upper sections of wall. 

Envelopes for shear force and shear strain demand are shown in Fig. 5.38 and Fig. 5.39 

respectively.  

Once wall reached the yielding capacity, the shear strain demand increased 

significantly. Localization of shear strain for regions where there is a sudden change in 

strength was noticeable. This also signifies the importance of considering the nonlinear 

shear model for studying the seismic response of high-rise concrete walls.  
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Figure 5.36 Envelope of bending moment for NTHA (R=2.0, SF=1.0). 
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Figure 5.37 Envelope of curvature for NTHA (R=2.0, SF=1.0). 
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Figure 5.38 Envelope of shear force for NTHA (R=2.0, SF=1.0). 
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Figure 5.39 Envelope of shear strain for NTHA (R=2.0, SF=1.0). 
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Table 5.16 provides summary information on the obtained shear force demand from 

NTHA.  This table corresponds to the values shown on Fig. 5.36 through 5.39. Table 5.16 

presents the results for R=2.0 and a shear strength factor of SF=1.0. The shear force 

capacities of wall in different states are given on top rows of the table. In the Table “C” 

stands for shear cracking, “Y” stands for shear yielding and “F” stands for shear failure. 

Term “E” refers to elastic state at the wall section.  

Shear force demands were obtained from NTHA for the selected crustal and 

subduction earthquakes. By looking at the mean values, it was observed that the wall at 

the base has just exceeded its yielding capacity in shear whereas upper sections of wall 

have only passed their cracking limit in shear. Considering the significant reserve 

ductility in shear beyond yielding point, the wall seismic performance in shear was at an 

acceptable level and no significant shear damage was noticed for the case of R=2.0.  

Table 5.17 provides results for R=3.5 similar to Table 5.16. Wall reached its 

ultimate shear capacity at the base and yielded in shear at the upper section (Section 4). 

This was a critical case for shear and the provided shear strength was found to be 

inadequate for R=3.5. The result for the case of R=5.0 is shown in Fig. 5.40 through Fig. 

5.43 The shear force demand was significantly large in this case and wall exceeded its 

yielding shear capacity at various heights. The core wall reached its ultimate capacity at 

the base. Table 5.18 provides information summary of the obtained results for the case of 

R=5.0 with SF=1.0 at which the shear demand at the base was very large. A poor seismic 

performance was observed in this case resulting in a shear failure at the base of wall. 
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Table 5.16 Shear force demand and at different sections of wall for R=2.0 and SF=1.0. 
 

Shear Strength Factor = 1.0  R=2.0 

 Section S1 Section S2 Section S3 Section S4 

Cracking (C) (kN) 24,444 21,913 19,381 15,833 

Yielding (Y) (kN) 37,037 31,481 22,222 16,667 

Failure (F) (kN) 44,444 37,778 26,667 20,000 

32,595 25,305 19,476 15,857 
C-1 

C C C C 

38,639 25,724 18,944 15,919 
C-2 

Y C E C 

37,607 21,330 20,014 15,874 
C-3 

Y E C C 

38,164 22,807 19,500 16,098 
C-4 

Y C C C 

38,988 26,149 19,426 16,020 
C-5 

Y C C C 

40,564 25,992 19,552 15,944 
C-6 

Y C C C 

56,130 38,720 23,650 17,241 
C-7 

F F Y Y 

30,796 21,902 19,251 14,645 
S-1 

C E E E 

36,410 25,495 19,464 16,062 
S-2 

C C C C 

38,527 24,246 19,110 16,088 
S-3 

Y C E C 

36,866 24,474 19,154 15,885 
Mean  

C C E C 
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Table 5.17 Shear force demand at different sections of wall for R=3.5 and SF=1.0. 

 
Shear Strength Factor = 1.0  R=3.5 

 Section S1 Section S2 Section S3 Section S4 

Cracking (C) (kN) 24,444 21,913 19,381 15,833 

Yielding (Y) (kN) 37,037 31,481 22,222 16,667 

Failure (F) (kN) 44,444 37,778 26,667 20,000 

40,645 30,277 20,671 16,297 
C-1 

Y C C C 

44,117 32,262 20,486 17,073 
C-2 

Y Y C Y 

48,544 33,088 19,508 17,771 
C-3 

F Y C Y 

50,965 29,066 20,163 17,265 
C-4 

F C C Y 

40,378 31,755 19,966 17,079 
C-5 

Y Y C Y 

41,875 28,186 20,274 17,051 
C-6 

Y C C Y 

46,049 30,556 19,589 16,529 
C-7 

F C C C 

40,799 25,882 20,157 15,848 
S-1 

Y C C C 

45,567 30,781 21,324 18,044 
S-2 

F C C Y 

44,789 29,459 19,295 16,539 
S-3 

F C E C 

44,296 30,131 20,080 16,948 
Mean 

Y C C Y 
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Figure 5.40 Envelope of bending moment for NTHA (R=5.0, SF=1.0). 
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Figure 5.41 Envelope of curvature for NTHA (R=5.0, SF=1.0). 
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Figure 5.42 Envelope of shear force for NTHA (R=5.0, SF=1.0). 
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Figure 5.43 Envelope of shear strain for NTHA (R=5.0, SF=1.0). 
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Table 5.18 Shear force demand at different sections of wall for R=5.0 and SF=1.0. 

 
Shear Strength Factor = 1.0  R=5.0 

 Section S1 Section S2 Section S3 Section S4 

Cracking (C) (kN) 24,444 21,913 19,381 15,833 

Yielding (Y) (kN) 37,037 31,481 22,222 16,667 

Failure (F) (kN) 44,444 37,778 26,667 20,000 

49,856 31,500 22,321 16,239 
C-1 

F Y Y C 

48,689 32,503 23,217 19,367 
C-2 

F Y Y Y 

56,030 37,833 22,324 19,576 
C-3 

F F Y Y 

57,202 32,668 21,521 19,009 
C-4 

F Y C Y 

52,931 34,454 23,086 19,123 
C-5 

F Y Y Y 

51,951 31,580 21,377 19,168 
C-6 

F Y C Y 

57,869 33,369 22,041 17,872 
C-7 

F Y C Y 

51,493 31,716 20,447 17,193 
S-1 

F Y C Y 

52,603 33,441 22,996 18,509 
S-2 

F Y Y Y 

49,856 31,500 22,321 16,239 
S-3 

F Y Y C 

52,847 33,056 22,165 18,174 
Mean 

F Y C Y 
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In order to increase the shear strength, horizontal steel was added to the section of wall. 

Shear strength of the section was increased by 50% corresponding to a shear strength 

factor of SF=1.5.  

 Summary of results for R=3.5 and SF=1.5 is provided in Table 5.19. In order to 

see the changes corresponding to a 50% increase in shear strength of wall, results given 

for R=3.5 and SF=1.0 in Table 5.17 should be compared with values given in Table 5.19. 

By comparing the mean values for crustal and subduction events from the tables, it was 

observed that the wall performance has been improved from a undesirable shear failure at 

the base to a safer yielding state with considerable amount of reserved ductility. Yielding 

in upper sections of the wall for the case of SF=1.0 improved to a safer cracking state in 

shear for the case of SF=1.5. Table 5.20 provides the results for the case of R=5.0 and 

SF=1.5. Results in this table need to be compared with Table 5.18 for the case SF=1.0.  

 The shear performance was improved by moving from the shear failure state to a 

post-yielding state very close to the ultimate shear capacity. Although the shear 

performance of the wall has been improved by increasing the amount of horizontal 

reinforcement in the section, a safe shear behaviour was not achieved. In order to increase 

the wall shear strength in the case of R=5.0, the shear strength was increased by a factor 

of two compared to the initial horizontal reinforcement provided at the section. The 

results for this case is referred to as R=5.0 and SF=2 which are presented in Fig. 5.44 

through Fig. 5.47. Table 5.21 provides a summary of obtained maximum shear demand at 

different sections of wall over the height.  

 As it is shown in figures, by adding horizontal reinforcement, the wall shear 

performance for SF=2.0 was further improved compared to the case of SF=1.5. An 

acceptable seismic shear behaviour was achieved by increasing the wall shear strength 

according to Table 5.21. The results show that increasing the amount of reinforcement for 

large values of R factor is an effective solution to improve the wall’s shear performance 

during earthquake.  
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Table 5.19 Shear force demand at different sections of wall for R=3.5 and SF=1.5. 
 

Shear Strength Factor = 1.5 – R=3.5 

 Section S1 Section S2 Section S3 Section S4 

Cracking (C) (kN) 24,444 21,913 19,381 16,850 

Yielding (Y) (kN) 55,556 47,222 33,333 25,000 

Failure (F) (kN) 66,667 56,667 40,000 30,000 

55,656 32,696 22,636 18,595 
C-1 

Y C C C 

58,324 39,480 29,686 18,725 
C-2 

Y C C C 

61,709 42,299 25,814 18,013 
C-3 

Y C C C 

58,709 28,952 23,434 19,936 
C-4 

Y C C C 

54,153 39,841 27,680 19,387 
C-5 

C C C C 

50,509 32,399 23,497 19,290 
C-6 

C C C C 

56,848 36,722 26,884 19,214 
C-7 

Y C C C 

51,443 33,308 21,485 16,743 
S-1 

C C C E 

56,712 34,532 26,203 19,390 
S-2 

Y C C C 

57,787 41,641 25,441 20,252 
S-3 

Y C C C 

56,184 36,172 25,276 18,948 
Mean  

Y C C C 
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Table 5.20 Shear force demand at different sections of wall for R=5.0 and SF=1.5. 

 
Shear Strength Factor = 1.5 – R=5.0 

 Section S1 Section S2 Section S3 Section S4 

Cracking (C) (kN) 24,444 21,913 19,381 16,850 

Yielding (Y) (kN) 55,556 47,222 33,333 25,000 

Failure (F) (kN) 66,667 56,667 40,000 30,000 

63,310 40,058 25,481 20,344 
C-1 

Y C C C 

68,906 42,598 32,810 20,338 
C-2 

F C C C 

71,637 45,811 34,524 20,856 
C-3 

F C Y C 

64,958 34,929 31,885 23,236 
C-4 

Y C C C 

68,013 42,218 34,447 22,493 
C-5 

F C Y C 

58,131 39,372 29,002 19,593 
C-6 

Y C C C 

69,187 42,370 33,502 20,515 
C-7 

F C Y C 

59,902 40,679 21,345 18,385 
S-1 

Y C C C 

68,038 42,432 32,467 21,291 
S-2 

F C C C 

61,225 45,888 33,368 19,101 
S-3 

Y C Y C 

65,330 41,289 30,866 20,609 
Mean 

Y C C C 
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Figure 5.44 Envelope of bending moment for NTHA (R=5.0, SF=2.0). 
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Figure 5.45 Envelope of curvature for NTHA (R=5.0, SF=2.0). 
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Figure 5.46 Envelope of shear force for NTHA (R=5.0, SF=2.0). 
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Figure 5.47 Envelope of shear strain for NTHA (R=5.0, SF=2.0). 
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Table 5.21 Shear force demand at different sections of wall for R=5.0 and SF=2.0. 
 

Shear Strength Factor = 2.0  R=5.0 

 Section S1 Section S2 Section S3 Section S4 

Cracking (C) (kN) 24,444 21,913 19,381 16,850 

Yielding (Y) (kN) 74,074 62,963 44,444 33,333 

Failure (F) (kN) 88,889 75,556 53,333 40,000 

80,104 40,771 27,060 22,383 
C-1 

Y C C C 

83,352 45,221 36,645 22,798 
C-2 

Y C C C 

83,806 52,662 37,324 20,962 
C-3 

Y C C C 

77,401 37,274 30,867 24,564 
C-4 

Y C C C 

79,968 44,343 40,188 23,988 
C-5 

Y C C C 

60,683 40,575 32,689 21,246 
C-6 

C C C C 

83,209 53,532 34,758 22,316 
C-7 

Y C C C 

66,705 43,053 22,534 19,543 
S-1 

C C C C 

82,620 46,408 36,695 22,898 
S-2 

Y C C C 

63,592 47,138 35,399 19,582 
S-3 

C C C C 

76,143 44,994 33,279 21,999 
Mean  

Y C C C 
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 Figure 5.48 and Fig. 5.49 show the variation of shear strain demand at the base of 

wall with respect to the increase in shear strength for R=3.5 and R=5.0 respectively. 

These figures show how the shear strain demand at the base of wall reduced as the wall 

was strengthened by adding horizontal reinforcement. In Fig. 5.48, the mean shear strain 

demand was reduced from a shear strain at shear failure of 0.007 to a shear strain at 

yielding equal to 0.0035 by a 50% increase in the amount of horizontal steel at the base 

of wall. In Fig. 5.49 the initial value for mean shear strain demand was found to be 0.013 

which was significantly larger than the ultimate shear strain of 0.007. Increasing the shear 

strength of wall over its height by 50% reduced the shear strain demand to 0.007 and a 

further 50% increase in shear strength resulted in a shear strain at the base equal to 

0.0044.  
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Figure 5.48 Shear strain vs. shear strength factor applied on initial design base shear for 

R=3.5. 
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Figure 5.49 Shear strain vs. shear strength factor applied on initial design base shear for 
R=5.0. 

 

 
Figure 5.50 Design shear force ratio vs. uniform effective stiffness used in the simplified 

analysis. 
 

Figure 5.50 shows a comparison of shear force demand at the base of wall based on 

reduced effective shear stiffness method and nonlinear hysteretic shear model. These two 

different procedures are described in Sections 5.7 and 5.8 respectively. For design 

purpose, it is more convenient to avoid sophisticated hysteretic shear models while using 
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hysteretic models for flexural behaviour that has long been used for NTHA. The complex 

nonlinear shear model can be accounted for by using the reduced effective shear stiffness, 

GcAve as a fraction of gross shear stiffness GcAvg. In Fig. 5.50 dashed lines present the 

mean shear strength demand at the base of wall when appropriate hysteretic shear model 

was used. In the figure, data dots present the shear force demand predicted by simplified 

effective shear stiffness method.  According to results obtained from NTHA using the 

hysteretic shear model, an acceptable seismic performance at the base of wall was 

achieved by increasing the horizontal reinforcement. The amount of increase in shear 

strength to reach an acceptable level of shear strain in the wall was 50% for the case of 

R=3.5 and 100% for the case of R=5.0. In the case of R=2.0 wall seismic performance 

was acceptable for the initially provided strength.  

According to the results shown in Fig. 5.50, a reasonable estimate of shear force 

demand at the base of wall through simplified reduced effective stiffness method can be 

achieved by choosing a range of effective shear stiffness between 0.1GcAvg and 0.2GcAvg 

for the model of high-rise wall used in this study.  
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5.10 Summary and Conclusions 
 

The scope of this study was to understand the appropriate nonlinear shear response in a 

high-rise concrete wall subjected to ground motion. The example of wall used in this 

study was similar to a core wall used as the primary lateral resisting system in high-rise 

concrete buildings built in the Western Canada and particularly Vancouver city.

 The nonlinear flexural behaviour in high-rise walls is relatively well known and 

use of hysteretic flexural models such as degrading Takeda model (1970) has been long 

recognized as an effective way of simulating nonlinear flexural behaviour in reinforced 

concrete walls. Unlike flexural model, a reliable nonlinear shear model for reinforced 

concrete walls was not developed for many years. Gérin and Adebar (2004) proposed a 

tri-linear relationship which is appropriate for modeling the complicated stress-strain 

response for shear. This state-of-the-art model was used to investigate the seismic shear 

demand in high-rise concrete walls in the present work. 

 A set of ten ground motions were selected to run the nonlinear time history 

analyses on a 30-storey model of high-rise shear wall. Ground motions were scaled to 

match the target design spectrum for Vancouver site class C in a range between 0.2T1 and 

1.5T1. Seven of earthquake records used were selected from the complete set of crustal 

ground motions for site class C used in ATC-40 (FEMA-440) project. Three other 

earthquakes used in this study include the influence of subduction type earthquakes in 

dynamic analysis and were selected from recorded accelerations during the Tokachi-Oki 

event in Japan. 

 Three different R factors were used in studying the wall’s nonlinear dynamic 

response. R was defined as the ratio between linear bending moment to the flexural 

strength at the base of wall. Wall’s shear strength was set to match the shear force 

demand predicted by response spectrum analysis as the wall strength was reduced from 

the base toward upper levels. In most of previous studies, the nonlinear flexural 

behaviour was limited to the plastic hinge at the base while the rest of wall above the 

plastic hinge zone was assumed to remain elastic. The study on the model of wall showed 

that the flexural yielding may occur not only at the base but also along the entire height 

depending on how the flexural strength is set at different elevations. Yielding at mid-

 205



height can cause the shear force demand at upper levels to reduce significantly; therefore 

it becomes important to model the flexural nonlinearities along the entire height of wall. 

According to the analysis results, it was observed that modeling the flexural hinge only at 

the base of wall would result in overestimation of the seismic shear force demand. 

 The influence of nonlinear shear behaviour was considered in two different ways: 

First, the shear cracking effect was accounted for in a simplified way by reducing the 

wall’s effective shear stiffness over the entire height in which four different levels of 

effective shear stiffness were considered as a fraction of gross shear stiffness. The second 

way was to use the hysteretic shear model for the concrete wall.   

 According to the obtained results from analysis of the simplified model of 30-

storey wall, the shear stiffness reduction can reduce the seismic shear force demand when 

diagonal cracking is severe. The reduction however was not significant until 

GcAve=0.2GcAvg.  

 After considering the reduced shear stiffness in a simple way, a more appropriate 

hysteretic shear behaviour was considered. Nonlinear response history analysis was 

performed for different ground motions considering three different R factors. Localized 

shear deformations were observed over the wall’s height. The shear strains were largest at 

the base in all cases. Large shear strain at upper levels where there is a sudden change in 

strength was noticeable.  

 Increasing the shear capacity of the wall by adding horizontal steel was 

considered as an alternate solution to improve the wall’s performance for the model that 

was analyzed. This solution lead to a safer design in most of analysis cases , however in 

one case the shear demand was so high that a very large amount of strength was required 

in order to prevent shear failure. As the basis for performance based seismic design, the 

wall should be designed to maintain adequate amount of ductility in regions where 

localized damage is significant. These regions include the base of wall and the zones 

where there is sudden change in strength over the wall height.  

 A comparison between the results obtained from hysteretic shear model and 

results obtained from the simplified effective shear stiffness model confirmed that a good 

estimate of shear force demand can be achieved by using effective shear stiffness equal to 

20% of the gross shear stiffness for the considered model of high-rise wall in this study. 
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6 

 
 

Conclusions and recommendations  

for future studies 

 

 

 

6.1 Introduction  
 

Concrete walls are a popular seismic force resisting system for high-rise buildings as they 

provide good drift control and are simple to construct. Linear dynamic (response 

spectrum) analysis is commonly used to estimate seismic design forces in tall buildings. 

For many buildings, it is the only method of seismic analysis used. When nonlinear 

response history analysis is used in design to ensure collapse prevention requirements are 

satisfied, the results of response spectrum analysis are usually still used to first design the 

structure for life safety requirements.  

Nonlinear response of reinforced concrete walls during strong ground motions is 

very complicated. Lateral deformation of a high-rise concrete wall under influence of 

earthquake is due to two distinctive behaviours in flexure and shear. While flexure 

dominates the overall lateral response of a high-rise shear wall, shear deformations 

become extremely important at the lower heights of the wall and particularly at levels 

below the base.  

Nonlinear flexural response in a reinforced concrete wall associated with formation 

of horizontal cracks and yielding of vertical reinforcement is generally a well-known 

behaviour. The actual moment-curvature backbone for a given reinforced concrete 
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section can be determined with great accuracy by use of available sectional analysis tools 

(i.e., Response-2000, Bentz 2000). Furthermore, hysteretic models to simulate nonlinear 

flexural response that account for degradation in strength and energy dissipation are 

readily available (i.e., Takeda model 1970).  

Unlike flexural response, the shear response in concrete walls is much less known 

in practice. One of the most significant shortcomings of the previous studies on seismic 

demand of high-rise concrete walls has been the lack of a reliable nonlinear shear model. 

Majority of nonlinear analyses for high-rise concrete walls do not account for any 

nonlinearity in shear at all. Gross shear stiffness (GcAvg) is used for most of nonlinear 

dynamic analyses performed on concrete walls. Some designers account for diagonal 

cracking of concrete walls by a reduction in effective shear stiffness used in the model. 

Shear response of reinforced concrete is often thought to be linear elastic until brittle 

shear failure occurs as the shear strength is reached.  In reality, there are large shear 

deformations when diagonal cracks form and when reinforcement yields. An appropriate 

nonlinear shear model that accounts for reduced shear rigidity after diagonal cracking and 

accounts for the shear strain capacity of a wall beyond yielding of horizontal 

reinforcement was not readily available until recently. 

Gérin and Adebar (2004) presented the nonlinear shear force – shear strain 

envelope for concrete walls which they validated by comparing with a variety of tests on 

wall elements subjected to reverse cyclic shear such as those conducted by Stevens et al. 

(1991).  The model accounts for initial uncracked shear rigidity, reduced shear rigidity 

after diagonal cracking, and shear strain capacity of a wall with yielding horizontal 

reinforcement. Prior to diagonal cracking, the shear rigidity is equal to GcAvg. Gérin 

(2004) also presented an expression for shear strain capacity of a concrete wall γu, which 

depends on the level of shear stress as a ratio of concrete compression strength and shear 

strain at yielding.  

In the present study the state-of-the-art nonlinear shear model for concrete walls 

developed by Gérin (2004) was used to investigate three important issues related to 

seismic design of concrete shear wall buildings. These issues will be described in the 

following sections.  
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6.2 Summary and conclusions of present study 

 

All the recommendations presented here are based on the results obtained from analysis 

of simplified models of high-rise concrete walls which were developed specifically for 

the purpose of present study. Recommendations presented in this study apply to typical 

high-rise concrete buildings constructed in Western Canada which are twenty to forty 

stories tall. The nonlinear static analysis was used in some sections of this research and it 

is recognized that further study using nonlinear dynamic analysis is required to validate 

the conclusions based on nonlinear static analysis. Limitations of numerical models used 

in this work (i.e. two-dimensional analysis) shall be considered in drawing out practical 

recommendations. 
 

6.2.1 Seismic shear demand below ground in high-rise concrete walls 

 

High-rise concrete shear walls are usually supported below ground by floor diaphragms 

connected to perimeter foundation walls, which may result in reverse shear forces below 

the flexural plastic hinge that are much larger than the base shear above the plastic hinge. 

The magnitude of the wall reverse shear force below ground in tall buildings is dependent 

on parameters such as foundation wall size, diaphragm stiffness below ground, the 

developed maximum moment and shear at the base and the degree of wall fixity at 

footing. Among the parameters influencing the shear reversal, the effect of overturning 

moment at the base has the most significant influence. The overturning moment at the 

base of wall is carried by the combined action of diaphragms and the wall section in two 

different ways. A part of seismic induced overturning moment at the base is carried by 

the bending behaviour of the wall section below ground and the rest is carried by coupled 

shear forces developed in diaphragms below ground.  

In order to investigate the problem of shear reversal in depth, a simplified model of 

the core wall and attached diaphragms below ground was developed in Chapter 3 of the 

presented study. Results obtained from NTHA, showed that the magnitude of the 

developed reverse shear force at the below-ground levels is dependent mainly on the 
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magnitude of base moment. The seismic base shear has an inverse influence on the 

magnitude of the reverse shear force to a lesser extent.  

Nonlinear shear response of the core wall at the levels below ground was 

investigated by using the tri-linear shear model (Gérin 2003) for the shear stress-shear 

strain backbone. The nonlinear shear performance of the wall section was studied by 

monitoring the developed shear strain. The developed shear strain at the end of nonlinear 

analysis was compared with the capacity of concrete section to undergo shear 

deformations.   

The dynamic analysis of the model of wall showed that the maximum developed 

base moment with a combination of minimum shear at the base will result in the largest 

reverse shear force at the levels below ground. Based on the findings from nonlinear time 

history analysis, a simplified nonlinear analysis procedure was developed to investigate 

the nonlinear shear behaviour at the core wall below ground.  

Based on this study, a complete analysis/design procedure was proposed for 

seismic design of the core walls at levels below ground. In this procedure, all the steps 

required to design a wall for seismic shear demand is clearly explained. The unique 

feature of this approach is that it builds up gradually from simplified analysis methods 

toward more advanced analysis procedures in which the influence of nonlinear shear 

behavior in reinforced concrete walls has been account for.  

The study showed that a large increase in wall dimension is required in order to 

reach the acceptable level of shear strain in the wall. A more convenient solution to this 

problem would be allowing the diaphragm below ground to crack during strong 

earthquakes. Cracking of the diaphragms below ground would reduce the reverse shear 

force demand significantly. An appropriate design to allow cracking of diaphragm 

requires ductile detailing of diaphragm at weak joints and avoiding using oversized 

below-ground slabs in design of high-rise concrete buildings. In practice, when 

encountering huge shear reversal demand in the high-rises, one needs to keep the 

diaphragm’s thickness below ground as thin as possible to satisfy design requirements. 

Any flexural damage to the below ground section of wall which would result in a 

reduction of wall effective stiffness would cause an increase in the shear force demand.  
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6.2.2 Seismic shear force distribution between connected high-rise walls 

 

In high-rise buildings, concrete walls are tied together by rigid floor slabs at numerous 

levels, which significantly influences the seismic shear force distribution in walls. In 

Chapter 4 of the present dissertation, nonlinear static analysis was used to examine how 

nonlinear behaviour of walls influences shear force distribution. Linear, bi-linear and tri-

linear models were used to determine both flexural and shear rigidity of the walls.  When 

the traditional bi-linear model is assumed for bending and strength is made proportional 

to stiffness, the shear forces in all walls increase proportionally until all walls yield at the 

same displacement. If a more realistic tri-linear bending moment – curvature model is 

used, the shear force distribution becomes more complex, and the shear force will be 

higher in some walls than predicted by a linear analysis.  When the influence of diagonal 

cracking is accounted for, the variation from linear analysis becomes greater.  

Additional shear deformations due to diagonal cracking significantly influence the 

displacement when walls yield in flexure. A shorter length wall will actually yield in 

flexure at a smaller top wall displacement than a longer wall due to the increased shear 

deformations in the longer wall causing a local redistribution of shear forces near the base 

of the wall. This phenomenon was subsequently confirmed by Bohl and Adebar (2007) 

using nonlinear finite element analysis of cantilever concrete shear walls. Adebar et al. 

(2005) have demonstrated that when high-rise cantilever walls are tied together by rigid 

floor slabs at numerous levels, all walls yield at the same displacement (the system yield 

displacement) regardless of wall length. The results presented in this study demonstrate 

that when diagonal cracking is included in the analysis, all walls do not necessarily yield 

at the same displacement due to the differing shear deformations; however the results do 

reaffirm that the yield displacement of the walls is a system phenomenon and is not 

proportional to wall length. 

It is common practice to increase the shear demand proportional to any flexural 

over-strength using the results from linear analysis.  See for example Mitchell and Paultre 

(2006).  The results from the nonlinear analysis summarized in Chapter 4 suggest that 

this may be unconservative as the increase in shear demand can be larger than the 

increase in flexural capacity. 
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According to the results obtained from this study if RSA is used to estimate the 

seismic shear demand on a system of two-connected walls, the horizontal reinforcement 

arranged for the base of shorter wall should be extended to a few upper levels (e.g. 25% 

of lower height should be designed for the shear force demand at the base) so that the 

weaker wall at the first lower levels above base maintain enough capacity in shear to 

withstand extra shear demand caused by nonlinear action of the system.  

 

6.2.3 Dynamic shear demand on high-rise concrete walls  

 

Many high-rise concrete wall buildings are designed in North America by using only 

response spectrum analysis (RSA) to determine the seismic forces acting on the walls 

such as the bending moment and shear force envelopes. These buildings are designed 

using ductility force reduction factors of up to 5. Thus the maximum bending moment at 

the base of the wall determined by RSA is reduced by up to a factor of 5 because the wall 

has adequate ductility, which means the displacement capacity of the wall after a plastic 

hinge forms at the base is greater than the displacement demand. The design shear force 

at the base of the wall has traditionally been reduced from the elastic shear force 

determined from RSA by the same force reduction factor used to determine the design 

bending moment. 

 Nonlinear dynamic analysis has shown that flexural yielding of a cantilever wall 

does not limit the shear force in the wall. The shear force tends to increase as the 

magnitude of ground motion is increased. This increase in shear force is often referred to 

as “dynamic shear amplification”. The dynamic shear amplification factor is the ratio of 

shear force demand obtained from nonlinear analysis to shear demand obtained from a 

linear analysis procedure such as pseudo-static procedure or response spectrum analysis. 

The amplification, which is attributed to the influence of higher modes on a cantilever 

wall with a hinge at the base, can be as large as 3 or even more.  

 In Chapter 5, the influence of flexural yielding at multiple locations over the 

wall’s height and influence of shear deformations due to diagonal cracking of the wall 

were investigated. The results indicate that both significantly reduce the maximum shear 

force in the wall. It was observed that the flexural yielding can also occur at upper levels 
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in addition to the base of wall. This phenomenon would cause the shear force demand at 

upper levels to drop significantly, therefore it is important to model the nonlinear 

behaviour along the entire height where seismic force demand is large.  

 The influence of different effective shear stiffness for the wall section was 

examined through the nonlinear time history analysis. This was done by using different 

section shear stiffness (GcAve) as a fraction of gross shear stiffness (GcAvg). According to 

the obtained results from analyses, using the effective shear stiffness reduces the seismic 

shear force demand when the diagonal cracking is severe. The reduction was not 

noticeable for minor diagonal cracking in the wall.  

An appropriate nonlinear shear behaviour was not previously used in studying the 

nonlinear dynamic performance of concrete walls. Based on results from experimental 

testing of reinforced concrete panels, the state-of-the-art hysteretic shear model (Gérin- 

2003) was used in order to investigate the effect of higher modes on dynamic response of 

high-rise concrete walls.  

 Results obtained from nonlinear dynamic analysis using the hysteretic shear 

behaviour for the wall indicated localized shear deformation over the wall’s height while 

diagonal cracking occurred over the entire height of wall. The shear strains were largest 

at the base for all analysis cases and the magnitude of shear strain was noticeable 

particularly where a sudden change in strength takes place over the height. Yielding in 

flexure occurred at various heights in addition to the base of wall. Excessive shear 

deformation of the section beyond yielding of horizontal reinforcement resulted in an 

undesirable shear failure at the base of wall for some of analysis cases. 

 Because of the complexity of using the hysteretic shear model, a simplified 

approach to account for nonlinear shear response was adopted in this study. For 

simplification of the nonlinear shear response, and based on the current study of the 

model of high-rise walls, GcAve=0.2GcAvg may be used to account for nonlinear shear 

behaviour in the sections of high-rise concrete walls above the ground level. This 

recommendation applies to the walls which possess similar properties to the numerical 

example used in the present work. 
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6.3 Recommendations for future studies  
 

The shear-flexure interaction is a complicated phenomenon that needs further 

investigations through peer studies. The interaction between flexural and shear response 

in concrete walls has not yet been quantified into a simplified and practical model. Once 

a reliable model is developed, shear-flexure interaction should be used in future studies to 

present the most accurate nonlinear model for reinforced concrete walls.  

Fiber-section modeling is an appropriate way of considering the flexural-axial force 

interaction in reinforced concrete walls. This model is able to capture the flexural 

yielding over the entire height of reinforced concrete walls. The hysteretic model can be 

separately defined for concrete and steel bar material and the resultant hysteretic model 

for the component should be verified by the results of experimental testing on reinforced 

concrete elements.  

Using a 3-D model of the high-rise building has several advantages compared to 2-

D models. An appropriate 3-D model of the high-rise building accounting for the effect 

of diaphragms at every level can improve the results obtained from this study further. A 

3-D model can also account for the higher modes of vibration associated with torsion. A 

comprehensive inspection is required to ensure all the assumptions in 3-D modeling are 

reasonable and lead to a better estimate of seismic response.  
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Appendices  

 

Appendix A: Ground motions used for dynamic analysis 
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Figure 1: Acceleration, velocity and displacement for Crustal record C-1. 
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Appendix A: Ground motions used for dynamic analysis 
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Figure 2: Acceleration, velocity and displacement for Crustal record C-2. 
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Appendix A: Ground motions used for dynamic analysis 
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Figure 3: Acceleration, velocity and displacement for Crustal record C-3. 
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Appendix A: Ground motions used for dynamic analysis 
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Figure 4: Acceleration, velocity and displacement for Crustal record C-4. 
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Appendix A: Ground motions used for dynamic analysis 
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Figure 5: Acceleration, velocity and displacement for Crustal record C-5. 
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Appendix A: Ground motions used for dynamic analysis 
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Figure 6: Acceleration, velocity and displacement for Crustal record C-6. 
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Appendix A: Ground motions used for dynamic analysis 
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Figure 7: Acceleration, velocity and displacement for Crustal record C-7. 
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Appendix A: Ground motions used for dynamic analysis 

 

Acceleration (cm/s2)

-200
-150
-100
-50

0
50

100
150
200

0 10 20 30 40 50 60 70 80 90 100

Velocity (cm/s)

-30000

-20000

-10000

0

10000

20000

30000

0 10 20 30 40 50 60 70 80 90 100

Displacement (cm)

-15000

-10000

-5000

0

5000

10000

15000

0 10 20 30 40 50 60 70 80 90 100

Figure 8: Acceleration, velocity and displacement for Crustal record S-1. 
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Appendix A: Ground motions used for dynamic analysis 
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Figure 9: Acceleration, velocity and displacement for Crustal record S-2. 
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Appendix A: Ground motions used for dynamic analysis 
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Figure 10: Acceleration, velocity and displacement for Crustal record S-3. 

 
 

 

 



 230

Appendix B: Response spectra for selected ground motions 
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Appendix B: Response spectra for selected ground motions 
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Appendix B: Response spectra for selected ground motions 
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Appendix B: Response spectra for selected ground motions 
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Appendix C: Nonlinear time history analysis results (See Section 3.3.2) 
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T1=4s , R=4, APEEL
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T1=4s , R=4, Northridge
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T1=1s , R=4 , Lake
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T1=1s , R=4, APEEL
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T1=1s , R=4, Northridge
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Appendix D: Nonlinear time history analysis envelopes (See Section 5.8) 

 

 
Nonlinear response envelope of bending moment for crustal events(R=3.5, SF=1.0). 

 

Nonlinear response envelope of bending moment for subduction events(R=3.5, SF=1.0). 
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Nonlinear response envelope of shear force for crustal events(R=3.5, SF=1.0). 

 

 
Nonlinear response envelope of shear force for subduction events(R=3.5, SF=1.0). 

 

 



 242

Nonlinear response envelope of shear strain for crustal events(R=3.5, SF=1.0). 

 

Nonlinear response envelope of shear strain for subduction events(R=3.5, SF=1.0). 

 



 243

 
Nonlinear response envelope of bending moment for crustal events(R=3.5, SF=1.5). 

 

 

 
Nonlinear response envelope of bending moment for subduction events(R=3.5, SF=1.5). 
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Nonlinear response envelope of shear force for crustal events(R=3.5, SF=1.5). 

 

Nonlinear response envelope of shear force for subduction events(R=3.5, SF=1.5). 
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Nonlinear response envelope of shear strain for crustal events(R=3.5, SF=1.5). 

 

 

Nonlinear response envelope of shear strain for subduction events(R=3.5, SF=1.5). 
 


