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Abstract

The research field of cold and ultracold atoms and molecules is rapidly growing

and expanding into different areas of research such as quantum information science

and condensed matter physics. The success of this field is due to the possibility of

precisely controlling and manipulating atoms and molecules at low temperatures.

The progress in this field relies on the development of new methods for controlling

collisional dynamics and interactions of particles with electromagnetic fields. This

Thesis describes research on modification of the collisional dynamics of ultracold

atoms and molecules by external laser and microwave fields as well as new methods

for the detection of weak electromagnetic fields.

First, we study the scattering of atoms and molecules confined in a 2D ge-

ometry by optical lattices. In particular we develop a theory for scattering in 2D

and derive the equations for the threshold dependence of the collision cross sec-

tions. We show that inelastic processes and chemical reactions can be suppressed

under strong confinement in one dimension and can be controlled by varying the

orientation of the external field with respect to the plane of confinement.

Next, we present a rigorous theory of low-temperature molecular collisions

in the presence of a microwave field. The microwave field can theoretically be

used to trap and control polar molecules. The molecular collisions may lead to

trap loss and decoherence. We develop a rigorous quantum theory for molecular

scattering in the presence of microwave fields. We study inelastic, spin-changing

molecular collisions and Feshbach resonances in the presence of microwave fields.

We demonstrate that inelastic collisions accompanied by absorption of microwave

photons can be significant.

The detection of weak electromagnetic fields is very important for various ap-
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plications ranging from fundamental measurements to biomagnetic imaging, and

for tests of microwave chips. We present a method for the detection of weak elec-

tromagnetic fields in a wide range of frequencies from sub-kHz to THz with ultra-

cold polar molecules. We show that using ultracold molecules one can achieve the

sensitivity of two orders of magnitude larger than with a similar method based on

ultracold Rb atoms.
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Chapter 1

Introduction

Recent advances in laser technologies have made it possible to study atoms and

molecules with high precision and to achieve unprecedented control over their ex-

ternal and internal degrees of freedom. In particular, the development of experi-

mental techniques for laser cooling of atoms and molecules to ultralow tempera-

tures gave rise to the research field of ultracold atoms and molecules. Ultracold

atoms and molecules are the simplest controllable quantum systems, which can be

manipulated with high precision with available electromagnetic fields and used to

study complex quantum phenomena. The progress in the field of ultracold atoms

and molecules is expected to have an impact on different areas of science and

technology ranging from fundamental measurements and high precision sensing

of electromagnetic fields to quantum information processing and quantum simula-

tions [1, 2].

The goal of this chapter is to introduce the field of cold and ultracold quantum

gases and to place this thesis in the context of the ongoing research. To give the

reader a broad perspective and to position the emergent field of ultracold atoms

and molecules in the area of Atomic, Molecular, and Optical physics, we briefly

describe the early works on cooling atoms which led to the development of the

field. After that, we discuss the properties of cold and ultracold quantum gases,

the state of the art in ultracold atom research and some of the applications of cold

and ultracold atoms and molecules. Finally, we outline the Thesis and discuss

the connection and contribution of our work to the field of ultracold atoms and
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molecules.

1.1 Cold and ultracold atoms and molecules

1.1.1 Development of the field

The interest in cooling atoms was inspired by the development of the time and fre-

quency standards and, in particular, atomic clocks in 1940s-1950s [3]. In atomic

clocks a laser pulse with duration τ drives transitions between two atomic energy

states with the resonant frequency ν . The accuracy of the clock depends on the

uncertainty in the measured resonant frequency. The fractional width of the reso-

nance is inversely proportional to the interaction time τ and resonant frequency ν :

δν/ν ∼ 1/τν . Therefore, the relative uncertainty is smaller for longer interaction

times and higher frequencies. The thermal motion of atoms limits the interaction

times and leads to Doppler broadening of lineshapes and shifts of the resonant

frequency. Cooling atoms decreases the Doppler broadening of the atomic tran-

sitions, reduces the collisional rate and, therefore, increases the accuracy of the

atomic clock. The development of Doppler-free spectroscopy and in particular the

Ramsey method of separated oscillatory fields in 1949 [4] and atomic fountains

in 1953 [5] allowed experimentalists to diminish the Doppler effect and resulted

in the first Cs-based atomic clock with the frequency stability 10−9 [6]. The Cs-

based atomic clock frequency standard was established in 1968 with the relative

inaccuracy in frequency less than 10−14. The further improvement of frequency

measurements required further cooling and reducing the effects of thermal motion,

which led to the idea of laser Doppler cooling of atoms [7] and ions [8]. The ef-

fect of Doppler cooling is based on the absorption of red-detuned photons from

counter-propagating laser beams during which an atom decreases its momentum

by ’recoil momentum’ and re-emmission of the photon in a random

with zero momentum gain on average. The first experimental demonstra-

tions of the laser Doppler cooling technique were presented by Wineland [9] and

Neuhauser [10] for optically trapped ions. The minimum temperature achievable

by the Doppler cooling technique is equivalent to the uncertainty in the energy of

the emitted photons, which is determined by the natural linewidth γ of the excited
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electronic states: TDoppler = h̄γ/2kB. With Doppler cooling the micro Kelvin tem-

peratures were reached for alkali atoms (∼240 µK for Na and ∼130 µK for Cs

atoms )[11]. Cooling below the Doppler limit relies on an interplay of the po-

larization gradient created by interfering laser beams, and light shifts experienced

by different Zeeman sublevels for different polarizations. Temperatures below the

Doppler limit were achieved for Na (∼ 40 µK) and Cs (∼ 700 nK) in 1988 [12]

by cooling atoms in ‘optical molasses’. The ‘optical molasses’ are created by three

pairs of counter-propagated circularly polarized laser beams, generating a periodic

potential for atoms. The atomic motion in such a potential is similar to the motion

in a viscous medium. The atoms can be trapped if their temperature is less than

the depth of the optical potential strength[13, 14]. The atomic motion is quantized

in the trapping potential and transitions between the wells occur by tunneling. The

‘optical molasses‘ techniques gave rise to the rapidly growing field of optical lat-

tices and quantum simulations with optical lattices. We will discuss the optical lat-

tices in detail in the next chapter. At the same time the methods for both magnetic

[15] and optical [16] trapping of atoms were developed. The magneto-optical traps

(MOTs) [17] allowed one to trap and to cool atoms simultaneously. Laser cooling

followed by magnetic trapping and evaporative cooling led to the observation of

the quantum degenerate regime and the demonstration of the Bose-Einstein con-

densation of atoms. The first ultracold gas of spin polarized hydrogen was obtained

in 1979 by I. F. Silvera and J.T.M. Walraven. The BEC of alkali metal atoms was

first observed by E.A. Cornel and C.E. Wieman at JILA with 87Rb (T∼170 nK), W.

Ketterle at MIT with 23Na, and R. Hulet at Rice University with 7Li in 1995 [18–

20]. After that, the field grew rapidly, attracting researchers from atomic physics,

quantum optics and condensed matter physics and leading to the emerging research

field of ultracold molecules.

1.1.2 Properties of cold and ultracold gases

In this Section, we discuss the unique properties of cold (T between 1 mK and 1

K) and ultracold (below 1 mK) gases in more detail. The long range interaction

between particles can be characterized by the effective radius of the interaction Re

depending on the form of the long-range potential. For example, Re = (mC6/h̄2)
1
4
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for the alkali atoms interacting with a Van der Waals potential −C6/r6. For suf-

ficiently low densities n, such that the mean interparticle distance in a gas n−1/3

is much larger than Re (n−1/3 >> Re), the motion of atoms is weakly affected by

other particles and it is said that the gas is dilute. For dilute gases the probability of

three-body and higher order collisions is negligible and one can consider only two

body collisions. The thermal motion can be characterised by the de Broglie wave-

length ΛT =
√

2π h̄2

mkBT . At room temperature the de Broglie wavelength ΛT is much

smaller than the radius of inter-particle interaction Re and the mean interparticle

distance n−1/3, so the gas can be described by classical Maxwell-Boltzmann statis-

tics. At lower temperatures the effects of quantum statistics may become important

for the description of the macroscopic behavior of the gases. The de Broglie wave-

length increases with decrease of the temperature. At low temperatures the size of

the de Brogile wavelength is comparable to or larger than the size of the particles.

The detailed structure of the short range interaction potential becomes unimportant

and the scattering dynamics is governed by the long range part of the interaction

potential. The interaction between particles in this regime can be described by an

effective potential with a single parameter V (r) = 4πaδ (r), where a - is a scatter-

ing length and δ (r) - is the Dirac delta function. The scattering length is connected

with a low energy behaviour of the two body wavefunction. Its meaning and con-

nection to the scattering properties of the particles will be described in the next

Chapter. It is important to note that the sign of the scattering length determines the

attractive (a < 0) or repulsive (a > 0) behavior of the potential and it can be tuned

in a wide range near a Feshbach resonance using external electromagnetic fields.

The gas is considered to be in an ultracold regime if the de Broglie wavelength ΛT

is much bigger than Re (ΛT >> Re). For very low temperatures or high densities,

such that ΛT >> n−1/3 the gas obeys quantum statistics. Here the difference be-

tween particles with integer (bosons) and odd (fermions) composite spins comes

into play. Decreasing the temperature in a gas of bosons leads to the formation of a

Bose-Einstein condensate (BEC). All particles in a BEC populate a single state of

the external potential and can be described by a single wave function. In the case

of fermions the Pauli exclusion principle prevents the particles from occupying a

single quantum state. Cooling a gas of fermions results in a Fermi sea - a state

where there is only one fermion in each quantum state.
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The complex structure and strong dipole-dipole interaction between polar

molecules promises a lot of interesting applications. The dipole-dipole interaction

between polar molecules is long-range and anisotropic. The strength and attrac-

tion or repulsion of the dipole-dipole interaction can be tuned by dc electric and

microwave fields. The strong dipole-dipole interaction can be used for the cre-

ation of exotic quantum phases of dipoles and is a useful tool for simulation of the

strongly interacting condensed-matter systems. Ultracold molecules can be used

for high-precision spectroscopy tests of fundamental symmetries. For example,

cold molecules are used in experiments testing the time variation of fundamental

constants, measuring parity-violation in nuclei and for precision measurements of

the permanent electric dipole moment (EDM) of the electron [21]. The nonzero

value of the electric dipole moment would revolutionize physics, indicating viola-

tion of the standard model. The fundamental constants determine the vibrational,

rotational and hyperfine structure of molecules, and therefore their temporal and

spatial variations can be observed with ultracold molecules.

At room temperature the kinetic energy of the particles is much larger than

Stark and Zeeman effects arising in atoms and molecules due to electromagnetic

fields available in the laboratory. At cold temperatures, the interaction of atoms

and molecules with magnetic, electric and laser field is on the order of the kinetic

energy of the particles. Therefore, atoms and molecules cooled down to 1 mK-

1 K can be trapped in magnetic, electric or magneto-optical traps. Electric and

magnetic fields are used to confine the translational motion of molecules in spe-

cific Stark or Zeeman states, resulting in external field traps [22]. According to

the Ernshow theorem, the dc electromagnetic fields can not have a maximum in a

free space. Therefore, the atoms and molecules can be confined in a states, whose

energy increase from the low to high fields, such states are called low-field seek-

ing states. The collisions of molecules lead to the inelastic relaxation to high-field

seeking states which are untrappable. Collision-induced Zeeman and Stark relax-

ation processes in such traps lead to loss of atoms and molecules from the traps.

The ac Stark, radio-frequency and microwave traps on the other hand, can confine

atoms and molecules in high-field seeking states, allowing the trapping of the ab-

solute ground state. The inelastic collisions of atoms and molecules in such traps

can be suppressed by an appropriate choice of the field parameters. The microwave
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traps along with the previously mentioned advantages can have a large depth and

size, allowing one to trap larger ensembles of molecules at higher temperatures.

The trapping fields modify the molecular energy levels and may affect collisional

properties. Therefore, to understand and to control the elastic and inelastic col-

lisions of molecules in traps it is necessary to develop a theory for collisions of

molecules in the presence of microwave fields.

Atoms and molecules can generally be cooled to very low temperatures using

buffer gas [23, 24], sympathetic [25] and evaporative [26] cooling techniques, all

of which rely on the relative efficiency of elastic and inelastic collisions in electro-

magnetic traps. The effective interactions between molecules can be manipulated

using scattering resonances induced by dc- magnetic [27], electric [28] or laser

fields [29], allowing for realization and simulation of strongly correlated quantum

systems with ultracold atoms and molecules [30]. Electromagnetic fields can also

be used to orient and align polar molecules [31] and induce molecular predissocia-

tion [32]. The orientation of molecules with external fields allows for the study of

the anisotropy of intermolecular interactions. It is therefore very important to un-

derstand the effects of static and laser electromagnetic fields on collision dynamics

of molecules at subKelvin temperatures and develop mechanisms for external field

control of elastic and inelastic collisions of cold molecules.

1.2 Applications of cold and ultracold gases
In this Section we discuss ongoing research in the field of cold and ultracold quan-

tum gases ranging from precision spectroscopy and metrology to quantum infor-

mation processing and simulations of various condensed matter systems.

1.2.1 Frequency standards and precision measurements

As discussed before, confinement and cooling of particles to the ground state of

their center-of-mass motion allowed for the possibility to eliminate such unwanted

effects as Doppler shifts, relativistic time dilation and increase the interrogation

time and, therefore, in general increase the accuracy and precision of the spectro-

scopic measurements.

The current frequency and time standards are based on the atomic fountain
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clock which was proposed by Zacharias in 1953 [5] and received a wide practical

implementation [33, 34] only after the development of sub-Doppler laser cool-

ing methods. The Cs atoms in an atomic fountain are cooled down to 1 µK and

launched up by a laser kick with a velocity of 4 ms−1. The atoms in the atomic

beam are prepared in the |F = 3MF = 0〉 state by a combination of optical pump-

ing and resonant laser excitation. The atoms then traverse the microwave cavity

and the number of atoms in the |F = 4MF = 0〉 state is detected. The best atomic

fountain clocks have a fractional uncertainty of < 5× 10−16 limited by collisions

and light-shifts from blackbody radiation.

Using optical instead of microwave transitions increases the stability of the

atomic clocks. The other component which is required for atomic clocks is an

ultra-stable laser system. The first system used as an optical standard was based

on trapped ions because the tight confinement and low temperature eliminate the

Doppler effects and allow for long interrogation times. The main disadvantage of

ions is the strong ion-ion repulsion and therefore a low total number of ions that

can be trapped, leading to a weak signal. Larger ensembles of neutral atoms are

trappable with current technologies, providing a stronger signal. The main disad-

vantages of atoms are the residual Doppler shifts, collisional shifts, and a limited

interaction time (∼ 1s). By confining larger ensembles of atoms in tight optical lat-

tices one can increase the interrogation times, perform Doppler-free interrogation

and achieve a high signal-to-noise ratio. The spin-forbiden 1S0-3P0 transition in

alkaline-earth atoms of Sr and Yb has a narrow linewidth making them favorable

for using as optical lattice clocks. The lowest systematic uncertainties for optical

lattice clocks are ∼ 10−16 with Sr [35]. The frequency standards find applications

far beyond simple time keeping. For example, the more accurate determination

of the electron-to-proton mass ratio [36], measurement of fundamental constants

and their possible variations with time [37, 38], optical communication and grav-

itational wave detection [39] have become possible with the development of the

optical frequency standards.

The current efforts in the field focus on the development of chip-scale atomic

vapor-based instruments with a size less than 10 mm3 that could run in portable

AA battery-operated systems. These devices potentially have a lot of promising

applications from chip-scale atomic magnetometers monitoring signals produced
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by human body (heart and brain) to gyroscopes and atomic clocks [40–42].

1.2.2 Quantum-degenerate gases

The BEC is an example of a weakly interacting many-body system, usually studied

in the condensed matter field. The realization of a BEC with ultracold alkali metal

atoms merged condensed-matter and AMO physics. Since then, the ultracold atoms

were extensively used to study various condensed matter phenomena. For exam-

ple, the Mott insulator to superfluid phase transition [43], BEC-BSC crossover [44]

and fractional quantum Hall effect [45] were observed with ultracold atoms in op-

tical lattices to study the behaviour of strongly correlated systems. The mixtures

of bosons and fermions were realized and used to probe the behavior of strongly

interacting mixtures in order to understand the detailed physics behind the Fesh-

bach resonance and Fermi gas superfluidity [46, 47]. The interatomic interactions

in BEC can be used to create entanglement and squeezing of the wavefunction.

Such systems can be used, for example, to enhance the sensitivity of precision

measurements and in atomic interferometers [48]. There is a phase coherence be-

tween two parts of the spatially separated condensate, which is an example of the

Josephson effect. The atomic population in a such system oscillates between two

parts due to tunneling through the potential well. The parameters of the well and

the interatomic interaction strength can be varied to study different regimes [49].

1.2.3 Optical lattices and quantum simulation

The optical lattices of atoms and molecules find numerous applications. The cre-

ation, manipulation and underlying physic of the optical lattices is discussed in next

Chapter. Here we provide examples of some of the applications of optical lattices.

Optical lattices can be used to confine atoms and molecules in lower dimensions.

The motion of atoms and molecules can be confined in 2D plane or in 1D by confin-

ing the motion along other directions to the ground state of the harmonic potential.

Atoms and molecules confined in lower dimensions have properties different from

3D. For example, Bose-Einstein condensation in an ideal 1D and 2D is impossi-

ble, but can occur in atomic traps [50]. The Bose-Einstein condensation in lower

dimensions was experimentally studied by confining atoms in pancake and sigar-
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shaped traps [49, 51]. Confining polar molecules to a plane can be used to study

strongly-correlated quantum phases such as Wigner crystals [52]. Trapping polar

molecules in a 3D lattice and tuning interactions with microwave fields may help

to realize different spin-lattice models [53]. Chemical reactions and inelastic col-

lisions can lead to decoherence, heating of gas and losses of the particles from the

trap. To have a clear picture of these phenomena one needs to understand the cold

and ultracold collision dynamics in low dimensions. For this reason, it is important

to develop a quantum mechanical scattering theory in low dimensions.

1.2.4 Quantum information processing and quantum computation

The other promising area of application of cold and ultracold atoms and molecules

is quantum information processing, quantum simulations and quantum computa-

tion. The permanent dipole moment makes polar molecules promising candidates

for quantum information processing. The first scheme for quantum computation

consisted of the 1D lattice of polar molecules combined with inhomogeneous elec-

tric fields [54]. The dipoles constituted qubits, individually addressable due to

the different Stark shifts in an inhomogeneous electric field. The entanglement is

achieved via interaction between the dipoles. The polar molecules can be coupled

to the superconducting stripline microwave resonators [55]. The exchange of vir-

tual photons can mediate the coupling between different polar molecules, which

can be achieved by adjusting the detuning of each molecule, for instance by vary-

ing the voltage for each traps.

1.2.5 Detection of weak electromagnetic fields

Sensitive detection of weak electromagnetic fields finds numerous applications

from fundamental physical measurements to biomagnetic imaging and materials

characterization. The atom based spin exchange relaxation-free (SERF) magne-

tometers offer the sensitivity of 1 fT/
√

Hz and have a theoretical limit less than

0.01 fT/
√

Hz for 1 cm3 sensor [56]. The sensitivity of the atomic magnetometers

depends on a large set of parameters. In general, the sensitivity of the atomic mag-

netometer is proportional to the interaction of the atomic magnetic moment with

the magnetic component of the field. Polar molecules have a permanent electric
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dipole moment. The interaction of the molecular permanent dipole moment with

the electric field component of electromagnetic field is approximately two orders

of magnitude stronger and therefore potentially can increase the sensitivity.

1.3 Key concepts used in Thesis

1.3.1 Feshbach resonance

Magnetic Fesbach resonances play an important role in experiments with ultracold

atoms and molecules. The Feshbach resonance occurs when the kinetic energy

of the colliding particles in the entrance channel matches the energy of the bound

state in a closed channel. Figure 1.1 shows the potential energy curves of a typical

collision complex as a functions of the interparticle distance. The red and black

curves correspond to the open and close channels. The dashed line shows the

total energy of the system. The open and closed channels often have different

magnetic or electric moments, therefore the energy separation between the open

and closed channels can be changed by applying an external magnetic or electric

field. In experiments, the magnetic Fehsbach resonances are observed by scanning

magnetic fields. The Feshbach resonances manifest themselves as strong narrow

peaks in the elastic scattering cross sections.

Feshbach resonances provide a mechanism to tune the scattering length of ul-

tracold atoms. The sign and magnitude of the scattering length determine the

dynamical properties of ultracold gases [27, 57, 58]. The effective interparticle

interaction potential in ultracold quantum gases is proportional to the scattering

length. Feshbach resonances thus provide a method to control an effective inter-

action in ultracold gases [27, 57, 58]. Magnetic Feshbach resonances have been

used, for example, for the creation of ultracold molecules [59], the production of

Bose-Einstein condensates (BEC) of fermionic dimers [58, 60], the study of the

BEC-BSC crossover in dilute gases [61] and the observation and tuning of dynam-

ical instabilities in atomic BEC [62].
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Fig. 1.1: Schematic illustration of a Feshbach Resonance.

1.3.2 Dressed states

Consider a two level quantum system (atom or molecule) placed in a single-mode

electromagnetic field with a frequency ω . The Hamiltonian for this problem is as

following

Ĥ = Ea|a〉〈a|+Eb|b〉〈b|+ h̄ω(â†â+1/2)+g(|a〉〈b|+ |b〉〈a|)(â† + â), (1.1)

where â† and â are operators of photon creation and annihilation, and g is the

atom-field coupling constant. The eigenstates of such coupled atom-field system

are called field-dressed states. The field-dressed states group into manifolds E(N)
which can be characterized by the number of photons N. In the absence of the

atom-field coupling each eigenstate of the Hamiltonian 1.1 is a direct product of

atom and field states |a,N〉= |a〉|N〉. In the presence of the coupling the eigenstate

of 1.1 is a linear combination of such products, with coefficients depending on

the coupling strength. It is convenient to keep the notation |a,N〉 for the field

dressed states adiabatically connected to |a〉|N〉. Figure 1.2 shows the scheme for

the field dressed states for the case of small detunning ω − (Eb−Ea)/h̄ << ω .

Such concept is especially convenient for describing particle-field interactions and

absorption and emission of photons.
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Fig. 1.2: Manifolds of field-dressed states.

1.3.3 Low field and high field seeking states

The atoms and molecules with unpaired electrons can be trapped in a dc magnetic

field. Figure 1.3 shows the magnetic field profile and the relative energy of par-

ticles inside the magnetic trap. The magnetic field profile has a minimum in the

center of the trap. The energy of atoms or molecules inside the trap depends on the

projection of the spin angular momentum along the magnetic field direction and

can be described by the following expression

ĤZeeman = 2µBBBB · ŜSS, (1.2)

where µB is the Bohr’s magneton, BBB is the magnetic field vector and ŜSS is the spin

angular momentum operator. For the states with positive projection of the spin

angular momentum along BBB, the energy of the particle increases with increasing

magnetic field. Such states are called low-field seeking states. The potential energy

of the particle in a magnetic trap has a minimum in the center, and therefore the

particle can be trapped in a magnetic trap. The states with negative projection of the

spin angular momentum have a maximum in the center of the trap, and therefore

such states are not trappable. The collisions of trapped atoms or molecules may

change the projection of the spin, and result in trap loss of the particles. Such

process are called spin-relaxation.
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Fig. 1.3: Schematic illustration of a magnetic field profile in a magnetic trap.
The red and blue arrows indicate the projections of the spin corresponding
to the low and high field seeking states. The black arrows indicate the
direction of the force acting on particles in a magnetic trap.

1.3.4 Scattering cross section

The last concept we will often use in the Thesis is that of a scattering cross sec-

tion. The collision process treated in the center of mass frame is equivalent to

scattering of particles by the potential located at origin of the coordinate frame.

We assume that particles approach the target along one of the coordinate axes (x

or z). One can define the incoming flux Jinc of particles i as a number of particles

crossing the plane x = a (z = a) in the direction of orign of the coordinate system

per unit time. The particles can be scattered by the potential in different directions

and can change their internal state or react to form other species during the scat-

tering process. The number of particles of type j scattered in a direction defined

by spherical coordinates (θ ,φ) per unit time is the scattered flux Jscat(θ ,φ). The

differential cross section is defined as a ratio between the scattered and incoming

fluxes dσi, j/dΩ = r2Jscat(θ ,φ)/Jinc. Upon integration over dΩ one gets a total

cross section for particles of type j conventionally denoted by σi, j, which can be

considered as probability of forming particle j from particle i during the collision
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process.

1.4 Thesis outline
In this section we briefly discuss the results presented in the following chapters.

Chapter 2 describes an ultracold gas confined to a plane and presents the deriva-

tion of Wigner’s threshold laws for 2D collisions. Chapter 3 discusses molecular

collisions in the presence of a microwave field. In particular, the particle-field in-

teractions and the dressed field formalism are briefly reviewed and the collisions

of 1Σ molecules with He atoms in a microwave cavity are studied within this ap-

proach. The spin-changing collisions of 2Σ molecules in the presence of super-

imposed magnetic and microwave fields are explored in Chapter 4. The effects

of microwave fields on Feshbach resonances in collisions of polar molecules are

described in Chapter 5. In Chapter 6, we discuss the application of paramagnetic

molecules to sensitive imaging of electromagnetic fields. In particular we show

that experiments using cold molecules can be used to detect electromagnetic fields

with sensitivity >100 times that of experiments with ultracold atoms. Chapter 7

concludes the Thesis.

1.4.1 Quasi 2D confinement of quantum gases

The motion of ultracold particles can be confined in one, two or three directions

upon application of the strong laser field. The confined gases have unusual proper-

ties and allow one to study various interesting phenomena. The scattering proper-

ties of atoms and molecules at vanishing kinetic energies have universal character

and in 3D are governed by Wigner’s threshold laws. The collision properties of

confined particles are different from those in 3D. In Chapter 2 we derive the thresh-

old laws for inelastic collisions in 2D. We show that collisions accompanied by a

change of relative angular momentum of the particles are suppressed in 2D. Our

analysis suggests a new method of control of 2D collisions by varying the direction

of the external fields. For example, the spin-changing collisions of ultracold atoms

confined in 2D are suppressed in the presence of a weak dc electric or magnetic

field perpendicular to the plane of confinement.
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1.4.2 Microwave field effects on dynamics of polar molecules

The dynamics of cold and ultracold molecules is extremely sensitive to external

fields. Ultracold molecules in a microwave field can potentially be used for var-

ious applications ranging from simulation of spin-lattice models to creation of a

microwave trap for polar molecules, which would trap large ensembles of polar

molecules at sufficiently high temperatures, up to 1K. Polar molecules in such traps

can be confined in the absolute ground state, thus being stabilized against various

trap losses. In Chapter 3, we explore collisions of ground state molecules in the

presence of a microwave field. We describe the microwave field and the molecules-

field coupling using a field-dressed formalism. We show that the anisotropy of the

interaction potential drives transitions between different field-dressed states. Such

transitions can be considered as collision-induced absorption of the microwave

photons and lead to excitations of molecules and therefore to trap loss. We show

that inelastic collisions of ground state molecules in the presence of microwave

fields are very significant and should be taken into account for designing the mw

traps. Molecules with unpaired electron spin can be trapped in a magnetic trap. The

application of microwave fields to the magnetically trapped polar molecules can be

used for inducing spin-forbidden reactions and modification of elastic and inelas-

tic collisions, e.g through the creation or modification of Feshbach resonances. In

Chapters 4 and 5 we analyse the effects of microwave fields on collisions of 2Σ

and 3Σ molecules in the presence of magnetic fields. In particular we consider spin

relaxation of the rotational ground state CaH molecules from a magnetic low-field

seeking state to the high field seeking state, which is the main source of trap loss

in magnetic traps, and modification of magnetic Feshbach resonances in NH-He

collisions by an external microwave field.

1.4.3 Imaging of weak electromagnetic fields with paramagnetic
polar molecules

In Chapter 6, we discuss the possibility of using paramagnetic polar molecules for

the detection of weak electromagnetic fields. We propose a method for measuring

weak electromagnetic fields ranging from sub-kHz to THz frequencies with polar

molecules. This method is similar to the technique used by Böhi [63] to image
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the distribution of the magnetic field amplitude and the phase of the electromag-

netic field created by the chip with ultracold Rb atoms. We show that molecule

based sensors would increase the sensitivity of the imaging up to two orders of

magnitude. Various applications of the molecular sensors are discussed.
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Chapter 2

Ultracold inelastic collisions in
two dimensions

2.1 Introduction

2.1.1 Ultracold collisions and Wigner’s threshold laws in 3D

The ability to control atomic and molecular collisions at low temperatures is im-

portant for many applications. It is often required to enhance elastic and/or to

suppress inelastic collision processes. For example, a high ratio of elastic to in-

elastic cross section (σel/σinel > 150) is necessary for the experimental realization

of evaporative and sympathetic cooling [64]. Finding the parameters of external

fields that give large elastic-to-inelastic ratio is therefore essential for planning and

performing evaporative cooling experiments. Tuning the system near a Feshbach

resonance allows one to change the sign and magnitude of the scattering length, and

therefore, to modify the effective interactions in the gas. This is especially impor-

tant for the realization of the strongly interacting quantum gases. Spin-changing

collisions are one of the main sources of decoherence in atomic magnetometers.

The development of spin-exchange relaxation free (SERF) technique allowed ex-

perimentalists to improve the sensitivity and made the SERF magnetometer one

of most sensitive magnetic field detectors [56]. In this chapter we investigate the
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effects of tight external confinement on the collisional properties of the ultracold

atoms and molecules. In particular, we explore the energy dependence of the elas-

tic, inelastic and reaction cross sections in a confined 2D geometry. We derive

analytic expressions corresponding to Wigner’s threshold laws for collisions in 2D

and analyse the effects of the long-range potential on the scattering phase shift in

the Born approximation. We show that inelastic Zeeman and Stark relaxation can

be suppressed by application of a weak dc magnetic or electric field perpendicular

to the plane of confinement.

The dynamics of cold and ultracold collisions is different in many aspects from

room temperature dynamics. The rotational motion of the collisional complex give

rise to a centrifugal force that suppresses collisions with high angular momenta at

low temperatures. The wavefunction and the scattering cross section is a sum of

contributions from different angular momenta. The elastic cross section is strongly

dominated by a few lowest partial waves for cold collisions and by the single s−
or p−wave for ultracold collisions. The spin statistics of the particles play very

important role. For example, in collisions of identical bosons only even partial

waves are possible. The dominant contribution comes from the s-wave scattering

(L=0). The collisions of bosons are isotropic and can be very efficient at ultracold

temperatures. The evaporative cooling is therefore possible. Fermions allow only

odd partial waves. The cross section for ultracold scattering of fermions is dom-

inated by p-wave scattering, which is anisotropic and vanishes with decreasing

temperature. The evaporative cooling of fermions is therefore impossible.

The energy dependence of the two-body collision cross sections in the limit

of low collision energy was analyzed by Wigner [65]. He showed that the cross

section as a function of the energy depends mainly on the longest-range part of

the interaction potential of reacting particles. The rotational angular momentum

of the collisional complex gives rise to the term -h̄2L(L + 1)/2µr2, where L is

the angular momentum quantum number and r is the inter-particle distance, which

dominates at large distances and governs the dynamics of slow collisions of neutral

particles. In particular, he demonstrated that the elastic cross section varies as k4L,

where k is the collision wave number defined by Ekin = h̄2k2/2µ and L is the

orbital angular momentum before collision. He also showed that the cross sections

for inelastic and reactive collisions vary as k2L+2L′ (L′ - is the angular momentum

18



of the products) and k2L−1 correspondingly. Applying these results to ultracold

s−wave collisions (L = 0) we obtain that the elastic cross section is finite at very

low energies σ = 4πa2, where a is the scattering length. The inelastic collisions

(e.g spin-depolarization) are suppressed by the factor k2L′ and the cross sections of

the exothermic reactions increase as k−1 with decreasing kinetic energy.

Landau and Lifshits [66] showed that in the Born approximation the dispersion

potentials (1/rs, s > 3) introduce an additional “anomalous” phase shift propor-

tional to ks−2 and the scattering amplitude for s−wave scattering in the 1/r3 poten-

tial diverges as lnk. The dispersion potentials modify the Wigner’s threshold laws

for elastic scattering for the partial waves L such that 2L < s−3, but do not change

the energy dependence of the inelastic and reactive scattering cross section. The

same results were obtained in a number of other articles [67–70].

2.1.2 Ultracold gases in optical lattices

The optical lattice is a periodic potential energy surface, created by interfering

optical laser beams. Oscillations of the electric field of the light induce oscillations

of the dipole moments, which interact with the electric field providing the trapping

potential in the optical lattice. In other words the laser field creates the AC Stark

shift, which acts as a trapping potential for atoms and molecules:

V̂dip(rrr) =−〈ddd(t) ·EEE(rrr, t)〉= ∑
i, j

ai, j(ωL)〈Ei(rrr, t)E j(rrr, t)〉2, (2.1)

where a(ωL) is the dynamic polarizability of the particle at the laser frequency ωL

and the brackets denote the average over time. The laser frequency below ωL < ω0

(above ωL > ω0) the atomic or molecular resonance ω0 creates an attractive (re-

pulsive) potential. The product of the electric field components is proportional to

the intensity of the laser light. The overlap of two counter-propagating laser beams

creates a periodic modulation of the laser intensity and therefore the particle feels

the periodic potential with periodicity λL/2 along the laser beam propagation axis.

The Gaussian profile of the laser beam creates a weak confining force in the direc-

tion perpendicular to the laser beam propagation. If the kinetic energy of the atoms

or molecules is sufficiently small (∼ 1µK) they can be trapped in this potential.
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The single potential well in a 1D optical lattice has a pancake shape and for small

kinetic energies of the particles it can be described as a three dimensional har-

monic oscillator with one of the frequencies (transverse frequency) much higher

than the other two. At elevated temperatures of the gas, the kinetic energy may

be comparable to or larger than the harmonic frequencies of the trapping potential

and therefore the transitions between the quantized energy levels in the transverse

direction occur frequently and the motion of the atoms in the direction of the laser

beam can be considered as free. In the limit of tight transverse confinement or

small kinetic energy of the particles, in particular when Ekin << h̄ωz, the transi-

tions between different harmonic states are strongly suppressed. The gas of atoms

can be prepared in a state, where the transverse motion of the center of mass of

the particles is well described by the lowest energy wavefunction of the harmonic

potential. The gas of atoms confined to the ground state of the harmonic potential

of the 1D optical lattice and moving relatively free in the other two dimensions is

called a quasi-2D gas (2.1). By superimposing two standing waves perpendicular

to each other, the creation of tight confinement in two directions is possible. The

motion of particles in two direction in such potential can be well described by the

eigenfunctions of the ground state of the harmonic oscillator and free motion in the

other direction. Such potential is periodic in two dimensions and the single well

has a sigar shape. The addition of a third laser beam allows one to create strong

3D periodic potentials (2.2), in which atoms can be trapped in the ground state

of the 3D harmonic potential of a single well and these wells form a 3D periodic

lattice. By varying the angles between the laser standing waves, different forms of

the lattices can be created, e.g. hexagonal, Kagome [71, 72].

The development of these methods of the production of low-dimensional quan-

tum gases and the creation of periodic lattices for trapping atoms and molecules has

opened up an opportunity for studying physics and chemistry of low dimensional

gases [1, 2]. Confining the motion of gas particles to lower dimensions usually

enhances quantum effects and gives rise to new phenomena. For example, con-

fining atoms in an optical lattice may result in interesting decoherence dynamics

of quantum gases [49, 51, 73–76], and may be used for investigation of a variety

of phenomena in condensed-matter physics, such as Bose-Einstein condensation

in low dimensions. The dipolar gases, i.e polar molecules confined in two dimen-
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Figure 2.1: Quasi-2D optical lattice (pancake) formed by interfering of 2
counterpropagating laser beams. The red line shows the ground state
wavefunction of the ground state perpendicular to the confinement
plane.

sions (2D) may repel each other at long range, which leads to the formation of

self-organizing crystals at ultracold temperatures [52]. The strong dipole-dipole

interactions of polar molecules give rise to new and exotic quantum phases [53].

The confinement modifies the symmetry of the long range potential and, therefore

modifies the collisional properties of atoms and molecules at low temperatures

[77]. For example, the s-wave scattering cross section and the dipole-dipole po-

tential in 2D are not averaged to zero as in 3D. The stability of the gas can be

enhanced by confinement. For example, 2D optical lattices can stabilize cold polar

molecules against inelastic and reactive collisions, if the molecules are polarized

in the direction perpendicular to the plane of confinement.

2.2 Scattering theory in 2D

2.2.1 Scattering in 2D

In this section we describe the theory of atomic and molecular scattering in 2D. We

show that it is possible to describe the scattering wavefunction in terms of S- and

T - matrices in a way similar to collision properties in 3D and derive expressions

for the scattering cross sections at small collision energies

After the separation of the center of mass motion, the two-body problem re-

duces to the problem of the motion of one particle with the mass equal to the

reduced mass of the system µ = m1m2
m11+m2

. The quantum mechanical Hamiltonian
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Figure 2.2: Optical lattices. (a) 2D optical lattice formed by superimposing
2 standing waves (b) 3D optical lattice formed by 3 standing waves.
Adapted from Macmillan Publishers Ltd.: I.Bloch, Nature Physics
2005, 1, 23

corresponding to this problem has the following form

Ĥ =− h̄2

2µ
∆+ Ĥas +V̂ , (2.2)

where first term is the kinetic energy of the particles, µ is the reduced mass of the

colliding complex, the asymptotic Hamiltonian Has describes the separated atoms

or molecules and V is the inter-particle interaction potential. To describe the mo-

tion of the particles confined in the 2D plane, it is convenient to direct the quan-

tization axis along the normal to the confinement plane and introduce the polar

coordinates (r,θ), defined by x = r cosθ and y = r sinθ , where θ changes from 0

to 2π . The variable r describes the separation between the centers of mass of the

particles and θ the angular motion of the collision complex. The Laplace operator
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in polar coordinates is

∆ =
∂ 2

∂x2 +
∂ 2

∂y2 =
1
r

∂

∂ r
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 . (2.3)

The radial and angular dependence of the Hamiltonian is separable and the wave-

function can be written as a product of functions depending only on radial and an-

gular coordinates. For the angular dependence one can introduce the 2D rotational

angular momentum operator as l̂2
z = −h̄2

∂ 2/∂θ 2. The eigenvalues and normal-

ized eigenfunctions of the rotational angular momentum operator l̂2
z are h̄2m2 and

1√
2π

eimθ correspondingly, where m is an integer number. The Hamiltonian describ-

ing the relative motion of two particles confined in a plane takes on the following

form

Ĥ =− h̄2

2µr
∂

∂ r
r

∂

∂ r
+

l̂2
z (θ)
2µr2 + Ĥas +V̂ . (2.4)

The total wavefunction can be written as a sum over channel functions Ψi =

∑ j Ψi
j = ∑ j ψ i

jφ j, where φ j represents the eigenfunction of Has with eigenvalue ε j

corresponding to the energies of noninteracting particles. The scattering function

can be expanded in eigenfunctions of the angular momentum operator as

ψ
i
j(r) = ∑

m

Ai
m√
2π

ψ jm(k jr)eimθ , (2.5)

where Ai
m do not depend on the index of the outgoing channel j and the upper index

i indicates that the incoming flux is in channel i, ψ jm(k jr) is a radial wavefunction

in channel jm and 1√
2π

eimθ is the eigenfunction of the angular momentum operator

l̂2
z .

The following system of coupled differential equations can be obtained upon

substitution of the total wavefunction Ψi in the Hamiltonian, multiplication by

φ ∗j
1√
2π

e−imθ and integration over the angular and internal degrees of freedom of

colliding particles(
1
r

∂

∂ r
r

∂

∂ r
− m2

r2 + k2
j

)
Ai

mψ jm(k jr) =
2µ

h̄2 ∑
j′m′

Vjm; j′m′Ai
m′ψ j′m′(k jr), (2.6)
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where k2
j = 2µ

h̄2 (E − ε j), E is the total energy of the system and Vjm, j′m′ =
(2π)−1 ∫ V (r,θ ,τ)ei(m′−m)θ φ j(τ)φ ∗j′(τ)dθdτ . The interaction potential between

neutral atoms or molecules vanishes faster than 1/r3 (or as 1/r3 for dipole-dipole

interactions of polarized molecules or atoms) as r→ ∞. Neglecting the interaction

potential V at large r, we obtain the free particle Schrödinger equation correspond-

ing to the asymptotic solution of Eq. 2.6(
1
r

∂

∂ r
r

∂

∂ r
− m2

r2 + k2
j

)
ψ jm(k jr) = 0. (2.7)

This equation can be transformed to the Bessel equation for the argument x = k jr

[78]. The wavefunction ψ jm(k jr) can be written as a linear combination of Bessel

or Hankel functions of argument k jr.

The unit normalized flux of particles moving in the positive x direction with

velocity vi = h̄ki/µ can be described by the plane wave v−
1
2

i eikix. Using the Jacobi-

Anger expansion [78], one can express the plane wave in terms of the solutions of

Eq.2.7

v−
1
2

i eikix = v−
1
2

i ∑
m

imJm(kir)eimθ = v−
1
2

i ∑
m

im
1
2
[
H1

m(kir)+H2
m(kir)

]
eimθ , (2.8)

where m is an integer number, and Jm(kir) and H1/2
m (kir) are Bessel and Hankel

functions of the first and second order [78].

2.2.2 Wigner’s threshold laws in 2D

In this section we analyse the threshold laws for slow collisions of particles con-

fined in 2D. We follow the works of Wigner and Eisenbud [65, 79] and define the

internal and external regions of configurational space separated by the surface S

at r = a. We choose the boundary r = a in such a way that the interaction poten-

tial in the external region has the form 1/rn. Wigner showed [65] that in 3D the

potentials dropping faster than 1/r2 give the same energy dependence of the cross

section as in the case when there is no interaction (V = 0) in the external region.

We assume our potential drops faster than 1/r3 and neglect its dependence in the

external region. The case 1/r3 we treat separately in the next section.
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momentum m is given by

 !sm;s0m0 / k2jmj!1
s : (14)

Mies and Raoult [20] have shown that Wigner’s thresh-
old laws for transitions changing the orbital angular mo-
mentum of the colliding particles in 3D are modified by the
long-range 1=R3 interaction. We repeated their analysis for
collisions in 2D and found that the cross sections for elastic
scattering changing the value of m (such as the s-wave to
d-wave transitions) or elastic scattering in states with non-
zero partial waves mediated by the long-range interaction
potential 1=R" are !sm;sm0 / k2"!5

s and independent of m
and m0, providing m"m0 ! "" 2> 0. We have verified
by numerical calculations described below that the m #
0 ! m0 # 2 and m # 2 ! m0 # 2 cross sections in 2D
scattering induced by the dipole-dipole interaction 1=#3

vanish as !sm;sm0 / ks.
The analysis above can be generalized to describe colli-

sions in quasi-2D geometry with harmonic confinement in
one dimension. The Hamiltonian of the collision system
can be written as

 H # ! 1

2$
!" V "Has " Vz; (15)

where the confining potential Vz # az2 acts only on the
colliding particles in the initial state s and can be ignored at
short range [11]. The collision dynamics at finite inter-
atomic distances is then described by a system of coupled
differential equations in 3D Jacobi coordinates presented,
for example, in Ref. [21]. When the atoms or molecules
react to produce other particles or change their internal
state s, their translational energy becomes much larger
than Vz so they are no longer confined. At infinite inter-
particle separation, the interaction potential V vanishes,
and Eq. (15) can be written as a sum of Eq. (1) and a
Hamiltonian describing the motion along the z coordi-
nate. The total wave function should now be expanded in
a basis of product states Fs;"$x; y; z% s. For the initial
channel s, the function Fs;"$x; y; z% can be represented as
Rsm$#%"m$%%&$z%, where &$z% describes the harmonic
motion of the particles along z, and Rsm$#% can be ex-
pressed as a superposition of the functions defined in
Eq. (3). For all other channels s0 ! s, the functions
Fs0;"$x; y; z% # Fs0lm$R%Ylm$R̂%, where R is the center-of-
mass separation between the colliding particles and Ylm are
spherical harmonics. The functions Fs0lml

can be written as
superpositions of spherical Hankel functions. They are
properly normalized and correspond to Wigner’s functions
Es0;lm [16]. For elastic scattering, we have to consider only
the initial channel and Eq. (5) applies, leading to the result
(9). For reactive scattering, Eq. (10) must be modified to
include js0lm0 and !$q! R%!1"sm;s0lm0 expressed in terms of
the functions Fs0lm0 at infinite interatomic separation. This
modification, however, does not change the energy depen-
dence of the cross section (13) determined by jsm and the

leading term in the expansion of !$q! R%!1"sm;s0lm0 from
Eqs. (3). The results (9), (13), and (14) thus apply to
scattering in quasi-2D geometry accompanied with loss
of confinement.

In order to verify the validity of the threshold laws for
collisions in 2D, we solved the coupled equations (2) for a
collisions system of Li and Cs atoms in a magnetic field of
100 G numerically. Figure 1 presents the computed cross
sections for elastic scattering and inelastic Zeeman relaxa-
tion in s-wave and p-wave collisions and the spin-
depolarization s-wave to d-wave transition induced by
the 1=#3 magnetic dipole-dipole interaction at zero mag-
netic field. The results follow the predicted behavior with
small deviations for s-wave scattering. We found that the
accurate representation of the s-wave cross sections (dia-
monds and squares) requires the addition of constant terms
in the denominator as in Eq. (6) from Ref. [11], even at
extremely low collision energies. Eq. (6) of Ref. [11]
should therefore be used for the analysis of future experi-
mental data on s-wave collisions in 2D.

Equations (9) and (11) demonstrate that s-wave colli-
sions of ultracold molecules in a 2D gas accompanied by
angular momentum change are suppressed by a factor
k2jmjs . Typical temperatures of ultracold gases are about
10!7 K [1] so collisions involving transitions to m # 1
channels should be several orders of magnitude less prob-
able than collisions conserving m. Certain collision pro-
cesses are, however, forbidden unless the angular
momentum of the collision complex changes. Consider,
for example, s-wave collisions of spin-1=2 2# molecules in
the rotationally ground state. In the presence of a magnetic
field, molecular energy states split into Zeeman sublevels.
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FIG. 1 (color online). Threshold dependence of cross sections
for collisions of Li and Cs atoms in 2D: diamonds—s-wave
elastic collisions; squares—s-wave inelastic collisions; triangles
up—p-wave inelastic collisions; triangles down—p-wave elas-
tic collisions; circles—s-to-d-wave transition. Symbols—nu-
merical calculations; lines—analytical forms. The initial states
are mfLi # !2 and mfCs # 2; the s-to-d-wave transition is
calculated for the maximally stretched states.

PRL 100, 073202 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
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073202-3

Figure 2.3: Threshold dependence of cross sections for collisions of Li and
Cs atoms in 2D: diamonds - 2-wave inelastic collisions; triangles up -
p-wave inelastic collisions; triangles down - p-wave elastic collisions;
circles - s-to-d-wave transitions. Symbols - numerical calculations; lines
- analytical forms. The initial states are m fLi=-2 and m fCs=2 the s-to-d
wave transitions is calculated for the maximally stretched states.

Following Wigner we use linearly independent solutions I jm and E jm (E∗jm =
I jm) of Eq.(2.7) with asymptotics of the incident and emerging waves to expand the

wavefunction in the external region. We chose the following form for the emergent

wavefunction E jm

E jm = a
1
2

√
πµ

2h̄
(i)mei π

4 H(1)
m (k jr) ∝ a

1
2 v−

1
2

j
eik jr
√

r
,r→ ∞, (2.9)

where v j = h̄k j/µ is the velocity of the particles in state j. The E jm is normalized

to give a unit flux at r = a

Jout =
h̄
µ

Im
(

E∗jm
∂

∂ r
E jm

)
= a/r. (2.10)

The plane wave 2.8 has the following expression in terms of the incident and
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emergent 2.9 waves

v−
1
2

i eikix = a−
1
2 k−

1
2

i ∑
m

(−1)m eimθ

√
2π

ei π

4

(
Iim +(−1)me−i π

2 Eim

)
. (2.11)

If the incoming collision flux is prepared in a single quantum channel (im), the

collision wavefunction has the form

Iim
eimθ

√
2π

φi−∑
jm′

Uim; jm′E jm′
eim′θ
√

2π
φ j, (2.12)

where U is the collision matrix [79]. We construct the scattering wavefunction of

the form 2.12 with the plane wave 2.11 in the incoming channel i as

a−
1
2 k−

1
2

i ei π

4 ∑
m

(−1)m

(
Iim

eimθ

√
2π

φi−∑
jm′

Uim; jm′E jm′
eim′θ
√

2π
φ j

)
=

v−
1
2

i eikixφi−a−
1
2 k−

1
2

i e−i π

4 ∑
m, j,m′

(−1)m
(

δim, jm′ +(−1)m′ei π

2 Uim; jm′
)

E jm′
eim′θ
√

2π
φ j

(2.13)

From 2.13 the integral cross sections for elastic and inelastic scattering in terms

of the matrix elements of U can be calculated. The inelastic cross section is given

by the Wigner’s R-matrix

σim, jm′ =
1
ki

∣∣∣δim, jm′ +(−1)m′ei π

2 Uim, jm′

∣∣∣2 (2.14)

The formulation of the collision problem as described above allows us to de-

termine the dependence of the 2D scattering cross sections on the collision energy

in the limit of small collision velocities using the formalism of Wigner [65] di-

rectly. He introduced the R-matrix connecting the expansion coefficients of the

wavefunction and its normal derivative on S. The matrix elements of the colli-

sion matrix U can be expressed through the matrix elements of the Wigner’s R-

matrix and logarithmic derivatives of E jm. We define e jm and q jm - the deriva-

tive and reciprocal logarithmic derivative of E jm as e jm = (h̄/2µ)∂E jm/∂ r and

E jm = q jme jm correspondingly. The j2
jm is the imaginary part of 2q∗jm defined by
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j2
jm =−2Im(q jm) = a/re jme∗jm. The U-matrix entering Eq. (2.12 and 3.32) can be

represented as

U = ωωω
[
1+ ij(q−R)−1j

]
ωωω, (2.15)

where R , q and j are a diagonal matrices with diagonal elements q jm and j jm

evaluated at r = a and ωωω is a unitary diagonal matrix defined by e = |e|ωωω∗. The

R-matrix is assumed to be energy independent near threshold, so all energy de-

pendence of the U-matrix is contained in the matrix elements of j, ωωω and q. The

threshold dependence of the U-matrix on the collision energy can thus be found

analytically by analyzing the form of the scattering waves (2.9) at small collision

velocities.

2.2.3 Elastic scattering in 2D

The elastic scattering cross section can be written from the general expression for

cross section(3.32) and collision matrix (2.12) as

σ jm, jm =
1
k j
|1+ iω2

jm−ω
2
jm j2

jm[(q−R)−1] jm, jm|2. (2.16)

The case of s-wave scattering (m = 0) is of the major importance for low energy

collisions, so we consider it first. The argument of the wavefunction x = k jr eval-

uated at the surface S (r = a and x = k ja ) goes to zero as the kinetic energy goes

to zero. The asymptotic form of the Hankel function H(1)
0 at small x is

H(1)
0 (x) = 1− x2

4
+

2i
π

{
ln
( x

2

)
+ γ

}
+ ō(x2), (2.17)

and the derivative of the Hankel function with respect to x is(
H(1)

0 (x)
)′

=− x
2

+
2i
πx

+ ō(x). (2.18)

The matrix element e j0 and can be evaluated using 2.9, 2.18 and the chain rule

e j0 =
h̄

2µ
a

1
2

√
πµ

2h̄
ei π

4 k j

(
−

k ja
2

+
2i

πk ja
+ ō(k j)

)
. (2.19)
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The ω j0 can be calculated from 2.19 leading to

ω j0 = e−i π

4

(
−

πa2k2
j

4
− i+ ō(k2

j)

)
. (2.20)

The term (1 + iω2
j0) in the elastic s-wave cross section is equal to i

π2a2k2
j

2 + ō(k2
j)

at small energies. The j2
j0 term equal to 2πµa

h̄ + ō(k2
j) and ω j0 = i + ō(k2

j). The

q j0 term diverges as a ln(k ja) and therefore the matrix element
[
(q−R)−1

]
j0, j0 ∼

[lnk j]
−1. Therefore the energy dependence of the elastic cross section for the s-

wave scattering is given by

σ j0, j0 ∝
1

k j lnk j
2 (2.21)

This result agrees with the expression for the scattering amplitude presented by

Landau and Lifshitz [66] and by Petrov and Shlyapnikov [77].

The threshold behavior for elastic scattering for higher partial waves |m| > 0

can be calculated in a similar way. Using asymptotic expansion for Bessel and

Neuman functions at small argument [78] one can show that

q jm =
2µ

h̄

(
− a

m
− i

4π

(m!)2

(a
2

)2m+1
k2m

j

)
+ ō(k2

j). (2.22)

The j2
jm term has the following form

j2
jm =

16πµ

h̄(m!)2

(a
2

)2m+1
k2m

j + Ō(k2
j). (2.23)

The elastic cross section for m > 0 has the following energy dependence

σ jm, jm ∝ k4|m|−1
j . (2.24)
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2.2.4 Elastic m-changing scattering in 2D

For collision processes that change the 2D orbital angular momentum ( jm→ jm′),

the cross section can be written as

σ jm, jm′ =
1
k j
| j jm j jm′

[
(q−R)−1]

jm, jm′ |
2. (2.25)

To determine the threshold behavior of the cross sections for scattering in collision

channels with |m|> 0, we express the Hankel functions in terms of the Bessel and

Neuman functions. Using the asymptotic expansions of the Bessel and Neuman

functions [78], we find that j2
jm ∝ k2|m|

j as k j→ 0. This yields the following energy

dependence of the cross section near threshold:

σ j0, jm ∝ k2|m|−1
j

1
ln2 k j

. (2.26)

Processes described by Eq. (2.26) are particularly important for inelastic collisions

and angular momentum depolarization of molecules trapped in 2D at ultracold

temperatures.

It is also necessary to consider transitions between states of non-zero angular

momentum m. Such transitions determine collision properties of fermionic atoms

and molecules confined in 2D. Using the above result j2
jm ∝ k2|m|

j and noting that[
(q−R)−1

]
jm, jm′ ∝ const as k j → 0, we find the following energy dependence of

the scattering cross sections

σ jm; jm′ ∝ k2|m|+2|m′|−1
j . (2.27)

2.2.5 Inelastic and reactive scattering

When collisions release energy, the energy dependence of the scattering cross sec-

tions near threshold does not depend on the angular momentum in the final collision

channel. For example, the cross section for inelastic energy transfer in 3D colli-

sions is proportional to k(2l−1)
j [65]. For reactive or inelastic collisions changing
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the quantum number j, Eq. (2.25) transforms into

σ jm, j′m′ =
1
k j

∣∣∣ j jm j j′m′
[
(q−R)−1]

jm, j′m′

∣∣∣2 . (2.28)

According to Wigner [65], the off-diagonal matrix elements
[
(q−R)−1

]
jm, j′m′ are

then independent of energy at small collision energies if m 6= 0. For m = 0, we

obtain [
(q−R)−1]

jm, j′m′ ∝
1

lnk j
(2.29)

so the energy dependence of the inelastic s-wave scattering cross section is the

same as that of the elastic cross section given by Eq. (2.21):

σ j0, j′m′ ∝
1

k j ln2 k j
(2.30)

This result is consistent with the analysis of Petrov and Shlyapnikov [77], who

concluded that the frequency of inelastic collisions between atoms confined in a

quasi-2D geometry has the same temperature dependence as the mean frequency

of elastic collisions. The reader may observe that their Eq. (52) also yields the

inverse logarithmic dependence on the collision velocity in the limit of extremely

low temperatures.

When |m|> 0, the energy dependence of the scattering amplitude is determined

by the term j2
jm ∝ k2|m|

j so the inelastic scattering cross section for collisions with

angular momentum m is given by

σ jm; j′m′ ∝ k2|m|−1
j . (2.31)

2.3 Threshold laws in the Born approximation
As was discussed in the Introduction, the threshold laws for collisions in 3D de-

pend on both the centrifugal ∼ 1/r2 and dispersion ∼ 1/rs potentials. For the

dipole-dipole interaction (s=3) for L > 0 the dispersive term (δ ∼ k) dominates

over the centrifugal term (δ ∼ k2L+1) and therefore has significant effect on colli-

sion dynamics. To explore the effects of dispersive potential (C/rs,s > 2) on the
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energy behavior of the 2D cross sections near threshold we use the Born approxi-

mation (described e.g in [66, 80]). The Born approximation is valid at low energies

( if kr0 << 1, where r0 is the effective radius of the potential), provided that the

potential is strong enough to support bound states, which is satisfied for the 1/r3

potential and the low collision energy considered here.

In the Born approximation the T -matrix element is Tj, j′ ∼ Vj, j′ . The Green’s

function corresponding asymptotically to the outgoing wave has the following form

G+
jm(r,r′) =

πr′

2i
Jm(k jr′)H

(1)
m (k jr),r > r′. (2.32)

The wavefunction in channel ( j′,m′) and correction due to scattering off the C/rs

potential can be written in terms of the Green’s function G+(r,r′)

ψ
0
j′m′ = Jm(k jr)δ j, j′ +

π

2i
H(1)

m′ (k j′r)C
∫

∞

0
Jm′(k j′r)Jm(k jr)r1−s dr. (2.33)

Comparing its asymptotic form with the expression for T -matrix, we can obtain

the T -matrix elements as

Tjm, j′m′ =
πCµ

2i

∫
∞

0
Jm(k jr)Jm′(k j′r)r1−s dr. (2.34)

The elastic case (k j = k j′) can be solved for m+m′− s+2 > 0 and gives the result

∫
∞

0
Jm(k jr)Jm′(k jr)r1−s dr =

ks−2
j Γ(s−1)Γ(m+m′−s+2

2 )

2s−1Γ(−m+m′+s
2 )Γ(m+m′+s

2 )Γ(m−m′+s
2 )

. (2.35)

Therefore Tj, j ∼ ks−2
j and the elastic cross sections vanish as k2s−5

j in the zero-

energy limit. For inelastic processes (k j < k j′) the integral has the following solu-

tion (m+m′− s+2 > 0) ∫
∞

0
Jm(k jr)Jm′(k j′r)r1−s dr =

km
j Γ(m+m′−s+2

2 )

2s−1km′−s+2
j′ Γ(−m+m′+s

2 )Γ(m+1)

×1F0(
m+m′− s+2

2
,
m−m′− s+2

2
;m+1;

k2
j

k2
j′
). (2.36)
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The hypergeometric function 1F0 is independent on k j in first approximation (the

leading term in series expansion in k j is constant). Therefore, neglecting the energy

dependence in the final state and in 1F0 we obtain Tj, j′ ∼ k2m
j and recover the k2m1−1

j

dependence for the inelastic cross section which is the same as in Wigner’s theory.

2.4 Discussion
In order to numerically verify the analytical results presented in this Chapter, we

calculated [81] the cross sections for elastic and inelastic Zeeman relaxation tran-

sitions induced by the 1/r3 magnetic dipole-dipole interaction in 2D collisions of

Li and Cs atoms (2.3) in a magnetic field of 100G. The symbols in Fig. 2.3) rep-

resent the results of the numerical calculation of the cross sections and the solid

lines represent the results calculated from the analytical expressions. The analyt-

ical and numerical results are in good agreement exhibiting small deviations for

s-wave cross sections, where an additional constant term in the denominator, as

in the Problem Set to §132 of [66] or [77], is important for collisional energies

considered.

Quemener and Bohn analyzed the electric field dependence of inelastic colli-

sions of molecules in 3D and 2D geometries [82]. The energy dependence for the

inelastic quenching transitions in 2D is in agreement with our results. Micheli et

al [83] and Quemener and Bohn [84] analyzed the reactive and elastic collisions of

polar molecules in traps for different regimes of confinement; their results for quasi

2D reactions and elastic collisions are in agreement with our predicted threshold

laws.

Eqs. (2.21) and (2.26) demonstrate that s-wave collisions of ultracold

molecules in a 2D gas accompanied by angular momentum change are suppressed

by a factor k2|m|
j . Typical temperatures of ultracold gases are about 10−7 K so colli-

sions involving transitions to m = 1 channels should be several orders of magnitude

less probable than collisions conserving m. Certain collision processes are, how-

ever, forbidden unless the angular momentum of the collision complex changes.

Consider, for example, the s-wave collisions of spin- 1
2 Σ molecules in the rota-

tionally ground state. In the presence of a magnetic field, molecular energy states

split into Zeeman sublevels. We assume that the magnetic field is weak so that the
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release of Zeeman energy into the translational motion of the molecules does not

result in loss of molecules from the 2D confinement. If the magnetic field axis is

directed along the z-axis, i.e. perpendicularly to the confinement plane, and the

molecules are prepared in a state with the maximum electron spin projection, col-

lisions may change the population of the Zeeman levels, only if they change the

angular momentum m of the collision complex. This follows from the conservation

of the total angular momentum projection on the quantization axis. Before the col-

lision, the projection of the total electron spin of the combined system on the z-axis

is 1 and after the collision it is −1. The sum of the electron spin projection and m

cannot change so m must change from 0 to 2. According to Eqs. (2.21) and (2.26),

such process at zero magnetic field is suppressed by a factor k4
j . The threshold

laws for transitions changing energy are modified (cf., Eq. (2.31)); however, the

limiting zero-field value determines the absolute magnitude of the cross section in

weak fields and Eqs. (2.21) and (2.26) indicate that collisional spin relaxation of

ultracold molecules initially in a maximum spin state will be strongly suppressed.

This suppression of collisional energy transfer in 3D has been observed by Volpi

and Bohn [85].

The symmetry of the problem will dramatically change, if the magnetic field

axis is rotated with respect to the confinement plane normal. The interaction po-

tential matrix that drives the spin-depolarization transitions remains diagonal in the

total angular momentum projection [86]. The electron spin is, however, no longer

projected on the quantization axis. The Zeeman states can be written in terms of

the spin states projected on the z-axis as follows:

|1
2
〉B = cos(γ/2)|1

2
〉z− sin(γ/2)|− 1

2
〉z

|− 1
2
〉B = sin(γ/2)|1

2
〉z + cos(γ/2)|− 1

2
〉z (2.37)

where the subscripts indicate the axis of projection and γ is the angle between

the magnetic field axis and the confinement plane normal. The Zeeman levels are

thus superpositions of different projection states in the coordinate system defined

by the confinement and transitions from the Zeeman state |12〉B no longer have to

change the orbital angular momentum m. We conclude that Zeeman transitions in
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collisions of molecules or atoms in states with maximum spin projections on the

magnetic field axis must be suppressed if the magnetic field axis is perpendicular

to the plane of confinement and enhanced if the magnetic field axis is directed at a

non-zero angle with respect to the confinement plane normal.

2.5 Conclusion
We have presented an analysis of elastic and inelastic collisions of ultracold atoms

or molecules confined in 2D geometry. Our derivations demonstrate that the ultra-

cold collisions accompanied with changes of the angular momentum m in 2D must

be suppressed by the same factor as in 3D. This has important consequences for an-

gular momentum transfer in 2D collisions. For example, this indicates that Zeeman

and Stark transitions in collisions of atoms and molecules in maximally stretched

states will be suppressed at low external fields as in 3D collisions, if the external

field is oriented perpendicularly to the plane of confinement. The symmetry of

the collision problem in 2D may, however, be broken by tilting the external field

axis with respect to the confinement plane normal, which should result in dramatic

enhancement of angular momentum transfer at extremely low collision energies.
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Chapter 3

Controlling molecular collisions
with microwave fields

3.1 Introduction
Controlling molecular interactions with lasers has been an important goal in chem-

ical dynamics research for the past five decades [87–91]. This goal stimulated

the development of the research fields of coherent and optimal control of molec-

ular processes [87], attosecond spectroscopy [89, 90] and stereodynamics [91].

Many experiments demonstrated that laser fields can be used to selectively in-

duce or suppress uni-molecular dynamical processes such as photodissociation

[87, 89, 90, 92]. Controlling molecular collisions has, however, proven to be much

more difficult. The effects of external laser fields are usually negated by thermal

motion of molecules and perturbative molecule - field interactions do not affect

molecular collisions in a thermal gas [93]. In order to achieve external field control

over molecular collision processes, it is necessary to create molecular ensembles

with the temperature smaller than the energy of molecule - field interactions. Re-

cent technological advances in cooling molecules enable the production molecular

gases at ultracold temperatures with densities up to 1012 cm−3 [94–97].

In the previous chapter we discussed the effects of laser fields with frequen-

cies in the visible region of electromagnetic spectrum on collisions of atoms and

molecules. In particular, we showed that strong laser fields of the optical lattices

35



can confine the motion of the center of mass and modify the collisional threshold

laws of atoms and molecules. In this chapter we investigate the effects of the mi-

crowave field on collisional dynamics of atoms and molecules. Microwave fields

operate in the frequency of fine structure atomic and rotational molecular transi-

tions and they are especially important for operation with polar molecules due to

strong electric dipole induced couplings. For example, a proper choice of param-

eters of static electric and microwave fields can cancel the leading dipole-dipole

interaction term in the intermolecular potential [98]. The remaining van der Waals

term (C6/R6) is repulsive in 3D. Thus, inelastic collisions can be suppressed and

simultaneously elastic collisions enhanced, which is important for stabilization and

evaporative cooling of polar molecules. A strong intermolecular interaction with a

C3/R3 potential and three-body interaction terms can be created by application of

dc electric and mw fields to polar molecules trapped in 2D optical lattices, which

can be used for the realization of strongly correlated and exotic quantum phases

such as Wigner crystals [52], spin liquids and topological phases [99]. A mi-

crowave magnetic dipole force trap for neutral atoms was suggested by Agosta

et al [100]. The atoms in a microwave trap can be trapped in the low energy spin

state, and therefore spin-relaxation processes leading to trap loss are suppressed

in a microwave traps. Low rates of spontaneous emission for microwave transi-

tions and the suppression of the spin-changing collisions result in large lifetimes

for atoms in a trap, which allows the creation of ultracold atomic ensembles with

larger densities. Furthermore, due to a large trapping volume and high trap depth,

microwave traps should allow for evaporative cooling of large ensembles of atoms.

The first experimental demonstration of Cs atom trapping with microwave fields

was reported by Spreeuw et al [101]. They obtained the ∼0.1 mK deep trap for

laser cooled Cs atoms in a spherical microwave cavity.

DeMille, Glenn, and Petricka have recently proposed a scheme to trap polar

molecules in a microwave cavity [102]. This approach has several advantages over

optical, dc Stark and magnetic traps. The trapping potential of the microwave cav-

ity is based on the interaction of the molecular electric permanent dipole moment

with the electric field so it is deeper than those of the magnetic and optical [1]

traps, which makes the trap loading easier. Molecules in microwave cavities can

potentially be confined in their absolute ground state, which suppresses the prob-
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ability of inelastic collisions leading to trap loss. Microwave traps can potentially

hold a large number of molecules at temperatures as high as 0.5 - 1 K. However,

further cooling may be required to reach the ultracold temperature regime. This

can be achieved by evaporative or sympathetic cooling inside the trapping area,

which relies on the relative efficiency of elastic and inelastic collisions. It is, there-

fore, particularly important to analyze the collision dynamics of polar molecules

in the presence of microwave fields. In this chapter we discuss collisions of po-

lar molecules in a microwave cavity using the dressed-state formalism [103] to

describe molecule-field interactions. We perform accurate coupled-channel calcu-

lations of cross sections for low-temperature elastic and inelastic collisions of CaH

molecules with He atoms. We neglect the spin structure of CaH molecule, so it

is used as a simple 1Σ molecule. The CaH-He potential is slightly anisotropic, for

more complicated systems such as molecule - P atom or molecule-molecule the po-

tential should be more anisotropic and, therefore, the overall effects are expected

to be more pronounced.

3.2 Field-dressed approach
The idea to use the dressed-state formalism for quantum scattering calculations of

slow atom-atom collisions in an intense near-resonant laser field of the optical trap

was proposed by Julienne [104]. He showed that the couplings with the radiation

field largely modify the long-range part of the interaction potential between two

atoms, accelerating them towards each other in the intermediate region and, there-

fore, increasing the scattering cross section. The coupled-channel calculations for

atoms dressed by optical [105] and microwave and rf field [106, 107] were carried

out. In this section we introduce the dressed-field approach and its connection to

the Floquet and quantum mechanical description of atoms in an electromagnetic

field.

3.2.1 Semiclassical Floquet theory

Consider an atom in the presence of a strong laser field varying periodically in time,

treated semiclassically. Shirley showed [108], that the Hamiltonian of this system

can be replaced by a time-independent Hamiltonian represented by an infinite ma-
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trix. He also showed that this approach is equivalent to a purely quantum approach

in the limit of strong laser fields [108]. For a two-level atom, the exact solution of

this problem can be obtained upon application of the rotating-wave approximation.

The rotating wave approximation is valid near resonance or when the intensity of

the laser field, or coupling to the laser field is weak. We are interested in obtain-

ing the approximation to the exact solution of this system, which is beyond the

rotating-wave approximation, since the coupling of the permanent dipole moment

of the molecule to the electric field component of the microwave field can be made

very strong. Following Shirley [108], we consider the time-dependent Shrödinger

equation for the matrix of expansion coefficients of the total wave function in some

atomic basis:

i
d
dt

F(t) = HC(t)F(t), (3.1)

where HC(t) = Ha +Hc
int(t) is a composite periodic semiclassical Hamiltonian de-

scribing the interaction of the atom with the laser field EEE(rrr, t) = E0(rrr)εεε cos(ωt)
(T=2π/ω) and F(t) is a time-dependent matrix of the expansion coefficients giv-

ing the total wave function in atomic basis |α〉. The Ha is a Hamiltonian matrix

describing atom in the absence of field. The Hamiltonian for the interaction of the

atom with the laser field Hc
int(t) in dipole approximation can be expressed as

Hc
int(t) =−ddd ·EEE(rrr, t) =−E0(rrr)ddd · εεε cos(ωt) (3.2)

The general form of the solution of Eq.(3.3) according to the Floquet’s theorem

can be written:

F(t) = ΦΦΦ(t)e−iQt , (3.3)

where ΦΦΦ(t) is a periodic solution with period T, and Q is a Hermitian matrix, the

diagonal elements qα of which satisfy [108]

∑
α

qα =
1
T

∫ T

0
TrHC(t)dt(modω). (3.4)

Expanding the Hamiltonian:

HC = ∑
n

Hn
Ce−inωt , (3.5)
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and the general form of the solution:

F(t) = ∑
n

Fn(t)e−inωte−iQt , (3.6)

in Fourier series and substituing into the time dependent Shrodinger equation 3.1,

one gets the following matrix equation:

∑
γm

[
(Hn−m

C )α,γ +nωδα,γδm,n
]

Fm
γ,β = ∑

γm
(HF)αn,γmFm

γ,β = qβ Fn
α,β , (3.7)

where (HF)αn,γm = 〈αn|HF|γm〉 is an infinite matrix representation of the Floquet

Hamiltonian in basis |αn〉, α denotes the atomic state and n is the Fourier compo-

nent. In our case the Fourier components of the HC matrix are given by

(Hn=0
C )α,γ = (Ha)α,γ , (3.8)

(Hn=±1
C )α,γ =−E0

2
〈α|ddd · εεε|γ〉 (3.9)

The matrix HF has an infinite number of eigenvalues {εαn} of the form εαn =
λα + nω , where n is an integer and 1 ≤ α ≤ dim(HC), where dim(HC) is the

dimension of the Hamiltonian matrix HC. It is obvious that the spectrum consists

of the n (n = dim(HC)) different eigenvalues shifted by the integer amount of laser

frequencies nω . These energies are called dressed-states of the atom in the field.

To clarify the meaning of n, we briefly review the quantum mechanical description

of the electromagnetic field.

3.2.2 Quantum theory

Consider an atom in a single mode microwave cavity. The quantum Hamiltonian

(ĤQ) describing the atom and the laser field is given by

ĤQ = Ĥa + Ĥq
int + Ĥf, (3.10)

where Ĥa, Ĥf, Ĥ
q
int are the Hamiltonians for the atom, the field and the atom-field

interaction. We consider the single mode microwave cavity with volume V . The
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electric field inside the cavity [103] is given by

ÊEET(rrr) =

√
h̄ω

2ε0V
εεε(â+ â†) =

E0(rrr)
2
√

n̄
εεε(â+ â†), (3.11)

where â† and â are the photon creation and annihilation operators defined in the

basis of the Fock photon number states, εεε is the polarization of the laser mode, E0

is the electric field amplitude, and n̄ = E2
0

ε0V
2h̄ω

is a mean number of photons in the

cavity.

The field Hamiltonian Ĥf of such system can be written as

Ĥf = h̄ω

(
ââ† +

1
2

)
. (3.12)

The matrix elements of the Ĥf in the basis of the product states |αn〉 = |α〉|n〉 are

(Ĥf)αn,βm = δα,β δn,m
(
h̄ωn+ 1

2

)
.

The Hamiltonian for the atom-electric field interaction in the dipole approxi-

mation can be written as

Ĥq
int =−ddd · ÊEET(rrr) =−E0(rrr)

2
√

n̄
ddd · εεε

(
â+ â†) . (3.13)

The matrix elements of the operator Ĥq
int are

〈α n̄+n|Ĥq
int|β n̄+m〉=−E0(rrr)

2
√

n̄
〈α|ddd ·εεε|β 〉

(√
n̄+m−1δn,m−1 +

√
n̄+m+1δn,m+1

)
.

(3.14)

In the limit of a large photon number n̄ >> n≥ 1, the square root can be approxi-

mated as
√

n̄+m±1∼
√

n̄, and the matrix elements of Ĥq
int take on the following

form

〈α n̄+n|Ĥq
int|β n̄+m〉=−E0(rrr)

2
〈α|ddd · εεε|β 〉(δn,m−1 +δn,m+1). (3.15)

Now, one can see, that in the limit of large mean photon number states n̄ the

matrix elements of the quantum Hamiltonian ĤQ are the same as the matrix ele-
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ments of the Floquet Hamiltonian up to a constant total energy shift

(ĤQ)α n̄+n,β n̄+m = (HF)αn,βm + h̄ω(n̄+1/2)δα,β δn,m. (3.16)

We see that the integer n in the Floquet theory is equivalent to the number of ab-

sorbed or emitted photons in quantum theory and the Floquet state |αn〉 is equiva-

lent to the quantum state |α n̄+n〉. For convenience we treat the laser field quantum

mechanically assuming a large mean number of photons n̄ >> 1 in the mode and

refer to the eigenstates of ĤQ as field-dressed states. The field-dressed therefore

represent the eigenstates of the interacting atom-radiation system. The transitions

between the field-dressed states can be observed experimentally by probing them

with a second weak field [109, 110]. The plots of the dressed state energies as func-

tions of frequency, electric or magnetic fields can help to identify resonances and

correctly determine channel energies of atoms in the collision of particles in the

presence of ac fields. By truncating the number of photons n, we can approximate

the eigenvalues of the infinite matrix with sufficient accuracy and build a consistent

approximation to the exact solution.

3.2.3 1Σ molecules in a microwave cavity

In this section we discuss the application of the dressed field formalism for polar

molecules in a microwave cavity. The rotational energy levels of a 1Σ molecule

in the absence of external fields are described by the Hamiltonian BeN̂NN
2

with the

rotational angular momentum N̂NN and the rotational constant Be. The eigenstates of

this Hamiltonian are spherical harmonics of rank N:

BeN̂NN
2|NMN〉= BeN(N +1)|NMN〉, (3.17)

where MN is the projection of N̂NN on a space-fixed quantization axis.

The microwave field is described by the number of photons n̄ + n in a given

frequency mode, where n̄ is a mean number of photons in the cavity and n is a

small integer number. Here, we consider a singe-mode field. The Hamiltonian of

the single-mode field can be written as h̄ω(â†â− n̄), where â† and â are the photon
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creation and annihilation operators:

â|n̄+n〉=
√

n̄+n|n̄+n−1〉,

â†|n̄+n〉=
√

n̄+n+1|n̄+n+1〉. (3.18)

The energy of the field is given by:

h̄ω(â†â− n̄)|n̄+n〉= nh̄ω|n̄+n〉. (3.19)

The wave function of the rigid rotor in a microwave field can be expanded in

the basis of direct products

|NMN〉|n̄+n〉. (3.20)

The energy levels of the molecule in the ac field can then be found by diagonalizing

the following Hamiltonian in the basis set (3.20):

Ĥas = BeN̂NN
2
+ h̄ω(â†â− n̄)+ Ĥm,f, (3.21)

where the operator Ĥm,f describes the molecule-field interaction. We consider lin-

early polarized light with the polarization along the space-fixed quantization z-

axis. For such a field orientation, the projection of the total angular momentum

of the system on z axis is conserved. The interaction of the dipole moment of the

molecule with a linearly polarized ac field is described by

Ĥm,f =− Ω

2
√

n̄
(â+ â†)cosφ , (3.22)

where φ is the angle between the polarization axis and the molecular axis, Ω = εd

is the strength of the field-induced coupling, d is the permanent dipole moment of

the molecule and ε is the electric field component of the laser light. We assume

that n̄� n. Under this condition
√

n̄+n≈
√

n̄+n−1≈
√

n̄. Therefore, the matrix

elements of the operator Hm,f in the basis (3.20) have the following form:

〈N′M′N |〈n̄+n′|Ĥm,f|NMN〉|n̄+n〉=
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Fig. 3.1: Energy levels of a 1Σ polar molecule in a microwave laser field
as functions of the field-induced coupling strength Ω at a laser frequency
h̄ω/Be = 0.8. In the limit Ω→ 0, the field-dressed states for K = 0 are:
(α)−|N = 0 MN = 0 n = 0〉, (β )−|N = 1 MN = 0 n = −1〉, (γ)−|N =
1 |MN |= 1 n =−1〉.

−Ω

2
(δn′,n−1 +δn′,n+1)bN′M′N ,NMN , (3.23)

where bN′M′N ,NMN = 〈N′M′N |cosφ |NMN〉. The matrix elements of cosφ can be eval-

uated using the spherical harmonics addition theorem and the Wigner-Eckart theo-

rem leading to the following expression:

bN′M′N ,NMN = δM′N ,MN (−1)MN
√

(2N′+1)(2N +1)

×

(
N′ 1 N

0 0 0

)(
N′ 1 N

−MN 0 MN

)
, (3.24)

where the parentheses denote 3 j symbols. The first 3 j symbol in Eq. (3.24) van-

ishes unless N′ = N ± 1. Therefore, Ĥm,f has no diagonal matrix elements and
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it couples states with different photon numbers n′ = n∓ 1 and rotational angular

momentum quantum numbers N′ = N±1.

The eigenspectrum of the operator (3.21) can be divided into manifolds sepa-

rated by multiples of the photon frequency, as illustrated in Fig. 3.1. Each state can

be labeled by two quantum numbers: index K for the photon manifold and index

ν for the field-dressed states within the manifold. An alternative way to label the

quantum states could be to assign them the quantum numbers of the molecular state

and the photon number state (N,MN ,n) which adiabatically correlate with a state

of interest at zero Ω.

The field-dressed states can be generally written as

|νK〉= ∑
NMN

∑
n

CNMN ,n;νK |NMN〉|n̄+n〉, (3.25)

The transitions |νK〉 → |νK′〉 decrease (increase) for K′ = K−1 (K′ = K +1) the

number of microwave photons in the cavity by one. Therefore, these transitions

should be interpreted as accompanied by absorption (emission) of a photon. In

the absence of the molecule - field interaction, the states (3.25) are direct products

|NMN〉|n̄ + n〉, representing the molecule in a particular rotational state and the

quantized electromagnetic field with a given number of photons. When Ω > 0, the

field-dressed states are coherent superpositions of these product states. If the field

is switched off adiabatically, the field-dressed states become the rotational states of

the molecule in the Ω = 0 limit. If the field is switched off rapidly, the molecule

must remain in a coherent superposition of rotational states.

3.2.4 Scattering formalism

The interaction of a diatomic molecule with a structureless atom in the presence of

external fields can be described by the following Hamiltonian:

Ĥ =− 1
2µ

d2

dR2 +
l̂ll

2

2µR2 +V̂ (R,r,θ)+ Ĥas, (3.26)

where µ is the reduced mass of the collision complex, R is the separation between

the center of mass of the molecule and the atom, r is the interatomic distance in
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the molecule and θ is the angle between RRR and rrr. The asymptotic Hamiltonian Ĥas

describes non-interacting atom and molecule in the presence of fields. The angular

momentum operator l̂ describes the rotation of the collision complex in the space-

fixed coordinate frame, and V̂ (R,r,θ) is the atom-molecule electrostatic interaction

potential.

The total wave function of the collision complex is expanded in products of

the field-dressed states (3.25) and the rotational functions of the collision complex

|lml〉 as follows

Ψ = ∑
νKlml

FM
νKlml

(R)|νK〉|lml〉. (3.27)

The substitution of expansion (3.27) into the Schrödinger equation with Hamil-

tonian (3.26) leads to a system of coupled differential equations for the expansion

coefficients FM
νKlml

(R) parametrized by fixed values of the total angular momentum

projection M = MN + Ms + ml (for the case of parallel fields) and the total energy

Etot: [
d2

dR2 +2µ(Etot−Eν ,K)− l(l +1)
R2

]
FM

νKlml
(R) =

×2µ ∑
ν ′K′l′m′l

〈νKlml|V̂ (R,r,θ)|ν ′K′l′m′l〉FM
ν ′K′l′m′l

(R). (3.28)

Here, Eν ,K is an eigenvalue of Ĥas (given by Eq. (3.21) for 1Σ molecules), i.e. the

energy of a given |νK〉 field-dressed state. The matrix elements of the interaction

potential V (R,r,θ) in the basis (3.27) can be written as follows:

〈νKlml|V̂ |ν ′K′l′m′l〉= ∑
nMSNMNN′M′N

CNMNnMS,νK

×CN′M′NnMS,ν ′K′〈NMN lml|V̂ |N′M′N l′m′l〉, (3.29)

where the integrals 〈NMN lml|V̂ |N′M′N l′m′l〉 can be evaluated by expanding the in-

teraction potential in spherical harmonics

V (RRR,rrr) = ∑
λ

4π

2λ +1
Vλ (R,r)∑

mλ

(−1)mλ Yλ ,−mλ
(R̂RR)Yλ ,mλ

(r̂rr), (3.30)
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and applying the Wigner-Eckart theorem [111]. They have the form

〈NMN lml|V̂ |N′M′N l′m′l〉= ∑
λ

Vλ (R,r)

×

(
l λ l′

0 0 0

)(
N λ N′

0 0 0

)
[(2l +1)(2l′+1)]1/2

×[(2N +1)(2N′+1)]1/2
∑
mλ

(−1)mλ−ml−MN

×

(
l λ l′

−ml −mλ m′l

)(
N λ N′

−MN mλ M′N

)
. (3.31)

The coupled-channel equations (3.28) are integrated using the log-derivative

method. The numerical solutions subject to the scattering boundary conditions

yield the scattering matrix SM
νKlml ;ν ′K′l′m′l

or the probability amplitudes for transi-

tions between different scattering channels labeled by ν ,K, l,ml .

The state-resolved cross sections for elastic and inelastic collision processes in

a microwave cavity are computed from the S−matrix as

σν ,K→ν ′,K′ =
(

π

k2
νK

)
∑
M

∑
lml

∑
l′m′l

|δlml ,l′m′l
δνK,ν ′K′−SM

νKlml ;ν ′K′l′m′l
|2, (3.32)

where k2
νK = 2µ(Etot−Eν ,K).

3.2.5 Coupled-channel calculations for atom-molecule scattering in a
microwave field

We consider collisions of CaH molecules with 3He atoms. We neglect the spin

structure of CaH molecule and therefore treat it as 1Σ molecule. The interaction

potential for the CaH-He system was calculated by Groenenboom and Balakrish-

nan [112].

Figure 3.2 shows the energy levels of CaH (or any other polar molecule) in a

microwave field as functions of the Rabi frequency at h̄ω/Be = 1.9. We consider

collisions of CaH molecules in the state |ν = α,K = 0〉, which correlates with the

ground rotational state N = 0 of CaH at zero field. The states of different K may

46



0 2 4 6 8
Ω = ε

0
d (in units of Be)

-4

-3

-2

-1

0

En
er

gy
 (i

n 
un

its
 o

f B
e)

α

β

γ
δ

ξ

α

Figure 3.2: Energy levels of a polar molecule in a microwave cavity as func-
tions of the Rabi frequency at h̄ω/Be = 1.9. The levels are grouped in
manifolds labeled by K. The initial state for scattering calculations is
shown by the dashed line. At Ω→ 0, the field-dressed states for K =−1
are: |N = 0,n = −1〉 (α), |N = 4,n = −11〉 (β ), |N = 3,n = −7〉 (γ),
|N = 1,n =−2〉 (ξ ), and |N = 2,n =−4〉 (δ ).

interact when Ω≥ 3Be. We consider moderate Rabi frequencies 0 < Ω < Be [102].

Figure 3.3 shows the cross sections for elastic scattering and inelastic relaxation

in CaH-He collisions as functions of Ω at a collision energy of 0.3 cm−1. In order

to obtain converged results, we included in the total wave function expansion 5 ro-

tational states of the molecule, 14 photon number states and 4 angular momenta l,

which yields a system of 1744 differential equations for zero total angular momen-

tum projection. The probabilities for inelastic collisions increase with decreasing

the detuning from resonance ∆ = 2Be− h̄ω . For the off-resonant microwave fre-

quencies of 0.01 and 1.1Be, the inelastic cross sections increase monotonically with

increasing Ω. At a near-resonant frequency of 1.9Be, the cross sections increase

by a factor of ∼50 and show broad oscillations. The difference between the cross
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Figure 3.3: Cross sections for elastic scattering (squares) and inelastic relax-
ation of CaH molecules induced by collisions with He in a microwave
field with h̄ω/Be = 1.9 (triangles), 1.1 (diamonds), and 0.01 (circles)
as functions of the field intensity. The elastic cross section is for the
microwave field frequency of 1.9Be. The inelastic cross sections are
summed over all energetically accessible field-dressed states except the
elastic channel. The collision energy is 0.3 cm−1.

sections corresponding to different microwave frequencies becomes smaller with

increasing the field strength. The elastic scattering cross section is insensitive to

the field.

The propensities for collision-induced transitions in a microwave field can

be elucidated from Fig. 3.4, which presents state-resolved cross sections for in-

elastic transitions to various final field-dressed states. As our initial state is the

ground state in the K = 0 manifold, inelastic relaxation involves transitions be-

tween different photon manifolds. Figure 3.4 shows that the total relaxation prob-

ability is determined by two major transitions: |α,K = 0〉 → |α,K′ = −1〉 and

|α,K = 0〉 → |ξ ,K = −1〉. The field-dressed states |α,K = 0〉 and |α,K′ = −1〉
differ exactly by one quantum of microwave field energy. Therefore, the transition

|α,K = 0〉 → |α,K′ = −1〉 should be interpreted as a collision process accompa-
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Figure 3.4: State-resolved cross sections for inelastic relaxation of CaH in
a microwave field with h̄ω/Be = 1.9 and Ω/Be = 0.5. The collision
energy is 0.3 cm−1. The inelastic channels are labeled according to Fig.
3.2.

nied by absorption of a microwave photon. The molecule-field interaction couples

the product states with ∆N = ±1 and ∆n = ∓1, so the strongest couplings oc-

cur between the field-dressed states in the adjacent photon manifolds (∆K = ±1).

Figure 3.4 shows that the transitions with the minimal change of K are the most

probable, and that the transition probabilities decrease rapidly with increasing ∆K.

The collision-induced transitions are induced by the matrix elements of

the electrostatic interaction potential in the field-dressed basis Eq.(3.31). The

anisotropic part of the interaction potential terms in this expansion (λ ≥ 1) cou-

ples different |NMN〉 states causing rotationally inelastic transitions. Although the

interaction potential only couples the |NMN〉|n̄ + n〉 states with the same n, the

molecule-field Hamiltonian has the selection rules ∆N = ±1 and ∆n = ∓1. A

combination of the molecule - field and atom - molecule interactions thus leads to

couplings between different K, inducing collisional absorption or emission of mi-

crowave photons. We have verified that if either the molecule-field interaction or
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the anisotropy of the interaction potential are omitted, the different photon mani-

folds are uncoupled and the transitions |νK〉→ |ν ′K′〉 cannot occur unless K′ = K.

To further elucidate the mechanism of molecular collisions in a microwave

cavity, we have developed a simple model for the dominant relaxation channel

|α,K = 0〉 → |α,K′ =−1〉 based on the Born approximation. In the limit of small

Rabi frequency, the initial and final field-dressed states can be expanded as where

the coefficient a1 is given to first order by

a1 =
〈N = 0, n̄|Ĥmol,f|N = 1, n̄−1〉

h̄ω−2Be
∼ Ω

∆
. (3.33)

The inelastic cross section in the Born approximation is given by the square of the

matrix element in Eq. (3.29). Using Eq. (3.33) and assuming that a0 = const,

which is consistent with the smallness of Ω, we find

σinel ∼ (Ω/∆)2 . (3.34)

This result shows that for large ∆, inelastic cross sections decrease quadratically

with increasing detuning from resonance, similarly to the photon scattering proba-

bility in far-off-resonant optical dipole traps (FORTs).

Microwave fields may also modify the probability of elastic collisions near

scattering resonances. Figure 3.5 presents the energy dependence of CaH-He elas-

tic scattering. In the absence of a microwave field, the cross section increases

by two orders of magnitude near a shape resonance at a collision energy of 0.04

cm−1. The microwave field of Ω/Be = 0.5 suppresses the shape resonance. As

the microwave detuning decreases from 1.5Be to 0.1Be, the cross section maxi-

mum becomes smaller and shifts to higher collision energies. The interaction of

the molecule with a microwave field leads to indirect couplings between different

partial waves, which alter the shape of the centrifugal barrier and suppress shape

resonances.

3.3 Conclusion
We have presented an accurate quantum mechanical study of low-temperature col-

lisions of polar molecules in a microwave field using dressed-field approach to
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Figure 3.5: Modification of a shape resonance by microwave laser fields.
The elastic cross section is plotted as a function of the collision energy
for zero microwave field (full line), ∆/Be = 1.5 (dashed line), ∆/Be =
0.1 (dotted line). The Rabi frequency is 0.5Be.

describe interactions of the molecule with microwave field. Our results show that

both elastic and inelastic collisions of molecules at temperatures below 1 Kelvin

may be very sensitive to the photon field. In particular, we find that inelastic re-

laxation may occur through transitions between different photon manifolds even

when the colliding molecules are in the absolute ground state. This process, driven

by the anisotropy of the atom-molecule interaction potential, should be interpreted

as collision-induced absorption of microwave photons followed by rotational de-

excitation. It is sensitive to both the intensity and frequency of the electromagnetic

field.
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Chapter 4

Controlling spin-changing
collisions of 2Σ molecules with
microwave field

4.1 Introduction
In this chapter we discuss the effects of microwave fields on spin-changing colli-

sions of polar molecules in a magnetic field. We begin by reviewing recent work on

spin-changing collisions of molecules in dc magnetic and electric fields. Next, we

extend the field-dressed formalism introduced in the previous chapter to calculate

the energy levels of 2Σ molecules in the presence of dc magnetic and microwave

fields. We discuss the effects of different field parameters. In particular, we are in-

terested to explore the possibility of inducing avoided crossings between different

field-dressed states, since the scattering dynamics of molecules is sensitive to small

variations of the external fields near such avoided crossings. We derive simple an-

alytical formulas to investigate the effects of the microwave and magnetic fields on

the positions and splitting of the avoided crossings and show that the positions of

the avoided crossings can be modified by varying the frequency and the intensity

of the microwave field. We discuss the mechanisms of microwave field control of

spin-dependent interactions in cold open-shell molecules. Finally, we present the
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results of quantum scattering calculations of the cross sections for elastic and in-

elastic collisions of CaH molecules with He atoms in dc magnetic and microwave

fields. We show that the microwave field enhances collision-induced spin relax-

ation. In particular, we demonstrate that collision dynamics of polar 2Σ molecules

are very sensitive to the field magnitude near the avoided crossings between differ-

ent field-dressed states.

The complex structure of polar molecules with unpaired electrons (e.g., 2Σ

radicals) can be used for a variety of applications. For example, ensembles of cold

molecules prepared in a particular Zeeman state can be used to study the effects of

spin-dependent interactions in chemical reactions. The rotational states of different

parity of 2Σ molecules exhibit an avoided crossing in the presence of magnetic and

electric fields, which can be used to control molecular collisions [113] and collec-

tive spin excitation of molecules in an optical lattice [114]. The interferometric

measurements of two spin states can be used for high-accuracy determination of

the electron’s dipole moment [21, 115, 116]. The precision spectroscopy of para-

magnetic polar molecules would allow one to explore the time variation of funda-

mental constants [117, 118]. The imaging of electromagnetic field with cold 2Σ

molecules gives rise to enhancement of sensitivity and spatial resolution compared

to atoms [119]. The hyperfine states of polar molecules are weakly dependent on

the electric field fluctuation and therefore are good candidates for storing and pro-

cessing quantum information (storage qubit) [55]. Exotic spin-lattice models can

be simulated by tuning the energy levels of paramagnetic molecules trapped on

a two dimensional optical lattice [53] with microwave fields. The inelastic spin-

changing collisions of molecules in these schemes often lead to trap loss or de-

coherence. Molecules in a high-field seeking state can be trapped in a magnetic

trap and buffer gas cooled to milli Kelvin temperatures [23]. The spin-changing

collisions of molecules in a magnetic traps drive molecules to the untrappable high

field-seeking state and result in trap loss [94, 120]. The modification of collisions

of molecules in a magnetic trap, e.g with microwave fields, would allow for more

efficient cooling of molecular ensembles. On the other hand, the magnetic field

can be used to tune Feshbach resonances in collisions of molecules trapped in a

microwave or radio frequency trap and therefore the effects of magnetic and mi-

crowave fields on elastic and inelastic collisions need to be elucidated.
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Collisions of molecules in magnetic fields have been studied by several authors

in the context of trapping and cooling of molecules in magnetic traps. The theory

of slow collisions was developed by Volpi and Bohn [85]. They demonstrated that

collision-induced Zeeman relaxation in weak magnetic fields is suppressed due to

the presence of the long-range centrifugal barriers in outgoing channels. Krems and

Dalgarno [111] developed a formalism for calculating the collision cross sections in

the presence of magnetic fields based on the fully uncoupled basis representation.

The quantum scattering calculations for non-polar molecules O2-O2 in magnetic

fields were carried out by Tscherbul [121] and Perez-Rios [122]. The quantum

scattering calculations for cold and ultracold NH-NH collisions in magnetic fields

were performed by Janssen [123].

4.2 2Σ molecules in combined dc magnetic and
microwave fields

4.2.1 Field-dressed states

In this section we generalize the dressed-state formalism described in the previous

chapter to calculate the energy levels of paramagnetic polar diatomic molecules

interacting with both dc magnetic and microwave fields. The Hamiltonian of a
2Σ molecule in the presence of dc magnetic and microwave fields takes on the

following form:

Ĥas = BeN̂NN
2
+ γN̂NN · ŜSS +2µBBBB · ŜSS + h̄ω(â†â− N̄)+ Ĥm,f, (4.1)

where the additional interactions that were not described in the previous chapter

are the interaction of the magnetic moment 2µBŜSS (µB is the Bohr magneton and ŜSS

is the spin angular momentum) of the unpaired electron with the external magnetic

field BBB described by the Zeeman operator 2µBBBB · ŜSS and the spin-rotation coupling

γN̂NN · ŜSS, where γ is a phenomenological spin-rotation coupling constant. The spin-

rotation terms describe the interaction of the magnetic moment of the electron with

the magnetic field created by the rotational motion of the molecule. We assume that

the Z-axis of the space-fixed coordinate frame is oriented along the magnetic field.
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Fig. 4.1: The field-dressed states of the CaH(2Σ) molecule as function of mag-
netic field in a microwave field with photon frequency h̄ω/Be = 0.7 and
Ω/Be = 0.2. The initial magnetic low-field seeking state (black dashed
curve) correlates with N = 0 n = 0 MS = 1/2 state at zero Ω. The
solid (dashed) arrows show the spin-relaxation transitions corresponding
to ∆n = 0 (∆n =−1).

Therefore, the Zeeman term takes on the form 2µBMZBBB. The matrix elements

of the spin-rotation interaction can be calculated using the following expression

[124]:

γN̂NN · ŜSS = γ

[
N̂zŜz +

1
2
(N̂−Ŝ+ + N̂+Ŝ−)

]
, (4.2)
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where N± and S± are the ladder operators. The explicit expression for the spin-

rotation matrix elements is:

〈N′M′NSM′Sn′|γN̂NN · ŜSS|NMNSMSn〉= δn′,nδN′,N

×γ{δM′S,MSδM′N ,MN MNMS + 1
2 δM′S,MS∓1δM′N ,MN±1

×[N(N +1)−MN(MN±1)]1/2× [S(S +1)−MS(MS∓1)]1/2}. (4.3)

The spin-rotation interaction is diagonal in the rotational angular momentum N

and the photon numbers, and couples molecular states with different projections of

spin MS and rotational angular momentum MN . The energy levels of the molecule

inside the mw cavity in the presence of a dc magnetic field can be calculated by

diagonalizing the matrix of Ĥas in the basis of direct products of the molecular

states and the photon number sates |NMN〉|SMS〉|N̄ +n〉, where we have added the

spin functions |SMS〉 defined in the space-fixed coordinate frame.

Figure 4.1 shows the field-dressed energy levels of the CaH molecules as a

function of magnetic field at a microwave field frequency h̄ω/Be=0.7 and Ω/Be =
0.2. The states which energy increase (decrease) with increasing magnetic field

are called low-field (high-field) seeking states. The black dashed curve denotes the

initial low-field seeking state correlating with N = 0 n = 0 MS = 1/2 state at zero

Ω. The arrows indicate the spin-relaxation transitions between states of the same

(∆n = 0, solid curve) and different (∆n = −1, dashed curve) photon manifolds.

The final field-dressed states for the spin relaxation transition are correlating with

N = 0 n = 0 MS =−1/2 and N = 0 n =−1 MS =−1/2 states at zero Ω.

Figure 4.2 shows the field-dressed energy levels of the CaH molecule as a func-

tion of the field-induced coupling strength Ω of the microwave field at a magnetic

field of 0.1 T and a mw frequency of h̄ω/Be=0.7. At non-zero fields, the rotational

ground N = 0 and first excited N = 1 states split into two and six components re-

spectively. The interaction with the magnetic field at B = 0.1 T is stronger than

the spin-rotation interaction in CaH with γ = 0.0415 cm−1 so Ms is a nearly con-

served quantum number. The six states arising from the first rotationally excited

state group into two Zeeman manifolds. All states within the manifold are char-

acterized by the same value of MS. At small coupling strength (Ω/Be � 1) the

energy shifts are the same as the dc Stark shifts. At high field intensities we ob-
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Fig. 4.2: Upper panel: The field-dressed states of the CaH(2Σ) molecule in a
magnetic field of 0.1 T and a microwave field with the photon frequency
h̄ω/Be = 0.7 as functions of Ω. Lower panel: Cross sections for spin
relaxation in CaH(2Σ)-He collisions at a magnetic fields of 0.1 T and mw
frequency of h̄ω/Be = 0.7. The curves are labeled by the photon number of
the final magnetic high-field seeking state at zero Ω. The collision energy
is 0.5 K.
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serve a more complex behavior due to multiple avoided crossings. The spin-up and

spin-down Zeeman states arising from the first rotationally excited state undergo an

avoided crossing at Ω = 0.43 Be, where they are strongly mixed by a combination

of the spin-rotation and Stark interactions. The avoided crossings of the ground

|N = 0 n = 0〉 and first excited |N = 1 n = −3〉 rotational states shifted by three

photon frequencies occur at the values Ω = 0.81,1.15, and 1.45 Be.

4.2.2 Avoided crossings of field-dressed states

The molecular Zeeman states corresponding to different rotational levels cross at

a high magnetic field. In the presence of a microwave field these crossings be-

come avoided crossings (see Fig. 4.3). Molecular properties such as orientation and

alignment as well as collision cross sections should be very sensitive to the magni-

tudes of the fields near these avoided crossings [125, 126]. Our calculations show

that the location of the avoided crossings can be manipulated by both microwave

and magnetic fields. Figure 4.4 depicts the position of the avoided crossing be-

tween the |N = 0 MN = 0 MS = 1
2 n = 0〉 and |N = 1 MN = 1 MS = −1

2 n = −1〉
states as a function of the magnetic field strength and the microwave field parame-

ters. The avoided crossings occur at lower magnetic fields as the frequency of the

mw field is increased. Increasing Ω shifts the positions of the avoided crossings to

higher magnetic fields. The Zeeman levels |a〉= |N = 0 MN = 0 MS = 1
2 n = 0〉 and

|b〉= |N = 1 MN = 1 MS =−1
2 n =−1〉 cross at the magnetic field value Bc which

can be defined to zeroth order by the equation 2µBBc = ∆, where ∆ = 2Be− h̄ω is

the detuning from the resonance.

The energy levels near the avoided crossings can be described by an effective

Hamiltonian [103]:

Ĥeff =

(
µBB+ R̂aa(∆/2) R̂ab(∆/2)

R̂ba(∆/2) ∆−µBB+ R̂bb(∆/2)

)
(4.4)

where R̂(∆/2) is a level-shift operator evaluated at the energy of the crossing ∆/2.

The level-shift operator R̂(z) can be represented by the following perturbative ex-
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man energy levels of the CaH(2Σ) molecule in combined magnetic and
microwave mw field. The microwave field parameters are h̄ω/Be = 1.9
and the field-induced coupling strength Ω/Be = 0.1.
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at a mw frequency of h̄ω/Be = 1.9 and the field-induced coupling strength
Ω/Be = 0.1. The curves are labeled by the photon number of the final
magnetic high-field seeking state at zero Ω. The collision energy is 0.5 K.
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pansion [103]:

R̂(z) = V̂ +V̂
Q̂

z− Ĥ0
V̂ +V̂

Q̂
z− Ĥ0

V̂
Q̂

z− Ĥ0
V̂ + . . . , (4.5)

where Ĥ0 and V̂ are parts of the Hamiltonian (4.1) (Ĥas = Ĥ0 + V̂ ) and Q̂ is a

projector on the subspace spanned by noncrossing states. We include in V̂ the spin-

rotation and the molecule-field interactions. At small field strengths Ω� ∆, it is

sufficient to retain a few terms in the perturbative expansion (4.5). The diagonal
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elements R̂aa(∆/2) ∼ −Ω2/12∆ and R̂bb(∆/2) ∼ −γ/2− γ2/2∆ give the shifts of

the energy levels a and b upon the spin-rotation and the molecule-field interaction

V̂ near the crossing point. The crossing of the shifted levels occurs at the magnetic

field value Bc defined by the equation

2µBBc = ∆+Ω
2/12∆− γ/2− γ

2/2∆. (4.6)

The off-diagonal element of R̂ gives the separation between the levels ∆E.

∆E = 2|R̂ab(∆/2)|= Ωγ√
6∆

. (4.7)

The crossing between the |0 0 1
2 0〉 and |1 1 − 1

2 − 3〉 levels is described by the

equation

2µBBc = (2Be−3h̄ω)+Ω
2/12(2Be− h̄ω)− γ/2− γ

2/2(2Be− h̄ω). (4.8)

The minimum energy difference between the adiabatic states is

∆E =
Ω3γ

72
√

6h̄ω(2Be− h̄ω)(2Be−3h̄ω)
. (4.9)

Note that no crossings occur in the absence of the mw field unlike in the case of

dc electric fields where crossings are real in the absence of the electric field and

become avoided in the presence of the electric field [127].

The crossings of the Zeeman states in the absence of the mw field occur at

high magnetic fields (Bc ∼ 9.1 T for CaH). The dc electric field can not shift these

crossings significantly. As our analysis shows, microwave fields induce avoided

crossings in a much wider range of magnetic field values, which suggests new

mechanisms for controlling the dynamics of spin-dependent interactions in polar

molecules.

The interaction of the molecule with the circularly σ± polarized field defined

by (ε̂ = (x̂± iŷ)/
√

2) can be described by the Hamiltonian:

Ĥσ±
m,f =− Ω

2
√

N̄
(4π/3)1/2(∓âY1±1(r̂rr)± â†Y1∓1(r̂rr)). (4.10)
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Fig. 4.5: Modification of avoided crossings with changing polarization of the
microwave field. The graphs show the magnetic field dependence of the
field-dressed states at h̄ω/Be = 1.9 and Ω/Be = 1. The photon polarization
is linear ε̂εε = ẑ (upper panel), ε̂εε = (x̂ + iŷ)/

√
2 (middle panel), ε̂εε = (x̂−

iŷ)/
√

2 (lower panel).

The matrix elements of Ĥσ±
m,f have the following form:

〈N′M′NM′Sn′|Ĥσ±
m,f|NMNMSn〉=−(Ω/2)δM′S,MS

×[∓δn′,n−1b±1
N′M′N ,NMN

±δn′,n+1b∓1
N′M′N ,NMN

], (4.11)
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√
2

and h̄ω/Be = 0.7.

where bn
N′M′N ,NMN

are given by

bn
N′M′N ,NMN

= (−1)M′N [(2N′+1)(2N +1)]1/2

×

(
N′ 1 N

0 0 0

)(
N′ 1 N

−M′N n MN

)
(4.12)

In the case of circularly polarized field, absorption and emission of photons is

accompanied by a change in the rotational angular momentum projection of the

molecule. For example, the σ− (σ+) polarized field couples the state |N = 0 MS =
1/2 n = 0〉 with the states |N = |m| MN = m MS = 1/2 n = −m〉 (|N = |m| MN =
−m n = m〉), where m is an integer number. The σ− light couples the same state

to the rotationally excited state |N = 1 MN =−1 MS = 1/2 n =−1〉 which in turn

is coupled by the spin-rotation interaction with the high-field-seeking states. The

avoided crossings of the |N = 0 MS = 1/2 n = 0〉 and |N = 1 MS =−1/2 n =−1〉
levels in the presence of σ− polarized field occur at different values of the magnetic
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fields (see Fig. 4.5). The σ+ polarized field couples the rotationally ground spin-up

state to the maximally stretch state |N = 1 MN = 1 MS = 1/2 n =−1〉. Therefore

there is no avoided crossings of the initial spin-up state with spin-down states (see

Fig. 4.5) for the mw frequencies below resonance. Figure 4.6 shows the field-

dressed energy levels as functions of the field-induced coupling for the σ+ mw

polarization. The spin-up and spin-down states do not exhibit avoided crossings at

moderate field strength.

4.3 Scattering calculations

4.3.1 Microwave field dependence

We consider collisions of CaH molecules with 3He atoms. The photon number

basis is generated by fixing N̄ and varying n from−nmax to nmax. We use nmax = 5,

a total number of 6 rotational states (N ≤ 5) and seven partial waves (l ≤ 6) in

the scattering basis set, which for M = 0 leads to the system of 3938 coupled

differential equations.

The interaction of 2Σ molecules with a magnetic field separates different MS

sublevels and the ac electric field lifts the degeneracy of the rotational states with

different |MN |. Our initial and final states correlate with the magnetic low-field-

seeking |N = 0,MS = 1/2,n = 0〉 and high-field-seeking |N = 0,MS =−1/2,n = 0〉
states of the CaH molecule at zero mw field. In terms of ν and K they are labeled

as |10〉 and |00〉 correspondingly. The energy levels of the CaH(2Σ) molecule in a

microwave field are shown in Figures 4.1 and 4.2 A linearly polarized microwave

field couples states with N′ = N±1 and n′ = n±1 and conserves the angular mo-

mentum projection of the molecule, i.e. M′N = MN . The dependence of the cross

sections for collision-induced spin relaxation |N = 0,MS = 1/2,n = 0〉 → |N =
0,MS =−1/2,n = 0〉 and |N = 0,MS = 1/2,n = 0〉→ |N = 0,MS =−1/2,n =−1〉
on the field-induced coupling strength Ω is shown in the lower panel of Fig. 4.2.

For moderate Ω� Be the cross section for transitions between different photon

manifolds increases with increasing coupling strength. The cross section for pro-

cesses conserving the number of photons has a weak dependence on Ω. The cross

sections increase by three orders of magnitude near Ω/Be=0.81, 1.15 and 1.45, the
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Fig. 4.7: Upper panel: Adiabatic energy levels of the CaH molecule in a mi-
crowave field at Ω/Be = 0.5, h̄ω/Be = 1.7 (red) and h̄ω/Be = 1.3 (black)
correlating with |N = 0MS = 1/2n = 0〉 (solid line) and |N = 1MN = 1MS =
−1/2n =−1〉 (dashed line) at zero Ω.
Lower panel: Magnetic field dependence of the cross sections for spin re-
laxation in CaH-He collisions near an avoided crossing of the field-dressed
states correlating with |N = 0,n = 0〉 and |N = 1,n =−1〉 states at zero Ω.
Ω/Be = 0.5, h̄ω/Be = 1.7 (circles), h̄ω/Be = 1.3 (squares).
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Fig. 4.8: Upper panel: Adiabatic energy levels of the CaH molecule in a mi-
crowave field at h̄ω/Be = 1.9, Ω/Be = 1 (black) and Ω/Be = 2(red) corre-
lating with |N = 0,MS = 1/2,n = 0〉 (solid line) and |N = 1,MN = 1,MS =
−1/2,n =−1〉 (dashed line) at zero Ω.
Lower panel: Magnetic field field dependence of cross sections for spin re-
laxation in CaH-He collisions near an avoided crossing of the field-dressed
states correlating with |N = 0,n = 0〉 and |N = 1,n = −1〉 states at zero
coupling. h̄ω/Be = 1.9, Ω/Be = 1 (squares) and Ω/Be = 2(circles).

values corresponding to the avoided crossings between the field-dressed states.
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4.3.2 Resonances near avoided crossings

The lower panel of Figure 4.3 shows the cross sections for spin relaxation as a

function of the magnetic field magnitude near the avoided crossing of the initial

|N = 0,MS = 1/2,n = 0〉 and excited |N = 1,MN = 1,MS =−1/2,n =−1〉 states

at mw field parameters Ω = 0.1 Be and h̄ω = 1.9 Be. The crossing occurs at the

magnetic field Bc ∼ 0.47 T . The cross section for spin relaxation accompanied by

absorption of the microwave photon is 100 times larger than for scattering within

the same photon manifold. The cross sections increase by the factor of about 100

near the avoided crossing.

Figure 4.7 shows the cross sections for spin relaxation near the avoided cross-

ing as functions of the magnetic field for different frequencies. The position of
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the crossing shifts to lower magnetic field values Bc with increasing frequency.

The cross sections increase by four orders of magnitude near the avoided crossings

between the |N = 0,MS = 1/2,n = 0〉 and |N = 1,MN = 1,MS = −1/2,n = −1〉
levels.

Figure 4.8 shows the cross sections for spin relaxation near the avoided cross-

ing as functions of the magnetic field for different coupling strength Ω. The po-

sition of the crossing shifts to higher magnetic fields as the coupling strength in-

creases. The magnitude of the cross sections increases by the factor of 103 near the

avoided crossings.

4.3.3 Collision energy dependence

The collision energy dependence of the spin relaxation cross sections at a magnetic

field of B = 0.1 T is shown in Figure 4.9. The cross sections for the spin-flipping

transition follow the Wigner threshold law [65]. For small collision energies they

are inversely proportional to the collision velocity σ ∼ 1/v. For a weak magnetic

field in the absence of the microwave field the spin-changing transition is nearly

forbidden [128]. Microwave fields induce couplings between different Zeeman

states and enhance the cross sections. The onset of the 1/v behavior is shifted to

higher collision energies in the presence of the mw field.

4.4 Conclusion
We have presented a detailed study of inelastic spin-relaxation in collisions of

CaH(2Σ) molecules with He atoms in superimposed magnetic and microwave

fields. Our study demonstrates that the dynamics of molecular collisions may be

sensitive to both the frequency and the intensity of the field. External fields mod-

ify the rotational structure of molecules and affect the spin-rotation interaction.

Our study shows that microwave fields enhance collision-induced spin relaxation.

Spin-changing transitions are dominated by the process accompanied with pho-

ton absorption. The structure of the molecules changes with varying magnetic

field or mw field parameters. Variation of the mw fields may induce and shift

avoided crossings between molecular Zeeman levels of different symmetry. Differ-

ent spin states are strongly mixed and the dynamics of magnetic spin-relaxation is
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extremely sensitive to external fields near the avoided crossings. Changing the po-

larization can significantly influence the dynamics of the spin-changing processes.

The number of avoided crossings is reduced in the circularly polarized light. Cir-

cularly polarized light couples selectively the initial state of the molecule to the

maximally stretched states that are not directly coupled by the spin-rotation inter-

action, which suppresses collisional spin-relaxation. For example, the use of σ−

polarization reduces the collisional spin-relaxation of molecules in the rotation-

ally ground low-field-seeking state. Inelastic Zeeman transitions in collisions of

molecules with atoms may thus be effectively controlled by varying the strength,

the frequency and the polarization of the microwave field.
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Chapter 5

Feshbach resonances in the
presence of a microwave field

5.1 Introduction
In this chapter we discuss the effects of the microwave field on magnetic Feshbach

resonances in collisions of polar molecules. The goal of this study is to explore the

possibility of tuning elastic and inelastic collisions of molecules in a microwave

trap by controlling magnetic Feshbach resonances. We start by reviewing recent

work on Feshbach resonances in molecular collisions. Next, we discuss magnetic

Feshbach resonances in collisions of NH molecules with He in the presence of mi-

crowave fields and in a pure dc magnetic field. After this, we present the results

of coupled channel calculations for elastic and inelastic cross sections. We present

a simple analytical expression for S-matrix elements describing scattering in the

presence of several open channels and discuss the observed results. We show that

magnetic Feshbach resonances of ultracold molecules can be modified by non-

resonant microwave fields. The two important results of this study are: (i) the

probability of collision-induced absorption of microwave photons is dramatically

enhanced near a Feshbach resonance, which suggests a new method for detecting

Feshbach resonances in collisions of molecules; and (ii) the scattering length of

ultracold molecules can be tuned by varying the frequency and intensity of mi-

crowave field, i.e. the scattering properties of ultracold molecules can be tuned in
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a wide range of microwave field intensities and frequencies.

5.2 Feshbach resonances
Magnetic Fesbach resonances play an important role in experiments with ultracold

atoms and molecules. As we discussed in Chapter 1, they provide a mechanism

for controlling effective interparticle interactions [57, 58] and can be used for the

creation of weakly bound ultracold molecules [58–60]. Using magnetic fields for

tuning ultracold gases, however, has two limitations: it is difficult to tune dc mag-

netic fields fast; and magnetic Feshbach resonances are usually very narrow, i.e.

the scattering length of ultracold atoms can be tuned in a narrow range of mag-

netic fields. As a result, magnetic Feshbach resonances are often difficult to detect

and the applications of magnetic field control of ultracold gases are limited to dy-

namical processes with the time scale of > 0.1 ms [62]. Many experiments have

recently focused on the production of ultracold molecules in the ground internal

energy state, successfully achieved by several research groups [97]. Like ultracold

atoms, ultracold molecules with non-zero magnetic moments can be controlled by

means of magnetic Feshbach resonances [121]. However, the ro-vibrational struc-

ture of molecules allows for new possibilities of controlling molecular gases.

5.2.1 Feshbach resonances in a single scattering channel

For one open channel the scattering description of the resonance is rather simple

[129]. The scattering S matrix has a single element

S00(k0) = exp(i2δ0(k0)), (5.1)

where k0 is a wavevector in the incoming channel and δ0 is a phase shift describing

the additional phase acquired by the wavefunction due to the scattering interaction.

In the presence of scattering resonance it can be parameterized by the Breit-Wigner

form [124]

δ (B) = δbg + arctg
ΓB

2(Bres−B)
, (5.2)

where δbg is a slowly varying background phase shift in the absence of the scatter-

ing resonance, and ΓB and Bres are the width and position of the resonance. The
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phase changes by π and the S-matrix element follows a circle of radius 1, in the

complex plane, when the magnetic field changes across the resonance. In the limit

of low collision energies ΓB goes to zero as a linear function of k. The cross section

is given by the following expression

σ00 =
π

k2
0
|1−S00|2 (5.3)

The S-matrix element goes to -1 and the cross section grows up to 4π

k2
0

at the Fesh-

bach resonance (B = Bres).

To illustrate the system with a single open channel Feshbach resonance con-

sider collisions of NH molecules trapped in a magnetic field with He atoms. The

Hamiltonian for the NH molecule in a magnetic field has the following form

Ĥmol = Ĥrot + ĤZ + Ĥsr + Ĥss, (5.4)

where Ĥrot, ĤZ and Ĥsr are, as discussed in the previous chapters, the rotational,

Zeeman and spin-rotational Hamiltonians and Ĥss is the spin-spin Hamiltonian.

The explicit expression for Ĥss in the space-fixed coordinate frame is

Ĥss =
2
3

λSS

(
4π

5

)1/2√
6∑

q
(−1)qY2−q(r̂rr)

[
Ŝ⊗ Ŝ

](2)
q . (5.5)

The eigenfunctions of the molecule can be expanded in products of rotational and

spin functions |NMN〉|SMS〉 and the scattering wave function in products of molec-

ular and rotational angular momentum functions of the complex. For collisions in

magnetic fields the projection of the total angular momentum MJ = MN +ML +MS

and the total parity (−1)N+L+S are conserved. The spin-spin Hamiltonian cou-

ples different molecular states with ∆N = ±2. The absolute ground state of the

complex in a magnetic field corresponds to the magnetic high-field seeking state

|N = 0,MN = 0〉|S = 1,MS =−1〉 of the molecule and s-wave partial wave (L = 0).

The intermolecular potential and the spin-spin interaction couple the initial state in

second order to the |N = 0,MN = 0〉|S = 1,MS = 1〉|L = 2,ML =−2〉 bound state.

For NH-3He collisions the initial MS = −1 state crosses the MS = 1 threshold at

B = 7168.750G. Due to parity conservation the initial L = 0 can be coupled only

72



to the states with L = 0,2,4. The collisions with L > 0 are suppressed, leaving only

one open channel with L = 0.

5.2.2 Feshbach resonances in the presence of multiple open channels

Consider a magnetic Feshbach resonance with several decay channels [129]. The

phase shift becomes a complex function. The sum of the phases of eigenvalues

of S-matrix is real and obeys the Breit-Wigner relation. In the presence of several

open channels the magnetic field dependence of the scattering S-matrix elements

near resonance in given by the following expression:

Sii′(B) = Sbg,ii′−
igBigBi′

B− (B0 +∆)+ iΓB/2
, (5.6)

where Sbg,ii′ is a slowly varying background scattering matrix element, B0 is the res-

onance position in the absence of the microwave field, ∆ is the shift of the position

of the resonant level caused by the interaction with a microwave field, the energy

dependent width of the resonance ΓB is given by the sum over the partial widths

ΓBi in accessible decay channels i: ΓB = ∑i ΓBi, and gBi is a complex function so

that ΓBi = |gBi|2. In the absence of all inelastic channels except one the energy

dependent width of the resonance is reduced to the single term ΓB = ΓB0 = 2k0γB0,

where k0 is an incoming wave vector and γB0 is an energy-independent reduced

width, which determines the variation of the scattering length as a function of

the magnetic field. The matrix element of the S-matrix is equal to −1 exactly

at the resonance (B = Bres), as predicted by single channel theory for suppressed

inelastic transitions. The value of ΓB includes contributions from decay channels

Γinel
B = ∑i>0 ΓBi, which increase with the increasing field strength. The S-matrix

element describes a circle in a complex plane with radius |gBigBi′ |2/ΓB as B is

tuned across the resonance. The contribution from inelastic decay channels Γinel
B

does not go to zero at resonance and therefore the S-matrix element does not pass

through a pole. With the increasing field strength the radius of the circle is decreas-

ing or in other words the denominator becomes larger and the oscillations of the

cross section become weaker (the cross section does not reach its maximum value

4π/k2
0).
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5.2.3 Feshbach resonances in the presence of a microwave field

In the previous chapters we considered interaction of polar molecules with a mi-

crowave field in the dressed field formalism. Consider an ensemble of polar di-

atomic molecules prepared in the absolute ground state and irradiated with mi-

crowave field far detuned from the molecular resonance. The dressed states form

an infinite ladder of states above and below the ground molecular state. The inter-

action potential couples different field-dressed states. As a result, during collision

molecules may undergo transitions to the lower energy field-dressed states. This

leads to collision-induced absorption of microwave photons leading to the forma-

tion of a collision complex, in which one or both molecules are in a rotationally

excited state. The molecules then undergo rotational relaxation, releasing energy,

and the collision complex decays. This process is driven by the anisotropy of the

intermolecular interaction potential [130]. The interaction with microwave fields

thus induces inelastic decay channels, which suppress elastic scattering near Fesh-

bach resonances [129].

To illustrate this by numerical calculations, we consider collisions of NH(3Σ)

molecules with He atoms near a Feshbach resonance induced by a magnetic field.

We will show that the strength of the interaction with microwave field can be al-

ways adjusted to compensate for the effects of the interaction anisotropy, so the

microwave field can be effectively used to manipulate with Feshbach resonances.

We focus on low-energy collisions (Ekin = 1 µK) of NH molecules prepared in

the rotationally ground state N = 0 and the lowest-energy Zeeman level MS = −1

with 3He atoms near a Feshbach resonance at ∼7150 G identified by Gonzáles-

Martı́nez and Hutson [131]. The collision problem of molecules in the presence

of a microwave field is best described using the field-dressed-state formalism de-

scribed in the previous chapters. The molecular Hamiltonian Ĥmol describes the

rotational and fine structure of the molecule [129, 132] and is given by Eq.(5.4).

We represent the total wave function of the system as a close coupling expansion

in terms of the products of the eigenfunctions of field-dressed Hamiltonian and the

rotational wave functions of the collision complex (partial waves). The substitution

of this expansion in the Schrödinger equation leads to a system of coupled differen-

tial equations, which we solve numerically to obtain the scattering S-matrix, elastic
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Fig. 5.1: Cross sections for elastic collisions (panel a) and collisions accom-
panied by absorption of microwave photons (panel b) in NH – He scatter-
ing as functions of the magnetic field: broken line – no microwave field;
solid lines – in the presence of a microwave field with Ω = 0.02Be and
h̄ω = 0.7Be, where Be = 16.343 cm−1 is the rotational constants of NH.
The line in panel (b) represents a sum of the transitions to all field-dressed
states and the symbols represent the cross sections for the dominant single-
photon transition |N = 0,MS =−1, N̄〉 → |N = 0,MS = 1, N̄−1〉.
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Fig. 5.2: Cross sections for elastic collisions in NH – He scattering as func-
tions of the magnetic field (panel a) and as functions of the microwave
field strength (panel b) for different parameters of the microwave field.
The magnetic field in panel (b) is B = 7153.19 G.

and inelastic cross sections [130, 133]. Four rotational levels of the molecule, four

photon number states and five partial waves were included in the basis set expan-

sion, which leads to a system of 2880 equations for the total angular momentum

projection equal to zero. We used the potential energy surface for the He - NH

collision complex calculated in Ref. [132]. Figure 5.1 shows the magnetic field

dependence of the cross sections for NH - He collisions near the Feshbach reso-

nance. The line in panel (b) is a sum of the cross sections for transitions to all

field-dressed states except the initial state. The analysis of the state-resolved tran-
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sitions shows that the cross section shown in panel (b) of Fig. 5.1 is dominated

by a single transition |ψi〉 → |ψf〉, where |ψi〉= a|N = 0,MS =−1, N̄〉+b|...N̄...〉
and |ψf〉 = a|N = 0,MS = +1, N̄ − 1〉+ b|...N̄ − 1...〉. The ket |...N̄...〉 denotes

collectively the states mixed in the ground rotational state of the molecule due to

molecule - field and fine-structure interactions. For weak, non-resonant microwave

fields considered here, a is very close to 1. The cross section in panel (b) of Fig. 5.1

thus represents the probability of a process, in which the collision complex absorbs

a photon, the molecule undergoes the spin flip and the rotational relaxation and the

collision complex releases energy by decaying into the collision products.

Figure 5.1 demonstrates two important observations: (i) the position of the res-

onance in the presence of a microwave field is shifted up to a few Gauss; and (ii) the

probability of collision-induced absorption of microwave photons (panel b) is dra-

matically enhanced near the Feshbach resonance. As predicted by Hutson [129],

the presence of strong inelastic transitions must suppress elastic scattering near a

Feshbach resonance. This is indeed what we observe for collisions in microwave

fields of higher intensity and lower detuning. The upper panel of Figure 5.2 shows

that resonant enhancement of the elastic scattering cross section is suppressed, as

the strength of the microwave field increases.

The shift of the Feshbach resonances can be exploited for tuning the scatter-

ing properties of ultracold molecules with microwave fields. Figures 5.2 and 5.3

show the scattering cross sections near the Feshbach resonance as functions of the

microwave field strength and frequency. The Feshbach resonance depicted in Fig-

ure 5.1 is very narrow, leading to the variation of the scattering cross section in a

very small interval of magnetic fields ∼ 0.05 G. While not impossible, it is tech-

nologically challenging to tune the dc magnetic field with such a high resolution.

Figures 5.2 and 5.3 show that the same resonance gives rise to the variation of

the scattering cross sections over wide ranges of the microwave field strength and

frequencies.

5.3 Conclusion
The interaction with non-resonant microwave fields induces inelastic losses of

molecules due to collision-induced absorption of microwave photons. This leads to
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Fig. 5.3: Cross sections for elastic collisions (panel a) and collisions accom-
panied by absorption of microwave photons (panel b) in NH – He scatter-
ing as functions of the microwave field frequency. The magnetic field is
B = 7153.19 G.

suppression of Feshbach resonances and allows for tuning Feshbach resonances by

varying both the intensity and frequency of the microwave field. This suggests that

measuring the microwave field absorption or loss of molecules as a function of mi-

crowave field parameters can be used as a method of detecting Feshbach resonances

in an ultracold gas of molecules. Our calculations demonstrate that magnetic Fes-

hbach resonances can be shifted in the presence of microwave fields by up to a few

G. Feshbach resonances (including extremely narrow resonances) can therefore be

located by varying the dc magnetic field with a step of a few G and scanning the
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intensity of a non-resonant microwave field at a fixed magnetic field. Laser fields

can be tuned much faster than dc magnetic fields. For example, the collapse of a

BEC can be induced in experiments with ultracold atoms by varying the magnetic

field near a Feshbach resonance on the time scale of 0.1 ms [62]. The variation of

the microwave fields depicted in Figures 5.2 and 5.3 can be achieved on the time

scale of nanoseconds. This can be used for new studies of BEC dynamics with

instabilities induced on a much shorter time scale or BEC dynamics with instabil-

ities oscillating on the time scale of intermolecular interactions. Finally, because

the absorption of microwave field is enhanced near a Feshbach resonance, our re-

sults suggest that a combination of a Feshbach resonance and microwave fields can

be used for photo association of atom - molecule or molecule - molecule collision

complexes to produce ultracold trimers and tetramers. This technique would be

analogous to the technique of Feshbach-enhanced photo association of ultracold

atoms.
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Chapter 6

Sensitive imaging of
electromagnetic fields with
paramagnetic polar molecules

6.1 Introduction
In this chapter we discuss the method for the parallel detection of low-frequency

electromagnetic fields based on the fine structure interactions in paramagnetic polar

molecules. First, we discuss the method based on the ultracold 87Rb atoms, pro-

posed by Böhi et al. [63], which was used for the imaging of the microwave field

distribution over a chip. Next, we discuss an analogous method based on ultracold

paramagnetic molecules instead of Rb atoms. In particular, we show that using

molecules instead of atoms gives rise to the 100-fold increase in sensitivity, while

allowing the detection of electromagnetic fields in a wider range of frequencies

from a few kHz to THz.

Sensitive detection of weak electromagnetic fields is important for various

applications ranging from fundamental physical measurements [134] and detec-

tion of explosive materials [135] to biomagnetic imaging [134] of brain and

heart [136, 137]. A significant progress in sensing of magnetic fields has been

achieved during the last decade and led to the development of numerous devices
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such as Hall effect sensors [138], SQUID sensors [139], force sensors [140],

sensors based on microelectromechanical systems [141], and NV centers in dia-

mond [142], as well as atomic magnetometers [143, 144], making it possible to

achieve the magnetic field sensitivity of 0.1 fT Hz−1/2 and to detect the magnetic

field of a single electron, with steps being taken towards the detection of the mag-

netic field of a single nuclear spin [145, 146]. The electric field sensing tech-

niques advanced to the level of probing individual charges with the development of

scanning capacitance microscopy [147], scanning Kelvin probe [148], and electric

field-sensitive atomic force microscopy [149]. An unprecedented accuracy of 10−6

electron charge was achieved with the use of single-electron transistors [150]. The

nitrogen-vacancy defects allow for very local highly spatially resolved measure-

ments of electric fields of single electron charge [151]. However, both high spatial

resolution and sensitivity is desirable, for example, for measuring of electromag-

netic fields near nanosize structures.

6.2 Detection of weak radio-frequency fields with
ultracold 87Rb atoms

The method of highly sensitive imaging of microwave fields with ultracold atoms

of frequencies in the range 2.5− 14 GHz was proposed by Böhi et al. [63]. The

method relies on measuring the phase difference between two hyperfine states of
87Rb, accumulated due to an interaction with the magnetic component of the mi-

crowave field. In particular, the magnetic component of the microwave field drives

the Rabi oscillations between two hyperfine atomic states. The hyperfine spitting

and therefore the measurable frequency can be tuned with an external magnetic

field. The acquired phase difference is proportional to the evolution time, the mag-

netic moment of the atom, and the magnetic field amplitude. Changing the direc-

tion of the magnetic field allows one to measure the three different cartesian com-

ponents of the magnetic field Bx, By and Bz. The relative phase can be reconstructed

by observing transitions for different polarizations of the field. In the prototype

experiment the cloud of initially magnetically trapped ultracold Rb atoms freely

expands over time τexp. The microwave field of the microwave circuit is switched

on for a time τmw. The density of atoms in an upper hyperfine state n2(r¯
) is sub-
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sequently measured by state-selective absorption imaging technique over time τim.

The sensitivity of the method is proportional to the interrogation time τmw. How-

ever, long measurement times τmw lead to image blurring due to the atomic motion

and decoherence, resulting in a compromise between field sensitivity and spatial

resolution.

6.3 Detection of weak electromagnetic fields with polar
molecules

Although measuring the electric component of an ac field is several orders of mag-

nitude more efficient than detecting the magnetic component 1, atoms possess no

permanent electric dipole moments, rendering the detection of the Zeeman shift

the only possible option. Here we describe a technique for parallel, noninvasive,

and complete (amplitudes and phases) imaging of electromagnetic fields with an

ensemble of polar open-shell molecules, many of which have been successfully

cooled and trapped in experiments [94, 120, 152–154]. We show that the presence

of permanent electric and magnetic dipole moments and the variety of molecu-

lar rotational constants allow for the detection of both electric and magnetic field

components, in a wide range of frequencies from the dc limit through the radio

and microwave to the THz frequency range. We show that measuring the electric

component of an oscillating field must result in shorter measurement times com-

pared to the atomic experiments, and consequently higher spatial resolution, which

is mainly limited by the optical detection scheme and photon scattering.

6.3.1 Polar paramagnetic molecule in parallel electric and magnetic
field

First, consider 2Σ molecules with a dipole moment ddd, subject to known dc magnetic

and electric fields, BBB0 and EEE0, both pointing along the laboratory Z axis. The

1The electric, E, and magnetic, B, field amplitudes of the electromagnetic field are related as
E = Bc with c the speed of light, rendering the phase difference accumulated due to an electric
dipole transition two orders of magnitude larger than for the transition between the atomic hyperfine
states (for a given interaction time τ).
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molecules are described by the following Hamiltonian:

Ĥ = brN̂NN
2
+ γN̂NN · ŜSS +gSµBBBB0 · ŜSS−ddd ·EEE0, (6.1)

where N̂NN and ŜSS are the rotational and spin angular momenta of the molecule, br

and γ are the rotational and spin-rotation interaction constants, µB is the Bohr

magneton, and gS = 2.0023. In the absence of external fields, the states of a 2Σ

molecule are labeled by |N,J,M〉, where ĴJJ = N̂NN + ŜSS is the total angular momentum

and M is the projection of ĴJJ on the Z axis. We use the same quantum numbers to

label the molecular states in the presence of dc fields, bearing in mind that J is not

conserved.

The effect of combined BBB0 and EEE0 fields on the rotational states of a 2Σ

molecule is shown in Fig. 6.1 (a) and (b) for the case of SrF (2Σ+) [153, 154]. We

assume that the molecules are initially prepared in the magnetic low-field seeking

M-component of the rotational ground state, state |2〉 ≡ |0,1/2,1/2〉 in Fig. 6.1(a).

This can be achieved by cooling molecules to subKelvin temperatures and confin-

ing a molecular cloud in a magnetic trap [120]. Alternatively, molecules can be

confined in an electric or optical trap and transferred to state |2〉 by a sequence

of microwave pulses [155]. Molecules can be cooled by a variety of recently de-

veloped experimental techniques such as buffer-gas cooling, Stark deceleration, or

laser cooling [94, 120, 152–154].

State |2〉 exhibits an avoided crossing with the magnetic high-field seeking

state |3〉 ≡ |1,1/2,1/2〉 at the magnetic field B∗ = 659.5 mT. The states |2〉 and

|3〉 have the opposite parity and, due to the spin-rotation interaction, represent

linear combinations of the states with spin projections MS =±1/2 [114, 126, 127].

Therefore the |2〉 → |3〉 transition is dipole-allowed and can be used to detect the

electric component of a resonant rf or microwave field.

The measurement requires placing the molecular ensemble close to the source

of the field to be measured, EEE(rrr, t) = 1/2 [EEE(rrr)exp(−iωt)+EEE∗(rrr)exp(iωt)], and

an addition of background dc magnetic and electric fields, with magnitudes B0 and

E0. By adjusting B0 and E0, the energy splitting between the states |2〉 and |3〉
can be tuned in resonance with the field frequency ω . The trapping field, if any,

must be switched off in order to allow the field EEE(rrr, t) to drive resonant oscillations
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Figure 6.1: (a), (b) Energy levels of the SrF(2Σ+) molecule (br = 7.53 GHz,
γ = 74.7 MHz) in an electric field of E0 = 10 kV/cm as a function of
magnetic field B0; (c) Frequency dependence of the ac field sensitivity
for SrF in a linearly polarized mw field for different electric fields; the
red and black lines correspond to the 2→ 3 and 1→ 4 transitions re-
spectively. The dashed line represents the sensitivity to the magnetic
field component of the ac field that can be achieved in experiments with
atoms; (d) Same as in (c) but for the CaH(2Σ+) molecule (br = 128.3
GHz, γ = 1.24 GHz)

between the states |2〉 and |3〉 during the free evolution time τ . The Rabi frequency

of the oscillations is given by

Ωα(B0,E0) = Eα(rrr)dα(B0,E0)/h̄, (6.2)
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where α = {+;0;−} denotes the polarization of the oscillating field with respect

to the laboratory Z axis, Eα(rrr) is the corresponding component of the field EEE(rrr, t),
and dα(B0,E0) is the transition dipole moment between the two states. In order

to compute dα(B0,E0), we expand the molecular states |n〉 plotted in Fig. 6.1 as

follows:

|n〉= ∑
N,MN ,MS

c(n)
NMNMS

(B0,E0)|NMN〉|SMS〉, (6.3)

which gives

dα(B0,E0) =

√
4π

3 ∑
N,MN ,MS

∑
N′,M′N ,M′S

c(2)∗
NMNMS

c(3)
N′M′NM′S

〈NMN |Y1α |N′M′N〉δMS,M′S
. (6.4)

Here, MN and MS denote the projections of the angular momenta N and S on the Z

axis, respectively.

After time τ the probability [63] to detect a molecule in the state |3〉 at the

spatial point rrr is

p3(rrr) =
n3(rrr)

n2(rrr)+n3(rrr)
= sin2

[
Ωα(rrr)τ

2

]
, (6.5)

where n2 and n3 are the densities of the molecules in the states |2〉 and |3〉. From

the measured value of p3(rrr) one can calculate Ωα(rrr) and, using Eq. (6.2), the

components of the electric field. The amplitudes, Ex(rrr), Ey(rrr), and Ez(rrr), and

the relative phases can be reconstructed by measuring Eα(rrr) with the background

magnetic field BBB0 pointing along the x, y, and z axes, by analogy with ref. [63].

From EEE(rrr), the spatial distribution of the magnetic field can be calculated using the

Maxwell equations, while the amplitudes of the two fields are related as E = cB.

85



0 1 2 3 4 5

-5

-4

-3

-2

-1

0 1000

500200
10050

L
o

g
  

 !
 (

V
/c

m
 H

z 
  

 )
-1

/2

1
0

E  (kV/cm)0

Figure 6.2: Sensitivity of the |2〉→ |3〉 transition in SrF(2Σ+) to electromag-
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field in MHz. The dotted line shows the sensitivity of the |2〉→ |3〉 tran-
sition in SrF(2Σ+) to the magnetic field component of the microwave
field.

6.3.2 Single-shot sensitivity

The single-shot sensitivity of the measurement to the ac electric fields is given

by [63]:

η
ac
E [V/cm Hz−1/2] =

2
√

3h̄
100 dα(B0,E0)

√
nVe f f

√
τ

(6.6)

where n is the density of molecules, Ve f f = 2πσ2
e f f ρ is the effective imaging vol-

ume, σe f f is the dispersion of the spatial coordinate, and ρ represents the 1/e radius

of the cloud.

The dependence of the transition dipole moment dα on the background fields

BBB0 and EEE0 renders the sensitivity frequency dependent, ηac
E ≡ ηac

E (ω), as shown

in Fig. 6.1 (c) by red curves for the |2〉 → |3〉 transition in SrF(2Σ+). One can

see that the frequency dependence exhibits sharp minima featuring the sensitivi-

ties on the order of 10−6− 10−7 V/cm Hz−1/2. The positions of the minima can

be controlled by tuning the splitting of the levels |2〉 and |3〉 with the background
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electrostatic field EEE0, and thereby shifted towards smaller frequencies 2. The ac-

cessible frequency range can be extended by initially preparing the SrF molecules

in the high-field seeking state, |1〉 ≡ |0,1/2,−1/2〉, and driving the transition to

the state |4〉 ≡ |1,3/2,−3/2〉. The frequency dependence of the sensitivity corre-

sponding to the |1〉 → |4〉 transition is shown in Fig. 6.1 (c) by black lines. Choos-

ing a molecule with a different rotational constant allows for the detection of a

completely different range of accessible frequencies. As an example, the rotational

constant of CaH(2Σ+) molecule [120] is about 17 times larger than that of SrF,

which gives access to microwave fields of frequencies ω ∼ 100− 500 GHz, as

shown in Fig. 6.1 (d).

Interestingly, the transition dipole moment dα(B0,E0) for the |2〉 → |3〉 transi-

tion in 2Σ molecules vanishes at certain combinations of E0 and B0. At these par-

2The lowest detectable ac field frequency, ωmin, is limited by the linewidths of the dipole-dipole
broadening, Γ = 8/9πd2n, and the Doppler broadening, σω =

√
kT/mc2ω , of the |2〉 → |3〉 transi-

tion. For a gas of SrF molecules with a density n = 1010 cm−3 the value of ωmin ranges from 0.26
kHz at T = 1 µK to 8.28 kHz at T = 1 K.
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ticular combinations, the molecules become transparent to the resonant microwave

field. This is demonstrated in Figure 6.2. The figure illustrates that the magnitude

of the dc electric field E0, for which dα(B0,E0) ∼ 0, depends sensitively on the

frequency of the resonant transition (which can be tuned by varying B0). This can

be used for sensitive detection of the magnitude E0 of a dc electric field, given the

magnitude of B0 and the frequency of the microwave field. Conversely, this can

be also used for sensitive detection of the magnitude B0 of the dc magnetic field,

given the magnitude of E0 and the resonant microwave frequency.

Longer interaction time τ results in increased sensitivity to electric fields. The

sensitivity is, however, gained at the expense of the spatial resolution that decreases

with τ due to the molecular motion and decoherence. The effective spatial res-

olution, Se f f = 2(σ2
τ +σ2

img +σ2
ps)

1/2, can be calculated from the displacements

στ = τ
√

2kBT/m during the measurement time (τ), σimg = τimg
√

2kBT/m during

the imaging pulse (τimg), and σps = vrecτimg
√

2Γτimg/3 due to the photon scatter-

ing. Here kB is the Boltzmann constant, T is the temperature of the gas, m is the

mass of a molecule, vrec is the recoil velocity, and Γ is the scattering rate (for SrF,

Γ = 3 MHz [153, 154]). Fig. 6.3 illustrates the relation between the sensitivity and

the spatial resolution for an ensemble of SrF molecules and different frequencies

of the field detected.

The energy level structure of paramagnetic molecules can also be used to

probe sensitively static or off-resonant rf and microwave fields. This can be

achieved by measuring the phase accummulation in a Ramsey-type sequence con-

sisting of two π/2 pulses [5]. The first π/2 pulse prepares the molecules in the

equal superposition of states |2〉 and |3〉, which acquire a relative phase propor-

tional to the Stark shift, ∆φ = deff(B0,E0)Eτ , due to the effective dipole moment

deff(B0,E0) = d(h̄ω32)
dE during the evolution time τ . The second π/2-pulse trans-

forms the relative phase into a population difference. Because the states |2〉 and

|3〉 become nearly degenerate at magnetic fields near B = B∗, the magnitude of deff

is significatly enhanced near the avoided crossing depicted in Figure 1 (b). The

sensitivity to a dc electric field is given by

η
dc
E =

2
√

3h̄
100deff(B0,E0)

√
nVeff
√

τ
, (6.7)
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Figure 6.4: (a), (b) Energy levels of the NH(3Σ−) molecule (br = 490.0 GHz,
γ =−1.65 GHz, and λ = 27.6 GHz) as a function of the magnetic field
B0; (c) Frequency dependence of the ac field sensitivity. The back-
ground electric field EEE0 = 0.

and equals 1.58×10−5 V/cm Hz−1/2 for SrF molecules with the density 1012 cm−3

in a magnetic field of B0 = 545 mT and electric field of E0 = 2.5 kV/cm.

The range of detectable frequencies of electromagnetic fields can be extended

by using paramagnetic molecules of higher spin multiplicity. For example, 3Σ

molecules offer a series of tunable transitions that can be used to probe ac elec-

tric fields in the same way as the transitions in the 2Σ molecules described above.

This is illustrated in Fig. 6.4 that shows the energy level structure of NH(3Σ−)
molecules, and the corresponding sensitivities. A large value of the rotational con-

stant of NH and a series of tunable dipole-allowed transitions allow for the possibil-

ity to cover continuously a broad range of detectable ac fields in the THz frequency

region, which is particularly interesting for a variety of practical applications [156].
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6.4 Conclusion
We have described a technique for sensitive parallel measurements of electric and

magnetic field components of electromagnetic fields, both dc and oscillating with

frequencies ranging from a fraction of a kHz to THz. The method, based on tun-

able energy level structure of paramagnetic molecules in superimposed electric and

magnetic fields, allows one to achieve the sensitivity on the order of V/cm Hz−1/2

and 100 fT Hz−1/2 for the ac fields and 10 V/cm Hz−1/2 and nT Hz−1/2 for dc

fields. The sensitivity to the magnetic component of an ac field can be calcu-

lated as ηac
B [T Hz−1/2] = ηac

E [V/cm Hz−1/2] ×3.336−7. The ratio of the minimal

detectable magnetic fields in experiments with cold atoms [63] and molecules is

given by Bat
min/Bmol

min = 2cd12
α /(
√

3µB) (assuming the same interaction time τ , the

same number of particles and the same detection efficiency in both cases), which

for typical molecules with d∼ 1 a.u. amounts to∼100-fold higher sensitivity using

the proposed scheme. Finally, the method proposed here can be used for detecting

weak dc and ac fields in the presence of high background dc magnetic and electric

field.
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Chapter 7

Conclusion

7.1 Overall conclusions of the dissertation
The field of cold and ultracold molecules is at the beginning of its develop-

ment. Current research is focused on obtaining a large sample of ultracold polar

molecules in the ground state [157], laser cooling of molecules [158] and the cre-

ation of optical lattices with cold polar molecules [159]. The complex structure

of molecules, long-range anisotropic dipole-dipole intermolecular interactions and

the overall enhanced controllability at low temperatures make cold and ultracold

molecules attractive for various applications. The crucial step towards these appli-

cations is the understanding of the collisional properties of ultracold molecules.

The research presented in this work explores ultracold molecular collisions in

electromagnetic fields, and describes new mechanisms for controlling the collision

dynamics of atoms and molecules confined in a 2D geometry and collisions of

molecules in microwave fields. We also propose a method for sensitive detection

of weak electromagnetic fields in the low frequency regime. The results presented

in this Thesis are of general interest for researches of ultracold molecules and im-

portant for particular applications, e.g. the development of methods for evaporative

cooling of molecules and for the detection of weak electromagnetic fields with cold

polar molecules.
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7.2 Contributions of the dissertation
The research described in this Thesis can be divided in three parts.

First, we studied how confinement of molecular gases to 2D and quasi 2D ge-

ometries changes the energy dependence of the elastic and inelastic scattering cross

sections. We derived the Wigner’s threshold laws for collisions in confined gases

and showed that inelastic angular momentum changing collisions are suppressed.

This can be used to control the angular momentum changing collisions such as

Zeeman and Stark relaxation by varying the direction of the external electric or

magnetic fields. Recently the confinement of atoms and molecules in a quasi-2D

geometry and effects of an electric field on chemical reactions were studied both

theoretically [160–164] and experimentally [165].

In Chapters 3-5, we explored the effects of the microwave field on colli-

sion properties of ultracold molecules. We developed the scattering theory for

molecular collisions in a microwave field based on the field-dressed formalism for

molecule-field interactions. We found that in the presence of a microwave field

collisions may lead to the absorption of the microwave photons. We showed that

microwave fields can be used to enhance the inelastic spin-changing collisions and

to shift and suppress the Feshbach resonances in collisions of ultracold molecules.

We analyzed the effects of the anisotropy of the intermolecular potential and pa-

rameters of the microwave fields on collisions of polar molecules in a microwave

cavity to investigate the possibility of evaporative cooling of polar molecules in a

microwave trap. This is a first description of molecular collisions in the presence of

a microwave field using the field-dressed approach and quantum scattering theory.

The quantum scattering calculations based on the numerical solution of the close

coupling equations is the most accurate method for performing calculations of the

scattering cross sections from first principles. The field-dressed approach accu-

rately and consistently describes the coupling of molecules with electromagnetic

fields. The combination of the two approaches allows one to accurately describe

molecular scattering in an electromagnetic field and incorporate the processes of

photon absorption and emission in the scattering formalism. This work is impor-

tant because of the large number of possible applications of microwave fields in

the field of cold molecules, ranging from external field control of spin-forbidden
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chemical reactions to manipulation with molecular qubits.

In Chapter 6, we suggested a method for sensitive detection of weak electro-

magnetic fields with ultracold polar molecules. This method can be used to detect

both dc and ac electromagnetic fields in a large frequency range and is predicted

to have a sensitivity of two orders of magnitude larger than the analogous method

using ultracold Rb atoms [63]. The detection of weak electromagnetic fields is

important for many applications ranging from biomagnetic imaging to chip design.

The most sensitive methods are using alkali atoms to detect weak magnetic and mi-

crowave fields. Polar paramagnetic molecules provide controllability, which may

result in a wide range of detectable frequencies due to the presence of both elec-

tric and magnetic moments and a large coupling of the permanent dipole moment

to the electromagnetic field, which may enhance the sensitivity significantly. Our

work is a first attempt to analyse the advantage of using molecules for sensing

electromagnetic fields.

7.3 Future research directions
Understanding the effects of electromagnetic fields on collision dynamics of cold

and ultracold polar molecules is very important for various applications and design

of the experiments. There are many possible research directions for future work.

The developed method can be extended to consider the molecule-molecule

collisions, collisions of more complex atoms or more complex molecules (e.g.

molecules with three or more atoms) in microwave fields. The systematic investiga-

tion of the elastic and inelastic cross sections at different microwave field parame-

ters would help to design the microwave traps suitable for trapping and evaporative

or sympathetic cooling of polar molecules.

For an accurate description of the collision dynamics in the electromagnetic

field it is important to include a large number of the angular momentum states and

photon number states in the expansion of the wave function. The large number

of the basis functions limits the accuracy of the quantum scattering calculations.

The development of more efficient methods and algorithms for quantum scatter-

ing calculations for molecules in the electromagnetic fields, therefore, is of great

importance.
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The field-dressed state approach doesn’t consider the probability of sponta-

neous emission of microwave photons during collision and it might overestimate

the role of collision-induced photon absorption processes. The lifetime of the rota-

tional states is very large and usually the spontaneous emission from the rotational

state is not considered. However, the time of ultracold collisions is very long too

and several transitions from the high rotational states become allowed in the pres-

ence of the other particle since the parity of the rotational state of the molecule

is not conserved. Therefore, the development of methods that would allow the

treatment of the spontaneous emission is necessary for more accurate calculations.

Another possible research direction is to explore the possibility of using cold

and ultracold molecules as a quantum probe of weak electromagnetic fields or inter-

action potentials (e.g. the Casimir-Polder potential created by a surface). Collisions

of molecules would lead to decoherence and limit such schemes. The development

of methods for preserving quantum coherence in application to cold and ultracold

molecules would advance the research in this direction.

As we showed in Chapter 6 the sensitivity of the method which uses molecules

for sensing electromagnetic fields is fundamentally higher then the sensitivity of

the method using Rb atoms. However, for practical applications it is important

to develop a method that would work at high temperatures and would contain

molecules in some sort of cell. For this purpose one needs to estimate the sensitivity

taking into account the possibility of elastic and inelastic scattering of molecules

that would lead to depletion of the initial state. The rate of such processes is ex-

pected to be much larger for molecules then for atoms, and therefore limiting the

sensitivity of the molecule-based methods. However, the population of the ini-

tial state perhaps could be increased by optical pumping and a careful estimation

is therefore required. The theory of optical pumping of atoms is well developed,

compared to the theory of optical pumping of molecules. The development of the

theory of optical pumping of molecular states is therefore necessary to extend the

scheme for the detection of weak electromagnetic fields proposed in Chapter 6

from a single-shot experiment to a continuous measurement scheme. This, per-

haps, could lead to the method with sensitivity higher than that of the atomic based

sensors.
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