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Abstract 

Safety and sustainability are the two main themes of this thesis. They are also the two main 

pillars of a functional transportation system. Recent studies showed that the cost of road 

collisions in Canada exceeds the cost of traffic congestion by almost tenfold. The reliance on 

collision statistics alone to enhance road safety is challenged by qualitative and quantitative 

limitations of collision data. Traffic conflict techniques have been advocated as a proactive 

and supplementary approach to collision-based road safety analysis. However, the cost of 

field observation of traffic conflicts coupled with observer subjectivity have inhibited the 

widespread acceptance of these techniques. This thesis advocates the use of computer vision 

for conducting automated, resource-efficient, and objective traffic conflict analysis. Video 

data in this thesis was collected at several national and international locations. Real-world 

coordinates of road users' positions were extracted by tracking moving features visible on 

road users from a calibrated camera. Subsequently, road users were classified into pedestrians 

and non-pedestrians, not differentiating between other road users' classes. Classification was 

based on automatically-learned and manually-annotated motion patterns. Subsequent to road 

user tracking, various spatiotemporal proximity measures were implemented to measure the 

severity of traffic events. The following contributions were achieved in this thesis: i) co-

development of a methodology for tracking and classifying road users, ii) development of a 

methodology for measuring real-world coordinates of road users' positions which appear in 

video sequences, iii) automated measurement of pedestrian walking speed, iv) investigation 

of the effect of different factors on pedestrian walking speed, v) development and validation 

of a methodology for automated detection of pedestrian-vehicle conflicts, vi) investigation of 

the application of the developed methodology in a before-and-after evaluation of a pedestrian 

scramble treatment, vii) development of a methodology for aggregating event-level severity 

measurements into a safety index, viii) development and validation of two methodologies for 

automated detection of spatial traffic violations. Another contribution of this thesis was the 

creation of a video library collected from several locations around the world which can 

significantly aid in future developments in this field.  
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INTRODUCTION 

1.1 Challenges 

In the mobility-oriented transportation systems, road users are in an eternal 

state of motion, seeking one trip destination after another. For this mobility to 

be affordable, road users need to be ensured an adequate level of safety. 

Mobility and safety are therefore widely regarded as valid performance 

measures of a transportation system.  

The incidence of road collision is aptly described as a global epidemic of 

staggering yet often overlooked consequences. Road collisions are predicted 
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to climb from the 10th to the 8th most common cause of death by the year 2030 

(Mathers & Loncar 2005). The global number of fatal road collisions was 

approximately 1.3 million in 2004 rising from 990,000 in 1990 (WHO 2004). 

Moreover, road collisions are the cause of tremendous social and economic 

losses. The global economic cost of road collisions is estimated as $US 500 

billion per year (UN 2003). A striking imbalance in the economic burden of 

road collisions occurs between low-income and high-income countries. On a 

worldwide level, the majority of fatal road collisions occur in low-income 

countries (90%) (Suri & Parr 2004). Conversely, for complex reasons, the 

larger share of economic cost of road collisions (approximately 85%) is borne 

by high-income countries. In either case, road collisions afflict low-income 

countries with human losses and high-income countries with heightened cost 

of health care and insurance claims.  

Canada is a highly developed state, which despite significant investment in 

road infrastructure, is still struggling with the incidence of road collision. A 

recent study by Transport Canada estimates that the annual cost of road 

collisions to the Canadian economy, including health care, environmental 

damage, lost productivity, and induced traffic congestion, is $CDN 62.7 billion 

(Vodden et al. 2007). This represents an enormous 5% of the Canadian Gross 

Domestic Product. The cost of road collisions is far more than the 

approximate cost of $CDN 3.7 billion/year due to the impact of traffic 

congestion on Canadian roads (Cannon 2006). The collective cost of road 

collision impacts all types of road users with various proportions. However, 

the impact on non-motorized and sustainable modes of travel is far more 

consequential than is apparent.  
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Road collisions represent an indirect and far reaching threat to meeting 

grassroots demand for a sustainable transportation system. While non-

motorized modes of travel are groomed as key alternatives to motor vehicles 

in order to improve the sustainability of the transportation system, they suffer 

from an elevated risk of collision involvement. This exceptional risk level 

stems from the fact that key non-motorized modes of travel such as biking 

and walking are engaged by the most physically vulnerable of road users. 

Road collisions involving non-motorized traffic are highly injurious and 

physically damaging. Ominously, the physical threat to the arguably most 

important mode of non-motorized travel, walking, is particularly severe.  

In the developing world, the vulnerability of pedestrians and the little 

attention paid by policymakers to these modes of travel render the situation 

especially dangerous. In a review of 38 studies from developing countries,  27 

studies ranked the frequency of pedestrian fatalities as the highest among all 

modes; accounting for 41% to 75% of all fatalities (Odero, Garner & Zwi 

1997). The problem of pedestrian vulnerability is also present in developed 

countries. Approximately 22% of fatal road collisions in Canada and 30% of 

fatal road collisions in British Columbia involve vulnerable road users; 

respectively 13% and 15% of which are pedestrians (ICBC 2006). As the global 

society is becoming more aware of the importance of non-motorized modes of 

travel, the threat that previous safety issues create to building a sustainable 

transportation system is expected to receive rightful attention from policy 

makers, researchers and practitioners. However, the growing awareness of 

road collisions has yet to foster an insightful understanding of the nature of 

road collisions and yet to create methods of analysis that meet the challenge.  
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Mainstream approaches to road safety analysis can be described as: reactive 

and collision-based. The traditional reactive approach represents the 

application of safety countermeasures to mitigate emergent safety problems 

or to evaluate new safety treatments (de-Leur & Sayed 2003). Collision-based 

approaches to road safety rely on data drawn mainly from collision records, 

police reports, and insurance claims. The traditional reactive approach to 

safety based on collision data is challenged on several accounts.  

The paradigm of reactive road safety analysis permits the analyst and the 

decision maker to wait for collisions to occur in order to conduct safety 

analysis or to devise countermeasures. According to reactive road safety 

analysis, there is little ability for predicting road safety issues and preventing 

their occurrence before the materialization of the induced social cost. 

Moreover, in order to evaluate the effectiveness of safety programs in 

remedying existing problems, adequate before-and-after observational 

periods of observation have to be allowed in order to prove a reduction trend, 

or the absence thereof. During extended observational periods, road collisions 

continue to occur. To address the shortcomings of reactive road safety 

analysis, the proactive approach to road safety analysis has been recently 

advocated (de-Leur & Sayed 2003). 

Proactive safety analysis seeks to diagnose safety problems and to identify 

suitable countermeasures before collisions take place. In achieving this 

objective, safety analysis draws on an array of historical safety record, 

evaluation studies, and performance records of control sites. There have been 

tremendous advances in proactive road safety analysis based on collision 
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prediction models (Harkey et al. 2008). This stream of research strives to 

predict collisions based on historical statistical associations with various 

attributes of the road system. In these models, road collisions are adopted as 

the main safety measure and also the main data type.  

Despite the prominence of collisions-based proactive safety analysis, there are 

several limitations to the reliance on collision data in conducing road safety 

analysis (Chin & Quek 1997): 

a. Cost. Road collisions are by far the most costly and most dangerous 

events that take place on roads. However, in collision-based road 

safety analysis, road collisions are themselves the units of data. In that, 

conducting collision-based analysis, especially in experimental or trial-

and-error settings, entails tremendous social and economic costs.  

b. Attribution. The information obtained by police reports and 

interviews often does not allow the attribution of road collisions to a 

definitive set of causes. It is sometimes difficult to pinpoint the failure 

mechanism that leads to collision based on interviews, witnesses, and 

post hoc site investigations. In that, the safety analyst is often required 

to remedy or prevent a set of events whose causes are not precisely 

known. 

c. Data Volume. Despite the enormous social burden of road collisions, 

the frequency of road collisions, especially in disaggregate data form, 

relative to other traffic events is low. Drawing statistically stable and 

significant inferences based on inherently noisy and rare data is 

challenging and sometime subject to divergent interpretations.  
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d. Data Quality. Collision reporting is mainly based on post hoc 

investigations such as witness accounts and site observations. The 

process is fundamentally deductive and subjective. Collision records 

are often incomplete and lack details. Furthermore, collision reporting 

is generally biased toward highly damaging incidents, while non-

injurious collisions may go unreported.  

e. Ethical Concern. In order to properly conduct fundamental tasks of 

road safety analysis, such as safety diagnosis, collisions have to have 

occurred and be have been recorded over an adequately long period. 

For example, in before-and-after studies, observation of road collisions 

may extend for a period of 1-3 years in order to draw stable inferences. 

For the identification of hazardous locations to be proper, several years 

of road collision observations have to be available. Previous limitations 

of collision data give rise to the paradoxical situation in which the 

safety analyst, for the sake of methodological correctness, strives to 

observe events that ought to be prevented.  

Challenges of the reliance on road collision data are even more pronounced in 

the study of pedestrian safety. Pedestrian-involved collisions are more 

injurious and less frequent. Moreover, there is a traditional bias in 

transportation studies in favour of motorized modes of travel. This bias is 

most evident in the design and evaluation of transportation systems (Milam 

& Mitchell 2008). Availability of pedestrian data has been commonly 

identified as a major challenge in the practice of pedestrian safety analysis 

(Hoogendorn, Daamen & Bovy 2003). Examples of data needs include 

pedestrian volume and measures of exposure to collision risk which are often 
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expensive and time consuming to obtain (Pulugurtha & Repaka 2008). 

Surrogates or statistical predictors of these types of data are often used in 

practice, e.g., (Shankar et al. 2003) (Greene-Roesel, Diógenes & Ragland 2007). 

While in practice there are developed technologies and proven applications 

for motorized traffic counts, this is not the case for pedestrian traffic  (Greene-

Roesel et al. 2008). Pedestrians move in a less organized fashion, at higher 

densities, and in more complex and constrained spaces than vehicular traffic. 

Thus existing issues with data availability are, in the case of pedestrian safety, 

compounded due to the lack of reliable automated data collection methods.  

1.2 Motivation 

The growing momentum for building more sustainable transportation 

systems has provided an important focus of this thesis work. The second 

focus of this thesis was driven by the potential of computer vision techniques 

for solving well-entrenched problems in road safety analysis. Sustainability 

and safety constitute the main pillars of this thesis. The following sections 

provide a detailed description of the motivation behind this thesis.  

1.2.1 Growing Importance of Pedestrian Studies 

Walking is the most basic means of traveling and a key non-motorized mode 

of travel. Pedestrian movement is a critical component in a multimodal 

transport network that connects different modes of travel and interfaces with 

external activity areas. One of the desirable characteristics of walking is that 

building improvements to pedestrian facilities reflects on the overall 

connectivity and accessibility of the transport network. Creating pedestrian-
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friendly environments is particularly beneficial to modes of travel whose level 

of functionality depends on attracting walking trips, e.g., public transit and 

cycling. Walking is a key activity of sustainable, healthy, clean, resource-

efficient and liveable urban environment for which pedestrians are described 

as "lifeblood" (AASHTO 2001). New urban planning concepts redefine the 

function and mode-assignment of streets by emphasizing walkability and 

changing industry standards and professional practice in order to 

accommodate the pedestrian as a key road user (Greenberg 2005). 

1.2.2 Environmental Concerns 

The growing interest in pedestrian studies is driven also by popular and 

political awareness of environmental issues; especially the development of a 

sustainable transportation system. Despite the rhetoric, significant effort is yet 

to be expended by engineers and decision makers to build such system. 

Currently, the passenger car is the dominant mode of travel in Canada and 

the world. There is little evidence that it will be replaced by any other mode 

in the foreseen future. Approximately, one billion motor vehicles are operated 

in the global transportation system. In two decades, this number is expected 

to double (Sperling & Gordon 2008). The current number of light motor 

vehicles registered in Canada is expected to double within less than two 

decades1; outpacing population growth by a wide margin (Doiron 2008). This 

unchecked growth in motorized modes of travel is accompanied by 

increasing release of air pollutants. 

                                                 
1
 Assuming an annual registration rate of 1.2 million vehicles based on the average from the period 

1997-2007. If the rate of increase is otherwise taken, the period for doubling the number of vehicles 

becomes approximately 7 years based on an average annual growth rate of 10% calculated for the 

period 2002-2007.  
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Despite the global awareness and the commitment to reducing global 

greenhouse gas (GHG) emissions, the reality belies expectations. In order to 

avoid global climate change, GHG emissions need to be reduced by 50-80% 

by 2050 (WHO-UNEP 2007). However, transportation-induced GHG 

emissions have more than doubled since 1970s, faster than any other energy 

sector. A recent review by Environment Canada shows that the outlook for 

Canada is not too promising (EnvCanada 2008).  

Canada’s GHG emissions are 29% higher than Kyoto requirements. There was 

a 35% increase in GHG emission induced by road transportation from 1990-

2006. Transportation is the second largest emission category in 2006, 

contributing approximately 27% of the total GHG emission; two thirds of 

which being from road transport (EnvCanada 2008). Emissions from energy 

consumed for personal transportation rose by 32% from 1990 to 2006. There 

was also a 37% increase in the size of the transport fleet during the period 

from 1990 to 2006 (EnvCanada 2008). Similarly, a review of the US National 

Transportation Statistics in 2008 shows that passenger vehicles produced 

approximately half of all carbon monoxide emissions and one third of all 

carbon dioxide emissions and nitrogen oxides in 2008 (USDOT 2008).  

Despite the evidence in the literature that corroborates the importance of non-

motorized traffic, these modes of travel are in general overlooked, 

undervalued, and understudied in contrast with vehicular traffic. For 

example, current trip counts capture 16-33% of actual non-motorized trips 

(Litman 2003). Furthermore, collecting reliable non-motorized traffic 

information is especially challenging (Weinstein & Schimek 2005). Planning 
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for pedestrian facilities and demand forecast of walking activities are areas of 

research that are yet to be developed to a level that matches vehicular traffic 

(Pulugurtha & Repaka 2008). In general, there is poor integration of 

pedestrians into current transportation networks; especially what relates to 

interlinking of different activity areas (James & Walton 2000). For example, 

vehicular traffic is traditionally the main focus of level of service 

improvements, with little attention to other modes that share the same 

segment of the transportation system (Milam & Mitchell 2008). The trade-off 

between improving the level of service for motorized traffic and the impact on 

non-motorized transport is often either ignored or cursorily studied in the 

current practice. Significant challenges are poised to test the creativity of 

researchers and practitioners in order to better understand, analyze, and 

accommodate non-motorized modes of travel. 

1.2.3 Demographic Changes 

Aside from environmental and political motivations and aspirations for 

building a sustainable transportation system, the emerging research focus on 

pedestrians comes as a response to demographic changes in the general 

population. Along with other developed countries, the population of Canada 

is aging. The percentage of seniors (65+) in Canada increased from 13% in 

2001 to 13.7% in 2006. This percentage is projected to reach 23-35% in 2031 

and 25-30% by 2056 (Martel & Malenfant 2006). Seniors in British Columbia 

represent 14.6% of the provincial population in 2006 making the province one 

the oldest in Canada (Martel & Malenfant 2006). Similar national trends are 

observed in the US although the population is slightly younger (Shrestha 
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2006). The effect of demographic changes on the design of pedestrian facilities 

is palpable. Older pedestrians have different ambulatory characteristics, 

speed of reflexes, and sensory acuity from the general population.  

Walking speed of older pedestrians has been the subject of a number of recent 

studies. Recent releases of standard design guides, e.g., MUTCD-Canada 

(Transportation Association of Canada 2002), are in the process of adopting 

slower standard walking speed in consideration of particularities of the 

elderly pedestrian. Further studies are still required to capture the differences 

among senior subgroups. Some studies suggest that this age group is not 

homogenous as assumed by past studies of walking speed (Stollof, McGee & 

Eccles 2007). The development of methods of analysis capable of accurate and 

efficient measurement of individual pedestrian dynamics is critically needed 

to capture the changing characteristics of the population of system users. 

The motivation presented thus far relates to the study of pedestrians from a 

broad perspective. An important focus in this thesis is on pedestrians from a 

road-safety perspective. The focus on road safety is driven by limitations in 

the state-of-the-art and recent developments in the realm of computer vision. 

1.2.4 Traffic Conflict Techniques 

Traffic conflict techniques have been advocated as an alternative or a 

supplementary approach to collision-based road safety analysis. Traffic 

conflicts or near-misses can be viewed as precursors to road collisions. The 

incidence of traffic conflicts can act as a surrogate safety measure. The 

definition of a traffic conflict has evolved since its first proposition by Perkins 

& Harris (1968). A widely acceptable conceptual definition of a traffic conflict 
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is: “an observable situation in which two or more road users approach each other in 

space and time to such an extent that there is a risk of collision if their movements 

remained unchanged” (Amundsen & Hydén 1977). Traffic conflicts possess 

important advantage over road collisions for the purpose of road safety 

analysis. Traffic conflicts are more frequent, much less costly than road 

collisions. Moreover, the observation and analysis of the positions of road 

users involved in traffic conflicts may provide insight into the failure 

mechanisms that leads to collisions. 

Despite the well-recognized advantages of traffic conflict techniques, they 

suffer from: the inter- and intra-observer subjectivity and the costliness of 

conducting traffic conflict surveys. It is well recognized that trained observers 

perceive the severity of a traffic encounter in different ways. Consequently, 

they may disagree at whether a specific traffic event should be classified as a 

traffic conflict. Despite initial enthusiasm as well as decades of extensive 

practice, the subjectivity of human observers and the empirical evidence 

against the validity of traffic conflict techniques have discounted from their 

appeal. Furthermore, the significant cost required to train field observers and 

to institute traffic conflict surveys have been a major drawback.  

Given the shortcomings of collision-based road safety analysis and observer-

based traffic conflict techniques, the demand for a new paradigm for road 

safety analysis is building up. Road safety analysis may benefit if more 

frequent, less random, and less costly types of events are used in place of 

road collisions. In addition, by relying on more capable methods of analysis 

and technologies, the severity of traffic events may be measured in a 
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quantitative fashion. More sophisticated techniques of analysis are needed to 

enable cost- and resource-efficient processing of extended observational 

periods. As is demonstrated in several applications and methods of analysis 

in this thesis, traditional drawbacks of traffic conflict techniques can be 

eliminated by the informed adoption and application of computer vision 

techniques.  

1.2.5 Developments in Computer Vision 

Computer Vision is defined as “… the enterprise of automating and integrating a wide 

range of processes and representations used for vision perception ... such as image processing, 

statistical pattern classification, geometric modelling and cognitive processing” (Ballard & 

Brown 1982). Computer vision techniques rely on video sensors as the main 

source of data. Video sensors are arguably one of the most powerful methods 

for the collection of road user positional data. Video data is rich in detail, 

recording devices are becoming less expensive, and automated analysis is 

possible using techniques developed in the field of computer vision. 

Furthermore, many jurisdictions are installing video cameras at traffic 

intersections for monitoring purpose. The ultimate goal of adopting computer 

vision techniques is the automated extraction of road users’ positions as they 

navigate the field of view of video sensors.  

Numerous road safety measures can be obtained from analyzing road user 

positions. Extracting road user tracks from video sequences enables 

positional analysis at a much higher spatial and temporal resolution than 

current techniques available in practice. Conducting manual positional 

analysis at a comparable precision using manual observations is 
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tremendously time consuming. By informed application of computer vision 

techniques, automated and precise positional measurement is possible in a 

time- and resource-efficient way. In an analogy to the well-established 

research stream that tries to confer “intelligence” to transportation systems, 

the use of computer vision techniques can be seen as an attempt to equip 

transportation systems with a “visual sense”2.  

There has been accelerating development in computer vision techniques. It is 

becoming increasingly feasible to automatically detect, track, and classify 

road users by the automated analysis of video data. Many proven 

applications and commercial products have emerged in response to 

increasing demand from practitioners and researchers. The adoption of 

computer vision techniques in road safety applications is especially 

appealing. Automated road user detection and tracking can empower the 

traditional weaknesses of traffic conflict techniques. The judicious application 

of computer vision techniques enables the processing of video data in an 

automated and objective fashion.  

1.3 Problem Statement 

The study of pedestrians draws its importance from the physical vulnerability 

of this type of road users and the key role that walking activities play in a 

sustainable transportation system. Often, the road safety analyst is humbled 

by the challenges of studying pedestrian safety. One part of this challenge 

comes from intrinsic problems with the reliance on collision data. The other 

                                                 
2
 This sentence refers to the well-established discipline of intelligent transportation systems.  
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part comes from the dearth and cost of pedestrian exposure data. Arguments 

that support the adoption of traffic conflicts techniques are of particular 

relevance and find more grounds in the study of pedestrian safety. Traffic 

conflict techniques are concerned with observing and evaluating the 

frequency and severity of traffic conflicts by a team of trained observers 

(Perkins & Harris 1968). Issues of the current level of development of traffic 

conflict analysis arise as well in the study of pedestrian-vehicle conflicts. The 

study of pedestrian-vehicle conflicts cannot be carried out by direct adoption 

of existing techniques developed specifically for motorized modes. Rather, 

existing issues and general shortcomings in traffic conflict techniques have to 

be addressed and resolved before direct adaption is feasible. 

Other streams of research include data collection of pedestrian movement to 

support behavioural studies, calibration and validation of simulation models, 

and general purpose surveys. It is common in pedestrian studies in the 

transportation literature to find explicit mention of problems or research 

challenges due to data limitations. However, the majority of existing 

techniques for automated data collection are developed for motorized traffic. 

To overcome these issues, video sensors have been used in practice to observe 

pedestrian movement. Subsequent to which manual in-office analysis is 

conducted by human observers. A key advantage of video sensors is that the 

collected data is rich enough to support automated analysis. The pursuance 

of this objective draws on the extensive literature of computer vision, in 

which computer systems are developed with the aim of automatically 

interpreting video data. A significant part of the research presented in this 
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thesis advocates the adoption of computer vision techniques for the detection 

and tracking of pedestrians and other interacting road users. 

The issues and practical needs mentioned thus far drive the focus of this 

thesis. The research problems tackled in this thesis guide a number of 

developments toward a new paradigm of road safety analysis based on 

automated and objective positional measurements. This thesis presents a 

number of solutions for the following research problems: 

1.3.1 Problem One: Recovery of Real-world Coordinates 

Video sensors are adopted as the principal method of data collection in this 

thesis. Prerequisite to conducting precise analysis of road user positions is to 

recover the real-world coordinates of road users as they appear in video 

sequences. This practical need gives rise to the following research problem: 

Develop a technique to map points in the image space to real-world coordinates. This 

technique should be accurate enough for positioning slow-moving road users such as 

pedestrians. The technique should be robust to measurement errors and to incomplete 

calibration data. Moreover, the technique should be reliable even if the video camera 

used for observation is inaccessible and its setting in the monitored scene is unknown. 

Finally, this technique should provide robust functionality when the video data is of 

low quality or suffers from excessive distortion. 

1.3.2 Problem Two: Measurement of Walking Speed 

The importance of developing new techniques for pedestrian data collection 

is paramount. Computer vision techniques offer an appealing solution to 

demands for more efficient and accurate data collection methods. Walking 
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speed has been the subject of recent studies in response to changes in the 

movement characteristics of pedestrians at signalized crosswalks. Despite the 

practical need that is likely to persist in the future, there was no evidence of 

the adoption of computer vision techniques to address this data need. This 

practical demand lays the ground for the following research problem: 

Investigate the potential of applying computer vision techniques in accurately 

measuring pedestrian walking speed in open and crowded scenes. The accuracy of 

walking speed measurements should support subsequent developments in the thesis.  

1.3.3 Problem Three: Severity of Pedestrian-vehicle Conflicts 

By recovering real-world positions of pedestrians as well as vehicles, it is 

required to measure the severity of traffic events as described in the following 

research problem statement: 

Develop necessary methods of analysis for the automated and objective measurement 

of the severity of pedestrian-vehicle conflicts. In demonstrating this application, video 

data, preferably needs to be collected for extended time, at a pedestrian facility that 

suffers from pedestrian safety concerns.  

1.3.4 Problem Four: A Before-and-After Context 

One of the main shortcomings of collision-based road safety analysis is the 

extended observational period required to observe stable trends. For example, 

typical observational periods for the before-and-after evaluation of safety 

treatments are 1-3 years. A key advantage of the method of analysis 

developed in addressing problem three is reducing this observational period 
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from a time span of 1-3 years to few weeks. This key practical advantage gives 

rise the following research problem: 

Investigate the application of computer vision techniques coupled with various 

methods of analysis developed in earlier problems in evaluating pedestrian safety 

treatments. Problems such as automated pedestrian classification in wide-area 

pedestrian movement must be solved.  

1.3.5 Problem Five: Aggregation of Severity Measurements 

Various objective severity measures and conflict indicators are hypothesized 

to be of different and sometimes of independent nature. Each objective 

severity measure provides a cue for the underlying level of safety. In current 

practice, the integration of various road safety cues is more of an art than 

science. The following research problem is designed to address shortcomings 

in practice: 

Develop a quantitative methodology for the integration of various objective measures 

of pedestrian-vehicle conflicts.  

1.3.6 Problem Six: Automated Detection of Traffic Violations 

A major focus of this thesis is on the use of traffic conflict data for measuring 

road safety. It can be argued that traffic conflicts may involve some degree of 

nonconformity or violation to traffic regulations. However, not all road user 

violations result in traffic conflicts. It is possible that the observation and 

analysis of road user violations may help probe the underlying and 

unobservable safety level3. Admittedly, video observation for the purpose of 

                                                 
3
 ... or system safety as described by (Hauer 1982). 
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traffic conflict analysis, although superior to the legacy observer-based field 

surveys, is limited in time. During this finite observational window, it may 

not be possible to observe a representative sample of traffic conflicts. 

Therefore, traffic violations may serve as a supplementary type of data for 

traffic conflicts. This gives rise to the following research problem: 

Develop a technique for the automated observation of traffic violations. It is also 

required to contrast the developed technique with a standard approach in the 

literature for solving this research problem. 

1.4. Contributions 

This thesis documents a body of knowledge on the subjects of pedestrian data 

collection and road safety analysis. The contributions of this thesis consist of 

several advances to the state-of-the-art of road safety analysis and traffic data 

collection. The thesis also advocates an approach for road safety analysis that 

empowers the weaknesses of existing methods used both in research and in 

practice. The approach for safety analysis advocated and advanced in this 

thesis can be rightfully called a new paradigm of road safety analysis. The 

automated positional analysis of pedestrians and vehicles presented in this 

thesis gives deeper insight into road user interactions that constitutes an 

important advancement from the classical reliance on aggregate statistical 

associations. The type of data analyzed in this thesis, high-precision 

automatically extracted road user positions, has only been available in the 
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discipline of road safety for few years4. Besides a handful of other recent 

studies, the work presented in this thesis represents an attempt to advance 

the frontier of knowledge on road safety analysis. Furthermore, attempts 

undertaken in this thesis to tackle previous research problems provide 

benefits and implications that extend beyond the immediate research 

objectives of this thesis. An important byproduct of this thesis is an extensive 

video library of pedestrian movement. This video library created in this effort 

has provided service for research outside the scope of this thesis (Khanloo et 

al. 2010). The following sections provide a detailed description of the thesis 

contributions. 

1.4.1 High-accuracy Pedestrian Data Collection 

a. The development of a methodology for recovering real-world 

coordinates of points that appear in video sequences. The 

methodology is based on the idea of utilizing a set of geometric 

features that are typically available in the traffic scene. The 

methodology also involves a novel composition of an error term that 

reflects the discrepancy between features directly observed against 

their projection.  

b. This methodology was implemented in the MATLAB language 

(Mathworks 2010) and was successfully used in all video analysis 

undertaken in this thesis (six different scenes) as well as other 

applications outside the scope of this thesis (nine different scenes). The 

                                                 
4
 To the best of the author‟s knowledge, the type of high-precision positional data referred to was first 

used in (Saunier & Sayed 2007). 
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accuracy of estimates is superior to current practical requirements for 

road users tracking.  

c. The successful application of computer vision techniques in measuring 

pedestrian walking speed in the Downtown area of Vancouver, British 

Columbia. The technique used is a type of feature-based tracking (as 

shorthand, it will be referred to as feature-based tracking). This study 

was to the best of the author’s knowledge unique in terms of the large 

sample size, high pedestrian crowd density, and conducting 

automated walking speed measurements at night.  

d. The video data analyzed featured the movement of pedestrian crowd 

drawn to a local event; a fireworks show. The automated 

measurements were positively validated. The accuracy of automated 

measurement of walking speed was contrasted with manual 

observations against which it yielded a satisfactory agreement.  

e. Average walking speed was obtained from a relatively large sample of 

pedestrian walking speed measurements. To the best of the author’s 

knowledge, this was the largest sample size analyzed among similar 

studies in the literature. The aggregate estimate of average walking 

speed serves as a key design variable in crowd management, traffic 

signal design, and design of pedestrian facilities.  

f. Statistical analysis of the measurements was conducted in order to 

investigate the variance of walking speed under different conditions 

such as time of the day, type of pedestrian facility, movement direction, 

and longitudinal pavement slope. Results of this analysis provide 
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insight into the considerations required for the design of pedestrian 

facilities under different operational and physical conditions.  

1.4.2 Automated Analysis of Pedestrian-vehicle Conflicts 

a. Pedestrian tracking in open and mixed-use intersections is particularly 

challenging. The computer vision applications presented in this thesis 

prove the feasibility of adopting feature-based tracking in extracting 

tracks of pedestrians and vehicles involved in events of traffic conflicts.  

b. The development of various methods of analysis for the automated 

and objective measurement of the severity of pedestrian-vehicle 

conflicts. In order to measure the accuracy of detecting pedestrian-

vehicle conflicts, system output was contrasted with observer-based 

traffic conflict analysis. The results demonstrated the effectiveness of 

the developed methodology for detecting pedestrian-vehicle conflicts.  

c. The development of a new methodology for road user classification 

into pedestrian and non-pedestrians. The performance of the 

classification approach was superior to a maximum-speed-based 

classifier and provided a solid support for subsequent analysis.  

d. The novel application of automated analysis of pedestrian-vehicle 

conflicts in the context of before-and-after evaluation of safety 

treatments. The pedestrian safety treatment analyzed is pedestrian 

scramble, a dedicated phase for pedestrians to cross from any curb to 

another. This contribution component represents the first attempt to 

probe the severity of all traffic events that involve a pedestrians and 

non-pedestrians in an automated fashion. The results of the automated 
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system were to a satisfactory degree consistent with findings in the 

technical literature. 

e. The development of an objective methodology of integrating various 

severity aspects measured by different conflict indicators into a single 

severity index. The proposed methodology was tested on the video 

data used for developing the application on before-and-after safety 

evaluation. Important arguments were reached on two main strategies 

for aggregating safety measurements. It was demonstrated that the 

level of details at which the positions of road users were extracted 

provides superior exposure measures than simpler surrogates 

currently used in practice. 

f. The development of a new technique for the automated detection of 

road user violations. The detection technique is based on identifying 

the anomaly of road user movements in contrast with previously learnt 

normal movement patterns. The superiority of the developed 

technique over standard solutions for this detection problem was 

successfully demonstrated. 

1.4.3 Video Library 

An important secondary contribution of this thesis is the creation of an 

extensive video library. The total length of video data observations is 

approximately 80 hours. Video observations were collected from intersections 

in cities of Vancouver and Edmonton Canada, Oakland California, Cairo 

Egypt, and Kuwait City Kuwait. The video observations have supported the 

several studies presented in this thesis as well as independent developments 
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in the field of computer vision by other parties (Khanloo et al. 2010). The video 

library is also being analyzed in a number of ongoing projects. Appendix A 

contains a more detailed description of the video library.  

1.5. Thesis Structure 

This chapter presents an introduction to the thesis, statement of the research 

problems, and research outline. Chapter 2 documents a comprehensive 

review of the literature. The review is broad in dealing with various 

applications of computer vision techniques in the realm of transportation 

engineering. A narrow focus of the review is on relevant work in the subject 

of pedestrian-vehicle conflict analysis. Chapter 3 presents the developed 

methodology for extracting real-world coordinates of features that appear in 

video sequences. Chapter 4 presents the application of computer vision 

techniques in the measurement of pedestrian walking speed. Chapter 5 and 

Chapter 6 outlines the details of automated pedestrian-vehicle conflict 

analysis in the context of conflict detection and before-and-after analysis, 

respectively.  Chapter 7 discusses the development of a methodology for 

aggregating various conflict measures into a severity index. Chapter 8 

contains the details of a new technique for the detection of road user 

movements in violation to traffic regulations. Finally, summary, conclusions 

and proposed future research are presented in Chapter 9. An outline of the 

research problems and contributions in each chapter is presented in Table 1.1. 
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Table 1.1  Thesis structure 

Chapter Content 
Related 

Problem 

Related 

Contribution 

One 

Background materials, broad challenges, motivation for this 

work, research problems, list of contributions, and thesis 

structure. 

- - 

Two 

Review of the literature on the following subjects: detection 

and tracking of pedestrians and vehicles, traffic conflict 

techniques, and legal issues for video data collection. 

- - 

Three 
Description of a methodology for camera calibration, 

algorithmic details, and description of case studies. 
1 1.3.1a & 1.3.1b 

Four 

Presentation of research work on the automated 

measurement and validation of pedestrian walking speed 

using feature-based tracking. 

2 1.3.1c – 1.3.1f 

Five 

Presentation of a developed system for the automated 

detection of pedestrian-vehicle conflicts using feature-based 

pedestrian and vehicle tracking. Algorithmic details of 

objective conflict indicators are presented. 

3 
1.3.2a &  

1.3.2b 

Six 

Description of an application for the automated before-and-

after analysis for pedestrian-vehicle conflicts. Description of 

a novel methodology for road user classification into 

pedestrians and non-pedestrians. 

4 
1.3.2c &  

1.3.2d 

Seven 

Description of methodologies for calculating aggregate 

severity measures based on observations of pedestrian-

vehicle conflicts. 

5 1.3.2e 

Eight 
Description of a methodology for automated detection of 

violating road user movement. 
6 1.3.2f 
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222  

LITERATURE REVIEW 

2.1 Background 

The development of computer vision techniques for the purpose of 

automated detection and tracking of road users has been the subject of 

extensive study. In addition, the literature of transportation applications of 

computer vision techniques is steadily growing. This chapter presents a 

broad review covering the topics presented in this thesis and provides 

background for further developments in subsequent chapters. Specific 
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reviews of the literature are presented in subsequent chapters; each review 

covering their respective subject matter.  

Two main topics are addressed in this chapter: traffic conflict techniques and 

relevant applications of computer vision techniques in transportation 

engineering. A broad and comprehensive review is not the primary objective 

of this chapter. Rather, representative studies are selected for a more focused 

and critical review. The two reviews have minor overlap represented by 

studies that adopt computer vision techniques for traffic conflict analysis.  

The first review of traffic conflict techniques focuses on a number of key 

studies, also considered as milestones, on this subject area. The second review 

draws on an extensive body of work found in academic journals and key 

refereed conferences on the subject of computer vision techniques. After 

excluding unrelated applications such as pavement data collection, 

autonomous vehicle control, license plate recognition, and semi-automated 

analysis of video data, a total of 230 studies were obtained. The review 

presented in this chapter focuses on a reduced list of selected highly cited 

studies. At the end of this chapter, a discussion is provided on several legal 

issues concerning video data collection. The treatment of this subject is of 

special significance for future development of computer vision applications in 

transportation engineering.  
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2.2 Traffic Conflict Techniques 

2.2.1 Important Milestones 

The adoption of surrogate safety measures is an emerging subject of research 

and practice in transportation engineering. Surrogate safety measures are a 

class of techniques for road safety analysis which rely on data other than road 

collisions. It is arguable that road collisions occur due to some mechanism of 

failure in vehicle control. In some situation, the same mechanism of failure 

can be recovered to an extent that collision is avoided. In that, a traffic event 

may be classified into a number of different types depending on their safety 

consequences. In the context of road safety, a traffic event can be defined as the 

situation in which two road users navigating the same traffic facility come 

within reasonable temporal and spatial proximity from each other. As 

discussed before, in some traffic events, evasive action is undertaken, for 

example braking or swerving, with sufficient strength to avoid collision. These 

events are defined as near-misses or traffic conflicts1. If the strength of the 

evasive action is not capable of avoiding physical contact of the interacting 

road users, the involved road users collide or come to physical contact. This 

intuitive exposition applies to a wide range of disciplines in which near-

misses or injurious events are of similar nature to, and therefore act as 

precursors for, more catastrophic or fatal events.  

One of the earliest sources that the author became aware of was the work by 

the industrial safety pioneer H. Heinrich (Hayhurst 1932). After extensive 

experience as an investigator of industrial accidents, Heinrich postulated that 

                                                 
1
 The precise definition of traffic conflicts will be discussed in subsequent sections. 
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for every one fatal accident or major injury, there were 29 minor and 300 near-

misses (Vanderbilt 2008). He later proposed an enduring idea that it is 

possible to create a hierarchical arrangement of fatal events, injuries, and 

near-misses, respectively. The intuition behind this work is that under the 

assumption that some structure of this arrangement is preserved, it is possible 

to draw inference on the incidence of top events (high in severity and 

consequences) by keeping a record of less severe, yet more frequent events, at 

the bottom.  

The seminal work by Perkins and Harris was the first study on record that 

proposed a formal procedure to observe traffic conflicts (called near-collisions 

in the original work). They postulated that reducing hazardous traffic events 

may lead to reducing the frequency of road collisions (Perkins & Harris 1968). 

They further argued that the same failure mechanism in the driving process 

leads to the occurrence of both traffic conflicts and road collisions. The 

authors followed a line of reasoning similar to that of Heinrich by postulating 

that the observation of traffic conflicts may provide sufficient data to draw 

inference on the occurrence of road collisions. Despite the limitations of the 

conceptual definition of traffic conflicts and the basic procedure for traffic 

conflict observations in this study, it can be regarded as a milestone in the 

course of development of traffic conflict techniques.  

In an important step for formalizing traffic conflict techniques, the conceptual 

definition of a traffic conflict was modified so that it does not necessitate the 

occurrence of an evasive action. This redefinition of a traffic conflict eliminated 

the logical boundary between the nature of road collisions and traffic conflict 



30 

 

because the former may lack the occurrence of evasive action (Chin & Quek 

1997). Therefore, a traffic conflict was redefined to occur when, “two or more 

road users approach each other in space and time to such an extent that a collision is 

imminent if their movements remain unchanged” (Amundsen & Hydén 1977).  

The theory of severity hierarchy of traffic events was proposed by Hydén 

(1987) and was later investigated using real-world measurements and 

generalized to include the potential consequences of traffic conflicts by 

Svensson & Hydén (2006). The theory postulates that there exists a severity 

dimension along which all traffic events can be arranged. At the one extremity 

of this dimension lie uninterrupted passages. The latter are traffic events with 

no conceivable chain of events leading to collision between the involved road 

users. At the other extremity of this dimension lie fatal collisions. It was 

originally postulated that the shape of the frequency distribution of traffic 

events at different severity levels would be a pyramidal (Hydén 1987). Later it 

was argued that with a particular selection of severity measurement, the 

safety hierarchy exhibits the shape of a diamond (Svensson & Hydén 2006). 

The diamond shape of the severity hierarchy was corroborated by findings in 

this thesis.  

Despite the wide recognition of the severity hierarchy theory, it suffers from 

an often overlooked drawback. There has not been any development of an 

objective mapping that interprets the spatial and temporal proximity of road 

users in a traffic event, including road collisions, into a unique severity 

dimension. That is, proposed objective mappings in the literature are unable 

to comprehend the severity of the entire set of possible traffic events. In fact, 
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the previous statement is only true due to the inclusion of road collisions to 

the set of all possible traffic events. There is no objective mapping from the 

spatial and temporal proximity of road users involved in a collision into the 

same severity dimension along which uninterrupted passages and traffic 

conflicts are arranged. A remedy for the previous drawback that constituted 

another milestone in the development of traffic conflict analysis was the 

extreme value formulation by Songchitruksa & Tarko (2006). This approach 

represents the only quantitative attempt to create a unified theory or rather a 

common distribution representing both traffic conflicts and collisions along 

the same severity dimension.  

The model proposed by Songchitruksa & Tarko (2006) represents collisions as 

extreme realizations of an underlying distribution of the temporal proximities 

of road user. The model was plausible in selecting a boundary along the 

severity dimension between traffic conflict and collisions. A limitation of this 

model is that the proposed temporal proximity measure fails to comprehend 

the severity differential among road collisions. In that, the entire extreme 

value formulation faces the same question as does the theory of severity 

hierarchy. The theorized severity dimension remains to this date 

unobservable in its entirety. The different mappings available in the literature 

for the purpose of severity measurement capture only partial and in some 

cases independent aspects of severity. This shortcoming laid the ground for 

the work described in Chapter 7 which proposes an approach for integrating 

various safety cues in the context of pedestrian safety.  
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While important theoretical developments were being achieved to create 

logical and construct validity for traffic conflict techniques, the empirical 

validity of the techniques was put in question. Amid debate over the validity 

of traffic conflict techniques, Hauer & Gårder (1986) presented one of few 

rigorous treatments of this subject. The intuition behind the validity of the 

traffic conflict techniques is whether the incidence of traffic conflicts 

constitutes a reliable predictor of road collisions. In that the validity of traffic 

conflict techniques can be regarded as a matter of degree. This degree can be 

measured by the variance of a statistical estimator of road collisions in terms 

of the frequency of traffic conflicts. This study was novel in the formalization 

of a statistical mechanism for measuring the validity of traffic conflict 

techniques. However, few subsequent studies that investigated the validity of 

traffic conflict techniques made informed use of the aforementioned statistical 

framework.  

The last key study was conducted by Saunier and Sayed (2008). The 

conceptual definition of traffic conflicts contains the proposition “unchanged”. 

Prior to the previous study, calculation of various spatial and temporal 

proximity measures had been conducted based on simplistic extrapolation of 

road user positions assuming constant velocity. While this extrapolation may 

be closer to reality in case of pedestrian-vehicle conflicts, it is not generally 

the case for other road users. The novelty in the aforementioned study is that 

road user trajectories are predicted based on the observation of the movement 

patterns of previous road users navigating the same traffic intersection. There 

are two key advantages of this approach: 
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1. Reliance on records of road user tracks to build extrapolation 

hypotheses. This data-driven methodology is favourable due to their 

transferability among different driving contexts and lesser reliance on 

rules, heuristics, and specific assumptions. It is also well suited to 

adapt automatically to changing conditions as can be expected for 

traffic patterns. 

2. The extrapolation hypotheses are defined up to a probability. The latter 

is evaluated based on the frequency of observing a specific motion 

pattern. This is a logical representation of an uncertain course of action 

that significantly improves on current deterministic approaches. 

While constituting a key methodological development, the following 

shortcomings are identified in the aforementioned study by Saunier and 

Sayed (2008): 

1. The calculation of the probability of collision, based mainly on the 

previous work of Hu, Xie & Tan (2004), is not based on a theoretical 

formulation of what constitutes a probability of collision and what its 

calculation entails. In essence, the calculated probability of collision is 

an index that maps to [0,1] and its being referred to as a probability has 

to be more reasoned. Some conceptual refinements were proposed in 

subsequent work (Saunier, Sayed & Ismail 2010).  

2. This next shortcoming is mainly a consequence of the first one. The 

purpose of estimating road user trajectory is to predict how road users 

might have driven to end up in a collision. Two separate uncertainties 

exist. First, the destination of each road user and second, the deviation 
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from a precisely defined typical course of movement. The first source of 

uncertainty can be eliminated by observing a road user further in time. 

Because no formal definition of sample space was articulated, two 

types of uncertainties were indiscriminatingly used and produced 

erroneous probabilities of collision based on road user trajectories that 

would never be followed.  

3. Finally, the proposed probabilistic conflict indicator requires the 

presence of a collision point between the conflicting road users. It is 

arguable that while the presence of a collision point is prerequisite for 

a collision to take place, the mere dangerous proximity between road 

users can be a genuine severity measure. For example, Songchitruksa 

& Tarko (2006) demonstrated the validity2, i.e., relation to collisions, of 

a temporal proximity measure that does not require the presence of a 

collision course in predicting collision frequency. The severity 

differential between traffic events that include a collision and those 

which do not is virtually unknown. Recent work by (Laureshyn (2010) 

provides additional components to temporal proximity measures in 

order to create a continuum that includes traffic events with and 

without a collision course. Whether this synthetic continuum reflects 

the genuine severity of traffic events is yet to be proven.  

2.2.2 Objective Conflict Indicators 

Objective conflict indicators (simply conflict indicators, proximal safety 

indicators or proximity measures) are quantitative measures of the closeness 

                                                 
2
 Refer to section 2.1.3b for a detailed description of the term “validity”. 
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of a conflicting pair of road users, in space and time, in anticipation to a point 

of collision. The key advantages of conflict indicators are: 1) traffic events that 

contain calculable conflict indicators are more frequent than collisions, 2) 

conflict indicators are mainly quantitative measures, therefore they overcome 

some subjectivity limitations of traditional observer-based conflict indicators, 

3) they measure genuine severity aspects of traffic conflicts, and 4) they have 

been adopted in numerous studies in the literature to measure safety, thus 

enabling validation and cross-comparisons of studies. 

A number of fundamental problems in the use and the definition of conflict 

indicators have been identified (Chin & Quek 1997). Many of these problems 

arise due to an inconsistent and a basic definition of what an “evasive action” 

is, when it is commenced, extrapolation hypotheses of road users, and 

validity of conflict indicators in measuring safety. Table 2.1 lists major 

drawbacks of conflict indicators commonly used in measuring the severity of 

pedestrian-vehicle conflicts. 

It is evident that many of the issues related to the requirement of a collision 

course arise from the extrapolation of road users’ positions, i.e., how road 

users would move “if their movements remain unchanged”; to quote the traffic 

conflict technique conceptual definition. Issues with the requirement of an 

evasive action are that it is sometimes difficult to explicate evasive actions 

from normal adaptations of the position and velocity of one road user while 

navigating a traffic stream. As discussed earlier, a more informed 

extrapolation of road user tracks has been developed by Saunier & Sayed 

(2008). While conflict indicators have been lauded for their objective nature, 
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little work has been done on identifying the definitive severity aspects they 

individually measure. It can be argued that the reliance on road user 

positions provides partial image of the information required to capture the 

true severity of traffic events. For example, conflict indicators may report 

identical severity measurement for the following two cases: 1) a pedestrian is 

conflicted by a vehicle within some spatial and temporal proximity 2) the 

same encounter except with a larger vehicle. A human observer will 

intuitively rate the first case at higher severity level than the second. 

 

Table 2.1  Drawbacks of conflict indicators 

Conflict Indicator Drawbacks 

Time to Accident (Hydén 1987) 
Does not take into account reaction time. 

Requires road users to be on a collision course. 

Time to Collision (TTC) 

(Hayward 1968) 

Requires road users to be on a collision course. 

Does not account for the velocity of impact. 

Does not account for the length of the interaction. 

Extended Time to Collision 

(Minderhoud & Bovy 2001) 

Same issues as with TTC except that it accounts for the length of 

the interaction. 

Time to Zebra (Várhelyi 1996) Is not based an underlying collision mechanism. 

Post Encroachment Time 

(Allen, Shin & Cooper 1978) 

Does not require speed and distance measurement, hence missing 

many cues for conflict severity. 

Lack of a clear definition of right of way infringement. Limited 

ability to comprehend severity of interaction between motorists 

and pedestrians, e.g., when the motorist accelerates past the 

pedestrian. 

Gap Time (Archer 2004) 
Requires extrapolation of road user tracks. 

Lack of a clear definition of right of way infringement. 

Deceleration to Safety Time 

(Topp 1998) 
Requires extrapolation of road user tracks. 
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In these hypothetical traffic events, it is possible that the human observer 

subjectively took into account the consequences of the potential collision that 

could transpire had no adequate evasive action taken place. Furthermore, the 

human observer subjectively compares the observer traffic conflict to the 

innumerable traffic events watched and experienced beforehand. To put it 

boldly, the subjective assessment of human observers which is widely seen as 

central weakness to traffic conflict techniques may in fact capture more 

sophisticated severity aspects than objective conflict indicators. Not 

surprisingly, Shinar (1984) found no significant agreement between human 

observers and objective conflict indicators. He concluded that it is likely 

human observers assess the severity of traffic conflicts through a different, but 

not necessarily deficient, mechanism than objective conflict indicators. To 

further prove the point, Svensson (1992) in validating the Swedish Traffic 

Conflict Technique found that serious traffic conflicts rated as such by 

subjective human assessment was in stronger correlation with collisions than 

serious conflicts rated by objective conflict indicators. The main shortcoming 

of subjective severity assessment of traffic conflicts is not precisely the ability 

to comprehend the severity of traffic conflicts, but rather the inconsistency in 

doing so. These facts support a hypothesis in this thesis that objective conflict 

indicators measure different and sometimes independent severity aspects that 

ought to be integrated to provide a better representation of the genuine and 

unobservable severity of traffic conflicts. This hypothesis is explained in more 

detail in Chapter 7.  
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2.2.3 Challenges to Traffic Conflict Techniques 

Traffic conflicts are more frequent and much less costly3, if any, than road 

collision. Traffic conflicts can be observed in field and provide more 

information about the failure mechanism leading to road collisions. Despite 

the well-recognized advantages of the reliance on traffic conflicts over road 

collisions as the main data type, traffic conflict techniques suffer from several 

shortcomings. Following is a description of these shortcomings: 

a. Consistency 

This shortcoming concerns the definition of a traffic conflict. The conceptual 

definition of traffic conflicts was originally based on evasive actions taken by 

one or more interacting road users (Perkins & Harris 1968). This definition 

however has the logical shortcomings of not including road collisions as 

conflicts. This placed the approach at both perils of weak correlation with 

road collision, as evidenced by a number of subsequent studies, and 

conceptual difference. The other shortcoming of this conceptual definition is 

that it is often difficult to discriminate between an evasive action and regular 

precautionary actions or adaptations to road user movement. The latter 

events are irrelevant to safety analysis. A unified conceptual definition of a 

traffic conflict was therefore proposed, as presented earlier (Amundsen & 

Hydén 1977). While the concept is well-defined, field observation requires the 

interpretation or codification of this definition into a set of rules. Several 

operational definitions have been proposed with the underlying strategy of 

developing the simplest procedure to capture the largest number of relevant 

events.  

                                                 
3
 The injury referred to here is the rare occurrence of bodily harm to road users avoiding a collision. 
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A review of the literature of traffic conflict analysis of pedestrian safety 

yielded a number of operational definitions as shown in Table 2.2. The 

definitions appear of specific nature and tailored to measure safety issues 

related to particular safety treatments. Moreover some key studies in the 

literature lack precise description of the operational definitions used to 

observer traffic conflicts, e.g., (Tiwari, Mohan & Fazio 1998). As evidenced by 

Table 2.2, there was no common operational interpretation of traffic conflicts 

found in the literature. This shortcoming was evidenced by a number of 

comparative studies, e.g., (Grayson et al. 1984), in which different teams were 

asked to detect, rank and rate conflict severity from a common data set. There 

were considerable variations in the scores suggested by each team (Chin & 

Quek 1997). 

b. Validity 

The validity of traffic conflict techniques is often defined in terms of its ability 

to predict road collisions. Fundamentally, if observing traffic conflicts gives 

inference on the risk of collision, then reducing traffic conflicts can help safety 

agencies achieve their ultimate goal – reducing collisions. Proving the validity 

of traffic conflict techniques has been conducted using different approaches, 

e.g., methodology and citations in (Hauer & Gårder 1986). Irrespective to the 

validation method, establishing a sound relationship between traffic conflicts 

and road collisions has been a persisting problem. Critiques of traffic conflict 

techniques argued that for every study that corroborates validity there is 

another that fails to find relationship with collisions (Williams 1981). As a 

response, proponents of traffic conflict techniques sought to improve the 

validity of the conflict techniques by redefining conflicts or explaining the 
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causes of poor correlation with collisions (Muhlrad 1993) (Hydén, Garder & 

Linderholm 1982). Others argued that the main problem for proving the 

validity of traffic conflict techniques lies in the known issues with collision 

data (Chin & Quek 1997). Others argued for the validity of traffic conflict 

techniques by construct, that is the approach is correct in its own right since 

traffic conflicts comprise a genuine danger to road users (Grayson & Hakkert 

1987). Comparative studies on the validity of traffic conflict techniques for 

predicting pedestrian-involved collisions provided mixed results (Lord 1996). 

A prime example of positive empirical evidence, against the previous 

argument, that proves the validity of traffic conflict techniques is the 

important study by Sayed & Zein (1999). A statistically significant correlation 

between frequency of traffic conflicts and collisions was found at various 

severity levels. 

c. Reliability 

From its beginning, traffic conflict techniques have been mainly based on 

observations collected in field by trained observers. Due to issues with 

operational definitions of traffic conflicts and the intrinsically demanding 

nature of the task for human observers, detection and severity rating of traffic 

conflicts have suffered from inter- and intra-observer variability. The first of 

these two shortcomings is classified as a variability or, lack of consistency, 

problem and the second as a repeatability problem (Glauz & Migletz 1984). 

Conceivably, the rule details of an operational definition may be challenging 

to implement on site, especially under significant workload. In this situation, 

the field observer will become overwhelmed with detection and rating rules, 

thus increasing the chance of mistakes. To overcome some of these problems, 
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in-office analysis of video observations was advocated. However, field-

observer collects higher-quality and first-hand assessment of traffic events 

with better judgement (Chin & Quek 1997). Video observations, without 

dedicated video analysis tools, are restricted in field of view and 

dimensionality. A more promising alternative to the subjective and rule-based 

definitions of traffic conflict is objective conflict indicators, e.g., time to 

collision (TTC) (Hayward 1968), temporal proximity (Allen, Shin & Cooper 

1978), and other proximity measures. With advances in the field of computer 

vision, these conflict indicators can be calculated automatically, as 

demonstrated in this thesis, thus hopefully increasing accuracy and reducing 

the labour burden.   
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Table 2.2  Traffic conflict definitions in the literature 

Definition Type 

Undertaking of evasive action, e.g., brake-light indication or lane change, or a 

violation to traffic regulations (Perkins & Harris 1968) (Williams 1981) 

General-

conceptual 

“…an observable situation in which two or more road-users approach each other in 

time and space to such an extent that there is a risk of collision if their movements 

remain unchanged” (Amundsen & Hydén 1977). 

General-

conceptual 

Traffic conflict is an event in which a driver takes an evasive action to avoid a 

collision (Cynecki 1980). 

General-

conceptual 

An angle conflict occurs when a road user avoids striking a pedestrian. A traverse-

angle conflict occurs when a crossing pedestrian stops to avoid being struck by 

another road user (Tiwari, Mohan & Fazio 1998). 

Pedestrian-

operational 

A potentially unsafe interactive event that requires evasive action (braking, 

swerving or accelerating) to avoid collision (Archer 2004). 

General-

conceptual 

Pedestrian-vehicle conflicts defined and classified based on detailed event 

description (Medina, Benekohal & Chitturi 2009): 

Non-severe conflicts. 

 A pedestrian crosses halfway and waits in the centre of the road as 

motorists pass. 

 A pedestrian terminates crossing action and reverts to the curb. 

 A pedestrian rushes to the exit curb due to an approaching motorist. 

Severe conflicts:  

 A pedestrian waits in the middle of a road with no median and motorists 

keep passing. 

 A pedestrian runs to the exit curb and an approaching motorist does not 

seem to slow much. 

 A motorist swerves around a pedestrian. 

 A pedestrian forces a motorist to come to a sudden stop by stepping into 

the road.  

 A pedestrian runs to cross a street forcing an approaching motorist to 

suddenly slow down. 

 A pedestrian crosses a four-lane street right after getting off a bus and stops 

in front of the bus or causes motorists to suddenly stop. 

Pedestrian-

operational 
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2.3 Computer Vision Developments 

2.3.1 Computer Vision Developments for Pedestrian Detection 

Pedestrian detection is a difficult task in computer vision. There is no explicit 

model for the appearance of a human body, which can assume innumerable 

shapes and poses. In general, machine learning techniques rely on the 

learning of an implicit pedestrian model from a set of pre-defined samples. 

Other difficulties arise from particularities of pedestrians such as: varying 

appearance, articulated pose, local non-rigidity, varying clothing, proneness 

to visual occlusion in crowd movement, and variable background within 

which pedestrians may be present. Research into automated pedestrian 

detection has recently intensified, driven mainly by a tremendous commercial 

and security application potential. From the immense diversity of pedestrian 

detection and tracking techniques, methodological patterns are noted. Typical 

sequence of analysis steps starts with 1) hypothesis generation, 2) 

classification, and 3) tracking. A brief summary of work developed in the 

realm of computer vision on pedestrian detection and tracking is based on a 

recent review by Enzweiler & Gavrila (2009) and is presented in the following 

sections.  

Pedestrian Hypothesis Generation 

In the first step, an initial position of the pedestrian hypothesis is determined. 

Common methods for hypothesis generation are sliding window techniques, 

which involve the shifting of windows of various sizes over the image to 

localize a pedestrian hypothesis. Despite the significant computational cost, 

several studies employed the sliding window technique, e.g., (Dalal & Triggs 
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2005) (Mohan, Papageorgiou & Poggio 2001) (Sabzmeydani & Mori 2007) 

(Szarvas et al. 2005). Variations on this approach were developed for reducing 

computational cost by employing a series of classifiers along with the 

instantiation of different hypotheses (Wu & Nevatia 2007) or by adopting 

specific assumptions regarding the road and object geometry (Leibe et al. 

2007) (Gavrila & Munder 2007). Approaches for hypothesis generation have 

been also developed based on stereo vision. For example Alonso et al. (2007)  

used a localization mechanism for pedestrian hypotheses based on stereo 

vision in order to overcome the lost depth cues during monocular vision. 

Motion features have been employed for hypothesis generation, especially 

with approaches based on background segmentation (Zhao & Nevatia 2004). 

Other approaches identify pedestrian hypotheses based on distinctive local 

features, such as outline detection (Agarwal, Awan & Roth 2004). 

Pedestrian Classification 

The second step after the instantiation of a pedestrian hypothesis is to verify 

that this hypothesis (object) is indeed a pedestrian using various shape, 

motion, appearance, outline, and temporal cues. An extensive body of work 

has been developed for this purpose. Enzweiler & Gavrila (2009) proposed a 

broad categorization scheme for pedestrian classification into generative and 

discriminative approaches along with further delineation in each broad 

category. The generative approach to pedestrian classification assumes an 

underlying density model for the appearance of pedestrians. The generative 

approach can be implemented in a Bayesian framework by defining a class 

prior and updating the class density distribution using observations from the 
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concerned video sequence. The generative approach can be further divided 

into shape models and shape/texture models.  

Shape models possess the appealing characteristic of being independent of 

clothing or illumination. The majority of discrete shape models adopt various 

2D geometric models encapsulating the pedestrian. Exemplar-based shape 

models use specific pedestrian shapes as matching templates for pedestrians, 

e.g., (Zhou, Gao & Zhang 2007) (Gavrila 2007). The advantage of the explicit 

and specific shape examples is however compromised by the practical 

requirement for a large number of shape examples to adequately cover the 

space of all observable shapes. Efficient matching methods have been 

developed to reduce the storage requirement and enable real-time 

applications, e.g., (Stenger et al. 2006). In contrast to discrete shape models, 

continuous shape models use a parametric representation of the pedestrian 

shape. The distribution of pedestrian class shapes is learnt from examples of 

manually annotated (Heap & Hogg 1998) or automatically detected 

pedestrian shapes (Enzweiler & Gavrila 2008). Various approaches have been 

developed for learning linear, non-linear, and piecewise linear models of 

pedestrian shapes (Enzweiler & Gavrila 2008) (Munder & Gavrila 2006). 

Continuous shape models possess the advantage of being more flexible in 

representing pedestrian shapes than discrete shape models. However, this 

advantage is realized at the expense of increased computational cost involved 

in the learning of the distribution parameters of continuous shape models.  

As evidenced by several road user detection tasks, the combination of several 

cues holds consistent advantage over approaches that depend on fewer or 



46 

 

unique cues. Another discriminative feature of pedestrians is their texture, 

which is more diverse than the texture patterns of motorized road users. 

Approaches have been developed for the combined parameterization of 

pedestrian appearance in terms of shape and texture (Fan, Sung & Ng 2003) 

(Enzweiler & Gavrila 2008).  

The discriminative approach for pedestrian classification involves the 

Bayesian learning of the parameters of a decision function that distinguishes 

between pedestrian and non-pedestrian objects. The main inputs to the 

decision function are discriminative features. Examples of these 

discriminative features are local intensity differences at different parts of the 

image (Papageorgiou & Poggio 2000). A dictionary of these features is pre-

defined for various orientations and scales of pedestrian examples. 

Techniques for automated selection of the most discriminative feature have 

been proposed based on the popular AdaBoost algorithm (Viola, Jones & 

Snow 2003) (Cao, Qiao & Keane 2008) or defining features that adapt to the 

underlying dataset (Munder & Gavrila 2006) (Gavrila & Munder 2007). The 

use of orientation histograms of image gradients computed at local image 

subregions as discriminative features has been popularized by the seminal 

works of Dalal & Triggs (2005) and extended for various subregions by 

Zhang, Wu & Nevatia (2007). Other approaches for feature identification 

include interest-points popularized by the important work of Lowe (2004), 

manually annotated collection of edges (Wu & Nevatia 2007), spatiotemporal 

features that capture human gait (Sidenbladh & Black 2003), and cross-

spectral pedestrian detection using stereo and infrared vision (Krotosky & 

Trivedi 2007).  
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Several models for the decision function have been proposed. Multilayer 

neural networks have been successfully used in particular with adaptive 

features (Szarvas et al. 2005). Support Vector Machines have emerged recently 

as a more powerful tool for addressing classification problems. As opposed to 

traditional techniques that minimize some arbitrary error measure, Support 

Vector Machines maximize the margin that separates some hyperplane and 

the elements that belong to different classes. A growing number of studies 

demonstrated successful adoption of Support Vector Machines ranging from 

simple and cost-efficient linear classifiers (Zhu et al. 2006) (Zhang, Wu & 

Nevatia 2007) to more sophisticated non-linear Support Vector Machines 

(Mohan, Papageorgiou & Poggio 2001) (Munder & Gavrila 2006). Recent 

approaches for pedestrian classification rely on part-specific (component-

based) features instead of seeking full-body descriptive features. Examples of 

this approach are (Mohan, Papageorgiou & Poggio 2001) (Sidenbladh & Black 

2003) (Alonso et al. 2007). Component-based features have the advantage of 

requiring fewer training examples and having the potential to overcome 

partial occlusion. This advantage is however compromised by model 

complexity, computational cost, and degraded performance in low-quality 

images.  

Pedestrian Tracking 

The third and final step is pedestrian tracking. Tracking involves the 

assignation of various pedestrian objects in successive images to a common 

sequence, commonly called a track or a trajectory4. One elementary approach 

                                                 
4
 In this thesis, the term road user trajectories, opposed to tracks, is used when referring to the 

extrapolation of road user positions. 
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for pedestrian tracking relies on the geometry and dynamics of pedestrian 

objects detected in a sequence of frames (Gavrila & Munder 2007). There is 

however more tracking-relevant information in a sequence of pedestrian 

images. Following reasoning similar to pedestrian classification, a mixture of 

features can be used for the assignment of pedestrian objects to a common 

track. Appearance models have been used in conjunction with geometry and 

dynamics in a significant number of applications, for example (Sidenbladh & 

Black 2003) (Zhao & Nevatia 2004) (Ramanan, Forsyth & Zisserman 2005) 

(Munder & Gavrila 2006) (Wu & Yu 2006)  (Wu & Nevatia 2007) (Zhang, Wu 

& Nevatia 2007).  

In the preceding categorization of pedestrian detection and tracking, the two 

steps were presented in a sequential and apparently separate form. It is 

arguable that discriminative features of pedestrian objects can be extracted by 

analyzing the sequence of positions. For example, simple maximum speed 

was used as a discriminative feature in a road user classification developed in 

this thesis (Ismail, Sayed & Saunier 2009). A peculiar motion rhythm 

exhibited by pedestrians due to their movement by ambulation, as opposed 

to rolling for vehicular objects, is a potential discriminative feature (Ran, 

Chellappa & Zheng 2006). Therefore, pedestrian classification can be 

enhanced by recovering information from pedestrian tracks, thus giving rise 

to an iterative mechanism for pedestrian classification and tracking. Another 

approach to link the two steps is the integration of both steps under a 

Bayesian framework that combines appearance features with pedestrian 

dynamics using single cues (Wu & Nevatia 2007) or multiple cues 

(Sidenbladh & Black 2003) (Ramanan, Forsyth & Zisserman 2005) (Munder & 
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Gavrila 2006). Particle filtering is a popular approach for integrating multiple 

cues by approximating a joint (combining multiple cues) posterior density by 

a mixture of weighted random samples (Khan, Balch & Dellaert 2005).  

Night-time Pedestrian Detection 

A particular concern for pedestrian safety arises in night-time conditions. 

Poor pedestrian visibility leads to an abnormally high rate of pedestrian-

involved collisions during night-time conditions. The literature contains 

several studies on night-time pedestrian detection and tracking. A method 

was proposed by Xu, Liu & Fujimura (2005) for night-time pedestrian 

detection and tracking from monocular infrared vehicle-mounted cameras. In 

this study, a model based on Support Vector Machines was used for detection 

along with a combination of Kalman Filter prediction and mean shift for 

tracking. A probabilistic model for night-time pedestrian detection was 

developed by Bi, Tsimhoni & Liu (2009) using distance and image metrics 

(clutter metrics, contrast, and blob size).  

Benchmark Performance Evaluation 

Despite the wide availability of public video and image libraries for testing, 

reported performance tests of various methods and algorithms are at 

variance.  For example, Enzweiler & Gavrila (2009) note the difference in 

performance reporting within the same study (Viola, Jones & Snow 2003) as 

well as in contrast between the previous study and (Leibe et al. 2007). To 

address the evident discrepancies of individual evaluations, Enzweiler & 

Gavrila 2009 conducted an independent evaluation of a number of selected 

pedestrian detection and tracking approaches. The dataset, called the Daimler 

benchmark library, contains several thousands of pedestrian images manually 
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extracted from video sequences. The number of positive pedestrian examples 

provided for training was 15,660 and the number of negative examples 

(images empty of pedestrians) was 6,744. The testing dataset contained 250 

pedestrian tracks recorded from a monocular vehicle-mounted camera. A 

dataset comprising 21,790 pedestrian images was used for testing. The 

following detection and tracking approaches were selected to represent, to a 

reasonable extent, the range of all potential approaches: 

1. Haar wavelet-based cascade (Viola, Jones & Snow 2003) 

2. Artificial neural networks (Woehler & Anlauf 1999) 

3. Histograms of oriented gradients (Dalal & Triggs 2005) 

4. Multi-resolution Texture-based classification (Gavrila & Munder 2007) 

The evaluation methodology was based on comparing the number of positive 

detections with the ground truth, whether for fact the concerned image 

contains a pedestrian. In this thesis ground truth is defined as a reference set 

of data that is considered free of detection, classification, and tracking errors. 

No 3D scene information was provided for pedestrian detection. The 

evaluation was conducted under varying settings in order to obtain a 

nuanced picture of the performance of each approach. Following the 

enumeration of the detection approaches in the previous list, the following 

conclusions were reported (Enzweiler & Gavrila 2009): 

 Approach 1 was the most reliable in low-resolution images 

(approximately 650 pixels/pedestrian). 

 Approach 3 provided the best performance in medium-resolution 

images (approximately 4500 pixels/pedestrian). 
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 Temporal integration which considers track-relevant information 

during detection phase improved the performance of all approaches 

for pedestrian detection. 

 Majority of false detections occurred in images containing non-

pedestrian vertical features such as poles or traffic signs. 

 For real-time5 trajectory analysis, approach 1 produced the highest 

detection rate6. 

2.3.2 Computer Vision Developments for Vehicle Detection 

The advantages of video sensors over other vehicle detectors have been 

recognized for decades. The rich and detailed information about road users 

and the traffic scene that video sensors provide exceeds traditional sensors 

such as radar, ultrasonic, and closed-loop detectors (Wang, Xiao & Gu 2008). 

Developing a functional real-time video-based traffic surveillance system has 

been an elusive target for a number of decades starting from later 1970s 

(Wang, Xiao & Gu 2008). In general, road user detection and tracking involve 

the same theoretical problem, irrespective to the type of the concerned road 

user. However, vehicle detection poses less challenges than pedestrian 

detection. Vehicles movements are relatively more regular and stereotypical 

than pedestrians. Vehicles are locally rigid with regular and often 

monotonous texture. Despite these differences, a categorization scheme 

similar to pedestrians can be adopted to organize various approaches to 

vehicle detection. Typical sequence of analysis steps starts with 1) hypothesis 

                                                 
5
 Processing time shorter than 250 millisecond for every evaluation of a pedestrian image. 

6
 Number of correct detections (positive detection of pedestrian images and negative detection of non-

pedestrian images) per unit time. 
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generation, 2) classification, and 3) tracking. A brief summary presented 

hereafter of work developed in the realm of computer vision on vehicle 

detection and tracking from still cameras is based on an earlier review 

(Saunier & Sayed 2006) and a recent review (Wang, Xiao & Gu 2008). 

Vehicle Hypothesis Generation 

The purpose of identifying the location of vehicle hypothesis is to focus on 

subregions of an image, or a frame in a video sequence, which potentially 

contains vehicles. This is similar to coarse-to-fine reasoning for general 

pattern recognition, in which more accurate and computationally intensive 

operations are applied on a subset of the entire search space. Three main 

categories for vehicle hypothesis generation were identified (Wang, Xiao & 

Gu 2008).  

The first category is frame subtraction which identifies subregions of the 

image at which there is an inter-frame change in the image value. These 

differences are typically evaluated at a block level instead of pixel level in 

order to improve robustness to image noise (Paragios & Deriche 2000). The 

main advantage of this approach is that it is not necessary to pre-define or 

learn a model for the scene or typical vehicle appearance. The main drawback 

of this approach is its critical sensitivity to the particular selection of a time 

interval to calculate the inter-frame difference. While shorter time intervals 

enable more precise vehicle localization, it may exclude stationary or slow-

moving vehicles. The adverse effect of long time intervals is the reduction of 

the detection and tracking precision.  
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An important approach in the first category is based on statistical testing for 

inter-frame differences. This approach assumes that pixel-wise changes are 

caused by a moving object. To obtain accurate detection using this approach, 

the moving objects should be sufficiently textured and traverse large 

displacements. Dedicated spatial-temporal detectors have been adopted to 

compensate for this drawback (Paragios & Deriche 2000). Another important 

variant of this category is Markov Random Field methods. This approach 

attempts to limit the requirement for prior knowledge of the vehicle size by 

including the latter in a statistical estimation process (Odobez & Bouthemy 

1995).  

The second category for vehicle hypothesis generation contains the popular 

approaches for motion detection using background-foreground segmentation 

- a shorthand name for this category is background segmentation. The idea of 

background segmentation is to subtract the current image of the monitored 

scene from what it would look like had no road users been present. If a 

suitable background learning approach is adopted, background segmentation 

can provide remarkable performance. The main challenges for learning 

background models include variability of scene illumination, shadows, 

stationary road users that could blend to the background, and adverse 

weather conditions. Various approaches for background learning have been 

proposed and successfully adopted for vehicle detection including: frame 

average (Odobez & Bouthemy 1995) and minimum and maximum intensity 

background model (Paragios & Tziritas 1999). These two approaches are 

critically prone to embed stationary vehicles to the background model. An 

approach for vehicle hypothesis generation that benefits from the 
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stereotypical vehicle movement, especially the delineation of traffic lanes, is 

virtual loop detectors (Pang, Lam & Yung 2004). Any abrupt change in image 

value within the virtual loop detectors triggers a vehicle hypothesis. If the 

shortcoming of requiring human localization of virtual loop detectors is 

ignored, this approach becomes one of the most efficient and accurate in this 

category. A well practiced commercial application of his method is the 

Autoscope system (Michalopoulos 1991). 

One of the most popular approaches for background segmentation is 

modelling pixel values of the background model as mixture of Gaussians 

(Stauffer & Grimson 1999). This approach assumes that the time-series of 

pixel values is drawn from an independent mixture of Gaussian (Normal) 

distributions. The pixel-level model is updated online, thus enabling effective 

real-time applications. Each pixel is evaluated to determine whether this 

Gaussian, which most properly describes its current value, belongs to the 

background model. The incidence or relative frequency of a particular 

Gaussian model at a specific pixel determines whether it belongs to the 

background model.  

Vehicle Classification 

After identifying a vehicle hypothesis, it is classified into a vehicle or a non-

vehicle object. Three main approaches for vehicle classification can be 

identified (Wang, Xiao & Gu 2008). Notable of which are knowledge-based 

methods which classify a vehicle hypothesis based on a priori knowledge of 

characteristic vehicle features. Notable of distinctive vehicle features are 

shadows, edge orientation (Moon, Chellappa & Rosenfeld 2002) (Tsai, Hsieh 
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& Fan 2007), texture (Kalinke, Tzomakas & Seelen 1998), image gradient (Tan 

& Baker 2000), 3D pose model that encapsulates the vehicle hypothesis (Costa 

& Shapiro 2000) (Lou et al. 2005), wheels (Iwasaki & Kurogi 2007), and motion 

patterns (Ismail, Sayed & Saunier 2010). The last approach was extensively 

used in this thesis and is described in more detail later in Chapter 6.  

Vehicle Tracking 

There is no methodological difference between approaches for vehicle 

tracking and general methods of object tracking. The latter is documented in 

several reviews in the realm of computer vision. Various object tracking 

approaches can be classified into four major groups (Liu, Wu & Zhang 2008) 

(Saunier & Sayed 2006): 1) region-based Tracking, 2) feature-based tracking, 

3) contour-based tracking, and 4) model-based tracking. Note that there are 

common elements in tracking approaches and earlier steps (hypothesis 

generation and vehicle classification). This is explainable by the fact that there 

is no clear separation of the previous steps and various approaches lie on 

their boundaries.  

Region-based tracking depends on the extraction of connected subregions 

(blobs) of the image as holistic objects. Most methods of region identification 

rely on background segmentation. The assignment of blobs identified in 

image frames to a single track is most commonly performed using Kalman 

Filters (Badenas, Sanchiz & Pla 2000) (Veeraraghavan, Masoud & 

Papanikolopoulos 2003) (Wang & Lien 2008).  

Feature-based tracking, the method of choice in this thesis, is concerned with 

the tracking of local features, such as salient points, corners, and edges. The 
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main advantage of this approach, similar to component-based pedestrian 

tracking, is the robustness to partial occlusion. A successful application was 

demonstrated by Hsieh et al. (2006) for vehicle tracking using line features 

coupled with Kalman Filter for position prediction. In another application, the 

popular Kanade-Lucas-Tomasi Feature Tracker (Lucas & Kanade 1981) was 

used by Saunier & Sayed (2006) for detecting and tracking features tracked on 

moving vehicles. 

Active contour approaches (snake models) rely on detecting and tracking a 

model of the vehicle outline or contour. The vehicle contour is dynamically 

updated in order to fit the observed vehicle outline. Contour tracking is 

computationally more efficient than previous vehicle tracking approaches by 

virtue of the simplicity of describing contour models. Successful applications 

of contour-based tracking have been demonstrated (Peterfreund 1999) 

(Paragios & Deriche 2000) (Zhou, Gao & Zhang 2007).  

The fourth approach to object tracking is the model-based. First, an accurate 

3D geometric model is established for the detected vehicle. Second, the 3D 

models are projected on the image plane by knowledge of its dimensions and 

orientation of movement along with camera parameters. Projected models are 

then tracked in subsequent frames. Successful application of this approach 

was previously demonstrated (Sminchisescu & Triggs 2001). The major 

drawback of this approach is the requirement for detailed information on 

vehicle geometry.  



57 

 

2.4 Selected Applications in Transportation 
Engineering 

The following sections review a number of selected studies found in the 

transportation engineering literature that include applications of computer 

vision techniques. Subject areas such as pavement data collection, 

autonomous vehicle control, and license plate recognition were deemed 

outside the scope of this thesis and therefore were excluded from this review.  

2.4.1 Road Safety Analysis 

The importance of video observation in road safety analysis cannot be 

underestimated. Video sensors enable the recovery of more information about 

traffic conflicts and collisions than police and insurance records. Several 

studies noted the benefit of video monitoring of collision events in providing 

insight into the contributory factors to collisions, e.g., (Conche & Tight 2006) 

(Elmitiny et al. 2010). It is also helpful to resolve conflicting evidence often 

reported from witnesses or collected from site. Despite the obvious benefit of 

video data demonstrated in this study, review of video data can become a 

burdensome task if conducted manually. Addressing this well-entrenched 

challenge is the main drive for this thesis.  

A novel methodology for traffic conflict analysis was proposed based on 

microscopic road user tracks (Saunier & Sayed 2007). The tracking accuracy 

required for this application exceeds the requirement for applications on road 

user detection and counting. To meet this accuracy requirement, feature-

based tracking was selected as the method of choice  (Saunier & Sayed 2006). 

In subsequent work, Saunier & Sayed (2007) demonstrated the feasibility of 
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using a clustering approach for traffic conflict detection using a model that 

combines K-means clustering with Hidden Markov Chain trajectory 

modelling. The correct detection accuracy for traffic conflicts was 100%. 

However traffic events that the authors were uncertain about being traffic 

conflicts were detected by the system at the expense of increased rate of false 

alarms. Despite the novelty of this work, it does not lead to a sequential 

development to the severity measurement of traffic events. The clustering 

techniques demonstrated in this work cannot be directly adapted for 

calculating objective measures of traffic conflict severity.  

The statistical significance of Post Encroachment Time (PET) as an 

explanatory variable in right-angle collision prediction models was 

successfully demonstrated (Songchitruksa & Tarko 2006). The authors also 

demonstrated the importance of PET count in discriminating various traffic 

safety levels within a particular location. A total of 16 signalized intersections 

were monitored, each intersection for 8 hours. PET measurements were 

automatically collected by aid of Autoscope system (Michalopoulos 1991). A 

selection was made for the counting of traffic events based on a PET threshold 

of 6.5 sec. It was not clear in the study what severity regimes this threshold 

separates. It was found that the combination of traffic volume and PET counts 

produced significant model coefficients. This proves the presence of safety 

information conveyed by PET counts in addition to traditional measures of 

exposure such as traffic volume.  

In a companion study Songchitruksa & Tarko (2006) proposed a novel 

approach for modelling collision frequency based on an extreme value 
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formulation. The continuum of crash severity measure was mapped using 

PET with negative values being interpreted as collisions. The evaluation of 

the calibrated extreme value model provided an evidence of the relationship 

between PET and collision frequency. Despite the originality of this study and 

the promising extensions thereof, it is challenged on theoretical grounds. PET 

is a temporal proximity measure that is incapable of comprehending the 

variable severity of collision events. In that, all collision events would possess 

negative PET, but the magnitude of PET in these cases is irrelevant to collision 

severity. In that, PET maps traffic events into two distinct and separate 

severity regimes that may not belong to a unique severity distribution. The 

use of extreme value theory could possess far more validity if the employed 

conflict indicator could map all traffic events, including collisions, into a 

single severity continuum.  

One of the key shortcomings of traffic conflict analysis based on simulated 

vehicle tracks, e.g., (Cunto & Saccomanno 2008) (Mehmood, Saccomanno & 

Hellinga 2001), is the questionable validity of normative driver behaviour 

models used in microsimulation for simulating driving mistakes that lead to 

traffic conflicts.  A novel driver behaviour model was proposed by Xin et al. 

(2008) for representing the imperfection of driving tasks including driver 

inattention and a detailed perception-response process. A total of 54 vehicle 

tracks that were involved in a total of 10 collisions were successfully 

replicated by the driver behaviour model. Vehicle tracks were extracted using 

NG-VIDEO (Kovvali, Alexiadis & Zhang 2007). This study represents an 

important development of traffic conflict techniques based on traffic 

microsimulation. Several issues were not treated in this study such as 
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sensitivity of calibrated parameters, there transferability, and extended 

validation for larger datasets that include other collision types, such as the 

datasets analyzed in previous work (Saunier, Sayed & Ismail 2010).  

2.4.2 Behavioural Analysis 

An example of behavioural analysis of pedestrian movement using computer 

vision techniques was developed by Chae & Rouphail (2008). The main aspect 

of pedestrian-vehicle interactions was pedestrian gap acceptance behaviour 

during crossing maneuvers at roundabouts. The data collected in this study 

were microscopic pedestrian and vehicle tracks. The video processing system 

was reported to achieve tracking accuracies for vehicles and pedestrians of 

92% and 90% respectively. The intersection space was divided into a set of 

subregions for more robust localization of the interacting road users. The 

maximum pedestrian volume using the monitored crosswalk was 16 

pedestrians/hour interacting with a maximum of approximately 1330 

vehicles/hour. This is a relatively small traffic volume and probably entails 

low-density crowd movement. Various measurements of pedestrian walking 

speed, critical gap, and driver yielding behaviour were provided. Despite the 

novelty of using computer vision techniques, the results reported in the study 

are of limited scope due to the low pedestrian and vehicle volumes. 

Malinovskiy, Zheng & Wang (2008) developed a methodology for road user 

tracking based on background segmentation for gray scale videos. The 

challenge of occlusion, in case of proximate movement, was addressed by 

keeping track of blob merging and splitting events. Composite objects 

composed of merged blobs were tracked as a coherent blob until splitting of 
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this blob was observed. After splitting, composite objects were dissected into 

constituent blobs which are matched to blobs before merging using size and 

colour distribution features. The validation results of pedestrian count and 

speed measurement were satisfactory with detection accuracy ranging from 

83% to 100%. The validation was conducted on pedestrian facilities with 

relatively low-volume (maximum 294 pedestrians/ hour). Other unavoidable 

shortcoming of approaches based on background segmentation is the 

inability to resolve occlusion or over-grouping if the merged objects do not 

split within the camera field of view. Another inevitable shortcoming is the 

inability to resolve over-grouping if merging of blobs lasted for long time. 

Lastly, background modelling algorithms are imperfect and prove unreliable 

in crowded scenes or when road users remain stationary for prolonged 

period of time.  

Malinovskiy, Wu & Wang (2008) demonstrated an application of the 

previously described pedestrian tracking system in measuring pedestrian 

walking speed. The homography matrix was calculated using a user-defined 

square that is drawn as it would appear in the video while being projected 

from the road surface. There is an unavoidable subjectivity in this definition 

since there is no guarantee that the user-defined square takes precisely this 

shape in reality. The pragmatic solution sufficed for this application which 

involved a traffic scene familiar to the authors. The approach used for 

classifying road users into pedestrians and non-pedestrians was based on the 

jaggedness or the rhythm of road user speed profiles. A satisfactory 

classification performance was observed with 2.6% false classification rate.  



62 

 

This classification approach is of limited general validity since tracking noise 

can cause what is an apparently rhythmic movement. Road user periodic 

movement has been investigated in this thesis and no satisfactory 

classification performance, into pedestrians and non-pedestrians, was 

obtained. This could be explained by the open and mixed-use traffic scenes 

that were monitored in this thesis. However, the study by Malinovskiy, Wu & 

Wang (2008) provides another evidence of the practical validity of approaches 

based on background segmentation for scenes featuring low traffic volume 

and adequate pixel representation of road users.  

2.4.3 Performance Evaluation 

Prevedouros et al. (2006) conducted one of the key studies on performance 

evaluation of video detection systems for the purpose of incident detection. 

Video detection systems were run for a period of 96 days and monitoring the 

tunnels of the Attica tolled roadway facility in Athens. The findings of this 

study were multitude and mixed, most notable of them are sensitivity to 

traffic volume, camera set-up position, and illumination. There was varied 

performance of different systems and a general conclusion was rightfully 

drawn as to the immaturity of commercial applications of computer vision 

technologies.  

Medina, Benekohal & Chitturi (2009) evaluated the performance of 

automated vehicle detection technology for an extended observation period 

of 10 hours distributed over different times of the same day. The most 

favourable illumination conditions, and also used as base condition, was a 

cloudy noon. The main source of errors in dawn time was the false detection 
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caused by the reflection of light from adjacent lanes. More pronounced false 

detection errors were observed (5-53%) in sunny morning conditions due to 

shadows extending over adjacent lanes. An error pattern similar to dawn 

conditions was observed for dusk conditions. At night, headlight reflection 

caused false detection problem due to light reflection. The results of this 

study were corroborated by work by Middleton et al. (2008). In this study, the 

authors noted the critical sensitivity of video detection systems to camera set-

up position and variation in illumination during the day.  

Chitturi, Medina & Benekohal (2010) evaluated the variability of the 

performance of three video detection systems. The automated vehicle 

detection systems were tested for a total duration of 40 hours. All vehicle 

detection systems committed false detections at rates from 0.2% to 36%. The 

significant impact of shadows on system performance was evidenced by the 

high false detection rate in sunny conditions. The missed detection rate of all 

systems was remarkably low.  

2.4.4 Traffic Performance Monitoring 

Cheek, Hawkins & Bonneson (2008) reported an evaluation of a computer 

vision technology for the automated measurement of queue lengths upstream 

a signalized intersection. The study emphasized the advantage of video 

sensors over other intrusive sensors for the purpose of automated 

measurement of queue lengths in terms of maintenance and installation costs. 

Video data was recorded by an array of video sensors that covered the 

concerned intersection approach in conjunction with the study region 

upstream its road segment.  
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One of the important computer vision developments in the transportation 

literature is a wide-area video detection system called Autoscope. The system 

is based on the concept of virtual loop detectors. This system was initiated at 

the University of Minnesota in 1984 (Michalopoulos 1991) (Dickmanns 2002) 

and is used in a large number of transportation applications. 

Using the Autoscope technology, Cheek, Hawkins & Bonneson (2008) 

carefully defined virtual loop detectors within the study region in order to 

capture queue fluctuation. A total of 24 hours of data was collected and 

analyzed. Virtual detectors were situated every 15.24 m (50 ft) for a distance of 

122 m upstream the stop line. The detectors phase reading would feed a 

queue estimation algorithm based on Kalman Filters. A total of 500 

measurement points were observed and a moderate agreement between 

predicted and observed queue lengths was found. No explanation was 

provided for the cases of disagreement. It is likely that prediction errors were 

caused by issues in the detection accuracy.  

The accuracy of automated pedestrian counting techniques in outdoor 

environment was critically investigated (Greene-Roesel et al. 2008). Computer 

vision was one of the technologies included in the evaluation. The main 

advantages of computer vision technologies reported in this study were: wide 

area coverage, potential of reliable performance in crowded conditions, 

amenability for manual review for additional information, inexpensiveness of 

hardware, and the ability to keep a permanent record of data. The main 

shortcomings of computer vision technologies were: the focus of most 

commercial products on indoor settings, the challenge of counting in 
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crowded conditions, and the performance vulnerability environmental 

factors.  

Hu et al. (2008) developed a computer vision application for the detection and 

classification of road users. The technology is based on background 

segmentation. The features used in road user classification were the minimum 

distance from the blob centroid to points on its perimeter. Road user 

classification was further refined using Kalman Filters in order to enforce the 

predominant classification. The study reported 98% accuracy of vehicle 

detection and classification and 70% accuracy for pedestrians and bikes.  

Hubbard, Bullock & Day (2008) raised the important limitation in current 

models for the prediction of pedestrian level of service at signalized 

intersection, namely the model in the Highway Capacity Manual (HCM 

2000). These models do not consider the microscopic interaction between 

pedestrians and motorized traffic. For example, pedestrian facilities that suffer 

significant interruption by right-turn motorized traffic may be rated as 

possessing a level of service of A. The authors cited empirical attempts to 

incorporate pedestrian-vehicle conflicts into level of service models, e.g., 

(Zhang & Prevedouros 2003) (Akin & Sisiopiku 2007). However, this attempt 

faces the same challenges of aggregate and empirical measures of pedestrian-

vehicle conflicts in lacking the required level of details to adequately describe 

road user behaviour. For example, volume-based measures of pedestrian-

vehicle conflicts fail to capture the genuine hazard of a pedestrian crossing 

when the latter volume is low. These models also fail to comprehend the 
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difference between the interaction of multiple pedestrians with a single 

vehicle and a single pedestrian with multiple vehicles.  

A novel computer vision system was developed for automated measurement 

of vehicle speed and traffic volume based on a hybrid background 

segmentation and Kanade-Lucas-Tomasi feature tracker (Kanhere et al. 2007) 

(Lucas & Kanade 1981). The background model was learnt using the median 

value of image pixels. The developed system was capable of functioning at 

ground-level camera setting and of providing a detection accuracy of 98%. 

The authors focused on vehicle front base as a representative geometry for the 

vehicle foreground component.  Furthermore, the dimensions of foreground 

blobs were used to classify motorized vehicles into passenger cars and trucks. 

While testing of this approach was conducted on a limited video sequences 

with total duration of 45 min, it is not expected that reliance on foreground 

components only will provide reliable classification results.  

Qi, Tang & Smith (2006) demonstrated a successful application of computer 

vision techniques for the automated detection of roadway shoulder activities. 

For a camera set on a light pole, a reliable coverage length of 30-60 m was 

obtained. The correct detection rate ranged from 80-100% for extended test 

duration of 103.2 hours.  

2.4.5 The Next Generation Simulation (NGSIM) Program 

The need for microscopic data for the development, calibration, and 

validation of traffic simulation models has been well recognized in the 

literature. With the advent of more capable computer vision techniques, it has 

become the method of choice for the Federal Highway Administration of the 
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United States for satisfying this long-awaited data need. The NGSIM program 

was instituted for the purpose of collecting microscopic vehicle tracks in 

order to develop and calibrate microscopic traffic simulation models. Video 

data was collected at three locations in California for duration of 1-3 days for 

8 hours per day. The publicly available dataset contains vehicle tracks 

extracted from a 45 min subsequence. Vehicle tracks were extracted using an 

automated video analysis tool (NG-VIDEO7) which also allows human 

observer to correct for tracking errors.  

The NGSIM public dataset of vehicle tracks spawned a series of important 

studies on traffic simulation, for example (Hamdar, Treiber & Mahmassani 

2009) (Izadpanah, Hellinga & Fu 2009) (Kyte et al. 2009) (Thiemann, Treiber & 

Kesting 2008). The demand for these studies has been latent for decades. It is 

foreseeable that NGSIM data will continue to support similar developments 

in the future. Despite the wealth of data afforded by the NGSIM program, the 

temporal and geographic scope of data collection is hardly representative of 

the tremendous variety of traffic conditions and driver behaviour patterns 

that are typically modeled using microscopic traffic simulation. The 

transferability of the NGSIM data to other locations and the 

representativeness of its sample size have not been thoroughly  discussed in 

the literature. The development of more accurate and more efficient computer 

vision technologies will likely enable more extensive data collection and 

ultimately the development of enhanced traffic simulation models.  

                                                 
7
 NG-VIDEO: Next Generation Vehicle Interaction and Detection Environment for Operations. 
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2.4.6 Traffic Simulation 

In one of the earliest applications of computer vision techniques for the 

development of car-following models, Ahmed (1999) developed an improved 

model for lane change behaviour at traffic intersections. In order to estimate 

various model parameters, real-world lane changing behaviour was 

recovered from video observations. The data extracted from video 

observations and used in model calibration and validation was mainly 

composed of vehicle tracks. The extraction of vehicle tracks was conducted 

using dedicated image processing software in automated as well as semi-

automated fashion. The automated and semi-automated extraction of road 

user tracks was conducted within a pre-specified region of interest that 

covered 150-200m of a four-lane carriageway for a total observation duration 

of 2 hours. Automated data collection was activated in uncongested 

conditions. The computer vision technology used in the concerned image 

processing software was mainly based on region-based vehicle tracking using 

background segmentation. Semi-automated data collection was conducted by 

aid of human observers in congested conditions. The pace of semi-automated 

data collection was 30 person-hours per one minute of video data. The 

developed and calibrated model exhibited improved performance over legacy 

models in predicting traffic volume passing through a 1.83km highway 

segment in contrast with field observations.  

While methodologically innovative, the generality of the developed model is 

challenged by the limited observational period of 2 hours. The likely 

explanation of this limitation is inherent to vehicle tracking approaches based 
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on background segmentation. These approaches typically provide poor 

tracking quality in congested traffic conditions. 

Choudhury & Ben-Akiva (2008) proposed and calibrated an intersection lane 

choice model. Various path-planning and maneuverability choices were used 

to constitute the model. Model development and validation were conducted 

using microscopic vehicle tracks from a 488m highway segment of US 

highway 101 as part of the FHWA’s NGSIM project. Model calibration was 

conducted using aggregate vehicle trajectories recorded for 22 min. Model 

validation was conducted using aggregate vehicle trajectories recorded for 

subsequent 10 min. Promising results were obtained by comparing predicted 

traffic volume with observations. The observations period is however limited 

in time and the level of data aggregation underutilized the details abound in 

microscopic vehicle tracks.  

One of the original studies on the calibration of pedestrian simulation models 

using microscopic pedestrian tracks was conducted using computer vision 

techniques (Hoogendoorn & Daamen 2006). The authors argued that the 

reliance on macroscopic data, such as traffic flow, speed, and density, might 

not lead to the optimal model. For example, the heterogeneity of pedestrian 

characteristics cannot be represented by macroscopic data. The authors posed 

a more generalized argument that model calibration and validation should be 

conducted at the same level of aggregation that the simulation model uses to 

simulate pedestrian movement. Microscopic pedestrian tracks were extracted 

from an indoor video observation of pedestrian movement within a 10m x 4m 

area and navigating a 1m wide bottleneck (Hoogendoorn & Daamen 2003). A 



70 

 

particularity of the monitored pedestrians was their wearing colour helmets 

in order to aid tracking. The computer vision technology developed to extract 

microscopic tracks was a combination of background segmentation, colour 

detection, and clustering for pedestrian detection and Kalman Filtering to 

refine pedestrian tracks. Subsequent surveys of participating subjects showed 

that the experimental environment had not affected their movement that was 

arguably naturalistic. The generality of this study is limited due to the 

considered sample size and the particular navigational tasks presented to the 

participants. Furthermore, automated pedestrian tracking was conducted in 

an especially controlled setting, such as the use of coloured helmets as 

positional markers. Applying the same computer vision technique with the 

same level of success in open and mixed-use traffic settings is probably 

challenging.  

Hoogendoorn et al. (2002) presented an original study on the use of computer 

vision techniques to extract microscopic vehicle tracks for in-depth 

behavioural analysis and improvement to car-following models. They argued 

that other data collection systems such as inductive loops, pneumatic tubes, 

and differential GPS analysis are incapable of extracting microscopic vehicle 

tracks with adequate accuracy. A high-definition digital camera was attached 

to a helicopter that hovered above the study area. Data collection lasted 2 

hours and covered a 200m long highway segment. After conducting image 

rectification to account for perspective, the background model was estimated 

as the median of each frame pixel value. After detecting isolated foreground 

components, vehicle blobs, a geometric model was estimated to encapsulate 

every blob. Validation was conducted on 45 s and 52 s video sequences with a 
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correct detection rate of 98% and 90% respectively. Using the same data, 

Ossen & Hoogendoorn (2005) discovered significant heterogeneity in driver 

characteristics. The heterogeneity of driver characteristics was evident in the 

simulation model parameters and predicted driver behaviour. An important 

message taken from the aforementioned work was that heterogeneity of 

driver behaviour could only be explored in depth using microscopic vehicle 

tracks.  

Previous studies performed at TU Delft8 constitute an important development 

of traffic simulation models by utilizing computer vision technologies. The 

length of the video sequences, the elementary use of background 

segmentation techniques, the special camera setting on a helicopter, and the 

strictly indoor monitoring of pedestrian movement are the main limitations in 

this work. While it is understandable that these special precautions were 

instituted to improve the tracking quality, it came at the expense of the 

transferability and cost of the data collection procedure. Attempts to address 

these challenges were made in this thesis.  

Hoseini & Vaziri (2006) proposed a driver behaviour model that combines 

lane-specific car-following models with lane change models. The model is 

arguably useful for driving cultures with weak or non-existent lane 

discipline. Using a cellular automate formulation, the proposed model places 

all movement directions along the same continuum that spans lateral and 

longitudinal movement. In order to calibrate and validate the proposed 

model, microscopic vehicle tracks were extracted from video observations. 

                                                 
8
 Delft University of Technology: Department of Transport & Planning 
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The algorithm used is based on background segmentation with the 

background modeled as the mean pixel value. Different registration lines 

were defined to detect the presence of foreground components within the 

monitored highway segment. The observation period extended for a total of 1 

hour. The calibrated model was validated against average speed and density 

observations and satisfactory predictive power was reported.  

2.4.7 Other Applications 

There is a growing body of work on the application of computer vision 

techniques in traffic control. Shelby et al. (2008) demonstrated the feasibility of 

using automated video detection technologies for the deployment of adaptive 

traffic signal system. The proposed system was reported to successfully 

monitor traffic conditions and automatically update signal timing. Based on 

field tests conducted in four different sites, there was a substantial reduction 

in vehicle delay compared to legacy systems. Sun & Rescot (2008) studied the 

use of a novel video sensor, omni-directional camera, for the purpose of traffic 

monitoring at roundabouts. Single camera equipped with a dome mirror is 

capable of observing all turning movements within the roundabout. The 

accuracy of vehicle detection was approximately 90%. Boillot, Midenet & 

Pierrelée (2006) presented a novel traffic control algorithm for urban 

intersections based on accurate and real-time traffic data monitoring using 

computer vision techniques. Different traffic performance measures of the 

proposed traffic control algorithm were compared to reference traffic control 

systems proving a clear advantage.  
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Another important venue for data collection is the automated recovery of 

road features. This is particularly important for large-scale road network 

evaluation and for mapping applications. A novel image processing 

application was developed for the automated recovery of road surface 

information from video logs (Wu & Tsai 2006). Pavement data included the 

automated detection of the location of shoulder marking, shoulder width, and 

travel lane width. In a sequel study, the authors demonstrated a successful 

application of the developed technology in the recovery of horizontal curve 

radii (Tsai, Wu & Wang 2010). Another related application is the automated 

recovery of road inventory data. For example, several studies have been 

conducted on the subject of automated recognition of road signs, e.g.,  (Fang 

et al. 2004) (Hu & Tsai 2009) (Wang, Hou & Gong 2010) (Wu & Tsai 2006) (Baro 

et al. 2009). 

Other selected applications of computer vision techniques include vehicle re-

identification for travel time estimation and origin-destination surveys (Sun et 

al. 1999) (O’Kelly et al. 2005), validation of traffic noise models based on 

providing more accurate traffic volume and speed measurements (Herman & 

Nadella 2005), and anomaly detection (Velastin, Boghossian & Vicencio-Silva 

2006). The last application is the subject of Chapter 8 in this thesis.  

2.5 Privacy Issues 

Douma, Frooman & Deckenbach (2008) argued that the emerging use of 

advanced computer vision technologies brings about novel legal challenges to 

the discipline of transportation engineering. The challenges arise from 
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privacy implications of misuse of or the right to retain gathered data. Privacy 

is a fundamental element of human rights. The common-law jurisdiction of 

the US and Canada potentially has no clear regulatory structure to assist 

concerned parties in utilizing the gathered data without infringing on the 

rights of privacy afforded to monitored road users (Douma, Frooman & 

Deckenbach 2008). Data that would be gathered only through intrusion by 

legacy data collection methods can now be collected using advanced video 

surveillance techniques (McClurg 1995). The legal mechanism that protects 

against intrusion into a private sphere may not be precisely applicable to 

computer vision technologies even if the outcome is identical. The legal 

challenges that could reasonably arise are: vicarious criminal liability 

imputable to the institution overseeing the technology testing or deployment 

and tort liability due to privacy infringement.  

Five aspects of privacy were reported by Douma, Frooman & Deckenbach 

(2008) which were adopted from earlier work (Solove 2006). The aspects of 

life protected by privacy regulations are: spatial, behavioural, decisional, 

bodily, and informational. Spatial privacy refers to the delineation of private 

and public places. Behavioural and decisional privacy refers to the rights to 

protect the disclosure of certain actions or decisions respectively. Bodily 

privacy refers to a person’s body. Informational privacy refers to the 

protection of personal information during data collection as well as the 

protection of gathered personal information. The aspects of privacy 

endangered by computer vision technologies, and arguably by all Intelligent 

Transportation Systems, are behavioural and informational. 
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The legal reasoning developed by Douma, Frooman & Deckenbach (2008) in 

the case of Intelligent Transportation Systems in the United States will be 

adapted in the following sections specifically to computer vision techniques. 

It is plausible that the legal reasoning can be transferred to other legal 

systems and more proximately to other common-law jurisdiction such as 

Canada. The legal discussion of the police use of computer vision 

technologies for law enforcement is considered outside the scope of this 

review. Following are important doctrines that can be inferred from a number 

of US Supreme Court decisions (Douma, Frooman & Deckenbach 2008): 

a. The right to collect and use public data should be accompanied by a 

statutory or regulatory duty to prevent unwarranted disclosure. 

b. The protection of personal privacy is comparable to the protection of 

life and property.  

c. The concept of expected privacy limits the inclusion of the inner 

vehicle space under the privacy framework that covers homes and 

private areas. Expectation of privacy does not exist for anything put in 

“plain view”. That plain view exclusion obviously covers vehicle and 

pedestrian movement from a place to another.  

d. When data is in “general public use”, the use of advanced computer 

vision technology is legitimate if the observed subjects are visible for 

the general public eye.  

e. It is not clear whether the identity of the person driving a vehicle is a 

legitimate type of data.  

f. When video data is collected by private entities, issues of privacy are 

covered by tort law. The relevant doctrine is the protection against 
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“false light”, or unexpected publicity. In keeping with this doctrine, 

privately held data may not be shared with public entities or other 

private entities.  

g. The Video Voyeurism Prevention Act enacted in 2004 in the United 

States9 criminalizes the taking or distributing of some types of 

photograph without the subject’s consent. It appears that the main 

concern of this act however lies outside the realm of traffic monitoring 

or computer vision applications.  

Extensive treatments of the subject of privacy in face of accelerated 

development in video surveillance technology have been developed in 

academia. The concept of privacy in public has been developed to grant some 

degree of privacy to public activities that are expected to be viewed by the 

public eye. The treatments also advocate a fuzzy definition of privacy or 

alternatively the degree of privacy. Many treatments reject the legal 

equivalence of unaided visual observation in the public and video 

surveillance on grounds of the level of details and permanent storage of video 

data. 

In general, there is a reasonable agreement and sound judgement behind 

egregious privacy infringement using video cameras. The tort doctrine of 

“false light” can reasonably cover illegitimate sharing of privately held video 

data with the public. However, public inquiry into privately held video data 

as well as the right of private entities to retain video data collected from 

public venues is examples of issues that are not clearly covered by a legal 

                                                 
9
 Public Law108-495 
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doctrine. Douma, Frooman & Deckenbach (2008) note the similarity between 

the required legal developments to regulate the new technological 

developments in video surveillance and the development in copyright law to 

meet the then new technology of chip design.  

In so far as development in computer vision technologies, traffic monitoring, 

and ITS technologies are anticipated, it is important to be aware of legal 

developments that determines what information is private and to what 

degree. 
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333   
RECOVERING REAL-WORLD ROAD USER 

POSITIONS 

3.1 Background 

The research work presented in this thesis relies mainly on video sensors as 

the main source of data acquisition. The use of video sensors to collect traffic 

data, primarily by tracking road users, has several advantages: 

1. Video recording hardware is relatively inexpensive and technically less 

challenging to use than other positional sensors.  

2. A permanent record of the traffic observations can be kept for 

archiving, future analysis, and human review. 
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3. Video cameras are often already installed and actively monitoring 

traffic intersections. 

4. Video sensors cover a wide field of view. In many instances, one 

camera is sufficient to monitor an entire intersection, especially if the 

video sensor is placed at a vantage point. 

5. Video sensors offer rich and detailed data of road user movements. 

6. Techniques developed in the realm of computer vision renders 

automated analysis of video data feasible. Process automation has the 

advantage of reducing the labour cost and time required for data 

extraction from videos.  

In a typical video sensor, observable parts of real-world objects are projected 

on the surface of an image sensor, in most cases a plane. An unavoidable 

reduction in dimensionality accompanies the projection of geometric 

elements (points, lines, etc.) that belong to a 3-dimensional Euclidian space 

(world space) onto a 2-dimensional image space. In order to recover the 

positions of various features that appear in the video, geometric elements 

must be mapped back from image space to the world space. What makes this 

step necessary is that metric measurements are only possible in terms of 

world space coordinates. The process by which this mapping is established is 

called hereafter camera calibration.  

The recovery of real-world tracks of road users supports all forthcoming 

applications presented in this thesis. More precisely, the measurement of 

pedestrian walking speed requires accurate estimation of camera parameters 

given the relatively slow speed at which pedestrians move. Furthermore, 
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road user positions must be estimated at high accuracy in order to enable 

reliable measurement of their spatial and temporal proximity. As mentioned 

earlier, the practical significance of the camera calibration approach presented 

in this chapter reaches beyond the scope of applications in this thesis. In 

particular, conducting road user tracking in real-world coordinates can 

improve the accuracy of the tracking performance by correcting for 

perspective effect and other distortions due to projection on the image plane1. 

Camera calibration concerns the estimation of camera parameters sufficient to 

back-project objects from the image space to a pre-defined surface in the real-

world space. In general, the camera model can be parameterized by a set of 

extrinsic and intrinsic parameters. Extrinsic camera parameters describe 

camera position and orientation. Intrinsic camera parameters are necessary to 

convert observations to pixel coordinates. Typically, both extrinsic and 

intrinsic parameters are estimated in the calibration process.  

Three major classes of camera calibration methods can be identified. First are 

traditional methods, based on geometric constraints either found in a scene or 

synthesized from a calibration pattern. The second class contains self-

calibration methods that utilize epipolar constraints on the appearance of 

features in different image sequences taken from a fixed camera location. 

Camera self-calibration is sensitive to initialization and can become unstable 

in case of a special motion sequence (Sturm 1997) and in the case where 

intrinsic parameters are unknown (Bougnoux 1998). Active vision calibration 

                                                 
1
 Refer to section "Benchmark Evaluation" and evaluation work in (Enzweiler & Gavrila 2009). 
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methods constitute the third class for camera calibration. They involve 

calibration under controlled and measurable camera movements. 

Only the first class of methods lends itself to traffic monitoring in which 

cameras have been fixed with little knowledge of their intrinsic parameters 

and control over their orientation. This is typically the case of already 

installed traffic cameras. The second class concerns self-calibrating cameras 

with prior knowledge of camera intrinsic parameters. 

Examples of other classification methods include linear and non-linear, 

explicit and implicit (Wei & Ma 1994). Non-linear methods enable a full 

recovery of intrinsic parameters, as opposed to linear methods. Both methods 

may be combined, e.g., in (Tsai 1987), by obtaining approximate estimates 

using linear methods with further refinements using non-linear methods. 

Inferring camera parameters from implicit transformation matrices obtained 

using implicit methods is susceptible to noise (Phong et al. 2005). Limiting 

calibration to extrinsic parameters gives rise to the topics of pose estimation 

(Zhang 1994).  

Despite numerous studies on the topic of camera calibration, the following 

challenges can arise due to particularities of urban traffic scenes: 

1. Many of the photogrammetry and Computer Vision techniques 

available in the literature do not apply due to differences in context, 

hardware, and target accuracy. Powerful and mature tools such as the 

self-calibrating bundle in the existing literature are not always possible 

to apply for relatively close-range measurements in urban traffic 
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scenes. this is especially the case for images taken by consumer-grade 

cameras containing noisy or incomplete calibration data (Remondino 

& Fraser 2006). In addition, other methods in photogrammetry and 

Computer Vision depend on observing regularization geometry or a 

calibration pattern. In the typical cases where video cameras are 

already installed to monitor a traffic scene, or when only video records 

are available, this procedure cannot be directly applied. 

2. Many of existing techniques rely on parallel vehicle tracks, in lieu of 

painted lines, for vanishing point estimation (Schoepflin & Dailey 

2003) (Kanhere, Birchfield & Sarasua 2008). Vehicle tracks can be 

extracted automatically using computer vision techniques. These 

methods are particularly useful for self-calibration of pan-tilt-zoom 

cameras used for speed monitoring on rural highways. However, the 

vehicle motion patterns in urban intersections are not prevalently 

parallel. An example is shown in Figure 3.1a and 3.1b.  

3. Much of the regularizing geometry in traffic scenes include elements 

such as road markings that may be altered in many ways. Regularities 

of traffic scenes provide a wealth of cues to inform the camera 

calibration process. In this study, one of the monitored traffic sites, BR, 

exhibited in Figure 3.2a was repainted after the orthographic image 

was taken, making point localization difficult. Using only point 

correspondences in this case is unreliable.  

4. A significant number of camera calibration methods rely on the 

observation of one or more sets of parallel co-planar lines. By 

estimating the points of intersection of these sets of lines, i.e., vanishing 
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points located at the horizon line of the plane that contains these lines, 

camera parameters can be estimated. In urban traffic environments, the 

field of view of the camera can be too limited to allow the depth of 

view necessary for the accurate localization of the vanishing points, as 

shown in Figure 3.2a. To achieve desirable accuracy, camera calibration 

must include additional geometric information.  

5. In many cases, cameras monitoring urban traffic intersections are 

already installed. Many of these cameras function as traffic surveillance 

devices, a function that does not necessarily require accurate 

estimation of road user positions. Given the installation cost and 

intended functionality, in-lab calibration of intrinsic parameters, e.g., 

using geometric patterns, can be difficult.  

a) Vehicular motion patterns 

 

b) Pedestrian motion patterns 

 

Figure 3.1  The difficulty of relying on the automated extraction of road user 

tracks. Figure a) shows the motion pa tterns of vehicles at a busy intersection in 

Chinatown, Oakland-California (sequence OK in Table 3.1). Figure b) shows 

pedestrian motion patterns.  
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In general, the proposed camera calibration approach was mainly motivated 

by issues encountered in case studies of video sequences presented in 

Chapters 4 to 8 as well as other research work on automated road safety 

analysis outside the scope of this thesis. The particular issues are: the 

repainting of traffic pavement marking, and the inability to estimate 

accurately vanishing point(s) because the field of view is too limited or non-

linear distortion is too pronounced. Table 3.1 provides a summary of the 

camera calibration case studies successfully carried out in the course of this 

thesis. More detailed description of the practical problems encountered in this 

study is provided in subsequent sections. As shown in Figures 3.1a and 3.1b, 

the difficulty of relying on road user trajectories is represented by the lack 

parallelism of pedestrian as well as vehicle motion prototypes. Many patterns 

represent turning movements and lane changing maneuvers that do not 

exhibit parallelism. Parallel vehicle tracks have to be hand-picked which is 

tantamount to manually annotating lane marking. Figure 3.1b shows 

pedestrian motion patterns. It is evident that pedestrian tracks do not exhibit 

prevalent parallelism within crosswalks.  
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Table 3.1  Summary of case studies of camera calibration 

Case 
Study 

Site / City Application Issues Encountered 
# Data Points 

1 2 3 4 

BR-1 

BR-2 

BR-3 

BR-4 

 

 

PG 

 

 

 

 

OK 

 

 

 

 

 

 

K1 

K2 

 

Downtown 
Vancouver  

 

 

 

Downtown 
Vancouver 

 

 

 

Chinatown 
- Oakland 

 

 

 

 

 
 

Kentucky 

Pedestrian 
Walking Speed  

(Ismail, Sayed & 
Saunier 2009) 

 
Automated study 
of Pedestrian-
vehicle conflicts 
(Ismail et al. 2009) 

 
Automated 

before-and-after 
study of 
pedestrian-vehicle 
conflicts 

(Ismail, Sayed & 
Saunier 2010) 

 

Automated 
analysis of vehicle-
vehicle conflicts 
(Saunier, Sayed & 
Ismail 2010) 

Outdated 
orthographic map 

No convergent lines 

 

 

 

No convergent lines 

 

 

 

 

Camera inaccessible 
and not set by 
authors  

 
 

 

 

Camera inaccessible 
and not set by 
authors  

Video quality is low 

Strong non-linear 
distortion 

No orthographic 
image 

13 

11 

5 

9 

 

 

22 

 

 

 

 

14 

 

 

 

 

 

 

0 

0 

6 

12 

10 

10 

 

 

2 

 

 

 

 

2 

 

 

 

 

 

 

7 

7 

 

4 

6 

5 

3 

 

 

2 

 

 

 

 

9 

 

 

 

 

 

 

2 

2 

 

 

0 

0 

0 

0 

 

 

0 

 

 

 

 

34 

 

 

 

 

 

 

30 

39 

 

 

1 The number of point correspondences available for calibration.  

2 The number of line segments annotated in the image space with known real-world length. 

3 The number of annotated pairs of lines in the image space the angle between which is 
known in world space. 

4 The number of line segments annotated for equi-distance constraints. The endpoints of 
each line segment are annotated at two locations in the camera field of view.  
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As shown in Figure 3.2a, the estimation of the vanishing point location based 

on lane marking was unreliable. The obtained camera parameters were 

initially not sufficient to measure pedestrian walking speed in adequate 

accuracy. The integration of additional geometric constraints enhanced the 

estimates of the camera parameters and met the objectives of this application. 

Figure 3.2b shows a sample frame from video sequence K1 of traffic conflicts 

shot in Kentucky. Significant radial lens distortion is observed at the 

peripheries of the camera field of view. A reliable estimation of the vanishing 

point location requires the consideration of line segments that extend to the 

peripheries of the camera field of view. The significant curvature of parallel 

lines in these locations made the estimation of the vanishing point 

challenging. 

a) Limited field of view. 

 

b) Pronounced linear distortion. 

 

Figure 3.2  An illustration of camera calibration issues that arise in urban 

traffic scenes. Figure a) shows a frame taken from video sequenc e BR-1 shot at 

Vancouver-British Columbia. Figure b) shows a sample frame from video 

sequence K1 of traffic conflicts shot in Kentucky.   
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Another challenge faced in this thesis is that some of the analyzed videos 

sequences were collected by other parties. The camera calibration 

methodology was motivated by positive particularities of traffic scenes. The 

geometric regularities abundant in traffic scenes offer geometric information 

besides the appearance of parallel lines that can increase the accuracy of 

camera calibration. The majority of the applications supported by this study 

involved the recovery of real-world coordinates of pedestrian tracks. 

Pedestrians move significantly slower than the motorized traffic, a 

characteristic that evidently required higher accuracy for camera parameters. 

Relying only on geometric information provided by parallel lines yielded 

camera parameters that provided unsatisfactory pedestrian speed estimates 

(Kanhere et al. 2007).  

The work presented in this chapter concerns a robust camera calibration 

approach for traffic scenes in cases of incomplete and noisy calibration data. 

The cameras used in this study were commercial-grade cameras; most were 

held temporarily on tripods during the video survey time, others were 

already installed traffic cameras. A strong focus of this study is on the 

positional accuracy of road users, especially pedestrians. This was possible by 

relying on manually annotated calibration data, not automatically extracted 

vehicle tracks as is the case in automatic camera calibration, e.g., (Kanhere, 

Birchfield & Sarasua 2008).  

The uniqueness of this work lies in the composition of the cost function used 

for the estimation of camera parameters. The cost function contains 

information on various corresponding features that lie in both world and 
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image spaces. The diversity of geometric conditions constituted by each 

feature correspondence enables an accurate estimation of camera parameters. 

Features are not restricted to point correspondence or parallel lines, but 

extend to distances, angles between lines, and relative appearance of locally 

rigid objects. After annotating (manually defining) calibration data, a 

simultaneous calibration of extrinsic and intrinsic camera parameters is 

performed, mainly to reduce error propagation (Yu et al. 2009).  

The remaining sections of this chapter describe, in order: a focused review of 

relevant previous work, the methodology of camera calibration, and a 

discussion of a number of case studies. Video sequences in these case studies 

were collected from various locations in the Downtown area of Vancouver, 

British Columbia, Oakland, California, and a signalized intersection in 

Kentucky. 

3.2 Previous Work 

There is an emerging interest in the calibration of cameras monitoring traffic 

scenes, e.g., (Worrall, Sullivan & Baker 1994) (Pengfei 2004) (Li et al. 2007) 

(Masoud & Papanikolopoulos 2007) (Kanhere, Birchfield & Sarasua 2008) (Yu 

et al. 2009). An important advantage of traffic scenes for this purpose is that 

they typically contain geometric elements such as poles, lane marking, and 

curb lines. The appearance of these elements is partially controlled by their 

geometry, therefore providing conditions for estimating camera parameters. 

Common camera calibration approaches define different calibration 

conditions from a set of corresponding points, e.g., (Tsai 1987) (Zhang 2000), 
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from the appearance of geometric invariants such as parallel lines (Caprile & 

Torre 1990), or from line correspondences (Dubrofsky & Woodham 2008).  

These approaches however overlook other geometric regularities such as road 

markings, curb lines, and segments with known lengths. The use of geometric 

primitives is becoming more popular, e.g., in recent work (Masoud & 

Papanikolopoulos 2007) and citations therein. However, two main issues can 

arise in calibrating traffic scenes that cannot be addressed using existing 

techniques. First, most of the existing techniques construct the calibration 

error in terms of the discrepancy between observed and projected vanishing 

points. However, camera locations may be at significantly high altitude or its 

field of view too limited to reliably observe the convergence of parallel lines to 

a vanishing point. Finding initial guesses can be also challenging in such 

settings. Second, a detailed map or up-to-date orthographic image of the 

traffic scene may be unavailable. In this case, reliance on point 

correspondences is not possible. The proposed calibration approach draws 

the calibration information from the real-world lengths of observed line 

segments, angular constraints, and the dimension invariance of vehicles 

traversing the camera field of view.  

3.3 Methodology 

3.3.1 Camera Model 

In the described camera calibration methodology, the canonical pinhole 

camera model is adopted to represent the perspective projection of real-world 

points onto the image plane (will also be called image space). A projective 
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transform that maps from a point      to a point      can be defined by a 

            full-rank matrix. In the case of mapping from 3-D Euclidean 

space to the image plane,     and    . In homogeneous coordinates, the 

projective transform can be represented by a matrix       and a normalization 

term   as follows: 

  
 
 
    

 
 
      … (3.1) 

Similar to the column vectors in Equation 3.1,      is defined up to a scaling 

factor while containing 11 degrees of freedom. In theory, a total of 11 camera 

parameters can be recovered: 6 extrinsic and 5 intrinsic. The matrix T can be 

decomposed into two matrices such that:      , where matrix      maps 

from world coordinates to camera coordinates (composed of intrinsic 

parameters), and matrix      maps from camera coordinates to pixel 

coordinates (composed of extrinsic parameters). Two linear intrinsic 

parameters besides a non-linear parameter are primarily considered in the 

proposed approach. An additional non-linear parameter, radial lens 

distortion, is calibrated for the purpose of being used as an initial estimate of 

the set of calibrated linear camera parameters. Knowledge of extrinsic camera 

parameters, comprising 3 rotation angles and a translation vector, is sufficient 

for generating  . Matrices   and   are calculated as follows: 

   
              

          
                

            

 
  

    
   

    

   … (3.2) 

where    and    are respectively referred to as the horizontal and vertical focal 

lengths in pixels,   is the angle between the horizontal and vertical axes of the 
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image plane,   is three-dimensional rotation matrix,   is translation vector, 

and         are the coordinates of the principal point. The principal point is 

assumed to be at the centre of the image in the video sequence.  

The non-linear camera parameter considered in this methodology is the radial 

lens distortion parameterized by the distortion coefficient  . The selection of 

this non-linear parameter was motivated by the pattern of visual distortion of 

linear road marking visible in cases K1&2. The projection of points taking into 

account radial lens distortion is represented by the second-degree polynomial 

form shown in the following set of equations: 

             

                                           … (3.3) 

where       are image space coordinates measured in pixels,          are the 

image space coordinate corrected for radial lens distortion and   is the 

uncorrected distance in pixels from the principal point to a point on the 

image space. 

3.3.2 Cost Function 

There is no universally recognized cost function for errors in camera models 

(Masoud & Papanikolopoulos 2007). Yet, there are stable formulations 

developed in the literature, e.g., in (Weng, Cohen & Herniou 1992), for 

calibration data consisting of point correspondences. It is however more 

complicated to construct a proper cost function if the calibration error is 

based on different types of geometric primitives. A proposed cost function is 

argued to satisfy the following conditions:  
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1. Uniformly represent error terms from different geometric primitives, 

i.e., consistent weights and units. This is possible if the cost function is 

constructed in real-world coordinates.  

2. Be perspective invariant, i.e., not sensitive to image resolution or 

camera-object distance.  

It is also desirable that a cost function be meaningful in further image analysis 

steps so that keeping account of error propagation is possible. For example, it 

may be desirable to compare the estimated positional error due to video-

based tracking to the positional error due to camera calibration. Satisfying the 

first condition in linear algebra, and without special mapping, entails some 

assumption and/or approximation. Following are the set of conditions 

proposed in this approach to represent a calibrated camera model: 

1. Point correspondences (CDp). Matching features are points annotated 

in the image and world spaces. This condition matches the back-

projection of points from one space to their positions in a current 

space. For unit consistency, point positions in world space are 

compared to the back-projection of points from the image space to the 

world space.  

2. Distance constraints (CDd). This condition compares the distance 

between the back-projection of two points to the world space and their 

true distance measured from an orthographic map or in-field.  

3. Angular constraints (CDa). This condition compares the true angle 

between the two annotated lines to that calculated from their back-

projection to world space. Special cases are angles of 0° in case of 
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parallel lines, e.g., lane markings or vertical objects, and 90° in case of 

perpendicular lines, e.g., lane marking and stop lines.  

4. Equi-distance constraints (CDed). This condition compares the real-

world length of line segments observed at different depths of view. 

This condition preserves the back-projected length of a line segment 

even if it varies in the image due to perspective effect. 

The following cost function is composed of four components, each 

representing a condition which is an implicit function of the vector of camera 

parameters  : 

            
 
      

 
           

 
                        

                

… (3.4) 

where, 

1.              and      are respectively the sets of calibration point-

difference, distances, angular constraints, and equi-distance 

constraints. 

2.        is the real-world distance between observed and back-projected 

calibration points in the ith set of point correspondences, 

3.     is the difference between observed and projected distances in the jth 

set of distance correspondence, 

4.    is the average length of the back-projected line segments on the pair 

of lines that defines the angular constraint, 

5.     is the difference between annotated and calculated acute angle 

between the kth back-projected pair of line segments that defines the 

angular constraint, and 
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6.     is the difference between the real-world length of a line segment 

calculated at two locations with different depth of view. This can be 

typically obtained by measuring the distance between two points on a 

vehicle traversing a traffic intersection.  

The back-projection of points in the image space, i.e., mapping from image 

space to world space, is performed efficiently using the homography matrix   

that corresponds to a set of camera parameters  . A least square estimation of 

the homography matrix is conducted using four points selected from  , 

using  . If the non-linear camera distortion parameter is estimated, back-

projection using the homography matrix is not accurate. In this case, back-

projection is cast as a minimization problem, such that the reprojection of the 

estimated world-space position, from world space to image space, achieves a 

minimum difference from the annotated image position. The initial estimate 

of this minimization problem is the world-space position of a point using 

homography. A basic Quasi-Newton non-linear optimization is sufficient for 

accurate estimation of the world-space position.  

The cost function component that represents angular constraints has the 

useful property of being proportional to the length of the annotated line 

segments that define the angular constraint. This assigns larger weight to 

angles more precisely defined using long edges.  

The cost function presented in Equation 3.4 represents linear discrepancies 

between observed and back-projected geometric primitives, all expressed in 

real-world unit distance. This construction of the cost function clearly meets 

the previously proposed conditions. It is noteworthy that the construction of 



95 

 

the cost function in pixel coordinates, commonly adopted in the literature, is 

significantly cheaper to compute than the proposed cost function. In the latter 

case, point projection to image space is a closed-form operation. The 

proposed camera calibration approach is designed as an accurate one-time 

operation to support data extraction from video surveys in which 

computational efficiency is of lesser importance. In addition, the expression of 

the projection error in pixel coordinates is implicitly biased toward features 

closer to the camera (represented by more pixels). This may not be desirable 

in all applications. For example, the case study based on the video sequence 

K1, shown in Figure 3.2 b, focuses on events that take place in the furthest 

intersection approach. 

3.3.3 Implementation Details 

The three intrinsic camera parameters that are estimated through calibration 

are focal length, skew angle, and radial lens distortion. The extrinsic 

parameters are the translation and rotation (six parameters) of the camera 

coordinate system from the world coordinate system. The selection of these 

camera parameters yields more accurate results than if optimization is 

conducted for each element of the transformation matrices   and   (Equation 

3.2). 

The minimization of the cost function in Equation 3.4 over the camera 

parameters is performed using the Nelder-Mead (NM) simplex algorithm 

(Nelder & Mead 1965). This algorithm was selected over the commonly used 

Levenberg-Marquardt (LM) (Marquardt 1963) which failed in some cases to 

converge when the initial estimate of the camera parameters was not in close 
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proximity to the globally minimizing set of parameters. When both 

converged, NM was consistently more computationally expensive. 

Nevertheless, computational cost is of lesser importance for the one-time 

high-precision applications targeted by this approach.  

The initial estimates for the case studies shown previously in Table 3.1 were 

obtained using an estimate of the camera position in an orthographic map of 

the monitored traffic intersections. Estimates were also provided for the 

camera height and of the location of the back-projection of the principal point 

on the road surface. The estimate for the focal length was found using 

previous information and assuming away perspective. Obtaining an accurate 

initial estimate of the focal length and camera height proved difficult and was 

in most cases far from the calibrated value. A similar issue was encountered 

for estimating the camera height of video sequences which were not collected 

by the authors (sequences K1, K2, and OK). The calibrated camera height for 

K1 and K2 were 11.5 m and 10.9 m respectively, while their initial estimate 

was 5.5m. The implementation of this method was conducted in MATLAB 

(Mathworks 2010). A toolbox was developed to annotate the calibration data, 

find initial estimates, conduct the camera calibration and visualize the 

calibration results. The following section provides a review of four case 

studies in which the proposed camera calibration approach provided 

adequate estimates of camera parameter. The intended applications were 

carried out successfully as described in Chapters 4 to 8.  
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3.4 Case Studies 

The four case studies analyzed using the proposed camera calibration 

approach are summarized in Table 3.1. Camera calibration was conducted for 

video sequences collected from the downtown area of Vancouver, British 

Columbia (video sequences 1-4 from site BR and sequence PG), Chinatown in 

Oakland, California (OK), and an unidentified intersection in Kentucky (K1 

and K2). When possible, real-world data was extracted from an orthographic 

image from Google Maps and in-field distance measurements.  

3.4.1 Annotation of Calibration Data 

Corresponding points were annotated in image and world spaces. The real-

world coordinates of points in the image space can be calculated from their 

positions on the world map. The true lengths of line segments which 

constitute distance and equi-distance conditions were calculated from the 

orthographic image. In case of sequences BR-1:4, true lengths of line segments 

were collected by in-field measurements (total of 21 measurements). This was 

necessary to obtain camera calibration with accuracy that supports the 

measurement of pedestrian walking speed (refer to Table 3.1). Pairs of lines 

which constitute the angular constraints were annotated in the image space. 

These lines are parallel lane markings, parallel light poles and road-side 

signs, and perpendicular road markings. Figure 3.3 shows the calibration data 

for sequence BR-2.  
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3.4.2 Validation 

The developed algorithm was compared against the well-known Tsai 

algorithm for camera calibration. The cost function components in Equation 

3.4 were incrementally introduced. Also, an implementation of Tsai’s method 

(Tsai 1987) was used to estimate the camera parameters based on the set of 

point correspondences obtained for each scene. A supplementary in-site 

distance measurement was performed at scenes BR-1-4. The sizes of the 

different calibration datasets for each scene are shown in Table 3.2. Root Mean 

Square Error (RMSE) was calculated by leaving out one feature observation, 

from sets          and     at a time and adding up the error from each 

feature observation. The total number of iterations required for each scene is 

the maximum of the number of data points in sets                . For 

example, the number of iterations is 13 for BR-1 and 12 for BR-2. 

Table 3.2  RMSE calibration error using Tsai Algorithm (Tsai 1987) and 
different cost function compositions. The numbers of point correspondence, 
distance, and angular constraints are in columns                 

respectively. 

Dataset Tsai 

Cost function component # Data Points 

Point 

correspondences 

Distance 

Constraints 

Angular 

Constraints 
            

BR-1 0.482 0.689 0.606 0.583 13 6 4 

BR-2 0.463 1.099 0.662 0.557 11 12 6 

BR-3 2.040 2.329 0.458 0.528 5 10 5 

BR-4 0.597 2.204 0.597 0.322 9 10 3 

PG-1 0.132 0.099 0.0929 0.094 22 2 2 
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Calibration results are presented in Table 3.2. When relying only on point 

correspondence, Tsai’s algorithm outperforms our algorithm except for PG-1. 

However, the accuracy of the camera calibration improves significantly after 

the integration of distance and angular constraints. The average reduction in 

RMSE based on point correspondence training data to all geometric 

primitives is 42%. In three out of five scenes, the accuracy of our estimates 

was better than those obtained using Tsai’s algorithm.  
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 a) Calibration features in image space                                     b) Calibration features in world space 

 

 

 

Figure 3.3  Calibration data for video sequence BR-2. Point correspondences are annotated with their serial numbers. Points 

marked with red are calculated and points in blue are annotated. The segments in red define the distance conditions. The segments 

in blue define pairs of lines for angular conditions. Figure a) shows the calibration data (points, and lines) in the image space. 

Figure b) shows the back-projection of the calibration data to world-space. 
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The performance at scenes BR-3 and BR-4 is noteworthy since a limited 

number of calibration points were available at these scenes. The addition of 

the angular constraints in most cases reduces RMSE, in exception of scene BR-

3. An idiosyncrasy of this scene is the definition of its angular constraints 

using long edges. It is possible that this exception is due to the appreciable 

contribution of the angular constraints to the cost function. Figures 3.3 shows 

observed and re-projected calibration data in scene BR-3.  

3.4.3 Effect of Different Cost Function Components 

In order to investigate the effect of using a mix of geometric primitives, the 

cost function components in Equation 3.4 were incrementally introduced. The 

sizes of the different calibration datasets for each scene are shown in Table 3.1. 

Figure 3.4a shows the reduction in back-projection error for sequences BR-1:4 

and PG with the introduction of additional cost function components. In 

order to investigate the effect of the equi-distance constraint, the video 

sequence OK was selected. This sequence has the largest number of 

calibration data points. In addition, a special challenge faced in this case 

study was that the video sequence was observed from an unknown camera 

setting location. It was also attempted to investigate the improvement in 

estimation accuracy over features obtained only from the image space, as is 

the case with the mainstream vanishing point methods for estimation. Figure 

3.4b shows the back-projection error using different compositions of the cost 

function. The error was calculated in terms of the difference between the 

calculated and true lengths of a validation set of 12 line segments. These line 

segments were not included in the calibration data set. 
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There is a clear advantage of using calibration data in addition to estimates of 

point correspondences (four corner points which coordinates estimated based 

on an assumed lane width of 3.5 m) referred to as case 1 in Figure 3.4b. There 

is also an advantage over the use of angular constraints only (case 2) which is 

analogous to camera calibration based on vanishing point estimation. The 

addition of all cost function components (case 4) provides however only 

marginal improvement compared to using point correspondences only (case 

3). This likely occurs because of the abundance of accurately localized point 

correspondences in this video sequence. The effect of the addition of cost 

function components was more evident in sequences K1 and K2. The camera 

calibration for these sequences was the most challenging. The video sequence, 

collected from an unidentified site in Kentucky, contains a valuably large 

number of vehicle-vehicle traffic conflicts that were analyzed in a different 

study. The effect of non-linear lens distortion was visible for almost all 

observed line segments.  

As shown in Figure 3.5a, there is a clear advantage of adding all cost function 

components. The back-projection error was calculated based on the difference 

in the calculated real-world length of line segments observed from two 

different cameras for the same site, corresponding to datasets K1 and K2. 

Figure 3.5b shows the validation results of camera calibration conducted 

using the complete set of cost function components (case 5). 
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a) RMSE for BR-1:4 and PG for different cost function compositions. 

 

b) Linear back-projection errors for scene OK  

 

Figure 3.4  Examples of reduced camera calibration error due to the inclusion of 

various cost function components. Figure a)  shows the RMSE error of test sets BR -

1:4 and PG. Figure b) shows the back-projection error in terms of the di fference 

between the true and calculated lengths of 12 line segments in sequence OK. The 12 

segments were not used in the calibration. The length di fference is normalized by 

the segments length:                                                .  
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a) Back-projection errors for K1 and K2. 

 

b) Discrepancy in linear measurements from the two cameras K1 and K2. 

 
Figure 3.5  Evidence of improvement in calibration accuracy by including 

different cost function components for video sequences K1 and K2. Figure a) 

shows the back-projection error measured as the di fference between the real-

world lengths of a total of 20 line segments calculated from two camera se ttings 

at K1 and K2. The discrepancy in the lengths of the validation line segments 

were normalized by each line segment length (average 12.57 m). Figure b) 

shows the lengths of the validation line segments for case 5. Refer to Figure 4 

for the indication of cases 1:5.  
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3.4.4 Visualization of Results 

In order to visualize the accuracy of the estimated camera calibration 

parameters, a reference grid is depicted in Figure 3.6 for sequences BR-2, PG, 

and OK. The reference grids for sequences K1 and K2 are shown in Figure 3.7. 

For sequences K1 and K2, the calibrated radial lens distortion parameter 

could explain the apparent distortion of the boundaries of the closer 

sidewalk. The distortion at the further sidewalks could not be completely 

captured. This demonstrates that additional non-linear parameters are 

required to capture other types of image distortion evident in this video 

sequence.  

Sample results of applications supported by the estimated camera parameters 

for these case studies are shown in Figure 3.8.  In this figure, sample 

pedestrian and vehicle tracks displayed in both world and image spaces are 

exhibited. The selected road users are involved in traffic conflicts. The 

positional accuracy of tracking using the estimated camera parameters 

enabled successful detection and severity measurements of these events in an 

automated fashion.  
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a) BR-2 (image grid) 

 

b) BR-2 (world grid) 

 

c) PG (image grid) 

 

d) PG (world grid) 

 

e) OK (image grid) 

 

f) OK (world grid) 

 

Figure 3.6  Reference grid for video sequences BR-2, PG, and OK, overlaid on frames 

of the video sequence and orthographic images. The grid spacing is 1 m and the height 

of the vertical reference lines (depicted in blue) is 4.0 m. Sequences BR-1 and BR-3:4 

are recorded at the same site (BR) with di fferent fields of view.  
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a) The intersection in Kentucky as it appears from the first camera (K1). 

b) The intersection in Kentucky as it appears from the second camera (K2). 

 

Figure 3.7  Reference grids for video sequences K1 K2. The non -linear calibration 

parameters could capture the distortions at the closer sidewalk of sequences K1 and 

K2. The grid spacing is 2.0 m and the height of the displayed vertical line segment 

(depicted in blue) is 4.0m.  
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a) World space tracks (PG) 
 

 

b) Image space tracks (PG) 
 

 

c) World space tracks (OK) 

 

 

d) Image space tracks (OK) 

 

 

Figure 3.8  In this traffic safety application, accurate road user tracks are required to 

measure their temporal and spatial proximity. Left are the back-projected pedestrian and 

motorist tracks. Right are the CV-based tracks of the interacting road users. Figures a ) 

and b) show the world and image space of video sequence PG. Figures c ) and d) show 

the world and image space of video sequence OK. Road user depiction in Figures  
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3.5 Conclusions  

Camera calibration is necessary for recovering metric information from video 

sequences. Despite the development of successful methods, current 

approaches do not address the critical issues that arise when monitoring 

traffic scenes, especially when high camera calibration accuracy is required. 

The methodology presented in this chapter was fundamental to video 

analysis conducted in subsequent parts of this thesis. 

In this chapter, a robust methodology for camera calibration was developed 

and tested. The proposed methodology successfully tackled all practical 

challenges faced in video analysis conducted in subsequent parts of the 

thesis. As supported by the reported results, the composition of the cost 

function representing calibration error proved to enhance the accuracy of the 

calibration process. 

One of the peculiarities of camera calibration noticed in this work is the non-

monotonous effect of introducing different cost function components as is 

shown in Table 3.2. This peculiarity was also noticed while generating the 

error reduction for other case studies. Intuitively, the introduction of new cost 

function components should reduce the estimation error as is shown in 

Figures 3.4 and 3.5. However, in some cases the introduction of a particular 

cost function components causes the accuracy of estimation to deteriorate. 

This is an issue that is worth further investigation. This investigation however 

lies outside the scope of the research problem that defines this chapter and 

was therefore delegated for future research. 
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The formulation of this cost function in a linear algebra entails assumptions 

regarding the angular constraints. An important extension of this work is the 

reformulation of the cost function using geometric algebra in which different 

geometric elements can be uniformly represented. Further improvements to 

the proposed methodology should consider the inclusion of additional non-

linear parameters such as tangential distortion.  
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444   
AUTOMATED PEDESTRIAN DATA COLLECTION 

USING COMPUTER VISION TECHNIQUES 

4.1 Background 

This chapter presents the details of a study on the application of computer 

vision techniques for the automated measurement of pedestrian microscopic 

data. The main context in which microscopic pedestrian data was used is the 

measurement of pedestrian walking speed. Subsequence sections present more 

details about the motivation of this research work and challenges facing current 

methods used for measuring pedestrian walking speed.  

Walking is the most basic means of travel and is one of the key activities in a 

sustainable, healthy, resource-efficient and liveable urban environment. New 
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urban planning concepts have redefined the function and mode-assignment of 

streets by emphasizing walkability and recognizing the pedestrian as a key 

road user (Greenberg 2005). AASHTO describes walking activities as the 

lifeblood of urban streets (AASHTO 2001). The new functional definition of 

streets entails changing industry standards and professional practice in order 

to accommodate pedestrian needs for safety and mobility. The reviving 

emphasis on walking and other non-motorized means of travel is part of a 

larger theme that advocates the creation of a more sustainable transportation 

system. The emergence of this theme is likely a public response to global 

changes in energy resources, a desire for improving the quality of life in urban 

areas, and a growing environmental awareness. These drives of public support 

have not shown signs of fading and will likely continue in the future. In 

addition, the emerging research focus on pedestrians comes as a response to 

demographic changes.  

Along with other developed countries, the population of Canada is aging. 

Percentage of seniors (65+) in Canada increased from 13% in 2001 to 13.7% in 

2006 and is projected to reach 23-35% in 2031 and 25-30% by 2056 (Martel & 

Malenfant 2006). Seniors in British Columbia represent 14.6% of the total 

population in 2006, one of the highest in Canada (Martel & Malenfant 2006). 

Similar national trends can be observed in the United States although the 

population is slightly younger (Shrestha 2006).  

The effect of demographic changes on the design of pedestrian facilities can be 

understood by studying the particularities of the older age groups. Older 

pedestrians have longer information processing and perception times (Fugger 
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et al. 2000), need generally more illumination (Fozard 1981), are more prone to 

overestimating the dimensions of crossing facilities as a result of misreading 

visual cues (Guerrier & Sylvan 1998). Moreover, older pedestrians are more 

likely to be involved in accidents (Harkey 1995). Aging brings about general 

change in physical attributes (Pauls 2008) and in particular walking speed 

(Fitzpatrick et al. 2006).  

The measurement of walking speed of older pedestrians has been an important 

topic in the literature of pedestrian studies. Newer releases of standard design 

guides, e.g., MUTCD, are in the process of adopting design parameters that 

consider more aspects of the elderly pedestrian. Studies in the literature 

suggest adopting a continuum of design parameters, e.g., walking speed, based 

on the expected age distribution among pedestrians (Fitzpatrick et al. 

2006)(Highway Capacity Manual 2000). Further studies are required to capture 

the differences among senior subgroups as some studies suggest that this age 

group is not homogenous as assumed by past studies of walking speed (Stollof, 

McGee & Eccles 2007).  

4.2 Issues with Pedestrian Data 

Despite the growing importance of non-motorized traffic and in particular 

pedestrians, these modes of travel are in general overlooked, and understudied 

relative to vehicular traffic. For example, current trip counts capture 16-33% of 

actual non-motorized trips (Litman 2003), while collecting reliable non-

motorized traffic information is especially challenging (Weinstein & Schimek 

2005). Planning for pedestrian facilities and modelling of pedestrian demand 
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are areas of research that are yet to be developed to a level that matches 

vehicular traffic (Pulugurtha & Repaka 2008). In general, there is a poor 

integration of pedestrians to current transportation networks and a challenged 

interlinking with activity areas (James & Walton 2000). For example, vehicular 

traffic is traditionally the main focus of level of service improvements, with 

little attention to negative impact on modes that share the same transportation 

facility (Milam & Mitchell 2008). The trade-off between improving the level of 

service for motorized traffic and the related impact on non-motorized transport 

is often ignored or cursorily studied in the current state of practice. The effect 

of permitting longer pedestrian crossing interval times on motorized traffic 

delay was analyzed in hypothetical case studies, e.g., (Kim et al. 2005). 

However, little is known about the measures to alleviate motorized delay 

resulting from the adoption of slower normative walking speed, especially in 

cases of high motorized traffic volume or short signal cycles.  

The limitation in collecting pedestrian data inhibits a better understanding of 

many pedestrian research issues. For instance, data is required to capture 

pedestrian response to longer pedestrian crossing intervals, in particular 

whether this traffic control measure will result in slower crossing speed. 

Microscopic observational data is required to investigate the ability of 

individual pedestrians to adapt their walking speed in response to change in 

signal indication, in anticipation of potential conflict with motorized traffic 

(Gates et al. 2006) (Stollof, McGee & Eccles 2007), or in response to external 

stimuli (Kim et al. 2007). In addition, microscopic pedestrian observations can 

provide valuable insight for pedestrian modelling, e.g., inter-person spacing 

and pedestrian maneuvering (Kerridge & Chamberlain 2005) and obstacle 
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navigation (Willis et al. 2004). Although at a relatively advanced stage in theory 

and analysis, pedestrian simulation models are generally based on limited 

understanding of microscopic pedestrian behaviour (Willis et al. 2004) and 

limited validity because of a lack of real data (Kerridge & Chamberlain 2005) 

(Antonini et al. 2006).  

Collecting positional data for pedestrians is particularly challenging due to the 

less organized nature of pedestrian traffic compared to vehicular traffic 

(Hoogendorn, Daamen & Bovy 2003). The main methods for collecting this data 

can be classified into: manual field observations, manual observations from 

videos, semi-automated video analysis, and automated video analysis.  

Manual field observation, which is the most common method of pedestrian 

data collection, is in general more expensive, error-prone, and time consuming 

compared to video analysis (Kerridge et al. 2004). The use of video sensors for 

measuring pedestrian walking speed has several advantages. First, it captures 

naturalistic pedestrian movement with limited risk of stirring the attention of 

observed subjects, who may behave unnaturally if felt being watched. Other 

advantages include the relative ease of installation, the richness of the data that 

can be extracted (i.e., complete trajectories), the large area that can be covered 

and their low cost. However, manual video observations are also time 

consuming and error-prone.  

Semi-automated analysis, or time-lapse analysis, of pedestrian movement 

involve the use of image processing tools to manually mark or track 

pedestrians in a sequence of video images, e.g., (Lam & Cheung 2000) 

(AlGhadi, Mahmassani & Herman 2002). Manual operations in semi-automated 
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video analysis can be laborious and limited in terms of data volume to be 

analyzed compared to automated methods. Automated video analysis involves 

the use of computer vision techniques and can overcome many shortcomings 

associated with manual field observations and manual video analysis. 

The current practice of observing pedestrian walking speed generally depends 

on manual observation of pedestrian crossing time. As discussed earlier, 

manual techniques face several accuracy and efficiency challenges. In order to 

cope with the increasing demand for studying pedestrian movement, to 

accommodate changes in pedestrian characteristics, and to improve signal 

design, automated techniques need to be further developed.  The primary 

objective of this chapter is to document the development and testing of a 

prototype system that is capable of extracting real-world pedestrian tracks from 

a video taken at traffic facilities.  

The main purpose of the video analysis system is to enable large volume and 

accurate recording of pedestrian walking speed. The study is unique in regard 

to the developed video analysis technique as well as in testing the developed 

system under different conditions of lighting, crowdedness, and traffic mix in 

an open and uncontrolled environment. This chapter discusses the technical 

issues that arose during the system development along with techniques for 

resolving these difficulties. Walking speed measurements automatically 

calculated by the system were validated in contrast with walking speeds 

extracted by human observers. The system accuracy in automatically 

measuring pedestrian speed was satisfactory and provided support and 

reliability for analysis results. A case study is introduced for pedestrian 
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movement in a main commercial corridor in the Downtown area of Vancouver, 

British Columbia. The case study was validated and demonstrated satisfactory 

accuracy of the system. A statistical analysis of the case study results is 

presented at the end of this chapter along with reports on the findings. 

4.3 Previous Work 

4.3.1 Studies on Walking Speed 

Walking speed is a fundamental property of pedestrian flow that is important 

in a wide range of applications. The ability to predict pedestrian movement 

under different external circumstances and individual attributes of pedestrians 

is an important underpinning for the design of pedestrian facilities (Al-Azzawi 

& Raeside 2007). Many types of transportation studies require prior knowledge 

of walking speed, such as: planning and management of crowd movement, 

developing pedestrian simulation models, estimating facility level of service, 

and designing pedestrian signals. There are various contextual and individual 

variables which influence walking speed. Numerous studies in the literature 

dealt with the determinants of walking speed based on quantitative and/or 

theoretical treatments. Examples of studies that involved substantial walking 

speed observations are presented in Table 4.1. Other studies discussed the effect 

of the following factors on walking speed: carried object (Morrall, Ratnayake & 

Seneviratne 1991), area type (Al-Masaeid, Al-Suleiman & Nelson 1993), crowd 

density(Fruin 1970)(Virkler & Elayadaph 1994) (Goh & Lam. 2004), temperature 

(Walmsley & Lewis 1989), noise (Boles & Hayward 1978), city size temperature 

(Walmsley & Lewis 1989), feeling of insecurity or being monitored (Smith & 
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Knowles 1979), crossed lane use (Bowerman 1973), platoon movement (Golani 

& Damti 2007), and whether walking is indoors  or outdoors (Lam & Cheung 

2000). For a comprehensive review of the evolution of walking speed refer to 

cited works in (Knoblauch, Pietrucha & Nitzburg 1996)(LaPlante & Kaeser 

2004) (Fitzpatrick et al. 2006)(Hoogendoorn & Daamen 2006) (Stollof, McGee & 

Eccles 2007). However, as suggested from Table 4.1, none of the key studies in 

the literature has made use of automated pedestrian speed collection. Methods 

used in practice are unable to capture microscopic changes in speed and 

position (Shi et al. 2007). This remark highlights shortcomings in the current 

techniques used in the practice of pedestrian data collection and signifies the 

practical need for this research. 
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Table 4.1  Sample of previous studies on pedestrian walking speed 

Study 
Reported 15th 

Percentile 
(m/s) 

Reported 50th 
Percentile 

(m/s) 

%  difference 
from standards 

1 Sample Method 
3
 

Significant 
Factors 

2,4 
Insignificant 

Factors 
 

 (Bowman & Vecellio 1994) - 1.04 -20% 360 1 1,7 7 

 (Dahlstedt 1978) 0.67 - -26% N/A 1  1 - 

 (Fitzpatrick et al. 2006) 0.9 - 0% 2552 2 1 5,8,6,2 

 (Guerrier & Sylvan 1998) 0.66 - -27% 263 2 1 - 

 (Gates et al. 2006) 0.92 - 2% 1947 1,2 1,5,6 2 

 (Hoxie & Rubenstein 1994) 0.86 - -4% 1229 1 1 - 

 (Hui et al. 2007) - 1.22 -6% 1882 2 1,2 - 

 (Knoblauch, Pietrucha & Nitzburg 1996) 0.97 - 8% 7123 1 1,3 2,4-8 

 (Lam & Cheung 2000) Model - N/A 16453 3 4,6,9,10,11 - 

 (Lam, Morrall & Ho 1995) Model - N/A N/A 2 4,6,9,11 - 

 (Lee and Lam 2006) Model - N/A 14886 3 4,11 - 

 (Montufar, Michelle and Nakagawa 2007) 0.88 - -2% 1792 1 
 

1,3,4 
 

- 

(Stollof, McGee & Eccles 2007) 1.03-1.16 - -64% 2603 1,2 1 - 

(Tarawneh 2001) 0.97 - 8% 3500 1 1 2,4,5 

 (Ye et al. 2008) Model - N/A 2089 2 11 - 

1  We refer to the most recent recommended updates for MUTCD as standards  

2  Significance is statistical and/or practical. The assessment of the practical significance of walking speed factors was either directly reported in the studies or 
performed by the author. Insignificant factors were treated in a similar manner.  

3  Number indications: 1) Field observations, 2) Manual video analysis, 3) Semi-automated video analysis, 4) Automated analysis (None found)  

4  Number indications: 1) Age and/or walking problems, 2) Gender, 3) Season/weather (precipitation, snow, temperature), 4) Pedestrian facility type (Crosswalk, 
sidewalk, stairway, midblock crossing, experiment setting), 5) Group size, 6) Traffic control (Pedestrian signal type, unsignalized, speed limit), 7) site 
specifications (Marking, geometry, road classification, median, lane usage), 8) Vehicular traffic, 9) Indoor/outdoor, 10) Activity area (Shopping, commercial, 
recreational, etc.), 11) Pedestrian traffic characteristics (flow, density, directional split). 

1
1
9
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4.3.2 Techniques of Measuring Walking Speed 

Automated pedestrian data collection relies mostly on video sensors, including 

infrared and thermal imaging cameras (Kerridge et al. 2004), as well as 

sometimes on Light Detection and Ranging (LIDAR) sensors (Cui, Zhao & 

Shibasaki 2006). This study advocates the use of video cameras (in the visible 

spectrum) because alternative sensors are still more expensive and more widely 

available, or their resolution in space and time may be limited (for example 16 

by 16 “pixels” at 3Hz in the device presented in (Kerridge et al. 2004)). Using 

multiple cameras can help address occlusion issues, but requires their 

registration to take advantage of the setup, and this work focuses on a simpler 

single-camera system.  

4.3.3 Challenges of Pedestrian Tracking in Computer Vision 

In order to automatically extract pedestrian data from video data, road users 

must be detected, tracked from one frame to the next and classified by type; at 

least as pedestrians and non-pedestrians. Automated pedestrian monitoring 

using video data is a complex task, especially in the type of “open” and “busy” 

urban environment on which this research is focused. Open environment refers 

to the mixed traffic, including motorized vehicles and pedestrians, the variable 

structure, and the multiple flows of moving objects that may enter, leave the 

scene in various regions, and stop for varying amounts of time in the field of 

view (e.g., at traffic lights or stop lines, or park on the side of the road). Busy 

environment refers to the concentrated presence of road users, especially in 

what relates to high level of crowdedness. This is a much more challenging 
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type of environment than more controlled ones such as rural highways which 

have received more attention up to now.  

Although great progress has been made in recent years, tracking performance 

is difficult to report and compare because implementations are not publicly 

available and common benchmarks are limited. Tracking pedestrian and mixed 

traffic in crowded scenes is still an open problem. Most vision-based pedestrian 

data collection took place in idealized conditions, e.g., heads and feet present all 

the time (Hoogendorn, Daamen & Bovy 2003), low pedestrian volume 

(Malinovskiy, Wu & Wang 2008) (Chae & Rouphail 2008), or heavily controlled 

indoor experiments including markers on pedestrians (Hoogendorn, Daamen 

& Bovy 2003) (Kerridge et al. 2004). The collected datasets are typically small 

and, in some cases, require significant manual input to correct the automated 

results and to supplement with additional data (Chae & Rouphail 2008).  

4.4 Methodology 

The main objective of this section is to describe the developed system 

components and to document various algorithmic modifications required to 

meet the requirements of pedestrian detection and tracking. Figure 4.1 shows 

different components of the prototype system. The following sections describe 

various system components. 



1
2
2
 

 

 

Figure 4.1  Layout of the pedestrian detection and tracking prototype system. The figure shows the five main layers 

of the system. Depicted also is the data flow among system modules from low-level video data to a database of 

detected, tracked, and classified road user.  

 

Prototype System 

H
ig

h
-l
e

v
e

l 

o
b

je
c
t 

p
ro

c
e

s
s
in

g

G
ro

u
p

in
g

F
e

a
tu

re
 

p
ro

c
e

s
s
in

g

V
id

e
o

 P
re

-

p
ro

c
e

s
s
in

g
 

In
fo

rm
a

ti
o

n
 

e
x
tr

a
c
ti
o

n

Video 

formatting

Recorded 

videos

Feature 

tracking

Feature 

grouping

Object classification 

and identification

System user

System 

operator

Data querying 

and analysis

High-level 

object 

refinements

Camera 

parameters

Road 

user 

trajectory 

database



123 

 

 4.4.1 Camera Parameters 

The main objective of camera calibration is to find a set of parameters to 

establish a mapping from world coordinates to image plane coordinates. Once 

this mapping is created, real-world coordinates of points that appear in the 

video can be recovered. The extrinsic parameters specify the translation and 

orientation of the camera coordinates relative to the world coordinates. 

Intrinsic parameters describe the perspective projection of the road scene onto 

the image plane. Both sets of parameters can be obtained by minimizing the 

difference between the projection of geometric entities, e.g., points and lines, 

onto world or image plane spaces and the real-world measurements of these 

entities.  

The reliance on point correspondences at the site monitored in the case study 

presented in this chapter (section 4.5) was hampered by a recent surface 

painting of the intersection that left only a handful of common features on both 

the orthographic satellite image and the video images. This difficulty was 

overcome, to some extent, by relying on distance constraints to inform the 

calibration process. Linear field observations were performed to obtain the true 

lengths of entities that appeared in the video images. Another practical 

difficulty arose because it was not possible to conduct a lab-based camera 

calibration in order to find all the intrinsic camera parameters aside from the 

focal length. All camera parameters had to be estimated based on information 

collected from the traffic scene. This increased the processing time required for 

the convergence criterion to be met, that is for the gradient of the objective 

function to be less than 1e-05. Accurate camera parameters were required in 

this study since the error magnitude in speed estimation that results from 
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position estimation is significant at low speeds. Camera calibration was 

conducted following the methodology presented in Chapter 3. The different 

camera settings used for video data collection in this chapter were referred to 

as case studies BR-1 to BR-4.  

The obtained camera calibration results were very satisfactory (average 

percentage error in linear measurements was 4%). Figure 4.2 shows sample 

road user tracks projected on an orthographic satellite image of the scene. 

Similar studies in the literature used artificial construction of an orthographic 

image using video image rectification, e.g., (Laureshyn & Ardö 2006). The 

approach followed in this study by projecting the video data on an 

independent site map proved helpful in visually verifying the accuracy of 

projection - especially with the difficulties faced in obtaining calibration data. 

In addition, it was possible to collate pedestrian tracks obtained from different 

camera settings into a single site map, whereas video image rectification 

produces a setting-dependent site map (Masoud & Papanikolopoulos 2007). 

  



125 

 

a) Tracks in image space          b) Tracks in world space 

  

Figure 4.2  Pedestrian tracks at site BR-2. Figure a) shows road user tracks in the 

image space. Figure b) shows the same tracks projected on an orthographic image. 

The trajectories are classified by object type (vehicles or pedestrians) and 

direction. Trajectory clusters 1 ,2, and 3 are for pedestrians moving Southeast-

Northwest, Northwest- Southeast and Crossing respectively, while cluster 4 is for 

vehicles.  

 

4.4.2 Feature Tracking and Grouping 

A feature-based tracking system was initially developed for vehicle detection 

and tracking as part of a larger system for automated road safety analysis in 

(Saunier & Sayed 2006). Tracking features is done through the well known 

Kanade-Lucas-Tomasi Feature Tracker. Additional "filters" are added to keep 

only relevant features. First, stationary features are not tracked and are 

discarded. This and the movement of objects imply that new features must be 

regularly generated to keep tracking the whole field of view. Second, feature 

tracker errors are dealt with by enforcing regularity motion checks, i.e., bounds 

on acceptable feature acceleration and change in direction.  

 

4

  

3 

2 

1 

4 



126 

 

Since a vehicle can have multiple features, the next step is to group the features, 

i.e., decide what set of features belongs to the same object, using cues like 

spatial proximity and common motion. The grouping method described in 

(Beymer et al. 1998) was extended to handle intersections in (Saunier & Sayed 

2006). A graph is constructed over time: the vertices are feature tracks, edges 

are grouping relationships between tracks and connected components (groups 

of features) correspond to vehicle hypotheses. Two parameters are crucial for 

the success of the method: the connection distance Dconnection, i.e., the distance 

between two features for their connection, and the segmentation distance 

Dsegmentation, i.e., the threshold on the difference between the minimum and 

maximum distances between two features above which these features are 

disconnected. Features must also be tracked simultaneously for a minimal 

period of time to make sure that the common motion condition is enforced. The 

tracking accuracy for motor vehicles has been measured between 84.7% and 

94.4% on three different sets of sequences (Saunier & Sayed 2006). This means 

that most trajectories are detected by the system, although over-grouping and 

over-segmentation still happens and may create other problems. 

4.4.3 High-level Object Processing 

Different than previous work by (Saunier & Sayed 2006), the traffic scenes 

analyzed in this thesis are mixed featuring road users with very different sizes, 

e.g., passenger cars and pedestrians. In their work, he connection and 

segmentation distances could only be adjusted for one type of road user. To 

address this issue, the original system has been extended by obtaining the type 

of the road users. The parameters are initially set for pedestrians, with the 



127 

 

undesirable effect of producing over-segmented vehicle objects. To address this 

shortcoming, once the groups of features belonging to cars are identified, their 

constituting features are reprocessed by the grouping algorithm using larger 

connection and segmentation distances. Effectively, feature grouping is 

conducted at two levels, one for pedestrians and the second is for vehicles. This 

modification extended the video processing time, however results were 

encouraging.  

In the system settings used in this Chapter, a simple test on the maximum 

speed reached by road users was sufficient to discriminate between pedestrians 

and motorized road users in most cases. 

4.4.4 Manual Input to the Video Analysis System 

The point of an automated system is to minimize user input, especially to 

eliminate the need for continuous supervising. The main input provided to the 

video analysis system was a reliable set of tracking parameters. Various 

adjustments made to the tracking parameters were conducted following a trial-

and-error fashion along with visual inspection of tracking results. Since the 

world coordinates are recovered, the parameters could be reused unchanged in 

various scenes. This approach for parameters selection proves satisfactory in 

this chapter and Chapter 5. The challenges faced in Chapter 6 required the use 

of a more sophisticated approach for parameter selection.  



128 

 

4.5 Case Study 

This section describes the analysis of video sequences collected at an open and 

busy intersection, in the Vancouver Downtown area. The objective of this 

analysis is to test the ability of the system to measure the walking speed of 

pedestrians in a variety of settings. Validation was conducted as follows: 

1. Select an intersection on a main commercial corridor in Vancouver, 

British Columbia with a nearby camera setting location. The intersection 

should contain a variety of pedestrian facilities. Also, the location should 

be on the main course of crowd movement outbound of a concurrent 

event in order to test the system. 

2. Record high-definition video data for the intersection in day- and night-

time conditions.  

3. Select a random sample that represents 10% of the detected and tracked 

pedestrians (individuals or groups).  

4. Calculate the average walking speed by measuring the time the elapses 

during observing the crossing between two check lines. 

5. Compare the system-based and observer-based walking speeds.  

4.5.1 Data Collection 

Videos were collected for pedestrian movement at a traffic intersection on 

Robson Street which is a major commercial and business corridor in the 

Vancouver Downtown area with an active walking environment. A total of 

seven footages were recorded from 8:00 PM till 12:00 PM in order to capture 

normal night-time pedestrian movement as well as crowd movement to and 

from a fireworks event that took place in the same time. The timing of the video 
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survey was intended to be concurrent with a fireworks event in order to 

capture higher pedestrian volumes and to provide walking speed information 

for local transportation authorities in order to assist in predicting outbound 

crowd movement in future events.  

The camera was set on the 29th floor of a high-rise building that overlooks that 

intersection. Figure 4.2 shows a video image and an orthographic satellite 

image of the intersection along with real-world tracks of pedestrian movement 

as obtained using the video analysis system. The recorded video sequences 

covered a wide variety of observation conditions that often exist in pedestrian 

facilities. Various pedestrian density conditions were monitored, ranging from 

crosswalks with low pedestrian volumes to concentrated crowd movement. 

Pedestrian movements were monitored at sidewalks, crosswalks, and along, 

Robson Street, a thoroughfare that was closed for motorized traffic.  

4.5.2 Data Analysis 

Tracks shown in Figure 4.3 depict the movements of individual pedestrians as 

well as groups of pedestrians. Tracked objects, i.e., individuals and groups 

which reached a speed higher than a specific threshold, 3.5 m/s, were classified 

as motorized traffic and filtered out. Figure 4.4 shows a compilation of sample 

of pedestrian and vehicle speed profiles in time. Pedestrians exhibit a 

characteristic rhythmic movement. Attempts to use this idiosyncrasy as a 

classification feature were not successful, mainly due to incomplete pedestrian 

tracks. Therefore, only a maximum speed threshold was used for road user 

classification. Pedestrian tracks were clustered using the k-means algorithm. 

Each track was represented by a four-dimensional vector, each element being 
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the average movement orientation over a section of the track. The first and last 

sections cover 20% of the entire duration during which the pedestrian object 

existed, starting from both ends. The two intermediate sections were selected at 

one third of each pedestrian track with a length of 10% of the track duration. 

Selection of several clustering variables was necessary to capture turning 

pedestrian movements. The number of clusters was selected based on visual 

observation of the prevalent streams of pedestrian movement in each video 

record. The four trajectory clusters that appear in Figure 4.3 are: Southeast-

Northwest movement (cyan), Northwest-Southeast movement (blue), crossing 

movement (green and black), and vehicles (red). 

 
 

Figure 4.3  Road user trajectories (tracks) transformed to world coordinates. 

Tracks of motorized road users are depicted in red. Remaining tra cks are color-

coded based on a k-means clustering of pedestrian tracks.  
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Night-time footage was the most challenging to analyze due to the poor 

visibility of pedestrians in dim corners of the intersection. A specific set of 

feature tracking parameters were used to detect and track more features. As 

shown in Figure 4.5, the results obtained were generally satisfactory. Data 

however could not be recovered from low-light areas. Dark-clothed pedestrians 

were difficult to detect without rendering the integration of large volume of 

uninformative and low-quality features. Table 4.2 shows a summary of the day- 

and nigh-time tracking parameters. 

Table 4.2  Summary of tracking parameters 

Tracking Parameter 

Day-time 

Condition 

sequences BR-

4,5,6 

Day-time 

Condition 

sequences BR-

1,2,3 

Night-time 

Condition 

feature-quality 
a 

0.06 0.06 0.01 

min-feature-distance-klt 
a 

3 4 4 

Minimum displacement to 

track feature (m) 
b
 

0.01 0.015 0.015 

Maximum acceleration to 

keep features (m/s
2
)
 b

 
2.5 3 3 

Connection distance (m)
 b

 1 0.5 0.5 

Connection cosine
 b

 0.5 0.8 0.8 

Segmentation distance (m)
 b

 0.4 0.2 0.2 

Minimum number of 

features per group
 b

 
4 5 5 

a Refer to OpenCV documentation for a complete description of these parameters at the 

following links: 
http://opencv.willowgarage.com/documentation/c/feature_detection.html#goodfeaturestotrack 

http://opencv.willowgarage.com/documentation/c/motion_analysis_and_object_tracking.html#calcopticalflowpyrlk  

b Refer to the feature grouping algorithm for more details (Beymer et al. 1998). 

 

  

http://opencv.willowgarage.com/documentation/c/feature_detection.html#goodfeaturestotrack
http://opencv.willowgarage.com/documentation/c/motion_analysis_and_object_tracking.html#calcopticalflowpyrlk
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Figure 4.4  The horizontal axis shows the frame number (surrogate for time) and the vertical axis shows the 

observed speed in m/s. Pedestrian profiles ( in green) exhibit a characteri stic rhythm. 
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Walking speed data was collected at user-defined registration areas for each 

tracked object that falls in a specific movement cluster. The definition of a 

registration area was necessary for gathering walking speed data in desirable 

specific spatial context. Since walking speed varied during the time a tracked 

object was present within the registration area, the average walking speed 

within this duration was recorded. Figure 4.6 shows the registration area 

defined for the indicated crosswalk. Registration areas were defined for other 

pedestrian facilities (two sidewalks, two unmarked crosswalks, and another 

marked crosswalk) in order to gather walking speed data.  

4.5.3 Validation 

The validation process in this study was concerned with walking speed 

measurements. The average walking speeds for a 10% random sample drawn 

from tracked pedestrian objects was compared to manual video observations of 

the walking speed. Walking speeds were manually calculated based on the time 

required by moving objects to traverse the shortest distance between two check 

lines. The check lines were selected to be the road markings of the crosswalk 

across Robson Street as shown in Figure 4.7. Figures 4.8 (a) and (b) show a 

comparison between measured and automatically calculated walking speeds. 

There is a very good agreement between manual and automated walking speed 

values (RMSE = 0.0725 m/s and 0.0548 m/s, respectively). The residual errors 

can be attributed to the inaccuracy of manual speed calculation in which the 

pedestrians are unrealistically assumed to follow the shortest path between two 

check lines, inaccuracy in camera calibration, and irregularities in pedestrian 

tracks due to noise in feature detection.  
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Figure 4.5  A sample frame from night -time video analysis. Displayed are red 

bounding boxes around pedestrian objects and their walking speed.  
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Figure  4.6  The figure shows pedestrian trajectories that crossed through the 

marked data collection area. Trajectories are collated and projected to the 

world image from different videos with different fields of view and hence may 

be truncated in different regions.  
 

 

Figure 4.7  Two sets of check-lines for collecting manual observations of 

average walking speeds. The spacing between the upper set of check -lines 

(crosswalk) is 3.61 m and the spacing between the bottom set of check -lines 

(long segment) is 11.58m.  

Data collection area 



136 

 

4.5.4 Discussion 

The case study was intended to monitor pedestrian movement under several 

conditions. The monitored pedestrian facilities were a crosswalk, two 

sidewalks, and two unmarked crosswalks. A summary of walking speed 

statistics is presented in Table 4.3. Figures 4.9(a) and 4.9(b) show sample 

distributions of pedestrian walking speed for crossing and sidewalk 

movements respectively. Pedestrians moving from Northwest to Southeast had 

to walk up a 5% longitudinal grade. The average walking speed for all 

pedestrian objects was 1.22 m/s and the average and 15th percentile crossing 

speed was 1.31 and 0.93 m/s respectively. This value is consistent with studies 

in the literature as shown in Table 4.1. 

Table  4.3  Summary of walking speed statistics  

Movement 

No. 

Pedestrian 

objects 

Average 

(m/s) 

Stan. Dev. 

(m/s) 

P-value (difference in means between 

column and row movement types) 

Southeast-

Northwest 

UCW 

Southeast - 

Northwest 

SW 

Northwest - 

Southeast 

UCW & SW 

Southeast-

Northwest 

UCW
1 

907 1.41 0.26 - - 

<0.0001 
Southeast-

Northwest 

SW
2 

1148 1.04 0.28 - - 

Northwest 

- Southeast 

UCW 

289 1.26 0.30 <0.0001 - 

- 
Northwest 

- Southeast 

SW 

44 0.97 0.24 - 0.0333 

MCW
3 162 1.31 0.37 0.0002 - 0.0069 

Night-time 656 1.13 0.21 - - <0.0001 

1 UCW: unmarked crosswalk   2 SW: sidewalk    3 MCW: marked crosswalk 
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a) Validation at day-time conditions

 

b) Validation at night-time conditions

 

Figure  4.8  Figure a) shows validation of walking speed measurements at day -

time. Horizontal axis depicts walking speed based on the time interval required 

to walk between two check lines. Vertical axis depicts automatically measured 

average walking speed based. Figure b) shows validation of walking speed 

measurements at night-time conditions.  
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a) Data collection area (shown in Figure 4.4)       b) Southeast-Northwest crossing 

  

Figure  4.9  Figure a) Walking speed frequency distribution for pedestrians 

moving through the data collection area shown in Figure 4.4 across Robson St. 

Figure b) walking speed frequency distribution for pedestrians moving from 

Southeast to Northwest through corresponding data collection areas on both 

sidewalks of Robson Street.  

 

There is a statistically significant (p < 0.05) difference between walking speed at 

crosswalks and at sidewalks, walking uphill (from Northwest to Southeast) and 

opposite direction. There is no statistically significant (p = 0.0616) difference 

between walking speed along marked and unmarked crosswalks. However this 

result is deemed as inconclusive since it was measurably close to statistical 

significance. There is a statistically significant difference between Northwest-

Southeast walking speed at night during a road closure and at day time along 

the sidewalks. This was likely due to the larger space afforded for pedestrians 

during a road closure as well as the leisurely nature of walking back from a 

night event. 

As discussed before, one of the major advantages of video-based data collection 

is to capture walking speed variability, quantified by the standard deviation of 
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speed measurements over the time interval within a registration area. It was 

observed that pedestrians walked faster along unmarked crosswalks in case of 

approaching vehicles. The variability in crossing speed was recorded for 

movements along marked and unmarked crosswalks. There is a statistically 

significant (p < 0.0001) higher variability of walking speed at unmarked 

crosswalks compared to marked crosswalks.  

4.6 Conclusions 

Pedestrian walking speed has been the subject of continuous research. There is 

a recent revival in pedestrian studies that is motivated in part by demographic 

changes. It is believed that future data collection is necessary to develop a 

better understanding of pedestrian movement and the factors that influence 

walking speed.  

The majority of commercial techniques developed for automatically collecting 

traffic data focus on vehicular traffic. The technological aspects of automated 

pedestrian data collection are generally more involved than vehicular traffic. 

The majority of walking speed studies in the literature does not make use of 

automated video analysis for collecting pedestrian data. In this study, an 

automated system for collecting pedestrian walking speed using video analysis 

was developed and tested. A system previously developed for vehicle detection 

and tracking was significantly modified to adapt for particularities of 

pedestrian movement and to discriminate pedestrian and motorized traffic. The 

system was tested on real video data collected at Downtown area of Vancouver, 

British Columbia, during day- and night-time conditions. It was found that 
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pedestrians walk faster at marked crosswalks than sidewalks. Walking speed 

was more variable at unmarked crosswalks compared to marked crosswalks. 

Gradient and lighting conditions were identified as statistically significant 

variables that influence walking speed.  

Several conclusions can be drawn from this research work. First, the accuracy 

of walking speed calculations was sensitive to the camera calibration 

parameters. Several challenges were faced during the recovery of the camera 

parameters due to site-specific conditions. The robust camera calibration 

methodology presented in Chapter 3 was successfully used. Second, night-time 

conditions proved to be the most difficult as expected because of the obscurity 

of pedestrian outlines and video recording noise. A special set of detection 

parameters was used for night videos and results obtained were satisfactory. 

Finally, the literature of pedestrian observational studies is yet to benefit from 

automated video analysis techniques. It is expected that the system presented 

in this study will be further improved by adding other appearance-based 

techniques. 

 

S 
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555   
AUTOMATED DETECTION OF                                

PEDESTRIAN-VEHICLE CONFLICTS  

5.1 Background 

There is a growing emphasis on the sustainability of transportation systems. 

This emphasis is often manifested by promoting public transit and improving 

the traffic conditions for non-motorized modes of travel. Walking is a key 

non-motorized mode of transport that connects different components of a 

multimodal transport network and interfaces with external activity areas 

(land use). Building safe and walking-friendly pedestrian facilities is 

fundamental to encouraging and accommodating walking activities. For 

example most modern municipalities are required to have in place official 
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community plans to manage growth and many, if not most, of them contain 

policies that promote pedestrian activities. There also an increasing public 

fund allocation for safety programs that focus on problem areas such as 

pedestrian injuries. 

The study of pedestrian safety focuses mainly on the interaction with other 

motorized and non-motorized traffic and the conformity to traffic control 

regulations. The main focus of this chapter is on analyzing traffic events that 

involve conflicting movements between pedestrians and vehicles. As 

discussed in Chapter 1, road safety analysis has traditionally relied on 

historical collision data. However, there are some shortcomings to this 

approach: rarity and randomness of road collisions, extended observational 

periods, and concerns with the quantity and quality of collision data. 

Collision data reporting is often incomplete and biased toward highly 

damaging collisions. Collision auditing is conducted after collision 

occurrence, at which time the causes, specific location, and behavioural 

aspects of the event are subject to judgement – if ever reported.  

The shortcomings of relying on collision data for pedestrian safety analysis 

are even more acute. For example, collisions involving pedestrians are less 

frequent than other collision types. Pedestrian-involved collisions accounted 

from 1992 to 2001 for 3.6% of the total number of collisions in British 

Columbia (British Columbia Traffic Collision Statistics 2005). In addition, 

pedestrian traffic volumes are less readily available than motorized traffic 

volumes due to the difficulties of collecting pedestrian data. The 

identification of pedestrian exposure to the risk of collision is therefore 
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challenging without tracking pedestrian and vehicles. Pedestrians, being 

vulnerable road users, when involved in collisions, have considerably higher 

chances of being severely injured, with little chance of the collision being 

classified as property-damage-only. From 1992 to 2001, pedestrians accounted 

for 14.8% of traffic collision victims (i.e., injured or killed) in British Columbia 

and 15.2% in Canada.  

The use of surrogate safety measures has been advocated as a complementary 

approach to address these issues and to offer more in-depth analysis than 

relying on accidents statistics alone. One of the most developed methods rely 

on traffic conflict analysis. Traffic Conflict Techniques (TCTs) involve 

observing and evaluating the frequency and severity of traffic conflicts at an 

intersection by a team of trained observers. The concept was first proposed by 

Perkins and Harris in 1967 (Perkins & Harris 1968). A traffic conflict takes 

place when “two or more road users approach each other in space and time to such 

an extent that a collision is imminent if their movements remain unchanged” 

(Amundsen & Hydén 1977). A common theoretical framework ranks all traffic 

interactions by their severity in a hierarchy, with collisions at the top and 

undisturbed passages at the bottom (Svensson & Hydén 2006).  

TCTs hold several advantages over collision-based safety measures. Traffic 

conflicts are more frequent than traffic collisions. TCTs were shown in some 

studies to produce estimates of average accident frequency that are 

comparable to accident-based analysis (Migletz, Glauz & Bauer 1985). Traffic 

conflicts are manually collected by a team of trained observers, either on site 

or offline through recorded videos. Despite the considerable effort that is put 
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into the development of training methods and the validation of the observers’ 

judgement, such data collection is subject to intra- and inter-observer 

variability. This can compromise the reliability and repeatability of traffic 

conflict data collection. In addition, the training and employment of human 

observers makes traffic conflict studies costly. In a recent study (Fitzpatrick et 

al. 2006), the effort for extracting pedestrian and motorist data from videos 

was deemed “immense”. This type of data is not only difficult to collect, but 

also its usefulness is sensitive to the accuracy of the collection process.  

Due to limitations of manual data collection, a growing trend of using 

automated data collection systems has caught on in the field of transportation 

engineering. In particular, automated video analysis has attracted 

considerable interest. Video sensors are now widely available (traffic cameras 

are already installed on many roadways) and are relatively inexpensive.  

Previous work on the automated analysis of video data in transportation has 

mainly involved the detection and tracking of vehicular traffic, e.g., (Saunier 

& Sayed 2007).  Particularities of pedestrians make their detection and 

tracking in video sequences challenging. Problems arise from their 

intertwined tracks, groupings, varied appearance, non-rigid nature, and the 

generally less organized nature of pedestrian traffic as compared to vehicular 

traffic; which are subject to standard “rules of the road” and lane discipline.  

This work strives to address some of the previous shortcomings and research 

recommendations. This chapter discusses the development and testing of an 

automated video-analysis system that meets the following objectives: 
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1. Detect and track road users in a traffic scene, and classify them into 

pedestrian and motorized traffic. 

2. Identify important events in a video sequence. The definition of an 

important event in this study is “any event that involves a crossing 

pedestrian and a conflicting vehicle in which there exists a conceivable chain 

of events that could lead to a collision between these road users”. To be 

conceivable, a reasonable chain of events leading to a collision should 

be considered. The actual quantitative interpretation of this general 

definition is given in the experimental study. The pre-condition for an 

important event to occur in this study is that a left-turning vehicle 

enters the monitored crosswalk in the presence of a pedestrian or a 

group of pedestrians already in the crosswalk. Excluded were the 

events that involved the following unlikely chain of events: a vehicle 

reverting its travel direction, a pedestrian changing movement from 

walking to running (> 3.5 m/s), and a collision involving pedestrians 

standing beyond the curb line. 

3. Report objective measures of severity indicators for all events. 

The system can either work autonomously, or be used to assist human experts 

by sifting through large amounts of video data and identifying important 

events that is worthy of further investigation. The system was tested on video 

data recorded for two days at a location in the Downtown area of Vancouver, 

British Columbia. The task of calculating traffic conflict indicators for each 

event that involved a pedestrian-vehicle interaction was performed in a fully 

automated way.  
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5.2 Previous Work 

5.2.1 Pedestrian-vehicle Conflicts 

Cynecki (1980) described a conflict analysis technique for pedestrian 

crossings, citing fundamental differences between vehicle-vehicle and 

pedestrian-vehicle conflicts, and indicating desirable characteristics for 

conducting a conflict study. Two of these characteristics, repeatability and 

practicability of traffic conflict studies, can greatly benefit from automated 

video analysis, which offers a cost-efficient and objective means for traffic 

conflict analysis. In subsequent bodies of work, several studies adopted traffic 

conflict analysis to study the level of safety of pedestrian crossings, e.g., (Lord 

1996) (Van Houten et al. 1997) (Tiwari, Mohan & Fazio 1998) (Tourinho & 

Pietrantonio 2003) (Malkhamah, Miles & Montgomery 2005) (Rodriguez-

Seda, Benekohal & Morocoima-Black 2008). While the majority of past work 

was based on observer-based traffic conflict analysis, few studies, e.g., 

(Malkhamah, Miles & Montgomery 2005), developed a relationship between 

conflict indicators and automatically measured parameters, such as motorist 

deceleration rate. In a recent study (Chae & Rouphail 2008), an automated 

analysis of video data was performed to investigate the interactions between 

pedestrians and vehicles at roundabout approaches.  

5.2.2 Severity Conflict Indicators 

Various conflict indicators have been developed to measure the severity of an 

interaction by quantifying the spatial and temporal proximity of two or more 

road users. The main advantage of conflict indicators is their ability to 

capture the severity of an interaction in an objective and quantitative way. 
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Concerns however remain regarding the lack of a consistent and accurate 

definition of conflict indicators (Chin & Quek 1997). Conflict indicators 

developed in the literature are capable of capturing and connoting different 

proximal, situational, and behavioural aspects of traffic conflicts. Each 

indicator however possesses drawbacks that limit its ability to measure the 

severity of recognized traffic events. For a review of conflict indicators and 

their relative advantages and limitations, the readers are referred to (Archer 

2004).  

5.2.3 Pedestrian Detection and Tracking 

To study pedestrian-vehicle conflicts, all road users must be detected, tracked 

from one video frame to the next, and classified by type; at least as 

pedestrians and motorized road users. This is a challenging task as described 

in Chapter 4. In addition to specific problems when tracking pedestrians, 

common problems are global illumination variations, multiple object 

tracking, and shadow handling. Various approaches for pedestrian tracking 

have been described in Chapters 2 and 4. Although great progress has been 

made in recent years, the tracking performance of different pedestrian 

tracking systems is difficult to report and compare, especially when many of 

these systems are not publicly available or their details disclosed, and when 

benchmarks are rare and not systematically used. Tracking pedestrians and 

mixed traffic in crowded scenes is still an open problem. To the author ’s 

knowledge, no attempt has yet been made to develop a fully functional video-

based pedestrian conflict analysis system. However, only for the purpose of 
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detecting and analyzing pedestrian-vehicle conflicts, feature-based tracking 

provided reliable performance as demonstrated in Chapter 4.  

5.3 Methodology  

This section describes the development of a video-based system for the 

automated analysis of pedestrian conflicts.  The system has 5 basic 

components: 1) video pre-processing; 2) feature processing; 3) grouping; 4) 

high-level object processing; and 5) information extraction.  A depiction of the 

video analysis system was provided in Figure 4.1 in Chapter 4. The following 

sections describe the work performed in context of the work presented in this 

chapter.  

5.3.1 Camera Calibration  

The main purpose of camera calibration is to estimate a set of camera 

parameters to project objects onto the video sensor (image plane). The inverse 

transformation that recovers world coordinates of objects in the video images 

can also be obtained from the camera parameters. Camera parameters are 

classified into extrinsic and intrinsic parameters. Extrinsic camera parameters 

specify the displacement of the camera’s coordinates relative to world 

coordinates. Intrinsic parameters are required to establish a perspective 

projection of objects defined in the camera coordinates onto the image plane. 

Both sets of parameters can be obtained by minimizing the difference 

between the projection of geometric entities, e.g., points and lines, onto world 

or image plane spaces, and the actual measurements of these entities in 

projection space as described in Chapter 3.  
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The calibration data used in this study, scene PG described in Table 3.1, was 

composed of a set of 22 points selected from salient features in the monitored 

traffic scene that appear in the video image, as shown in Figure 5.1. The 

world coordinates of the calibration points were collected from an 

orthographic image of the location obtained from Google Maps. The only 

intrinsic parameter considered in this study was the camera focal length. In 

this chapter, image plane coordinates were back-projected onto the road 

surface, i.e., assuming the positions of all road users are projected on the 

plane Z=0.  

The calibration accuracy obtained by applying the methodology presented in 

Chapter 3 was satisfactory. The average percentage error in coordinate 

estimates was less than 1%. The camera calibration problem faced in this 

study was relatively simple due to the abundance of lane marking features 

which appear in the orthographic image of the traffic scene. 

Figure 5.2 shows the projection of a sample of pedestrian tracks on an 

orthographic satellite image of the traffic scene. Similar studies in the 

literature used artificial construction of an orthographic image using video 

image rectification e.g., (Laureshyn & Ardö 2006). The approach followed in 

this study by projecting the video data on an independent site map proved 

helpful in visually verifying the accuracy of the resulting projection; 

especially given the difficulties faced in obtaining calibration data. In 

addition, it was possible to collate pedestrian tracks obtained from different 

camera settings into a single site map, whereas video image rectification 

produces a setting-dependent site map. 
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5.3.2 Video Formatting  

Depending on the video source, it may be necessary to encode the video in a 

suitable format for later processing, as well as correct recording artefacts such 

as interlacing. For this study, a digital video recorder was used that encoded 

video to a suitable format (AVI container and MPEG encoder). 
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a) Image space 

 
 

b) World space 

 
Figure 5.1  The 22 points used to estimate the camera calibration are displayed 

on a video frame in Figure a) and on an orthographic satellite image of the 

traffic scene in Figure b). Bulleted points (●) are manually annotated and x-

shaped points (x) are projections of annotated points using the estimated camera 

parameters.  
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Figure 5.2  A sample of pedestrian tracks is projected on an  orthographic 

satellite image of the traffic scene. Vehicle tracks are depicted in red and 

pedestrian tracks are in black.  

 

5.3.3 Object Tracking 

Detection and tracking and grouping of road user features were conducted 

using the same methodology previously presented in section 4.3.2. 

Difficulties occur in scenes where there is mixed traffic use and road users 

vary in sizes, e.g., vehicles and pedestrians, and the connection and 

segmentation distances can only be adjusted for one type of road user. To 

address this issue, the original system has been extended by identifying the 

types of the road users. The parameters were adjusted for pedestrians, and 

consequently the motorized vehicles are over-segmented. Once the groups of 

features belonging to non-pedestrian objects had been identified, the feature 

Boundary of the 

camera field of view 

Boundary of the 

camera field of view 
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were processed a second time by the grouping algorithm using larger 

connection and segmentation distances.  

In the current system, a simple condition on the maximum speed of each road 

user was sufficient to discriminate between pedestrians and motorized road 

users in most cases. This test will typically classify bicyclists as motorized 

road users, which may lead to detect what are truly pedestrian-bicyclist 

conflicts as pedestrian-vehicle conflicts (or collisions due to erroneous size 

estimation).  

5.4 Case Study 

The system was tested on traffic video recorded for two days during daytime 

at a crosswalk in Downtown Vancouver (case study PG in Chapter 3). The 

objective of the case study is to assess the capability to identify instances of 

important events, and to calculate severity conflict indicators for each event. 

5.4.1 Site Description and Data Collection 

The study area is the intersection between W Pender St. and W. Georgia St. in 

the Downtown area of Vancouver, British Columbia, Canada. The main 

interacting movements are pedestrian crossing and left-turn vehicles. Left-

turn traffic at signalized intersections poses a particularly increased risk of 

collision for pedestrians (Lord 1996). Furthermore, this intersection is unique 

in that it is a skewed intersection within a corridor grid of streets all 

containing right-angle intersections. Hence, there is a high possibility of 

observing an adequate number of pedestrian-vehicle conflicts. In this study, 
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important events occurred when a pedestrian and a vehicle co-existed inside 

the monitored crosswalk. The potential for observing pedestrian-vehicle 

conflicts was confirmed by testimonials of persons familiar with traffic 

movement at this site. 

A video camera was set on the 6th floor of a building that overlooks the 

intersection and aimed towards the west. Video recording was conducted for 

a total of 20 hours over two business days. Approximately, a total of 7000 left-

turning vehicles and 2100 pedestrians were observed. These volume estimates 

are derived from the automated video analysis.  

5.4.2 Calculation of Conflict Indicators 

The system detects all events constituted by the pairs of pedestrians and 

vehicles that are in the traffic scene simultaneously. Among these events, this 

study is interested in important events, as defined in the introduction, and 

traffic conflicts, which are a subset of important events. The complement of 

important events over the space of all traffic events are defined as 

undisturbed or uninterrupted passages.  

In order to compensate for the limitations of individual conflict indicators, 

four conflict indicators were calculated in this study. The first is Time-to-

Collision (TTC) defined as “…the time that remains until a collision between two 

vehicles would have occurred if the collision course and speed difference are 

maintained.” (Hayward 1968). An accurate estimation of TTC however requires 

considerable field measurement of road user positions, speed and direction of 

movement. This work relies on the traditional operational definition of a 

collision course, extrapolating the road users’ movements with constant 
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velocity (used in (Svensson & Hydén 2006) for example). This hypothesis is 

however simple and may lead to unrealistic collision-course estimates. 

Other conflict indicators are used to capture different proximity aspects. Post-

Encroachment Time (PET) (Cooper 1984) is the time difference between the 

moment an offending road user leaves an area of potential collision and the 

moment of arrival of a conflicted road user possessing the right of way. Gap 

time (GT) is a variation on PET that is calculated at each instant by projecting 

the movement of the interacting road users in space and time (Archer 2004). 

Deceleration to Safety Time (DST) is defined as the necessary deceleration to 

reach a non-negative PET value if the movements of the conflicting road users 

remain unchanged (Hupfer 1997). Allen et al. (Allen, Shin & Cooper 1978) 

ranked GT, PET and Deceleration Rate as the primary measures for left-turn 

conflicts. DST was selected since it captures greater details of the traffic event. 

TTC was selected since it is the primary traffic conflict indicator in the 

literature. The values of conflict indicators used in event detection are the 

minimum TTC, the minimum GT, the maximum DST and PET. Figure 5.3 

shows sequences of severity conflict indicators calculated for a traffic conflict 

event. Algorithm 5.1 presents a description of the method used in this study 

to calculate the severity indicators. 
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Algorithm 5.1: Algorithm for calculating conflict indicators for a pedestrian-vehicle 

event 

Definitions:  1) A generic position function         returns the world-space 
position of a road user       at time instant t such that           . 

2) A generic velocity function         returns the velocity 
components of a road user          at time instant t such that 
             . 

3) A generic position extrapolation function              
 

returns the position at time      of a road user with current position 
      and velocity         at time  ,                           . 

Input:  Let        be the pedestrian position function, defined for            . 

Let    ,    ,    , and     be the position functions of the vehicle front and 

rear corners respectively, that are all defined for            . 

Let    and    be the pedestrian and vehicle velocity functions, respectively  

1- Let   be the segment demarcating the crosswalk 

Let             be a speed threshold and          be maximum 
extrapolation time. 

Output: Time series of TTC, DST, and GT, and the PET 

begin 

for each pair consisting of a pedestrian and a vehicle whose observed 
trajectories intersect at point set     

Let    be the times at which each road user occupies the points in    

Find the times    at which the observed vehicle rear corner positions 
    and     intersect W 

PET=                                       

for each                               such that            and 

           

Find the intersection points    between the extrapolated 
positions of the pedestrian                    and of 

the vehicle front corners                        for 
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Find the intersection points    between the extrapolated 
positions of the vehicle rear corners                  

       for           and W 

2- Find the times    and    at which each road user occupies the 
intersection points in    and    

Calculate t =TTC(t) such that            lies inside the 
extrapolated positions of the vehicle outline 

Calculate GT(t)=                 

           
                           

        

                
 

if the pedestrian leaves the conflict area before the vehicle 
then 

Recalculate GT(t) and PET such that it is the time 
between the instant a pedestrian clears the conflict 
area and the instant of arrival of the front of the 
conflicting vehicle arrival. 

Notes: 

1- This definition of a “conflict area” is adopted from (Lord 1996). 

2- Several algorithmic details were implemented to deal with tracking errors, 

e.g., tracked objects that are detected or lost during the traffic event. Details 

are omitted for brevity. 

 

5.5 Validation 

Various manually designed detection conditions defined over the composite 

values of the severity conflict indicators are used to identify important events. 

These results are compared on a sample of events manually classified by a 

human observer, using the definition of important events given in this 

chapter and the conflict definition in the US FHWA observer’s guide (Parker 

& Zegeer 1989). The pre-condition for an important event to occur in this 
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study is that a left-turning vehicle enters the monitored crosswalk in the 

presence of a pedestrian or a group of pedestrians already in the crosswalk. 

Excluded were events that involved the following unlikely chain of events: a 

vehicle reverting its travel direction, a pedestrian changing movement from 

walking to running (> 3.5 m/s), and a collision involving pedestrians standing 

beyond the curb line. Sources of misclassification that may lead to inaccurate 

indicator are: 

1. Errors in pedestrian and vehicle detections. These errors include: noise 

in tracked object position that could lead to unrealistic extrapolation of 

a road user’s position, over-segmentation, lost detections of a road 

user, appearing or disappearing during a traffic event. 

2. Incapability of the used conflict indicators to measure the level of 

severity of a traffic event.  

While in some cases, it was evident why the erroneous classification of the 

traffic event took place, it was difficult in other cases to explicate the error 

source. In this study, the overall performance of the system was considered 

with respect to detecting and tracking road users, as well as making judicious 

use of the severity information measured by the conflict indicators. In this 

study, the detection conditions used for identifying conflicts and important 

events were defined by scaling serious conflict threshold values which delimit 

serious conflicts from other traffic events by a severity factor. 
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Figure 5.3  Conflict indicators for a sample traffic event. The left figure describes the traffic event shown in 

figure 5.4a. The right figure describes the traffic event shown in figure 5 .4b. 
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Table 5.1 shows the details of the detection conditions and the summary of 

detection results for various severity factor values. The thresholds of the 

identification conditions (shown in column 1) were determined by scaling the 

serious conflict threshold on each severity indicators by a severity factor aX, 

where the subscript x refers to the concerned conflict severity indicator. The 

following typical severity thresholds are taken from the literature: 1.5 s, 3 

m/s2, 1 s, and 1 s, for TTC, DST, PET, and GT respectively.  For TTC (and 

similarly for PET and GT), all events that involved TTC < 1.5*aTTC were 

detected as important events. For DST, all events that involved DST < 1.5 / aDST 

were detected as important events. Thus defined, higher severity factors 

would cover events with lower conflict severity.  Increasing the factors lead to 

a higher chance of detecting conflicts at the expense of misclassifying 

undisturbed passages as important events. If a severity factor is not 

mentioned for an indicator, it means that it is not used in the condition.  

The total number of conflict events in the analyzed video sequence is 17. The 

number of traffic conflicts considers the actual number of pedestrians 

involved, e.g., a conflict involving a vehicle and two pedestrians is counted as 

two conflicts. Only PET may allow detecting important events as well as 

conflicts separately from the other indicators. This is consistent with a study 

in the literature that used PET for conflict detection (Malkhamah, Miles & 

Montgomery 2005). Other conflict indicators however could not solely detect 

an adequate percentage of important events and traffic conflicts. A 

combination of the four conflict indicators enabled the system to 

automatically capture 89.5% of true conflicts and 71.7% of important events 

while however detecting 54.5% of undisturbed passages as important events.   
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Table 5.1  Summary of validation results  

Identification 

Conditions
1 

Percentage of each event types correctly 

identified by the system 

Percentage of 

undisturbed passage 

falsely identified by the 

system as important 

events 

Traffic 

Conflict
1 

Important 

Events
2 

Uninterrupted 

Passages 

aTTC = 1 5.3 4.3 93.2 6.8 

aTTC = 2 31.6 23.9 87.2 12.8 

aTTC = 5 36.8 39.1 66.0 34.0 

aDST = 1 0.0 0.0 100.0 0.0 

aDST = 2
 5.3 3.3 96.6 3.4 

aDST = 5 47.4 51.1 63.0 37.0 

aGT = 1 21.1 27.2 80.4 19.6 

aGT = 2 26.3 32.6 75.7 24.3 

aGT = 5 42.1 41.3 66.0 34.0 

aPET = 1 5.3 0.0 99.6 0.4 

aPET = 2 10.5 2.2 98.3 1.7 

aPET = 5 89.5 42.4 88.5 11.5 

aPET = 1 OR aGT = 1 OR 

aDST = 1 OR aTTC = 1 
21.1 28.3 74.5 25.5 

aPET = 2 OR aGT = 2 OR 

aDST = 2 OR aTTC = 2 
36.8 43.5 67.2 32.8 

aPET = 5 OR aGT = 5 OR 

aDST = 5 OR aTTC = 5 
89.5 71.7 45.5 54.5 

1 Observer-based conflict identification was performed according to the US FHWA 

Observer Manual (Parker & Zegeer 1989). 

2 The definition of an important interaction is an event that involves a crossing 

pedestrian and a conflicting vehicle in which there exists a conceivable chain of 

events that could lead to a collision between these road users. 
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a) b) c) 

d) e) f) 

2.43 | 3.63 | 2.34 | -2.47 1.93 | 2.13 | 1.98 | -4.17 1.27 | 3.17 | 2.83 | 0.30 

2.03 | 2.80 | 3.34 | 0.03 1.70 | 4.00 | 1.78 | 0.57 5.73 | 3.87 | 2.38 | 0.77 

Figure 5.4  Sample of automatically detected important events along with road users‟ 

trajectories. The numbers under each image are respectively the min TTC (seconds), 

PET (seconds), maximum DST (m/s
2
), and min GT (s). In the images, the road user 

speed is indicated in m/s.  
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5.6 Discussion 

The main functional purposes of the developed video analysis system 

described in this chapter is to automatically identify important events that 

expose pedestrians to a reasonable risk of collision, including conflicts, and 

relay their record to a human observer for further examination. Combining 

information from four conflict indicators proved successful in reporting the 

majority of conflicts identified by a human observer. Figure 5.4 shows sample 

frames of important events automatically detected by the system. The 

capability of each conflict indicator to characterize important events was 

compared to manually annotated events in the dataset. As shown in Table 5.1, 

none of the conflict indicators was solely capable of capturing important 

events. The following limitations of the selected conflict indicators were 

identified in this study: 

a. A prerequisite for TTC is the existence of road users on a collision-

course, that is vehicles will collide if their “movements remain 

unchanged”. The existence of a collision course is not however a 

necessary condition for capturing “dangerous proximity.” Some 

dangerous interactions could not be captured by TTC because the 

involved road users were not on a collision course. A typical case 

occurs when a motorist passes behind a pedestrian at a perilously close 

distance. A perturbation however of the speed or direction of 

movement of the motorist, or slight delay on the part of the pedestrian, 

could potentially create a collision course and hence a calculable TTC. 

This issue is discussed in detail in Chapter 7. 
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b. The extrapolation of road users’ movements with constant speed and 

direction could lead to erroneously small values of TTC and DST. It is 

observable that while TTC can function as a severity measure, it 

overestimates the actual conflict severity in many events. A typical 

situation occurs when a pedestrian is considered on a collision course 

with turning vehicles of which the velocity vector happens to point at 

the pedestrian. However, this method for extrapolating the road user 

movement is widely used in the literature. 

c. PET was the most reliable parameter for detecting important events. 

Despite its simple definition, PET has inherent drawbacks in accurately 

capture conflict severity. Events in the video sequence in which 

motorists decelerated to near-stop to avoid collision usually have PET 

values that do not reflect the true severity of the event.  

5.7 Conclusions 

This chapter presented an automated system and methodology that furthers 

the development of previous work on video analysis to capture the 

movements of pedestrians at crossing locations. The movement paths of 

pedestrians and transversal trajectories of vehicles were analyzed and a 

group of conflict indicators were calculated for each pedestrian-vehicle 

interaction. The video analysis system developed for this purpose provided 

the ability to automatically calculate conflict indicators and report important 

interactions to a human observer for further examination of traffic 

interactions. The quality of four conflict indicators, Time-to-Collision, Post-
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Encroachment Time, Gap Time, and Deceleration-to-Safety Time, were 

assessed in regard to their ability to comprehend the severity of traffic 

conflicts. None of the conflict indicators were individually capable of 

capturing all dangerous interactions between road users. However, a 

combination of the four indicators proved useful in the identification of 

important events and traffic conflicts. A possible continuation of this work 

involves the collection of additional video data at traffic intersections with 

high pedestrian-involved collision hazard potential. Future work also 

includes testing, as well as improving, the system’s accuracy to detect and 

track road users in more crowded traffic scenes. As evidenced in this study, 

there is a need to develop safety measures that address the limitations of 

current conflict indicators, and draw on the extensive movement data made 

available by automated methods, such as the automated video analysis 

system described herein. 
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666   
AUTOMATED ANALYSIS OF                                    

PEDESTRIAN-VEHICLE CONFLICTS:                                      
A CONTEXT FOR BEFORE-AND-AFTER STUDIES  

6.1 Background 

“[Pedestrian exposure to the risk of collision is] very difficult to measure directly, 

since this would involve tracking the movements of all people at all times”  (Greene-

Roesel, Diógenes & Ragland 2007).  

The challenge of gaining insight into the mechanism of action that endangers 

road users transcends the focus on pedestrian exposure to the entire realm of 

road safety. The accurate estimation of exposure as well as other quantities 

fundamental to road safety analysis, e.g., severity of a traffic interaction, can 



 

167 

 

greatly benefit by analyzing road user positions in space and time, i.e., road 

user tracks (Saunier & Sayed 2007). Manual annotation of road user positions 

is time- and resource-expensive, especially when pedestrians are studied, e.g., 

(Lam & Cheung 2000) (AlGhadi, Mahmassani & Herman 2002). As 

demonstrated in previous chapters, automated extraction of road user 

positions from video observations has been advocated as a resource-efficient 

and potentially more accurate alternative.  

Video sensors are selected as the primary source of data in this research. 

Video data is rich in detail, recording devices are becoming less expensive, 

and video cameras are often already installed for monitoring purpose. 

Pedestrian tracking in video sequences is traditionally more challenging than 

other road users (Forsyth et al. 2005). Pedestrians are locally non-rigid, are 

prone to visual occlusion due to crowdedness, and are more variable in shape 

and appearance. Despite these challenges, vision-based applications in the 

field of pedestrian studies have been demonstrated with an increasing level of 

practical feasibility (see a review of relevant work in Chapter 2). One of the 

focus areas of pedestrian safety that could greatly benefit from vision-based 

road user tracking is before-and-after (BA) evaluation of safety treatments. 

BA studies are a key component of road safety programs that aim at 

measuring the safety benefits (or absence thereof) derived from a specific 

engineering treatment.  

Catering to the safety of non-motorized modes of travel, in particular for 

walking, is essential to meeting the ever-growing demand for building a 

sustainable transportation system. The prevalent collision-based paradigm of 
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BA studies is based on estimating the reduction in collisions, in terms of 

frequency and consequence, which can be attributed to the evaluated 

treatment. In order to draw statistically stable conclusions, e.g., explicating the 

effect of the treatment away from all other confounding factors, collisions are 

typically observed for a relatively long period (1-3 years) before as well as 

after the introduction of the treatment. As presented before, the reliance on 

collision data for BA analysis invites the following shortcomings:  

1. Attribution: police reports and interviews often do not enable the 

attribution of road collisions to a single cause or a set of causes with 

satisfactory accuracy,  

2. Data Quantity: road collisions are rare events that are subject to 

randomness inherent to small numbers, and  

3. Data Quality: collision records are often incomplete and lack 

important details, and the quality of road collision reporting has been 

deteriorating in many jurisdictions. 

Shortcomings in collision-based BA studies are even more pronounced in the 

study of pedestrian safety. Pedestrian-involved collisions are more injurious 

and less frequent than vehicle collisions (Cynecki 1980). Exposure measures, 

such as pedestrian volume, are often difficult to obtain and are expensive to 

collect through in-field surveys (Pulugurtha & Repaka 2008). Surrogates 

and/or statistical predictors of these types of data are often used in practice, 

e.g.,  (Greene-Roesel, Diógenes & Ragland 2007). It is often the case that the 

safety analysis may not afford long-term collision observation after the 

introduction of a measure (Hua et al. 2009).  
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Arguments that support the adoption of traffic conflict techniques find more 

ground in BA studies of pedestrian safety treatments. Traffic Conflict 

Techniques (TCTs) are based on analyzing the frequency and severity of 

traffic conflicts at an intersection, typically observed by a team of trained 

observers. Traffic conflict is defined as: “an observable situation in which two or 

more road users approach each other in space and time to such an extent that there is 

a risk of collision if their movements remained unchanged”  (Amundsen & Hydén 

1977). Traffic conflicts are more frequent than road collisions and are of 

marginal social cost. Traffic conflicts provide insight into the failure 

mechanism that leads to road collisions. BA studies based on traffic conflicts 

can be conducted over shorter periods. A theoretical framework, advocated in 

this study, ranks all traffic interactions by their severity in a hierarchy, with 

collisions at the top, undisturbed passages at the bottom, and traffic conflicts 

in between (Svensson & Hydén 2006).  

The traditional approach of collecting traffic conflict data is challenged on 

several accounts. Inter- and intra-observer variability is a common challenge 

for the repeatability and consistency of results from traffic conflict surveys 

(Glauz & Migletz 1984). Field observations are costly to conduct and demand 

staff training. Despite decades of conceptual developments, there is no 

universal operational definition of a traffic conflict, e.g., objectively measurable 

interpretation of words “approach”, “risk of” and “unchanged” in 

aforementioned conceptual definition (Chin & Quek 1997). Finally, the 

estimation of objective conflict indicators, such as Time to Collision (Hayward 

1968) using field observations can be difficult.  
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Automating the process of traffic conflict analysis is greatly appealing in the 

context of BA studies of pedestrian safety treatments. Process automation 

may enable the analysis of pedestrian-vehicle conflicts in an accurate, 

objective, and cost-efficient way. The goal of this study is to demonstrate a 

novel application of automated video analysis for the BA analysis of a 

scramble phase treatment analyzed manually in previous work (Bechtel, 

MacLeod & Ragland 2003). In later stage, the practical use of the developed 

system as an assisting tool is demonstrated. The length of the video sequence 

to be reviewed by an observer could be greatly reduced. This study is another 

step in a research direction that is, to the best of the author ’s knowledge, 

unique in the field of road safety and pedestrian studies. 

The objectives of this chapter are to first, report several technical 

improvements to the video analysis system. Second, the work presented in 

this chapter is also intended to demonstrate the feasibility of conducting BA 

analysis using video data collected from a commercial-grade camera, from a 

relatively low altitude, and using a video not collected initially for the 

purpose of automated video analysis. 

6.2 Previous Work 

6.2.1 Conflict-based Before-and-After Studies  

There is a significant body of work on the evaluation of pedestrian safety 

treatments using non-collision data. The literature contain studies that rely on 

traffic conflicts, e.g., (Van Houten et al. 1997) (Huybers, Van Houten & 

Malenfant 2004) (Medina, Benekohal & Wang 2008) (Gårder 1989) (Kim & 
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Teng 2004) (Bechtel, MacLeod & Ragland 2003) (Acharjee, Kattan & Tay 2009) 

and behavioural surrogates such as motorist yielding rate (Turner et al. 2006). 

The difficulties in relying on collision data in conducing BA studies is 

acknowledged in the literature, e.g.,  (Turner et al. 2006) (Hua et al. 2009), in 

which surrogates safety measures were used. The studies that concerned the 

evaluation of pedestrian scramble were predominantly conducted using 

traffic conflicts (Gårder 1989) (Kim & Teng 2004) (Bechtel, MacLeod & 

Ragland 2003) (Acharjee, Kattan & Tay 2009) (except for (Vaziri 1998)). There 

is some agreement that scramble phase treatment reduces pedestrian-vehicle 

conflicts except when pedestrian compliance rate is low (Abrams & Smith 

1977) (Gårder 1989). Among the reviewed studies, the study by (Malkhamah, 

Miles & Montgomery 2005) was the only one in which data required for 

evaluation, motorist deceleration, was automatically collected.  

The previously identified issues with the observer-based traffic conflict 

analysis were echoed by a recent evaluation study of pedestrian treatments in 

San Francisco (Hua et al. 2009). The authors noted issues with the subjectivity 

of the definition of traffic conflict, inter-observer agreement, and the labour 

cost of extracting observations from video data were highlighted. The use of 

automated video analysis tools is being increasingly advocated to overcome 

these shortcomings.  

6.2.2 Video-based Road User Detection and Tracking 

The main steps in the procedure of video analysis followed in this chapter are 

adopted from the methodology presented in Chapter 5. Some modifications 

were achieved in order to overcome the challenge of classifying pedestrians 
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moving during pedestrian scramble. In order to study pedestrian-vehicle 

conflicts, all road users must be detected, tracked from one video frame to the 

next, and classified by type, at least as pedestrians and motorized road users. 

To the author’s knowledge, the work presented in Chapters 5 and 6 represent 

the first attempt to develop a fully functional video-based pedestrian conflict 

analysis system. 

6.3 Methodology 

Video analysis performed in this Chapter was conducted using the core 

methodology presented in Chapter 5. Following is a brief description of 

improvements in the system, mainly to meet video analysis challenges faced 

in this study. 

6.3.1 Road User Classification 

To analyze pedestrian-vehicle conflicts, it is necessary to identify pedestrians 

and motorized vehicles. The system described in Chapters 4 and 5 used a 

speed classifier, a threshold on the maximum speed reached by road users 

during their existence for classification. This “speed classifier” however 

proved inadequate for the BA dataset available for this study. This was largely 

due to the large number of false alarms generated when a pedestrian walks 

faster than the maximum speed threshold within crowd movement the end of 

the pedestrian interval or during the pedestrian scramble. 

A new method was developed for that purpose, inspired by previous work 

done by the authors. A small subset of actual road users’ trajectories, called 
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prototype trajectories, is identified using an incremental unsupervised 

algorithm described in  (Saunier, Sayed & Lim 2007), relying on the Longest 

Common Subsequence (LCSS) similarity (Vlachos, Kollios & Gunopulos 

2005). The LCSS is a similarity measure that could match tracks of different 

length.  

Let A and B be tracks of two moving objects of lengths n and m respectively, 

                              and                              . For a track 

A, let         be the sequence of road user positions defined as follows: 

                                       . Given a real number    , the 

basic similarity measure            is defined as follows (Vlachos, Kollios & 

Gunopulos 2005):  

- 0 if A or B is empty, 

-                          if               and               , 

and 

-                                         otherwise. 

 

The constant   controls the matching threshold for the Chebyshev distance 

(  -norm) used by default (it is chosen over the Euclidean distance because it 

is less expensive to compute while yielding good results), but can be replaced 

by any distance, and more conditions can be added. In this work, a second 

similarity measure             , with      , is used by supplementing 

the trajectories with the velocity at each instant and adding the condition that 

the cosine of the velocities be below  . The associated distances are obtained 

by scaling the similarities to       as follows: 

          
          

         
     … (6.1) 
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      … (6.2) 

where D is the LCSS-based similarity  measure or LCSS distance. The 

prototypes are learnt using         to yield a smaller set. The “prototype 

classifier” uses the 1 nearest-neighbour method with the distance           

and a threshold δ (       on the distance to limit the matches to the 

closest prototypes. The object is assigned the type of the closest prototype. 

Given that a threshold is used, an object trajectory may have no prototypes 

with a distance of δ, in which case the default speed classifier is used.  

The prototypes need therefore to be labelled. This labelling is a one-time 

semi-automated operation, where the prototype trajectories are first classified 

using the speed classifier, then reviewed and corrected if needed by a human 

annotator. An example of labelled prototypes is given in Figure 6.1. A 

comprehensive comparison of the classifier on a subset of 1063 manually 

annotated trajectories was done and the results are presented in Table 6.1 and 

Figure 6.2. It shows the clear superiority of the prototype classifier over the 

speed classifier. 
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Table 6.1  A comparison between the speed and prototype classifiers 

Classifier 
Speed 

Threshold 

Max 

PCC
1 

Max 

Кappa 

True positive 

rate
2 

False 

positive rate
 

Speed classifier 2.90 m/s 0.85 0.70 0.96 0.26 

Speed classifier with a 

moving average filter 
2.30 m/s 0.87 0.73 0.93 0.21 

Prototype classifier - 0.97 0.95 0.98 0.04 

1 Percentage correct classification (PCC) represents the number of road user trajectories 
correctly classified (vehicle into vehicle and pedestrian into pedestrian) over the total 
number of trajectories. 

2 A positive is the classification of a road user into a pedestrian and a negative is the 
classification of a road user into a vehicle. A true positive is a pedestrian classified into a 
pedestrian (ped-ped). A false positive is vehicle into pedestrian (veh-ped). A true negative 
is veh-veh and a false negative is ped-veh. The rates are computed by dividing over the 
number of trajectories in each road user class.  
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a) Vehicle prototypes   

 

b) Pedestrian prototypes  

 

c) Vehicle prototypes 

 

d) Pedestrian prototypes 

 

Figure 6.1  Road user prototypes for the before-and-after scramble phase. 

Figure a) shows the pre-scramble vehicle prototypes(pre-scramble-veh). Figures 

b, c, and d show pre-scramble pedestrian prototypes,  post -scramble vehicle 

prototypes, and post -scramble pedestrian prototypes, respectively. The color 

coding is the result of a k-means clustering in 4 classes based on the prevalent 

prototype direction. 
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Figure 6.2  Receiver Operating Characteristic (ROC) Curve for the speed and 

prototype classifier (for the smoothed max speed classifier, the road user speed 

is smoothed with a moving average filter). The threshold for the speed 

classifiers is 3m/s.  

6.3.2 Validation of Tracking Performance 

The tracking results of the system need to be evaluated. The safety analysis 

presented in this Chapter relies on road user tracks. Since most existing 

research has embraced instantaneous per-frame performance measures, a 

new algorithm was developed to automatically assign detected objects (the 

output of the system) to ground truth objects (manually annotated tracks) 

(Saunier, Sayed & Ismail 2009).  

The results are the unique assignment of these objects: correct assignments 

(one detected object-to-one labelled object), over-segmentations (one labelled 

object to many detected objects), over-groupings (one detected object to many 
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labelled objects), missed detections (unassigned labelled object), and false 

detections (unassigned detected object). In this Chapter, the results were 

condensed into correct assignments, missed and false detections, and the 

performance measure is the following cost function that measures the overall 

tracking error: 

     
               

 
         …(6.3) 

where   is the number of annotated objects,     and     are respectively the 

number of false and missed detections,     and     are respectively the 

weights for false and missed detections, set respectively to 0.25 and 0.75. The 

choice of weights is prompted by a target of minimizing missed detections, 

which might translate into missed pedestrian-vehicle interactions, while still 

trying to minimize, to a lesser extent, the number of false detections, to 

reduce the number of falsely detected interactions, called false alarms. This 

framework was used to optimize the cost function over the space of a few key 

tracking parameters, namely the connection distance Dconnection, the maximum 

distance between two features for their connection, and the segmentation 

distance Dsegmentation, the maximum difference between the minimum and 

maximum distance between two features. Data was annotated for 1495 

frames, resulting in 41 tracked objects. The space of (Dconnection, Dsegmentation) was 

searched systematically (refer to Figure 6.3) and yielded the selection of (0.45, 

0.12). Figure 6.4 presents sample frames with manually annotated data and 

the result using the automatically tuned parameters.  
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Figure 6.3  Plot of the cost function with respect to (Dconnect ion , Dsegmenta t ion).  
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             a) Manual annotation of pedestrian positions. 

 

             b) Automatically detected pedestrian objects. 

 

Figure 6.4  Sample frames from validation results. The number of missed 

detections is 3/32 with 29 false detections mainly due to over -segmentation. 

Figure a) shows a sample frame from a post -scramble sequence with labelled 

pedestrians. Figure b) shows the pedestrians tracked in t he same frame using the 

optimized tracking parameters. The bicyclist annotated with a box in Figure b) 

is correctly identified as a non-pedestrian (given a screen label „ca‟). 
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6.3.3 Camera Calibration 

The positional analysis of road users requires an accurate estimation of the 

camera parameters. The camera parameters calibrated in this study are six 

extrinsic parameters (which describe the location and orientation of the 

camera) and two intrinsic parameters (which represent the projection on the 

image space). Once calibrated, it is possible to recover real-world coordinates 

of points appearing in the video sequence on the pavement surface. 

Since videos were collected by a third party, access to the camera was not 

possible and therefore all camera parameters must to be inferred from video 

observations and an orthographic image of the intersection. A mixed-feature 

camera calibration approach was introduced in Chapter 3. Each calibration 

feature imposes a condition based on its shape, position, and length in both 

image and world spaces. An additional calibration feature was necessary to 

enhance the accuracy of the camera calibration based on the parallelism of 

calculated vertical line (depicted in blue in Figure 6.5) to a manually 

annotated vertical direction (observed from light poles).  

The accuracy of the estimated parameters was tested using a set of 12 line 

segments, whose true lengths were estimated from the orthographic image. 

This set of observations was not used in calibration. The calibration error is 

represented by the discrepancy between calculated and annotated segment 

lengths normalized by the length of each segment. The accuracy of the final 

estimates was satisfactory (0.1 m/m) and no further error in conflict analysis 

was attributed to inaccurate estimated camera parameters. 
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6.3.4 Conflict Indicators 

Conflict indicators are advocated as an objective and quantitative measure of 

the severity (proximity to collision) of a traffic event (Svensson & Hydén 

2006). This study concerns traffic events which include a potential conflict 

between a pedestrian and a non-pedestrian road user. The four conflict 

indicators calculated in this study are: Time to Collision (TTC), Post-

Encroachment Time (PET), Deceleration-to-Safety Time (DST), and Gap Time 

(GT). TTC is defined as “…the time that remains until a collision between two 

vehicles would have occurred if the collision course and speed difference are 

maintained” (Hayward 1968).   

PET is the time difference between the moment an offending road user leaves 

an area of potential collision and the moment of arrival of a conflicted road 

user possessing the right of way (Allen, Shin & Cooper 1978). GT is a variant 

of PET calculated at each instant by extrapolating the movements of the 

interacting road users in space and time (Archer 2004). Deceleration to Safety 

Time (DST) is defined as the necessary deceleration to reach a non-negative 

PET value if the movements of the conflicting road users remain unchanged 

(Hupfer 1997). 

An accurate in-field estimation of objective conflict indicators is challenging 

and inherently subjective. Semi-automated methods have been used in 

previous studies in which road user positions are manually annotated 

(Svensson & Hydén 2006). This process is time-consuming and does not 

support large-scale data collection.   
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a) World Space 

 

b) Image space 

 

c) Grid in world space 

 

d) Grid in image space 

 

Figure 6.5  alibration of the video camera. Figures a) and b) show the calibration 

features. Points are labelled. Segments in red are distance constraints. Segments in blue 

constitute angular constraints. The inferred camera location is marked. Figures c) and d) 

show the projection of a reference grid from the world space in c) to image space in d). 

World images are taken from Google Maps.   
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The calculation of conflict indicators in this study follows main lines of 

Algorithm 5.1. The videos analyzed in this study include significantly large 

number of road users; especially pedestrian movement during pedestrian 

scramble. Issues with large data structures arose and the following measures 

were taken: 

1. Road user tracks are extrapolated at their extremities in time by the 

amount of 3 seconds assuming constant velocity. This extension of the 

observed road user tracks was conducted to detect conflicts in the 

further crosswalks of the intersection that occur after vehicle yielding. 

Vehicles are not tracked when stationary and the image quality at 

further crosswalks could not enable instant re-tracking when 

movement is resumed. 

2. The list of traffic events to be analyzed is reduced based on the 

following proximity heuristic: 

a. Collect five sample frame numbers selected uniformly from the 

time span in which the two road users co-exist.  

b. Calculate at every point i along a pedestrian trajectory the 

spacing    between this point and the potentially conflicting 

vehicle. 

c. Discard this event if            . 

3. The remaining list of events is further reduced using the following 

motion similarity heuristic: 

a. For each of the previous sample frame numbers, calculate the 

smoothed average (window of 10 frames) of the direction of 

movement.  
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b. Calculate the angle between the average movement directions of 

the pedestrian and the vehicle.  

c. If the cosine of this angle is greater than 0.9, discard this event.  

4. Road users are assumed to be represented by points, e.g., centroid.  

5. The collision area is the point of intersection of pedestrian and vehicle 

tracks.  

6. The objective definition of a collision course is the extrapolation of 

road user positions that lead to a minimum spacing shorter than the 

distance traversed by the conflicting vehicle at current speed in 1.5 sec. 

Extrapolation of road user positions are based on assuming they will 

maintain a constant velocity. 

The tracking parameters used in this study lean toward over-segmentation of 

road users, i.e., tracking of multiple objects over the same road user. An 

example is show in Figure 6.6. This increases the chance of tracking of road 

users, especially pedestrians, at further crosswalks. To reduce this effect, 

events with calculable conflict indicators that involve road users within a 

proximity constraint are grouped into one event. This is implemented by 

creating a graph connecting pedestrian objects and interacting vehicle objects 

for which there are calculable conflict indicator. All pair-wise spacing 

between vehicle objects at the moment of their min TTC and min GT are 

computed. Vehicle objects are further connected if their spacing is below a 

threshold of 3m. The subgraph of connected vehicle objects is replaced by a 

new vehicle object whose resultant conflict indicators are taken as the minima 

of TTC, PET and GT and the maximum of DST. Details of this grouping are 

presented in Algorithm 6.1. Figure 6.6 provides additional illustration.  
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Algorithm 6.1: Algorithm for grouping pedestrian-vehicle event 

Definitions:  1) A pedestrian object    is ith in the list of all pedestrian objects that 
exist in the list of traffic events to be analyzed.  

2) A vehicle object    is jth in the list of all vehicle objects that exist in 

the list of traffic events to be analyzed.  

Input:  Let        be the position of the jth vehicle object at the position that exposed 

the interacting pedestrian with the shortest Time to Collision (TTC).  

Let       be the position of the jth vehicle object at the position that exposed 

the interacting pedestrian with the shortest Gap Time (GT).  

 

Output: An updated list of traffic events in which all successfully grouped events will 
comprise a unique pair of pedestrian and vehicle objects.  

begin 

1- for each pedestrian object    find within the list of vehicle objects the subset 
of   vehicle objects      that coexist with    in the same traffic event. 

2-  Create an adjacency matrix      that represent the spacing between the 
positions of every pair of vehicle object      at the time of minimum TTC. 

Elements in   that correspond to vehicle objects that do not possess a 
calculable TTC (not on a collision course) are assigned a token value (0) that is 
discarded later.  

3-  Find the connected graphs of all vehicle objects in      in which every pair     

of connected nodes satisfied the condition                          . 
The threshold is taken 3.0m in this study. 

 4-  Repeat steps 2 and 3 for vehicle positions at the moment of minimum GT. 

 5-  Combine the list of connected graphs and remove redundancies. 

 6 -  Create a new event with TTC at every time step equals the minima at each 
common time instant of all sequences of TTC observations for all     , PET 

equals the minima of all PET, GT equals the minima of GT observations at 
every time instant, and DST equals the maxima of all sequence. 

 7-  Remove but one from the list of events all recorders that contains     . 

 8 -       Add the new events created in 6 to the list of traffic events to be analyzed.  
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a) 

 

b) 

 

Figure 6.6  Conflict clustering. Figure a) shows an interaction between a 

pedestrian and an over-segmented vehicle (tracked twice, object 5638 on the 

front side and the other 5639 encompasses its horizontal projection). The 

spacing between these vehicle objects and the pedestrian at minimum TTC and 

GT are 2.18m and 1.53m respectively. Both are below a spacing threshold of 3m 

and are therefore grouped. Figure b) shows an illustration of the graph 

implementation.   

6.4 Discussion 

The analysis of four hours of video was conducted automatically at a pace of 

approximately one hour of video/day/machine (Intel 1.80 GHz, 2GB Memory, 

C++ implementation). Sample frames with superimposed road user tracks are 

shown in Figure 6.7. The spatial distribution of traffic conflict positions is 

shown in Figure 6.8. A conflict position is taken as the location of the 

conflicting vehicle at the moment when there was a minimum time separation 

from the pedestrian. The time separation is measured by TTC as well as GT. 

There is an evident change in the density of traffic conflicts per unit area and 

time. The spatial distribution of traffic conflicts migrated away from the 

crosswalks after the scramble phase. The density of traffic conflicts per unit 

area was also reduced.  
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The distributions of the calculated conflict indicators before-and-after 

scramble are shown in Figure 6.9. To obtain robust measurements of 

individual conflict indicators, the following modifications were applied in 

addition to the measures described earlier in the paper: 

1.   When calculating TTC, the average of the individual TTC calculated for 

the conflicting pedestrian and vehicle is used to represent the event. 

The difference in individual TTC measured for the conflicting road 

users arise because they may satisfy the proximity condition for a 

collision although their trajectories do not precisely meet at the same 

point. A modified spatial proximity measure was introduced to 

represent a collision instance. A collision is defined when the 

pedestrian and the conflicting vehicle become closer than 2.0m.  

2.   The average of the 10 most extreme values is used to calculate min TTC, 

min GT, and max DST. The extreme values for GT are calculated based 

on their absolute value. The representative average is given the sign of 

the most extreme value. 

3.   Events with PET value less than a pre-defined noise threshold of 0.25 

sec were eliminated. There were no collisions observed in the video 

sequence and these measurements were mainly due to tracking noise.  

There is an evident reduction in the frequency of traffic conflicts. It was not 

attempted to conduct statistical analysis of this data for three reasons: 

1. Validation of the video analysis system on this data sequence was not 

comprehensively conducted to measure the reliability of the estimates. 

To some extent meet this demand, a random sample of 366 
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automatically detected traffic events (266 for the before period and 100 

events for the after period1) was considered for manual review. Among 

the 266 events in the before period, 13 events were found to involve 

classification error. In addition, 4 more events involved the 

misclassification of cyclists as pedestrians although the former appears 

to move with the mainstream pedestrian movement. Among the 100 

events reviewed for the after period, 12 events were found to involve 

misclassification of pedestrians into vehicles. 

2. It is not clear how the severity of traffic events measured by the 

calculated conflict indicators should be inducted in a statistical 

analysis. 

3. It was not possible to account for confounding factors that may have 

affected the safety level other than the concerned treatment.  

Misclassification of pedestrians into vehicles was still evident, however at a 

much lower frequency than speed-based classification. Figure 6.7 shows a 

sample frame in which a pedestrian is misclassified as a vehicle while 

walking in a scramble phase. However, the issue of road user 

misclassification was greatly marginalized by the aforementioned prototype 

classification. The lack of an inference mechanism that is based on the 

microscopic traffic conflict analysis conducted in this chapter motivated the 

work presented in Chapter 7. The issue of partial and/or multiple tracks of 

road users is probably the major challenge for the analyzed data. The degree 

to which Algorithm 6.1 was effective in addressing this issue was not 

                                                 
1
 This number is proportional to the total number of events in the before and after periods.  



 

190 

 

investigated. However, more work is likely required to mitigate the effect of 

over-segmentation and incomplete tracks.  

6.5 Conclusions 

This study carried out in this chapter demonstrated the feasibility of 

conducting before-and-after evaluation of pedestrian safety measures using 

automated analysis of video data. Pedestrian tracking in video data is an 

open problem for which some improvements have been investigated. The 

reliance on motion prototypes achieved a clear advantage over classification 

methods used in previous studies. 

The context of this study is the evaluation of the safety benefit of the 

introduction of the pedestrian scramble phase. A two-hour video sequence 

was analyzed for pre- and post-scramble. Despite that the video analyzed in 

this study was not collected initially for the purpose of automated analysis, 

tracking accuracy was satisfactory. The automated analysis of four conflict 

indicators shows a reduction in conflict frequency. In addition, there was a 

general reduction in the spatial density of conflicts after the safety treatment. 

It was not attempted in this study to draw a statistical inference regarding the 

safety benefit of the pedestrian scramble. It represents an important 

continuation of this work, and potentially a different paradigm of safety 

diagnosis that considers the frequency as well as severity of traffic events. A 

framework for safety diagnosis places all traffic events on a continuum of 

severity from uninterrupted passages to traffic collisions (Svensson & Hydén 

2006). Such framework can clearly benefit from automated video analysis. An 
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important continuation of this work can also be to conduct a comparison 

between the severities of traffic interactions measured by the system against 

expert rating.
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Event :2939 objects: 1501 | 5074 | TTC :1.162 PET :2.8 max 

DST :7.260 min GT :1.105 
Event :2609 objects :1317 | 4966  | TTC :3.318 PET :2.266 max 

DST :3.355 min GT :1.198 

  

Event :2913 objects :1496 | 4992(unseen)| TTC :1.815 PET :0 

max DST :0.437 min GT :1.113 

Event: 2306  objects: 1313 | 4812 TTC 0 PET 2.07 DST 

-0.075 GT 2.83 

  

Event :2372 objects :1167 :4804  | TTC :2.973 PET :0 max 

DST :-0.379 min GT :1.473 

An occurrence of misclassification 

Figure 6.7  Sample frames with automated road user tracks. The captions display “Event” 

the event order in the list of potential interactions, “objects” the numbers of the 

interacting objects, and the indicated conflict indicators.  
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a) 

 

b) 

  

c)

 

d) 

 

Intensities are in number of conflict positions per square meter per 2 hours. 

Figure  6.8  Before-and-after spatial distribution of traffic conflicts. A conflict positions is 

selected as the position at which the motorist was separated by either a minimum Gap Time 

(GT) or minimum Time to Collision (TTC). Figure a) shows the before spatial distribution 

of conflict locations based on min GT. Figure b) shows the after distribution of conflict 

positions based on min GT. Figure c) shows the before distribution of motorist position at 

min TTC. Figure d) shows the after distribution of conflict positions based on min TTC.  
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Figure 6.9  Distribution of different conflict indicators values for  before and after scramble phase. Analyzed video 

durations are 2 hours before and 2 hours after. |PET| and |GT| are the modul i (unsigned) values of the Post 

Encroachment Time and Gap Time conflict indicator.  
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777   
METHODOLOGIES FOR AGGREGATING                    

TRAFFIC CONFLICT INDICATORS 

7.1 Background 

This section presents a number of arguments that describe the motivation 

behind methodological developments presented in subsequent sections. A 

theoretical background is provided at the beginning, followed by a sequence 

of arguments that end with the central hypothesis of this chapter. 

7.1.1 Theoretical Preliminaries 

In theory, any road user navigating a traffic intersection is expected to become 

exposed to the risk of collision. It is implausible that every contributing factor 

to the risk of collision can be marginalized through meticulous road and 
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vehicle design. There always exists a possibility for the driver to suffer from 

distraction or lapse in concentration and for the vehicle control process to be 

compromised. Meanwhile, there is always a chance that the road geometry 

will not forgive such driving mistakes or mechanical failures. It has been 

suggested that for every passage of a motorist within the domain of a traffic 

facility, there is a chance set-up for a collision to take place (Hauer 1982). 

Furthermore, every road user passage can be seen as a trial that is tested by 

some underlying chance of failure. The precise mechanism that exposes every 

road user to the risk of collision is not directly observable and can only be 

inferred from empirical realizations in the form of road collisions or traffic 

conflicts. The mainstream methods of road safety analysis rely on the analysis 

of road collision observations. From a chance set-up perspective, the extent of 

the chance of a road collision may be inferred from observing the number of 

actual collisions relative to the total number of trials. 

While the intuition behind the chance set-up concept is sound, its 

implementation is forbiddingly difficult. Due to the rarity and randomness of 

road collisions, reaching an accurate estimation of the underlying chance of 

collision requires prolonged observational periods. Moreover, there is no 

clear definition of what constitutes a trial. It is implausible that for every pair1 

of road users co-existing within a traffic facility, there exists a conceivable 

chain of events that leads to a collision. It is arguable that a vehicle stopping 

at an intersection approach does not pose any reasonable risk of collision to a 

vehicle navigating the intersection during the latter’s permitted phase. 

                                                 
1
 Single-user collisions are excluded by this argument mainly because an important focus of this 

chapter is on pedestrian safety. Pedestrian-involved collisions cannot be of the single-user type.  
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Similarly, a pedestrian stepping down to a crosswalk may not become 

exposed to the risk of collision with all vehicles currently present at the 

intersection. Therefore, it can be argued that a genuine trial must entail a 

reasonable chain of events that may occur for the chance of collision to 

materialize.  

The previous definition of what constitutes a genuine trial, or real exposure to 

the risk of collision, is undeniably subjective. Exposure is an abstract concept 

that commonly defines events at which specific agents come in contact with a 

source of hazard. This broad definition is applied to disciplines such as 

industrial safety, epidemiology, and road safety. In the context of pedestrian 

safety, the source of hazard concerned is the potential for dangerous physical 

contact with a non-pedestrian road user. Exposure in this context can be 

defined as the number of traffic events for which there existed a reasonable 

chain of event that could lead to physical contact between road users. It has 

been argued that the only direct way to measure pedestrian exposure, and 

arguably the exposure of other road users, is by tracking pedestrians and 

conflicting vehicles all the time (Greene-Roesel, Diógenes & Ragland 2007). 

Without the use of tracking mechanism, for example computer vision 

techniques, the latter objective is infeasible. Because the adoption of advanced 

tracking techniques is very recent to the discipline of road safety, several 

proxy measures of exposure have been proposed in the literature. Examples 

are time (Hauer 1982), pedestrian volume (Davis, King & Robertson 1988), the 

product of pedestrian volume and vehicle volume (Cameron 1977) and the 

square root of this product of volumes (Greene-Roesel, Diógenes & Ragland 

2007). However, these surrogates suffer invariably from common conceptual 
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limitations. For example, the naïve product of the volumes of conflicting 

streams can lead to over-estimating exposure. Understandably, not every 

pedestrian using a crosswalk is endangered by every other vehicle in the 

conflicting vehicular stream. Another limitation to using traffic volume as a 

measure of exposure is its remoteness from representing the true number of 

events in which the pair of road users could have potentially collided. One 

immediate benefit of the extraction of road user tracks from video sequences, 

as demonstrated later in this chapter, is providing a significantly more 

accurate measure of exposure.  

7.1.2 The Severity Dimension 

In this section, it is hypothesized that collision risk and severity of a traffic 

event are conceptually equivalent. In order to proceed with this argument, it 

is important to adopt explicit definitions. Risk is an abstract concept that can 

be defined as the product of the probability of an undesirable outcome and its 

consequences. Similarly, the severity of a traffic event comprises two aspects, 

the proximity to collision and the physical damage from which road users 

will suffer if they collide. A frequentist interpretation of the probability of 

collision defines it as the rate at which collision events take place if the 

concerned traffic event is repeated for an infinitely large number of times. 

This interpretation however does not precisely reflect the reality of traffic 

events. Given the numerous characteristics of the conflicting road users, it is 

unrealistic that a specific traffic event is in any way repeatable. Bayesian 

interpretation of the probability of collision possesses more relevance to traffic 

events. Following a Bayesian interpretation, the probability of collision can be 



 

199 

 

defined as an abstract chance of this undesirable occurrence. A Bayesian 

model assumes that a traffic event is one realization of an underlying 

generative model for which an a priori knowledge is available. The 

probability of collision can be determined by inferring the matching, up to a 

likelihood value, between the positions of each road user and some 

underlying generative distribution, or a movement prototype.  

Indeed, road users exhibit stereotypical movements due to regularized 

geometry, lane marking, crosswalk delineation, and temporal separation by 

traffic signals. The use of motion patterns to predict road user positions has 

been a novelty in the work by (Saunier & Sayed 2008). Conceptual refinement 

of the previous work was briefly described in section 2.1.1 and is presented in 

more detail in section 9.3. Extrapolation of road user positions proposed by 

(Saunier & Sayed 2008) is one of many forms of uncertainty that encapsulate 

the probability of collision. In addition to the uncertainty of future road user 

positions, other uncertainties still exist regarding the type of evasive action to 

be taken and the consequences of the potential collision. It is possible to 

categorize these uncertainties into three types:  

a. Extrapolation. This type of uncertainty pertains to the knowledge of all 

possible road user positions given that they remain unaware of the 

impending collision. Examples of measures of this uncertainty are the 

work by (Saunier & Sayed 2008) (Saunier, Sayed & Ismail 2010) as well 

as various proximity measures proposed in the literature, see citations 

in (Archer 2004) (Laureshyn 2010).  
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b. Evasive action. This uncertainty concerns the particular set of actions a 

road user may perform in order to avoid collision. All reviewed studies 

on this subject assume that the only evasive action available to road 

users is deceleration (Davis 2003) (Cunto & Saccomanno 2008) (Davis, 

Hourdos & Xiong 2008). However, it is recognized that in case of 

pedestrian-vehicle conflicts, deceleration, swerving, or a combination 

of both may constitute evasive action taken by motorists or pedestrians 

(Malkhamah, Miles & Montgomery 2005). In general, the set of 

possible evasive actions should conceptually expand beyond 

deceleration action.  

c. Consequences. This uncertainty concerns the estimation of the 

physical consequences of the potential collision. Various surrogates 

were developed in the literature to represent the severity of a collision. 

For example, relative speed between road users (Hydén 1987) or the 

strength of the required evasive action (Oh et al. 2010). 

It has been argued that measuring the probability of collision of individual 

events is the ideal bottom-up approach for safety modelling (Lord, 

Washington & Ivan 2005). The prevalent approach for calculating probability 

of collision is based on aggregate-level statistical modelling, most 

prominently the modelling the occurrence of collisions as a Poisson process. 

This approach however is mainly driven by model-fit improvement without 

insight into either the mechanism of action between interacting road users or 

into the heterogeneity of traffic events in terms of the probability of collision 

entailed in each event.  A disaggregate measurement of the probability of 

collision of all traffic events is the precise solution to the shortcoming with 
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aggregate-level collision prediction models. As previously argued, severity of 

a traffic event can be jointly represented by both proximity to and 

consequences of collision. The universal severity dimension theorized by 

(Hydén 1987) can be interpreted as the risk of collision measured for each 

traffic event. Moreover, it is argued that the risk of collision, both proximity 

and consequences thereof, is the mechanism used intuitively by field 

observers to subjectively measure severity of traffic events (Laureshyn 2010).  

Despite the theoretical appeal for calculating probability of collision, such an 

undertaking is challenged on practical grounds. The dimensionality of 

collision events, especially when considering driver behaviour, is indefinite. 

In fact one can argue that a precise calculation of this probability is not 

feasible. Two main challenges stand before achieving this objective. The first 

challenge facing the development of a probabilistic conflict indicator is 

conceptual; there is no formal model in which the three uncertainties can be 

combined. The second challenge is the most daunting. The data required to 

develop and validate such probabilistic models is proportional to its 

complexity. For example, to model the uncertainty regarding the type and 

strength of evasive action, a comprehensive library of evasive actions taken 

by road users involved in a variety of traffic conflicts is required. To the 

author’s knowledge, no data for this purpose has been gathered. 

Given the remoteness of a comprehensive measurement of the probability of 

collision, surrogates are commonly used in the literature. Example of these 

surrogates are objective severity measures, whether deterministic objective 
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conflict indicators2, such as Time to Collision (TTC), Post Encroachment Time 

(PET), Gap Time (GT), and Deceleration to Safety Time (DST), or probabilistic 

indicators such as the severity index proposed by  (Saunier, Sayed & Lim 

2007). However, none of these conflict indicators formally combines all three 

types of uncertainties.  

A multitude of other conflict indicators have been developed for the purpose 

of traffic conflict observation. A recent review of pedestrian-vehicle conflict 

indicators yielded a set of 54 different indicators (Laureshyn 2010), the 

majority of which are calculable using positional data. Based on this review, it 

was noted that there is little work on investigating the different severity 

aspects that each conflict indicator represents. The proximity of various 

conflict indicators to the true probability of collision appears to be presumed 

based on commonsense. It is undeniable that there is some construct validity 

of these conflict indicators in representing the probability of collision. 

However, it is not known for fact whether they comprehensively represent 

severity or whether they reflect partial aspects of severity.  

7.1.3 Conflict Indicators as Partial Images 

A number of conflict indicators have been advocated as the preferable 

mapping from positional and temporal attributes of conflicting road users to 

the theorized severity dimension (Hydén 1987)(Svensson & Hydén 2006). The 

main advantage of conflict indicators is their objective nature which 

constitutes a significant advantage over subjective severity measures in terms 

of consistency of measurements. More precisely, the advantage is the reliability 

                                                 
2
 As shorthand, “objective conflict indicators” is replaced in this chapter with “conflict indicators”.  
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of objective conflict indicators over other severity measures. Reliability of 

measurement refers to the invariance of the conflict indicator to all factors 

extraneous to positional and temporal attributes of road users. For example, if 

the tracks of a pedestrian and vehicle are known, their TTC is calculable 

regardless of the time, the location, and the traffic context of their interaction. 

However, some of the factors eliminated from consideration in evaluating 

conflict indicators may in reality be relevant to the true severity of the 

concerned traffic event.  

For example, identical TTC values may be obtained regardless of whether the 

conflicting road users are aware of each others. Intuitively, there is a higher 

chance for an event involving road users unaware of each others to develop 

up to higher severity levels. The coupling of subjective assessment of traffic 

events and conflict indicator measurements has been reported in the Malmö 

study (Grayson et al. 1984). In this study, different teams were asked to 

measure the severity of a common set of traffic events in order to gauge the 

inter-observer as well as inter-technique variability. It was noted in this study 

that observers incorporated in their assessments severity aspects other than 

TTC and Post Encroachment Time (PET).  That is, observers found it necessary 

to complement the measurement of conflict indicator values, putting aside the 

questionable accuracy of observer-based measurement of positional data, 

with other contextual variables. Moreover, a weak agreement between conflict 

indicator values and subjective assessment of the severity of traffic events was 

found (Shinar 1984). Furthermore, in validating the Swedish Traffic Conflict 

Technique it was found that serious traffic conflicts rated as such by subjective 
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human assessment was in stronger correlation with collisions than serious 

conflicts rated by objective conflict indicators (Svensson 1992).  

Based on evidence in the literature, it is plausible that various conflict 

indicators appear to represent partial images of the true severity of traffic 

events. Not surprisingly, the trained observer appears to be able to fathom 

much closer to the true severity of traffic events than conflict indicators based 

solely on positional data. Unfortunately, the observer provides this measure 

at much lower reliability than is sufficient to establish a sound practice of 

traffic conflict analysis.  

Another key study on the correlation between collision and traffic conflicts 

adopted a combination of TTC and a subjective observer-based severity 

assessment of traffic conflicts (Sayed & Zein 1999). In this study, field 

observers were required to record both TTC and their assessment of the risk of 

collision involved in each traffic conflict. The severity aspects covered by this 

subjective risk measure were the “seriousness of the observed conflict [,]... the 

perceived control that the driver has over the conflict situation, the severity of the 

evasive maneuver and the presence of other road users or constricting factors which 

limit the driver's response options”. The subjective risk measure was introduced 

to supplement the intrinsic shortcoming of TTC in order to comprehensively 

representing severity of traffic conflicts.  

An example of the inability of conflict indicators to comprehend subtle 

contextual differences is presented in Figures 7.1a and 7.1b. The two sample 

frames shown in Figure 7.1 display two apparently similar traffic events with 

comparable minTTC values. Isolating the measurement of conflict indicators 
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from the context within which the traffic event occurred could lead to 

counterintuitive severity measurements. Figure 7.1a shows a pedestrian that 

arrived early to the crosswalk during the pedestrian scramble phase. The 

conflicting motorcycle had not arrived during a permitted phase and was 

recorded while decelerating before the stop line. Moreover, it is unreasonable 

the motorcyclist would accelerate through the cluster of pedestrians blocking 

its way to the intersection. Within this context, a human observer may 

discount the severity of the traffic event shown in Figure 7.1a. Conversely, the 

pedestrian shown in Figure 7.1b arrived late to the pedestrian scramble and is 

shown running to clear the intersection. A human observer may rightfully 

rank the event in Figure 7.1a at much less severity than the event in Figure 

7.1b. This severity differential may not be captured by minTTC which is low 

for both cases. Note that a heuristic commonly entertained such as excluding 

motorized vehicles behind stop lines from severity evaluation will not work 

in these cases.  
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       a) min TTC = 3.1 s 

 

        b) min TTC = 2.2 s 

 

Figure 7.1  Two events of only subtle difference in context and comparable 

values of minimum Time to Collision (min TTC). The subtle difference in 

context however entails significantly different severity.  
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The previous shortcomings relate to the validity of conflict indicators. Validity 

concerns the ability of a conflict indicator to comprehend the true severity of 

a traffic event and truthfully represent the risk of collision to which road users 

are exposed. While extensive work has been performed on the validity of 

traffic conflict techniques, surprisingly little work has been done on validating 

the entire set of conflict indicators proposed in the literature. Previous work 

has been conducted on the validation of TTC against PET in comprehending 

the severity of traffic events in which the latter conflict indicator was 

favourable (Grayson et al. 1984). Little, if any, investigation has been 

conducted on the validity of other conflict indicators abound in the literature. 

As they stand, conflict indicators reflect different and sometimes independent 

severity aspects. It is however possible to group conflict indicators into two 

classes. The first class requires the presence of a collision course, and the other 

that measures the mere spatial and temporal proximity of conflicting road 

users. 

The first class of conflict indicators, and potentially the more developed, 

measures the proximity to a collision point. Examples of the first class are TTC 

and probabilistic representation thereof (Saunier, Sayed & Ismail 2010). A 

variant of TTC, Time to Accident, has been extensively used in the 

development of the Swedish Conflict Technique and has been validated for 

this purpose (Svensson 1992). Most notable of the second class is PET, which 

represents the observed temporal proximity of the conflicting road users. PET 

has been adopted in another key study in which it was proven to be a reliable 

predictor of road collisions if observed over an extended period of time 

(Songchitruksa & Tarko 2006). The two conflict indicators, TTC and PET, 
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however do not represent the same collision mechanism. Arguably, they 

reflect different partially overlapping severity aspects.  

TTC represents the proximity of conflicting road users to a potential collision 

point, while PET represents their proximity to each other. Generally, TTC is 

more suited to comprehend the severity of traffic events that involve the risk 

of rear-end collision. PET is of little validity in this case since it is dependent 

on the speed of the lagging road user as opposed to their relative speed. PET 

is better suited for representing the severity of crossing events. The two 

conflict indicators are not necessarily calculable for all events. Moreover, 

when calculable, they may represent variant severity measurements. For 

example, a vehicle that avoids collision with a pedestrian by decelerating and 

coming to a stop may have an unrepresentatively long PET3. On the other 

hand, road users involved in a dangerous and proximate crossing may have 

not been on a collision course, and therefore have no calculable TTC. The 

reasoning applied to contrast TTC and PET can be extended to other conflict 

indicators to prove the existence of situations in which they yield variant 

severity measurements.  

The extended discussion presented in this section conceivably leads to the 

main hypothesis of this chapter: 

Hypothesis 7.1: Conflict indicators measure partially overlapping 

and sometimes independent severity aspects of  traffic events.  

                                                 
3
 In this thesis PET is assumed to be either positive or negative depending on whether the encroaching 

vehicle passes in front of or after the conflicted pedestrian. This is a slight variation of notation since 

PET is originally intended to be only positive.  
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7.1.4 Aggregation of Road Safety Cues 

The level of road safety is an abstract concept that can only be inferred from 

measurable indicators. Road safety indicators can be qualitative or 

quantitative. Due to the abstract nature of road safety and the immense 

dimensionality of its characteristic space, different indicators may provide 

various and often independent aspects of road safety. Ultimately, important 

road safety treatment decisions must be taken based on a singular inference 

on the underlying level of safety. A number of systematic approaches have 

been proposed to combine different road safety cues into composite indices, 

e.g., (Al-Haji 2005) (Hermans, Van den Bossche & Wets 2009). A theoretical 

framework was proposed for the general development of composite road 

safety indicators (Hermans, Van den Bossche & Wets 2009). A central 

component of safety index development is the normalization, weighing, and 

aggregation of different indicator values. Previous developments focused on 

the integration of different road safety cues into macroscopic safety indices. 

The same reasoning and theoretical framework can be adopted at the 

microscopic level of individual traffic events. As opposed to a single conflict 

indicator, a set of conflict indicators can be used to measure the severity of 

traffic events. Different conflict indicators can be integrated in order to obtain 

a more accurate measure of the severity of traffic events. The main objective of 

this chapter is to present a new methodology for integrating different conflict 

indicators into a severity index. A case study is presented within a before-

and-after context using the traffic conflict data obtained from automated video 

analysis of the pedestrian scramble safety treatment discussed in Chapter 6.  
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7.2 Methodology 

In general, conflict indicators concern the measurement of spatial proximity, 

temporal proximity, or a combination thereof. The values of conflict indicators 

can be directly interpreted based on experience or in reference to some 

severity thresholds. Accordingly, conflict indicators can be viewed as 

mappings from a range of positional measurements of conflicting road users 

onto the severity dimension. Techniques in the literature proposed the 

division of the severity dimension into discrete severity levels. All points with 

the domain of a severity level are considered of uniform value. Some 

techniques proposed a division into 30 severity levels, e.g., (Svensson 1998), 

while other techniques defined only two categories: mild and severe, e.g., 

citations for PET and Deceleration to Safety Time (DST) in (Malkhamah, 

Miles & Montgomery 2005). The following sections present two 

methodologies for measuring the severity of traffic events using a set of 

conflict indicators. The last section discusses the problem of aggregating 

severity measurements conducted at the traffic-event level using three 

different exposure measures.  

7.2.1 Integration of Conflict Indicators 

This section concerns the problem of integrating different severity cues 

measured into a single severity index. Individual severity cues are provided 

by conflict indicator measurements. Two methodologies are presented in this 

section for integrating different conflict indicators and for mapping their 

composite values into the severity dimension: single-step integration and 

multi-step integration. 
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Integration Approach A: Single-step Integration.  

In this approach an integration function      is constructed to map a set of 

conflict indicator values into the severity dimension. Let   ,   , … ,    be the 

individual values of    conflict indicators, then the severity value represented 

by these conflict indicators is constructed as follows: 

                     … (7.1) 

where         is a dependent variable which domain is the severity 

dimension. In subsequent sections of this chapter,   is referred to as some 

severity index. The calibration of this integration approach requires reference 

severity measurements of a large sample of traffic events. This type of data is 

currently unavailable. Therefore, this approach has not been implemented in 

this chapter.  

Integration Approach B: Multi-step Integration 

In this approach each conflict indicator value    is independently mapped to 

the severity dimension by an individually defined mapping function       . 

The last step is to draw a representative value from the set of individual 

mappings of different conflict indicators. Following are proposals of 

representative values: 

   

 

 
                                        

                                     

                                   

   … (7.2) 

The multi-step integration approach can be viewed as a special case of the 

single-step integration. The interpretation of both is however distinct. The first 
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integration approach (approach A) considers the interdependence of different 

conflict indicators in representing severity. The second set of approaches (B1, 

B2, and B3) assumes that every conflict indicator provides a unique and 

independent severity measure. In multi-step integration, it is necessary to 

draw a representative value from the individual mappings of conflict 

indicators. Equation 7.2 provides sample strategies for drawing 

representative values from individual mappings of conflict indicators.  

Selecting the average of individual mappings (approach B1) of conflict 

indicators is favourable when: 1) comparable validity in representing the true 

severity of a traffic event is assumed for every conflict indicator and 2) 

differences in severity among conflict indicators are attributable to random 

road user characteristics. For example, TTC and PET satisfy these conditions 

since each of them measures independent proximity measures. This 

independence can be further extended to the two other conflict indicators 

analyzed in Chapters 5 and 6.  

By definition, PET, DST and Gap Time (GT) do not require the presence of a 

collision course. Therefore, there is no plausible reason to believe that the 

presence of collision course will influence these three conflict indicators. At 

the event when a collision course is present, TTC measures the proximity of 

conflicting road users to a collision point, while PET, DST, and GT measure 

the temporal proximity of road users to each other while traversing the 

collision point (precisely the conflict zone defined around a collision point). 

One can obtain variable TTC values for the same GT and DST values, and vice 

versa. One can also obtain various TTC values for the same PET value, mainly 
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because the latter depends on actual, as opposed to extrapolated, road user 

positions. Moreover, PET, DST, and GT are defined in terms of entrance to and 

exit from a conflict zone. The boundaries of the conflict zone are dependent 

on the angle between the trajectories of road users. The size of the conflict 

zone is negatively proportional to the angle between directions of conflicting 

road users. The time of entry to and exit from the conflict zone is dependent 

on the boundary definition of the conflict zone. It can be argued that, 

temporal separation proximity measures such as PET, DST, and GT will tend 

to underestimate the severity of a traffic event for acute-angle interactions. 

Using elementary geometry, it is possible to approximate the relationship 

between DST and GT in the case of pedestrian vehicle conflicts as follows: 

    
   

  
         … (7.3) 

where    is instantaneous vehicle speed and    is the time expected for the 

pedestrian to reach the centroid of the conflict zone. The relationship between 

the two conflict indicators is dependent on the value of the proportionality 

variable 
   

  
 . The only situation when this proportionality variable is stable 

around a specific number is when motorists drive at increasingly higher 

speeds while pedestrians are further back from a potential conflict zone. 

Conceivably, there are traffic configurations in which road users approach 

each other at speeds independent from the time proximity of the conflicted 

road user. For example, in the case of pedestrian scramble presented in 

Chapter 6, pedestrians are conflicted with through as well as right-turn 

vehicular traffic. The average approach speed of through movements is likely 
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to be higher than right-turn movement. There are situations also when this 

case is reversed. An example is when the intersection exit is blocked for 

through traffic by a queue build-up. 

The adoption of an extreme value of individual conflict indicator mappings, 

for example the maximum or the minimum value, implies the variability 

among conflict indicators in comprehending the severity of the concerned 

traffic event. For example, if it is the case that various conflict indicators, in 

independence of each other, tend to underestimate severity, then drawing the 

maximum of individual mappings is more suited than drawing the average 

value, as is entailed by approach B2. It is straightforward to show that if 

severity is misrepresented by overestimation, then selecting a minimum value 

is a more accurate representation of the true severity.  

Integration approach B2 may however lead to erroneous severity 

measurement in the case when extreme values are induced by tracking errors. 

In order to mitigate this potential for error, an order statistic or quantile value 

may be used as an approximate to estimated extreme value (approach B3). 

However, in situations when few conflict indicators are used, the use of an 

order statistic may be challenging.  

7.2.2 Mapping to Severity Indices 

The previous section discussed the integration of different individual 

mappings of each conflict indicator   , represented by the corresponding 

function       . The construction of these mappings is closely tied to the 

validity of the corresponding conflict indicators in representing true severity. 

If there exists a mapping defined over the range of a conflict indicator that 
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will correctly represent true severity, then the validation of this mapping is 

proven. As discussed earlier in section 7.1.3, little work can be found in the 

literature on validating conflict indicators. In general, the severity 

interpretation of different conflict indicators is based on experience and 

judgement. Two main mappings are proposed in this section: function 

mapping and distribution mapping. The mapping development was 

restricted to four conflict indicators: TTC, PET, DST, and GT. The mappings 

are also restricted to measuring the severity of pedestrian-vehicle conflicts, 

conceivably from the perspective of pedestrian safety. Following subsections 

provide more in-depth discussion of these mappings.  

Function Mapping 

In this mapping approach, closed-form functions are established in order to 

map individual conflict indicators into severity indices. At first attempt, the 

development of such functions was based on the author’s subjective 

interpretation of conflict indicator values (Ismail, Sayed & Saunier 2010). A 

different set of mapping functions were developed in this chapter based on a 

calibrated mapping function that yields severity values consistent with 

benchmarks values in the literature. Following are the functional forms of the 

mappings: 

Functional Mapping Approach 1: subjective function parameters. 

      
 

 

                            …(7.4) 

                                                                …(7.5) 
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where        and    are specific mapping parameters that define its shape, 

     is the mapping function that takes the value of the conflict indicator as an 

argument and outputs a severity index that ranges from 0 for events with no 

reasonable exposure to the risk of collision and 1 for all collisions. Note that 

the proposed mapping is by construction unable to comprehend the variable 

severity of collision events.  

The functional form selected for Equation 7.4 is adopted from a similar 

formulation by (Hu et al. 2004). The functional form presented in Equation 7.5 

is adopted from a generic development of penalty functions with minor 

modification to yield an indexed value (Ronold & Christensen 2001).  

Functional Mapping Approach 2: Benchmark-based function parameters. 

The functional forms proposed in Equations 7.4 and 7.5 are preserved. The 

same functional form in Equation 7.5 is used for mapping PET, GT, and DST. 

The function parameters were calibrated based on the severity benchmarks in 

the literature shown in Table 7.1. 

Table 7.1  Severity benchmark values for constructing mapping functions  

Conflict 

Indicator 
Severity Level TTC (sec) PET/GT (sec) DST (m/s

2
) 

Severity 

Index 

S
ev

er
it

y
 T

h
re

sh
o

ld
s 1 (highest) 1.6 3 1 0.8 

2 5 - 2 0.6 

3 8 - 4 0.4 

4 (lowest) 11 8.5 6 0.2 
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Thresholds in the literature found for severe conflicts were used to demarcate 

the highest severity level in Table 7.1 which was selected to be 0.8. Three more 

thresholds were selected for lower severity thresholds. Other TTC values in 

Table 7.1 were selected from the severity measures found in the Swedish 

Conflict Technique (Svensson 1998) assuming a constant conflicting speed of 

20 km/h and assuming that the highest severity level of 30 corresponds to a 

severity index of 1. The highest severity threshold for GT and PET as well as 

severity thresholds for DST were reported in (Malkhamah, Miles & 

Montgomery 2005). Two assumptions were made in Table 7.1 outside of 

relevant findings in the literature. The first is the division of severity levels to 

five subdivisions, constituting five homogenous and successive severity 

intervals. Second, the least severe temporal proximity for PET/GT is selected 

to be the time consumed for a pedestrian to walk value corresponding 10.0m. 

The spatial proximity threshold is intrinsically defined in the calculation of 

conflict indicators to demarcate the boundary between exposure events and 

uninterrupted passages. Exposure events were selected for further proximity 

analysis while uninterrupted events were discarded for this purpose. Refer to 

Chapter 6 for further details on the conflict indicator calculations. 

Distribution Mapping 

The idea behind this mapping is to represent severity by the relative 

frequency of a conflict indicator value. Ideally, if a large-scale pool of conflict 

indicator measurements is available, relative frequency will be closely related 

to the anomaly in conflict indicator value. According to the severity hierarchy 

theory as well as empirical evidence in (Archer 2004)  (Svensson 1998), severe 

events are observed with low frequency. The pool of conflict indicator 
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measurements used to establish the distribution of the four conflict indicators 

was obtained from the work presented in the Chapter 6. Instead of using 

empirical cumulative distributions, which could be expensive to calculate, a 

Gamma distribution was fit to the conflict indicator observations. To deal with 

negative values for PET and GT, two sets of distribution parameters were 

estimated from positive and negative conflict indicator values. For negative 

PET and GT, their absolute values were used to estimate the set of 

distribution parameters for negative conflict indicator values.  

Asymptotic Argument 

Experience and observational judgement were mainly used to develop 

severity benchmarks for the different approaches to function mapping. 

However, the definition of these severity benchmarks must to some extent be 

related to the relative frequency of conflict indicator values. It can be argued 

that given a larger pool of conflict indicator measurements and a larger pool 

of expert opinion on the subjective severity of traffic events, function and 

distribution mappings will converge to a unique mapping. Furthermore, it is 

likely that such mapping will be dependent on other contextual variables. The 

sample of conflict indicator measurements used in this chapter was limited to 

a total of six hours. This can barely provide representative benchmarks for 

measuring the abnormality of conflict indicators. Figure 7.2 displays function 

and distribution mappings for different conflict indicators. As is shown, no 

convergence to a unique mapping was evident. Therefore, further analysis 

was pursued using independent application of both function and distribution 

mappings.   
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Figure 7.2  A depiction of two mappings from conflict indicators to severity index. Shown also are the parameters 

for function mapping 1. Mapping parameters (p1:p5) a re shown in the legend that were collected from benchmarks 

in the literature. For example p1 = 8.0. 
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7.2.3 Aggregation of Severity Measurements 

The main objective of calculating conflict indicators is to obtain severity 

measures at the traffic-event level, or alternatively at a microscopic level. The 

bottom-up approach for safety analysis advocated in this thesis must provide 

at the end some inference on the underlying level of safety. This entails a 

significant reduction in dimensionality of the data to few and even single 

quantities. Little statistical work has been conducted on drawing an inference 

about the level of road safety from the severity distribution of traffic events. 

The only work found on this subject was in the context of before and after 

studies (Svensson 1998). The statistical analysis was mainly based on testing 

the difference in shape between the severity hierarchy before and after the 

implementation of a safety treatment. However, testing for shape difference is 

not capable of comprehending the difference in distribution among individual 

severity levels. Statistical testing for shape difference has to be supplemented 

with a thorough review of the difference in frequency at each severity level. 

However, there are no developed models to aid in relating the change in 

relative frequency at each severity level and the underlying level of safety. In 

order to circumvent this methodological gap, aggregation of microscopic 

individual severity measurements should be conducted to produce higher-

level measures. 

Aggregation of microscopic events is closely tied to representing all traffic 

events along a dimension that reveals event-level severity variations. The 

characteristics of traffic events can be described within a significantly high 

number of dimensions. Individual attributes of traffic events are multitude, 
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e.g., location, type, time, relative speed, spacing, and severity. Moreover, 

many of these attributes change over time. Therefore, aggregation will 

unavoidably entail reduction in dimensionality accompanied with some loss 

of information. The advocated aggregation strategies in this chapter are each 

defined by a specific aggregation attribute. The dimension that represents the 

variability of this attribute will be adopted to represent also the collective 

variations among all observed traffic events. Collapsing all attribute 

dimensions is required except along the dimension that represents the 

aggregation criterion. Subsequently, representative values can be drawn from 

the distribution of the aggregation attribute among all traffic events.  

 

Figure 7.3  A schematic for different aggregation approaches. Note that 

datapoints are deinfed over ordered pair of road users to avoid redundan t 

recording of the same traffic event. 

 

Conflict 
indicator 
database 

Traffic 
event data 
structure 

Road user 1 

R
o

ad
 u

se
r 

2
 

Static Attributes 

 Max severity 
 Time-integrated 

severity 
 Collision type 

Dynamic Attributes 

 Severity 

 Spacing 

 Relative velocity 

 Collision points 
 

 

Main data point 
(traffic event) 

Aggregation 
attribute 

 

Severity Frequency 

Frame # OR  
road user’s id 

TTC, DST, 
GT, PET, 
or Index 

Number of 
severity 

observations 

Various statistical 
measures per 

aggregation attribute 



 

222 

 

Two main aggregation attributes were adopted in this chapter, time and road 

user. Aggregation over time describes severity of traffic events along the time 

dimension. All severity measurements are referenced to the moment of 

analysis. One of the advantages of this aggregation approach is that 

important temporal patterns can be recognized using this aggregation 

approach. However, the key advantage of aggregating over time is the 

simplicity of extrapolating severity measurements outside the time span of 

observations. A prime example of aggregation over time was adopted in a key 

study on extreme value model for road collision (Songchitruksa & Tarko 

2006). 

The simplicity of adopting time as an aggregation attribute, or alternatively as 

a surrogate for exposure, comes at the expense of lacking insight into road 

user interactions. The most direct shortcoming of aggregating over time is the 

inability to represent the variation in severity measurements among traffic 

events that take place at the same moment. Another critical shortcoming of 

aggregation over time is the tendency to under-represent severity if traffic 

events exhibit irregularity over time. For example, if the average severity per 

moment (or frame in a video sequence) is selected as a representative value, 

aggregate severity will be underestimated if the same number of traffic events 

takes place within shorter time periods. These shortcomings are intrinsic to 

aggregation over time and can be overcome by adopting different aggregation 

attribute. 

Another aggregation attribute adopted in this study is road users. This 

aggregation approach provides more insight into road user interactions. For 
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example, it is possible to represent the true severity of traffic events 

irrespective of their temporal regularity. Two main shortcomings face the 

aggregation over road users. The first shortcoming is the relative difficulty of 

extrapolating severity measurements outside the observational time span as 

compared to aggregation over time. Road user counts, especially pedestrian 

counts, are expensive to obtain for extended time periods. The second 

shortcoming is the inability to represent the presence of the multiple 

interactions that a single road user may take.  

In order to address this last shortcoming, aggregation should be conducted 

along the event dimension. The same pattern emerges; aggregating over 

events instead of road users provides a more accurate representation of road 

user interactions. However, this enhancement comes with significantly more 

expensive extrapolation of severity measurements outside the observational 

time span. In fact, the author is not aware of the presence of any temporal 

conversion factors for the number of traffic events. Aggregation over events 

was not directly conducted in the case study presented in this chapter 

because of the significant computational expense; mainly memory 

requirements to represent the data structure shown in Figure 7.3. Instead, 

aggregate measurements were normalized by the number of events.  

The methodology proposed in previous sections was used for a case study on 

the conflict data analysis conducted in the Chapter 6. The following sections 

provide selected results in addition to relevant discussions. 
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7.3 Case Study 

This case study is based on video data collected in 2004 for the evaluation of a 

pedestrian safety treatment in Oakland, California (Bechtel, MacLeod & 

Ragland 2004). In this Chapter, a total of six hours of video data were 

analyzed for the before as well as after periods - three hours for each period. 

The distributions of conflict indicators were obtained for a subset of all video 

sequences, a total of four hours, as was presented in Chapter 6. An additional 

hour for each observational period was analyzed in this chapter. The 

following sections will discuss findings of this analysis in light of Hypothesis 

7.1 posed in section 7.1.3. Further analysis was conducted to investigate the 

sensitivity of the results to the selection of the mapping approach and the 

selection of the aggregation approach. A particularity of aggregation over 

time in the following results is that the most severe value of each conflict 

indicator was registered for the entire life span of the traffic event. This was 

necessary to overcome the computational cost imposed by the size of the 

traffic event data structure described in Figure 7.3. This approximation suffices 

for the demonstration of previous methodological developments intended in 

the analysis of this case study.  

7.3.1 Empirical Independence of Conflict Indicators 

The discussion presented in section 7.1.3 revolved around the hypothesis that 

conflict indicators provide different and possibly independent severity 

measurements. The correlation between various conflict indicator 

measurements was conducted in order to investigate this hypothesis. Only 
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four conflict indicators were considered in this analysis, namely TTC, PET, GT, 

and DST.  

First, all pairs of conflict indicators that belong to the same traffic event with 

at least one calculable value were considered. For example, given that one of 

the pair of conflict indicators reported a calculable value, the pair can be 

stacked into the matrix used for calculating correlation measures. This was 

conducted for the joint test of correlation as well as the common calculability 

of conflict indicators. Table 7.2 shows both the Pearson linear correlation 

coefficients and Spearman correlation coefficients for different combinations of 

conflict indicators. The severity interpretation of signed and unsigned values 

of PET and GT, corresponding to vehicle passage in front of or behind the 

pedestrian, is not well known. Therefore, the absolute values of PET and GT 

were also considered in the analysis. Second, testing was conducted for pairs 

of jointly calculable conflict indicators. For example, pairs of conflict 

indicators are considered only if both of them report calculable values. This is 

to explicate the effect of mutual calculability. Similarly, Table 7.3 shows 

Pearson and Spearman correlation coefficients for different combinations of 

conflict indicators. Spearman correlation coefficient is slightly more relevant 

to this context since a linear relationship between the values of conflict 

indicators may be impacted by the lack of a uniform range definition for 

conflict indicators, except for the case of pairs of GT and PET.  

In general, there is no strong correlation between TTC and any other conflict 

indicator, except for a 0.67 Spearman correlation with |PET|, when both 

indicators are mutually calculable. This means that in this video sequence 



 

226 

 

absolute temporal proximity reflects to some extent the critical presence on a 

collision course. In addition, there is a strong correlation between PET and GT 

when both are mutually calculable (0.70 Pearson and 0.87 Spearman 

correlation coefficients). This is generally expected since the temporal 

proximity measured by both indicators is to some extent similar. A mild 

correlation between DST and GT is found for both cases of pairwise 

calculability. This provides evidence that in this data, the correlation variable 

presented in Equation 7.1 did not achieve enough stability to provide strong 

correlation between the two dependent quantities. While correlation results 

are subject to several interpretations, the general conclusion that can be 

drawn is in support of Hypothesis 7.1. Note that the correlation results 

presented in Tables 7.2 and 7.3 are limited to the video data analyzed in this 

chapter and may be of limited generality absent further empirical evidence. 

7.3.2 Results of Different Aggregation Approaches 

The average values of different conflict indicators were calculated for various 

mapping approaches and aggregation approaches. In addition, two bounding 

percentile values, the 15th and 85th, were obtained to gauge the dispersion of 

every conflict indicator. Average values and estimated bounds are provided 

for index values calculated for each traffic events and using two mapping 

approaches. For the analysis presented in this section, all function mappings 

were conducted using parameters inferred from benchmarks presented in the 

literature presented in Table 7.1. Mappings were also conducted for average 

values of the four conflict indicators (integration approach B1, Equation 7.2). 

Elementary error theory was used to obtain the percentile bounds for 
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individual aggregations. Finally, the difference between the averages of 

indices calculated from every possible traffic event and the mapping applied 

to average conflict indicators was obtained. Sample results are presented in 

Tables 7.4 and 7.5 aggregating over road users. For Tables 7.4 and 7.5, 

subsequent pairs of tables present results for before and after conditions in 

respective order.  
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Table 7.2  Correlation coefficients for pairs of conflict indicators with at least 
one calculable value 

Conflict 

Indicator 
TTC PET DST GT |PET| |GT| 

TTC 1 -0.06 (0.11) -0.10 (0.05) -0.07 (0.04) -0.43 (0.04) -0.14 (0.05) 

PET -0.10 (0.21) 1 0.02 (0.12) 0.02 (0.05) 0.25 (0.20) -0.04 (0.08) 

DST -0.15 (0.05) 0.04 (0.21) 1 0.22 (0.09) -0.29 (0.03) -0.09 (0.03) 

GT -0.28 (0.09) 0.09 (0.13) 0.59 (0.12) 1 -0.12 (0.02) 0.58 (0.28) 

|PET| -0.57 (0.03) 0.35 (0.36) -0.49 (0.05) -0.26 (0.04) 1 -0.26 (0.05) 

|GT| -0.59 (0.03) -0.08 (0.26) -0.01 (0.07) 0.50 (0.11) -0.73 (0.03) 1 

Upper echelon contains pair-wise Pearson linear correlation coefficients. Lower echelon (shaded) 

contains Spearman ρ rank correlation coefficient. Values in parentheses are the standard deviation of 

the correlation coefficients calculated for all pairs within a sample of all ½ hours of video data (12 

samples). 

Table7.3  Correlation coefficients for only pairs of commonly calculable 
conflict indicators 

Conflict 

Indicator 
TTC PET DST GT |PET| |GT| 

TTC 1 -0.07 (0.37) -0.30 (0.09) -0.09 (0.07) 0.42 (0.14) 0.14 (0.08) 

PET 0.28 (0.32) 1 0.49 (0.29) 0.70 (0.10) 0.25 (0.20) 0.06 (0.26) 

DST -0.57 (0.09) 0.46 (0.34) 1 0.22 (0.09) -0.04 (0.13) -0.08 (0.03) 

GT -0.10 (0.07) 0.87 (0.05) 0.59 (0.12) 1 0.30 (0.20) 0.58 (0.28) 

|PET| 0.67 (0.06) 0.35 (0.36) 0.01 (0.14) 0.56 (0.21) 1 0.43 (0.15) 

|GT| 0.23 (0.05) 0.40 (0.30) -0.01 (0.07) 0.50 (0.11) 0.70 (0.07) 1 

Upper echelon contains pair-wise Pearson linear correlation coefficients. Lower echelon (shaded) 

contains Spearman ρ rank correlation coefficient. Values in parentheses are the standard deviation of 

the correlation coefficients calculated for all pairs within a sample of all ½ hours of video data (12 

samples). 
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Average values of every conflict indicator in their respective units are 

presented in the second columns, entitled Average Indicator, of Tables 7.4 and 

7.5. For example, the average of all calculable TTC values for each road user in 

the before period is shown to be 4.85 sec. The 15th and 85th percentile bounds 

are provided for each conflict indicator and index in smaller table cells. For 

example, the 15th percentile value for the distribution of calculable TTC values 

for all road users in the before period is shown to be                   . 

The fourth and fifth columns of Tables 7.4 and 7.5 show the function mapping 

of each average conflict indicator and the percentile bounds, respectively. For 

example, the function mapping of the average TTC value shown in Table 7.4 

can be calculated as:            
    

      . Similarly, the upper bound for 

the function mapping of the average TTC can be calculated as 

follows:                        
    

           . Using the same steps 

of calculation, distribution mappings can be conducted by aid of Figure 7.2. 

Results of distribution mappings of conflict indicators are shown in columns 

6 and 7 of Tables 7.4 and 7.5. The average value of individual index values 

from different conflict indicators is shown in columns 8 and 9 of Tables 7.4 

and 7.5. For example, the average function mapping of all individual averages 

of conflict indicators, entitles Individual Aggregation, can be calculated as 

follows: Individual function Aggregation  
                             

 
     . 

The 15th percentile bound can be calculated using elementary error theory as 

     .  

It is noteworthy that Tables 7.4 and 7.5 present various aggregations without 

taking into account the frequency of observations of conflict indicators and 
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indices per road user. Appendix B provides complete set of results for other 

combinations of aggregation approaches including aggregation over time and 

considering frequency of observation. In general, there was no noticeable 

effect of taking into account frequency of observation on the variance of 

conflict indicators and indices from before and after periods.  

Table 7.6 presents results if only positive values for DST (DST+) are taken into 

account. This additional analysis was conducted because it is possible that an 

average measure for a DST may be misleading given that DST assumes 

positive and negative values with completely different interpretations. The 

same issues were addressed for PET and GT by conducting independent 

analysis for positive and negative values for each indicator. This sign 

segregation for PET and GT is presented in Tables 7.4 and 7.5 as PET+, PET-, 

GT+, and GT-. Note that all results in Tables 7.4 to 7.6 are accompanied with 

15th percentile and 85th percentile bounds minus the average value.  

The following observations are noted from the analysis of results of different 

aggregation approaches: 

a. There is a significant dispersion in all conflict indicator and indices 

values. It is difficult to provide explanation for this observation except 

that the severity hierarchy was investigated into adequate depth that a 

wide variation of severity levels was observed. 

b. There was no evidence of a measurable difference in average values 

between before and after conditions. However, the wide variation in 

conflict indicator and indices values resulted in variant results for 

statistical tests for difference. Table 7.7 presents two-sample t-test for 
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the statistical significance, at the 0.05 significance, of the difference in 

mean values of conflict indicators and severity indices between before 

and after periods. There was a general consensus of a statistically 

significant reduction in average conflict indicators from before to after 

for indices aggregated over time. Indices aggregated over road user 

yielded mixed results. This could be explained by the fact that traffic 

interactions lasted on average longer for the before period, a 

characteristic that could not be captured by aggregation over road 

user.  

c. There was no significant difference in results with and without using 

frequency for calculating average values. This indicates that there was 

a general balance for the number of conflict indicator observations per 

frame and per road user. 

d. There was marginal difference in the averages of various indices 

calculated for every traffic event and individual indices mapped from 

average conflict indicators. The variation in each value was significant, 

thus casting doubt over the statistical significance of the previous 

conclusion. 

e. Function mapping tends to consistently yield results lower than the 

distribution mapping. A direct explanation of this observation, as also 

exhibited in Figures 7.1 and 7.2, is that if compared with a larger pool 

of observations, the distribution mapping may yield less abnormality 

values. In other words, the limited reference observations collected in 

this study created a bias toward overestimating severity if the 

distribution mapping was used.  
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Table 7.4  Summary results for different aggregation strategies for before 
conditions. Representative statistics are drawn only from calculable values of 
each indicator or index for each road user 

Conflict 

Indicator 

Average 

Indicator  

Individual Index Value Individual Aggregation 

Function Distribution Function Distribution 

TTC (sec) 4.85 
-2.93 

0.54 
-0.14 

0.35 
-0.20 

0
.3

5
 (

-0
.2

2
 :

 0
.4

1
) 

0
.4

9
 (

-0
.2

8
 :

 0
.3

9
) 

2.54 0.24 0.44 

PET+ (sec) 7.52 
-4.36 

0.29 
-0.23 

0.46 
-0.29 

4.28 0.49 0.43 

PET- (sec) -6.63 
-3.50 

0.28 
-0.23 

0.47 
-0.27 

3.47 0.48 0.38 

DST (m ⁄ s
2
) 0.29 

-0.52 
0.02 

-0.02 
0.37 

-0.37 

0.67 0.14 0.39 

GT+ (sec) 5.50 
-4.24 

0.50 
-0.25 

0.66 
-0.25 

2.50 0.45 0.32 

GT- (sec) -5.16 
-2.77 

0.47 
-0.32 

0.63 
-0.28 

4.03 0.49 0.35 

|PET| (sec) 7.06 
-3.90 

0.33 
-0.25 

0.50 
-0.30 

- - 
3.99 0.45 0.39 

|GT| (sec) 5.35 
-4.16 

0.52 
-0.26 

0.68 
-0.26 

- - 
2.62 0.44 0.30 

Index 

(function) 
0.34 

-0.23 
- - 

-0.006 
- 

0.20 -0.32 0.46 

Index 

(distribution) 
0.51 

-0.25 
- - - 

0.01 

0.23 -0.38 0.45 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.  
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Table 7.5  Summary results for different aggregation strategies for after 
conditions. Representative statistics are drawn only from calculable values of 
each indicator or index for each road user 

Conflict 

Indicator 

Average 

Indicator 

Individual Index Value Individual Aggregation 

Function Distribution Function Distribution 

TTC (sec) 4.14 
-2.99 

0.59 
-0.14 

0.44 
-0.23 

0
.3

7
 (

-0
.2

6
 :

 0
.4

2
) 

0
.5

3
 (

-0
.3

4
 :

 0
.3

8
) 

2.30 0.27 0.47 

PET+ (sec) 7.54 
-4.17 

0.28 
-0.21 

0.45 
-0.27 

3.77 0.47 0.42 

PET- (sec) -5.81 
-3.61 

0.38 
-0.31 

0.56 
-0.32 

4.11 0.54 0.40 

DST (m ⁄ s
2
) 0.37 

-0.44 
0.04 

-0.04 
0.44 

-0.44 

0.54 0.12 0.30 

GT+ (sec) 5.34 
-4.19 

0.52 
-0.32 

0.68 
-0.33 

3.43 0.44 0.30 

GT- (sec) -5.39 
-4.14 

0.44 
-0.37 

0.61 
-0.38 

4.63 0.54 0.38 

|PET| (sec) 7.09 
-4.33 

0.33 
-0.24 

0.50 
-0.29 

- - 
3.83 0.50 0.42 

|GT| (sec) 5.36 
-4.38 

0.52 
-0.34 

0.68 
-0.35 

- - 
3.69 0.45 0.31 

Index 

(function) 
0.36 

-0.26 
- - 

-0.017 
- 

0.24 -0.37 0.49 

Index 

(distribution) 
0.51 

-0.27 
- - - 

-0.01 

0.26 -0.43 0.47 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.  
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Table 7.6  Summary results for different aggregation strategies for all 
conditions. Representative statistics are drawn only from calculable values of 
positive DST values 

Agg. 

Type 
Freq. Time DST+ (sec) 

Individual Aggregation 
Difference individual agg. 

and index value 

Function Distribution Function Distribution 

T
im

e
 

W
it

h
o

u
t 

F
re

q
. 

B
ef

o
re

 

0.60 

-0.44 0.35 0.52 0.00 0.01 

0.44 (-0.24 : 0.41) (-0.29 : 0.37) (-0.30 : 0.44) (-0.34 : 0.41) 

A
fte

r 

0.64 

-0.43 0.32 0.50 0.01 0.02 

0.42 (-0.22 : 0.50) (-0.30 : 0.44) (-0.33 : 0.55) (-0.37 : 0.49) 

W
it

h
 F

re
q

. 

B
ef

o
re

 

0.67 

-0.42 0.38 0.55 -0.02 -0.01 

0.44 (-0.22 : 0.36) (-0.26 : 0.32) (-0.27 : 0.38) (-0.31 : 0.35) 

A
fte

r 

0.67 

-0.40 0.41 0.59 -0.04 -0.04 

0.43 (-0.23 : 0.37) (-0.26 : 0.32) (-0.29 : 0.40) (-0.31 : 0.36) 

R
o

a
d

 

U
se

r
 

w
it

h
o

u
t 

F
re

q
. 

B
ef

o
re

 

0.59 

-0.49 0.36 0.53 -0.01 -0.02 

0.51 (-0.22 : 0.41) (-0.30 : 0.36) (-0.32 : 0.46) (-0.39 : 0.43) 

A
fte

r 

0.55 

-0.45 0.38 0.55 -0.02 -0.04 

0.48 (-0.26 : 0.42) (-0.33 : 0.37) (-0.37 : 0.49) (-0.42 : 0.46) 

W
it

h
 F

re
q

. 

B
ef

o
re

 

0.71 

-0.53 0.36 0.53 -0.02 -0.02 

0.53 (-0.21 : 0.39) (-0.28 : 0.35) (-0.29 : 0.44) (-0.36 : 0.41) 

A
fte

r 

0.64 

-0.48 0.37 0.55 -0.03 -0.04 

0.49 (-0.25 : 0.42) (-0.31 : 0.37) (-0.33 : 0.47) (-0.39 : 0.43) 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.  
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Table 7.7  Summary results for the two-sample t-test for the difference in 
mean between conflict indicators and indices for before and after time 
conditions. ”1” means the test for before>after was sign ificant at the 0.05 
significance level and conversely after>before for “-1”. “0” means no 
significant difference was found. 

Agg. 

Type 
Freq. 

Indicator or Index 

T
T
C

 

P
E

T
+

 

D
S

T
 

G
T

+
 Function Distribution 

Index 

(max) 

Index 

(avg.) 

Index 

(max) 

Index 

(avg.) 

T
im

e
 

Without 

Freq. 
1 1 -1 -1 1 1 1 1 

With 

Freq. 
1 1 -1 -1 1 1 1 1 

R
o

a
d

 

U
se

r
 

Without 

Freq. 
1 0 1 0 -1 -1 0 0 

With 

Freq. 
1 0 1 0 -1 -1 0 0 

 

The message in Table 7.7 relating the difference of severity indices between 

the before and after periods appears at first to be counterintuitive. 

Aggregation over time and over road user provide opposite inferences on the 

difference between average severity index between before and after periods. 

An explanation is that pedestrians remain exposed to collision risk for longer 

times in the before period. This is a plausible explanation since pedestrian 

scramble provided more isolation of pedestrians compared to the traditional 

reliance on yield-to-pedestrian regulations.  

7.3.3 Accounting for both Severity and Frequency 

Aggregation results presented in section 7.3.1 mainly concern the average 

severity of all exposure traffic events. However, change in average severity 

between before and after periods cannot represent the change in exposure 
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between the same periods. For example, Figure 7.4 shows the distributions of 

the severity index mapped using the function mapping B1. The distributions 

exhibit a clear reduction in frequency of observation of traffic events at almost 

all severity levels. This safety improvement was not evident in Tables 7.4 and 

7.5 mainly because averaging conflict indicators and indices measurements 

implicitly discards the effect of variant exposure. The precise definition of 

exposure event in this analysis includes any pair of pedestrian and vehicular 

road users that attain at minimum spacing closer than a spatial proximity 

threshold and also exhibit at some time convergent movement directions. The 

spatial proximity threshold was selected to be 10.0m.  

Figures 7.6 and 7.7 further demonstrate the distinct safety information 

obtained when normalizing various severity measurements by the number of 

exposure events. In Figures 7.6 and 7.7, the distributions of various conflict 

indicators are shown after normalizing their frequencies by the total number 

of exposure events. The magnitude and sign of the difference in distributions 

between before and after periods is mixed. Some indicators, such as |GT| 

exhibit stable severity for every instance of road user exposure in before and 

after conditions. PET exhibits different trends for positive and negative values, 

with positive PET exhibiting increase in severity after the treatment. Other 

indicators such as DST and TTC exhibit an increase in severity per instance of 

road user exposure after the safety treatment. The distinct information 

contained in severity measures normalized by the number of exposure events 

can be misinterpreted as all-encompassing safety cue. A more comprehensive 

severity index can be constructed by including the following aspects: 
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1. Severity of each exposure event.  

2. Observed number of exposure events, and 

3. Maximum number of possible exposure events, 

A simple mechanism to combine the first and second aspects is the 

summation of all severity indices measurements,                       . In 

order to further incorporate the third aspect, the previous summation can be 

divided by the number of maximum possible exposure     . This is to 

account for the safety differential between situations where the same 

summation of severities originates from different levels of traffic volume. This 

normalized safety measure    can be constructed as follows: 

   
                      

    
      …(7.5) 

Theoretically, the maximum number of possible exposure events is the 

product of two conflicting traffic streams. In the context of pedestrian safety, 

     is the product of the number of pedestrians and the number of vehicles 

present during the observational period. Another plausible surrogate for      

is the total pedestrian and vehicle volumes during the observational period. 

Results of    calculation using different      estimates and different 

aggregation approaches are presented in Tables 7.8-7.11. 

It is important to note the difference between the use of      proposed in 

Equation 7.5 and its use as a surrogate for the total number of exposure 

events (refer to section 7.1.1 and (Greene-Roesel, Diógenes & Ragland 2007) 

(Keall 1995)).  The construction of the normalized safety measure presented in 

Equation 7.5 sets clear boundary between the estimation of maximum 
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possible exposure and the accurate observation of exposure represented by 

the number of exposure events. Putting the two quantities in perspective, or 

dividing them as is shown in Equation 7.5, represents the distinct safety 

benefit of reducing actual exposure. 

Table 7.8  Summary results for before and after index values normalized by 
the total number of tracked road users. Indices representing an event are the 
maximum of all mapped conflict indicators  

Agg. 

Type 
Freq. 

Distribution Function 

Before After Before After 

T
im

e
 

Without 

Freq. 
2.69 1.15 3.37 1.54 

With 

Freq. 
47.41 19.95 56.89 24.05 

R
o

a
d

 

U
se

r
 

Without 

Freq. 
0.10 0.06 0.13 0.08 

With 

Freq. 
0.41 0.16 0.54 0.22 

 Table 7.9  Summary results for before and after index values normalized by 
the total number of tracked road users. Indices representing an event are the 
average of all mapped conflict indicators  

Agg. 

Type 
Freq. 

Function Distribution 

Before After Before After 

T
im

e
 

Without 

Freq. 
1.58 0.72 2.34 1.12 

With 

Freq. 
23.59 10.29 35.47 15.25 

R
o

a
d

 

U
se

r
 

Without 

Freq. 
0.07 0.05 0.11 0.07 

With 

Freq. 
0.25 0.11 0.39 0.17 
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Figure 7.4  Severity index distributions for before and a fter conditions. Function mapping was used. Maximum 

indices were selected for every frame (upper row) and road user (bo ttom row).  
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Figure 7.5  Severity index distributions for before and a fter conditions. Function mapping was used. Average 

indices were selected for every frame (upper row) and road user (bo ttom row).  
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Figure 7.6  Conflict indicator and index distributions for  before and after conditions. Maximum indicators and 

indices were selected for every road user. Distributions are normalized by the total number of exposure events  
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Figure 7.7  Conflict indicator and index distributions for before and a fter conditions. Average indicators and 

indices were selected for every road user. Distributions are normalized by the total number of exposure events  
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Table 7.10  Summary results for before and after index values normalized by 
the product of the volumes of pedestrians and vehicles in millions. Indices 
for every event are the maxima of all mapped conflict indicators  

Agg. 

Type 
Freq. 

Distribution Function 

Before After Before After 

T
im

e
 

Without 

Freq. 
191 99.4 239 132 

With 

Freq. 
3360 1710 4000 2100 

R
o

a
d

 

U
se

r
 

Without 

Freq. 
7.30 5.25 9.75 7.11 

With 

Freq. 
29.7 14.2 38.7 19.2 

 

Table 7.11  Summary results for before and after index values normalized by 
the product of the volumes of pedestrians and vehicles in millions. Indices 
for every event are the averages of all mapped conflict indicators 

Agg. 

Type 
Freq. 

Function Distribution 

Before After Before After 

T
im

e
 

Without 

Freq. 
111 62.5 165 96.7 

With 

Freq. 
1670 883 2510 1300 

R
o

a
d

 

U
se

r
 

Without 

Freq. 
5.33 4.32 7.85 6.16 

With 

Freq. 
18.2 9.82 27.8 14.7 
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7.4 Conclusions 

This chapter presented a series of arguments that develop into the hypothesis 

that conflict indicators represent partially overlapping severity aspects. A 

number of approaches have been proposed in order to map into the severity 

dimension and to integrate conflict indicators into a severity index. In 

addition, aggregation of conflict indicator and severity index measurements 

was advocated. A number of aggregation approaches have been proposed. 

The chapter ends with an important proposition of an aggregate safety 

measure that reflects the underlying level of road safety.  

An important motivation for this work has been the lack of a conflict indicator 

that can comprehensively represent severity of traffic events. Admittedly, such 

development is not foreseen in the near future. This prognosis is based on the 

expected model complexity for representing all uncertainties that concern the 

risk collision. In addition, calibration of such model will require 

proportionately large volume of data, mainly road user tracks in normal and 

conflicting situations. The proposed mapping and integration approaches are 

interim methodological developments until the development of a 

comprehensive conflict indicator. 

Conflict indicators provide microscopic severity measures. However, the 

ultimate purpose of road safety analysis is to draw an inference on the 

underlying level of safety. A proposition of aggregating conflict indicator 

measurements was introduced in this chapter. For this purpose, three 

approaches were developed: aggregations over time, over road users, and 

over exposure events. The order of the three approaches reflects the precision 
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of exposure measurement. However, the data required for projecting such 

aggregation measures outside the period of observation is proportional to 

their precision. With progress in road user tracking technologies, surrogates 

of exposure will be gradually abandoned in favour of more precise measures 

of exposure. 

Part of the analysis presented in this chapter dealt with average conflict 

indicators and severity indices per road user or time frame. Several questions 

remain unanswered regarding the general usefulness of average severity 

measures. This inquiry can be even generalized for average collision severity 

measured in terms of the total cost of various types of road collisions 

normalized by the total number of road collisions. In fact, it can be argued 

that average severity measures provide a distinct message that can likely be 

misinterpreted.  

A broad objective of safety treatments is the reduction in the incidence of road 

collision. In the special case when only road collisions are concerned, it can be 

argued that a reduction in average severity measures is conceptually 

independent of a concomitant change in the frequency of road collisions. To 

explain the previous argument, consider the case of two intersections for 

which all types of road collisions are observed, albeit with different 

frequency. Furthermore, assume that for these intersections the total cost of 

road collisions is identical. From a social cost standpoint, the two 

intersections are equally dangerous and therefore should be placed at the 

same priority level when being considered for safety improvement. The 

fallacy of relying on average severity is apparent when investigating the 
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sensitivity of prioritization for treatment to the relative frequency of different 

types of road collisions. It is conceivable that for each intersection an increase 

in the frequency of property-damage-only (PDO) collisions will result in the 

reduction of average severity. The same reasoning can be applied to traffic 

conflicts the severity of which can be measured using the methodology 

proposed in this chapter. A relative increase in low-severity events may 

reduce average severity. There is a distinct safety message contained in the 

measurement of average severity. On conceptual grounds, this message is not 

related to the effectiveness of road safety treatments and to the prioritization 

for safety improvement programs.  

It can be argued that the message in average severity is orthogonal to 

quantitative inferences on road safety. Rather, average severity measures 

reflect the proximity and consequences per aggregation unit, e.g., time, road 

user, or exposure event. It reflects the severity to which road users are likely 

to be exposed given that there is a chance-setup or genuine exposure for such 

severity to materialize. It can be argued that a reduction in total exposure as 

well as total severity, represented by the summation of severity indices for 

traffic conflicts or the total cost for road collisions, accompanied by an 

increase in average severity involves a positive safety improvement. 

Furthermore, it can be argued that such safety improvement is larger than the 

case when average severity is retained or even reduced after the introduction 

of a safety treatment! 

To explain the previous argument, consider the case that a combination of 

road user behaviour and effect of safety treatment was characterised by the 
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following: 1) reduction in total exposure, 2) reduction in total severity, and 3) 

increase in severity per exposure event. It can be inferred that this particular 

treatment was not only successful in reducing the incidence of severe traffic 

events, but also was capable to some extent of disguising this safety benefit 

from road users. Therefore, if it is the case that the users of this intersection 

are penchant to compensate for safety improvement by accepting more risk, 

they are less likely to engage this behaviour at an intersection with high 

average severity than an intersection with low average severity. We can 

summarize these arguments in the following hypothesis: 

Hypothesis 7.2: Total severity of  traffic events and average 

severity per exposure events are two orthogonal dimensions for 

measuring road safety. The first dimension represents the 

magnitude of  safety from a social perspective. The second 

dimension represents safety perceived by the average road user 

of  the concerned intersection.  

An important distinction was made in this chapter between maximum 

possible exposure and actual exposure. The two quantities reflect the 

effectiveness of a safety treatment in limiting road user exposure to collision 

risk. The two quantities were augmented with the summation of all severity 

indices obtained from each traffic event (total severity) to produce a novel 

safety measure. The proposed safety measure is based on normalizing the 

summation of all severity indices by the maximum possible exposure. There 

is a well-recognized shortcoming of the naïve division of total severity by 

exposure. It may be the case that, similar to collision frequency, total severity 

independent of the underlying safety level is non-linearly related to 
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maximum exposure. In this case, for reasons extraneous to safety, the mere 

increase in traffic volume would unreasonably lead to reduction in the safety 

measure. This non-linearity should to be further investigated. If such non-

linearity is proven, the divisional form proposed in Equation 7.5 should be 

modified to reflect intrinsic relationships between exposure and total severity.  
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888   
AUTOMATED DETECTION OF                                          

TRAFFIC VIOLATION EVENTS 

8.1 Background 

The incidence of traffic violations is an important indicator of road safety. 

Fundamentally, traffic violations occur when road users seek an increased 

mobility at the expense of accepting additional collision risk due to non-

conforming to traffic regulations. For example, red-light violations occur 

when road users accept higher risk of crossing or left-turn collisions, in 

favour of more perceived utility achieved by reducing travel time. Traffic 

violations can also be viewed as precursors to traffic conflicts, in as much as 

traffic conflicts are conceptually viewed as indicators of collision. Recent work 
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has conjectured that traffic violations can be placed in the same severity 

hierarchy, albeit at a lower level, along with traffic conflicts and collisions (Oh 

et al. 2010). Accordingly, traffic violations may be viewed as a set of traffic 

events which comprises both traffic conflicts and collisions. However, this 

argument should be qualified to traffic configurations that represent sound 

design practice. Under these configurations, road users conforming to traffic 

regulations are not expected to be involved in traffic conflicts or road 

collisions with other road users. The relevance of traffic violations to road 

safety can be more evident when the prevalent chain of events that leads to 

collision contains an action of traffic violation. For example, all traffic conflicts 

observed in the study presented in Chapter 5 were caused by motorists 

committing illegal left-turn maneuvers. In the previous study, it could be 

reasonably argued that left-turn violations are plausible surrogates for traffic 

conflicts.  

The practical benefit of observing violations as surrogates to traffic conflicts, 

and consequently road collisions, is especially realized when observational 

periods are limited. While generally more frequent than road collisions, traffic 

conflicts are still less frequent than traffic violations. It is possible for 

observational periods to be too limited to record a representative sample of 

traffic conflicts. In situations where it is likely that road collisions are 

attributable to violation actions, traffic violations can provide a reliable 

surrogate road safety measure. Several studies argued on conceptual and 

empirical grounds that traffic violations are valid indicators of road safety, e.g., 

(Struckman-Johnson et al. 1989) (Elliott, Baughan & Sexton 2007) (Ayuso, 

Guillén & Alcañz 2010). Furthermore, arguments raised in previous chapters 
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in support of automated road safety analysis find similar ground in the 

detection of traffic violations.   

Automated analysis enables the processing of extended observational periods 

while consuming limited time and staff resources. A distinct practical benefit 

of the automated detection of traffic violations can materialize in the case of 

real-time video analysis. Moreover, automated detection of traffic violations 

can support traffic monitoring for the purpose of identifying operational or 

traffic control issues. Finally, methodological developments can be directly 

adopted in the context of security monitoring and surveillance. The previous 

contexts are not addressed in this chapter, however they constitute important 

continuation of the work presented herein. The main focus of this chapter is 

on the automated detection of vehicular violations in urban settings. The 

video sequence used in this chapter did not include enough pedestrian 

volume to warrant a focused study on pedestrian violations. Conversely, 

there was a remarkable incidence of traffic violations committed by vehicles. 

The methodology developed for automated detection of vehicle violations 

can readily be adopted for detecting pedestrian violations. Subsequent 

sections present two approaches for violation detections.  

The first approach presents an adaptation of a traditional clustering approach, 

the k-means clustering algorithm, for the purpose of automated violation 

detection. Inherent shortcomings in the k-means algorithm motivated the 

reliance on more insightful discriminative features of violation movements 

obtained using the Longest Common Subsequence (LCSS) similarity measure. 

The second approach in this chapter is based on violation detection by means 
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of measuring track similarity to patterns learnt for normal movements using 

the LCSS similarity measure. As shorthand, the second approach is referred 

to as LCSS-based violation detection. Compliant movements are represented 

by normal movement patterns or prototypes. Movement patterns are a subset 

of road user tracks1 that possess adequate similarity to all road user tracks 

and lack similarity amongst each other.  

A case study is presented in subsequent sections on the automated violation 

detection of vehicular movement. The video data analyzed in the case study 

was collected for approximately 2 hours at an urban intersection in Kuwait 

City, Kuwait. Both approaches presented relative strength, however the 

reliance on LCSS matching proved an overall superiority. The chapter ends 

with general discussion and conclusions.  

8.2 Methodology 

The following section presents an adaptation of k-means clustering for the 

purpose of automated violation detection. Clustering features were mainly 

based on directional movements of road users while navigating an 

intersection. In order to enhance the robustness to tracking errors, piecewise 

linear parameterization of road user tracks was performed to extract 

clustering features. A subsequent section presents an adaptation of a 

classification technique based on the LCSS matching. 

                                                 
1
 As shorthand, road user tracks is used to mean the tracks of different road users. 
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8.2.1 K-means Clustering using Linear Piecewise Parameterization  

Clustering is the process of organizing points in a dataset into a number of 

subsets, each subset contains elements of similar characteristics. Formally, the 

clustering problem can be represented as the mapping of all elements in a 

dataset                  onto the set of clusters                  such 

that each element      is uniquely assigned to a cluster     . The problem 

of classifying road user tracks into normal and violation movements can be 

directly cast as a clustering problem, with    representing road user tracks 

and    representing different movement prototypes. An informed clustering 

technique can theoretically be constructed to group normal and violation 

road user tracks into separate sets. 

K-means clustering is one of the most widely used algorithms for clustering 

analysis (Lloyd 1982). A pre-requisite to k-means clustering is the reduction in 

dimensionality from the original data space to a lower dimension feature 

space. For example, a road user track can be represented by a number of 

features; each describing the type of manoeuvre performed by the road user 

generating this track. The idea behind k-means clustering is to first select, 

typically at random, centroids of each cluster in the feature space.  Then 

several iterations are performed until every data point is assigned to the 

cluster with the closest distance measured in the feature space.  

The main requirement for effective clustering is the informed selection of 

features that could aid in discriminating between normal and violation tracks. 

A typical challenge to indirect clustering techniques is the immense 

dimensionality of road user tracks. In order to comprehensively represent a 
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road user track, the number of feature space dimensions should equal three 

times the number of observed positions along this track   . Twice the number 

of observed positions is required for two-dimensional representation of all 

positions. The third multiplication is required to represent time. The 

dimensionality of the feature space can be reduced to       if road user 

positions are observed every fixed time interval. A full-dimensional 

representation of road user tracks for clustering analysis is computationally 

intensive and is susceptible to tracking noise. Furthermore, road users 

typically exhibit some movement patterns while navigating traffic 

intersections or road segments. More informed clustering can be conducted if 

features are selected based on an assumed movement model for road user 

movements.  

For example, in the hypothetical situation where only through movements 

are allowed, the prevalent movement direction is likely a discriminative 

feature that entails a drastic reduction in dimensionality from     to  . For 

turning movements, more features can be used to represent through-

movement segments and turning-movement segments of the road user track. 

Therefore, the prevalent direction of each track segment can be used as a 

discriminative feature. In subsequent analysis using k-means clustering, road 

user directions are adopted as the main type of feature. In order to mitigate 

the effect of tracking noise and improve the representation of road user 

movements, the profile in time of road user directions is approximated using 

a piecewise linear model.  
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A typical road user moves from an origin to a specific destination in traffic 

scenes. Therefore, their movement can reasonably be approximated into a 

finite number of maneuvers. The definition of a maneuver in this context is a 

sequence of positional changes that can be effectively represented by a regular 

geometric model. Furthermore, feature definition in terms of temporal profile 

of movement direction enables efficient and accurate representation of all 

curvilinear tracks in linear form. Figure 8.1 shows a sample vehicle track 

approximated by three different sequences of linear segments. Piecewise 

linear models based on four linear segments were used in subsequent 

analysis since they proved, after several preliminary trials, to provide an 

effective representation of road user tracks. Figure 8.2 shows sample tracks 

approximated by piecewise linear models using four linear segments. The 

features that represent a track, also called clustering parameters or variables, 

are the slopes of the line segments which constitute the piecewise linear 

model.  

In order to further simplify the definition of a feature, all tracks were 

represented along the same horizontal axis by normalizing the measurement 

time of each position to the total life span of each track. For example, the first 

point of each track occurs at moment 0 and the last point occurs at moment 1. 

These features drawn from each road user track are afterwards relayed to k-

mean clustering. Previous techniques for feature extraction and k-means 

clustering were implemented in the MATLAB language with the aid of the 

Cluster Analysis Toolbox (Mathworks 2010).  
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Figure 8.1  A vehicular track approximated by three di fferent piecewise linear 

models. The vertical axis shows the cosine of the instantaneous azimuth of road 

users and the horizontal axis shows the moment of measurement relative to the 

total life span of the track.  
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normal tracks. The number of tracks in each cluster is compared to a 

threshold  . If the number of tracks within a cluster relative to the total 

number of tracks exceeds this threshold, the cluster is considered to contain 

normal tracks. If otherwise the relative frequency of tracks within a cluster is 
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cluster    is      , then violation tracks are formally classified according to the 

following criterion: 

                         
      

                 
                  

                      
      

                 
                  ... (8.1) 

 

 

Figure 8.2  Sample tracks approximated to a fourth-degree piecewise linear 

model (a sequence of four linear segments). Vertical axes show the cosine of the 

instantaneous azimuth of road users and horizontal axes show the moment of 

measurement relative to the total life span of each track.  
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Various performance measures can be calculated given the knowledge of the 

true classification of each road user track. Three performance measures were 

used in this study: percentage correct classification (PCC), Kappa categorical 

similarity coefficient, and Entropy. Kappa coefficient is directly proportional 

to the quality of classification, i.e., agreement between predicted classification 

and true classification. Values of Kappa coefficient greater than 0.61 generally 

represent substantial agreement. Entropy is negatively proportional to the 

classification performance. No benchmarks were found for judging the 

quality of performance based on Entropy values. Therefore it is best suited for 

comparison between two classification approaches. One of the universal 

measures of system randomness or uncertainty is Entropy  . In clustering 

analysis, Entropy has the advantage of representing both the success of the 

clustering approach in isolating violation tracks within a few number clusters 

while taking into account the total number of clusters required for successful 

classification. An adaptation of Shannon’s Entropy (Shannon 1948) (Li, Zhang 

& Jiang 2004) was used to measure the randomness in clustered sets that also 

represents the classification accuracy: 

                                            

                                 

                                    ... (8.2) 

where         is the probability function. The term          is estimated as 

the relative frequency of the true type of the track in reference to the total 

number of tracks. For example, if     is for fact a violation track, then: 



 

259 

 

           
                          

                      
   ... (8.3) 

8.2.2 Violation Detection using LCSS matching  

The first step of LCSS-based violation detection is to create a set of movement 

prototypes that represent what are considered as normal movement 

prototypes. Subsequently, a comparison is conducted between a given track 

and normal movement prototypes. Any significant disagreement between 

both sequences of positions is interpreted as an evidence that the given track 

represents the movement of a road user performing a traffic violation. More 

specifically, this comparison relies on an LCSS similarity measure between the 

movement prototypes and the trajectories to make decision about the 

classification.  

The LCSS similarity measure is defined in a non-metric space. This property 

enables the successful adoption of LCSS similarity measure in several 

applications. The LCSS problem was originally defined for matching time-

series measurements, e.g., sequences of communication signals. The 

application of LCSS similarity measure for matching trajectory data has been 

successfully demonstrated (Vlachos, Kollios & Gunopulos 2005)  (Saunier, 

Sayed & Lim 2007). LCSS similarity gives more weight to similar segments of 

road user tracks while allowing some parts to be unmatched. This matching 

strategy proves remarkable robustness to tracking noise as well as incomplete 

tracking of road users. Furthermore, the matching of two positions can be 

bound by a variety of    Norms; not necessarily the computationally 

expensive    Norm. In the following analysis,    is used to measure the 

proximity of two matched positions. The following section provides a 
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formalized definition of LCSS similarity and describes an adaptation for the 

purpose of violation detection.  

Let      be a measure on a finite set that returns its number of elements. Let   

be a finite set of road user tracks                  . Let each road user track 

   be composed of a set of coordinate tuples such that           

             and each coordinate tuple     be defined as              . Two 

points     and     to be matched if                           , where   is 

some spatial proximity bound called hereafter matching distance. The LCSS 

of two road user tracks    and   ,              of respective lengths   and  , 

is defined recursively as follows:  

   if     or    ,  

                            if the points     and     match,  

                                          , otherwise. 

where                                and the definition is identical for 

all tracks other than  .  

The LCSS of two road user tracks is further normalized in order to produce a 

non-metric similarity measure. The incremental prototype learning algorithm 

used in this analysis,  (Saunier, Sayed & Lim 2007), adopted normalizing 

LCSS by the minimum length of the two matched tracks. This normalization 

strategy is invariant to the difference in length between the matched tracks. 

This strategy is effective during the process of prototype learning since it 

tends to yield a parsimonious representation of road user tracks.  



 

261 

 

In the process of violation detection, the matched road user tracks have 

different interpretation than in the case of prototype learning. Without loss of 

generality, it can be assumed that the function              defines in order 

the LCSS between a road user track    and a previously learnt prototype   . 

Prior to similarity matching, it is not known whether a road user track    

represents a normal or a violation movement. In the process of violation 

detection it is not plausible to treat equally the case when                  

and the opposite case. The first case likely involves a partial road user track 

while the opposite can be interpreted in different ways. The case 

                could occur if    is a partial road user track that was 

included in the set of prototypes. This case can also occur if    is in fact a 

violation track that contains subsequences which were not matched to any 

prototype. In order to explicate the two cases, a different normalization 

strategy was used for violation detection. The non-metric LCSS similarity 

measure DLCSS (more precisely a dissimilarity measure) used in violation 

detection is defined as follows: 

               
            

     
    … (8.4) 

Therefore, the LCSS is normalized by the length of the sub-sequence of the 

tacked object. LCSS-based violation detection is conducted on all road user 

tracks        by matching against the set of normal prototypes             . 

The latter set can be created by incrementally learning prototypes for a period 

of time and then manually removing prototypes that represent road user 

violations. For a given similarity threshold        , a road user track    is 

identified as a violation track if the following condition is met: 
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                                         … (8.5) 

If the condition in Equation 8.5 is not met, then a road user track    is 

considered to represent a normal road user movement. Furthermore, in order 

to take into account the similarity in movement directions between two 

matched prototypes, an additional condition on the directional cosine of road 

user movements is augmented to Equation 8.5. A minimum threshold   is 

imposed on the directional cosine of a pair of positions that belong to the 

same common subsequence.  

A key challenge in the adaptation of the LCSS algorithm is the choice of the 

set of matching parameters track         that maximizes the number of 

correct violation detections and minimizes the number of missed violation 

detections. Relevant to this challenge is the study of the sensitivity of results 

to the selection of the matching parameters. In the following case study, 

sensitivity to matching parameters was investigated by detecting violations 

using a sample of all feasible selections of the matching parameters.  

8.3 Case Study 

The video data analyzed in this case study was collected at the Darwaza 

intersection in Kuwait City, Kuwait. The total length of the observation period 

was 24 hours. Video tracks from only two hours at dawn were analyzed in 

this case study. Figure 8.3 shows the results of camera calibration conducted 

using the methodology presented in Chapter 3. Due to the relative scarcity of 

pedestrian road users during this time, only vehicle tracks were considered. 

Traffic violations analyzed in this study involved illegal reverse-direction 
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turns within the intersection. No other forms of violations were observed. 

Analysis was restricted to reverse-direction turns within the intersection. 

Figure 8.4 shows all normal and violation tracks analyzed in this case study. A 

total of 966 normal tracks and a total of 11 violation tracks were analyzed. 

a) Image space

 

b)World space

 

Figure 8.3  Sample grids as projected from world space (b) to the image space 

(a).  
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Figure 8.4  Violation tracks (left figure) and a sample of normal tracks (right figure) during 2 hour observations 

at Darwaza intersection.  
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Automated violation detection was conducted for various combinations of k-

means clustering parameters and LCSS matching parameters. For k-means 

clustering, the natural number of clusters for violation detection is 13, which 

includes twelve main traffic movements and one additional cluster to contain 

all violation tracks. It is also plausible that the use of more than 13 clusters 

may bring enhanced detection since violating tracks themselves may not 

exhibit enough similarity to be grouped together within the same cluster. 

Therefore, analysis was conducted also using 14 and 15 clusters. A range of 

relative frequency threshold values, as defined in Equation 8.1, were used 

ranging from 0.005 to 0.1. Relative frequency thresholds above 0.1 provided 

significantly high number of false detections. Conversely, relative frequency 

thresholds below 0.005 produced significantly high number of missed 

detections. For k-means clustering, road user tracks significantly outside the 

boundaries of the intersection were truncated in order to discard segments of 

road user movements irrelevant to traffic regulations within the intersection.  

Movement prototypes were learnt for a period of 5,000 frames selected at 

random from the video sequence. A total of 189 prototypes were recorded. A 

total of 6 prototypes were manually removed since they belong to violation 

movements. Figure 8.5 displays a superimposition of all normal prototypes 

used in LCSS-based classification. Similar to k-means clustering, various 

combinations of LCSS matching parameters were used. The range for 

matching distance   is 2-10 m with increment 0.5m. The range for maximum 

similarity threshold   is 0.1-0.9 with increment 0.05. The range for the 

directional cosine threshold   is 0.7-0.95 with increment 0.05. No tracks were 
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truncated in the case of LCSS-based violation detection due to its complete 

robustness to variability in track lengths.  

Figure 8.6 displays the performance LCSS-based violation detection when   

and   vary in the specified intervals while   is kept constant at 0.9. There was 

little sensitivity of detection performance to  . In general, for a given short 

matching distance   and low  , the incidence of false detection of normal 

tracks as violation tracks is negatively related to the value of the similarity 

threshold  . The same effect on the incidence of false detection, albeit at less 

sensitivity, was observed for values of  . On the other hand, reducing the 

value of   under the previous conditions was found to increase missed 

detection of violation tracks. Similar but more pronounced effect was 

observed for the selection of  .  
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Figure 8.5  A superimposition of the 183 normal movement prototypes used for 

LCSS-based violation detection.   
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a) Effect on normal detection

 

 

b) Effect on False detection

 

c) Effect on missed detection

 

d) Effect on violation detection

 

Figure 8.6  Performance of LCSS-based classification using a range of values 

for matching distance   in meters and similarity threshold   . The directional 

cosine threshold was set to 0.9.  

 

The sensitivity of k-means clustering to the initial selection of the centroid of 

each cluster was evident. Initial selection of each cluster centroid was 

performed at random. At every iteration, the percentage difference between 

minimum and maximum Kappa, relative to minimum Kappa value, was 

calculated. The minimum variation in Kappa statistic was 49% and the 

maximum variation was 108%. Figure 8.7 provides evidence of the instability 

of performance measures for a total of 100 iterations for a sample of three 

selections of clustering parameters. The exceedingly high percentage correct 
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detection is mainly due to the imbalance in number between normal tracks 

and violation tracks. Furthermore, the high number of clusters used resulted 

in generally high Entropy that masked to some extent individual variations 

due to different clustering parameters.  

The performance of the violation detection using k-means clustering and 

LCSS matching is shown in Figure 8.8. In order to reduce the effect of random 

centroid selection on the performance of k-means clustering, performance 

parameters of k-means clustering were selected based on the median Kappa 

statistic value among 100 iterations. The results show a clear superiority of 

LCSS-based detection when a low rate of false detection is desired. However, 

if a higher rate of false detection is tolerable, both approaches perform well.  

In order to further enhance the performance of k-means clustering, it is 

possible to consider only a subsample of complete road user tracks. Complete 

road user tracks contain all road user positions while navigating the 

intersection. Road user tracks shorter than 100 frames (4.0 seconds) were 

excluded from the analysis. These tracks are mostly partial tracks which do 

not represent the full observed range of road user movements, except for 

significantly fast moving road users. The total number of tracks tested was 

438 tracks including 10 violation tracks. Figure 8.9 shows the performance of 

automated violation detection using k-means algorithm on the reduced 

sample size compared with the performance of LCSS-based violation 

detection. Note that the complete set of tracks was used for LCSS-based 

violation detection in both Figures 8.8 and 8.9. A summary of different 

performance measures is presented in Table 8.1. Peak performances of every 
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performance measure were independently selected for k-means clustering on 

both full and reduced samples as well as LCSS-based violation detection. 

False detection and correct detections shown in Table 8.1 were selected for the 

set of LCSS matching parameters that yielded the minimum summation of 

these two performance measures. It is evident from all performance measures 

that the exclusion of partial tracks improved the performance of k-means 

clustering. Furthermore, despite the favourable experimental set-up for k-

means clustering using reduced sample size, LCSS-based violation detection 

was still superior to k-means clustering at low false-positive rates. Based on 

previous results, there is a significant reduction in Entropy for LCSS-based 

violation detection. This is largely attributable to the reduction in the number 

of clusters from 13-15 to 2.  
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Figure 8.7  Evident instability of detection results of k -means clustering.  
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Figure 8.8  The receiver operating characteristic curve for the two  violation 

detection approaches presented in this chapter. K-mean clustering was 

conducted on a full sample size of 986 tracks.  
 

 

Figure 8.9  The receiver operating characteristic curve for the two violation 

detection approaches presented in this chapte r. K-mean clustering was 

conducted on a reduced sample size of 448 tracks.  
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Table 8.1  Summary of peak performance of different violation detection 
approaches 

Detection 

Approach 

Sample 

size 

No. of tracks 
Kappa PCC Entropy 

% false 

detection 

% correct 

detection 
normal violation 

k-means 

clustering 

Dawn-

complete 
976 10 0.0830 0.9897 2049 19.97 90.00 

Dawn-

reduced 
438 10 0.5262 0.9843 813 8.44 100.00 

LCSS 
Dawn-

complete 
976 11 0.6378 0.9906 3 8.09 100.00 

8.4 Conclusions 

This chapter presented two approaches and variations thereof for the 

automated detection of traffic violations. The first section discussed the 

relevance of traffic violations to road safety analysis. The next section 

described an adaptation of a traditional clustering approach, the k-means 

clustering algorithm, for the purpose of automated violation detection. 

Inherent shortcomings in the k-means algorithm motivated the reliance on 

more insightful discriminative features of violation movements obtained 

using the Longest Common Subsequence (LCSS) similarity measure. 

Subsequent sections presented a successful application of a modified LCSS 

similarity criterion for the classification of violation movements. The 

performance of LCSS-based violation detection was generally superior to 

piecewise k-means clustering, especially when low false detection rates are 

desirable. The main shortcoming of k-means clustering is the random 

selection of initial centroid positions. The detection performance proved 

sensitive to this random selection. One possible solution to this challenge can 
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be the careful selection of initial centroids to represent normal movement 

prototypes. While plausible, this reasoning converges to the LCSS matching 

approach. However, it is not foreseeable that k-means could outperform 

LCSS-based violation detection if normal movement prototypes were a priori 

provided. This expected performance differential is because LCSS matching is 

performed on observed road user positions, not on some approximated 

model.  

Another advantage of the methodology presented in this chapter is the 

unsupervised learning of normal road user movements. Representative 

prototypes for normal movement patterns were automatically learnt and used 

to provide a concrete definition of what constitutes legal and permitted 

movements. The reliance on the LCSS matching provides a solid foundation 

for automated violation detection. Moreover, the practical appeal of LCSS 

based automated violation detection can be improved if normal prototypes 

are synthesized from prior knowledge of normal traffic movement. For 

example, a traffic operator may be consulted to provide sketches of normal 

movement patterns. These sketches can be used to synthesize movement 

prototypes with some prior assumption regarding operating speed within the 

intersection.  
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999   
SUMMARY CONCLUSIONS AND FUTURE WORK 

9.1 Background 

Safety and sustainability are the two main themes of this thesis. They are also 

two main pillars of a functional transportation system. Traditionally, the 

performance of a transportation system has been measured in terms of 

mobility. However, enhanced mobility often comes at the expense of reducing 

safety or compromising the mobility of non-motorized modes of travel. 

Recent studies showed that the cost of road collisions in Canada exceeds the 

cost of traffic congestion by almost tenfold (Cannon 2006) (Vodden et al. 

2007). In addition, there has been a growing grassroots demand for building a 

sustainable transportation system. This emerging focus on sustainability 

gives impetus to the study of non-motorized modes of travel. Despite the 
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demand for accommodating non-motorized modes of travel, key of which is 

walking, the current methods of analysis and the available data related to 

those modes of travel suffer from a traditional bias towards motorized modes 

of travel. In the grand view, this thesis represents a corrective step in the 

direction of building a safer and more sustainable transportation system.  

The epidemic of road collisions still plagues world roads, inflicting 1.3 million 

casualties every year (WHO 2004), with no exception of Canadian roads. The 

cost of road collisions in terms of health care, environmental damage, and 

induced traffic congestion is immense. A recent study by Transport Canada 

revealed that the annual cost of road collisions is estimated to be $CDN 62.7 

billion/year; a staggering 5% of the average Canadian Gross Domestic 

Product (Vodden et al. 2007). The incidence of road collision causes an 

especially detrimental effect on non-motorized road users mainly due to their 

physical vulnerability. Moreover, walking, the key mode of non-motorized 

travel, is performed by the most vulnerable road users. Pedestrians 

constituted 12% of total recorded deaths - the second largest group of road 

user fatalities (Transport Canada 2004). What makes pedestrian safety 

particularly important is the over-representation of children and young 

adults (0-19) and elderly (65+) road users – with the first group sustaining the 

highest potential years of life lost and the latter being an increasing age group 

in Canada (Transport Canada 2004).  

Amid mounting cost of road collisions and despite the detrimental effect on 

the sustainability of transportation systems, the discipline of road safety 

analysis has not evolved to meet these daunting challenges. To this date, road 
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safety analysis remains dependent on the observation of road collisions. This 

analytical approach is challenged on three accounts: 

1. High cost of road collisions. This approach warrants safety treatment 

after the occurrence of road collisions. This carries an especially high 

price for pedestrians due to the elevated risk of bodily damage 

compared to other road users. 

2. High quality collision data are particularly difficult to obtain. It is often 

neglected to record the precise collision location, the mechanism of 

failure that leads to a collision, and the exact timing of the event. The 

scarcity and limited quality of collision data are major impediments to 

collision-based road safety analysis. 

3. Accidents are rare and random events. It is often necessary to observe 

collisions over a long period of time in order to discard variations due 

to the stochastic nature of road collisions and due to confounding 

factors (Persaud & Lyon 2007). It is typical for before-and-after 

observational periods to extend for 1-3 years after the introduction of a 

safety treatment in order to conduct proper evaluation.  

Traffic Conflict Techniques have been advocated as an alternative to or 

supplementary to collision-based road safety analysis. The reliance on field 

observations for conducting traffic conflict survey has been challenged on two 

accounts. The first challenge is the cost required to train human observers and 

institute the field surveys. The second challenge is the unavoidable 

subjectivity of road users in observing traffic conflicts. The lack of an 
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adequate inter- and intra-observer agreement has been a stumbling block 

toward the development of conflict-based road safety analysis. 

This thesis is centered on a number of applications of computer vision 

techniques for the purpose of traffic data collection and automated road 

safety analysis. Video sensors have been used as the main source of data in 

this thesis. Video sensors possess a number of advantages over other data 

collection technologies. For example, video cameras are relatively inexpensive 

to procure and operate. Video data provides rich and detailed information on 

road user movement within the monitored field of view. In addition, many 

jurisdictions are installing video camera for monitoring purpose, thus greatly 

facilitating video data collection for computer vision applications. 

The main advantage of computer vision techniques is the potential to collect 

microscopic road user data at a degree of automation and at accuracy that 

cannot be feasibly achieved by manual or semi-automated techniques. 

Microscopic road user data can be used to draw objective inference on their 

proximity to the risk of collision. The objectiveness and automation of 

conducting traffic conflict analysis using computer vision techniques 

precisely empowers the two main challenges of traditional observer-based 

traffic conflict analysis: cost and subjectivity. Furthermore, the observation of 

microscopic pedestrian data using computer vision techniques can address a 

long-standing challenge of the availability of pedestrian data. In the following 

sections, summaries of the research work and the drawn conclusions are 

presented for each chapter. Subsequent to the description of the work is a list 

of related research contributions.  
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9.1.1 Chapter One: Introduction 

The first chapter of this thesis presented background materials, description of 

research motivation, statement of research problems, and research 

contribution. 

9.1.2 Chapter Two: Literature Review 

The second chapter of this thesis presented a review of the technical literature 

on three main topics: traffic conflict analysis, developments in the realm of 

computer vision on topics of road user tracking, and adoption of computer 

vision techniques in transportation engineering applications. The first topic 

was a review of developmental milestones from conceptual proposals to 

sophisticated implementations. Main approaches for road user tracking in the 

realm of computer vision were outlined. The problem of pedestrian tracking 

is distinctively different and arguably more challenging than vehicle tracking. 

Pedestrians are more prone to visual occlusion, move in a less organized 

fashion than vehicles, and are locally non-rigid. Two separate sections were 

presented in Chapter 2 on the problems of vehicle tracking and pedestrian 

tracking. The last section presented a review of studies conducted in the 

literature of transportation engineering that involve the adoption of computer 

vision techniques. Two important conclusions can be drawn from this review: 

1. On the theoretical side of traffic conflict analysis, there is little work 

done on the validation of traffic conflict indicators. The majority of 

conflict indicators are built on intuition while not contrasted with 

genuine quantity to be measured. Furthermore, no successful attempt 

appears to have been achieved in developing a conflict indicator 
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capable of comprehending the severities of both road collisions and 

traffic conflicts. The universal severity dimension theorized by Hydén 

possesses intuitive validity (Hydén 1987). Its implementation however 

proved to be one of the long-standing challenges in traffic conflict 

analysis. 

2. There is a technological gap between developments made in the realm 

of computer vision and adoptions in transportation engineering. The 

majority of the reviewed applications do not venture into using state-

of-the-art road user tracking technologies. Much work is to be 

conducted for increased adoption of computer vision developments in 

the realm of transportation engineering. 

 9.1.3 Chapter Three: Recovering Real-world Coordinates for Points 
that Appear in Video Observations 

Video sensors have been adopted as the main method of data collection for 

the analysis conducted in this thesis. The main type of data sought to be 

recovered by computer vision techniques is road user positions. This chapter 

presented a methodology for the inference of the position, the orientation, 

and the various intrinsic parameters of a monitoring camera in order to 

enable the recovery of real-world positions of points on the road surface. This 

estimation process is referred to in this chapter as camera calibration. Camera 

calibration was treated as an optimization problem. The objective function is 

composed of different components expressed in homogenous metric units. 

Each cost function component represents a distinct calibration feature. 

Following are the calibration features considered in the analysis presented in 

this chapter: 
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1. Point correspondences. 

2. Difference between true length of line segments and their back-

projected1 length.  

3. Discrepancy between true angles between vectors and the angle 

measured between back-projections of these vectors.  

4. Angular discrepancy between annotated and projected vertical line 

segments.  

5. Difference in back-projected lengths of pairs of linear measurements of 

an edge that appears at two different depths from the camera.  

A toolbox was developed as an implementation of the presented 

methodology written in the Matlab language (Mathworks 2010). Subsequent 

applications were supported by camera parameter estimation using this 

toolbox. Furthermore, this toolbox was used in several studies outside the 

scope of this thesis in which the estimated camera parameters proved to be 

successful. Robustness was proved against various challenges such as 

degraded image quality, lack of orthographic image of the monitored site, 

lack of knowledge of intrinsic camera parameters, and dearth of reliable 

geometric primitives used as calibration features. Following are the research 

contributions achieved in this chapter:  

1. A reliable methodology was developed for recovering real-world 

coordinates of points that appear in the video sequence.  

                                                 
1
 Back-projection refers to the mapping of various features from image coordinates to world 

coordinates.  
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2. The previous methodology was implemented in the MATLAB 

language (Mathworks 2010) and was successfully used in all video 

analysis undertaken in this thesis (six different scenes) as well as other 

applications outside the scope of this thesis (nine different scenes).  

3. The accuracy of camera parameter estimates was found to be superior 

to current practical requirements for the purpose of road users 

tracking.  

9.1.4 Chapter Four: Automated Measurement of Pedestrian Walking 
Speed 

In this chapter, it was demonstrated that the application of computer vision 

techniques offers an appealing solution to demands for more efficient and 

accurate methods of pedestrian data collection. Pedestrian walking speed has 

been the subject of continuous research. The motivation for the study of 

walking speed is the proper design of traffic signals to accommodate the 

changes in the characteristics of the average pedestrian, mainly due to 

demographic changes. The majority of commercial techniques developed for 

the purpose of automated observation of traffic data focus primarily on 

vehicular traffic. The technological aspects of automated pedestrian data 

collection are generally more challenging than vehicular traffic. The majority 

of walking speed studies in the literature do not adopt automated video 

analysis for collecting pedestrian data.  

In this chapter, an automated system for collecting pedestrian walking speed 

using video analysis was developed and tested. The video analysis system 

was tested on real video data collected at the Downtown area of Vancouver, 
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British Columbia, during day- and night-time conditions. Validation of 

walking speed measurements against manual observations proved the 

accuracy of automated measurements. The following conclusions were drawn 

from the research work presented in this chapter: 

1. Based on the review of relevant studies it can be argued that the 

literature of pedestrian observational studies is yet to benefit from 

automated video analysis techniques. It is expected that the system 

presented in this study will be further improved by adding other 

appearance-based techniques.  

2. Walking speed measurements were found to be sensitive to the 

estimation of camera parameters. Estimation of camera parameters 

using few point correspondences did not support accurate 

measurement of walking speed.  

3. An application of the camera calibration methodology, as presented in 

Chapter 3, provided sufficiently accurate estimates of camera 

parameters. 

4. Pedestrians walk faster at marked crosswalks than sidewalks.  

5. Night-time conditions proved to be the most difficult as expected 

because of the obscurity of pedestrian outlines and video recording 

noise. A special set of detection parameters was used for night videos 

and results obtained were satisfactory.  

6. Walking speed was more variable at unmarked crosswalks compared 

to marked crosswalks.  

7. Road surface gradient and lighting conditions were identified as 

statistically significant variables that influence walking speed.  
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The research work presented in Chapter 4 was problem driven. The main 

objective was to adapt a feature-based tracking system developed for vehicle 

tracking for the purpose of measuring pedestrian walking speed. In meeting 

this objective, the following research contributions were achieved: 

1. Average walking speed was measured from a relatively large sample 

of pedestrian movements and at adequate accuracy. Pedestrians were 

observed for a total of two hours while moving to a local gathering 

held annually in Vancouver, British Columbia.  

2. The aggregate estimate of average walking speed obtained in this 

chapter may serve as a key design variable in crowd management, 

traffic signal design, and design of pedestrian facilities.  

3. Statistical analysis of the measurements was conducted in order to 

investigate the variance of walking speed under different conditions 

such as time of the day, type of pedestrian facility, movement direction, 

and longitudinal pavement slope. The result of this analysis provides 

useful insight into the considerations required for the design of 

pedestrian facilities under different operational and physical 

conditions.  

9.1.5 Chapter Five: Automated Detection of Pedestrian-vehicle 
Conflicts 

The work performed in Chapters 3 and 4 provided a solid basis for pursuing 

an important focus of this thesis; the study of pedestrian-vehicle conflicts. By 

the conclusion of Chapter 4, it was evident that the video analysis system 

reached a level of development that supports accurate recovery of pedestrian 



 

285 

 

positions in real-world coordinates. Consequent to this functionality is to 

measure the severity of traffic events that involve pedestrian and vehicles.  

The work presented in Chapter 5 demonstrated the feasibility of using 

automated video analysis for achieving the following objectives: 1) detect and 

track road users in a traffic scene, and classify them as pedestrian and 

motorized road users using a maximum speed threshold; 2) identify 

important events that may lead to collisions; 3) calculate several severity 

conflict indicators. The functionality of the system was demonstrated on a 

video dataset collected over two days at an intersection in Downtown 

Vancouver, British Columbia. Four conflict indicators were automatically 

computed for all pedestrian-vehicle events and provide detailed insight in the 

conflict process.  

The quality of four conflict indicators, Time-to-Collision, Post-Encroachment 

Time, Gap Time, and Deceleration-to-Safety Time, were assessed in regard to 

their ability to comprehend the severity of traffic conflicts. None of the 

conflict indicators were individually capable of capturing all dangerous 

interactions between road users. However, a combination of the four 

indicators proved to be useful in the identification of important events and 

traffic conflicts. For this purpose, simple detection rules defined over the four 

conflict indicators were tested to classify traffic events. This study was 

successful in the attempt to extract conflict indicators from video sequences in 

a fully automated way. In tackling this research problem, a number of 

research contributions have been achieved: 
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1. Successful application of feature-based tracking for the purpose of 

detecting, tracking, and correctly classifying pedestrians involved in 

traffic conflicts with crossing vehicles.  

2. The development of various methods of analysis for the automated 

and objective measurement of the severity of pedestrian-vehicle 

conflicts. In order to measure the accuracy of detecting pedestrian-

vehicle conflicts, system output was contrasted with observer-based 

traffic conflict analysis. The results demonstrated the effectiveness of 

the developed methodology for detecting pedestrian-vehicle conflicts. 

9.1.6 Chapter Six: Automated Safety Analysis in a Before-and-After 
Context 

Data availability has been a common challenge to pedestrian studies; 

especially for proactive safety analysis. The traditional reliance on collision 

data has many shortcomings in terms of the quality and quantity of collision 

record. The feasibility of automated analysis of pedestrian-vehicle conflicts 

has been demonstrated in Chapter 5. One of the focus areas of pedestrian 

safety that will greatly benefit from vision-based road user tracking is before-

and-after (BA) evaluation of safety treatments. One of the main shortcomings 

of collision-based road safety analysis is the extended observational period 

required to identify stable trends. For example, typical observational period 

for before-and-after studies of safety treatments is 1-3 years. A key advantage 

of the method of analysis developed in the previous problem is to shorten this 

observational period from a time span of 1-3 years possibly to few weeks.  
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This chapter demonstrated the feasibility of conducting BA analysis using 

video data collected from a commercial-grade camera in Chinatown, 

Oakland, California. Video sequences for a period of two hours before and 

two hours after the introduction of a pedestrian scramble phase were 

automatically analyzed. The before-and-after results of the automated 

analysis exhibit a pattern of declining conflict frequency, a reduction in the 

spatial density of conflicts, and a shift in spatial distribution of conflicts 

further from crosswalks. From the analysis presented in this chapter several 

conclusions can be drawn: 

1. The reliance on motion prototypes demonstrated a clear advantage 

over classification methods used in previous studies.  

2. The context of this study was the evaluation of the safety benefits of 

introducing the pedestrian scramble phase. A two-hour video sequence 

was analyzed for pre- and post-scramble. Despite that the video 

analyzed in this study was not collected for the purpose of automated 

analysis, tracking accuracy was satisfactory. The automated analysis of 

four conflict indicators showed a reduction in conflict frequency. In 

addition, there was a general reduction in the spatial density of 

conflicts after the safety treatment.  

3. It was not attempted in this chapter to draw a statistical inference 

regarding the safety benefit of the pedestrian scramble phase. The only 

work on this subject found in the literature involved statistical tests for 

the difference in the shapes of conflict indicator distributions between 

before and after periods. This research need was the motivation behind 

the research work presented in Chapter 7 in which a severity index 
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was developed. This severity index captures both the differences in 

severity and exposure to collision risk between before and after 

periods. 

4. A random sample of 366 automatically detected traffic events was 

considered for manual review. Among the 266 events in the before 

period, 17 events were found to involve classification error.  Among 

the 100 events reviewed for the after period, 12 events were found to 

involve misclassification of pedestrians into vehicles. 

In order to meet the research objective set forth in this chapter, the following 

key contributions were achieved: 

1. The development of a new methodology for road user classification 

into pedestrian and non-pedestrians. The performance of the 

classification approach was found to be superior to the maximum 

speed classification adopted in Chapters 4 and 5.  

2. The novel application of automated analysis of pedestrian-vehicle 

conflicts in the context of before-and-after evaluation of safety 

treatments. This contribution component represents the first attempt to 

probe the severity of all traffic events that involve a pedestrians and 

non-pedestrians in an automated fashion. The results of the automated 

system were to a satisfactory degree consistent with findings in the 

literature. 

9.1.7 Chapter Seven: Development of an Aggregate Safety Index 

The research work presented in Chapter 7 was mainly motivated by the lack 

of a mechanism for drawing a safety inference based on the microscopic 
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traffic conflict data obtained using computer vision techniques. The various 

objective severity measures and conflict indicators calculated in Chapters 5 

and 6 were hypothesized to be of different and sometimes of independent 

nature. Empirical findings were in support of this hypothesis.  

A number of approaches have been proposed in order to map measurements 

of four conflict indicators into the severity dimension and to integrate conflict 

indicators into a severity index. The first approach assumes that the percentile 

ranking of each conflict indicator measurement is representative of its 

severity. The second approach is based on severity benchmarks found in the 

literature. In addition, aggregation of conflict indicator and severity index 

measurements was advocated. A number of aggregation approaches have 

been proposed: aggregation over time, over road user, and over traffic events. 

In this chapter, an important proposition was presented for an aggregate 

safety measure that reflects the underlying level of road safety. At the end, in 

discussing the findings of this chapter it was hypothesized that total severity 

measures and average severity measures reflect two different and orthogonal 

dimensions for measuring road safety. While total severity reflects the 

magnitude of road safety, average severity possible represents the safety level 

perceived by road users. 

The following contributions were achieved in this chapter: 

1. The development of an objective methodology for integrating various 

severity aspects measured by different conflict indicators into a single 

severity index. The proposed methodology was tested on the video 
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data used for developing the application on before-and-after safety 

evaluation presented in Chapter 6.  

2. Two hypotheses were raised, Hypotheses 7.1 and 7.2. The first 

hypothesis states that conflict indicators provide partial severity 

aspects. The second hypothesis conjectures that total severity, 

measured by the summation of severity measurements over all traffic 

events, and average severity, expressed as severity per events, are 

orthogonal dimensions of measuring safety. The first hypothesis was 

supported by empirical evidence obtained in this study. Hypothesis 7.2 

was demonstrated on conceptual grounds.  

3. A number of aggregation approaches and variations thereof were 

proposed. 

4. A safety index was proposed that captures both total severity of traffic 

events and the maximum possible level of exposure.  

9.1.8 Chapter Eight: Automated Detection of Traffic Violations 

A major focus of this thesis was on traffic conflicts as a data type for 

measuring road safety. However, observational periods may be too limited to 

record a representative sample of traffic conflicts. In this case, traffic 

violations may provide surrogate safety information which may be especially 

relevant if road collisions are attributable to some occurrence of traffic 

violations.  

This chapter presented an approach for the automated detection of traffic 

violations. Two approaches were tested for this purpose, k-means clustering 

and Longest Common Subsequence (LCSS) similarity measure. Inherent 
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shortcomings in the k-means algorithm motivated the reliance on more 

insightful discriminative features of violation movements obtained using the 

LCSS similarity measure. The two approaches were used to detect violating 

reverse-direction turning vehicular movements at an intersection in Kuwait 

city. The length of the analyzed video sequence was 2 hours. The focus of the 

analysis in this chapter was on vehicular violations. There was not adequate 

number of pedestrians using the intersection in order to analyze their 

violations. The developed methodology can be readily applied for detecting 

pedestrian violations marked by distinct spatial or directional characteristics.  

The performance of LCSS-based violation detection was generally superior to 

piecewise k-means clustering, especially when low false detection rates are 

desirable. The main shortcoming of k-means clustering is the random 

selection of initial centroid positions. The detection performance proved to be 

sensitive to this random selection. By addressing the research problem related 

to this chapter, the following research contributions were achieved: 

1. Proposal for a methodology for extracting features of road user tracks 

for clustering analysis. A piecewise linear model was used to represent 

road user tracks. The parameters of each model were adopted for 

subsequent k-means clustering analysis.  

2. Successful adaption of LCSS similarity measure for the purpose of 

automated violation detection. 
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9.2 Recommendation for Future Work 

The research work presented in this thesis lies at two frontiers: pedestrian 

tracking using computer vision techniques and automated road safety 

analysis. The broad research problem of pedestrian tracking has attracted 

increasing attention in the realm of computer vision. However, many aspects 

of this research objective remain unsolved. A universally accurate pedestrian 

tracking technology remains an elusive target and is likely to remain so for a 

number of years to come. It is foreseeable that substantial developments are 

to be achieved on this subject. Since these developments are likely to take 

place in the realm of computer vision, this section focuses on future work in 

the realm of road safety analysis.  

Automated road safety analysis empowers the traditional weaknesses 

brought about by the reliance on collision data and traffic conflict 

observations gathered by human observers. This research is among the few 

steps taken to achieve the long-sought objective of conducting automated and 

objective road safety analysis. Future work can be classified into three 

categories: validation of automated traffic conflict analysis, development of a 

probabilistic conflict indicator, and a number of different extensions of the 

work presented in this thesis.  

9.2.1 Validation of Automated Traffic Conflict Analysis 

In general, validation of a safety analysis technique concerns its potential to 

measure road safety. Traditionally, validation of traffic conflict techniques was 

conducted by contrasting the frequencies of traffic conflicts and road 
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collisions. The advocated approach for traffic conflict analysis can be 

validated through the following research work: 

1. Collecting video observations of a representative sample of traffic 

intersections, in the order of hundreds of intersections. This video data 

should be automatically analyzed in order to measure the severity of 

observed traffic events.  

2. Historical collision data should be collected for the monitored 

intersections as well as a reference group of intersections.  

3. It is preferable to disaggregate road collision and traffic conflict 

observations by type, location, and time. Should this level of 

disaggregation result in few data points per aggregate category, data 

points in different categories can be combined. 

4. Contrasting severity measurements obtained from automated traffic 

conflict analysis with human expert’s evaluation. The severity mapping 

approaches presented in this thesis can potentially be calibrated based 

on expert evaluations.  

5. The hypothesis of validity to be tested is whether the integration of 

safety cues obtained from automated traffic conflict analysis results in 

improvement in the prediction of road collisions. Furthermore, the 

degree of improvement in predictive power should be investigated.  

6. Benchmark of severity distributions should be established from the 

previous large-scale video data observations. Such severity 

distributions can be used to identify abnormalities in the incidence or 

severity of traffic conflicts observed at traffic intersections with similar 

characteristics.  
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9.2.2 Potential Developments of Conflict Indicators 

The shortcomings of traditional conflict indicators have been discussed in this 

thesis. Recent developments on this topic suggests the extrapolation of road 

user positions based on a current road user track as well as records of 

previous road user tracks traversing the intersection in a fashion similar to 

the current road user. While initial attempts have been performed to develop 

probabilistic conflict indicators, in general they fell short of achieving this 

goal. This future work concerns the development of a severity measure in 

terms of the probability of collision between two conflicting road users. 

Probability of collision is therefore the joint probability of two road users to 

remain on a collision course and the probability that both of them fail to 

undertake a successful evasive action. This future work takes a step forward 

from previous work to crystallize the representation of the uncertainty 

regarding future positions of road users in probabilistic terms.  

The ambitious modelling of future road user positions and evasive actions in 

a probability model is supported by the extensive observation of road user 

tracks that is possible using computer vision techniques. This development 

represents a leap forward from observer-based and subjective methods of 

traffic conflict analysis as to the proximity evaluation of road user positions. 

Figure 9.1 shows an example of the tracks of two road users; U1 and U2. 

Future positions of every road user are represented as a sequence of bivariate 

Gaussian. The variance of every Gaussian reflects the precision of positional 

predictions. The probability that the two road users become closer than some 

threshold can be evaluated at any defined moment in the future. 

Furthermore, the conditional probability of the two road users being unable 
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to make a successful evasive action should be integrated to produce a single 

proximity measure. Finally, this measure should be augmented with a 

measure of the severity of the impending collision. 

One particular shortcoming of previous probabilistic conflict indicator 

developments is the absence of a proper modelling of the uncertainty in road 

user destinations. The purpose of estimating road user trajectory is to predict 

how road users might have driven to end up in a collision. Precisely, 

knowledge is lacking as to the destination of each road user and the deviation 

from some defined typical course of movement. The first source of 

uncertainty can however be eliminated by observing a road user further in 

time. In previous work, the two types of uncertainties were 

indiscriminatingly used and produced inaccurate probabilities of collision 

based on road user trajectories that would never be followed. A possible 

development to overcome this challenge is to retroactively remove from the 

sample space of possible road user positions those points that correspond to a 

road user destination that is significantly different from the actual destination 

targeted by the tracked road user.  
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Figure 9.1  A hypothetical case of two road users U 1 and U2 predicted to follow 

two trajectories H12 and H22 that lead to a potential collision. Predicted 

positions of road users are approximated using a bivariate Gaussian.  

9.2.3 Other Extensions to Work Presented in this Thesis 

Following is a list of future studies that represent potential continuation of 

the work presented in Chapters 3 to 8: 

1. A general extension of the work presented in this thesis is the 

continuation of creating larger video libraries of road user movement.  

2. Formulation of the cost function presented in Equation 3.4 in Chapter 3 

using geometric algebra. In this algebra, different geometric elements 

can be uniformly represented in harmonious coordinate system. 

Further improvements to the proposed methodology should consider 

 

U2 

H22 

H12 

U1 
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the inclusion of additional non-linear parameters other than radial lens 

distortion.  

3. Investigating the effect of camera set-up, hardware configuration, and 

camera jitter on the accuracy of road user tracking.  

4. Investigating the use of computer vision techniques for collecting other 

forms of pedestrian data such as density, flow, and level of service.  

5. Investigating on empirical ground Hypotheses 7.1 and 7.2 posed in 

Chapter 7. In particular, while it was conjectures in Hypothesis 7.2 that 

total severity and average severity represent two orthogonal 

dimensions for measuring road safety, it is not known how a 

combination of their measurement should be performed.  

6. Investigating the reliance on synthetic road user prototypes for 

automatically detecting traffic violations. For example, a traffic 

operator may be consulted to provide sketches of normal movement 

patterns. These sketches can be used to synthesize these movement 

prototypes with some prior assumption regarding operating speed 

within the intersection.  
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Appendix A 

Table A.1  Summary of video data 

Video Sequence Location Video Sensor Context Duration 

BR-1, BR-2, …, 

BR-7 

Traffic intersection at 

Broughton and 

Robson streets in the 

Downtown area of 

Vancouver, BC 

High-definition 

digital camera set-

up on the Empire 

Landmark high-rise 

building. 

Inbound and outbound 

crowd movement to and 

from the Celebration of 

Light local event.  

 

2 hours 

PG-1 and PG-2 

Traffic intersection 

between Pender and 

W. Georgia streets in 

the Downtown area 

of Vancouver, BC 

Two video cameras 

with external 

storage. 

Two Crosswalks with 

conflicting left-turn 

vehicular traffic. 

2 x 2 

days 

Cairo-1 to    

Cairo-10 

Several intersections 

in Cairo, Egypt. 

Hand-held video 

camera. 

Typical traffic operations 

in a driving culture 

significantly different 

from North America. 

1 hour 

Berk-1 to      

Berk-10 

8th street and 

Webster, Oakland, 

California. 

Mounted analog 

camera. Tape 

digitization has 

been performed. 

Pre-scramble and post-

scramble phase road user 

movement. 

10 x 1 

hour 

KW1 to KW9 
Darwaza intersection, 

Kuwait City, Kuwait 

Mounted, standard 

definition digital 

camera. 

Mixed traffic navigating 

a busy signalized four-

leg intersection.  

24 hours 

COV-1-6 
W. Georgia street, 

Vancouver, BC 

Mounted 

surveillance camera 

Cross walk on Georgia 

street on Nov 25 2006 

during a Rolling Stones 

Concert. 

10 hours 

Ed-2 Ed-3 

Yellowhead and 

Victorial Trail, 

Edmonton, AB 

Before-and-after 

analysis 

Right-turn movement at 

a signalized intersection 
8 hours 
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Appendix B 

Table B.1  Summary results for different aggregation strategies for before 
conditions. Representative statistics are drawn only from calculable values of 
each indicator or index at each frame 

Conflict 

Indicator 
Mean 

Individual Index Value Individual Aggregation 

Function Distribution Function Distribution 

TTC 5.43 
-3.39 

0.50 
-0.15 

0.29 
-0.19 

0
.3

4
 (

-0
.2

3
 :

 0
.4

1
) 

0
.4

8
 (

-0
.2

9
 :

 0
.4

0
) 

2.93 0.26 0.48 

PET+ 6.48 
-4.24 

0.39 
-0.29 

0.56 
-0.34 

4.17 0.49 0.39 

PET- -6.05 
-2.99 

0.35 
-0.26 

0.53 
-0.27 

3.07 0.44 0.34 

DST 0.28 
-0.63 

0.03 
-0.02 

0.36 
-0.36 

0.62 0.13 0.37 

GT+ 6.77 
-4.64 

0.36 
-0.21 

0.53 
-0.24 

2.79 0.53 0.42 

GT- -5.49 
-3.26 

0.43 
-0.32 

0.60 
-0.31 

3.69 0.49 0.36 

|PET| 6.22 
-3.54 

0.42 
-0.28 

0.59 
-0.31 

- - 
3.51 0.42 0.34 

|GT| 6.18 
6.18 

0.42 
-0.25 

0.59 
-0.27 

- - 
-4.24 0.48 0.37 

Index 

(function) 
0.36 

-0.18 
- - 

0.016 
- 

0.16 -0.30 0.45 

Index 

(distribution) 
0.53 

-0.18 
- - - 

0.05 

0.17 -0.34 0.43 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.   
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Table B.2  Summary results for different aggregation strategies for after 
conditions. Representative statistics are drawn only from calculable values of 
each indicator or index at each frame 

Conflict 

Indicator 
Mean 

Individual Index Value Individual Aggregation 

Function Distribution Function Distribution 

TTC 4.27 
-2.92 

0.58 
-0.15 

0.42 
-0.23 

0
.3

1
 (

0
.2

2
 :

 0
.5

0
) 

0
.4

8
 (

-0
.3

4
 :

 0
.4

5
) 

2.37 0.25 0.45 

PET+ 6.09 
-3.69 

0.43 
-0.29 

0.60 
-0.32 

3.55 0.43 0.34 

PET- -5.88 
-3.81 

0.37 
-0.31 

0.55 
-0.33 

4.10 0.54 0.40 

DST 0.48 
-0.53 

0.06 
-0.06 

0.52 
-0.52 

0.50 0.11 0.24 

GT+ 9.11 
-6.84 

0.17 
-0.15 

0.32 
-0.24 

5.27 0.71 0.63 

GT- -6.69 
-4.98 

0.27 
-0.26 

0.46 
-0.34 

5.32 0.67 0.51 

|PET| 6.01 
-3.87 

0.44 
-0.30 

0.61 
-0.33 

  
3.66 0.45 0.34 

|GT| 8.46 
-6.54 

0.21 
-0.19 

0.37 
-0.28 

  
5.57 0.69 0.59 

Index 

(function) 
0.33 

-0.24 
  

0.021 
 

0.22 -0.33 0.55 

Index 

(distribution) 
0.52 

-0.22 
   

0.03 

0.22 -0.41 0.50 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.  
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Table B.3  Summary results for different aggregation strategies for before 
conditions. Representative statistics are drawn only from calculable values of 
each indicator or index at each frame taking into account frequency of 
observation 

Conflict 

Indicator 
Mean 

Individual Index Value Individual Aggregation 

Function Distribution Function Distribution 

TTC 5.13 
-2.66 

0.52 
-0.13 

0.32 
-0.18 

0
.3

6
 (

-0
.2

2
 :

 0
.3

6
) 

0
.5

1
 (

-0
.2

8
 :

 0
.3

5
) 

2.44 0.20 0.37 

PET+ 6.88 
-4.01 

0.35 
-0.25 

0.52 
-0.29 

3.73 0.47 0.39 

PET- -5.86 
-2.69 

0.37 
-0.26 

0.55 
-0.25 

2.89 0.41 0.32 

DST 0.31 
-0.79 

0.03 
-0.03 

0.39 
-0.39 

0.65 0.14 0.36 

GT+ 5.69 
-3.24 

0.48 
-0.22 

0.64 
-0.23 

2.29 0.38 0.29 

GT- -5.41 
-2.81 

0.43 
-0.30 

0.60 
-0.28 

3.18 0.43 0.32 

|PET| 6.38 
-3.46 

0.40 
-0.27 

0.57 
-0.30 

  
3.44 0.41 0.34 

|GT| 5.57 
-3.22 

0.49 
-0.24 

0.66 
-0.25 

  
2.49 0.37 0.29 

Index 

(function) 
0.35 

-0.14 
  

-0.01 
 

0.14 -0.26 0.39 

Index 

(distribution) 
0.53 

-0.16 
   

0.02 

0.15 -0.32 0.38 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.  
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Table B.4  Summary results for different aggregation strategies for after 
conditions. Representative statistics are drawn only from calculable values of 
each indicator or index at each frame taking into account frequency of 
observation 

Conflict 

Indicator 
Mean 

Individual Index Value Individual Aggregation 

Function Distribution Function Distribution 

TTC 3.92 
-2.22 

0.61 
-0.11 

0.47 
-0.19 

0
.4

0
 (

-0
.2

3
 :

 0
.3

7
) 

0
.5

6
 (

-0
.3

0
 :

 0
.3

3
) 

1.62 0.19 0.35 

PET+ 6.64 
-3.62 

0.37 
-0.23 

0.54 
-0.26 

3.07 0.42 0.36 

PET- -4.99 
-3.02 

0.49 
-0.35 

0.65 
-0.31 

3.46 0.44 0.31 

DST 0.42 
-0.74 

0.05 
-0.05 

0.48 
-0.48 

0.55 0.12 0.28 

GT+ 6.06 
-3.83 

0.43 
-0.27 

0.60 
-0.29 

3.15 0.44 0.34 

GT- -5.24 
-1.91 

0.46 
-0.23 

0.62 
-0.20 

3.32 0.44 0.32 

|PET| 6.25 
-3.61 

0.41 
-0.27 

0.58 
-0.30 

- - 
3.36 0.42 0.34 

|GT| 5.82 
-3.70 

0.46 
-0.27 

0.63 
-0.29 

- - 
3.04 0.43 0.32 

Index 

(function) 
0.36 

-0.18 
- - 

-0.03 
- 

0.16 -0.29 0.40 

Index 

(distribution) 
0.54 

-0.17 
- - - 

-0.01 

0.17 -0.35 0.37 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.  
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Table B.5  Summary results for different aggregation strategies for before 
conditions. Representative statistics are drawn only from calculable values of 
each indicator or index for each road user taking into account frequency of 
observation 

Conflict 

Indicator 
Mean 

Individual Index Value Individual Aggregation 

Function Distribution Function Distribution 

TTC 4.85 
-2.80 

0.54 
-0.14 

0.35 
-0.20 

0
.3

5
 (

-0
.2

1
 :

 0
.3

9
) 

0
.5

0
 (

-0
.3

0
 :

 0
.3

7
) 

2.52 0.22 0.42 

PET+ 7.40 
-4.24 

0.30 
-0.22 

0.47 
-0.28 

3.88 0.48 0.42 

PET- -6.37 
-3.28 

0.31 
-0.25 

0.50 
-0.27 

3.24 0.45 0.36 

DST 0.41 
-0.69 

0.05 
-0.05 

0.47 
-0.47 

0.69 0.15 0.33 

GT+ 6.11 
-4.07 

0.43 
-0.23 

0.60 
-0.24 

2.59 0.47 0.36 

GT- -5.19 
-2.43 

0.46 
-0.29 

0.63 
-0.25 

3.51 0.45 0.33 

|PET| 6.92 
-3.78 

0.34 
-0.25 

0.51 
-0.29 

- - 
3.76 0.44 0.38 

|GT| 5.75 
-3.88 

0.47 
-0.24 

0.64 
-0.24 

- - 
2.51 0.44 0.33 

Index 

(function) 
0.33 

-0.19 
- - 

-0.01 
 

0.18 -0.29 0.44 

Index 

(distribution) 
0.51 

-0.22 
- -  

0.00 

0.20 -0.37 0.42 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.  
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Table B.6  Summary results for different aggregation strategies for after 
conditions. Representative statistics are drawn only from calculable values of 
each indicator or index for each road user taking into account frequency of 
observation 

Conflict 

Indicator 
Mean 

Individual Index Value Individual Aggregation 

Function Distribution Function Distribution 

TTC 4.13 
-2.81 

0.59 
-0.13 

0.44 
-0.21 

0
.3

6
 (

-0
.2

5
 :

 0
.4

2
) 

0
.5

3
 (

-0
.3

4
 :

 0
.3

7
) 

2.00 0.25 0.44 

PET+ 7.75 
-3.70 

0.27 
-0.18 

0.43 
-0.23 

3.30 0.41 0.38 

PET- -5.52 
-3.07 

0.42 
-0.31 

0.59 
-0.30 

3.85 0.50 0.37 

DST 0.47 
-0.49 

0.06 
-0.06 

0.52 
-0.52 

0.58 0.13 0.27 

GT+ 6.12 
-4.44 

0.43 
-0.29 

0.60 
-0.33 

3.72 0.50 0.37 

GT- -5.55 
-4.00 

0.41 
-0.35 

0.59 
-0.36 

4.56 0.55 0.39 

|PET| 7.31 
-4.01 

0.31 
-0.22 

0.48 
-0.26 

  
3.51 0.46 0.40 

|GT| 5.95 
-4.51 

0.45 
-0.31 

0.62 
-0.34 

  
3.79 0.49 0.36 

Index 

(function) 
0.33 

-0.22 
  

-0.03 
 

0.21 -0.33 0.47 

Index 

(distribution) 
0.50 

-0.23 
   

-0.03 

0.23 -0.41 0.44 

Values in italic are the 15
th

 percentile value minus the mean and the 85
th

 percentile 

value minus the mean.  
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Appendix C 

This thesis is constituted by published work, or papers submitted for review. 

Chapters 3, 4, 5, and 6 appeared in the following publications: 

 

1. Ismail, K, Sayed, T & Saunier, N 2009, 'Automated Collection of 

Pedestrian Data Using Computer Vision Techniques', Transportation 

Research Board Annual Meeting, Washington, DC, 09-1122. 

2. Ismail, K, Sayed, T & Saunier, N 2010, 'Automated Analysis of 

Pedestrian-Vehicle Conflicts: A Context for Before-and-After Studies', 

(In-print) Transportation Research Record: Journal of the 

Transportation Research Board. 

3. Ismail, K, Sayed, T & Saunier, N 2010, 'Automated Safety Analysis 

using Video Sensors: Technology and Case Studies', Canadian 

Multidisciplinary Road Safety Conference, Niagara Falls, Ontario. 

4. Ismail, K, Sayed, T, Saunier, N & Lim, C 2009, 'Automated Analysis of 

Pedestrian-Vehicle Conflicts Using Video Data', Transportation 

Research Record: Journal of the Transportation Research Board, vol. 

2140, pp. 44-54. 

5. Ismail, K, Sayed, T & Saunier, N 2009, 'Camera Calibration for Urban 

Traffic Scenes: Practical Issues and a Robust Approach', 

Transportation Research Board Annual Meeting, Washington, DC, 10-

2715. 


