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Abstract

Ultracold molecules are expected to find applications in cold chemistry, quantum

phases, precision measurements and quantum information. In this thesis three

novel applications of cold molecules are studied.

First the thesis presents a general method for coherent control of collisions be-

tween non-identical particles. It is shown that by preparing two alkali-metal atoms

in a superposition of hyperfine states, the elastic-to-inelastic cross section ratio can

be manipulated at ultracold temperatures by tuning laser parameters in the presence

of a magnetic field. The static field is needed to induce quantum interference be-

tween scattering states. Extensions of this scheme for ultracold molecular reactive

scattering are discussed.

Second, the thesis describes rotational excitons and polarons in molecular en-

sembles trapped in optical lattices. Rotational excitons can be manipulated using

static electric and magnetic fields. For a one-dimensional molecular array with

substitutional impurities any localized exciton state can be delocalized by applying

a suitable electric field. The electric field induces correlations between diagonal

and off-diagonal disorder. It is also shown that the translational motion of po-

lar molecules in an optical lattice can lead to phonons. The lattice dynamics and

the phonon spectrum depend on the strength and orientation of a static electric

field. An array of polar molecules in an optical lattice can be described by gener-

alized polaron model with tunable parameters including diagonal and off-diagonal

exciton-phonon interactions. It is shown that in a strong electric field the system

is described by a generalized Holstein model, and at weak electric fields by the

Su-Schrieffer-Heeger (SSH) model. The possibility of observing a sharp polaron

transition in the SSH model using polar alkali-metal dimers is discussed.
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Finally, the thesis presents a method to generate entanglement of polar molecules

using strong off-resonant laser pulses. Bipartite entanglement between alkali-metal

dimers separated by hundreds of nanometers can be generated. Maximally entan-

gled states can be prepared by tuning the pulse intensity and duration. A scheme is

proposed to observe the violation of Bells inequality based on molecular orienta-

tion correlation measurements. It is shown that using a combination of microwave

and off-resonant optical pulses, arbitrary tripartite and many-particle states can be

prepared.
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Chapter 1

Introduction

This thesis is a theoretical contribution to the field of cold molecules. The roots

of this field are intimately related to the spectacular developments of laser cooling

and trapping of alkali-metal atoms over the last two decades. The preparation of

molecular gases at cold [1–11] and ultracold [12–21] temperatures is expected to

find important applications in the study of cold chemistry, dipolar quantum phases,

precision measurements, tests of fundamental symmetries and quantum informa-

tion processing [22–25]. The work presented in this thesis is an attempt to ad-

vance the knowledge and scope of the field by introducing concepts from other

disciplines of physical chemistry and physics. In particular, an attempt is made

to suggest applications of cold polar molecules using notions of coherent control,

excitonic phenomena and quantum entanglement. In an effort to stimulate experi-

mental work along the lines of this thesis, the complexity of the suggested systems

has been kept to the minimum. The contributions made in this work have been

categorized into three distinct areas in which the specific research questions and

goals of this thesis are contextualized below.

1.1 Cold collisions and controlled chemistry
Collisions in atomic and molecular gases at very low temperatures are qualitatively

different compared with thermal samples. In thermal gases and high energy beams,

the translational motion of a particle can be described quantum mechanically as a
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plane wave propagating in a well-defined direction. For many purposes, this plane

wave description of the translational motion can replaced by the classical notion of

a point particle following a well-defined trajectory in phase space. As the temper-

ature is lowered, the plane wave character of the particle motion loses relevance in

favor of a spherical wave description. The direction of propagation of the spheri-

cal matter wave is not well-defined. The probability density for a particle to have

a given orientation in space is determined by spherical harmonic wavefunctions

Yl,m(θ ,φ), the same as the electron distribution in atomic and molecular orbitals.

It is common to refer as the ultracold regime to the temperature limit in which a

single spherical harmonic, or partial wave, describes the motion of a particle. This

can be losely defined as temperatures below 1 millikelvin [25]. This regime is also

referred to as the s-wave regime, since collisions are described by the motion of a

single partial wave with l = 0 for identical bosons or non-identical particles, and

l = 1 (p−wave) regime for identical fermions [23]. Collisions in the cold temper-

ature regime involve the contribution of a relatively small number of partial waves.

This is valid for temperatures approximately up to 1 Kelvin. The crossover from

the cold to the ultracold regime is determined by the mass of the particles and the

strength of their long-range interaction.

Long-range interactions between molecules are dominated in first and second

order of perturbation theory by the dipole-dipole interaction. The dipole-dipole in-

teraction between polar molecules depends on the intermolecular distance as 1/R3

and is proportional to the product of dipole moments of the molecules. For atoms

and homonuclear molecules the dipole-dipole interaction to second order in pertur-

bation theory corresponds to the familiar van der Waals interaction, which depends

on the distance as 1/R6 and is proportional to the product of the polarizabilities of

the interacting particles. The expectation value of the dipole-dipole interaction be-

tween two polar molecules in an s−wave collision is zero for a three-dimensional

collision. However, if ultracold collision occurs in the presence of an external DC

electric field or the molecular motion is restricted to only one or two dimensions,

the collisional dynamics can vary significantly with respect to the field-free three-

dimensional case.

The study of ultracold molecules in the presence of static fields has found direct

application in current molecular cooling and trapping experiments. Elastic colli-
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sions determine the rate of evaporative cooling and inelastic collisions are associ-

ated with losses in electrostatic traps. Approximate theories for collisions between

polar molecules in static electric fields have been developed [26–29]. These theo-

ries aim to find relations between the collision cross section and parameters such

as the collision energy and the DC field strength, that are valid regardless of the

molecular species. These relations are referred to as universal scaling. Although

approximate models provide insight into the nature of collision dynamics at low

temperatures, rigorous molecular scattering calculations in the presence of exter-

nal fields are essential in order to understand the mechanisms for external field

control of collisions at cold and ultracold temperatures [30–34].

The rapid development of optical trapping techniques has motivated the study

of collisions between ultracold atoms and molecules in confined geometries. Neu-

tral particles can be confined into quasi one-dimensional and two-dimensional

traps using optical forces [35, 36]. The energy dependence of cross sections for

atomic and molecular collisions in confined geometries is different from a bulk

gas sample [37–40]. Therefore, the spatial confinement introduces an additional

degree of control for inelastic collisions and chemical reactions at ultracold tem-

peratures [41, 42]. Inelastic collisions are suppressed with respect to elastic scat-

tering in confined geometries, which increases the stability of ultracold molecular

gases [39, 42]. Moreover, it has recently been experimentally demonstrated that

the chemical reaction KRb + KRb → K2 + Rb2 at ultracold temperatures can be

suppressed several orders of magnitude by confining the molecules to a quasi-2D

geometry in the presence of a static electric field oriented perpendicular to the trap

plane [43].

Controlling atomic and molecular collisions using static fields and restricted

geometries may provide valuable insight into the nature of state resolved chem-

ical reactions in the limit where quantum effects are dominant. In this quantum

limit of chemical reactivity yet another proven method of control may find direct

applications in the study of cold and ultracold molecular gases. Coherent con-

trol of molecular dynamics has been successfully demonstrated for a number of

unimolecular processes such as photodissociation, but schemes for coherent con-

trol of bimolecular processes have yet to be realized [44, 45]. In order to control

the outcome of a collision between non-identical particles, the proposed schemes
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require the preparation of fragile molecular superposition states that involve cor-

relations between internal and translational degrees of freedom. These restrictive

conditions make coherent control of collisions practical for identical particles only.

It is therefore necessary to extend the principles of coherent control to collisions be-

tween non-identical particles without the restrictions imposed by current schemes.

In this thesis I pursue such goal by combining elements from original coherent

control schemes and control methods developed for ultracold gases. It is believed

that the coherent interaction between matter waves required by coherent control

can be best achieved at cold and ultracold temperatures. Understanding the role of

quantum coherence in chemical reactivity remains an important open question in

physical chemistry, and the research presented in this thesis constitutes an initial

step in that direction.

1.2 Tunable condensed-matter phenomena
The realization of Bose-Einstein condensates (BEC) and degenerate Fermi gases

has been one of the milestones in the study of quantum mechanics at temperatures

near the absolute zero [46–50]. Most of this progress has been done using alkali

metal atoms. The relatively simple internal structure of atoms allows them to be

cooled efficiently using laser forces [51–53]. For atoms it is possible to characterize

the collisional properties using a single parameter at ultracold temperatures: the s-

wave scattering length [54, 55]. The interaction of the atomic magnetic dipole

moment of an atom with an external magnetic field is the basis of several schemes

to control the motion of single atoms [56], as well as collisions between trapped

atoms [57]. The importance of external field control in a dilute atomic gas can

be best described by considering the mean field description of an atomic BEC. In

this limit, the dynamics of an ensemble of identical atoms is determined by the

single particle Schrödinger equation ih̄∂tΨ(r, t) = ĤNLΨ(r, t), where the nonlinear

Hamiltonian

ĤNL =− h̄2

2m
∇

2 +Vtrap(r, t)+g|Ψ(r, t)|2 (1.1)

accounts for an average contact interaction between atoms in the ensemble. The

collisional interaction between atoms leads to the nonlinearity in Eq. (1.1), and the

parameter g = 4π h̄2a/m is proportional to the s-wave scattering length a. The state
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of the system also depends on the trapping potential Vtrap(r, t), which results from

the interaction between atoms and electromagnetic fields. If the energies g and

Vtrap(r, t) can be tuned using external fields, the wavefunction of the system Ψ(r, t),
and therefore the observable properties, can be manipulated experimentally. It

has been widely demonstrated that this is possible using magnetic fields to tune

the scattering length via Feschbach resonances [57] and controlling the degree of

confinement of the gas using optical fields [58].

Ultracold molecular gases offer additional possibilities to the study of quan-

tum states of matter due to their rich internal structure. Diatomic molecules are

most commonly used in experiments [25]. Heteronuclear diatomic molecules are

particularly important because the permanent dipole moment can lead to a strong

dipole-dipole interaction between molecules, which completely modifies the be-

haviour of a molecular quantum gas in comparison with atoms. For example, in

the limit of dilute or weakly interacting dipolar gases, the non-linear Hamiltonian

ĤNL in Eq. (1.1) needs to be supplemented by the non-local potential

V =
∫

dr′Vdd(r,r′)|Ψ(r′, t)|2,

arising from the dipole-dipole interaction between molecules Vdd(r,r′). The rela-

tive strength of the dipole-dipole interaction compared with the s-wave scattering

parameter g determines the stability of a dipolar gas and its collapse dynamics

[59–64]. Dipolar Bose-Einstein condenstates have been produced using chromium

atoms [65, 66], which have a large magnetic dipole moment. In the near future, it

is expected that similar results will be obtained using polar molecules with electric

dipole moment, which offer a larger degree of external field control than atoms.

The non-linearity introduced by the dipole-dipole interaction in a molecular gas

results in the emergence of collective properties such as solitons and vortices in

confined gases [67–71]. Dipolar Fermi gases with molecules have been less studied

their bosonic gases. It is believed that a strong dipole-dipole interaction between

fermions can lead to new regimes of superconductivity involving anisotropic pair-

ing [49, 50, 72–76], which differ significantly from electrons in metals.

The study of dipolar quantum gases in confined geometries has been motivated

by the development of optical lattices [36, 77–79]. It is now technologically possi-
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ble to produce an optical lattice for atoms and molecules with a periodic trapping

potential having arbitrary geometry and dimensionality. Using cold bosonic atoms

in optical lattices, it was demonstrated that a phase transition from a superfluid

(BEC) to an insulator can be induced by increasing the strength of the lattice po-

tential [80, 81]. Since then, the study of condensed-matter phenomena in optical

lattices using cold atoms and molecules has become an important research direc-

tion during the last decade [82, 83]. Molecular gases with strong dipole-dipole

interactions trapped in an optical lattice give rise to novel quantum phases that are

difficult to achieve using dipolar atoms (magnetic dipole) or weakly interacting

molecules. The strong dipole-dipole interaction introduces quantum correlations

between molecules that cannot be taken into account using a mean field treatment

as in Eq. (1.1). Most importantly, the properties of these strongly correlated quan-

tum phases can be tuned using electromagnetic fields to modify the internal states

of the molecules and the confining potential. The Hubbard Hamiltonian provides

a basic model that describes the physics of interacting quantum gases in optical

lattices. In its simplest form, the Hubbard Hamiltonian can be written as [84]

Ĥ =
U
2 ∑

i
n̂i (n̂i−1)− t ∑

〈i, j〉
â†

i â j, (1.2)

where â†
i and âi are creation and annihilation operators for particle i, n̂i = â†

i âi

is the particle number operator and 〈i, j〉 denotes nearest-neighbours. The first

term represents the site energy U , which is determined by the collisional properties

of the particles. The second term represents hopping of particles between lattice

sites. The hopping amplitude t is determined by the trapping potential. If the lattice

potential is deep enough, particle hopping is suppressed and the ground state of the

system is a Mott-insulator with a finite number of particles per lattice site [82].

An extension of the simple model in Eq. (1.2) is required to describe strongly

correlated phases of dipolar particles in optical lattices [64, 85, 86]. Bosonic and

fermionic polar molecules in confined geometries offer exciting possibilities for the

creation of exotic strongly-correlated quantum phases [87–95]. It has been shown

that the interaction potential between polar molecules in a quasi-2D geometry can

be engineered using a DC electric field and a microwave field tuned near resonance
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with a rovibrational transition [90]. This work illustrates the great advantages of

manipulating the internal states of polar molecules with external fields, in order to

engineer many-body Hamiltonians in a way that is not possible using conventional

solids.

The insulator phase is one of the simplest examples of quantum phases that can

be achieved with molecules in an optical lattice. Here the hopping of molecules

between lattices is suppressed by a strong confining potential. The dynamics of

molecules in a single site is independent from other sites. A one-dimensional op-

tical lattice, for example, can be described as a periodic array of quasi-2D traps

where the strong confinement is along the direction of periodicity [79]. The dipole-

dipole interaction between polar molecules in such two-dimensional trap can be

made repulsive using a DC electric field that orients the dipole moment of the

molecules parallel to each other. If the thermal energy of the ensemble is smaller

than the dipole-dipole interaction energy, then the system is predicted to self-

assemble into a molecular crystal with a well-defined lattice structure [96]. Re-

pulsive interactions between the molecules and tight transverse confinement are

required to preserve the stability of the molecular aggregate. As for any aggregate

of molecules interacting via dipole-dipole forces in which charge transfer between

sites does not occur, two-dimensional dipolar crystals at ultracold temperatures are

characterized by the presence of Frenkel excitons and lattice phonons [97–100].

Polaron phenomena has been predicted to occur in a system of atoms moving on

top of a self-assembled dipolar crystal [96], where atoms interact with the molecu-

lar lattice, and the associated displacement of the molecules from their equilibrium

positions lead to atom-phonon coupling, in analogy with electron-phonon coupling

in solids. More recently, two-dimensional polarons have been recently observed in

ultracold spin-polarized Fermi gases [101], where a single spin-up impurity inter-

acts with an environment of spin-down atoms.

For an ensemble of polar molecules, the hopping particles corresponds to Frenkel

excitons. These are collective rotational excitations (rotational excitons) distributed

coherently throughout the molecular array. Lattice phonons arise from the motion

of the molecules in the many-particle interaction potential that determines the equi-

librium geometry of the array. The coupling of excitons with phonons is due to the

dependence of the dipole-dipole interaction energy on the center-of-mass distance
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between coupled molecules. The size-enhanced coupling of excitons with electro-

magnetic radiation has been exploited to propose self-assembled dipolar crystals

as a quantum memory for quantum information processing [102, 103]. This work

might have important applications in the design of hybrid quantum devices involv-

ing molecular gases and solid state qubits [104]. Self-assembled dipolar crystals

are less suitable for quantum simulation of condensed-matter phenomena occur-

ring in molecular solids and aggregates at room temperature. The reasons for this

are the restrictive conditions imposed on the aligning DC electric field and the con-

fining potential, as well as the extremely low temperatures required to achieve the

2D insulator phase. It is therefore necessary to design a controllable quantum sys-

tem that can be used to simulate exciton, polaron and polariton phenomena that

occur in condensed media at room temperature. In this thesis I pursue such goal by

considering an ensemble of polar molecules trapped in a three-dimensional optical

lattice with a single molecule per lattice site. The development of technology based

on excitonic and polaritonic phenomena not only has found important applications

in optical communication and clean energy devices [105–108], but has provided

a significant motivation for fundamental studies of open quantum dynamics [109–

116]. It is expected that an advancement of similar magnitude can be achieved in

the field of cold and ultracold polar molecules. The work in this thesis constitutes

an initial step in that direction.

1.3 Entanglement and quantum information
Polar molecules at ultracold temperatures have become attractive candidates for

the physical implementation of a quantum computer. This is due to a number of

properties unique to polar molecules that are competitive with condensed-matter

architectures [25, 117]. The rich internal structure of molecules includes hyper-

fine, rotational and vibrational states. The rotational degrees of freedom of polar

molecules constitute a natural choice to encode quantum information. The radia-

tive lifetime of rotational states exceeds typical experimental timescales [118, 119]

and the rotational states of polar molecules can be manipulated using DC and AC

electric fields. The availability of several long-lived and field-sensitive states for

encoding information is a feature shared with other implementations using neutral
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atoms and ions [120–124], as it is an important requirement for the efficient realiza-

tion of single-qubit gates [125]. Polar molecules in the presence of a static electric

field interact with each other via dipole-dipole forces. The long-range character of

the electric dipole-dipole interaction makes the coupling between molecules strong

for separation distances of a few hundred nanometers. The strong interaction be-

tween remote molecular qubits makes it possible to engineer fast logic gates using

an ensemble of trapped polar molecules.

The prototype example for the implementation of quantum information pro-

cessing using ultracold molecules consists of an ensemble of polar molecules trapped

in individual sites of a one-dimensional optical lattice [126]. Variations of this orig-

inal scheme have also been proposed [127–130]. Here molecules are confined in

individual microtraps created by weak off-resonant laser fields. A static electric

field is used to induce dipole moments on the molecules. Qubits are encoded into

two rotational states of each molecule. Each qubit should be addressed individu-

ally in order to perform single-qubit rotations spectroscopically. Large separation

between molecules favors single-qubit addressability but decreases the speed of

two-qubit gates. This problem can be solved by imposing an electric field gradient

along the lattice axis in order to distinguish the qubit transition frequency at dif-

ferent sites, for lattices with relatively small site separation. Two-qubit gates are

performed spectroscopically by exploiting the state-dependent dipole-dipole force

between neighbouring qubits. In this implementation, the dipole-dipole interaction

between qubits is “always on”, which adds unnecessary complexity to the system.

In order to couple a single pair of qubits, unwanted couplings need to be effec-

tively removed using a number of specifically designed electromagnetic pulses as

it is done in NMR-based quantum computing implementatations [125, 131–133].

The biggest advantage of using individually trapped polar molecules for quantum

information processing is that decoherence in the system is relatively easy to sup-

press. Qualitatively different approaches aim towards the integration of ensembles

of cold molecules with solid-state architectures such as superconducting qubits

[102–104], yet other schemes consider encoding quantum information using the

large number of internal states of isolated molecules [134–136]. Each type of im-

plementation using polar molecules has its unique advantages and drawbacks, and

at this point none of them has been realized experimentally.
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The experimental realization of long-lived polar molecules trapped in single

sites of an optical lattice opens exciting possibilities for the study of entanglement

and quantum information processing using arrays of cold and ultracold molecules

[137, 138]. Entanglement is a major ingredient in most quantum computation al-

gorithms. The role of bipartite and many-particle entanglement in arrays of field-

dressed polar molecules has only recently been addressed in the literature [139–

141]. Most of the proposed schemes for quantum information processing with

polar molecules involve the use of a static electric field to manipulate the rotational

states of molecules. Although the field strengths required are not prohibitively

large for practical use, it would be desirable to avoid the decoherence introduced

by electric field noise. It is therefore important to engineer a system in which

molecules, not necessarily polar, are trapped individually in a weak optical trap

and can be pair-wise entangled in a controlled manner in the absence of static

electric or magnetic fields. Most importantly, the separation between sites should

be large enough to allow for spectroscopic resolution of single molecules. Such

system would motivate not only the development of novel schemes for quantum

information processing, but would also bring the study of entanglement-related

phenomena at the heart of quantum mechanics to the molecular realm. In this

thesis I pursue such goal by considering the interaction between polar diatomic

molecules and strong off-resonant laser pulses. The work in this thesis constitutes

the first steps towards the development of a general entanglement protocol that uses

optically trapped ensembles of heteronuclear diatomic molecules as well as polar

and non-polar polyatomic molecules.

1.4 Thesis overview
The body of this thesis is divided in two parts. The first part is composed of chap-

ters 2 and 3, which contain general background information relevant for the work

presented here and also original results that are used in later chapters. The sec-

ond part of the thesis contains original research results related to each of the three

goals described in this introduction. Chapter 4 is about coherent control of colli-

sions, Chapters 5 and 6 are about tunable condensed-matter phenomena with po-
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lar molecules, and Chapter 7 is about entanglement generation in cold molecular

ensembles. The conclusions of the dissertation are provided in Chapter 8, and

supplementary information is provided in the appendices.
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Chapter 2

Diatomic molecules at cold
temperatures

2.1 Chapter overview
This chapter provides the background information necessary for a basic under-

standing of the physical processes that are relevant for experiments that use opti-

cally trapped molecules to explore physics and chemistry at ultracold temperatures.

Section 2.2 is a short review of the quantum mechanical description of rovibra-

tional structure of diatomic molecules. In Section 2.3, the hyperfine structure of

rotational levels in closed-shell molecules is discussed. Section 2.4 provides a

basic description of the Stark and Zeeman effects in closed-shell and open-shell

molecules without orbital electronic angular momentum. In Section 2.5 the inter-

action of a single molecule with far-detuned AC optical fields is described, and the

electric dipole-dipole interaction between polar molecules is discussed in Section

2.6. Finally, a general description of optical trapping of molecules and the theory

of molecules in optical lattices is provided in Section 2.7.
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2.2 Rovibrational structure of diatomic molecules
In a coordinate system that moves with the center of mass of a diatomic molecule,

the total Hamiltonian ĤT = Ĥel + Ĥnuc that describes the electronic and nuclear

motion, in the absence of external electric or magnetic fields, can be written as

[142]

Ĥel =−
h̄

2m ∑
i

∇
2
i −

h̄
2MN

∑
i, j

∇i ·∇ j +
1

4πε0
∑
i< j

e2

Ri j
− 1

4πε0
∑
i< j

Zαe2

Riα
+H (Si,Iα)

(2.1)

and

Ĥnuc =−
h̄

2µ
∇

2
R +

1
4πε0

ZαZβ e2

R
, (2.2)

where Ri denotes electronic coordinates, Rα nuclear coordinates, m is the electron

mass, MN = M1 +M2 is the total nuclear mass, and µ = M1M2/(M1 +M2) is the

reduced nuclear mass. The first term in Eq. (2.1) is the electronic kinetic energy

operator. The second term is a mass polarization term that is strongly suppressed

by the factor 1/MN . The third term is the electronic coulomb repulsion. The last

two terms denote the relativistic interactions that depend on the electronic spins Si

and the nuclear spins Iα . The nuclear Hamiltonian in Eq. (2.1) is a sum of the

kinetic energy of the nuclei and their coulomb repulsion. By transforming from

a rotating coordinate system with z axis is along the internuclear axis (molecule-

fixed frame) into the laboratory coordinate system (space-fixed frame), the nuclear

Hamiltonian can be written as

Ĥnuc =−
h̄

2µR2
∂

∂R

(
R2 ∂

∂R

)
+

h̄2

2µR2 R2 +
1

4πε0

ZαZβ e2

R
, (2.3)

where R is the angular momentum operator of the rotating coordinate system and

R is the internuclear distance.

The electronic kinetic energy operator can also be written in angular coordi-

nates in order to separate the contribution of the orbital and spin angular momen-

tum of the electrons. Let us denote the total electronic angular momentum operator

by P = L+S, where L = ∑i li and S = ∑i si are the total orbital and spin electronic

angular momentum, respectively. It can be shown that the nuclear Hamiltonian for
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molecules with electronic and spin angular momenta can be written as [142]

Ĥnuc =−
h̄2

2µR2
∂

∂R

(
R2 ∂

∂R

)
+

h̄2

2µR2 (J−L−S)2 +Vc(R) (2.4)

where Vc(R) = (1/4πε0)∑α,β ZαZβ e2/R is the coulomb interaction between the

nuclei, and J is defined as the total angular momentum excluding nuclear spin.

In the usual Born-Oppenheimer approximation to the solution of the total molec-

ular Hamiltonian ĤT , the nuclear kinetic energy T̂N = −(h̄/2µ)∇2
R is treated as a

small perturbation to the electronic Hamiltonian, due to the smallness of the mass

ratio m/µ . The zero-th order wavefunctions are then written as the product of elec-

tronic and nuclear states |Ψ0
T 〉= |ψ0

e (r,R)〉|φ 0
vr(R)〉, and the electronic eigenvalue

problem Ĥel|ψ0
e (r,R)〉 = Ee(R)|ψ0

e (r,R)〉 is solved for a fixed nuclear configura-

tion. The electronic energy Ee(R) thus depends on the internuclear distance R and

the complete set of quantum numbers that characterize the state |ψ0
e (r,R)〉. The

energy Ee(R) can be included in the nuclear Hamiltonian Ĥnuc as an additional

potential energy term, i.e., Vnuc(R) = Ee(R)+Vc(R). The electronic wavefunction

is also an eigenstate of the operators L̂z and Ŝz, with eigenvalues h̄Λ and h̄Σ, re-

spectively.

The complete set of orthonormal electronic states |ψn
e (r,R)〉 can be used to

construct a solution to the total Hamiltonian Ĥel+Ĥnuc as a linear combination of

Born-Oppenheimer product states,

|ΨT 〉= ∑
n

an|ψn
e (r,R)〉|φ n

vr(R,θ ,φ)〉. (2.5)

After substituting this expression in the Schrödinger equation we obtain the secular

equation

an {V n
nuc(R)−E}|φ n

vr〉+∑
n′

an′Cn,n′ |φ n′
vr〉= 0, (2.6)

where E is the total energy of the molecule, and Cn,n′ |φ n′
vr〉= 〈ψn

e |T̂N |ψn′
e 〉|φ n′

vr〉 are

the non-adiabatic coupling functions. In the adiabatic approximation, only the

diagonal terms Cn,n′ = δn,n′Cn are retained in Eq. (2.6). By using Eq. (2.4), it can

be shown that the nuclear wavefunctions associated with each electronic state |ψn
e 〉
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thus satisfy the equation{
− h̄2

2µR2
∂

∂R

(
R2 ∂

∂R

)
+

h̄2

2µR2 J2− h̄2

2µR2 (2ΩnĴz−Ω
2
n)

+En
e (R)+

1
4πε0

∑
α,β

ZαZβ e2

R
+An(R)

}
|φ n

vr(R,θ ,φ)〉= 0, (2.7)

where Ωn = Λn +Σn is the projection of the total electronic angular momentum P
along the internuclear axis, and An is a small adiabatic correction to the nuclear

potential energy associated with the electronic state |ψn
e 〉.

The nuclear Schrödinger equation in Eq. (2.7) can be solved by separating the

radial and the angular terms, which leads to the rotational wave equation{
h̄2

2µR2 J2− h̄2

2µR2 (2ΩĴz−Ω
2)

}
|JΩM〉= Erot(R)|JΩM〉, (2.8)

with eigenvalue Erot(R)= (h̄2/2µR2)
[
J(J+1)−Ω2

]
. The rotational energy Erot(R)

then enters into the vibrational wave equation as a centrifugal correction, which can

be neglected for the lowest vibrational states [142]. The rotational wavefunction

|JΩM〉 is given by

|JΩM〉=
[

2J+1
4π

]1/2

D
(J)
M,Ω(φ ,θ ,χ)

∗, (2.9)

where D
(J)
M,Ω is an element of the Wigner rotation matrix [143], and (φ ,θ ,χ) are the

Euler angles of the transformation between the space-fixed and the molecule-fixed

frames. The total molecular wavefunction can be written as

|Ψ〉T = |n,Λ〉|v(J)〉|S,Σ〉|JΩM〉, (2.10)

where |Ψe〉= |n,Λ〉 is the electronic wavefunction, |v(J)〉 is the vibrational wave-

function, which may depend on the rotational energy, and |S,Σ〉 is the electronic

spin state. This choice of Hamiltonian and wavefunctions is known conventionally

as the Hund’s coupling case (a) [142]. It is the choice for the molecular species con-

sidered in this Thesis. In particular, we consider alkali metal dimers such as LiCs,
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in their electronic and vibrational ground states. The ground electronic states of

alkali dimers have no unpaired electrons. In this case Λ = 0 = Σ, and the rotational

wavefunction in Eq. (2.9) reduces to

|JM〉=
[

2J+1
4π

]1/2

D
(J)
M,0 = YJ,M(θ ,φ), (2.11)

where YJ,M(θ ,φ) is the spherical harmonic of rank J and component M [143].

In this work, we focus our discussion on the rotational states of the electronic

and vibrational ground state. For the ground vibrational state, we can neglect the

variation of the rotational moment of inertial of the molecule with the vibrational

motion. This is the rigid rotor approximation, for which Eq. (2.8) can be written as

Ĥrot|JΩM〉= Be
[
J(J+1)−Ω

2] |JΩM〉, (2.12)

where Be = h̄2/2µR2
e is the rotational constant and Re is the equilibrium internu-

clear distance. Typically Be/h ∼ 10 GHz for the molecules we consider in this

work.

The rovibrational Hamiltonian in Eq. 2.7 can be used to obtain the leading

contributions to the rotational energies, but ignores hyperfine effects due to the

interaction between electronic, rotational, and nuclear angular momenta. Using

perturbation theory, it is possible to derive effective Hamiltonians that take into

account such effects [142, 143]. In practice, the appropriate effective Hamiltonian

and its corresponding eigenstates are used depending on the physical situation of

interest. In this Thesis we consider molecules composed of alkali metal and alkali-

earth atoms. The nuclear magnetic moments of these atoms can lead to hyperfine

splittings of the rotational levels that are typically smaller than the rotational con-

stant Be.

2.3 Hyperfine structure of closed-shell molecules
In recent experiments, ultracold molecules have been prepared by magneto-association

of ultracold atoms near a Feschbach resonance [15, 18–21]. The atomic samples

are initially prepared in specific hyperfine states | f m f 〉, where f = j+ i is the total
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angular momentum of the atom, j = l+s is the total electronic angular momentum,

and i is the nuclear spin angular momentum. The position and width of Feschbach

resonances depend on the states of the colliding partners. Let m f1 and m f2 denote

the projections of atoms 1 and 2 along the quantization axis. The total projection

MF = m f1 +m f2 is a conserved quantity in the magneto-association process. The

magneto-association of atoms produces weakly bound molecular states that are

best described by atomic quantum numbers. Additional laser-assisted population

transfer steps are needed to produce molecules in deeply bound states. Molecules

are formed in hyperfine states |(F),MF〉 by preserving the total projection MF .

Here F = J+ I, as in the atomic case, but now J = N+S and I = I1 + I2. N is the

rotational angular momentum, S is the electronic spin angular momentum, and I is

the vector sum of the nuclear spin angular momenta of the constituent atoms. The

notation (F) indicates that the F quantum number is not conserved in the presence

of an external field. In later chapters, we discuss interactions between heternonu-

clear alkali-metal dimers in the presence of static electric fields. In this thesis we

consider alkali atoms with large nuclear spin I ≥ 3/2. Although the hyperfine in-

teractions in alkali dimers cause small splittings on the order of tens of kHz in

the rotational lines [142], these splittings are comparable with the light-shifts in-

duced by the optical trapping fields and dipole-dipole interaction energy between

molecules at optical lattice separations. It is therefore necessary to understand the

hyperfine structure of alkali-metal dimers, first in the absence of external fields,

and then in the presence of weak and strong magnetic fields.

The Hamiltonian for a molecule in the absence of external fields, including

hyperfine structure can be written as Ĥ = ĤR + ĤHF, where ĤR = BeN2 and ĤF is

the hyperfine Hamiltonian. ĤF can be written as the sum of the following terms

[142]

ĤQ =−eT (2)(~∇E1) ·T (2)(Q1)− eT (2)(~∇E2) ·T (2)(Q2), (2.13a)

ĤSR = c1N · I1 + c2N · I2 (2.13b)

ĤT = c3I1 · T̂ (2) · I2 (2.13c)

ĤSC = c4I1 · I2. (2.13d)
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7Li133Cs 87Rb133Cs 87Rb2
40K87Rb 41K87Rb

Be (GHz) 5.636 0.504 1.114 1.096
I1 3/2 3/2 3/2 4 3/2
I2 7/2 7/2 3/2 3/2 3/2
(eQq)1 (kHz) 18.5 -872 -1188 306 -298
(eQq)2 (kHz) 188 51 -1188 -1520 -1520
c1 (Hz) 32 98.4 209 -24 10
c2 (Hz) 3014 194.1 209 420 413
c3 (Hz) 140 192.4 346 -48.2 21
c4 (Hz) 1610 17345.4 25021 -2030.4 896
gr 0.0106 0.0062 0.0093 0.0140 0.0138
g1 2.171 1.834 1.834 -0.324 0.143
g2 0.738 0.738 1.834 1.834 1.834

Table 2.1: Predicted molecular constants including hyperfine structure for
some alkali-metal dimers. The notation is defined in Eqs. (2.13). Data
taken from Refs.[144–146].

The electric quadrupole interaction ĤQ described the interaction between the

quadrupole moment of each nuclei Qi with the gradient of the electric field ~∇Ei

generated by the electrons. The nuclear spin-rotation coupling ĤSR represents the

coupling between the nuclear magnetic moments of each nuclei with the magnetic

field generated by the rotation of the molecule. The tensor spin-spin coupling

ĤT describes the magnetic dipole-dipole interaction between nuclear spins, and

the scalar spin-spin interaction ĤSC describes the coupling between nuclear spins

mediated by the electron density. We have neglected terms depending on the elec-

tronic spin S because we restrict the discussion to closed-shell molecules with zero

electronic angular momentum (1Σ states).

In Table 2.1 we reproduce literature values of the molecular constants defined

in Eqs. (2.13) for selected alkali-metal dimers [144–146]. For closed-shell 1Σ

states, the hyperfine splittings of the rotational lines are largely due to the nuclear

quadrupole moments of the atoms. The electric quadrupole constant (eqQ) is at

least two orders of magnitude larger than rest of the hyperfine constants for most

alkali-metal dimers. The electric quadrupole interaction can in principle couple
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different rotational states of the molecules. However, the rotational splitting is

several orders of magnitude larger than the quadrupole constant so N can be con-

sidered a good quantum number. In the absence of external fields, the quantum

numbers (F,MF) are conserved. In Appendix C we derive the matrix elements for

each term in Eq. (2.13) using three different basis sets. For weak external fields,

it is more convenient to use the fully coupled basis |(NI)FMF〉 [142]. The matrix

elements of the quadrupole operator ĤQ in this basis can be written as

〈(NI)FMF |ĤQ|(NI′)FMF〉

= (−1)F+I+I1+I2(2N +1)[(2I +1)(2I′+1)]1/2

{
I′ N F

N I 2

}
(2.14)

×

(
N 2 N

0 0 0

)[
(eqQ)1

4
G1(I, I′, I1, I2)+

(eqQ)2

4
G2(I, I′, I1, I2)

]
,

where G1 and G2 are functions of the nuclear spin angular momenta. The 3j-

symbol in the second line of Eq. (2.15) imposes the selection rule ∆N = 0 for

N 6= 0, i.e., there is no quadrupole interaction in the rotational ground level. The

same selection rule applies to the tensor spin-spin interaction ĤT (see Appendix C)

because it has the same tensorial form as the quadrupole interaction [142].

In Appendix C it is shown that the matrix elements of the nuclear spin-rotation

operator ĤSR are given by

〈(NI)FMF |ĤSR|(NI′)FMF〉

= (−1)F+N+I+I1+I2+1[N(2N +1)(N +1)(2I +1)(2I′+1)]1/2

×

{
I′ N F

N I 1

}[
(−1)I′

{
I1 I′ I2

I I1 1

}
c1 +(−1)I

{
I2 I′ I1

I I2 1

}
c2

]
,

(2.15)

which vanish for N = 0. The zero-field-splitting (ZFS) of the rotational ground

level is therefore due to the scalar spin-spin coupling ĤSC [142]. The matrix repre-

sentation of ĤSC is diagonal in the fully-coupled basis, with elements given by

〈(NI)FMF |ĤSC|(NI)FMF〉=
c4

2
[I(I +1)− I1(I1 +1)− I2(I2 +1)] . (2.16)
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Figure 2.1: Zero-field-splitting of the N = 0 rotational state for 41K87Rb
(IK = IRb = 3/2). The scalar nuclear spin coupling constant is c4 = 896
Hz. N and F are the rotational angular momentum and total angular
momentum quantum numbers, respectively.

The ZFS of the ground rotational state (N = 0) is thus on the order of 0.1−10 kHz

for alkali-metal dimers. This is a small perturbation to the rotational energy, but

is comparable to the depth of a typical far-detuned optical trap. The values of the

atomic nuclear spins are given in Table 2.1. For 7Li133Cs molecules, the molecular

spin states are I = 2,3,4,5. The rotational ground state N = 0 has (2I1 +1)(2I2 +

1) = 32 hyperfine states. In the absence of magnetic fields these states are ordered

into five levels characterized by the total angular momentum F = I. Each hyperfine

level is (2F+1)-fold degenerate. In 41K87Rb molecules, both nuclei have the same

spin. The possible spin states are I = 0,1,2,3. The zero-field splitting between

hyperfine states in the N = 0 level follow the interval rule EF −EF−1 = c4F . This

is illustrated in Fig. 2.1.

The hyperfine structure of rotational excited states is more complex than the

ground state. The number of hyperfine states increase significantly with N and all
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the terms in Eq. (2.13) contribute to the ZFS of the levels. For 7Li133Cs molecules,

the first rotational excited level N = 1 has 32× (2N + 1) = 96 hyperfine states.

These states are ordered into 12 hyperfine levels in the absence of magnetic fields,

characterized by F = I +N . . . , |I−N|. The quadrupole interaction couples hyper-

fine states |(NI)FMF〉 with the same value of F but different total nuclear spins

I. Therefore, an accurate evaluation of the hyperfine spectrum for the N = 0 and

N = 1 rotational levels requires in principle the diagonalization of a matrix of di-

mension D = 128× 128. This matrix can be divided into sub-blocks associated

with the quantum numbers (N,F,MF), which can be diagonalized independently.

As explained below, an external electric or magnetic field introduces couplings

between different sub-blocks.

2.4 Diatomic molecules in static electric and magnetic
fields

2.4.1 Closed-shell molecules in static electric fields

A polar diatomic molecule has an asymmetric charge distribution due to the dif-

ference between the nuclear charges Z1 and Z2. The electric dipole moment of the

molecule is the position-weighed sum over nuclear and electronic charges. The

electric dipole moment lies along the internuclear axis (molecule-fixed z axis), and

rotates with the molecule. The dipole moment interacts with an applied DC elec-

tric field E, and tends to align along the field direction. The space-fixed coordinate

system can be chosen such that the electric field lies along the Z axis, i.e., E= EZẐ.

The interaction is then represented by the Stark Hamiltonian

Ĥdc =−d ·E =−d0EZ cosθ =−d0EZD
(1)
0,0 (θ)

∗, (2.17)

where d0 = |〈v|µ(R)|v〉| is the vibrationally-averaged permanent dipole moment,

and θ is the angle between the electric field and the internuclear axis. In this work

we consider alkali-metal dimers whose ground electronic state has zero orbital and

spin angular momentum. In spectroscopic notation this is a X1Σ electronic state.

We use the rotational basis defined in Eq. (2.11) with J = N to write the matrix
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Figure 2.2: Stark effect on 1Σ molecules: (a) energies of the field-dressed
states |(N)M〉 in units of Be, as a function of the electric field strength
parameter d0EZ/Be; (b) Mixing coefficients |cNM|2 of the field-dressed
ground state |(0)0〉 = ∑N cN0|N0〉, as a function of the ratio d0EZ/Be.
d0 is the permanent dipole moment, EZ the field strength, and Be the
rotational constant.

elements of the operator in Eq. (2.17) as

〈NMN |Ĥdc|N′M′N〉=−d0EZ〈NMN |D (1)
0,0 |N

′M′N〉, (2.18)

where

〈NMN |D (1)
0,0 |N

′M′N〉 = (−1)M [(2N +1)(2N′+1)
]1/2

×

(
N 1 N′

0 0 0

)(
N 1 N′

−MN 0 M′N

)
. (2.19)

From the symmetry properties of the 3j-symbols in Eq. (2.18), it can be shown

that the matrix element vanishes unless N−N′ = ±1, and MN = M′N . The eigen-

states of the Stark Hamiltonian are therefore superpositions of rotational states

|NMN〉 with different parity pJ = (−1)N and the same value of the angular mo-
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mentum projection MN along the electric field axis. The DC Stark eigenstates

are denoted here as |(N)MN〉, where (N) labels the quantum number to which

the state corresponds when the electric field is turned-off adiabatically. In Fig-

ure 2.2(a) we show the energies of the lowest field-dressed |(N)M〉 of the rigid

rotor Hamiltonian in a DC electric field Ĥ = BeN2−d0E0 cosθ . The electric field

splits the field-free rotational state |N = 1,MN〉 in two degenerate lower states with

|MN | = 1, and a higher state with MN = 0. The first four field-dressed rotational

states {|(0)0〉, |(1)0〉, |(1)±1〉} form the subspace of interest in this work. Figure

2.2(b) shows the mixing probabilities |cJ,M|2 of each field-free rotational state |J,0〉
for the ground field-dressed state |(0)0〉= ∑N cN,0|N,0〉. The strength of the elec-

tric field is parametrized by the dimensionless parameter λ = d0E0/Be. For λ > 2

the contribution of the field-free state |2,0〉 on the field-dressed ground state |(0)0〉
cannot be neglected.

2.4.2 Closed-shell molecules in static magnetic fields

An atomic nucleus with non-zero spin I has an associated magnetic moment ~µ =

gµNI, where g is the nuclear g-factor and µN is the nuclear magneton. Each atomic

nucleus in a molecule interacts independently with an applied magnetic field B.

The interaction is represented by

ĤB =−~µ1 ·B−~µ2 ·B≡−g1µNI1 ·B−g2µNI2 ·B. (2.20)

In addition to the nuclear spin magnetic moments, the rotational motion of the

molecule generates a magnetic moment ~µR = gRµNN. As shown in Table 2.1, the

rotational g-factor is at least two orders of magnitude smaller than the nuclear g-

factors. We can therefore ignore the interaction of the rotational magnetic moment

with the magnetic field. If we assume the magnetic field to be B = BZẐ, the matrix
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elements of ĤB can be written in the fully coupled basis as (see Appendix C)

〈(NI)FMF |ĤB|(NI′)F ′MF〉

= (−1)1+N+I1+I2+I′−MF
[
(2F +1)(2F ′+1)(2I +1)(2I′+1)

]1/2

×

{
I′ F ′ N

F I 1

}(
F 1 F ′

−MF 0 MF

)

×

(
g1µNBZ(−1)I′

{
I1 I′ I2

I I1 1

}
[I1(I1 +1)(2I1 +1)]1/2

+g2µNBZ(−1)I

{
I2 I′ I1

I I2 1

}
[I2(I2 +1)(2I2 +1)]1/2

)
. (2.21)

The magnetic field therefore couples hyperfine states according to the selection

rules ∆MF = 0 and |∆F |= 0,1. For magnetic fields such that gµNBZ is larger than

the hyperfine splitting, there is a strong mixing of F angular momentum states for

each hyperfine level. In this regime, the fully coupled basis |(NI)FMF〉 is no longer

the best choice to describe the spin degrees of freedom of the molecule. The spin

coupled basis |NMN〉|IMI〉 is a common choice to describe hyperfine interactions

in the presence of intermediate magnetic fields [142]. In this regime, the rotational

motion is said to be uncoupled from the nuclear spin. The rotational angular mo-

mentum N and the total projection MF =MN +MI are good quantum numbers. The

matrix elements of the Zeeman Hamiltonian ĤB in the spin uncoupled basis can be

written as

〈NMNIMI|ĤB|NMNI′MI〉=

= (−1)I+I1+I2−MI [(2I +1)(2I′+1)]1/2

(
I 1 I′

−MI 0 MI

)

×

[
g1µNBZ(−1)I′ [I1(I1 +1)(2I1 +1)]1/2

{
I1 I′ I2

I I1 1

}

+ g2µNBZ(−1)I[I2(I2 +1)(2I2 +1)]1/2

{
I2 I′ I1

I I2 1

}]
. (2.22)
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Figure 2.3: Zeeman spectra for a 41K87Rb molecule in N = 0 and N = 1 ro-
tational states of the ground electronic and vibrational state. The energy
is measured with respect to EN = BeN(N +1).

Another useful basis set can be used to describe the nuclear degrees of free-

dom. In the fully decoupled basis |NMN〉|I1MI1〉|I2MI2〉 the Zeeman Hamiltonian

is diagonal, which is useful for assigning quantum numbers to the molecular levels

at high magnetic fields [142]. The matrix elements of ĤB in this basis are given by

〈NMN |〈I1MI1 |〈I2MI2 |ĤB|NMN〉|I1MI1〉|I2MI2〉=−g1µNBZMI1−g2µNBZMI2 .

(2.23)

The hyperfine structure for each rotational level is obtained by diagonalizing

the total molecular Hamiltonian in the presence of a static magnetic field

Ĥ = ĤR + ĤHF + ĤB.
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In Figure 2.3 we show the Zeeman energies of the hyperfine levels in states N = 0

and N = 1 for 41K87Rb molecules. For clarity, we only show the magnetic sub-

levels with |MF | = 1. Molecular states with the same total projection MF and

different values of F interact in the presence of a magnetic field, leading to the

level repulsion observed in Fig. 2.3. These avoided crossings occur at relatively

weak magnetic fields BZ ∼ 10 Gauss for most heteronuclear alkali-metal dimers in

the N = 0 state. For the N = 1 state, the avoided crossings occur at larger fields

because the hyperfine splittings are larger.

2.4.3 Open-shell molecules in static magnetic fields

Let us consider polar molecules with one unpaired electron in the ground electronic

state denoted X2Σ, such as SrF and CaF. If the nuclear magnetic moments are

neglected, the effective Hamiltonian used to describe the field-free spectral lines of
2Σ molecules in the vibrational state |v〉 is [142, 143]

Ĥ = BvN2 + γvN ·S = BvN2 + γvN̂zŜz +
γv

2
(
N̂−Ŝ++ N̂+Ŝ−

)
(2.24)

where S is the electron spin angular momentum, N= J−S, is the rotational angular

momentum of the nuclei, and N̂± = N̂x± iN̂y are the raising and lowering operators

(an analogous definition holds for Ŝ±). γv � Bv is the constant for the electronic

spin-rotation interaction. The uncoupled basis set |NMN〉|SMS〉 is chosen to rep-

resent the Hamiltonian in Eq. (2.24). The first two terms of the Hamiltonian are

diagonal in this basis, with matrix elements given by

〈NMN |〈SMS|Ĥ|NMN〉|SMS〉= BvN(N +1)+ γvMNMS. (2.25)

The last term in Eq. (2.24) is non-diagonal in the chosen basis set. It mixes spin

projections and rotational angular momentum projections for rotational states with

N ≥ 1, but does not couple states with a different value of N. The off-diagonal

matrix elements of the Hamiltonian are [143]

〈NMN−1|〈SMS +1|Ĥ|NMN〉|SMS〉 =
γv

2
[N(N +1)−MN(MN−1)]1/2

× [S(S+1)−MS(MS +1)]1/2 (2.26)
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Figure 2.4: Rotational levels of a X2Σ molecule in the presence of a magnetic
field with strength B0: (a) First two rotational manifolds N = 0 and N =
1 showing a level crossing for gSµBB0/Be ≈ 2; (b) N = 1 excited states
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and gS = 2.0 is the electron g-factor.

〈NMN +1|〈SMS−1|Ĥ|NMN〉|SMS〉 =
γv

2
[N(N +1)−MN(MN +1)]1/2

× [S(S+1)−MS(MS−1)]1/2 .(2.27)

The unpaired electron of the 2Σ molecule has a magnetic moment ~µm = gSµBS,

where µB is the Bohr magneton, and gS ≈ 2.00 is the corresponding spin g-factor.

The magnetic moment interacts with an applied magnetic field B. The interaction

is represented by the Zeeman Hamiltonian ĤB = gSµBS ·B. This Hamiltonian is

diagonal in the basis |NMN〉|SMS〉 for a magnetic field directed along the space-

fixed Z axis, with matrix elements 〈NMN |〈SMS|ĤB|NMN〉|SMS〉 = gSµBMS. The

states |NMN〉|1/2,MS =±1/2〉 are therefore split into doublets in the presence of a

magnetic field, with an energy separation that scales linearly with the field strength

BZ for values of the field strength satisfying γ � gsµBBZ � 2Be. In Figure 2.4 we

show the rotational levels of a 2Σ molecule in the presence of a magnetic field with
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strength BZ . We choose the electronic spin-rotation constant γ = 0.01Be, which is

representative of experimentally relevant molecules such as SrF [147].

2.5 Diatomic molecules in far-detuned optical fields
In this section we review the theory of the interaction of a molecule with a classical

electromagnetic field with a frequency ω far-detuned from any molecular transi-

tion. The analysis presented in this section forms the basis for the description of

molecular alignment in high-intensity optical fields, as well as optical trapping of

molecules with field of lower intensity.

2.5.1 Dynamical Stark shift of molecular states

Let us consider a general Hamiltonian for a diatomic molecule in the center of

mass frame given by Ĥmol = T̂N(R)+ Ĥel({ri},R), where T̂N(R) is the Hamiltonian

describing the nuclear motion (vibrational and rotational), and Ĥel describes the

kinetic and coulomb potential energy of the electrons, with coordinates ri with re-

spect to the center of mass of the molecule. The electronic Hamiltonian depends on

the internuclear separation R through the attractive electron-nucleus and repulsive

nucleus-nucleus coulomb interaction.

In the Born-Oppenheimer approximation, the total molecular wavefunction,

neglecting spin, can be written as |e(R)〉|v(R);r(θ ,φ)〉, where |e(R)〉 is the elec-

tronic wavefunction that depends parametrically on the internuclear distance R,

and |v(R);r(θ ,φ)〉 is the rovibrational wavefunction. The wavefunctions satisfiy

the eigenvalue equation Ĥmol|e v r〉 = Eevr|e v r〉. Since we want to describe the

interaction of a molecule with a monochromatic electromagnetic wave, the starting

point is the time-dependent Schrödinger equation

ih̄
d
dt
|Ψ(t)〉=

(
Ĥmol +V̂ (t)

)
|Ψ(t)〉, (2.28)

where V̂ (t) = −d ·E(r, t) is the light-matter interaction energy in the dipole ap-

proximation. In a semi-classical approximation, the components of electromag-

netic field E(r, t) can be treated as time-dependent complex numbers. The solution

of Eq. 2.28 can be written in the most general way in terms of a complete basis of
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eigenstates as

|Ψ(t)〉= ∑
e

∑
v

∑
r

Cevr(t)|e v r〉e−iEevrt/h̄, (2.29)

which can be inserted in Eq. 2.28 to obtain a set of coupled differential equations

for the time-dependent complex coefficients Cevr(t). This system of equations can

in principle be solved provided we know the solution |Ψ(t0)〉 at the initial time

t0. Suppose that at the initial time t0 = 0 the system is described by a rotational

wavepacket in a particular vibronic state |Ψ(0)〉 = ∑r Cr|eivir〉, and we are inter-

ested in the time-evolution of this wavepacket under the influence of an AC electric

field far-detuned from any molecular resonance. In Appendix A it is shown that

the light-matter interaction in far off-resonant conditions can be described by the

effective Schrödinger equation

ih̄
d
dt

Cr(t) = ∑
r′

Cr′(t)〈r|ĤAC|r′〉]e
i
h̄ (Er−Er′ )t , (2.30)

where we have omitted the vibrational and electronic indexes (ei,vi) for simplicity.

The effective rotational Hamiltonian ĤAC in Eq. (2.30) is given by (see Appendix

A)

ĤAC =−∑
ev

〈eivi|E(r) ·d|ev〉〈ev|d ·E∗(r)|eivi〉
Eev−Eeivi− h̄ω

+
〈eivi|E∗(r) ·d|ev〉〈ev|d ·E(r)|eivi〉

Eev−Eeivi + h̄ω

(2.31)

The matrix elements in Eq. 2.31 are evaluated in the space-fixed frame, since

observable quantities such as |Cr(t)|2 must refer to the laboratory frame. Due to

the rotation of the molecule-fixed frame with respect to the laboratory frame ac-

cording to the angular coordinates (θ ,φ ,χ) [143], the transformation of the matrix

elements in Eq. (2.31) from the molecule-fixed to the space-fixed frame introduces

elements of the rotation matrices R̂(θ ,φ ,χ) that couple different rotational states.

Equation (2.31) can be written as

ĤAC =−∑
p

∑
p′

Ep(r)α̂p,p′E∗p′(r), (2.32)
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where we have expanded the electric field vectors in space-fixed spherical basis

E(r) = ∑q Eq(r)ê∗q 1. The general form of the polarizability operator α̂q,q′ is given

by

α̂p,p′ = ∑
ev

〈eivi|d̂†
p|ev〉〈ev|d̂p′ |eivi〉

Eev−Eeivi− h̄ω
+
〈eivi|d̂p′ |ev〉〈ev|d̂†

p|eivi〉
Eev−Eeivi + h̄ω

(2.33)

= (−1)−p
α̂−p,p′ (2.34)

where the components of the dipole operators in the spherical basis refer to the

space-fixed frame. In Eq. (2.34) the definition d†
p = (−1)−pd−p has been used to

redefine the polarizability operator as α−p,p in agreement with the standard nota-

tion [148]. The polarizability components in the spherical basis satisfy α∗−p,p′ =

(−1)p−p′α−p′p.

The polarizability tensor α̂p,p′ couples different rotational states of the molecule

due to the dependence of the space-fixed dipole operators d̂p on the molecule-fixed

operators d̂q through the transformation

d̂p = ∑
q

D
(1)
pq (θ ,φ χ)∗d̂q, (2.35)

where D
(1)
pq (θ ,φ χ)∗ is the pq element of the inverse rotation matrix of rank one

[142, 143]. Using Eq. (2.35) and its hermitian conjugate, Eq. (2.32) can thus be

rewritten as [149]

ĤAC =−∑
p,p′

(−1)−p

[
∑
q,q′

α−q,q′D
(1)
−p−q(Ω)∗D

(1)
p′q′(Ω)∗

]
Ep(r)E∗p′(r), (2.36)

where the spherical components of the polarizability tensor α−q,q′ in the molecule-

fixed frame are defined in analogy with Eq. (2.34). Equation (2.36) can be further

simplified using the Clebsch-Gordan series [142, 143] to give

ĤAC =−∑
p,p′

∑
j

(
1 1 j

p p′ k

)
αk( j)D ( j)

kk′ (Ω)(−1)−pEp(r)E∗p′(r), (2.37)

1The alternative definition E(r) = ∑q Eq(r)êq gives the same expression for ĤAC
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where

αk′( j) = (2 j+1)∑
qq′

α−q,q′

(
1 1 j

−q q′ k′

)
(2.38)

gives the irreducible component of the polarizability tensor of order j in terms of

its components in the spherical basis α−q,q′ . The frequency-dependent polarizabil-

ity components α−q,q′ are numerical parameters evaluated in the molecule-fixed

frame. The Wigner matrix elements D
( j)
kk′ (Ω) are the operators acting on the ro-

tational states |r〉. The off-diagonal elements of the ĤAC correspond to rotational

Raman transitions and the diagonal elements correspond to the AC Stark shift of

the rotational states. For an arbitrary molecule interacting with an electromagnetic

plane wave linearly polarized along the space-fixed Z axis (Ep = δp,0E0/2), the

light-matter Hamiltonian in Eq. (2.36) gives

ĤAC =−|E0|2

4

{
1
3
(α0,0−α1,−1−α−1,1)D

(0)
0,0 +

1
3
(2α0,0 +α1,−1 +α−1,1)D

(2)
0,0

}
.

(2.39)

For diatomic molecules, the only non-zero elements of the polarizability tensor in

cartesian coordinates are α⊥ ≡ αxx = αyy and αzz ≡ α‖. In the spherical basis these

correspond to α−11 = α1−1 = α⊥ and α0,0 = α‖. Using these definitions and the

expressions for the Wigner functions [143] we can write Eq. (2.39) as

ĤAC =−|E0|2

4

{
1
3
(α‖+2α⊥)+

2
3
(α‖−α⊥)C2,0(θ)

}
. (2.40)

The modified spherical harmonic CL,M is defined by [143]

CL,M(θ ,φ) =

√
4π

2L+1
YL,M(θ ,φ). (2.41)

Equation (2.40) has been used to describe the alignment of polar and non-polar

molecules with intense off-resonant pulses [149, 150]. Intense light fields induce

coherences between rotational states via the tensor part of the polarizability op-

erator, which is proportional to the functions CL,M(θ ,φ). The creation of rota-

tional wavepackets localizes the rotational motion in angular space, similarly to the

alignment induced by electrostatic fields, but the effect is much stronger with high-

31



intensity laser pulses. The simple expression in Eq. (2.40) for diatomic molecules

can also be derived from simple energetic arguments [151]. However, having a

general expression as in Eq. (2.36) can be useful to describe the interaction of a

generic polyatomic molecule with a laser field of arbitrary helicity, as is the case in

optical traps. The elements of the dynamic polarizability tensor in the molecular

frame αq,q′ can be independently obtained from electronic structure calculations,

or relations between different tensor elements can be deduced by measuring the

light shift of a given rotational state, as Eq. (2.40) suggests.

2.5.2 Polarizability of diatomic molecules at optical frequencies

Due to the cylindrical symmetry of a diatomic molecule, the molecule-fixed coor-

dinate system can be chosen such that the polarizability tensor has only three non-

vanishing components: αxx = αyy 6= αzz. In the spherical basis, the non-vanishing

components are α0,0 6= α1,−1 = α−1,1, which enter in the light-matter interaction

Hamiltonian in Eq. (2.40), for example. Let us consider a molecule with Born-

Oppenheimer states |nΛ〉|v(J)〉|JΛM〉. The wavefunction |nΛ〉 corresponds to an

electronic state with energy En and electronic angular momentum L, with pro-

jection h̄Λ along the internuclear axis. The rovibrational wavefunction |vJ〉|JΛMJ〉
corresponds to the vibrational state v(J), which may include rotation-vibration cou-

pling, and the rotational state described by the total rotational angular momentum

J = R+L, and projection h̄MJ along the space-fixed Z axis. The rotational de-

pendence of the polarizability has been separated from the vibronic contribution

in Eq. (2.36) due to large detuning of the optical fields from rotational transitions.

The electronic and vibrational contributions to the polarizability components α0,0

and α1,−1 +α−1,1 in the molecule-fixed frame are thus given by the summations

[151–153]

α
nivi
0,0 = ∑

n
∑
Λ

∑
v(J)

2(EnΛv−EniΛivi)

(EnΛv−EniΛivi)
2− (h̄ω)2 |〈nΛv|d̂0|niΛivi〉|2, (2.42)
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Cs2 Rb2 LiCs LiRb RbCs KRb
α‖ 1012.2 789.7 597.0 524.3 904.0 748.7
α⊥ 509.0 405.5 262.5 246.5 492.3 382.9

Table 2.2: Static polarizabilities of heteronuclear alkali-metal dimers in X1Σ

electronic states evaluated at the equilibrium intermolecular distance Re.
Values are in atomic units. Data taken from Ref. [154]

and

α
nivi
1,−1 +α

nivi
−1,1 = −∑

n
∑
Λ

∑
v(J)

2(EnΛv−EniΛivi)

(EnΛv−EniΛivi)
2− (h̄ω)2 |〈nΛv|d̂−1|niΛivi〉|2

−∑
n

∑
Λ

∑
v(J)

2(EnΛv−EniΛivi)

(EnΛv−EniΛivi)
2− (h̄ω)2 |〈nΛv|d̂1|niΛivi〉|2.

(2.43)

For closed-shell molecules, which are the main focus of this work, Λi = 0 (Σ

states). Therefore, Eqs. (2.42) and (2.43) show that the α‖ is associated with

niΣ→ n′Σ electronic transitions, and α⊥ with niΣ→ n′Π electronic transitions.

Since alkali metal dimers have 1Σ electronic ground states, it is essential to have

a good knowledge of the excited electronic states (Σ and Π) in order to estimate

the molecular polarizability of a given rovibronic state. The static and dynamic

polarizabilities of most alkali metal dimers are available in the literature [152–

154]. Table 2.2 shows the predicted values for the static polarizabilities α‖(ω = 0)

and α⊥(ω = 0) for a few alkali-metal dimers. The wavelengths of the trapping

lasers used in recent molecular trapping experiments with alkali-metal dimers are

close to λL ≈ 1100 nm, which is far-detuned from the lowest energy electronic

transition X1Σ→ a3Σ. The dynamic polarizabilities at these wavelengths is only a

few times larger than the static values [152, 155].
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2.6 Electric dipole-dipole interaction

2.6.1 Closed-shell molecules without nuclear spin

Let us neglect the hyperfine structure of rotational levels arising from interaction

involving the nuclear spins. The rotational structure of 1Σ molecules in their vibra-

tional ground state can thus be described using the rigid rotor Hamiltonian

HR = BeN2, (2.44)

with eigenstates given by spherical harmonics |NMN〉 ≡YN,MN (θ ,φ), and eigenval-

ues E(N) = BeN(N +1). The angular coordinates defined in a space-fixed frame.

We consider a pair of interacting diatomic molecules, denoted by A and B.

Let RAB be the vector that joins the centers of mass of the molecules. In the gas

phase, the vector RAB rotates freely in space, which is described the orbital angu-

lar momentum l, and the projection ml along the space-fixed Z axis. In order to

describe a molecular scattering process, the translational wavefunction of the col-

lision complex is expanded in the basis |l,m〉, where l = 0,1, . . . ,∞. These basis

states are known as partial waves. The basis set for the combined states of two
1Σ molecules in gas phase is thus given by the products |NAMNA〉|NBMNB〉|lml〉.
However, when the translational motion of the molecules is constrained by exter-

nal forces, for example as in an ordered array of microtraps, there is no relative

rotation of molecules. In this case the vector RAB can be considered fixed in space.

In this case, the basis set for the combined space of two molecules is given by

|NAMNA〉|NBMNB〉. This basis describes molecules in the absence of external fields.

The electrostatic interaction energy between two neutral polar moleucles can

be described using classical electrodynamics by a multipole expansion of the form

[156]

VAB(R) =
C3

R3
AB

+
C5

R5
AB

+ . . . . (2.45)

where Cn is a quantity that describes the interaction between the multipole mo-

ments of the molecular charge distributions. In a quantum mechanical description,

these coefficients become operators acting on the internal states of the molecules.
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The lowest order in this expansion corresponds to the dipole-dipole interaction. If

we denote the dipole moments of molecules A and B as dA and dB, the interaction

potential V̂AB can be written as

V̂dd(R) =

(
1

4πε0

)
1

R3
AB

{
dA ·dB−3(dA · R̂AB) · (dB · R̂AB)

}
, (2.46)

where RAB = |RAB| and R̂ = R/RAB. It is convenient to rewrite the scalar products

in Eq. (2.46) in terms of irreducible spherical tensors T̂ (k)
p and use angular momen-

tum algebra to evaluate the matrix elements of V̂dd in the basis of eigenstates of the

operators N2 and N̂Z . We derive this transformation in detail in Appendix B using

standard angular momentum algebra [142, 143]. The resulting expression for the

interaction is

V̂dd(RAB) =−
√

6π

5

(
2

R3
AB

) 2

∑
p=−2

(−1)−p Y2,−p(θRAB ,φRAB) T̂ (2)
p (dA,dB) (2.47)

The dipole-dipole operator is thus given by the sum of five terms associated with

the space-fixed projection p of the rank-two tensor T (2)
p (dA,dB). Each term is mul-

tiplied by an orientational factor given by components of the spherical harmonic

of rank-two Y2,−p(θRAB ,φRAB). The angular coordinates (θRAB ,φRAB) describe the

orientation of the vector RAB in a space-fixed coordinate system. The matrix ele-

ments of this operator in the uncoupled basis |NAMNA〉|NBMNB〉 are given by (see

Appendix B)

〈NAMNA |〈NBMNB |V̂dd(R,θR)|N′AM′NA
〉|N′BM′NB

〉=−
(

dAdB

R3

)
(−1)−MNA−MNB

×[(2NA +1)(2N′A +1)(2NB +1)(2N′B +1)]1/2

(
NA 1 N′A
0 0 0

)(
NB 1 N′B
0 0 0

)

×

{
3
√

5
2

e−i2φ sin2
θ ×D2 +

3
√

5
2

ei2φR sin2
θ ×D−2 +

√
15
2
(3cos2

θ −1)×D0

−3
√

5sinθ cosθe−iφ ×D1 + 3
√

5sinθ cosθeiφ ×D−1

}
,

(2.48)
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where Dp are constants that carry information about the selection rules for the total

angular momentum projection MNA +MNB , as explained in Appendix B. Therefore,

the selection rules depend on the orientation of the intermolecular axis with re-

spect to the space-fixed frame. For example, for θ = π/2, only terms proportional

to D2, D−2 and D0 contribute to the interaction between two 1Σ molecules. The

corresponding selection rules are

∆NA =±1 and ∆NB =±1

∆(MNA +MNB) = 0,±2.
(2.49)

In the absence of a DC electric field, and when two molecules are too far

apart for the dipole-dipole interaction to be significant, there is no preferred co-

ordinate system for the definition of the angles that specify the rotational states

|N,MN〉 ≡ YN,MN (θ ,φ). Normally, we can define a space-fixed coordinate system

with the single molecule at the origin, so that the states |N,MN〉 are eigenstates of

N̂z with eigenvalue MN . Since the 2N + 1 degenerate states associated to a par-

ticular level have equal probability of being populated, one averages all the single

molecule observables, such as the transition dipole moments, over the three equiv-

alent spatial directions in order to make observable predictions. When the dipole-

dipole interaction between two molecules is considered, the energy of the system is

characterized by the projection of the dipole moments on the intermolecular axis,

so that the energy of the two-particle state is a minimum when the dipole moments

are aligned with respect to this axis. Therefore, we can choose a coordinate system

in which the z axis corresponds to the intermolecular axis, and define the angular

coordinates of the tensor operators and wavefunctions in this coordinate system. If

the molecules are constrained to localized regions in space, as in a crystalline ar-

ray, we can use this coordinate system to be the space-fixed frame. However, if the

intermolecular axis is allowed to rotate in space, as in a molecular collision event,

we need to refer the spherical tensors to the space-fixed frame using rotation ma-

trices, and calculate observable quantities, such as the cross section, by integrating

over all possible rotation angles weighed with the appropriate angular probability

density associated with the quantized rotation of the intermolecular axis.
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As an illustrative example, let us consider the states |g〉= |N = 0,MN = 0〉 and

|e〉= |N = 1,MN = 0〉 and define the matrix element

J(0,0)AB ≡ 〈eA|〈gB|V̂dd(RAB)|gA〉|eB〉,

where the upper index is defined as (MNA +MNB ,M
′
NA

+M′NB
). Following the above

argument, we chose a space-fixed coordinate system in which ~RAB points along the

Z axis. From these definitions follows that θ = 0 in Eq. (2.47). The angle φ is

irrelevant (set to zero for convenience). The only non-vanishing contribution to the

interaction is thus the term
√

15
2 (3cos2 θ−1)×D0. After evaluating the numerical

constant D0 as explained in Appendix B we find that

J(0,0)AB =−6

√
15
2

dAdB

R3
AB

(
1 1 2

0 0 0

)(
1 1 0

0 0 0

)4

=−2
3

dAdB

R3
AB

. (2.50)

2.6.2 Closed-shell molecules with hyperfine structure

For the 1Σ polar molecules considered in this thesis, the atomic nuclei have a rela-

tively large spin angular momentum I ≥ 3/2 (see Table 2.1). The hyperfine split-

tings vary from a few kHz for N = 0 up to hundreds of kHz for N = 1 rotational

levels. These energy scales are comparable with the dipole-dipole interaction en-

ergy Udd = d2/R3
12 for molecules separated by a few hundred nanometers, as well as

the light-shift induced by the trapping laser fields. Moreover, techniques have been

developed to prepare polar molecules in a specific hyperfine state of the ground

rotational manifold N = 0 [157]. It therefore is important to understand the depen-

dence of the electric dipole-dipole interaction on the nuclear degrees of freedom of

the molecules.

Weak magnetic fields

In the presence of a magnetic field small enough that hyperfine states with different

total projection are only weakly admixed, the coupling scheme defined by F =

N+ I and I = I1 + I2 is preferred to describe the coupling of angular momenta in

a molecule [142]. The corresponding basis functions are the fully-coupled states
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|(NI)FMF〉. For simplicity, let us restrict the dipole-dipole tensor operator in Eq.

(2.47) to the component p = 0

V̂dd =−
√

6
2R3

AB

(
3cos2

θ −1
)

T 2
0 (dA,dB). (2.51)

In Appendix C it is shown that the matrix elements of Eq. (2.51) in the two-

molecule basis |(NAIA)FAMFA〉|(NBIB)FBMFB〉 are given by the expression

〈(NAIA)FAMFA |〈(NBIB)FBMFB |V̂dd|(N′AI′A)F
′

AM′FA
〉|(N′BI′B)F

′
BM′FB

〉= δIA,I′A
δIB,I′B

×−
(

dAdB

R3
AB

)√
15
2
(3cos2

θ −1)(−1)−MA−MB [(2NA +1)(2NB +1)]1/2

×
[
(2N′A +1)(2N′B +1)

]1/2

(
NA 1 N′A
0 0 0

)(
NB 1 N′B
0 0 0

)
×(−1)F ′A+F ′B+FA+FB+NA+NB

[
(2FA +1)(2FB +1)(2F ′A +1)(2F ′B +1)

]1/2

×

{
N′A F ′A IA

FA NA 1

}{
N′B F ′B IB

FB NB 1

}
×DF

0 . (2.52)

The first two lines in Eq. (2.52) are identical to the expression for the dipole-

dipole matrix element in Eq. (2.48) without including nuclear spin. The remain-

ing result from the coupling of rotational and nuclear angular momenta. The nu-

merical constant DF
0 is identical to the expression for D0 in Eq. (2.48) but with

the rotational quantum numbers (N,MN) replaced by the total angular momentum

quantum numbers (F,MF) (see Appendix B). Using the methods in Appendix C,

it is straightforward to evaluate matrix elements of other tensor components of the

dipole-dipole operator p 6= 0.

From expression for the matrix elements in Eq. (2.52) the selection rules for

the p = 0 component of the dipole-dipole interaction operator are

∆FA = 0,±1 and ∆FB = 0,±1

∆NA =±1 and ∆NB =±1

∆IA = 0 and ∆IB = 0

(2.53)

∆(MFA +MFB) = 0. (2.54)
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The ∆F = 0 selection rule applies to states with F > 0. The dipole-dipole interac-

tion does not couple the hyperfine states of molecules within the same rotational

manifold, but can mix the hyperfine states in different rotational levels. The selec-

tion rule for the angular momentum projections in Eq. (2.54) is valid for the p = 0

component of the dipole-dipole operator. When other components of the dipole-

dipole tensor are included a more general selection rule applies which depends on

the orientation of the intermolecular vector R̂AB with respect to the space-fixed Z

axis.

Let us consider the states |g〉= |(N = 0, I = 1)F = 1,MF = 0〉 and |e〉= |(N =

1, I = 1)F = 0,MF = 0〉. The exchange matrix element JAB = 〈eA|〈gB|V̂dd |gA〉|eB〉
can be evaluated for θ = 0 in Eq. (2.52) as

J(0,0)AB =−2
dAdB

R3
AB
×

{
0 1 1

0 1 1

}2

=−2
9

dAdB

R3
AB

, (2.55)

which is three times smaller than the analogous result for molecules without nu-

clear spin in Eq. (2.50).

Intermediate magnetic fields

The rotational motion is decoupled from the nuclear degrees of freedom for mag-

netic fields strong enough to mix hyperfine states with different values of F . The

preferred coupling scheme in this case is defined by I = I1 + I2 and the associated

spin-coupled basis states are |NMN〉|IMI〉. The electric dipole-dipole interaction

operator V̂dd in Eq. (2.51) only couples to the rotational degrees of freedom of the

molecule. The matrix elements of the p = 0 component of the interaction operator

in the spin-coupled basis are therefore given by

〈NAMNA |〈IAMIA |〈NBMNB |〈IBMIB |V̂dd|N′AM′NA
〉|I′AM′IA

〉|N′AM′NA
〉|I′AM′IA

〉

= δIA,I′A
δIB,I′BδMIA ,M

′
IA

δMIB ,M
′
IB
〈NAMNA |〈NBMNB |V̂dd|N′AM′NA

〉|N′BM′NB
〉,

where the matrix element over rotational states is given by Eq. (2.48). Contrary

to the case of weak or zero magnetic fields, the nuclear spins do not influence
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the strength of the dipole-dipole interaction between polar molecules for relatively

large magnetic fields.

The crossover from the weak field to the intermediate field regime can be

loosely defined by the position of the avoided crossings in the hyperfine Zeeman

spectra in Fig. 2.3. In the absence of external fields, a molecular state has a well-

defined value of the total angular momentum F . In this limit the fully coupled basis

diagonalizes the molecular Hamiltonian. As the magnetic field increases, coupling

between hyperfine states with different values of F makes the fully-coupled basis

less meaningful, particularly near an avoided crossing [145, 146]. For 41K87Rb

molecules, these avoided crossings occur at magnetic fields of a few Gauss for the

N = 0 and N = 1 rotational levels.

2.6.3 Open-shell molecules without nuclear spin

Let us consider polar molecules with 2Σ ground electronic states. The unpaired

electron spins of two 2Σ molecules separated by a distance RAB interact weakly

through a magnetic dipole-dipole interaction that scales as ∼ α2/R3
AB, where α ≈

1/137 is the fine structure constant. The magnitude of the electric dipole-dipole

interaction between polar molecules is much larger than the magnetic spin dipole-

dipole interaction. Therefore, the interaction between two open-shell polar molecules

is dominated by the electric dipole-dipole interaction between states with the same

spin projection. For instance, consider a rovibrational state of a 2Σ molecule de-

scribed in the uncoupled basis

|nNMN〉|S,MS〉,

where n describes the electronic and vibrational motion, N is the magnitude of

the total angular momentum excluding the electron spin, S is the magnitude of the

electron spin angular momentum, and (MN ,MS) are the projections of the corre-

sponding angular momenta on a space-fixed quantization axis. In this basis, the

matrix elements of the dipole dipole operator in Eq. (2.47) are simply given by

〈NAMNASAMSA |〈NBMNBSBMSB |V̂dd |N′AM′NA
S′AM′SA

〉|N′BM′NB
S′BM′SB

〉

= δMSA ,M
′
SA

δMSB ,M
′
SB
〈NAMNA |〈NBMNB |V̂dd |N′AM′NA

〉|N′BM′NB
〉. (2.56)
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The matrix element in the rotational basis is given by Eq. (2.48). In other words,

if the electronic spin is decoupled from the rotational motion of the molecule, the

dipole-dipole interaction is identical to the case of closed-shell molecules, pro-

vided the electronic spin projections are conserved for the interacting molecules.

In Chapter 3 we describe a scheme that can be used to induce spin-changing elec-

tric dipole-dipole interaction between 2Σ molecules in superimposed static electric

and magnetic fields.

2.7 Optical trapping of diatomic molecules
The interaction of a ground state molecule with an optical field can be considered

to be conservative if the detuning of the light field from any transition between

molecular states is much larger than the linewidth Γ of the states [79]. In other

words, the population of the excited states is small and the effects of spontaneous

emission in the dynamics of a ground state molecule interacting with a laser can

be neglected. In current experiments with cold molecules, laser beams whose fre-

quencies are far from any vibronic resonance are used to trap slow molecules using

a light-induced force derived from a spatially dependent AC Stark shift. The degree

of confinement for the molecular motion depends on the intensity profile of the op-

tical trapping lasers. Dipole traps [35] create a three-dimensional confinement for

a molecular or atomic ensemble and have been used to study collisions at cold and

ultracold temperatures [158]. Superimposing several retro-reflecting laser beams

results in a periodic trapping potential in one, two, or three dimensions known as

optical lattices [36, 79]. Ultracold atomic and molecular gases in optical lattices

have been studied in the context of quantum simulation of condensed matter phe-

nomena [80, 82, 90, 96], quantum information processing [103, 117, 126], preci-

sion measurements [159], and ultracold collisions in confined geometries [37, 39].

Most experimental groups work with alkali-metal atoms in optical lattices. After

the preparation of the first ultracold molecules in the rovibrational ground state

[15, 18–21], it has become technologically possible to trap homonuclear and het-

eronuclear molecules in optical lattices [20, 137].
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The starting point for the description of the light-induced potentials is Eq.

(2.32)

ĤAC =−∑
p

∑
p′

α̂p,p′Ep(r)E∗p′(r), (2.57)

where εp(r) is the p component of the positive frequency electric field vector in

the spherical basis and α̂p,p′ is an element of the polarizability tensor evaluated in

the space-fixed frame. The space-fixed molecular polarizability can be written in

terms of the molecule-fixed polarizability elements, as it was done in Eq. (2.36).

2.7.1 Dipole traps

A dipole trap for molecules can be created with a single Gaussian laser beam with

wavelength λL far-detuned from an vibronic resonance [35]. The intensity distri-

bution of a Gaussian laser propagating along the x axis is given by

I(r,x) = I0

(
w0

w(x)

)2

e−2r2/w2(x), (2.58)

where w(x) = w0
√

1+(x/xR)2 is radius at which the intensity decreases by 1/e2

from its value I0 at the center of the beam. The distance x is measured from the

position of the minimum radius w0, known as the beam waist. The peak intensity

is given by I0 = 2P/πw2
0, where P is the total power of the laser. The Rayleigh

length xR = πw2
0/λL and the beam waist w0 provide an estimate of the longitudi-

nal and transverse dimensions of the trapped molecular cloud, respectively. The

dimensions of the dipole trap can be on the order of a few millimeters [35]. If the

laser beam is linearly polarized along the z axis, then the optical dipole potential

for a diatomic molecule is given by the diagonal elements of the Hamiltonian

ĤAC =−|E(x,r)|2
{

1
3
(α‖+2α⊥)+

2
3
(α‖−α⊥)C2,0(θ)

}
(2.59)

where E(x,r) is the electric field amplitude of the laser beam, α‖ is the molecular

polarizability along the internuclear axis, α⊥ is the polarizability perpendicular to

the internuclear axis, and CL,M a modified spherical harmonic. For 1Σ molecules

in the ground vibronic state |X1Σ,v = 0〉, Eq. (2.59) couples different rotational
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states |NMN〉, with matrix elements

〈NMN |HAC|N′M′N〉=

= −|E(x,r)|2
{

αscδN,N′δMN ,M′N +αten(−1)−MN [(2N′+1)(2N +1)]1/2

×

(
N 2 N′

0 0 0

)(
N 2 N′

−MN 0 M′N

)}
, (2.60)

where we have defined the scalar and tensor polarizabilties as αsc =
1
3(α‖+2α⊥)

and αten = 2
3(α‖−α⊥) [154, 160]. The selection rules for rotational couplings

from Eq. (2.60) are ∆MN = 0, ∆N = 2,4, . . ., and ∆N = 0 for N 6= 0. The second 3-

j symbol contains the dependence on the angular momentum projection MN , which

leads to the so-called tensor shifts. The optical dipole potentials are thus obtained

from the diagonalization of ĤAC in a truncated basis of rotational states in the

ground vibronic state.

In general the trapping laser will induce coherences between rotational states

of the same parity, which induces alignment of the molecule along the laser field

polarization. If the off-diagonal elements in Eq. 2.60 are smaller than the energy

difference between the coupled rotational states ∆ = E(N + 2k)−E(N), then the

rotational Raman coupling can be neglected. This is the case for alkali metal dimers

such as LiCs and LiRb in dipole traps and optical lattice traps with laser intensities

on the order a few mW/cm2.

2.7.2 One-dimensional optical lattice

Two identical counter-propagating laser beams create an interference pattern with

a sinusoidal intensity profile, with period aL = λL/2. Along the axis r = 0 of a

single Gaussian beam given by Eq. (2.58), the electric field can be approximated

by a plane wave E(x, t) = E0 cos(kLx−ωLt)ê, with amplitude E0 at the beam waist

w0, and polarization vector ê. The total field ET at the center of the beam waist is

the sum of the counter-propagating waves, i.e.,

ET = E0 [cos(kLx−ωLt)+ cos(−kLx−ωLt)] ê

= 2E0 cos(kLx)cos(ωLt)ê. (2.61)
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The time-averaged intensity is I(x) ∝ 〈E2
T (x, t)〉 = 2|E0|2 cos2(kLx). Due to the

angular momentum dependence of the AC Stark shift, the periodic potential is

slightly different for different rotational states |N,MN〉. From Eq. (2.59) the light-

induced potentials for the first two rotational states J = 0 and J = 1 with M = 0

are

|N = 0,MN = 0〉 → V (x) =−|E0|2αsc cos2(kLx), (2.62)

|N = 1,MN = 0〉 → V (x) =−|E0|2
(

αsc +
2
5

αten

)
cos2(kLx). (2.63)

Therefore, the optical potentials experienced by the rotational states |0,0〉 and |1,0〉
have intensity minima at the same position, but the trap depth for the ground state

is smaller. Equations (2.62) and (2.63) are examples of optical lattice potentials.

Molecules in a given rotational state are strongly confined near the minima of the

periodic potential. The lattice period is aL = λL/2. The equations above describe

the potential along the axial direction of two counter-propagating Gaussian beams.

In this direction the confinement is twice as large compared with a single beam due

to constructive interference. Along the radial direction the confinement is weaker,

which has been used to study collisional dynamics in quasi-2D geometries [37, 39].

The trapping frequency along the axial direction of the optical lattice can be

obtained by expanding the lattice potential near one of the minima. We can shift

the potential V (x) by one lattice period using V0 cos2(kLx) =V0−V0 sin2(kLx), and

expand for kLx� 1 to get V (x)≈V0k2
Lx2 ≡ (1/2)mω2

0 x2, where m is the molecular

mass. The harmonic oscillator frequency ω0, or trapping frequency, is then

ω0 =
2
h̄
√

V0ER (2.64)

where ER = h̄2k2
L/2m is the recoil energy, which is usually used as the energy scale

in experiments [79]. The energy h̄ω0 gives the energy splitting between the lowest

motional states of the optical lattice potential. For sufficiently deep lattices, the

anharmonicity of the spectrum can be neglected [37, 79].
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2.7.3 Higher-dimensional optical lattices

More complex lattice geometries can be produced by superimposing several laser

beams. For a lattice with dimensionality d, the number of beams required is at least

d +1, in order to stabilize the relative phases between the laser beams [36]. Two-

dimensional lattices have been created using three [78] and four laser beams [77],

and three-dimensional lattices using four or six laser beams [36]. One possible

realization of a two-dimensional lattice consists of two pairs of counterpropagat-

ing beams with equal amplitudes and zero relative phase form the standing waves

E1(r, t) = 2E0 cos(k1 · r)cos(ω1t)ê1 and E2(r, t) = 2E0 cos(k2 · r)cos(ω2t)ê2. The

standing waves propagate along the directions k1 and k2. The polarization vectors

are ê1 and ê2. The total electric field in the region of space where the standing

waves are superposed is ET = E1 +E2. According to Eq. (2.32) the interaction

of a polarizable particle with the electric field ET (r, t) can be represented by the

light-induced potential U(r, t) given by

U(r, t) = 4|E0|ᾱ
{

cos2(k1 · r)cos2(ω1t)+ cos2(k2 · r)cos2(ω2t)

+ cos(k1 · r)cos(k2 · r)cos(ω1t)cos(ω2t)ê1 · ê2} , (2.65)

where ᾱ is a scalar parameter that describes the polarizability of the particle. Equa-

tion (2.65) shows that for a particle with scalar polarizability the time-average light-

induced potential U(r) = 〈U(r, t)〉t is separable in the directions k1 and k2 if the

polarizations of the corresponding standing waves are orthogonal. For simplicity

the frequencies ω1 and ω2 can be chosen to be identical, but if the polarization of

the standing waves are not perfectly orthogonal, then a frequency mismatch makes

the time-average of the cross term in Eq. (2.65) vanish. In many cases, the polar-

izability of atoms in low angular momentum states can be considered as a scalar

quantity. The same is valid for a molecule trapped in the rovibrational ground state

N = 0 (see Eq. (2.62)).

It is possible to obtain expressions for an optical lattice potential for an arbitrary

electromagnetic field ET (r, t). As explained in Section 3.5 and Appendix A, when

the positive frequency component of the field at position r can be expanded in

spherical basis as E(+)(r) = ∑p Ep(r)ê∗p, the light-matter interaction Hamiltonian

ĤAC is given by Eq. (2.32). The optical lattice potential ĤAC can be written in
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terms of molecular-frame polarizabilities using Eqs. 2.37 and 2.38. Let us consider

a two-dimensional optical lattice created by superimposing two standing waves

with equal amplitude E0 and wavenumber kL = 2π/ωL, propagating in orthogonal

directions: one standing wave propagates along the x axis with linear polarization

ŷ and the other propagates along the y axis with linear polarization x̂. If there

is no phase difference between the field amplitude of the two waves, the positive

frequency component of the total electric field can be written as

E(+)
L = E0 {cos(kLy)x̂+ cos(kLx)ŷ}

= − E0√
2

{
[cos(kLy)+ icos(kLx)] ê∗1 +[−cos(kLy)+ icos(kLx)] ê∗−1

}
,

i.e., the optical lattice is composed of right-circular E1 and left-circular E−1 polar-

izations. According to Eq. (2.32) the light-induced potential is given by

ĤAC = α̂−1,1E1E∗1 + α̂1−1E−1E∗−1 + α̂11E−1E∗1 + α̂−1−1E1E∗−1, (2.66)

which expressed in terms of molecular-frame irreducible polarizabilities α( j) reads

ĤAC =

[
2α(0)

(
1 1 0

1 −1 0

)
D

(0)
0,0 +2α(2)

(
1 1 2

1 −1 0

)
D

(2)
0,0

]
|E1|2

+α(2)

(
1 1 2

1 1 −2

)[
D

(2)
2,0

(
E1E∗−1

)
+D

(2)
−2,0 (E−1E∗1 )

]
. (2.67)

The light-matter interaction Hamiltonian written in this form has a direct physical

interpretation. The first line of Eq. (2.67) is proportional to the field amplitudes

E1E∗1 = E−1E∗−1 which according to their definition in Appendix A correspond to

virtual absorption and emission of photons with the same polarization, imparting

no net angular momentum to the molecular states. Terms of this type are propor-

tional to the Wigner functions D
( j)
0,0 . The second line in Eq. (2.67) contains the

product of field amplitudes E1E∗−1 (and its complex conjugate), which represents

absorption of a right-circularly polarized photon and emission of a left-circularly

polarized photon, imparting a net angular momentum p− p′ = 2 to the molecu-
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Figure 2.5: Illustration of a two-dimensional optical lattice potential for polar
molecules.

lar states. This angular momentum transfer is represented by the Wigner function

D
(2)
2,0 .

The two-dimensional optical lattice potential in Eq. (2.67) can be written in a

form that makes explicit its dependence on the direction of propagation of the laser

beams as

ĤAC = |E0|2 cos2(kLx)
(

α(0)√
3

D
(0)
0,0 +

α(2)√
5

[
D

(2)
−2,0 +

2√
6
D

(2)
0,0 +D

(2)
2,0

])
+|E0|2 cos2(kLy)

(
2α(0)√

3
D

(0)
0,0 −

α(2)√
5

[
D

(2)
−2,0−

2√
6
D

(2)
0,0 +D

(2)
2,0

])
+|E0|2 cos(kLx)cos(kLy)

α(2)√
5

i
(
D

(2)
2,0 −D

(2)
−2,0

)
. (2.68)

Therefore, the light shift potential for a superposition of two standing waves prop-

agating in orthogonal directions, with orthogonal polarizations in the XY plane, is

given by a sum of the contributions of each independent beam plus a cross term

that makes the potential non-separable for rotational states with N ≥ 1. In Figure

2.5 a separable two-dimensional optical lattice potential is illustrated.

The periodic potential ĤAC in Eq. (2.68) contains terms proportional to Ĉ2,q. In

the rotational angular momentum basis |N,M〉, the corresponding matrix elements
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are given by

〈NMN |Ĉ2,q|N′M′N〉= (2.69)

= (−1)MN [(2N′+1)(2N +1)]
1
2

(
N 2 N′

0 0 0

)(
N 2 N′

−MN q M′N

)
.

The term proportional to C2,0 was analyzed earlier when discussing dipole traps.

This term contributes to the state-dependent AC Stark shift of the rotational levels

and also couples rotational states of the same parity and projection MN . This is

the only term that has non-zero matrix diagonal elements for the field-free state

|N = 0,MN = 0〉. The term proportional to C2,±2 has selection rules ∆N = ±2,

∆N = 0 for N 6= 0, and ∆MN = ±2. As we pointed out before, the optical lattice

intensity is usually not strong enough to mix rotational states with different values

of N. However, the operator Ĉ2,±2 induces Raman couplings between states with

different projections MN within a given rotational angular momentum manifold for

N ≥ 1. In section 2.7.4 we analyze these Raman couplings in detail, since they

have been previously neglected in the recent literature [41, 94, 161].

The effective optical lattice potential for any laser beam configuration can be

obtained by diagonalizing the light-shift operator ĤAC in the basis of field-free

rotational states |N,M〉. If an additional DC electric field is present, the light-shift

operator must be diagonalized in the field-dressed basis |(N),M〉 in order to obtain

the corresponding optical lattice potential for each field-dressed state, as discussed

below.

2.7.4 Rotational Raman couplings in optical traps

Linearly polarized far-detuned optical fields

Let us rewrite the Hamiltonian in Eq. (2.59) for the interaction of a molecule with a

1D optical lattice with linear polarization along the space-fixed Ẑ axis. Neglecting

the state-independent AC Stark shift and in units of the rotational constant Be, the
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molecular Hamiltonian is given by

Ĥ = ĤR + ĤAC

= N̂2− 2
3

ΩID
(2)
0,0 (θ)cos2(kLx), (2.70)

where

ΩI =
|EL|2(α‖−α⊥)

Be

is a parameter that characterizes the strength of the light-matter interaction. The

intensity of laser beam along the propagation axis is IL = |EL|2/2ε0c. Since we

assume that ΩI� 1, we can neglect Raman couplings of the form N↔ N+2. The

tensor light shifts ∆N,MN of the rotational state |NMN〉 are given by the diagonal

matrix elements of D
(2)
0,0 . Table 2.3 presents the tensor shifts for the rotational

states with N ≤ 2, evaluated using Eq. (2.70). The shifts do not depend on the sign

of MN , as a consequence of the cylindrical symmetry of the Hamiltonian. In the

absence of additional electric fields, the state |1,0〉 is the lowest rotational excited

state.

(N, |MN |) (0,0) (1,0) (1,1) (2,0) (2,1) (2,2)
∆N,MN/ΩI 0 −4/15 2/15 −4/21 −2/21 4/21

Table 2.3: Tensor light shift ∆N,M for the rotational state |N,MN〉 in units of
ΩI = |E0|2∆α/Be.

Collinear DC electric and linearly polarized optical trap

Let us consider a polar molecule in its vibrational ground state, under the influence

of a DC electric field and a CW far-detuned optical field. If the laser polarization is

collinear with the direction of the DC electric field, which is chosen as the space-

fixed Ẑ axis, the dimensionless molecular Hamiltonian can thus be written as

Ĥ = ĤR + ĤDC + ĤAC

= N̂2−λD
(1)
0,0 −

2
3

ΩID
(2)
0,0 cos2(kLx), (2.71)
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where λ = dEZ/Be parametrizes the strength of the DC electric field. EZ is the

magnitude of the DC electric field and d is the permanent dipole moment of the

molecule. The rotational spectrum is dominated by the first two terms in Eq. (2.71)

for ΩI � 1. The matrix elements of the spherical tensor D
(1)
0,0 in the basis of field-

free rotational states |NMN〉 are given in Eq. (2.18).

The total shift of the rotational levels in the presence of superimposed AC and

DC electric fields can be obtained by diagonalizing Eq. (2.71). Let us consider

the situation in which the AC electric field from the optical trap is much weaker

than the DC electric field, i.e., ΩI � λ ∼ 1. This experimentally relevant case was

originally analyzed in Ref. [153]. The contribution of the optical field to the total

Stark shift can be obtained by substracting the DC Stark shift from the eigenvalues

of the total Hamiltonian in Eq. (2.71). In Fig. (2.6) we plot the tensor light shift

∆(N),M for the state |(N),M〉, where the quantum number in parenthesis (N) is

not strictly conserved in the presence of the DC field. Panel (a) shows that the

tensor light shifts of different field-dressed states become equal at certain values of

the field strength λ = dEZ/Be. For the states considered, these so-called “magic

spots” occur at non-perturbative DC electric fields (λ > 1). In the limit λ → 0,

the light shifts approach their field-free values given in Table 2.3. In precision

experiments, it might be useful to use a DC electric field to make the tensor light

shifts of two rotational states identical since the states would experience the same

trapping potential in an optical trap. However, most of the applications in this

thesis consider the DC electric field as a free parameter. Therefore, we assume the

most general case where molecules in different internal states experience slightly

different trapping potentials.

Perpendicular DC electric and linearly polarized optical trap

Let us consider a configuration in which the polarization of the far-detuned optical

field is linear, but orthogonal to the direction of an applied DC electric field. This is

the most natural configuration in 2D and 3D optical lattices [36]. The quantization

axis for the rotational angular momentum can be chosen to be the direction of the

DC electric field, which is the space-fixed Ẑ axis for convenience. The polarization

vector of the electromagnetic field can be chosen to lie along the X̂ axis. For a laser
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Figure 2.6: Tensor light shifts ∆(N),M of rotational states |(N),M〉 as a func-
tion of the DC electric field parameter λ = dEZ/Be: (a) Lowest four
states with M = 0; (b) Lowest six states with |M|= 1. Points where the
shifts are equal for two different states are marked by arrows. The ten-
sor shifts are given in units of ΩI = |E0|2∆α/Be. The curves correspond
to collinear AC and DC electric fields, with ΩI � 1.

beam propagating along the Ŷ axis, the positive frequency component E(+)(r) of

the AC electric field vector is given by

E(+)(r) = E0 cos(kLy)X̂ =
E0√

2
cos(kLy)(ê−1− ê1),

where E0 is the field amplitude, and ê±1 are components of the spherical basis with

positive and negative helicity [143]. The effective Hamiltonian for the interaction

of the molecule with the off-resonant electromagnetic wave is thus given by

ĤAC = −|E0|2

2
[α̂1,1 + α̂−1,−1− (α̂1,−1 + α̂−1,1)]cos2(kLy), (2.72)

where α̂p,p′ is a component of the electric polarizability tensor in the space-fixed

coordinate system. The total molecular Hamiltonian including the interaction with
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Figure 2.7: Energy level diagram showing the lowest four rotational states in
the presence of a DC electric field along the Z axis and an weak off-
resonant optical field with polarization not collinear with the DC field.
In red-circles the states with MN = 0 projection along the Z axis are
shown.

the laser beam in (2.72) can be written as

Ĥ = ĤR + ĤDC + ĤAC

= N̂2−λ Ĉ1,0−
1
6

ΩI

{√
6 Ĉ2,−2−2 Ĉ2,0 +

√
6 Ĉ2,2

}
cos2(kLy). (2.73)

where we have neglected the state-independent AC Stark shift.

In the basis of field-free rotational states |N,Mn〉, the term ĤAC is not diagonal

for any value of ΩI . This is contrary to the case of collinear fields, where for

ΩI � 1 the off-diagonal elements of ĤAC could be ignored. In general, the term

proportional to Ĉ2,±2 couples different MN states within the same rotational level
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for N ≥ 1. As an example, let us write the Hamiltonian Ĥ in the field-free rotational

subspace S = {|0,0〉, |1,M〉} in the block diagonal form

Ĥ =


0 −λ 0 0

−λ 2(1+ 1
15 ΩI) 0 0

0 0 2(1− 1
30 ΩI)

1
5 ΩI

0 0 1
5 ΩI 2(1− 1

30 ΩI)

 .

The rotational states |1,1〉 and |1,−1〉 are degenerate for all values of the DC elec-

tric field. Therefore, for all finite values of ΩI the Raman coupling

〈1,−1|H|1,1〉= 1
5

ΩI

mixes these angular momentum states. These couplings should be present in the

limit Ω� 1, which is relevant in optical trapping experiments. The first rotational

excited state of the molecule for ΩI > λ corresponds to the antisymmetric combi-

nation |e〉 = 1/
√

2{|1,1〉− |1,−1〉}. The energy level scheme for the lowest four

rotational states of a generic polar molecule is illustrated in Fig. 2.7. For any value

of N, the AC field orthogonal to the DC field splits the rotational sublevels |(N),M〉
and |(N),−M〉, which are otherwise degenerate for any value of λ . This splitting

is proportional to ΩI , and could be easily verified spectroscopically in an optical

trap using circularly polarized microwave radiation.

For the applications discussed in this thesis, we consider rotational states with

angular momentum projection MN = 0. These states are isolated from other rota-

tional states for a weak DC electric field with λ > 0.1, regardless of the polarization

of the laser beams that make the optical trap. This is illustrated in Fig. (2.7) for the

first two rotational levels N = 0 and N = 1.

Although we have derived the light-matter Hamiltonian in Eq. (2.73) for per-

pendicular DC and AC fields, the conclusions are also valid for any field config-

uration that is not collinear. Many 2D and 3D optical lattices are obtained by su-

perimposing multiple laser beams with orthogonal polarizations. Standing waves

with parallel polarizations are avoided in atom trapping experiments due to the

presence of time-dependent interference terms in the lattice potential that cancel

for orthogonal polarizations [79].
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For some applications it might be necessary to eliminate the coupling between

the sublevels |(N),M〉 and |(N),−M〉 for M 6= 0 that result from Raman couplings

in a non-collinear configuration of multiple electric fields, as in a 3D optical lat-

tice in the presence of a DC electric field. In this case, an additional preparation

step is necessary before applying the optical lattice lasers: with molecules in a

dipole trap with polarization collinear with an applied DC electric field, a strong

near-resonant CW microwave field with circular polarization can be used to shift a

specific rotational sublevel |(N),M〉 out of resonance with |(N),−M〉. In order to

achieve this, the CW microwave field can be tuned near resonance with the tran-

sition |(N),M〉 → |(N± 1),M± 1〉, before ramping up the intensity of the optical

lattice lasers. As long as the AC Stark shift induced by the microwave field is

larger than the depth of the lattice potential, the rotational state of interest |(N),M〉
can be considered isolated from other rotational states. This approach was recently

proposed in Ref. [94].

In later chapters we analyze coherent collective phenomena that occur in a

Mott-insulator phase of polar molecules. We assume the molecules are trapped

in a three-dimensional optical lattice with one molecule per lattice site, with no

tunneling of molecules between sites. We impose this restriction in order to avoid

collisional decoherence and losses. Although we consider a three-dimensional op-

tical lattice, an ensemble of two-dimensional molecular arrays can be generated,

for example, if the separation between molecules in two adjacent layers is larger

than the separation between molecules within a layer. Similarly, ensembles of one-

dimensional molecular arrays can be produced.
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Chapter 3

Engineering molecular
interactions with external fields

3.1 Chapter overview
In this chapter a detailed discussion is given on the influence of external fields

on the dipole-dipole interaction between polar molecules. In Section 3.2 a pro-

cedure is outlined for the numerical evaluation of the dipole-dipole interaction in

the presence of dressing fields. Section 3.3 then focuses on the dependence of the

interaction energy between closed-shell 1Σ polar molecules on the strength and ori-

entation of an applied static electric field. In Section 3.3 an analogous study is done

for open-shell 2Σ polar molecules in combined static electric and magnetic fields,

including a scheme for generating two-particle entangled molecular electron spins.

In Section 3.5 the interaction between closed-shell polar molecules is described in

the presence of a far off-resonant optical field.

The results in this chapter set the stage for the work presented later on the in-

teraction between molecules in optical lattices. Therefore, the analysis is restricted

to the case of fixed intermolecular distances. Collisional interactions are not con-

sidered here.
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3.2 Dipole-dipole interaction in external fields
Let us consider two identical polar molecules denoted 1 and 2 separated by the

distance R12. We can write the Hamiltonian representing the molecules as

Ĥ = Ĥ1 + Ĥ2 +V̂12. (3.1)

where Ĥ represents the energy of a single-molecule and V̂12 is the dipole-dipole

interaction operator. The dipole-dipole energy can be expressed in units of

Udd =

[
1

4πε0

]
d1d2

R3
12

, (3.2)

where d is the molecular permanent dipole moment. The factor in square brackets

is needed to express this energy in S.I. units. Throughout this Thesis we use atomic

units (4πε0 = 1). The single-molecule Hamiltonian Ĥi describes the rovibrational

structure of the molecule as well as the interaction with a time-independent external

field. The dipole-dipole energy Udd is typically small compared to the energy scales

that define Ĥ. It is a common practice to evaluate the interaction matrix elements

〈φ1|〈ψ2|V̂12|φ ′1〉|ψ ′2〉 in the basis of eigenstates of Ĥ1 and Ĥ2 in order to describe

the interaction between molecules. The effective interaction potential depends on

the applied external fields via the field-dressed single-particle states {|φ〉}.
A straightforward numerical procedure can be used to evaluate the matrix el-

ements of the dipole-dipole interaction in the basis of field-dressed states. Af-

ter specifying the single-molecule Hamiltonian Ĥ (for identical molecules Ĥ1 =

Ĥ2 = Ĥ), we chose a convenient basis U1 to construct the matrix of Ĥ. This

matrix is diagonalized using standard algebraic routines. The eigenvectors of Ĥ

can be written as linear combinations of the states from the basis U1. The basis

of single-molecule eigenvectors V1 can be used to build the two-molecule basis

V12 = V1⊗V1. The matrix elements of the interaction operator V̂12 in the basis

V12 are then given by linear combinations of matrix elements of V̂12 in the two-

molecule basis U12 = U1⊗U1. Therefore, if we know the matrix of V̂12 in the

basis U12 and the eigenvectors of Ĥ in the basis U1, we can evaluate matrix ele-

ments of V̂12 in the two-molecule basis V12. Since we are interested in molecular

interactions in the presence of external fields, we write the single molecule Hamil-
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tonian as Ĥ = ĤM +ĤF , where ĤF contains the interaction of the molecule with the

external field. In the simplest cases we chose U1 to be the basis of eigenstates of

the field-free molecular Hamiltonian ĤM. The matrix elements of ĤM in the basis

U1 have analytical form but the matrix elements of ĤF in the same basis can be

obtained analytically only in the perturbative regime ĤF � ĤM.

3.3 Closed-shell molecules in electric fields
As the first illustration of this procedure we consider the interaction between two

closed-shell polar molecules in 1Σ electronic states. An external DC electric field

interacts with the electric dipole moment of the molecule (see Section 2.4). The

dimensionless single-molecule Hamiltonian is

Ĥ = ĤR + ĤDC = N̂2−λD
(1)
0,0 (3.3)

where λ = dEZ/Be. EZ is the magnitude of the DC electric field and d is the

permanent dipole moment. The field-free single molecule basis U1 consists of

all the angular momentum states |N,MN〉 up to a given value of Nmax. The two-

molecule basis U2 is constructed from the product states |N1,MM1〉|N2,MN2〉, and

the dipole-dipole matrix V̂dd is evaluated in this basis using the results in Appendix

B. The eigenvectors of the Stark Hamiltonian in Eq. (3.3) can be easily obtained

as in Section 2.4. Let us consider for example the field-dressed eigenstates states

|g〉= |(0),0〉 and |e〉= |(1),0〉 which can be written for λ < 1 as

|g〉= a|0,0〉+b|1,0〉 and |e〉=−b|0,0〉+a|1,0〉, (3.4)

where a� b∼ E2
Z and |a|2 + |b|2 ≈ 1, as can be easily derived using second-order

perturbation theory [142]. In order to evaluate the dipole-dipole matrix element

〈e1|〈g2|V̂dd |g1〉|e2〉, we use Eq. (3.4) and the results in Appendix B to obtain

〈e1|〈g2|V̂dd |g1〉|e2〉 = a4〈10|〈00|V̂dd |00〉|10〉+b4〈00|〈10|V̂dd |10〉|00〉

−a2b2〈10|〈10|V̂dd |00〉|00〉−a2b2〈00|〈00|V̂dd |10〉|10〉

= (a2−b2)2〈10|〈00|V̂dd |00〉|10〉

≈ a4J(0,0)12 , (3.5)
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where J(0,0)12 = 〈10|〈00|V̂dd |00〉|10〉= 〈10|〈10|V̂dd |00〉|00〉 is the field-free exchange

interaction constant (See Section 2.6), which gives rise to the exchange of rota-

tional excitations between molecules. Equation (3.5) shows that the interaction

that exchanges rotational excitations between two molecules is smaller in the pres-

ence of a DC field compared with the field-free case. In this example we have only

used the reduced subset {|g1〉|e2〉, |e1〉|g2〉} from the two-molecule field-dressed

basis V2 = V1⊗V1. The evaluation of field-dressed interaction matrix elements

between other states is analogous.

The numerical value of the field-dressed matrix elements depend on the di-

mensionality of the field-free basis U1. Convergence tests can be made to en-

sure that the value of the desired matrix element does not depend on the value of

Nmax. In this Thesis we mainly deal with transitions within the rotational subspace

S1 = {|N = 0,MN = 0〉, |N = 1,MN = 0,±1〉}. Convergence of the dipole-dipole

matrix elements to less than 1% of their value is achieved for Nmax = 4.

For Nmax = 4 the dimension of the single-molecule basis U1 is D1 =∑
Nmax
N=0(2N+

1) = 25. The two-molecule basis U2 has dimension D2 = 625, and the dipole-

dipole matrix V̂dd has dimension (D2)
2. From the large number of dipole-dipole

matrix elements, we chose those involving states within the subspace S1. We focus

our attention to the matrix elements of the form: V eg
12 = 〈e1|〈g2|V̂dd |e1〉|g2〉, V gg

12 =

〈g1|〈g2|V̂dd |g1〉|g2〉, J12 = 〈e1|〈g2|V̂dd |g1〉|e2〉= 〈e1|〈e2|V̂dd |g1〉|g2〉, and V ee′
12 =

〈e1|〈e′2|V̂dd |e1〉|e′2〉. The state |g〉 is the field-dressed rovibrational ground state,

and the states |e〉 and |e′〉 represent the sublevels associated with the field-free ro-

tational level N = 1. A more detailed discussion of the processes associated with

each of these matrix elements is given in Chapter 5.

3.3.1 Strength and anisotropy of the dipole-dipole interaction

Dependence on the electric field strength

Figure 3.1 presents the dipole-dipole energies J12, V eg
12 , V gg

12 , and V e
12 as functions

of the DC electric field strength λ = dEZ/Be. The energy is plotted in units of

Udd ≡ d2/R3
12 so that the curves are valid for any 1Σ polar molecule. The two-

particle states are characterized by the total angular momentum projection along
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the electric field axis M = MN1 +MN2 . Because the ground state has projection

MN = 0, the three values of the total projection M shown in the Fig. 3.1 corre-

spond to the possible projections of the excited state MN = −1,0,1. The curves

in Fig. (3.1) correspond to DC electric field perpendicular to the vector R12 that

joins the centers of mass of the molecules. In panels (a) and (b) it is shown that the

dipole energies depend on the absolute value of the total projection |M|. The dipole

exchange constant J12 has opposite sign for states with M = 0 and |M| = 1 inde-

pendent of the value of λ , but V eg
12 has the same sign for large values of λ . Only the

exchange constant J12 does not vanish at zero electric fields, because it depends on

the transition dipole moment between |g〉 and |e〉. The rest of the matrix elements

depend on the permanent dipole moments of the states |g〉 and |e〉, which vanish in

the absence of electric fields. The energy V ee
12 is an order of magnitude smaller than

the rest of the matrix elements considered for any value of λ . Later in this Thesis

(see Chapters 5-6) we use the parameters D12 =V eg
12 −V gg

12 , U12 =V ee
12 +V gg

12 −2V eg
12 ,

and J12 in order to describe collective effects in an ensemble of interacting polar

molecules. Figure 3.2 shows the dipole energies D12 and U12 as a function of the

field strength parameter λ , for a DC electric field perpendicular to the intermolec-

ular axis. The curves are obtained for |e〉= |(1),0〉.

Dependence on the electric field orientation

The dipole-dipole interaction operator V̂dd is anisotropic due to its dependence on

the orientation of the intermolecular axis with respect to the space-fixed Z axis. In

Chapter 2 we showed that V̂dd can be written as

V̂dd(R12) =−2(6π/5)1/2 R−3
12

2

∑
p=−2

(−1)−p Y2,−p(θR12 ,φR12) T̂ (2)
p (d1,d2), (3.6)

where Y2,−p(θR12 ,φR12) is a spherical harmonic that depends on the orientation of

R12 with respect to the DC electric field direction (Z-axis). Let us consider the

matrix element

J(0,1)12 = 〈(1),1|〈(0),0|V̂dd |(0),0〉|(1),0〉.

The dipole-dipole operator in this case couples two-molecule states with total pro-

jections M = 0 and M = 1. The only term that can induce this coupling in Eq. (3.6)
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Figure 3.1: Dipole-dipole energies as a function of the field strength pa-
rameter λ = dEZ/Be. The rovibrational ground state is |g〉 = |(0),0〉.
(a) V eg

12 = 〈e1|〈g2|V̂dd |e1〉|g2〉 for |e〉 = |(1),0〉 (blue curve) and |e〉 =
|(1), |1|〉 (red curve). (b) J12 = 〈e1|〈g2|V̂dd |g1〉|e2〉 for |e〉= |(1),0〉 (blue
curve) and |e〉= |(1), |1|〉 (red curve). (c) V gg

12 for |e〉= |(1),0〉. (d) V ee
12

for |e〉= |(1),0〉. The electric field is perpendicular to the intermolecu-
lar axis. Energy in units of Udd = d2/a3

L, where d is the dipole moment
and aL is the lattice constant.

is p = 1, with an angular dependence Y2,−1 ∝ cosθ sinθ . Therefore, the coupling

constant J(0,1)12 vanishes for θ = 0 and θ = π/2 and has a maximum at θ = π/4.

Matrix elements such as J(−1,1)
12 = 〈(1),−1|〈(0),0|V̂dd |(0),0〉|(1),1〉 that couple

two-molecule states with ∆M = ±2 are given by tensor components with p = ±2

in Eq. (3.6), which have the angular dependence Y2,±2 ∝ sin2
θ . These terms van-

ish for θ = 0 and have a maximum at θ = π/2. The most common type of matrix

element used in Thesis couples two-molecule states with ∆M = 0 which have the

angular dependence Y2,0 ∝ (3cos2 θ − 1). These matrix elements change sign at

θ = cos−1(1/
√

3) from attractive (negative sign) to repulsive (positive sign) as the
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Figure 3.2: Dipole-dipole energies D12 and U12 as a function of the field
strength parameter λ = dEZ/Be are shown in panels (a) and (b), re-
spectively. The states |g〉 = |(0),0〉 and |e〉 = |(1),0〉 are used. The
electric field is perpendicular to the intermolecular axis. Energy in units
of Udd = d2/a3

L.

angle θ is varied from 0 to π/2. The angular dependence of selected dipole-dipole

matrix elements is shown in Fig. 3.3.

3.4 Open-shell molecules in combined electric and
magnetic fields

Ultracold 2Σ molecules can be produced by photoassociation of ultracold alkali

metal atoms with ultracold alkaline earth [162] or closed shell Yb atoms [17, 163],

buffer gas loading [1, 164] or direct laser cooling [165], as was recently demon-

strated for the molecule SrF [147]. The presence of the unpaired electron in a 2Σ

molecule allows for new applications of ultracold molecules exploiting weak cou-

plings of the electron spin with the rotational angular momentum of the molecule

[25, 87]. In particular, the electron spin of 2Σ molecules can be used for encod-

ing quantum information as in other spin-1/2 particles [125] and for quantum

simulation of many-body spin dynamics [87]. In order to realize these applica-

tions, it is necessary to develop techniques for entangling the spin degrees of free-

dom and controlled preparation of many-body spin-dependent states of ultracold

molecules. Micheli and coworkers showed that the electric dipole-dipole inter-

action between 2Σ molecules on an optical lattice leads to spin-dependent binary

interactions whose parameters can be tuned by a combination of dc electric and
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Figure 3.3: Dipole-dipole energies as a function of the angle θ between the
intermolecular axis and the DC electric field. The rovibrational ground
state is |g〉 = |(0),0〉. (a) V eg

12 = 〈e1|〈g2|V̂dd |e1〉|g2〉 for |e〉 = |(1),0〉
(blue curve) and |e〉= |(1), |1|〉 (red curve). (b) J12 = 〈e1|〈g2|V̂dd |g1〉|e2〉
for |e〉 = |(1),0〉 (blue curve) and |e〉 = |(1), |1|〉 (red curve). (c) V gg

12
for |e〉 = |(1),0〉. (d) Jee′

12 for |e〉 = |(1),0〉 and |e′〉 = |(1),1〉 (green
line), |e〉 = |(1),0〉 and |e′〉 = |(1),1〉 (orange line), |e〉 = |(1),1〉 and
|e′〉= |(1),−1〉 (black line). The DC field strength is λ = 1. Energy in
units of Udd = d2/a3

L.

microwave fields [87]. This section explores the possibility of tuning the binary

interaction between 2Σ molecules using superimposed electric and magnetic fields.

As an illustrative example, SrF molecules are used for the calculations in this

section. This molecule has a relatively large dipole moment, a relatively small

rotational constant and a very weak spin-rotation interaction by comparison with

other 2Σ molecules [166]. The effects studied here should be more pronounced,

making the experiments easier, in an ensemble of molecules with a larger dipole

moment and a larger spin-rotation interaction constant. The experimental work

on the creation of ultracold 2Σ molecules other than SrF is currently underway in
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several laboratories [1, 147, 165, 167]. Molecules in the 3Σ electronic state exhibit

similar energy level structure at certain combinations of electric and magnetic fields

[34, 168], which significantly widens the range of molecules that can be used for

the interaction scheme proposed in this section.

3.4.1 Rotational level structure of 2Σ molecules

The Hamiltonian for a single 2Σ molecule in the presence of superimposed electric

and magnetic fields can be written in the rigid-rotor approximation as (See Section

2.4)

Ĥ = BeN̂2 + γSRS ·N−E ·d+2µBB ·S, (3.7)

where the first term determines the ro-vibrational structure of the molecule, γSR

is the constant of the spin-rotation interaction between the rotational angular mo-

mentum N and the spin angular momentum S of the molecule, E and B are the

vectors of the electric and magnetic fields, d is the dipole moment of the molecule

and µB is the Bohr magneton. We assume that both E and B are directed along the

quantization axis Z. We consider molecules in the vibrational ground state v = 0.

It is convenient to use the basis of direct products of the rotational |NMN〉 and spin

|SMS〉 wave functions to evaluate the eigenvectors and eigenvalues of Hamiltonian

in Eq. (3.7). Here, MN and MS denote the projections of N and S, respectively,

on the Z axis. The diagonalization of this Hamiltonian gives the energy levels

of the molecule in superimposed electric and magnetic fields, shown in Fig. 3.4

for a generic molecule. The energy is shown in units of Be. As in Section 2.4

we use the spin-rotation parameter is γ = γSR/Be, the magnetic field parameter

µ = 2µBBZ/Be, and the electric field parameter λ = dEZ/Be to define a dimen-

sionless Hamiltonian. We neglect the hyperfine structure of the molecule. This is

a good approximation for the magnetic fields considered in this Section.

At zero electric field, the rotational angular momentum quantum number N
is conserved. For the ground rotational state N = 0, the spin-rotation interaction

vanishes (See Section 2.4) and two lowest energy levels of the molecule in a weak

magnetic field correspond to the projections MS = −1/2 and MS = +1/2 of the

electron spin angular momentum S along the magnetic field axis. The state with

MS = −1/2 (state α in Fig. 3.4) is the absolute ground state of the molecule at
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Figure 3.4: Zeeman spectra of a 2Σ molecule in the presence of a weak DC
electric field. States β and γ are degenerate at the magnetic field value
Bc in the absence of electric fields. A weak DC field λ = dEZ/Be� 1
couples these states leading to an avoided crossing. The value of Bc

varies with the electric field strength. The electric and magnetic fields
are collinear. The parameters γSR/Be = 0.1 and λ = 0.2 are used. The
energy is in units of Be.

all magnitudes of the magnetic field. The state with MS = +1/2 (state β in Fig.

3.4) becomes degenerate with a high-field-seeking Zeeman state (state γ in Fig.

3.4) of the N = 1 manifold at some value of a magnetic field (denoted Bc in Fig.

3.4). This degeneracy occurs for µ = 2µBBZ/Be = 2. States β and γ have different

parity p = (−1)N . The E ·d interaction is the only term in Hamiltonian (3.7) that

couples states of different parity. Therefore, the crossing between states β and γ

is real in the absence of an electric field and becomes avoided in the presence of

electric fields. In the next Section, it is shown that the avoided crossing depicted in

Fig. 3.4 can be exploited for inducing and controlling spin exchange between two

distant molecules.
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3.4.2 Field-induced electron spin exchange between 2Σ molecules

Using the notation from Fig. 3.4 the ground and first excited states of the molecule

are |α〉 and |β 〉, where the eigenstates α and β are in general given by the super-

position

|φ〉= ∑
NMN

∑
MS

Cφ

NMNMS
|NMN〉|SMS〉, (3.8)

where φ =α,β . For weak magnetic fields in the absence of electric fields Eq. (3.8)

reduces to |α〉= |0,0〉|−〉 and |β 〉= |0,0〉|+〉 (omitting S and |MS| for simplicity).

According to the discussion in Section 2.6 the matrix element of the dipole-dipole

interaction V αα
12 = 〈α1|〈α2|V̂dd |α1〉|α2〉, V ββ

12 = 〈β1|〈β2|V̂dd |β1〉|β2〉, and V αβ

12 =

〈α1|〈β2|V̂dd |α1〉|β2〉 are spin-allowed but vanish due to parity selection rule. The

exchange interaction matrix element J12 = 〈α1|〈β2|V̂dd |β1〉|α2〉 is forbidden both

by spin and parity selection rules.

In the presence of a weak DC electric field (λ = dEZ/Be < 1) and a magnetic

field below the avoided crossing in Fig. 3.4 (BZ � Bc), the states |α〉 and |β 〉 can

be written as

|α〉= a|0,0〉| ↓〉+b|1,0〉| ↓〉+ c|1,−1〉| ↑〉 (3.9)

|β 〉= a|1,0〉| ↑〉−b|0,0〉| ↑〉+ c|1,1〉| ↓〉 (3.10)

where a� b� c (ignoring contributions from N = 2 states). The terms propor-

tional to c are present due to second-order couplings via the spin-rotation term

γSRS ·N in Eq. (3.7). In this regime, the exchange coupling constant J12 is given

by

J12 = c2{a2〈00|〈10|V̂dd |11〉|00〉〈↓↓ | ↓↓〉+b2〈1−1|〈00|V̂dd |00〉|1−1〉〈↑↑ | ↑↑〉
}
.

(3.11)

We have considered dipole-dipole transitions between states with no net change in

rotational angular momentum projection M = MN1 +MN2 = 0. The relative weight

of each of the non-zero matrix elements in Eq. (3.11) depends on the coupling

between the states of different parity, but the overall magnitude of J12 depends on

c2, i.e., on the amount of mixing between rotational levels in the N = 1 manifold

induced by the spin-rotation interaction.
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molecules as a function of the magnetic field near the avoided crossing
Bc between states β and γ in Fig. 3.4. The molecules are separated by
400 nm in the presence of a DC electric field of 1 kV/cm (blue line)
and 2 kV/cm (red line). The rotational constant of SrF is 0.251 cm−1,
the spin-rotation interaction constant γSR is 2.49× 10−3 cm−1 and the
dipole moment is 3.47 Debye.

For magnetic fields far below the avoided crossing in Fig. 3.4 (BZ � Bc) the

value of c is very small and J12 is negligible. As the avoided crossing is approached

from below BZ ≈ Bc the states |0,0〉| ↑〉 and |1,1〉| ↓〉 become closer in energy, and

in the presence of a DC electric field the second order coupling between these states

mix them strongly. The enhanced contribution of the field-free states |1,−1〉 and

|1,1〉 in the eigenstates in Eq. (3.10) increases the value of J12. In this regime,

the states |α〉 and |β 〉 do not have a well defined spin projection MS, but as long

as BZ < Bc in these rotational states the unpaired electrons can be considered to

have opposite spins. As the magnetic field is slowly ramped up above the avoided

crossing between the states β and γ in Fig. 3.4 (BZ > Bc) a state transfer occurs

between states with opposite spins. The first excited state in this regime is given

by Eq. (3.10) with c� b� a. The magnitude of J12 above the avoided crossing
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achieves its maximum value. This is shown in Fig. 3.5 for SrF molecules separated

by 400 nm. The inflection point of each curve indicates the position of the avoided

crossing Bc for at the chosen electric field. The magnitude of J12 for SrF is a few

times smaller than the couplings between rotational states in 1Σ molecules with

comparable dipole moments (see Section 3.3). For example, for LiCs molecules

(d = 5.5 Debye) separated by 400 nm in a DC field of 1 kV/cm perpendicular

to the intermolecular axis, we have J12 = 23 kHz for the states |g〉 = |(0),0〉 and

|e〉 = |(1),0〉. This should be compared with the value |J12| = 4.7 kHz from Fig.

3.5 at EZ = 1 kV/cm. The coupling for LiCs molecules is approximately a factor of

2 larger than the scaled value JLiCs = JSrF× (d2
LiCS/d2

SrF) = 12 kHz obtained sim-

ply by taking into account the difference in the dipole moments between the two

molecules. Figure 3.5 shows that as the electric field is increased, the range of mag-

netic fields B < Bc for which J12 6= 0 increases. The value of J12 past the avoided

crossing B > Bc dependens weakly on the electric field as it mostly depends on the

magnitude of the spin-rotation constant γSR.

3.4.3 Control of molecular spin entanglement with external fields

Entangled eigenstates for interacting molecules

The Hamiltonian for a pair of interacting molecules is given by Eq. (3.1). Using

the two particle basis V2 = {|g1g2〉, |g1,e2〉, |e1g2〉, |e1,e2〉} this Hamiltonian can

be written in matrix form as

H =


2εg +V gg

12 0 0 0

0 εg + εe +V eg
12 J12 0

0 J12 εg + εe +V eg
12 0

0 0 0 2εe +V ee
12

 , (3.12)

where the states |g〉 and |e〉 represent rovibrational states of polar molecules in the

presence of static electric and magnetic fields. We have assumed that the dipole-

dipole interaction is a small perturbation to the rotational spectra, i.e., εe− εg �
max{V12,J12}. In this case the eigenstates of the two-molecule Hamiltonian H
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are given by
|g1g2〉

1√
2
{|g1e2〉− |e1g2〉} ≡ |Ψ−〉

1√
2
{|g1e2〉+ |e1g2〉} ≡ |Ψ+〉

|e1e2〉

(3.13)

The two-molecule eigenstates |Ψ−〉 and |Ψ+〉 are not separable into a product of

the form |φ1〉|φ2〉, where |φ〉 is a single-molecule eigenstate. This is a necessary

condition for entanglement between two molecules [169]. Although a rigorous

definition of entanglement and its consequences are outside the scope of this the-

sis, non-separability of composite states is adopted as an operational definition of

entanglement. If the exchange coupling constant J12 vanishes, all the eigenstates

of the two-molecule Hamiltonian H would be separable, and there would be no

entanglement of distant molecules.

An electromagnetic field E(t) with frequency ω ≈ εe−εg can be used to induce

transitions between the states in Eq. (3.13). Assuming the molecules are identi-

cal, the dipole moment for the transition to the one-excitation manifold from the

absolute ground state is

〈Ψ±|d̂1 + d̂2|g1g2〉 =
1√
2

{
〈g1e2|d̂1 + d̂2|g1g2〉±〈e1g2|d̂1 + d̂2|g1g2〉

}
=

1√
2

{
〈e2|d̂2|g2〉±〈e1|d̂1|g1〉

}
=

{ √
2〈e|d̂|g〉 for |Ψ+〉

0 for |Ψ−〉
. (3.14)

A similar result holds for the transition dipole moment 〈e1e2|d̂1 + d̂2|Ψ±〉. The

dipole-allowed transition |g1g2〉→ |Ψ+〉 is enhanced by a factor of
√

2 because the

transition dipole moments of the interacting molecules are in phase. The state |Ψ+〉
is known as superradiant. The transition to the |Ψ−〉 state is forbidden because the

transition dipoles of the molecules cancel each other.
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Dynamic generation of entangled non-interacting spins

The electric and magnetic field dependence of the exchange coupling constant J12

illustrated in Fig. 3.5 suggests an interesting possibility of creating an entangled

two-molecule states of non-interacting molecular electron spins. Starting from

a pair of 2Σ polar molecules in the rovibrational ground state |α〉, this can be

achieved by the following procedure:

(a) Apply an electric field to couple the molecular states of different parity.

(b) Tune the magnetic field adiabatically to a value BZ > Bc (see Fig. 3.4), where

J12 is a maximum for the α → β transition.

(c) Apply a weak monochromatic electromagnetic field resonant with the transi-

tion frequency ωβα = (εβ − εα)/h̄ to create entangled state |Ψβ

+〉.

(d) Sweep the magnetic field to a value BZ � Bc and turn off the electric field.

If carried out faster than the inherent time scale of the excitation exchange

dynamics, step (d) above must project the two-molecule wave function |Ψβ

+〉 on

the state

|Ψ〉= 1√
2
{a| ↑〉1| ↓〉2 +b| ↓〉1| ↑〉2} (3.15)

where | ↑〉= |N = 0,MN = 0〉|S = 1/2,MS = 1/2〉 and | ↓〉= |N = 0,MN = 0〉|S =

1/2,MS =−1/2〉. The variation of the magnetic field in step (d) must be generally

faster than h/J12 to preserve the state |Ψβ

+〉, but slow enough to preclude the non-

adiabatic transitions to molecular state γ . This can be achieved because the splitting

of the molecular states β and γ at the avoided crossing in Fig. 3.4 is much greater

than J12. We have confirmed that the magnetic field can be detuned to a value B�
B0 without changing the magnitudes of the coefficients a and b by time-dependent

calculations.

3.5 Closed-shell molecules in strong off-resonant optical
fields

The basic description of the interaction of diatomic molecules with far off-resonant

optical fields is reviewed in Chapter 2. An intense off-resonant AC electric field
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shifts the rovibrational energy levels of the molecule, and induces alignment of the

molecular axis along the axis of polarization of the field. The degree of alignment

depends on the polarizability of the molecule and the intensity of the field. In the

presence of the field, the rotational states of a diatomic molecule |Ψ〉 are given by

superpositions of angular momentum states |NMN〉 of the same parity. The expec-

tation value of the dipole moment in the field-dressed rotational states 〈Ψ|~µ|Ψ〉
therefore vanishes. From a classical point of view, this is a consequence of the

oscillation of the electric field vector at optical frequencies. The electric dipole

moment of the molecule follows the orientation of the electric field in space, there-

fore its time-averaged dipole moment vanish.

The Hamiltonian for two interacting polar molecules in Eq. (3.12) depends

on the matrix elements of the dipole-dipole interaction V eg
12 = 〈e1|〈g2|V̂dd |e1〉|g2〉

V gg
12 〈g1|〈g2|V̂dd |g1〉|g2〉, and J12 = 〈g1|〈e2|V̂dd |e1〉|g2〉. In Appendix B it is shown

that the parity of the rotational states in the two-molecule basis |N1MN1〉|N2MN2〉
determines the selection rules for these matrix elements. Both in free space and in

the presence of a far off-resonant field, dipole-dipole couplings that are diagonal in

the single-molecule basis, such as V eg
12 and V gg

12 , vanish by parity selection rule. The

exchange coupling matrix element J12 is allowed by parity. In Section 3.3 it was

shown that in the presence of a DC electric field the magnitudes of the energies

D12 =V eg
12 −V gg

12 and J12 can be tuned by changing the strength of the field and its

orientation with respect to the intermolecular axis. The effect of an off-resonant

AC electric field on the dipole-dipole interaction between molecules is analyzed in

this Section.

3.5.1 Rotational structure in strong off-resonant optical fields

Closed-shell diatomic molecules without electronic angular momentum, in the

presence of an electromagnetic plane wave with frequency far detuned from any

vibronic transition and linear polarization along the space-fixed Ẑ axis, can be de-

scribed by the effective dimensionless Hamiltonian (see Chapter 2)

Ĥ = N̂2− 2
3

ΩID
(2)
0,0 (θ), (3.16)
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Figure 3.6: Dimensionless energy of the rotational states E/Be of a molecule
in the presence of a linearly-polarized CW far-detuned laser, as a func-
tion of the light-matter coupling strength ΩI = ε2∆α/4Be: (a) Energies
of the first six states with MN = 0 (blue) and |MN | = 1 (red); (b) Ex-
panded view of the lowest two field-dressed states |g〉 = |(0),0〉 and
|e〉= |(1),0〉 for small values of ΩI. Be is the rotational constant, ∆α is
the polarizability anisotropy, and ε2 = I/2ε0c, where I is the intensity
of the laser.

where D
(2)
0,0 = (3cos2 θ − 1)/2 is an element of the rotation matrix of rank two,

and

ΩI =
ε2(α‖−α⊥)

4Be

is a parameter that characterizes the strength of the light-matter interaction. We

have neglected a state-independent AC Stark shift ∆ac =(ε2
0/4)(α‖−2α⊥)/3 which

only contributes to the overall phase of the eigenstates. The matrix elements of this

Hamiltonian in the basis of eigenstates of N̂2 and N̂z are given in Section 2.5. The

projection of the rotational angular momentum MN is a conserved quantity. A

far-detuned optical field with linear polarization along Ẑ therefore induces a state-

dependent shift of the rotational levels, and also couples rotational states of the
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Figure 3.7: Probability amplitudes |cN |2 of each rotational state |N,M〉 in
the field-dressed states |ΨM〉= ∑N cN |N,M〉, as a function of the light-
matter coupling strength ΩI = ε2∆α/4Be. Panels (a) and (b) correspond
to the ground and first excited states, respectively, for which M = 0.

same parity and projection MN . The light-matter Hamiltonian can be diagonalized

independently for each value of MN . In Figure 3.6 we show the lowest eigenvalues

of the Hamiltonian in Eq. (3.16), in units of Be, as a function of the interaction

parameter ΩI. The Hamiltonian is diagonalized by including rotational states with

up to N = 20 in the basis. In the limit of very intense fields ΩI � 1, the energy

spectrum consists of closely spaced doublets of states with opposite parity. The

spectrum becomes harmonic in this limit, with an energy splitting proportional to
√

ΩI between neighbouring doublets, as shown in panel (a) of Fig. 3.6. In panel (b)

we show the lowest doublet corresponding to the rotational states |N = 0,MN = 0〉
and |N = 1,MN = 0〉 in the limit ΩI → 0. The field-dressed states are given by

superposition of the form |ΨMN 〉= ∑N cN |N,MN〉. In Fig. 3.7 we present the prob-

72



ability amplitudes |cN |2 for the lowest field-dressed doublet states |g〉 and |e〉 as

a function of ΩI. Panel (a) shows the expansion coefficients for the field-dressed

ground state |g〉. It is composed of field-free rotational states with even values of

N and corresponds to the state |N = 0,MN = 0〉 when the optical field is absent.

For field intensities such that ΩI ∼ 10, the occupation of the field-free ground state

N = 0 decreases by approximately 20%. The first excited field-dressed state |e〉 is

shown in panel (b) of Fig. 3.7. It is composed of rotational states with odd values

of N, and corresponds to the state |N = 1,M = 0〉 in the absence of the field.

The electric dipole transition matrix element between the ground and the first

excited field-dressed state 〈e|µ̂Z|g〉 is finite for all values of the parameter ΩI, since

it can be written as a linear combination of the transition matrix elements 〈N ±
1,M|µ̂Z|N,M〉 6= 0. The field-dressed states have no permanent dipole moments,

i.e., 〈Ψ|µ̂Z|Ψ〉= 0, because they have a well-defined parity.

3.5.2 Dipolar interactions in DC electric and strong off-resonant
fields

Collinear DC electric and off-resonant optical fields

In Section 2.7 it was shown that the Hamiltonian for a polar molecule under the

influence of a DC electric field and a CW far-detuned optical field, where the laser

polarization is collinear with the direction of the DC electric field, can be written

as

Ĥ = N̂2−λD
(1)
0,0 −

2
3

ΩID
(2)
0,0 , (3.17)

where λ = µ0Ez/Be parametrizes the strength of the DC electric field. In Section

2.7 the limit ΩI� 1 was considered, where the rotational spectrum is dominated

by the DC Stark effect. The DC electric field couples states of opposite parity.

In particular, it couples the closely spaced states of opposite parity that form each

field-dressed doublet in Fig. 3.6. In the absence of DC electric fields, the splitting

between the ground and the first excited rotational state (field-dressed doublet) is

much smaller than Be in the limit ΩI � 1. Therefore, a relatively weak DC field

would strongly mix these states. The levels of the field-dressed doublets repel each

other due to their interaction. In panel (a) of Figure 3.8 we show the energies of
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Figure 3.8: Rotational states in the presence of a DC electric field and a CW
far-detuned laser: (a) Energy of the ground |g〉 and first excited |e〉
rotational states as a function of the laser intensity parameter ΩI, for
different values of the DC field strength parameter λ ; (b) Probability
amplitude |cN |2 of the angular momentum state states |NM〉 in the field-
dressed ground state |g〉, as a function of ΩI for λ = 3.

the lowest two field-dressed states |g〉 and |e〉, as a function of the laser intensity

parameter ΩI, for different values of the DC field strength parameter λ . In panel

(b) we show the probability amplitudes |cN |2 in the field-dressed ground state su-

perposition |g〉= ∑N cN |NMN〉, as a function of ΩI for λ = 3. In the limit ΩI→ 0,

the rotational ground state is primarily given by the superposition of the states |0,0〉
and |1,0〉.

Let us now consider the dipole-dipole interaction between two polar molecules

in the presence of a DC electric field and CW far-detuned optical field. As dis-

cussed earlier in this Chapter, we use the eigenstates of the single-molecule Hamil-

tonian in Eq. (3.17) to define the states |g〉 and |e〉.We are interested in the dipole-

dipole matrix elements D12 and J12 that are relevant in later Chapters for the de-

scription of collective rotational excitations in optical lattices. Figure 3.9 shows

the exchange coupling constant J12 = 〈g1|〈e2|V̂dd |e1〉|g2〉 as a function of the light-
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Figure 3.9: Exchange interaction J12 = 〈g1|〈e2|V̂dd |e1〉|g2〉 between two
molecules in their ground |g〉 and first excited |e〉 rotational states, in
the presence of collinear DC electric with strength λBe and CW far-
detuned optical fields with strength ΩIBe, where Be is the rotational
constant. Panels (a) and (b) correspond to a perpendicular and parallel
orientation, respectively, of the intermolecular axis with respect to the
field axis. The dipole-dipole energy is in units of Vdd = d2/R3

12, where
d is the permanent dipole moment of the molecule and R12 is the inter-
molecular distance.

matter coupling strength ΩI, for different values of the DC field strength parameter

λ . |gi)〉 and |ei〉 are the ground and first excited field-dressed rotational states of

molecule i (see Fig. 3.8). The DC electric field and the laser field polarizations

are collinear. Since the dipole-dipole interaction depends on the orientation of the

intermolecular axis r12 with respect to the Z axis, the field-dressed dipole-dipole

matrix elements are plotted for r12 perpendicular and parallel to the orientation of

the fields in panels (a) and (b), respectively. The exchange constant J12 increases

monotonically with ΩI in the absence of DC electric fields, and is suppressed in

the presence of a DC field as a function of ΩI. This is shown in Figure 3.9. The

resonant energy exchange between molecules in the lowest field-dressed doublet is
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Figure 3.10: Energy shift D12 = 〈e1|〈g2|V̂dd |e1〉|g2〉−〈g1|〈g2|V̂dd |g1〉|g2〉 for
two molecules in their ground |g〉 and first excited |e〉 rotational states,
in the presence of collinear DC electric with strength λBe and CW far-
detuned optical fields with strength ΩIBe, where Be is the rotational
constant. Panels (a) and (b) correspond to a perpendicular and paral-
lel orientation, respectively, of the intermolecular axis with respect to
the field axis. The dipole-dipole energy is in units of Udd = d2/R3

12,
where d is the permanent dipole moment of the molecule and R12 is
the intermolecular distance.

therefore suppressed in combined DC electric and far-detuned optical fields in the

limit of strong fields ΩI� 1, and enhanced if the DC electric field is absent.

Figure 3.10 shows the value of the dipole-dipole shift of the rotational levels

D12 = 〈e1|〈g2|V̂dd |e1〉|g2〉− 〈g1|〈g2|V̂dd |g1〉|g2〉 as a function of ΩI, for different

values of λ . Since |g〉 and |e〉 have well-defined parity in the absence of a DC

electric field, the constant D12 vanishes for all values of ΩI. A weak electric field

field (λ � 1) is sufficient to induce a permanent dipole moment in each state of the

field-dressed doublet, which enhances the value of |D12|. The constant D12 can be

approximately three times larger than J12 for the parameters ΩI = 0 and λ = 3. For

a CW off-resonant laser with ΩI = 6, and a DC field with λ = 3, the magnitudes

of the couplings are D12 = 1.0 and J12 = 0.03, in units of Udd = d2/R3
12, for the
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fields perpendicular to the intermolecular axis. More generally, in combined DC

and far-detuned AC electric fields perpendicular to the intermolecular axis, the

ratio D12/J12 is greater than 100 for ΩI ≥ 30 and λ ≥ 0.1. Curves analogous

to those shown in Fig. 3.10 can be obtained for the related quantities V gg
12 and

U12 =V ee
12 +V gg

12 −2V eg
12 defined in Section 3.3.

77



Chapter 4

Towards coherent control of
bimolecular scattering

4.1 Chapter overview
This chapter presents a general scheme for the realization of coherent control of

atomic and molecular collisions at cold and ultracold temperatures. The method

relies on the interference between scattering states induced by a static field. In

Section 4.2 the general principle of coherent control via pathway interference is

reviewed. Section 4.3 describes earlier proposals to achieve control of bimolecular

processes and mentions some difficulties inherent to these approaches. In Section

4.4 the mechanism of field-induced interference is explained, and in Section 4.5 the

proposed scheme is applied to ultracold atomic scattering in the presence of mag-

netic fields. The controllability of a specific atomic collision process is analyzed.

The chapter ends with comments on the applicability of the method to molecular

scattering.
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4.2 The principle of coherent control
In classical mechanics, interference is a general wave phenomena that results from

the superposition principle. For two waves propagating through space, the total

wave amplitude at a given position is the sum of the amplitudes of the two waves

at that position. If the amplitudes of the two waves have the same magnitude and

direction, the two waves interfere constructively and the total amplitude is the sum

of the two individual waves. If the wave amplitudes have the same magnitude but

oppose each other at the chosen position, they interfere destructively and the total

amplitude vanishes at that point. For an observer that measures the square of the

total wave amplitude at a specific point in space, there would be no signal from

the waves that interfere destructively. This basic principle illustrates the potential

use of interference to manipulate the outcome of a measurement. If the two op-

posing waves had not interfered a the point of measurement, the observer would

record the individual signals for each wave. For constructively interfering waves,

the measurement outcome is enhanced with respect to the case of non-interfering

waves.

In quantum mechanics, the probability amplitude for a specific event behaves

as the analogue of classical wave amplitudes. Let |Ψ〉 denote a general quantum

state of a given system and |φn〉 a specific state specified by the quantum number

n. The probability amplitude for the system to be found in the state |φn〉 after

measurement is An = 〈φn|Ψ〉. If the state of the system at a given moment of time

can be described by the superposition

|Ψ〉= a|ψa〉+b|ψb〉, (4.1)

then the probability of observing the state |φn〉 at that moment of time Pn = |An|2

can be written as

Pn = |a|2||〈φn|ψa〉|2 + |b|2||〈φn|ψb〉|2 +2|a||b||〈φn|ψa〉||〈φn|ψb〉|cos(∆θ +∆φ),

(4.2)

where the relative phases ∆θ = θb − θa and ∆φ = φb − φa are associated with

the superposition coefficients a = |a| eiθa and b = |b|eiθb , and the inner products

〈φn|ψa〉= |〈φn|ψa〉|eiφa and 〈φn|ψb〉= |〈φn|ψb〉|eiφb .
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The simple example discussed above illustrates one important feature of coher-

ent control. Let us assume that the system is prepared in a superposition given by

Eq. (4.1) and we want to control the measurement of the outcome state |φn〉. If

the transition amplitudes 〈φn|ψa〉 and 〈φn|ψb〉 do not vanish (the two pathways are

allowed and indistinguishable) but one of them is much smaller than the other, the

interference term in Eq. (4.2) becomes negligibly small, and the probability Pn is

dominated by one of the satellites regardless of the magnitude of the coefficients

a and b. Therefore, it is important for the observation of coherent control that the

transition amplitudes of the interfering pathways are comparable.

It has to be noted that quantum interference alone does not imply controllabil-

ity. In quantum beat spectroscopy, Pn corresponds to the probability of an atom

or molecule to be in the ground state |ψg〉 after spontaneous emission of a photon

from an excited state |ψe〉. Let us assume the particle is prepared in a superposition

of excited eigenstates

|Ψ(t)〉= a|ψa
e 〉e−iEat/h̄ +b|ψb

e 〉e−iEbt/h̄, (4.3)

and the outcome state is |φn〉 = µ̂|ψg〉, where µ̂ is the electric dipole operator.

The probability Pn = |〈ψg|µ̂|Ψ〉|2 is proportional to the intensity of the radiation

emitted by the particle at a given time. According to Eq. (4.2) the interference

term is proportional to cos [(Eb−Ea)t/h̄+δ ], where δ is the relative phase of the

coefficients a and b (the transition amplitudes are assumed real). In this idealized

case, external control over the relative phase δ does not guarantee control of the

emission process because the interference term oscillates in time with a frequency

ωba = (Eb−Ea)/h̄ so that the average signal over time as t → ∞ does not exhibit

any enhancement or suppression due to quantum interference. Coherent control

is concerned with processes for which the interference term in Eq. (4.2) does not

average to zero in the limit of long times.

4.3 Coherent control of collisions
Over the past two decades schemes for control of unimolecular processes via path-

interference (frequency domain) and via wavepackets (time domain) have been

successfully demonstrated experimentally [45]. In contrast, proposals for coherent
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control of bimolecular processes have not been realized. Let us consider the general

bimolecular scattering event

A+B→


A+B

A+B∗

C+D

(4.4)

where the incoming particles S and B undergo elastic, inelastic or reactive scat-

tering. Let us label the incoming and outgoing channels by the indices q and q′,

respectively. The scattering events illustrated in Eq. (4.4) occur at the total energy

E in the center of mass frame where each asymptotic state is characterized by the

set of quantum numbers n. The transition amplitude for the scattering events in Eq.

(4.4) is given by

AE(mq′;nq) = 〈E,q′,m|Ŝ|E,q,n〉 (4.5)

where Ŝ is the scattering matrix [54, 170]. The scattering cross section σE is pro-

portional to the scattering probability PE = |AE |2. Following the basic prescription

for coherent control outlined in Sec. 4.2, let us consider an incoming state in chan-

nel q given by the superposition of degenerate asymptotic states

|E,q〉= ∑
n

an|E,q,n〉. (4.6)

The cross section for the scattering between two particles described by this super-

position into the outgoing channel |E,q,m〉 is thus

σE(q′,m;q) ∝ ∑
n
|an|2|〈E,q′,m|Ŝ|E,q,n〉|2

+∑
n

∑
n′ 6=n

a∗nan′〈E,q,n|Ŝ|E,q′,m〉〈E,q′,m|Ŝ|E,q,n′〉. (4.7)

The total cross section into arrangement q is given by σE(q′;q) = ∑m σE(q′,m;q).

The cross section is composed of a sum of satellite and interference terms. The un-

controllable satellite terms represent the contributions of each individual incoming

channel in the superposition 4.6, weighed by the probability |an|2 that the colliding

particles have the set of quantum numbers n. The interference terms can in prin-
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ciple be controlled by manipulating the products a∗nan′ at the step of preparation

of the incoming superposition in Eq. (4.6). This scheme for coherent control of

collisions was originally proposed in Ref. [171].

The incoming states |E,q,n〉 in Eq. (4.6) describe the relative motion of the

colliding particles in the center of mass frame at distances where the interaction

between the particles is negligible compared to the internal and translational en-

ergies of the collision partners. In the laboratory frame, the state |E,q,n〉 can be

written as

|ψ lab
in 〉= |φA〉|φB〉eikA·rAeikB·rB = |φA〉|φB〉eik·reiK·R ≡ |E,q,n〉|K〉 (4.8)

where |φ〉 denotes an internal state, K = kA +kB is the center of mass momentum

and k = (mBkA−mAkB)/(mA +mB) the relative momentum. The relative posi-

tion vector is r = rA− rB and the center of mass position vector is R = (mArA +

mBrB)/(mA +mB), where mA and mB are the masses of A and B, respectively. In

the absence of external forces, the center of mass momentum K of the collision

pair is conserved in a scattering event. Scattering processes occurring with differ-

ent center of mass momenta contribute independently to the measured signal. In a

thermal gas where the distribution of center of mass momenta is broad, the average

over the momenta of the particles can thus lead to vanishing signal for interference

effects in the cross section.

Let us consider a specific form of the two-particle superposition in Eq. (4.6).

The collision partners A and B can each be prepared in a superposition of internal

states using standard optical techniques. The corresponding single particle states

in the most general form are given by

|ψ〉A = a1|φ(1)〉AeikA
1 ·rA +a2|φ(2)〉AeikA

2 ·rA (4.9)

|ψ〉B = b1|φ(1)〉BeikB
1 ·rB +b2|φ(2)〉BeikB

2 ·rB , (4.10)

where ai and bi are complex coefficients. The wave functions |φ(i)〉A and |φ(i)〉B
correspond to the internal states of the particles, where the index i labels the cor-

responding non-degenerate eigenvalues. The vectors kA
i , kB

i , rA and rB, are the

wave vectors and position vectors in the laboratory frame associated with the i–th
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internal state |φ(i)〉 for particles A and B, respectively. The superpositions in Eqs.

(4.9) and (4.10) involve a correlation between the internal and the translational de-

grees of freedom of each particle, i.e., the momentum of an atom or molecule in

the laboratory frame depends on the internal state of the particle. The incoming

asymptotic wave function is given by the product state

|ψ〉inc = |ψ〉A|ψ〉B
= a1b1|Γ(11)〉eik11·r+iK11·R +a1b2|Γ(12)〉eik12·r+iK12·R

+a2b1|Γ(21)〉eik21·r+iK21·R +a2b2|Γ(22)〉eik22·r+iK22·R, (4.11)

where |Γ(i j)〉= |φ(i)〉A|φ( j)〉B, Ki j = kA
i +kB

j , and ki j = (mBkA
i −mAkB

j )/(mA+

mB). The incident wavefunction in Eq. (4.11) generally consists of four indepen-

dent terms having different center of mass momenta. It is possible for the terms

proportional to a1b2 and a2b1 to interfere if the following conditions are satisfied:

K12 = K21 (4.12)
h̄2k2

12
2µ

+EA(1)+EB(2) =
h̄2k2

21
2µ

+EA(2)+EB(1), (4.13)

where µ = mAmB/(mA +mB) is the reduced mass of the collision pair. EA(i) and

EB(i) are the energies of the eigenstates |φ(i)〉A and |φ(i)〉B. These conditions state

that the two interfering terms should have the same center of mass momentum and

the same energy in the center of mass frame, as required by Eq. (4.7). The terms

proportional to a1b1 and a2b2 lead to uncontrollable satellite terms in the cross

section.

The conditions for scattering interference in Eqs. (4.12) and (4.13) can be

easily satisfied for collisions between identical particles. Since EA(i) = EB(i) for

identical particles, conservation of energy in the center of mass reduces to the con-

dition k2
12 = k2

21 which is always satisfied.

Interference effects in collisions between non-identical particles is harder to

achieve due to the necessary correlations between internal and translational de-

grees of freedom of the colliding partners. Equation 4.13 shows that interference

between incoming scattering states can occur when EA(1) = EA(2) and EB(1) =
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EB(2). This is true when particle A is in a single internal state and particle B is

in a superposition of degenerate states, or when each particle is in a superposition

of degenerate states. In Ref. [172] it was shown that the branching ratio between

reactive and non-reactive scattering for D+H2 can be controlled by preparing the

molecule in a superposition of (2J +1) degenerate rotational sublevels |JMJ〉 and

the atom is in the ground state. Control of atomic Penning ionization was also

demonstrated numerically for Ne∗+Ar, where the Ne atom is prepared in a super-

position of degenerate magnetic sublevels [173, 174]. Although these schemes for

control of collisions between non-identical particles can be extended to bimolecu-

lar scattering, it would be desirable to have an alternative method in which atoms

or molecules are prepared in a superposition of non-degenerate states, which could

be easily prepared using a single near resonant electromagnetic pulse.

4.4 Field induced interference of scattering channels
In this section an alternative method is presented for coherent control of collisions

between non-identical particles. The degeneracy condition in Eq. (4.13) can be

written as
h̄2k2

12
2µ

+EB(2)−EB(1) =
h̄2k2

21
2µ

+EA(2)−EA(1). (4.14)

If the relative kinetic energies at each side of the equation are the same, i.e., k2
12 =

k2
21, then the condition reduces to the equality of energy level splittings between

the superposition states for both particles

EB(2)−EB(1) = EA(2)−EA(1). (4.15)

This condition is easily satisfied for two identical particles if the superposition

states are the same for both collision partners, but is generally not satisfied for non-

identical particles. However, if the energies of the superposition states of one or

both particles are sensitive to an external static field, it should be possible to shift

the relevant energy splittings so that Eq. (4.15) is satisfied and the scattering chan-

nels |φA(1)〉|φB(2)〉 and |φA(2)〉|φB(1)〉 can interfere. This scheme is general for

atomic and molecular scattering provided the chosen states of the coherent super-

position can be shifted using static magnetic or electric fields and relative kinetic
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energy and center of mass momenta are the same for the interfering scattering

channels. Equality of momenta and relative kinetic energy is ensured for identical

particles, and can be achieved for non-identical particles if the wave vector of a

particle in different internal states is the same, i.e.

kA
1 = kA

2 = kA and kB
1 = kB

2 = kB. (4.16)

Superposition of two internal states |φ(1)〉 and |φ(2)〉 with the same momentum

can be prepared using a near resonant light pulse. If particle A, for example, is

initially in the internal state |φA(1)〉 with well-defined momentum h̄kA, the mo-

mentum transfer from the light field during the light-matter interaction should be

negligible in comparison with h̄kA.

When the conditions in Eqs. (4.15) and (4.16) are satisfied, the incoming wave

function in the limit of large interatomic distances can be rewritten as

|ψinc〉= {a1b2|Γ(12)〉+a2b1|Γ(21)〉+a1b1|Γ(11)〉+a2b2|Γ(22)〉}eik·r+iKCM ·RCM .

(4.17)

Since Eq. (4.16) is satisfied, the incoming wavefunction is composed of four terms

with the same relative and center of mass momenta. If an external field is used

to shift the internal levels of particles A and B so that Eq. (4.15) is satisfied,

then the first two channels become degenerate in the center of mass frame and

can therefore interfere as described in Section 4.3. The main advantage of this

coherent control scheme is its generality since it is always possible to choose field

sensitive states in atoms and molecules for the required coherent superpositions.

One possible drawback is that the degeneracy condition in Eq. (4.15) is satisfied

only for a narrow range of field strengths. This disadvantage is also shared by field-

induced Feshbach resonances in ultracold scattering where degeneracy between

field-sensitive states is also required [57].

4.5 Control of ultracold atomic scattering
The production of cold and ultracold atoms and molecules has opened the possi-

bility to study interactions between particles in a temperature regime where their

translational energy is smaller than perturbations due to external fields [22, 24,
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48, 175]. External fields shift the atomic or molecular energy levels by up to

a few Kelvin, so control of gas-phase dynamics can be most easily achieved for

translational energies near or less than one Kelvin. External control of collisions

and chemical reactions has been a long sought-after goal in the fields of ultracold

physics and chemistry [24]. Schemes for control using laser fields [162, 176] or

static fields [177–180] have been developed. An alternative method is coherent

control of collisions based on interference between scattering wave functions as

discussed in previous sections.

4.5.1 Alkali-metal atoms in 2S states

Let us consider a specific example where the field-induced interference scheme

can be demonstrated. Atomic scattering at ultracold temperatures has been widely

studied both theoretically and experimentally [54]. The coherent control scheme

described in Sec. 4.4 for ultracold atomic scattering can be used with an optically

trapped mixture of ultracold alkali metal atoms. The ground electronic term of al-

kali atoms excluding the nuclear spin is 2S1/2. The coupling of angular momenta

F = S+ I between the electron spin S and the nuclear spin I, results in the hyper-

fine splitting of the ground electronic level. The atomic states including hyperfine

couplings in the absence of magnetic fields can be represented in the coupled basis

|FMF〉, where F is the total angular momentum and MF its projection along the

quantization axis. For a given value of the nuclear spin I, the total angular momen-

tum takes the values F = I +1/2 and F = I−1/2. The Hamiltonian ĤHF = γ S · I
describes the hyperfine splitting of the electronic state. The hyperfine coupling

constant γ is on the order of 1−10 GHz for most alkali-metal atoms and is propor-

tional to the zero-field splitting between the hyperfine states [181].

The interaction between the he magnetic moment of the electron and the nu-

cleus is described by the Hamiltonian ĤB = 2µBS ·B+gIµNI ·B, where gI denotes

the nuclear g-factor, µB is the Bohr magneton and µN is the nuclear magneton. This

Hamiltonian is best represented using the uncoupled basis |SMS〉|IMI〉, where MS

and MI are the projections of the spin and nuclear angular momenta, respectively,

along the direction of the magnetic field. The matrix elements of ĤHF + ĤB in the

coupled and uncoupled basis can be obtained using the methods described in Ap-
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Figure 4.1: Zeeman effect for 7Li and 133Cs atoms in the ground electronic
state. For each value of the total angular momentum projection MF ,
there are two hypefine states whose energies diverge in the strong field
limit. The hyperfine levels with projection MF =−3 for Cs and MF = 1
for Li are used in the text. Data is taken from Ref. [178].

pendix C. In the presence of a weak magnetic field along the Z axis, each hyperfine

level F splits into (2F + 1) magnetic sublevels, as shown in Fig. 4.1 for 7Li and
133Cs atoms. The nuclear spin of 7Li is I = 3/2 which results in the hyperfine lev-

els F = 1 and F = 2 at zero magnetic fields. The zero-field splitting between these

levels is 804 MHz. The nuclear spin of 133Cs is I = 7/2, which results in the levels

F = 3 and F = 4 separated in energy by approximately 9.2 GHz in the absence of

magnetic fields. Ultracold mixtures of 7Li and 133Cs atoms in optical dipole traps

have been produced and studied experimentally [182].

The total angular momentum projection MF = MS + MI is a good quantum

number even in the presence of the magnetic field due to the cylindrical symmetry

of the Hamiltonian ĤHF + ĤB. Two states with the same projection MF that belong

to different hyperfine manifolds F in the weak field limit can be used to prepare

87



the superposition of non-degenerate states with the same momentum

|ψMF 〉= a1|φ(1),MF〉Aeik·r +a2|φ(2),MF〉Aeik·r. (4.18)

The preparation of such superposition state for each collision partner is a neces-

sary step in the scheme for coherent control of scattering discussed in Sec. 4.3.

The state in Eq. (4.18) can be prepared using the following procedure: (i) The pop-

ulation of the F = I− 1
2 and the F = I + 1

2 manifolds is optically pumped into one

of the stretched states |I− 1
2 , I−

1
2〉 [183]. (ii) A small magnetic field is applied to

split the energy levels of the hyperfine states corresponding to the different projec-

tions MF . (iii) The population is transferred from the stretched state |I− 1
2 , I−

1
2〉

to a state |I− 1
2 ,MF〉 with a defined projection MF via Rapid Adiabatic Passage

[184]. (iv) A coherent superposition of states with the same projections |I− 1
2 ,MF〉

and |I + 1
2 ,MF〉 is produced using linearly polarized light, and the evolution of the

Bloch vector can be controlled by changing laser parameters. After the prepara-

tion process, the magnitude of the net momentum transfer to the atoms is given by

their hyperfine splitting. The momentum transfer is approximately a factor of 10−7

smaller than the atomic momenta for gas mixture with equilibrium temperature of

∼ 10 µK [182]. The equality of momenta in Eq. (4.16) for the internal states

|φ(1),MF〉 and |φ(2),MF〉 is thus ensured.

When the two atomic species are independently prepared in a superposition

of hyperfine states as in Eq. (4.18), the incoming scattering wavefunction can

be written as in Eq. (4.17). The scattering state consists of four channels with

different energies in the center of mass frame. The incoming channels have the

same center of kinetic energy h̄2k/2µ , where µ is the reduced mass of the collision

pair. As suggested in Sec. 4.4, a magnetic field can be used to shift the energies

superposition states for both species to the point where the degeneracy condition

(4.15) is satisfied. For any given pair of superposition states on each atom, it is

possible to find a magnetic field at which the energy level splittings between the

superposition states are degenerate. For 7Li and 133Cs atoms, the energy difference

between the hyperfine states |φ(1),MF〉 and |φ(2),MF〉 for several values of MF

are shown in Fig. 4.2. For two specific projections MF for Li and M′F for Cs, the

degeneracy between the incoming channels |Γ(12)〉 and |Γ(21)〉 in Eq. (4.17) is
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achieved at the intersection point between the corresponding curves. The energy

splittings that cross at the lowest value of the magnetic field correspond to states

with projection MF = 1 for 7Li and M′F =−3 for 133Cs atoms at B = 0.205187980

Tesla.

The range of magnetic field values that induce interference between incoming

scattering states depends on the range of energies at which condition (4.15) is sat-

isfied. This energy range is centered at the intersection point between two curves

in Fig. (4.2) and is given by the sum of the natural widths of the hypefine states.

The corresponding range of magnetic fields can be deduced from Fig. (4.2). For

alkali metal atoms, the widths of the excited hyperfine levels are infinitesimal, so

the range of magnetic fields that induce interference is extremely narrow. How-

ever, if electronic states are used instead of hyperfine states to create the required

superpositions, this range of magnetic fields is significantly larger.

4.5.2 Coherent control of elastic vs inelastic scattering

Efficient sympathetic cooling of atoms and molecules in electromagnetic traps re-

lies on a favourable ratio between elastic and inelastic collisional cross sections.

While large elastic collision rates allows for rapid thermalization in a mixture of

two species with different temperatures, inelastic collisions lead to loss of particles

from the trap, as the kinetic energy released in inelastic processes usually exceeds

the trapping energy. Therefore, it is desirable to have a large elastic to inelastic

ratio in order for sympathetic cooling schemes to be practical.

In ultracold collisions, the kinetic energy of the collision pair Ek = h̄2k2/2µ is

low enough to consider only S-wave scattering [23, 54]. The total cross section in

the s-wave regime for scattering from the incoming state ψinc into the state Γ(n′) is

given by

σ(n′) =
π

k2 |〈Γ(n
′)|T̂ |ψinc〉|2, (4.19)

where k is the wave number of the incident channel |ψinc〉, and n′ represents the set

of quantum numbers that define the outgoing channel |Γ(n′)〉. In elastic scattering

the incoming and outgoing channels are identical, i.e., Γ(n′) = ψinc. Inelastic pro-

cesses correspond to a change in the internal state of the particle as a result of the

collisional event, i.e., Γ(n′) 6= ψinc. In conventional scattering theory, the incom-
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Figure 4.2: Energy difference between atomic Zeeman states with the same
value of the total angular momentum projection MF as a function an
applied magnetic field. (a) Curves for 7Li and 133Cs are shown with
the same color coding as in Fig. 4.1. (b) Expanded view of the en-
circled region showing the intersection point at B = 0.20518798 Tesla,
where the incoming scattering channels |φ(1),MF〉Li|φ(2),M′F〉Cs and
|φ(2),MF〉Li|φ(1),M

′
F〉Cs are degenerate for MF = 1 and M′F =−3.

ing wavefunction consists of a single channel ψinc = Γ(n). Integral cross sections

are measured over a range of kinetic energies in bulk experiments, or at a single

collision energy in the collision of atomic and molecular beams.

The method for coherent control of collisions described in previous sections

requires the incident scattering wave function to be a superposition of the form

|ψinc〉= {a1b2|Γ(12)〉+a2b1|Γ(21)〉+a1b1|Γ(11)〉+a2b2|Γ(22)〉}eik·r+iKCM ·RCM .

(4.20)

In general, for non-identical particle the scattering superposition consists of incom-

ing channels with different total energy. For the incident state in Eq. (4.20), the
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total scattering cross section is determined by the sum,

σ(n′) = |C11|2σ(n′|11)+ |C22|2σ(n′|22)+ |C12|2σ(n′|12)+ |C21|2σ(n′|21)+

+∑
i j

∑
nm 6=i j

C∗i jCnm σ(i j|nm) (4.21)

where

σ(n′|i j) =
π

k2
i j
|〈Γ(n′)|T̂ |Γ(i j)〉|2, (4.22)

and

σ(i j|nm) =
π

ki jknm
〈Γ(i j)|T̂ |Γ(n′)〉〈Γ(n′)|T̂ |Γ(nm)〉. (4.23)

We have defined the amplitudes Ci j = aib j = |aib j|ei(θi+θ j), involving the product

of the single-particle preparation coefficients ai = |ai|eiθi and bi = |bi|eiθi . The

wavenumber of the incoming channel Γ(i j) is ki j =
√

2µ [E−Ei j]/h̄, where µ is

the reduced mass of the collision complex and Ei j = EA(i)+EB( j) is the channel

internal energy.

The summation over crossed terms in Eq. (4.20) correspond to quantum in-

terferences between incoming scattering states. The interference cross section

σ(i j|nm) in Eq. (4.23) vanishes if the incoming channels Γ(i j) and Γ(nm) are

not degenerate. As discussed in Section 4.4, it is possible to use an external field

to bring the channels Γ(12) and Γ(21) into degeneracy, so they can interfere. All

the other crossed terms vanish because they violate energy conservation. In ex-

periments where the cross sections are measured at a given total energy E, not all

terms in Eq. (4.21) contribute simultaneously to the signal. If the cross section is

measured at the total energy E = h̄k2
12/2µ +E12, the cross sections σE(n′|11) and

σE(n′|22) vanish by energy conservation and Eq. (4.21) reduces to

σE(n′) = |C12|2σE(n′|12)+ |C21|2σE(n′|21)+ [C∗12C21σE(12|21)+ c.c.] . (4.24)

The satellite cross section σE(n′|21) and the interference cross section σE(12|21)=

|σE(12|21)|eiδ(12|21) have been included to account for the possibility of the channels

Γ(12) and Γ(21) to be degenerate. If the degeneracy requirement is not satisfied,

only the first term contributes to the energy resolved signal. By defining the real
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variables x = |C11/C12|, y = |C22/C12|, z = |C21/C12|, as well as the relative phase

φ12 = arg{C21/C12}, Eq. (4.24) can be written as

σE(n′) =
σE(n′|12)+ z2σE(n′|21)+2z |σE(12|21)|cos

[
φ12 +δ(12|21)

]
1+ r2 , (4.25)

where r2 = x2 + y2 + z2. The cross section thus depends on the amplitude param-

eter S = z2/(1+ r2) and the relative phase φ12. The control parameter 0 ≤ S ≤ 1

is bounded from below when |C21|2 = |a2|2|b1|2 = 0, i.e., if at least one of the col-

liding particles is not in a prepared in a coherent superposition of internal states,

but in the single state |φA(1)〉 for particle A or state |φB(2)〉 for particle B. The

amplitude parameter S is equal to unity when |C21|2 = 1. In this case none of the

collision partners is prepared in a coherent superposition, but particle A is prepared

in the |φA(2)〉 and particle B in state |φB(1)〉.
The total inelastic cross section at energy E = h̄k2

12/2µ +E12 is obtained from

Eq. (4.24) by summing over all possible outgoing channels, i.e, σ in
E = ∑n′ σE(n′).

The elastic cross section σ el
E is obtained by setting Γ(n′) = Γ(12) in Eq. 4.24. The

ratio ρ between elastic and inelastic scattering at total energy E can thus be written

as

ρ(S,φ12)≡
σ el

σ in =
σ el(12)+ z2σ el(21)+2z|σ el(12|21)|cos

(
φ12 +δ el

(12|21)

)
σ in(12)+ z2σ in(21)+2z|σ in(12|21)|cos

(
φ12 +δ in

(12|21)

) ,
(4.26)

where σ in(i j) = ∑n′(π/k2
i j)〈Γ(n′)|T̂ |Γ(i j)〉 and

σ
in(i j| ji) = (π/ki jk ji)∑

n′
〈Γ(i j)|T̂ |Γ(n′)〉〈Γ(n′)|T̂ |Γ( ji)〉.

Analogous definitions hold for the elastic cross sections by setting Γ(n′) = Γ(12).

The material phases δ el
(12|21) = arg{σ el(12|21)} and δ in

(12|21) = arg{σ in(12|21)} are

determined by the dynamical properties of the system.

In order to illustrate the coherent control scheme described here, let us consider

the collision between ultracold 7Li and 133Cs atoms. In Fig. 4.2 it is shown that

when the atoms are prepared in coherent superpositions of hyperfine states, degen-

eracy between specific scattering states can be induced in the presence of a mag-
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Figure 4.3: Elastic (blue line) and inelastic (red line) cross sections for
collisions between 7Li and 133Cs atoms as a function of the mag-
netic field. (a) The incoming channel is Γ(12) = |φLi(1),MF =
1〉|φCs(2),M′F = −3〉. (b) The incoming channel is Γ(21) =
|φLi(2),MF = 1〉|φCs(1),M′F = −3〉. (c) Elastic cross section for chan-
nels Γ(12) and Γ(21) near the point of degeneracy between the states at
Bdeg = 0.20518798 Tesla (shown with a dashed vertical line). The col-
lision energy in each panel is 10−7 cm−1. Cross sections are in atomic
units.

netic field, at certain values of the field strength. As an example, the interference

between incoming scattering states Γ(12) = |φLi(1),MF = 1〉|φCs(2),M′F = −3〉
and Γ(21) = |φLi(2),MF = 1〉|φCs(1),M

′
F = −3〉 is achieved at the magnetic field

Bdeg = 0.20518798 Tesla.

Elastic and inelastic cross sections σ(i j) as well as interference cross sec-

tions σ(i j| ji) can be obtained using the coupled-channel method [185]. A re-

cently developed method for solving closed-channel equations for alkali-metal
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atoms including the effect of magnetic fields is described in Ref. [178]. We use

this method to evaluate the magnitude of the cross sections as a function of the

magnetic field and the collision energy h̄k2
i j/2µ . In Figure 4.3 the cross sections

σ(12) and σ(21) for elastic and inelastic processes are shown as a function of

the magnetic field for the fixed collision energy Ek = 10−7 cm−1. Panels (a) and

(b) show the field-dependent elastic and inelastic cross sections for the incoming

channels Γ(12) = |φLi(1),MF = 1〉|φCs(2),M′F = −3〉 and Γ(21) = |φLi(2),MF =

1〉|φCs(1),M′F = −3〉, respectively. Panel (c) is an expanded view of the elastic

cross sections for both incoming channels near the region of degeneracy described

earlier. In the region of magnetic fields shown in Fig. 4.3, a wide Feschbach res-

onance is present near B = 0.245 T for the incoming channel |Γ(21)〉 and smaller

resonances occur near the magnetic field that induces degeneracy between the

channels |Γ(12)〉 and |Γ(21)〉. However, as panel (c) shows, we are here inter-

ested in the region where the channels are energetically degenerate and there is no

resonant structure in the cross section.

The ratio σ el/σ in is of order unity near the magnetic field Bdeg that induces

degeneracy between the Γ(12) and Γ(21) channels, when the collision energy is

10−7 cm. As the collision energy decreases, the inelastic cross section diverges

according to the Wigner’s threshold laws [23]. The magnitude of the interference

cross section σ el(12|21) = (π/k12k21)〈Γ(12)|T̂ |Γ(12)〉〈Γ(12)|T̂ |Γ(21)〉 is shown

in Fig. 4.4 for magnetic fields approaching Bdeg from below. Although one of

the T -matrix elements involved in the definition of σ el represents a transition be-

tween internal states upon collision, at the magnetic field Bdeg these transition

does not vary the kinetic energy in the center of mass frame. The diagonal ma-

trix element 〈Γ(12)|T̂ |Γ(12)〉 can be considered independent of the collision en-

ergy and magnetic field in the range of variables considered here. For B < Bdeg

the channel energy E21 is smaller than E12. Therefore, in the limit of zero col-

lision energy the transition matrix element 〈Γ(12)|T̂ |Γ(21)〉 vanishes, as the out-

going channel Γ(12) is closed. If the collision energy is larger than the energy

splitting ∆E = E12 − E21, the channel Γ(12) is open and the interference cross

section σ el(12|21) is finite. This is illustrated in Figure 4.4 for several collision

energies. The magnitude of the interference cross section satisfies the Schwartz

inequality σ(12|21) ≤
√

σ(12)σ(21). The largest degree of controllability is
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Figure 4.4: Magnitude of the elastic interference cross section |σ el(12|21)|
as a function of magnetic field for collisions between 7Li and 133Cs
atoms. Numerical data is shown for several collision energies. The
magnetic field is shown with respect to the value Bdeg where channel
Γ(12) = |φLi(1),MF = 1〉|φCs(2),M′F = −3〉 becomes degenerate with
Γ(21) = |φLi(2),MF = 1〉|φCs(1),M

′
F =−3〉.

achieved when the equality is satisfied. The curves in Fig. 4.4 converge to the

value σ el(12|21) = 0.03
√

σ el(12)σ el(21) as the magnetic field approaches Bdeg,

which means that control is far from extensive for Li-Cs collisions.

In Figure 4.5 the control map for the elastic-to-inelastic ratio σ el/σ in is shown

as a function of the amplitude and phase parameters z and φ12. The cross sec-

tions are calculated at the magnetic field B = 0.205187980 T and collision en-

ergy 10−5 cm−1. The inelastic interference cross section satisfies σ in(12|21) =

0.30
√

σ in(12)σ in(21). When the atoms are not prepared in coherent superposi-

tions (z = 0), the ratio ρ is approximately 2.7. This ratio can be increased only by

a modest factor due to the small value of |σ el(12|21)|.
In summary, this chapter presents a scheme to induce interference between

scattering states in ultracold collisions using static magnetic fields. The scheme

is based on the preparation of coherent superpositions of Zeeman states for each

collision partner. The energy difference between Zeeman states forming the super-
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inelastic total cross sections for collisions between 7Li and 133Cs atoms,
as a function of the amplitude and phase control parameters z and φ12.
The plot corresponds to the magnetic field Bdeg = 0.205187980 Tesla,
which induces interference between the incoming channels Γ(12) and
Γ(21). The collision energy is 10−5 cm−1.

positions is tuned by the magnetic field. For a certain value of the magnetic field,

two incoming channels become degenerate, and the collision cross section includes

an interference term that depends on the magnitudes and phases of the coefficients

of the initial superpositions. The scheme we propose is general, and can be applied

to collisions of ultracold molecules and molecules in beams. The energy levels of

dipolar molecules can be shifted by dc electric fields, so electric fields can also be

used to induce interference in collisions of polar molecules or in atom-molecule

collisions. The possibility of using electric or magnetic fields makes the scheme

more flexible and independent of the choice of the trapping method. This may be

an advantage for future experimental realizations of the scheme.
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Chapter 5

Molecular crystals with cold
polar molecules

5.1 Chapter overview
Interacting polar molecules in individual sites of an optical lattice are gas-phase

analogues of solid state molecular crystals. In this Chapter it is shown that using

external field control of binary interactions leads to control of collective phenom-

ena in an ensemble of polar molecules. In Section 5.2 the basic theory necessary

to describe an ordered ensemble of interacting molecules is presented. In Section

5.2.3 I focus the discussion on the lowest-energy collective rotational excitations

of the ensemble (rotational excitons), and discuss how an external DC electric field

modifies the single exciton properties. In Section 5.3 I presents the study of an or-

dered array of polar molecules with a small fraction of impurity molecules, in order

to simulate a real impure solid at low temperatures, where the coupling to phonons

is suppressed. In Section 5.3.1 it is shown that a DC electric field can be used to

tune the energy level structure of the impurities so that scattering of a travelling

exciton wave by the impurity is suppressed in a coherent way. In Section 5.3.2 it is

shown that by choosing the appropriate field strength, a transition from localized

to delocalized exciton states in an impure lattice can be achieved. Applications of

this transport control scheme are suggested in Section 5.4.
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5.2 Interacting polar molecules in optical lattices
Optical trapping of diatomic molecules was briefly discussed in Chapter 2. One im-

portant goal in the field of trapped molecules is the realization of quantum phases

with ultracold polar molecules [80, 82, 96]. For example, the dipole-dipole inter-

action between polar molecules is predicted to induce novel features in the col-

lective properties of dipolar molecular BEC [64]. Some of these features have

already been observed using atoms with large magnetic dipole moments [65], but

the significantly larger magnitude of electric dipolar interactions make molecules

attractive candidates for the experimental study of dipolar quantum gases. Many

of these applications require temperatures in the nanokelvin regime and large den-

sities [25]. Optically trapped molecules can have temperatures in the microkelvin

regime and higher [15, 18, 21], and molecular densities smaller than those required

for quantum degeneracy. For such conditions, several research goals have been

pursued theoretically and experimentally such as precision measurements and con-

trolled chemistry [25]. These applications exploit the small degree of thermal noise

at cold and ultracold temperatures to control single particle properties and two-

particle interactions. In Chapter 3 it was shown that external fields can be used

to modify the long-range dipole-dipole interaction between two distant molecules.

Molecules were considered to be fixed in space, which can realized experimen-

tally by trapping molecules in individual sites of an optical lattice [20, 137]. If

we assume the lattice is deep enough to suppress collision between molecules, it

is possible to study the internal state dynamics of an ensemble of interacting polar

molecules. This section describes the low-energy collective properties of such an

ensemble using standard methods in condensed-matter theory [84, 99].

5.2.1 Hamiltonian in second-quantized form

Let us consider a lattice of N molecules fixed at the minima of an optical lattice po-

tential. Let Ri denote the position of the molecule i. The single molecule states are

written as | fi〉, where f denotes an internal state and i the position of the molecule

in the lattice. The Hamiltonian for the many-body system is

Ĥ = ∑
i

Ĥi +
1
2 ∑

i
∑
j 6=i

V̂i j, (5.1)
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where Ĥi is the single-molecule Hamiltonian and V̂i j represents the interaction be-

tween molecules in different sites. The complete set of orthonormal states | fi〉
satisfy the equation Ĥi| fi〉 = ε f | fi〉. We assume the overlap between molecular

states at different sites vanishes, i.e., 〈 fi| f j〉 → 0, but this restriction can be easily

relaxed.

The eigenstates of the Hamiltonian in Eq. (5.1) can be written as | . . . ,ζi, . . .〉
where the set of N coordinates ζi define the single-particle eigenstates | fi〉 for each

molecule. For the case of molecules in the electronic and vibrational ground state,

| f 〉 are rotational states defined in terms of two angular coordinates ζ ≡ (θ ,φ) (See

Chapter 2). Alternatively, the eigenstates of the many-body Hamiltonian in Eq.

(5.1) can be described by a set of N occupation numbers ni f , where ni f = 1 indi-

cates that molecule i is in state f and ni f = 0 indicates that it is not. The occupation

numbers for a given molecule satisfy the completeness relation ∑ f ni f = 1, which

is analogous to ∑ f | fi〉〈 fi| = 1̂. In the occupation number representation the num-

ber operator n̂i f is diagonal and satisfies n̂i f | . . . ,ni f , . . .〉 = ni f | . . . ,ni f , . . .〉, where

| . . . ,ni f , . . .〉 is the many-body wavefunction. The Hermitian number operator can

be written in as a product

n̂i f = b̂†
i f b̂i f ,

where the non-Hermitian operators b̂†
i f and b̂i f satisfy the equations

b̂†
i f | . . . ,ni f , . . .〉= (1−ni f )| . . . ,ni f +1, . . .〉 (5.2)

b̂i f | . . . ,ni f , . . .〉= ni f | . . . ,ni f −1, . . .〉. (5.3)

From these equations it can be shown that the operators b̂†
i f and b̂i f anticommute

for the same (i f ) indices

b̂i f b̂
†
i f + b̂†

i f b̂i f = 1, (5.4)

and commute for different indices

b̂i f b̂
†
je− b̂†

jeb̂i f = 0 (5.5)

The many-body Hamiltonian in Eq. (5.1) can be rewritten by introducing the field

operator Ψ̂†(ζ ) = ∑i f | fi(ζ )〉b̂†
i f and its Hermitian conjugate [84, 99]. The Hamil-
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tonian in Eq. (5.1) can be written in second-quantized form by integrating over the

set of molecular coordinates {ζ} as

Ĥ =
∫

dζ Ψ̂
†(ζ )Ĥ (ζ )Ψ̂(ζ )

= ∑
i, f

ε f b̂
†
i f b̂i f +

1
2 ∑

i, j 6=i
∑
f , f ′

∑
e,e′
〈 f e|Vi j| f ′e′〉b̂†

i f b̂
†
jeb̂i f ′ b̂ je′ . (5.6)

Since the Hamiltonian does not commute with the number operator n̂†
i f , the eigen-

states are given by linear combinations of states of the form | . . . ,ni f , . . .〉. The num-

ber operator satisfies the completeness relation ∑ f b̂†
i f b̂i f = 1̂ for each molecule.

Summing over all molecules in the array we obtain the relation ∑i f b̂†
i f b̂i f = N. The

derivation of the Hamiltonian in Eq. (5.6) is a general result in condensed-matter

theory [84] and can also describe an ultracold gas of free or trapped interacting

atoms if the single-particle wavefunction | f 〉 is also characterized by momentum

h̄k [82]. The Hamiltonian in Eq. (5.6) is completely defined by the single-particle

spectrum ε f and the matrix elements of the interaction operator

〈 fi|〈e j|Vi j| f ′i 〉|e′j〉

in the basis of molecular states. Since this matrix has infinite dimensionality, in

practice one needs to truncate the single molecule basis. Although Eq. (5.6) is

defined in terms of the state creation operators b̂†
i f and its Hermitian conjugate, it is

possible to write the Hamiltonian in a way that refers only to excited states. If we

denote the ground state as |g〉 and the excited states by |e〉 (or | f 〉), we can define

the transition operator -also called exciton operator- as

B̂†
i f = b̂†

i f b̂ig (5.7)

as a non-Hermitian product of state operators. This operator annihilates the ground

state |g〉 and creates the excited state |e〉 in molecule i. This is an alternative nota-

tion for the familiar projector |ei〉〈gi|. Using these operators, the contribution from

the ground and the excited states to the Hamiltonian in Eq. (5.6) can be separated.

The excited state contributions can be divided into terms containing different pow-
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ers of the operators B̂†
ie and B̂ie, as it is shown in Appendix D for molecules with

an arbitrary number of excited states.

5.2.2 Heitler-London and two-level approximations

The simplest truncation scheme for the interaction term in Eq. (5.6) results from

the assumption that each molecule consists of a ground state ( f = g) and a single

excited state ( f = e). In this two-level approximation the completeness relation for

each molecule reads

n̂ig + n̂ie = 1. (5.8)

In Appendix D it is shown that when the number of independent interaction ma-

trix elements in Eq. (5.6) is restricted to the set V =
{
〈gg|Vi j|gg〉 ,〈e0|Vi j|00〉,

〈eg|Vi j|eg〉, 〈eg|Vi j|ge〉, 〈ee|Vi j|eg〉, 〈ee|Vi j|gg〉, 〈ee|Vi j|ee〉
}

, the resulting Hamil-

tonian can be written as Ĥ =Vg + Ĥe. The first term is a constant energy for fixed

molecules given by (see Eq. (D.26) in Appendix D)

Vg = Nεg +
1
2 ∑

i, j 6=i
〈gg|Vi j|gg〉, (5.9)

where N is the number of molecules and εg is the energy of the ground state. The

excited state Hamiltonian Ĥe can be written as (see Eq. (D.27) in Appendix D)

Ĥe = ∑
i

Ai

(
B̂†

ie + B̂ie

)
+ ∑

i, j 6=i
Ci j

(
B̂†

ie + B̂ie

)
B̂†

jeB̂ je

+∑
i
(εeg +Di) B̂†

ieB̂ie +
1
2 ∑

i, j 6=i
Ji j

(
B̂†

ie + B̂ie

)(
B̂†

je + B̂ je

)
+

1
2 ∑

i, j 6=i
Ui jB̂

†
i f B̂i f B̂

†
j f B̂ j f . (5.10)

Each term in this equation represents ultimately possible couplings between two-

molecule states due to the pairwise interaction between molecules. These cou-

plings lead to transitions in each molecule that are illustrated in Fig. 5.1. The first

term in Eq. (5.10) represents the creation or annihilation of an excitation |gi〉→ |ei〉
in molecule i due to the interaction with molecule j in its ground state |g j〉 (see
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panel (a) in Fig. 5.1). The excitation amplitude Ai is given by

Ai = ∑
j 6=i
〈eg|Vi j|gg〉. (5.11)

The second term in Eq. (5.10) is analogous to the previous term. It represents

the creation or annihilation of an excitation |gi〉 → |ei〉 in molecule i due to its

interaction with molecule j in its excited state |e j〉 (see panel (b) in Fig. 5.1). The

amplitude Ci j for this process is given by

Ci j = 〈ee|Vi j|eg〉−〈eg|Vi j|gg〉. (5.12)

The third term in Eq. (5.10) contains the site energies. This is the sum of the

single-particle excitation energy εeg = εe− εg and the energy shift Di due to the

interaction between molecule i in the excited state and molecule j in the ground

state. This so called gas-condensed matter shift [99] is given by

Di = ∑
j 6=i

{
〈eg|Vi j|eg〉−〈gg|Vi j|gg〉

}
. (5.13)

If the molecules in the ensemble are not identical, the single-molecule excitation

energies become site dependent εeg→ εeg(i).

The fourth term in Eq. (5.10) represents excitation exchange processes involv-

ing two or four molecules. By expanding the product (B̂†
ie + B̂ie)(B̂

†
je + B̂ je) we

obtain the terms B̂†
ieB̂ je and B̂†

ieB̂†
je as well as their Hermitian conjugates. The term

B̂†
ieB̂ je represents the annihilation of an excitation in molecule j and the creation

of an excitation in molecule i (see panel (c) in Fig. 5.1). The Hermitian conjugate

of this operator represents the transfer of an excitation from molecule i to j. The

excitation hopping amplitude Ji j is given by

Ji j = 〈eg|Vi j|ge〉. (5.14)

The operator B̂†
ieB̂†

je represents the creation of two excitations in molecules i and j.

The Hermitian conjugate represents the annihilation of these two excitations (see

panel (d) in Fig. 5.1). The amplitude for this processes if also given by Eq. (5.14).
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(c)

A BA B

A B

Figure 5.1: Schematic illustration of representative transitions induced by the
dipole-dipole interaction between two-level molecules. Molecules A
and B have two internal states.

The last term in Eq. (5.10) represents the electrostatic interaction between two

excitations in different sites. The interaction energy Ui j can be written as

Ui j = 〈ee|Vi j|ee〉+ 〈gg|Vi j|gg〉−2〈eg|Vi j|eg〉, (5.15)

and can be either attractive or repulsive.
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Up to this point the interaction operator V̂i j represents a general pairwise inter-

action. In this work, V̂i j is the dipole-dipole interaction between polar molecules

(see Appendix B). This operator can be written in the form V̂i j ≈ d̂id̂ j, where d̂ is

the electric dipole operator. For single-particle states |g〉 and |e〉 with well-defined

parity, the Hamiltonian parameters Ai, Ci j, Di, and Ui j in Eq. (5.10) vanish be-

cause the associated dipole-dipole matrix elements are forbidden by parity. In this

situation the excited state Hamiltonian Ĥe simplifies to

Ĥe = ∑
i

εegB̂†
ieB̂ie + ∑

i, j 6=i
Ji jB̂

†
ieB̂ je +

1
2 ∑

i, j 6=i
Ji j

(
B̂†

ieB̂†
je + B̂ieB̂ je

)
. (5.16)

The last term couples the absolute ground state of the ensemble |g1, . . . ,gi, . . . ,gN〉
to states of the form |g1, . . . ,ei,e j . . . ,gN〉 that belong to the two-excitation subspace

S2. For identical molecules, the states in S2 differ in energy from the absolute

ground state by the amount 2εeg. If εeg� Ji j we can neglect the mixing between

the ground state of the ensemble and states in S2 due to terms such as B̂†
ieB̂†

ie. If we

are only interested in the ground state and states within the one-excitation subspace

S1 = {|g1, . . . ,ei . . . ,gN〉 : i = 1, . . . ,N} and the condition Ji j/εeg� 1 is satisfied,

we can neglect the last term in Eq. (5.16). The resulting Hamiltonian is referred to

as the Heitler-London approximation [99], and is given by the quadratic form

Ĥe = ∑
i
(εeg +Di) B̂†

ieB̂ie + ∑
i, j 6=i

Ji jB̂
†
ieB̂ je, (5.17)

where we have included the energy shift Di in the site energies for complete-

ness.The Hamiltonian in the Heitler-London approximation commutes with the

excitation number operator N̂e = ∑i B̂†
ieB̂ie, i.e., the total number of excitations is

conserved. In the most general exciton Hamiltonian in Eq. (5.10) we include terms

with odd powers of exciton operators (Ai and Ci j terms) that do not commute with

N̂e. Even if the single-particle states do not have well-defined parity, these terms

can be ignored if the condition εeg�
{

Ai,Ci j
}

is satisfied.

The Hamiltonian in Eq. (5.17) will be our working model to describe low-

energy collective excitations in an ensemble of interacting molecules. The Hamil-

tonian is valid for a system of identical molecules coupled by the dipole-dipole
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interaction. We restrict the discussion to the one-excitation subspace S1 which has

the lowest excitation energies.

In Appendix D it is shown that the exciton Hamiltonian in the two-level approx-

imation given by Eq. (5.10) can be written in terms of the Pauli spin matrices σ̂i.

The transformation from exciton to spin operators results from a trivial redefinition

of the energy reference.

5.2.3 Rotational excitons in molecular arrays

Interacting many-level polar molecules

After reviewing the formalism necessary to describe an ensemble of interacting

molecules in the previous section, we now consider the possible experimental real-

ization of a simple exciton model (see Eq. (5.17)) using polar molecules trapped in

optical lattices. The many-body Hamiltonian was written earlier as Ĥ = ∑i Ĥi +
1
2 ∑i ∑ j 6=i V̂i j,, where Ĥi describes a single molecule. We consider an optical lattice

of 1Σ polar molecules with one molecule in the rovibrational ground state per lat-

tice site. If we ignore the AC Stark shift induced by the optical lattice laser beams,

and consider molecules to be in the presence of a static DC electric field E, we can

write Ĥi = ∑i=1 BeN̂2
i −di ·E, where Be is the rotational constant, ~di is the electric

dipole operator of molecule i. We ignore the hyperfine structure of the molecules.

We assume that the tunneling of molecules to different lattice sites is entirely sup-

pressed, which can be easily achieved by applying laser fields of sufficient power

[79]. We consider lattice sites separated by 400 nm so the interaction between

the molecules is entirely determined by the long-range dipole-dipole interaction

potential.

In the absence of interactions Vi j = 0, the lowest excited states of the ensemble

would be those of the individual molecules. For molecules prepared in the rovi-

brational ground state of the electronic ground state, the lowest excited states are

|N = 1,MN = 0,±1〉. The rotational transition energy εeg ∼ Be is on the order of 10

GHz for most polar alkali-metal dimers considered in this work. In the absence of

electric fields, the first rotational excited state is triply degenerate, but a DC electric

field breaks the degeneracy between the MN = 0 and the MN = ±1 sublevels (the
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rotational spectrum in DC and AC electric fields is discussed in Chapter 2.4). If

the polarization of the trapping lasers are collinear with the DC electric field, the

rotational states of the molecule have well defined rotational angular momentum

projection MN . If the polarization of the trapping lasers have components perpen-

dicular to the direction of the DC electric field, the axial symmetry of the system is

lost and mixing of states with different projections can occur (see Section 2.7.4).

It is shown in Appendix D that in the general case of a molecule with several

excited states, the exciton Hamiltonian in Eq. (5.17) can be generalized as

Ĥe = ∑
e

Ĥ1(e)+ ∑
e, f 6=e

Ĥ2(e, f ), (5.18)

where e and f denote excited states. For rotational excited states the label e rep-

resents the energy and the projection MN . For the rotational level N = 1 we have

e1 =−1, e2 = 0, and e3 = 1 according to the allowed values of MN . The Hamilto-

nian Ĥ1(e) can be written in the Heitler-London approximation as

Ĥ1(e) = ∑
i
(εeg +De

i ) B̂†
ieB̂ie + ∑

i, j 6=i
Jee

i j B̂†
ieB̂ je, (5.19)

and the coupling between different excited states is provided by the Hamiltonian

Ĥ2(e, f ) =
1
2 ∑

i, j 6=1
Je f

i j

(
B̂†

ieB̂ j f + B̂ieB̂†
j f

)
. (5.20)

The state dependent exciton operator B̂†
i f for f = MN within the N = 1 rotational

manifold is defined by its action on the ground state wavefunction B̂†
i f |gi〉 = | fi〉,

where |g〉= |(0),0〉 and | f 〉= |(1),MN〉. The notation |(N),MN〉 is used to indicate

that in the presence of a DC electric field the rotational angular momentum N is

not a good quantum number. The coupling constants appearing in Eq. (5.20) are

given by ( f 6= e)

Je f
i j = 〈ei|〈g j|V̂i j|gi〉| f j〉,

The problem of finding the lowest excited states of an ensemble of interacting

molecules reduces to finding the eigenvalues and eigenvectors of the Hamiltonian

in Eq. (5.18). For a molecular array with arbitrary geometry that can include vacan-
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Figure 5.2: Exciton spectrum for a finite array of LiCs molecules separated

by aL = 400 nm. The array is in the presence of a DC electric field of
1 kV/cm oriented parallel to the array. At this electric field, the nearest-
neighbour exchange constant J12 =−14 kHz. The exciton states corre-
spond to the single-molecule transition |(0),0〉 → |(1),0〉. (a) Energies
Ek centered at the single-molecule transition energy εeg for an array of
N = 10 molecules. The index k labels the excitonic state. (b) Energy
bandwidth |EN −E1| as a function of the number of molecules N, in
units of |J12|.

cies, the eigenvalues and eigenvectors of the exciton Hamiltonian in Eq. (5.19) can

be obtained by numerical diagonalization of the matrix Ĥ1(e) in the basis of one-

excitation states S1. The excitonic eigenstates associated with the single-molecule

excitation |g〉 → |e〉 can be written in the general form [99]

|Ψe
k〉=

N

∑
i=1

Ce
ik|g1, . . . ,ei, . . . ,gN〉 (5.21)

where the coefficients Ce
ik satisfy orthonormality conditions. Excitonic eigenstates

are given by linear combinations of all the states representing the molecular ensem-

ble having a single quantum of excitation. The square amplitudes |Ce
ik|2 represent

the probability of finding the molecule i in the excited state |e〉 if the system is in

the excitonic state k. The rotational exciton state |Ψe
k〉 satisfies the eigenvalue equa-

tion Ĥ1(e)|Ψe
k〉 = Ee

k |Ψe
k〉 and is also an eigenstate of the total projection operator

N̂Z = ∑i N̂z, with eigenvalue M = ∑i MNi .
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Figure 5.2(a) shows the excitonic energies Ek associated with the transition

|(0),0〉 → |(1),0〉 in an 1D array of 10 LiCs molecules with lattice constant aL =

400 nm. The array is in the presence of a DC electric field of 1 kV/cm ori-

ented parallel to the array. For this field strength and orientation, J12 = −14 kHz.

For an ensemble of N molecules, the dimension of the one-excitation subspace is

D(S1) = N. Therefore, there are N possible values of Ek in the spectrum. In panel

(b) the width of the excitonic energy band ∆ = |Ek=N −Ek=1| in units of |J12| is

shown as a function of the number of molecules N. The bandwidth quickly con-

verges to the asymptotic value ∆ ≈ 4. Although the exciton bandwidth for a finite

array with N ∼ 10 molecules is similar to an infinite array, the discrete nature of

the spectrum is manifest in the eigenstates. This is shown in Fig. 5.3, where the

ground and the first excited excitonic states |Ψk=1〉 and |Ψk=2〉 are shown for an

array of N = 10 molecules as in panel (a) of Fig. 5.2. The probability amplitudes

Ce
ik for molecule i to be in the excited rotational state (see Eq. (5.21)) is plotted

as a function of position. The shape of the wavefunction resembles the eigenstates

of the particle in a box, in which the ground state wavefunction (k = 1) is peaked

at the center of the interval and the first excited state (k = 2) is an odd function

with a node at the center of the interval. In fact, the spectrum and eigenstates for

a finite linear array can be obtained analytically by assuming the probability am-

plitudes in Eq. (5.21) to be Cik = Asin(ik). The exciton wavefunction (omitting

the excited state index) can be written as |Ψk〉 = ∑iCikB̂†
i |0〉, where the relevant

vacuum state |0〉 for this problem is the absolute ground state of the ensemble

|0〉 ≡ |g1, . . . ,gi, . . . ,gN〉. Substituting this expansion in the Schrödinger equation

Ĥ1(e)|Ψe
k〉 = Ee

k |Ψe
k〉 and multiplying on the left by 〈0|B̂ j we obtain the secular

equation

(εeg−Ek)C jk + ∑
j′ 6= j

J j j′C j′k = 0. (5.22)

We have assumed εeg�Di and used the property B̂nB̂†
n′ |0〉= δn,n′ |0〉. Considering

interactions between nearest-neighbours only and using Cik = Asin(ik), Eq. (5.22)

leads to the expression (εeg−Ek)sin(ik)+ J (2cos(k)sin(ik)) = 0, or equivalently

Ek = εeg +2J cos(k). (5.23)
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Figure 5.3: Lowest two exciton eigenstates |Ψk〉 for a finite array of N = 10
LiCs molecules with the same parameters as in panel (a) of Fig. 5.2. The
ground (k = 1) and the first excited (k = 2) excitonic states of the array
are shown in panels (a) and (b) respectively. The amplitude Ce

ik from
Eq. (5.21) is plotted in the vertical axis as a function of the molecular
position in units of the lattice constant aL. The amplitudes obtained
from numerical diagonalization (blue circles) and from an analytical
model (red diamonds) are shown for comparison.

From the boundary condition CN+1 = C0 = 0 for all k, the N allowed values of k

are k = nπ/(N +1), with n = 1,2, . . . ,N. In the limit N→ ∞ the exciton spectrum

becomes quasi-continuous. The normalized exciton wavefunction for a finite array

is given by

|Ψk〉=
√

2
L ∑

i
sin
(

kπ

L
i
)

B̂†
i |0〉, (5.24)

where L = N +1 is the length of the quantization interval and k = 1, . . . ,N. In Fig.

5.3 we compare the sinusoidal probability amplitudes Cik with those obtained from

direct numerical diagonalization including interactions beyond nearest neighbours.

The difference between the results is negligible.

Exciton spectrum for homogeneous molecular arrays

For large homogeneous molecular arrays we can assume the periodic boundary

conditions CN+1 = C1 and expand the exciton operators in the site representation
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as [84, 99]

B̂ie =
1√
N ∑

k
B̂keeik·Ri , (5.25)

where the expansion coefficients Cik = (1/
√

N)exp(ik ·Ri) are eigenfunctions of

the translation operator T̂Ri defined by T̂aψ(x) = ψ(x+a). The quantum number k
is the wavevector defined within the first Brillouin zone. Inserting Eq. (5.25) into

the one-excitation Hamiltonian Ĥ1(e) in Eq. (5.19) gives (omitting the state index

e)

Ĥ1 =
1
N ∑

i
∑
k,k′

(εeg +Di)ei(k′−k)·RiB̂†
kB̂k′+

1
N ∑

i, j
∑
k,k′

Ji jeik′·R j−ik·RiB̂†
kB̂k′

= ∑
k,k′

δk,k′ (εeg +D) B̂†
kB̂k′+ ∑

m6=0
Jmeik′·Rm ∑

k,k′
B̂†

kB̂k′

[
1
N ∑

i
ei(k′−k)·Ri

]
= ∑

k
[εeg +D+ J(k)] B̂†

kB̂k′ . (5.26)

In the second line we used the translational invariance of the system to assume

Di = D and defined the distance vector Rm = Ri−R j. The diagonal form of the

Hamiltonian in the third line is obtained after using the unitarity of the transforma-

tion in Eq. (5.25) ∑i exp[(k−k′) ·Ri] = N. The exciton spectrum for a homoge-

neous array with arbitrary dimensionality is thus given by

Ee(k) = εeg +De + Jee(k), (5.27)

where Jee(k) = ∑m6=0 Jee
m,0eik′·Rm is the discrete Fourier transform of the coupling

constant Ji j. Considering nearest-neighbour interactions only, the exciton spectrum

for a 1D array is E(k) = εeg+D+2J cos(kaL), where aL is the lattice constant. The

bandwidth in this model is ∆ = 4 (see Fig. 5.2).

So far we have ignored the coupling between different exciton states induced

by Ĥ2(e, f ) in Eq. (5.18). This term can be expected to be important for polar

molecules where the first single-molecule excited state is triply degenerate in the

absence of external fields. By using the unitary transformation in Eq. (5.25) the
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exciton Hamiltonian Ĥe = Ĥ1 + Ĥ2 can be written as

Ĥe = ∑
k

∑
M,M′

[
∆EegδM,M′+ JM,M′(k)

]
B̂†

kMB̂kM′ , (5.28)

with JM,M′(k) = ∑m 6=0 JM,M′
m0 eik·Rm . We have identified the state indices e and f

with the total angular momentum projection M of the states in the one-excitation

subspace S e
1 = {|g1, . . . ,ei, . . .gN〉 : i = 1, . . .N}. Because the ground state |g〉 =

|(0),0〉 has zero projection, the value of M corresponds to the projection of the

excited state e. For the first rotational level N = 1, we have M =−1,0,1.

The Hamiltonian in Eq. (5.28) is diagonal in the quantum number k, but non-

diagonal in M. The unitary transformation B̂†
kM = ∑µ αM,µ Â†

kµ
to a new set of

exciton operators Â†
kµ

can be used to diagonalize the Hamiltonian [99]. The coef-

ficients αM,µ are the elements of the unitary matrix that diagonalizes Hamiltonian

Ĥe(k) =

 E−1(k) J−1,0(k) J−1,1(k)
J0,−1(k) E0(k) J0,1(k)
J1,−1(k) J1,0(k) E1(k)

 (5.29)

for each value of k. In second-quantized notation diagonal Hamiltonian is Ĥ =

∑k,µ Eµ(k)Â†
kµ

Âkµ , where the index µ =α,β ,γ labels the exciton eigenstates. The

evaluation of the coupling functions JM,M′(k) reduces for most values of k to the

calculation of the dipole-dipole matrix element

JM,M′ = 〈(1)M|〈(0)0|Vdd|(0)0〉|(1)M′〉,

which can be obtained using the formulas from Appendix B.

Let us consider a one-dimensional homogeneous array in the presence of a

DC electric field E. If the electric field is parallel to the molecular array, the

axial symmetry of the Hamiltonian is preserved, and the total projection M is

a good quantum number, although the projection MN of individual molecules is

not conserved. The eigenstates of exciton Hamiltonian (5.28) in this case are:

|αk〉= |Ψk,M=1〉, |βk〉= |Ψk,M=−1〉, and |γk〉= |Ψk,M=0〉, where |Ψk,M〉 are eigen-

states of Ĥ1(e) in Eq. (5.19). If the electric field is perpendicular to the molec-
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ular array, the axial symmetry of system is broken and the total projection M is

no longer a good quantum number. In this case, off-diagonal elements of the

Hamiltonian matrix (5.29) are zero only for the coupling between the exciton states

with total projection M = 0 and |M| = 1. This is due to the angular dependence

of the dipole-dipole matrix elements (see Appendix B). The eigenstates in this

case are: |αk〉 = 1√
2
[|Ψk,M=1〉− |Ψk,M=−1〉], |βk〉 = 1√

2
[|Ψk,M=1〉+ |Ψk,M=−1〉],

and |γk〉 = |Ψk,M=0〉. The dispersion curves Eµ(k) of the three exciton branches

are shown in Fig. 5.4 for a 1D array of LiCs molecules (d0 = 5.529 Debye,

2Be = 11.7998 GHz [186]) with lattice constant a = 400 nm in the presence of an

electric field parallel and perpendicular to the array. Analogous dispersion curves

can be obtained in 2D and 3D and for other directions of the electric field. The en-

ergy bands shown in Fig. 5.4 are centered at the single-molecule transitions energy.

Exciton γ corresponds to the |N = 0〉 → |N = 1,M = 0〉 excitation. The calculated

excitonic bandwidths are of the order of 100 kHz. The broadening of the excitonic

line due to the variation of the dipole-dipole interaction caused by the vibrations

of the molecules about their equilibrium positions is less than 5% of its bandwidth

for experimentally realizable trapping frequencies ω0 ≥ 100 kHz. We will discuss

more about the molecular motion in the lattice potentials in Chapter 6.

The exciton wavefunction |k,e〉= B̂†
ke|0〉 describes a state with one quantum of

excitation distributed equally throughout the molecules in the array, each molecule

having a probability 1/N of being excited. This is true for idealized homogeneous

arrays. A wave packet of excitons describes the state where the excitation quanta

is not allowed to travel through the entire crystal. This wave packet can be written

as |Φe〉 = ∑k χe(k)|k,e〉. This state is not associated with a definite energy. The

values of the coefficients χe(k) are determined by the mechanism that localizes

the exciton state. An exciton wave packet has a group velocity ve(k) = 1
h̄ ∇kEe(k)

related to the gradient of the exciton dispersion Ee(k) along a given wavevector di-

rection k. The group velocity is independent on the specific form the wave packet,

so it also describes the energy transfer velocity for one-exciton states.

The dispersion relation in Eq. (5.27) usually has an extrema for some value

of the wave vector k = k0. Around this value we can approximate the dispersion

curve by a quadratic Taylor series in wave vector space E(k) = E(k0)+(k−k0)
T ·

∇kE(k0) +
1
2(k− k0)

T ·∇k∇kE(k0) · (k− k0), where ∇k∇kE(k0) is the Hessian
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Figure 5.4: Stark effect on rotational excitons. Exciton energy E(k) calcu-
lated for three lowest excitations in a 1D array of 105 LiCs molecules
(d0 = 5.529 Debye, 2Be = 11.8 GHz [186])) separated by 400 nm as
functions of the exciton wavenumber k. Exciton states α , β and γ cen-
tered at the isolated molecule transition energies ∆Eeg are shown in the
presence of an electric field perpendicular to the array (panel a) and par-
allel to the array (panel b). The electric field magnitudes are 2 kV/cm
(dashed lines), 3.2 kV/cm (solid lines), 5 kV/cm (dotted lines). At these
electric fields, exciton γ is separated from excitons α and β by the en-
ergy much larger than the exciton bandwidths.

matrix of second partial derivatives evaluated at k0. If the value of E(k0) is a

minimum or maximum in the dispersion curve E(k), then the directional derivative

(k− k0)
T ·∇kE(k0) is zero for wave vectors close to k0, the exciton energy is

approximated by the quadratic formula E(k) ≈ E(k0)+
1
2(k−k0)

T ·∇k∇kE(k0) ·
(k−k0) which for a one dimensional crystal along the x-axis with one minimum
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at kx = 0 reads

E(k) = E(k = 0)+
1
2

∂ 2E(k)
∂k2

∣∣∣∣
k0

k2 = E0 +
h̄2k2

2m∗
, (5.30)

where, in order to compare the exciton energy with the energy of a free particle

with the same wave vector, we define the exciton effective mass

m∗ = h̄2

(
∂ 2ε(k)

∂k2

∣∣∣∣
k0

)−1

. (5.31)

An analogous definition holds for 2D and 3D molecular arrays. When the disper-

sion curve is differentiable around the wave vector k0 the quadratic approximation

of Eq. (5.30) can be applied. Within this approximation, quantities such as the

group velocity and the effective mass of excitons are important when describing

the interaction of excitons with other particles and fields.

Back to the LiCs one-dimensional array in Fig. 5.4, it is clear that when the

electric field is perpendicular to the molecular array (panel (a)), excitons γ and β

have negative effective mass near the origin of the Brillouin zone, i.e. their energy

decreases with increasing wavevector, while the effective mass of exciton α is pos-

itive. Figure 5.4 demonstrates that the effective mass and, consequently, the group

velocity of the excitons can be changed by varying the strength and the direction

of the external electric field. The effective mass is an important parameter in the

description of excitonic transport in impure lattices. Therefore, the possibility to

manipulate the sign and magnitude of the exciton effective mass may find applica-

tion in the simulation of coherent transport phenomena, as discussed later in this

chapter.

In the rest of this thesis, we focus the discussion on the exciton state labelled

by γ in Figure 5.4. This excitonic state has projection M = 0. We chose this

projection because even for relatively weak electric fields E0 < 1 kV/cm, the Stark

shift of the rotational levels of most alkali-metal dimers is larger than the strength

of the coupling between the M = 0 and |M|= 1 projections due to the dipole-dipole

interaction. This is true for any orientation of the electric field. In other words, for
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the states |g〉= |(0),0〉 and |e〉= |(1),0〉 the two-level approximation discussed in

Section 5.2.2 is justified.

5.2.4 Excitons in molecules with hyperfine structure

Recent experiments have demonstrated the spectroscopic manipulation of the hy-

perfine state population of cold polar molecules [157]. It is possible to prepare a

polar molecule in a single hyperfine state of the ground rotational level or in an

arbitrary coherent superposition of hyperfine states. This motivates us to analyze

the effect of the hyperfine structure on the emergence of collective excitations in

an array of cold polar molecules.

In order for the two-level approximation to the exciton Hamiltonian in Eq.

(5.10) to be valid, two conditions must be satisfied: (a) the transition |g〉 → |e〉
must be allowed; (b) the excited state |e〉 must be separated from other excited

states |e′〉 by an energy larger than the dipole-dipole interaction energy Udd. The

additional condition εeg� Jee
12 is required for the Heitler-London approximation in

Eq. (5.17) to hold.

Low magnetic fields

In the absence of magnetic fields and ignoring the effect of the trapping light, the

fully coupled basis |(NI)FMF〉 best describes the state of the molecule. In the

ground rotational manifold N = 0, the hyperfine states are given by |g〉≡ |(0I)IMI〉.
For electromagnetic fields with polarization along the Z axis, the strength of elec-

tric dipole transitions between hyperfine states is determined by the transition

dipole moment 〈e|dZ|g〉 ≡ 〈(NI′)FMI|d̂Z|(0I)IMI〉, which can be written as

〈e|dZ|g〉 = d(−1)F+I′+I−MI [(2F +1)(2I +1)(2N +1)]1/2

{
0 I I′

F N 1

}

×

(
F 1 I

−MI 0 MI

)(
N 1 0

0 0 0

)

= d(−1)N+I−MI (2F +1)1/2

(
1 1 0

0 0 0

)(
F 1 I

−MI 0 MI

)
,

(5.32)
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Figure 5.5: Electric dipole transitions between hyperfine states at weak mag-
netic fields. Panels (a) and (b) correspond to 41K87Rb and 7Li133Cs
molecules, respectively. The Zeeman spectrum of the N = 0 and N = 1
levels are shown. Energies are given with respect to the field free ro-
tational energies. Selected hyperfine states are labeled according to the
quantum numbers N and F . States with total angular momentum pro-
jection |MF | 6= 0 are omitted for clarity. Arrows indicate allowed transi-
tions between selected states. Additional transitions are omitted.

where d is the permanent dipole moment of the molecule. The second equality in

Eq. (5.32) follows from the conditions N = 1 and I = I′. As for pure rotational

transitions, dipole transitions are allowed from the ground rotational level N = 0

to the first excited level N = 1. The total angular momentum of the excited state

can take the values F = I + 1, I, I − 1, and its total spin projection MF is equal

to the nuclear spin projection in the ground level MI . For concreteness, let us
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consider 41K87Rb and 7Li133Cs molecules. The ground rotational manifold N = 0

has four hyperfine levels associated with the total angular momentum F = I at zero

magnetic field for both molecules. Each level is (2F + 1)-fold degenerate. The

hyperfine splittings are completely determined by the scalar spin-spin interaction.

The associated molecular constant c4 is approximately 0.9 kHz for KRb and 1.6

kHz for LiCs (see Table 2.1). The first rotational excited manifold N = 1 has

10 hyperfine levels for KRb and 12 for LiCs, with their corresponding magnetic

sublevels. Figure 5.5 shows possible choices of ground and excited states |g〉 and

|e〉 for KRb and LiCs molecules, at weak magnetic fields on the order of 1 Gauss.

The separation between allowed transitions should be larger than the associated

exciton bandwidth ∆ ∼ 100 kHz at optical lattice distances. Panel (a) in Fig. 5.5

shows that for KRb molecules it should be possible to choose an allowed dipole

transition |g〉 → |e〉 that is separated from other lines by more than 200 kHz. This

is the case for the transition |(N = 0)F = 4,MF = 0〉 → |(N = 1)F = 3,MF = 0〉.
The nuclear spin angular momentum I is not well defined due to the anisotropy of

the hyperfine Hamiltonian. For magnetic fields below 2 Gauss, the field-induced

coupling between states with the same total angular momentum F is weak. At a

magnetic field of 2 Gauss, for example, the ground state |g〉 in Fig. 5.5(a) has

approximately 80% of F = 5 character. As the field increases, the F quantum

number loses its relevance to describe the state. The hyperfine states in the excited

rotational manifold N = 1 are well described using the fully coupled basis at these

magnetic fields. This basis loses its meaning at larger magnetic fields than the

rotational ground levels because the hyperfine splittings in the excited state are

significantly larger.

Panel (b) in Fig. 5.5 suggests that for LiCs it may not be possible to isolate

a dipole allowed transition at weak magnetic fields. The hyperfine splitting be-

tween excited states in the N = 1 rotational manifold is on the order of tens of

kHz. In Chapter 2 it was shown that the dipole-dipole interaction energy between

closed-shell molecules with hyperfine structure is only a fraction of the dipole-

dipole energy without including hyperfine structure. For LiCs molecules separated

by 400 nm this energy is about 80 kHz ignoring hyperfine structure. Therefore, a

many-level exciton model as in Eq. (5.18) would be required to describe hyperfine

collective excitations, since dipole-dipole interaction energy would be comparable
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with the hyperfine splittings in the N = 1 manifold. Different exciton bands would

be coupled by the dipole exchange interaction as it was shown for the rotational

excitons α and β in Fig. 5.4.

So far we have ignored the effect of the trapping light on the hyperfine states of

the molecule. A deep optical lattice potential can have a depth of up to tens of MHz

[79]. Such deep lattices are necessary in applications where decoherence due to the

motion of the molecule in the trapping potential needs to be suppressed. Optical

trapping of molecules is achieved using off-resonant optical fields. The intensity

of the trapping lasers is on the order of mW/cm2, which is not high enough to

induce Raman couplings between different rotational states. The trapping laser

interacts directly with the rotational angular momentum of the molecule. The off-

resonant field can also interact indirectly with the nuclear spin angular momentum

when this is strongly coupled to the rotational motion by the hyperfine interactions.

Raman coupling between states with different rotational angular momentum N is

suppressed in the presence of weak trapping lasers, but the off-resonant trapping

fields may induce couplings between hyperfine states within a given rotational level

at weak magnetic fields, where the fully coupled scheme F = N+ I is appropriate

to describe the state of the molecule.

Let us consider a one-dimensional optical lattice potential created by a standing

wave with linear polarization along the Z axis (see Chapter 2)

ĤAC =−|E(r)|2
{

1
3
(α‖+2α⊥)+

2
3
(α‖−α⊥)Ĉ2,0(θ)

}
, (5.33)

where E(r) is the electric field amplitude and Ck,q(θ ,φ) is a modified spherical

harmonic. Using the methods in Appendix C, the matrix elements of the tensor

operator Ck,q in the fully coupled basis |(NI)FMF〉 can be written as

〈(NI)FMF |Ĉk,q|(N′I′)F ′M′F〉

= δI,I′(−1)F+F ′+k+I−MF
[
(2F +1)(2F ′+1)(2N +1)(2N′+1)

]1/2

×

(
N k N ′

0 0 0

){
N′ F ′ I

F N k

}(
F k F ′

−MF q M′F

)
. (5.34)

Since the intensity of the trapping laser is weak, the coupling between different
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Figure 5.6: Hyperfine Raman couplings induced by an off-resonant trapping
laser at weak magnetic fields. Panels (a) and (b) correspond to 41K87Rb
and 7Li133Cs molecules, respectively. The Zeeman spectrum of the
N = 1 levels is shown. Energies are given with respect to the field
free rotational energies. The hyperfine states are labeled according to
the quantum number F . States with total angular momentum projec-
tion |MF | 6= 0 are omitted for clarity. Arrows indicate allowed Raman
couplings induced by the field of a linearly polarized off-resonant field.
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rotational levels N and N′ can be ignored. Equation (5.34) shows that the tensor

light-shift operator C2,0 in Eq. (5.33) vanishes for N = 0, i.e., there is no light-

induced couplings between hyperfine states in the ground rotational level at weak

magnetic fields. For the rotational excited state N = 1, the matrix element of C2,0

119



gives

〈FMF |Ĉ2,0|F ′M′F〉= (−1)F+F ′+I−MF
3
√

2√
15

{
1 F ′ I

F 1 2

}(
F 2 F ′

−MF 0 M′F

)
.

(5.35)

The optical lattice light can therefore couple hyperfine states in the N = 1 manifold.

The selection rules for the hyperfine Raman coupling are ∆F = 0,±1,±2. The lin-

ear polarization of the field imposes the condition ∆MF = 0. When MF = M′F = 0,

the selection rules ∆F = 0,±2 are valid. In Fig. 5.6 the hyperfine Raman couplings

are shown for 41K87Rb and 7Li133Cs in a 1D optical lattice potential given by Eq.

(5.33). This figure shows that for an optical lattice depth of a few hundred kHz, the

hyperfine states of the excited rotational levels are strongly mixed in the presence

of weak magnetic field collinear with the polarization of the trapping laser.

In summary, a weak off-resonant trapping laser would create hyperfine wavepack-

ets in homonuclear and heteronuclear molecules in the presence of weak magnetic

fields. This is due to the coupling between the nuclear spin of the molecule and the

rotational angular momentum in rotationally excited levels N ≥ 1. The light-matter

interaction can be taken into account in the definition of the states |g〉 and |e〉 that

give rise to rotational excitons in a molecular ensemble. However, the associated

exchange coupling constant J12 would depend on the intensity fluctuations of the

weak trapping laser. In addition, in the presence of combined electric, magnetic

and optical fields, a field configuration that is not perfectly collinear would intro-

duce additional couplings between states with different total angular momentum

projections MF , as it was discussed for rotational states in Section 2.7. This in-

troduces unnecessary complications to the rotational exciton picture described in

previous sections.

High magnetic fields

At high magnetic fields the leading term in the molecular Hamiltonian is the nu-

clear Zeeman interaction. In this regime the nuclear spin is decoupled from the

rotational angular momentum. The molecular states can be described in the spin

coupled basis |NMN〉|IMI〉. As shown in Appendix C, the rotational angular mo-

mentum N and the total angular momentum projection MN +MI are good quantum
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Figure 5.7: Electric dipole transitions between hyperfine states at high mag-
netic fields. Panels (a) and (b) correspond to 41K87Rb and 7Li133Cs
molecules, respectively. The Zeeman spectrum of the N = 0 and N = 1
levels are shown. Energies are given with respect to the field free rota-
tional energies. Selected hyperfine states are labeled according to their
values of the rotational and nuclear spin projections (MN ,MI). States
with total angular momentum projection |MN +MI| 6= 0 are omitted for
clarity. Arrows indicate allowed transitions between selected states.

numbers when Zeeman shifts are comparable with the zero field hyperfine split-

tings. At stronger magnetic fields, the individual projections MN and MI become

good quantum numbers. The molecular eigenstates in this regime can be writ-

ten in the spin coupled basis as |NMN〉|φMI 〉, where |φMI 〉 = ∑I aI|I,MI〉. In the

ground rotational manifold N = 0, the hyperfine states can be written as |g〉 =
|N = 0,MN = 0〉|φMI 〉, and in the first excited level N = 1 they are given by |e〉 =
|N = 1,MN〉|ψMI 〉. For electromagnetic fields with polarization along the Z axis,
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the strength of electric dipole allowed transitions between these hyperfine states is

determined by the transition matrix element

〈e|d̂Z|g〉 = 〈N = 1,MN = 0|d̂0|N′ = 0,M′N = 0〉〈ψMI |φM′I 〉

= δMI ,M′I

√
3

(
1 1 0

0 0 0

)2

〈ψMI |φMI 〉. (5.36)

Linearly polarized transitions therefore preserve the projections MN and MI of the

hyperfine state in the ground manifold, and their intensity differs from a pure ro-

tational transition by the nuclear overlap factor 〈ψMI |φMI 〉. In Figure 5.7 allowed

transitions between selected hyperfine states for 41K87Rb and 7Li133Cs are shown

at moderately high magnetic fields.

The hyperfine interactions in KRb molecules are considerably larger than in

LiCs molecules. Consequently, the magnetic field strength needed to accurately

describe the molecular eigenstates as the separable product |NMN〉|φMI 〉 is also

larger. In panel (a) of Fig. 5.7 the Zeeman spectrum of the N = 0 and N = 1 levels

of KRb are shown for magnetic fields larger than 500 Gauss. Below these field

strength the separability of the angular momentum projections MN and MI in the

N = 1 level is only accurate to less than 90% of the norm of the true eigenstate.

The figure shows all the allowed transitions from the N = 0 ground rotational states

with MN = 0 and MI = 0 to the hyperfine states in the first rotational level N = 1.

The intensity of these transitions is determined by the square of the transition dipole

moment in Eq. (5.36). The frequencies of these transitions are separated by several

hundreds of kHz, which is several times larger than the dipole-dipole interaction

energy between molecules in an optical lattice. Therefore, it should be possible to

define two-level exciton models as in Eq. 5.10 in optical lattices by choosing any

one of these hyperfine transitions in high magnetic fields.

Panel (b) of Fig. 5.7 shows the Zeeman structure and the allowed transitions

between N = 0 and N = 1 hyperfine states for LiCs molecules at magnetic fields

above 200 Gauss. At this field strengths, the separability of the rotational and

spin projections is over 99% accurate for both rotational levels. This is due to the

small zero-field hyperfine splitting in the excited level. As for KRb molecules, the

figure shows that it is possible to find allowed transitions separated from adjacent
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lines by a few hundred kHz, which is an energy larger than the interaction energy

between molecules in an optical lattice. The two-level approximation for collective

excitations is thus accurate for LiCs molecules at magnetic fields of a few hundred

Gauss.

At small magnetic fields we discussed how the optical trapping light induces

Raman couplings between hyperfine states, and how this complicates the nature of

collective excitations in molecular ensembles. Let us consider the one-dimensional

optical lattice potential in Eq. (5.33). For hyperfine states described by products of

the form |NMN〉|φMI 〉, the matrix elements of the tensor light shift operator Ĉk,q are

given by

〈ψMI |〈N,MN |Ĉk,q|N′,M′N〉φM′I 〉= δMI ,M′I 〈N,MN |Ĉk,q|N′,M′N〉〈ψMI |φMI 〉. (5.37)

Within the same rotational level N = N′, the trapping potential only induces rota-

tional Raman transitions according to the selection rules ∆MN = ±q (see Section

2.7). The strength of the coupling is modulated by the nuclear spin overlap factor

〈ψMI |φMI 〉. Contrary to the case of weak magnetic fields, different hyperfine states

within a given rotational level are not mixed as a result of the interaction of the

molecule with the trapping fields.

The simplification of the rotational spectrum at high magnetic fields allow us

to use the simple picture of pure rotational excitons described in previous sections

throughout this thesis. A common scenario in this work consists in placing the

molecular ensemble in a DC electric field. The hyperfine structure of the molecule

can be ignored as long as a moderately strong magnetic field parallel to the electric

field is also assumed to be present. The numerical value of the dipole-dipole in-

teraction matrix elements between hyperfine states depends on the chosen value of

the magnetic field strength. The error involved in neglecting the hyperfine structure

when evaluating dipole-dipole interaction energies can be made arbitrarily small by

increasing the magnetic field strength to the point where the spin overlap factors

become Kronecker deltas, i.e., 〈ψMI |φMI 〉 → δψ,φ .
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5.3 Controlling exciton transport with external fields
Excitons determine the optical properties of materials, energy transfer in semicon-

ductors and mesoscopic systems [99, 108], and the reaction mechanisms in com-

plex biological systems [187]. In molecular crystals with low excitation density,

the transport properties of excitons are determined by their interaction with impuri-

ties and phonons [99], and resemble those of electrons in solids [188], or atoms in

optical lattices [189]. Although the effects of phonons can be suppressed by low-

ering the temperature of crystals, the presence of impurities is almost unavoidable

in semiconductors and organic molecular solids. Exciton - impurity interactions

lead to the formation of localized exciton states [190], modifying energy transfer

in crystalline materials. Therefore, it would be desirable to develop an experimen-

tally realizable system that could be used to study exciton dynamics as a function

of exciton - impurity interaction strength. In this Section its is shown that a suit-

ably chosen two-species mixture of ultracold polar molecules loaded on an optical

lattice can form a crystal where the exciton-impurity interaction can be controlled

by applying an DC electric field. This can be used for the controlled creation of

many-body entangled states of ultracold molecules and the time-domain quantum

simulation of disorder-induced localization and delocalization of quantum parti-

cles.

As noted earlier, it has become technologically possible to create ordered en-

sembles of ultracold polar molecules in the ro-vibrational ground state trapped by

an optical lattice with a lattice separation of about 400 nm [20]. Moreover, meth-

ods are being developed to evaporate atoms or molecules in specific lattice sites

[191]. Superimposing optical lattices of different frequencies, containing two dif-

ferent molecular species would allow the preparation of a mixture of molecules

arranged in an arbitrary array with any spatial dimensionality. For concreteness,

we consider a mixture of alkali metal dimers LiCs and LiRb loaded on an optical

lattice such that the array has cubic symmetry with a lattice constant a = 400 nm.

We note, however, that the proposed mechanism of tuning exciton - impurity inter-

actions can, in principle, be realized with any mixture of molecules A and B in a Σ

electronic state, provided the rotational constant of molecule A is greater and the

dipole moment of molecule A is smaller. The effects discussed in this work should
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Figure 5.8: Schematic illustration of a crystal with tunable impurities.
Molecules are confined by the periodic potential and are coupled by the
dipole-dipole interaction, which allows the exchange of a rotational ex-
citation between molecules in different sites. An impurity is a molecule
with a different dipole moment and different rotational energy splitting,
parametrized by the energy defect V0.

occur at smaller electric fields, if the rotational constants of molecules A and B are

closer in magnitude.

5.3.1 Electric field control of exciton-impurity scattering

If a small number of LiCs molecules are replaced with molecules of a different

kind, such as LiRb (d0 = 4.165 Debye, 2Be = 13.2 GHz [186]), the translational

symmetry of the lattice is disturbed, as in a solid crystal with impurities (see Fig.

5.8). Let us denote the excitation energy between the ground rotational state and

a rotational excited state in the host molecules by ∆Eeg , and the energy of the

transition between the same states in the impurity molecules by ∆Eeg +V0. Since
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different polar molecules have different dipole moments, we denote the difference

between the resonant exchange coupling constants for the impurity-host and host-

host couplings by ∆Jn,m, for molecules at sites n and m. As a starting point, we

can consider a lattice with a single impurity molecule at the origin site n = 0. This

model disordered lattice is described by the Hamiltonian [192]

Ĥ = Ĥ0 +V0B̂†
0B̂0 + ∑

n6=0
∆Jn,0

(
B̂†

nB̂0 + B̂nB̂†
0

)
, (5.38)

where Ĥ0 is the Hamiltonian describing a single exciton

Ĥ0 = ∆Eeg ∑
n

B̂†
nB̂n +∑

n,m
Jn,mB̂†

nB̂m = ∑
k

E(k)B̂†
kB̂k. (5.39)

The exciton-impurity interaction can thus be described as the sum of a delta-like

potential with strength V0 and a long-range perturbation due to the difference in the

dipole moments of host and impurity molecules. It is well-known that the exciton-

impurity interaction leads to the appearance of bound exciton states [192, 193],

which are localized in real space.

Coherent exciton waves |Ψe(k)〉 = B̂†
k|0〉, are eigenstates of the impurity-free

crystal Hamiltonian characterized by a propagation direction k, a wavelength λe =

2π/|k|, quasimomentum pk = h̄|k|, and energy E(k). Our motivation is to find

conditions under which a coherent exciton wave does not interact strongly with

an impurity in an imperfect crystal, as if the impurity were transparent to exciton

propagation. In order to achieve this goal, we propose to use a DC electric field

to shift the rotational levels of host and impurity molecules simultaneously, which

modifies the value of the exciton-impurity interaction potential V0. It is in general

possible to find an appropriate electric at which the rotational excitation energies

of two different molecules are the equal. However, depending on the choice of the

molecules, the electric field required for this degeneracy may be too large to be of

practical use. Fortunately, if the rotational constants of the two molecules do no

differ significantly, and the permanent dipole moments are not very similar, these

“matching” electric field can be easily generated in a laboratory. In Figure 5.9(a)

we show the excitation energies Eeg for the rotational transition corresponding to

N = 0→ N = 1 in a field-free space, for CsF, LiCs and LiRb molecules as func-
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Figure 5.9: Excitation energies of non-interacting molecules in a DC electric
field. Panel (a) shows the excitation energies Eeg for transitions |N =
0,MN = 0〉 → |N = 1,MN〉 with MN = 0 (upper curve) and MN = ±1
(lower curve) vs electric field for three polar molecules. Panel (b) shows
an expanded view of the encircled area in panel (a). Panel (c) shows the
exciton-impurity 2D scattering cross sections for the exciton |Ψk,MN=0〉
with |k|a = 4× 10−5 (solid line), |k|a = 4× 10−3 (dashed line), and
|k|a = 4×10−2 (dotted line). The calculations are for an array of LiCs
molecules with one LiRb impurity. The lattice constant is a = 400 nm
and E0 = 3228.663 V/cm.

tions of the strength of a DC electric field, and demonstrates that the excitation

energies for these combinations of molecules become equal at certain values of the

field strength. The results of Figure 5.9(a) are obtained using the spectroscopically

determined values of the rotational constants and the permanent dipole moments

of the molecules borrowed from the literature [186]. We select the transition cor-

responding to |N = 0〉 → |N = 1,MN = 0〉, because the associated exciton state

|Ψk,MN=0〉 is well separated from other exciton bands, so that the two-level free-
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exciton Hamiltonian in Eq. (5.39) is accurate. Figure 5.9(b) is an expanded view

of the energy crossing between the selected states for LiCs and LiRb molecules.

The degeneracy of the transition energies shown in panel (b) should occur for any

combination of molecules A and B, providing the rotational constant of molecule

A is greater and the dipole moment of molecule A is smaller. Molecules with a

larger difference of the dipole moments and a smaller difference of the rotational

constants must exhibit the crossing of the energy differences at smaller electric

fields.

The interaction of polar molecules with the electric field allows for the pos-

sibility to explore the dependence of the exciton-impurity scattering cross section

not only on the exciton wavevector k, but also on the scattering strength V0, which

is not possible to do in conventional solids. Since the potential V0 is the differ-

ence between the rotational transition energies of the impurity and host molecules,

this potential, and therefore the scattering cross section, can be tuned using a DC

electric field as explained above. The cross sections for exciton - impurity scat-

tering in 2D and 3D crystals as functions of V0 can be obtained by solving the

Lipmann-Schwinger equation as in Ref.[194]. In the effective mass approximation

for excitons with |k|a� 1, the cross sections in 2D and 3D crystals can be written

as [194, 195]

σ3D(k,V0) =
2π h̄2/|m∗|
Tk +E(3D)

b

, (5.40a)

and

σ2D(k,V0) =
4π2/k

π2 + ln2
[

E(2D)
b (∆−Tk)

Tk(∆−E(2D)
b )

] , (5.40b)

where Tk = h̄2|k|2/2|m∗| is the kinetic energy of the exciton with effective mass

m∗, and Eb is the energy of a bound state produced by scattering potential V0. The

energy of this bound state is given by

E(3D)
b = (2/π−V0/∆)2

∆ and E(2D)
b = ∆/ [exp(4∆/πV0)−1] ,

where ∆ denotes the free-exciton bandwidth. Equations (5.40) show that the exciton-

impurity scattering cross sections can be tuned by varying the electric field. As
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shown in Figure 5.9(c), resonant enhancement of the scattering cross section oc-

curs for V0 > 0. These resonances are analogous to Feshbach resonances in atomic

collisions, commonly used to tune the scattering properties of ultracold atoms [57].

In 1D, shallow bound states appear only for vanishingly small V0 and resonances

may not be observable. For an electric field perpendicular to the molecular array,

the energy band for the exciton |Ψk,0〉 is inverted with respect to that of electrons

in a solid, for example. As a consequence, the effective mass of the exciton is neg-

ative near the origin of the Brillouin zone. Due to the negative effective mass of the

exciton, the bound state that leads to resonance is produced by a repulsive potential

with V0 > 0, as can be seen from panels (b) and (c) in Fig. 5.9. Equations (5.40)

are derived in the approximation ∆Jn,0 = 0. Including ∆Jn,0 in the calculation leads

to a shift of the positions of the resonance [192] and the resonant enhancement of

the scattering cross section occurs at a slightly different value of V0.

Figure 5.9 also suggests that the elastic mean free path of excitons l ∼ 1/σn (n

is the concentration of the impurities) can be dynamically tuned by several orders

of magnitude by varying the applied electric field. According to the Ioffe-Regel

criterion [196], this should allow the possibility to transfer the system dynamically

from the regime of weak localization (l� λ ) to the regime of strong localization

(l ∼ λ ) of excitons with wavelength λ = 2π/k.

5.3.2 Field-induced delocalization of excitons in a disordered array

Molecular array with multiple substitutional impurities

Let us now consider a lattice with multiple impurities. It is well known that quan-

tum particles in the presence of a random distribution of scattering centers undergo

coherent localization [190]. In the system we consider in this section, we show that

the localization of excitons can be tuned by an electric field. As an example, we

consider localization of excitons in a 1D array of LiCs separated by 400 nm, with

a random homogeneous distribution of LiRb impurities. The Hamiltonian describ-

ing an exciton in the presence of Ni substitutional impurities at positions~in can be
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written in the site representation as

Ĥ = ∆Eeg ∑
n6=in

B̂†
nB̂n + ∑

n6=in
∑

m6=n
JnmB̂†

nB̂m

+∆E ′eg ∑
in

B̂†
inB̂in +∑

in
∑

n6=in

J′n,in(B̂
†
nB̂in + B̂nB̂†

in), (5.41)

where ∆E ′eg ≡ ∆Eeg +V0 and J′n,in are the impurity excitation energy and the the

impurity-host interaction energy, respectively. We assume the concentration of im-

purities is low, so we can neglect impurity-impurity interactions. As it was implic-

ity done in Eq. 5.38, we conveniently add and substract terms necessary to write

the Hamiltonian as a sum of a zeroth-order Hamiltonian describing free excitons

and a perturbation due to the presence of impurities, i.e.,

Ĥ = ∆Eeg

N

∑
n6=1

B̂†
nB̂n +

N

∑
n6=1

N

∑
m 6=n

JnmB̂†
nB̂m

+V0

Ni

∑
in

B̂†
inB̂in +

Ni

∑
in

Ni

∑
n6=in

(J′n,in− Jn,in)(B̂
†
nB̂in + B̂nB̂†

in). (5.42)

We then transform the exciton operators to the wavevector representation B̂n =

(1/
√

N)∑k B̂keik·Rn to obtain

Ĥ = ∑
k

E(k)B̂†
kB̂k +

V0

N ∑
k

∑
q

B̂†
qB̂k ∑

in

ei(k−q)·in

+
1
N ∑

in
∑

n6=in

(J′n,in− Jn,in)
[
B̂†

qB̂keik·in−iq·Rn +h.c.
]
, (5.43)

where h.c. denotes Hermitian conjugate. In order to evaluate the summations over

the impurity sites in the third term, we assume only nearest-neighbour interactions

between host and impurity molecules, although there will be corrections to this

approximation due to the long-range character of the dipole-dipole interaction. We

then define the coupling constants J′(a) = J′in+1,in and J(a) = Jin+1,in and write the

third term as

Ŵ =
2∆J(a)

N ∑
k

∑
q

cos(|q|a)

[
B̂†

qB̂k ∑
in

ei(k−q)·in +h.c.

]
. (5.44)

130



We have written Eq. 5.43 as the sum of three terms Ĥ = Ĥ0 +Ŵ + V̂ . The first

term is the free-exciton Hamiltonian Ĥ0. The second term is the exciton-impurity

interaction due to the difference in transition energies, termed as diagonal disorder

V̂ . The last term is the interaction due to the difference in interaction energies,

termed as off-diagonal disorder Ŵ . The potentials V̂ and Ŵ are composed of terms

that are diagonal in exciton wavevector q = k, which are responsible for an overall

energy shift of the exciton band ε(k) by the amount (V0 + 2∆J(a))(Ni/N), where

Ni/N is the concentration of impurities. In most situations of interest for us we have

V0 > ∆J(a). If we apply an electric field such that V0→ 0, the off-diagonal disorder

is the only contribution to the perturbation of free-exciton states. The terms that

couple different exciton states k 6= q are responsible for the generation of an exciton

wavepacket in wavevector space, which by the uncertainty principle corresponds

to a localization of the exciton wavefunction in real space. If we consider a large

array of molecules with arbitrary dimensionality, we can impose periodic boundary

conditions on the exciton wavefunctions and construct the Hamiltonian matrix Ĥ =

Ĥ0 +Ŵ + V̂ in the basis of free-exciton states |Ψk〉 = B̂†
k|0〉 using the following

matrix elements

〈Ψk|Ĥ0|Ψk〉= E(k), (5.45a)

〈Ψq|Ŵ |Ψk〉=
2∆J(a)

N
(cos(|q|a)+ cos(|k|a))

Ni

∑
~in=1

ei(q−k)·~in , (5.45b)

〈Ψq|V̂ |Ψk〉=
V0

N

Ni

∑
~in=1

ei(q−k)·~in , (5.45c)

where E(k) is the energy of the free-exciton (neglecting an overall energy shift). In

Fig. 5.10(a) we show the energy spectrum for a one-dimensional array of N = 100

molecules, with 4% of homogeneously distributed LiRb impurities. An electric

field perpendicular to the array is applied so that V0 = 80 kHz. Panels (b) and (c)

show exciton eigenstates of the impure lattice, chosen from the middle and the top

of the energy spectrum, respectively. The eigenvalue problem is solved numerically

by diagonalizing the complex matrix defined by Eq. (5.45).

The most noticeable feature of the spectrum in Fig. 5.10(a) is the appearance

of energy levels separated from the renormalized band of exciton states. Since
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Figure 5.10: Spectrum and eigenstates of a 1D exciton in a disordered lat-
tice of N = 100 LiCs molecule with 4% of LiRb molecules. A DC
electric field is present such that V0 = 80 kHz. Panel (a) shows the ex-
citon spectra for the impure (red) lattice. The free-exciton band (blue)
is shown for comparison. Arrows indicate the location of two chosen
eigenstates: panel (b) shows a large group velocity state from the mid-
dle of the band, and panel (c) a zero group velocity state corresponding
to a local level. The location of the impurities is indicated by stars in
panel (b). The lattice constant is aL = 400 nm.

V0 > 0, these local levels have higher energy than the rest of the band. As shown

in panel (c) this levels correspond to highly localized eigenstates in real space at

the impurity sites. They can be considered as bound states of the exciton-impurity

scattering potential. In general, states near the edges of the spectrum are highly

localized, because the corresponding free-exciton states have vanishingly small

group velocity. In panel (b), we show an eigenstate from the middle of the energy

spectrum, which have a larger contribution from |k|a = π/2 free-exciton states.

These free-exciton states from the middle of the Brillouin zone have the largest
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group velocity. The degree of localization of the corresponding eigenstates for the

impure crystal is thus smaller.

Due to the negative effective mass of the free-excitons we consider as our basis

set, the wavepackets near the top of the energy band have a large contribution of

long-wavelength excitons k≈ 0, which are accessible using microwave fields. In a

disordered array, momentum is not conserved in the process of photon absorption,

so in principle any exciton state is accessible using the appropriate photon energy,

but those with long-wavelength character will have a larger transition dipole mo-

ment.

Field-induced disorder correlations and exciton delocalization

Let us consider a disordered array in the presence of a DC electric field such that

V0 = 0, i.e., the energy transition frequencies between the ground rotational state

and a chosen excited state in two host and impurity molecules are the same. Be-

cause the induced dipole moments of the different molecules are not necessarily

the same at this particular electric field, exciton-impurity scattering can still occurs

due to the terms proportional to ∆J in Eq. (5.44), i.e., due to off-diagonal disorder.

Figure 5.11 shows the probability density of a particular eigenstate of Hamiltonian

(5.45) near the top of the energy spectrum, for different values of V0. Due to the

negative effective mass of free-exciton states associated with the rotational transi-

tion |J = 0,MJ = 0〉 → |J = 1,MJ = 0〉, high energy eigenstates are dominated by

free-exciton states with k ≈ 0. These eigenstates are localized as shown in panel

(a). We note from the expression for the perturbations V̂ and Ŵ , in wavevector

space that two free-exciton states |Ψk〉 and |Ψq〉 would be decoupled to first order

if the matrix element 〈Ψq|V̂ +Ŵ |Ψk〉 vanishes. In panel (b) we show that the lo-

calized state from panel a corresponds adiabatically with a delocalized eigenstate

obtained by applying a DC electric field at which V0 ≈ −4∆J(a). At this field,

as can be seen from Eqs. (5.45)), for a given k the matrix elements 〈V̂ 〉q,k and

〈Ŵ 〉q,k cancel for q ≈ k, which suppresses the coupling between the correspond-

ing free-exciton states. In panel (c) we show that the eigenstates that correspond

adiabatically to the localized state in panel (a), become localized for values of the

electric field that do not balance the effects of V0 and ∆J(a). We find that for local-
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Figure 5.11: Probability density |Ψ(x)|2 describing an exciton near the top of
the energy spectrum for a 1D array of 1000 LiCs molecules with 10%
of homogeneously and randomly distributed LiRb impurities. Panels
correspond to different values of V0: (a) V0 = 0, (b) V0/h= 22 kHz, and
(c) V0/h= 100 kHz. The difference of the dipole moments of LiCs and
LiRb molecules leads to the value ∆J =−6.89 kHz.

ized eigenstates arbitrarily chosen within the energy band, we can chose a value of

the electric field so that the state corresponds adiabatically to a delocalized state at

some value of the electric field.

The eigenstates of quantum particles in a 1D disordered potential must be ex-

ponentially localized [190]. However, in the presence of specific correlations in

the disordered potential, some localized states may undergo delocalization. For

example, it follows from the results of Ref. [197] that the correlation between di-

agonal and off-diagonal disorder corresponding to substitutional disorder with one

kind of impurities in a 1D molecular lattice with nearest neighbor interactions leads

to delocalization of one eigenstate. Figure (5.11) illustrates the delocalization of
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excitons in a 1D disordered system caused by this type of correlations between

diagonal and off-diagonal disorder. Unlike in solids with fixed disorder, where dis-

order correlations lead to delocalization of one (or small number) of states, tunable

disorder can be used to induce delocalization of any state in the exciton energy

spectrum, as long as V0 can be tuned to the value balancing the wavevector depen-

dent off-diagonal disorder contribution.

5.4 Suggested applications
The system proposed here offers three unique features: (i) long-lived excitons that

are stable against spontaneous decay and whose effective mass can be controlled

by an external electric field; (ii) dynamically tunable impurities; (iii) possibility to

arrange impurities and host molecules in various configurations and dimensions.

This opens up new possibilities for quantum simulation of fundamental physical

phenomena. For example, it is known that exciton - impurity scattering leads to

localization of excitons in crystalline solids [190]. In particular, large cross sec-

tions for exciton - impurity scattering lead to Anderson localization. The exciton

- impurity interactions in an ensemble of polar molecules with rotational excitons

can be tuned from resonantly enhanced to entirely suppressed scattering, which

can be used to study the dynamics of exciton localization, including the timescales

for the formation of localized and delocalized states and their dependence on exci-

ton bandwidth and exciton - impurity interaction strength. In addition, the system

proposed here is ideally suited for the study of the effects of correlations in the

disordered potentials. The presence of short- and long-range correlations in the

disordered potentials may result in the appearance of a discrete [198, 199] or even

continuous [200, 201] set of delocalized states in low-dimensional crystals. Mea-

surements of exciton localization in a crystal with tunable impurities can be used

for time-dependent quantum simulation of disorder-induced localization and delo-

calization of quantum particles.

Controlled spatial distributions of impurities and molecular crystals with spe-

cific arrangements of crystal particles in one, two or three dimensions may be used

to study the effects of dimensionality and finite size on energy transfer in meso-

scopic materials [108]. The localized states displayed in Figure 4 are many-body
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entangled states of the molecules in an optical lattice. The possibility to tune ex-

citon - impurity interactions can thus be exploited for the controlled creation of

many-body entangled states of ultracold molecules, necessary for the experimental

realization of quantum computation with molecular ensembles [126].

Finally, a mixture of ultracold molecules with impurities forming a sublattice

may be used to study the formation of wavevector space crystals of excitons. The

eigenstates of such a two-species lattice correspond to a discrete distribution in k-

space. Tuning the impurities by a sinusoidally varying electric field could then be

used to induce resonant transitions between different k-states. In particular, it could

be interesting to couple reversibly the low-k optically active, but slow (small group

velocity) states with optically inactive, but fast (larger group velocity) states from

the middle of the Brillouin zone. This would lead to the creation of excitonic wave

packets, which can be slowed down or accelerated by an external electric field.
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Chapter 6

Tunable polaron phenomena with
polar molecules

6.1 Chapter overview
The description of phonons in an optical lattice of interacting molecules is pre-

sented in Sec. 6.3. In Section 6.3.3 it is shown that the phonon spectrum can be

manipulated by tuning the DC electric field and the intensity of the trapping laser.

Realistic estimates of the system parameters for alkali-metal dimers are also given.

In Section 6.4 it is shown that the system can be described by the Holstein and

the Su-Schrieffer-Heeger (SSH) polaron models in the limit of strong and weak

electric field strengths, respectively.

137



6.2 Polaron models in condensed matter
The polaron problem falls under the general category of a particle interacting with

its environment. In particular, the properties of a quantum particle depend on the

strength of the interaction with a macroscopic gas of bosons. In solids and molec-

ular aggregates the bosonic environment correspond to lattice phonons and the

particle can be either a charge carrier such as an electron or hole, or an elementary

excitation such as an exciton, magnon or polariton. The polaron problem in con-

densed matter theory is important because it is relevant to describe a wide range of

physical systems of technological interest. Polaron effects are also important from

a fundamental point of view, since in many solids collective quantum effects such

as superconductivity arise due to the coupling of individual particles to the phonon

environment [84].

Polarons are not restricted to crystalline solids. The transport properties of

many organic molecular aggregates [98] and biological systems [116, 202] are de-

termined by polaron effects. Consider the energy transfer processes between com-

plex molecules in mesoscopic aggregates [108, 203]. The energy captured at one

unit of the aggregate can be transferred incoherently to other sites via direct two-

molecule interactions or through the formation of excitons [99]. Since these pro-

cesses occur at room temperature, the role of quantum entanglement and coherence

in excitation energy transfer in biological systems is a very interesting open ques-

tion [116, 204]. In molecular systems with multiple degrees of freedom, coherence

of exitons is quickly destroyed due to interactions with the environment, usually a

large polymeric matrix with multiple vibrational modes. These vibrational modes

constitute phonons that are coupled to the excitonic degrees of freedom which are

responsible for the coherent energy transfer.

In this section three of the most commonly studied single-polaron models in

condensed matter are briefly reviewed. These are the Fröhlich or large-polaron

model, the Holstein or small-polaron model and the Su-Schrieffer-Heeger (SSH)

model. Single-particle properties are considered using a perturbative analysis to

provide a qualitative comparison between these models. A more quantitative ac-

count can be found in Ref. [205].
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The polaron Hamiltonian can be written as

Ĥ = Ĥp + Ĥph + Ĥint (6.1)

where Ĥp is the Hamiltonian describing the free particle or quasi-particle, Ĥph is the

phonon Hamiltonian and Ĥint describes the exciton-phonon interaction. Different

polaron models assume different forms for the interaction Hamiltonian Ĥint.

6.2.1 Fröhlich model

The Frölich polaron model describes the interaction between a single electron and

optical phonons in a polar solid in three dimensions. Let the energy of the free

electron with mass m be isotropic of the form E(p) = p2/2m, where p is momen-

tum. Longitudinal optical phonons are represented by an Einstein model in which

the phonon modes are degenerate: ω(q) = ω0, where ω is the phonon frequency

and q the phonon wavevector. The Fröhlich Hamiltonian [84] is given by Eq. (6.1)

with

Ĥp = ∑
p

E(p)ĉ†
pĉp Ĥph = h̄ω0 ∑

q
â†

qâq (6.2)

Ĥint = ∑
q,p

M0

V 1/2

1
|q|

ĉ†
p+qĉp

(
âq + â†

−q

)
(6.3)

where the operator ĉ†
p creates an electron with momentum p, â†

q creates a phonon

with momentum q, and V is the volume of the crystal. The electron-phonon cou-

pling constant M0 is given by

M0 =−i(4πα)1/2h̄ω0

(
h̄

2mω0

)1/4

α = e2

h̄

(
m

2h̄ω0

)1/2(
1

ε∞
− 1

ε0

)
. (6.4)

The particle-phonon interaction energy depends on the phonon frequency as

ω
1/2
0 and on the phonon wavevector as 1/|q|.
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Weak coupling regime

The change in the energy of the electron due to the interaction with lattice phonons

can be evaluated using Rayleigh-Schrödinger (RS) perturbation theory by assum-

ing the dimensionless coupling α to be smaller than unity. In Appendix E it is

shown that to second order in M0 the energy of the dressed electron (polaron) in

atomic units (h̄ = 1) is

Ep = E(p)−
αω

3/2
0

E(p)1/2 sin−1

(
E(p)1/2

ω
1/2
0

)
, (6.5)

where E(p) = p2/2m. This solution holds for E(p) < h̄ω0, otherwise energy-

conserving phonon emission and absorption processes are possible and RS station-

ary perturbation theory is no longer applicable. This condition corresponds to the

non-adiabatic limit in which the motion of the particle is faster than lattice oscilla-

tions. In the limit of a slow-moving polaron p→ 0 the energy becomes

Ep→0 =
p2

2m∗
−αω0, (6.6)

where the effective mass of the polaron is

m∗ =
m

1−α/6
≈ m

(
1+

α

6

)
. (6.7)

The ground state energy of the Fröhlich polaron Eg = Ep=0 in the weak cou-

pling regime therefore decreases linearly with ω0 with a slope given by α . The

polaron mass is larger than the bare electron mass due to the interaction between

the electron and the lattice oscillators. For small α , the effective polaron mass

increases linearly with the coupling strength.

The weak coupling RS perturbative results for the ground state energy and

effective mass are known to be accurate up to α ∼ 5 [84]. Beyond this coupling

strength the particle becomes localized in space by the strong interaction with the

lattice. Equation 6.7 confirms this expectation since the effective mass m∗ diverges

when α = 6.
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Strong coupling regime

Following the assumption of particle localization, the strong coupling regime of

the Fröhlich model was originally developed as a variational calculation for the

ground state energy with a Gaussian trial wavefunction [206]. The minimum po-

laron energy was found to be Eg =−α2ω0/3π . Using a path-integral formulation,

the Fröhlich Hamiltonian was solved accurately for arbitrary values of α [206–

209]. In the weak coupling limit α < 5 the path-integral results are in reason-

able agreement with fourth-order RS perturbation theory results that include two-

phonon states [84]. In the strong coupling regime the polaron ground state energy

E0 and the effective mass m∗ can be expanded as

Eg =−ω0
[
0.106α

2 +2.836+O(1/α
2)
]
, (6.8)

and
m∗

m
≈ 0.0202α

4. (6.9)

The point to remember is that in the strong coupling regime of the Frölich

model the effective mass of the particle increases algebraically with the coupling

strength. It is difficult to obtain momentum-dependent properties analytically for

arbitrary values of α . Over the decades several numerical approaches have been

used to address this issue [210–213]. An analysis of these numerical methods is

outside the scope of this chapter.

6.2.2 Holstein model

The size of the polaron wavefunction becomes comparable to the lattice spacing in

the strong coupling limit of the particle-phonon interaction. We refer to this situa-

tion as a “small” polaron problem [84, 214]. In the small polaron limit the phonon-

dressed particle hops from site to site in a tight binding model. The phonons are

coupled to the particle at the site where it resides. In a tight binding approach

the bare energy dispersion of the particle E(k) is not necessarily quadratic in the

wavevector k. In the Holstein model the discreteness of the lattice is explicitly
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taken into account. The Hamiltonian in this model is given by Eq. (6.1) with

Ĥp = ∑
k

E(k)ĉ†
kĉk Ĥph = ∑

q
ωqâ†

qâq (6.10)

Ĥint = ∑
q,k

Mqĉ†
k+qĉk

[
âq + â†

−q

]
. (6.11)

In its simplest form, the Holstein model assumes Einstein phonons ωq = ω0 and

wavevector independent particle-phonon coupling Mq = g/
√

N [205, 214, 215].

Let us focus on a one-dimensional lattice. If the particle hopping occurs only

between nearest neighbours, the dispersion relation is given by E(k) =−2t cos(k),

where t > 0 is the hopping amplitude. Length is measured in units of the lattice

constant a. Two dimensionless parameters are commonly used to describe the

Holstein polaron regimes. One is the adiabaticity ratio

A =
h̄ω0

t
, (6.12)

and the other is the dimensionless particle-phonon coupling

α =
g2

2th̄ω0
. (6.13)

For a given value of t and g, the particle-phonon coupling is weaker as the

phonon frequency increases. This is in agreement with the Fröhlich model in the

weak coupling regime. Large values of A correspond to the non-adiabatic limit of

the system dynamics. For low phonon frequencies such that A� 1, the polaron

effects become stronger.

Weak coupling regime

The weak coupling regime of the Holstein model can be treated in the same way

as above for the Fröhlich polaron. The particle-phonon interaction energy g is the

smallest energy scale of the problem and can be considered as a perturbation. The

zero-th order state of the particle have a well defined wavevector k. For a one-

dimensional lattice with nearest-neighbour interactions, the energy of the polaron
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up to second order in RS perturbation theory is given by

Ek =−2t cos(k)−αω0

∫
π

−π

dq
(2π)

1
A/2+ cos(k)− cos(k−q)

(6.14)

The integral can be evaluated numerically for a given value of the adiabaticity ra-

tio A > 4. The integral can diverge for smaller values of A, as energy-conserving

phonon emission and absorption processes become allowed and stationary pertur-

bation theory is no longer applicable. The ground state energy depends linearly on

the coupling constant α as in the Fröhlich model.

Strong coupling regime

In the strong coupling limit α � 1, the energy of the particle E(k) is the smallest

energy scale of the problem. The Hamiltonian in this regime is best solved using

the site representation for the particle operators, and can be partitioned as Ĥ =

Ĥ0 +V̂ , where

Ĥ0 = ε ĉ†
i ĉi +∑

q
ωqâ†

qâq +
g√
N ∑

iq
ĉ†

i ĉieiq·Ri
(

âq + â†
−q

)
(6.15)

V̂ = −t ∑
i, j

ĉ†
i ĉ j. (6.16)

The partition has been chosen such that Ĥ0 corresponds to an independent boson

model, which can be solved exactly [84]. The eigenstates of Ĥ0 serve as the zeroth

order states in the perturbative analysis of the full Hamiltonian [215]. In Appendix

E it is shown that using the canonical transformation

U = exp

[
∑
jq

ĉ†
j ĉ jeiq·R j

Mq

ωq

(
â†
−q− âq

)]
,

the transformed Hamiltonian H̄0 can be written in the diagonal form

H̄0 ≡ ÛĤ0Û† = ĉ†
i ĉi (ε−∆Eg)+∑

q
ωqâ†

qâq, (6.17)
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where ∆Eg = N−1
∑q g2/ωq is the polaron shift from the single particle energy ε .

The polaron shift depends on the square of the coupling energy g and is enhanced

at low phonon frequencies.

The hopping of the particle between sites is determined by the operator V̂ =

−t ∑i, j ĉ†
i ĉ j, where t > 0 is the hopping amplitude. In Appendix E it is shown that

the transformed hopping operator can be written as V̄ =−t ∑i j ĉ†
i ĉ jX̂

†
i X̂ j, where

X̂†
i X̂ j = exp

[
N−1/2

∑
q

eiq·R j
g

ωq

(
âq− â†

−q

)]
. (6.18)

The particle hopping is thus modulated by phonons, which are usually considered

to be in a thermal equilibrium state. By taking the expectation value of the operator

V̄ over the phonon states the hopping of the particle can be described by V̄ =

−t̄ ĉ†
i ĉ j, which is of the same form as the bare hopping operator V̂ in Eq. (6.16) but

with an exponentially suppressed amplitude

t̄ = te−ST , (6.19)

where e−ST = 〈i|X̂†
i X̂ j|i〉 is the expectation value over the thermal phonon state.

At low temperatures the phonon-dressed particle (polaron) can hop coherently be-

tween sites without emitting or absorbing phonons. The polaron spectrum forms a

band with an exponentially suppressed bandwidth and exponentially increased ef-

fective mass near at the origin of the Brillouin zone. Incoherent hopping between

sites involve the phonon absorption and emission processes. This is the dominant

hopping mechanism at higher temperatures. A more comprehensive description of

the small polaron problem can be found in Ref. [84].

6.2.3 Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model was originally introduced to describe a

one-dimensional trans-polyacetylene polymer chain, which is an example of sys-

tems with phonon-modulated particle hopping [216, 217]. In the Holstein model

the particle interacts with phonons locally at each lattice site. This is represented

in the interaction Hamiltonian Ĥint by its dependence on the interaction energy Mq
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on the phonon wavevector only. The particle hopping is due to the overlap of the

particle’s wavefunction in different sites and does not depend on the lattice motion.

In a realistic lattice, the site position changes dynamically. The hopping ampli-

tude t depends on the distance between lattice sites. If this distance changes as a

consequence of the lattice motion, then t also varies. Since the lattice motion is

quantized, the variation of t involves the creation or annihilation of phonons. The

phonon-modulated hopping is represented in the interaction Hamiltonian Ĥint by a

dependence of the interaction energy on the wavevector of the particle, i.e.,

Ĥint = ∑
q,k

Mk,qĉ†
k+qĉk

[
âq + â†

−q

]
. (6.20)

For a one-dimensional lattice with nearest-neighbour hopping we can write [218]

Mk,q =
1√
N

2iαq [sin(k+q)− sin(k)] , (6.21)

where

αq =
α̃t√

2mω(q)
. (6.22)

For length measured in units of the lattice constant (a = 1), the parameter α̃ is a

dimensionless number, and m is the mass of the lattice oscillators.

Sharp transition in the strong coupling regime

For the Holstein and related models without phonon-mediated hopping the polaron

band has a minimum at the origin of the Brillouin zone k = 0 for all values of the

particle-phonon coupling strength. The polaron band shape changes dramatically

as a function of the coupling strength, which results in the increase of the effective

mass in the limit of strong coupling. The SSH and other models with phonon-

modulated hopping behave differently in the limit of strong particle-phonon cou-

pling. In this regime, the minimum energy of the polaron band occurs at a finite

wavevector kg 6= 0 and the bandwidth remains finite. In the weak coupling limit,

the SSH model behaves analogously to the Holstein and related models. The transi-

tion from weak to strong coupling in the SSH model is sharp. Discontinuities in the

polaron properties have been shown to exist for this model [205, 218]. This is con-
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Figure 6.1: Polaron dispersion E(k) (in units of 2t) for a one-dimensional
SSH model in the non-adiabatic regime ω0/t � 1. The curves are
labeled by the value of the particle-phonon coupling constant λ =
2α2/tω0. t is the particle hopping amplitude and ω0 is the phonon fre-
quency. The particle-phonon interaction energy is proportional to α .
Energy is obtained from second-order Rayleigh-Schrödinger perturba-
tion theory with Einstein phonons.

trary to the Holstein model for which it is known that the self-trapping crossover is

continuous as the coupling strength is increased [215].

Let us consider a one-dimensional lattice in the non-adiabatic limit ω0/t � 1.

In this limit we can use RS perturbation theory with the free particle and phonon as

the zeroth order states. In Appendix E it is shown that polaron dispersion to second

order in the interaction energy for optical phonons in the limit ω0→ ∞ is given by

E(k) =−2t cos(k)− tλ [2− cos(2k)] (6.23)

where the dimensionless coupling λ is defined as

λ =
2α2

tω0
. (6.24)
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The polaron dispersion in the non-adiabatic limit is shown in Fig. 6.1 for several

values of λ . At the critical particle-phonon coupling λc = 1/2, the wavevector

of the polaron ground state shifts from kgs = 0 to a finite value. This is contrary

to the behaviour of the Fröhlich or Holstein polaron models in the non-adiabatic

limit where the ground state is at the origin of the Brillouin zone for all coupling

strengths. The shift of the ground state to finite wavevectors is a consequence of

phonon-mediated hopping. For example, a particle can hop to the neighbouring

site by creating a phonon at the destination site and then hop one site further by

annihilating this phonon. In Appendix E it is shown that this second order hopping

has an amplitude t2 =−α2/ω0 and leads to the term−2t2 cos(2k) in the dispersion,

which favours a minimum at π/2.

6.3 Polarons with cold molecules in optical lattices
There is currently growing interest in using ultracold atoms trapped on an optical

lattice for quantum simulation of condensed matter phenomena [79, 83]. Ultracold

atoms offer the possibility of designing quantum systems that are well described

by models such as the Bose-Hubbard Hamiltonian [82]. However, it is difficult to

design a quantum system with significant exciton - phonon couplings using ultra-

cold atoms, primarily because the interactions between atoms trapped on an optical

lattice are very weak and the external motion of the atoms is entirely determined by

the trapping lattice potential. It was recently shown that polar molecules trapped

on an optical lattice provide new possibilities for quantum simulation due to the

presence of long-range dipole-dipole interactions [87, 195]. In this chapter, we

consider the possibility that rotational excitons in an ensemble of polar molecules

on an optical lattice interact with the translational motion of the molecules in the

lattice potential. It is shown that under weak trapping conditions the dipole-dipole

interaction between molecules can significantly couple the dynamics of rotational

excitons with the lattice vibrations, and that this coupling can be tuned with an

external DC electric field.

The main features of the exciton - phonon interaction in molecular aggregates

can be described by a simple Holstein model [84, 214], that accounts for the defor-

mation of the lattice potential when molecules are internally excited. The Holstein
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and related models describe the coupling strength to excitons by phenomenolog-

ical constants, because the complexity of the interactions with the environment

make it difficult to calculate the coupling constants using ab-initio methods. Nor-

mally, information about the coupling strengths is obtained approximately from

spectroscopic data [115, 116]. Therefore, it would be desirable to design an exper-

imentally accessible many-body quantum system that would be described exactly

by the Holstein Hamiltonian, with the advantage that the exciton-phonon coupling

constants can be determined from first principles. Such a system could be used for

quantum simulation of excitonic energy transfer in complex molecular aggregates,

for example.

6.3.1 Molecular Lattice Hamiltonian

Let us consider an array of molecules trapped in a 3D optical lattice with one

molecule per lattice site, without tunneling of molecules between sites [82, 83].

This has been achieved for Cs2, Rb2 and KRb molecules [20, 21, 137, 219]. For the

ground and a few excited Bloch bands of the periodic lattice potential, molecules

can be considered to vibrate harmonically around the site positions Ri, with angular

frequency ω0 [79, 82]. For a given lattice direction, the equilibrium distance be-

tween different sites is given by half the wavelength of the corresponding trapping

laser, i.e., Ri−Ri+1 = λ/2. Under these conditions, the ensemble is described by

the Hamiltonian

Ĥ = ∑
i

p2
i

2m
+

1
2

mω
2
0 (ri−Ri)

2 +BeN2
i −di ·E+

1
2 ∑

i
∑
j 6=i

V (ri− r j),

(6.25)

where ri and pi are the position and momentum, Ni is the rotational angular mo-

mentum, di is the electric dipole, Be is the rotational constant and m is the mass of

the molecule in site i, E is the DC electric field and V̂ is the intermolecular interac-

tion potential. The frequency ω0 scales as
√

IL, where IL is the intensity of the trap-

ping laser [79]. For experimentally realizable lattice site separations a∼ 200−500

nm, V is determined by the electric dipole-dipole interaction, with a characteristic
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energy Vdd = d2
0/a3 (in atomic units), where d0 is the molecular permanent dipole

moment. For molecules with d0 ∼ 1−8 Debye, we have Vdd/h∼ 1−103 kHz.

In Chapter 5 it was shown that the intermolecular interaction in second-quantized

form contains a term that depends on the interaction between ground state molecules

plus additional terms that describe the collective excitations in the lattice. Up to

now we have neglected the contribution of this ground state interaction, because

we were interested in the excited state properties of the ensemble. More explicitly,

the quantization of the intermolecular interaction can be written as

1
2 ∑

i, j
V (ri− r j) =

1
2 ∑

i
∑
j 6=i
〈gi|〈g j|Vint|gi〉|g j〉+∑

i
∑
j 6=i

Di jB̂
†
i B̂i + ∑

i, j 6=i
Ji, jB̂

†
i B̂ j

=
1
2 ∑

i
∑
j 6=i

Ug

|ri− r j|3
+∑

i
∑
j 6=i

Di jB̂
†
i B̂i + ∑

i, j 6=i
Ji, jB̂

†
i B̂ j, (6.26)

where Ug = 〈gi|〈g j|Vint|gi〉|g j〉 only depends on the internal degrees of freedom

of the molecules. This separation of coordinates was demonstrated in Chapter

2, using the spherical tensor representation of the dipole-dipole interaction. The

first term in the above equation can be included in the classical potential energy

for the molecular motion in the lattice. We can consider the total lattice potential

experienced by a molecule to be

U(ri) =
1
2

mω
2
0 (ri−Ri)

2 +
1
2 ∑

j 6=i

Ug

|ri− r j|3
. (6.27)

In the limit mω2
0 � Ug, the first term dominates over the second term, and

the lattice dynamics is given entirely by the laser trap. In this case, interactions

between molecules are responsible for the internal state dynamics only. In the

opposite limit, the molecular interactions can be strong enough to displace the

molecules from the site positions Ri =(Xi,Yi,Zi) to new equilibrium positions R0
i =

(X0
i ,Y

0
i ,Z

0
i ).
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The lattice Hamiltonian in Eq. 6.25 can be written in a more general way,

accounting for the total potential energy of the molecular motion, as

Ĥ = ∑
i

p2
i

2m
+∑

i
U(ri)+BeN2

i −di ·E+
1
2 ∑

i
∑
j 6=i

Vex(ri− r j), (6.28)

where U(ri) is given by Eq. (6.27), and Vex includes only contributions of the

dipole-dipole interaction that determine the collective rotational excited states of

the molecular array (excitons), as well as non-linear exciton-exciton interactions.

6.3.2 Lattice Dynamics

We have seen that in general the dipole-dipole interaction will couple the transla-

tional motion of the molecules in different lattice sites. It is standard practice in

condensed matter theory to analyze this motion in terms of classical normal modes,

and then quantize the normal modes in the harmonic approximation for the inter-

molecular potential [84]. The energy spectrum of the vibrational modes is obtained

by solving the equation of motion for the harmonic displacements around the equi-

librium positions of the potential U(r1, . . . ,rN). This potential can be expanded in

Taylor series in powers of small displacements defined by ri = R0
i + xi. Ignoring

cubic terms in xi, the potential is given by

U(x1, . . . ,xN) =U0 +∑
i

(
~∇riU

)
0
·xi +

1
2 ∑

i
∑

j
xi ·
(
~∇ri

~∇r jU
)

0
·x j, (6.29)

where the notation ( )0 means that the derivatives are evaluated at the equilibrium

positions. The first term U0 is a constant potential energy of the equilibrium con-

figuration, and we neglect it in the following discussion. The equilibrium positions

are solutions of the equations ~∇riU = 0, therefore the second term vanishes. The

potential energy of the molecular motion is then given in the harmonic approxima-

tion by

U(x1, . . . ,xN) =
1
2 ∑

i, j
∑
µ,ν

Dµi,ν jxµixν j, (6.30)
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where the symmetric dynamical matrix elements

Dµi,ν j =
∂ 2U

∂ riµ∂ r jν

are defined as the second derivatives of the given pair potential

U(ri,r j) =
1
2

mω
2
0
[
(ri−Ri)

2 +(r j−R j)
2]+ 1

2 ∑
j 6=i

Ug

|ri− r j|3
,

evaluated at the equilibrium positions, i.e.,

Dµi,µi = mω
2
0 −

3
2

Ug ∑
j 6=i

(
1

|R0
i −R0

j |5
−5

(x0
µi− x0

µ j)
2

|R0
i −R0

j |7

)
, (6.31a)

Dµi,ν i =
15
2

Ug ∑
j 6=i

(x0
µi− x0

µ j)(x
0
ν i− x0

ν j)

|R0
i −R0

j |7
, (6.31b)

Dµi,µ j =
3
2

Ug

(
1

|R0
i −R0

j |5
−5

(x0
µi− x0

µ j)
2

|R0
i −R0

j |7

)
, (6.31c)

and

Dµi,ν j =−
15
2

Ug
(x0

µi− x0
µ j)(x

0
ν i− x0

ν j)

|R0
i −R0

j |7
. (6.31d)

These expressions together with the symmetries Dµi,µ j =Dµ j,µi, Dµi,ν j =Dµ j,ν i,

and Dµi,ν j =Dν j,µi, that must be satisfied for the quadratic form in Eq. (6.30), com-

pletely define all the (3×3) dynamical matrices Di j, associated with the molecular

displacements xi and x j. For the potential energy in Eq. (6.30), the classical equa-

tion of motion for the component xµ,i of the displacement at site i is then given by
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the equation [84]

m
d2xµi(t)

dt2 = − ∂U
∂xµi

= − ∂

∂xµi

{
1
2

Dµi,µix2
µi +

1
2 ∑

j 6=i
Dµi,ν jxµixν j +Dν j,µixν jxµi

}
= −Dµi,µi xµi−∑

j 6=i
∑

ν 6=µ

Dµi,ν j xν j (6.32)

where in the second line we only keep the terms that contribute to the equation of

motion, and in the third line we used the symmetry of the dynamical matrix.

We look for harmonic solutions to Eq. (6.32) of the form xµ,i(t)= εµei(q·R0
i−ωt),

where εµ is a complex amplitude. Replacing this ansatz in the equation of motion,

we have

−mω
2eiq·R0

i e−iωt
εµ = −∑

ν

∑
j

Dµi,ν jeiq·R0
j e−iωt

εν

mω
2
εµ = ∑

ν

Dµ,ν(q)εν (6.33)

which is an eigenvalue equation, for the dynamical matrix in Fourier space given

by (i = j terms are included)

Dµ,ν(q) = ∑
j

Dµi,ν jeiq·(R0
j−R0

i ). (6.34)

Assuming periodic boundary conditions, we can solve this eigenvalue problem

for the polarization vectors ~ε , for each allowed value of the wavevector q. The

eigenvalues λε(q) = mω2
ε (q) give the energy associated with the Fourier mode q,

of the motion along the polarization direction~ε . The most general solution of the

equation of motion for the displacement xi(t) is the linear combination of the form

xi =

√
1

Nm ∑
q

∑
s

ε̂s(q)Φs(q)ei(q·R0
i−ωs(q)t), (6.35)

where the eigenvectors~εs(q) =
√

m ε̂s(q)Φs(q) are normalized by the mass of the

molecules. The index s labels the three allowed eigenvectors of Eq. 6.33. Starting
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with the Hamiltonian for the vibrational motion of the molecules in the form

Hvib = ∑
i

1
2

mẋi
2 +

1
2 ∑

i, j 6=i
∑
µ,ν

Dµ,ν(R0
i −R0

j)xµixν j, (6.36)

and inserting the expression for the displacements in terms of normal modes, Eq.

6.35, one can rewrite the vibrational Hamiltonian in terms of the normal coordi-

nates Φs(q) as [84]

Hvib =
1
2 ∑

q
∑

s

[
Φ̇s(q)Φ̇s(−q)+ω

2
s (q)Φs(q)Φs(−q)

]
. (6.37)

The mode amplitudes Φs(q) satisfy the relations Φs(q) = Φ∗s (−q), which then

allows us to use the standard method of canonical quantization of promoting the

field variable Φs(q) to an operator using the well-known relations

Φs(q) =

√
h̄

2ωs(q)
(
âq,s + â†

q,s
)

; Φ̇s(q) =−i

√
h̄ωs(q)

2
(
â†

q,s− â−q,s
)
, (6.38)

which preserve the canonical commutation relations [xµi, ẋν j] = ih̄δµ,νδi, j. In terms

of the new operators, the molecular displacements can be written as

xi = ∑
q,s

√
h̄

2mNωs(q)
ε̂s(q)

(
âq,s + â†

−q,s

)
eiq·R0

i , (6.39)

and the vibrational Hamiltonian assumes the diagonal form

Ĥvib = ∑
q

∑
s

h̄ωs(q)
[

â†
q,sâq,s +

1
2

]
. (6.40)

The operator â†
q,s creates a phonon with wavevector q and polarization s,from

the vacuum state with no vibrational excitations in the corresponding Fourier mode.

The phonon energy dispersion h̄ωs(q) is obtained by solving the eigenvalue prob-

lem in Eq. (6.33).
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6.3.3 External field control of phonon dynamics

The previous sections describe the standard formalism to analyze the lattice dy-

namics of an array of interacting molecules in an optical lattice trap. Similar ideas

are also used to describe an array of atomic ions trapped individually in microtraps

[220]. In analogy with ion arrays, in arrays of polar molecules it is the competition

between the external trapping forces and the intermolecular forces what determines

the phonon dynamics. In contrast with ion arrays, the ratio between the competing

forces can be manipulated by tuning a DC electric field or by changing the intensity

of the trapping laser. In this section we analyze the external field dependence of the

phonon spectrum for infinite and finite molecular arrays. We restrict the discussion

to one spatial dimension for simplicity, but extensions to higher dimensionality are

straightforward.

Finite one-dimensional array with respulsive interactions

When the displacement of the molecules from their equilibrium positions is small,

the potential energy of the molecular array can be defined as U(r1, . . . ,rN) =

∑
N
1 U(ri), where U(ri) is given by Eq. (6.27). The molecular coordinates can

be rewritten as ri = Ri + xi, and express the potential in terms of the relative dis-

placements xi from the optical lattice trap minima Ri, i.e.,

U = ∑
i

1
2

mω
2
0 x2

i +
1
2 ∑

i
∑
j 6=i

Ug

|xi−x j +Ri−R j|3
. (6.41)

For a cubic optical lattice symmetry with lattice minima separated by aL = λL/2,

where λL is the wavelength of the trapping laser, we can express the coordinates

in units of aL, and the potential energy in units of mω2
0 a2

L. The resulting generic

potential energy for a one-dimensional array is

F(v1, . . . ,vN) =
U

mω0a2 = ∑
i

v2
i

2
+

1
2 ∑

i
∑
j 6=i

κ

|vi− v j + i− j|3
, (6.42)

where vi = (xi−Ri)/aL and
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κ =
(Ug/a5

L)

mω2
0

(6.43)

is a force constant ratio that parametrizes the relative strength of the dipole-dipole

and laser trapping forces. The potential F(v1, . . . ,vN) is generic for an arbitrary

polar molecule.

Alternatively, we can consider the periodicity of the optical lattice potential

explicitly. We can always choose a laser configuration for which the optical trap-

ping potential is separable in three orthogonal directions, as can be obtained with

three retro-reflecting beams with polarizations orthogonal to each other [36]. In

this case, we can consider a one dimensional array given by a standing wave laser

with polarization along the ẑ axis, propagating along the x direction. If the dipole-

dipole interaction is negligible along the yz-plane, the total lattice potential along

the x axis is

U = ∑
i

V0 cos2(kLxi)+
1
2 ∑

i
∑
j 6=i

Ug

|xi− x j|3
. (6.44)

The first terms describes the optical lattice potential with finite depth V0 = |E0|2αeff,

generated by the standing wave laser with intensity IL = cε0|E0|2/2 and wavevector

kL = 2π/λL = π/aL. αeff is the effective dynamic polarizability of the molecular

state being trapped at the frequency of the trapping laser (see Chapter 2). Since

in the Mott-insulator phase the molecules are localized near the minima of the

potential [79], we can rewrite the coordinates in terms of the displacements vi =

xi−Xi. We can rescale the coordinates in units of aL and the energies in units of

the lattice depth V0, which results in the generic potential energy

G(v1, . . . ,vN) =
U
V0

= ∑
i

cos2(π(vi + i))+
1
2 ∑

i
∑
j 6=i

ρ

|vi− v j + i− j|3
, (6.45)

where

ρ =
Vg

V0
(6.46)

is the ratio between the ground state dipole-dipole interaction energy Vg = Ug/a3
L

and the optical lattice depth V0. For small displacements xi� 1/kL, the expansion

of cos2(kLxi) in Eq. (6.44) up to quadratic terms in xi leads to the relation mω2
0 =
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Figure 6.2: Dimensionless sinusoidal G(v1,v2) (blue) and scaled-quadratic
(2π2)×F(v1,v2) (red) potentials, evaluated along the path v1 =−v2, for
two interacting molecules: (a) The minimum of both potentials coincide
at v1 = 0= v2 when Ug = 0, meaning that the molecules are separated by
one lattice constant aL; (b) For strong repulsive dipole-dipole interaction
(Vg/V0 = 2π2), the potential G does not have a minimum at v1 ≈ 0, but
F still predicts a stable minimum at near zero displacement. Vg =Ug/a3

L
is the dipole-dipole energy and V0 is the optical lattice trap depth.

2V0k2
L. Using this expression, we can relate κ and ρ as

κ =
ρ

2π2 . (6.47)

Therefore, the functions F(v1, . . . ,vN) in Eq. (6.42) and G(v1, . . . ,vN) in Eq. (6.45)

have their minima at the same positions for two values of κ and ρ related by Eq.

(6.47). This equivalence is only valid for values of κ � 1, since otherwise the

finite depth of the optical lattice potential in G is important. As an illustration of

this point, we show in Fig. 6.2 the difference between the equilibrium positions

predicted by F(v1,v2) and G(v1,v2) when the repulsive dipole-dipole interaction is

much larger than the lattice trap depth V0. We therefore restrict our discussion to

moderate interaction strengths, i.e., Vg ∼V0, because we are interested in the limit

where the lattice has an important effect on the phonon dynamics.

In order to find the equilibrium geometry associated with the potential G in

Eq. (6.45), we use the commercial software Mathematica to find the global min-

imum of the potential, using three different direct search algorithms that do not
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ρ 0.1 1

v1
-0.0008156 -0.0079563

(-0.0153162) (-0.117283)

v2
-0.0000503 -0.0006791

(-0.0016473) (-0.0324155)

v3
0.0000000 0.0000000

(0.0000000) (0.0000000)

v4
0.0000503 0.0006791

(0.0016473) (0.0324155)

v5
0.0008156 0.0079563

(0.0153162) (0.117283)

Table 6.1: Displacements vi = xi−Xi from the position of the optical lattice
minima Xi, in units of aL = λL/2, for a 1D array of five polar molecules.
The interaction strength is parametrized by the ration ρ = (Ug/a3

L)/V0.
Dipole-dipole interactions only up to the next-nearest neighbour are
taken into account. λL is the wavelength of the trapping laser, and V0
is the optical lattice depth. The values in parenthesis correspond to a
quadratic approximation for the lattice site potentials.

evaluate the derivatives of G. We shift the value of the lattice potential as cos2 α =

1− sin2
α , so there is a minimum at α = 0, when there are no interactions. The

results are shown in Tables 6.1 for N = 5. For N = 10 the solutions are of the

same order of magnitude as for N = 5. Since the potential is periodic, we restrict

ourselves to the solutions with |vi| < 1, because we assume there is no tunnel-

ing of molecules between different lattices. Although the repulsive interactions

are comparable to the lattice depth (ρ ∼ 1), the equilibrium positions for an ar-

ray of interacting molecules R0
i are not significantly perturbed with respect to a

non-interacting array, i.e., R0
i ≈ Ri, where Ri is the position of the optical lattice

minima.

Finite one-dimensional arrays with attractive interactions

For a infinite homogeneous array, the phonon frequencies may not be well defined

for κ < 0, which is an indication of instabilities in the lattice potential energy.

We want to analyze in more detail the stability of a finite one-dimensional molecu-
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Figure 6.3: Dimensionless sinusoidal G(v1,v2) (blue) and scaled quadratic
(2π2)×F(v1,v2) (red) potentials, evaluated along the path v1 =−v2, for
two interacting molecules: (a) A relatively weak attractive dipole-dipole
interaction (ρ = 0.01) creates a local minimum at v1 ≈ 0, which keeps
the molecules separated by one lattice constant aL; (b) For a stronger
attractive interaction (ρ ∼ 0.1), the potentials G and F do not have stable
minimum at v1 ≈ 0. ρ is the ratio between the dipole-dipole energy and
the optical lattice trap depth.

lar array with attractive interactions. Understanding the conditions under which the

lattice potential is not strong enough to counteract the attractive dipole-dipole inter-

action between molecules is important if one considers a two- or three-dimensional

optical lattice of molecules where an exciton can propagate in orthogonal direc-

tions. In the lattice direction parallel to an applied electric field (attractive interac-

tion), excitons have a positive effective mass, and a negative effective mass in the

directions perpendicular to the field (repulsive interaction). This anisotropy can in

principle be exploited in experiments that probe the linear and non-linear response

of the molecular ensemble to microwave fields.

Let us again consider two interacting molecules in an optical lattice with lattice

constant aL. Figure 6.3 shows the potential G(v1,v2) along the path v1 = −v2 in

coordinate space. Although the strength of the potential is smaller than the lat-

tice depth, i.e., ρ < 1, the local minimum at v1 = v2 ≈ 0 is becomes vanishingly

shallow for a ratio ρ ∼ 0.2, which would result in the approach of the molecules,

leading to a collisional loss. Therefore, the laser trapping forces would not be

strong enough to support a Mott-insulator phase for relatively small dipole-dipole

interaction strengths. For values of ρ that support relatively deep local minima
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Figure 6.4: Ratio ρ = (Ug/a3
L)/V0 between the dipole-dipole energy and the

optical lattice depth, for a one-dimensional array of LiCs molecules sep-
arated by a = 400 nm as a function of the electric field and trapping
frequency ν0 = ω0/2π: (a) Field perpendicular to the array; (b) Field
parallel to the array.

away from the instability in the potential (ρ ∼ 0.01), the displacement of the equi-

librium position from the optical lattice minima are vi� 10−5 (in units of aL) for an

array of five molecules. The same holds holds for an array with an arbitrary num-

ber of molecules. Figure 6.3 also shows that an attractive dipole-dipole interaction

arising from the permanent dipole moments of the molecules in their rotational

ground state can lower the effective trap depth of the optical lattice, which might

be relevant for studies of dipolar quantum phases [64, 85, 86].

6.3.4 Typical parameters for alkali dimers in optical lattices

In order to illustrate the distinct physical regimes for the lattice dynamics, let us

consider LiCs molecules as an example of an alkali-metal dimer with relatively

large dipole moment. Since the phonon spectrum is characterized by the param-

eter ρ = (Ug/a3
L)/V0, or equivalently κ = ρ/2π2, in principle we have complete

control over the phonon dynamics because the lattice depth ω0 scales linearly with

with the trapping laser intensity IL, and Ug can be manipulated by changing the

strength an external DC electric field, as well as its orientation with respect to the
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array axis. In Figure 6.4 we show typical values of ρ for different trapping fre-

quencies ν0 = ω0/2π and electric field strengths parallel and perpendicular to the

array. For arrays of LiCs molecules that are perpendicular to an applied electric

field, the condition ρ ∼ 1 we imposed previously implies that for relatively small

trapping frequencies ν0 from 10 to 15 kHz, DC electric fields of up to 10 kV/cm

can be applied to the array without disturbing the geometrical arrangement of the

molecules in the optical lattice. Electric fields larger than (approx.) 3 kV/cm are

rrturbative for LiCs molecules, so that the mixing of the rotational ground state

N = 0 with rotational excited states higher than N = 1 cannot be neglected.

For attractive interactions, Fig. 6.4 shows that an array of LiCs molecules is sta-

ble for DC electric fields larger than 2 kV/cm only for trapping frequencies ν0 much

larger than 20 kHz, according to the criteria ρ ≤ 0.2 we identified above. Trapping

frequencies on the order of 100 kHz can be easily achieved experimentally by

increasing the intensity of the trapping laser. We will see later in this chapter, how-

ever, that for trapping frequencies larger than 30 - 50 kHz, the phonon dynamics

is only weakly coupled to the collective rotational degrees of freedom (excitons),

regardless of the strength and orientation of the electric field. For lower trapping

frequencies on the order of 10 kHz, an array of LiCs molecules with attractive in-

teractions is stable for parallel electric fields of strength smaller than 0.5 kV/cm.

In this trapping frequency regime the exciton-phonon coupling is strong, and is

mainly characterized by non-local spatial correlations and phonon-modulated hop-

ping that are believed to be absent in natural systems such as molecular crystals

and photosynthetic complexes [116].

6.3.5 Frequency of lattice vibrations in a finite array

In the limit of non-interacting molecules, the vibrational frequency of the molecules

in the optical lattice potential is ω0 for the lowest Bloch band. In the harmonic ap-

proximation, higher bands have energy nh̄ω0, with n an integer. For small enough

ratio between the lattice depth and the dipole-dipole interaction between molecules

in their rotational ground state, the vibrations of the molecules become correlated,

and the collective vibrational motion of the molecular array can be described in
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terms of normal modes. For a large number of molecules, these normal modes can

be described more conveniently in terms of phonons.

In general, the vibrational analysis of the normal modes of a finite lattice can

be performed by solving the equations of motion numerically, given the form of the

dynamical matrix in Eq. (6.31). For instance, let us consider an one-dimensional

array of N molecules that in equilibrium are separated by a distance aL, given by the

optical lattice potential. We saw in the previous section that even in the presence of

dipole-dipole interactions, the equilibrium positions of the molecules R0
i are given

by the trapping potential. We define the mass-weighed molecular displacements qi

as

qi =
√

mxi =
√

m(ri−R0
i ), (6.48)

and divide the kinetic and potential energy of the array by ω2
0 to rewrite the Hamil-

tonian in Eq. 6.36 as

H ′ ≡ H
ω2

0
=

1
2 ∑

i,µ
q2

µ,i +
1
2 ∑

i, j
∑
µ,ν

Kµi,ν jqµ,iqν , j (6.49)

where Kµi,ν j = Dµi,ν j/mω2
0 is a dimensionless dynamical matrix, Dµi,ν j given by

Eqs. (6.31). Associated with the Hamiltonian in Eq. (6.49) are the equations of

motion for the 3N variables qµ,i (i = 1, . . . ,N and µ = x,y,z)

1
ω2

0

d2qµi

dt2 =−Kµi,µiqµi−∑
j 6=i

∑
ν 6=µ

Kµi,ν jqν j. (6.50)

We look for real harmonic solutions of the form qµi = Aµi cos(ωt +δ ), and obtain

the secular equation

∑
j
∑
ν

(Kµi,ν j−δµi,ν jλ )Aν j = 0, (6.51)

where λ = ω2/ω2
0 . Equation (6.51) is an eigenvalue equation for the matrix K ,

with matrix elements Kµi,ν j. The eigenvector Φk of the matrix K , associated

with the eigenvalue λk, are the normal modes of vibration of the array. The mass-

weighed oscillation amplitudes at site i of the array are given by the coefficients

Aµi of the eigenvector Φk. For the k-th normal mode, all molecules oscillate with

the same frequency given by ωk/ω0 =
√

λk. As we did for an array with periodic
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Figure 6.5: Normal mode frequencies for a one-dimensional array of 10 polar
molecules as a function of the ratio ρ = (Ug/a3

L)/V0. V0 is the depth
of the optical lattice potential, with trapping frequency ω0. Ug/a3

L is
the dipole-dipole energy between molecules separated by a distance aL,
where aL is half the wavelength of the trapping laser.

boundary conditions in Section 6.3.2, by introducing the normal coordinates Qk,

Eq. (6.49) can be written in the diagonal form

H ′ =
1
2 ∑

k

{
Q̇2

k +λkQ2
k
}
, (6.52)

with λ =
√

ωk/ω0, which can be quantized using the canonical formalism, as in

Section 6.3.2. We then identify the normal coordinate Qk with the amplitude of the

motion in the normal mode Φk, whose frequency ωk we find by solving Eq. (6.51).

As an example, let us consider a one-dimensional array of N = 10 molecules.

In this case the matrix K has elements

Ki,i = 1+6κ ∑
j 6=i

1
|i− j|5

; Ki, j =−6κ
1

|i− j|5
, (6.53)
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Figure 6.6: Phonon spectrum ω(q)/ω0 for an infinite one-dimensional array
of polar molecules in an optical lattice with trapping frequency ω0, for
different values of the parameter ρ = (Ug/a3

L)/V0.

where κ = (1/2π2)ρ , with ρ the ratio between the dipole-dipole interaction energy

Ug/a3
L and the lattice depth V0. Figure 6.5 shows the normal mode frequencies ωk,

in units of ω0, for an array of 10 polar molecules with repulsive dipole-dipole in-

teractions, for different values of ρ . We denote by ∆ the energy difference between

the highest and lowest frequency modes, i.e., the width of the spectrum. Figure 6.5

shows that ∆ increases with ρ . For ρ ∼ 1, we find ∆ ≈ h̄ω0/2. For an array of 10

molecules with attractive interactions, we restrict ourselves to values of ρ ≤−0.2,

in order to ensure stability of the array. In this case we find that ∆≤ 0.13 h̄ω0.

6.3.6 Phonon spectrum of an infinite array

In section 6.3.2 we looked for solutions of the equations of motion of the form

xµ,i(t) = εµei(q·R0
i−ωt), where εµ is a complex amplitude. This is convenient for

very large arrays for which periodic boundary conditions are accurate. Let us con-

sider an infinite array of molecules directed along the z axis. In this case, Eq. (6.33)

becomes an algebraic equation for the frequency ω(q), with the dynamical matrix
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Dz is given by

Dz(q) = Dzi,zi +∑
j 6=i

Dzi,z jeiq·(R0
j−R0

i )

= mω
2
0 +

12Ug

a5 ∑
l>0

1− cos(lqaL)

l5 , (6.54)

where Eq. (6.31) was used. The phonon dispersion for the linear chain is obtained

as the positive root ω(q)/ω0 =
√

Dz(q)/mω2
0 ≡

√
Kz(q), given by

ω(q) = ω0
√

1+12κγ(q), (6.55)

where κ =Ug/a5
L/mω2

0 ≡ ρ/2π2, and γ(q) =∑m>0(1−cos(mqaL))/m5. latexFig-

ure 6.6 shows the phonon frequencies ω(q), in units of ω0, for different values of

the parameter ρ . For a given value of ρ > 0 the phonon bandwidth in the homoge-

neous case approximately equal to the bandwidth obtained for a finite array in Fig.

6.5. For repulsive molecular interactions in the ground state ρ > 0, the phonon dis-

persion has a minimum at the origin of the Brillouin zone, but the sound velocity

vs = dω(q)/dq vanishes at the minimum. It takes an energy larger than the gap ω0

for a sound wave to propagate in the array. In the limit where the lattice potential is

negligibly small compared to the dipolar interaction ρ→∞, the phonon frequency

in Eq. 6.55 becomes ω(q)≈ η sin(2qaL) in the nearest neighbour approximation,

where η =
√

12Ug/ma5
L. Phonon are acoustic in this regime and the sound velocity

is vs = 2ηaL at q = 0. This case has been considered in detail in Ref. [103].

6.3.7 Exciton-phonon interaction

In mesoscopic systems such as a photosynthetic complex consisting of a few num-

ber of interacting monomers (N ∼ 10), coupled to a finite number of environmen-

tal modes, the non-Markovian limit of exciton-phonon coupling is believed to be

important in preserving the quantum coherence between monomers at room tem-

perature [115, 116]. Non-Markovian behaviour is generally characterized by the

inability of the environment to dissipate the energy transfered from the system of

interest, so that energy can be transfered back to the system [221].
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The ability to generate arrays of polar molecules in optical lattices with arbi-

trary dimensionality and size would allow for studies of mesoscopic open quantum

dynamics, in the limit of markovian and non-markovian system-bath coupling. The

system would consist of rotational states of the molecules, coherently coupled by

the dipole-dipole interaction, and the bath would correspond to the motional de-

grees of freedom of the molecules in the lattice potential. An interesting possi-

bility would be the creation of small arrays of polar molecules (N ∼ 10), that is

decoupled from the rest of the molecular ensemble. Starting from a Mott-insulator

phase with unit filling with a large number of molecules N ∼ 103−105, it should be

possible to generate smaller molecular arrays by evaporating molecules at specific

sites, either by collisions with an electron beam or by selective molecular ioniza-

tion. It is therefore important to understand the coupling of rotational excitons with

lattice vibrations, in the limit of small number of molecules.

The excitonic part of the dipole-dipole operator, Vex, depends on the instan-

taneous position of the molecules. This naturally couples the internal states with

the relative motion of the molecules. We can separate Vex in a component of that

depends on the ro-vibrational coordinates of the molecules only, and a components

that mix the internal and translational coordinates by defining a Taylor expansion

of the pair potential Vex(ri− r j) around the equilibrium distance R0
i j = R0

i −R0
j ,

in powers of the small displacement xi from the equilibrium positions, i.e., ri =

R0
i + xi. Keeping only the first order term in the expansion, the potential can be

written as

Vex(ri j)≈Vex(R0
i j)+(x̂i− x̂ j) ·

−→
∇ ri jVex(ri j)

∣∣∣
ri j=R0

i j

(6.56)

where ri j = ri− r j, and the derivatives of the potential are evaluated at the equi-

librium positions. As a result of these separation internal and external motion, the

total Hamiltonian in Eq. (6.28) can be written as the sum: Ĥ = Ĥex + Ĥvib + Ĥint,

where

Ĥex = ∑
i

BeN2
i −di ·E+

1
2 ∑

i
∑
j 6=i

Vex(R0
i −R0

j), (6.57)

and

Ĥint =
1
2 ∑

i, j 6=i
(xi−x j) ·~∇ V (ri j)

∣∣
ri j=R0

i j
. (6.58)
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Ĥvib is the Hamiltonian describing the vibrational modes of the array (phonons).

At this point we quantize the rotational motion of a polar molecule in the presence

of the DC electric field, as well as the dipole-dipole interaction between molecules

at fixed distance R0
i j. The procedure was explained in detail in Chapter 5. In an

similar way, we can quantize the internal degrees of freedom in gradient operator
~∇V (ri j) evaluated at fixed positions. Therefore, by using first and second quan-

tization, the internal state dynamics can be described by the sum of the exciton

Hamiltonian and the exciton-phonon interaction as

Ĥex + Ĥint = ∑
i
(εeg +∑

j 6=i
Di j)B̂

†
i B̂i + ∑

i, j 6=i
Ji, jB̂

†
i B̂ j

+∑
i

(
∑
j 6=i

(xi−x j) ·~∇ri j D(Ri j)

)
B̂†

i B̂i

+ ∑
i, j 6=i

(xi−x j) ·~∇ri j J(Ri j) B̂†
i B̂ j. (6.59)

In Section 6.3.2 we analyzed the vibrational normal modes of an infinite molecular

array in Fourier space assuming periodic boundary conditions. The molecular dis-

placements xi appearing in the linear exciton-vibration coupling term in Eq. (6.59)

can then be expressed as a Fourier expansion using Eq. (6.39). In Appendix E it is

shown that the linear exciton-phonon coupling Ĥint in Eq. (6.59) can be written as

Ĥint =
1√
N ∑

qλ

∑
k

Mλ (k,q)B̂
†
k+qB̂k

(
âq,λ + â†

−q,λ

)
, , (6.60)

where the coupling constant satisfies M∗(k,q) = M(k+q,−q) in order to ensure

hermiticity of the Hamiltonian. The strength of the coupling of an exciton state k
is not the same for all phonon modes (q,λ ).

Let us consider a finite molecular array. It is advantageous to describe the

vibrational motion of the molecules in terms of normal coordinates Qi, with i =

1, . . . ,N. These are related to the mass-weighed cartesian displacements qi≡
√

mxi

by a unitary transformation U , constructed from the normalized eigenvectors of

the dynamical matrix K , defined in Eq. (6.49). In matrix notation, we can thus
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express the cartesian displacements xi in terms of normal coordinates as

x =
1√
m

UQ (6.61)

where xT = (x11, . . . ,x1i,x2i,x3i, . . . ,x3N), with xµi denoting the µ-th component of

the displacement of the i-th molecule in the array.

The normal coordinates Qk can be separated into three orthogonal directions,

for example the cartesian axes. Each direction ν of the normal mode k can be

quantized canonically as

Q̂νk =

√
h̄

2ωkν

(â†
νk + âνk), (6.62)

where â†
νk creates a phonon in mode k along the the ν-direction. In the harmonic

approximation, the phonon Hamiltonian in Eq. 6.52, which is valid for an array of

arbitrary size and geometry, can then be written as

Ĥph = ∑
k

∑
ν

h̄ωkν

(
â†

νkâνk +
1
2

)
. (6.63)

Using the expansion of the cartesian displacements xµi in terms of normal co-

ordinates Qνk, we can write the components of the relative displacement xi− x j

as

xµi− xµ j =
1√
m ∑

k

(
uµk

µi −uµk
µ j

)
Qνk, (6.64)

where uνk
µi is the element of the U matrix in the (µi) row and (µk) column. The

exciton-phonon Hamiltonian in Eq. 6.59 can then be written as

Ĥint = ∑
k,µ

√
h̄

2mωkµ
∑

i

[
∑
j 6=i

(
uµk

µi −uµk
µ j

)
∂µD(Ri j)

](
â†

µk + âµk

)
B̂†

i B̂i

+∑
k,µ

√
h̄

2mωkµ
∑

i, j 6=i

(
uµk

µi −uµk
µ j

)
∂µJ(Ri j)

(
â†

µk + âµk

)
B̂†

i B̂ j,

(6.65)
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which is separable in the orthogonal directions µ . We can write the interaction

Hamiltonian along the µ-direction as

Ĥµ

int = ∑
i

∑
k

gµk
Di

(
â†

µk + âµk

)
B̂†

i B̂i + ∑
i, j 6=i

∑
k

gµk
Ji j

(
â†

µk + âµk

)
B̂†

i B̂ j, (6.66)

where gµk
Di

is the coupling constant for the term that is diagonal in exciton degrees of

freedom. It corresponds to the variation of the rotational energy shift Di =∑ j 6=i Di, j

due to the vibrational motion of the molecules in the lattice potential. This term

has been extensively studied in the literature [84, 205, 215, 222]. The magnitudes

of the constants gµk
Di

for solids and chromophoric aggregates are normally deduced

from spectroscopic measurements. In our case, it is given by the expression

gµk
Di

=

√
h̄

2mωkµ
∑
j 6=i

(
uµk

µi −uµk
µ j

)
∂µD(R0

i j), (6.67)

where ∂µD(Ri j) is the µ-th component of the gradient of D(ri j) with respect to the

variable ri j, evaluated at the equilibrium distance R0
i j.

The coupling constant gµk
Ji j

is given by

gµk
Ji j

=

√
h̄

2mωkµ

(
uµk

µi −uµk
µ j

)
∂µJ(R0

i j), (6.68)

and parametrizes the off-diagonal exciton-phonon coupling. It has received much

less attention in the literature than the diagonal term, partly because it is believed

to be smaller for most molecular solids and aggregates [116, 223], but also because

when including this term in the Hamiltonian, analytic approaches fail in the strong

coupling regime [84]. In the system proposed here this term cannot be neglected

because the magnitude of D12 in comparison with J12 can be at most a factor of 10

larger in the limit of large electric fields.

For an optical lattice of polar molecules, the above equations are accurate pro-

vided there is no tunneling of molecules between lattice sites, i.e., the ensemble is

in the Mott-insulator phase. The coupling between rotational and translational de-

grees of freedom occurs due to the long-range character of the dipole-dipole inter-
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action, and not due to the particular form of the trapping potential. For instance, if

we consider anharmonic corrections to the optical lattice potential, we would only

need to include additional terms in Eq. (6.66), which can affect the exciton-phonon

interaction dynamics [224]. The simplified form of the excitonic Hamiltonian Ĥex

in Eq. (6.59) is accurate when the excited state |e〉 is well separated from other

rotational states, which can always be achieved by applying a DC electric field of

moderate strength [195, 225]. Since we are neglecting exciton-exciton interactions,

this model is valid in the limit of low excitation density.

The exciton-phonon interaction operator in Eq. (6.66) corresponds to a gener-

alized polaron model that has been used to study energy transfer and polaron effects

in molecular crystals and photosynthetic complexes [84, 214, 223]. The main ad-

vantages of the realization of a generalized polaron model using polar molecules

in optical lattices can be summarized as follow:

• From the knowledge of the trapping potential and the fact that the dipole-

dipole interactions is the leading contribution to the intermolecular interac-

tion, Eqs. (6.67) and (6.68) provide an accurate estimate of the strength

of the exciton-phonon coupling. Deriving an expression for the coupling

constants from first principles for a real solid or molecular aggregate is not

practical due to the complexity of the system.

• The potential use of the generalized polaron Hamiltonian for finite arrays

of polar molecules with arbitrary geometry, in which concepts such as mo-

mentum conserving exciton-phonon scattering are irrelevant, can lead to in-

teresting studies of quantum dynamics of excitonic degrees of freedom in

a mesoscopic phonon bath, which is believed to be highly non-Markovian

[114–116].

6.4 Polaron regimes in static electric fields
We have developed a microscopic model to describe the coupling of rotational

excitons to the lattice vibrations that can in principle be solved numerically for a

molecular array with arbitrary geometry and trapping frequency, in the presence of

a DC electric field. For simplicity, here we focus on a finite one-dimensional array
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of 1Σ polar molecules. Quasi-1D arrays within a 3D optical lattice can be obtained

when the coupling Ji j is significant along one direction of the lattice only. Control

of the coupling of rotational excitons to the lattice phonons is thus possible due to

the indirect dependence of the coupling constants gk
Di

and gk
Ji j

on two experimental

parameters: the optical lattice laser intensity and the DC electric field. For instance

the phonon-modulated hopping term is proportional to gk
Ji j

∝
√
(1/mω0)(J12/a),

where ω0 scales with the intensity as
√

IL and J12 depends on the strength and

orientation of the electric field with respect to the array.

The Hamiltonian that describes a one-dimensional array of N polar molecules

is given by

Ĥ = ∑
i
(εeg +∑

j 6=i
Di j)B̂

†
i B̂i + ∑

i, j 6=i
Ji jB̂

†
i B̂ j +∑

k
h̄ωk

(
â†

k âk +
1
2

)
+∑

i
∑
k

gk
Di

(
â†

k + âk

)
B̂†

i B̂i + ∑
i, j 6=i

∑
k

gk
Ji j

(
â†

k + âk

)
B̂†

i B̂ j, (6.69)

where the coupling constants gk
Di

and gk
Ji j

are given by Eqs. (6.67) and (6.68)

in terms of the vibrational normal modes and frequencies of the array, and the

spatial derivatives of the dipole-dipole constants Di j and Ji j. This Hamiltonian is

sometimes referred to as a Holstein-Peierls model [226, 227].

In order to quantify the strength of this coupling for realistic trapping condi-

tions, we analyze the eigenvalues of the polaron Hamiltonian in Eq. (6.69) for a

given molecular species in a finite 1D array. We can diagonalize the total Hamilto-

nian Ĥ numerically for an array of σ molecules in the site basis

|g1, . . . ,ei, . . . ,gσ 〉|ν1,ν2, . . . ,νσ 〉,

where νk is the occupation number of the phonon mode k. The phonon basis is

truncated by including states with up to a given phonon occupation νmax. The value

of νmax is increased iteratively until the calculated observable is converged. The

Hamiltonian is partitioned as Ĥ = Ĥ0 + Ĥint, where Ĥ0 = Ĥex + Ĥph. The ground

state energy Eg of the non-interacting Hamiltonian Ĥ0 is chosen as a reference. Any

interaction between rotational excitons and the lattice vibrations of the molecules

shifts the ground state Eg towards lower energies. The polaron shift of the ground
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state ∆Eg can be used as a measure of the exciton-phonon coupling strength [84,

205]. The stronger the couping to phonons, the larger the polaron shift.

As an illustrative example, we use a finite array of LiCs molecules (d = 5.5

Debye [15]) separated by aL = 400 nm. The polaron shift ∆Eg is evaluated as a

function of the optical lattice trap frequency ω0 for strong and weak DC electric

fields.

6.4.1 Strong fields: Holstein regime

In Appendix E it is shown that the exciton-phonon coupling constant for a homo-

geneous one-dimensional array with Einstein phonons can be written as

M(k,q) = 2iαDg(q)+2iαJ [g(k+q)−g(k)] , (6.70)

where g(k) = ∑m>0 sin(mkaL)/m4 is a mode-coupling function. The Holstein-type

interaction energy αD is defined as

αD =
α̃D12√
2mωE

[
h̄
a2

L

]1/2

, (6.71)

where ωE is the Einstein phonon frequency and α̃ =−3. The SSH-type interaction

energy is

αJ =
α̃J12√
2mωE

[
h̄
a2

L

]1/2

. (6.72)

For the Holstein model discussed in Section 6.2, the exciton-phonon interac-

tion Hamiltonian is given by M(k,q) = ig. This simplified form of the coupling

corresponds to the first term in Eq. (6.70) with g≡ 2αD, when the mode-coupling

function g(q) is set to unity. Holstein-type exciton-phonon interaction dominates

over SSH interactions when D12� J12. For closed-shell polar alkali-metal dimers,

this condition can be achieved to some extent at large DC electric field strengths for

any orientation of the field with respect to the molecular array (see Chapter 3). In

Fig. 6.7 the magnitude of the ratio αD/αJ = D12/J12 is plotted as a function of the

dimensionless field strength dE/Be. For LiCs molecules dE/Be = 1 corresponds

to E ≈ 2 kV/cm. The value of the ratio D12/J12 is independent of the orientation

of the field with respect to the array axis. Figure 6.7 shows that for alkali-metal
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Figure 6.7: Diagonal (Holstein) to off-diagonal (SSH) exciton-phonon cou-
pling ratio |αD/αJ| = |D12/J12| as a function of the dimensionless DC
electric field strength dE/Be.

dimers the effect of phonon-modulated hopping cannot be neglected even in strong

electric fields dE/Be ∼ 10. In Section 6.3.2 we discussed the lattice stability in the

presence of large electric fields. In order for strong Holstein-type exciton-phonon

coupling to be achieved, the value of αD can be increased by decreasing the trap-

ping frequency ω0, increasing the electric field strength, or both simultaneously.

However, the ratio ρ = Vg/V0 between the ground state dipole-dipole interaction

energy Vg and the trap depth V0 needs to be less than unity in order for the displace-

ment of the molecules from their equilibrium positions in the lattice potential to be

small. This restriction imposes a limit on the achievable values of the coupling

energies αD and αJ . In panel (a) of Figure 6.8 the polaron ground state shift ∆Eg

for a one-dimensional array of 10 LiCs molecules is plotted as a function of the

trapping frequency ω0/2π . The electric field is 9.0 kV/cm and is oriented perpen-

dicular to the molecular array. At this field strength the diagonal-to-nondiagonal

exciton-phonon coupling ratio is |D12/J12| ≈ 5 and the stability ratio Vg/V0 < 1

for ω0/2π ≥ 15 kHz. The Holstein coupling strength can be parametrized by the
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Figure 6.8: Shift of the polaron ground state energy ∆Eg from its value for
non-interacting excitons and phonons for 10 LiCs molecules separated
by 400 nm, as a function of the exciton-phonon coupling strength. (a)
∆Eg in kHz versus trapping frequency ω0 for |D12|/|J12| ≈ 5 in a DC
electric field of 9 kV/cm perpendicular to the array. (b) ∆Eg/J12 versus
the dimensionless Holstein coupling strength λH = 2α2

D/J12h̄ω0. αD

is proportional to D12. Circles correspond to the polaron Hamiltonian
including diagonal (Holstein) and off-diagonal (SSH) exciton-phonon
interactions. Triangles correspond to Holstein coupling only.

dimensionless quantity [215, 218]

λH =
2α2

D

J12h̄ω0
. (6.73)

In panel (b) the same polaron shift ∆Eg as in panel (a) is shown in units of the

exciton hopping amplitude J12 as a function of λH ∝ 1/ω2
0 . The data presented this

way allows for better comparison with the literature [205] and is independent of the

molecular species. The energies shown in Fig. 6.8 are obtained using an iterative

process. The polaron shifts ∆Eg are converged to within 0.5% of their values. For

the smallest frequencies ω0/2π < 20 kHz, the energy converges when including

up to four phonons in the array, arranged in a combinatorial way throughout the

10 lattice sites. For the largest frequencies ω0/2π > 50 kHz the energy converges

when including up to two phonons in the array. The numerical procedure takes
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into account the phonon dispersion ω(k) and the discrete mode-coupling functions

g(k) defined in Eqs. 6.67 and 6.68. Therefore, the results do not directly relate to

the standard Holstein model described in Section 6.2, for which all phonons modes

are degenerate and couple equally to excitons.

In Fig. 6.8 the polaron shift is also evaluated only for diagonal exciton-phonon

coupling. In order to eliminate the effect of phonon-modulated hopping, the energy

αJ is set to zero while the other parameters in the Hamiltonian are kept constant.

The polaron shift ∆Eg in this case is 27% to 30% smaller than the value including

both diagonal and off-diagonal coupling in the range of frequencies considered.

This relative difference between the curves at a given frequency is comparable

with the value of the ratio αJ/αD ≈ 0.2 at the electric field used.

Polaron effects are dominant in the strong coupling regime of the exciton-

phonon interaction. The ground state energy shift from its value in the absence

of exciton-phonon interaction is an indicator of the strength of the coupling. In the

strong coupling regime, the polaron shift ∆Eg is larger than the hopping amplitude

of the particle J12 [84, 205, 215, 222]. Panel (b) of Fig. 6.8 shows evidence that

an array of molecules in an optical lattice can be prepared in the strong exciton-

phonon coupling regime. Even at large electric fields, where Holstein-type cou-

plings dominate, the contribution of phonon-modulated hopping processes to the

properties of rotational polarons can be significant.

The one-dimensional polaron spectrum has been calculated by direct diago-

nalization of the Hamiltonian in Eq. (6.69) in real space for a finite array. It is

important to understand the size dependence of the results obtained as the con-

clusions regarding the strength of the exciton-phonon coupling may vary with the

number of molecules in the array. Let us consider a one-dimensional array in the

weak exciton-phonon coupling regime. This can be achieved at large trapping fre-

quencies ω0 for any electric field strength. For larger frequencies, convergence

of the polaron ground state energy is achieved after including a maximum of two

phonons in the array. The phonon basis is thus small enough so that the size of the

array can be increased to N > 10. For an homogeneous lattice in the limit N→ ∞,

Rayleigh-Schrödinger (RS) perturbation theory gives an accurate estimate of the

polaron ground state energy in the regime h̄ω0/J12� 1. Figure 6.9 shows the po-

laron shift ∆Eg for a one-dimensional molecular array as a function of the number
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Figure 6.9: Polaron shift ∆Eg for a one-dimensional array of LiCs molecules
separated by aL = 400 nm, as a function of the number of molecules.
The lattice parameters are: ω0/2π = 100 kHz, J12 = 6.66 kHz, and
D12 = −33.32 kHz (perpendicular DC electric field). The dashed hor-
izontal line corresponds to the shift for an infinite homogeneous array,
calculated using weak-coupling perturbation theory.

of molecules N. The polaron shift ∆Eg has its maximum value for N = 3, for all the

trapping frequencies considered here (ν0 = 10−100 kHz). For N > 3, the polaron

shift decreases monotonically towards an asymptotic value. This asymptotic value

has been estimated using second-order RS perturbation theory as in Appendix E,

where only one-phonon states are included. The coupling constant M(k,q) for a

homogeneous array is given in Eq. (6.70). The wavevector integrals have been

evaluated numerically neglecting the phonon dispersion. By replacing the dipole-

dipole energies used in Fig. 6.9, we obtain the perturbative result ∆ERS
g = 575.6979

Hz, which corresponds to the N→ ∞ asymptote in the figure. For comparison, the

shift for a finite array of 20 molecules is ∆Eg = 573.0533 Hz. Figure 6.9 shows

that at least in the weak coupling regime, the polaron spectrum for lattice sizes

N ≥ 10 agrees reasonably well with the results for a infinite homogeneous lattice.

It is difficult to consider arrays with N > 10 for stronger exciton-phonon couplings
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because the dimension of the Hilbert space is prohibitively large (D � 104), as

more phonons are required to converge the energies.

6.4.2 Weak fields: SSH regime

The ratio between Holstein-type diagonal coupling to phonons and off-diagonal

coupling increases rapidly with the magnitude of the electric field (see Fig. 6.7).

For weak electric fields such that dE/Be < 1, the ratio αD/αJ = D12/J12 is small

and the dominant contribution to polaron behavior in the molecular array is given

by phonon-modulated exciton hopping as described in the SSH model (Section

6.2). The phonon dispersion for a homogeneous array depends on the ratio Vg/V0,

where V0 is the optical lattice depth and Vg = 〈g1g2|V̂dd|g1g2〉 is the ground state

dipole-dipole interaction. In the weak field regime, the phonon dispersion can

safely be ignored because Vg is suppressed by parity selection rules.

The particle-phonon coupling strength in the SSH model can be parametrized

in analogy with the Holstein model by

λSSH ≡
2α2

J

J12h̄ω0
=

α̃2J12

mω2
0 a2

L
=

18
π2

(
ER

J12

)
1

A2 . (6.74)

where in the second equality we have used α̃ = −3 and ER = h̄π2/2ma2
L. As in

the Holstein model, the adiabaticity ratio A = h̄ω0/J12 is used to characterize the

polaron behaviour. Equation 6.74 states that for a given value of A, the dimension-

less coupling strength λSSH increases with the ratio ER/J12 which depends linearly

on the lattice constant aL. In other words, for fixed ω0 and J12, the coupling is

stronger for lighter molecules and longer lattices. For a given lattice constant aL

and molecular mass m, the exciton-phonon coupling is stronger for molecules with

larger dipole moments, as the first equality in Eq. (6.74) shows.

In Section 6.2 a sharp polaron transition in the SSH model was described in

the non-adiabatic limit A� 1 using perturbation theory. Using diagramatic tech-

niques, it has been shown that this single-polaron transition also occurs in the adi-

abatic limit A < 1 [218]. This transition has yet to be observed experimentally.

The tunability of the dipole-dipole interaction and the phonon frequency in arrays

of cold molecules in optical lattices opens the possibility of observing this sharp
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Figure 6.10: Polaron phase diagram in the SSH model for selected alkali
dimers. The phase boundary between the weak and strong coupling
regimes is shown in circles. Lines corresponds to the set of parame-
ters that can be achieved with a given molecular species. These lines
correspond to the experimentally relevant lattice constants aL = 256
nm, aL = 532 nm and aL = 775 nm (from left to right). For each line,
the frequency varies in the range ω0/2π = 1− 100 kHz. A weak DC
electric field E is present with strength dE/Be = 1. The ratio between
diagonal and off-diagonal exciton-phonon coupling is αD/αJ =−0.5.
The phase boundary data were obtained by M. Berciu using the method
in Ref. [218].

transition using current technology. In Figure 6.10 the calculated polaron phase di-

agram is shown for a one-dimensional array. The data was obtained by M. Berciu

using the Momentum Average (MA) approximation, a recently-developed semi-

analytical technique to evaluate the polaron Green’s function [213, 218, 228, 229].
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Above the transition line, the SSH polaron is in the strong coupling regime where

the minimum of the dispersion is displaced from the origin of the Brillouin zone

(k0 6= 0). Below the line, the polaron behaviour is similar to the Holstein model,

with band narrowing and energy minimum at k0 = 0. The phase diagram is uni-

versal and includes a small but finite contribution from diagonal exciton-phonon

coupling. The phonon spectrum is gapped (optical) and dispersionless. Figure

6.10 also shows a region of parameters that can be achieved with cold molecules

in optical lattices. Several alkali-metal dimers are considered. The trapping fre-

quency ω0/2π varies in the range 1 kHz to 100 kHz. The molecular ensemble

is assumed to be in the Mott insulator phase for at least the three lowest Bloch

bands, so that tunneling of molecules between sites is suppressed. For each molec-

ular species, the lattice constants aL = 256 nm, aL = 532 nm and aL = 775 nm

are used to evaluate λSSH. These correspond to experimentally relevant trapping

wavelengths λL = 2aL. Each curve is obtained for an electric field perpendicular

to the array with strength dEZ/Be = 1. At this field strength, the ratio αD/αJ is

approximately 0.5 and the phonon dispersion is negligible. In Table 6.2 the electric

field strength corresponding to dEZ/Be = 1 is presented for the molecular species

used in Fig. 6.10.

The molecular parameters of LiRb and LiCs molecules are favorable for the ob-

servation of the sharp single-polaron transition induced by phonon-modulated hop-

ping in the presence of weak DC electric fields. Figure 6.10 shows that transition

from weak to strong coupling occurs within the frequency interval ω0/2π = 4−5

kHz for LiCs and LiRb molecules for an array with lattice constant aL = 532 nm,

which is most common in experiments [219]. For an array with a larger lattice

constant aL = 775 nm, the transition occurs at frequencies ω0/2π < 2 kHz. For

the shortest lattice spacing considered here aL = 256 nm, the transition occurs at

ω0/2π ≈ 26 kHz for both LiCs and LiRb molecules. These frequency estimates

assume that the lattice potential is harmonic, which is valid only for the lowest

vibrational levels of the potential. For very shallow lattices with only a few bound

states, the anharmonic nature of the lattice potential needs to be taken into account.

For molecules with small dipole moments d < 1 Debye, it is difficult to observe

the transition to the strong coupling regime. Figure 6.10 shows that for an array

of KRb molecules the polaron transition is predicted to be observable only at the
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RbCs LiRb LiCs KRb
E (kV/cm) 0.78 1.39 2.12 3.69

Table 6.2: Electric field at which dE/Be = 1 selected closed-shell polar
molecules. d is the permanent dipole moment and Be is the rotational
constant. Molecular parameters are taken from Ref. [230].

shortest lattice constant aL = 256 nm, in the range of trapping frequencies consid-

ered. However, it is possible to enhance the effect of phonon-modulating hopping

by increasing the value of J12 while keeping the rest of the parameters constant. By

increasing the transition dipole moment deg, the magnitude of J12 ∝ d2
eg increases.

We have seen in Chapter 3 that a DC electric field decreases the magnitude of J12

(see Fig. 3.1). It was shown in Section 3.3 that this is caused by the mixing of

rotational states of opposite parity. On the contrary, in Section 3.5 it was shown

that J12 increases in the presence of an off-resonant optical field, which induces

Raman couplings between rotational states of the same parity. However, the in-

tensities necessary to modify J12 significantly are greater than 108 W/cm2 for the

molecules considered here. At such intensities, only pulsed fields much shorter

than a microsecond can be easily produced in the laboratory [149, 231]. However,

one can use continuous-wave (CW) infrared lasers to induce Raman couplings be-

tween rotational states of the same parity such that the hopping amplitude J12 is

increased with respect to its field-free value.

Let us consider creating superpositions of rotational states that preserve the

parity of the states |g〉 and |e〉 via the Raman couplings illustrated in Fig. 6.11.

The intermediate states denoted |Eeven〉 and |Eodd〉 may correspond to rotational

states of the first vibrational excited state. Each three-level scheme in Fig. 6.11

corresponds to a lambda-configuration as used in stimulated Raman adiabatic pas-

sage techniques (STIRAP) [232]. The laser fields create coherences between the

rotational states of the same parity. Let us consider the field-dressed ground and

excited states be given by

|g〉= a0|N = 0〉+a2|N = 2〉 ≡ a0|0〉+a2|2〉, (6.75)
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Figure 6.11: Energy level scheme for parity-preserving Raman couplings via
the intermediate rovibrational states |Eeven〉 and |Eodd〉. The rovibra-
tional states in the even and odd manifolds are not coupled by external
fields. The angular momentum projection of the rotational states in-
volved is MN = 0.

and

|e〉= a1|1〉+a3|3〉. (6.76)

We have assumed MN = 0 for the rotational states involved and ignored contribu-

tions from the intermediate states |Eeven〉 and |Eodd〉 in the eigenstates. The one-

excitation two-particle state is

|e〉|g〉= a1a0|1〉|0〉+a1a2|1〉|2〉+a3a0|3〉|0〉+a3a2|3〉|2〉. (6.77)

Using this expression and its hermitian conjugate, the hopping amplitude J =

〈g|〈e|Vdd |e〉|g〉 can be written as

J = |a0a1|2〈0|〈1|V̂dd |1〉|0〉+ |a1a2|2〈2|〈1|V̂dd |1〉|2〉+ |a2a3|2〈2|〈3|Vdd |3〉|2〉

+2|a1|2Re(a0a∗2)〈0|〈1|V̂dd |1〉|2〉+2|a2|2Re(a1a∗3)〈2|〈1|V̂dd |3〉|2〉

+2Re(a0a3a∗1a∗2)〈2|〈1|V̂dd |3〉|0〉, (6.78)
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Figure 6.12: Polaron phase diagram for KRb and RbCs molecules in the pres-
ence of near resonant laser fields. The labeling of the curves is identical
to Fig. 6.10, but the exciton hopping amplitude J12 is enhanced by a
factor of two due to Raman couplings betweeen rovibrational states of
the same parity.

where Re(z) denotes the real part of z.

Using the methods in Appendix B, the dipole-dipole interaction matrix ele-

ments above can be evaluated. The six matrix elements in Eq. (6.78) are 〈0|〈1|V̂dd |1〉|0〉=
1/3, 〈2|〈1|V̂dd |1〉|2〉 = 4/15, 〈2|〈3|Vdd |3〉|2〉 = 9/35, 〈0|〈1|V̂dd |1〉|2〉 = 2

√
5/15,

〈2|〈1|V̂dd |3〉|2〉 = 2
√

21/35 and 〈2|〈1|V̂dd |3〉|0〉 =
√

105/35. The energies are

given in units of Udd
(
1−3cos2 θ

)
, where Udd = d2/a3

L and θ is the angle be-

tween the molecular array and the quantization axis. Inserting this values in Eq.

(6.78) gives

J =
1
3
|a0a1|2 +

4
15
|a1a2|2 +

9
35
|a2a3|2 +

4
√

5
15
|a1|2Re(a0a∗2)

+
4
√

21
35
|a2|2Re(a1a∗3)+

4
√

105
35

Re(a0a3a∗1a∗2) .

(6.79)

In the absence of external fields, the nearest neighbour hopping amplitude is

thus J12 = 1/3, since a0 = a1 = 1 and a2 = a3 = 0. By tuning the intensity and
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relative phase of the lasers used to prepare the even and odd rotational superpo-

sitions in Eqs. (6.75) and (6.76), the value of J12 can be modified. For example,

for the real and positive values a0 = a1 = a2 = a3 = 1/
√

2 we obtain the field-

dressed hopping amplitude J12 ≈ 0.787. This value is approximately 2.4 times

larger than the field-free hopping. Figure 6.12 shows the range of parameters in

the polaron phase diagram that can be achieved with KRb and RbCs molecules

when the hopping amplitude is enhanced by a factor of two (J12→ 2J12) using the

Raman coupling scheme depicted in Fig. 6.11. The curves corresponding to differ-

ent lattice constants aL are significantly shifted towards the strong coupling region

of the phase diagram when the Raman coupling scheme is considered (compare

with Fig. 6.10). However, the curve corresponding to aL = 532 nm does not cross

the phase boundary in the frequency range considered ω0/2π = 1− 50 kHz for

KRb molecules. Shorter lattice separations would facilitate the observation of the

transition. For RbCs molecules, increasing the hopping amplitude J12 by a factor

of two also shifts the lines in the phase diagram towards the strong coupling phase.

The transition frequency for aL = 532 nm, however, is in the same range of values

ω0/2π = 1−2 kHz as in Fig. 6.10, although the value of λSSH at ω0/2π = 1 kHz

is larger.

In summary, by trapping molecules with large dipole moments such as LiCs

and LiRb in optical lattices with site separation of up to several hundred nanome-

ters, it should be possible to observe a recently predicted single-polaron sharp

transition due to phonon-modulated hopping. For molecules with smaller dipole

moments such as KRb, the transition should be observable only for small site sep-

arations aL < 500 nm. It is possible to enhance the effect of phonon-modulated

hopping by using near resonant laser fields to induce Raman couplings between

rotational states of the same parity. This enhancement, however, does not have a

dramatic effect on the range of available parameters in the polaron phase diagram.
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Chapter 7

Entanglement of cold molecules
using off-resonant light

7.1 Chapter overview
This chapter presents a method to generate long-range entanglement of molecular

pairs using strong off-resonant pulses, in the absence of static fields. In Section

7.2 the basic notions of molecular alignment with strong pulses are reviewed. The

dipole-dipole interaction between molecules in the presence of strong off-resonant

fields is revisited in Sec. 7.3. The proposed scheme to generate long-distance

entanglement between polar molecules is explained in Secs. 7.4 and 7.5. The

chapter ends in with an analysis of specific entanglement measures that are relevant

for current experiments in Sec. 7.6. Here the possibility is also discussed to use

cold molecules in optical lattices to test Bell’s inequalities and to create many-

particle entanglement.
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7.2 Molecular alignment with adiabatic pulses

7.2.1 Single molecule alignment

In Chapter 2 it was shown that a far-detuned optical field polarizes a molecule in

the electronic ground state and interacts with the instantaneously induced dipole

moment resulting in an energy shift represented by the Hamiltonian

ĤAC =−∑
p

∑
p′

Ep(r)α̂p,p′E∗p′(r), (7.1)

where α̂p,p′ is a component of the polarizability tensor in the laboratory frame.

For non-rotating molecules, Eq. (7.1) corresponds to a constant energy shift of a

given vibronic state. For freely rotating molecules, the Hamiltonian ĤAC couples

the rotational states of the molecule. For a laser field with linear polarization along

the Z axis, it was shown in Sec. 2.5 that Eq. (7.1) can be written as

ĤAC = N̂2− 2
3

ΩID
(2)
0,0 (θ), (7.2)

where D
(2)
0,0 = (3cos2 θ − 1)/2 and ΩI = ε2(α‖−α⊥)/4Be is proportional to the

intensity of the laser field. The eigenvalues and eigenstates of this Hamiltonian

were analyzed in some detail in Secs. 2.5 and 3.5 for weak fields ((ΩI � 1) and

strong fields (ΩI � 1), respectively.

From a classical point of view, the electric field of a strong off-resonant optical

pulse exerts a torque on the rotating axis of a diatomic molecule. This torque

induces alignment of the molecular axis along the polarization axis of the pulse.

Since the electric field of the pulse oscillates rapidly at optical frequencies, the

direction of the instantaneous dipole moment of the molecule oscillates at the same

frequency as the field. Therefore, there is no net orientation of the molecule in

space on timescales longer than an optical cycle. As a result of the molecule-field

interaction, the molecules are aligned in space without a well-defined orientation.

The degree of alignment for diatomic molecules is commonly expressed by the

expectation value A = 〈cos2 θ〉, which is an observable quantity [149, 231]. This

quantity can be directly related to the angular distribution of the molecule in the
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laboratory frame:

〈cos2
θ〉=

{
1 ⇒ alignment parallel to reference axis

0 ⇒ alignment perpendicular to reference axis
(7.3)

where θ is the angle between the molecular axis and the field polarization axis

(reference axis). The alignment factor A = 〈cos2 θ〉 for a molecule in the rotational

eigenstate |N,MN〉 can be easily evaluated using cos2 θ = (1/3)(1+2C2,0), where

C2,0 is a modified spherical harmonic,

AN,MN = 〈NMN |cos2
θ |NMN〉=

1
3
+

2
3

[
N(N +1)−3M2

N

(2N−1)(2N +3)

]
. (7.4)

This expectation value is state-dependent. For the ground state |N = 0,MN = 0〉
the alignment factor is A0,0 = 1/3≈ 0.3 and for the excited state |N = 1,MN = 0〉
we have A1,0 = 0.6.

7.2.2 Adiabatic vs non-adiabatic alignment

In the presence of a strong linearly polarized off-resonant pulse (ΩI � 1 in Eq.

(7.2)), the rotational wavefunction is given by the superposition

|Ψ(t)〉= ∑
N

CN(t)|N,MN〉. (7.5)

This state can be viewed as a rotational wavepacket in angular momentum space

N. A broad wavepacket in angular momentum space corresponds to a narrow an-

gular distribution of the molecule due to the uncertainty principle1. The degree

of alignment of a rotational wavepacket is therefore larger than the alignment of

rotational eigenstates. The alignment of a rotational wavepacket given by Eq. (7.5)

evolves in time according to the evolution of the wavepacket under the influence of

the laser pulse, i.e.,

〈Ψ(t)|cos2
θ |Ψ(t)〉= ∑

N
∑
N′

CN(t)C∗N′(t)〈N′MN |cos2
θ |NMN〉. (7.6)

1The variables (θ ,N) form a canonical conjugate pair in classical mechanics.
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Figure 7.1: Single molecule alignment for adiabatic and non-adiabatic Gaus-
sian pulses.(a) adiabatic pulse with ton = toff = 5 trot. (b) non-adiabatic
pulse with ton = 0.1 trot and toff = 5 trot. In both panels the peak intensity
if Ω0 = 50. The red-dotted line shows the pulse envelope normalized to
unity. Time is in units of trot = h̄/Be.

The temporal evolution of a rotational wavepacket under the influence of a strong

optical pulse can be divided into two broad categories: adiabatic and non-adiabatic

dynamics. These terms refer to the comparison between the pulse duration and the

timescale for the rotational motion of the molecules trot = h̄/Be. Let us consider a

molecule in the rotational eigenstate |Ψ(0)〉 = |NMN〉 long before the laser pulse

is applied. If the pulse is several times longer than trot the evolution is adiabatic

and the rotational wavefunction |Ψ(t)〉 returns to the initial state |N,MN〉 after the

pulse is over [231]. When the pulse duration is comparable or shorter than trot the

wavefunction |Ψ(t)〉 after the pulse is over is given by the rotational wavepacket

in Eq. (7.5) with time-dependent amplitudes CN(t) =CN exp(−iENt/h̄). After the

pulse is gone, each component of the wavepacket evolves according to its stationary

phase iENt/h̄. Due to the discrete nature of the rotational spectrum, the evolution

of the wavefunction density |Ψ(t)|2 is periodic [149]: |Ψ(t)〉 = ±|Ψ(t + nTR)〉,
where TR = π h̄/Be is the rotational period and n is an integer.

In Figure 7.1 molecular alignment under adiabatic and non-adiabatic evolution

is shown. The molecule is initially in the rovibrational ground state |Ψ(0)〉 =
|0,0〉. A strong off-resonant optical pulse is applied along the Z axis. The intensity

parameter is given by ΩI = f (t)2Ω0. The electric field envelope of the pulse is
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Figure 7.2: Rotational wavepacket revival structure for a non-adiabatic pulse
with peak intensity Ω0 = 50, ton = 5 trot and toff = 0.01 trot. The degree
of alignment right after the pulse is over revives at integer multiples of
the rotational period TR = π h̄/Be ≡ πtrot. The pulse profile is shown in
dotted line.

chosen to be a Gaussian defined by

f (t) =

{
e−(t/ton)

2
t ≤ 0

e−(t/toff)
2

t ≥ 0
, (7.7)

where ton and toff are time constants that determine the shape of the pulse. For a

symmetric pulse (ton = toff = t0) the pulse duration τp is characterized by the full

width at half maximum (FWHM), i.e., τp = 2
√

ln2t0. The results in Fig. (7.1)

are obtained for a symmetric Gaussian with peak intensity Ω0 = 50 with varying

turn-on and turn-off time constants. The revival structure of a non-adiabatic pulse

with a fast turn-off time is shown in Fig. 7.2. The degree of alignment immediately

after the pulse is off revives at later times that are integer multiples of the rotational

period TR = πtrot.

7.3 Dipolar interactions in strong off-resonant fields
Let us consider the dipole-dipole interaction between molecules in the presence

of a strong off-resonant optical field with linear polarization. The Hamiltonian
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describing a single molecule ĤAC is given in Eq. (7.2) and its lowest eigenvalues

are plotted in Fig. 3.6. We limit the discussion to the opposite parity states g and e

from the lowest tunneling doublet. These states form a two-level system since they

are not mixed with other rotational states due to intermolecular interactions.

An approximate form of the interaction Hamiltonian matrix H = Ĥ1 + Ĥ2 +

V̂12 was presented in Chapter 3 (see Eq. (3.12), for the case where the transition

energy εe− εg is larger than the magnitude of the exchange coupling matrix ele-

ment J12. This condition is satisfied for closed-shell molecules in static electric

fields (Section 3.3) and open-shell molecules in combined electric and magnetic

fields (Section 3.4). The lowest two rotational states |g〉 and |e〉 in the presence

of a strong off-resonant field become very closely spaced as the field intensity in-

creases (see Fig. 3.6). For high laser intensities the energy splitting εe− εg for

two interacting polar molecules is comparable to or smaller than the energy of

their mutual interaction. In this intensity regime, the interaction-induced transition

|g1g2〉→ |e1e2〉 is energetically allowed if the molecules are initially in the ground

state. By setting the energy reference εg = 0, the Hamiltonian matrix H in the

subspace V2 = {|g1g2〉, |e1,e2〉, |g1,e2〉, |e1g2〉} can be written in block-diagonal

form

H =


0 J12 0 0

J12 2εe 0 0

0 0 εe J12

0 0 J12 εe

 . (7.8)

The eigenstates of the upper block can be written as

|Φ1〉= a|g1g2〉+b|e1e2〉 and |Φ2〉= b|g1g2〉−a|e1e2〉 , (7.9)

with eigenvalues E1 = εe−K and E2 = εe +K, where K =
√

ε2
e + J2

12. The states

|Φ1〉 and |Φ2〉 are entangled composite states due to the non-separability of its

single-particle components. The eigenstates of the lower block are the symmetric

and antisymmetric entangled states

|Ψ+〉= 1√
2
{|g1e2〉+ |e1g2〉} and |Ψ−〉= 1√

2
{|g1e2〉− |e1g2〉} , (7.10)
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Figure 7.3: Two-molecule level scheme for interaction J12 greater than the
transition energy εe. The ground and highest excited state |Φ1〉 =
a|g1g2〉+b|e1e2〉 and |Φ2〉 = b|g1g2〉−a|e1e2〉 are separated in energy
by 2K, where K =

√
ε2

e + J2. J is the exchange coupling constant.

already discussed in Section 3.4.3. Their corresponding eigenvalues are E− =

εe−J12 and E+ = εe+J12. The two-molecule energy level scheme when |J12|> εe

is illustrated in Fig. 7.3. This situation should be compared with the regime con-

sidered in Sections 3.3 and 3.4, where only the subradiant and superradiant states

|Ψ−〉 and |Ψ+〉 are entangled.

7.4 Entanglement of polar molecules in the absence of
DC fields

7.4.1 Time-evolution of two-molecule states

The results of this Section suggest an interesting possibility for generating molecu-

lar entanglement using strong off-resonant pulses in the limit of cold and ultracold

temperatures. Polar molecules can be initially prepared in the rovibrational ground

state |g〉 in the absence of DC electric fields. The molecules can be confined in op-

tical traps created by weak off-resonant fields (see Section 2.7). The initial wave-

function for a pair of interacting molecules is the stationary state |Ψ(0)〉= |g1g2〉.
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A strong linearly polarized off-resonant field can then be used to bring the energy

of the excited state |e〉 close to degeneracy with the ground state. In this regime the

dipole exchange interaction between two molecules leads to an arbitrary superpo-

sition of the form

|Ψ(t)〉= a(t)|g1g2〉+b(t)|e1e2〉e−i2εet/h̄ (7.11)

with no contribution from the one-excitation subspace {|g1e2〉, |e1g2〉} because the

Hamiltonian in Eq. (7.8) is block-diagonal. Let us rewrite the sub-block involving

the states |g1g2〉 and |e1e2〉 as

H =

(
−εe J12

J12 εe

)
, (7.12)

where the zero of energy is defined to be half the excitation energy h̄ωe = 2εe.

Inserting the wavefunction in Eq. (7.11) into the the time-dependent Schrödinger

equation ih̄∂t |Ψ(t)〉= H |Ψ(t)〉 with H given by Eq. (7.12) results in the system

of equations

ih̄
d

dτ
a(t) = b(t)J12 e−2iεet/h̄

ih̄
d

dτ
b(t) = a(t)J12 e2iεet/h̄. (7.13)

In the case where the energy splitting εe is instantaneously made of the same order

as J12 and both energy parameters are kept for a very long time, the probability

amplitude of the doubly excited state Pb(t) = |b(t)|2 oscillates in time as

Pb(t) =
J12

h̄K
sin2(Kt), (7.14)

where h̄K =
√

ε2
e + J2

12. We have assumed the initial condition a(0) = 1 and b(0) =

0. The probability amplitude Pa(t) is obtained from Eq (7.14) and the normalization

condition. Two molecules initially in the ground state therefore undergo periodic

exchange processes between the states |g1g2〉 and |e1e2〉 with Rabi frequency K for
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J12/K ∼ 1. In the limit J12/εe→ 0, the oscillation period 1/K tends to infinity, and

the amplitude of the oscillation tends to zero.

In order to study the more general case where both the dipolar coupling J12(t)

and the excited energy εe(t) are time-dependent, the two-molecule wavefunction

can be expanded as

|Ψ(t)〉= a(t)|g1g2〉+b(t)|e1e2〉. (7.15)

Inserting this expression in the Schrödinger equation, expressing energy in units

of the rotational constant Be and time in units of trot = h̄/Be gives the following

system of differential equations

i
d

dτ
a(τ) = J(τ)b(τ)

i
d

dτ
b(τ) = J(τ)a(τ)+2E(τ)b(τ), (7.16)

where J = J12/Be, E = εe/Be, and τ = t/trot. The timescale trot corresponds roughly

to the rotational period of a molecule [149, 150], which is on the order of picosec-

onds for most diatomic molecules. The dipole-dipole energy scale Udd = d2/R3 de-

fines the interaction timescale tdd = h̄/Udd , which depends on the relative distance

between molecules. The ratio between the rotational and interaction timescales

tdd/trot is larger than unity for distances larger than the characteristic length2

R0 =
(
d2/Be

)1/3
. (7.17)

If the pulse is adiabatic with respect to the rotational timescales (τp � trot), the

state of a single molecule is given by an eigenstate of the Hamiltonian in Eq. (7.2)

at all times. In this case, Eq. 7.16 can be solved numerically using the intensity

parameter ΩI(t) = f 2(t)Ω0 to evaluate the time-dependent Hamiltonian parameters

J(t) and E(t) from the curves in Figs. 3.6 and 3.9 for λ = 0. The strength of the

pulse Ω0 = ε2∆α/4Be is determined by the peak electric field amplitude.

2This equation in S.I. units reads R0 =
(
d2/4πε0Be

)1/3, where ε0 ≈ 8.854×10−12 CV−1m−1 is
the electric constant. In atomic units 4πε0 = 1.
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7.4.2 Molecular parameters for alkali-metal dimers

For polar alkali-dimers, the magnitude of the dipole moment d is a few Debye

and the rotational constant are in the range 102 − 103 GHz. The characteristic

length R0 = (d2/Be)
1/3 is therefore a few nanometers. The strength of the light-

matter interaction is parametrized by ΩI = |ε|2(α‖ − α⊥)/4Be. The S.I. units

of the polarizability anisotropy ∆α = α‖−α⊥ are [CV−1m2], but is commonly

presented in units of volume [cm3]. These two choices of units are related by

α[C V−1m2]= 4πε010−6αV[cm3], where ε0 is the electric constant. The square

electric field amplitude |ε|2 of the traveling wave is related to its intensity by

I = cε0n|ε|2/2, where n ≈ 1 is the refractive index of the medium and c is the

speed of light. The intensity parameter ΩI can thus be written as

ΩI =

(
1

cε0

)
I∆α

2Be
=

(
4π

c

)
I∆αV

2Be
(7.18)

In Table 7.1 the laser intensity I0 corresponding to a light-matter interaction param-

eter ΩI = 1 is presented for selected polar alkali-metal dimers. Predicted values

for the polarizability anisotropy ∆αV and rotational constants for the rovibrational

ground state Bv=0 ≈ Be are taken from Ref. [230]. For alkali-dimers I0 is on the

order of 107− 108 W/cm2. Continuous laser beams with frequencies in the mid-

infrared region (λ = 1064 nm) can have intensities on the order of 108 W/cm2

when focused to micrometer size regions [233, 234]. Intensities higher than 1010

W/cm2 can be achieved with laser pulses. Strong laser pulses are routinely used

in molecular alignment experiments, with pulse durations varying from less than a

femtosecond to hundreds of nanoseconds [149].

7.4.3 Entanglement length scale

In the presence of an off-resonant field, the excitation energy εe between the field-

dressed states |g〉 and |e〉 is equal to the dipole-dipole interaction energy for molecules

whose separation is on the order of the entanglement length

Re =
(
d2/εe

)1/3
. (7.19)
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d (D) ∆αV (a3
0) Be (cm−1) I0 (108 Wcm−2) R0 (nm) trot (ps)

RbCs 1.238 441 0.0290 0.4 6.4 1.15
KRb 0.615 360 0.0386 0.7 3.7 0.86
LiCs 5.529 327 0.1940 3.8 9.3 0.17
LiRb 4.168 280 0.2220 5.0 7.3 0.15

Table 7.1: Molecular parameters for selected polar alkali-metal dimers: I0
is the laser intensity corresponding to ΩI = (4π/c) I0∆αV/2Be = 1,
R0 = (d2/Be)

1/3 is the characteristic length of the dipole-dipole inter-
action and trot = h̄/Be is the timescale of the rotational motion. Values of
the polarizability anisotropy ∆αV, dipole moment d and rotational con-
stant Be are taken from Ref. [230].

For two molecules separated within this length, mixing of the composite states

|g1g2〉 and |e1e2〉 is energetically allowed. The entanglement length Re increases

exponentially with the intensity parameter ΩI . This is shown in Fig. 7.4, where the

distance is expressed in units of R0.

7.4.4 Dynamical entanglement generation

The dynamical generation of entanglement between a molecular pair can be stud-

ied by solving the time-dependent Schrödinger equation (7.16). The doubly excited

state probability Pb(t) is the figure of merit for the non-separability of the compos-

ite wavefunction |Ψ〉 = a|g1g2〉+ b|e1e2〉 at any given time. When Pb ≡ |b|2 = 0,

the two-particle state is separable.

Let us consider a pair of polar molecules separated by a distance R > R0, where

both molecules are initially in their rotational ground states, i.e., |Ψ(0)〉 = |g1g2〉.
The intermolecular distance R is a free parameter that determines the interaction

timescale tdd. The ratio tdd/trot = (R/R0)
3 can thus be used to parametrize the inter-

molecular distance. As an illustration of the results, in Fig. 7.5 the evolution of the

doubly excited state probability Pb(t) is shown for pulse of moderate peak intensity

Ω0 = 40 and ton = toff = 200 trot. Curves are shown for intermolecular distances

R = 5 R0 and R = 10 R0. Figure 7.5 shows that for molecules separated by a dis-

tance larger than the entanglement length Re, the laser pulse does not populate the
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)1/3, as a function
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doubly excited state significantly. For distances smaller than Re, the two-molecule

state can have a significant contribution from the state |e1e2〉, even after the pulse

is over. For Ω0 = 40, the entanglement length is Re = 6.7 R0. For concreteness, the

example in Fig. (7.5) for KRb molecules would correspond to a pulse with peak

intensity I = 28× 108 W/cm2 and ton = toff = 0.17 ns. These parameters can be

easily achieved in experiments [149, 231]. The associated entanglement length is

Re = 24.7 nm.

7.4.5 Pulse shape effects

The entanglement length increases exponentially with the laser intensity (see Fig.

7.4). Therefore, high intensity pulses are needed to couple weakly interacting

molecules separated by distances several orders of magnitude larger than R0. The

dipole-dipole interaction time tdd increases with the intermolecular distance as R3.

Pulse durations on the order of the interaction time are needed in order to cou-
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Figure 7.5: Dynamical entanglement generation with a moderately strong
pulse. The probability amplitude Pb(t) of the doubly excited state |e1e2〉
is shown for the peak intensity parameter Ω0 = 40. The entanglement
length is Re = 6.7 R0. Two intermolecular distances R > R0 are plot-
ted. The pulse has a symmetric Gaussian profile centered at t = 0 with
ton = toff = 200 trot. Length is in units of R0 = (d2/Be)

1/3.

ple the states |g1g2〉 and |e1e2〉 significantly. For distances a few times R0, the

interaction time is on the order of 100 trot (see Fig. 7.5). Increasing the entangle-

ment length by one order of magnitude would require increasing the pulse duration

1000 times longer. As an illustration, let us consider a pulse with peak inten-

sity Ω0 = 150. The associated entanglement length is Re = 214R0. The evolution

of doubly excited state Pb(t) is shown in Fig. (7.6) for the intermolecular dis-

tances R = 30R0, R = 50R0 and R = 100R0. The corresponding interaction times

are tdd = 0.27× 105 trot, tdd = 1.25× 105 trot and tdd = 10× 105 trot respectively.

For LiRb molecules, these intermolecular distances correspond to a few hundred

nanometers and the longer interaction time is 150 nanoseconds. The peak intensity

for Ω0 = 150 is I = 1.5×1010 W/cm2.

Figure 7.6 shows that the evolution Pb(t) is strongly dependent on the distance

between molecules. The figure also shows that for a pulse longer than the interac-
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Figure 7.6: Entanglement generation with strong pulses of different duration.
Plotted is the probability amplitude Pb(t) of the doubly excited state
|e1e2〉 for Ω0 = 150. The entanglement length is Re = 214 R0. The
curves are labeled by the intermolecular distance: R = 30R0 (tdd =
0.27× 105 trot) and R = 100R0 (tdd = 10× 105 trot). The pulse is a
symmetric Gaussian centered at t = 0 with ton = toff = 6.25× 105 trot
(FWHM = 10.4×105 trot).

tion time at a certain distance (R = 30R0 and R = 50R0), the wavefunction returns

adiabatically into initial state |Ψ〉 = |g1g2〉 after the pulse is over, and the two-

particle entanglement is lost. For intermolecular separations such that the interac-

tion time tdd is longer than the the pulse turn-on and turn-off times (R = 100 R0 in

Fig. (7.6), a strong laser pulse creates the superposition

|Ψ〉= a|g1g2〉+b|e1e2〉e−i2ω01t , (7.20)

after the pulse is over. The relative phase between the superposition states rotates

with frequency 2ω01, where ω01 = 2Be/h̄ is the transition frequency between the

states |g〉 = |N = 0,MN = 0〉 and |e〉 = |N = 1,MN = 0〉. The magnitude of the

coefficient b depends on the duration and intensity of the applied pulse.
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Figure 7.7: Entanglement generation with strong pulses of different peak in-
tensity. Probability amplitude Pb(t) of the doubly excited state |e1e2〉 for
Ω0 = 150, Ω0 = 200, Ω0 = 250 and Ω0 = 300. The curves are labeled
by the value of Ω0. The intermolecular distance is R = 100R0 for all
curves and the interaction time is tdd = 10×105 trot. The laser pulse has
Gaussian profile centered at t = 0 with ton = toff = 6.25×105 trot.

For a given intermolecular distance R, the peak intensity of the laser Ω0 can be

increased in order to enhance the doubly excited state amplitude b in Eq. (7.20).

This is the case for non-adiabatic pulses with respect to the dipole-dipole interac-

tion time tdd. In Figure 7.7 this is shown for two molecules separated by R= 100 R0

(730 nm for LiRb molecules). The laser pulse turn-on and off times are ton = off =

6.25×105 trot (93.8 ns for LiRb molecules), which gives a pulse width comparable

with the interaction time tdd = 10×105 trot. As the peak intensity parameter Ω0 is

increased from 150 to 300, the value of the probability amplitude after the pulse

is over Pb(t → ∞) increases significantly. For LiRb molecules the peak intensities

used in Fig. 7.7 are on the order of 1011 W/cm2, but for KRb molecules the re-

quired intensities are an order of magnitude smaller due to its larger polarizability

and smaller rotational constant.
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7.4.6 Field-free entanglement in optical lattices

Let us now consider the interaction of polar molecules with a strong off-resonant

pulse when molecules are trapped in individual sites of an optical lattice. The

smallest lattice site separations that can be achieved in experiments are aL = 400−
600 nm [20, 79]. For most alkali-dimers in Table 7.1, these distances correspond

roughly to R= 100 R0. In Figure 7.7 it was shown that for such distances it is possi-

ble to achieve field-free two-molecule entanglement using pulses that are adiabatic

with respect to the rotational time trot, but non-adiabatic with respect to the dipole-

dipole interaction time tdd. In adiabatic alignment experiments, optical pulses with

peak intensities I ∼ 1012 W/cm2 and FWHM∼ 10−100 ns can be easily produced

[149, 231]. The doubly excited state population Pb is shown in Fig. 7.8 for several

pulse widths. The peak intensity parameter is Ω0 = 200 for all curves. When the

FWHM is smaller than the interaction time tdd, the achieved value of Pb is signifi-

cantly smaller than for a pulse width on the order of tdd. The magnitude of Pb after

the pulse is over can be increased by increasing the width of the pulse. However,

for a pulse width much larger than tdd the two-molecule evolution is adiabatic (see

Fig. 7.6) and Pb vanishes after the pulse is over. For concreteness, the dipole-dipole

interaction time tdd for the optical lattice distance R = 500 nm is 26.4 ns for LiCs,

48.2 ns for LiRb, 548 ns for RbCs and 2.83 µs for KRb molecules. Molecules with

larger dipole moments such as LiCs and LiRb have interaction times of a few tens

of nanoseconds, whereas tdd for weakly polar molecules such as KRb is on the or-

der of microseconds for optical lattice distances. It should therefore be possible to

generate field-free entanglement of highly polar molecules (see Eq. (7.20)) using

strong off-resonant pulses with pulse durations τp ∼ 10 ns (FWHM) and peak in-

tensities I ∼ 109−1011 W/cm2. Laser pulses with these requirements are routinely

used in studies of adiabatic molecular alignment of molecules [231]. For weakly

polar molecules, the necessary pulses to generate field-free entanglement are much

longer, which limits the achievable peak intensities significantly.
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Figure 7.8: Entanglement generation for polar molecules in optical lattices.
Probability amplitude Pb(t) of the doubly excited state |e1e2〉 for Ω0 =
200 as a function of the pulse width τp (Gaussian FWHM). Each curve
is labeled by the value of the ratio τp/tdd, for tdd = 106 trot. This corre-
sponds to the optical lattice intermolecular distance R = 100 R0.
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7.5 Entanglement in combined DC fields and optical
pulses

7.5.1 Novel couplings induced by the DC electric field

The discussion in the preceding section is no longer valid when molecules are in the

presence of an additional DC electric field. As shown in Fig. (3.9), in the presence

of collinear static and off-resonant fields the exchange coupling J12 becomes neg-

ligibly small for large intensity parameters, even for very weak dc electric fields.

This is the case for the states |g〉 and |e〉 from the lowest tunneling doublet in Fig.

(3.6). Conversely, the dipole-dipole matrix elements that are diagonal in the molec-

ular states such as V gg
12 = 〈g1g2|V̂12|g1g2〉 and V eg

12 = 〈e1g2|V̂12|e1g2〉 increase with

the laser intensity, as shown in Fig. (3.10). In the limit where the excitation energy

εe is comparable with the dipole-dipole energy scale Udd , the matrix elements

A12 = 〈e1g2|V̂12|g1g2〉 and B12 = 〈e1g2|V̂12|e1e2〉 (7.21)

also contribute to the dynamics of two-molecule states. These matrix elements

vanish in the absence of static electric fields. In a weak DC electric field with

λ � 1 and a weak AC field with ΩI � 1, the matrix element A12 for the rotational

ground and excited states |g〉 = a|N = 0,MN = 0〉+ b|N = 1,MN = 0〉 and |e〉 =
−b|N = 0,MN = 0〉+a|N = 1,MN = 0〉, with a� b > 0, can be written as

A12 = 2J(0,0)12 ab(a2−b2) (7.22)

where J(0,0)12 = 〈1,0|〈0,0|V̂12|0,0〉|1,0〉= 〈1,0|〈1,0|V̂12|0,0〉|0,0〉 is the field-free

exchange constant. The matrix element A12 thus has the same sign as J12 for

weak DC and AC electric fields. The same holds for the matrix element B12. For

larger fields, the value of the matrix elements A12 and B12 are obtained by con-

structing two-molecule states from the eigenstates of the single-molecule Hamil-

tonian Ĥ = ĤR + ĤDC + ĤAC in Eq. (3.17), for a collinear configuration. It is

important to control the overall phase of the two-particle states constructed in this

procedure. For example, if the state |e1g2〉 is multiplied by an overall π-phase,

i.e., |e1g2〉 → −|e1g2〉, the matrix element in Eq. (7.22) changes sign, which
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Figure 7.9: Interaction energy A12 = 〈e1g2|V̂12|g1g2〉 for two molecules in
their ground |g〉 and first excited |e〉 rotational states, in the presence
of collinear DC electric with strength λBe and CW far-detuned optical
fields with strength ΩIBe, where Be is the rotational constant. Panels
(a) and (b) correspond to a perpendicular and parallel orientation, re-
spectively, of the intermolecular axis with respect to the field axis. The
dipole-dipole energy is in units of Udd = d2/R3

12.

is an unphysical result. This is not an issue in the evaluation of the matrix ele-

ments J12 = 〈e1g2|V̂12|g1e2〉 and V eg
12 = 〈e1g2|V̂12|e1g2〉 because the overall phase

of the states in the degenerate subspace can be chosen such that the sign of the

dipole-dipole matrix elements depend on the orientation of an external field as

(1−3cos2 θ), where θ is the angle between the intermolecular axis and the exter-

nal field along the Z-axis. As Eq. (7.22) suggests, the sign of the matrix elements

A12 is equal to the sign of the field-free exchange constant J(0,0) and the field-dress

exchange constant J12 (see Eq. (3.5)).

The matrix element B12 = 〈e1g2|V̂12|e1e2〉 can be written assuming weak DC

and AC electric fields as

B12 ≈ 2J(0,0)ab(b2−a2) =−A12. (7.23)
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Figure 7.10: Interaction energy B12 = 〈e1g2|V̂12|e1e2〉 for two molecules in
their ground |g〉 and first excited |e〉 rotational states, in the presence
of collinear DC electric with strength λBe and CW far-detuned optical
fields with strength ΩIBe, where Be is the rotational constant. Panels
(a) and (b) correspond to a perpendicular and parallel orientation, re-
spectively, of the intermolecular axis with respect to the field axis. The
dipole-dipole energy is in units of Udd = d2/R3

12.

This relation between A12 and B12 holds for small DC electric field parameter

λ < 1 and for arbitrary AC field strengths. Figures 7.9 and 7.10 show the depen-

dence of these dipole-dipole energies on the intensity parameter ΩI for weak and

intermediate DC electric field strengths. The dependence of A12 and B12 on the

DC field strength, for different AC field parameters, is shown in Figure 7.11. It is

shown that the relation B12 ≈ −A12 only holds for weak electric fields since B12

changes sign at some large value of the DC field strength (λ > 1) which depends

on the strength of an applied AC field. The magnitude of the couplings A12 and B12

is zero in the absence of a DC electric field and has a maximum in the region of

weak DC fields. The position of the weak field maximum is shifted towards λ = 0

as the strength of the AC field increases.
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Figure 7.11: Dipole-dipole couplings A12 and B12 as a function of the DC
electric field strength λ in the presence of a far-detuned optical field
with strength ΩI . The intermolecular axis is perpendicular to the field
axis. The dipole-dipole energy is in units of Udd = d2/R3

12.

In the presence of collinear static and strong off-resonant fields, the two-molecule

Hamiltonian matrix in Eq. (7.8) can be rewritten in the basis V2 = {|g1g2〉, |e1,e2〉,
|g1,e2〉, |e1g2〉} as

H =


−εe J12 A12 A12

J12 εe +V ee
12 −V gg

12 B12 B12

A12 B12 V eg
12 −V gg

12 J12

A12 B12 J12 V eg
12 −V gg

12

 . (7.24)

In this expression, the energy reference is chosen as V gg
12 + εe. The matrix ele-

ment A12 couple the state with no excitations |g1g2〉 with the degenerate states in

the one-excitation subspace |e1g2〉 and |g1e2〉. This type of coupling is typically

achieved by one-photon absorption of electromagnetic radiation near resonance

with the transition |g〉 → |e〉. In this case, the dipole-dipole interaction between
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molecules induces such transitions. Analogously, the matrix element B12 couples

the one-excitation subspace with the doubly-excited state |e1e2〉.
The eigenstates of the Hamiltonian in Eq. (7.24) can be written as

|Φ〉= a|g1g2〉+b|e1g2〉+ c|g1e2〉+d|e1e2〉, (7.25)

where the coefficients depend on intensity of the off-resonant field and the strength

of the DC electric field.

7.5.2 Spatial bounds for entanglement generation

Let us consider a pair of molecules in the presence of a static electric field. A strong

laser pulse is applied whose polarization is collinear with the direction of the DC

field. The direction of the intermolecular axis is perpendicular to the direction of

the fields. The static electric field couples states of opposite parity and in particular

the states of the lowest tunneling doublet |g〉 and |e〉. The static electric field breaks

the degeneracy between the tunneling doublet states. The single excitation energy

εe increases linearly with the DC field strength for λ � 1 (see Fig. 3.8). As the

excitation energy increases due to the linear Stark shift, the entanglement length

Re ≡ (Be/εe)
1/3R0 for a given intensity of the applied laser pulse is smaller than

in the absence of DC electric fields. While Re increases exponentially with the

intensity parameter ΩI in the absence of static fields, it reaches an asymptotic limit

when a DC field is present. Figure 7.12 shows that this limit decreases rapidly to

Re ∼ R0 even for weak DC electric fields.

When a static field is present, the wavefunction for a pair polar molecules due

to the action of a strong optical pulse can be written as

|Ψ(t)〉= a(t)|g1g2〉+b(t)|e1,e2〉e−iε2t/h̄ + c(t)|e1g2〉e−iε1t/h̄ +d(t)|g1,e2〉e−iε1t/h̄

(7.26)

where ε2 = 2εe+V ee
12−V gg

12 and ε1 = εe+V eg
12 −V gg

12 . The time-dependent Schödinger

equation for the wavefunction |Ψ(t)〉 reduces to the dimensionless system of equa-
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Figure 7.12: Entanglement length Re in units of R0 =
(
d2/Be

)1/3, as a func-
tion of the laser intensity parameter ΩI for several values of the DC
field strength parameter λ . Re increases exponentially when λ = 0 and
reaches an asymptotic limit for λ 6= 0.

tions

i
d

dτ
a(τ) = b(τ)J(τ)e−iω2(τ)τ + c(τ)A(τ)e−iω1(τ)τ +d(τ)A(τ)e−iω1(τ)τ

i
d

dτ
b(τ) = b(τ)J(τ)eiω2(τ)τ + c(τ)B(τ)ei[ω2(τ)−ω1(τ)]τ +d(τ)A(τ)ei[ω2(τ)−ω1(τ)]τ

i
d

dτ
c(τ) = a(τ)A(τ)eiω1(τ)τ +b(τ)B(τ)e−i[ω2(τ)−ω1(τ)]τ +d(τ)J(τ)

i
d

dτ
d(τ) = a(τ)A(τ)eiω1(τ)τ +b(τ)B(τ)e−i[ω2(τ)−ω1(τ)]τ +d(τ)J(τ),

(7.27)

where J = J12/Be, A=A12/Be, B=B12/Be, E1 = ε1/Be, E2 = ε2/Be and τ =Bet/h̄.

The two-level system in Eq. (7.16) is obtained from the first two equations by

setting A12 = B12 =V ee
12 =V gg

12 = 0.
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Let us consider a molecular pair in the presence of a weak DC electric field of

strength λ � 1. For such values of λ , the entanglement length Re has an upper

bound as the intensity of an applied off-resonant field increase. We assume that the

polarization of the laser pulse is collinear with the static field and the intermolecular

axis is perpendicular to the direction of the fields. In Fig. 7.5 it was shown that

in the absence of DC fields, a pulse of moderate intensity generates an entangled

two-particle state when the molecules are initially in the ground rotational state. If

a very weak DC electric field is present, the magnitude of the coupling constants

A12 and B12 are smaller than the energy splitting εe for any peak intensity Ω0 (see

Fig. 7.11). Consequently, the populations Pc(t) = |c(t)|2 and Pd(t) = |d(t)|2 of

the singly excited states |e1g2〉 and |g1e2〉 are negligible after the pulse is over

and the evolution of the doubly excited state Pb(t) resembles the result obtained

in the absence of static fields. As shown in Fig. 7.12, the entanglement length

decreases rapidly with the field strength to a few times the characteristic length

R0. The couplings A12 and B12 however increase with the strength of the static

field. Significant population of the singly excited state |e1g2〉 and |g1e2〉 can only

be achieved for molecules separated by distances on the order R0, by using pulses

with duration τp ∼ tdd ≈ 1−10 trot. For intermolecular separations larger than the

entanglement length, a laser pulse only weakly perturbs the initial wavefunction

|Ψ(0)〉= |g1g2〉. The results in Figs. 7.13 and 7.14 illustrate these conclusions.

In Fig. 7.13 a very weak static field with λ = 0.001 is considered. The upper

bound of the entanglement length is Re ≈ 8 R0. The evolution of the two-particle

wavefunction |Ψ(t)〉 is obtained by solving Eq. (7.27) numerically. Panel (a) cor-

responds to the distance R = 5 R0 for which the interaction time is tdd = 125 trot.

An off-resonant Gaussian pulse with duration τp = 333 trot (FWHM) and peak in-

tensity Ω0 = 40 is applied to the system. After the pulse is over, the doubly excited

population Pb resembles the result obtained in the absence of DC fields from Fig.

7.5. For this very weak static field, the occupation of the singly excited states is

negligibly small ( inset). Panel (b) shows a similar result for a smaller intermolec-

ular distance R = 2 R0 and shorter pulse τp = 21.3trot. The ratio between the pulse

width τp and the interaction time tdd as well as the peak intensity is the same in

both cases.
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Figure 7.13: Entanglement generation in combined AC and weak DC electric
fields. The static field strength parameter is λ = 0.001. (a) Probability
amplitudes for the doubly excited state |e1e2〉 (blue line) and for the
singly excited states |e1g2〉 and |g1e2〉 (red line). The pulse width is
τp = 333trot and the intermolecular distance is R = 5R0. (b) The same
as panel (a) for R = 2R0 and τp = 21.3trot. The pulse has a symmetric
Gaussian profile centered at t = 0. The peak intensity parameter is
Ω0 = 40 in both panels. The inset shows an expanded view of the
singly excited probability.

A relatively stronger DC electric field with λ = 0.1 is considered in Fig. 7.14.

Panel (a) corresponds to the intermolecular distance R = 1.5 R0 and a Gaussian

pulse with duration τp = 9 trot (FWHM) is applied. The molecules are initially in

their ground states. After the pulse is over the population of the singly excited

states Pc and Pd are significantly larger than the doubly excited population Pb. This

is because the peak intensity Ω0 = 80 is chosen so that the value of A12 and B12

are larger than J12 during the interaction with the pulse. Panel (b) shows a similar

result for R = 2 R0, τ = 21.3 trot and the same peak intensity as in panel (a). The

entanglement length in both panels is bounded by Re ≈ 1.7 R0.

Although the results in Figs. 7.5 (λ = 0) and 7.13 (λ = 0.001) are similar,

there is a fundamental difference regarding the intermolecular distances for which

significant entanglement can be achieved. Let us consider alkali-metal dimers for

which R0 ∼ 1−10 nm. In the absence of static fields, the entanglement length Re

can reach hundreds of nanometers using laser pulses with peak intensities I ∼ 1010
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Figure 7.14: Entanglement generation in combined AC and moderate DC
electric fields. The static field strength parameter is λ = 0.1. (a) Prob-
ability amplitudes for the doubly excited state |e1e2〉 (blue line) and for
the singly excited states |e1g2〉 and |g1e2〉 (red line). The pulse width is
τp = 9trot and the intermolecular distance is R = 1.5R0. (b) The same
as panel (a) for R = 2R0 and τp = 21.3trot. The pulse has a symmet-
ric Gaussian profile centered at t = 0. The peak intensity parameter is
Ω0 = 80 in both panels.

W/cm2. In the presence of even a small electric field with λ = 0.001 (EDC ∼ 1

V/cm for LiCs) the entanglement length cannot be increased beyond a few tens of

nanometers by increasing the laser intensity (see Fig. 7.12). This restricts the

applicability of the entanglement generation scheme to highly dense molecular

samples, for which collisional decoherence can be expected to be much stronger

than in dilute samples such as optical lattices.

7.6 Quantification of entanglement using cold molecules

7.6.1 Orientation correlation for entangled molecules

The degree of orientation of a single molecule can be measured by the expec-

tation value 〈cosθ〉. The operator Ô = Ĉ1,0 = cosθ couples rotational states of

different parity (see Sec. 2.4 for the matrix element). Therefore for a molecule

in free space or in the presence of an off-resonant field, the orientation factor

〈cosθ〉= 0. The orientation correlation between two molecules can be defined as
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the expectation value E(ta, tb) = 〈Ôa(ta)⊗ Ôb(tb)〉 [139, 140, 155], where Ôi(ti) =

Û†
i (ti)Ô(0)Ûi(ti). The free evolution operator Ûi(ti)= exp

[
−iĤiti/h̄

]
is determined

by the rotational Hamiltonian Ĥi = BeN2
i .

Let us consider two molecules described by the state

|Ψ〉= a|g1g2〉+b|e1e2〉 ≡ a|00〉+b|11〉, (7.28)

where we use |g〉 ≡ |N = 0〉 and |e〉 ≡ |N = 1〉 (omitting the label MN = 0). The

density matrix ρ = |Ψ〉〈Ψ| describes the combined state of two qubits. The con-

currence C(ρ) of the bipartite state quantifies the degree of entanglement of the

combined system [169]. The quantity C(ρ) varies between zero and unity, where

these extrema correspond to separable (non-entangled) and maximally-entangled

states, respectively. The pairwise concurrence for qubits is defined as C(ρ) =

max
{

0,
√

λ1−
√

λ2−
√

λ3−
√

λ4
}

, where (λ1,λ2,λ3,λ4) are the eigenvalues (in

order of decreasing energy) of the non-hermitian matrix ρρ̃ , where ρ̃ = (σ̂y ⊗
σ̂y)ρ

∗(σ̂y⊗ σ̂y). For the pure state ρ = |Ψ〉〈Ψ| given by Eq.(7.28), the concur-

rence is given by

C(ρ) = 2|ab|. (7.29)

It should be clear from the results of Section 7.4 (see Fig. 7.7) that by choosing the

appropriate laser intensity and pulse duration, it is possible to prepare a molecular

pair separated by hundreds of nanometers in a state ρ with an arbitrary value of

0≤C(ρ)≤ 1 using off-resonant optical fields.

Using the state in Eq. (7.28), the two-time orientation correlation function

E(ta, tb) can be written as

E(ta, tb) =
1
3
(2|ab|)cos(ω10ta +ω10tb +θba) (7.30)

where we have defined a∗b = |ab|eiθba and ω10 = 2Be/h̄. The correlation function

is invariant under particle exchange. If the concurrence of the state ρ = |Ψ〉〈Ψ|
vanishes, the orientation correlation function vanishes for all times. The maxi-

mum value of the correlator |E(ta, tb)|= λ 2
max is achieved for maximally-entangled

states with |a| = |b| = 1/
√

2. In Eq. (7.30), λmax = 1/
√

3 is the maximum eigen-

209



value of the single-molecule orientation operator Ô = cosθ in the subspace S =

{|N = 0,MN = 0〉, |N = 1,MN = 0〉}.
The correlation function not only depends on the magnitude of the concur-

rence C(ρ) but on the relative phase θba between the basis states |00〉 and |11〉. For

θba = 0 and θba = π the maximally-entangled states correspond to the symmet-

ric and antisymetric Bell states 1√
2
(|00〉+ |11〉) and 1√

2
(|00〉− |11〉) respectively.

The associated correlation functions are E+(ta, tb) = (1/3)cos(ω10ta +ω10tb) and

E−(ta, tb) =−(1/3)cos(ω10ta +ω10tb).

7.6.2 Violation of Bell’s inequalities in optical lattices

The objection to the completeness of quantum mechanics as a theory of Nature

made by Eistein, Podolsky and Rosen (EPR) derives from preconceived notions

about locality and reality. The EPR theorem can be stated as follows: If the pre-

dictions of quantum mechanics are correct and if physical reality can be described

in a local way, then quantum mechanics is necessarily incomplete, as some “ele-

ments of reality” exist in Nature that are ignored by this theory [235, 236]. In fact,

quantum mechanics predicts that when two spins are prepared in an entangled state

with space-like separation, and the spin projections are measured independently for

each spin, there are correlations between the measurements performed on each par-

ticle that are beyond the predictions of classical probability. A complete analysis

of this and related topics can be found in Ref. [236]. For illustrative purposes, let

us summarize the EPR scheme and its consequences: Two spin-1/2 particles are

prepared in the triplet Bell state

|Φ+〉AB =
1√
2
(|0〉A|0〉B + |1〉A|1〉B) .

The two particles are separated by a distance large enough so there can be no com-

munication between them. The spin projection σ̂z is measured on particle A by

Alice3. If the result of the measurement is +1, then the state of particle B in a dis-

tant lab by Bob can be found to be |0〉B when the measurement of σ̂z is performed.

If the result of Alice’s measurement is −1, this immediately establishes the state

3Alice and Bob are conventional labels for two different observers.
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of Bob’s particle to be |1〉B. This apparent influence between two measurements

performed at remote locations challenges the classical notions of locality. These

non-local correlation are preserved if Alice chooses to measure σ̂x instead. If the

result of her measurement of the x-projection is +1, then the state of Bob’s particle

is found to be 1√
2
(|0〉B− |1〉B) when the measurement of σ̂x is perfomed. Alice

can therefore establish either of two incompatible properties of Bob’s qubit. Since

there is no quantum state with well defined values of both σ̂z and σ̂x observables

(the operators do not commute), these properties of Bob’s qubit could not both have

been established at the source in some remote past. This contradicts the notions of

reality which state that a system has preexisting properties if they can be predicted

with certainty prior to their measurement. The combination of realism and locality

is called local realism [169, 236].

Bell’s inequality has nothing to do with quantum mechanics, but it is the result

of analyzing the measurement correlations in the EPR experiment assuming the

conditions of local realism. The derivation of Bell’s inequality is presented in Ap-

pendix F. The result of a measurement Alice might perform is denoted by A. This

result depends on her choice of measuring direction ~a for the spin projection, and

also on the statistical and unknown variables λ (hidden-variables) that determine

the state of the particle when they are produced at the source. This dependence

on λ is imposed by the assumptions of realism. Locality is imposed by writing

A = A(~a,λ ), i.e., Alice’s result A does not depend on Bob’s choice of the measure-

ment direction~b. If Alice and Bob measure their spins along the~a and~b directions,

the correlation between the results according to classical probability theory can be

written as

E(~a,~b) =
∫

dλρ(λ )A(~a,λ )B(~b,λ ).

Bell’s theorem states that products of classical correlations between measurements

involving two different measurement directions for each particle satisfy the follow-

ing inequality

|E(~a,~b)+E(~a,~b′)+E(~a′,~b)−E(~a′,~b′)| ≤ 2λ
2
max. (7.31)

This is a general result satisfied under the assumptions of local realism. λmax

is the maximum eigenvalue of the observable being measured in the qubit basis.
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We have assumed that each qubit space has the same dimensionality. For spin-1/2

particles the maximum eigenvalue of the spin projection operator ~a ·~σ is unity,

where the components of ~σ are the Pauli matrices. Experimental violations of

the Bell’s inequality have been established using a pair of entangled photons over

distances of several kilometers and also with massive elementary particles created

in high-energy collisions [237–242]. Bell’s inequality is satisfied by all separable

states. Not all entangled bipartite states violate this inequality.

Let us consider two polar molecules prepared in an entangled state ρ = |Ψ〉〈Ψ|
given by Eq. (7.28). In Appendix F it is shown that there is an equivalence between

the orientations of the measurement apparatuses ~a and~b in the EPR scheme and

the times ta and tb corresponding to the free rotational evolution of each molecule.

The orientation correlation function E(ta, tb) for the state ρ is given in Eq. (7.30).

Following the equivalence between spin and rotational states, the magnitude of the

quantity

S = E(ta, tb)+E(ta, t ′b)+E(t ′a, tb)−E(t ′a, t
′
b). (7.32)

can be used to test violations of local realism. In order to establish violations of

the Bell’s inequality it is sufficient to set ta = tb = 0 and t ′a = t ′b = t in Eq. (7.32)

and evaluate the expectation value of

S1(t) = E(0,0)+E(0, t)+E(t,0)−E(t, t). (7.33)

using the expression in Eq. (7.30) for E(ta, tb). In Fig. 7.15 the magnitude of

expectation value 〈S1(t)〉 is plotted as a function of time for several parent states

ρ with different concurrences C(ρ) and relative phase θba. Time is shown in units

of the rotational period TR = π h̄/Be. Each panel in Fig. 7.15 corresponds to an

entangled state |Ψ〉 = |a||00〉+ |b|eiθba |11〉 with a given relative phase θba. The

upper bound imposed by local realism over the magnitude of quantity of 〈S1(t)〉
is 2λ 2

max = 2/3. For the states shown in Fig. 7.15, this limit is violated over a

wide range of times within a rotational period. The figure also shows that the

amount by which the local realism threshold is violated depends on the value of

the concurrence C(ρ) of the entangled state. Panel (a) shows, for example, that

only states whose concurrence is larger than 0.8 can be used to measure violations

of Bell’s inequality. Maximally-entangled states with C(ρ) = 1 exceed the local
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Figure 7.15: Violation of Bell’s inequality for molecular orientation correla-
tions. The absolute value of S1(t) = E(0,0)+E(0, t)+E(t,0)−E(t, t)
is plotted as a function of time for several bipartite states |Ψ〉 =
|a||00〉+ |b|eiθba |11〉. Each panel shows |S1| for three values of the
concurrence: C = 1.0 (black line), C = 0.9 (red line), and C = 0.8
(blue line). Different panels correspond to a different value of the rela-
tive phase θba: (a) θba = 0; (b) θba = π/4; (c) θba = π/2; (d) θba = π .
E(t, t ′) is the two-time orientation correlation. Time in is units of the
rotational period TR = π h̄/Be.

realism bound by the largest amount. In panel (b) the state with relative phase θba =

π/4 exceeds the local realism threshold by approximately 41% at t =(3/4)TR. This

is the maximum violation achievable in a bipartite state of two-dimensional qubits,

and is known as the Cirel’son bound [243]

The results in Fig. 7.15 show that it is possible to use polar molecules in op-

tical traps to test theories of quantum mechanics that include local realism as a

requirement. It is beyond the scope of this chapter to analyze in detail the exper-
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imental requirements necessary to perform Bell-type tests with trapped molecules

that are free of so-called logical “loopholes” [236]. Nevertheless, one can comment

on the most evident advantages between an experimental setup that uses trapped

molecules and other schemes that use photons or elementary particles.

Entangled photon pairs have the advantage of being easy to produce using non-

linear crystals and propagate over long distances, but single photons are difficult

to detect [236]. Kaons are massive mesons produced in particle accelerators. Pairs

of entangled Kaons can be detected indirectly by measuring their decay products.

Although Kaons are easier to detect than photons, they undergo an intrinsic de-

cay process that limits their detection efficiency [241]. Molecules in optical traps

can be detected with high efficiency using spectroscopic methods or by photo-

ionization. The orientation of molecules can be detected with near unit efficiency

using ultrashort laser pulses that dissociate the molecule [149]. In summary, en-

tangled molecular pairs can therefore be easily detected using standard techniques,

the decay of rotational states is negligible, and the dephasing of the entangled state

in the optical traps can be minimized.

In order to test the non-locality of quantum mechanics, it is necessary that the

entangled particles are space-like separated, so that no communication can occur

between them. Otherwise the experiments cannot rule out theories in which the

information about the experimental setting chosen (possibly at random) by Alice is

transmitted to the other particle’s location, affecting the outcome of Bob’s measure-

ment. This is known as the “communication loophole”. Experiments with entan-

gled photons have demonstrated non-locality over distances of several kilometers

[239]. For Bell-type test with polar molecules in optical traps, measurement of the

orientation using ultrashort pulses can be performed in a timescale of hundreds of

femtoseconds [231], which is shorter than the rotational period TR ∼ 1 ps of most

diatomic molecules. In the scheme described in this section, measurement of the

orientation of two distant molecules is performed at different times. The Bell in-

equality in Eq. (7.33) involves the two-time correlation function E(t,0) = E(0, t).

The time origin can be set by the measurement of the orientation of one molecule,

while the measurement of the orientation of the other molecule is delayed by a time

t. In order to rule out possible communication between the molecules prior to the

second measurement, the separation R between the entangled molecules should be
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larger than cTR ≈ 300 µm, where c is the speed of light. Such distances are pos-

sible to achieve using optical lattices, or by trapping individual molecules in two

separated dipole traps. Even in experiments where the intermolecular distance R

is only a few hundred nanometers, the violation of Bell’s inequality can be used

to demonstrate entanglement between molecules and also, as Fig. 7.15 shows, to

measure the concurrence C(ρ) of the bipartite state created by off-resonant pulses.

7.6.3 Tripartite and many-particle entanglement

The method described in this chapter to create bipartite entanglement can be nat-

urally extended to systems with a larger number of molecules. Let us consider

a system of three polar molecules fixed in space by an optical trap. For illustra-

tive purposes we assume the geometry of the arrangement to be either linear or

triangular. The Hamiltonian for a tripartite system of molecules can be written as

Ĥ = Ĥ1 + Ĥ2 + Ĥ3 +V̂12 +V̂13 +V̂23, (7.34)

where Ĥi = ĤR+ ĤAC is the sum of the rotational Hamiltonian and the light-matter

interaction operator. V̂i j is the dipole-dipole interaction operator. It was shown in

Section 7.4 that for molecules initially in the rotational ground state the combined

effect of a strong off-resonant optical field and the dipole-dipole interaction does

not lead to transitions outside the rotational manifold S = {|g〉, |e〉}, where |g〉
and |e〉 correspond to opposite parity states of the lowest field-dressed tunneling

doublet and to the bare rotational states |N = 0,MN = 0〉 and |N = 1,MN = 1〉 in

the absence of fields. The eight-dimensional tripartite basis set contains the ground

state subspace S0 = {|ggg〉}, a singly-excited subspace S1 = {|gge〉, |geg〉, |egg〉},
a doubly-excited subspace S2 = {|gee〉, |ege〉, |eeg〉}, and the triply-excited sub-

space S3 = {|eee〉}. In the absence of DC electric fields or near resonant mi-
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crowave fields, the Hamiltonian in Eq. (7.34) can be written in matrix form as

Ĥ =



0 J12 J13 J23 0 0 0 0

J12 2εe 0 0 0 0 0 0

J13 0 2εe 0 0 0 0 0

J23 0 0 2εe 0 0 0 0

0 0 0 0 εe 0 0 J12

0 0 0 0 0 εe 0 J13

0 0 0 0 0 0 εe J23

0 0 0 0 J12 J13 J23 3εe


, (7.35)

where the upper block involves the subspaces S0 and S2, and the lower block

involves S1 and S3. The two sub-blocks are uncoupled in the absence of parity

breaking interactions. If the molecules are initially in their rotational ground state,

i.e., |Ψ(0)〉= |ggg〉, then using the method described in this chapter, it is possible

to create an entangled tripartite state of the form

|Ψ(t)〉= a(t)|ggg〉+b(t)|eeg〉+ c(t)|ege〉+d(t)|gee〉, (7.36)

after exposing the molecules to a single off-resonant optical pulse. The magnitudes

and phases of the superposition coefficients in Eq. (7.36) can be manipulated by

tuning the peak intensity and duration of the pulse.

The degree of tripartite entanglement not only depends on the the details of the

laser pulse but also on the geometry of the molecular arrangement. In Section 7.4 it

was shown that the pulse duration can be chosen such that only pairs of molecules

separated by a given distance can be entangled (see Figs. 7.6 and 7.8). Molecular

pairs whose distance is smaller or larger than the target separation would not be

affected by the pulse and remain in their initial state. For example, Fig. 7.8 shows

the effect of varying the pulse width τp in the amount of entanglement (|b|2 maps

the bipartite concurrence C(ρ) = 2|ab| for two molecules separated by a distance

R = 100 R0, where R0 is the characteristic length defined in Eq. (7.17). The figure

shows that the molecules remain in their ground states for a pulse duration either

half or twice the dipole-dipole interaction time tdd at the distance R= 100 R0. These
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correspond to relative distance variations ∆R/R≈ 20% and ∆R≈ 25% from below

and above the target distance, respectively.

Instead of considering a triangular geometry where each molecular pair has the

same separation distance, as it is implied in Eq. (7.34), one can consider a linear

array of molecules with the equal nearest-neighbour separation R12 = R23. If the

duration of the laser pulse is chosen to match the interaction time at the distance

R12 then qubits 1 and 3 are not entangled with each other, even when the coupling

V13 is not zero. In this case, the tripartite state after the pulse is over is given by Eq.

(7.36) with c(t) = 0.

Additional possibilities can be explored by coupling the sub-spaces S0⊕S2

and S1⊕S3. This coupling can be achieved by applying a DC electric field, which

breaks the parity of the rotational states. However, as discussed in Section 7.5 the

entanglement length Re (see Eq. (7.19)) is severely reduced due to the linear Stark

shift of the states |g〉 and |e〉. Even for molecules whose separation distance R is on

the order of the characteristic length R0, the couplings between states in different

sub-blocks are not selective. This is shown for the bipartite case in Eq. (7.24).

It would be desirable for applications to prepare tripartite entangled states given

by arbitrary superpositions of the complete basis spanning the tripartite Hilbert

space. This could be achieved with polar molecules using combined off-resonant

laser pulses and near resonant microwave pulses. For example, let us consider a

two-step scheme to prepare a tripartite system in a Werner state [169]

|W〉= α|gge〉+β |geg〉+ γ|egg〉. (7.37)

The system consists of three polar molecules in a triangular arrangement. Each

molecule is initially in the ground rovibrational state, i.e., |Ψ(0)〉 = |ggg〉. As-

suming the molecules can be addressed individually, a near resonant microwave

π-pulse is applied to each molecule to completely transfer the population to the

triply excited state |eee〉. A single off-resonant laser pulse can then be applied

to create the desired Werner state by coupling the S3 and S1 subspaces via the

dipole-dipole interaction. The intensity and duration of the pulse can be chosen

such that the remaining population in the triply-excited state is negligibly small.
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Single molecule resolution can be implemented in practice using gradients of ex-

ternal fields to shift the rotational levels differently at different positions.

The idea of using combined microwave and laser pulses to prepare an arbitrary

entangled state is not limited by the geometry and size of the molecular arrange-

ment. The schemes for generation of tripartite and many-particle entanglement

described in this section should find direct application in optical lattices of polar

molecules, which can be useful in the development of quantum computation with

cold molecules.
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Chapter 8

Conclusion

8.1 Overall conclusions of the dissertation
The field of trapped cold molecules has advanced significantly in the last years af-

ter the preparation of dense ensembles of ultracold molecules in the rovibrational

ground state by several groups [15–21]. Current experimental effort in the field

aims toward the observation of novel quantum phenomena that would be difficult to

achieve using ultracold atoms. The internal structure of simple diatomic molecules

is more complex than the structure of atoms. The consequences of this are twofold.

On one hand, direct laser cooling of a molecular sample is prohibitively difficult

because a molecule in an electronic excited state can decay radiatively to several

rovibrational states in the ground electronic level, which makes laser cooling ineffi-

cient. On the other hand, the rich internal structure of molecules allows for stronger

interactions with static and dynamic electric and magnetic fields. This provides the

basic mechanism for external field control of molecular processes. The additional

controllability that cold molecules offer is the driving force of many research ef-

forts in this field, including this dissertation.

The research presented in this thesis offers new possibilities for studying binary

and many-particle quantum phenomena with a high degree of controllability. The

results obtained are timely as they integrate with current experimental research in

the field, in particular with recent advances such as the preparation of an insulator

phase of cold polar molecules in optical lattices [219]. Some of the proposed sys-
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tems in this thesis rely on the ability to trap individual molecules in optical micro-

traps. The recent experimental success in this direction significantly enhances the

relevance of the theoretical proposals in this thesis. The quantum control schemes

proposed here are simple enough to be relevant for experimental work, but the un-

derlying physics is rich enough to also promote further theoretical exploration. The

scientific questions that can be addressed using the results in this dissertation are

important in the field of cold molecules, and also in other areas of modern science.

8.2 Contributions of the dissertation
In Chapter 1 the specific goals of this dissertation were categorized under three

general topics: cold collisions and controlled chemistry, quantum entanglement

and quantum information, and tunable condensed-matter phenomena. The scien-

tific goals pursued in each of these directions are ambitious since their achievement

would constitute an important advancement not only in the field of cold molecules,

but would also stimulate progress in other areas of physical chemistry and physics.

8.2.1 Cold collisions and controlled chemistry

In Chapter 4 a general scheme is proposed to achieve coherent control of colli-

sions between non-identical particles at ultracold temperatures. Coherent control

of molecular dynamics has been successfully demonstrated for a number of uni-

molecular processes, but schemes for coherent control of bimolecular processes

has proven difficult to achieve. The method proposed here uses a static field to

induce quantum interference between two collision channels, so that the outcome

of a single collision event can be controlled by tuning the interference pattern with

laser fields. The scheme was successfully illustrated numerically for non-reactive

atomic scattering at ultracold temperatures. The branching ratio between elastic

and inelastic scattering of alkali-metal atoms can be increased by tuning the con-

trol parameters. Although the degree of controllability of the elastic-to-inelastic

ratio does not exceed that achievable with other methods, the results obtained here

constitute an important first step towards the demonstration of coherent control

of molecular reactive scattering in ultracold gases. This contribution has been re-

cently discussed in Ref. [244] and may stimulate further research efforts towards

220



understanding the role of quantum coherence in chemical reactivity, which is an

important open question in physical chemistry.

The main strength of the coherent control scheme proposed in this thesis is

its generality. The same mechanism can be used to control atomic and molecular

scattering, reactive and non-reactive. However, control is demonstrated here for

a single collision process. Subsequent collisions in a ensemble of particles may

quickly destroy the interference between collisions channels upon which the con-

trol scenario is based. On the other hand, if the collisional noise is small enough it

may be used to relax the narrow energy degeneracy conditions necessary to achieve

interference of scattering states, thus assisting coherent control. The results pre-

sented in this dissertation are still applicable in situations where the effects of sub-

sequent collisions can be ignored, such as the scattering of atoms and molecules

in supersonic beams. However, general conclusions about possible applications of

the control scheme proposed here cannot be made until the effects of collisional

decoherence in ultracold gases are taken into account.

8.2.2 Tunable condensed-matter phenomena

In Chapters 5 and 6 it is demonstrated that an ensemble of polar molecules trapped

in an optical lattice can be used to study excitonic and polaronic phenomena with

a high degree of controllability. For an array of interacting molecules in the elec-

tronic and rovibrational ground state, the lowest energy excited state corresponds

to a single rotational exciton. Excitons are collective states that determine the re-

sponse of the system to electromagnetic fields and the energy transport processes in

the array. Exciton-related phenomena are ubiquitous in semiconductors, insulators,

and biological systems at room temperature. In many cases it is possible to design

the excitonic properties of a material using microfabrication techniques, but there

are intrinsic phenomena such as the energy transport efficiency that are difficult

to control microscopically. The intrinsic decay of electronic excitons is an addi-

tional obstacle to the microscopic control of exciton dynamics. The interaction of

excitons with ever-present impurities and phonons determine the energy transport

properties of the system and also the linear and nonlinear interactions with light.
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Chapter 5 shows that excitonic phenomena in an array of interacting ultracold

molecules can be tuned using static electric and magnetic fields. Control is pos-

sible due to the electric field dependence of the dipole-dipole interaction between

molecules (see Chapter 3). Using current technology it is possible to engineer

not only the geometry and chemical composition of the array, but also the prop-

erties of individual molecules. This offers a degree of controllability that is not

possible in condensed-matter systems. The exciton-impurity interaction in a two-

species optical lattice can be tuned using a static electric field. It is well-known

that the multiple scattering of particles or quasi-particles by impurities leads to lo-

calization in one dimension. Here it is shown that an initially localized state in a

one-dimensional array can be delocalized by choosing the electric field strength

such that the effects of diagonal and non-diagonal disorder compensate each other.

Moreover, the method works for any local state in the exciton spectrum. The pos-

sibility of tuning the exciton-impurity and exciton-exciton interaction dynamically

may offer insight into the nature of Anderson localization that would be difficult to

obtain with other systems.

Chapter 6 demonstrates that an optical lattice with polar molecules supports

phonons that interact with rotational excitons in a controlled way. The exciton-

phonon interaction is a prototype example of a particle interacting with a bosonic

environment. This type of interaction is of fundamental importance in the de-

scription of condensed matter and open quantum systems in general. Therefore,

providing insight into the nature of phonons in molecular optical lattices is a sig-

nificant contribution to the understanding of ultracold molecular arrays. In classical

terms, optical lattice phonons correspond to small displacement of the molecules

from their equilibrium positions under the combined effect of the optical trapping

forces and the dipole-dipole interaction between molecules. The phonon spectrum

is gapped and its bandwidth depends on the strength of an applied electric field.

The molecular array is stable for a wide range of electric fields and trapping fre-

quencies. It is shown that lattice instabilities can occur when the dipole-dipole

interaction energy is comparable with the optical trap depth, either for repulsive or

attractive interactions. The interaction of rotational excitons with lattice phonons

can be tuned independently by changing the trapping laser intensity and the static

electric field. A large molecular array can be described by a generalized polaron
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Hamiltonian with tunable parameters. Smaller arrays or individual molecules can

be described by a spin-boson model. In the limit of large electric fields, the dom-

inant effect of phonons is the fluctuation of the molecular site energies. In this

limit the array can be described by a Holstein polaron model, widely used in con-

densed matter theory to describe electron and energy transport in solids, molecular

aggregates and biological complexes. In the limit of weak electric fields, the sys-

tem can be described by the Su-Schrieffer-Heeger (SSH) polaron model, which is

used to describe particle and energy transport in polymers with phonon-modulated

hopping. In most materials the effect of phonon-modulated hopping is assumed to

be smaller than the diagonal particle-phonon interaction at each site, and is usually

neglected. It has been recently shown however, that polaron properties are dramat-

ically different in the strong coupling regime of the SSH model. In Holstein-type

polaron models, particle and energy transport is exponentially suppressed in the

strong coupling regime. On the contrary, phonon-modulated hopping facilitates

transport even in the strong coupling regime of the SSH model. This behaviour has

yet to be observed experimentally. Arrays of cold polar molecules in optical lat-

tices may therefore provide a unique playground to study a wide range of polaron

phenomena with a high degree of tunability.

The work on rotational exciton and polaron phenomena presented in this thesis

is applicable to a wide range of problem involving cold molecular arrays. Exciton

and polaron effects described here can be easily observed in current experiments

with polar molecules in optical lattices. Two-species optical lattices may be pro-

duced in the near future. The system studied here contains many of the basic in-

gredients necessary for important processes in condensed-matter to occur such as

exciton-polariton condensation and size-enhanced nonlinear response to the elec-

tromagnetic field for technological applications. Moreover, since rotational exci-

tons can be mapped into spin-waves, an ensemble of excitons in a molecular array

can be used to simulate quantum magnetism. The multiplicity of possible appli-

cations of this contribution and the general importance of these is one of the main

strengths of this work.
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8.2.3 Quantum entanglement and quantum information

Chapter 7 describes a method to generate entanglement between polar molecules

using a single off-resonant optical pulse. The molecules are initially in their rovi-

brational ground state and entanglement arises from a dipole exchange process

while the pulse is present. The exchange process occurs in the absence of static

electric fields and the molecules remain entangled long after the pulse is over. The

intermolecular distance at which molecules become entangled and the amount of

entanglement created (as measured by pairwise concurrence) is determined by the

pulse duration and intensity. Intermolecular distances of up to several hundred

nanometers are considered, that are relevant for molecules trapped in optical lat-

tices. The method presented here can be used to produce maximally entangled bi-

partite and many-particle states in a deterministic way. Quantum entanglement is

an important resource in quantum computation and quantum communication pro-

tocols. The research in this dissertation therefore provides the physical basis for

novel implementations of quantum information processing with cold molecules.

The entanglement generation scheme presented in this dissertation imposes

very few conditions for an experimental realization. This is one of the main strengths

of this contribution. Intense nanosecond mid-infrared pulses are routinely used

in molecular alignment experiments and individual molecules have been success-

fully trapped in optical lattices. Unlike other proposals to generate entanglement

in molecular arrays, the scheme proposed here can thus be easily realized with

current technology. However, the effects of decoherence need to be taken into ac-

count for better comparison with experimental conditions. Although the coherence

time in optical lattices exceeds seconds and it is limited by radiative processes,

the effect of the tensor light-shift and the motion of the molecule in the trapping

potential might lead to dephasing of the prepared entangled state on microsecond

timescales. These effects are not considered here and are subject of future work.
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8.3 Future research directions

8.3.1 Nonlinear quantum optics in the microwave domain

Designing novel materials with large nonlinear susceptibilities to electromagnetic

fields is an important technological challenge. Materials with fast nonlinear re-

sponse to off-resonant optical fields are used in optical communication and com-

puting [245, 246]. Crystalline solids, polymers and molecular aggregates are widely

used nonlinear materials in the optical domain [245]. The molecular properties of

these materials can be engineered to enhance their second-order and third-order

susceptibilities. Materials with giant susceptibilities are needed in order to study

nonlinear optics in the quantum regime for applications in quantum computation

and communication [247].

Progress in laser cooling and trapping of atoms has stimulated the study of

photon-photon interactions at the single-photon level [94, 248], using atomic en-

sembles as a medium with enhanced nonlinearities in the optical domain [249–

251]. Recent breakthroughs in circuit quantum electrodynamics using supercon-

ducting qubits [252, 253] have made possible the study of nonlinear quantum optics

in the microwave domain [254, 255]. Ultracold atomic ensembles and supercon-

ducting qubits can have large third-order susceptibilities χ(3), but second-order

nonlinear processes are suppressed due to the centrosymmetric nature of these sys-

tems. Nonlinear materials with finite χ(2) optical susceptibility are commonly used

for technological applications [245–247], but materials with large second-order

nonlinearities in the microwave domain are less common [256]. It is then desirable

to design a tunable system with a large χ(2) microwave susceptibility. This system

could be used to produce and manipulate the quantum states of microwave fields.

In particular, a tunable second-order nonlinear material could be used to generate

entangled pairs of microwave photons on demand via parametric down-conversion

processes [247].

Arrays of cold polar molecules in the presence of a DC electric field can be used

as a nonlinear medium for microwave fields. Polar molecules trapped on optical

lattices are described in Chapters 5 and 6. Dipolar molecular crystals in static elec-

tric fields are non-centrosymmetric and highly anisotropic due to the long-range
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dipole-dipole interaction between the molecular units. The second-order nonlin-

earity of the proposed system can be exploited to study nonlinear quantum optical

processes in the microwave domain that are not allowed by symmetry in systems

such as superconducting qubits in stripline cavity resonators [254] or semiconduc-

tor quantum dots [256]. Applications of this system range from precision measure-

ments to quantum teleportation and quantum communication protocols.

8.3.2 Quantum computation with cold homonuclear molecules

An ensemble of polar molecules in an optical lattice has become an attractive

candidate for the implementation of scalable quantum computation [117]. Po-

lar molecules have a number of properties that are advantageous in comparison

with other implementations based on trapped particles. Long-lived rotational qubit

states and long-range dipole-dipole logic gates are the main features that distin-

guish molecular arrays from neutral atoms and ions [120–124]. Proposed schemes

for quantum computation with trapped molecules exploit the dipole moment in-

duced by a static electric field in analogy with the magnetic dipole moment in

NMR quantum computing [126, 131–133]. These theoretical proposals offer sig-

nificant advantages over more established architectures such as trapped-ion quan-

tum computing, but they also suffer from limitations that make their experimental

realization difficult. In particular, single-qubit addressability is achieved by in-

troducing electric field gradients on top of the polarizing static fields, due to the

sub-micrometer distances considered between molecules. At larger distances the

dipolar interactions between molecules are too weak to be of practical use. Quan-

tum entanglement is an important resource in quantum information processing. For

current proposals using arrays of polar molecules it has been shown that the degree

of bipartite entanglement is small [141]. It is desirable to design an array of molec-

ular qubits in an optical lattice where an arbitrary amount of entanglement between

molecular pairs can be created, with molecules separated by tens of micrometers to

allow spectroscopic resolution of single qubits, in the absence of DC electric fields.

This system could be used as a scalable and robust quantum computer architecture.

An ensemble of homonuclear molecules trapped on an optical lattice can be

used for quantum information processing. Entanglement between molecules can
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be induced by strong off-resonant laser pulses. The mechanism of dynamical en-

tanglement generation with long optical pulses is described in Chapter 7 for polar

molecules. The dipole-dipole interaction between molecules is responsible for the

entanglement of molecules while the pulse is on. For homonuclear molecules,

there is no direct dipole-dipole interaction. However, a polarizable molecule ac-

quires a dipole moment in the presence of a strong off-resonant field. Homonuclear

molecules can interact via their induced dipoles while the field is present. These

induced interactions can lead to entanglement in the rotational degrees of freedom

due to laser-assisted resonance energy transfer (LARET) [257]. This process is

well-known for electronic degrees of freedom in atoms and molecules, but has not

been exploited for rotational degrees of freedom of molecules in their ground elec-

tronic state. Moreover, preliminary results show that for molecules separated by

tens of micrometers, entanglement can be built in a step-wise manner by applying

a sequence of long off-resonant optical pulses. The mechanism for this is analo-

gous to piece-wise adiabatic passage [258, 259]. Large intermolecular separation

facilitates single-qubit manipulations. In summary, extending the ideas presented

in this thesis to arrays of nonpolar diatomic and polyatomic molecules may lead

to novel quantum computing architectures that are competitive with established

implementations such as trapped ions or NMR-based systems.

8.3.3 Coherent control of ultracold molecular reactions

Control of molecular reactivity using laser fields is a long sought after goal in phys-

ical chemistry [171, 260]. In a simplified form, the effect of the laser consists in

activating a certain reactive channel by preparing at least one of the reactants in a

particularly reactive quantum state. The desired outcome of a reaction can thus be

controlled by choosing the laser fields appropriately. In thermal samples, the co-

herence created by lasers can be quickly destroyed by internal energy conversion

processes or collisions. Proposed schemes for coherent control of collisions rely

on the preparation of fragile superposition states in which the internal and external

degrees of freedom are correlated [244]. The preparation of such superpositions

leads to quantum interference between reaction channels, that may be difficult to

achieve in thermal gases. At ultracold temperatures, the randomizing effect of col-

227



lisions can be minimized. Therefore, in this temperature regime where the wave

nature of molecular motion is predominant, coherent control schemes based on

path-interference may provide an interesting tool to control chemical reactivity.

Ultracold molecular gases in specific internal states can be easily produced using

current technology. It is therefore desirable to have a scheme to control ultracold

molecular reactions using pathway interference induced by electromagnetic pulsed.

This may provide insight into the role of internal state coherence in chemical reac-

tivity.

Recent experimental results show that quantum effects, such as nuclear spin

symmetry, can be used to dramatically alter collision cross sections in ultracold

reactions, such as K2 +Rb2 → 2KRb, as well as KRb + K → K2 + Rb and KRb

+ Rb→ K + Rb2 [43, 158]. These experimental studies have generated important

theoretical questions regarding quantum effects in such reactions and the ability

of quantum control techniques to eliminate unwanted events. In particular, the

coherent control scheme developed in this dissertation may provide an easily real-

izable method to control the chemical reactivity in ultracold gases. Modifications

to kinetic theory necessary to relate the dynamical scattering calculations with ex-

perimental observables may be needed to account for the field-induced scattering

interferences.
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[124] H. Häffner, C.F. Roos, and R. Blatt. Quantum computing with trapped ions.

[125] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

239



[126] D. DeMille. Quantum computation with trapped polar molecules. Physical
Review Letters, 88(6), 2002.
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Appendix A

Effective Hamiltonian for a
molecule in a far-off resonant
field

In this Appendix a detailed derivation of the light-shift operator ĤAC in Eq. (2.32)

is provided. The starting point of the derivation is the time-dependent Schrödinger

equation for the state vector

ih̄
d
dt
|Ψ(t)〉= Ĥ |Ψ(t)〉, (A.1)

where Ĥ = Ĥmol + V̂ (t). The eigenstates of the molecular Hamiltonian Ĥmol are

denoted as |evr〉 and describe the electronic (e), vibrational (v) and rotational (r)

degrees of freedom. The light-matter interaction Hamiltonian V̂ (t) can be written

as

V̂ (t) =−d ·E(r, t) =−d ·
[
E(+)(r, t)e−iωt +E(−)(r, t)eiωt

]
, (A.2)

where the periodic time-dependence of the electric field has been separated into

its usual positive and negative frequency components. The complex amplitudes

satisfy E(−) = [E(+)]∗. The remaining time-dependence of the field amplitudes is
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kept to account for pulsed interactions. The state vector |Ψ(t)〉 can be written as

|Ψ(t)〉= ∑
r

Ceivir(t)|ei vi r〉e−iEeivirt/h̄ + ∑
e j,v j,r

Ce jv jr|e jv jr〉e−iEe jv jrt/h̄, (A.3)

where the contribution of the initial state has been singled out (i 6= j). Inserting this

expression in Eq. (A.1) and multiplying the resulting expression by 〈eivin′|exp( i
h̄ Eeivir′t)

gives the set of coupled first-order differential equations for the coefficients of the

initial vibronic state (for notational convenience we set |eivir〉 ≡ |ir〉)

ih̄
d
dt

Cir′(t) = ∑
r

Cir(t)〈ir′|V̂ (t)|ir〉ei(Eir′−Eir)t/h̄

+∑
r

∑
j 6=i

C jr(t)〈ir′|V̂ (t)| jr〉ei(Eir′−E jr)t/h̄. (A.4)

The equations for the coefficients C jr(t) are obtained by inserting Eq. (A.3) into

Eq. (A.1), and multiplying the resulting expression by 〈e j′v j′r′|exp(iEe j′v j′ r′t/h̄)

gives

ih̄
d
dt

C j′r′(t) = ∑
r

Cir(t)〈 j′r′|V̂ (t)|ir〉ei(E j′r′−Eir)t/h̄

+∑
r

∑
j′ 6=i

C jr(t)〈 j′r′|V̂ (t)| jr〉ei(E j′r′−E jr)t/h̄. (A.5)

The closed system of coupled equations (A.4) and (A.5) derive directly from the

Schrödinger equation and do not involve any approximation. If the molecule is

initially in a state within the vibronic state |eivi〉, then when the frequency ω of

the light-matter interaction operator V̂ (t) in Eq. (A.2) is far detuned with respect

to the transition frequency Ein−E jn for i 6= j, the population of higher vibronic

states can be neglected in Eq. (A.5). The resulting equation can be integrated

by assuming the electric field amplitudes E(±)(r, t) and the state amplitudes in the

initial vibronic state Cir(t) vary much slowly than terms oscillating at the frequency

(E j′r′ −Eir)/h̄∓ω . Since C j′r′(t = 0) = 0, the integrated amplitude from Eq. A.5
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can be written as

C j′r′(t) = ∑
r

{
〈 j′r′|d ·E(+)|ir〉
E j′r′−Eir− h̄ω

[
ei(ω j′r′,ir−ω)t −1

]
+
〈 j′r′|d ·E(−)|ir〉
E j′r′−Eir + h̄ω

[
ei(ω j′r′,ir+ω)t −1

]}
Cir(t), (A.6)

where h̄ω j′r′,ir = E j′r′ − Eir. In the far-detuned limit h̄ω � Ee′v′n′ − Eeivin, both

terms in the above equation contribute equally to the summation. Inserting Eq.

(A.6) in the second term of Eq. (A.4), substituting Eq. (A.2) and rearranging

indices we obtain the equation for the evolution of the rotational manifold in the

initial vibronic state

ih̄
d
dt

Cir′ = ∑
r′′

Cir′′(t)〈ir′|V̂ (t)|ir′′〉ei(Eir′−Eir′′ )t/h̄

−∑
r′′

∑
jr

Cir′′(t)
[
〈ir′|d ·E(+)| jr〉ei(ωir′; jn−ω)t + 〈ir′|d ·E(−)| jr〉ei(ωir′; jn+ω)t

]
×

[
〈 jr|d ·E(+)|ir′′〉
E jr−Eir′′− h̄ω

(
ei(ω jr,ir′′−ω)t −1

)
+
〈 jr|d ·E(−)|ir′′〉
E jr−Eir′′+ h̄ω

(
ei(ω jr,ir′′+ω)t −1

)]
(A.7)

The first term in this expression corresponds to single-photon light-matter in-

teractions involving rotational degrees of freedom, which can be ignored if the field

is far-detuned from the rotational transition frequencies. The second term contains

the two-photon contributions to the state evolution. The time-dependence of the

two-photon kernel can be simplified by ignoring the contributions that depend on

the light frequency ω . Only two terms in the evolution kernel are time-independent,

which lead to the approximate Hamiltonian evolution for rotational states

ih̄
d
dt

Cir′(t) = ∑
r′′

Cir′′(t)〈r′|ĤAC|r′′〉ei(Eir−Eir“)t/h̄, (A.8)

where the effective Hamiltonian can be written as

ĤAC =−∑
j

〈i|d ·E(−)| j〉〈 j|d ·E(+)|i〉
E j−Ei− h̄ω

+
〈i|d ·E(+)| j〉〈 j|d ·E(−)|i〉

E j−Ei + h̄ω
. (A.9)
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The rotational state summation in Eq. (A.9) has been ignored because the light-

frequency is far-detuned from the rotational transition frequencies.

The matrix elements of ĤAC in Eq. (A.8) can be written in a more convenient

form by expanding the electric field amplitudes and the dipole operator in spherical

basis using the definition [143]

A = ∑
q

Aqê∗q, (A.10)

where q =−1,0,1. Equation (A.9) can be rewritten as

ĤAC =−E(+) ·←→α (ω−) ·E(−)−E(−) ·←→α (ω+) ·E(+) (A.11)

where the positive and negative frequency components of the polarizability tensor

are given by
←→
α (ω±) = ∑

j

〈i|d| j〉〈 j|d|i〉
E j−Ei± h̄ω

. (A.12)

Expanding the dipole operator d using Eq. (A.10) we write the polarizability tensor

as
←→
α (ω−) = ∑

q,q′

[
∑

j

〈i|d†
q | j〉〈 j|dq′ |i〉

E j−Ei− h̄ω

]
êq⊗ ê∗q′ , (A.13)

and
←→
α (ω+) = ∑

q,q′

[
∑

j

〈i|dq′ | j〉〈 j|d†
q |i〉

E j−Ei + h̄ω

]
ê∗q′⊗ êq. (A.14)

The electric field amplitudes E(±) can also be expanded in spherical basis using

Eq. (A.10) and its complex conjugate. Using Eqs. (A.13) and (A.14), the effective

light-matter Hamiltonian ĤAC is written as in Eq. (2.32)

ĤAC =−∑
p,p′

αp,p′(ω)Ep(r)E∗p(r), (A.15)
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where Ep(r)≡ E(+)
p (r) and the components of the dynamical polarizability tensor

in spherical basis are given by

αp,p′(ω) = ∑
j

〈i|d†
p| j〉〈 j|dp′ |i〉

E j−Ei− h̄ω
+
〈i|dp′ | j〉〈 j|d†

p|i〉
E j−Ei + h̄ω

. (A.16)
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Appendix B

Dipole-dipole interaction in
spherical tensor form

In this appendix we derive Eq. (2.48) using basic angular momentum algebra,

assuming that the intermolecular axis between the interacting molecules is fixed in

space, but the relative distance between the molecules is arbitrary.

Let us denote the dipole moments of molecules A and B as dA and dB, dipole-

dipole interaction is given by the classical expression

Vdd(R) =

(
1
|R|3

){
dA ·dB−3(dA · R̂) · (dB · R̂)

}
, (B.1)

where R̂ = R/|R|. The term (dA · R̂) · (dB · R̂) has the tensorial form [143]

(dA · R̂) · (dB · R̂) =

[[
d(1)

A ⊗ R̂(1)
](0)
⊗
[
d(1)

B ⊗ R̂(1)
](0)](0)

, (B.2)

which can be recoupled in order to separate the dipole tensor from the position

tensors. The recoupling of these four tensors involves the evaluation of a 9 j symbol
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with a vanishing element, giving

(dA ·R̂)·(dB ·R̂)=∑
k
(2k+1)


1 1 k

1 1 k

0 0 0


[[

d(1)
A ⊗d(1)

B

](k)
⊗
[
R̂(1)⊗ R̂(1)

](k)](0)
.

(B.3)

The coupling to two tensors of the same rank into a zero-rank tensor is given by[
T (k)⊗U (k)

](0)
0

= (2k+1)−1/2
∑
q
(−1)k−q T (k,q) ·U(k,−q), (B.4)

and we have that ~T ·~U =−31/2
[
T (1)⊗U (1)

](0)
. T (k) and U (k) are irreducible spher-

ical tensors of rank k, acting on different spaces. We use Eqs. (B.2) to (B.4) to

rewrite Eq. (B.1) as

V̂dd(R) =− 3
|R|3 ∑

q
(−1)−q[d(1)

A ⊗d(1)
B ]

(2)
q [R̂(1)⊗ R̂(1)]

(2)
−q, (B.5)

which is a summation over the products of the components of two rank-two tensors,

one depends on the orientation of the electric dipole moments of the molecules,

and the other depends on the coordinates of the unit vector R̂. The contraction

T (2)
−q = [R̂(1)⊗ R̂(1)]

(2)
−q can be written in terms of spherical harmonics as [143]

T (2)
−q =

(
8π

15

)1/2

Y2,−q(θ ,φ). (B.6)

Thus, by using Eq. (B.6), we rewrite Eq. (B.5) to obtain

V̂dd(R) =−
√

6π

5

(
2

R3

)
∑
q
(−1)−q Y2,−q(θR,φR) [d

(1)
A ⊗d(1)

B ]
(2)
q . (B.7)

We are interested in evaluating the matrix elements V̂dd(R) in the uncoupled

basis {|NAMNA〉|NBMNB〉}. The matrix element of V̂dd(R) can be evaluated by spec-

ifying the orientation of the vector R̂ with respect to the space-fixed z axis.
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Substitution of the expression for the spherical harmonics in Eq. (B.7) gives

V̂dd(R) = −
√

3
R3

{√
2

2
(3cos2

θ −1)[d(1)
A ⊗d(1)

B ]
(2)
0

+
√

3eiφ cosθ sinθ [d(1)
A ⊗d(1)

B ]
(2)
−1−

√
3e−iφ cosθ sinθ [d(1)

A ⊗d(1)
B ]

(2)
1

+

√
3

2
ei2φR sin2

θ [d(1)
A ⊗d(1)

B ]
(2)
−2 +

√
3

2
e−i2φR sin2

θe−i2φR [d(1)
A ⊗d(1)

B ]
(2)
2

}
.

(B.8)

The operator V̂dd(R,θR) is thus a sum of terms with distinct physical meaning ac-

cording to the Wigner-Eckart theorem [143]; two terms associated with transitions

that change the total projection MNA +MNB by two units, two that change the value

by one unit, and one term that conserves the total projection. In order to evaluate

the matrix elements of the operator in Eq. (B.8), using the basis |NAMNA〉|NBMNB〉,
the rank-two tensors involving the dipole operators dA and dB can be decoupled to

give

[d(1)
A ⊗d(1)

B ]
(2)
q = (−1)q(5)1/2

∑
qA

(
1 1 2

qA qB q

)
d(1)

qA d(1)
qB , (B.9)

where qA+qB+q = 0. The problem is thus reduced to the evaluation of the single-

molecule matrix element 〈NMN |d(1)
q |N′M′N〉. The components of the dipole tensor

in the space fixed coordinate systems d(1)
q in Eq. (B.9) are related to the permanent

dipole moment of the molecule in the the body-fixed z axis by the expression

d(1)
qs =

1

∑
qb=−1

D∗qs,qb(φ ,θ ,χ)d
(1)
qb = d0D∗qs,0(φ ,θ ,χ), (B.10)

where d0 is the permanent dipole moment of the molecule, and D∗qs,qb(φ ,θ ,χ) is

an element the inverse rotation matrix. The elements with qb = 0 correspond to the

modified spherical harmonics C1,qs(φ ,θ) [143]. We then use the Wigner-Eckart

theorem to evaluate the matrix element of the modified spherical harmonics of

rank one as

〈NMN |C1,q|N′M′N〉= (−1)N−MN

(
N 1 N′

−MN q M′N

)
〈N||C(1)||N′〉, (B.11)
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with the reduced matrix element

〈N||C(1)||N′〉= (−1)N [(2N +1)(2N′+1)]1/2

(
N 1 N′

0 0 0

)
. (B.12)

We now use Eqs. (B.12), (B.11), (B.10) and (B.9), to write the the matrix

element

〈NAMNA |〈NBMNB |V̂dd(R,θR)|N′AM′NA
〉|N′BM′NB

〉=−
(

dAdB

R3

)
(−1)−MNA−MNB

×[(2NA +1)(2N′A +1)(2NB +1)(2N′B +1)]1/2

(
NA 1 N′A
0 0 0

)(
NB 1 N′B
0 0 0

)

×

{
3
√

5
2

e−i2φ sin2
θ ×D2 +

3
√

5
2

ei2φR sin2
θ ×D−2 +

√
15
2
(3cos2

θ −1)×D0

−3
√

5sinθ cosθe−iφ ×D1 + 3
√

5sinθ cosθeiφ ×D−1

}
,

(B.13)

where dA and dB are the permanent electric dipole moments of the molecules. This

is Eq. (2.48), where we have defined the constants Dk as the summations

D−2 = ∑
qA

(
1 1 2

qA 2−qA −2

)(
NA 1 N′A
−MNA qA M′NA

)(
NB 1 N′B
−MNB 2−qA M′NB

)

D2 = ∑
qA

(
1 1 2

qA −2−qA 2

)(
NA 1 N′A
−MNA qA M′NA

)(
NB 1 N′B
−MNB −2−qA M′NB

)

D0 = ∑
qA

(
1 1 2

qA −qA 0

)(
NA 1 N′A
−MNA qA M′NA

)(
NB 1 N′B
−MNB −qA M′NB

)

D−1 = ∑
qA

(
1 1 2

qA 1−qA −1

)(
NA 1 N′A
−MNA qA M′NA

)(
NB 1 N′B
−MNB 1−qA M′NB

)

D1 = ∑
qA

(
1 1 2

qA −1−qA 1

)(
NA 1 N′A
−MNA qA M′NA

)(
NB 1 N′B
−MNB −1−qA M′NB

)
.

These quantities are labeled according to their effect on the total projections MNA +

MNB . In practice, once the quantum numbers in the bra and the ket are chosen, only
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one of this constants will be non-zero. In fact, only a single term in the a given sum

survives the selection rules imposed by the 3-j symbols.
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Appendix C

Hyperfine structure of
closed-shell diatomic molecules

In this Appendix we provide expressions for the matrix elements of the molecular

Hamiltonian that describes the the hyperfine structure of the rotational levels. The

molecular Hamiltonian in the absence of external fields is defined in Eq. (2.13) and

the Zeeman interaction in Eq. (2.20). Below we present the matrix elements for

each Hamiltonian term in two basis states relevant for this thesis:

(a) |(NI)FMF〉 Fully coupled basis (weak fields),

(b) |NMN〉|(I1I2)IMI〉 Spin coupled basis (intermediate fields),

The use of either basis is arbitrary since a state in a given basis can be written as

a linear combination of states in another basis. However, the choice of the basis is

physically motivated by the strength of an external DC electric or magnetic field, a

particular choice of basis states is suitable to represent the Hamiltonian matrix in a

form close to diagonal.

For each matrix element in the fully coupled basis, we outline the steps of its

derivation using standard results of angular momentum algebra [142, 143]. The

expressions for the matrix elements in other basis sets can be obtained using the

same methods.

262



C.1 Fully coupled basis: I = I1 + I2 and N+ I = F

Electric quadrupole interaction ĤQ

Good quantum numbers: F , and MF .

(a) Decouple total nuclear spin and rotational angular momenta for Atom 1

〈(NI)FMF |ĤQ1 |(N
′I′)FMF〉=

= (−1)N′+F+I

{
I′ N′ F

N I 2

}
×〈N||− eT̂ (2)(∇E1)||N′〉〈(I1I2)I||T̂ (2)(Q1)||(I1I2)I′〉

(b) Decouple quadrupole reduced matrix element for atom 1

〈(I1I2)I||T̂ (2)(Q1)||(I1I2)I′〉=

= (−1)I′+I1+I2 [(2I +1)(2I′+1)]1/2

{
I1 I′ I2

I I1 2

}
〈I1||T̂ (2)(Q1)||I1〉

(c) Insert definitions for the reduced matrix elements

〈N||− eT̂ (2)(∇E1)||N′〉= (−1)N [(2N +1)(2N′+1)]1/2

(
N 2 N′

0 0 0

)
eq
2

〈I1||T̂ (2)(Q1)||I1〉=
Q
2

(
I1 2 I1

−I1 0 I1

)−1
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(e) Repeat procedure for Atom 2 and collect results to obtain final expression

〈(NI)FMF |ĤQ|(N′I′)FMF〉=

= (−1)F+N′+N+I+I1+I2 [(2N +1)(2N′+1)(2I +1)(2I′+1)]1/2

×

(
N 2 N′

0 0 0

){
I′ N′ F

N I 2

}

×

(−1)I′
(

I1 2 I1

−I1 0 I1

)−1{
I1 I′ I2

I I1 2

}
(eqQ)1

4

+(−1)I

(
I2 2 I2

−I2 0 I2

)−1{
I2 I′ I1

I I2 2

}
(eqQ)2

4

 (C.1)

Note: Coupling between rotational levels can be ignored because eqQ� Be.

Scalar spin-spin interaction ĤSC

Good quantum numbers: N, I, F , and MF .

(a) Rewrite the scalar product

I1 · I2 =
1
2
{

I2− I2
1− I2

2
}

(b) Decouple total spin and rotational angular momenta for I2 term

〈(NI)FMF |I2|(NI)FMF〉=

= (−1)F−MF

(
F 0 F

−MF 0 MF

)
〈(NI)F ||I2||(NI)F〉

= (−1)F+N+I(2F +1)1/2

{
I F N

F I 0

}
〈I||I2||I〉

(c) Decouple total spin and rotational angular momenta for I2
1 term

〈(NI)FMF |I2
1|(NI)FMF〉=

= (−1)F+N+I(2F +1)1/2

{
I F N

F I 0

}
〈(I1I2)I||I2

1||(I1I2)I〉
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(d) Decouple the nuclear spin of individual atoms

〈(I1I2)I||I2
1||(I1I2)I〉=

= (−1)I+I1+I2(2I +1)

{
I1 I I2

I I1 0

}
〈I1||I2

1||I1〉

(e) Insert expression for reduced matrix elements

〈 j||j2|| j〉= j( j+1)(2 j+1)1/2

(e) Repeat steps (c)-(d) for the term I2
2 and collect results to obtain final ex-

pression

〈(NI)FMF |ĤSC|(NI)FMF〉=
c4

2
[I(I +1)− I1(I1 +1)− I2(I2 +1)] (C.2)

Nuclear spin-rotation interaction ĤSR

Good quantum numbers: N, F , and MF .

(a) Decouple total nuclear spin and rotational angular momenta for Atom 1

〈(NI)FMF |N · I1|(NI′)FMF〉= (−1)N′+F+I

{
I′ N F

N I 1

}
〈N||N||N〉〈I||I1||I′〉

(b) Decouple nuclear spin reduced matrix element for Atom 1

〈(I1I2)I||I1||(I1I2)I′〉 = [(2I +1)(2I′+1)]1/2(−1)I′+I1+I2+1

×

{
I1 I′ I2

I I1 1

}
〈I1||I1||I1〉 (C.3)

〈I1||I1||I1〉= [I1(I1 +1)(2I1 +1)]1/2
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(c) Repeat procedure for Atom 2 and collect results to obtain final expression

〈(NI)FMF |ĤSR|(NI′)FMF〉=

= (−1)F+N+I+I1+I2+1[N(2N +1)(N +1)(2I +1)(2I′+1)]1/2

×

{
I′ N F

N I 1

}[
(−1)I′

{
I1 I′ I2

I I1 1

}
c1 +(−1)I

{
I2 I′ I1

I I2 1

}
c2

]
(C.4)

Tensor spin-spin interaction ĤT

Good quantum numbers: F and MF .

〈(NI)FMF |ĤT|(N′I′)FMF〉=

= −c3
√

30(−1)N+N′+F+I

(
N 2 N′

0 0 0

)
[(2I +1)(2I′+1)]1/2

×[(2N +1)(2N′+1)]1/2× [I1(I1 +1)(2I1 +1)I2(I2 +1)(2I2 +1)]1/2

×

{
I′ N′ F

N I 2

}
I1 I1 1

I2 I2 1

I I′ 2

 (C.5)
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Zeeman interaction ĤB

Magnetic field along Z axis. Good quantum numbers: N, MF

〈(NI)FMF |ĤB|(NI′)F ′MF〉=

= −µBBZ(−1)N+I′+I1+I2−MF [(2F +1)(2F ′+1)(2I +1)(2I′+1)]1/2

×

{
I′ F ′ N

F I 1

}(
F 1 F ′

−MF 0 M′F

)

×

[
g1(−1)I′ [I1(I1 +1)(2I1 +1)]1/2

{
I1 I′ I2

I I1 1

}

+g2(−1)I [I2(I2 +1)(2I2 +1)]1/2

{
I2 I′ I1

I I2 1

}]
(C.6)

Stark interaction ĤE

Electric field along Z axis. Good quantum numbers: I, MF

〈(NI)FMF |ĤB|(N′I)F ′MF〉=

= dEZ(−1)F+F ′+I−MF [(2F +1)(2F ′+1)(2N +1)(2N′+1)]1/2

×

{
N′ F ′ I

F N 1

}(
F 1 F ′

−MF 0 M′F

)(
N 1 N′

0 0 0

)
(C.7)

267



C.2 Spin coupled basis: I = I1 + I2

Electric quadrupole interaction ĤQ

Good quantum number: N, and MN +MI . (∆N =±2 coupling ignored)

〈NMNIMI|ĤQ|NM′NI′M′I〉=

= (−1)I+I1+I2−MN−MI [(2N +1)(2N′+1)(2I +1)(2I′+1)]1/2

(
N 2 N

0 0 0

)

×

(eqQ)1

4
(−1)I′

{
I1 I′ I2

I I1 2

}(
I1 2 I1

−I1 0 I1

)−1

+
(eqQ)2

4
(−1)I

{
I2 I′ I1

I I2 2

}(
I2 2 I2

−I2 0 I2

)−1


×
2

∑
p=−2

(−1)p

(
N 2 N

−MN p M′N

)(
I 2 I′

MI −p M′I

)
(C.8)

Nuclear spin-rotation interaction ĤSR

Good quantum numbers: N, MN , MI .

〈NMNIMI|ĤSR|NM′NI′M′I〉=

= (−1)N+I+I1+I2−MN−MI+1[N(N +1)(2N +1)(2I +1)(2I′+1)]1/2

×

[
c1(−1)I′ [I1(I1 +1)(2I1 +1)]1/2

{
I1 I′ I2

I I1 1

}

+c2(−1)I[I2(I2 +1)(2I2 +1)]1/2

{
I2 I′ I1

I I2 1

}]

×
1

∑
p=−1

(−1)p

(
N 1 N′

−MN p M′N

)(
I 1 I′

MI −p M′I

)
(C.9)
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Scalar spin-spin interaction ĤSC

Good quantum numbers: N, MN , I, MI

〈NMNIMI|ĤSC|NMNIMI〉=
c4

2
[I(I +1)− I1(I1 +1)− I2(I2 +1)] (C.10)

Tensor spin-spin interaction ĤT

Good quantum numbers: N, MN +MI . (∆N =±2 coupling ignored)

〈NMNIMI|ĤT|NMNI′MI〉=

= −c3
√

30(−1)I−MN−MI (2N +1)

(
N 2 N

0 0 0

)
[(2I +1)(2I′+1)]1/2

×[I1(I1 +1)(2I1 +1)I2(I2 +1)(2I2 +1)]1/2


I1 I1 1

I2 I2 1

I I′ 2


×

2

∑
p=−2

(−1)p

(
N 2 N

−MN p M′N

)(
I 2 I′

−MI −p M′I

)
(C.11)

Zeeman interaction ĤB

Magnetic field along Z axis. Good quantum numbers: N, MN , MI

〈NMNIMI|ĤB|NMNI′MI〉=

= µBBZ(−1)I+I1+I2−MI
[
(2I +1)(2I′+1)

]1/2

(
I 1 I′

−MI 0 MI

)

×

[
g1(−1)I′ [I1(I1 +1)(2I1 +1)]1/2

{
I1 I′ I2

I I1 1

}

+ g2(−1)I[I2(I2 +1)(2I2 +1)]1/2

{
I2 I′ I1

I I2 1

}]
(C.12)
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Appendix D

Hamiltonian for an ensemble of
interacting molecules

In this appendix we present the derivation of the model Hamiltonian for an en-

semble of interacting many-level molecules. The derivation follows closely the

treatment in Ref. [99]. In this Appendix many intermediate steps missing in the

literature are provided. The starting point is the second-quantized Hamiltonian in

Eq. (5.6) 1

Ĥ = ∑
i, f

ε f b̂
†
i f b̂i f +

1
2 ∑

i, j 6=i
∑
f , f ′

∑
g,g′
〈 f g|Vi j| f ′g′〉b̂†

i f b̂
†
jgb̂i f ′ b̂ jg′ . (D.1)

This Hamiltonian can be simplified by restricting the number of matrix elements of

the interaction operator V̂i j. In the following we divide the terms in Eq. (D.1) ac-

cording to the states involved in the interaction. We make use of the normalization

condition

∑
f

n̂i f + n̂i0 = 1, (D.2)

where n̂i f = b̂†
i f b̂i f is a number operator.

1The notation in this Appendix differs from the main text in that g here denotes any excited state.
The ground state here is denoted by 0.
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D.1 Single-particle energies
Using Eq. (D.2), the first term in Eq. (D.1) can be written as

∑
i

[
ε0

(
1−∑

f
n̂i f

)
+∑

f
ε f n̂i f

]
= ∑

i
ε0 +∑

i, f
(ε f − ε0)n̂i f (D.3)

D.2 Two-body interaction
For simplicity, the summations over site indices 1

2 ∑i j are omitted in this section.

The interaction operator V̂i j is hermitian and its matrix elements are real.

Ground-ground electrostatic interaction 〈00|Vi j|00〉

This matrix element represents the electrostatic interaction between two ground

state molecules. By setting f ′ = g′ = f = g in Eq. (D.1), the corresponding term

in Eq. (D.1) can be written as

〈00|Vi j|00〉n̂i0n̂ j0 = 〈00|Vi j|00〉

(
1−∑

f
n̂i f

)(
1−∑

g
n̂ jg

)

= 〈00|Vi j|00〉

(
1−∑

f
n̂i f −∑

f
n̂ j f +∑

f ,g
n̂i f n̂ jg

)
, (D.4)

One term does not depend on the occupation of excited states. The remaining terms

depend linearly and quadratically on the excited state occupation.

Ground state mediated excitation 〈 f 0|Vi j|00〉= 〈0 f |Vi j|00〉

These matrix elements describe a transition to an excited state in one molecule, me-

diated by the presence of another molecule in its ground state. The corresponding
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terms in Eq. (D.1) are

〈 f 0|Vi j|00〉
(

b̂†
i f b̂

†
j0b̂i0b̂ j0 +h.c.

)
+ 〈0 f |Vi j|00〉

(
b̂†

i0b̂†
j f b̂i0b̂ j0 +h.c.

)
= 〈 f 0|Vi j|00〉

(
b̂†

i f b̂i0 +h.c.
)(

1−∑
g

n̂ jg

)

+〈0 f |Vi j|00〉
(

b̂†
j f b̂ j0 +h.c.

)(
1−∑

g
n̂ig

)
(D.5)

where h.c. denotes hermitian conjugate.

Excited-ground electrostatic interaction 〈 f 0|Vi j|g0〉= 〈0 f |Vi j|0g〉

These matrix elements represent the electrostatic interaction between a molecule

in an excited state and another molecule in the ground state. The corresponding

terms in Eq. (D.1) are

〈 f 0|Vi j|g0〉
(

b̂†
i f b̂

†
j0b̂igb̂ j0 +h.c.

)
+ 〈0 f |Vi j|0g〉

(
b̂†

i0b̂†
j f b̂i0b̂ jg +h.c.

)
= 〈 f 0|Vi j|g0〉

(
b̂†

i f b̂ig + b̂†
igb̂i f

)(
1−∑

f ′
n̂ j f ′

)

+〈0 f |Vi j|0g〉
(

b̂†
j f b̂ jg + b̂†

jgb̂ j f

)(
1−∑

f ′
n̂i f ′

)
. (D.6)

Single-excitation exchange interaction 〈 f 0|Vi j|0g〉= 〈0 f |Vi j|g0〉

These matrix elements describe the exchange of an excitation from one molecule

to another. The corresponding terms in Eq. (D.1) are (including terms with g = f )

〈 f 0|Vi j|0g〉
(

b̂†
i f b̂

†
j0b̂i0b̂ jg +h.c.

)
+ 〈0 f |Vi j|g0〉

(
b̂†

i0b̂†
j f b̂igb̂ j0 +h.c.

)
(D.7)

In the second line we used the fact that the creation and annihilation operators

commute if they have different indices.
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Fission and fusion of excitations 〈 f g|Vi j| f ′0〉= 〈g f |Vi j|0 f ′〉

These class of matrix elements couple states with a single excitation and states

with two excitations. One of the allowed processes involves an excited molecule

and a ground state molecule. The molecular excitation is split into two excitation

residing in each molecule. This process is known as excitation fission. In the

hermitian conjugate processes the excitations in two molecules are combined into

a single molecule, leaving one molecule in its ground state (excitation fusion). The

corresponding terms in Eq. (D.1) are

〈 f g|Vi j| f ′0〉
(

b̂†
i f b̂

†
jgb̂i f ′ b̂ j0 +h.c.

)
+ 〈g f |Vi j|0 f ′〉

(
b̂†

igb̂†
j f b̂i0b̂ j f ′+h.c.

)
(D.8)

In the case where at least two of the state indices are equal, the corresponding

terms describe the excitation of one molecule induced by the excitation in another

molecule. These terms are analogous to the ground-state induced excitations in Eq.

(D.5). For f ′ = f we have the contributions

〈 f g|Vi j| f 0〉
(

b̂†
i f b̂

†
jgb̂i f b̂ j0 +h.c.

)
+ 〈g f |Vi j|0 f 〉

(
b̂†

igb̂†
j f b̂i0b̂ j f +h.c.

)
(D.9)

Double-excitation exchange interaction 〈 f g|Vi j|00〉= 〈g f |Vi j|00〉

These matrix elements couple the two-molecule ground state |00〉 and doubly-

excited states. In a system with at least four molecules, these couplings lead to

the exchange of two excitations between pairs of molecules. The corresponding

terms in Eq. (D.1) are

〈 f g|Vi j|00〉
(

b̂†
i f b̂

†
jgb̂i0b̂ j0 +h.c.

)
+ 〈g f |Vi j|00〉

(
b̂†

igb̂†
j f b̂i0b̂ j0 +h.c.

)
(D.10)

Excited-excited interaction 〈 f g|Vi j| f ′g′〉= 〈g f |Vi j|g′ f ′〉

These matrix elements represent interactions between two molecules in excited

states. There are many possible terms in the Hamiltonian resulting from this type

of interaction. These terms can categorized according to the number of state indices

that are identical. The most general term has four different excited state indices.
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The corresponding terms in Eq. (D.1) are

〈 f g|Vi j| f ′g′〉
(

b̂†
i f b̂

†
jgb̂i f ′ b̂ jg′+h.c.

)
+ 〈g f |Vi j|g′ f ′〉

(
b̂†

igb̂†
j f b̂ig′ b̂ j f ′+h.c.

)
.(D.11)

If the four state indices are identical in the matrix element ( f = g = f ′ = g′), there

is a single contribution to the Hamiltonian in Eq. (D.1) given by

〈 f f |Vi j| f f 〉b̂†
i f b̂i f b̂

†
j f b̂ j f . (D.12)

This term represents the electrostatic interaction between two molecules in the

same excited state. If only two excited state indices are identical ( f = f ′ and g= g′)

we have contributions representing electrostatic interaction between two molecules

in different excited states

〈 f g|Vi j| f g〉b̂†
i f b̂

†
jgb̂i f b̂ jg + 〈g f |Vi j|g f 〉b̂†

igb̂†
j f b̂igb̂ j f . (D.13)

and contributions representing energy exchange processes between excited states

〈 f g|Vi j|g f 〉
(

b̂†
i f b̂

†
jgb̂igb̂ j f +h.c.

)
+ 〈g f |Vi j| f g〉

(
b̂†

igb̂†
j f b̂i f b̂ jg +h.c.

)
. (D.14)

Additional terms are possible if three excited state indices are equal, but we do not

consider such terms in this work.

D.3 Transformation to exciton operators
We define exciton creation operator B̂†

i f = b̂†
i f b̂i0 and its hermitian conjugate B̂i f =

b̂†
i0b̂i f . Using b̂†

i f b̂
†
ig = 0= b̂i f b̂ig, it is straightforward to show that number operator

n̂i f is given by the product

B̂†
i f B̂i f = b̂†

i f b̂i0b̂†
i0b̂i f = b̂†

i f b̂i f

(
1−∑

g
b̂†

igb̂ig

)
= b̂†

i f b̂i f ≡ n̂i f , (D.15)

and the related identity b̂†
i f b̂ig = B̂†

i f B̂ig. The Hamiltonian in Eq. (D.1) can be

separated into terms containing different powers of exciton operators by collecting
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the results from Eqs. (D.6)-(D.12). If we omit the summations over molecule and

state indices the resulting partition is

(a) Order zero

〈00|Vi j|00〉 (D.16)

(b) Order one

〈 f 0|Vi j|00〉
(

B̂†
i f + B̂i f

)
+ 〈0 f |Vi j|00〉

(
B̂†

j f + B̂ j f

)
(D.17)

(c) Order two ( f 6= g)

(〈 f 0|Vi j| f 0〉−〈00|Vi j|00〉) B̂†
i f B̂i f +(〈0 f |Vi j|0 f 〉−〈00|Vi j|00〉) B̂†

j f B̂ j f

+〈 f 0|Vi j|0 f 〉
(

B̂†
i f B̂ j f +h.c.

)
+ 〈0 f |Vi j| f 0〉

(
B̂†

j f B̂i f +h.c.
)

+〈 f f |Vi j|00〉
(

B̂†
i f B̂

†
j f +h.c.

)
(D.18)

〈 f 0|Vi j|g0〉
(

B̂†
i f B̂ig +h.c.

)
+ 〈0 f |Vi j|0g〉

(
B̂†

j f B̂ jg +h.c.
)

+〈 f 0|Vi j|0g〉
(

B̂†
i f B̂ jg +h.c.

)
+ 〈0 f |Vi j|g0〉

(
B̂igB̂†

j f +h.c.
)

+〈 f g|Vi j|00〉
(

B̂†
i f B̂

†
jg +h.c.

)
+ 〈g f |Vi j|00〉

(
B̂†

igB̂†
j f +h.c.

)
(D.19)

(d) Order three ( f 6= g 6= f ′)

(〈 f f |Vi j| f 0〉−〈0 f |Vi j|00〉) B̂†
i f B̂i f

(
B̂†

j f + B̂ j f

)
+(〈 f f |Vi j|0 f 〉−〈 f 0|Vi j|00〉)

(
B̂†

i f + B̂i f

)
B̂†

j f B̂ j f (D.20)

(〈 f g|Vi j| f 0〉−〈0g|Vi j|00〉) B̂†
i f B̂i f

(
B̂†

jg + B̂ jg

)
+(〈g f |Vi j|0 f 〉−〈g0|Vi j|00〉)

(
B̂†

ig + B̂ig

)
B̂†

j f B̂ j f (D.21)

〈 f g|Vi j| f ′0〉
(

B̂†
i f B̂

†
jgB̂i f ′+h.c.

)
+ 〈g f |Vi j|0 f ′〉

(
B̂†

igB̂†
j f B̂ j f ′+h.c.

)
(D.22)
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(e) Order four

(〈 f f |Vi j| f f 〉+ 〈00|Vi j|00〉−〈 f 0|Vi j| f 0〉−〈0 f |Vi j|0 f 〉) B̂†
i f B̂i f B̂

†
j f B̂i f (D.23)

D.4 Many-level model Hamiltonian
The next step in the derivation consists in summing over molecular indices, us-

ing the invariance of the interaction operator V̂i j under the exchange i↔ j. For

example, the summation of the terms in Eq. (D.17) reads

1
2 ∑

i, j 6=i

{
〈 f 0|Vi j|00〉

(
B̂†

i f + B̂i f

)
+ 〈0 f |Vi j|00〉

(
B̂†

j f + B̂ j f

)}
= ∑

i, j 6=i
〈 f 0|Vi j|00〉

(
B̂†

i f + B̂i f

)
, (D.24)

as can be easily verified for the case of two molecules. Similar expressions can

be obtained for the remaining terms of the interaction Hamiltonian. For simplicity,

quartic terms in exciton operators that involve more than one excited state are ne-

glected in this work. The truncated form of the original Hamiltonian in Eq. (D.1)

for N interacting molecules can be written as

H =U0 +∑
f

Ĥ1( f )+∑
f ,g

Ĥ2( f ,g)+ ∑
f ,g, f ′

Ĥ3( f ,g, f ′). (D.25)

The first term is an energy term that is constant for molecules at fixed positions. It

is given by

U0 = ε0N +
1
2 ∑

i, j 6=i
〈00|Vi j|00〉, (D.26)
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where ε0 is the energy of the ground state. The second term in Eq. (D.25) has

contributions from a single excited state. It can be written as

Ĥ1( f ) = ∑
i

A f
i

(
B̂†

i f + B̂i f

)
+∑

i

(
ε f 0 +D f

i

)
B̂†

i f B̂i f

+
1
2 ∑

i, j 6=i
J f

i j

(
B̂†

i f + B̂i f

)(
B̂†

j f + B̂ j f

)
+ ∑

i, j 6=i
C f

i j

(
B̂†

i f + B̂i f

)
B̂†

j f B̂ j f

+
1
2 ∑

i, j 6=i
U f

i jB̂
†
i f B̂i f B̂

†
j f B̂ j f . (D.27)

In this expression we have defined the single particle energies

A f
i = ∑

j 6=i
〈 f 0|Vi j|00〉,

and

D f
i = ∑

j 6=i

{
〈 f 0|Vi j| f 0〉−〈00|Vi j|00〉

}
,

as well as the interaction energies

C f
i j = 〈 f f |Vi j| f 0〉−〈 f 0|Vi j|00〉

J f
i j = 〈 f 0|Vi j|0 f 〉= 〈 f f |Vi j|00〉,

and

U f
i j = 〈 f f |Vi j| f f 〉+ 〈00|Vi j|00〉−2〈 f 0|Vi j| f 0〉.

The third term in Eq. (D.25) contains contributions from two different excited

states. It is composed of several terms (see Eq. (D.19)). For simplicity, we consider

a single term of the form ( f 6= g)

Ĥ2( f ,g) =
1
2 ∑

f ,g
J f g

i j

(
B̂†

i f B̂ jg + B̂i f B̂
†
jg

)
. (D.28)

This term describes the direct coupling between different eigenstates of Ĥ( f ) cor-

responding to different molecular excited states.
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The final term in Eq. (D.25) contains contributions from three different excited

states. For simplicity, we only consider cubic terms corresponding to fission and

fusion process given in Eq. (D.22). The interaction Hamiltonian is ( f 6= g 6= f ′)

Ĥ3( f ,g, f ′) = ∑
f ,g, f ′

F f g f ′
i j

(
B̂†

i f B̂
†
jgB̂i f ′+ B̂†

i f ′B̂i f B̂ jg

)
. (D.29)

where the interaction energy is given by

F f ,g, f ′
i j = 〈 f g|Vi j| f ′0〉.
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Appendix E

Simple methods for the polaron
problem

In this appendix perturbative results for the Frölich, Holstein and Su-Schrieffer-

Heeger (SSH) polaron models are established. These are standard results in po-

laron theory. Perturbative expressions in the weak and strong coupling regimes are

useful when comparing with more sophisticated analytical approaches or numer-

ical results. The perturbative calculations follow closely Refs. [84, 205] and the

numerical algorithm is original.

The polaron Hamiltonian can be written as

Ĥ = Ĥp + Ĥph + Ĥint (E.1)

where Ĥp is the Hamiltonian describing the free particle or quasi-particle, Ĥph is the

phonon Hamiltonian and Ĥint describes the exciton-phonon interaction. Different

polaron models assume different forms for the interaction Hamiltonian Ĥint.

E.1 Fröhlich polaron

Weak coupling perturbation theory

The particle-phonon interaction Hamiltonian Ĥint in the Frölich polaron model is

given in Eq. (6.3). If the dimensionless coupling α is less than unity, the polaron
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energy can be evaluated accurately using Rayleigh-Schrödinger (RS) perturbation

theory to second order [84]. The first order contribution vanishes because Ĥint

couples phonon states where the total phonon number changes by one unit. The

second order correction to the energy of state |n〉 is given by

E(2)
n = ∑

k

|〈k(0)|Ĥint|n(0)〉|2

E(0)
n −E(0)

k

(E.2)

The zero-th order state of interest describes a particle with momentum p and the

phonon vacuum (zero temperature),i.e., |n(0)〉 = |p〉|0〉. Virtual transitions (off-

resonant) to one-phonon states |k(0)〉= |p+q〉|nq = 1〉 contribute to the energy.

Replacing the Ĥint from Eq. (6.3) into Eq. (E.2) gives (using h̄ = 1)

E(2)
p =− 1

V ∑
q

|M0|2

q2
1

ω0−p2/2m+(1/2m)(p2−q2)
. (E.3)

Assuming a three-dimensional geometry, the wavevector summation is replaced by

integration as ∑q =V
∫

d3q/(2π)3. The 1/q2 factor cancels out with the q2 factor

in the volume element. Integration over the azimuthal angle gives a factor of 2π .

The resulting expression is E(2)
p =− |M0|2

4π2 × I, where

I =
∫

∞

0
dq
∫

π

0
sinθdθ

1
(1/2m)(ω0 +q2−2pqcosθ)

. (E.4)

The integral can be solved using the change of variables ν = cosθ , followed by

x = (q− pν)/(2m)1/2. In terms of these variables I can be written as

I =
(2m)1/2

2

∫ 1

−1
dν

∫
∞

−∞

dx
1

ω0−E(p)ν2 + x2 (E.5)

=
(2m)1/2

2

∫ 1

−1
dν

π

A1/2 , (E.6)

where A = ω0−E(p)ν2. This result is valid for A > 0. In the first line we have use

the fact that the integrand is an even function of q to extend the lower integration

limit to x =−∞. The integral in the second line gives an arcsin function. The final
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result is thus

E(2)
p =−α

(
ω

3/2
0

E(p)1/2

)
arcsin

(
E(p)1/2

ω
1/2
0

)
(E.7)

where E(p) = p2/2m. For small momentum p→ 0, we can use the Taylor expan-

sion sin−1 x = x+ x3/6+O(x5) to write the energy of the low-momentum states

as

Ep =
p2

2m

(
1− α

6

)
−αω0. (E.8)

From this expression the effective mass near the band minimum is m∗ = m/(1−
α/6) and the polaron ground state energy (p = 0) is Eg =−αω0.

E.2 Holstein polaron

Canonical transformation in the strong coupling regime

The particle-phonon interaction Hamiltonian Ĥint in the Holstein model is given by

Eq. (6.11), with interaction energy Mq = g/
√

N. In the strong coupling regime

where g2/2Jω0 � 1, the Hamiltonian is best solved by transforming the particle

operators from the momentum to the site representation using the unitary transfor-

mation ĉk = N−1/2
∑i ĉi exp [ik ·Ri] and the relation ∑k exp [ik · (Ri−R j)] = δi, jN.

The resulting Hamiltonian can be partitioned as Ĥ = Ĥ0 +V̂ , where

Ĥ0 = ε ĉ†
i ĉi +∑

q
ωqâ†

qâq +
g√
N ∑

iq
ĉ†

i ĉieiq·Ri
(

âq + â†
−q

)
, (E.9)

where ε is the rest energy of the particle. The perturbation term corresponds to the

hopping of the particle

V̂ =−t ∑
i, j

ĉ†
i ĉ j. (E.10)

The Hamiltonian Ĥ0 contains the particle-phonon interaction. Its eigenstates

are polaron states corresponding to an immobile particle dressed by a phonon

cloud. This Hamiltonian can be diagonalized using the canonical transformation

Û = eŜ, where

Ŝ = ∑
jq

ĉ†
j ĉ jeiq·R j

Mq

ωq
(â†
−q− âq), (E.11)
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is a displacement operator. Transformed operators are obtained as Ā = UAU†.

We need to consider only the transformation on each operator separately since

ĀB =UABU† =UAU†UBU† = ĀB̄. The explicit form of the operator Ā is obtained

using the identity

Ā = eSAe−S = A+[S,A]+
1
2!

[S, [S,A]]+ . . . . (E.12)

Assuming the particle operators have bosonic commutation relations, the trans-

formed annihilation operator c̄i can be written as

c̄i = ĉi

[
1−Di,q +

1
2!

D2
i,q + . . .

]
= ĉie−Di,q , (E.13)

where

Di,q =

[
∑
q

eiq·Ri
Mq

ωq

(
â†
−q− âq

)]
. (E.14)

This result is normally written as c̄i = ĉiX̂i or c̄† = ĉ†
i X̂†, where X̂i = e−Di,q is an

operator that acts on the phonon degrees of freedom.

The transformed phonon operators can also be obtained using Eq. (E.12). Us-

ing the fact that the second order commutator vanishes we obtain

āq = âq−
Mq

ωq
∑

i
ĉ†

i ĉie−iq·Ri . (E.15)

Using this expression and its hermitian conjugate â†
q, the transformed phonon

Hamiltonian UĤphU† = ωqā†
qāq for each phonon mode q gives

H̄ph(q)=ωqā†
qāq =ωqâ†

qâq−
(

â†
−q + âq

)
Mq ∑

i
ĉ†

i ĉieiq·Ri +
M2

q

ωq
∑
i, j

ĉ†
i ĉiĉ

†
j ĉ jeiq·(Ri−R j).

(E.16)

Similarly, the particle-phonon interaction for each phonon mode gives

H̄int(q) = ∑
i

c̄†
i c̄ieiR̂·RiMq

(
āq + ā†

−q

)
(E.17)

=
(

âq + â†
−q

)
Mq ∑

i
ĉ†

i ĉieiq·Ri−2
M2

q

ωq
∑
i, j

eiq·(Ri−R j)ĉ†
i ĉiĉ

†
j ĉ j,
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where the identities M−q = Mq and ωq = ω−q have been used. The transformed

particle number operators at the same site is given by n̄i = c̄†
i c̄i = ĉ†

i X̂†ĉiX̂i =

ĉ†
i ĉiX̂

†
i X̂i = n̂i. The quartic term in particle operators corresponds to a phonon-

mediated interaction between particles. This interaction is irrelevant in a single

particle problem. For a single particle, the only non-zero contribution is given by

the diagonal term in the summation (i = j), which reduces to n̂in̂i = n̂i.

Using the transformed operators in Eqs. (E.16) and (E.18), and the Holstein

form of the interaction energy Mq = g/
√

N, the Hamiltonian Ĥ0 can be written in

diagonal form

H̄0 ≡ ÛĤ0Û† = ĉ†
i ĉi (ε−∆Eg)+∑

q
ωqâ†

qâq, (E.18)

where ∆Eg = N−1
∑q g2/ωq is the polaron shift from the single particle energy ε .

The transformed particle hopping interaction V̄ contains the product of particle

operators at different sites

c̄†
i c̄i = ĉ†

i ĉ jX̂
†
i X̂ j = ĉ†

i ĉ jeDi,q−D j,q ,

where Di,q is given in Eq. (E.14). Strong coupling perturbation theory can be

studied using the transformed Hamiltonian Ĥ = H̄0+V̄ , where V̄ =−t̄ ∑i j ĉ†
i ĉ j is a

small term describing the hopping of a polaron between lattice sites. The phonon-

dressed hopping amplitude is given by

t̄ = te−ST , (E.19)

where e−ST = 〈i|X̂†
i X̂ j|i〉 is the expectation value over the thermal phonon state.

An analysis of strong coupling perturbation theory for the Holstein polaron can be

found in Ref. [215] and references therein.
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E.3 SSH polaron

Sharp transition in the non-adiabatic limit

The particle-phonon interaction Hamiltonian Ĥint in the SSH polaron model is

given in Eq. (6.20). For Einstein phonons, the interaction energy is proportional

to α = α̃t/
√

2mω0, where ω0 is the phonon frequency, m is the mass of the lattice

oscillators, t is the particle hopping amplitude and α̃ is a numerical constant of

order unity. For large phonon frequencies such that ω0 > 4t (non-adiabatic limit),

Rayleigh-Schrödinger perturbation theory gives an accurate value for the polaron

energy. For a one-dimensional array with optical phonons and nearest-neighbour

hopping, the polaron energy to second order in Ĥint is

E(2)
k =−2t cos(k)+

16α2

N ∑
q

sin2(q/2)cos2(k−q/2)
2t cos(k)−ω0−2t cos(k−q)

. (E.20)

In the extreme non-adiabatic limit ω0� 2t, the wavevector dependence of the en-

ergy denominator can be ignored. The integral is elementary and gives the energy

Ek = −2t cos(k)− 16α2

ω0

∫
π

−π

dq
(2π)

sin2(q/2)cos2(k−q/2)

= −2t cos(k)− 2α2

ω0
[2− cos(2k)] . (E.21)

In addition to an overall energy shift ∆ =−4α2/ω0, the polaron band consists

of a term associated with nearest-neighbour hopping −2t cos(k) and a term arising

from second-order next-nearest-neighbour hopping −t2 cos(2k), where t2 = −λ t.

The relative contribution of these two terms can be represented by the dimension-

less coupling constant

λ =
2α2

tω0
. (E.22)

At the critical coupling λc, the polaron effective mass m∗ at the origin of the

Brillouin zone k = 0 vanishes. At this coupling, the polaron dispersion has an
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inflection point at k = 0, i.e.,

d2Ek

dk2

∣∣∣∣
k=0

= 2t(1−2λc) = 0, (E.23)

which gives λc = 1/2. The minimum of the polaron dispersion at any value of λ

occurs at the wavevector k0 that satisfies

dEk

dk
= 2t sin(k0) [1−2λ cos(k0)] = 0. (E.24)

For λ ≤ 1/2, the minimum occurs at k0 = 0. For λ > 1/2, we have k0 =

cos−1(1/2λ ), i.e., the minimum shifts towards the middle of the Brillouin zone at

k0 = π/2 when λ � 1/2.

E.4 Exciton-phonon coupling constant M(k,q)
In order to derive the system Hamiltonian in wavevector space, the starting point is

the generalized polaron Hamiltonian in the site representation

Ĥint =
1
2 ∑

i, j 6=i
(xi−x j)×

(
∇Di j

[
B̂†

i B̂i + B̂†
j B̂ j

]
+∇Ji j

[
B̂†

i B̂ j + B̂†
j B̂i

])
,

(E.25)

and expand the displacement operators in Fourier modes as

xi =
1√
N ∑

qλ

√
h̄

2mω0
êqλ

(
âq,λ + â†

−q,λ

)
eiq·Ri , (E.26)

where q is the phonon wavevector, and êq,λ is the unit vector in the direction of

the displacement with polarization λ . As noted before, the phonon spectrum is

discrete with excitation energy h̄ω0, as is the case of optical phonons in a solid. We

also expand the exciton operators in Fourier modes as explained in Chapter 5:

B̂i =
1√
N ∑

k
B̂keik·Ri . (E.27)

Inserting these definitions in Eq. (E.25), we obtain
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Ĥint =
1

2N3/2 ∑
i

∑
j 6=i

∑
q,λ

∑
k,p

(
h̄

2mω0

) 1
2 (

âq,λ + â†
−q,λ

)
B̂†

kB̂p
(
eiq·Ri− eiq·R j

)
[
êq,λ ·∇Di j

(
ei(p−k)·Ri + ei(p−k)·R j

)
+ êq,λ ·∇Ji j

(
e−ik·Ri+ip·R j + e−ik·R j+ip·Ri

)]
, (E.28)

which can be simplified by collecting the exponentials associated with the same

site position, and perform the summation ∑i using the orthogonality of the discrete

wavevector states to eliminate the sum over k. We define the intermolecular sep-

aration vector as Rm = Ri−R j to relabel the summation over lattice sites, which

gives the hermitian exciton-phonon interaction Hamiltonian

Ĥint =
1
2

(
h̄

2Nmω0

) 1
2

∑
m6=0

∑
q,λ

∑
p

(
âq,λ + â†

−q,λ

)
B̂†

p+qB̂p(
1− e−iq·Rm

)[
êq,λ ·∇D(Rm)

(
1+ eiq·Rm

)
+ êq,λ ·∇J(Rm)

(
e−ip·Rm + ei(p+q)·Rm

)]
, (E.29)

or written in a more standard form as

Ĥint =
1√
N ∑

qλ

∑
k

Mλ (k,q)
(

âq,λ + â†
−q,λ

)
B̂†

p+qB̂p, (E.30)

where the exciton-phonon coupling constant is given by

Mλ (k,q) = 2i
(

h̄
2mω0

) 1
2

∑
m>0

(
êq,λ ·∇D(Rm)

)
sin(q ·Rm)

+
(
êq,λ ·∇J(Rm)

)
[sin((k+q) ·Rm)− sin(k ·Rm)] . (E.31)

The gradient of the dipole-dipole coupling J(Ri−R j), for example, can be written

as

∇J(Rm) =−3J̃
Rm

|Rm|5
,
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where J̃ is the factor of the dipole-dipole matrix element that depends only on the

internal degrees of freedom of the molecules. This separation is in general possible,

as explained in Chapter 2. This form of the exciton-phonon coupling is general for

any lattice geometry, but in an optical lattice one can consider a simple cubic array,

such that Rm = am, where m = mxx̂+myŷ+mzẑ, and a is the lattice constant. In

this case

∇Λ(Rm) =−3
Λ12

a
m̂
|m|4

,

where Λ12 denotes D12 and J12, the nearest-neighbour couplings. This definitions

leave the coupling constant Mλ (k,q) as

Mλ (k,q) =−6i

√
h̄

2mω0a2 [D12gλ (q)+ J12(gλ (k+q)−g(k))] , (E.32)

where the mode-coupling function gλ (k) is given by

gλ (k) = ∑
m>0

(êq,λ · m̂)
sin(ak ·m)

|m|4
. (E.33)
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Appendix F

Bell’s inequality for angular and
time correlations

In the first part of this appendix a simplified derivation of Bell’s inequality is

presented. The derivation follows closely Refs. [169, 236] which are based on

orientation measurements in spin-1/2 systems. The second part of the appendix

demonstrates the equivalence between the Bell-type inequalities based on spin ori-

entations and the time-evolution of rotational states.

F.1 Proof of Bell’s inequality
A pair of spin-half particles is prepared in some distant past. One particle is sent

to observer A and the other to observer B. Each observer measured a spin compo-

nent. The vectors~a and~b denote the directions chosen for observation by observers

A and B, respectively. We assume that λ represents all “elements of reality” as-

sociated with the spins. The variable λ (possibly multidimensional) contains all

the information concerning the results of possible measurements performed on the

spins. This information is determined at the particle source and is described by the

probability density ρ(λ ). The results of the measurements made by observers A

and B are denoted as A and B. Both of these results may depend on the unknown

variable λ , but locality implies that the results obtained by observer A cannot de-

288



pend on the choice of orientation direction ~b made by observer B. We therefore

write A(~a,λ ) and B(~b,λ ) for the results obtained by each observer.

Correlations between measurements performed by observers A and B will be

revealed in the joint probabilities for their measurement outcomes. This classical

correlation is given by

E(~a,~b) =
∫

dλρ(λ )A(~a,λ )B(~b,λ ). (F.1)

If we consider only two possible directions for each separate measurement, after

performing a large number of measurements on each particle both observers can

join their results to obtain the quantity

S = E(~a,~b)+E(~a,~b′)+E(~a′,~b)−E(~a′,~b′)

=
∫

dλρ(λ )
{

A(~a,λ )
[
B(~b,λ )+B(~b′,λ )

]
+A(~a′,λ )

[
B(~b,λ )−B(~b′,λ )

]}
.

(F.2)

Let us assume that the possible values of projection measured by observer A satisfy

−λmax ≤ A≤ λmax, and that an analogous inequality holds for the results obtained

by observer B. For spin-half particles, there are only two possible projections that

can be measured, i.e., λmax = +1. Therefore extrema for the value of the integral

in Eq. (F.2) are achieved when the integrand in curly brackets is a maximum or

minimum. This occurs only when A and B have the values ±λmax. Ignoring the

dependence on λ , it is easy to see that the product

A(~a)
[
B(~b)+B(~b′)

]
+A(~a′)

[
B(~b)−B(~b′)

]
(F.3)

is equal to either −2λ 2
max or to 2λ 2

max, when A and B assume their maximum or

minimum values regardless of the choice of settings ~a and~b. This is because one

of the B brackets vanish while the other has the value ±2λmax. The remaining A

factor in each term provides an additional λmax. This proves the Bell inequality in

the form due to Clauser, Horne, Shimony and Holt [261]

|S| ≤ 2λ
2
max. (F.4)
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For a pair of spin-1/2 particles in the singlet Bell state |Ψ−〉 = 1√
2
(|01〉 −

|10〉), it is straightforward to show that this inequality is violated. The orientation

measurement operator along the direction~a is given quantum mechanically by Ô =

~a ·~σ , where~σ is the vector Pauli matrix. The eigenvalues of the orientation operator

Ô are λ = ±1. The quantum mechanical orientation correlation function is given

by

E(~a,~b)≡ 〈Ψ−|~a ·~σ ⊗~b ·~σ |Ψ−〉=−~a ·~b. (F.5)

Substituting this expression into Eq. (F.3) gives (ignoring an overall minus sign)

~a · (~b+~b′)+~a′ · (~b−~b′).

This quantity is maximized when ~a is parallel to~b+~b′ and ~a′ is parallel to~b−~b′.
Since the orientation vectors have unit norm, the maximum value of this quantity

is 2
√

2, which is called the Cirel’son bound [243]. This bound is achieved by

maximally entangled bipartite states of two-dimensional qubits.

F.2 Equivalence between spin orientations and rotational
evolution

Let us consider two molecules each in a rotational state within the subspace S =

{|0〉 ≡ |N = 0,MN = 0〉, |1〉 ≡ |N = 1,MN = 0〉}. For each molecule the orienta-

tion of the rotating internuclear axis with respect the polarization of the a a laser

is measured by observers A and B. The measurement operator is Ô = cosθ , where

θ is the angle between the molecular axis and the space-fixed Z-axis (the polar-

ization direction). In the two-dimensional rotational subspace S the orientation

operator is given by Ô = (1/
√

3)σ̂x. The rotational Hamiltonian can be written as

ĤR = Beσ̂z, where Be is the rotational constant.

The two-time orientation correlation function E(ta, tb) = 〈Ôa(ta)⊗ Ôb(tb)〉 en-

ters into the formulation of Bell-type tests using the rotational time-evolution Chap-

ter 7. The single-molecule orientation operator Ô(ta) in the Heisenberg picture can
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be written as

Ô(τa) =
1√
3
× eiσ̂zτa/2

σ̂x e−iσ̂zτa/2

=
1√
3
[cos(τa) σ̂x− sin(τa) σ̂y]

= ~a ·~σ (F.6)

where τa = 2Beta/h̄ is a dimensionless time and~a=(cos(τa)/
√

3,−sin(τa)/
√

3,0).

The operator R(φa) = exp[−iσ̂zφa/2] corresponds to an (active) rotation around the

space-fixed Z-axis by an angle φa. The time evolution of the orientation operator

Ô(ta) thus corresponds to a counterclockwise rotation of the orientation direction

from ~a = (1/
√

3)â from the positive X axis by an angle φa = τa in the XY plane.

Therefore, choosing a different time ta to perform the molecular orientation mea-

surement is equivalent to changing the orientation of the Stern-Gerlach apparatus

for the case of spin-1/2 particles in a plane. The two-time orientation correlator can

thus be written as E(ta, tb) = 〈~a ·~σ ⊗~b ·~σ〉, which is equivalent to the spin orienta-

tion correlator in Eq. F.5. In other words, the analogy is exact between Bell-type

inequalities based on the rotational time-evolution with the original results based

on spin orientations.
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