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Abstract 

Current geometric design guides provide deterministic standards where the safety margin of the 

design output is generally unknown and there is little knowledge on the safety implications of 

deviating from these standards. Several studies have advocated probabilistic geometric design 

where reliability analysis can be used to account for the uncertainty in the design parameters and 

to provide a risk measure of the degree of deviation from design standards. In reliability analysis, 

this risk is represented by the probability of non-compliance (Pnc) defined as the probability that 

the supply exceeds the demand. However, there is currently no link between measures of design 

reliability and the quantification of safety using collision frequency. The analysis presented in 

this thesis attempts to incorporate a reliability-based quantitative risk measure in the 

development of Safety Performance Functions (SPFs).  

The thesis considers the design of horizontal curves, where non-compliance occurs whenever the 

available sight distance (ASD; supply) falls short of the stopping sight distance (SSD; demand). 

The inputs of SSD are random variables and appropriate probability distributions were assumed 

for each. A comprehensive database for the Trans-Canada Highway was used to compute the 

probability of non-compliance (Pnc) for 100 segments of horizontal curves. Several Negative 

Binomial (NB) Safety Performance Functions (SPFs) were developed and the predicted 

collisions were found to increase with risk (Pnc) and that the rate of increase varies by severity 

level. The likelihood ratio test showed that the inclusion of a risk parameter (Pnc) has generated 

better predictive models that have significantly outperformed the traditional models. Further, a 
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spatial analysis was carried out which showed that the spatial models were successful in 

overcoming potential model misspecification resulting from incorporating only exposure and Pnc 

in the SPFs as relevant covariates might have been omitted. 

The optimization of cross-section design to minimize the risk associated with restricted sight 

distance was also considered using a multiple objective function that involves new Collision 

Modification Factors (CMFs) incorporating Pnc. The results indicated that accounting for the 

random variations due to drivers’ behavior proactively at the design stage would decrease 

collisions in addition to achieving an overall risk reduction.  
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1 Introduction 

There has been a considerable increase in the number of vehicles worldwide as a result of the 

increase in world population and economic activity. Consequently, an increase in the frequency 

and severity of collisions became an epidemic in the developing and developed countries. Each 

year, road collisions result in 1.3 million fatalities and 50 million non-fatal collisions worldwide 

(WHO, 2004). The Canadian Transportation Safety Board released a report detailing the 

consequence of road collisions in Canada. Each year witnesses a total of 160,000 road collisions 

with a total of 2,900 fatalities.  

Between 1991 and 2000, road collisions were ranked as the third leading cause of death in the 

United States, trailing closely after cancer and heart disease. In Canada, collisions pose a serious 

health and safety issue. Collisions are the leading cause of death in Canadian Children 

(American Academy of Pediatrics, 2002, Howard, 2002) and on a list of leading causes of 

Potential Years of Life Lost, collisions rank seventh (National Cancer Institute of Canada, 2001). 

Currently, road-related collisions worldwide rank as the tenth leading cause of death accounting 

for more than 2.1% of all deaths. Unless drastic measures are undertaken, road collisions are 

predicted to climb to the eighth most common cause of death by 2030 (Mathers and Loncar, 

2005). 

The frequency and severity of collisions is undoubtedly a substantial issue and consume massive 

financial resources. Collisions pose an economic burden not only on the victims and their 

families but also on societies and governments as well. Each year, road collisions cost countries 
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up to 4% of their Gross National Product (WHO, 2004). In the US, collision costs are estimated 

at a staggering US$164 billion (Cambridge Systematics Inc., 2008). In Canada, vehicle collisions 

cost CAD$62.7 billion on an annual basis incurring costs related to property damage, hospital 

care, traffic delay, and emergency response (Vodden et al., 2007).  

The previous statistics further solidify reasons to mitigate this “rising outbreak” of roadway 

collisions. These mitigation measures could include developing and implementing innovative 

techniques to find plausible and feasible solutions to lower these values. Therefore it is not 

surprising that road safety is currently one of the main areas of focus for governments/states and 

researchers.  

1.1 Engineering Approaches to the Road Safety Problem 

The road system is represented by three different components: the driver, the vehicle and the 

road (Sayed et al. 1995). Therefore in order to determine the safety of a road segment, the first 

step usually includes relating collisions to failure in one or more combinations of each of the 

three components. Studies have shown that driver error contributes approximately 90-95% of all 

collisions on the road. The first logical instinct would be to direct the safety initiatives at the 

driver which should lead to significant reduction in the frequency and/or the severity of 

collisions. Moreover, while driver behavior does indeed directly influence the occurrence of a 

collision, there are other underlying factors which indirectly contribute to collision occurrence. 

Such factors include, but not limited to, the design and layout of the road, vehicle characteristics, 

and the surrounding driving environment, among other causes. 
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In light of these conclusions, road authorities have focused on improving the safety of the roads. 

This was achieved by implementing road-based safety initiatives that are broadly categorized 

into two approaches: the reactive approach and the proactive approach (de Leur and Sayed, 

2003). The reactive approach targets existing road facilities whenever a high number of 

collisions is observed. Although it provides solutions to improve safety, this method requires a 

significant number of collisions to be recorded before any action is undertaken. Thus leaving 

road authorities waiting until road collisions claim a high number of fatalities and injuries. An 

application of this approach is traditional road safety improvement programs which include the 

identification, diagnosis and remedy of collision prone locations (otherwise known as black 

spots).  

Predominantly, the practice of road safety was limited to carrying out safety analysis and relying 

on road-side installations. For years, this reactive approach has been adopted by researchers to 

conduct studies and find solutions to road safety problems. However, a new direction of research 

is the “proactive” approach targeting road safety problems before they occur. In contrast to the 

reactive approach, the proactive approach attempts to prevent unsafe road conditions by 

implementing modifications and changes at the planning and design stages.  

The success of the reactive and proactive approaches in reducing collision occurrences hinges 

upon the existence of consistent methods that provide reliable estimates of road safety (Sawalha 

and Sayed, 2006). There are currently several methods developed to provide reliable estimates of 

road safety, with Safety Performance Functions (SPFs) being the most prevalent among analysts. 

SPFs are mathematical models with inherent statistical characteristics which attempt to find 
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relationships between collision counts and a number of roadway characteristics such as traffic 

volume, horizontal/vertical alignment, etc.  

1.2 Current Level of Safety in Design Guidelines 

 Design guidelines were introduced in response to the increased demand for roads due to the 

rapid growth in motorization and road usage. Several manuals currently exist to facilitate the 

design of new infrastructures and they are followed worldwide. In the US, the American 

Association of State Highway and Transportation Officials (AASHTO, 2004) publishes manuals 

and books; The Federal Highway Administration (FHWA) publishes the Manual on Uniform 

Traffic Control Devices (MUTCD, 2009). In Canada, the Transportation Association of Canada 

(TAC, 1999) publishes design guidelines to promote safe, efficient and environmentally 

sustainable transportation services. 

The manuals are continuously updated to reflect the recent advances in safety research, 

geometric design guidelines and standards. The Transportation Research Board (TRB) has 

established many standing committees that are primarily responsible for evaluating and 

improving these design manuals.  

The design concepts are transparent enabling designers to be easily and quickly trained. 

Moreover, having a unified code supports consistency and ensures uniformity in road building 

across jurisdiction (Zheng, 1997). Although these design guidelines have been very useful, there 

are two general concerns:  (1) roads built in accordance to design standards are assumed to be 
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safe (Hauer, 1999) which is not necessarily valid; and (2) safety is not explicitly included as a 

design parameter.  

The basis of the former concern is the assumption that the safety of a highway is intrinsically 

based in its design (McGee et al. 1995). Ideally, highway safety can be maximized by applying 

the highest geometric design standards. Limited resources and constraints due to physical, right-

of-way and environmental features often restrict the highway designer’s ability to develop 

geometric designs that exceed minimum design standards. Such limits and constraints thus force 

designers to make critical design decisions that may deviate from these standards. In these cases, 

the present guidelines provide little opportunity for designers to deviate from the standards 

although it may be justifiable (Crowel, 1989).  The implication of deviating from the design 

standards on the overall safety is not known. 

Safety has not been universally identified by a certain parameter or variable. Different 

researchers measure safety by different means. Consequently, the design guidelines embody 

safety as a by-product of other measures. This is where the second concern materializes. Even if 

designers were to abide by the design standards, this may not guarantee an improvement in 

safety of the designed roadway facility. The overall outcome of the design process is highly 

influenced by including many factors. Not all of these factors are included directly at the design 

stage which leads to uncertainties in design variables and models.  
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1.3 Using Reliability Analysis to Account for Design Uncertainty  

Several sources of uncertainty with varying degrees exist in different design phases. Melchers 

(1999) identifies various potential sources (e.g. decisional, prediction, physical, human) of 

uncertainty in civil engineering. Decision uncertainty occurs when engineers use their judgment 

and experience to overcome a design problem without adhering to the guidelines. Prediction 

uncertainties are those based on the adequacy of state-of-the-knowledge tools used by engineers.  

Physical uncertainty arises from the inherent variation of the design parameters which could be 

reduced by providing additional information. Human uncertainty accounts for drivers’ errors 

committed while they are on the road.  

One main source of uncertainty in the design guidelines (e.g. AASHTO, TAC) is that they were 

developed based on a combination of empirical research, professional experience and judgment. 

In order to account of this uncertainty as well as uncertainty in the design variables and models, 

the common approach is to use conservative percentile values for uncertain design inputs. The 

selection of the percentile values is not based on definitive safety measures; and the safety 

margin of the design output is generally unknown (Ismail and Sayed, 2009).  

These percentile values culminate to provide deterministic standards for design requirements. 

These deterministic standards characterize the attributes of the road user population by single 

values. The basic assumption is that all users will drive in the same way, which may not be the 

case. Knowledge about design inputs (i.e., design speed), model parameters (i.e., perception and 

brake reaction time), and model form (i.e., calculation of design elements like sight distance) is 
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imperfect. Failure to account for the uncertainty associated with these parameters and inputs is 

likely to lead to non-optimal design.   

To account for safety, uncertainties in design variables need to be accounted for. Reliability 

analysis has been recently advocated as a robust approach to account for uncertainty in the 

geometric design process and to evaluate the risk associated with a particular design feature. The 

main type of uncertainty addressed by reliability analysis is physical uncertainty.  

The use of reliability analysis in geometric design allows designers to investigate the effect of 

each individual geometric element on the overall design. Its importance lies in (Haukass, 2007): 

(i) ability to rank the input parameters according to their relative importance to the overall 

model, which allows targeting the important components to improve the performance of the 

model, and (ii) using the probability of non-compliance (Pnc), an outcome of reliability analysis, 

as a nominal value for comparison purposes and in code calibraion applications. The relative 

reliability of alternate design solutions can be compared to facilitate the decision making process 

between different options. 

Many studies have advocated the use of reliability analysis in geometric road design. However, 

one main factor that has been inhibiting a wider application of reliability analysis in highway 

design is the lack of an established relationship between reliability measures and an objective 

measure of safety such as collision frequency. As such, the nature of the relationship between 

reliability measures and safety needs to be addressed.  
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1.4 Problem Statement and Research Objectives 

This thesis provides a method that incorporates both the reactive approach to safety, by 

developing SPFs involving reliability-based risk measures, and the proactive approach, by using 

the ensuing risk measures at the design stage to improve safety. Although the thesis focuses on 

the design of horizontal curves and their implications on sight distance, the proposed 

methodology could be applied to any other design feature.  

For the design of horizontal curves with restricted sight distance, non-compliance occurs 

whenever the available sight distance (ASD; supply) falls short of the stopping sight distance 

(SSD; demand). Thus, reducing the probability of non-compliance (Pnc; an outcome of reliability 

analysis) is crucial to road users’ safety. There are many variables that determine SSD. Although 

these variables are mostly subject to inherent random variations, current design practices treat 

them as deterministic.  

The first objective of the thesis is to quantify the risk associated with the uncertainty in the 

design inputs by using appropriate probability distributions to represent them in the reliability 

analysis. Another objective of the thesis is to establish and investigate the relationship between 

collision frequency and the probability of non-compliance (Pnc). Establishing this relationship 

leads to (i) the admission of reliability-based design into traditional benefit-cost analysis, and (ii) 

wider applications of reliability analysis in road design. 

The final objective is to optimize horizontal curves cross-section design using the new Collision 

Modification Factors (CMFs) incorporating Pnc. The proposed optimization provides designers 
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with a proactive approach to the design of cross-section elements in order to (i) minimize the risk 

associated with restricted sight distance, (ii) balance the risk across the two carriageways of the 

highway, and (iii) reduce the expected collision frequency. 

1.5 Thesis Structure 

There are six chapters which summarize the content and work of this thesis; together they 

provide a full view on how reliability analysis can be used to improve safety, relate it to 

collisions, and calibrate design guidelines. Chapter two summarizes the literature review of 

reliability theory and the development of safety performance functions (SPFs).  

Chapter three discusses the sight distance model and explains how an outcome of reliability 

analysis such as Pnc is incorporated into SPFs to quantify the safety risk and investigate its effect 

on collisions. A comprehensive database comprising geometric design features, collisions and 

traffic volume data for the Trans-Canada Highway (referred to as Highway 1) is used. The data 

were collected for 100 segments of horizontal curves some of which had a limited sight distance 

due to the presence of median barriers or side concrete barriers on the road. The First Order 

Reliability Method (FORM) was used to compute the probability of non-compliance (Pnc) for the 

100 road segments. Several Negative Binomial (NB) SPFs were developed to investigate the 

effects of Pnc on predicted collisions by severity level (Injuries and Fatalities, I+F; Property 

Damage Only, PDO).  
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Since the magnitude of omitted variables’ bias is likely to affect the Pnc impact on collisions, 

spatial analysis is explored in Chapter four to assess the consequences of such bias. The new data 

included segments that were further clustered according to similar traffic volumes. The 

Conditional Auto-Regressive (CAR) and Extended Multiple Membership (EMM) model were 

developed in a Full Bayes (FB) context via the Markov Chain Monte Carlo (MCMC) simulation 

techniques using uninformative priors. Two sets of models without and with spatial effects were 

developed and compared.  

An optimization method for cross-section dimensions, where Pnc as well as Collision 

Modification Factors (CMFs) are targeted as potential means of minimizing risk and collisions 

on highways is described in Chapter five. A Sequential Quadratic Programming (SQP) algorithm 

was used to carry out the optimization, for various case studies of horizontal curves that are parts 

of two highway developments in British Columbia. This Pnc-based proactive approach is 

proposed to show that incorporating reliability-based risk measures in SPFs may well improve 

safety. 

The thesis comes to a conclusion with Chapter six, which summarizes the thesis outcomes, 

results, discussions and provides suggestions for future research.  
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2 Literature Review 

This chapter presents an overview of subject areas related to risk-based geometric design. The 

objective is to provide a comprehensive review of two main topics: reliability analysis and safety 

performance functions. This is prelude to how those two areas will be combined to provide a 

general framework of risk-based design.  

2.1 Reliability Analysis 

Design guidelines provide the basic approach for engineers to design roads. However, in some 

situations engineers will need to make decisions which may require them to deviate from the 

standards. The risk associated with deviating from the standards is unaccounted for in current 

guidelines. Managing this risk is a matter of choice on how to allocate available resources to best 

accommodate a tradeoff between cost and safety (Faber 2006).   

Risk management includes analyzing, assessing and making decisions regarding the risk 

associated with a specific activity or a given hazard. This process includes considering all 

uncertainties in the current problem as well as examining all possible consequences. 

Computational and analytical models have been developed to enhance the ability to accurately 

predict outcomes of possible solutions. These models are typically developed in a deterministic 

framework and ignore the inherent uncertainties that are present in the model parameters and in 

the analysis procedures (Haukaas, 2007). Therefore, developing probabilistic methods are 

becoming increasingly important as they are more informative.  
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Probabilistic analysis is the art of formulating a mathematical model which answers the 

following question: “what is the probability that a structure will behave in a certain way given 

that one or more if its properties or geometric dimensions are of a random nature?” (Ditlevsen 

and Madsen, 2007). This method acknowledges that not all information regarding a geometric 

feature is known and instead of ignoring the inherent variation; it provides designers with a 

powerful tool which can enhance their decision-making process.   

An application of probabilistic analysis is reliability analysis. The principles used in reliability 

analysis follow the limit states design approach frequently used by structural engineers. In this 

approach, rather than representing the variables in the design equations as single values, which is 

the norm in current design guidelines, they are treated as random variables having probability 

distributions.  

In limit state design, when the demand exceeds the supply, the system is considered to have 

failed or not complied with the design parameters. Reliability theory can be used to develop 

factors of safety that incorporate the uncertainty of the supply and demand variables in the 

analysis.  The resulting factor of safety is termed the probability of non-compliance (   ), which 

is the probability that the demand will exceed the supply or that a specific design would not meet 

standard requirements (Richl and Sayed, 2006). 

The next subsections explain the reliability theory and the concept of probability of non-

compliance which will be dealt with in depth throughout the remaining chapters. 
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2.1.1 Development of Reliability Analysis 

The true sense of reliability conveys “the concept of dependability, successful operation or 

performance, and the absence of failures” (Blischke and Murthy, 2000). Reliability of a system is 

the probability that the system will perform its intended function for a specified period of time 

without any failure when operating under normal conditions.  

Reliability analysis can either be qualitative (verifying the failure modes and causes that 

contribute to the “failure” of a system) or quantitative (using real failure data and mathematical 

models to produce quantitative estimates of the system’s reliability). The reliability theory 

incorporates the interdisciplinary use of: probability, statistics, stochastic modeling, engineering 

insights into design, and scientific understanding of the failure mechanisms (Blischke and 

Murthy, 2000). 

The beginning of the twentieth century marked the first applications of statistical techniques to 

study the reliability of railroad equipment (Nelson, 1982). The shift in focus from deterministic 

to probabilistic was first introduced by Mayer (1926) in Germany. In the late 1930s, value theory 

was used to model the fatigue and lifecycle of materials which opened up a new area of research 

related to probabilistic modeling. This new area was then further developed in following years 

worldwide. In 1950s and 1960s reliability engineering first blossomed in the US to respond to a 

need for more reliability equipment for military and space programs (Nelson, 1982; O’Conner, 

2002).  
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The use of probabilistic tools in structural design was developed in the 1980’s (Ang and Tang, 

1975; Ellingwood et. al 1980). Over time, reliability analysis was developed to the point that it 

could be included in structural design codes. Although reliability analysis has been extensively 

utilized in other fields (e.g. structural and geotechnical engineering), it is not as widely used in 

transportation engineering as it is in other disciplines. The following subsections explain the 

theory behind reliability analysis and the applications of reliability analysis in transportation 

engineering.  

2.1.2 Reliability Theory 

Reliability analysis assesses the system’s ability to accommodate the demand of a specific design 

element against its capacity (Sarhan and Hassan, 2008). The basic reliability problem is a 

component problem with two random variables, supply and demand. The performance function 

in the plane represented by these two variables leads to failure or non-compliance (the latter term 

will be used as it is commonly used in the field of Transportation Engineering) when the demand 

exceeds the supply.  

A generalized model representing the performance function is shown in Equation (2.1)  

                                                  (2.1) 

where 

g  = performance function (otherwise referred to as limit state function), S and D denote 

supply and demand, respectively, with non-compliance occurring when g < 0, 
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Xi =  a combination or supply and demand variables explaining the reliability problem. 

The outcomes of the reliability analysis are the reliability index  (shown in Equation 2.2) and 

the probability of non-compliance, Pnc (shown in Equation 2.3)  

  
  

  
   (2.2) 

where μg and σg are the mean and standard deviation of the performance function, respectively, 

                                      (2.3) 

where fx is the joint probability density function (PDF) for x1,x2...xn, and the integration is carried 

out over the failure or “non-compliance” domain (g < 0). The failure domain is shown in Figure 

2.1. 

Thus, the reliability function, which is the complement of the probability of non-compliance, can 

be defined by: 

                        (2.4) 

where FT(t) is the cumulative distribution function (CDF). 
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Figure 2.1 Domain of definition and failure limit state of a reliability analysis model 

 

       Source: Ditlevsen and Madsen (2007) 

2.1.3 Component Reliability Problem 

To simplify the notation, Equation (2.1) is re-formulated as  

       (2.5) 

The simplest measure of safety is the central factor of safety which is the ratio of the average 

supply to the average demand given by the following equation 

          
  

  
  (2.6) 

A more common measure of safety is the conventional factor of safety where the average 

demand is increased by some multiple of the standard deviation for demand whereas the average 

S 

D 

Safe State 

g>0  S>D 

Limit State 

g=0  S=D 

Failure State 

g<0  S<D 
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supply is decreased by some multiple of the standard deviation for supply.  By using this 

measure, designers are implying that there is a level of uncertainty in the values for supply and 

demand.  To be conservative the supply is decreased and the demand is increased.  In Equation 

(2.7) k is some multiple of the standard deviation  

               
      

      
  (2.7) 

Reliability theory can be used to develop factors of safety that incorporate this uncertainty of the 

supply and demand variables.  The resulting factor of safety (the reliability index, β) increases in 

value as the supply exceeds the demand.  

The performance function (2.5) can be used to calculate the probability of non-compliance and 

the reliability index β. Ang and Tang (1975) described a process that can be used to derive the 

expected value and variance of a design parameter.  This process can also be used to derive the 

measure of safety, MS, given in Equation (2.8)   

              (2.8) 

where E(S) and E(D) are the expected values for S and D. Since              , it can be 

shown that β is defined as noted in Equation (2.9) 

  
  

        
  (2.9) 

Graphical representation of   is shown in Figure 2.2. 
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Figure 2.2 The reliability index 

 

Source: Richl (2003) 

The probability of non-compliance is an estimate of the chance that an engineering system (a 

highway in this case) fails to perform its stated purpose under anticipated operational conditions 

(see Figure 2.3). The probability of non-compliance can be calculated as follows 

            (2.10) 

where   denotes the standard normal cumulative distribution function. Figure 2.4 displays the 

inverse relationship between     and  . 

 

DS
DS 

DS

DSf 
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Figure 2.3 The probability of non-compliance 

 

Source: Ismail and Sayed (2009) 

 

Figure 2.4 The relationship between Pnc and   
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2.1.4 Reliability Methods  

The reliability methods proposed in the literature are categorized into two families according to 

whether the random variables are treated with tools of probability theory or those of statistics 

(Hurtado, 2004). Figure 2.5 shows a breakdown of those methods.  

In simple two variable systems, exact methods have been developed to solve for the probability 

of non-compliance and . However, exact methods to solve reliability equations are not used 

when there are more than two variables in the performance function, when the performance 

function is non-linear and when the variables are not normally distributed (Ellingwood et. al 

1980). These problems are solved using simulations or approximate methods.   

Figure 2.5 Methods to solve limit state function 

 

Source: Hurtado (2004) 
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2.1.4.1 Synthetic Method (Monte-Carlo Simulation) 

In order to estimate the probability of non-compliance, Equation (2.3) can be adapted to:  

                  
                     (2.11) 

The difference here lies in the integration domain; at first the domain was the sample space of 

vector X for which g(x) ≤ 0. For Monte-Carlo simulation, the integration is carried over the 

entire sample space of X where          , which is an indicator function = 1, if       , = 0 

otherwise. Thus, for N sample realizations of vector X (  , i=1, 2, ... N), Pnc is computed by 

Equation (2.12) 

    
 

 
            
     (2.12) 

A large number of realization of the basic random variables X are generated; the simulations 

which resulted in an outcome with a negative limit-state function (      ) are counted (   . 

After N simulations, the probability of non-compliance is estimated through           . As N 

 ∞, the estimate of the probability of non-compliance becomes exact. However, the main 

drawback of using simulation is that they are computationally expensive since they are time 

consuming. If a Monte-Carlo simulation is carried out to estimate a probability in the order of  

10
-6

, 10
8
 simulations are expected to be necessary to achieve an estimate with a coefficient of 

variation in the order of 10% (Faber, 2006).  

In the event that the sampling domain is located in a region far away from that of the indicator 

function; the success rate in the simulations is low. To overcome this problem, variance 
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reduction techniques such as “importance sampling” were proposed to reduce the variance of the 

probability estimate. Importance sampling utilizes information about the domain of the 

probability integral. It attempts to center the simulations about the point in the sample space that 

contributes the most to the probability of non-compliance. In this method, if the limit state 

function is not “too non-linear” (Faber, 2006) about the design point, the success rate of the 

simulations will be increased to 50%. However, if no prior information is known regarding the 

design point and its relative distance to the limit state function (i.e.,   is too large); sampling is 

not the most suitable method to be used. 

Monte-Carlo simulation methods are ideally used when the limit state function is associated with 

difficulties such as when the limit state function is not differentiable or when there is more than 

one design point at which non-compliance occurs (Faber, 2006).   

2.1.4.2  Analytic Methods (Taylor-based) 

Analytic methods such as First Order Second Moment (FOSM), First Order Reliability Method 

(FORM) and Second Order Reliability Method (SORM) require that the input vector of random 

variables be defined by: (1) its joint density function, (2) an approximation method or (3) being 

transformed into a set of independent variables in the standard normal space (Hurtado 2004).  

This transformation eliminates the correlation among samples and as such improves the 

performance of the overall method when applying statistical learning tools. The various methods 

by which the transformation is carried out are dependent on the information available regarding 

the random variables. They include: 
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Normal Variables 

If the random variables are independent and normally distributed, the transformation is simply a 

standardization from vector X to U in the standard normal space. Equation (2.13) shows the 

standardization process: 

   
      

   
     (2.13) 

where,     and    are the mean and standard deviation, respectively, of the variable   .   

Normal Translation 

If the random variables are non-normal but are uncorrelated (i.e., independent); the normal 

translation is applied as shown in Equation (2.14) 

                              (2.14) 

where,         is the probability distribution of the variable   . 

Rosenblatt Transformation 

If the joint probability density function of all variables is known; then Rosenblatt Transformation 

is applied. This method makes use of the conditional probability given by 

                                     
  
 

  (2.15) 
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where,                  denotes the conditional CDF of    and                  denotes the 

conditional PDF of   . The Rosenblatt transformation is defined by: 

                          (2.16) 

Nataf Transformation 

If the joint density function is unknown but the marginal and correlation structure are known, the 

Nataf Transformation is the suitable choice in stochastic mechanics. The vector of input random 

variables is transformed to vector Z that has zero mean, unit standard deviation and the given 

correlation matrix.  

                (2.17) 

The set of independent Normal Variables, U, is then obtained through a Choleski or spectral 

decomposition.  

The advantages and disadvantages of the analytic methods FOSM, FORM and SORM are 

outlined next. FOSM is the most elementary method, introduced by Cornell (1967), and is based 

on first-order approximations of the mean and standard deviation of the performance function. 

The transformation of the random variables for this method is carried out based on the Normal 

Variable method; where the limit-state function is standardized. Equation (2.13) can be modified 

to: 

  
    

  
     (2.18) 
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where    , the mean of the limit-state function, is given by          and   , the standard 

deviation of the limit-state function, is given by    
    

             
  and     is the 

correlation coefficient between the supply and demand variables.  

However, this method can only be used if the variables and the performance function are linear 

in nature. Simply representing the performance function in a different form such as   
      

      
 

would yield different results than the formulation in Equation (2.7). This is known as the 

invariance problem and therefore more accurate results can be obtained using other methods.   

The more widely used method is FORM which is typically selected over the other methods due 

to its advantages. It provides more accurate results than FOSM as it overcomes the need to use 

only variables that are normally distributed. FORM also present more detailed results such as 

parameter importance.  

The basic FORM framework involves several steps: (1) identifying the input distributions for 

each of the random variables, (2) formulating the reliability problem in terms of the limit-state 

function, (3) transforming the random variables into uncorrelated standard normal random 

variables, (4) finding the design point (which is the point on the limit-state surface closest to the 

origin in the standard normal space) through an iterative process and (5) obtaining the estimates 

of Pnc and  . This method is shown graphically in Figure 2.6.  

At times, there is information available in the literature regarding the probability distributions for 

each of the random variables. However, that is not always the case and sometimes researchers 
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would have to devise experiments to collect information on the random variables. After 

assigning probability distributions to each of the random variables, the limit-state function must 

be formulated. This formulation would depend on the geometric element under consideration and 

is generally done in terms of the supply and demand.  

Figure 2.6 Design point found using FORM 

 

Source: Haukaas (2007) 

The FORM procedure to determine Pnc and   involves transforming the random variables X into 

uncorrelated standard normal variables Y. This is important for two reasons: (1) the new standard 

normal space is dimensionless and so distances can be measured, (2) the probability distribution 

in the Y-space is the multivariate normal probability distribution. The variables are transformed 
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into the standard normal space by the probability persevering transformation (Haukaas, 2007). 

The method used for the transformation is dependent on the available information and can be any 

of the previously described methods. The standard normal space is given by: 

          (2.19) 

where Y is the vector of the transformed design variables and F(X) is the CDF of the design 

inputs X. FORM analysis takes precedence over FOSM in that the first order approximation is 

not about the mean, but is rather about the design point where 

g(X) = G(Y) = 0 (2.20) 

This design point is the solution to the constrained optimization problem 

                       (2.21) 

where Y
*
 is the design point, G is the performance function in the standard normal space and 

“argmin” is the argument of the minimum of a function.  

The theoretical background of FORM can be found in a number of different texts on reliability 

(Ellingwood et. al, 1980; Melchers, 1999). FORM problems can be solved using a number of 

different commercially available, academic software programs (Melchers, 1999) or using 

MATLAB subroutines (Haukaas, 2007).  

Another widely used reliability method is SORM. It follows the same principle as FORM, 

however; the failure surface is expanded to the second order. The resulting limit-state surface is 
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represented as a hyper-paraboloid as opposed to a hyper-plane (Haukaas, 2007). This is 

accomplished by second-order Taylor expansion of the limit-state function about the design 

point. There are various types of SORM available: curvature-fitted SORM, point-fitted SORM 

and gradient-based SORM. The curvature-fitted SORM is carried out by describing an analytical 

expression for the limit state function and differentiating it twice to obtain second-derivatives. 

Although this method is straightforward, it is computationally expensive. The point-fitted SORM 

is similar but selects points that are further away from the design point. This method is highly 

influenced by the paraboloid matrix which must be selected carefully. The gradient-based SORM 

provides the curvature of the limit-state surface based on the last two trial points in the search for 

the design point. The second order derivatives of the limit-state function are unnecessary but the 

algorithm must be carried out several times in order to search for the design point. If the design 

surface is not too “non-linear” and there is no need warranting the implementation of SORM; 

FORM is the most suitable approximation approach. The differences between FORM and SORM 

are shown in Figure 2.7. 



29 

 

Figure 2.7 Difference between FORM and SORM 

 

Source: Haukaas (2007) 

In the current study, FORM was carried out using the Rt software and FERUM in MATLAB. 

The software requires information regarding the probability distributions of the random variables 

and the formulation of the performance function. The outcomes are Pnc, β, the design point and 

the importance vector, which ranks the input parameters according to their relative importance to 

the overall model. 

2.1.5 Reliability Analysis in Road Design 

Probabilistic methods were first introduced into the area of highway design by Moyer and Berry 

(1940). They developed a method to determine the safe speed at which vehicles should be 
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traveling on highway curves. The authors used a ball-bard indicator to establish an acceptable 

“safe speed” on horizontal curves. They identified the percentile values for the operating speed at 

various design speeds which was the starting point upon which other studies have based their 

results on. The operating speed was considered to be a random variable and they recommended 

using the 85
th

 percentile as the operating speed, for a design speed ≤ 30 mph and the 90
th

 

percentile for 35 mph.  

Navin (1990, 1991) outlined the necessary conditions to use limit state designs or reliability 

based techniques to understand the random elements of highway safety problems. He provided 

important arguments in favor of adopting reliability theory in highway geometric design 

guidelines and discussed several applications of the design of typical highway elements.  

Navin (1990) carried out a study to investigate whether safety measures for stopping sight 

distance, horizontal curves, decision sight distance, passing sight distance and vertical curves 

could be developed. Margins of safety were calculated under the assumption that the variables 

were normally distributed and independent. FOSM analysis was used to compute the reliability 

index for the following geometric features: two horizontal curve radii, upper and lower limits of 

the Institute of Transportation Engineers passing sight distance and stopping sight distance for 

the upper and lower speeds at a design speed of 80km/h. The following generic design equation 

was proposed to address the uncertainty in the design: 

                        (2.22) 

where 
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   = performance factor (design safety parameter), 

    = highway supply parameter, 

   = highway safety importance, 

   = exposure factor, 

   = traffic mix, 

   = driver mix,  

   = environmental factor, 

    = terrain factor, 

   = design standard or construction standard, and 

      = driver/vehicle demand. 

The performance factor,  , is chosen so as to ensure that the highway supply parameter,   , is 

large enough to maintain an acceptable safety margin against driver or vehicle demand,     . 

Although this method was a first step to incorporate reliability-based methodology in the design 

process, the method was not adopted in current geometric design standards (Ismail, 2006).    

Sight distance requirements were studied by several authors to determine whether a probabilistic 

tool would outperform the deterministic tools provided by guidelines. Faghri and Demetsky 

(1988) and Easa (1994) demonstrated the potential of using reliability to evaluate limitations in 
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sight distance at road-railway grade crossings. The objective was to allow adequate sight 

distance at railroad grade crossings. Faghri and Demetski (1988) compared the performance of 

their probabilistic model to five other nationally recognized models, they found that their model 

far exceeded the more “conventional” models used. They viewed it as a valuable predictive tool 

which can further be improved to cover other applications. Easa (1994) carried out the analysis 

using FOSM by selecting a specific probability of non-compliance and designing the sight 

distance on that basis. The results were corroborated using Monte-Carlo simulation and the 

probabilistic method was found to be accurate.  

Easa (1993) presented a probabilistic method to replace the deterministic method of computing 

intergreen (yellow plus all-red) interval at signalized intersections. The goal was to eliminate the 

dilemma zone, the zone where a driver is faced with a yellow signal but is unable to stop or clear 

the intersection safely. Mathematically, this zone is the equivalent of equating the stopping sight 

distance and intersection clearing distance. The probabilistic method was carried out using 

FOSM to compute the mean and variance for each random variable (approach speed, perception 

reaction time, deceleration rate and vehicle length). The author derived a closed-form solution 

for the intergreen interval. Two values for the probability of non-compliance were chosen and 

design charts were constructed obtain the intergreen times. The main conclusion of this research 

is that the probabilistic method is a valuable tool in designing a specific feature (in this case the 

intergreen interval) at any desired reliability level (reliability index or probability of non-

compliance).  



33 

 

In an effort to overcome the “extreme values” associated with intersection sight distance 

available in AASHTO, Tidwell and Humphreys (1970) and Easa (2000) adopted a reliability 

method based on the mean and variance of probability distributions for each random variable and 

accounting for correlations amongst those variables. They evaluated the design criteria for traffic 

signal timing and intersection sight distance using this proposed method as opposed to using 

single deterministic values supplied by the design guidelines. The probability distributions were 

obtained from a combination of the literature or assumptions for design values. The probability 

of non-compliance was computed at varying available sight distances using FOSM analysis. 

After calibrating the current model in AASHTO, Easa (2000) found that the corresponding 

reliability levels are high and suggest that the proposed method provides the designer with more 

flexibility. An alternative model with a reliability level that is “deemed acceptable to the 

designer” could have been chosen but would not have satisfied the AASHTO requirements.  

Reliability techniques have also been applied to analyze operational conditions and sight distance 

restrictions on horizontal curves (Echaveguren et. al 2005; Richl and Sayed, 2006; Ismail and 

Sayed, 2010). Echaveguren et al. (2005) proposed a methodology to determine the margin of 

safety (reliability index) of an existing curve by reliability analysis. The new elements presented 

in their analysis included: representing driver’s behavior by operating speed, incorporating 

pavement surface conditions by means of the friction, and, using a probabilistic method to 

identify the reliability index to estimate the margin of safety. The results revealed that the curve 

radius, skid resistance, and macro-texture have a high significant impact on the probability of 

non-compliance as opposed to the superelevation which did not.  
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Richl and Sayed (2006) investigated the effect that narrow medians have on horizontal curves 

with restricted sight distance. They studied a series of horizontal curves with varying horizontal 

sight distance restrictions and computed the probability of non-compliance for each case by 

FORM. The results indicated that a narrow median combined with a tight horizontal curve 

represented an issue for drivers as they might not be able to stop within the sight distance 

available to them.  

Sight distance restriction is a common safety concern and this is further proved by the research 

carried out in that area. The main shortcoming with the current design guidelines is the 

deterministic nature of the design requirements and that the safety implication of deviating from 

these standards is unknown. Ismail and Sayed (2010) proposed a methodology to evaluate the 

risk of deviating from design requirements. They measured the risk of horizontal curves with 

restricted sight distance and devised design aids to assist in measuring the risk of limited sight 

distance at modified design alternatives. They carried out the analysis on two case studies the 

results of which showed that the proposed road design has a high risk of limited sight distance. 

Moreover, the risk levels associated with the design requirements were highly inconsistent. This 

further strengthens the need to calibrate current guidelines as a step to improve the overall safety 

of geometric features.  

Reliability analysis has been used in conjunction with Monte Carlo simulation to evaluate the 

sight distance requirements and compute probability of sight distance limitations (El-Khoury and 

Hobeika, 2007; Sarhan and Yasser, 2008). El-Khoury and Hobeika (2007) studied the effects of 

incorporating uncertainty into passing sight distance requirements. They devised a Monte-Carlo 
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simulation which obtained the PSD distribution and verified their results using a closed form 

analytical method. They calibrated the PSD requirements for three different models: AASHTO, 

enhanced Glennon, and MUTCD. Glennon’s model was found to best depict the various 

components of a passing maneuver while AASHTO’s model overestimated the PSD 

requirements.  

Sarhan and Hassan (2008) used Monte-Carlo simulation to compute the probability of non-

compliance associated with insufficiency of sight distances. Due to the lack of data, the authors 

used a computer program to develop design parameters to calculate the profiles of sight distances 

in two and three dimensional projections. They investigated various highway alignments, 

horizontal curves overlapping with flat grade, crest, and sag curves. When calibrating the 

standard design values, the authors found that the probability of non-compliance was very 

conservative.  

In subsequent work, Sarhan and Hassan (2009) investigated the effect of vertical curvature on 

the available sight distance of horizontal curves; they proposed a reliability-based method to 

calculate the probability of “hazard” (i.e., non-compliance). They used reliability analysis to 

compute the minimum offset using the probability of non-compliance. Their methodology 

considers three-dimensional alignments to account for vertical curvature and to study their 

influence on the sight distance requirement. They devised design aids to demonstrate the 

applicability of their approach.  
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Ismail and Sayed (2009) proposed a general framework for calibrating geometric design codes to 

yield outputs with consistent    . In theory, a design output/requirement for a geometric feature 

should correspond to a probability of non-compliance; however, currently the values of     are 

inconsistent. They proposed a method to determine a target value for design safety by presenting 

an application of the calibration framework to the standard design model of crest vertical curves. 

Evaluating the quality of design of a representative group of existing sites would yield a 

target/acceptable risk level which can be calculated as the average of specific percentage of the 

representative group with acceptable and cost-effective safety level.  

De Solminihac et al. (2007) noted that the deterministic geometric characteristics are selected 

based on a uniform behavior of drivers and surface pavement conditions. They devised a 

methodology which estimates a reliability index using the Hasofer-Lind method to design 

horizontal curves for low-volume roads by accounting for the variability in the design 

components. Their method accounts for the variability in skid resistance, pavement texture, 

driver behavior and geometric design elements.  

2.2 Safety Performance Functions (SPFs) 

Analysts and researchers relate safety of a location (i.e., intersection, segment) to the frequency 

and severity of collisions occurring on the location. Therefore, mathematical forms were devised 

to investigate the effect of traffic and geometric characteristics on the frequency of collisions and 

they were referred to as Collision Prediction Models (CPMs). Since the term CPM might 

indicate that the model is used only for prediction purposes, which is not always the case, these 
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models have been recently referred to as Safety Performance Functions (SPFs). There are two 

reasons why these functions are important. For existing facilities, the models provide an estimate 

of the collisions frequency due to any treatments carried out on it. For planned facilities, it serves 

as a tool to estimate the predicted collision frequency on a planned facility (Shen, 2007).  

SPFs provide estimates of expected collision frequency as a function of traffic volume and 

roadway geometries. Hadayeghi (2009) presented the following generic form for SPFs: 

             (2.23) 

where 

     = expected number of collisions per a specific unit of time 

  = vector of coefficients of individual covariates 

  = matrix of individual covariates 

Equation (2.23) is used to predict the collision frequency per unit of time as a function of other 

independent variables or covariates which may include the Average Annual Daily Traffic 

(AADT), segment length and lane configurations.  

The main objective of the analysis is to estimate the vector of coefficients  . Several methods 

were developed in an effort to obtain these estimates, which depend on the choice of the 

regression technique. Normal linear regression models were used first, but were heavily 

criticized by researchers since collisions are discrete, non-negative and rare events which cannot 
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be modeled using linear regression methods (Jovanis and Chang, 1986; Hauer et al., 1988; 

Miaou and Lum, 1993). Accordingly, generalized linear regression modeling is currently used by 

researchers and analysts as the state-of-the-practice technique to develop SPFs. The next sections 

provide an overview of the different types of regression models associated with various 

probability distributions for collision frequency including the Poisson, Poisson-Gamma and 

Poisson-Lognormal. 

2.2.1 Regression Models 

2.2.1.1 Poisson Regression Model 

It is generally accepted by researchers that the use of a Poisson process to model collisions is the 

optimum method as it recognizes that collisions are random, discrete, non-negative and sporadic 

events (Hauer, 1988; Lord et al., 2005). As such, it was the first, away from the normal 

distribution, used to model collisions. If    denotes the number of collisions at site i (i =1,…,n) it 

is assumed that collisions at the n sites are independent and that:  

                    (2.24) 

Thus, the probability of a site having    collisions is given by 

                   
        (2.25)  

where    is a Poisson parameter related to site-specific attributes (i.e., exposure, traffic and 

geometric characteristics) expressed as (Miaou and Lord, 2003) 
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               (2.26) 

where    is a vector representing the variables having an influence on collisions and   is a vector 

of the regression coefficients estimated for the data. The unique attribute of a Poisson model is 

that the mean and variance are equal 

                  (2.27) 

The main advantage of using a Poisson model lies in the ease of calculating its error structure. 

However, Equation (2.27) also represents a limitation. Studies have shown that most accident 

data tend to be over dispersed (i.e., variance is greater than the mean) therefore making the 

Poisson less likely to adequately represent the actual collision characteristics (Kulmala and 

Roine, 1988; Kulmala, 1995; Cameron and Trivedi, 1998; Winkelmann, 2003).  

Sources of over-dispersion are attributed to several reasons (Miaou and Lum, 1993): (1) CPM do 

not generally include all variables explaining the reason behind collision occurrence, (2) 

presence of uncertainties in vehicle exposure data and traffic variables, and (3) non-homogeneity 

of roadway environment conditions such as lighting, weather and traffic conditions. To account 

for the over-dispersion in the collision data, current practice utilizes the Poisson-Gamma or 

Poisson-Lognormal distributions.  

2.2.1.2 Poisson-Gamma Model 

Researchers have introduced the Poisson-Gamma, which leads to the Negative Binomial (NB) 

regression model. The NB model is an extension of the Poisson model that accommodates over-

dispersion.  
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               (2.28) 

where              , and         is a multiplicative random effect. The negative binomial 

model is obtained under the assumption that 

                      (2.29) 

where   is the inverse of dispersion parameter. The probability density function of the negative 

binomial model is given by 

              
       

       
 

 

    
 
 

 
  

    
 
  

   (2.30) 

The mean and variance of NB are given by 

                                         
     (2.31) 

2.2.1.3 Poisson-Lognormal Model 

The Poisson-Lognormal (PLN) model is another alternative to the Poisson model and several 

researchers (Miaou et al., 2003; Lord and Miranda-Moreno, 2008; Aquero-Valverde and Jovanis, 

2008; El-Basyouny and Sayed, 2009a, b, c, 2010a, b, c) have advocated this model for its ability 

to address over-dispersion. Under PLN, the multiplicative random effect is assumed to follow the 

lognormal distribution 
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     or               
             

     (2.32) 

where   
  represents the extra Poisson variance. If the dataset contains outliers, the PLN model 

is a suitable choice for modeling collision occurrence as its tails are asymptotically heavier than 

those of the Gamma distribution (Kim et al., 2002; Lord and Miranda-Moreno, 2008). The mean 

and variance of PLN are given by 

                  
                                 

        
       (2.33) 

Unlike NB, the PLN model requires more computation and does not admit a closed form 

posterior distribution. Therefore, it has not been adopted as frequently as the other models even 

though it offers more flexibility than the NB model.  

2.2.1.4 Enhanced Regression Models 

There are other various techniques developed to improve the prediction power of SPFs. They are 

explained below but it is beyond the scope of this research to provide detailed statistical 

explanation for each of the models.  

Zero-inflated Regression Models 

Collision data can include a high proportion of zero counts which are more prevalent in rural 

areas. This is problematic when the observed zero counts outnumber the zero counts tolerated by 

Poisson models. Datasets which include high number of locations with zero collisions are 

characterized by having a low sample mean (Miranda-Moreno, 2006). Zero-inflated (ZIP) and 

Zero-inflated Negative Binomial (ZINB) probability models have been developed to circumvent 
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that phenomenon. The ZIP model counts are generated from two sources: (1) zero-state: the 

proportion of zeros not part of the Poisson distribution, and (2) a usual random process following 

a Poisson distribution. ZINB is claimed to be more flexible than ZIP as it handles over-

dispersion as well as large proportions of zeros. The issue of excessive zero counts is discussed 

by Lord et al. (2005) and several alternatives were suggested for handling such a problem.  

Variable Variance Models 

Recent work on traffic safety modeling challenged the assumption that the dispersion parameter 

should be fixed (Heydecker and Wu, 2001; Miaou and Lord, 2003; Miranda-Moreno et al, 2005; 

El-Basyouny and Sayed, 2006). The approach is an extension of the traditional NB and PLN 

models where the dispersion parameter (or rather its inverse) is allowed to vary according to 

some traffic, geometric and/or environmental-related covariates; thereby increasing the 

flexibility of the model and improving the accuracy of the resulting estimators.  

For more information regarding other models including: random parameters, random effects and 

multivariate models, a more comprehensive review is available in El-Basyouny and Sayed 

(2011).  

2.2.2 Development of SPFs  

Most SPFs were developed using NB regression (Kulmala, 1995; Maher and Summersgill, 1996; 

Hauer, 1997; Sawalha and Sayed, 2001). In addition, procedures for NB model building and 

outliers’ analysis were developed by Sawalha and Sayed (2006).  
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For road segments the mean   is related to various site-specific traffic, geometric and 

environmental variables by means of the following link function  

                                   
 
     (2.34) 

where the segment length (L) is an offset variable; V is the annual average daily traffic (AADT); 

xj is any of m variables additional to L and V; a0,a1,bj are model parameters. 

Two measures are usually used to assess the goodness of fit of NB models, these are: the Scaled 

Deviance (SD) and the Pearson χ
2 

statistic. McCullagh and Nelder (1998) have shown that the 

scaled deviance for NB is given by 

           
  

  
           

    

    
   

      (2.35) 

The Pearson χ
2
 is defined as 

            
       

 

     
   

 
      (2.36) 

The scaled deviance and the Pearson χ
2
 are asymptotically χ

2
 distributed with n–p degrees of 

freedom where p is the number of model’s parameters (Aitkin et al., 1989).  

2.2.3 Parameter Estimation Methods 

There are two common methods used to calibrate the parameters of SPFs, namely: Empirical 

Bayes (EB) and the full Bayes (FB) approach. The main difference between these two models is 

the way in which the prior parameters are determined. In the EB approach, the parameters are 
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estimated using the Maximum Likelihood estimation technique. In the FB approach, the 

parameters are assumed to have hyper-priors giving rise to hierarchical models. If prior 

information is available, it should be used to formulate informative hyper-priors. If not, vague 

(i.e., uninformative) hyper-priors are used. Those priors are flat (uniformly distributed) meaning 

that every possible value of the parameter is equally likely to occur.  

For NB models, the parameters μ and κ can be estimated using the Maximum Likelihood method 

to obtain the EB predicted collisions. The estimates of the parameters of Generalized Linear 

Models (GLMs) can be obtained via such commercially available statistical software as GLIM 

(Francis et al., 1993), GENSTAT (Lane et al., 1988) and GENMOD (SAS Institute Inc., 2002-

2003). In contrast, hyper-priors               have to be specified for μ and κ under the FB 

approach in order to obtain the likelihood function                              
 
   . The 

FB predicted collisions are the posterior means of μ. The posterior means of the parameters can 

be obtained using readily (free) available software such as WinBUGS (Lunn et al, 2002).  

2.2.4 SPFs in Road Design 

The first models that were developed to investigate the effect of geometric elements on collisions 

were conventional linear regression models. Several studies (Jovanis and Chang, 1986; 

Saccomanno and Buyco, 1988; Miao and Lum, 1993) demonstrated that these models were 

inappropriate and that the inferences drawn from these models were erroneous due to the lack of 

distributional property to adequately describe the random and discrete vehicle accident events on 

the road (Miao, 1994; Lee et al. 2005).  
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Consequently, conventional linear regression models were replaced by Possion and NB models 

to model collision frequency (Maycock and Hall, 1984; Joshua and Garber, 1990; Miaou et al. 

1991; Miaou et al., 1992; Shankar et al. 1995; Milton and Mannering 1998). More detailed 

studies investigated developing zero-inflated probability processes such as ZIP and ZINB 

regression models (Miaou 1994; Shankar et al. 1997) to account for the possibility of zero-

inflated counting processes.  

Miaou et al. (1992) investigated the presence of a relationship between truck accidents and 

highway geometric design by developing a Poisson regression model. The traffic volume, 

horizontal curvature and vertical grade were found to be significantly correlated with collisions 

while the shoulder width was less correlated in comparison.  

Hadi et al. (1995) developed negative binomial regression models to calibrate safety effects of 

cross-section design elements on total, fatal and injury collisions. The results showed that, 

depending on the highway type, increasing lane width, median width, inner shoulder width 

and/or outer shoulder width are effective in reducing collisions.  They investigated the effect of 

median type on collisions and found that flushed and unpaved medians were the safest.  

Wang et al. (1998) investigated the effects of variables such as traffic volume, functional 

highway classification, intersection type and cross-section elements (e.g. outer shoulder width, 

median width/type) on the frequency of collisions on rural, multi-lane and non-freeway roads. A 

Poisson regression model was developed and the results suggested that predicted collisions 
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increased with increasing exposure measures and number of driveways and intersections. 

Frequency of collisions decreased with increasing outer shoulder widths and median widths.  

Park et al. (2005) attempted to quantify safety effects of geometric design elements for highway 

facilities. They studied the safety effects of ramp density and horizontal curves on freeways. 

They used negative binomial regression models to estimate the effect of the individual variables 

on the crashes and found that the Average Daily Traffic, on-ramp density, degree of curvature, 

median width, inside shoulder, number of lanes and highway classification to be statistically 

significant. Using the modeling results, they developed Collision Modification Factors (CMFs) 

for on-ramp density and horizontal curves for safety prediction on freeways.  

Ozbay et al. (2009) compared the safety of various roadway design elements on urban collectors 

with access. After conducting before and after analysis the authors found that improvements in 

vertical and horizontal alignment resulted in the highest reduction in the collisions. A study 

conducted by FHWA (2009) examined the effects of various cross-section related design 

elements on collision frequency and developed a collision prediction model for rural, multilane 

and non-freeway highways.  

Rengarasu et al. (2009) proposed a new method to address the effect of geometric and cross-

section features on the frequency of collisions. Traffic collisions occur as a result of a 

combination of roadway conditions, driver behavior and the vehicle. The degree to which each 

factor affects the occurrence of a collision is unknown and instead of including the variables 

independently in the model, the authors investigated the effect of combining the variables using 
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decision trees. The combination of the models was created using chi-square automatic interaction 

detection algorithm. Combining the variables together showed a significant effect on the 

frequency of collisions. Moreover, the effect of road geometry and cross section variables on 

collisions differed under combinations of the other variables.  

Noteworthy is that most of the safety performance functions present in the literature are related 

to 2D alignments, Easa and You (2009) presented a safety performance function for 3D 

alignments of two-lane rural highways. They developed five statistical models depending on the 

combination between horizontal and vertical alignments. For each of those combinations, the 

authors explored various statistical techniques: Poisson, NB, ZIP, ZINB and validated their data. 

The authors found the degree of curvature, roadway width (lane and shoulder widths), access 

density, AADT, and grade value to be the most significant predictors of collisions on horizontal 

curves. 

2.3 Summary 

In 1972, Lovelace stated that: “the times of straightforward structural design, when the structural 

engineer could afford to be fully ignorant of probabilistic approaches to analysis are definitely 

over”. This is a testament to how important and valuable probabilistic methods are at providing 

designers and analysts a new method to improve safety of roadway segments. This chapter 

provided an overview of reliability theory, the methods by which reliability analysis could be 

carried out as well as a review of the studies incorporating reliability analysis in geometric road 
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design. Safety Performance Functions were introduced and an overview of the various regression 

modeling techniques was presented.   
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3 Developing SPFs Incorporating Risk Measures  

The objective of this Chapter is twofold: to propose a method to quantify risk using state-of-the-

art reliability analysis and to represent this information in a safety performance function to assess 

the effect of variability in geometric design features on the safety of roadway segments.  

3.1 Background 

In the past, SPFs and CMFs were developed and used in order to evaluate the safety of a design 

scenario; however, in some situations it is difficult to develop these models for specific features 

(i.e., narrow medians). Another shortcoming of SPFs and CMFs is the lack of data available for 

analysts to isolate the impact of a single design element on collision frequency. In those cases, 

reliability analysis is used to evaluate the risk associated with a design element (i.e., horizontal 

curvature). Reliability analysis is not intended to replace SPFs but rather, it complements SPFs 

by representing risk using a parameter such as Pnc (Richl and Sayed, 2006). This Chapter 

introduces a methodology by which a measure of reliability is represented in a safety 

performance function. 

3.2 Limit-State Function 

Horizontal curves of a roadway facility pose a challenge to designers as obstructions can cause 

drivers to not have a clear line of sight, unlike straight road sections, where drivers have a clear 

line of sight. The obstruction could be due to natural terrain within the curve (e.g., trees, cliffs) or 
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to infrastructures on the side of the road (e.g., barriers, buildings). If placed too closely to the 

road, they block the driver’s view of the upcoming road and places drivers at a disadvantage for 

a certain portion of the road. Some countermeasures to alleviate the risk of limited sight distance 

include reducing the design speed, preventing overtaking and in some instances changing the 

alignment of the road to discourage aggressive driver behavior.    

Design requirements necessitate that the length of a highway ahead that is visible to a driver 

should be adequate to recognize an object in the driver’s path and stop before hitting this object. 

Accordingly, the stopping sight distance is the main focus of the design of horizontal curves. For 

the present application, the limit state function is defined in terms of 

g = ASD – SSD    (3.1) 

where ASD is the Available Sight Distance, SSD is the Stopping Sight Distance and non-

compliance occurs when ASD is less than SSD (g < 0).  

3.2.1 Available Sight Distance 

ASD is the portion of the road currently available to the driver. For horizontal curves, the ASD 

(i.e., the supply variable) is calculated as follows: 

               
     

 
             

 
    (3.2) 

where  

R  = horizontal curve radius (m), 
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wlane = lane width (m), and 

wcleearnace = width of the lateral clearance (m). 

In this research, all of these variables are considered deterministic with one value of ASD for 

each of the horizontal curves in the dataset. The lateral clearance is computed based on Ismail 

and Sayed (2010). The restrictive element for the present study was the presence of a median 

barrier or side barrier (or both). The lateral clearance is dependent on the type of the curve (right 

hand or left hand side) and the direction of travel. When the road side barrier is the restrictive 

element, the lateral clearance is the shoulder width minus half the width of the concrete barrier. 

If the restrictive element is the median barrier, the lateral clearance is half the median width 

minus half the width of the concrete median barrier. Figure 3.1 shows a typical cross-section of a 

right-hand-side horizontal curve. For the Eastbound direction, the restrictive element is the 

concrete road-side barrier; the lateral clearance is the outer shoulder width. For the Westbound 

direction it is the median barrier and the lateral clearance would be the inner shoulder width.  



52 

 

Figure 3.1 Lateral clearance for a cross-section 

 

3.2.2  Stopping Sight Distance 

The SSD is the total distance a vehicle travels from the time the driver sees an obstruction on the 

road ahead and comes to a complete and safe stop. It consists of the brake reaction distance and 

the braking distance. The former being the distance traveled from the moment the driver sees an 

obstruction on the road ahead to the moment before the brakes are applied. The braking distance 

is the distance the vehicle travels until it comes to a complete stop.  

The SSD (i.e., the demand variable) is computed as follows 

               
  

    
 

    
     

 (3.3) 

where  
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   =  the operating speed (km/h),  

PRT  =  the perception reaction time (s),  

a  = the deceleration rate (m/s
2
), and  

   = t he longitudinal grade (%). 

3.3 Data Description 

The present dataset comprises geometric design features, collision data, and traffic volume data 

for the Trans-Canada Highway (referred to as Highway 1). These data were obtained from the 

BC Ministry of Transportation. The geometric design data were extracted from drawings 

prepared by the Ministry which present data in strip maps with corresponding aerial photographs. 

The collision data (frequency and locations) occurred from January 1991 to December 1995. 

This data were collected for a total of 100 segments of horizontal curves some of which had a 

limited sight distance due to the presence of median barriers or side concrete barriers on the road.  

The dataset contained various variables, namely, aggregated (over 5 years) collisions by severity, 

AADT, radius and length of the horizontal curve, lane and shoulder widths, superelevation and 

grade. Table 3.1 provides some basic statistics for the relevant data used in the reliability 

analysis as well as in developing the NB models.  
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Table 3.1 Statistical summary of data set (100 horizontal curves) 

Description MIN MAX MEAN STDEV 

I+F Collisions/5yrs 0 26 1.81 3.80 

PDO Collisions/5yrs 0 29 2.45 5.25 

Total Collisions/5yrs 0 55 4.26 8.65 

AADT (veh/day) 36104 202320 60525 34016 

Radius (m) 130 900 556 376 

Length (m) 100 920 288.12 171.95 

Lane width (m) 3.6 4.5 3.67 0.10 

Shoulder width (m) 0.5 2.5 1.79 0.51 

Superelevation (m/m) 0 0.09 0.04 0.03 

Grade (%) -6.3 7.0 -0.08 2.33 

3.4 Data Distributions 

The ASD given in Equation (3.2) is deterministic. On the other hand, the SSD given in Equation 

(3.3) involves both deterministic (grade) as well as random (operating speed,  , perception 

reaction time, PRT, and deceleration rate, a) variables. In order to conduct the reliability 

analysis, the distributions shown in Table 3.2 were assumed.  

Table 3.2 The probability distributions for the random input parameters 

Parameter Mean Standard Deviation Distribution Reference 

   See below See below Normal Richl and Sayed (2006) 

PRT 1.5 s 0.40 s Lognormal Lerner (1995) 

  4.2m /s
2
 0.60 m/s

2
 Normal Fambro et al. (1997) 
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For horizontal curves, the probability distribution of the speed is assumed to be normal which is 

the norm in the literature.  

Table 3.3 shows the models used to compute the operating speed. Due to lack of data, the mean 

of the speed was taken as the average of the speed computed using the speed prediction models 

and the standard deviation was computed from the variation between those models. For each 

horizontal curve, there was a corresponding mean and standard deviation of the operating speed 

computed from the eleven models.  

The variables used in the speed prediction models are: R the radius of the curve in m; LC the 

length of the horizontal curve in m; I the deflection angle of the horizontal curve in degrees and e 

the superelevation rate in m/m. 

Table 3.3 Prediction models for operating speed 

Model Equation R
2 

Reference 

V85 = 94.398 – 3188.656/R 0.79 Lamm et al. (1988) 

V85 = 95.594 – 1.597DC , where DC = 1746.38/R 0.79 Lamm et al. (1999) 

V85 = exp(4.561 – 0.0058D), where D = 5729.58/R 0.63 Morrall and Talarico (1994) 

V85 = 102.45 – 0.0037LC-(8995+5.73LC)/R N/A TAC (1999) 

V85 = 103.66 – 1.95DC 0.80 Ottesen and Krammes (2000) 

V85 = 102.44 – 1.57DC + 0.012LC – 0.01DC x LC 0.81 Ottesen and Krammes (2000) 

V85 = 99.61 – 2951.37/R + 0.014LC – 0.131I + 71.82e 0.84 Voight (1996) 

V85 = 129.88 – 623.10/R
1/2 

0.78 Kanellaidis et al. (1990) 

V85 = 95.41 – 1.48DC – 0.012DC
2
 0.99 Islam and Seneviratne (1994) 

V85 = 103.03 – 2.41DC – 0.029DC
2
 0.98 Islam and Seneviratne (1994) 

V85 = 96.11 – 107DC 0.90 Islam and Seneviratne (1994) 
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3.5 Quantifying the Risk of Design Non-Compliance 

Since the design surface corresponding to the limit state function (3.1), along with (3.2)-(3.3), is 

not too “non-linear” FORM is the most suitable approximation approach, as indicated in Section 

2.1.4. Thus, for risk quantification, the FORM analysis was performed using the Rt software (Rt, 

2010). The distribution of the 100 road segments by Pnc is shown in Figure 3.2. In particular, 

both the median (0.46) and the mean (0.47) are close but rather high. The 85
th

 percentile is also 

high (0.88). Thus, about 50% of the curves have Pnc values larger than 0.46, whereas 15% have 

values larger than 0.88.  

Figure 3.2 The cumulative distribution of horizontal curves by Pnc  
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The radius of the horizontal curve and the operating speed are two of the main inputs in the 

calculation of the Pnc. The nature of the relationship between Pnc on one hand and the 

corresponding radius of the horizontal curve and operating speed (computed from the models in 

Richl & Sayed, 2006) on the other hand was further investigated. It is apparent from Figure 3.3 

that there is an inverse relationship between Pnc and the radius; as the radius of the horizontal 

curve increases, the Pnc decreases. In contrast, Figure 3.4 displays a positive relationship between 

Pnc and the operating speed; at higher speeds the Pnc increases as the drivers would find it more 

difficult to negotiate the curve. The Pnc increases sharply as the speed increases to 85 km/h but 

increases steadily at higher speeds. 

Figure 3.3 A scatter plot of Pnc vs. radius  
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Figure 3.4 A scatter plot of Pnc vs. operating Speed 

 

For each curve there is a specific value for the ASD and a corresponding value of Pnc. A Monte-

Carlo simulation study was carried out to investigate and validate the relationship between ASD 

and SSD without adding the reliability component. Thus, random samples were generated from 

the probability density functions defined in Table 3.2. Twenty thousand runs were performed. In 

each run, the model samples a different value for each random variable and calculates the SSD. 

Figure 3.5 shows a sample of the results of the Monte-Carlo simulation for one of the horizontal 

curves; the remaining curves showed similar trends. For the majority of horizontal curves, ASD 

appears at the left-end (far below the mean) of the SSD distribution signaling a serious design 

problem. The results show that 80% of the horizontal curves have SSD that exceeded the ASD 

values which is in agreement with the Pnc distribution shown in Figure 3.2. 
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Figure 3.5 Monte-carlo simulation results 

 

3.6 Safety Performance Functions Incorporating Pnc 

Current practice can be inept as shown in Figure 3.5 where the drivers’ demand (SSD) exceeds 

the supply (ASD) provided by current design guidelines. This justifies the need to model the 

relationship between a reliability component (capturing the uncertainty in random design inputs) 
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and collision frequency. Such models (usually denoted “probabilistic” models) are compared 

with traditional “deterministic” models in terms of performance and goodness of fit. 

To this end, two groups of NB models, with and without reliability component (Pnc), were 

developed using the same dataset. For both groups, several NB models were evaluated. The 

forward and backward approaches for stepwise-selection were used to identify the variables that 

significantly affected the frequency of collisions. All of the variables extracted from the dataset 

for this case study along with Pnc were included in the NB SPFs (2.34) for both severity levels 

and total collisions. The maximum likelihood method was used to estimate the parameters of the 

NB models. Different Goodness of Fit statistics, as described earlier, were used to assess the 

models’ adequacy. PROC GENMOD of SAS was utilized for the estimation of models’ 

parameters and goodness-of-fit measures (SAS Institute, 2002-2003). 

For NB models including the reliability component, the t-statistics for all variables were 

insignificant at the 5% level of significance except for Pnc. The reason behind this is that almost 

all of the other variables were included in estimating Pnc and adding them to the models would 

bring no additional value. The selected model was then screened for outliers using the 

methodology described in Sawalha and Sayed (2006). Accordingly, one road segment was 

removed from the data set for the Total (tot), three for I+F (injury and fatality) and two for PDO 

(Property Damage Only).  

The NB collision prediction models incorporating the probability of non-compliance Pnc are as 

follows  
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                               (3.4) 

                                 (3.5) 

                                (3.6)  

The estimates, standard errors and t-ratios for the coefficients of the remaining are shown in 

Table 3.4. The regression coefficients of the logarithms of traffic volumes are all slightly less 

than 1, significant and positive (as expected) indicating a positive relationship between predicted 

collisions and AADT. Similarly, there is a significant positive relationship between predicted 

collisions and Pnc. Thus a change of 0.1 in Pnc corresponds to a relative change in predicted 

collisions of 0.15 for tot, 0.10 for I+F and 0.18 for PDO. Also, the significance of κ implies the 

existence of over-dispersion in the data set; thereby justifying the use of the NB Models. 

Table 3.4 Estimates, standard errors (SE) and t-ratios for NB models incorporating Pnc 

Parameter 
Total I+F PDO 

Est. SE t Est. SE t Est. SE T 

ln(a0) -14.931 4.56 -3.28 -15.624 4.36 -3.58 -16.516 5.51 -3.00 

ln(AADT) 0.895 0.41 2.19 0.900 0.39 2.29 0.974 0.49 1.98 

Pnc 1.461 0.62 2.37 1.012 0.57 1.77 1.793 0.76 2.38 

1   2.920 0.60 4.90 2.360 0.64 3.62 3.911 0.94 4.17 

Figure 3.6 shows the relationship between predicted collisions and Pnc for a road segment with 

average exposure (length = 288.12 m and AADT = 60525 veh/day). The three curves show an 

increase of predicted collisions with Pnc. Yet, there is a sharper increase for PDO collisions than 
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I+F collisions. This may be explained by the fact that collisions related to restricted sight 

distance are likely to be less severe.  In fact, both I+F and total predicted collisions have almost 

doubled as Pnc increases from 0.1 to 0.5.   

Figure 3.6 The relationship between predicted collisions and Pnc 

 

The values for the Scaled Deviance and Pearson χ
2
 goodness-of-fit measures for the NB models 

incorporating Pnc are given in Table 3.5. The associated p-values are rather high indicating that 

these models provide good fits for both severity levels as well as the total predicted collisions.  
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Table 3.5 Goodness-of-fit tests for NB models incorporating Pnc  

 Severity DF SD p-value χ2 p-value 

Total 95 91.660 0.578 83.269 0.800 

I+F 93 81.117 0.806 88.001 0.627 

PDO 94 74.612 0.930 81.867 0.810 

Alternative NB collision prediction models incorporating other geometric variables (without Pnc) 

were considered, where the SPFs are given by (2.34). The models are as follows: 

                                                              (3.7) 

                                                              (3.8) 

                                                             (3.9) 

The estimates, standard errors and t-ratios for the NB models without Pnc are shown in Table 3.6. 

Again, the regression coefficients of the logarithms of traffic volumes are significant and positive 

indicating a positive relationship between predicted collisions and AADT. There is a significant 

negative relationship between predicted collisions and radius except for I+F. Similarly, there is a 

significant negative relationship between the predicted collisions and superelevation. Thus, as 

the radius and/or superelevation increase, the curve becomes less disturbing making it easier 

(safer) for the driver to negotiate it. Also, the significance of κ confirms the existence of over-

dispersion in the dataset.  
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Table 3.6 Estimates, standard errors (SE) and t-ratios for NB models without Pnc 

Parameter 
Total I+F PDO 

Est SE t Est SE t Est SE T 

ln(a0) -16.108 4.30 -3.74 -18.863 4.01 -4.71 -17.251 4.47 -3.85 

ln(AADT) 1.458 0.41 3.55 1.428 0.36 3.95 1.535 0.43 3.56 

ln(radius) -0.602 0.24 -2.47 -0.312 0.24 -1.32 -0.631 0.28 -2.22 

Superelevation -23.970 6.03 -3.98 -12.327 5.77 -2.13 -31.451 7.09 -4.44 

1   1.945 0.45 4.31 1.363 0.47 2.88 2.101 0.62 3.36 

To compare the two sets of models (with and without Pnc), the likelihood ratio test (LRT) was 

carried out with the results presented in Table 3.7. The LRT is based on the difference in the 

scaled deviance SD, which is asymptotically distributed as a chi-square with one degree of 

freedom (DF). From the p-values in Table 3.7, it is apparent that the models incorporating Pnc 

outperforms the models without Pnc at the 10% level of significance for the total predicted 

collisions and at the 5% level of significance for both I+F and PDO predicted collisions.  

Table 3.7 Testing NB models incorporating Pnc vs. models without Pnc 

Severity DF LRT p-value 

Total 1 2.936 0.087 

I+F 1 3.858 0.049 

PDO 1 4.134 0.042 
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3.7 Summary 

This chapter investigated the effect of incorporating the Pnc ; the outcome of reliability analysis, 

into SPFs. The results showed that the inclusion of a risk parameter (Pnc) representing the 

randomness in the input parameters has generated a better “probabilistic” NB model 

outperforming the traditional “deterministic NB model. Although this analysis was applied to 

horizontal curves with restricted sight distance, it can be applied to any other geometric element 

that needs further development.  

Conventional SPFs disregard the spatial correlation between nearby segments as a possible 

contributor to the occurrence of collisions. Spatial analysis is introduced in the following chapter 

to deal with the evident spatial nature of road collisions. 
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4 Spatial Analysis and Pnc 

The parameter estimates in the NB models incorporating Pnc are likely biased due to omitted 

variables that are correlated with Pnc.  Accordingly, the effect of Pnc might be overstated (or 

understated, depending on the type of correlation with the omitted variables), because it is also 

capturing the effect of such omitted variables. It has been argued that spatial dependence can be 

a surrogate for unknown and relevant covariates, thereby improving model estimation (Congdon, 

2006). Hence, spatial analysis is proposed in this Chapter in an attempt to overcome the omitted 

variables bias. 

To investigate the effects of incorporating spatial effects in SPFs, an Extended Multiple 

Membership (EMM) spatial model is developed. Such a spatial model pools information from 

neighboring sites to improve model estimation. The models under study are developed in a Full 

Bayes (FB) context via the Markov Chain Monte Carlo (MCMC) simulation techniques using a 

dataset composed of 257 horizontal segments along the TransCanada Highway in British 

Columbia. The new data set was obtained by including more horizontal curves that precede 

and/or follow each horizontal curve in the previous data set in order to establish the spatial 

relationships. 

4.1 Background 

There are three variations which affect the distribution of collisions and should thereby be 

considered in the development of SPFs: (i) Poission variation; (ii) heterogeneity (extra-variation) 
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and (iii) spatial effects. The literature has been dedicated to development of SPFs to account of 

Poisson variation and Poisson extra-variation, which stems from within-site effects reflecting its 

individual characteristics. Since neighboring sites typically have similar environmental and 

geographic characteristics, they thereby form a cluster that has similar collision occurrence 

which is represented by spatial effects. It has been established that: (1) spatial dependence can be 

a surrogate for unknown and relevant covariates (thereby improving model estimation), and (2) 

ignoring spatial dependence leads to underestimation of variability (Congdon, 2006). Despite 

these advantages, the development of SPFs which account for spatial effects has been only 

recently gaining attention in the literature. 

Spatial patterns in Honolulu motor vehicle collisions were considered by Levine et al. (1995a,b). 

They argued using a spatial lag model that attention should be focused on characteristics of 

neighborhoods and areas, and not just on road systems. A network variant of spatial 

autocorrelation analysis and Moran's I statistic were used by Black and Thomas (1998) to assess 

the extent to which the value of a variable on a given segment of a network influences values of 

that variable on contiguous segments. Certain statistical analysis techniques for spatial data 

(including quadrant, nearest-neighbor methods and K-function) were assessed by Nicholson 

(1999) and the nearest neighbor method was found to be the most powerful and robust technique. 

Conditional Auto-Regressive (CAR) models were used to model the spatial correlation in 

collision data (Miaou et al., 2003; MacNab, 2004; Miaou and Song, 2005; Aguero-Valverde and 

Jovanis, 2008; El-Basyouny and Sayed, 2009c). A hierarchical Bayes CAR model was adopted 

by Miaou et al. (2003) to build model-based risk maps for area-based traffic collisions using 
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county-level vehicle collision records. Then, a multivariate CAR model was considered by 

Miaou and Song (2005) within a Bayesian framework. The results showed that the inclusion of a 

spatial component in the collision prediction model significantly improved the overall goodness 

of fit performance of the model and affected the site-ranking results. MacNab (2004) used 

hospital data on the frequency and severity of collisions for 83 local health areas in British 

Columbia (BC) to demonstrate how spatial (CAR) Bayesian modeling techniques could be 

implemented to assess potential risk factors measured at group (area) level. The proposed unified 

modeling framework enables thorough investigations into associations between injury rates and 

regional characteristics, residual variation and spatial autocorrelation. A FB hierarchical 

approach with CAR effects for the spatial correlation terms was adopted by Aguero-Valverde 

and Jovanis (2008) for the analysis of road collision frequency at the segment level. It was found 

that the models with spatial correlation showed significantly better fit to the data than the 

Poisson Lognormal (PLN) model. Moreover, spatial correlation seems to have a potential for 

reducing the bias associated with model misspecification. 

The combined impacts of temporal and spatial correlations on collisions were considered by 

Aguero-Valverde and Jovanis, 2006; Wang and Abdel-Aty, 2006). The former authors compared 

FB hierarchical models (including the combined effects) to NB models. The results showed that 

spatial correlation, time trend, and space–time interactions were significant in the FB injury 

collision models. The generalized estimating equations technique with the negative binomial link 

function was used by Wang and Abdel-Aty (2006) for temporal and spatial analyses of rear-end 

collisions at signalized intersections. High spatial correlations were found between the 
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intersections for rear-end collisions and certain intersection-related variables were significantly 

influencing rear-end collision occurrences. Further, the introduction of spatial correlation has 

resulted in noticeable changes in the estimates of several regression coefficients, indicating 

possible model misspecification under NB. 

Multiple Membership (MM) models (Goldstien, 1995; Goldstien et al., 1998; Langford et al., 

1999) provide an alternative approach to account for spatial correlations. El-Basyouny and Sayed 

(2009c) considered a variation of the MM model (Extended MM or EMM) to study the effect of 

clustering road segments within the same corridor on spatial correlation analysis. Full Bayes 

estimation was used by means of the Markov Chain Monte Carlo methodology to estimate the 

parameters using 281 urban road segments in Vancouver, British Columbia. The fitted CAR and 

MM models demonstrated significant estimates for both heterogeneity and spatial correlation 

parameters. The best fit model was EMM followed by CAR. Furthermore, a significant portion 

of the total variability was explained by the spatial correlation. A significant correlation was also 

found between the heterogeneity and spatial effects. The results also showed that corridor 

variation was a major component of total variability and that the spatial effects have been 

considerably alleviated by clustering segments within the same corridor. 

4.2 Spatial Poisson Models 

Let Y i  denote the number of collisions at site i (i =1,…,n). It is assumed that collisions at the n 

sites are independent and that 
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                    (4.1) 

Over-dispersion due to unobserved or unmeasured heterogeneity is addressed by assuming that  

                   (4.2) 

where    is determined by a set of covariates representing site-specific attributes and a 

corresponding set of unknown regression parameters, whereas the term    represents a random 

effect (Poisson extra-variation). The PLN regression model is obtained by the assumption 

       
                

    (4.3) 

Spatial Poisson models can be defined by incorporating a spatial effect in Equation (4.2) as 

follows  

                       (4.4) 

The spatial component     suggests that sites that are closer to each other are likely to have 

common features affecting their collision occurrence. As noted by Miaou and Lord (2003), 

random variations across sites may be structured spatially due to the complexity of the traffic 

interaction around locations. Guided by the results in the literature (Nicholson, 1999; Aguero-

Valverde and Jovanis, 2008) only first-order spatial autocorrelation models were considered. 

4.2.1 Conditional Auto-Regressive (CAR) Models 

Let   ,      and     represent the number of neighbors of site i, the set of neighbors of site i and 

the set of all spatial effects except   , respectively. The CAR model is given by 
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     ,                                  ,  (4.5) 

where 
2
s  represents the spatial variance. Equation (4.5) is based on an adjacency-based 

proximity measure: wij  = 1 if sites i and j are neighboring sites and wij  = 0 otherwise. The 

conditional mean is the mean of adjacent spatial effects, while the conditional variance is 

inversely proportional to the number of neighbors.  

4.2.2 Multiple Membership (MM) Models 

An effective way to account for spatial correlation is to use MM models (Goldstein, 1995; 

Goldstein et al. 1998; Langford et al. 1999) where each site is considered a member of a higher 

level unit which contains its nearest neighbors.  

For a first-order spatial autocorrelation model, let     and     represent the random effects of site 

i and its effects on its neighbors, respectively. The spatial effect of site i is given by  

               /    . (4.6) 

To model a correlation between    and    it is assumed that 

       
                 ,                   

  
      

       
    (4.7)   

The MM models allow a direct interpretation of the model parameters, as   
  and   

   represent 

marginal variances. Furthermore, the parameter  measures the strength of the association 

between the unstructured and structured (spatial) effects.  
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4.2.3 Extended Multiple Membership (EMM) Models 

Typically, the n sites under consideration belong to K mutually exclusive clusters. In such cases, 

an additional variance component can be included in the MM model to allow for the possibility 

that different clusters have different collision risks because traffic, geometric and environmental 

conditions vary across clusters (El-Basyouny and Sayed, 2009c). 

Suppose that the i
th

 site belongs to cluster }K,...,2,1{)i(c  . The extended MM model is given 

by 

                            ,  (4.8) 

where                     
   and   

  denotes the additional variance component representing 

the variation among different clusters.  

4.3 Data Description 

The previous dataset was augmented by adding data for the preceding and subsequent segments. 

These segments could be other horizontal segments with or without sight distance restriction 

and/or tangent segments. Thus, the present data were collected for 257 horizontal curves that are 

clustered into 18 stretches for which the traffic volume was constant. The 18 stretches vary in 

size (i.e., number of segments in a stretch) from a minimum of 3 to a maximum of 54 with a 

mean of 14.28 segments per stretch. The geometric features were used to compute the probability 

of non-compliance (Pnc) via FORM. Since the premise of the limit-state function is the presence 
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of a barrier that restricts the sight distance, tangent segments and horizontal segments without 

sight distance restriction had Pnc values of 0. 

The dataset contained the following variables: length, AADT, probability of non-compliance and 

the number of collisions by severity (total, I+F, PDO). Table 4.1 provides some basic statistics 

of the relevant data used to develop the PLN and EMM models.  

 Table 4.1 Statistical summary of the entire dataset for spatial analysis of segments 

Variable MIN MAX MEAN STDEV 

Length in meters (L) 100 920 244.4 155.8 

AADT (V) 36104 87168 51112 10239 

Pnc 0 0.98 0.16 0.29 

Total collisions 0 50 2.40 5.56 

I+F collisions 0 17 1.00 2.27 

PDO collisions 0 33 1.40 3.64 

The additional data on the number and location of adjacent segments were extracted from 

drawings prepared by the Ministry of Transportation which present data in strip maps with 

corresponding aerial photographs. 

4.4 Full Bayes Methodology 

4.4.1 Prior Distributions 

Prior distributions are a main requirement to obtain full Bayes estimates as they reflect prior 

knowledge about the parameters of interest. The elicitation of priors in generalized linear models 
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and/or collision data analysis is discussed in the literature (Bedrick et al., 1996; Schluter et al., 

1997; Ibrahim and Chen, 2000; Washington and Oh, 2006 ; Miranda-Moreno et al., 2007). 

Nevertheless, the most common prior distributions are the diffused normal distributions (with 

zero mean and a large variance) for the regression parameters and Gamma (0.001, 0.001) or 

Gamma (1, 0.001) for the inverse dispersion parameters (Miaou et al., 2003; Congdon, 2006; 

Aguero-Valverde and Jovanis, 2008, El-Basyouny and Sayed, 2009c). A )m,P(Wishart  prior is 

usually assumed for the precision matrix 
1 , where P and m represent the prior guess at the 

order of magnitude of 
1  and the degrees of freedom, respectively. To represent vague prior 

knowledge, m is usually chosen to be as small as possible, i.e., 2)(  rankm  (Spiegelhalter et 

al. 2005).  

It is important to note that the selection of priors is not entirely an analytical decision. Analysts 

should seek informative (or at least semi-informative) priors reflecting their previous knowledge 

about the subject matter. If such information is absent, the above vague (diffused) priors are 

usually used to reflect the lack of information.  

In the present analysis, as no prior information is available, diffused normal distributions with 

zero mean and variance = 100
2
 were used for the regression parameters, a Gamma (0.001, 0.001) 

was used for   
    and a Wishart distribution with a 2 x 2 identity matrix (Congdon, 2006) and 

two degrees of freedom was used for 
1 . 
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4.4.2 Posterior Distributions 

The software WinBUGS 2.2.0 (windows interface of OpenBUGS) was used to sample the 

posterior distributions using MCMC techniques. MCMC methods are used to repeatedly sample 

from the joint posterior distribution. The repeated iterations are used to generate sequences of 

random points with a distribution which converges to the target posterior distribution. A sub-

sample is used to monitor this convergence to ensure that the posterior distribution has been 

“found”. The BGR (Brooks-Gelman-Rubin) statistics (Brooks and Gelman, 1998), ratios of the 

Monte Carlo errors relative to the standard deviations of the estimates, and trace plots for all 

model parameters are monitored for convergence. The (burn-in) sub-sample is then excluded 

from further analysis and the remaining iterations are used to estimate the parameters, to evaluate 

the model’s performance and to make inferences. The Deviance Information Criteria (DIC) is 

used for models’ comparisons (Spiegelhalter et al., 2005). 

4.5 Results and Discussion 

As mentioned in Section 4.3, the horizontal segments are clustered into 18 stretches for which 

the traffic volume was constant. Therefore, the product of length and AADT was used to 

represent exposure (L x V). Inclusion of this term ensures that traffic exposure is accounted for 

when estimating the safety benefits of some specific policy alternatives. 

Two models without and with spatial effects were developed, namely, PLN and EMM. Their 

posterior summaries appear in Tables 4.2 and 4.3, respectively. These estimates were obtained 
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via two chains with 20000 iterations 10000 of which were excluded as a burn-in sample using 

WinBUGS. The exposure and Pnc statistics were centered (by subtracting the respective means) 

to speed up convergence and lessen autocorrelations for the regression parameters. The BGR 

statistics were below 1.2 which confirm that convergence has occurred, the ratios of the Monte 

Carlo errors relative to the standard deviations of the estimates were below 0.05 (the ad hoc 

benchmark) and the trace plots for all model parameters indicated convergence. Table 4.2 

summarizes the parameter estimates and their associated standard errors for the total, I+F and 

PDO collisions under the PLN model. As expected, the regression parameters for exposure were 

positive and significant suggesting that an increase in traffic volume or segment length would 

lead to an increase in number of collisions. Further, the regression coefficients associated with 

the exposure terms have values larger than one, suggesting that the moderating effects of 

exposure are non-linear with increasing rates.  

The regression coefficients of Pnc were also positive for all severity levels suggesting that an 

increase Pnc would lead to an increase in number of collisions. Further, the effects of Pnc were 

significant for all severity levels confirming the conclusions in Chapter 3.   
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Table 4.2 Estimates and standard errors (SE) for PLN 

PLN 
Total I+F PDO 

Est. SE Est. SE Est. SE 

Intercept -20.96** 2.43 -20.69** 2.93 -23.77** 3.30 

ln(L x V) 1.24** 0.15 1.18** 0.17 1.36** 0.20 

Pnc 1.25** 0.49 0.90* 0.53 1.61** 0.52 

  
  3.10** 0.59 2.84** 0.65 3.51** 0.72 

DIC 646.3 472.6 496.4 

ns
 Not significant at the 0.10 level, * Significant at the 0.10 level, ** Significant at the 0.05 level. 

It should be noted also that the estimates of   
  in Table 4.2 were all high and significant 

indicating the existence of considerable Poisson extra-variation in I+F, PDO and total collisions 

justifying the use of the PLN hierarchy. 

Since each segment is a multiple member of multi-level clusters (cluster of neighbors within a 

stretch of segments), the EMM model was used for the spatial analysis, in preference to CAR, in 

order to account for the variation among neighbors as well as that among stretches. 

Table 4.3 summarizes the parameter estimates and their associated standard errors for the total, 

I+F and PDO collisions under the EMM model. The estimates of the regression coefficients 

associated with the exposure terms have changed only slightly. Hence, the exposure results under 

EMM confirm those obtained under PLN in that an increase in traffic volume or segment length 

would lead to an increase in number of collisions and that the moderating effects of exposure are 

non-linear with increasing rates.  



78 

 

Table 4.3 Estimates and standard errors (SE) for EMM 

EMM 
Total I+F PDO 

Est. SE Est. SE Est. SE 

Intercept -19.58** 2.41 -18.37** 2.92 -20.57** 2.71 

ln(L x V) 1.22** 0.15 1.15** 0.18 1.28** 0.17 

Pnc 0.85** 0.34 0.80** 0.40 1.04** 0.42 

  
  1.08** 0.26 1.24** 0.38 1.08** 0.34 

  
  0.31** 0.17 0.59** 0.35 0.48** 0.32 

 0.29 
ns

 0.25 0.62** 0.19 -0.13 
ns

 0.31 

  
  18.69** 13.71 31.21** 24.87 21.54** 14.52 

DIC 603.5 437.9 477.8 

ns
 Not significant at the 0.10 level, 

*
 Significant at the 0.10 level, 

**
 Significant at the 0.05 level. 

Although the regression coefficients of Pnc are still positive and significant for all severity levels, 

they were reduced under EMM. Thus, the overstated effects (due to omitted variables bias) of Pnc 

under PLN were sized down under EMM. The percentages of reduction were 11%, 35% and 

32%, for I+F, PDO and total collisions, respectively.  

Similarly, although the estimates of   
  were still significant indicating the existence of Poisson 

extra-variation for all severity levels, they were considerably reduced due to the EMM spatial 

specifications in the SPFs. The percentages of reduction under EMM over PLN were 56%, 69% 

and 65%, for I+F, PDO and total collisions, respectively.  

On the other hand, the significance of   
   and    

   justify the use of the EMM spatial analysis, as 

the results show that the contributions of the stretch (cluster) variation to the total variation in 
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traffic collisions (about 92%) outweighed that of the spatial variation (about 2%) for all severity 

levels. It is interesting to note that the estimates of the correlation coefficient () between the 

Poisson extra-variation and spatial variation was significant only for I+F collisions but not for 

the PDO and total collisions. That significant correlation coefficient indicates that the neighbors 

of road segments with high I+F extra-variation tend to have high I+F spatial variation as well 

and vice-versa. 

According to the DIC guidelines (Spiegelhalter et al., 2005), a comparison of the DIC values in 

Tables 4.2 and 4.3 reveals that the EMM models have outperformed the corresponding PLN 

models as there were significant reductions in DIC of 34.7, 18.6 and 42.8 for I+F, PDO and total 

collisions, respectively, which far exceed the usual benchmark of 10 (Spiegelhalter et al. (2005). 

4.6 Summary 

In this Chapter, the effects of incorporating spatial effects in SPFs were investigated. The PLN 

and EMM models were estimated in a Full Bayes context via MCMC simulation techniques 

using a dataset composed of 257 horizontal segments along the TransCanada Highway in British 

Columbia. The results of this Chapter provided a strong evidence of the significance of 

integrating spatial effects in SPFs. In the present study, the spatial analysis overcame the model 

misspecification resulting from incorporating only exposure and Pnc in the SPFs as relevant 

covariates might have been omitted. 
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The past chapters have investigated the effects of incorporating random variations on geometric 

design elements in SPFs and established the relationship between the ensuing risk-based measure 

and collisions. The next step is to provide an application of how this information could be used 

to improve safety through a proactive approach.  
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5 Cross-Section Risk Optimization 

There are only a limited number of earlier studies that focused on the optimization of highway 

design (Jha and Schonfeld, 2000; Park and Saccomanno, 2005; Ismail and Sayed, 2010). This 

Chapter presents a methodology based on that of Ismail and Sayed (2010) for selecting a suitable 

combination of cross-section elements with restricted sight distance which would minimize the 

collision rate for the entire section. This methodology will be applied to produce re-dimensioned 

cross-sections with reduced collisions and consistent risk levels.   

5.1 Background 

In a typical cross-section there are six cross-section elements of interest to the designer; the 

optimization is carried out on these elements under the assumption that the median width has 

already been selected to be of minimum allowable width and all possibilities for larger horizontal 

curve radii have been investigated. The elements being studied are: outer shoulder width, lane 

width of both traffic lanes, and inner shoulder width for the inside carriageway; and inner 

shoulder width, lane width of both traffic lanes, and outer shoulder width for the outside 

carriageway.  

Figure 5.1 shows a typical Right-Hand-Side (RHS) horizontal curve and the elements that 

constitute the width of the roadway. The restrictive elements for the inside and outside 

carriageways are the roadside and median barriers, respectively. The lateral clearance for the 



82 

 

inside carriageway is the outer shoulder width, while the lateral clearance for the outside 

carriageway is the inner shoulder width.   

Figure 5.1 Typical cross-section in a RHS horizontal curve 

 

Source: Ismail and Sayed (2010) 

The problem of re-dimensioning cross-section elements to optimize risk was considered by 

Ismail and Sayed (2010) who developed the following multiple objectives function 

       
               

               
   

      

       
   

             

     
 , (5.1) 

where 

C(.) =  objective or cost function that is inversely proportional to the design desirability, 

I = input vector composed of six elements that represents a dimensioning scenario, 
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I1,2,3      = the first three elements of I, the outer shoulder width, lane width of both traffic 

lanes and inner shoulder width for the inside carriageway, 

I4,5,6   = the second three elements of I, the inner shoulder width, lane width of both traffic 

lanes and outer shoulder width for the outside carriageway,  

CMF(.) = the weighted average of the compound collision modification factors calculated for 

both carriageways (Harwood et al., 2003). The compound collision modification 

factors are calculated as follows 

    (I1,2,3)  = exp [-0.021(3.28I1  - 10) -0.047(3.28I2  - 12) -0.021(3.28I3  - 4)]  (5.2) 

     (I4,5,6)  = exp [-0.021(3.28I6  - 10) -0.047(3.28I5  - 12) -0.021(3.28I4  - 4)], (5.3) 

         
                             

     
 ,      (5.4) 

Io         = input vector composed of six elements that represents the cross-section before 

Optimization, 

Pnci       = probability of non-compliance for the inside carriageway, 

Pnco       = probability of non-compliance for the outside carriageway, 

Vi         = expected traffic volume on the inside carriageway, 

Vo         = expected traffic volume on the outside carriageway, 
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            = weight factor assigned for the first cost function component; risk balance between 

both carriageways, 

            = weight factor assigned for the second cost function component; identify the 

increase/decrease of the collision risk, 

            = weight factor assigned for the third cost function component; weighted average  

risk for both carriageways. 

In order to respect the permitted right-of-way, optimizing the dimensions of the cross-section 

elements was subject to three constraints. The first constraint is related to the total width of the 

roadway segment which must remain the same before and after optimization so as to make use of 

the total width allocated to the highway. The second and third constraints are related to the upper 

and lower bounds of the various cross-section elements to avoid unrealistic cross-section 

dimensions.  

   
 
        

 
     (5.5) 

                   (5.6) 

                    (5.7) 

Ismail and Sayed (2010) considered nine case studies which are part of two highway 

developments in British Columbia, Canada. The cross-sections belong to horizontal curves with 
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restricted sight distance due to the presence of roadside concrete barriers, median barriers, 

roadside structures and bridge parapet. No additional right of way is available to compensate for 

these restrictive elements and as such the optimization is required to re-dimension the elements. 

A summary of the nine cross-sections’ elements are given in Table 5.1.  

Ismail and Sayed (2010) used a Sequential Quadratic Programming (SQP) algorithm for the 

optimization under different choices of the weight factors (  ) assuming equal traffic volumes 

for both carriageways. They were successful in reducing the average risk with balanced risk for 

both carriageways without consequent increase in expected collisions. 

5.2 Cross-Section Risk Optimization using New CMFs for Restricted Sight 

Distance on Horizontal Curves 

The optimization of cross-section design to minimize the risk associated with restricted sight 

distance is considered along the lines of Ismail and Sayed (2011) and using the same nine cross-

sections whose elements are described in Figure 5.1. An important difference between the 

methodology used in this thesis and that of Ismail and Sayed is the introduction of new CMFs 

incorporating the reliability component (Pnc).  

The regression coefficients of Pnc used in the new CMFs are 1.461, 1.012 and 1.793 for total, 

I+F and PDO collisions, respectively (see Table 3.4). The optimization process is illustrated in 

the sequel using the coefficient 1.461 corresponding to total collisions. Similar optimization 

schemes could be developed for I+F and PDO collisions.  
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5.2.1 Objective Function 

Recall Equation (5.1) and define new CMFs as follows 

    
  (           =      (          * exp (1.461*     , (5.8) 

    
  (           =      (          * exp (1.461*     , (5.9) 

          
      

                
         

     
 .      (5.10) 

The current objective function is then given by Equations (5.1), (5.8), (5.9) and (5.10). The 

constraints remain the same as specified in Equations (5.5), (5.6) and (5.7). 
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Table 5.1 Summary of cross-section dimensions for the different case studies (m) 

Case Radius 

Inside Carriageway 
Median 

Width 

Outside Carriageway 
Longitudinal 

Slope 

Right Hand Curve = 1 

Left Hand Curve = 0 
Outer 

Shoulder 

Lane 

Width 

Inner 

Shoulder 

Inner 

Shoulder 

Lane 

Width 

Outer 

Shoulder 

1.1 440 2.5 3.7 1.15 0.6 1.15 3.7 2.5 -0.7% 1 

1.2 440 2.5 3.7 1.15 0.6 1.15 3.7 2.5 1.5% 0 

1.3 440 2.5 3.7 1.15 0.6 1.15 3.7 2.5 -1.3% 1 

1.4 440 2.5 3.7 1.15 0.6 1.15 3.7 2.5 -0.4% 0 

1.5 440 2.5 3.7 1.15 0.6 1.15 3.7 2.5 0.1% 1 

2.1 450 2.5 3.6 1.7 0.6 1.7 3.6 2.5 -3.9% 1 

2.2 320 2.5 3.6 1.7 0.6 1.7 3.6 2.5 0.6% 1 

2.3 350 2.5 3.6 1.7 0.6 1.7 3.6 2.5 -3.3% 1 

2.4 350 2.5 3.6 1.7 0.6 1.7 3.6 2.5 -2.3% 1 
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5.2.2 Optimization Algorithm 

In order to find the solution to the non-linear objective function (5.1), the optimization algorithm 

had to be an iterative method which allows for the non-linear constraints (5.5)-(5.7). The 

Sequential Quadratic Programming (SQP) method for nonlinearly constrained optimization 

generates steps by solving quadratic sub-problems. The SQP method solves the non-linear 

problem directly rather than converting it to a sequence of unconstrained minimization problems 

(Gockenbach, 2003). The underlying principle is that at each step/iteration, a local model of the 

optimization problem is constructed and solved yielding one step toward the solution of the 

original problem. This sequential approach can be used both in line search and trust-region 

frameworks and it is appropriate for small and large problems. Although each iteration of the 

SQP algorithm requires a solution to a quadratic program, it converges very rapidly and finds 

approximate solutions with good precision (Bonnans et al., 2009). 

The SQP algorithm was used to conduct the optimization process by means of the “fmincon” 

function in Matlab. The algorithm requires the user to supply an initial starting vector 

representing the six cross-section elements. As with any optimization problem, there is a risk of 

converging to a local minimum as opposed to a global minimum. The function “GlobalSearch” 

was then used in order to help the algorithm reach a global as opposed to a local minimum. It is 

applicable in cases where solutions could contain multiple maxima or minima. To further ensure 

that the solution provided by Matlab was indeed the global minimum, various random starting 

points were chosen to ensure that the algorithm was not searching within the same area. The 

reliability component of the objective function was computed using the FERUM software 
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available for the Matlab platform. The optimization algorithm was devised in Matlab and since 

the reliability algorithm was part of the iterative process, FERUM was used in the same 

platform. 

5.2.3 Cross-Section Optimization Results 

The optimization was conducted for the nine case studies presented in Table 5.1. There were 

three different scenarios (listed in Table 5.2) carried out to investigate the effect of various 

components on the overall objective function.  

Table 5.2 Summary of the scenarios 

Scenario α1 α2 α3 

1. Minimizing CMF ratio 0 1 0 

2. Minimizing CMF ratio & balancing risk across both carriageways 1 1 0 

3. Balancing risks, while minimizing average risk & collisions 1 1 1 

The first scenario (0,1,0) allows the investigation of the isolated effect of optimization by 

minimizing the CMF ratio. However, this method might produce results with unbalanced risk for 

each carriageway. To circumvent this, the second scenario (1,1,0) is studied, which allows for 

minimizing the CMF ratio subject to having balanced risk for each carriageway. The third 

scenario (1,1,1) is studied to help designers optimize the dimensions of the cross-section 

elements by balancing the risks across both carriageways while minimizing the average risk as 

well as collisions. Table 5.3 shows the dimensions of the optimized cross-sections for the nine 

case studies under consideration. 
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Table 5.3 Summary of optimization results for the three scenarios 1, 2 and 3, respectively 

Case 

Inside Carriageway Outside Carriageway 
Objective 

Function 

Pnc current Pnc optimal obj fun components 

Outer 

Shoulder 

Lane 

Width 

Inner 

Shoulder 

Inner 

Shoulder 

Lane 

Width 

Outer 

Shoulder 
Inner Outer Inner Outer 

Pnc 

ratio 

CMF 

ratio 

Pnc 

avg 

1.1 3.03 3.66 0.74 2.98 3.66 0.64 0.60 0.30 0.71 0.19 0.16 1.19 0.60 0.18 

1.2 3.03 3.63 0.73 2.96 3.63 0.72 0.59 0.23 0.78 0.14 0.23 1.71 0.59 0.19 

1.3 2.97 3.65 0.84 2.97 3.65 0.61 0.61 0.32 0.69 0.22 0.15 1.50 0.61 0.19 

1.4 3.02 3.66 0.71 2.98 3.66 0.66 0.59 0.26 0.74 0.16 0.19 1.18 0.59 0.18 

1.5 3.02 3.66 0.67 2.98 3.66 0.71 0.59 0.27 0.73 0.17 0.18 1.08 0.59 0.18 

2.1 3.01 3.62 1.74 2.96 3.61 0.66 0.73 0.45 0.39 0.31 0.09 3.45 0.73 0.20 

2.2 2.99 3.66 0.85 3.00 3.66 1.45 0.68 0.48 0.75 0.34 0.38 1.12 0.68 0.36 

2.3 2.93 3.64 1.90 2.81 3.64 0.68 0.72 0.56 0.56 0.23 0.44 1.88 0.72 0.33 

2.4 2.91 3.63 0.85 2.92 3.61 1.69 0.71 0.53 0.61 0.25 0.42 1.65 0.71 0.34 
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Case 

Inside Carriageway Outside Carriageway 
Objective 

Function 

Pnc current Pnc optimal obj fun components 

Outer 

Shoulder 

Lane 

Width 

Inner 

Shoulder 

Inner 

Shoulder 

Lane 

Width 

Outer 

Shoulder 
Inner Outer Inner Outer 

Pnc 

ratio 

CMF 

ratio 

Pnc 

avg 

1.1 2.76 3.66 0.92 2.55 3.66 1.15 1.66 0.30 0.71 0.24 0.24 1.00 0.66 0.24 

1.2 2.51 3.66 1.02 2.98 3.66 0.87 1.62 0.23 0.78 0.23 0.23 1.00 0.62 0.23 

1.3 2.97 3.66 0.81 2.58 3.66 1.02 1.66 0.32 0.69 0.22 0.22 1.00 0.64 0.22 

1.4 2.58 3.65 1.10 2.70 3.65 1.02 1.65 0.29 0.72 0.25 0.25 1.00 0.65 0.25 

1.5 2.78 3.62 0.91 2.81 3.62 0.95 1.63 0.27 0.73 0.22 0.22 1.00 0.63 0.22 

2.1 2.75 3.66 1.44 1.73 3.64 2.38 1.93 0.45 0.39 0.37 0.37 1.00 0.93 0.37 

2.2 2.79 3.66 1.24 2.96 3.66 1.30 1.71 0.48 0.75 0.39 0.39 1.00 0.71 0.39 

2.3 2.91 3.66 1.28 2.02 3.66 2.07 1.84 0.56 0.56 0.44 0.44 1.00 0.84 0.44 

2.4 2.87 3.63 1.62 2.24 3.64 1.61 1.81 0.53 0.61 0.43 0.43 1.00 0.81 0.43 
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Case 

Inside Carriageway Outside Carriageway 
Objective 

Function 

Pnc current Pnc optimal obj fun components 

Outer 

Shoulder 

Lane 

Width 

Inner 

Shoulder 

Inner 

Shoulder 

Lane 

Width 

Outer 

Shoulder 
Inner Outer Inner Outer 

Pnc 

ratio 

CMF 

ratio 

Pnc 

avg 

1.1 2.92 3.66 0.76 2.70 3.66 1.00 1.84 0.30 0.71 0.21 0.21 1.00 0.63 0.21 

1.2 2.52 3.66 1.03 2.99 3.66 0.83 1.84 0.23 0.78 0.23 0.23 1.00 0.62 0.23 

1.3 2.98 3.66 0.80 2.59 3.66 1.01 1.87 0.32 0.69 0.22 0.22 1.00 0.64 0.22 

1.4 2.87 3.66 0.78 2.90 3.66 0.84 1.81 0.29 0.72 0.20 0.20 1.00 0.61 0.20 

1.5 2.90 3.47 0.98 2.90 3.52 0.93 1.84 0.27 0.73 0.21 0.21 1.00 0.63 0.21 

2.1 2.75 3.66 1.44 1.73 3.64 2.38 2.30 0.45 0.39 0.37 0.37 1.00 0.93 0.37 

2.2 2.81 3.66 1.25 2.99 3.66 1.24 2.08 0.48 0.75 0.38 0.38 1.00 0.70 0.38 

2.3 2.93 3.66 1.23 2.03 3.66 2.10 2.27 0.56 0.56 0.44 0.44 1.00 0.83 0.44 

2.4 2.87 3.63 1.61 2.24 3.64 1.61 2.24 0.53 0.61 0.43 0.43 1.00 0.80 0.43 

  



93 

 

5.2.4 Discussion 

The dimensions of the cross-section elements before and after optimization differ significantly as 

can be seen by comparing the dimensions displayed in Table 5.1 to Table 5.3. Before the 

optimization, the reliability outcomes Pnci and Pnco, which represents the risk measures for the 

inside and outside carriageways under the current dimensions, were not only high but were also 

highly unbalanced. After optimization the following conclusions are evident: 

1. The first scenario, which involves only the middle component of the objective function (5.1), 

exhibits the highest reduction in collisions for all combinations of the weighting factors. 

However, although the results show a reduction in the probability of non-compliance after 

optimization, the probabilities for both carriageways are still unbalanced. This would mean 

that collision risk is likely to be higher for one carriageway than the other. 

2. It seems that reducing collisions and balancing risk across the two carriageways are 

competing objectives. This is evident in the second scenario, which involves only the first 

two components of the objective function (5.1), where the reduction in Pnc ratio to its 

minimum value of one leads to an increase in the CMF ratio. However, it was still possible to 

achieve a better overall decrease in risk compared to before the optimization. 

3. The third scenario which involves all three components of the objective function (5.1), 

achieves risk balance (Pnc ratio of one) as well as risk and collision reductions. 

4. For all scenarios, it was assumed that the traffic volume is expected to be equal for both 

carriageways. If that is not the case, practitioners can allow different traffic volumes to be 
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incorporated into the optimization process. This more customized approach would assist the 

designers to consider indirect effects that highly influence the outcome of the design process. 

5. Upon investigating the results of the optimization process, it is noticeable that the inner 

shoulder width of the inside carriageway and the outer shoulder width of the outside 

carriageway are consistently assigned lower values. This can be explained by the fact these 

values are not included in the calculation of the probability of non-compliance. For instance, 

to reduce the Pnc for the inside carriageway, the objective function will attempt to assign a 

larger value for the outer shoulder. Since the total width of the roadway segment must remain 

the same, the objective function will balance this by assigning a lower value to the inner 

shoulder. A similar argument holds for the outside carriageway. 

6. Comparing the current results with those of Ismail and Sayed (2011), it is apparent that risk 

balance (across carriageways) and overall risk reduction have been accomplished. Yet, while 

Ismail and Sayed have attained these two objectives without increasing the CMF ratio, the 

current approach has made it possible to optimize the dimensions of the cross-section 

elements so that an additional reduction in collisions is also realized. This significant 

reduction is due mainly to the established relationship between Pnc as a reliability-based risk 

measure and collisions that is represented in the CMF ratios (5.8) and (5.9). 
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5.3 Summary 

This Chapter presented an application of how the SPF developed in earlier chapters could be 

used when designing a cross-section with the aim of reducing collisions. Before optimization, the 

Pnc values were high and unbalanced across carriageways, suggesting that one carriageway was 

less safe than the other. However, after the optimization was carried out, the risk has not only 

become consistent, but has been also considerably reduced. In addition, further collision 

reductions have been achieved upon accounting for the random variations due to drivers’ 

behavior. 

The methodology of this chapter, which is built upon that of Ismail and Sayed (2011), adds great 

value to this area of research as it allows practitioners to identify and modify the dimensions of 

the elements with restricted sight distance in order to reduce not only risk, but also collisions. As 

the use of deterministic values for design inputs does not account for the uncertainty, reliability 

analysis is needed to handle random inputs and assess the ensuing risk. Once the outcomes of 

reliability analysis (e.g., Pnc) are represented in the CMF ratio, it becomes possible to minimize 

collisions as a means of improving safety not just reducing the risk (Pnc).  
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6 Summary, Conclusions, Contributions and Future Research 

6.1 Summary and Conclusions  

Several studies have noted the stochastic nature of geometric design variables and parameters 

and recommended the adoption of a probabilistic design approach such as reliability analysis. 

Reliability analysis can be used to evaluate the risk associated with particular design features and 

can be most useful in complicated design situations where it may be difficult to find collision 

prediction models and collision modification factors that adequately describe the design scenario.  

However, one main factor that has been inhibiting a wider use of reliability or risk-based 

geometric design is the lack of an established link between reliability measures and objective 

safety measures such as collisions. This thesis developed safety performance functions that 

incorporated the probability of non compliance Pnc as a measure of design risk. Using a dataset 

on horizontal curves that comprises geometric design features, collision and traffic volume data 

for the TransCanada Highway in British Columbia, three safety performance functions were 

developed relating the probability of non compliance (due to restricted sight distance) to total, 

severe (I+F), and property damage only (PDO) collisions.  

The three SPFs provided good fits to the data and showed that predicted collisions have 

statistically significant positive relationships with Pnc, i.e., lower risk segments are associated 

with lower predicted collisions as expected. An alternative model based on AADT, radius and 

superelevation was considered in order to compare NB models with and without reliability-based 
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risk measures. The conclusion was that the model with Pnc outperformed the alternative model 

without Pnc. For the total predicted collisions, the likelihood ratio test was significant at the 10% 

level while being significant at the 5% level for I+F and PDO. Therefore, using such a 

reliability-based risk measure as Pnc to develop SPFs did not only provide a good fit to the 

dataset at hand, but also improved the fit over the traditional NB models for both severity levels 

as well as the total predicted collisions. 

The significance of the present results stems from (i) quantifying the inherent random variation 

associated with such important input variables as operating speed, perception reaction time and 

driver deceleration rate in terms of the Pnc risk measure, and (ii) establishing the relationship 

between reliability-based risk measures and predicted collisions. This latter relationship can be 

used to aid the decision maker in determining the safety implications of deviating from 

geometric design standards and in quantifying the safety level built in design values that are 

deemed acceptable (or unacceptable).  

As the parameter estimates in the NB models incorporating Pnc are likely to be overstated due to 

omitted variables that are correlated with Pnc, spatial analysis was used in order to overcome the 

omitted variables bias. Using EMM spatial specifications for the SPFs have indeed overcome the 

models’ misspecification and the results of the spatial analysis provided strong evidence 

supporting the integration of spatial effects in SPFs.  

The results obtained from the reliability analysis of restricted sight distance on horizontal curves 

and from fitting the SPFs incorporating reliability-based risk measures are useful for researchers 
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in their continuous endeavor to improve the performance of models used for developing 

geometric design guidelines. To emphasize this point, a case study was applied to nine cross 

sections on TransCanada highway. The purpose of the analysis was to optimize the roadway 

cross section by minimizing collisions and overall (average) risk, while maintaining balanced 

risks for both carriageways. A multiple objective function comprising three different components 

was developed. The first component aimed at reducing the number of collisions after the 

optimization. The second component dealt with minimizing the overall risk of collisions for both 

directions of travel. The third component was intended to balance the risk of the two roadway 

carriageways. Six different geometric elements were optimized using the Sequential Quadratic 

Programming Algorithm (SQP). The results showed that an additional reduction in collisions can 

be realized by incorporating the reliability component (Pnc) in the optimization process. 

6.2 Research Contributions 

This research has contributed to the state-of-the-art literature of geometric design of roadways in 

several ways. Firstly, empirical data were used to establish the link between the theoretical 

design incompliance and road collisions. It was shown that the incorporation of the design 

incompliance in Safety Performance Functions (SPFs) can improve the predictive ability of the 

model and explain considerable data variations. A second major contribution of this research is 

accounting for spatial effects along with the probability of non-compliance in the development of 

SPFs. The proposed models fitted the data significantly better than their traditional counterparts 

and the nature of the relationships between different variables and collisions occurrence became 



99 

 

more evident. The last contribution of this thesis is presenting an approach to design the cross 

section elements of a roadway facility based on three different safety criteria.  

In summary, the current study can be considered a forward step towards safety-oriented 

geometric design of roadways, which is gaining more ground and attention, especially with the 

huge increase of fatalities on highway networks. A general framework of how risk-based design 

could improve safety was presented. Although the main geometric feature studied was horizontal 

curves with restricted sight distance, the proposed framework could be adapted to other 

geometric features.    

6.3 Future Research 

Although the current research has covered many aspects of the described methodologies, still, 

some areas need further refinement and investigation. For example, the probability distributions 

of the design inputs need to be identified through field observations. The present information is 

either not very reliable (e.g. speed distribution is assumed to be normal and the mean and 

standard deviation are obtained from models) or has not been updated (e.g. PRT and deceleration 

rate). The very basis of reliability analysis is founded on these probability distributions, the more 

accurate these distributions the more credible the results will be. In regard to the speed 

distribution, a sensitivity analysis can be carried out using different values of the standard 

deviation to assess the sensitivity of the reliability analysis outcome (Pnc) to the various 

assumptions of the speed distribution. Moreover, data collection could be facilitated by means of 

automatic techniques through video tracking. Information about the respective variables would 
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be more accurate as they are depicted from real-time case-studies rather than controlled 

experiments. 

The variables in the present study are all considered to be statistically independent, while there is 

no information that contradicts this assumption; it would be interesting to investigate this and 

evaluate how the correlation among input variables would affect the outcomes of reliability 

analysis.   

Other potential study directions would be to investigate the alignment with overlapping 

horizontal and vertical curves and the effect of this overlap on safety of the roadway. There have 

been several studies that explored the effect of overlapping alignment; however, coupling this 

with reliability analysis should provide more insight. Comparisons between overlapping 

alignment and horizontal/vertical alignment alone would allow designers to evaluate the safest 

way to design overlapping alignments.  

Current design guidelines can be evaluated to identify the risk associated with each design 

feature. However, future research could be dedicated to selection of suitable target reliability 

index (Pnc) and move backwards to find the corresponding design features associated with that 

risk level. Now that the relationship between Pnc and collisions has been identified, code 

calibration can include useful elements of cost-benefit analysis.  
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