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Abstract 

Performance-based earthquake engineering is an emerging field of study which complements the 

prescriptive methods that the design codes provide to ensure adequate seismic performance of structures. 

Accounting for uncertainties in the performance assessments forms an important component in this area. 

In this context, the present study focuses on two broad themes; first, treatment of uncertainties and the 

application of the first-order reliability method (FORM) in the finite-element reliability analysis, and 

second, the seismic risk assessment of reinforced concrete structures for performance states such as, 

collapse, and monetary loss. In the first area, the uncertainties arising from the inherent randomness in 

nature (aleatory) and due to the lack of knowledge (epistemic) are identified. A framework for the 

separation of these uncertainties is proposed. Following this, the applicability of FORM to the linear and 

nonlinear finite-element structural models under static and dynamic loading is investigated. The case 

studies indicate that  FORM is applicable for linear and nonlinear static problems. Strategies are proposed 

to circumvent and remedy potential challenges to FORM. In the case of dynamic problems, the 

application of FORM is studied with an emphasis on cumulative response measures. The limit-state 

surface is shown to have a closed and nonlinear geometric shape. Solution methods are proposed to obtain 

probability bounds based on the FORM results. In the application-oriented second area of research, at 

first, the probability of collapse of a reinforced concrete frame is assessed with nonlinear static analysis. 

By modelling the post-failure behaviour of individual structural members, the global response of the 

structure is estimated beyond the component failures. The final application is the probabilistic assessment 

of monetary loss for a high-rise shear wall building due to the seismic hazard in the Cascadia Subduction 

zone. A 3-dimensional finite-element model of the structure with nonlinear material models is subjected 

to stochastic ground motions in the reliability analysis. The parameters for stochastic ground motion 

model are developed for Vancouver, Canada. Monetary losses due to the damage of structural and non-

structural components are included.  
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Chapter 1. INTRODUCTION  
Performance-based earthquake engineering is an emerging area of research which emphasises the seismic 

performance of the structures for different safety levels. This paradigm signals a move away from the 

exclusively prescriptive methods of design codes. The codes have traditionally provided the response 

measures which are to be verified against pre-determined threshold values. In addition to the ‘‘ultimate 

limit-states’’ and the ‘‘serviceability limit-states’’ pre-defined by the design codes, performance-based 

earthquake engineering seeks to define limit-states based on additional concerns, such as ‘‘down-time,’’ 

‘‘monetary loss,’’ ‘‘repair costs,’’ etc.  

The emergence of the performance-based earthquake engineering has necessitated the application of the 

sophisticated structural analysis methods, such as finite-element analysis, for accurate predictions of the 

structural response. Furthermore, it has brought the unavoidable uncertainties in the seismic engineering 

to a sharp focus. Uncertainties exist to a great extent not only in the prediction of the intensity and 

occurrence of the earthquakes but also in the quantification of the performance measures such as damage 

and monetary loss. Consequently, the prediction of the structural performance must account for these 

uncertainties in a rational and consistent manner. Traditional structural reliability methods have provided 

a practical framework for dealing with uncertainties. However, certain unique challenges exist in the 

application of the reliability methods in the context of the performance-based earthquake engineering. 

The presence of large number of random variables to capture the uncertainties in the earthquake ground 

motions and structural models, and high computational costs associated with the nonlinear time-history 

analytical methods are distinctive features of rigorous performance-based earthquake engineering. These 

form the motivation for this study.  

1.1. BACKGROUND 

The Pacific Earthquake Engineering Research (PEER) center has been prominent in addressing the 

uncertainties in the context of the performance-based earthquake engineering. The PEER methodology, 

originally proposed by Cornell and Krawinkler (2000) and presented in detail by Moehle and Deierlein 
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(2004), and Porter (2003), involves de-aggregation of the performance-based earthquake engineering into 

four sections; 1) hazard analysis to account for the ground motion intensities, 2) estimating engineering 

demand parameters which are essentially the outcomes of a structural analysis, 3) identifying the damage 

state of a structure by employing damage measures, and 4) evaluating the decision variables such as 

repair cost, downtime, loss of productivity, which are relevant to the stakeholders. The uncertainties are 

accounted in each section with the development of conditional cumulative probability distributions 

known as ‘‘fragility curves’’ (Moehle and Deierlein 2004).   

Several researchers have worked within this paradigm focusing on a single section, such as probabilistic 

seismic hazard analysis to obtain ground motion intensities by Stewart et al. (2001), Baker and Cornell 

(2005, 2006a, b), the fragility curves for the engineering demand parameters by Krawinkler et al. (2003), 

Taghavi and Miranda (2005), Akkar et al. (2005), Ramamoorthy et al. (2006), Porter et al. (2007), the 

fragility curves for damage and collapse by Shaikhutdinov (2004), Pagni and Lowes (2006), Brown and 

Lowes (2007), Badillo-Almaraz et al. (2007), Zhu et al. (2007), and the fragility curves for loss estimation 

by Porter et al. (2001), Porter et al. (2002), Miranda and Aslani (2003), Kircher (2003), Comerio (2006).  

Each fragility curve is conditioned on the variable of the section ahead of it. For example, the fragility 

curves for the engineering demand parameter are conditioned on the intensity measures, the fragility 

curves for the damage measure are conditioned on the engineering demand parameters and the fragility 

curves for the decision variables are conditioned on the damage measures. Eventually, the probability 

distribution for a decision variable is obtained by employing individual fragility curves in a multiple 

integral. The evaluation of the multiple integral is typically carried out by the simulation methods. 

Simplified approaches, such as ‘‘Four-way’’ graphical method by Mackie and Stojadinovic (2006), are 

developed for rapid assessment of the performance in lieu of sophisticated methods of structural analysis. 

More detailed approaches, such as those presented by Moehle et al. (2005) and Yang (2006), involve 

fitting probability distributions to a sample set of structural responses obtained from detailed nonlinear 

time-history analyses.  
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Performance assessment by the fragility curve approach imposes certain limitations on the propagation of 

uncertainty. The uncertainties in the estimation of the intensity measures are not distinguished from the 

uncertainties in the estimation of damage measures in the probability assessment of the exceedance of the 

decision variables. Furthermore, it is not possible to discern the uncertainties stemming from the 

randomness (aleatory) and the lack of knowledge (epistemic) when the fragility curves are developed 

from sparse experimental or field data. Finally, only the information regarding the second moment 

statistics is available in the probability distribution obtained for the decision variables.  

An alternate approach is to perform a single reliability analysis by employing individual models for the 

estimation of ground motion intensities, engineering demand parameters, damage measures and decision 

variables. ‘‘Unified reliability analysis’’ (Haukaas 2007) is one such approach. Employing individual 

models in a single reliability analysis facilitates the propagation of uncertainties from different sources.  

However, rigorous performance assessment of complex structures with such an approach involves 

significant computational effort.  

Detailed estimation of the structural damage under earthquake excitation involves modelling of the 

nonlinear inelastic behaviour of the materials. This compels the utilization of time-stepping methods for 

the dynamic analysis. Even for a deterministic analysis, estimation of structural response and damage 

with finite element models and refined nonlinear time-history analysis involves considerable computation 

time. For example, a single time-history analysis of a 32 storey building with a detailed three dimensional 

finite element model and nonlinear material models takes about a day on a 2.66GHz processor. In this 

context, a reliability analysis method such as mean centered Monte Carlo Simulation would increase the 

computational effort manifold.  The presence of several random variables, contributed primarily due to 

refined ground motion models, discourages the utilization of reliability methods such as response surface 

methods, which become computationally expensive with the increasing number of random variables.  

First-order reliability method (FORM) involves reasonable computational effort when employed in 

conjunction with ‘‘direct differentiation methods’’ for the gradient computation (Haukaas and Der 

Kiureghian 2004). Furthermore, importance measures, which rank the influence of the random variables 
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on the performance measures, are a by-product of this method. However, certain criteria exist for the 

feasibility of the application of FORM and the accuracy of the probability estimates from this method. 

This premise motivates the current study.  

1.2. OBJECTIVES AND SCOPE 

The present study concentrates on the application of FORM to the performance-based earthquake 

engineering problems. The potential pitfalls and the solution strategies for the applicability of FORM with 

finite element models are investigated. The objective is to promote the application of the structural 

reliability methods for the probabilistic assessments of structural performance. Diverse topics are 

explored within this context and the research is presented in a manuscript-based format. The objectives of 

each chapter are different and are precisely stated in their introduction.  

The scope of the study for the applicability of FORM is limited to the structural models with finite 

elements. Diverse material models and performance functions are utilized in demonstrating FORM 

application. However, the example applications in performance assessments are primarily focused on 

reinforced concrete buildings. In particular, procedures are presented for the probabilistic assessments of 

performance objectives, such as “monetary loss” and “structural collapse.”  

1.3. ORGANIZATION OF CHAPTERS 

As mentioned above, this study is organized in a manuscript-based format. This implies each of the 

following chapters, excluding the concluding chapter, are written as individual manuscripts for journal 

publication. Each chapter has the requisite content to be independent of the preceding chapters. However, 

Chapters 3 and 4 form the manuscript for a two-part paper. Hence, these two chapters refer to each other.  

The study starts with the identification, categorization and separation of the aleatory and epistemic 

uncertainties arising from various sources in Chapter 2. This is followed by the investigation of the 

applicability of FORM with finite element structural models. This work is divided into two-parts based on 

the analysis type; statics in Chapter 3 and dynamics in Chapter 4. The following two chapters are focused 
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on the practical applications. Chapter 5 is the probabilistic assessment of collapse of a reinforced concrete 

frame with nonlinear static analysis. Chapter 6 is the probabilistic assessment of monetary loss of a high-

rise reinforced concrete shear-wall building with nonlinear dynamic analysis. Chapter 7 presents the 

concluding remarks. A synopsis of each chapter is presented below.  

1.3.1. Chapter 2: Identification of uncertainties  

Finite element reliability analysis has been devised to obtain the probability of response events based on 

random material, geometry and loading parameters. Previously, such analysis has not distinguished 

between the uncertainties arising from inherent randomness, and from model errors and insufficient 

knowledge about the probability distribution parameters. In this chapter it is argued that this distinction is 

imperative for meaningful interpretation of the resulting reliability and to provide confidence in reliability 

assessments among practicing engineers. To this end, the sources of epistemic uncertainty are identified 

and explicitly included in the analysis. The quantification, representation, and propagation of epistemic 

uncertainty by different approaches are presented and compared, including the Bayesian probabilistic 

approach and the fuzzy randomness approach. Consequently, measures of confidence in the reliability 

index are obtained. Also, the utilization of importance measures is emphasized in order to identify where 

data gathering or model improvement has the greatest influence. Another novelty is the implementations 

in the rapidly advancing OpenSees software. The extended software produces an uncertain reliability 

index from which point estimates or confidence bounds are extracted. A numerical example involving a 

nonlinear finite element model of a reinforced concrete building with several hundred random variables is 

employed to demonstrate the implementations.  

1.3.2. Chapter 3: Feasibility of FORM – statics 

The intention in this chapter is to expose potential pitfalls and remedies when carrying out reliability 

computations in conjunction with finite element (FE) analysis. This type of analysis is increasingly being 

utilized to predict performance probabilities in various civil engineering applications. Emphasis is placed 

on the FORM due to its appealing computational efficiency; a principal concern in FE-based reliability 
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analysis. The study demonstrates that certain limit-state functions are fully amenable to FORM, while 

others carry the potential for difficulties. The limit-state functions and associated issues are categorized 

and exposed in this work by means of an enumerated list of findings. These findings are intended to guide 

the practicing engineer who is faced with carrying out a FE-based reliability analysis. This work is 

accompanied by Chapter 4 that presents developments for the fundamentally different dynamic problem.  

1.3.3. Chapter 4: Feasibility of FORM – dynamics  

As an extension of Chapter 3, the feasibility of application of the FORM is studied in the context of 

dynamic analysis. A novel formulation of the limit-state function is considered for utilization in the FE-

based reliability analysis with dynamic loading and inelastic material models. This formulation includes 

cumulative response measures which capture the influence of the dynamic excitation on the structural 

performance. It is contrasted with the traditional time-variant reliability analysis and the applicability of 

FORM with cumulative response measures is investigated.  

1.3.4. Chapter 5: Probabilistic evaluation of collapse 

This chapter addresses the probabilistic seismic capacity evaluation of the existing non-ductile reinforced 

concrete structures that are vulnerable to shear, and thus axial, failures of their columns. The probability 

of structural collapse at a target lateral displacement imposed by seismic hazard is estimated by reliability 

analysis. For this purpose, the prevalent nonlinear static procedure is extended with finite element 

reliability analysis. The global structural model is enhanced by incorporating probabilistic capacity and 

post-failure response models of individual columns. The challenges in the detection of collapse and the 

potential problems and remedies in the reliability analysis due to ‘‘gradient discontinuities’’ are presented. 

In particular, ‘‘smoothing’’ of the post-failure response models is implemented to represent realistic 

member behaviour and to avoid non-convergence in the reliability analysis. Finally, parameter 

importance measures are employed to identify the parameters with the highest contribution to the 

uncertainty in the structural performance.  
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1.3.5. Chapter 6: Probabilistic evaluation of loss 

This chapter offers a pioneering application of performance-based earthquake engineering. A probability 

curve for the total seismic loss of a real-world building is obtained by means of state-of-the-art models for 

the impending ground-motion, the structure, the non-structural content, the damage, and the ensuing 

losses. The probabilistic nature of the models is emphasized. In particular, the seismic hazard at the 

building’s location (Vancouver, Canada) is described by a comprehensive and novel probabilistic model. 

It is argued that this ground motion model is particularly advantageous in the probabilistic analysis, 

compared to the more common utilization of a limited set of ground motions recorded elsewhere. In this 

study, the probabilistic integrals are carried out by means of a reliability formulation; referred to as 

unified reliability analysis. Each evaluation of the loss-based limit-state function entails a unique 

realization of the ground motion and a state-of-the-art inelastic dynamic finite element analysis of the 

structure. The result is a demonstration of the added-value performance-based engineering that should be 

part of the future of earthquake engineering; adding to the prescriptive, non-informative design code 

approach.  

1.3.6. Chapter 7: Conclusions and future work   

This chapter summarizes the research contributions in this work. The topics for the future research are 

identified and conclusions are drawn regarding the practical use of the research findings. 
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Chapter 2. IDENTIFICATION OF UNCERTAINTIES1 

2.1. INTRODUCTION 

The advent of performance-based engineering has placed increased emphasis on realistic simulation of 

structural behaviour under extreme loading. Instead of the traditional prescriptive and non-transparent 

code rules to ensure life safety, the next-generation codes include additional performance indicators. 

Examples are amount of damage, monetary loss, and loss of functionality (downtime). Such predictions 

require comprehensive numerical modelling and realistic representation of nonlinear structural behaviour. 

Although extensive research is currently being conducted in this area, the response predictions can 

ultimately only be made in a probabilistic manner. Uncertainty is present in every aspect of the analysis. 

Hence, the prediction of structural performance must be done within a reliability framework. 

Finite element reliability analysis (FERA) has been developed to account for uncertainties in structural 

analysis. The input parameters of the finite element model are provided as random variables to account 

for uncertainty in the material, geometry, and loading parameters. Subsequently, the probability of 

response events is computed. This is achieved by defining limit-state functions (also referred to as 

performance functions) in terms of response quantities of the finite element analysis. For instance, the 

probability that the displacement response d from a nonlinear static pushover analysis exceeds a threshold 

d0 is addressed by the limit-state function g = d0 - d, where d obviously is a function of the random input 

variables. Numerical examples involving comprehensive nonlinear finite element models with 

approximately 500 random variables are presented in Haukaas and Der Kiureghian (2004).   

The reliability problem is a multifold integral in the space of random variables. The joint probability 

density function (PDF) of the random variables is the integration of the failure domain defined by the 

limit-state function(s). In the case of one limit-state function the problem reads 

                                                   
 
1 A version of this chapter has been published. Koduru, S.D. and Haukaas, T. (2006), “Uncertain reliability index in 
finite element reliability analysis,” International Journal of Safety and Reliability, 1(1-2), 77-101 



Chapter 2: Identification of Uncertainitiess 

 - 11 -

 ∫ ∫≤
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where pf is the sought probability, x is the vector of random variables, and f(x) is the joint PDF. In the 

first and second order reliability methods (FORM and SORM) the integration boundary g=0 is 

approximated by a hyper-plane and a paraboloid, respectively, at the most likely failure point in the 

transformed space of uncorrelated standard normal random variables y. This point is termed the most 

probable failure point (MPP). The reliability index β is related to the probability by β = -Φ-1(pf), where Φ 

is the standard normal cumulative distribution function (CDF). In FORM analysis the reliability index 

represents the minimum distance from the origin in the standard normal space to the integration boundary 

g=0. Upon determining this point, the corresponding failure probability is computed by  pf = Φ(-β). Of 

particular interest to the developments in this chapter is the availability of importance measures from 

FORM. This analysis renders available importance vectors that rank the model parameters according to 

their relative influence on the reliability. Moreover, these vectors contain information to distinguish 

parameters as “resistance” and “load” variables. Details and numerical examples are presented by 

Haukaas and Der Kiureghian (2005).  

The first coupling between FORM reliability analysis and the finite element method is found in Der 

Kiureghian and Taylor (1983). A number of contributions have since been presented, including those by 

Liu and Der Kiureghian (1991), Gutierrez et al. (1994), Zhang and Der Kiureghian (1997), Der 

Kiureghian and Zhang (1999), Sudret and Der Kiureghian (2000), Imai and Frangopol (2000), Haldar and 

Mahadevan (2000), Frier and Sorensen (2003), and Haukaas and Der Kiureghian (2004). In essence, 

FERA entails the merger between finite element analysis and reliability methods such as the FORM and 

SORM, sampling methods, and response surface methods. However, several reliability methods tend to 

be practically prohibitive due to high computational cost, particularly for problems with hundreds of 

random variables. Each time the limit-state function is evaluated a finite element analysis is required, 

which is usually a computationally demanding task. Of particular effectiveness in FERA is the 

combination of FORM and subsequent importance sampling around the most probable failure point. This 
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scheme requires only approximately 10 evaluations of the limit-state function (and its gradient with 

respect to the random variables) to find the approximation point in FORM, followed by efficient 

importance sampling analysis centred at this point.  

An important aspect of the FERA methodology is that probability distributions are prescribed on the 

fundamental parameters of the problem. For instance, the Young’s modulus of a material is characterized 

as a random variable, instead of a global response parameter such as the storey stiffness. This is 

advantageous because data is available for the fundamental parameters but rarely for the global 

parameters. The data is typically obtained by performing coupon tests or concrete cylinder tests for small 

specimens in the laboratory. This remedies the problem that data is unavailable for the response of the 

entire structure, but it introduces uncertain model errors of the type discussed in this chapter. It  is also 

noted that, in principle, the FERA methodology requires complete knowledge of the probability 

distribution of all the random variables, as well as information about correlation. In reality, uncertainty 

exists in the description of the probability distributions and the correlation due to limited availability of 

data. This adds to the uncertain errors that are present due to the utilization of specimen tests to model 

complex 3-dimensional structural components, as well as errors in the numerical modelling and analysis 

procedures. This motivates the present study.  

The uncertainty that is reducible by human intervention, for instance by data gathering or by model 

improvement, is termed “epistemic” uncertainty (Hacking 1975). In this chapter, sources of epistemic 

uncertainty in finite element reliability analysis are reviewed and accounted. As pointed out by Der 

Kiureghian (1989), the presence of epistemic uncertainty makes the calculated probability itself a random 

variable. Explicit representation of this uncertainty by probabilistic or other means results in an uncertain 

reliability, rather than a scalar value. In this chapter this viewpoint is adopted and different approaches to 

account for epistemic uncertainty in FERA are explored.  

The developments in this chapter are implemented in the OpenSees software. OpenSees (open system for 

earthquake engineering simulation) is an open-source, object-oriented general-purpose finite element 
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code written in C++ and specifically developed for earthquake engineering analysis. It is the official 

computational platform of the Pacific Earthquake Engineering Research (PEER) Center and has recently 

been adopted as the simulation platform of NEES, the NSF-sponsored George E. Brown Jr. Network for 

Earthquake Engineering Simulation. OpenSees was extended with reliability and response sensitivity 

capabilities by Haukaas and Der Kiureghian (2004), thus enabling FERA in OpenSees. Source code, 

user’s guide, and executable files are available at the Internet site http://opensees.berkeley.edu. In this 

chapter OpenSees is further extended to explicitly account for epistemic uncertainty.  

2.2. EPISTEMIC UNCERTAINTY 

A number of uncertainties are present in numerical prediction of structural performance. These include 

uncertain material properties, uncertain geometrical imperfections, and uncertain modelling and analysis 

errors. These all contribute to the uncertainty in the prediction even under well-defined loading 

conditions. The different types of uncertainty are commonly classified as being either aleatory or 

epistemic in nature (Hacking 1975). The aleatory uncertainty is defined as the inherent variability of a 

phenomenon and is therefore irreducible without changing the phenomenon itself. Conversely, the 

epistemic uncertainty is due to lack of knowledge and is thereby reducible provided additional 

information. 

It is emphasized that several paradigms and schools of thought exist in the classification and 

representation of uncertainty. Indeed, one may argue that aleatory uncertainty does not exist in our 

application. This viewpoint would be supported by the fact that natural phenomena are not uncertain if we 

fully understand the processes that govern them. If one was able to develop models that described the 

materials even at the molecular level, then a true representation of nature without aleatory uncertainty 

could be envisioned. However, this is practically impossible and this viewpoint is rejected. In this chapter 

a number of types of uncertainty are considered that can be classified as being either aleatory or epistemic 

in nature.  
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In the literature a number of categorizations of types of uncertainty are encountered. O’Hagan and Oakley 

(2004) categorize the types of uncertainty as parametric uncertainty, model inadequacy, residual 

variability, and code inadequacy. Der Kiureghian (1989) classifies sources of uncertainty as inherent 

variability, estimation error, model imperfection, and human error. Parry (1996) employs a briefer 

categorization of uncertainty as parametric, model, and completeness uncertainty. However, the 

uncertainties arising from the lack of statistical data to assess the model parameters and the lack of 

knowledge to obtain a complete and correct model form are distinguished by all the researchers. Winkler 

(1996) argues that, although the classification of uncertainties is useful from a practical point of view, all 

categorizations are nonetheless artificial. Hora (1996) agrees that such classifications are difficult to 

generalize and label as aleatory or epistemic in nature. Ditlevsen (1983) makes the case that all theoretical 

uncertainty may be modelled as “subjective probabilities,” with the exception of gross errors.  

It is concluded that a number of types of uncertainty are present, depending on the type of the problem at 

hand. Moreover, it is argued that for the objectives in this chapter the categorization of types of 

uncertainty is not essential. Rather, what is essential is to distinguish between the nature of them; aleatory 

or epistemic. The latter is intuitively most challenging and is not exclusively amenable to probabilistic 

characterization. Indeed, epistemic uncertainty makes the probability estimates themselves uncertain. It is 

argued that it is imperative for the future use of FERA to comprehensively identify sources of epistemic 

uncertainty, and to explicitly include them in the analysis by distinguishing them from aleatory 

uncertainties. To this end, the following exposition of epistemic uncertainty in probabilistic prediction of 

structural response is suggested:  

Idealization uncertainty: The foundation for structural analysis is the idealization of reality into a 

mathematical boundary value problem. This entails continuum mechanics assumptions that provide 

mathematical equations for equilibrium, kinematics, and constitutive behaviour, as well as boundary 
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conditions. For instance, a common kinematics equation in beam theory neglects shear deformation. 

Epistemic uncertainty is thereby introduced, due to imperfect model form and/or missing parameters.2  

Complexity uncertainty: The parameters of an idealized boundary value problem are commonly 

determined by laboratory tests of small specimens. In the real structure, however, complex multi-axial 

stress states are present. For instance, the stress paths in a beam-column connection or the bonding 

between concrete and reinforcement are complicated phenomena for which models and data are limited. 

Hence, the estimates from simplified laboratory tests carry uncertainty. In this chapter, this is separated 

from the idealization uncertainty and referred as complexity uncertainty.  

Statistical uncertainty: Parameters such as material stiffness and strength are assessed based on 

available data. Uncertainty arises when the number of observations is too small, which is frequently the 

case. This leads to uncertainty in the probability distribution parameters of the random variables and is 

referred to as statistical uncertainty. It is noted that measurement error, which for a given measuring 

device or procedure is aleatory, adds to the statistical uncertainty to form the total uncertainty in the 

distribution parameters.  

Finite element discretization uncertainty: Structural members such as beams, columns and shear walls 

are modelled as discrete elements in a finite element analysis. Deficiencies in mesh density and order of 

the shape functions introduce errors in the structural response predictions. It is debated whether such 

errors are uncertain, because an “infinitely” refined mesh with convergent elements would lead to a 

unique result. For a new structure for which such an exercise is practically impossible, it is considered 

that this error to be epistemically uncertain in nature.  

Finite element analysis uncertainty: Approximate numerical analysis techniques are employed to obtain 

the response in nonlinear and/or dynamic finite element analysis. Examples are the Newton-Raphson 

procedure to attain equilibrium and the Newmark time-stepping schemes to accommodate time-history 

                                                   
 
2 We recognize that, technically, the inherent randomness in omitted random variables is aleatory in nature.  
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analysis. The presence of errors due to finite tolerances and time increments, as well as computer round-

off, signifies reducible, and hence epistemic, uncertainty in the computed response.  

Reliability analysis uncertainty: From Eq. (2-1) it is evident that the estimation of the probability of 

failure requires the evaluation of a multifold integral. This is addressed by inherently approximate 

reliability methods. Moreover, it is generally not a trivial task to determine what constitutes failure, which 

leads to uncertainty in the limit-state functions employed to specify the failure criterion. These 

approximations in the reliability analysis techniques and the performance criteria result in further 

epistemic uncertainty in the final result; the structural reliability.  

In this chapter a framework is implemented for accounting for epistemic uncertainty and to compare 

different techniques. Statistical uncertainty in the material and geometry properties of the finite element 

model is selected as the primary case for demonstration. Several researchers are working to develop 

probabilistic models to account for epistemic model uncertainties, including Thacker et al. (2001) and 

Bebamzadeh and Haukaas (2004). From an implementation viewpoint; the statistical uncertainty is most 

challenging. To account for this uncertainty, distribution parameters for the random variables in FERA, 

such as means and standard deviations, themselves are allowed to be uncertain. This leads to uncertain 

probability distributions for the fundamental random variables. Fig. 2-1a indicates the uncertainty in the 

probability distribution of a random variable x due to the epistemic uncertainty in its distribution 

parameters; namely, the mean µ and the standard deviation σ. The uncertainty in the mean and the 

standard deviation may be characterized in different ways as outlined in Fig. 2-1b, where a probabilistic 

and a fuzzy randomness approach are shown. The epistemic uncertainty in the probability distribution 

parameters causes the reliability index to be uncertain. As sketched in Fig. 2-1c, a “characterizing 

function” is obtained that depends on the selected approach, from which point estimates or confidence 

measures on the reliability may be obtained.  

It is stressed that a methodology to account for epistemic uncertainty should result in a reliability measure 

that (1) provides insight into the relative influence of the various sources of epistemic uncertainty and (2) 
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provides measures of confidence in the obtained reliability. The first objective is accomplished by 

exploring importance measures from an epistemic reliability analysis, analogue to the importance 

measures available from traditional reliability analysis. The second objective is achieved by providing 

confidence bounds on the reliability, as well as providing distribution functions for the reliability itself. 

To this end, a number of approaches seem to be available in the literature to address epistemic 

uncertainties, including those based on probability theory, fuzzy set theory, evidence theory and random 

set theory. The transferable belief models (Ayyub 2004), imprecise probability methods (Hall and Lawry 

2003), coherent lower previsions (de Cooman and Troffeas 2004, Kozine and Utkin 2004), envelope 

distribution methods (Berleant and Zhang 2004) and the information gap models (Ben-Haim 2004) 

represent approaches formed by a combination of these theories. In the following two options are 

explored to compare suitability, efficiency, ease of implementation, and interpretation of results.  

2.3. THE PROBABILISTIC APPROACH 

A number of researchers consider the probabilistic approach to be supreme in handling any type of 

uncertainty; aleatory as well as epistemic. In particular, the Bayesian methodology has become a vehicle 

to incorporate statistical information as well as subjective information, such as engineering judgment. 

Although the inclusion of this information does not conform to the frequency notion of probability, the 

result of the reliability analysis is still useful as a measure of “degree of belief” (Vick 2002). The 

probabilistic approach presented in the following includes the Bayesian option to incorporate information 

to reduce the epistemic uncertainty.  

Consider the case of uncertain distribution parameters. It is denoted by x the vector of potentially 

correlated random variables [x1, x2, … xn] that are intended to describe the inherent variability in material, 

geometry, and load parameters. For instance, one component of x may be a Young’s modulus of one 

structural member in the finite element model. In this chapter, the parameters of the probability 

distribution of x are themselves considered as random variables, collected in the vector θ = [θ1, θ 2, … θ 

m]. One example is a random variable x1 with an uncertain mean θ1 as well as an uncertain standard 
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deviation θ2. In this paradigm, the random variables x represent aleatory uncertainty, while θ are 

considered to represent epistemic uncertainty.  

The Bayesian updating rule is utilized to update the joint PDF for θ based on available information (Box 

and Tiao 1973): 

 )(')()('' θθθ fcLf =  (2-2) 

where )('' θf  is termed the “posterior” joint PDF, c is the normalizing constant, )(θL  is the “likelihood 

function” for the observed data, and )(' θf  is the “prior” joint PDF. Subjective information is typically 

incorporated through the prior PDF, while observed data is incorporated as it becomes available through 

the likelihood function, often with the previous posterior PDF as the prior PDF. In this manner, the 

posterior distribution )('' θf  is gradually improved by incorporating new information. The reader is 

referred to Box and Tiao (1973) for further details on Bayesian updating.  

The separation of the parameter uncertainty into individual random variables θ implies that the joint PDF 

for x as a function of the distribution parameters is a conditional PDF, denoted f(x|θ). It is noted that the 

predictive PDF of x that includes the parameter uncertainty is obtained by the rule of total probability in 

the form of the multifold integral over the outcome space of θ: 

 ∫ ∫= θθθxx d)()|()( fff L  (2-3) 

In principle, this joint PDF may then be substituted into Eq. (2-1) to obtain pf and the corresponding 

reliability index. This amounts to considering parameters such as the means and standard deviations as 

random variables themselves in the traditional type reliability analysis. This is conceptually simple to 

implement. However, this exercise is not useful in our developments because it hinders the separation of 

aleatory and epistemic uncertainty. Instead, the reliability index is considered to be a function of the 

random variables θ and two approaches are explored to explicitly expose the influence of epistemic 

uncertainty on the reliability index.  
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First first-order approximations are employed for the statistical moments of functions of random 

variables, where β is the function and θ are the random variables. This produces estimates for the mean 

and the standard deviation of the reliability index. In the second approach the probability distribution for 

the reliability index is obtained by a nested, parametric reliability analysis. These approaches have in 

common the need for the reliability index conditioned upon θ. That is, the following form of Eq. (2-1) is 

evaluated:  

 ∫ ∫≤
= xθxθ d)|()(

0
fp

gf L  (2-4) 

to obtain the corresponding reliability index ))(()( 1 θθ fp−Φ−=β .  

The question of selecting values for θ is answered in the first approach by the mean values µθ. The mean-

value, first-order approximation of the reliability index is obtained by (Ang and Tang 1975) 

 )( θµβµβ =  (2-5) 

The corresponding first-order approximation of the standard deviation of the reliability index reads  

 ββσ β θθθθ Σ ∇∇= T  (2-6) 

where βθ∇  is the gradient of the reliability index with respect to θ and θθΣ  is the covariance matrix for 

the random variables θ. When θ represents parameter uncertainty, specifically the mean and standard 

deviations of the random variables x, then the gradient of the reliability index from FORM analysis is 

obtained by the chain rule of differentiation: 

 θ
y

yθθ ∂
∂

∂
∂=

∂
∂=∇

*T

*
βββ  (2-7) 

where *y  is the coordinates of the MPP in the standard normal space. It is known that αy =∂∂ */β  

because the reliability index is written *T yα=β , where α  is the negative normalized gradient vector of 
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the limit-state function in the standard normal space ( gg ∇−∇= /α ). Moreover, the matrix θy ∂∂ /*  is 

obtained by differentiation of the probability transformation y = T(x) at the MPP. For instance, when the 

well-known Nataf transformation (Liu and Der Kiureghian 1986) is employed then differentiation is 

performed, for each random variable, the relationship y = L-1 Φ-1(F(x)) where L is the lower triangular 

Cholesky decomposition of the modified correlation matrix and F(x) is the CDF of the random variable x. 

In conclusion, this first probabilistic approach renders available a point estimate and a measure of 

dispersion of the reliability index, provided second-moment information for the “epistemic random 

variables” θ. It is noted that only one reliability analysis including the computation of the gradient of the 

reliability index is required to obtain these estimates.  

In the second probabilistic approach a probability distribution for β is obtained by a parametric nested 

reliability analysis with the “outer” limit-state function  

 0)()(~ ββ −= θθg  (2-8) 

where the tilde distinguishes it from the limit-state function of the ordinary “inner” limit-state function 

that is specified by the present performance requirement. By varying the threshold 0β  the CDF )( 0βF  

of the reliability index β  is obtained. As pointed out by Der Kiureghian (1989), this is a nested reliability 

problem, because repeated evaluation of the inner reliability analysis in Eq. (2-4) is required to 

obtain )(θβ . The inner problem consists of integrating )|( θxf  in the space of “aleatory random 

variables” with the integration boundary provided by the user-defined limit-state function, while the outer 

problem consists of integrating )(θf in the space of “epistemic random variables” with the integration 

boundary provided by Eq. (2-8): 

 ∫ ∫≤
= θθ d)()(

0~0 fF
g
Lβ

 (2-9) 
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It is noted that an analytical expression is available for the PDF corresponding to this CDF when FORM 

analysis is employed to solve Eq. (2-9); in this case it is )~()( 0 ββ −Φ=F  and the chain rule of 

differentiation yields 
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where β~  is the reliability index from the outer reliability problem. To evaluate 0/~ ββ ∂∂  Eq. (2-7) is 

first invoked, which states that 
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and then the limit-state function is differentiated, which at the MPP *~y  in the standard normal space of 

epistemic random variables equals zero. By this it is found (Hohenbichler and Rackwitz 1986, Bjerager 

and Krenk 1989): 
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 (2-12) 

where the vertical bar denotes differentiation for fixed *~y -values . This is substituted into Eq. (2-10) to 

obtain the PDF of the reliability index β. An example is shown in a subsequent section.  

A potential problem is noted when FORM analysis is applied to solve Eq. (2-9). In the search for the 

MPP, *y , which is the point of approximation in FORM analysis, the gradient of the limit-state function 

is required to be continuous. In effect, the components of the vector θ∂∂ /β  must be continuous. In rare 

circumstances this may not be the case because an infinitesimal change in the epistemic random variables 

θ may result in a “jump” in the location of *y . This situation is schematically shown in Fig. 2-2, where 

the function β(θ) has a “kink” at the value of θ at which the jump to another *y  location occurs. 
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Consequently, the gradient is discontinuous and the situation would potentially cause problems in the 

determination of the MPP in the outer reliability problem. This problem is related to the well-known 

problem of multiple MPP in FORM analysis. In FERA, where the limit-state function is defined in terms 

of structural response and is a function of random variables such as material, geometry, and load 

parameters, such situations are rarely encountered. The use of sampling methods would circumvent the 

problem. However, this increases the number of inner FORM analyses manifold in order to obtain a point 

estimate of the reliability index. Furthermore, importance measures to rank the sources of epistemic 

uncertainty according to relative influence on the reliability are not readily available from sampling 

analysis. Computational cost comparisons between the different approaches are carried out in a 

subsequent section.  

2.4. THE FUZZY RANDOMNESS APPROACH 

An alternative to the probabilistic approach is the fuzzy randomness approach that is summarized in the 

book by Möller and Beer (2004). In this approach a probabilistic characterization of the aleatory 

uncertainty is retained, while characterizing the epistemic uncertainty by concepts of fuzzy sets. To 

explain the concepts of such sets, first consider the classical set that contains a collection of outcomes 

with so-called “crisp” boundary. That is, if an outcome θ belongs to the set A then it is excluded from 

belonging to the complement set Ac. A fuzzy set A~  differs from a classical set by having a “fuzzy” 

boundary. Specifically, a fuzzy set assigns varying membership values for an outcome θ to belong to the 

fuzzy set A~ . Therefore, the element θ could partially belong to both A~  and its complement set A~ c. To 

this end, the fuzzy set is defined as 

 )}( ,{~ θθ AmA =  (2-13) 

where )(θAm  is the membership function defining the degree of belongingness of θ to A~ . A normalized 

fuzzy set has the membership values ]1,0[)( ∈θAm . A high value of the membership function indicates a 
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high degree of belongingness to the set. For a given membership function value, denoted α, a crisp set Aα, 

is obtained as shown in Fig. 2-3. This is referred to as an “α-level” set and is formulated as 

 })(|{ αθθα ≥= AmA  (2-14) 

As shown in Fig. 2-3, the α-level set Aα is a connected interval [θαL, θαU], in which  

 ])(|min[ αθθθα ≥= AL m  (2-15) 

 ])(|max[ αθθθα ≥= AU m  (2-16) 

Effectively, a fuzzy number may be represented in an interval form at any selected α-level and the 

interval analysis methods developed by Rao and Berke (1996) are applicable at each α-level (Langley 

2000).  

In the previous section the distribution parameters of a random variable are considered to be random 

variables themselves. In this section the distribution parameters are represented by fuzzy numbers for the 

purpose of comparison with the probabilistic approach. Consider x to represent the vector of aleatory 

random variables and θ to represent the vector of fuzzy numbers that represent epistemic uncertainty in 

the distribution parameters. In the literature x are then referred to as “fuzzy random variables” (Möller 

and Beer 2004, Krätschmer 2001, Körner 1997). A schematic example is shown in Fig. 2-4 for one fuzzy 

random variable xi where its mean is a fuzzy number. For α-level 1.0 a crisp PDF for the random variable 

is obtained (solid line), while other α -levels lead to an interval of possible PDFs. In Fig. 2-4 the 

boundaries for the PDF obtained at α -level 0.0 is shown. The fuzzy PDF is denoted by )(~
ixf . 

It is stressed that fuzzy numbers may also be considered to represent model errors, in which case they 

would appear directly as parameters of the model, instead of as parameters of the probability distributions 

of the random variables. In effect, this will make the limit-state function fuzzy, as indicated in Fig. 2-5. In 

either case, the analysis approach is the same.  



Chapter 2: Identification of Uncertainitiess 

 - 24 -

In order to study the effect of the epistemic uncertainty on the reliability index, reliability analyses are 

carried out at selected α-levels. At each α-level, interval values for the distribution parameters θ are 

available and hence, crisp probability distributions for the random variables x. Consequently, an interval 

for the reliability index, here denoted βα is obtained. Theoretically, a number of reliability analyses are 

required at each α-level, each with fixed values for the distribution parameters θ. This is because, in 

principle, all possible combinations of Lαθ  and Uαθ  for all components of θ should be checked. The 

reliability analyses at each α-level results in a range of values for the reliability index βα. The maximum 

and minimum values of the reliability index βα form the interval of the reliability index [βαL, βαU] for that 

α-level. A fuzzy reliability index β~  is then reconstructed from the intervals of the reliability index over 

the selected α-levels, as schematically shown in Fig. 2-6. This curve serves a similar purpose as the PDF 

curve obtained by Eq. (2-9).  

The question of selecting θ-values in the reliability analyses at each α-level remains. The total number of 

possible combinations of lower values Lαθ  and upper values Uαθ  is equal to 2m, where m is the number 

of epistemic random variables, that is, the dimension of θ. Theoretically, this implies that the reliability 

analysis at each α-level must be repeated 2m times to obtain all the possible outcomes of βα, from which 

the extreme values [βαL, βαU] are obtained. The α-level optimization by Möller and Beer (2004) addresses 

this problem by employing a combination of genetic and gradient-based optimization strategies to obtain 

the extreme values βαL and βαU. However, these optimization strategies, including those by Elishakoff 

(1999), Bernardini (1999), and McWilliam (2001), tend to be complex in implementation and 

computationally expensive. 

Instead, in this chapter the use of importance measures from the reliability analysis is explored to obtain 

the combinations of Lαθ  and Uαθ  values that will yield the values βαL and βαU. From Hohenbichler and 

Rackwitz (1986), Bjerager and Krenk (1989), and Haukaas and Der Kiureghian (2005) importance 
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measures in FERA are available that distinguish resistance variables from load variables. This 

information is valuable to select combinations of Lαθ  and Uαθ  values that will give extreme values of β. 

When the resistance variables are set to their Lαθ values and the load variables are set to their Uαθ  values 

then the lower reliability index βαL is obtained. That is, low resistance combined with high load gives a 

low reliability. Conversely, when the resistance variables are set to their Uαθ values and the load variables 

are set to their Lαθ  values then the upper reliability index βαU is obtained.  

Two approaches are possible to obtain relevant importance measures for this purpose. First, a single 

reliability analysis with both x and θ as random variables may be performed, as mentioned subsequent to 

Eq. (2-3). The resulting importance measure, denoted γ in Haukaas and Der Kiureghian (2005), provide 

guidance for selecting Lαθ  and Uαθ  values. Second, when parameter uncertainty is considered, as in the 

following numerical example, the reliability sensitivity measures µ∂∂ /β  and σ∂∂ /β  may instead be 

employed. However, the selection of values for Lαθ  and Uαθ  is complicated by the presence of 

correlation. For instance, if two resistance variables are strongly negatively correlated then it is unlikely 

that they both take on the value Lαθ  (or Uαθ ) at the same time. By neglecting correlation among θ, the 

fuzzy variables become “non-interactive.”  The interval [βαL, βαU] obtained for the reliability index β with 

non-interactive fuzzy sets is wider than the true interval when the interaction is considered (Möller and 

Beer 2004). That is, conservative confidence estimates are obtained. The case is also made that strong 

negative correlation between the epistemic variables is implausible in the FERA applications under 

consideration. Furthermore, the effect of strong negative correlation would appear in the importance 

measure γ that are employed to select combinations of Lαθ  and Uαθ  values, because γ includes the effect 

of correlation between the variables (Haukaas and Der Kiureghian 2005). It is concluded that importance 

measures from FERA are an efficient and robust approach to select Lαθ  and Uαθ  values, in lieu of 

utilizing costly and complex optimization algorithms. 
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2.5. IMPLEMENTATIONS IN OPENSEES 

OpenSees is regarded as a collection of software components rather than a packaged code. This software 

architecture is facilitated by an object-oriented programming approach. The developer creates objects, or, 

abstractly, classes, instead of focusing on the procedural attributes of the problem. The objects contain 

data members and member functions and may interact by calling each other’s member functions. The 

member functions perform operations on the data members of its object, or on data that is passed to the 

member function at run-time.  

Haukaas and Der Kiureghian (2004) extended OpenSees with objects to perform reliability analysis in 

combination with finite element analysis. The analysis part of these implementations contains a number 

of analysis tools that are employed in our implementations. Fig. 2-7 shows an overview of the reliability 

module, where the analysis-domain decomposition is emphasized. The analysis tools are shown with a 

particular symbol to be data members of the reliability analysis, while the various analysis types are 

shown to be sub-classes of the generic reliability analysis. The reliability analysis performs operations on 

the reliability domain, which include random variables, correlation coefficients, and limit-state functions. 

Eight analysis types that facilitate FOSM, FORM, SORM, sampling analysis, parametric reliability 

analysis, system reliability analysis, out-crossing analysis, and visualization of the limit-state function 

were initially available. The analysis type termed EpistemicAnalysis shown in Fig. 2-7 is added in this 

work.  

The developments in this work benefit strongly from the organization of OpenSees into a collection of 

analysis tools. The existing analysis tools for reliability analysis in OpenSees include probability 

transformation, determination of search direction and step size in the search for the MPP, search 

algorithms to determine the MPP, random number generation, etc. These and others are listed in Fig. 2-8, 

where it is emphasized that they are data members of the reliability analysis, which thereby can make use 

of them in the analysis. All the tasks required by the methodologies outlined in this chapter are solved by 

the existing analysis tools, due to the flexibility offered by the object-oriented software architecture in 
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OpenSees. Consider for example the nested reliability problem posed by Eq. (2-9). Fig. 2-9 shows 

schematically the interaction between tools of OpenSees when both the inner problem (Eq. (2-4)) and the 

outer problem (Eq. (2-9)) are addressed by FORM. It is observed that OpenSees allows the outer 

reliability analysis to use the same reliability analysis tools as the traditional inner analysis. It is stressed 

that from an implementation viewpoint both the inner and the outer problem can be solved by any of the 

available algorithms in OpenSees. In the example presented in this chapter FORM is employed to solve 

the inner problem, for which gradients are then readily available, while FORM and sampling are utilized 

for the outer problem.  

Existing tools in OpenSees are also employed when implementing the fuzzy randomness approach. Our 

approach consists of providing the upper and lower interval values for the epistemic variables and 

executing a traditional reliability analysis. This is done at selected α-levels, where the upper and lower 

values are selected based on information from a prior reliability analysis, as described previously.  

2.6. NUMERICAL EXAMPLE 

In order to compare the methodologies to account for epistemic uncertainty in FERA, consider the two-

storey, two-bay reinforced concrete structure in Fig. 2-10 for reliability analysis. The material properties 

of the concrete and reinforcement steel, as well as the nodal coordinates and load parameters are modelled 

as aleatory random variables, as detailed in Table 2-1. These are intended to model the inherent, 

irreducible uncertainty in the finite element model parameters. A total of 104 aleatory random variables 

are present.  

Consider the limit state function 

 38300015.0 ug −×=  (2-17) 

where u3 is the horizontal displacement, in units of mm, of node 3 from a static nonlinear pushover-type 

analysis. This limit-state function seeks the probability that the horizontal displacement at node 3 exceeds 

1.5% of the building height, when uncertain lateral loads are applied to node 2 and 3.  
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A traditional FERA is performed to determine the ordinary point estimate of the reliability index. A 

FORM analysis yields β = 2.89, while an important sampling centred the MPP yields β = 2.84 with 4% 

coefficient of variation, which indicates that the limit-state function in Eq. (2-17) is weakly nonlinear. 

This is a common observation in this type of FERA. 

Epistemic uncertainty is now introduced to represent the statistical uncertainty in the distribution 

parameters of the aleatory random variables. The mean and standard deviation of all the variables x are 

collected in the vector θ, according to the previously described methodologies. In the probabilistic 

approach the mean and standard deviations are considered to be random variables, while in the fuzzy 

randomness approach they are considered to be fuzzy numbers. Although the application is to parameter 

uncertainty, it is re-emphasized that the methodology is applicable to represent uncertain model and 

analysis errors. 

In the probabilistic approach, the 58 epistemic random variables are modelled as uncorrelated lognormal 

random variables with properties shown in Table 2-2. However, all the structure members share the same 

epistemic random variable to represent the mean or standard deviation of the aleatory random variables 

for a common parameter. For example, the mean of compressive strength of the cover concrete in all the 

structural members is represented by a single epistemic random variable. This introduces correlation 

among the means and standard deviations of the material and load parameters of all the structure 

members. In this chapter the distribution parameters of these variables are selected by judgment. 

However, it is emphasized that the probabilistic approach has the advantage that Bayesian updating 

according to Eq. (2-2) may be used to assess the parameter uncertainty. In this example, the dispersion of 

the means and standard deviations are selected to reflect the statistical uncertainty due to lack of data, to 

assess the uncertainty in the material and geometry properties.  

First, the second-moments of the reliability index are computed according to Eqs. (2-5) and (2-6). 

Because the mean of the epistemic random variables θ are chosen equal to the initial point estimates it is 

found that the mean of the reliability index is 2.89, as previously reported. The first-order approximation 
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of the standard deviation is σβ = 0.208. Hence, it is observed that the reliability index has a coefficient of 

variation equal to 0.072.  

In the more refined probabilistic approach the outer reliability problem in Eq. (2-9) is solved by FORM at 

selected threshold values β0. The PDF of the resulting reliability index is shown in Fig. 2-11. It is 

observed that the peak of the PDF occurs close to the point estimate from the traditional reliability; 

namely 2.89. Moreover, it is confirmed that the first-order approximation of the standard deviation; 

namely 0.208, is a reasonable measure of dispersion of the reliability index. However, the PDF of the 

reliability index provides significantly more information. For instance, from the information in Fig. 2-11a, 

or more precisely the corresponding CDF in Fig. 2-11b, it is possible to obtain the 95% confidence on the 

reliability index. Specifically, in this case there is a 0.95 probability that the reliability index is greater 

than 2.59. These details provide considerably more information than the mere β =2.89 provided by a 

traditional reliability analysis.  

The outer reliability problem in Eq. (2-9) may alternatively be addressed by sampling analysis. However, 

instead of addressing the limit-state function in Eq. (2-8) outcomes of the vector θ  are sampled and 

response statistics are performed on the quantity β(θ), with a sampling distribution centred at the mean of 

θ. This approach is conceptually similar to that of Ang (2004). The resulting histogram and the 

corresponding frequency diagram are shown in Fig. 2-12. As expected, close agreement is found with the 

PDF curve presented in Fig. 2-11a. It is noted, however, that a high number of samples are required to 

obtain accuracy in the tail of the distribution of β. To remedy this, importance sampling based on a prior 

FORM analysis may be performed at a particular threshold level to solve the outer reliability problem. 

Further comments on computational cost are provided below.   

The probabilistic approach has the advantage that importance measures are available to identify the most 

significant sources of epistemic uncertainty. This information is used to guide the allocation of resources 

for data gathering and model improvement efforts. When parameter uncertainty is considered, two 
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measures are available. First, the vectors µ∂∂ /β  and σ∂∂ /β  from traditional reliability analysis 

provide insight into the relative influence of each distribution parameter on the reliability. However, the 

components of these vectors have, in general, different units. Second, the importance vector γ from 

Haukaas and Der Kiureghian (2005) is available when the outer reliability problem is solved by FORM. 

This renders available a valuable importance measure to directly rank the parameters θ. In this example It 

is found that the uncertainty in the mean and the standard deviation of the lateral loads rank highest in 

importance. This indicates that the most contribution to the uncertainty in the reliability index is due to 

the uncertainty in the lateral loads. The 10 highest ranking epistemic random variables are listed in Table 

2-3. It is also observed that the importance ranking is relatively sensitive to the choice of dispersion of the 

epistemic random variables. For instance, by doubling the coefficient of variation of the mean of the 

compressive strain of the cover concrete, it is found that this parameter goes from ranking 7 to ranking 5 

among the θ-variables.  

In the fuzzy randomness approach, the same means and standard deviations that were considered random 

variables above are considered to be fuzzy numbers, denoted θ. The triangular membership function 

shown in Fig. 2-13 is selected to represent the epistemic uncertainty in the distribution parameters. The 

membership functions at α-level 0.0 represent an interval of ± one standard deviation of the random 

variables employed in the probabilistic analysis. This is a subjective choice that emphasizes both the 

flexibility in the fuzzy randomness approach, as well as the lack of a well-established methodology, 

despite the attempts in coupling fuzzy and Bayesian methods (Chou and Yuan 1993, Lee and Park 1997, 

Taheri and Behboodian 2001). Details are provided in Table 2-4 in terms of values of the distribution 

parameters at α-levels 1.0 and 0.0. The fuzzy analysis is performed at the three α-levels 0.0, 0.5 and 1.0. 

The combination of the values Lαθ  and Uαθ  of each variable in θ to obtain the extremes βαL and βαU of 

the reliability index is found by employing importance measures from the reliability analysis, as 

previously described. As is commonly the case in FERA, the material parameters are identified as 
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resistance variables and the nodal loads as load variables. Fig. 2-14 shows the resulting triangular 

membership function for the reliability index.  

It is of significant interest to compare the computational cost between the different approaches to account 

for epistemic uncertainty. In particular, the number of inner FORM analysis required in each of the 

approaches indicates the additional computational effort to explicitly represent epistemic uncertainty. The 

first-order approximation of mean and standard deviation of the reliability index β, are 2.89 and 0.208 

respectively. A single FORM analysis with additional computation of reliability sensitivities is sufficient 

to obtain these results. The nested reliability analysis is performed at 14 selected threshold values β0 to 

obtain the PDF of the reliability index in Fig. 2-11. A total of 206 inner reliability analyses were required 

in this method. Notably, this number of FORM analysis is reduced significantly, to almost a third, if the 

MPP of the previous analysis is taken as the start point in the nested reliability analysis at the new 

threshold value. The sampling analysis is done with a total of 1000 FORM analyses to obtain the 

frequency diagram in Fig. 2-12b. However, the point estimate from this result has a coefficient of 

variation of 14% at 0.05 probability. Thus, a significantly higher number of FORM analyses are required 

for the accurate estimation of tail values of β. The fuzzy reliability index β~ , in Fig. 2-14 is obtained from 

a total of 5 FORM analyses at three α-levels, 0.0, 0.5, and 1.0. The triangular fuzzy reliability index is 

consistent with the PDF in Fig. 2-11; the values at 0.0 α-level, [2.43, 3.36] correspond to the values of the 

reliability index at ± 2 standard deviations. 

2.7. CONCLUSIONS 

In this chapter, the quantification and explicit representation of epistemic uncertainty is presented in a 

finite element reliability framework. The analysis methods in different approaches are developed and 

implemented. The probabilistic approach and the fuzzy randomness approach, based on the previous work 

by Der Kiureghian (1989) and Möller and Beer (2004), respectively, are extended to finite element 

reliability applications.  
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The probabilistic approach has the advantage of the Bayesian methodology to separate aleatory and 

epistemic components of the uncertainty and to assess distributions of the epistemic random variables. 

The confidence intervals on the reliability index are easily available from the probability distribution of β. 

Particularly, the importance measures obtained from a nested reliability analysis are invaluable in 

recognizing the highest contributors of the epistemic uncertainty. Such measures provide guidance when 

seeking additional data and improved models. The first-order estimate on the dispersion of β is available 

with the modest computational effort.  

The fuzzy randomness approach lacks the theoretical background to interpret the fuzzy numbers, as well 

as established procedures to assess the fuzzy variables from statistical data. In addition, the interval 

analysis of the discretized fuzzy random variables fails to identify the important sources of epistemic 

uncertainty. However, the fuzzy randomness method is conceptually simple. Based on assumed 

membership function it provides an estimate of the dispersion of the reliability index at a lower 

computational cost than nested reliability analysis or sampling analysis. However, when the inner 

reliability problem is not amenable to FORM, thus leaving importance ranking of the aleatory random 

variables unavailable, this approach is limited to a small number of epistemic variables. In such an 

instance, the computationally costly α-level optimization must be employed to determine the bounds on 

the reliability index at each α-level.  

In the present study, the epistemic analysis options are implemented in the OpenSees software. In the 

presented numerical example, the first-order second-moment approach, the nested reliability analysis, 

sampling, and the fuzzy randomness approach are employed to analyse a two-storey two-bay reinforced 

concrete structure with 104 aleatory and 58 epistemic random variables. The distribution on the reliability 

index has a mean of 2.89 while the coefficient of variation is 0.072, in a first-order approximation. The 

fuzzy reliability index is a triangular fuzzy number with characteristic values 2.43, 2.89, and 3.36. 
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In conclusion, while first-order second-moment approximation is the most computationally efficient 

method in indicating the dispersion of the reliability index, the nested reliability analysis provides the 

valuable importance measures and confidence bounds at a reasonable computational effort. 
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Table 2.1 Uncertainty modelling of the aleatory random variables of the R.C. structure 

Parameter Distribution Mean Coefficient 
of Variation Correlation 

Compressive strength of  outer layer 
of concrete (10 r.v)* Lognormal 28 

N/mm2 0.15 0.3 

Compressive strain of outer layer 
of concrete (10 r.v.)** Lognormal 0.002 0.15 0.3 

Ultimate strength of outer layer of 
concrete  

Deterministically 
zero 0.0 0.0 N/A 

Ultimate strain of outer layer of 
concrete (10 r.v.) Lognormal 0.006 0.15 0.3 

Compressive strength of the core 
concrete (6 r.v.)* Lognormal 36 

N/mm2 0.15 0.3 

Compressive strain of the core 
concrete (6 r.v.)** Lognormal 0.005 0.15 0.3 

Ultimate strength of the core 
concrete (6 r.v.)  Lognormal 33 

N/mm2 0.15 0.3 

Ultimate strain of the core concrete 
(6 r.v.) Lognormal 0.02 0.15 0.3 

Tensile strength of the 
reinforcement steel (10 r.v.)  Lognormal 420 

N/mm2 0.05 0.5 

Young’s modulus of the 
reinforcement steel (10 r.v.)  Lognormal 200000 

N/mm2 0.05 0.5 

Second slope stiffness ratio of the 
reinforcement steel (10 r.v.) Lognormal 0.02 0.10 0.5 

Nodal coordinates (18 r.v.)  Normal As is  σ = 20 mm 0.0 
Lateral loads (2 r.v.)  Lognormal 700 KN 0.20 0.6 

* Correlated with a coefficient of 0.6 
** Correlated with a coefficient of 0.6 
 

Table 2.2 Uncertainty modelling of the epistemic random variables 

Parameter Distribution Mean Coefficient of 
Variation 

Mean of compressive strength of  outer layer of 
concrete (1 r.v) Lognormal 28 N/mm2 0.04 

Standard deviation of compressive strength of  
outer layer of concrete (1 r.v) Lognormal 4.2 N/mm2 0.04 

Mean of compressive strain of outer layer of 
concrete (1 r.v.) Lognormal 0.002 0.04 

Standard deviation of compressive strain of 
outer layer of concrete (1 r.v.) Lognormal 0.0003 0.04 

Mean of ultimate strain of outer layer of 
concrete (1 r.v.) Lognormal 0.006 0.04 

Standard deviation of ultimate strain of outer 
layer of concrete (1 r.v.) Lognormal 0.0009 0.04 
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Mean of compressive strength of the core 
concrete (1 r.v.) Lognormal 36 N/mm2 0.04 

Standard deviation of compressive strength of 
the core concrete (1 r.v.) Lognormal 5.4 N/mm2 0.04 

Mean of compressive strain of the core concrete 
(1 r.v.) Lognormal 0.005 0.04 

Standard deviation of compressive strain of the 
core concrete (1 r.v.) Lognormal 0.00075 0.04 

Mean of ultimate strength of the core concrete 
(1 r.v.)  Lognormal 33 N/mm2 0.04 

Standard deviation of ultimate strength of the 
core concrete (1 r.v.) Lognormal 4.95 N/mm2 0.04 

Mean of ultimate strain of the core concrete (1 
r.v.) Lognormal 0.02 0.04 

Standard deviation of ultimate strain of the core 
concrete (1 r.v.) Lognormal 0.003 0.04 

Mean of tensile strength of the reinforcement 
steel (1 r.v.)  Lognormal 420 N/mm2 0.01 

Standard deviation of tensile strength of the 
reinforcement steel (1 r.v.) Lognormal 21 N/mm2 0.01 

Mean of Young’s modulus of the reinforcement 
steel (1 r.v.)  Lognormal 200000 N/mm2 0.01 

Standard deviation of Young’s modulus of the 
reinforcement steel (1 r.v.) Lognormal 10000 N/mm2 0.01 

Mean of second slope stiffness ratio of the 
reinforcement steel (1 r.v.) Lognormal 0.02 0.02 

Standard deviation of second slope stiffness 
ratio of the reinforcement steel (1 r.v.) Lognormal 0.002 0.02 

Mean of nodal coordinates (18 r.v.)  Uniform As is  σ = 5 mm 
Standard deviation of nodal coordinates (18 
r.v.) Uniform 20 mm σ = 1 mm 

Mean of lateral loads (1 r.v.)  Lognormal 700 KN 0.05 
Standard deviation of lateral loads (1 r.v.) Lognormal 140 KN 0.05 

 
Table 2.3: Importance ranking of epistemic random variables 

Rank Epistemic random variable Importance measure 
1 Mean of the lateral loads  0.706635 
2 Standard deviation of the lateral loads  0.606378 
3 Mean of the compressive stress of the cover concrete  0.314150 
4 Mean of the elastic modulus of reinforcement steel 0.117704 
5 Mean of the compressive stress of the core concrete 0.079026 
6 Mean of the compressive strain of the core concrete  0.058290 
7 Mean of the compressive strain of the cover concrete  0.053300 
8 Mean of the tensile strength of the reinforcement steel 0.052702 
9 Mean of the ultimate compressive strain of the cover concrete  0.034334 
10 Mean of the horizontal nodal coordinate of node 4 0.034331 
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Table 2.4: Uncertainty modelling of the fuzzy random variables 

α-level 
Parameter 

1.0 0.0 
Mean of compressive strength of  outer layer of 
concrete (10 r.v) 28 N/mm2 26.88 

N/mm2 
29.12 
N/mm2 

Standard deviation of compressive strength of  outer 
layer of concrete (10 r.v) 4.2 N/mm2 4.03 

N/mm2 
4.37 

N/mm2 
Mean of compressive strain of outer layer of concrete 
(10 r.v.) 0.002 1.92 x 10-3 2.08 x 10-3 

Standard deviation of compressive strain of outer 
layer of concrete (10 r.v.) 0.0003 0.29 x 10-3 0.31 x 10-3 

Mean of ultimate strain of outer layer of concrete (10 
r.v.) 0.006 5.76 x 10-3 6.24 x 10-3 

Standard deviation of ultimate strain of outer layer of 
concrete (10 r.v.) 0.0009 0.86 x 10-3 0.94 x 10-3 

Mean of compressive strength of the core concrete (6 
r.v.) 36 N/mm2 34.56 

N/mm2 
37.44 

N/mm2 
Standard deviation of compressive strength of the 
core concrete (6 r.v.) 5.4 N/mm2 5.18 

N/mm2 
5.62 

N/mm2 
Mean of compressive strain of the core concrete (6 
r.v.) 0.005 4.80 x 10-3 5.20 x 10-3 

Standard deviation of compressive strain of the core 
concrete (6 r.v.) 0.00075 0.72 x 10-3 0.78 x 10-3 

Mean of ultimate strength of the core concrete (6 r.v.) 33 N/mm2 31.68 
N/mm2 

34.32 
N/mm2 

Standard deviation of ultimate strength of the core 
concrete (6 r.v.) 4.95 N/mm2 4.75 

N/mm2 
5.15 

N/mm2 
Mean of ultimate strain of the core concrete (6 r.v.) 0.02 19.2 x 10-3 20.8 x 10-3 
Standard deviation of ultimate strain of the core 
concrete (6 r.v.) 0.003 2.88 x 10-3 3.12 x 10-3 

Mean of tensile strength of the reinforcement steel 
(10 r.v.)  420 N/mm2 415.80 

N/mm2 
424.20 
N/mm2 

Standard deviation of tensile strength of the 
reinforcement steel (10 r.v.) 21 N/mm2 20.79 

N/mm2 
21.21 

N/mm2 
Mean of Young’s modulus of the reinforcement steel 
(10 r.v.)  

200000 
N/mm2 

198000 
N/mm2 

202000 
N/mm2 

Standard deviation of Young’s modulus of the 
reinforcement steel (10 r.v.) 

10000 
N/mm2 

9900 
N/mm2 

10100  
N/mm2 

Mean of second slope stiffness ratio of the 
reinforcement steel (10 r.v.) 0.02 19.6 x 10-3 20.4 x 10-3 

Standard deviation of second slope stiffness ratio of 
the reinforcement steel (10 r.v.) 0.002 1.96 x 10-3 2.04 x 10-3 

Mean of nodal coordinates (18 r.v.)  As is  - 5mm +5mm 
Standard deviation of nodal coordinates (18 r.v.) 20 mm 19 mm 21 mm 
Mean of lateral loads (2 r.v.)  700 KN 665 KN 735 KN 
Standard deviation of lateral loads (2 r.v.) 140 KN 133 KN 147 KN 
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Figure 2.1: (a) Uncertainty in the distribution of x due to uncertain parameters µ and σ; (b) 

Uncertainty representation of the mean µ and the standard deviation σ; (c) Uncertainty 

representation of the reliability index β 
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Figure 2.2 : (a) Limit-state surface g=0 for different realizations of an epistemic random variable θ 

; (b) Kink in the function β(θ), resulting in discontinuity in the derivative  

 

 

 
Figure 2.3: Membership function of a fuzzy number 
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Figure 2.4: Fuzzy probability density function 

 

 

 

 

 

 

  

Figure 2.5: Fuzzy limit state surface 
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Figure 2.6: Fuzzy reliability index 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7: Software architecture of the reliability module in OpenSees 
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Figure 2.8: Selected base classes in the framework of reliability analysis tools 

Figure 2.9: Selected reliability analysis tools utilized in the nested reliability analysis 
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Figure 2.10: Two-storey two-bay reinforced concrete structure. Node numbers and element 

numbers (in parenthesis) are shown.  
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Figure 2.11: (a) Probability density function for the reliability index; (b) Cumulative distribution 

function for the reliability index 

 
 
 

 

 

 

 

 

 

 

 

Figure 2.12: Results from sampling analysis 
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Figure 2.13:  Membership function for fuzzy numbers versus mean and standard deviation of the 

corresponding random variable. 

 

Figure 2.14: Fuzzy reliability index from analysis of reinforced concrete structure 

α-level 

1.0 

0.5 

0.0 
µ µ−σ µ+σ 

Reliability index 

M
em

be
rs

hi
p 

fu
nc

tio
n 



Chapter 2: Identification of Uncertainitiess 

 - 45 -

REFERENCES 

Ang, A. H-S. (2004), “Modeling and analysis of uncertainties for risk-informed decisions in engineering 
– with application to bridges,” Proceedings of Second International Conference on Bridge 
Maintenance, Safety and Management, IABMAS’04, Kyoto, Japan 

Ang, A. H-S. and Tang, W.H. (1975), Probability concepts in engineering planning and design: vol.1, 
Wiley, New York. 

Ayyub, B.M. (2004), “From dissecting ignorance to solving algebraic problems,” Reliability Engineering 
and System Safety, 85(1-3), 223-238 

Bebamzadeh, A. and Haukaas, T. (2004), “Accounting for uncertain model and analysis errors in 
nonlinear finite element analysis,” Proceedings of Ninth ASCE Specialty Conference on Probabilistic 
Mechanics and Structural Reliability, Albuquerque, New Mexico  

Berleant, D. and Zhang, J. (2004), “Representation and problem solving with Distribution Envelope 
Determination (DEnv),” Reliability Engineering and System Safety, 85(1-3), 153-168 

Bernardini, A. (1999), “What are the Random and Fuzzy Sets and How to Use them for Uncertainty 
Modelling in Engineering Systems?,” Whys and Hows in Uncertainty Modelling: Probability, 
Fuzziness and Anti-Optimization, Ed. I. Elishakoff, Springer Wien New York 

Ben-Haim, Y. (2004), “Uncertainty, probability and information-gaps,” Reliability Engineering and 
System Safety, 85(1-3), 249-266 

Bjerager, P. and Krenk, S. (1989), “Parameter sensitivity in first order reliability theory,” Journal of 
Engineering Mechanics, 115(7), 1577-1582 

Box, G.E.P. and Tiao, G.C. (1973), Bayesian Inference in Statistical Analysis, Wiley, New York 

Chou, K.C. and Yuan, J. (1993), “Fuzzy-Bayesian approach to reliability of existing structures,” Journal 
of Structural Engineering, 119(11), 3276-3290 

de Cooman, G. and Troffaes, M.C.M (2004), “Coherent lower previsions in systems modeling: products 
and aggregation rules,” Reliability Engineering and System Safety, 85(1-3), 113-134 

Der Kiureghian, A. (1989), “Measures of structural safety under imperfect states of knowledge,” Journal 
of Structural Engineering, 115(5), 1119-1140 

Der Kiureghian, A. and Taylor, R. L. (1983), “Numerical methods in structural 

Reliability,” Proceedings of the Fourth International Conference on Applications of Statistics and 
Probability in Civil Engineering, ICASP4, Florence, Italy  

Der Kiureghian, A. and Zhang, Y. (1999), “Space-variant finite element reliability analysis,” Computer 
Methods in Applied Mechanics and Engineering, 168(1-4), 173-183 

Ditlevsen, O. (1983), “Fundamental postulate in structural safety,” Journal of Engineering Mechanics, 
109(4), 1096-1102 

Elishakoff, I. (1999), “Are Probabilistic and Anti-Optimization Approaches Compatible?,” Whys and 
Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization, Ed. Elishakoff, 
Springer Wien New York 



Chapter 2: Identification of Uncertainitiess 

 - 46 -

Frier, C. and Sorensen, J. (2003), “Stochastic finite element analysis of non-linear structures modelled by 
plasticity theory,” Proceedings of the Ninth International Conference on Applications of Statistics and 
Probability in Civil Engineering,ICASP9, San Francisco, California 

Gutierrez, M., Carmeliet, J. and de Borst, R. (1994), “Finite element reliability methods using Diana,” 
Diana Computational Mechanics 1994, Eds: G.M.A. Kusters and M.A.N. Hendriks 

Hacking, I. (1975), The Emergence of Probability: A philosophical study of early ideas about probability, 
induction and statistical inference, Cambridge University Press, London, New York 

Haukaas, T. and Der Kiureghian, A. (2004), Finite Element Reliability and Sensitivity Methods for 
Performance-Based Engineering, Report no. PEER 2003/14, Pacific Earthquake Engineering 
Research Center, University of California, Berkeley 

Haukaas, T. and Der Kiureghian, A. (2005), “Parameter sensitivity and importance measures in nonlinear 
finite element reliability analysis,” Journal of Engineering Mechanics, 131(10), 1013-1026 

Haldar, A. and Mahadevan, S. (2000), Reliability Assessment Using Stochastic Finite Element Analysis, 
John Wiley and Sons, New York 

Hall, J.W. and Lawry, J. (2003), “Fuzzy label methods for constructing imprecise limit state functions,” 
Structural Safety, 25(4), 317-341 

Hohenbichler, M. and Rackwitz, R. (1986), “Sensitivity and importance measures in structural 
reliability,” Civil Engineering Systems, 3(4), 203-209 

Hora, S.C. (1996), “Aleatory and epistemic uncertainty in probability elicitation with an example from 
hazardous waste management,” Reliability Engineering and System Safety, 54(2-3), 217-223 

Imai, K. and Frangopol, D. M. (2000), “Geometrically nonlinear finite element reliability analysis of 
structural systems, i: theory ii: applications,” Computers and Structures, 7(6), 677-709 

Körner, R. (1997), “On the variance of fuzzy random variables,” Fuzzy Sets and Systems, 92(1), 83-93 

Kozine, I.O. and Utkin, L.V. (2004), “An approach to combining unreliable pieces of evidence and their 
propagation in system response analysis,” Reliability Engineering and System Safety, 85(1-3), 103-112 

Krätschmer, V. (2001), “A unified approach to fuzzy random variables,” Fuzzy Sets and Systems, 123(1), 
1-9 

Langley, R.S. (2000), “Unified approach to probabilistic and possibilistic analysis of uncertain systems,” 
Journal of Engineering Mechanics, 126(11), 1163-1172 

Lee, C-B. and Park, J-W. (1997), “Reliability analysis based on fuzzy-Bayesian approach,” Seventh 
International Conference on Computing in Civil and Building Engineering, Seoul, South Korea. 

Liu, P-L. and Der Kiureghian, A. (1986), “Multivariate distribution models with prescribed marginals and 
covariances,” Probabilistic Engineering Mechanics, 1(2), 105-112 

Liu, P-L. and Der Kiureghian, A. (1991), “Finite element reliability of geometrically nonlinear uncertain 
structures,” Journal of Engineering Mechanics, 17(8), 1806-1825 

McWilliam, S. (2001), “Anti-optimization of uncertain structures using interval analysis,” Computers and 
Structures, 79(4), 421-430 

Möller, B. and Beer, M. (2004), Fuzzy Randomness: Uncertainty in civil engineering and computational 
mechanics, Springer, Berlin, New York 



Chapter 2: Identification of Uncertainitiess 

 - 47 -

O’Hagan, A. and Oakley, J.E. (2004), “Probability is perfect, but we can’t elicit it perfectly,” Reliability 
Engineering and System Safety, 85(1-3), 239-248 

Parry, G.W. (1996), “The characterization of uncertainty in probabilistic risk assessments of complex 
systems,” Reliability Engineering and System Safety, 54(2-3), 119-126 

Rao, S.S. and Berke, L. (1996), “Analysis of uncertain structural systems using interval analysis,” 37th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference: A 
Collection of Technical Papers, Salt Lake City, Utah 

Sudret, B. and Der Kiureghian, A. (2000), Stochastic Finite Element Methods and Reliability: A State-of-
the-Art Report, Report No. UCB/SEMM-2000/08, Department of Civil and Environmental 
Engineering, University of California, Berkeley 

Taheri, S.M. and Behboodian, J. (2001), “A Bayesian approach to fuzzy hypothesis testing,” Fuzzy Sets 
and Systems, 123(1), 39-48 

Thacker, B.H., Riha, D.S., Millwater, H.R. and Enright, M.P. (2001), “Errors and Uncertainties in 
Probabilistic Engineering Analysis,” American Institute of Aeronautics and Astronautics, AIAA 123 

Vick, S.G. (2002), Degrees of Belief: Subjective probability and engineering judgment, ASCE Press, 
Virginia 

Winkler, S.C. (1996), “Uncertainty in probabilistic risk assessment,” Reliability Engineering and System 
Safety, 54(2-3), 127-132 

Zhang, Y. and Der Kiureghian, A. (1997), Finite Element Reliability Methods for Inelastic Structures, 
Report No. UCB/SEMM-97/05, Department of Civil and Environmental Engineering, University of 
California, Berkeley 



Chapter 3: Feasibility of FORM - Statics 

 - 48 -

Chapter 3. FEASIBILITY OF FORM - STATICS1 

3.1. INTRODUCTION 

The primary objective in this chapter is to aid the practicing engineer who intends to make reliability 

assessments based on sophisticated numerical models. An example of this type of analysis is the merger 

of finite element (FE) analysis and reliability computations to obtain the probability of collapse or 

damage for structures subjected to extreme loads (e.g., Ching et al. 2005). In such applications, limit-

states that define the event(s) of interest are cast in terms of response quantities from the FE analysis. 

Compared with traditional reliability analysis, in which explicit algebraic expressions were utilized to 

defined failure, this poses unique challenges for the reliability algorithms. A goal in this study is to 

highlight the acceptable and unacceptable problem formulations and to expose potential pitfalls and 

remedies. The target audience for the work is the engineer who already utilizes numerical models to 

predict structural performance, and who now faces the task of accounting for uncertainties. In other 

words, the study is intended to foster increased and prudent utilization of reliability methods in 

engineering practice. When merging reliability and FE analysis, it is argued that it is imperative for the 

analyst to recognize the problem definitions that are either infeasible or have potential for substantial 

errors. 

This work may be viewed as an appraisal of the first-order reliability method (FORM) applied to FE-

based limit-state function. The reason for the focus on FORM is its appealing efficiency and accuracy 

properties. To obtain reasonably accurate probability estimates, FORM requires 5 to 10 evaluations of the 

limit-state function, and its derivative with respect to the random variables. In fact, it is argued herein that 

FORM provides the best balance between accuracy and computational cost amongst the many reliability 

                                                   
 
1 A version of this chapter  has been submitted for publication. Koduru, S.D. and Haukaas, T. “Feasibility of FORM 
in finite element reliability anlaysis: Part I – Statics.”  
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methods that are available for FE-based applications. The questions related to the accuracy of the results 

and potential difficulties are addressed by this chapter.  

As mentioned above, the feasibility and accuracy of FORM has traditionally been studied in the context 

of explicit limit-state functions. For example, Fiessler et al. (1979) investigated the accuracy of FORM in 

the presence of nonlinear limit-state surface with explicit limit-state functions. Similar investigations on 

the accuracy of FORM are found in Ditlevsen and Madsen (1996), Rackwitz (2001) and others. Der 

Kiureghian and Dakessian (1998) illustrated the methods to identify multiple design points by means of 

explicit limit-state functions. Zhao and Ono (1999) and Qin et al. (2006) explored the effect of probability 

distribution type, probability transformation methods, and the number of random variables on the 

accuracy of the FORM by employing explicit limit-state functions. Recently, Yang et al. (2006) studied 

the convergence of FORM analysis in the presence of strong nonlinearities in the limit-state function.  

The utilization of FE models in reliability applications has rapidly increased in the academic community 

in recent decades. A partial list of contributions to the FE-based reliability methods includes those by Der 

Kiureghian and Taylor (1983), Liu and Der Kiureghian (1991), Gutierrez et al. (1994), Zhang and Der 

Kiureghian (1997), Der Kiureghian and Zhang (1999), Sudret and Der Kiureghian (2000), Imai and 

Frangopol (2000), Haldar and Mahadevan (2000), Frier and Sorensen (2003), and Haukaas and Der 

Kiureghian (2004). The term “finite element reliability analysis” is employed to characterize the 

methodology. The objective in this type of analysis is essentially to compute the probability of rare 

response events, which are defined in terms of limit-state functions. In contrast, “stochastic finite element 

methods” focuses on the computation of the probability distribution of the responses, with less focus on 

the small tail probabilities. Of the two methodologies, only the finite element reliability approach is under 

consideration in this chapter.  

It is noted that the use of FE-based reliability analysis has been mostly limited to the academic 

community. It is an objective in this work to facilitate an increased use of the methodology in engineering 

practice by providing a “roadmap” of the various problem formulations. As described in this chapter, the 
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success of the FORM analysis depends upon several conditions, including a smooth (to be defined 

shortly) and relatively linear limit-state function. These conditions naturally raise questions for an analyst 

who is faced with an FE-based reliability analysis. For example, are the limit-state functions associated 

with linear FE analysis always linear? What is the degree of nonlinearity of the limit-state function for 

different problem formulations? What is the effect of numerical noise from the FE analysis? Which limit-

state function problem formulations are impractical? These and other aspects of FE-based FORM analysis 

are addressed in this study, for static problems. An important instrument to answer many of these 

questions is a novel visualization tool that is available in the OpenSees software (McKenna et al. 2004) 

utilized in this study. In particular, the limit-state function in the space of random variables is visualized 

to reveal potential difficulties. A number of case studies are conducted, in which the FE models vary from 

simple problems to complex problems that are encountered in “real” applications.  

The scope of this study is limited to issues that pertain directly to FE-based analysis. Consequently, the 

study does not include the effect of the probability transformation when non-normal random variables are 

utilized. Furthermore, only problems with one limit-state function is considered; not system reliability 

formulations that are characterized by multiple limit-states. However, this does not exclude the “space 

variant reliability problem” that appears when the analyst seeks the probability that a response exceed a 

threshold anywhere in the FE model. The present study is accompanied by Chapter 4 that addresses 

questions and presents new developments for the fundamentally different dynamic problem. This renders 

the topic of static cyclic loading outside the scope of the present paper.  

3.2. CONDITIONS FOR APPLICABILITY OF FORM 

In order to appreciate the potential challenges in the merger of FORM and FE analysis, consider first the 

fundamental reliability problem with one limit-state function (Ditlevsen and Madsen 1996) 

 ∫ ∫≤
= xdx

x
)(

0)(
fp

g
L  (3-1) 
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where p is the probability of a response event; x is a vector of random variables that typically include 

geometry, material and load parameters; f(x) is the joint probability density function for the random 

variables; and g(x) is the limit-state function, which takes on a negative value for the realizations of x that 

result in the response event. Effectively, Eq. (3-1) represents the integration of the probability density f(x) 

over the domain in the x-space where g is negative. The evaluation of this integral is the primary objective 

of all structural reliability methods.  

The FE analysis enters the reliability problem through the definition of the limit-state function g. A 

typical, but not all-encompassing, limit-state function is of the form 

 ouug −= )()( xx  (3-2) 

where u(x) is a response quantity from FE analysis, which clearly depends upon the realization of the 

random variables that are input to the analysis, and uo is a response threshold. Effectively, a reliability 

analysis with the limit-state function in Eq. (3-2) results in the probability that the response u(x) is less 

than or equal to the threshold uo.  

The reliability problem in Eq. (3-1) cannot be solved analytically in FE-based reliability analysis, where 

u(x) is not a simple explicit function of x. A number of reliability methods have been developed to 

address the problem. These include the first and second-order reliability methods, sampling methods, and 

response surface methods (Ditlevsen and Madsen 1996). All such reliability methods require repeated 

evaluation of the limit-state function and thus, repeated FE analyses for different realizations of the 

random variables x. In view of the computational cost associated with each FE analysis, it is highly 

beneficial to curtail the number of evaluations of the limit-state function. In fact, this concern renders 

certain reliability methods unappealing, such as most sampling schemes. An appealing alternative that 

balances accuracy and computational cost is available in FORM. FORM also produces interesting by-

products of the analysis, including the most likely failure scenario and importance-ranking of the random 

variables.  
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In FORM, the reliability problem is solved by approximating the integration boundary g(x)=0, denoted 

the “limit-state surface,” in Eq. (3-1) by a hyper-plane that is tangential to the limit-state surface at the 

point on the surface with highest probability density. Importantly, this approximation is made in the 

transformed space of uncorrelated standard normal random variables, y=T(x), where T denotes the 

probability transformation. Due to the rotational symmetry of the joint standard normal probability 

density function, f(y), the point on the limit-state surface nearest to the origin is the point of highest 

probability density, known as “most probable failure point” or the “design point” (Ditlevsen and Madsen 

1996). From above it is understood that finding the design point poses a constrained optimization 

problem, which reads 

 }0)(|min{arg == yyy g*  (3-3) 

The minimum distance between the origin in the standard normal space and the design point is known as 

the FORM reliability index, β, which relates to the probability by (Hasofer and Lind 1973) 

 )( β−Φ≈p  (3-4) 

where Φ is the standard normal cumulative distribution function.  

The most efficient algorithms to solve Eq. (3-3) are gradient-based and thus, employ the gradient of the 

limit-state function, y∂∂g  in addition to the value of g(y(x)) in the search for the design point. Fig. 3-1 

illustrates the key steps in this search. It is observed that the reliability module first performs the 

probability transformation to obtain the realization of the original random variables xi from the trial point 

yi in the standard normal space. This facilitates the evaluation of the limit-state function and its gradient. 

In this phase, the random variables are passed to the FE module, which in turn provides the response 

quantities, u(x) and the gradient of the response, iu x∂∂ , which enter in the evaluation of the limit-state 

function  g(y(x)) and its gradient y∂∂g . It is noted that the computation of the response and its 

derivatives – purposely shown in one box in the FE module in Fig. 3-1 – has been subject to extensive 
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research in recent decades. The “direct differentiation method” is particularly appealing, whereby 

response derivatives are computed alongside the ordinary FE response in one analysis (Zhang and Der 

Kiureghian 1993, Kleiber et al. 1997, Haukaas and Scott 2006). Consequently, it is unnecessary to repeat 

the FE analysis multiple times to obtain gradients by a finite difference formula. In summary, the dashed 

arrows in Fig. 3-1 illustrate the communication of realizations of the random variables into the FE module 

and the return of the needed response quantity/quantities. Finally, the reliability algorithm checks for the 

convergence of the search to the design point and, subsequently, it determines the search direction d and 

search step size s, unless convergence was achieved.  

The potential difficulties with FORM that are addressed in this chapter for FE-based reliability analysis 

are divided into two categories. First, the execution of the algorithm in Fig. 3-1 may be hampered. Certain 

properties of FE-based limit-state functions may cause such problems, as described in the following. 

Second, even if a unique design point exists and is found, the approximation of the limit-state surface by a 

hyper-plane at this location, implied by Eq. (3-4), may be called into question. The left column in Fig. 3-2 

displays the two criteria that must be satisfied to avoid difficulties on either of these two counts.  

The first criterion is that the limit-state function is continuously differentiable; implying that the 

derivative with respect to all random variables must be continuous in the space of random variables. This 

is sometimes referred to as the smoothness criterion. A smooth limit-state function is necessary for the 

gradient-based search algorithms to succeed. When the limit-state function is formulated as an explicit 

algebraic expression in terms of the random variables, the potential presence of gradient discontinuity is 

readily detected by analytical differentiation. In the case of FE-based limit-state functions it may not be 

immediately obvious whether gradient discontinuities exist. There are several potential causes for 

violation of this criterion. 

 In the middle column of Fig. 3-2 the violations of the first criterion are separated into three groups; 

sudden yielding events in the material models, formulation of limit-state functions with maximum 

responses, and numerical noise from the FE analysis. The first of these is a common occurrence: many 
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material models for steel and concrete have a non-smooth force-deformation relationship. As 

demonstrated in the following, caution must be exercised when utilizing such constitutive relationships. 

The second violation of the smoothness criterion appears when the analyst inadvertently includes, e.g., the 

maximum stress anywhere in the FE model, in the limit-state function. The problem is that, for different 

realizations of the random variables the location of the maximum stress may jump to a different location. 

This sudden shift in the location causes gradient discontinuity. As mentioned before, this is termed the 

space-variant reliability problem. The third violation; numerical noise, can either be caused by too low 

tolerance limits in a nonlinear FE analysis or by round-off errors in the evaluation of the limit-state 

function. The aforementioned violations of the first criterion may lead to non-convergence when solving 

Eq. (3-3), as specified in the right column in Fig. 3-2. This is further visualized in the following case 

studies.   

The second criterion for the applicability of FORM, listed in the left column in Fig. 3-2, is that the limit-

state surface is linear or approximately linear. This is necessary to satisfy the hyper-plane assumptions 

inherent in Eq. (3-4). Formally, if the limit-state surface is not linear, the evaluation of Eq. (3-4) is an 

approximation. However, some nonlinearity is acceptable and will still yield excellent estimates of the 

probability. This is due to the exponential decay of the probability density away from the design point. On 

the other hand, dramatic nonlinearity in the limit-state surface is detrimental to the result. The middle 

column in Fig. 3-2 classifies three possible characteristics of the limit-state surface that violate the 

condition of approximate linearity. A limit-state surface may exhibit severe nonlinearity but may still be 

“well-behaved.” For example, the limit-state surface may be approximately quadratic. Although this 

would facilitate the application of the second-order reliability method, a strong nonlinearity would lead to 

inaccurate probability estimates with FORM. This is indicated in the right column in Fig. 3-2. In contrast, 

the nonlinearity of the limit-state function may appear in the form of highly irregular shapes such as 

“waves” and “islands,” as classified in the two lower boxes in the middle column of Fig. 3-2. Such 

behaviour of the limit-state surface could lead to convergence of the search algorithm to a local minimum 
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instead of the global design point implied by Eq. (3-3), as listed in the right column of Fig. 3-2. Under 

special circumstances, such as a symmetric limit-state surface, several global minima may be present. 

Clearly, this will lead to an inaccurate probability estimate from FORM.  

For an analyst, it may be difficult to ascertain whether a limit-state function formulation satisfies the 

criteria discussed above. For this purpose, a combination of static and dynamic FE analysis with linear 

and nonlinear FE models is considered in this chapter and Chapter 4. Visualization of the limit-state 

function and the limit-state surface is carried out for a number of cases. At the end, a flow chart is 

provided to guide the analyst in the assessment of the feasibility of FORM.  

3.3. LIMIT-STATE FUNCTIONS FOR STATIC FE ANALYSIS 

Enumeration of all possible FE-based limit-state functions poses a challenging task. A pragmatic 

approach is adopted in this work, in which two viewpoints merged. The first viewpoint is that of an 

engineer who abide by the current code-oriented state-of-practice. From this viewpoint, particular limit-

state functions are of interest, while others are impractical. Another viewpoint focuses on the responses 

and analysis types that are available from a state-of-the-art FE analysis. In the following, various limit-

state functions are discussed and categorized with these two viewpoints in mind. Questions regarding the 

viability of the associated FORM reliability analysis are raised for each limit-state formulation. 

Subsequently, the questions are answered on the basis of detailed studies and enumerated findings 

presented later in this chapter.  

3.3.1. Limit-state functions in traditional engineering; linear FE models 

Consider traditional structural engineering, in which two issues are of primary concern: First, the capacity 

of the structural members is checked by determining the internal forces (e.g., stresses, bending moments). 

Second, the serviceability is checked by determining deformations (displacements and rotations). For the 

most common types of loading the structural analysis in this paradigm is carried out by means of linear 

models. That is, a proportional relationship exists between the external forces and any response quantity.  
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The utilization of reliability analysis under these circumstances implies an extension of the prescriptive 

code-oriented approach. While the code prescribes safety coefficients, a reliability analysis includes the 

actual probability distributions for loads and structural properties. Typical examples of limit-state function 

are  
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Eq. (3-5) addresses the interaction of the axial tension and the bending moment of a structural steel 

column as specified by the Canadian steel design code (CISC-ICCA 2006). Effectively, this limit-state 

function provides the probability that the code criterion is satisfied. Mr and Pr are the moment resistance 

and the axial tensile resistance of the steel member, M(x) and P(x) represent the moments and the axial 

tensile forces on the member due to the applied loads. The limit-state function in Eq. (3-6) contains the 

shear resistance of a concrete section without the shear reinforcement, as specified by the Canadian 

concrete design code (CAC 2006). V(x) denotes the shear force at a section due to the applied loads, λ and 

φc represent the resistance factors, f’c represents the compressive strength of concrete, bw and d represent 

the section dimensions of the member. Eq. (3-7) is a serviceability limit-state function that provides the 

probability that the short-term deflection of a flexural element, u(x) is less than or equal a threshold value 

based on the member length, ln as specified by the Canadian concrete design code (CAC 2006).  

The viability of the above limit-state functions is now questioned along the previously established criteria 

in Fig. 3-2 for applicability of FORM. Is the limit-state function smooth? Is there detrimental numerical 

noise from the FE analysis? Is the limit-state surface linear? These questions are addressed in a detailed 

fashion in the subsequent case studies in this chapter. The case studies are performed with generic 
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displacement and stress limit-state functions to address the concerns that generally appear with the type of 

serviceability and ultimate limit-state functions that are exemplified in Eqs. (3-5), (3-6), and (3-7).  

3.3.2. Limit-state functions in earthquake engineering; nonlinear FE models 

An area of structural engineering in which sophisticated FE analyses has rapidly gained ground is 

earthquake engineering. Due to the expected nonlinear behaviour of the structure when subjected to 

strong ground motions, the traditional linear structural analysis is inadequate. It is now common for 

practicing engineers to carry out static FE analysis with both material nonlinearity and geometrical 

stiffness effects included. These are often referred to as pushover analysis, in which several objectives 

may be pursued. For example, in a displacement-control push-over analysis, the objectives of a designer 

may be to investigate a) the lateral load demands on particular members, b) inelastic deformations at 

particular sections, and c) lateral stability of the entire structure for a target lateral displacement. 

Examples of corresponding limit-state functions are  

 oVVg −= )()( xx  (3-8) 

 og θθ −= )()( xx  (3-9) 

 og δδ −= )()( xx  (3-10) 

Eq. (3-8) is a limit-state function that seeks the probability that the shear force on a member, V(x) is less 

than a threshold value of a pre-determined ultimate shear strength Vo. The limit-state function in Eq. (3-9) 

seeks the probability that the plastic rotation θ(x) of a specified member is less than the ultimate rotational 

capacity θo. Similarly, Eq. (3-10) is specified in terms of the global drift ratio δ(x), with threshold δo. 

Such global response measures are commonly employed as performance criteria for existing structures 

under earthquake loads (FEMA-356 2000). 
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A number of limit-state functions in the form of Eqs. (3-8), (3-9) and (3-10) are possible. Some are 

amenable to FORM, while others are not. To provide general observations, the following case studies are 

carried out with limit-state functions with generic displacement and stress responses.  

3.4. CASE STUDIES 

To expose the potential difficulties in FE-based FORM analysis, two FE models are utilized in this study. 

These are shown in Fig. 3-3. The single-degree-of-freedom (SDOF) model in Fig. 3-3a provides a simple 

problem that facilitates an isolated study of certain effects. Specifically, this model is a single structural 

element, thus avoiding any influence from global structural effects. As shown in Fig. 3-3a, only lateral 

loads are considered on this model. The other model is the two-bay, two-storey structure in Fig. 3-3b. 

This is a multi-degree-of-freedom (MDOF) system that includes effects in full-scale FE models. The 

loading includes gravity loads and lateral loads as shown in Fig. 3-3b. The characteristics of limit-state 

functions that contain responses from these FE models are subsequently presented, with both linear and 

nonlinear material models.  

In the following, a number of analyses are carried out. The ensuing reliability results are presented in 

tables and the limit-state surfaces are visualized in plots. However, the interpretation and discussion of the 

results are not presented in this section. Instead, the significance of the observations is compiled in a 

subsequent section; categorized as practical findings. 

3.4.1. Case 1: Linear finite element problems 

Linear static analysis represents the conceptually simplest FE problems in which a linear system of 

equations is solved to obtain the structural response. Linear FE models are developed for the structures in 

Fig. 3-3 with elastic beam-column elements and linear elastic material models. The values of the input 

parameters and the random variables are presented in Table 3-1. All random variables are considered to 

be uncorrelated. Limit-state functions of the form in Eq. (3-2) are considered; that is, with a response and 

an associated threshold. As mentioned above, displacement and stress responses are considered. To 
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distinguish these two types of limit-state functions, the following notation is necessary: The generic 

displacement response is denoted u, while the generic stress response is denoted f. Then, for convenience, 

the associated limit-state functions are denoted g(u) and g(f), respectively.  

For the SDOF case in Fig. 3-3a, the threshold values in the limit-state functions are 100 mm in g(u) and 

500 N/mm2 in g(f). In Fig. 3-4 the variation of both limit-state functions with respect to h and L is 

visualized. Next, an analysis is carried out to visualize the limit-state surface for g(u) in the standard 

normal space. The combinations of P and E with L and h are considered for this visualization; see Fig. 3-

5. Finally, reliability analyses are performed with FORM and mean-centered Monte Carlo sampling 

(MCS) for both limit-state functions. Table 3-2 summarizes the reliability results.  

In the MDOF case, the response parameters in the limit-state functions are lateral displacement at the roof 

and the maximum axial stress in any member. The threshold value is 9 mm for the displacement and 700 

N/mm2 for the stress. The function g(u) is visualized in Fig. 3-6 for variation of Hs, W, bc and hc. 

Visualization of the limit-state surface for g(u) is carried out for hc, bc, Hs, and W in combination with the 

lateral load P, as shown in Fig. 3-7. In the case of g(f), the limit-state surface is visualized for the 

combination of gravity load, G and lateral load P, as shown in Fig. 3-8. Similar to the SDOF case, 

reliability analyses are performed with FORM and MCS for both limit-state functions. The results are 

summarized in Table 3-2.  

3.4.2. Case 2: Nonlinear finite element problems 

Nonlinear static analysis is routinely performed in the context of performance based earthquake 

engineering. In this case, the material models include nonlinear stress-strain relationships which introduce 

nonlinearity in the load-deformation relationship of the structure. As the relationship between the applied 

loads and the structural response ceases to be linear, iterative algorithms are employed to solve for the 

nonlinear response. Fig. 3-9 shows the material models considered for the steel and concrete materials in 

this study. The concrete material has a parabolic stress-strain relationship until the stress reaches the 

compressive strength, f’c. The loss of stiffness in the concrete beyond the maximum stress is modelled to 
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be piece-wise linear. The steel material model is considered to be bilinear. The material stiffness 

transitions from E to a fraction α of E when the stress increases beyond the yield stress, σy.  

The reinforced concrete (RC) sections in this chapter are modelled as fibre-discretized cross-sections, 

which include individual uniaxial material models for confined concrete, unconfined concrete, and 

reinforcement steel fibre. This modelling captures the interaction between moment-curvature and axial 

stress-strain behaviour of the cross-section. The MDOF structure is modeled with RC sections, whereas 

the SDOF case is modeled with a steel section. The values of the input parameters and the random 

variables are presented in Table 3-3. Again, all random variables are considered to be uncorrelated.   

For the SDOF case, the limit-state function is considered with lateral displacement and a threshold value 

of 100 mm. This limit-state function is visualized for variation in the geometry and material properties, as 

shown in Fig. 3-10. Subsequently, reliability analyses are performed with FORM and MCS, with results 

as shown in Table 3-4.  

For the MDOF case, two limit-state functions are considered with lateral displacement at the roof and 

maximum axial stress, as in the linear case. The threshold values are 9 mm and 30 N/mm2, respectively. It 

is selected to visualize the variation in g(u) with respect to the material properties, as shown in Fig. 3-11. 

In Fig. 3-12, the behaviour of g(u) is examined for variation in four parameters: the lateral load; the size 

of the load step; the value of the tolerance limits for convergence of the nonlinear analysis; and the 

number of fibres in the RC section of the center column of the bottom storey.  

For the case of g(f), the limit-state surface behaviour in the standard normal space is shown in Fig. 3-13. 

The limit-state surface is visualized for the combination of lateral load and the parameters bc, hc, f’c, and 

εc. Reliability analyses are performed with FORM and MCS for the displacement limit-state function. The 

analysis parameters are considered at the values presented in Table 3-3. The reliability results are 

presented in Table 3-4.  
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3.5. INTERPRETATION AND DISCUSSION OF RESULTS 

Previously in this chapter, questions have been raised regarding the applicability of FORM for several 

FE-based limit-state functions, and subsequently a number of analyses were carried out. In this section the 

analysis results are utilized to address the questions. Observations are drawn from the visualization plots 

of the limit-state functions/surfaces, and categorized into enumerated “findings.” These findings may be 

employed by the analyst to judge whether a particular limit-state formulation carry the potential for 

difficulties or inaccuracies. Subsequently in this chapter, a flow chart is presented that allows the analyst 

to utilize the findings in a systematic manner to determine the feasibility of FORM. In the following, both 

potential pitfalls and possible solution strategies are discussed.  

3.5.1. Finding 1: Linear FE models may result in nonlinear limit-state functions 

It is observed in Fig. 3-4 that nonlinearity appears in the limit-state functions even when the FE model is 

linear. The reason is that the nonlinearity in the limit-state function is dependent on the relationship 

between the random variables and the response, rather than the load-displacement relationship of the FE 

model. In particular, for the SDOF case considered in Fig. 3-4, the stiffness is equal to 3EI/L3, where I = 

h4/12. Hence, the relationship between the response and both h and L is nonlinear.  This is what is 

observed in Figs. 3-4a and 3-4b. Conversely, the maximum axial stress in the cross-section is 6PL/h3. 

Hence, the nonlinear behaviour of g(f) is seen for variation in h, in Fig. 3-4c. However, as expected, the 

limit-state function, g(f), remains linear for variation in L, as observed in Fig. 3-4d.  

The nonlinearity that is observed in Fig. 3-4 manifests itself also in the limit-state surface in Fig. 3-5. To 

further explain this nonlinearity, consider the limit-state surface:  3Eh4/12L3 = P/100, for the displacement 

threshold 100 mm. The nonlinear relationship among the random variables explains the nonlinearity 

observed in the limit-state surface for the random variables P and h, and P and L, as seen in Figs. 3-5c and 

3-5d. However, the nonlinearity of the limit-state surface is insignificant for the random variables E and h, 

and E and L as seen in Figs. 3-5a and 3-5b, although they exhibit nonlinear relationship above. Possible 

nonlinearity in this type of plots may become more pronounced if a different portion of the standard 



Chapter 3: Feasibility of FORM - Statics 

 - 62 -

normal space is considered. In other words, a greater standard deviation of the random variable could lead 

to lead to more visible nonlinearity within the selected plot boundaries. Such issues related to the 

probability transformation are, however, outside the scope of this chapter. It is concluded that even linear 

FE models may be associated with nonlinear limit-state surfaces, but that the degree of nonlinearity is 

typically not detrimental for the application of the FORM. This conclusion is further substantiated in the 

following. 

3.5.2. Finding 2: The degree of nonlinearity is affected by the model fidelity 

The interesting observation is now made that the nonlinearities observed above for the SDOF problem 

practically vanishes for the MDOF structure. Consider a comparison of the displacement limit-state 

function for the linear model of SDOF and MDOF. Fig. 3-4a shows the variation of g(u) with respect to 

the cross-sectional dimension h for the SDOF case, while Figs. 3-6a and 3-6b shows the variation of g(u) 

with respect to the cross-sectional dimensions bc and hc of the centre column of the MDOF structure. It is 

observed that the nonlinearity for the MDOF structure is significantly less than for the SDOF case. In 

fact, for the MDOF, the limit-state function is practically linear for the variation of the cross-section 

dimensions of the center column; see Figs. 3-6a and 3-6b. The comparison of the limit-state surface in the 

standard normal space in Fig. 3-5c for the SDOF with Figs. 3-7a and 3-7b for the MDOF structure 

confirms that the SDOF case suffers from a higher degree of nonlinearity.  

The reason for the different behaviour of the SDOF and MDOF cases is the fact that the influence of the 

center column on the roof displacement is limited by the presence of other elements in the MDOF case. In 

effect, the limit-state function is fairly linear despite the nonlinear relationship between the depth of 

column and displacement response. One way to understand and detect this phenomenon is to consider the 

sensitivity of the response with respect to the random variables. The SDOF response is highly sensitive to 

the random variable h, as indicated in the importance ranking in Table 3-5. In contrast, the global MDOF 

response is less sensitive to the random variables bc and hc.   
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From the discussion in this subsection it is clear that the analyst can influence the degree of nonlinearity 

in the limit-state surface. Specifically, by increasing the model fidelity; e.g., refining the element mesh 

and employing different random variables in each element. The nonlinearity along each random variable 

axis will then be reduced. However, it is recognized that these random variables must be correlated, which 

would re-introduce the nonlinearity. It may also increase the computational cost.  

3.5.3. Finding 3: Limit-state function with maximum response may cause non-convergence  

The formulation of the limit-state function with envelope response parameters, such as the maximum 

response at any location in the structure, may result in non-convergence of the FORM analysis. As 

mentioned earlier, this is the space-variant reliability problem, wherein the location of the maximum 

response is unknown a priori. The non-convergence of the FORM analysis in space-variant problems is 

due to gradient discontinuities appearing in the limit-state function when the location of the maximum 

response suddenly shifts.  

Consider Fig. 3-8 where the response parameter in the limit-state function is the maximum stress. For the 

linear MDOF model with the lateral and gravity loads as random variables, the stress is monitored in all 

the columns. At the mean values of the loads, the maximum stress occurs in the center column in the 

bottom storey. However, for a certain realization of lateral and gravity loads, the outer left column 

experiences the maximum stress among all the elements. The sudden change in the location of the 

maximum stress from the center column to the outer column causes a discontinuity in the gradient of the 

limit-state surface, as shown in Fig. 3-8. Similarly, consider Fig. 3-13 where the response parameter is the 

maximum stress in the nonlinear MDOF model.  The limit-state surface in the standard normal space 

exhibits gradient discontinuity when the location of the maximum stress abruptly changes from the center 

column to the outer column, as shown in Figs. 3-13a, 3-13c, and 3-13d. Notably, the change in location of 

the maximum stress is due to the change in the realization of the material and the section properties. As 

the stiffness of the center column varies, the distribution of lateral load changes, which in turn causes the 

variation in the maximum stress location. It is concluded that the formulation of limit-state functions with 
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maximum responses may cause gradient discontinuities in the limit-state surface. Under these 

circumstances, the FORM analysis may not converge, especially when the gradient discontinuity occurs 

near the design point. Thus, the analyst must ensure that the formulation of the limit-state function does 

not include any envelope response parameters, to facilitate a successful FORM analysis.  

3.5.4. Finding 4: Piece-wise linear material models may cause non-convergence 

The material models that are shown in Fig. 3-9 have potential to cause non-convergence of the FORM 

analysis. When the material stiffness changes abruptly at the yield stress of the steel, and the compressive 

strength of the concrete, the gradient of the limit-state function may also experience an abrupt change. 

This is observed in Fig. 3-11b for the nonlinear model of MDOF. The displacement limit-state function is 

non-smooth at the yield stress of the reinforcement steel equal; namely at σy = 150 N/mm2. For 

realizations of the yield stress less than 150 N/mm2, the steel reinforcement yields due to the applied 

loads. As the yield stress value increases beyond 150 N/mm2, the reinforcement steel ceases to yield. 

However, the non-smooth transition of the material state from the pre-yield state to the post-yield state 

causes the non-smoothness in the limit-state function. Hence, the limit-state function exhibits gradient 

discontinuity at the realization of the yield stress at 150 N/mm2. 

Interestingly, the displacement limit-state function for the nonlinear SDOF model in Fig. 3-10d does not 

exhibit gradient continuity for the variation of the yield stress. This is due to the fact that the steel cross-

section of the SDOF model is discretized into 20 fibres. Because all the material fibres do not yield at the 

same load step, the abrupt transition between the pre-yield and the post-yield state is not observed in the 

displacement response. The yielding of each fibre contributes only to a minor change in the displacement 

response and hence, the resultant limit-state function is approximately smooth. Similarly, the 

discretization of the concrete into several fibres in the RC cross-section of the MDOF structure results in 

an approximately smooth limit-state function, as shown in Figs. 3-11a and 3-11c. Hence, employing fibre-

discretized cross-sections with several fibres prevents problems with gradient discontinuity in the limit-

state function and facilitates the convergence of the FORM analysis. Alternatively, material models with 



Chapter 3: Feasibility of FORM - Statics 

 - 65 -

smooth transitions between material states remedy the problem. “Smoothing” strategies for this purpose 

are developed by Haukaas and Der Kiureghian (2006).  

3.5.5. Finding 5: Non-convergence of the FE analysis may be detrimental for FORM 

As shown earlier, each iteration in the FORM algorithm requires the evaluation of the limit-state function 

and its gradient (see Fig. 3-1). If the FE analysis fails during the evaluation of the limit-state function, it 

leads to the failure of the FORM analysis to converge at design point. For a well-designed structure with a 

robust FE model, the FE analysis is expected to converge when the realizations of the random variables 

are near the mean values. However, for extreme realizations of the random variables; which is typical for 

failure scenarios, the structure may become unstable resulting in the non-convergence of the FE analysis. 

As shown in Fig. 3-12a, the MDOF structure loses its structural integrity when the lateral load exceeds 

1800 kN. Beyond this load value a jagged behaviour of the limit-state function is observed; this is the 

response at the last converged step of the FE analysis. Consequently, the FORM analysis may fail to 

converge in this case for threshold values in the order of 100 mm.  

In cases where the probability of collapse is being investigated, the FORM search algorithm may 

frequently enter such regions of non-convergence of the FE analysis. Thus, the analyst must exercise 

caution while employing FORM for the reliability analysis of such problem formulations.   

3.5.6. Finding 6: Numerical noise may impede the convergence 

The response gradient of the limit-state function determines the search direction for the design point in the 

FORM reliability analysis. When a finite difference method is employed to determine the response 

gradient, the limit-state function is evaluated for a small perturbation in the value of the random variables. 

However, the response gradients obtained in this method will be erroneous if the numerical noise is 

present in the limit-state function.  

The numerical noise is primarily caused due to lax tolerance limits in the nonlinear FE analysis. In the 

presence of lenient tolerance limits, the change in the response due to the perturbation of random 
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variables may be inaccurately estimated. Inaccuracies may also be introduced if sufficient significant 

digits are not considered in the numerical values of the response. Furthermore, the use of an insufficient 

number of fibres in fibre-discretized cross-sections may cause gradient discontinuities in order of 

magnitude of numerical noise. In the authors’ experience, the combination of a low number of fibres 

together with large load steps causes difficulties in the FORM analysis. The effect of the number of fibres 

and load step size on the limit-state function is shown in Figs. 3-12b and 3-12c, respectively. These 

figures are not explicitly showing the numerical noise; rather, they indicate the values of the number of 

fibres and size of the load step at which the limit-state function is insensitive.  

From above it is concluded that the difficulties in FORM due to numerical noise are largely prevented if 

rigorous tolerance limits are used in the FE analysis, reasonable number of fibres are employed in the 

cross-section, and reasonably small load steps are utilized in the FE analysis. However, caution must be 

exercised when tightening the tolerance limits in the FE analysis. As shown in Fig. 3-12d for the 

displacement limit-state function of the nonlinear MDOF structure, convergence tolerance values less 

than 10-12 results in non-convergence of the FE analysis. This is indicated in the figure by a sudden 

change in the limit-state function value; the analyses to the left of 10-12 did not converge. Furthermore, 

attempts to remedy noise by increasing the number of fibres and decreasing the load step size may 

significantly increase the computational cost of the FE analysis. It noted that under conditions of 

numerical noise, an alternative remedy is to employ the direct differentiation approach to obtain the 

gradients or to increase the perturbation in the finite different procedure.  

3.5.7. Finding 7: The nonlinearity in the limit-state surface is moderate in statics 

Although some nonlinearity is observed in the limit-state surfaces for both linear and nonlinear problem 

above, it is found that this is not detrimental for the accuracy of FORM. Consider the comparison of the 

reliability indices from FORM and the MCS in Tables 3-2 and 3-4. MCS is feasible for the applications 

under consideration due to the low computational cost of the FE analysis. MCS is here considered to 

provide the most accurate estimate of the probability because it is not influenced by nonlinearity in the 
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limit-state surface. It is observed that the FORM analysis yields accurate estimates of the reliability index 

for all the problems under consideration. The reliability indices from the FORM vary in the second or the 

third decimal place compared to the reliability estimates from the MCS. Thus, the FORM provides 

satisfactory results with static analysis, particularly when applied to well-designed structures and for low 

probability values that are typical for structural reliability problems.  

3.6. CONCLUDING REMARKS 

In this study, the feasibility of the FORM application in FE-based analysis is investigated. A flow chart 

for an analyst to gage the applicability of FORM is provided in Fig. 3-14. As shown, a smooth limit-state 

function, absence of detrimental numerical noise, and an approximately linear limit-state surface are pre-

requisites for accurate estimates of the probability with FORM. The findings from the case studies 

presented above reveal potential pitfalls and some remedies for the application of FORM. Specifically, 

Findings 3 – 5 address the issue of gradient discontinuity, while the issue of numerical noise is addressed 

by Finding 6. The potential nonlinearity of the limit-state surface is addressed by Findings 1, 2 and 7.  In 

conclusion, FORM in conjunction with static FE analysis is feasible for a wide range of applications and 

provides accurate estimates of rare response events.  
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Table 3.1: Parameters for the linear models 

Parameter Mean  Standard Deviation Distribution 
SDOF 
Section dimension (h) 100 mm 10 mm Lognormal 
Length of the column (L) 3000 mm 166.67 mm Normal 
Lateral load (P) 50000 N 10000 N Lognormal 
Material stiffness (E) 200000 N/mm2 20000 N/mm2 Lognormal 
MDOF 
Depth of girders (hg) 610 mm Deterministic* Deterministic 
Width of girders (bg) 460 mm Deterministic Deterministic 
Depth of outer columns (ho) 610 mm Deterministic Deterministic 
Depth of center column (hc) 610 mm 20 mm Lognormal 
Width of center column (bc) 690 mm 20 mm Lognormal 
Bay-width (W) 7300 mm 200 mm Lognormal 
Top storey height (Hs) 3700 mm 200 mm Lognormal 
Bottom storey height (HL) 4600 mm Deterministic Deterministic 
Left bay-width (WL) 7300 mm Deterministic Deterministic 
Material stiffness (Ec) 14400 N/mm2 Deterministic Deterministic 
Lateral load (P) 140 KN 28 KN Lognormal 
Gravity load (G) 1700 KN 340 KN Lognormal 
Gravity load (G1) 850 KN 170 KN Lognormal 
Gravity load (G2) 430 KN 86 KN Lognormal 
*Deterministic implies that the parameter is not considered as a random variable in the analysis 

 

 

Table 3.2: Reliability results of the linear models 

Structure type SDOF MDOF 
Limit-state function type Displacement Stress Displacement Stress 
Threshold value 100 mm 500 MPa 9 mm 700 MPa 
Reliability index (FORM) 2.0497 2.7568 2.7234 2.7380 
Reliability index (MCS) 2.0525 2.7575 2.7545 2.7630 
Coefficient of variation (MCS) 5% 6.80% 6.84% 7% 
Number of samples 19036 100000 100000 100000 
Probability  2.02% 0.29% 0.32% 0.31% 
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Table 3.3: Parameters for the nonlinear models 

Parameter Mean  Standard Deviation Distribution 
SDOF 
Section dimension (h) 100 mm 10 mm Lognormal 
Length of the column (L) 3000 mm 166.67 mm Normal 
Lateral load (P) 50000 N 10000 N Lognormal 
Material stiffness (E) 200000 N/mm2 20000 N/mm2 Lognormal 
Yield stress (σy) 500 N/mm2 75 N/mm2 Lognormal 
Ratio of post-yield stiffness (α) 0.02 Deterministic* Deterministic 
Number of fibres  20 Deterministic Deterministic 
Convergence tolerance 10-6 Deterministic Deterministic 
Load step size 2500 N Deterministic Deterministic 
MDOF 
Depth of girders (hg) 610 mm Deterministic Deterministic 
Width of girders (bg) 460 mm Deterministic Deterministic 
Depth of outer columns (ho) 610 mm Deterministic Deterministic 
Depth of center column (hc) 610 mm 20 mm Lognormal 
Width of center column (bc) 690 mm 20 mm Lognormal 
Bay-width (W) 7300 mm 200 mm Lognormal 
Top storey height (Hs) 3700 mm 200 mm Lognormal 
Bottom storey height (HL) 4600 mm Deterministic Deterministic 
Left bay-width (WL) 7300 mm Deterministic Deterministic 
Ratio of post-yield stiffness (α) 0.02 Deterministic Deterministic 
Young’s modulus of steel (E) 200000 N/mm2 20000 N/mm2 Lognormal 
Yield stress of steel (σy) 420 N/mm2 63 N/mm2 Lognormal 
Compressive strength of concrete (f’c) 28 N/mm2 4.20 N/mm2 Lognormal 
Yield strain of concrete (εc)  0.002 0.0003 Lognormal 
Lateral load (P) 140 KN 28 KN Lognormal 
Gravity load (G) 1700 KN Deterministic Deterministic 
Gravity load (G1) 850 KN Deterministic Deterministic 
Gravity load (G2) 430 KN Deterministic Deterministic 
Number of fibres  12 Deterministic Deterministic 
Convergence tolerance 10-6 Deterministic Deterministic 
Load step size 2.80 KN Deterministic Deterministic 

*Deterministic implies that the parameter is not considered as a random variable in the analysis 
 

Table 3.4: Reliability results of the nonlinear models 

Structure type SDOF MDOF 
Limit-state function type Displacement Displacement Stress 
Threshold value 100 mm 9 mm 30 MPa 
Reliability index (FORM) 2.0505 2.0571 1.8394 
Reliability index (MCS) 2.0363 2.0408 1.8458 
Coefficient of variation (MCS) 5% 5% 5% 
Number of samples 19128 24482 12810 
Probability  2.02% 1.98% 3.29% 
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Table 3.5: Importance ranking for the displacement limit-state function in linear models 

Parameter Importance 
measure 

Rank 

SDOF 
Section dimension (h) 0.81688 1 
Lateral load (P) -0.40554 2 
Length of the column (L) -0.35571 3 
Material stiffness (E) 0.20424 4 
MDOF 
Lateral load (P) -0.96991 1 
Top storey height (Hs) -0.22430 2 
Width of center column (bc) 0.08015 3 
Bay-width (W) -0.04040 4 
Depth of center column (hc) 0.02997 5 
Gravity load (G) -0.00153 6 
Gravity load (G2) 0.00065 7 
Gravity load (G1) -0.00026 8 
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Figure 3.1: Schematic representation of the FE-based FORM analysis 
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Figure 3.2: Criteria for the applicability of FORM 
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Figure 3.3: Structural models. a) Single-degree-of-freedom system; b) Multiple-degree-of-freedom 

system 
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Figure 3.4: Limit-state function behaviour for linear model of SDOF. Behaviour of displacement 

limit-state function for the variation of  a) cross-section dimension (mm); b) length (mm); Stress 

limit-state function behaviour for c) cross-section dimension (mm); d) length (mm).  
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Figure 3.5: Displacement limit-state surface behaviour in the standard normal space for linear 

model of SDOF with random variables as, a) cross-section dimension and material stiffness; b) 

length and material stiffness; c) cross-section dimension and lateral load; d) length and lateral load 
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Figure 3.6: Limit-state function behaviour for linear model of MDOF. Variation of displacement 

limit-state function for the variation of a) width of the center column; b) depth of the center 

column; c) bay-width; d) storey height. The units of all the random variables are in mm 
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Figure 3.7: Displacement limit-state surface behaviour in the standard normal space for linear 

model of MDOF with random variables as, a) width of the center column and lateral load; b) depth 

of the center column and lateral load; c) bay-width and lateral load; d) storey height and lateral 

load  
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Figure 3.8: Stress limit-state surface behaviour in the standard normal space for linear model of 

MDOF, with random variables as lateral load and gravity load on the center column. 
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Figure 3.10: Behaviour of displacement limit-state function for nonlinear model of SDOF. Variation 

of limit-state function due to the variation of , a) cross-section dimension (mm); b) length (mm); c) 

Young’s modulus of steel (N/mm2) and  d) yield stress of steel (N/mm2) 
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Figure 3.11: Behaviour of displacement limit-state function for nonlinear model of MDOF. 

Variation of limit-state function for the variation of material properties, a) compressive strength of 

concrete (N/mm2); b) yield stress of steel (N/mm2); c) strain in concrete at compressive strength, d) 

Young’s modulus of steel (N/mm2) 
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Figure 3.12: Behaviour of displacement limit-state function for nonlinear model of MDOF. 

Variation of limit-state function for the variation of nonlinear static analysis parameters, a) lateral 

load (N); b) number of fibers in the fiber-discretized cross-section; c) load step size in the nonlinear 

static analysis, d) numerical limits on convergence tolerances in logarithmic scale 
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Figure 3.13: Behaviour of stress limit-state surface in the standard normal space for the nonlinear 

model of MDOF, with random variables as lateral load and a) depth of the center column; b) width 

of the center column; c) compressive strength of concrete of the center column, d) strain at the 

compressive strength of the concrete of the center column 
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Figure 3.14: Flow chart to check the feasibility of FORM 
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Chapter 4. FEASIBILITY OF FORM – DYNAMICS1  

4.1. INTRODUCTION 

The primary objective in this chapter is to facilitate reliability analysis that uses sophisticated numerical 

models. In the context of structural engineering, simulation of response by means of dynamic finite 

element (FE) analysis has not traditionally been part of mainstream practice. However, special areas such 

as offshore and earthquake engineering represent a growing number of exceptions. In particular, the 

recent trend towards “performance-based earthquake engineering,” in which simulation of structural 

performance is a key ingredient, motivates dynamic analysis. In this context, the desire to simulate 

structural performance during extreme loading events necessitates treatment of uncertainties. This 

motivates the present study, in which the feasibility of reliability analysis in conjunction with FE analysis 

to obtain performance probabilities is explored.  

The first issue that is encountered in dynamic FE analysis with time-stepping methods, regardless of the 

inclusion of reliability analysis, is computational cost. Even after decades of growth in computer power it 

is still an arduous task to embark on a dynamic time-history analysis with a sophisticated model of a real-

world building. The time required to run one FE analysis for some realistic time-varying loading may be 

in the order of hours. This places strict constraints on the feasibility of various reliability methods. 

Sampling methods are typically infeasible, while FORM presents a promising balance of accuracy and 

computational efficiency. This inspires the present study of the feasibility of FORM for computation of 

performance probabilities by means of advanced dynamic FE analysis. Novel developments to foster such 

analysis in future engineering practice are emphasized. These efforts build upon Chapter 3, which 

describes the FE-based FORM methodology and exposes the advantages and pitfalls with static FE-based 

reliability analysis.  

                                                   
 
1  A version of this chapter has been submitted for publication. Koduru, S.D. and Haukaas, T. “Feasibility of FORM 
in finite element reliability analysis: Part II – Dynamics.”  
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The scope of the present study is limited to FE-based analyses. This is emphasized to avoid unnecessary 

overlap with the vast field of traditional random vibrations. Several of the problems discussed in this 

study, such as that of calculating the probability that a response exceeds a threshold during a time period, 

have earlier been subjected to extensive research. However, the majority of earlier studies have not dealt 

with the challenges that are particular to FE-based applications. Focus in this chapter is on the extension 

of the existing field of knowledge to FE-based applications. However, it is noted that some of the points 

brought to attention of the FE reliability analyst in this chapter are noted in classical studies. For example, 

a common mistake made by the novice FE-based reliability analyst is to attempt to apply FORM to 

compute the probability that a response exceeds a threshold during the analysis. This may be a highly 

non-trivial problem, referred to as time-variant reliability, regardless of whether a FE model is involved.  

As noted earlier, FORM provides reasonably accurate estimates of the probability for lesser 

computational costs compared to many reliability methods in FE-based applications. However, the 

convergence and the accuracy of FORM are critically dependent on the characteristics of the limit-state 

function. The conditions for the applicability of FORM and the factors leading to the violations of these 

conditions are presented in detail in the accompanying Chapter 3 of this study. Specifically, the 

challenges in the application of FORM stem from potential discontinuities in the gradient of the limit-

state functions and the nonlinearity of the limit-state surfaces. This motivates the study of the 

characteristics of the limit-state function and the limit-state surface to discern the applicability of FORM. 

This is carried out by performing FE analyses to visualize and study the characteristics of the limit-state 

functions that are commonly employed in performance-based earthquake engineering. A visualization 

tool available in the OpenSees software (McKenna et al. 2004) is employed.  

4.2. LIMIT-STATE FUNCTIONS IN DYNAMIC ANALYSIS 

The list of relevant limit-state functions is generated in a different manner in this chapter compared to 

Chapter 3. While static FE analysis lends itself to limit-state functions based on design criteria in current 

engineering practice, dynamic time-history analysis is currently more academic in nature. To approach 
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the matter of possible limit-state functions, consider the responses that are available from a dynamic FE 

analysis; linear or nonlinear. These include: nodal response parameters such as displacements, velocities, 

and accelerations; stresses or stress resultants within elements; plastic strain or rotations in elements; and 

cumulative energy or damage measures. In theory, limit-state functions could be defined in terms of any 

of these measures, or combinations thereof. Additional options are introduced by considering responses at 

a particular time instant, or at the final analysis time-step, or at an uncertain time when the response 

exceeds some threshold.  

In this chapter an important distinction – described below – is made to address the multitude of 

conceivable limit-state functions. The distinction will in turn lead to a novel development for reliability 

analysis in conjunction with inelastic dynamic FE models. The backdrop for the classification is a 

growing vision for the future of structural engineering. It may be referred to as “added-value” 

engineering, which goes beyond the classical code-oriented approach. The idea is to provide the client 

with more information than mere code compliance; but in fact about actual performance of the structure at 

hand. This motivates the classification of limit-state functions. It is argued in this chapter that the primary 

interest, from a future-looking perspective, is not the computation of the probability that a response, e.g., 

a nodal displacement, exceed a threshold. Of greater interest in performance-based engineering are 

quantities such as “amount of damage,” “repair cost,” and “down-time.” For a number of stakeholders, 

including owners, municipalities, and the public, these are more useful in decision making than, say, the 

maximum displacement response. In fact, this forms the principal motivation for the simulation-based and 

performance-based engineering paradigms.  

Now observe that the practically useful responses are typically cumulative during the FE analysis. 

Accumulated damage, e.g., in the form of dissipated energy, is one example. To this end, this study 

categorizes the limit-state functions in dynamic reliability analysis into those that are cumulative during 

the FE-analysis, and those that are not. Interestingly, the cumulative nature of these practically oriented 

limit-state functions has implications for the feasibility of the reliability analysis.  
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In the literature, several cumulative damage measures are developed. A convenient metric to measure 

damage has been “damage indices,” wherein the damage is quantified to be a numerical value between 0 

and 1. These numerical values are in turn assigned to a damage state, which includes qualitative 

assessments of damage. The damage indices are typically dependent on deformations, such as plastic 

rotations, inter-storey drift ratios, and peak lateral deformations, as well as hysteretic energy, loss of 

strength, strain, and a combination of the above (Williams and Sexsmith 1995). For example, the Park-

Ang damage index (Park and Ang 1985) employs the peak displacement response and the dissipated 

energy in order to assess the damage state. Bracci et al. (1989) proposed a damage index that is 

monotonically increasing with dynamic loading, based on the strength degradation and ductility of a 

cross-section. Kratzig et al. (1989) developed a damage index that quantifies the accumulated damage, 

based on the hysteretic energy. More recently, Mehanny and Deierlein (2000) proposed a damage index 

based on cumulative plastic deformations. The repair costs are typically related to the damage states. 

Hence, the repair costs increase with increasing damage.  

The studies and developments related to cumulative limit-state functions represent key contributions in 

this chapter. Effectively, this forms a methodology to address the time-variant reliability problem. In the 

following section, this approach will – conceptually – be contrasted with classical approaches to address 

time-variant reliability.  

4.3. THE TIME-VARIANT RELIABILITY PROBLEM 

When dynamic FE analysis is extended with the reliability analysis, the analysts have a tendency to 

prescribe peak response in the limit-state functions. This is considered as a natural extension from the 

static case wherein the maximum displacements and stresses are utilized. However, peak responses cause 

gradient discontinuity in the limit-state function leading to the failure of gradient-based search algorithms. 

In order to understand this effect conceptually, consider Fig. 4-1. Fig. 4-1a illustrates the displacement 

response of a structure, u, which is a function of the random variable, x. Consider the peak displacement 

response in the limit-state function, g. Fig. 4-1b schematically represents the variation of the limit-state 
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function, with respect to x. For a small perturbation, dx, of the random variable, the amplitude and 

location of the peak displacement along the time axis may suddenly shift as indicated by the dotted line in 

Fig. 4-1a. This results in a non-smooth limit-state function as illustrated in Fig. 4-1b. In turn, this violates 

the continuous gradient criterion for the applicability of FORM.  

The uncertainty in the time instant at which a response reaches its peak value, is a key feature hindering 

the utilization of peak responses in FORM. This uncertainty in the time instant increases when the 

structural response is a stochastic process. In this context, the reliability problem is traditionally cast as a 

time-variant reliability problem.  

Time-variant reliability analysis aims to find the probability that a stochastic process exceeds a threshold 

at least once within the duration of interest. The probability is calculated as the first passage of a 

stochastic process through the limit state surface. It is formally represented as (Li and Der Kiureghian 

1995) 

 )0)),((min( ≤=
∈

xtugPp
Ttf  (4-1) 

where pf is the probability of failure within a time period T, and u is the response as a function of time, t 

and the vector of random variables x. The problem is also known as the “first-excursion” problem or the 

“first-passage” problem. Eq. (4-1) is also cast as  

 )0)),((( ≤= xi

n
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where the time period T is discretized into n time instants. Eq. (4-2) transforms the original time-variant 

problem into a time-invariant system reliability problem with n limit-state functions.  

Considerable literature exists to solve Eq. (4-1) for linear dynamic problems with the theory of random 

vibrations (Lutes and Sarkani 2004). Some key contributions in the field include those by Yang and 

Shinozuka (1971), Vanmarcke (1975), Mason and Iwan (1983), Naess (1990), Zhang and Der Kiureghian 

(1994), Li and Der Kiureghian (1995), and Der Kiureghian (2000). The more challenging nonlinear 
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problem may be addressed by transforming it into a linear problem by means of “equivalent 

linearization,” in order to maintain the applicability of the random vibrations approach (Caughey 1963, 

Wen 1980). However, in the context of earthquake engineering, Koo and Der Kiureghian (2003), Koo et 

al. (2005), and Fujimura and Der Kiureghian (2007) developed novel methods to address nonlinear 

random vibrations, which deviate from the equivalent linearization approach. Common to the 

aforementioned approaches is the “crossing rate” that is employed as a central quantity. An alternative to 

this strategy is to employ sampling methods, such as importance sampling (Au and Beck 2001), subset 

simulation (Au and Beck 2003, Ching et al. 2005, Katafygiotis et al. 2007), and response surface 

methods, e.g., Yao and Wen (1996), Zhang and Foschi (2004), to solve Eq. (4-2). These methods are 

applicable to linear and nonlinear dynamic problems. However, the computational efficiency is dependent 

on several factors, such as the number of intervening random variables and the complexity of the 

structure.  

In the approaches that utilize the crossing rate, Eq. (4-1) is solved by assuming independent crossings of 

the response, u, into the failure region and that the crossing events are Poisson distributed. Hence, 

(Vanmarcke 1975) 

  ∫−=
T

f dttp
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where ν(t) is the mean out-crossing rate, which is the expected number of crossings of u into the failure 

region during a unit time. There are several methods to obtain ν(t). A generally applicable method is to 

numerically evaluate the temporal distribution of ν(t) by discretization of T into several time instants.  At 

a given time instant, tn, the mean out-crossing rate is estimated as (Hagen and Tvedt 1991), 

 
t

ttugtugPt nn

tn δ
δν

δ

]0))x,((0))x,(([lim)(
0

≤+>=
→

I
 (4-4) 



Chapter 4: Feasibility of FORM - Dynamics 

 - 92 -

where δt is a small but finite time interval after the time instant tn. The parallel system reliability problem 

in the numerator of Eq. (4-4) is solved with FORM by Koo et al. (2005), such that for a small value of δt   

 ),,(]0)),((0)),(([ 21 ρββδ −−Φ≅≤+> xx ttugtugP nn I  (4-5) 

where Φ is a bi-variate standard normal distribution, β2 ≈ -β1 = β, where β is the reliability index of the 

limit-state function g(u(tn,x)), and ρ is close to -1. Koo et al. (2005) discovered that the design point 

excitation for a single-degree-of-freedom system is the one that yields the mirror image of the free-

vibration response for the system released from the threshold displacement. Later, this discovery is 

utilized by Fujimura and Der Kiureghian (2007) to develop a “tail-equivalent linearization method” to 

address the nonlinear dynamic problems with multi-degree-of-freedom structures. They also developed an 

algorithm to determine a sequence of design points for various time instants and threshold values.  

The contributions of Koo et al. (2005), and Fujimura and Der Kiureghian (2007); namely, the utilization 

of design points, can be employed to solve the time-variant reliability problem in two ways; 1) 

numerically estimating ν(t) and subsequently evaluating Eq. (4-3); and 2) importance sampling around 

the design point and utilization of the system reliability formulation in Eq. (4-2). The latter approach is 

explored by Au and Beck (2001) who developed efficient sampling methods to solve the time-variant 

reliability problem. 

Contrary to the response considered above, cumulative responses exceed a threshold value only once 

during the time period of interest due to their monotonically increasing nature. Therefore, the random 

vibrations approach with mean out-crossing rate is circumvented with these responses in the limit-state 

function. Furthermore, cumulative response is always measured at the final analysis load step; thus 

removing the time-variant uncertainty. Consequently, the system reliability problem in Eq. (4-2), with 

limit-state functions at several time instants, reduces into a fundamental reliability problem with a single 

limit-state function at a single time instant. It is therefore of significant interest in this study to explore the 

characteristics of limit-state functions with cumulative response and assess the feasibility of FORM. In 
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the following section, the limit-state functions with cumulative response are evaluated numerically for 

specific SDOF and MDOF systems to explore the applicability of FORM. 

4.4. STUDY OF FE-BASED RELIABILITY ANALYSIS WITH CUMULATIVE RESPONSE 

The study with cumulative responses is carried out in three parts; first considering randomness only in the 

structural parameters; then considering randomness only in the dynamic loading; and finally a 

comprehensive case with randomness in both structural and loading parameters. This categorization 

facilitates the separation of structural modelling effects and load modelling effects on the feasibility of 

FORM. The factors that are affecting FORM due to structural modelling, such as aspects of the material 

models, finite-elements, cross-sectional properties, and geometry, are different from those due to load 

modelling, such as load amplitude, and frequency. In each category, case studies are presented with the 

structural models illustrated in Fig. 4-2.    

Fig. 4-2a illustrates a basic single-degree-of-freedom (SDOF) system defined by mass, M = 100 kg, 

damping C = 5%, stiffness K = 4000 N/mm and yield strength Py = 196.2 N. The post-yield stiffness is 

considered as 2% of the initial stiffness K. The bilinear material model of this structure facilitates the 

study without the influence of cross-section modelling. The second structure, shown in Fig. 4-2b, is also a 

SDOF system modelled as a nonlinear beam-column element. This structural model includes the 

influence of the material and cross-section models in contrast to the structural model in Fig. 4-2a. The 

cross-section is modelled as a fibre-discretized section. Two types of materials - structural steel (SS) and 

reinforced concrete (RC) - are considered. This structure is termed “SDOF-SS” and “SDOF-RC” to 

represent the structural steel and reinforced concrete cross-sections, respectively. This terminology 

differentiates the structure in Fig. 4-2b from the basic single-degree-of-freedom system in Fig. 4-2a. The 

numerical values of the model parameters for SDOF-SS and SDOF-RC are presented in Table 4-1.   

A two-storey two-bay structure shown in Fig. 4-2c is considered to represent a multiple-degree-of-

freedom (MDOF) system. The MDOF system is a reinforced concrete structure modelled with nonlinear 
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beam-column elements and fibre-discretized cross-sections with individual fibres representing concrete 

and reinforcing steel materials. Table 4-2 presents a partial list of the structural parameters relevant to the 

case studies in this chapter. Further details of the geometry and cross-section properties are found in 

Chapter 3.   

Cumulative responses are dependent on the cyclic force-deformation relationship of material models. 

Hence, the hysteretic behaviour of material models plays a significant role when cumulative responses 

enter the limit-state functions. In the present study, the hysteretic behaviour of steel and concrete are 

based on “Steel01” and “Concrete01” material models, respectively, in OpenSees (McKenna et al. 2004). 

Figs. 4-3a and 4-3b conceptually illustrate the material models for structural steel and concrete.  The 

reinforcement steel in RC cross-section is also modelled with the material model in Fig. 4-3a. 

4.4.1. Random structural properties 

The structural models, SDOF-SS, SDOF-RC and MDOF are considered for study in this section. These 

case studies isolate the effects of the structural properties on the behaviour of the limit-state function, due 

to the fact that only the structural parameters are considered as random variables. A sine wave of 0.8s 

period and duration of 8s is considered as the deterministic dynamic load. Hysteretic energy is considered 

as the cumulative response for all the cases.  The energy limit-state function is denoted as g(e) for 

convenience of notation.  

4.4.1.1. SDOF-SS Structure 

Fig. 4-4 shows the variation of g(e) for the SDOF-SS model. Figs. 4-4b and 4-4e show significant 

nonlinearity in the limit-state function due to the variation of h and M, respectively. It is observed that 

g(e) is reasonably linear for the variation of L, E, σy, and C. The dramatic nonlinearity of g(e) in Figs. 4-

4b and 4-4e is due to the effect of h and M on the period of the structure. The period varies between 1.63-

0.47s for the variation of h from 70 mm to 130 mm, and 0.51-1.01s for the variation of M from 1200 kg to 

4800 kg. The highest nonlinearity of g(e) is observed in the period range of 0.55-0.61s due to the 
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transition of structure from elastic to inelastic behaviour within this period range. In Figs. 4-4a and 4-4c 

corresponding to the variation of L and E, respectively, the period varies between 0.61-1.0s for the 

variation of L from 2500 mm to 3500 mm, and 0.96-0.70s for the variation of E from 140x103 N/mm2 to 

260x103 N/mm2. This implies that the variation of L and E has not significantly influenced the structural 

period to cause the transition between the elastic and inelastic behaviour. Therefore, the variation of L and 

E results in a fairly linear g(e). The variation of σy has no effect on the period of the structure. However, 

yielding of the structure, and in turn, dissipation of hysteretic energy depends on σy. Fig. 4-4d exhibits a 

linear variation of g(e) for the variation of σy. In Fig. 4-4f, the variation of C has insignificant effect on 

the variation of g(e). This is due to the fact that C has practically no influence on the structural period for 

the range of values 2-5%, typically considered in the civil engineering structures. Additionally, when the 

structure yields, hysteretic energy forms a dominant part of energy dissipation as opposed to the viscous 

damping. This observation implies that cumulative responses are fairly insensitive to the uncertainty 

present in the estimation of viscous damping. In summary, the observations in Fig. 4-4 indicate certain 

degree of nonlinearity in the limit-state function but not gradient discontinuities and detrimental 

numerical noise.  

The application of FORM depends on the degree of nonlinearity of the limit-state surface, not the limit-

state function itself. Fig. 4-5 illustrates the behaviour of the limit-state surface for several threshold values 

of the hysteretic energy. The random variables, probability distribution types, and the distribution 

parameters are as listed in Table 4-1. The limit-state surface is examined for the combination of variables 

E and M, L and M, h and M, and σy and M in the standard normal space. The limit-state surface exhibits 

significant nonlinearity for all the combinations of random variables in Fig. 4-5.  

Certain degree of nonlinearity is expected in the limit-state surface based on the observations in Fig. 4-4. 

However, the degree of nonlinearity observed in the behaviour of the limit-state surface for the 

combination of h and M, and σy and M implies that the application of the FORM may not be feasible. 

However, it is noted that the nonlinearities are only due to the variation of h and M as observed with Figs. 
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4-4b and 4-4e. If the sensitivity of the limit-state surface to these random variables is insignificant, then 

the nonlinearity may not be detrimental for the application of FORM. Therefore, reliability analysis is 

performed with FORM and mean-centered Monte Carlo sampling (MCS) to ascertain the degree of 

nonlinearity of the limit-state surface in the presence of all the random variables. A range of threshold 

values are considered from 1.0x106 Nmm to 7.0x106 Nmm and the results are listed in Table 4-3. The 

reliability analyses confirm that the limit-state surface is significantly nonlinear. For example, the 

reliability analyses with the threshold value of 2.0x106 Nmm results in a probability value of 0.42% from 

the FORM while the probability value from the MCS is 9.92% with 5% coefficient of variation. The 

difference in the probability estimates from FORM and MCS is in the order of 10%. Thus, the 

nonlinearity of the limit-state surface is detrimental to the application of FORM in this case. Also, the 

reliability analyses confirm that the limit-state surface is sensitive to the variation of h and M. This 

implies that the nonlinearity of the limit-state function observed in Figs. 4-4b and 4-4e indicates a highly 

nonlinear limit-state surface near the design point.  

In order to ascertain that the observations from Figs. 4-4 and 4-5 hold valid for more realistic loading 

scenarios, a recorded ground motion is now considered. Fig. 4-6 shows the acceleration record of the 

ground motion and the elastic response spectrum with 5% damping in the units of acceleration due to 

gravity, ga. Fig. 4-6b shows that the large amplitudes are at shorter periods, which is a typical observation 

in response spectra of design codes. Fig. 4-7 shows the variation of g(e) for the variation of structural 

parameters of SDOF-SS model. Again, Figs. 4-7b and 4-7e exhibit significant nonlinearities for the 

variation of h and M respectively. This observation confirms that the nonlinearity of g(e) is due to the 

sensitivity of the structural period to the variation of h and M. Specifically, when the structural period 

moves closer to the dominant frequencies in the loading, it initiates the yielding and the dissipation of 

hysteretic energy.  
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4.4.1.2. SDOF-RC Structure 

Consider Fig. 4-8 where the variation of g(e) is sought for the SDOF-RC model for the sine wave loading. 

The behaviour of the limit-state function is similar to the SDOF-SS case in Fig. 4-4. In particular, the 

energy limit-state function, g(e), is severely nonlinear for variation of the mass as shown in Fig. 4-8e. 

Additionally, in Fig. 4-8e, the limit-state function is sensitive to the size of the time step in the dynamic 

analysis and exhibits numerical noise for larger ∆t. ∆t affects the hysteretic energy in two ways: 1) the 

hysteretic energy is evaluated by linearizing the force-deformation relationship between the analysis 

steps. Consequently, when the force-deformation relationship of RC cross-section is highly nonlinear, the 

linearization becomes invalid as the analysis time step size increases. 2) When a large analysis time step 

is applied, the noisy behaviour of the limit-state function is triggered by sudden yielding of more than one 

concrete fibre in a single time step. In case of a smaller time step, individual fibres yield in a single time 

step and result in a smoother force-deformation relationship and consequently, a numerically well-

behaved limit-state function.  In view of this sensitivity of the limit-state function, the analyst must 

employ an appropriately small time step when utilizing advanced material models with nonlinear and 

non-smooth force-deformation relationship, such as Concrete01, in the structural model.  

Similar to the SDOF-SS case, the behaviour of the limit-state surface is examined in the standard normal 

space. For this purpose, the combination of the variables E and M, L and M, hRC and M, and σy and M, is 

considered, as shown in Fig. 4-9. As observed in the previous case, the behaviour of the limit-state 

surface is significantly nonlinear.  Furthermore, the limit-state surface exhibits noisy behaviour due to the 

Concrete01 material, as discussed above. It is apparent that the application of FORM may not be feasible. 

Nevertheless, significant nonlinearity is observed only for the variation of M in Fig. 4-8e. The presence of 

several random variables may alleviate the nonlinearity in the limit-state surface near the design point. In 

order to investigate the effect of random variables other than M, reliability analyses are performed with 

FORM and MCS considering all the random variables in Table 4-1. The threshold value in g(e) is varied 

from 0.10x106 Nmm to 0.50x106 Nmm and the results are tabulated in Table 4-4. A comparison of the 
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FORM results with those of the MCS indicates that the degree of nonlinearity in the limit-state surface is 

indeed significant for threshold values below 0.20x106 Nmm. The linearization of the limit-state surface 

in the FORM analysis leads to inaccurate estimation of probability for the threshold values 0.10x106 

Nmm and 0.15x106 Nmm. However, the FORM results are fairly accurate for threshold values above 

0.20x106 Nmm. This improvement in the accuracy of FORM is because M is the sole contributor to the 

nonlinearity of limit-state surface; as observed in Fig. 4-8e the nonlinearity in the limit-state function g(e) 

with respect to the variation of M vanishes beyond the values of 0.20x106 Nmm.  

Now, consider the SDOF-RC system with a damage index (DI) as the cumulative response measure. In 

the present study, the damage index based on cumulative inelastic deformations, developed by Mehanny 

and Deierlein (2000), is employed. The damage index value varies from 0.0 to 1.0, representing zero 

damage to complete damage. The damage index is estimated as  
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where +
pθ  is some inelastic deformation in the positive loading direction, +

puθ  is the ultimate inelastic 

deformation capacity under monotonic loading in the positive direction. PHC refers to the primary half 

cycle, which implies that the amplitude in this load cycle exceeds the amplitude of all the previous load 

cycles. FHC refers to the follower half cycle wherein the amplitude is less than the previous PHC and n+ 

is the total number of FHCs in the positive load direction. Similarly, −
θD  is the negative damage index 

evaluated as Eq. (4-7) with the inelastic deformations in the negative loading direction. α, β, and γ are the 
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calibrated parameters to an experimental database with the values as 1.00, 1.50, and 6.00, respectively, for 

reinforced concrete columns. 

The variation of the damage limit-state function, denoted g(DI), with the variation of the material 

parameters, such as E and f’c, the geometry parameters, L and hRC, and the dynamic properties, M and C, 

is evaluated as shown in Fig. 4-10. It is noted that the input parameters of the damage index are based on 

the ultimate cross-section deformation at failure. However, as the properties of the cross-section are 

varied, the input parameters of the damage index may vary. In the present study, the damage indices are 

considered to indicate a normalized variation of the response and hence, the input parameters are not 

varied with the variation of the material parameters. The behaviour of g(DI) in Fig. 4-10 is similar to the 

behaviour of the energy limit-state function in Fig. 4-8. Furthermore, the numerical noise and the degree 

of nonlinearity in the damage index limit-state surface observed in Fig. 4-11 are similar in nature to 

energy limit-state surface in Fig. 4-9. Hence, the accuracy of FORM with g(DI) is assumed to be similar 

to that of g(e) and the reliability analyses are not conducted for this case.  

4.4.1.3. MDOF Structure 

For the MDOF system with sine wave loading, the limit-state function initially contains hysteretic energy 

dissipated by the center column in the bottom storey. Fig. 4-12 illustrates the behaviour of the limit-state 

function for the variation of mass M1, material properties, such as f’c and E, and the height of the top 

storey, Hs. Similar to the case of SDOF-RC, energy limit-state function, g(e) exhibits sensitivity to the 

size of time step in dynamic analysis as observed in Fig. 4-12d. However, the limit-state function does not 

exhibit significant nonlinearities compared to Figs. 4-4 and 4-8. Thus, the limit-state surface may not 

exhibit significant nonlinearity.  

In order to ascertain the degree of nonlinearity in the limit-state surface, the reliability analyses are 

performed with all the random variables presented in Table 4-2. The reliability analyses with the FORM 

and the MCS are conducted for a range of threshold values and the results are listed in Table 4-5. A 

comparison of the FORM and the MCS results indicates that the approximation of the limit-state surface 
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with a hyper-plane is reasonable. The absence of nonlinearity in the limit-state surface is a result of the 

fundamental period of the MDOF. The variation in the structural parameters has caused the fundamental 

period of MDOF vary between a range 0.3-0.6s, which is farther away from the period of the excitation at 

0.8s. The higher modes of MDOF will have periods lesser that the fundamental period. This implies that 

the structure did not experience resonance, and the consequent dramatic nonlinearity of the limit-state 

surface, in any of its modes for the range of threshold values considered. Therefore, the FORM results are 

accurate for this case in contrast to the SDOF-SS and SDOF-RC. It is emphasised here that the linearity in 

the limit-state surface is mainly due to the variation of period and is independent of the number of 

degrees-of-freedom of the structure. However, analogous to the static case, the stiffness of MDOF, and 

hence the structural period, are less sensitive to the variation of structural parameters of a single element. 

The presence of multiple elements reduces the sensitivity of the structural period to the variation of 

parameters of a single element and consequently, reduces dramatic nonlinearities in the limit-state 

surface.  

The hysteretic energy considered for the MDOF system is not a global structural response measure. 

Hence, the total repair cost, Rt, is considered as the cumulative global response measure. It is calculated as 

a summation of the cost of repair for each structural member. In turn, the cost of repair is estimated based 

on the damage index of each member. The cost of repair of each structural member is evaluated such that 

 VDIR )))5.0(sin(1(5.0 −+= π  (4-8) 

where R is the repair cost, DI is the damage index based on cumulative plastic deformations in Eq. (4-6) 

and V is the replacement value of the structural member. Eq. (4-8) is obtained heuristically. To make this 

cost model amenable to FORM a continuous function is assumed that models the increase in repair cost 

with increasing damage. The replacement value for columns in bottom storey are considered as $9300, for 

the columns in top storey is considered as $7100 and for the beams as $10000.   

Fig. 4-13 illustrates the behaviour of the total cost limit-state function, g(Rt), for the variation of mass M1, 

material properties, such as f’c and E, and the height of the top storey, Hs. The limit-state function exhibits 
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significant numerical noise. However, the nonlinearity of the limit-state function appears to be 

insignificant. In order to ascertain the detrimental effects of the degree of nonlinearity in the limit-state 

surface, the reliability analyses with FORM and MCS are performed considering all the random variables 

in Table 4-2. Table 4-6 presents the reliability analyses results for a range of threshold values of the total 

cost from $60 to $140. The probability is consistently over-estimated by FORM in comparison to MCS. 

However, the accuracy of FORM results is primarily affected by the numerical noise rather than the 

nonlinearity in the limit-state surface.  

4.4.2. Random dynamic loading 

Modelling of dynamic load processes, such as winds and earthquakes, include uncertainties in the 

amplitudes, duration and other load characteristics. From a practical viewpoint, modelling these loads as 

stochastic processes allows the inclusion of uncertainties in their characteristics. Moreover, the 

uncertainties in these stochastic processes are often greater than those in structural parameters. This 

motivates the consideration of the case when the material and geometry parameters of a structure are 

deterministic while the dynamic loading is random. This case isolates the effects of the probabilistic 

modelling of the dynamic load on limit-state functions. The structural models, SDOF, SDOF-RC and 

MDOF are considered for study in this section.  

In the present study, the loading is modelled as a discretized random process developed by Li and Der 

Kiureghian (1995). A Gaussian process is considered such that,  

 ∑
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where yi represent a train of equally spaced random pulses along time axis that are modelled as standard 

normal random variables, and h(t-ti) represents a filter modelled as an impulse response function with a 

specific period and damping ratio. Eq. (4-9) may represent an earthquake ground motion where pulses are 

considered the ruptures of a fault that are filtered through a soil medium. Modulating functions are 

applied to Eq. (4-9) to introduce the nonstationarity, which is the temporal variation in the ground motion 
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amplitude. In this study, the filter period is considered to be 0.8s with a damping ratio of 5%. Similar to 

the deterministic loading case, the duration of loading is considered as 8s. A stationary process is 

considered without the application of modulating functions. In order to study the characteristics of the 

limit-state surface for this type of loading, the visualization is carried out with two random pulses. These 

are located at 0.02 s and 4.0 s respectively.  

4.4.2.1. SDOF Structure 

Fig. 4-14 shows the limit-state surface for the hysteretic energy in the standard normal space for the 

SDOF system. The threshold values range from 500 Nmm to 1500 Nmm. It is apparent that the limit-state 

surface has a closed shape, and is point symmetric with respect to the origin. That is, if a realization of y 

is on the limit-state surface, then –y is also on the surface. The symmetry of the limit-state surface is due 

to two reasons; 1) symmetry in the probability distributions of the pulses; and 2) symmetry in the cross-

section and geometry parameters of the structure. Consider that the positive realizations of pulses result in 

a ground motion arriving at the structure in a particular direction, then the negative realizations imply that 

the ground motion is in the opposite direction. As the dissipated energy is a scalar unit, a symmetric 

structure dissipates same amount of energy for the ground motion in either direction. Owing to this 

symmetry, the limit-state surface would have a minimum of two design points. 

The shape of the limit-state surface also depends on the spacing of the pulses. If two pulses are 

sufficiently far apart, the superposition of the pulses does not significantly influence the peak amplitudes. 

For example, the peak amplitude of the excitation shows minor variation for the pulse spacing at 0.02 s 

and 4.0 s in Figs. 4-15a and 4-15b. Hence, the energy dissipated by the structure would be nearly twice 

the energy dissipated by a single pulse irrespective of the positive or negative realizations of the pulses. 

This results in the limit-state surface as seen in Fig. 4-14.  

Conversely, consider the case when two pulses are closely spaced. In this case, when both pulses have 

realizations in same direction, the peak amplitude of loading will be twice that of a single pulse. 

Consequently, the limit-state surface is closer to the origin in the standard normal space. However, when 
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the realizations are in opposite direction, they effectively nullify each other resulting in a significant 

reduction in the amplitude of loading. Thus, the structure does not dissipate sufficient energy to reach the 

limit-state threshold and the limit-state surface moves farther away from the origin. Hence, the limit-state 

surface transforms into an elliptical shape as the spacing between the pulses decreases. The amplitude of 

the excitation is distinctly influence by the direction of the pulse at 2.0 s in Figs. 4-15c and 4-15d. Fig. 4-

16 shows the limit-state surface for two pulses at 0.02 s and 2.0 s respectively. In comparison of Figs. 4-

14 and 4-16, it is evident that a reduction in the spacing between pulses varies the shape of limit-state 

surface.  

In addition to the pulse spacing, the application of modulating functions influences the shape of the limit-

state surface. The modulating functions magnify the amplitude of pulses at certain time instants while 

reducing the amplitudes of pulses over the rest of the loading duration. Therefore, the de-amplified pulses 

cause an elongation in the limit-state surface.  

4.4.2.2. SDOF-RC and MDOF structures 

As a novel finding in this chapter, it is demonstrated in Fig. 4-17 that the limit-state surface has a closed 

shape in the standard normal space irrespective of the cumulative response measure and the structural 

model under consideration. Fig. 4-17a shows the limit-state surface with the damage index of SDOF-RC 

model for the two pulses spaced at 0.02 s and 4.0 s. In Fig. 4-17b, the structural model is MDOF, while 

the cumulative response considered is the total repair cost. The total cost limit-state surface is also a 

closed shape which exhibits symmetry in the standard normal space.  

It is noted that the total cost limit-state surface may not maintain gradient continuity as the structure 

undergoes extreme damage. This is due to the fact that the behaviour of the limit-state surface is related to 

the effect of the damage concentration within a MDOF structure. For example, if the damage is 

concentrated in the bottom storey columns, the repair cost of the members will be equal to their full 

replacement value. An increase in the amplitude of loading does not significantly increase the total repair 

cost. However, consider that the damage is distributed among the top storey and the bottom storey 
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columns, but with the total repair cost equal to the previous case. This implies that all the members have 

suffered only a moderate damage. In this scenario, an increase in the amplitude of loading would increase 

the damage in each member and consequently, the total repair cost. Therefore, the limit-state surface with 

total repair cost exhibits the gradient discontinuity based on the distribution of damage to a combination 

of loading pulses.  

4.4.3. Random structural properties and loading 

Consider the comprehensive case when the structural properties are random in addition to the loading. 

Fig. 4-18 shows the limit-state surface in the standard normal space for the random pulse at 0.02s, and the 

structural properties of SDOF with g(e) as limit-state function. The distributions of yield strength, 

stiffness, mass and damping ratio are considered as lognormal with the coefficient of variations as 15%, 

10%, 20%, and 20%, respectively. As expected, the limit-state surface is symmetric about the random 

variable axis representing the pulse, while it is “open” along the axis that represents the structural 

property. Similar behaviour is expected from the SDOF-SS, SDOF-RC and MDOF models for the 

combination of structural and loading random variables.  

4.5. SOLUTION STRATEGIES 

In this chapter it is shown that, for cumulative response measures, 1) the limit-state surface is an open and 

highly nonlinear function when the random variables are structural parameters, and 2) the limit-state 

surface is a closed and symmetric function when the random variables are loading pulses. In the first case, 

the limit-state surface is possibly a hyper-paraboloid in the standard normal space. In the second case, the 

limit-state surface can be approximated by a hyper-ellipsoid in the standard normal space, with the axis of 

symmetry passing through the origin. When the structural parameters and the loading pulses are 

considered as random variables, the limit-state surface is a nonlinear function with a combination of 

quadratic and linear terms. Therefore, it is evident that the application of FORM, which requires an open 

and approximately linear limit-state surface, is not feasible for the dynamic reliability problems with 

cumulative responses. However, the application of alternative methods, such as approximation of the 



Chapter 4: Feasibility of FORM - Dynamics 

 - 105 -

limit-state surface with paraboloids or ellipses may be practical given the insight into the limit-state 

surface provided in this chapter. This is explored in the following.  

4.5.1. Random structural properties (open limit-state surface) 

Consider the case where the structural parameters are random variables and the loading is deterministic. 

As observed in Figs. 4-5, 4-9 and 4-11, the limit-state surface for SDOF-SS and SDOF-RC are 

approximately quadratic. Therefore, the estimation of the probability by fitting a hyper-paraboloid is 

considered. For this purpose, the efficient algorithm developed by Der Kiureghian and De Stefano (1991) 

is employed in order to estimate the principal curvatures. This algorithm estimates the first principal 

curvature from the same computations employed in the search for the design point, y* in the FORM. The 

probability is then evaluated with the approximate formulation by Breitung (1984) 

 ∏
−

=

−+−Φ≈
1

1

2/1)1()(
n

i
ipp βκβ  (4-10) 

where pp is the probability content of the paraboloid, Φ is the standard normal distribution, β is the 

reliability index from the FORM analysis, and κi is the ith curvature of the hyper-paraboloid of n random 

variables. In the present study, only the first principal curvature is considered.  

The SORM analyses are performed for the SDOF-SS model with energy limit-state function for a range 

of threshold values. Table 4-3 shows the probability values from FORM, SORM and MCS. SORM 

provides similar estimates of the probability as that of FORM. This implies that all the curvatures of the 

paraboloid must be considered for an improvement in the probability estimate. Furthermore, SDOF-RC 

model is analysed with SORM with energy as the cumulative response in the limit-state function. This 

case includes the effect of noise due to RC cross-sections. The SORM results presented along with the 

probability values from FORM and MCS in Table 4-4. Similar to the previous case, the SORM results 

with the first principal curvature do not show significant improvement over to the FORM results.  
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4.5.2. Random dynamic loading (closed limit-state surface) 

Consider the case where the loading pulses alone are random variables. As stated earlier, the limit-state 

surface could potentially be approximated by a hyper-ellipsoid based on the behaviour of the limit-state 

surface observed in Figs. 4-14, 4-16, and 4-17. The probability content of a hyper-ellipsoid in the standard 

normal space is obtained by considering an infinite linear combination of central or non-central Chi-

square distributions (Ruben 1962, Fiessler et al. 1979). However, the evaluation of the probability content 

involves the evaluation of eigenvalues and the curvatures of the hyper-ellipsoid. These evaluations 

increase the computation cost of the reliability analyses in a high-dimensional standard normal space due 

to the large number of random variables involved in stochastic ground motion models.  

An estimate of the probability is obtained by approximating a spheroid with center at the origin in the 

standard normal space and the radius equal to the reliability index, β, i.e. distance to a design point, y*. 

The probability is estimated such that (Fiessler et al. 1979) 

 )( 22 βχ nsp =  (4-11) 

where ps is the probability content of the spheroid and χn
2 is the central Chi-square distribution with n 

degrees of freedom, where n is equal to the number of random variables. This estimate provides a lower 

bound of the probability of survival if the origin lies in the safe domain. An upper bound estimate of the 

required probability is obtained by approximating the probability content bounded by hyper-planes at the 

design point, y* and its symmetric point –y*. The upper bound probability is evaluate such that, 

 )(21 β−Φ⋅−=up  (4-12) 

where pu is the probability content bounded by the hyper-planes, Φ is the cumulative standard normal 

distribution and β is the reliability index. This result is identical to that of Eq. (4-11) if the Chi-square 

distribution is considered with one degree of freedom. 

To validate the proposed solution strategies, a random excitation is applied to the SDOF structure and 

MCS is performed for the energy limit-state function. The excitation is modelled based on Eq. (4-9). The 
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number of random pulses in the excitation is taken to be 400, which results in pulse spacing of 0.02s over 

the 8s duration of the loading. Table 4-7 lists the probability values obtained for a range of threshold 

values of energy from 0.10x106 Nmm to 0.50x106 Nmm. The coefficient of variation of the probability 

values from MCS is restricted to be less than 1%. Furthermore, the upper bound and lower bound of the 

probability are estimated based on Eqs. (4-11) and (4-12) and presented in Table 4-7. The upper bound 

values present a reasonable estimate of the probability. This implies that the limit-state hyper-ellipsoid 

has a dominant principal axis, which is substantially longer than the rest of the axes. On the other hand, 

the lower bound approximation by a hyper-spheroid fails to produce reasonable estimates of the 

probability. In fact, the estimates are zero irrespective of the value of reliability index. This result is due 

to the nature of high-dimensional standard normal space, which increases the number of degrees of 

freedom of Chi-square distribution and dilutes the probability density.     

Similarly, the excitation with 400 random pulses over the duration of 8s is applied to the MDOF structure 

with limit-state function, g(Rt), in order to perform a reliability analyses. A gradient-based search 

algorithm is employed to estimate the design points for a range of threshold values from $5 to $60. Based 

on the reliability index obtained from these analyses, the upper and lower bound estimates of the 

probability are calculated as shown in Table 4-8. Furthermore, the reliability analyses are performed with 

MCS to estimate the probability content and the results are presented in Table 4-8. In MCS, the 

coefficient of variation of probability values is limited to be below 1%. The lower and upper bound values 

of the probability in this case are too wide for a meaningful estimation. The lower bound values are zero 

due to the high-dimensionality of the standard normal space in the presence of large number of random 

variables. The upper bound values over-estimate the probability, which indicates that the limit-state 

hyper-ellipsoid has several principal axes with similar lengths.  

An alternative strategy to improve the probability bounds is to search for the limit-state surface along 

each random variable axis and estimate the probability by “multi-point” FORM (Ditlevsen and Madsen 

1996). The multi-point FORM is a parallel system reliability formulation. It involves approximating with 
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a plane at several points on the limit-state surface, which in effect results in a polyhedral approximation of 

the probability content. However, the search along each random variable axis may be computationally 

expensive in a high-dimensional standard normal space typical for dynamic problems with stochastic load 

processes. It is noted that a polyhedral approximation can also be performed with a single design point by 

assuming a hyper-cube. Further research is required in order to improve the accuracy and efficiency of the 

probability estimation.  

4.6. CONCLUDING REMARKS 

The applicability of FORM for the estimation of structural reliability with FE models and nonlinear time-

history analysis is explored. The limit-state functions are formulated in the context of performance-based 

earthquake engineering. In particular, cumulative responses, such as hysteretic energy, damage index, and 

repair cost, are considered in the limit-state functions. Case studies are conducted with various SDOF and 

MDOF structures. Following the methodology in Chapter 3 for feasibility assessment, the results indicate 

that: 

1. The gradient discontinuity in the limit-state function is not a significant concern with the cumulative 

response. 

2. The presence of numerical noise is dependent on the analysis parameters such as dynamic analysis 

load step, material models, and certain cumulative responses such as repair cost. 

3. The limit-state surface is a significantly nonlinear function but well-behaved to be approximated by 

quadratic functions; such as paraboloids or ellipsoids.  

The solution strategies are proposed separately for the cases with the random structural properties and 

random dynamic loading. The approximation of the limit-state surface with a hyper-paraboloid is 

proposed when only the structural properties are random. In the second case, methods to estimate the 

probability bounds are presented. The results indicate that further research is required to develop the 

techniques which improve the accuracy of the probability estimates with reasonable computation cost.  
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Table 4.1: Structural parameters of the SDOF-SS and SDOF-RC structures 

Parameter Mean  Standard 
Deviation 

Distribution 

Mass (M) 3000 kg 600 kg Lognormal 
Damping ration (C)  0.05 Deterministic* Deterministic 
Length of the column (L) 3000 mm 166.67 mm Normal 
Number of fibres  20 Deterministic Deterministic 
Structural Steel (SDOF-SS) 
Cross-section dimension (h) 100 mm 10 mm Lognormal 
Young’s modulus (E) 200000 N/mm2 20000 N/mm2 Lognormal 
Yield stress (σy) 500 N/mm2 75 N/mm2 Lognormal 
Ratio of post-yield stiffness (α) 0.05 Deterministic Deterministic 
Size of dynamic analysis time step (∆t) 0.01s Deterministic Deterministic 
Reinforced Concrete (SDOF-RC) 
Section dimension (hRC) 200 mm 10 mm Lognormal 
Young’s modulus of steel (E) 200000 N/mm2 20000 N/mm2 Lognormal 
Yield stress of steel (σy) 500 N/mm2 75 N/mm2 Lognormal 
Ratio of post-yield stiffness of steel (α) 0.05 Deterministic Deterministic 
Compressive strength of concrete (f’c) 28 N/mm2 4.20 N/mm2 Lognormal 
Strain of concrete at f’c (εc)  0.002 0.0003 Lognormal 
Size of dynamic analysis time step (∆t) 0.005s Deterministic Deterministic 

*Deterministic implies that the parameter is not considered as a random variable in the analysis 
 

Table 4.2: Structural parameters of MDOF structure 

Parameter Mean  Standard 
Deviation 

Distribution 

Depth of center column (hc) 610 mm 20 mm Lognormal 
Width of center column (bc) 690 mm 20 mm Lognormal 
Top storey height (Hs) 3700 mm 200 mm Lognormal 
Ratio of post-yield stiffness of steel (α) 0.02 Deterministic* Deterministic 
Young’s modulus of steel (E) 200000 N/mm2 20000 N/mm2 Lognormal 
Yield stress of steel (σy) 420 N/mm2 63 N/mm2 Lognormal 
Compressive strength of concrete (f’c) 28 N/mm2 4.20 N/mm2 Lognormal 
Strain of concrete at f’c (εc)  0.002 0.0003 Lognormal 
Mass (M1) 173.29x103 kg 34.66x103 kg Lognormal 
Mass (M2) 86.65x103 kg 17.33x103 kg Lognormal 
Mass (M3) 43.83x103 kg 8.77x103 kg Lognormal 
Number of fibres  12 Deterministic Deterministic 
Damping ration (C)  0.05 Deterministic Deterministic 
Size of dynamic analysis time step (∆t) 0.005s Deterministic Deterministic 

*Deterministic implies that the parameter is not considered as a random variable in the analysis 
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Table 4.3: Probability for SDOF-SS with energy limit-state function 

Threshold FORM SORM MCS Difference Coefficient of 
Variation 

1.0x106 Nmm 3.415x10-6 3.355x10-6 0.079592 0.079 5% 
2.0x106 Nmm 0.004208 0.003402 0.099276 0.095 5% 
3.0x106 Nmm 0.060253 0.048653 0.17404 0.114 5% 
4.0x106 Nmm 0.22283 0.18553 0.36440 0.142 5% 
5.0x106 Nmm 0.46134 0.45588 0.63234 0.171 5% 
6.0x106 Nmm 0.71186 0.95502 0.83894 0.128 5% 
7.0x106 Nmm 0.88848 0.99589 0.95041 0.062 5% 

 
 

Table 4.4: Probability for SDOF-RC with energy limit-state function 

Threshold FORM SORM MCS Coefficient of Variation 
0.10x106 Nmm 0.72972x10-3 0.20063 x10-3 0.07640   1% 
0.15x106 Nmm 0.12234 0.090521 0.24176 <1% 
0.20x106 Nmm 0.61592 0.61037 0.73542   1% 
0.25x106 Nmm 0.93836 0.99350 0.95820 <1% 
0.30x106 Nmm 0.99517 0.99480 0.99666 <1% 

 
 

Table 4.5: Probability for MDOF with energy limit-state function 

Threshold FORM MCS Coefficient of Variation 
500 Nmm 0.12741 0.1298 <1% 
1000 Nmm 0.65053 0.6597 <1% 
1500 Nmm 0.89554 0.9027 <1% 
2000 Nmm 0.95314 0.9611 <1% 
2500 Nmm 0.97999 0.9846 <1% 

 
Table 4.6: Probability for MDOF with cost limit-state function 

Threshold FORM MCS Coefficient of Variation 
$60 0.04558 0.0194 <1% 
$80 0.29714 0.1745 <1% 
$100 0.64367 0.5208 <1% 
$120 0.89875 0.8292 <1% 
$140 0.98554 0.9608 <1% 
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Table 4.7: Probability for SDOF with energy limit-state function and random load 

Threshold Reliability 
index 

Lower 
bound 

Upper 
bound 

MCS Coefficient of 
Variation 

0.10x106 Nmm 0.90844 0 0.63636 0.3702 <1% 
0.20x106 Nmm 1.2749 0 0.79766 0.6986 <1% 
0.30x106 Nmm 1.5617 0 0.88164 0.8303 <1% 
0.40x106 Nmm 1.8031 0 0.92860 0.9003 <1% 
0.50x106 Nmm 2.0171 0 0.95632 0.9390 <1% 

 
 

Table 4.8: Probability for MDOF with cost limit-state function and random load 

Threshold Reliability 
index 

Lower 
bound 

Upper 
bound 

MCS Coefficient of 
Variation 

$5 1.171 0 0.7584 1.9027 x10-3 <1% 
$10 1.6479 0 0.9006 0.04704 <1% 
$20 2.3286 0 0.9806 0.3798 <1% 
$40 3.2615 0 0.9989 0.8358 <1% 
$60 3.6106 0 0.9997 0.9528 <1% 
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Figure 4.1: Schematic representation of the influence of peak response parameters on the 

behaviour of the limit-state function; a) response, b) limit-state function 
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Figure 4.2: a) Basic single-degree-of-freedom (SDOF) structure; b) Single-degree-of-freedom 

structure with structural steel (SDOF-SS) and reinforced concrete sections (SDOF-RC); c) 

Multiple-degree-of-freedom (MDOF) structure with reinforced concrete section  

 

 

Figure 4.3: a) Stress-strain relationship of steel; b) Stress-strain relationship of concrete 
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Figure 4.4: Behaviour of energy limit-state function (in Nmm) of the SDOF-SS, for the variation of 

(a) length (mm) ; (b) cross-section dimension (mm); (c) Young’s modulus of steel, (N/mm2); (d) yield 

stress of steel (N/mm2); (e) mass (kg); (f) critical damping ratio 
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Figure 4.5: Behaviour of the energy limit-state surface (in Nmm) of the SDOF-SS in the standard 

normal space for the variation of the random variables; (a) mass and Young’s modulus of steel, (b) 

mass and length, (c) mass and cross-section dimension, (d) mass and yield stress of steel.  
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Figure 4.6: (a) Ground motion record; (b) Elastic response spectrum with 5% damping  
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Figure 4.7: Behaviour of energy limit-state function (in Nmm) of the SDOF-SS for the ground 

motion loading, for the variation of (a) length (mm) ; (b) cross-section dimension (mm); (c) Young’s 

modulus of steel, (N/mm2); (d) yield stress of steel (N/mm2); (e) mass (kg); (f) critical damping ratio 
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Figure 4.8: Behaviour of energy limit-state function (in Nmm) of the SDOF-RC, for the variation of 

(a) length (mm) ; (b) cross-section dimension (mm); (c) Young’s modulus of steel, (N/mm2); (d) 

compressive strength of concrete (N/mm2); (e) mass (kg); (f) critical damping ratio 
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Figure 4.9: Behaviour of the energy limit-state surface (in Nmm) of the SDOF-RC in the standard 

normal space for the variation of the random variables; (a) mass and Young’s modulus of steel, (b) 

mass and length, (c) mass and cross-section dimension, (d) mass and compressive strength of 

concrete 
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Figure 4.10: Behaviour of damage index limit-state function of the SDOF-RC, for the variation of 

(a) length (mm) ; (b) cross-section dimension (mm); (c) Young’s modulus of steel, (N/mm2); (d) 

compressive strength of concrete (N/mm2) (e) mass, (kg); (f) damping ratio 
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Figure 4.11: Behaviour of the damage limit-state surface of the SDOF-RC in the standard normal 

space for the variation of the random variables; (a) mass and Young’s modulus of steel, (b) mass 

and length, (c) mass and cross-section dimension, (d) mass and compressive strength of concrete 

 

 

0.
0 2

0.
02

5

M

E

-2 -1 0 1 2

-2

-1

0

1

2

0.
0 2

0.02

0.025

0.025

0.03

0.035

M

L

-2 -1 0 1 2

-2

-1

0

1

2

02

0.
02

0.
02

5

0.
02

5

M

h R
C

-2 -1 0 1 2

-2

-1

0

1

2

0.
02

0.
02

5

M

f' c

-2 -1 0 1 2

-2

-1

0

1

2

(a) (b) 

(c) (d) 



Chapter 4: Feasibility of FORM - Dynamics 

 - 122 -

 

Figure 4.12: Behaviour of energy limit-state function (in Nmm) of the MDOF, for the variation of 

(a) Young’s modulus of steel, (N/mm2); (b) compressive strength of concrete (N/mm2); (c) height of 

the top storey (mm); (d) mass on the center column in bottom storey (kg) 
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Figure 4.13: Behaviour of cost limit-state function (in $) of the MDOF, for the variation of (a) 

Young’s modulus of steel, (N/mm2); (b) compressive strength of concrete (N/mm2); (c) height of the 

top storey (mm); (d) mass on the center column in bottom storey (kg) 
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Figure 4.14: Behaviour of energy limit-state surface (in Nmm) of SDOF structure 
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Figure 4.15: Variation in the amplitude of excitation with respect to the pulse spacing. Excitations 

with pulse spacing at 0.02s and 4.0s and a) amplitude of both the pulses 1.0, b) amplitude of the 

pulses 1.0 and -1.0, respectively. Excitations with pulse spacing at 0.02s and 2.0s with c) amplitude 

of both the pulses 1.0, and d) amplitude of the pulses 1.0 and -1.0, respectively. 

 

 

 

 

 

0 2 4 6 8
-10

-5

0

5

10

time

A
cc

el
er

at
io

n

0 2 4 6 8
-10

-5

0

5

10

time

A
cc

el
er

at
io

n

0 2 4 6 8
-10

-5

0

5

10

time

A
cc

el
er

at
io

n

0 2 4 6 8
-10

-5

0

5

10

time

A
cc

el
er

at
io

n

(a) (b) 

(c) (d) 



Chapter 4: Feasibility of FORM - Dynamics 

 - 126 -

 

Figure 4.16: Behaviour of the energy limit-state surface (in Nmm) of the SDOF with random pulses 

in the loading spaced at 0.02s and 2.0s 
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Figure 4.17: a) Behaviour of the damage index limit-state surface of the SDOF-RC structure; b) 

Behaviour of the cost limit-state surface (in $) of the MDOF structure 
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Figure 4.18: Behaviour of the energy limit-state surface (in Nmm) of the SDOF in the standard 

normal space with the random variables as, a) stiffness and loading pulse, b) yield strength and 

loading pulse, c) mass and loading pulse, d) damping ratio and loading pulse 
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Chapter 5. PROBABILISTIC EVALUATION OF COLLAPSE1 

5.1. INTRODUCTION 

The primary objective in this chapter is to apply probabilistic capacity models developed for individual 

members in global structural reliability assessments. Member degradation prior to global failure is 

included. The work is motivated by the emerging performance-based earthquake engineering approach, in 

which realistic simulation of structural behaviour is a key ingredient. This approach requires sophisticated 

structural models, as well as probabilistic analysis to account for uncertainties in loads, structural 

properties, and analysis procedures. Two short-term objectives are addressed in this chapter: 1) extension 

of the conventional nonlinear static seismic analysis procedure with reliability analysis, and 2) utilization 

of probabilistic capacity and post-failure response models based on experimental data for individual 

members. The result is a sophisticated structural reliability software that provides the probability of 

collapse subsequent to degradation of individual members. Notably, importance measures are available 

from the analysis to identify the most influential structural parameters.  

The significance of the developments in this chapter is seen in light of the extensive use of nonlinear 

static analysis − often referred to as pushover analysis − in contemporary earthquake engineering practice. 

In this approach the capacity of structures to withstand a ground motion is evaluated by subjecting the 

structural model to gradually increasing lateral loads. The design is deemed satisfactory for the “collapse 

prevention” performance level if the structural integrity is maintained past the lateral displacement that is 

expected to be imposed by the design earthquake. Techniques such as the capacity spectrum method and 

the coefficient method are employed to determine this target displacement (FEMA 356 2000, ATC-40 

1996, FEMA 440 2005, Chopra and Goel 2000, Fajfar 1999, Lin et al. 2004). This methodology is 

extended in the present study with uncertainty characterization of structural parameters and reliability 

                                                   
 
1 A version of this chapter has been published. Koduru, S.D. and Haukaas, T. and Elwood, K.J.(2007), “Probabilistic 
evaluation of global seismic capacity of degrading structures,” Earthquake Engineering and Structural Dynamics, 
36(13), 2043-2058 
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analysis to determine the failure probability. In particular, commonly employed structural models are 

extended with probabilistic capacity models to allow degradation of individual members, and 

consequently the structure, prior to reaching the target displacement. The finite element models include 

nonlinear beam-column elements with fiber-discretized cross-sections with individual material models for 

concrete and reinforcing steel fibers.  

It is emphasized that the methodology developed in this chapter is based on the assumption that one mode 

of vibration dominates the response, which is an inherent assumption in the classical pushover approach. 

The inclusion of additional vibration modes in nonlinear pushover analysis is an on-going and 

challenging research topic (Chopra and Goel 2002). In the present study improvements of the classical 

approach that include probabilistic results and parameter importance measures are suggested. However, 

similar to the challenging nature of combining the response from different pushover analyses, the issue of 

combining the associated probabilities is not addressed by this study. 

The present study addresses the seismic capacity evaluation of existing reinforced concrete (RC) 

structures. In many buildings constructed before the advent of modern seismic code provisions the 

columns are lightly reinforced in the transverse direction. These are prone to brittle shear failures rather 

than ductile flexural failures and are often referred to as “shear critical” columns. After shear failure, a 

column may exhibit loss of axial load carrying capacity and, consequently, collapse of the structure is 

possible. Several models are developed to estimate the shear and axial capacity of shear critical columns, 

including those by Sugano (1996), Pujol (2002), Elwood and Moehle (2005a,b). However, these are 

deterministic models in which the uncertainty − a key issue for reliability assessments − is not explicitly 

accounted for. Recently, probabilistic capacity models have been developed based on a Bayesian 

methodology (Gardoni et al. 2002, Zhu et al. 2005). These models are ideally suited for the global 

seismic reliability analysis put forward in this chapter.  

The merger between finite element analysis and reliability methods employed herein is termed “finite 

element reliability analysis.” This methodology has been developed during the past two decades to 
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account for uncertainties in input parameters of the finite element model and to compute the probability of 

rare response events. Haukaas and Der Kiureghian (2004) implemented finite element reliability analysis 

in OpenSees, which is an open-source, object-oriented software developed specifically for earthquake 

engineering (McKenna et al. 2004). In the present study, OpenSees is further extended with probabilistic 

capacity models for individual elements and applied in the proposed probabilistic pushover analysis 

methodology. The developments in this chapter also extend the initial efforts presented by Haukaas and 

Elwood (2005), in which the concept of a target displacement was not incorporated and only shear 

failures of columns were considered.  

In the following, the overall reliability analysis methodology is first presented, including the 

determination of the target displacement demand and the associated collapse limit-state formulation. The 

availability of parameter importance measures from the reliability analysis is emphasized. The 

probabilistic capacity and post-failure response models are then presented followed by potential problems 

and remedies in the reliability analysis. In particular, the problem with “gradient discontinuities” is 

discussed along with smoothing techniques to ensure convergence of the reliability analysis. Finally, a 

numerical example is presented to demonstrate a practical application of the methodology.  

5.2. FINITE ELEMENT RELIABILITY ANALYSIS FOR SEISMIC CAPACITY 
EVALUATIONS 

In the current engineering practice, nonlinear static pushover analysis is the predominant means of 

verifying a structure’s capacity to withstand a ground motion. In this chapter the coefficient method in 

FEMA-440 (2005) is employed, in which the expected lateral displacement at the top of the structure 

relative to the base − here referred to as the “target displacement demand,” ut, − is given as  

 a
e

aot g
T

SCCCu 2

2

21 4π
=  (5-1) 

The coefficients Cj (j = 0,1,2) are given in FEMA-440 (2005), while Sa denotes the response spectral 

acceleration at the effective fundamental period Te for the structure and ga is the acceleration due to 
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gravity. It is noted that the target displacement computed by Eq. (5-1) is conditioned upon the occurrence 

of an earthquake with a specific return period. That is, the uncertainty in the ground motion is not 

explicitly accounted for. Rather, the aim of the presented methodology is to compute the probability of 

collapse prior to reaching a target displacement, such as that specified by Eq. (5-1). Subsequently, by 

varying the target displacement, the probability curve for the global structure is obtained, as demonstrated 

in the numerical example. This type of reliability analysis is also a valuable means of identifying the 

parameters of the structural model that should be addressed to improve the seismic capacity of the 

structure.  

The reliability analysis to determine the probability of collapse prior to reaching ut has three key 

ingredients: structural model, random variables, and limit-state function. As mentioned previously, a 

novelty in this study is the probabilistic member capacity and post-failure models employed in the 

structural model. The model parameters, as well as all material and geometry parameters of the structure, 

are characterized as random variables. It is emphasized that the uncertainty in the structural properties 

may be significant; considerable scatter is observed in the capacity of non-ductile RC members. The third 

ingredient, the limit-state function, g, is an implicit function of the random variables and is defined so that 

a negative outcome denotes the failure event. Hence, to compute the probability that the displacement at 

collapse is less than the target displacement demand is defined as 

 tc uug −= )()( xx  (5-2) 

where x is the vector of random variables and uc is the displacement response at which the structure 

collapses. For the moment it is assumed that collapse is defined as axial failure of a specific set of 

columns. This assumption is discussed later in this chapter. As a qualitative example of events that may 

take place during the analysis, consider the structure in Fig. 5-1. The schematic pushover curve for the 

building is shown to the right. The numbers in the curve correspond to events that occur during the 

pushover analysis. It is observed that the global stiffness exhibits a sudden degradation at shear failure of 

any column. Additional stiffness degradation is present due to the nonlinear response of the concrete and 
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the steel reinforcement. Upon axial failure of two columns a mechanism forms and collapse manifests. At 

this point the structural analysis terminates. In fact, singularity in the global stiffness matrix for the 

structure may be employed as a collapse indicator, as discussed later.  

It is emphasized that the proposed methodology is anchored in the contemporary static pushover 

approach. This differs from the strategy that employs nonlinear dynamic analysis with suites of ground 

motions. It is important to realize that the pushover approach has unique advantages and disadvantages. 

Although the methodology put forward in this chapter enhances its value in several ways, a prudent 

approach must be applied by the analyst. For instance, for particular structures in which higher modes of 

vibration contribute significantly to the response, the dynamic analysis approach may reveal certain 

sequences of member failures that are not captured by the static pushover approach. It is, however, 

stressed that the probabilistic extension put forward in this chapter significantly improves the 

deterministic approach by indeed including the possibility for different failure modes (different column 

failure sequences) compared to the deterministic pushover approach currently utilized. 

The probability pf associated with the limit-state function in Eq. (5-2) is formulated as the multi-fold 

integral (Ditlevsen and Madsen 1996) 

 ∫ ∫≤
= xx

x
d)(

0)(
fp

gf L  (5-3) 

where f(x) is the joint probability density function for the random variables. This problem cannot be 

solved analytically. Reliability methods such as the first- and second-order reliability methods (FORM 

and SORM), sampling, and response surface techniques are available to evaluate it in an approximate 

manner. These methods require repeated runs of the finite element analysis for different realizations of the 

random variables x. As each finite element analysis is computationally costly, some reliability methods 

are unaffordable. This is for instance the case with mean-centered Monte Carlo sampling (MCS) analysis. 

In general, MCS requires thousands of runs of the finite element analysis, while FORM analysis requires 

only in the order of 10 to 20, albeit including the evaluation of response gradients. Efficient computation 
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of response gradients is already available in OpenSees through the implementation of the direct 

differentiation method (Haukaas and Der Kiureghian 2004). Moreover, FORM analysis renders available 

parameter importance measures to identify the most influential structural parameters. Based on these 

considerations FORM is employed in the finite element reliability analysis in this chapter. To facilitate 

the subsequent developments, this approach is briefly reviewed in the following.  

 In FORM, the integration boundary g(x)=0 in Eq. (5-3) − denoted the “limit-state surface” − is 

approximated by a hyper-plane. This approximation is not made in the space of the random variables x 

but in the transformed space of uncorrelated standard normal random variables, denoted y. The hyper-

plane is tangent to the limit-state surface at “the most probable failure point” (MPP), y*, which is the point 

on the limit-state surface closest to the origin. In FORM, the reliability index β is the distance from the 

origin to the MPP and is related to the probability by pf  = Φ(-β), where Φ is the standard normal 

cumulative distribution function.  

The determination of the MPP constitutes a constrained optimization problem. This problem is most 

efficiently solved by gradient-based algorithms, that is, algorithms that require both the value of g and its 

gradient, y∂∂g  at trial points yi towards the MPP y*. A schematic overview of the algorithm that 

iteratively searches for the MPP is shown in Fig. 5-2. The communication between the reliability 

algorithm and the finite element analysis is shown by dashed arrows. The finite element model repeatedly 

receives new realizations xi of the random variables and returns the displacement response at collapse, 

uc(xi), along with the response sensitivities x∂∂ cu  computed by the direct differentiation method. In the 

expression for the gradient of the limit-state function it is noted that 1=∂∂ cug  for the limit-state 

function in Eq. (5-2), while yx ∂∂  is the Jacobian ( yx ,J ) of the probability transformation, which is 

computed by the reliability algorithm in OpenSees.  

An objective in this chapter is to identify the parameters that are most influential on the reliability of non-

ductile RC structures. This is achieved by characterizing all structural parameters as random and utilizing 
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parameter importance measures from the reliability analysis to rank them. The three importance measures 

considered herein are γ, δ, and  η presented by Haukaas and Der Kiureghian (2005). The importance 

measure γ identifies the significance of the uncertainty in each random variable. To this end, consider the 

contribution of the variance of each random variable to the variance of the approximated hyper-plane g at 

y*. In FORM, the contribution of the variances of y to the variance of g at y* is available by evaluating the 

well-known “alpha vector,” which is the negative normalized gradient vector 

||)(||/)( ** yyα GG yy ∇−∇= . Thus, the relative importance of the elements in y is obtained by ranking 

the values of corresponding elements in α. However, the importance ranking of y does not imply the same 

ranking of x when the random variables are correlated. Therefore, the variance of g is obtained by 

linearizing the probability transformation y = T(x) at the MPP. This enables the separation of the 

contribution from the variances of x and the contribution from the correlations between x. Consequently, 

the normalized importance vector for the original random variables, x, reads  

  
||DαJ||

DαJ
γ

*xy*,

*xy*,

ˆ

ˆ
=  (5-4)  

where α is the negative normalized gradient as defined above, *xy*,J  is the Jacobian of the probability 

transformation, and D̂  is the diagonal matrix of the standard deviations of  the transformed random 

variables. The random variable with the largest absolute value of γ has the highest contribution to the 

uncertainty in uc.  

It is also of interest to estimate the influence of the probability distribution parameters on pf. For this 

purpose, the importance rankings of the means and the standard deviations of x are obtained by 

employing the reliability sensitivity measures derived by Hohenbichler and Rackwitz (1986), and 

Bjeranger and Krenk (1989). These importance measures are  

 Dδ βµ∇=  (5-5) 



Chapter 5: Probabilistic Evaluation of Collapse 

 - 138 -

and  Dη βσ∇=  (5-6) 

where βµ∇  and βσ∇  are the gradient vectors of β with respect to the means and the standard 

deviations, respectively, and D is the diagonal matrix of the standard deviations of x. The importance 

vector δ provides an importance ranking of the means of the random variables, whereas η provides an 

importance ranking of their standard deviations. The importance measures, γ, δ, and η are utilized in the 

numerical example to illustrate the relative importance of the intervening parameters.  

5.3. IMPLEMENTATION OF PROBABILISTIC CAPACITY AND POST-FAILURE 
RESPONSE MODELS 

The failure mechanics of shear critical RC columns is different from that of ductile columns found in 

modern buildings. For the latter type of columns, the concept of plastic hinges is frequently employed to 

model the nonlinear response when subjected to lateral load. Conversely, the lateral load capacity of the 

shear critical columns degrades due to the formation of diagonal shear cracks, and subsequently these 

columns may experience degradation of axial load capacity due to sliding along the principal shear failure 

plane. These phenomena are captured by the novel probabilistic capacity and post-failure response models 

that are included in the reliability analysis in this chapter. Shear failure and subsequent axial failure of 

individual columns takes place prior to the attainment of the final failure state of the global structure. The 

capacity models are drift-based, which implies that each column is expected to undergo shear failure and 

subsequently axial failure depending on the drift ratio. (Drift ratio is defined as the net difference in 

lateral displacement of the end points divided by the length of the column.) Several approaches are 

possible to model this type of degradation. In this study the modeling technique presented by Elwood 

(2004) is adopted, in which “springs” are coupled in series to one end of the column. These springs 

monitor the drift ratio of the adjoining column and initiate the transition into the post-shear failure and 

post-axial failure response regimes.  
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The probabilistic capacity models utilized in this study are developed by applying a Bayesian updating 

procedure to an experimental database (Zhu et al. 2007). The shear capacity model for the shear spring 

has the form  

 σεθθθρθ +









+−++=
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where ∆s/L is the shear capacity, ρ”= Ast/bs denotes the transverse reinforcement ratio; Ast denotes the 

area of transverse reinforcement; s is the hoop spacing; b is the width of column section; d is the depth to 

the centerline of the outermost tension reinforcement; a is the shear span; P is the axial load; Ag = bD 

denotes the gross cross-sectional area of the column; D is the depth of column section and f’c is the 

compressive strength of concrete. Notably, all these parameters are considered as random variables in the 

reliability analysis in this chapter. This is also the case with the model parameters θi (i = 1, 2, 3), and σε. 

These are the random variables that represent the model error in the shear capacity model. Table 5-1 lists 

the distribution types and the distribution parameters for the random variables θi and σε as given by Zhu 

et al. (2007).  

Once shear failure is detected, the force-deformation relationship for the shear spring is redefined. It is 

governed by two parameters: the degrading slope, Kdeg, and the residual strength, Fres as shown in Fig. 5-

3a. These parameters can be given by the user or computed in OpenSees according to formulae provided 

by Elwood (2004). Fig. 5-3 schematically shows the transition into the post-failure response at the failure 

deformation of the member,  ∆t-fail. The total response of a member is governed by the response of the 

flexural element and the force-deformation relationship of the spring after the failure is detected at the 

failure strength, Ffail.  

It is common to develop axial capacity models that are independent of the shear capacity. Examples are 

the deterministic shear and axial models developed by Elwood and Moehle (2004a, b) and the 

probabilistic shear and axial capacity models developed by Zhu et al. (2007). Unfortunately, the 
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assumption of independence between axial and shear failure is based on convenience and lack of data 

rather than physical insight. In fact, axial failure is conditioned upon shear failure for the models 

considered in this study. In normal structural analysis, the independence between shear and axial capacity 

models is not detrimental. However, the utilization of the models in the proposed reliability analysis may 

cause problems. As the realization of the random variables is altered to reach the MPP, as described 

previously, the outcome of the axial capacity of the columns that constitute a collapse mechanism is 

altered so that failure is reached exactly at the target displacement ut; that is, so that g(x) = uc(x)- ut = 0. In 

effect, the realization of the axial capacity is altered while the shear capacity is not significantly affected. 

Consequently, when the shear and axial capacity models are independent, realizations where the shear 

capacity is greater than the axial capacity may occur.  

To solve the problem of unphysical joint realizations of the shear and axial capacity models one would 

ideally develop correlated models or an axial capacity model that is conditioned upon shear failure. 

However, this is outside the scope of the present work and is addressed by ongoing research. Instead, the 

problem is remedied by modeling the axial capacity as the shear capacity plus a random variable h that is 

determined from the original probabilistic axial capacity model in Zhu et al. (2007): 

 h
LL

sa +
∆

=
∆

 (5-8) 

where ∆a/L is the axial capacity and ∆s/L is the shear capacity in Eq. (5-7). The probability distribution 

parameters for h are dependent on the structural parameters of individual columns. Particular values 

presented in Table 5-1 correspond to the parameters of the columns in the subsequent numerical example.  

Similar to the case of shear failure, degradation in the relationship between axial force and deformation is 

included, as shown in Fig. 5-3a. Furthermore, the axial deformation is coupled with the lateral 

deformation in a linear relationship to guide the degradation of axial force. This is adapted based on the 

observation that shortening of the column occurs with an increase in horizontal deformation, due to the 
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sliding along the shear failure plane. It is stressed that this heuristic axial force degradation model should 

be complemented by further experimental work on post-axial failure response of RC columns. 

5.4. PROBLEMS AND REMEDIES IN THE CONVERGENCE OF THE RELIABILITY 
ANALYSIS 

The convergence of the algorithm in Fig. 5-2 is conditioned upon a continuously differentiable limit-state 

function. That is, the gradient vector x∂∂ cu  must have continuous components in the space of random 

variables. This “gradient continuity” requirement is violated if any of the following conditions are 

present, 1) kinks in the stress-strain relationship of the material models; 2) kinks in the force-deformation 

models that govern the transition into the post-failure response regime; 3) numerical noise in the finite 

element response.  

Examples of kinks in the stress-strain relationship are found in numerous material models. Consider the 

uniaxial bilinear material model that is characterized by an initial stiffness, a yield stress, and a hardening 

stiffness. When the material yields the stiffness abruptly changes into the second-slope stiffness. This 

kink in the stress-strain relationship leads to a kink in the limit-state function, thus violating the 

aforementioned continuity requirement. This problem is previously addressed by Haukaas and Der 

Kiureghian (2006) and Barbato and Conte (2006) with the implementation of “smooth” material models. 

For example, the uniaxial bilinear material model in OpenSees is smoothed with circular segments. Such 

smoothing proved efficient to remedy the convergence problems in the reliability analysis due to gradient 

discontinuities.  

Similarly, if smoothing techniques are employed to avoid kinks in the force-deformation models 

governing the transition into the post-failure response, the smoothness of the limit-state function is 

preserved. In support of this smoothing approach, experimental results indicate a smooth transition of the 

member response into the post-failure regime (Sezen 2002). Thus, in the present study, the force-

deformation models are smoothed to remove the kinks shown at Ffail and Fres in Fig. 5-3c. Trigonometric 
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functions are employed to ensure a smooth transition of the response from the detection of failure to the 

attainment of the residual capacity. The smoothed force–deformation relationship developed herein reads 
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where, Ffail is the force at detection of failure, ∆fail is the deformation at Ffail, Fres is the residual force, and 

 ∆res is the deformation when the capacity degrades to Fres. Fig. 5-4 shows the smoothed post-failure 

response for the spring. In passing it is noted that reliability convergence problems due to the sudden 

transition into the post-failure response regime are not encountered if a particular column failure sequence 

is guaranteed in the entire outcome space of the random variables.  

As mentioned previously, convergence problems also may occur due to numerical noise. Usually, these 

gradient discontinuities are at a significantly smaller scale than the discontinuities treated above. In fact, 

they are typically avoided by defining appropriate values of tolerance parameters. In this study, however, 

numerical noise could become significant depending on the manner in which the limit-state function is 

evaluated. Consider the limit-state function in Eq. (5-2) with uc defined as the displacement at which a 

particular column undergoes axial failure. The displacement at detection of axial failure is not exactly the 

displacement at failure. This is due to the fact that failure is detected only after equilibrium is reached at 

each analysis step. Therefore, if uc is taken as the displacement at detection of failure, a small perturbation 

in the realization of the random variables would not alter the value of uc, while a larger perturbation 

would lead to detection of axial failure in a different analysis step. This leads to gradient discontinuities. 

This problem is remedied by either 1) employing the finite difference method with high perturbation 

values to evaluate the gradient of the limit-state function; this ensures that a change in uc is observed with 

each perturbation in the realization of random variables and results in an “approximately continuous” 

gradient of the limit-state function; or 2) the calculation of the “exact” displacement at collapse by 

utilizing the displacements at the analysis steps prior to, and at, the detection of failure. The latter 
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approach is adopted in the current study, in which a linear interpolation is utilized, as described in the 

numerical example section.  

In addition to the above conditions, the convergence of the reliability analysis is dependent on a sound 

definition of the limit-state function. According to Eq. (5-2), the limit-state function includes the 

displacement response, uc, at which the structure collapses. However, a quantitative definition of 

structural collapse is not a trivial task. Typically, the following two approaches are employed to identify 

collapse in structural analysis; 1) failure of a set of elements and 2) non-convergence of the finite element 

analysis. Each approach presents its own challenges to the reliability analysis.  

Consider the case in which structural collapse is defined as the failure of a specific set of elements. This is 

termed as a “failure mode.” In the reliability analysis, it may not be possible to confirm a-priori that this is 

the failure mode at the MPP. Structural collapse may occur with the failure of a different set of elements 

resulting in a different failure mode. Therefore, all the failure modes must be considered to verify the 

structural collapse. This poses a system reliability problem. However, the number of failure modes 

increases exponentially as the complexity of the structure increases, resulting in an impractical task of 

enumerating all the failure modes. This renders the system reliability formulation impractical in the 

current work. Furthermore, consider the case when the failure mode at the MPP is easily identified. One 

would then define the limit-state function with that particular mode of failure. However, as the algorithm 

in Fig. 5-2 iteratively searches for the MPP, the structure may collapse in a different failure mode at a trial 

realization of the random variables. This renders the algorithm unable to evaluate both the value of g and 

its gradient, y∂∂g  at that trial realization.  In effect, this characterization of g may lead to regions in the 

y-space where it is unfeasible to evaluate g and thus, the ordinary gradient-based algorithms become 

ineffective. A potential solution to this problem is to employ a transformation into the y-space such that a 

particular failure mode is guaranteed in the entire outcome space.  

Alternatively, consider the failure of the finite element analysis algorithm to converge as an indicator of 

structural collapse. The non-convergence of this analysis generally is assumed to occur due to singularity 
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in the global stiffness matrix and is thus indicative of structural collapse. However, the analysis algorithm 

may also fail due to other reasons, such as non-convergence of the iterative algorithms in nonlinear 

problems and numerical instability caused by the improper modeling. Therefore, this approach requires 

careful structural modeling and a robust finite element analysis code. In the present study, these 

requirements are satisfied. However, it is emphasized that convergence problems in the reliability analysis 

may still occur due to gradient discontinuities caused by numerical noise and collapse in different failure 

modes. The gradient discontinuities caused by the numerical noise are similar in nature to those discussed 

above. That is, the response at collapse is indeed the value at the last converged analysis step and not 

exactly at collapse as defined by the capacity models. Again, the finite difference method with large 

perturbation values is a potential remedy to this problem. Another source of gradient discontinuity with 

this collapse definition is the presence of different failure modes. That is, consider a point in the y-space 

at which a small perturbation in the realization of the random variables changes the failure mode. This 

point represents a sudden transition of the response from one failure mode to another. This transition 

results in a “kink” in the limit-state surface, and consequently, a point of gradient discontinuity is present. 

In this work, this problem is resolved by ensuring a smooth transition of the response into the post-failure 

regime as described above in reference to Fig. 5-4. 

5.5. NUMERICAL EXAMPLE 

The two-bay single-storey RC frame in Fig. 5-5 is considered to demonstrate the probabilistic evaluation 

of its global seismic capacity. This frame is selected because the experimental data for the axial failure of 

central column and the analysis model are readily available in Elwood and Moehle (2003). The three 

columns have light transverse reinforcement to reflect the typical design of a number of existing 

buildings. The columns are modeled as nonlinear beam-column elements with fiber cross-sections, while 

the beams are modeled as elastic beam-column elements. Each spring that connects the top of each 

column with the beam (see Fig. 5-5) contains probabilistic capacity and post-failure models as previously 

described. The RC frame is subjected to the gravity loads G1 = 95.6 kN, G2 = 300 kN, and G3 = 95.6 kN 
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shown in Fig. 5-5. A pushover analysis is performed for which the lateral loading scheme and model 

details are described by Elwood and Moehle (2003).  

The material and geometric properties of each column are modeled as random variables with probability 

distribution parameters as shown in Table 5-2. The model uncertainty is accounted for by considering θi 

and σε as individual random variables with distribution parameters as shown in Table 5-1. 

The two-bay structure is assumed to collapse if any single bay fails to carry gravity loads due to axial 

failure of its columns. That is, two collapse mechanisms are considered for this structure; failure of the 

two rightmost columns resulting in the gravity collapse of right bay, and failure of the two leftmost 

columns resulting in the gravity collapse of left bay. However, the three columns have identical cross-

section and the middle column carries almost three times the gravity load of the outer columns. Since the 

drift capacity at axial failure decreases with an increase in axial load (Zhu et al. 2007), and the fact that 

the lateral load produces an overturning moment, it is evident that the axial failure of the two leftmost 

columns is the prevailing failure mode.  

As previously discussed, it is imperative that the displacement uc that enters the limit-state function in Eq. 

(5-2) is the displacement exactly at collapse. That is, it cannot be the displacement at the analysis step 

before or after failure of the two leftmost columns. When an axial failure is detected the displacement at 

the previous and current analysis step is employed, along with the actual displacement capacity calculated 

from Eq. (5-8), to linearly interpolate and determine the global displacement uc at which collapse occurs.  

The target displacement ut in the limit-state function in Eq. (5-2) is determined by employing the FEMA-

440 (2005) guidelines as described in Eq. (5-1) and the spectral acceleration values for Vancouver, 

Canada. For the structure under consideration ut = 30.64 mm is obtained, which represents about 2% 

global drift ratio. A finite element reliability analysis with this target displacement results in pf = 0.0246 

and a reliability index β = 1.97. In addition, to obtain a probabilitiy curve, the reliability analysis is 

performed with target displacements 44.20mm, 58.93mm, 73.66 mm, 88.39 mm, and 103.12 mm 

corresponding to 3%, 4%, 5%, 6%, and 7% drift ratios, respectively. Fig. 5-6 illustrates the resulting 
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probability curve for the displacement at collapse for various global drift ratios obtained by performing a 

sequence of reliability analyses. 

The reliability analysis results, such as those in Fig. 5-6 provide insight into the expected performance of 

the structure. For example, consider the results from a regular finite element analysis for this structure, 

without the consideration of uncertainty in the model and structural parameters. From such an analysis, 

the global displacement at which the structure collapses is uc = 78.23 mm. Initially, this indicates that the 

structure would be able to maintain its axial load without collapse at a displacement lower than the target 

displacement ut = 73.66 mm, or drift ratios lower than 5%. However, the reliability analysis indicates that 

there is a probability of failure, pf = 0.592 that the structure may fail at the drift ratios less than 5%. That 

is, there is only 41% probability that the structure will not collapse at a drift ratio of 5%. However, 

consider the displacement at collapse corresponding to 2% drift ratio. From the probability curve in Fig. 

5-6 it is seen that pf = 0.0246, which corresponds to 98% probability that the structure will not collapse at 

drift ratios less than or equal to 2%. Probabilities at other drift ratios may be extracted from Fig. 5-6.  

One means of improving the reliability against collapse is to modify the distribution parameters of the 

random variables. This could be achieved either by gathering more data to reduce the uncertainty in the 

model parameters or by prescribing retrofit actions to change the structural properties. In this regard, the 

ranking from the importance measures is a valuable tool. Table 5-3 shows the values of the three 

importance measures γ,  δ, and η for the reliability analysis with ut = 30.64 mm. In this table the 

parameters are ranked according to the γ vector. These results indicate that the model coefficients, θi, h 

and σε of the capacity models have greater contribution to the uncertainty than the material and geometric 

parameters. Therefore, improving the probabilistic models would decrease the uncertainty of the 

structural performance and improve the collapse reliability estimate. Furthermore, the highest ranking 

parameter, σε indicates that the variance of the shear capacity model error has the largest influence on pf. 

This implies that an increase in the data utilized in the model development and an improvement in the 

model form would significantly improve the reliability estimates. The high ranking of h indicates that the 
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uncertainty associated with the axial capacity model is higher than all other parameters except σε. This is 

an expected result since h represents the combined uncertainty of all the model coefficients in the 

probabilistic axial capacity model. Furthermore, by comparing δ values it is observed that the mean value 

of h has a higher influence on the reliability than the mean value of σε. However, when comparing η 

values, it is evident that the standard deviation of σε has a higher influence than that of h. Therefore, 

modifying the variance of σε and mean of h would result in the largest improvement in the reliability 

estimates.  

5.6. CONCLUSIONS 

This study presents a methodology for probabilistic evaluation of global seismic capacity of non-ductile 

RC structures. The prevalent nonlinear static procedure is extended with finite element reliability analysis 

to perform global seismic reliability assessments. Probabilistic capacity models and the post-failure 

response models for individual columns are implemented in the structural model to capture the structural 

response following the member failures. Ongoing research aims at further extending this methodology 

with realistic, dynamic simulation of structural behaviour during seismic events.  

In the present study, the post-failure response models are smoothed to better represent the observed 

structural behaviour and to prevent non-convergence of the reliability analysis. This study also identifies 

the challenges associated with the characterization and detection of structural collapse relative to the 

reliability analysis. The smoothing approach is emerging as a highly promising approach to address a 

number of these issues.  

The presented numerical example demonstrates the feasibility of the proposed methodology by providing 

collapse probabilities summarized in a probability curve, as well as parameter importance measures to 

identify the most important sources of uncertainty. The results indicate that emphasis should be placed on 

further development of shear and axial capacity models to reduce the model error as much as possible.    
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Table 5.1: Distribution parameters of probabilistic model coefficients  

Correlation coefficient Coefficients Distribution Mean Standard 
deviation 

θ1 θ2 θ3 
θ1 Normal 2.020 0.746 1.000 0.503 -0.707 
θ2 Normal -0.025 0.008 0.503 1.000 -0.172 
θ3 Normal -0.031 0.008 -0.707 -0.172 1.000 
σ ε Normal 0.000 0.410 0.000 0.000 0.000 
h Lognormal 0.022 0.026 0.000 0.000 0.000 

 
 
 
 
 
 

Table 5.2: Uncertainty modeling of the material and geometric parameters 

Parameter Distribution Mean Standard 
deviation 

Coefficient 
of variation 

Correlation 
among 

columns 

Concrete 
compressive strength 
(f’c) 

Lognormal 23.9 MPa 1.12 MPa 4.69% 0.6 

Width of the column 
(b)a Lognormal 0.23 m  2.54.10-3 m 1.10% 0.0 

Depth of the column 
(D)b Lognormal 0.23 m 2.54.10-3 m 1.10% 0.0 

Depth to the 
centerline of the 
outermost tension 
reinforcement (d)a,b 

Lognormal 0.20 m 2.54.10-3 m 1.27% 0.0 

Hoop spacing (s) Lognormal 0.15 m 2.54.10-3 m 1.69% 0.0 
Shear span (a) Lognormal 0.74 m 2.54.10-3 m 0.34% 0.0 
Area of transverse 
reinforcement (Ast) Lognormal 0.10 m2 2.00.10-3 m2 2.00% 0.0 

a – Correlated with a coefficient = 0.6 
b – Correlated with a coefficient = 0.6 
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Table 5.3: Importance measures and ranking of the parameters 

Ranking 
by 

γ value 

Parameter γ value δ value η value 

1 Model error in shear capacity model (σε) 0.79767 0.79731 1.25677 
2 Total uncertainty in axial drift capacity (h) 0.58350 1.65977 0.80970 

3 Shear capacity model coefficient of (a/d) and 
(s/d) (θ2) 0.10219 0.10214 0.02027 

4 Shear capacity model coefficient of ρ” (θ1) 0.08810 0.08806 0.00851 

5 Shear capacity model coefficient  of (P/Ag f’c) 
(θ3) 0.05988 0.05986 0.01610 

6 Depth to the centerline of outermost tension 
reinforcement of outer left column (d) 0.02533 0.02530 0.00093 

7 Hoop spacing of outer left column (s) 0.02332 0.02330 0.00069 
8 Concrete strength of outer left column 0.01128 0.01131 0.00078 
9 Shear span of outer left column (a) 0.01080 0.01080 0.00027 

10 Area of transverse reinforcement of outer left 
column (Ast) 0.00465 0.00465 0.00014 

11 Depth of outer left column (D) 0.00275 0.00275 0.00005 
12 Concrete strength of center column 0.00029 0.00029 0.00002 
13 Width of outer left column (b) 0.00021 0.00021 0.00000 
14 Concrete strength of outer right column 0.00007 0.00007 0.00000 
15 All other random variables 0.00000 0.00000 0.00000 
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Figure 5.1: Possible structural events prior to attainment of the target displacement 
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Figure 5.2: Key steps in finite element reliability analysis by FORM (i=1, 2, 3,) 

 

 

 

 

Figure 5.3: Transition into post-failure response 
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Figure 5.4: Smoothed post-failure response of springs 

 

 

Figure 5.5: Finite element model of the RC frame 
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Figure 5.6: Probability curve of the displacement at global collapse 
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Chapter 6. PROBABILISTIC EVALUATION OF LOSS1 

6.1. INTRODUCTION 

The majority of the high-rise buildings in Vancouver, British Columbia, Canada are constructed with 

reinforced concrete (RC) and designed with shear wall systems to resist lateral seismic forces. The 

behavioural characteristics of these structures are dependent on the earthquake ground motions and vary 

for the different types of earthquakes that are possible in the Vancouver region. For a comprehensive 

assessment of seismic risk, the probable damage and loss suffered by high-rise RC structures under each 

distinct type of earthquake must be evaluated. The primary objective in this chapter is to evaluate the loss 

of a high-rise RC structure in a probabilistic manner, while accounting for different types of earthquakes 

generated in the Cascadia subduction zone.  

The high-rise buildings, following the existing building codes, are designed to ensure life safety in a 

seismic event. That is, the limit-states in design codes provide safety against building collapse for a 

specific “design” intensity. The structures are designed to dissipate energy by undergoing inelastic 

deformations at controlled locations, such as plastic hinge regions. However, the damage suffered by the 

structure and the consequent monetary loss due to repair costs, loss of occupancy, and depreciation of 

value may be of significant concern to the owners, occupants, and other stakeholders in the buildings. 

Hence, the evaluation of monetary loss due to the damage of structural and non-structural elements is a 

key ingredient in the performance assessment of these structures. However, these assessments cannot be 

performed in a deterministic manner.  

Any evaluation of monetary loss due to seismic events is not realistic without considering the significant 

uncertainties present in the earthquake ground motions, structural behaviour, damage, and loss. Structural 

reliability analysis provides a rational approach to consistently deal with all the uncertainties. In the 

                                                   
 
1 A version of this chapter has been submitted for publication. Koduru, S.D. and Haukaas, T., “Probabilistic loss 
assessment of a Vancouver high-rise building,”  
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present study, the probabilistic loss assessment is performed based on a “unified reliability analysis” 

framework. The unified reliability methodology (Haukaas 2007) is based on combining the 

aforementioned models into one reliability formulation. Specifically, in this methodology the 

uncertainties arising in the loading parameters, structural properties, such as material and geometry 

parameters, structural damage models and monetary losses are comprehensively considered in a single 

analysis. Explicit probabilistic models are considered for earthquake ground motions, structural and non-

structural damage, and monetary loss. In practical implementation, this differs from the Pacific 

Earthquake Engineering Research Center (PEER) methodology, originally proposed by Cornell and 

Krawinkler (2000), wherein the probability distribution for the total loss is obtained by a triple integral 

that includes conditional probabilities from each model. Recently, Moehle et al. (2005) and Yang (2006) 

presented a practical application to carry out the integration. The unified reliability approach adopted in 

the present study may be regarded as an extension of that work, particularly with respect to the 

comprehensive ground motion model. Also, the present study entails a state-of-the-art inelastic finite 

element model for a shear-wall-type high-rise building, instead of a moment frame structure.  

The uncertainties in the earthquake ground motions are included by employing stochastic models with 

parameters calibrated to the Cascadia subduction zone. There are three distinct types of earthquakes 

generated from the Cascadia subduction zone; Crustal, Subcrustal, and Subduction. Due to the earthquake 

source characteristics, dispersion of earthquake sources, and other seismological parameters, the three 

types of earthquakes differ in their influence on the damage potential to high-rise buildings. Hence, the 

probable monetary loss to a high-rise building is evaluated separately for each type of earthquake, and 

then discounted to present cost and combined. In this chapter, the entire process is developed and 

demonstrated for an existing building in Vancouver, BC.  

It is noted that the uniform hazard spectra in National Building Code of Canada (NBCC 2005) does not 

combine the earthquake hazard from Crustal, Subcrustal, and Subduction earthquakes probabilistically. 

Instead, a so-called robust method is applied to amalgamate the probabilistic hazard estimates of the 
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Crustal and Subcrustal earthquakes with those of the Subduction earthquakes (Adams and Halchuk 2003). 

In this approach, the under-estimation of the total hazard is likely to be in the order of 40% when all types 

of earthquakes contribute to same level of hazard (Adams and Atkinson 2003). In the present study, a 

more refined methodology for combination of probabilistic results is presented to avoid this under-

estimation of the seismic risk.  

A key objective in the current study is to present a methodology for performance assessment of tall shear 

wall buildings under the complex seismological setting of the Cascadia subduction zone. For this purpose, 

parameter calibration for a stochastic ground motion model is performed to enable the simulation of 

Crustal, Subcrustal and Subduction type ground motion excitations. Moreover, a detailed three 

dimensional finite element model of a building located in downtown Vancouver is created, including 

appropriate models for damage and loss estimation. Unified reliability analysis is performed for each type 

of earthquake separately and the results are probabilistically combined to obtain a total probabilistic loss 

curve. It is emphasised that this is the first application of the unified reliability methodology to a real-

world building with structural and non-structural components subjected to a comprehensive, calibrated 

probabilistic model for the earthquake hazard.  

In the subsequent sections the unified reliability methodology is first presented. It is followed by the 

stochastic ground motion model and its parameter estimation. The building description, and the structural, 

damage, and loss models are then presented. The issues pertaining to reliability analysis with full-scale 

finite element models and a high number of random variables are discussed. Finally, the results from the 

unified reliability analysis; the probability curve for the total loss, are presented.  

6.2. UNIFIED RELIABILITY ANALYSIS 

The unified reliability analysis represents a framework to account for uncertainties when obtaining 

performance probabilities. The flexibility of the framework allows the substitution of different model 

formulations to assess the damage and consequent monetary loss. For example, the structural damage in 
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reinforced concrete members may be assessed by employing alternative damage models; e.g. Park et al. 

(1985) and Kratzig et al. (1989). Essentially, the unified reliability analysis extends the traditional 

structural reliability analysis with the inclusion of explicit models for the hazard, the structural damage, 

and the monetary loss. As an introduction to the unified reliability analysis, consider the conventional 

reliability problem (Ditlevsen and Madsen 1996), 

 ∫ ∫≤
= dxx

x
)(

0)(
fp

gf L  (6-1) 

where pf is the probability sought, f(x) is a joint probability distribution of the random variables x, and 

g(x) is the limit-state function that defines the performance event for which the probability is being 

assessed. The limit-state function includes the performance measure for which the probability is sought. 

In modern structural reliability analysis, the evaluation of the limit-state function requires a structural 

analysis that has the random variables as input parameters. Consequently, the limit-state function is an 

implicit – as opposed to explicit – function of the random variables. When a finite element model is 

involved in the structural analysis the reliability analysis is referred to as finite element reliability analysis 

(Der Kiureghian and Taylor 1983).  

In the unified reliability approach the limit-state function is formulated as, 

 tLLg −= )()( xx  (6-2) 

where L(x) is the monetary loss as an implicit function of random variables and Lt is a threshold value. 

The evaluation of L(x), and consequently g(x), requires the evaluation of the monetary loss and damage 

under uncertain dynamic loading. Fig. 6-1 shows schematically the steps involved in the evaluation of the 

monetary loss, and thus obtaining the value of the limit-state function in Eq. (6-2). It is observed that the 

random variables may enter into any or all of the models. Herein lays one of the novelties of the unified 

reliability approach: flexibility. In addition to the unified reliability analysis being executed in a single 

analysis – rather than individual computation of conditional probabilities from each model – the analyst 
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has unlimited flexibility in using different models and introducing correlation by multiple use of one 

random variable, e.g., using a material property in both the structural model and the damage model. 

It is emphasized that when the reliability problem in Eq. (6-1) is solved by means of the limit-state 

formulation in Eq. (6-2), the probability of monetary loss being less than or equal to Lt is obtained. The 

probability curve for the loss is attained by varying Lt within a range of values and performing the 

reliability analysis at each threshold value.  

The reliability problem in Eq. (6-1) cannot be solved analytically. Several numerical methods are 

developed to address this problem. These include the first- and second-order reliability methods (FORM 

and SORM), sampling methods and response surface methods. These methods require repeated runs of 

the finite element analysis and the evaluation of the limit-state function in Eq. (6-2) for different 

realizations of the random variables x. Because each finite element analysis is computationally costly, the 

reliability methods that require a high number of evaluations of the limit-state function are 

computationally intractable. FORM is highly appealing from this viewpoint and is being carefully studied 

by the authors to determine its suitability for the type of applications under consideration (Chapter 4). 

However, this is a comprehensive academic study that is outside the scope of this work. Focus in this 

chapter is on the details of the probabilistic models utilized in the performance-based earthquake 

engineering analysis and the computation and interpretation of the results, for a real-world building. 

Hence, in the current study a straightforward sampling approach is selected for convenience for the 

evaluation of the multi-fold integral in Eq. (6-1).  

6.3. GROUND MOTION MODEL 

The characteristics of the ground motion of an impending earthquake represent a major source of 

uncertainty in the prediction of structural and non-structural damage. Consequently, a stochastic ground 

motion model is a vital ingredient in the unified reliability analysis. From a practical perspective, ground 

motion records are scarcely available within the earthquake magnitudes of engineering interest, and for 
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the seismological and geological settings at a particular location. Even when recorded ground motions are 

available from similar regions of the world, these records do not capture the uncertainty in the ground 

motion of a future event. This makes the exclusive use of recorded ground motions questionable in a 

reliability analysis setting. Conversely, when a stochastic model is employed, the reliability analysis 

includes the variability in various characteristics of the ground motion at a site, including frequency 

content and amplitude. The influence of different ground motion characteristics on damage is thus 

accounted for.  

In the literature, considerable research is devoted to the development of stochastic ground motion models. 

Most of these models are based on filtering a windowed Gaussian white noise to simulate ground 

motions. The stochastic models developed by Amin and Ang (1968), and Iyengar and Iyengar (1969) are 

some of the first to identify the nonstationarity in the ground motions. Nonstationarity is the variation in 

the frequency content and amplitude of the excitation with time. However, those models were limited to 

addressing the nonstationarity in the amplitude (temporal nonstationarity) and did not include the 

nonstationarity in the frequency content (spectral nonstationarity). This shortcoming was initially 

addressed by the stochastic model developed by Saragoni and Hart (1974). This model includes the 

spectral nonstationarity by dividing the excitation along the time axis into three distinct parts, each with a 

different frequency characterization. However, the division of the excitation along time axis causes abrupt 

change in the earthquake characteristics. Hence, instead of a division along the time axis, a division with 

respect to the frequency axis is proposed by Der Kiureghian and Crempien (1989), and Yeh and Wen 

(1990). This method is further developed by Li and Der Kiureghian (1995) into a discretized random 

process in the time domain, without Fourier transforms into the frequency domain. On the other hand, Lin 

and Yong (1987) introduced spectral nonstationarity by employing a non-homogeneous Poisson process 

to generate shot noise instead of Gaussian white noise for simulating the ground motions. Fan and 

Ahmadi (1990) developed the nonstationary models by applying a filter with time-varying frequency 

characteristics to the white noise. A similar application of time-dependent variation of frequency 
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characteristics are employed in the development of stochastic models by Sabetta and Pugliese (1996). 

Conte and Peng (1997) developed fully nonstationary models based on the concept of evolutionary 

spectra and employing time-frequency decomposition of the recorded ground motions with short-time 

Fourier transform methods. Thrainsson and Kiremidjian (2002) modelled the spectral nonstationarity by 

developing a distribution of Fourier phase differences from a recorded set of ground motions. Therefore, 

these models include the effects of geological and physical parameters of the earthquake source and travel 

path of the seismic waves by fitting model parameters to a data set of recorded ground motions. 

Unfortunately, when the recorded ground motions at a particular site are scarce it is difficult to fit the 

parameters of these models. 

Conversely, stochastic models are developed based on the characteristics of earthquake source, path of 

seismic waves, soil properties at the site and distance from the source (Boore 1983, Atkinson and Boore 

1997, Beresnev and Atkinson 1998, Atkinson and Silva 2000, Motazedian and Atkinson 2005). However, 

most of these models are characterized by stationary frequency content. In reality, however, 

nonstationarity in the frequency content (spectral nonstationarity) occurs in a ground motion because the 

high frequency seismic waves travel faster and arrive at a location earlier than the low frequency waves. 

The spectral nonstationarity could have a significant impact on the nonlinear response of a structure. 

Specifically, in the nonlinear response range, the natural frequency of the structure decreases as its 

stiffness degrades. Then the arrival of low frequency excitation with high amplitude potentially increases 

the damage of the structure due to resonance effects. Thus, spectral nonstationarity must be included in 

simulation models as it may play a critical role in the seismic damage assessments, and consequently the 

monetary loss.  

In the present study, the stochastic model proposed by Li and Der Kiureghian (1995) is extended to fit the 

seismological conditions in Vancouver. The model includes spectral nonstationarity effects and does not 

require Fourier transformations, which would have increased the computational effort to simulate ground 

motions. Essentially, it represents the ground motion as a summation of several filtered Gaussian white 
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noise processes. The term “white noise” is here interpreted as a series of pulses with uncertain amplitude 

represented by Gaussian random variables. These are physically interpreted as pulses that represent the 

earthquake rupture. These pulses are filtered so that certain frequencies prevail when the shockwaves 

travel to the building site. Mathematically, the discretized form of the horizontal, uni-directional ground 

motion, z(t),  is written as, (Li and Der Kiureghian 1995)  
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where qk(t) is a modulating function that describes the variation of the amplitude of a stationary process 

sk(t) over time, t, and K is the number of such stationary processes considered. Each of the stationary 

processes is written  

 ∑
=

−=
N

i
ikik tthyts

1
)()(  (6-4) 

where yi is a vector of standard normal random variables that represents the white noise pulses, N is the 

number random pulses, and hk(t-ti) is a linear filter represented by an impulse response function with a 

specific dominant frequency, ωk and damping ratio, ξk. The impulse response function is zero until time ti. 

Thus, sk(t) represents a stationary process where the train of pulses yi represents the Gaussian white noise, 

which in turn is filtered by hk(t-ti).  

 As indicated above, the stochastic ground motion model in Eqs. (6-3) and (6-4) has a physical 

interpretation. Specifically, the arrival of different seismic waves is modeled by including several filters; 

each with a different dominant frequency ωk. The modulating functions control the arrival time, 

amplitude, and duration of the seismic waves. In fact, each filter is associated with a distinct modulating 

function. Effectively, this introduces spectral nonstationarity in the ground motion z(t). The modulating 

function can take any temporal shape, such as trapezoidal, piece-wise linear, gamma, and rectangular. In 

the present study, the modulating functions are considered to be triangular in shape.  
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Fig. 6-2 illustrates the initial steps involved in the generation of a sample ground motion. In the first step, 

the Gaussian white noise (series of random pulses) is generated as shown in Fig. 6-2a. The white noise is 

then filtered by an impulse response function with 5Hz dominating frequency and 10% damping. Fig. 6-

2b shows the filtered white noise process, which represents the stationary process sk(t). Finally, a 

triangular modulating function is applied to the stationary process; resulting in a modulated and filtered 

process, zk(t) as illustrated in Fig. 6-2c. The summation of several modulated stationary processes that 

correspond to different filters and modulating functions results in the final realization of ground motion 

excitations. 

It is noted that the calibration of two groups of parameters is required to calibrate the stochastic ground 

motion model in Eqs. (6-3) and (6-4) to a particular location. These are the filter parameters (dominant 

frequency and damping ratio) and the modulating function parameters corresponding to each filter. The 

filter parameters are dependent on the soil characteristics at the location of the structure. In the current 

study, the building is located in downtown Vancouver. The surface geology of this area is consolidated 

glacial till (Turner et al. 1997). The natural period of the soil layers at this site is estimated based on 

experimental measurements of site periods in Vancouver with similar surface geology (Ventura et al. 

2004). For the ground motion model in the present study, two filters with frequencies of 1Hz and 5Hz, 

and damping ratios of 5% and 10%, respectively, are considered. The 1Hz frequency filter represents the 

site period of approximately 1s. The 5Hz filter with 10% damping represent broad band high frequency 

content in the earthquake ground motions.  

Given the utilization of two filters, the parameters of two modulating functions are required. The 

parameters required for the triangular modulating functions are the arrival time (the time at which the 

process starts), the peak amplitude, the duration, and the location of the peak amplitude. The generic 

shape of the modulating function and the parameters are identified in Fig. 6-3. In the present study the 

arrival time parameter is set to zero for all modulating functions. The remaining three parameters depend 

on the earthquake local magnitude (M) and the epicentral distance from the earthquake source to the site 
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(R). These are considered as random variables that are estimated separately for the Crustal, Subcrustal and 

Subduction earthquakes. The Crustal earthquakes occur at shallow depths while the Subcrustal 

earthquakes are deep earthquakes in the earth’s crust. These earthquakes are of lower magnitudes and 

occur frequently compared to the Subduction earthquakes. Therefore, the duration, the peak amplitude, 

and the occurrence rate of these three types of earthquakes vary significantly. In the following, a 

probabilistic model for each of these earthquake sources is established. 

6.3.1. Crustal earthquakes 

The peak amplitude of a modulating function corresponding to each filter is considered as a function of M 

and R. The peak amplitudes for the Crustal earthquakes are estimated from the empirical ground motion 

relations developed by Atkinson (2005). Therefore the peak amplitude of the modulating function 

corresponding to the filter with 1Hz frequency is (Atkinson 2005) 

 11010
2

110 log002.0log09.1)6(12.0)6(68.013.3log cDDMMA c +−−−−−+=  (6-5) 

where A1c is the peak amplitude of the modulating function, D is the hypo-central distance defined as 

D=(R2+h2)0.5, h=10(-0.05+015M) is the depth of the earthquake source, and c1=0.0056 is the normalizing 

constant introduced in this work. The normalizing constants depend on the filter properties. Similarly, the 

peak amplitude of the modulating function corresponding to the filter with 5Hz frequency is (Atkinson 

2005)  

 21010
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where A2c is the peak amplitude of the modulating function and c2=0.0035 is a normalizing constant 

incorporated in this study. The amplitudes are considered random variables to represent the variability in 

M and R. The distribution parameters are derived based on the functions in Eqs. (6-5) and (6-6), with the 

probability density function for M as (Der Kiureghian and Ang 1977) 
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where b’=2.3b, b is the coefficient relating to the annual rate of occurrence of the number of earthquakes 

from a source, Mmin=5, and Mmax=8, are the minimum and maximum earthquake magnitudes of 

engineering interest respectively. The function is zero outside the bounds of Mmin and Mmax .The 

probability density function for R is considered as  
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where Rmax=90km, is the maximum radius and Rmin=10km, is the minimum radius of the circular area 

around the building site. The numerical values are selected based on data employed for empirical 

evaluation of Eqs. (6-5) and (6-6). As there are no known fault sources for Crustal and Subcrustal 

earthquakes in Vancouver, the distribution for R is derived based on an area source. The area between the 

radii Rmax and Rmin is assumed to have equal probability for containing an earthquake source. For the area 

with radius below Rmin, the behaviour of ground motions varies significantly due to the “near-source” 

effects. These effects are not included in the current stochastic model and hence, the distribution of R is 

derived with a lower limit Rmin.   

The duration of both the modulating functions is considered to be equal to the duration of the earthquake. 

The duration of Crustal earthquake is estimated based on the stochastic model by Boore (1983). It is 

defined as 
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where Tc is the duration of Crustal earthquake, βs is the shear wave velocity, ∆σ is the stress drop 

parameter and Mo is the moment magnitude such that Mo=101.5(M+10.7) as stated by Hanks and Kanamori 

(1979). Appropriate parameters for Vancouver are assessed based on the numerical values presented by 

Atkinson (1995, 1996). The probability distribution parameters of Tc are derived based on the distribution 
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of M in Eq. (6-7). The locations of peak amplitudes, denoted as tpc,1 and tpc,2, for the two modulating 

functions are assumed to be approximately 0.3Tc and 0.1Tc respectively. This assumption is based on the 

general observation of peak amplitude locations in earthquake ground motions and the parameters of the 

function (Boore 2003). This heuristic model is due to the lack of the recorded data to assess the 

parameters tpc,1 and tpc,2, which depend not only on the earthquake source but also on the geology of the 

location. The numerical values, probability distribution types, and the correlation of all the parameters of 

modulating functions are listed in Table 6-1. The correlation between the amplitudes and the duration of 

the modulating functions is substantial. However, substantial uncertainty exists as well in the correlation 

coefficients derived solely based on the influence of M. Hence, a correlation coefficient of 0.6 is chosen 

to represent moderate correlation among these parameters.  

6.3.2. Subcrustal earthquakes 

The peak amplitudes for the Subcrustal earthquakes are estimated from the empirical ground motion 

relations developed by Atkinson and Boore (2003). Similar to the Crustal earthquakes, the peak amplitude 

of the modulating function corresponding to each filter is considered as a function of M and R. 

Furthermore, the ground motion relations are modified to include normalizing constants. The peak 

amplitude of the modulating function corresponding to the filter with 1Hz frequency is, (Atkinson and 

Boore 2003)  

 11010110 log0017.0log0013.088.098.0log cDDdhMA sc +−−−+−=  (6-10) 

where A1sc is the peak amplitude of the modulating function, D is the hypo-central distance defined as 

D=(R2+∆2)0.5 , ∆=0.00724.100.0507M, h=50km is the depth of the earthquake source, and d=10(0.301-0.01M). 

The normalizing constant c1 is introduced as described for Crustal earthquakes. Similarly, the peak 

amplitude of the modulating function corresponding to the filter with 5Hz frequency is, (Atkinson and 

Boore 2003) 

 21010210 log0019.0log0057.069.040.0log cDDdhMA sc +−−++=  (6-11) 
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where A2sc is the peak amplitude of the modulating function and the rest of the parameters are as defined 

for Eq. (6-10), with c2 as the normalizing constant for filter with 5Hz frequency. The distribution for M is 

as presented in Eq. (6-7) with Mmin=5, and Mmax=7. The probability density function for R is considered as  
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where Rmax=90km, is the maximum radius, Rmin=40km, is the minimum radius, and θmax=  cos-1(Rmin/Rmax) 

is the angle of the arc segment intersected by the source boundary. Eq. (6-12) is derived based on the 

formulation presented by Foschi and Lo (1988) to obtain the probability distribution of R in the presence 

of area sources at a distance from the site. The area source of Subcrustal earthquakes is considered 

beneath the Georgia Strait and Puget Sound (Adams and Halchuk 2003). The minimum radius is the 

distance between the edge of the area source and Vancouver.  

The duration of the modulating functions is considered equal to the duration of the Subcrustal 

earthquakes, Tsc. Similar to the Crustal earthquakes, the duration of Subcrustal earthquakes is estimated 

based on Eq. (6-9). The locations of peak amplitudes, tpsc,1 and tpsc,2, are considered to be approximately 

0.3Tc and 0.1Tc respectively. Table 6-2 lists the parameters of the modulating functions of Subcrustal 

earthquakes.  

6.3.3. Subduction earthquakes 

In contrast to the empirical relations employed for the Crustal and Subcrustal earthquakes, the amplitude 

parameters for the modulating functions of Subduction earthquake are based on the “finite-fault” 

stochastic model by Motazedian and Atkinson (2005). This choice is made for two reasons; 1) the 

empirical relations for Subduction earthquakes are based exclusively on the recorded ground motions 

from other subduction zones owing to the lack of such records in the Cascadia subduction zone, and 2) 

the fault source for Subduction earthquakes is known (Hyndman and Wang 1995), unlike the case of 

Crustal and Subcrustal earthquakes. The source characteristics and the detailed seismological parameters 
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are available for the Subduction earthquakes. The inclusion of these parameters in finite-fault stochastic 

model provides good estimates for the amplitude and duration parameters of the earthquakes. 

A set of 20 Subduction ground motion records are simulated by employing the finite fault stochastic 

model with the source parameters as presented by Beresnev and Atkinson (2002). The modulating 

function parameters are estimated from each of the simulated record based on energy measures (Koduru 

and Haukaas 2007).  An overview of the parameter estimation procedure from a ground motion record is 

presented next. 

For a unit intensity white noise, the variance of the model in Eq. (6-3) is 
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Since the model represents a non-stationary process, the variance is a function of time. From the equation 

above, it is evident that the variance of the modulated stationary process, zk(t), corresponding to each 

filter, is   
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Eq. (6-14) represents the variation of energy for a particular filter hk with the dominant frequency ωk. It is 

considered to be similar to the variation of the energy in the frequency band, ωk-∆ω to ωk+∆ω, of the 

ground motion record, a(t). For this reason, the Fourier transform of the record is evaluated as 
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Next, the record is divided into components such as,   

 ∫=
kD

k dtiFta ωωω )exp()(~)(  (6-16) 



Chapter 6: Probabilistic Evaluation of Loss 

 - 170 -

where Dk, is the frequency band over the frequencies ωk-∆ω to ωk+∆ω. Finally, the parameters of the 

modulating function are estimated by equating the energy content in zk(t) and ak(t) in discretized form 

such that  
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where n represents number of discrete points in the earthquake duration Ts such that Ts=n∆t with a 

constant time interval ∆t. It is noted that this procedure may result in underestimation of the amplitudes 

for certain frequencies depending on the filters employed. Furthermore, the finite fault stochastic model 

does not include explicit modelling of the spectral nonstationarity. The locations of the peak amplitude, 

denoted as tps,1 and tps,2, are evaluated from the simulated records of the finite fault stochastic model. As 

the model does not include the spectral nonstationarity explicitly, these estimates are approximate. As 

noted before, these parametric values are the best estimates given the lack of the recorded data. However, 

the methodology for fitting parameters to the stochastic model in Eq. (6-3) is applicable to any ground 

motion record. Table 6-3 represents the modulating function parameters for Subduction earthquakes.  

6.4. BUILDING MODEL 

The building selected for this study is a fifteen storey RC structure located in Vancouver. This building is 

employed as a reference for the mass and stiffness characteristics of the model. However, it is emphasized 

that numerous parameters, especially regarding the cost of damage, are assumed values that may not 

reflect the reality for this building. It is a mixed use building with commercial occupancy in the first 

storey and residential occupancy in the upper storeys. The building has 4 levels of underground parking 

below grade. The superstructure (the part of the building that is above grade) remains fairly regular with 

minor setbacks at the 4th storey and the 14th storey. The height of the first storey varies from 4.7m to 2.7m 

and the height of rest of the storeys is 2.7m. The shear walls in the staircase and the elevator core form the 

primary lateral force resisting system. The building is practically symmetrical along the North-South (N-
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S) axis, but unsymmetrical along East-West (E-W) axis due to the projections of the underground 

structure and the superstructure up to the 4th floor.  

In the current study, a three dimensional (3D) model of the superstructure is modelled with finite 

elements using the OpenSees software developed by McKenna et al. (2004). The underground structure 

was designed to be rigid compared to the structural members in the upper storeys. It is therefore unlikely 

that damage occurs in the parking structure and hence, it is not considered in the structural model. Instead, 

the ground motion is considered to be applied at the ground floor. The structural model consists of three 

distinct components: gravity support columns, header beams in the shear walls, and shear walls. The 

gravity support columns and the header beams are modelled as beam-column elements. Given the height-

to-width ratio of the walls, flexural behaviour will be predominant in the shear walls. For this reason, the 

shear walls are also modelled as beam-column elements. The RC flat plate slabs, which are part of the 

gravity support system, are considered as rigid. Instead of explicit modelling of the RC slabs, their 

behaviour is included by means of the “rigid diaphragm” option in OpenSees. This constrains the nodes at 

each storey against relative lateral displacement and simulates the diaphragm behaviour of RC slabs. Figs. 

6-4a and 6-4b show the 3D structural model of the building.  

The shear walls were designed to yield and form plastic hinges between the first storey and the 4th storey. 

That is, the lateral support system is expected to respond primarily in the first mode and form a plastic 

hinge zone within the bottom four storeys. However, the structure may respond in higher modes 

depending on the excitation from the earthquake ground motion. Therefore, the shear walls are modelled 

with nonlinear elements up to the 10th storey. The upper storeys, from the 10th storey to the 15th storey, are 

expected to remain elastic because they experience considerably less axial and shear forces.  

The nonlinear behaviour of the shear walls is modelled by fibre-discretized cross sections in the plastic 

hinge zone. The fibre-discretized sections account for the interaction between bending moments and axial 

forces in evaluating the sectional response of an element. Thus, these sections are employed in the plastic 

hinge zone where the shear walls experience maximum axial force. Each fibre in the cross-section is 
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characterized by different nonlinear uniaxial material models for the concrete and the reinforcing steel. 

Specifically, the inelastic “Concrete01” and “SmoothSteel01” material models in OpenSees are used to 

model the concrete and the steel reinforcement, respectively. The rest of the nonlinear elements of the 

shear walls, from the 4th storey to the 10th storey, are defined with sections that exhibit a hysteretic 

material model, which includes the force-deformation curve from section analysis and a stiffness 

degradation factor of 0.05. The shear force-deformation model is separately included in the section 

models of all the nonlinear elements. 

As the shear walls undergo large lateral displacements after yielding, the gravity columns will also 

experience these displacements. In fact, excessive lateral displacements may cause considerable damage 

in the gravity columns. Furthermore, the gravity columns carry considerable axial loads at the bottom 

storeys. Hence, the gravity support columns are also modelled as nonlinear elements with fibre-

discretized cross sections in the plastic hinge zone. Similar to the shear walls, the gravity columns are 

modelled as nonlinear elements with appropriate hysteretic material parameters from the 4th storey to the 

10th storey and as elastic elements above the 10th storey.  In contrast, all the header beams are modelled by 

means of nonlinear elements with hysteretic models for the moment-curvature relationship. Conversely, 

elastic models are employed for the axial and shear behaviour. The masses in the structural model are 

estimated based on the design-values of the dead and live loads of the structure.  

Table 6-4 lists the first three fundamental periods of the structure based on the initial structural stiffness, 

as computed with OpenSees. The periods calculated from the model match fairly well with the periods of 

the real structure measured from ambient vibration tests (Dyck and Ventura 1998). The damping ratio for 

the first two fundamental periods is set to 3% on the basis that the damping in a typical RC structure 

varies from 2% to 5%. The Rayleigh damping parameters are selected such that the modal damping ratios 

for the first three fundamental periods are as shown in Table 6-4. Table 6-5 presents the numerical values 

of the selected structural parameters and their probability distribution parameters. The material properties 

in the plastic hinge zone of the structure and the structural mass are considered as random variables. 
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6.5. DAMAGE AND LOSS MODELS 

The estimation of monetary loss is a complex task since it depends on several factors, such as the duration 

of non-functionality (downtime) of the building, the damage to the contents of the building, and the repair 

cost associated with damaged structural and architectural components. In the literature, models to 

comprehensively evaluate the monetary loss are scarce. In fact, the inclusion of losses due to damage of 

both structural and non-structural components adds to the comprehensive nature of the present study. The 

loss due to damage to structural elements is estimated based on a damage index described in the 

following. The loss due to damage to non-structural components is assessed based on their sensitivity to 

inter-storey drift ratios and floor accelerations.   

6.5.1. Structural members 

In the current study, the structural damage model developed by Mehanny and Deierlein (2000) is 

employed to assess the structural damage index. This damage model is based on inelastic deformations 

and is cumulative over the duration of loading. The cumulative nature of the damage index facilitates 

inclusion of the effect of the loading sequence, such as number of cycles and location of peak amplitude, 

on the damage accumulation. Therefore, the effects of the earthquake excitation characteristics on the 

structural damage are accurately modeled. In passing, it is noted that the use of a cumulative damage 

model is advantageous for the feasibility of the reliability analysis. Instead of employing limit-state 

functions that defines failure as the excursion of some non-monotonic response, e.g., displacement, above 

a selected threshold, the cumulative damage approach yields a monotonically increasing response. 

Effectively, this addresses the challenging time-variant reliability problem in earthquake engineering 

applications. Instead of dealing with a “first-excursion” problem the use of cumulative response measures 

simplifies the problem, as demonstrated in Chapter 4. In addition to this appealing reformulation of the 

problem, it is argued that cumulative damage measures represent a realistic and pragmatic approach when 

the limit-state function is defined in terms of monetary loss due to severe ground shaking.  
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The Mehanny-Deierlein damage model is employed to measure damage in the headers beams throughout 

the structure. These beams are expected undergo severe inelastic deformations compared to the other 

structural members. The damage model is also employed to measure damage in the gravity columns and 

the shear walls in the plastic hinge zone. Although the Mehanny-Deierlein damage model was calibrated 

to vary from 0.0 to 1.0 based on the experimental data for the frame members, such as beams and 

columns, it is also employed to assess damage of the shear walls in the present study. This indicates the 

need for future research to assess damage in shear walls; a topic that is current being subjected to several 

research efforts that are outside the scope of this work.  

The structural damage index value is converted to monetary loss by assuming the relationship 
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where Lm is the monetary loss due to the damage to structural member number m, Ds is the Mehanny-

Deierlein damage index multiplied by (1+εd), where εd is a zero-mean normal random variable with 0.05 

standard deviation, that represents the model uncertainty in the damage model, and Cm is the replacement 

cost of structural member number m. The replacement cost of structural members is $1500, $9000 and 

$14000 for the header beams, gravity columns, and shear walls, respectively. These values are estimates 

of the post-earthquake construction costs, which are assumed to be twice the current construction costs in 

Vancouver. All the cost values are considered to be in Canadian dollars.  

The total loss due to structural damage is evaluated by summation over the monetary losses in each 

individual structural member. Consequently, the monetary loss due to structural damage, LST, reads 
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where M here represents the number of structural members and  εs is a zero-mean normal random variable 

with 0.3 standard deviation,  that represents uncertainty in the estimation of structural replacement cost. In 
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the present study, a summation is employed in Eq. (6-19) because the seismically designed ductile 

structure is expected to experience mild to moderate level of damage. Conversely, if the structure under 

consideration is expected to experience near-collapse under seismic loads then it could be appropriate to 

calculate the monetary losses based on other formulations, such as a weighted sum of Lm.  

6.5.2. Non-structural members 

The non-structural components are divided into three categories: 1) window glazing and frames, 2) 

interior partition walls and exterior architectural elements, and 3) building equipment. The damage in 

categories 1 and 2 is sensitive to inter-storey drifts, while the damage in category 3 is considered to be 

sensitive to floor accelerations. The monetary loss is estimated based on summation of damage quantities 

from these categories. It is noted that, in the present study, the damage is estimated based on the peak 

inter-storey drifts and peak floor accelerations.  

The non-structural damage is measured in terms of the quantity of the non-structural elements that has to 

be replaced to restore the functionality of the structure. In this work, this is quantified by means of a 

“damage quantity” (DQ), which is measured in square meters. Before the DQ can be computed, the 

damage ratio (DR) is required. The DR is defined as the fraction of the total quantity of non-structural 

elements that need replacement. Fig. 6-5 illustrates the steps involved in the estimation of the monetary 

loss due to non-structural damage. The inner box (dashed line) contains the steps involved in the 

estimation of the DQ for each category of the non-structural components. Once the damage quantity is 

estimated, the monetary loss corresponding to each category is evaluated. As stated previously, the total 

monetary loss due to the damage of non-structural components is a summation of the loss corresponding 

to each category, as shown in the outer box (solid line) in Fig. 6-5. The evaluation of the quantity in each 

gray-shaded box is presented in the following.  

For each non-structural component type, a functional relationship is developed between the damage and 

the response parameter at each storey, based on data presented in Table 6-6 (Ferritto 1984). For Category 

1 
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where DR1,l is the damage ratio for Category 1 at the lth storey, and δ is the peak inter-storey drift ratio at 

that storey. Similarly, for Category 2 
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where DR2,l is the damage ratio for Category 2 at the lth storey. The damage ratios in Eqs. (6-20) and (6-

21) are zero for δ below 0.15 and 100% for δ above 2.0. In Category 3 

 4.107.0for,02842.017.005.428.663.2 234
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where DR3,l is the damage ratio for Category 3 at the lth storey, and A is the peak floor acceleration at that 

storey expressed in units of ga (acceleration of gravity). The damage ratio is zero for values of A below 

0.07 and the damage is 100% for values of A above 1.4.  

The damage quantity for each category, i, is subsequently evaluated as  
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where εn is a zero-mean normal random variable with 0.1 standard deviation, that represents the model 

uncertainty in the non-structural damage model, NL is the number of storeys in the building, and TQi,l is 

the total quantity of Category i at the lth storey. The total quantity in each category is presented in Table 6-

7. Finally, the monetary loss for each category is obtained from the damage quantity by means of the 

expression  

 iii DQCL ⋅=  (6-24) 

where Li is the monetary loss corresponding to category i, Ci is the monetary cost per unit damage 

quantity, and DQi is the damage quantity of the category. Ci is obtained by the relationship between 

damage quantities and losses as illustrated in Fig. 6-6. For each category, DQmin and DQmax are the 
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minimum and maximum damage quantities corresponding to the unit costs Cmin and Cmax. Specifically, 

Cmin and Cmax represent the repair costs per unit damage quantity. The minimum and maximum values for 

damage quantities and the corresponding costs for the three categories are listed in Table 6-7. Finally, the 

total loss due to the damage to non-structural components, LNS is calculated as 
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where εNS is the zero-mean normal random variable with 0.30 standard deviation, to represent uncertainty 

in the estimation of cost of non-structural damage. Subsequently, the total monetary loss is computed by 

summation of structural loss from Eq. (6-19) and non-structural loss from Eq. (6-25), such that the total 

monetary loss is L=LST + LNS.  This monetary loss enters the limit-state function in Eq. (6-2).  

6.6. EVALUATION OF THE TOTAL LOSS CURVE 

The objective of the unified reliability analysis is to evaluate the performance of a structure in terms of 

monetary loss probabilities. One such result is the “loss curve,” which represents the probability 

distribution for the total present value of the monetary loss within a time period. To achieve this result, it 

is necessary to establish intermittent probability distributions for the monetary loss given an earthquake at 

a specific source. In the present study, three such intermittent probability curves for the monetary loss are 

evaluated for the Crustal, Subcrustal and Subduction earthquakes. These curves are obtained separately 

by means of unified reliability analysis. These individual reliability analyses are carried out because each 

earthquake type is associated with a distinct earthquake source and is modelled with a separate set of 

ground motion parameters. The probability curve for each earthquake type represents the probability that 

the loss will be less than or equal to a particular dollar amount given the occurrence of that earthquake 

type. Consistent with the traditional notation for cumulative distribution functions (CDF), these 

probability curves are denoted F(L|Ei), where L is the loss and Ei denotes the earthquake 
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type: { }Subduction ,Subcrustal Crustal,∈iE . The vertical bar denotes that the CDF is conditioned upon 

the occurrence of Ei. 

The losses associated with an impending earthquake event will be incurred at some future time. To 

facilitate decision making at the present time, e.g., regarding retrofit actions, it is useful to discount the 

potential future loss to its present value. The reduction in present value is governed by the equation 

 teLL ⋅−⋅= γ
futurepresent  (6-26) 

where Lpresent is the discounted present value of the loss, Lfuture is the loss computed by the techniques 

presented previously, γ is the “real” interest rate (the interest rate minus the inflation rate),  and t is the 

time of occurrence of the earthquake. This occurrence time is uncertain. By making the simplifying 

assumption that the occurrence of earthquakes are governed by the Poisson occurrence model it follows 

that the occurrence time t is a random variable with the exponential probability distribution. 

Consequently, the expected value of the present loss is obtained by the theorem of total probability (Ang 

and Tang 1975): 
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where f(t) is the probability density function for t and T is the time period under consideration. When long 

time periods are considered, say, beyond 50 years, then the integral in Eq. (6-27) converges towards 

E[Lpresent]=Lfuture(λ/(γ+λ)), where λ is the rate of occurrence in the Poisson model (Sexsmith 1983). Due to 

the variation in occurrence rate between the earthquake types, the aforementioned loss curves F(L|Ei) for 

each type is discounted individually. In the following it is assumed that F(L|Ei) is the conditional CDF for 

the discounted loss.  

The final loss curve that considers all three types of earthquakes in Vancouver is obtained by invoking the 

theorem of total probability: 
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where F(L) is the final loss curve, F(L|Ei) represent the aforementioned conditional CDFs from the 

unified reliability analysis and P(Ei) represent the probabilities of occurrence of the three different types 

of earthquake. The probabilities P(Ei) are determined by means of the Poisson occurrence model. To this 

end, the average occurrence rate for the Crustal, Subcrustal and Subduction earthquakes are estimated to 

be 0.028, 0.015, and 0.0017, respectively. The values for the Crustal and Subcrustal earthquakes are 

derived based on the area of the source considered in the present study and the normalized values of 

occurrence rates of M>5.0 earthquakes (Adams and Halchuk 2003). The average occurrence rate for the 

Subduction type earthquake is based on an average of one Subduction earthquake per 590 years, as 

reported by Adams (1990). Normalization of the individual occurrence rate to obtain the relative 

probabilities of occurrence yields P(Crustal)=0.6264, P(Subcrustal)=0.3356, and P(Subduction)=0.0380. 

Subsequently, the substitution of the probabilities into Eq. (6-28) yields the final loss curve conditioned 

upon the occurrence of an earthquake of any type.  

The average occurrence rate for earthquakes of any type is the summation of the average occurrence rates 

of the Crustal, Subcrustal, and Subduction events (Ang and Tang 1975). The numbers above yield the 

average occurrence rate of any earthquake is λ=0.0447. Consequently, the annual rate of exceedance of 

the loss L is the product λ .(1-F(L)),  where F(L) from Eq. (6-28). Similarly, the probability of exceedance 

of a monetary loss during, say, a 50 year period is evaluated by rather multiplying 1-F(L) with the 

probability of occurrence of an earthquake in 50 years, given by the Poisson distribution. The resulting 

probability curve represents the probability that the monetary loss will exceed a dollar amount in present 

value, given the occurrence of an earthquake in 50 years.  

6.7. ANALYSIS AND RESULTS 

The uncertainty in the ground motion model for each of the these three cases include 500 random 

variables to represent the Gaussian white noise, as well as the random variables in the modulating 
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functions. Effectively, the white noise represents a random pulse at every 0.04s for the maximum duration 

of 20s. The random pulse spacing at 0.04s provides a versatile ground motion model with high fidelity. A 

closer spacing of the random pulses will compel a decrease in the time step size of the dynamic analysis 

and result in an unnecessary increase of the computational effort.  

The probabilistic description of all the modulating function parameters are listed in Tables 6-1, 6-2 and 6-

3, for the Crustal, Subcrustal and Subduction earthquakes, respectively. The intensity of the ground 

motions due to the Crustal and Subcrustal earthquakes is compared with the hazard curve from NBCC 

(2005). As mentioned earlier, the uniform hazard spectra from NBCC (2005) include only the hazard due 

to the Crustal and Subcrustal earthquakes. As illustrated in Fig. 6-7, the pseudo spectral acceleration at 

various return periods (inverse of occurrence rates) of the Crustal and Subcrustal earthquakes is 

considered for the spectral frequency of 1Hz. In general, the estimated pseudo spectral accelerations from 

the simulated Crustal and Subcrustal earthquakes are fairly close to the values of NBCC (2005) for the 

soil classification B. For the return period of 1 in 2500 years, corresponding to an occurrence probability 

of 2% in 50 years, the simulated value of pseudo spectral acceleration is 0.215ga compared to 0.247ga 

from the NBCC (2005). The discrepancies are primarily due to the number of earthquake sources 

considered for the Crustal earthquakes. In the present study, the earthquakes sources of the Crustal and 

Subcrustal earthquakes are restricted to within 90km radius from the location of interest. In contrast, the 

earthquake sources up to 200km radius are included in the NBCC (2005). The comparison in Fig. 6-7 

validates the parameters calibrated to the stochastic ground motion model. Therefore, for the parameters 

in Tables 6-1, 6-2, and 6-3, the stochastic ground motion model results in the earthquake intensities 

similar to those proposed by current code level.  

For the building under consideration, the lateral and torsional modes are coupled in the E-W direction. 

For a realistic evaluation of the structural behaviour, and the corresponding monetary loss, the dynamic 

analysis would ideally be performed with simultaneous ground motions in N-S and E-W directions. 

However, the state-of-the-art stochastic models of the ground motion utilized in this work simulate the 
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excitations in a single direction. In order to simulate the compatible excitations in N-S and E-W 

directions, the correlation among the peak accelerations, duration and other parameters of the ground 

motions in the two horizontal directions would have to be known. Given the absence of such information, 

which points to need for further research on bi-directional ground motions, the earthquake excitation is 

assumed to be at a 45 degree angle to the N-S and E-W directions. Hence, the components of the 

excitations in the N-S and E-W directions will be 70% of the intensity of the unidirectional excitation. It 

is argued that this is a reasonable assumption because the simultaneous application of 100% of the 

intensity in both directions will overestimate the seismic risk.  

A unified reliability analysis for each of the three earthquake types is carried out. The choice of reliability 

method and the associated computational cost are discussed after the presentation of the results. First, the 

probability curves shown in Fig. 6-8 are obtained. As expected, the total monetary loss is highest given 

the occurrence of a Subduction earthquake. The probability of loss due to Crustal earthquakes is higher 

than that of Subcrustal earthquakes due to the proximity of the source of the Crustal earthquakes to 

Vancouver. Fig. 6-9 shows the probability curves for the monetary loss in terms of the expected present 

value based on the occurrence rate of each type of earthquake. The probability curves are estimated based 

on Eq. (6-27) considering the real interest rate as 3%. The discounted loss values provide an estimate for 

the investment in earthquake risk mitigation over a period of 50 years. Finally, Fig. 6-10 illustrates the 

total probability curve for monetary loss obtained by the evaluation of Eq. (6-28). The probability of loss 

below 1 million dollars is contributed primarily from the Subcrustal earthquakes. The Crustal earthquakes 

contribute significantly to the probability of loss above 1 million dollars. Though the monetary loss is 

significant given the occurrence of a Subduction earthquake, its contribution to the total probability of 

monetary loss is negligible. This is due to the small value of the probability of occurrence of the 

Subduction earthquakes compared to the Crustal and Subcrustal earthquakes. 

 Fig. 6-11 shows the annual probability of exceedance for the monetary loss. This curve acts as a 

decision-making tool for the annual investments, such as insurance premiums. It indicates that by paying 
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an annual insurance premium, a stakeholder is transferring the risk of incurring certain amount of 

monetary loss.  For example, it is noted that the probability of monetary loss being greater than zero 

dollars is 4.5% while being greater than 1 million dollars is approximately 3.0%. If the stakeholder has no 

insurance there is 4.5% probability of suffering monetary loss. On the other hand, if the stakeholder 

invests in an insurance policy of 1 million dollars, then the probability of incurring a monetary loss 

decreases from 4.5% to 3.0%. This is due to fact that the insurance will cover the monetary losses below 1 

million dollars. The annual probability is negligible for the monetary loss over 6 million dollars. 

Therefore, an insurance policy for more than 6 million dollars will not transfer any additional risk from 

the stakeholder to the insurance company.  

 Furthermore, Fig. 6-12 shows the probability of exceedance of the monetary loss in 50 years. It is 

observed that there is a 60% probability that the loss will exceed 0.5 million dollars in the next 50 years. 

Conversely, there is a negligible probability that the loss will exceed 3 million dollars in the next 50 

years. The dollar amounts are in terms of present value, which implies that a maximum of 3 million 

dollars investment is justified at present in order to withstand the losses incurred due to the occurrence of 

an earthquake in the next 50 years.  

In the present study, the mean-centered Monte Carlo sampling is employed for the reliability 

computations. One argument in favour of this approach is that the robustness of this method is 

independent of the behaviour of the limit-state surface. Specifically, another study by the authors has 

shown that the shape of the limit-state surface in the presence of stochastic ground motion and cumulative 

response measures is not directly amenable to traditional FORM analysis (Chapter 4). A drawback of the 

sampling approach is that the number of samples required for obtaining accurate results increases 

dramatically at low or high probabilities. For example, the sampling results have 9.5% coefficient of 

variation at probability of 0.1 for 1000 sampling points. This is the selected sample size in the present 

study; motivated by the tradeoff between accuracy and computational cost. Specifically, the computation 

time for a single finite element analysis in the present study is 20 minutes on a 2.66 GHz processor. Thus, 
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an increase in the sample size to achieve even a small decrement in the coefficient of variation involves a 

significant added computational effort. This indicates a need for future research on the behaviour of the 

limit-state function for complex structures, particularly in the context of efficient reliability methods, such 

as FORM (Chapter 4). Such knowledge would foster the development and application of sophisticated 

reliability methods in performance-based engineering.  

6.8. CONCLUSION 

In the present study, the methodology for unified reliability analysis is demonstrated by its application to 

an existing high-rise building in Vancouver, Canada. For this purpose, the earthquake ground motions for 

Crustal, Subcrustal and Subduction earthquakes of the Cascadia subduction zone are modelled separately. 

The parameters for the ground motion models are calibrated based on the ground motion relationships and 

simulated ground motions based on seismological models. The monetary loss due to the structural and 

non-structural damage in a 15 storey RC shear-wall structure is evaluated. The probability curves for the 

monetary loss for each type of earthquake are generated employing Monte Carlo sampling. Finally, the 

total probability of monetary loss in a high-rise RC structure due to the three types of earthquakes in the 

Cascadia subduction zone is estimated. The Crustal and Subcrustal earthquakes contribute substantially to 

the probability of monetary loss.  
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Table 6.1: Parameters of modulating functions – Crustal earthquakes 

Correlation Parameter Distribution Type Mean Standard 
Deviation A2c t1pc t2pc Tc 

A1c Lognormal 4.91x10-3 
m/s2 

6.35x10-3 

m/s2 0.6 0.0 0.0 0.6 

A2c Lognormal 0.011 m/s2 0.015m/s2 1.0 0.0 0.0 0.5 

tpc,1 Uniform 2.80s 0.56s 0.0 1.0 0.0 0.3 

tpc,2 Uniform 0.95s 0.19s 0.0 0.0 1.0 0.3 

Tc 
Shifted 

Exponential 9.50s 3.85s 0.5 0.3 0.3 1.0 

 

Table 6.2: Parameters of modulating functions – Subcrustal earthquakes 

Correlation Parameter Distribution Type Mean Standard 
Deviation A2sc t1psc t2psc Tsc 

A1sc Lognormal 1.89x10-3 
m/s2 

1.86x10-3 
m/s2 0.6 0.0 0.0 0.6 

A2sc Lognormal 2.70x10-3 
m/s2 

2.17x10-3 
m/s2 1.0 0.0 0.0 0.6 

tpsc,1 Uniform 2.30s 0.46s 0.0 1.0 0.0 0.3 

tpsc,2 Uniform 0.75s 0.15s 0.0 0.0 1.0 0.3 

Tsc 
Shifted 

Exponential 7.65s 3.80s 0.6 0.3 0.3 1.0 

 

Table 6.3: Parameters of modulating functions – Subduction earthquakes 

Correlation Parameter Distribution Type Mean Standard 
Deviation A2s t1ps t2ps 

A1s Lognormal 0.081 m/s2 0.332 m/s2 0.3 0.0 0.0 
A2s Lognormal 0.035 m/s2 0.619 m/s2 1.0 0.0 0.0 
tps,1 Lognormal 5.00s 2.12s 0.0 1.0 0.0 
tps,2 Lognormal 4.50s 1.70s 0.0 0.0 1.0 
Ts Deterministic 20.0s 0.0 0.0 0.0 0.0 
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Table 6.4: Fundamental periods and damping ratios 

Mode Period (s) Frequency (Hz) Damping ratio (%) 
First mode (N-S) 0.90 1.10 3.0 
Second  mode (E-W + Torsion) 0.84 1.19 3.0 
Third mode (Torsion + E-W) 0.25 4.01 5.7 

 

Table 6.5: Distribution parameters of mass and material random variables 

Parameter Distribution Type Mean Coefficient of Variation 

Mass (Storeys 1-4) Lognormal 1806 Kg 0.10 

Mass(Storeys 5-15) Lognormal 1243 Kg 0.10 

Maximum concrete 
compressive stress Lognormal 35 MPa 0.06 

Concrete strain at 
maximum 
compressive stress 

Lognormal 0.002 0.15 

Reinforcement steel 
yield stress Lognormal 400 MPa 0.07 

Reinforcement steel 
Young’s modulus Lognormal 200000 MPa 0.03 

Reinforcement steel 
post-yield stiffness 
ratio 

Lognormal 0.02 0.10 

 

Table 6.6: Damage ratios for each category of non-structural elements 

Category 1 Category 2 Category 3 

δ (%) DR1,l δ (%) DR2,l A (ga) DR3,l 
0.15 0.0 0.15 0.0 0.08 0.01 
0.50 0.3 0.50 0.1 0.18 0.10 
1.00 0.8 1.00 0.3 0.50 0.45 
2.00 1.0 2.00 1.0 1.20 0.60 

- - - - 1.40 1.00 
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Table 6.7: Total quantity, damage quantity, unit loss ratios for each category of non-structural 

elements 

Parameter Category 1 Category 2 Category 3 
TQ1 (m2) 311.56 467.34 1090.0 
TQ2-3 (m2) 178.98 268.47 1090.0 
TQ4-13 (m2) 136.22 204.33 634.41 
TQ14-15 (m2) 117.07 175.60 446.08 
DQmin  (m2) 9.29 46.45 92.90 
DQmax (m2) 92.90 2322.58 1858.06 
Cmin ($/m2) 861.00 129.00 32.00 
Cmax ($/m2) 753.00 861.00 27.00 
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Figure 6.1: Evaluation of the monetary loss in unified reliability analysis. 
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Figure 6.2: (a) White noise, yi; (b) White noise filtered with 5Hz filter with 10% damping resulting 

in stationary process, sk; (c) Modulated and filtered white noise, zk 
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Figure 6.3: Parameters of a modulating function 
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Figure 6.4: (a) 3D view of the analysis model of the building; (b) finite element model of the 

building (columns are constrained at each storey with rigid diaphragms). 
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Figure 6.5: Steps involved in the evaluation of the monetary loss due to the damage of non-

structural components 

 

 

 

 

 

 

Figure 6.6: Damage quantity – loss relationship 
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Figure 6.7: Comparison of hazard curves for spectral frequency of 1Hz 
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Figure 6.8: The probability curves of monetary loss conditioned on the occurrence of Crustal, 

Subcrustal and Subduction earthquakes 
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Figure 6.9: The probability curves for discounted monetary loss, L conditioned on the occurrence of 

Crustal, Subcrustal and Subduction earthquakes. 
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Figure 6.10: The combined total probability curve of monetary loss conditioned on the occurrence 

of an earthquake 
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Figure 6.11: Annual probability of exceedance of monetary loss 
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Figure 6.12: Probability of exceedance in 50 years of discounted loss 
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Chapter 7. CONCLUSIONS AND FUTURE WORK 

7.1. SUMMARY OF RESEARCH CONTRIBUTIONS  

In the present study, the primary objective has been to promote the utilization of structural reliability 

methods, such as FORM in the context of performance-based earthquake engineering. This objective is 

achieved by exploring two main areas; one focuses on the study of uncertainties and FORM in the context 

of finite element reliability analysis, the other involves performing the reliability analysis with 

performance limit-states, such as collapse and monetary loss, in reinforced concrete structures.  

In the topic of uncertainty, at first, the identification, quantification, and separation of aleatory and 

epistemic uncertainties are presented. The reliability index, an outcome of FORM analysis, is considered 

to represent aleatory uncertainty. The presence of epistemic uncertainty introduces uncertainty in the 

reliability index itself. Two different methods; the Bayesian probabilistic approach and the fuzzy 

randomness approach, are presented to separate the aleatory and epistemic uncertainties. In the first 

approach, a probability distribution of the reliability index is obtained, while the second approach 

provides the reliability index as a fuzzy number. Software tools for the application of both approaches are 

developed by extending an open-source C++ software framework, OpenSees (McKenna et al. 2004).  

The dispersion of the reliability index indicates the amount of epistemic uncertainty present. Confidence 

bounds on the reliability index and importance ranking of the various sources contributing to the 

epistemic uncertainty are additional outcomes of the methods implemented. As the epistemic uncertainty 

is reducible, these results are valuable to reduce the overall uncertainty in the estimation of the reliability 

and safety of the structure. 

In the study of the feasibility of FORM in finite element reliability analysis, several case studies are 

performed with static and dynamic analysis. For the case of static analysis, FORM is found to provide 

accurate estimates of the probability with reasonable computational effort. However, several potential 

challenges exist for successful application of FORM, which are summarized under the categories of 1) 
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gradient discontinuities, 2) numerical noise, and 3) nonlinearity of the limit-state surface. Furthermore, 

solution strategies are presented to overcome the difficulties. A flow chart is provided to assess the 

applicability of FORM for a finite element reliability problem at hand.  

In the case of dynamic analysis, the feasibility of FORM with cumulative response parameters is 

investigated. Cumulative response parameters are demonstrated to be particularly effective for the 

performance assessment of the structures. The study indicates that FORM is not amenable for the finite 

element reliability analysis with cumulative response parameters. This is due to the fact that the geometric 

shape of limit-state surface in the standard normal space violates the essential criterion for the application 

of FORM. From the study of the characteristics of the limit-state surface, strategies for estimation of 

probabilities are presented. Solution strategies with the approximation of the hyper-spheriod, and 

bounding by symmetric hyper-planes, provide bounds on the probability estimates. In conclusion, FORM 

is applicable to reliability analyses with static loading, while being inadequate for the application in 

reliability analyses with dynamic loading.  

The contributions from the work in the area of uncertainties and feasibility of FORM are: 

1. A framework to quantify epistemic uncertainty is presented. The uncertainty in the reliability index 

is a measure of confidence in the reliability result. It allows for distinction between reducible 

(aleatory) and irreducible (epistemic) uncertainties and provides a rational basis for collecting data to 

reduce the epistemic uncertainty. 

2. Software tools are developed to perform epistemic reliability analysis, which provides a probability 

distribution of the reliability index.  

3. FORM is found to be feasible for application in finite element reliability analysis with static loading. 

The limit-state surface in the static case exhibits moderate nonlinearity and is amenable to FORM to 

obtain reasonable estimates of the probability.  
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4. The hyper-plane approximation of the limit-state surface, which is a fundamental assumption in 

FORM, is found to be inadequate for finite element reliability analysis with dynamic loading and 

cumulative response measures. The study of the limit-state surface with cumulative responses and 

random dynamic loading indicates that it has a closed and symmetric geometric shape. This novel 

finding motivates the development of computationally efficient reliability methods that estimate the 

probability content of such geometric shapes in the multivariate standard normal space.  

Following the above conclusions, FORM is applied in the context of nonlinear static analysis to assess the 

collapse probability of a reinforced concrete frame. A novelty in this application is the utilization of 

global response, as opposed to component response, for the seismic reliability assessment. Furthermore, 

probabilistic capacity and post-failure behaviour models, previously developed based on experimental 

data, are employed to include shear and axial failure of individual structural members before the final 

limit-state. The epistemic uncertainty present in the estimation of model parameters is included in the 

reliability analysis. The difficulties in the quantification of structural collapse and the associated 

challenges in performing a finite element reliability analysis with FORM are presented. Finally, a 

probability curve for the lateral displacement at global structural collapse, which includes the strength 

degradation of individual structural components, is obtained. Furthermore, importance measures are 

employed to identify the most influential random variables. The study indicates that the parameters of the 

probabilistic capacity models have the highest influence on the estimated probabilities. Therefore, in 

order to improve the confidence in the collapse predictions, it is most beneficial to reduce the epistemic 

uncertainty in the model parameters by gathering more data or improving the model form.  

The final application of performance-based earthquake engineering is to assess the monetary loss due to 

impending earthquakes for an existing high-rise building located in Vancouver, Canada. The unified 

reliability analysis methodology is applied for this reinforced concrete building, which has a shear-wall 

core as the lateral load resisting system. The earthquake excitations are modelled in detail with a 

stochastic ground motion model. A novel approach is presented for the calibration of stochastic model 
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parameters to the seismological and geological characteristics of Vancouver region. Three different sets 

of model parameters are assessed based on the Crustal, Subcrustal and Subduction earthquake sources 

near Vancouver. Thus, ground motion excitations specific to the location of the buildings are modelled. A 

comprehensive three-dimensional finite element model of the buildings is created. Furthermore, damage 

and cost models are considered separately for the structural and non-structural components. As concluded 

above, FORM is not amenable for the reliability analysis with dynamic excitation.  For convenience, the 

mean-centered Monte Carlo simulation method is applied to obtain probability curves for monetary loss.  

The contributions from the work in the applications of performance-based earthquake engineering are: 

5. Global structural response measures to detect structural collapse are developed and utilized in the 

finite element reliability analysis.  

6. A set of parameters are estimated to simulate ground motions corresponding to Crustal, Subcrustal 

and Subduction earthquakes in Vancouver, Canada.  

7. A procedure is developed to estimate the ground motion model parameters from recorded ground 

motions. With this approach, stochastic ground motion model parameters can be estimated if a 

ground motion record is available for any location of interest.  

8. The unified reliability analysis methodology is successfully demonstrated by application to an 

existing real-world high-rise building.  

7.2. FUTURE RESEARCH DIRECTIONS  

Several topics that require further research are identified in the course of this study. These are listed as the 

following.  

1. The current decision-making models include single probability estimates of discrete events. These 

probability estimates have lumped aleatory and epistemic uncertainties. Therefore, there is a need for 

the development of decision-making models that treat the epistemic and aleatory uncertainties 

separately.  
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2. The feasibility of the application of FORM is severely hampered when the finite element analysis 

fails to converge. A modification of the search algorithms, which find the design point, to 

accommodate non-convergence of finite element analysis may increase the ease of application of 

FORM.  

3. The geometric shape of the limit-state surface when cumulative response parameters are included 

indicates that a second-order reliability method (SORM) with suitable approximation by quadratic 

shapes may produce accurate probability estimates.  

4. Efficient methods for computation of gradients and curvatures of the limit-state functions are required 

to reduce the computational effort and promote the utilization of SORM in the reliability analysis 

with cumulative response parameters.  

5. Research into the development of generalized measures for the quantification of structural collapse is 

required. This facilitates the automation of structural collapse recognition by analysis software and 

paves the way for the utilization of sophisticated reliability methods for structural performance 

assessments.  

6. Parameter estimation methods to achieve spectral nonstationarity in stochastic ground motion models 

are scarce. Further research effort is required to investigate the importance of spectral nonstationarity 

on nonlinear structural response.  

7. The stochastic ground motion models are limited to the simulation of uni-directional ground motion 

excitations (Boore 2003). Further studies are required to establish correlation among the ground 

motions in two horizontal directions.  

8. Further investigations are required to develop computationally efficient models to account for axial, 

shear and moment interaction, and damage estimation in reinforced concrete shear walls. 

Experimental studies to calibrate the damage models are required for rigorous performance 

assessments.  
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9. Models to estimate the repair costs and monetary loss due to downtime need improvement for 

accurate estimation of economic losses. There is a requirement for explicit models to relate monetary 

losses and repair costs to the damage states of structural and non-structural components.  

10. Efficient software tools facilitate the promotion of reliability analysis in performance-based 

earthquake engineering. Availability of software tools, which communicate between popular 

structural analysis programs and reliability methods, and provide graphical user interface, encourages 

the practicing engineers to employ reliability methods.  
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