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Abstract

During Kraft pulping, cellulose fibres are liberated from a lignin-matrix, found in

a wood chip, by reaction at elevated temperature and pressure using an alkaline

solution. Poor lignin removal is a deleterious effect that leads to downstream op-

erational difficulties and decreased product quality. A number of research groups

speculate that this is caused by the uneven distribution of the alkaline solution

through the wood chip bed during reaction. As a result, the goal of this thesis is

to characterize the ease by which fluid flows, and disperses, through wood chip

beds. One of the open remaining scientific questions is understanding the effect

of bed compressibility on the resulting flow patterns.

In the first portion of this work we present a methodology to characterize the

permeability of a compressible bed of wood chips under mechanical load. We

show that under the limiting condition of when the mechanical load is large in

comparison to hydraulic pressure the equations of motion can be linearized and

solved to produce an expression approximating the variation in porosity along the

length of the bed. We show how this may be used, in conjunction with multiple

linear regression, to estimate permeability of the bed. The usefulness of these
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estimates was then tested by predicting the pressure drop versus flow relationship

for conditions outside the range of the linearized solution. Good agreement was

obtained.

In the second portion of this work we present a methodology to characterize

the axial dispersion of a solute during steady-flow through a compressible bed of

wood chips under mechanical load. We use a non-invasive imaging technique,

namely electrical resistance tomography (ERT), to visualize the uniaxial displace-

ment of a salt solution. Here we demonstrate that under two limiting cases the

porosity of the porous bed varies slowly in the flow-direction and to the lowest or-

der can be considered a constant. This simplified the optimization routine we used

to match the experimental data to the numerical results of the advection-diffusion

equation. Using this, a methodology to estimate the axial dispersion is given by a

minimization scheme.
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Chapter 1

Introduction

The focus of the present work is to develop a methodology to characterize the per-

meability and dispersion of a solute in a compressible porous medium. Although

the goals of this work have relevance to a number of different scientific and indus-

trial settings, such as the flow of groundwater through soil, this thesis, however,

is motivated from one unit operation in the Kraft process in the pulp and paper

industry, namely the chemical digester. Here, wood chips are cooked to remove

lignin in large vessels typically 3−8 m in diameter and 25−60 m in height. The

reaction solution is usually referred to as ”white liquor”, which is an aqueous so-

lution of sodium hydroxide (NaOH) and sodium sulfide (Na2S) and is in contact

with the wood chips at approximately 170◦C, 600 kPa, for approximately 4 hours.

To ensure good thermal and mass transfer to the wood chips during reaction, pro-

cess liquors are circulated through the digester after being heated in an external

heat exchanger (Smook, 1992).
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To achieve a high quality product, with small spatial variations in lignin con-

tent, the process demands that each chip receives equivalent treatment. In other

words, liquor flow should be maintained uniform and at an optimal level so that

the reactants can be supplied to the chip and that the bi-products removed. Un-

fortunately, this is not the case in most digesters as indications of non-uniformity,

e.e. accelerated corrosion in the digester (Kiessling, 1995; Wensley, 1996), fluc-

tuations in the exit kappa number, a measure of the extent of reaction (He et al,

1999), and temperature gradients (Pageau and Marcoccia, 2001) are evident. It is

thought that spatial variations in the liquor flows result from chip softening as the

reaction progresses. Chip softening results in a local compaction of the bed and

the subsequent decrease in porosity limits penetration of the white liquor. This

phenomenon is magnified as chip softening may cause a change in particle size

distribution; this may also cause a local reduction in porosity (Lee, 2002). Char-

acterizing this effect is one of the open remaining questions in this field and it is

the primary scientific question addressed in this thesis.

The motivation and the major findings of these two studies in this thesis are

presented in three chapters. In Chapter 2, we present a concise summary of the

literature review in order to set our results in the context of other work. Here a

description of the Kraft pulping process as well as a number of studies relating the

behavior of wood chips-liquor interaction is given. A brief description of our main

experimental tool, Electrical Resistance Tomography (ERT), is presented here as

well. In Chapters 3 and 4, we present the methodology and the results for the

measurement of permeability and axial dispersion in a packed column of wood

2



chips under mechanical load.

3



Chapter 2

Literature Review

2.1 Background

Chemical pulping of wood chips is a method of pulp manufacture in which wood

chips are treated with aqueous alkaline or acidic solutions. The aim of chemical

pulping is to remove enough lignin that binds the wood fibers together, to give

them the required characteristics for their derived use, and to do so at the lowest

possible cost. Accordingly, the liberated fibers can now be used to produce paper.

Kraft pulping is today the predominant process for producing chemical pulp. In

Canada, 80% of all the chemical pulp produced is by this process while 85% of

the worldwide chemical pulp is produced via this process. The chemical pulping

process can be accomplished with either batch or continuous digesters.

Kraft pulping is a chemical process used to delignify wood chips by an aque-

ous solution of NaOH and Na2S ,referred to as ”white liquor”, at a high temper-
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ature reaching 170◦C and a high pressure reaching 600 kPa for approximately 4

hours to produce pulp. Kappa number κ is used as a measure of the lignin con-

tent and decreases as lignin is removed as reaction proceeds. It is noteworthy

that cooked chips have similar dimensions as the original uncooked chips except

that cooked chips has less lignin content (lower kappa number) depending on the

degree of cooking. To ensure good thermal and mass transfer to the wood chips

during reaction, process liquors are circulated through the digester after being

heated in an external heat exchanger.

Batch digesters range from 70 m3 to 340 m3 capacity, with a standard capacity

of 170 m3 to 230 m3 for most modern mills. In batch cooking, the digester is filled

with wood chips and enough white liquor is added to cover the chips. The con-

tents are then heated to a predetermined schedule, usually by forced circulation

of the cooking liquor through an external heat exchanger, as shown in Figure 2.1.

Air and non-condensible gases generated during cooking are relieved through a

pressure control valve at the top of the vessel. The maximum temperature, usually

about 170◦C, is typically reached after 1.0-1.5 hours which allows for the cook-

ing liquor to impregnate the chips. The cook is then maintained at the maximum

temperature for up to 2 hours to complete the cooking reactions. After digestion,

the contents are discharged into a blow tank where the softened chips are disinte-

grated into fibers; the off-vapors are condensed in a heat exchanger where water

is heated for pulp washing (Smook, 1992).

Continuous digesters ranges from 6−9 m in diameter and 60−70 m in height

with a typical capacity of 1000 tons per day of pulp (oven-dry basis). Most con-
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tinuous digesters consist of three basic zones; an impregnation zone, one or more

cooking zones, and a wash zone. A typical one-vessel Kamyr digester is shown

in Figure 2.2. In continuous cooking, the wood chips are first carried through a

steaming vessel where air and non-condensible gases are purged. The preheated

chips and white liquor then enter the continuous digester where they move through

the impregnation zone of an intermediate temperature (115 − 120◦C) to allow

for uniform penetration of the chemical into the chips. As the chip mass moves

through the cooking vessel, it enters the cooking zone where the mixture is heated

to the cooking temperature, either by forced circulation of the cooking liquor

through an external heat exchanger or by steam injection, and maintained at this

temperature for up to 2 hours. Following completion of the cook, the chip mass

enters the washing zone where hot spent liquor is extracted into a low-pressure

tank where flash steam is generated for use in the steaming vessel. The pulp is

usually quenched to below 100◦C with cool liquor to prevent mechanical damage

to the fibers (Smook, 1992).

Over the past decades some significant modifications to conventional batch

and continuous cooking in Kraft pulping have been developed, and these improved

methods and technologies are rapidly being incorporated into new installations

and retrofitted into older mills. The new methodology involves additional equip-

ment and processing steps, but doesn’t extend the cooking cycle (Smook, 1992).

Current Kraft operating strategies rely on contacting the chips with liquors of

different temperatures and compositions during cooking to optimize pulp quality

and strength. This requires creation of uniform liquor flow throughout the chip
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column. Local compaction play a key role in this process due to the presence

of interstitial spaces between the chips producing non-uniformity in the liquor

flow. Indications of non-uniformity include accelerated corrosion in the digester

(Kiessling, 1995; Wensley, 1996), fluctuations in the exit kappa number (He et

al, 1999) and circumferential temperature gradients in the digester (Pageau and

Marcoccia, 2001).

A number of researchers have measured the compressibility and flow resis-

tance of wood-chip columns. He et al (1999) developed a 3-D coupled two-

phase computer model of a continuoss digester simulating the flow distribution

and delignification process. Harkonen (1987) developed a 2-D flow model of the

digester using an Eulerian volume-averaged two-phase flow approach to account

for interactions between the liquor and chip phases and measured pressure drop in

support of his modeling. Other researchers, including Lindqvist (1994); Lammi

(1996); Wang and Gullichsen (1999); Lee (2002) have experimentally measured

pressure drop in wood-chip beds as a function of flow velocity and void fraction

for different chip furnishes and size distributions.
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Figure 2.1: Schematic of a typical batch digester (Smook, 1992).
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Figure 2.2: Schematic of a typical one vessel Kamyr digester (Luis et al,
2000).
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2.2 Flow Resistance through Porous Media

Before we discuss the pertinent models relevant to flow through this class of ma-

terial, it is instructive to first define the two parameters that will be used to charac-

terize the resistance to flow in this work, i.e. the permeability k and the solid-stress

ps. We begin this discussion with permeability. Traditionally permeability is de-

fined using Darcy’s law
d p
dx

=
µ
k

v (2.1)

which relates the change in pressure drop per unit length d p/dx required to main-

tain a superficial velocity v through a porous medium. The dynamic viscosity

of the fluid is defined as µ . There is no mechanistic justification of the form

of Equation 2.1 except for empirical evidence demonstrating its utility for most

media under creeping flow conditions (v → 0).

There are various experimental methods for determining k; see for example

the summary given by Scheidegger (1957) or the references given therein. For

incompressible media, these methods simply involve the measurement of the su-

perficial flow rate of the fluid for a given pressure drop and comparing these data

to Equation 2.1. It is well known that permeability is a function of the poros-

ity ε and the most common expression outlining this dependency is given by the

Kozeny-Carman relationship (Scheidegger, 1957), i.e.

k =
ε3

θs2
v(1− ε)2 (2.2)
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where sv is the specific surface area of the particles; and θ is a constant usually

ranges from 4.7− 5.5. There are many other functional forms of permeability

that have been developed for various ranges of volume fraction, particle geometry

and network architecture. These models have been studied both theoretically and

experimentally quite extensively (Jackson and James, 1986). Beyond this creep-

ing flow limit, a number of authors have extended Darcy’s law and advanced an

equation of the form
d p
dx

=
µ
k

v+
β

√
kε

3
2

ρv2 (2.3)

where β is an empirical constant that must be determined from experiment, and ρ

is the density of the fluid . This form of relationship is routinely found in a num-

ber of works and is generally referred to as the either the Ergun or Forchheimer

relationship. In Equation 2.3, a characteristic dimension should be used to repre-

sent the particle size. Generally, the characteristic dimension is the diameter of a

sphere having the same specific surface as the particle (Ergun, 1952; Comiti and

Renaud, 1989; Niven, 2002), expressed as

sv =
As

Vp
=

πd2
p

1
6πd3

p
=

6
dp

(2.4)

where As is the surface area of the particle, Vp is the volume of the particle, and

dp is the equivalent particle diameter. Substituting Equations 2.2 and 2.4 into

Equation 2.3 results in the famous Ergun (1952) Equation, expressed as

d p
dx

= A
(1− ε)2

ε3
µ

ψ2d2
p

v+B
(1− ε)

ε3
ρ

ψdp
v2 (2.5)
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where A and B are empirical constants that must be determined experimentally, ψ

is the sphericity shape factor. Sphericity is a measure of how spherical (round) an

object is and it is defined as the ratio of the surface area of a sphere (with the same

volume as the given particle) to the surface area of the particle, expressed as

ψ =
π1/3(6Vp)

2/3

As
(2.6)

It is noteworthy that A is dominant for laminar flows (RePM ≤ 10), and B is

dominant for turbulent flows (RePM ≥ 1000) where RePM is the modified Reynolds

number for porous media, expressed as

RePM =
dpρv

µ(1− ε)
(2.7)

Values of A and B have been measured for several particles where it was found

that they are functions of particle geometry and roughness (Ergun, 1952; Leva,

1959; MacDonald et al, 1979; Comiti and Renaud, 1989). A summary of the

different studies, including the type and shape of the particles, is given in Table

2.1.

We now continue with the discussion of the second parameter, the solid-stress

relationship ps(ε). The solid-stress is a property created by the connectivity and

corresponding friction between the particles comprising the bed. If the frictional

forces are sufficiently large, the bed may support an external load. If the load

exceeds the compressive strength of the bed, the bed irreversibly densifies through

a reduction of the void volume. The relationship between the applied pressure
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Source Material Porosity Empirical Parameters
ε A B

Ergun (1952) Spheres – 150 1.75
Leva (1959) Spheres – 200 1.75
MacDonald et al (1979) Spheres – 180 1.8−4.0
Comiti and Renaud (1989) Spheres, dp = 1.12 mm 0.36 140 1.68
Comiti and Renaud (1989) Spheres, dp = 4.99 mm 0.36 142 1.59
Comiti and Renaud (1989) Cylinders, h/dc = 5.49 0.39 166 3.20
Comiti and Renaud (1989) Plates, t/l = 0.102 0.46 216 12.2
Comiti and Renaud (1989) Plates, t/l = 0.209 0.35 161 6.69

Table 2.1: Literature values for the flow resistance parameters A and B as
defined by Equation 2.5.

and the void volume is defined as the solid-stress or compressibility function.

This relationship is an implicit function of the particle geometry, packing and the

orientation distributions (Toll, 1998). The solid-stress function usually obeys an

empirical relationship of the form

ps = f3(ε) = m(εg − ε)n (m,n ≥ 0) (2.8)

where εg is the gel porosity, i.e. the porosity at which the network may first support

an external load; and m and n are empirical constants that must be determined from

experiment where m is the stiffness of the network. For a more detailed discussion

of this function the reader is encouraged to examine the earlier works of Wilder

(1960), Wrist (1964), Han (1969) or the more recent works by Vomhoff (1998)

and Pettersson et al (2008).

For the particular case of flow through wood-chip beds, there are a limited
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number of studies in which the permeability and compressibility functions are

reported. As before, we shall report the values for permeability first and then

move onto the compressibility function. Strictly speaking, the permeability for

this material is never reported. Instead, we find that Equation 2.3 or or 2.5 is

recast into the form

d p
dx

= r1 f1(ε)v+ r2 f2(ε)v2 (2.9)

f1(ε) =
(1− ε)2

ε3 (2.10)

f2(ε) =
(1− ε)

ε3 (2.11)

through substitution of Equation 2.2 into Equation 2.3 and the parameters r1 and

r2 are considered to be the flow resistance of the medium; they are determined

by regression of a data set representing (vi,d pi/dx). Physically, r1 and r2 repre-

sent the lumped effects of tortuosity, specific surface, and density and dynamic

viscosity of the fluid, i.e.

r1 = µθs2
v = A

µ
ψ2d2

p
(2.12)

r2 = βρ
√

θsv = B
ρ

ψdp
(2.13)

A summary of the different studies, including the type of wood chips and de-

gree of deliginification, is given in Table 2.2. As shown the data set is highly

variable and the uncertainty in the estimate, as determined by the correlation co-

efficient, is large. It is interesting to note that for some estimates, the inertial
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component of the Ergun relationship, i.e. the second term in this relationship,

is reported as a negative value. This is physically impossible. Thus, for these

negative cases, we may argue that r2 should not be different from zero due to

the operation at near laminar regimes in such cases since RePM for flows through

wood-chip beds usually lies within 50 ≤ RePM ≤ 2000.

At this point, we attempt to gain insight into the problem by examining the

literature for papermaking fibre suspensions. We do so as the wood chip is the

precursor of the fibre suspension. For papermaking suspensions a fairly crude es-

timate of the permeability is of the order k ∼ 10−12 m2. We define this as a crude

estimate as there is a vast literature with estimates of the permeability as a func-

tion of porosity for various fibre and filler particle or refining treatments,see e.g.

Robetrson and Mason (1949), Ingmanson and Whitney (1954) or Lindsay and his

co-workers (Lindsay, 1990; Lindsay and Brady, 1993a,b). We anticipate that the

permeability of the wood chip to be larger than this value. In addition we find that

at low superficial velocities, Robetrson and Mason (1949) demonstrate a linear

relationship between pressure drop and superficial velocity and that a Kozeny-

Carman type relationship described the data quite well. At higher velocities, In-

gmanson and Whitney (1954) indicate deviations from this type of behavior and

inertial effects are evident.

We now turn our attention to the characterization of the compressibility func-

tion describing wood-chip beds. In this literature, water saturated wood chips

were subjected to a static uniaxial load from which the displacement of the bed

was measured. All researchers report compressibility behavior of the same form
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Source Material Empirical Parameters Corr. Coeff.
r1 r2 r2

(Pa.s/m2) Pa.s2/m3

Harkonen (1987) Scandinavian Pine 0.05×105 3.9×106 –
(distribution not specified)

Lindqvist (1994) Scandinavian Pine 0.28×105 −0.13×106 0.36
+ 6 mm slot 22.1%
+ 4 mm slot 44.2%
+ 2 mm slot 29.1%
+ 3 mm hole 4.6%

Lindqvist (1994) Scandinavian Pine 0.51×105 −0.35×106 0.41
+ 6 mm slot 23.2%
+ 4 mm slot 46.3%
+ 2 mm slot 30.5%

Lindqvist (1994) Scandinavian Pine 0.06×105 −0.01×106 0.58
+ 6 mm slot 60.3%
+ 4 mm slot 39.7%

Lammi (1996) Scandinavian Birch 0.68×105 2.47×106 0.89
+ 45 mm hole 0.6%
+ 8 mm slot 9.2%
+ 13 mm hole 51.2%
+ 7 mm hole 31.2%
+ 3 mm hole 6.4%
+ fines 1.1%

Lammi (1996) Eucalyptus Camaldulensis 1.85×105 −0.03×106 0.91
+ 45 mm hole 1.1%
+ 8 mm slot 4.8%
+ 13 mm hole 78.8%
+ 7 mm hole 12.6%
+ 3 mm hole 2.2%
+ fines 0.5%

Wang and Gullichsen (1999) Scandinavian Pine 0.52×105 1.50×106 -
+ 7 mm hole 100%

Wang and Gullichsen (1999) Scandinavian Pine 0.82×105 −0.11×106 -
4mm thick, 40mm length

Lee (2002) White Spruce 0.11×105 13.78×106 0.76
+ 3 mm hole 100%

Lee (2002) White Spruce 0.66×105 4.72×106 0.82
+ 7 mm hole 75%
+ 3 mm hole 25%

Lee (2002) White Spruce 0.60×105 4.57×106 0.74
+ 7 mm hole 87.5%
+ 3 mm hole 12.5%

Lee (2002) White Spruce 0.40×105 5.77×106 0.91
+ 7 mm hole 100%

Table 2.2: Literature values for the flow resistance parameters r1 and r2 as
defined by Equation 2.9. The uncertainty in the estimates are given by
the correlation coefficients r2, if available. ”+” means retained on the
plate.
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Source Material m(κ) εg n
a0 a1

(kPa) (kPa)
Harkonen (1987) Scandinavian Pine 2.14×10−1 3.57×10−2 0.64 1.7
Lindqvist (1994) Scandinavian Pine 2.24×10−1 4.48×10−2 0.60 1.6
Lindqvist (1994) Scandinavian Pine 1.48×10−1 2.94×10−2 0.62 1.3
Lindqvist (1994) Scandinavian Pine 1.86×10−1 3.73×10−2 0.65 1.4
Lammi (1996) Scandinavian Birch 1.78×10−1 4.08×10−2 0.59 1.8
Lammi (1996) Eucalyptus Camald. 1.60×10−1 3.46×10−2 0.63 1.6
Wang and Gullichsen (1999) Scandinavian Pine 2.17×10−1 3.66×10−2 0.66 1.8
Wang and Gullichsen (1999) Scandinavian Pine 4.45×10−1 6.56×10−2 0.84 2.6

Table 2.3: Literature values for the compressibility parameters m, εg, and n
as defined in Equation 2.8. These research groups indicate that m is a
function of the degree of deliginification, i.e. the kappa number κ , and
advance the equation m(κ) = (ao −a1 lnκ)−n.

as given by Equation 2.8. Here we find that the exponent n varies between 1.3

and 2.6 and that m varies according to the degree of deliginification of the chips

(Harkonen, 1987; Lindqvist, 1994; Lammi, 1996; Wang and Gullichsen, 1999;

Lee, 2002). There is some disagreement over the form of the gel point εg. Most

authors in this literature indicate that this is simply the average sediment concen-

tration of the wood chip pile; Lee (2002) indicates that this parameter varies also

as a function of degree of deligninfication but with a function form slightly differ-

ent than the body of work in the literature. A summary of the empirical models

used to determine these parameters is given in Table 2.3.
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2.3 Axial Dispersion through Porous Media

Dispersion is a term commonly found in the literature but its definition, especially

for flow in porous media, is less clear. Before we discuss the pertinent literature

relevant to dispersion in wood-chip beds, it is instructive to define this term for

the simplest case of the behavior of a diffusing species in uniform Poiseuille flow

in a uniform circular capillary tube. In a series of classic papers, Taylor (Taylor,

1953, 1954a,b) demonstrates that a simple shear flow can surprisingly increase the

effective diffusivity. Shear, in this case, acts to smear out the concentration distri-

bution in the direction of the flow, enhancing the rate at which the solute spreads in

that direction. To highlight this work, Taylor considered fully-developed Hagen-

Pouiselle flow in a circular pipe of radius a, i.e.

u(r) = uo

(
1− (

r
a
)2
)

(2.14)

where u and uo are the local and centreline velocities. If the concentration of the

diffusing species is denoted by c and its molecular diffusivity by D, the evolution

of the concentration distribution in the pipe is governed by a linear advection-

diffusion equation of the form

∂c
∂ t

+u(r)∇c = ∇(D∇c) (2.15)

In this classic analysis, Taylor re-expressed the concentration and velocity fields

as the sum of a cross-sectional average (indicated by an overbar) and a deviation
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(indicated by a prime)

u(r) = ū+u′(r) (2.16)

c(r,x) = c̄+ c′(r,x) (2.17)

and assumed that both c′ ≪ c̄ and that the length scale of axial variation is much

greater than a. By doing so, he shows that the advection-diffusion equation may

be recast into the form

∂ c̄
∂ t

+ ū
∂ c̄
∂x

= De
∂ 2c̄
∂x2 (2.18)

where De is the effective diffusivity i.e. dispersion defined as

De = D

(
1+

1
192

(
2aū
D

)2
)

(2.19)

Taylor’s analysis indicates that the effective diffusivity increases with the square

of the average flowrate in the tube.

Since this classic work, a vast body of literature has been developed on the

subject of dispersion, especially in porous media. It seems to be a reasonably well-

established fact that the extent of mixing between the solvent and solute can be

characterized by an advection-diffusion-type equation in which an axial dispersion

coefficient appears in place of the usual molecular diffusivity (Danckwerts, 1953;

Brenner, 1962; Levenspiel and Bischoff, 1963). The physics of the enhancement

of diffusion is governed by a stochastic process arising from the subtle interplay
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of advective velocity gradients, molecular diffusion, boundary layer effects, and

tortuosity (Khrapitchev and Callagha, 2003).

There are various experimental methods for determining De. These methods

simply involve the measurement of the concentration of a solute tracer as a func-

tion of time and comparing these data to analytical or numerical solutions of an

advection-diffusion model. Measurements and correlations of axial dispersion in

packed beds using gaseous or liquid solvents at ambient conditions have been

extensively studied and reviewed by many researchers (Chung and Wen, 1968;

Edwards and Richardson, 1968; Kehinde et al, 1983; Gunn, 1987; Tsotsas and

Schlunder, 1988). As an example of this, for a brine solution flowing through a

packed bed of glass spheres, it is reported in the review by Delgado (2006), that

the effective diffusivity is related to the porosity ε of the bed according to

De = aεb (2.20)

where a and b are empirical constants determined by experiment. For packed beds

of glass spheres, Rumer (1962) reports values of a and b to be 2.7× 10−3 m2/s

and −1.11, respectively while Harleman and Rumer (1963) report values of 1.6×

10−4 m2/s and −1.18, respectively. For the particular case of flow through wood-

chip beds in the pulp and paper industry, there are few, if any, studies in which the

axial dispersion is reported (Michelsen and Foss, 1996). The only work that we

could find directly related to this topic was that reported by Hradil et al (1993) for

biomass conversion of wood chips into ethanol. The axial dispersion coefficient
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in such beds was found to be in the range of De = 10−3 −10−6 m2/s.

At this point, we attempt to gain insight into estimates of the diffusivity by

examining the related literature, i.e. for dispersion through wood pulp fibre mats.

We do so as the wood chip is the precursor of the pulp fibre. In this case, we find

that the axial dispersion coefficient is of the order De ∼ 10−6 m2/s. We consider

this as a crude estimate as there is a vast literature with estimates of the axial

dispersion coefficient as a function of porosity and velocity for various fibre and

filler particle or washing treatments, see e.g. Poirier et al (1988), Arora et al

(2006) or Potucek and Miklik (2010).

2.4 Electrical Resistance Tomography

There are a number of experimental techniques currently available to visualize

the motion of a fluid in a dense, opaque porous medium: X− or γ ray attenuation,

acoustics, or nuclear magnetic resonance. In this work we use electrical resistance

tomography (ERT), a methodology which has been recently applied to a number

of engineering studies (Williams and Beck, 1995; Lucas et al, 1999; Bolton et al,

2004; Vlaev and Bennington, 2004, 2005, 2006; ITS, 2006). Recently, electrical

resistance tomography (ERT) has gained increasing popularity due to its appli-

cations in the field of chemical and process engineering. ERT is a non-invasive

technique that employs electrical measurements in order to obtain information

about the contents of process vessels and pipelines such as concentration, tem-

perature, velocity, and local void fraction in the measurement plane. Indeed, a

number of researchers have used ERT successfully to image flow in packed beds
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(Lucas et al, 1999; Bolton et al, 2004). Any tomography imaging system that is

based on electrical fields is called electrical tomography or soft field systems due

to the sensitivity of measurement in the region of interest.

ERT has two main advantages. First, measurements are conducted non-invasively

without disturbing the system. Second, the region of interest is captured along the

periphery of the measurement plane achieving an accurate representation of the

cross sectional area of that region of interest. It is noteworthy that such imag-

ing techniques have fast data processing capabilities and have low cost compared

to other hard field imaging techniques such as computed axial tomography (CAT

Scan).

ERT images the spatial difference in conductivity through the region of in-

terest using the tomographic sensors and data acquisition system. Accordingly,

two-dimensional cross-sectional images of the region of interest are produced

in real time by linear back projection algorithm used for image reconstruction.

The ITS (Industrial Tomography Systems, Manchester, UK) P2000 system has

eight sensor planes, each having 16 non-intrusive stainless steel electrodes lo-

cated equidistantly around the vessel periphery (every 22.5◦), enabling the region

of interest to be measured as it is illustrated in Figures 2.3 and 2.4. Basically, ITS

P2000 system injects current between a pair of adjacent electrodes and measures

the resultant voltage difference between the remaining adjacent electrode pairs ac-

cording to a pre-defined measurement protocol (ITS, 2006), see Figures 2.5a and

2.5b.
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Figure 2.3: Photograph of ITS P2000 ERT data acquisition system (ITS,
2006).

Figure 2.4: Schematic diagram of electrode arrangement around the process
vessel (ITS, 2006).
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(a) (b)

Figure 2.5: Adjacent current injection and resultant voltage measurement of
the remaining adjacent electrodes. 2.5a The first current injection.
2.5b The second current injection (ITS, 2006).

The accuracy and repeatability of the voltage measurements made using the

ERT system are ±0.5% and > 99.5%, respectively (ITS, 2006). Each plane is

divided into a square 20×20 grid of pixels representing the interior cross-section

of the vessel, for which some pixels lie on the outside of the vessel circumfer-

ence; therefore, the reconstructed image is obtained from 316 of the 400 pixels,

see Figure 2.6 . It is noted that ERT has an excellent temporal resolution but

achieves a spatial resolution of only 5−10% of the vessel diameter (Williams and

Beck, 1995). Image reconstruction in each plane could also be distorted due to

the three-dimensional nature of the electric field, which is not accounted for in the

reconstruction of the two dimensional planar images. Despite these limitations,

ERT has been successfully used to study flow in a wide range of applications in-

cluding liquor flow in scale-model continuous digesters by Vlaev and Bennington
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Figure 2.6: ERT image reconstruction grid (ITS, 2006).

(2004, 2005, 2006).

2.5 Research Objectives

The literature shows that permeability and dispersion have been widely studied

for a wide range of chemical engineering systems. This class of problem has re-

ceived considerable attention in the pulp and paper literature as permeability and

dispersion have been related to the efficiency of a number of different unit opera-

tions, and are of great importance for flow through chip beds and consequently for

digester design. However, very limited work has been published on permeability

and dispersion through wood-chip columns and for most reported measurements

compressibility effects have not been rigorously treated in these analyses (Harko-
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nen, 1987; Hradil et al, 1993; Lindqvist, 1994; Lammi, 1996; He et al, 1999;

Wang and Gullichsen, 1999; Lee, 2002). For the particular case of flow through

wood-chip beds in the pulp and paper industry, there are few, if any, studies in

which the axial dispersion is reported (Michelsen and Foss, 1996). The only work

that we could find directly related to this topic was that reported by Hradil et al

(1993) for biomass conversion of wood chips into ethanol. In other words, disper-

sion should be characterized intensively in wood-chip beds while visualizing the

flow in these beds.

The objectives of this thesis are:

• To improve the understanding of flow resistance through compressible wood-

chip beds, and check the applicability of the Ergun Equation to describe the

flow resistance in these beds.

• To develop a procedure to estimate permeability of compressible wood-chip

beds in which compressibility effects are treated rigourously.

• To visualize the flow and investigate the flow uniformity by using electrical

resistance tomography (ERT) while using salt as a passive scalar.

• To characterize axial dispersion and mixing through compressible wood-

chip beds.
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Chapter 3

The Permeability of Wood-Chip

Beds: The Effect of Compressibility

3.1 Introduction

In this chapter, the resistance to flow of a Newtonian fluid through a compressible

porous bed of wood-chips under axial load is investigated experimentally. The

essential difficulty of characterizing the behavior of this material is that densifica-

tion of the chip-bed occurs by both the application of an external mechanical force

as well as by a hydraulic force created by the motion of the fluid. This sets itself

apart from the traditional flow through incompressible porous medium studies as

the additional complication of wood-chip bed deformation is introduced into the

problem description. Compressible in this case indicates that the wood-chip bed

densifies by the reduction of interparticle volume as opposed to particle defor-
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mation. The reduction of interparticle volume may be associated with a change

in particle orientation. We focus our efforts on the industrially-relevant case of

understanding the flow in wood chips delignified to various kappa levels and esti-

mate both the permeability and compressibility of these beds.

This chapter is organized into three subsections. In §3.2, we present the

methodology to estimate the permeability relationship. Here we present an al-

ternative solution method to the governing equations, which have been posed pre-

viously; this allows for a simpler means to estimate r1 and r2 through linear regres-

sion. In §3.3, we demonstrate the utility of the approach through measurements

of the pressure drop per unit length required to maintain the flow through a wood-

chip bed under mechanical load. Finally, a comparison of the novel methodology

and the experimental measurements are made in §3.4.

3.2 A Method to Determine r1 and r2

We begin this analysis by considering the one-dimensional flow of fluid through

a compressible porous bed of length L and loaded mechanically by a compaction

pressure pc, see Figure 3.1. The fluid is driven by a fluid pressure equal to a hy-

draulic pressure ph, applied at the top of the bed; the fluid pressure at the bottom

of the bed is considered to be zero. In a similar manner, we consider the solid-

stress on the wood chips to be equal to pc at the top of the bed and pc + ph at the

bottom of the bed. For ease in the subsequent presentation, we define a charac-

teristic porosity in the bed εc obtained by solving pc = f3(εc) i.e. ε(L) where the

solid-stress on the wood chips at the top of the bed is equal to pc.
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Figure 3.1: Schematic of the geometry considered.

Some of the earliest and most significant studies on compressible porous me-

dia flows were conducted by Beavers and his coworkers (Beavers et al, 1981a,b),

Burger and Concha (1998), Verhoff (1983), and Wakeman (1978). These are

works with steady, one dimensional flow of non-compressible fluid through highly

compressible material. Their analyses are not restricted to small deformations of

flow within the Darcy regime (i.e. low velocity flow). Here it was observed that

the gradient of solid-stress within the porous media is of equal and opposite mag-

nitude to the fluid pressure gradient established in the flow

d p
dx

= −d ps

dx
(3.1)
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Equation 3.1 can be obtained by the mathematical addition of the Eulerian volume-

averaged two-phase flow equations after neglecting the acceleration terms under

the assumption of inviscid flow (Burger and Concha, 1998). With this, in com-

bination with the Ergun equation and a compressibility relationship, formed a

system of equations which could be integrated to compute the volumetric flowrate

as a function of the solid-stress across finite porous materials. The boundary con-

ditions, as introduced above, are

p(0) = 0 ps(0) = pc + ph (3.2)

p(L) = ph ps(L) = pc (3.3)

If we scale using

p̄ =
p
ph

p̄s =
ps − pc

ph
, x̄ =

x
L

ε̄ =
ε
εc

f̄i =
fi(ε)
fi(εc)

(3.4)

the governing equations reduce to

d p̄
dx̄

= −d p̄s

dx̄
(3.5)

d p̄
dx̄

= r̄1 f̄1(ε̄)+ r̄2 f̄2(ε̄) (3.6)

p̄s =
1
δ
(

f̄3(ε̄)−1
)

(3.7)
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where

r̄1 =
r1 f1(εc)vL

ph
r̄2 =

r2 f2(εc)v2L
ph

, δ =
ph

pc
(3.8)

Upon elimination of p̄s and p̄, the governing equation becomes

− 1
δ

f̄ ′3(ε̄)
dε̄
dx̄

= r̄1 f̄1(ε̄)+ r̄2 f̄2(ε̄) (3.9)

where the symbol ′ refers to differentiation with respect to ε̄ . The boundary con-

ditions are assigned as the solid-stress is known at both the bottom and top of the

column. In our notation these conditions read

f̄3(ε̄(0)) = 1+δ (3.10)

f̄3(ε̄(1)) = 1 (3.11)

As we have two conditions to satisfy a first-order ordinary differential equation,

the extra condition will aid in determining the unknown resistances r̄1 and r̄2.

Equation 3.9 can be integrated numerically using standard techniques. By

doing so, the unknown resistances can be estimated using one of a number of

different optimization schemes in conjunction with experimental data. However,

for the special case where the hydraulic pressure is much less than the mechanical

load, i.e. when 0 < δ ≪ 1, it is possible to solve this relationship using asymptotic

methods to develop an analytical expression which can then be used to determine

the unknown resistance to motion using a simpler multiple regression technique.
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This is shown below.

To begin, if we seek a solution of the form

ε̄ = ε̄(0)+δ ε̄(1)+ ... (3.12)

r̄i = r̄(0)i +δ r̄(1)i + ... (3.13)

Equation 3.9 is reduced to two linear differential equations i.e.

− f̄ ′3(ε̄
(0))

dε̄(0)

dx̄
= 0 (3.14)

− f̄ ′3(ε̄
(0))

dε̄(1)

dx̄
= r̄(0)1 f̄1(ε̄(0))+ r̄(0)2 f̄2(ε̄(0)) (3.15)

with the boundary conditions

ε̄(0)(0) = 1 ε̄(1)(0) =
1

f̄ ′3(ε̄(0)(0))
(3.16)

ε̄(0)(1) = 1 ε̄(1)(1) = 0 (3.17)

With this, the solution of this set of equations is given by

ε̄ = 1+δ
1− x̄
f̄ ′3(1)

+O(δ 2) (3.18)

subject to the constraint that

r̄(0)1 + r̄(0)2 = 1 (3.19)

32



Equation 3.18 indicates that the first-order approximation of the porosity distribu-

tion is linear, with the porosity decreasing with increasing distance away from the

top of the wood-chip bed. This analysis can be easily extended to obtain higher-

order approximations. This is shown in Appendix H where the O(δ 2) term is

reported. A comparison of the approximate analytical solution and the more accu-

rate numerical solution are shown in Figure 3.2. Clearly this asymptotic method-

ology yields a fairly reasonable approximation of ε̄(x̄) over the region δ < 0.3

Before continuing we must comment on the utility of this asymptotic solution.

There is a possibility of degenerative behavior as f̄ ′3(ε̄) approaches zero as the

function ε̄ → ε̄g. Under these conditions, the proposed series diverges. As a

result, we must bound the useful range of solution to cases in which ∥ f̄ ′3(1) ∥≥ 1.

If we examine the form of this function, as given in Appendix I, we deduce that

the useful range of this solution is given when ε̄g ≥ n−1.

Given a reasonable estimate of the variation of porosity along the length of

the bed, we are now in a position to estimate the variation of the fluid pressure

p̄. Equation 3.6 may now be approximated using a similar series. If we seek a

solution of the form

p̄ = p̄(0)+δ p̄(1)+O(δ 2) (3.20)

Equation 3.6 reduces to

∂ p̄(0)

∂ x̄
= 1 (3.21)

∂ p̄(1)

∂ x̄
=

(1− x̄)
f̄ ′3(1)

(
r̄(0)1 f̄ ′1(1)+ r̄(0)2 f̄ ′2(1)

)
+ r̄(1)1 + r̄(1)2 (3.22)

33



0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

ε/ε
c

H
ei

gh
t x

/L

δ = 0.3

δ = 0.2 δ = 0.1 δ = 0.05

Figure 3.2: A comparison of the numerical (dashed line) and the asymptotic
solution (circles) at various δ . The asymptotic solution is approxi-
mated using the first three terms in the series. This comparison is
made with m = 100 kPa, n = 1.2, εg = 0.54, r1 = 3×104 Pa.s/m2 and
r2 = 1.9×106 Pa.s2/m3.

When integrated, the fluid pressure is given by

p̄ = x̄+δ
(x̄− x̄2)

f̄ ′3(1)

(
r̄(0)1 f̄ ′1(1)+ r̄(0)2 f̄ ′2(1)

)
+O(δ 2) (3.23)

with the constraint that

r̄(1)1 + r̄(1)2 =− 1
2 f̄ ′3(1)

(
r̄(0)1 f̄ ′1(1)+ r̄(0)2 f̄ ′2(1)

)
(3.24)

At this point we will now turn our attention to the overall problem considered in

34



this section, i.e. an estimate methodology for r̄1 and r̄2. Here, we will demonstrate

how the two constraints, i.e. Equations 3.19 and 3.24, can be used in conjunction

with linear regression of experimental data to estimate r1 and r2. To do so, we add

Equations 3.19 and 3.24, after first multiplying Equation 3.24 by δ , to yield

(
r̄(0)1 +δ r̄(1)1

)
+
(

r̄(0)2 +δ r̄(1)2

)
= 1− δ

2 f̄ ′3(1)

(
r̄(0)1 f̄ ′1(1)+ r̄(0)2 f̄ ′2(1)

)
(3.25)

Upon substitution of Equation 3.13, the equation above simplifies to

(
1+δ

f̄ ′1(1)
2 f̄ ′3(1)

)
r̄1 +

(
1+δ

f̄ ′2(1)
2 f̄ ′3(1)

)
r̄2 = 1+O(δ 2) (3.26)

which can also be expressed as

y = r1x1 + r2x2 (3.27)

where

x1 =

(
1+δ

1
2
(3− εc)

(1− εc)

(εg − εc)

εcn

)
(1− εc)

2

ε3
c

v (3.28)

x2 =

(
1+δ

1
2
(3−2εc)

(1− εc)

(εg − εc)

εcn

)
(1− εc)

ε3
c

v2 (3.29)

y =
ph

L
(3.30)

Equation 3.27 is in a form in which the unknowns r1 and r2 can be determined by

multiple linear regression to a data set containing (vi, phi,Li).
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3.3 Experimental Materials and Methods

Air dried (to approximately 90% solid content) Hemlock wood chips were used

in this study. These chips were made by a disk chipper which produces a chip

shaped as a parallelepiped, see Figures 3.3a and 3.3b . The chips were classified

using a Wennberg ChipClassTM classifier (Weyerhaeuser), shown in Figures 3.4a

and 3.4b . The accept chips were further classified according to thickness using

2 and 4 mm slotted screens. For each chip fraction, the average length, width and

thickness were measured by hand by randomly selecting a sample consisting of

250 individual chips, see Appendix B. Only accept chips fraction with 2−4 mm

thickness was used in this study to avoid any non-uniformity of the oversized and

undersized chip fractions, see Table 3.1. In addition both the equivalent particle

mean diameter dp, defined as

dp = 6
Vp

As
(3.31)

as well as the sphericity ψ , are also given in the table to help characterize the

wood chip further.
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(a)

(b)

Figure 3.3: Geometry of disk chipper chips.
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Figure 3.4: 3.4a Chip screening apparatus. 3.4b Chip size distribution.
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Screen Thickness Width Length dp ψ Mass Fraction
(mm) (mm) (mm) (mm) (%)

4 mm slot 4.4(±0.7) 19.1(±8.5) 22.9(±3.6) 9.2 0.60 37.6
2 mm slot 2.6(±0.6) 14.7(±6.5) 21.2(±2.0) 6.3 0.53 62.4
Total Mixture 7.1 0.56 100.0

Table 3.1: Characteristics and dimensions with standard deviations of the
wood chips before cooking. The total mixture was composed of
37.6%(wt/wt) of the 4 mm slot chips with the balance of mixture com-
prised of the 2 mm slot chips. Both dp as well as ψ for the total mixture
are averages based upon the mass fraction of each species, see Appen-
dices B and C.

Cooks of accept chips were done to κ numbers of 25, 53 and 80, which rep-

resents the variation of kappa number during industrial cooking, using a 28 L

Werverk laboratory digester (FPInnovation, Vancouver). Cooks were made using

conventional kraft pulping conditions, see Table 3.2. After the cook, we washed

the cooked wood chips gently, while they are in the cooking basket of the digester,

by running water for about 15 mins to remove any residual alkali, and then we

transferred the washed wood chips into storing buckets. The washing and trans-

ferring processes were done very carefully in order to protect the dimensions of

the cooked wood chips. Also before doing any experiments in our lab, we soaked

and washed the cooked wood chips, while they are in our bed, with water until

the effluent was clear. Our observations indicate that with lower kappa number

chips, the longer the washing time that was required. Figures 3.5a-3.5d show a

comparison of the wood chips before and after cooking to different κ numbers

where the cooked wood chips preserved their dimensions.
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Wood chips species Hemlock (Accepts 2−4 mm)

Wood chips charge (oven dry) 3.0 O.D.kg

Liquor to Wood ratio 4.5 : 1

Effective Alkali charge (EA) 17% as Na2O

Sulfidity 26.95%

Heating rate 1.11◦C/min

Maximum cooking temperature 170◦C

Time to temperature 140 minutes

Time at temperature To desired κ number

Table 3.2: Cooking conditions using the laboratory digester.
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(a) κ = 180 (b) κ = 80

(c) κ = 53 (d) κ = 25

Figure 3.5: Comparison of the accept chips before and after cooking to dif-
ferent κ numbers. Scale in the picture is in cm.
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A schematic diagram of the test apparatus is shown in Figures 3.6 and 3.7. The

column has an inside diameter of 15 cm, a height of 45 cm and was made from

1.25 cm thick Plexiglas. The column has a perforated plate (having an open area

of 40% using 3 mm diameter holes) equipped by a piston in order to simulate a

compaction pressure (0-14 kPa) and create uniform flow through the wood chips.

The compressive pressure was controlled by a pneumatic air cylinder (Ameri-

can Cylinder R⃝Co., Inc., Model 1500DVS-1”, Peotone, Illinois). The pressure

drop across the column was divided into four equal sections (11.25 cm) and mea-

sured by four differential pressure transducers (Omega R⃝Engineering Inc., model

PX2300-1DI, Laval, Quebec). For measuring the hydraulic pressure at the top

of the Column, a gage pressure transducer (Omega R⃝Engineering Inc., model

PX01C1-015GI, Laval, Quebec) was used. For measuring the flow, a magnetic

flow-meter (Rosemount R⃝Measurement, model 8712, Irvine, CA) was used. In

addition, a centrifugal pump (Cole-Parmer R⃝Inc., Model K-07085-00, Concord,

Ontario) was used to circulate the flow in the chip column.

The column diameter and height were chosen with consideration of industrial

and previous researchers’ designs. In addition, this column’s diameter helped in

creating uniform force by the piston as well as reducing the quantity of cooked

wood chips used since we didn’t have a limitless supply. Moreover, it is assumed

that there is no channeling or other wall effects throughout the tests. According

to Winterberg and Tsotsas (2000), wall effects can generally be neglected if the

diameter of the packed bed is greater than ten times the diameter of the packing

particles. Cooked wood chips at a prescribed κ were added carefully, to avoid chip
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Figure 3.6: Schematic of the apparatus.

fracture as will as to avoid compaction in the chip column, into the test column

to the initial height of 0.45 m. The packing was performed randomly. To start

an experiment, water (T = 23◦C, µ = 0.925×10−3 Pa.s, ρ = 997.3 kg/m3) from

the 25 L tank was pumped upward through the column to remove any trapped

air and to fill the column with fluid. Then, flow was shifted through the flow-

meter to the top of the column and was allowed to stabilize and reach steady state

before taking pressure drop data. During an experiment, the chip packed bed was
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Figure 3.7: Image of the apparatus.

compressed by the piston to give three compaction loads ranging from 0 to 14

kPa. The level of the compressive pressure was chosen to achieve porosities in the

range of 0.2−0.5. This is the typical range found in industry and we determined

this through literature values as well as in a pre-trial. The applied load was kept

constant during an experiment while the flow rate was changed in increments up

to 10 L/min. These ranges covered those encountered in operating digesters. Data

was taken with increasing flow rate to avoid any hysteresis effects.
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3.4 Results and Discussion

In this section the results will be presented in four subsections. In the first part, a

brief description of the uncertainty of our measurement will be addressed by mea-

suring the resistance to flow in our apparatus with a packed-bed of monodisperse

spheres. By doing so, we are able to compare our apparatus to other estimates

given in the literature. We then report the values of the empirical constants for

the compressibility function ps. Following this we turn our attention to the main

results, that being on the estimates of r1 and r2 for wood chips at different κ using

the methodology reported in §3.2. Finally, we attempt to validate these estimates

by attempting to predict the pressure drop for a given flow rate, with knowledge

of r1 and r2 under the conditions of no applied mechanical load.

To begin, in the first set of results, polypropylene spheres (dp = 1× 10−2 m,

ρ = 905 kg/m3) were used to verify our procedure. The results are shown in Fig-

ure 3.8 alongside the estimates given by the Ergun Equation (Equations 2.5). For

the range of data considered, we find that A = 210 and B = 2.33 with the corre-

lation coefficient estimated to be r2 = 0.99 using Equation 2.5. The uncertainty

in the experimental estimate stems from the range of pressures used in this case;

we are at lower limit of the working range of the pressure transducers. In addition

there is some variation in the estimates of A and B in the literature, see Table 2.1,

due to, for example differences in the roughness of the particles, and as a result

we consider our results shown comparable to those found in the literature.

At this point we turn our attention to characterizing the behavior of wood
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Figure 3.8: The resistance to flow of water through a incompressible bed
of polystyrene spheres. The data is compared to the literature values
(solid line) to assess the uncertainty in our measurement system.

chip beds under uniaxial compression. Here we do so by measuring the change

in bed height as a function of compression pressure pc for beds that are water

saturated. The experimentally measured data are shown in Figure 3.9a as circles

with the dashed line representing the form of the function f3(ε) as defined in

Equation 2.8. The estimated values of εg is 0.54; n was found to be 1.2 over the

range of conditions tested. The constant m was found to vary as a function of κ

where m was found to be 115,78, and 67kPa for κ80,κ53, and κ25, respectively.

This is shown in Figure 3.9b. The dashed line is the functional form for m(κ) as

advanced by Harkonen (1987). With the values of m, n, and εg determined we are
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now able to estimate the values of r1 and r2 through the methodology proposed

in §3.2. The results of this analysis are presented in Figures 3.10a - 3.10c. The

dashed line represents the regression of Equation 3.27 performed using the entire

data set. For the range of data considered, we find that r1 = 3×104 Pa.s/m2 and

r2 = 1.9×106 Pa.s2/m3 with the correlation coefficient estimated to be r2 = 0.99.

These results are similar to those reported by Harkonen (1987). We also report A

and B values since they are independent of fluid properties and particle diameter

using Equations 2.12 and 2.13. For the wood-chips tests, we find that A = 475

and B = 7.49 with the same correlation coefficient estimated to be r2 = 0.99. It

should be noted that we are able to do the regression over the entire data set as the

shape of the chips does not change significantly over the range of κ .
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Figure 3.9: The uniaxial compressibility of wood chips cooked to different
κ numbers.
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Figure 3.10: The measured pressure drop per unit length for a prescribed
superficial velocity v at three different compaction pressures. The
uncertainty in the estimate for ph/L is approximately 0.3 kPa/m.
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To test the usefulness of these estimates for r1 and r2, we consider the case

of flow through the packed bed without mechanical loading, i.e. pc = 0. Here,

with the values of r1 and r2 we should be able to predict the pressure drop per unit

length for a prescribed superficial velocity. For this case, the asymptotic method

outlined in §3.2 does not apply as 1/δ → 0. What is required here is a numerical

solution of the governing equations. The system of equations, in dimensional

form, that are required to be solved is

d ps

dx
= −(r1 f1(ε)v+ r2 f2(ε)v2) (ps(L) = 0) (3.32)

ε(x) = εg − (
ps(x)

m
)

1
n (3.33)

ph = ps(0) (3.34)

Hence, with a prescribed superficial velocity v, Equation 3.32 can be integrated to

find ps(x) and used in conjunction with Equation 3.34 to estimate the hydraulic

pressure. This was performed in MATLAB using a Runge-Kutta scheme. The

predictions for wood chips at three different κ are shown in Figures 3.11a - 3.11c;

clearly a reasonable prediction was obtained.
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Figure 3.11: The predicted pressured drop (dashed line), the experimentally
measured values (circles), and the correlation without compressibil-
ity effects (solid line) for the case pc = 0. The uncertainty in the
estimate for ph/L is approximately 0.3 kPa/m. The dashed line was
calculated using the values of r1 and r2 determined above by numer-
ical integration of the governing equations.
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With the values of r1 and r2 estimated using the methodology given above, we

are now able to estimate the permeability of the wood chip bed tested in this work.

To do so we rearrange Equations 2.12 and 2.13 to find that

θs2
v =

r1

µ
(3.35)

β =
r2

ρ

√
µ
r1

(3.36)

from which we can estimate the permeability using Equation 2.2. This is shown

graphically in Figure 3.12a from which we observe that the order of magnitude of

this function over the porosity range tested is approximately k ∼ 10−8 m2. What

we find significant with these findings is that our results are dependent on poros-

ity which in turn is formed as a combination of degree of delignification, i.e. κ

number, and compaction pressure. We anticipated the possibility that the degree

of delignification may affect permeability through changes in the specific surface;

the chip may have a larger surface area through removal of the lignin. We argue

that since this is not the case, the specific surface must be related solely to the

geometry and orientation distribution of the chips in the compressible bed.

We continue the discussion of the results to attempt to highlight the effect of

κ on the permeability. The degree of delignification affects permeability through

the porosity; wood chips with different degree of delignification will compress

to different porosities under the same external mechanical load. To characterize

this, we report the relative permeability, i.e. the ratio of the permeabilities of a

κ80 bed to that of a κ25, compressed with equivalent mechanical loads, see Figure
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3.12b. Under the industrially relevant loads, the relative permeability increases

with increasing loads. This results as the κ25 chip-bed is more compressible, and

compacts to a lower porosity, in comparison to the κ80 chip bed, at equivalent

mechanical loading.

Finally, we compare our correlation to the literature for porosity of 0.35. The

results are compared to Harkonen (1987) correlation since it is widely used in

model digesters, as well as Lee (2002) correlation since Lee (2002) used sim-

ilar chip size distribution to ours, i.e. 100 % accepts. We should note that

Harkonen (1987) performed his experiments at a temperature T = 170◦C (µ =

0.068× 10−3 Pa.s, ρ = 885 kg/m3) using cooking liquor while Lee (2002) and

our tests were made at T = 23◦C (µ = 0.925×10−3 Pa.s, ρ = 997.3 kg/m3) us-

ing water. We corrected our r1 and r2 values for Harkonen (1987) conditions to

get r1 = 2× 103 Pa.s/m2 and r2 = 1.7× 106 Pa.s2/m3 with the same correlation

coefficient estimated to be r2 = 0.99. This is shown graphically in Figure 3.13

from which we observe that our correlation has lower flow resistances than the

literature correlations for similar chip size distribution and under all conditions.

This can be justified by the fact that we accounted for compressibility effects in

our correlation. As a result, the literature correlations over estimate the pressure

drop.
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(b) The relative permeability of hemlock
wood chips cooked to two different κ . The rel-
ative permeability is defined as the ratio of the
permeability of a κ = 80 wood chip bed to that
of a wood chip bed cooked to κ = 25.

Figure 3.12: 3.12a Estimate of the permeability of Hemlock wood chips us-
ing the Kozeny-Carman expression given by Equation 2.2. The tor-
tuosity and the specific surface of the chips were estimated through
use of Equations 2.12 and 2.13. 3.12b The ratio of the permeabilities
of a κ 80 to κ 25 wood chips compressed at different loads.
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3.5 Summary and Conclusions

In this work we present a methodology to characterize the resistance to fluid mo-

tion through a porous compressible bed of wood chips. Here we advance the

argument that under the limiting conditions of when the mechanical load is large

in comparison to hydraulic pressure the equations of motion can be solved asymp-

totically to produce an expression approximating the variation in porosity along

the length of the bed. With this, a methodology to estimate the resistance is given

by multiple linear regression. In the experimental portion of the work we mea-

sured the resistance to flow of a bed of hemlock wood chips, cooked to three

different κ , and compacted to three different pc. With our methodology, we find

that r1 = 3× 104 Pa.s/m2 and r2 = 1.9× 106 Pa.s2/m3. The usefulness of these

estimates were tested for the extreme case with no applied mechanical load. A

reasonable prediction was obtained, thus verifying the utility of the methodology

and the estimated resistances. After accounting for compressibility effects, we

find that our correlation has lower flow resistances than the literature correlations.
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Chapter 4

The Axial Dispersion in Wood-Chip

Beds; ERT Visualization

4.1 Introduction

In this chapter, we characterize the dispersion of a solute flowing through a com-

pressible porous bed of wood-chips under axial mechanical load. Here we exam-

ine the flow of brine solution through a compressible wood chip bed. We focus

our efforts on the industrially-relevant case of understanding the flow in wood

chips delignified to various extents, i.e. decreasing kappa numbers, and visualize

the displacement of the brine solution using electrical resistance tomography. In

§4.2, we present a methodology to estimate the axial dispersion coefficient. Here

we present the governing equations and examine two special cases in which the

porosity of the bed varies slowly in the axial direction. Under these limiting cases,
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the difficulty in estimating the diffusivity from experimental data is reduced sig-

nificantly. In §4.3, we present the details of using electrical resistance tomography

(ERT) to measure the evolution of the concentration profile of the displacement of

a brine solution, with a different solution, from the wood chip bed, as well as the

numerical methodology for estimating the axial dispersion. Here we use electrical

resistance tomography (ERT), a non-invasive device, to reconstruct a tomographic

image of the evolution of the concentration profile both spatially and temporally.

In §4.4, we present qualitatively the images of the evolution of the concentration

profiles as well as quantitative estimates of the axial dispersion coefficient.

4.2 The Methodology to Estimate De

In this section, we discuss the methodology required to image the evolution of the

concentration profile in the wood-chip bed as well as the mathematical model used

to estimate dispersion. This section is presented in three parts. In the first part, we

present the model equations to describe our experimental conditions. The model

presentation is relatively straightforward as the equations have been derived pre-

viously. Our contribution in this section is the scaling of the equations of motion,

rendering them dimensionless, so that it is possible to see two limiting cases in

which the porosity is nearly constant in the compressible bed. We do so as this

directs our experimental efforts to measure the axial dispersion for cases which

are relatively easy to analyze mathematically. Here we show two limiting cases

which are experimentally achievable. In §4.2.1 and §4.2.2, we present asymp-

totic solutions for these limiting cases and demonstrate that to leading order the
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Figure 4.1: Schematic of the geometry considered.

porosity is constant. We extend the solution and also present in these sections, the

first-order approximations for porosity.

We begin this presentation of the governing equation by defining our geome-

try. We consider the one-dimensional flow of fluid through a compressible porous

bed of length L and loaded mechanically by a compaction pressure pc, see Figure

4.1. The fluid is driven by a fluid pressure equal to a hydraulic pressure ph, ap-

plied at the top of the bed; the fluid pressure at the bottom of the bed is considered

to be zero. In a similar manner, we consider the solid-stress on the wood chips

to be equal to pc at the top of the bed and pc + ph at the bottom of the bed. In

this experiment we consider the displacement of a fluid in the bed, with an initial

concentration Ci; at t > 0, a second fluid is introduced through the top at a con-

centration C f . In this case, a fluid with a lighter density is displacing a fluid with

a heavier density.
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As the wood chip bed is compressible, that is, the porosity varies in the di-

rection of the flow, we must consider both the evolution of the concentration dis-

tribution, as well as the spatial variations in the porosity and velocity fields for a

complete description of this experiment. The literature in this area is vast and the

reader should consult the classic works by Beavers and his coworkers (Beavers

et al, 1981a,b), Burger and Concha (1998), Verhoff (1983), and Wakeman (1978)

for a full description of the derivation of the equations describing the flow field

or of the work by Poirier et al (1988) for the a description of the evolution of

the concentration field. Using the notation defined in Chapter 3, the equations of

motion for this geometry are

d p
dx

=−d ps

dx
(4.1)

d p
dx

= f1(ε)v+ f2(ε)v2 (4.2)

ps = f3(ε) (4.3)

∂C
∂ t

=
∂
∂x

(
De

∂C
∂x

)
− v

ε
∂C
∂x

(4.4)

where p and ps are the fluid pressure and the solid stress of the fluid and solid

phases, respectively; ε is the porosity of the compressible wood-chip bed; v is

the superficial velocity of the fluid; C is the concentration of a solute in the fluid;

f1(ε) and f2(ε) are empirically determined coefficients related to the resistance

of flow of the fluid; and f3(ε) is an empirically determined function that relates

the applied solid stress to the local porosity. It is traditionally referred to as the
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compressibility relationship. These empirical relationships have been recently

reported in Chapter 3 for wood-chip beds and are given as

f1(ε) = r1
(1− ε)2

ε3 (4.5)

f2(ε) = r2
(1− ε)

ε3 (4.6)

f3(ε) = m(εg − ε)n (4.7)

where r1, r2, m, n, and εg are experimentally determined constants. The boundary

conditions, as introduced above, are

p(0) = 0 ps(0) = pc + ph (4.8)

p(L) = ph ps(L) = pc (4.9)

For ease in the subsequent presentation, we define a characteristic porosity in the

bed εc obtained by solving pc+ ph = f3(εc) i.e. ε(0) where the solid-stress on the

wood chips at the bottom of the bed is equal to pc + ph. If we scale the equations

using

p̄ =
p
ph

, p̄s =
ps − pc

ph
, x̄ =

x
L
, ε̄ =

ε
εc

f̄i =
fi(ε)
fi(εc)

, C̄ =
C−Ci

C f −Ci
, t̄ =

tv
Lεc

, D̄e(ε̄) =
De(ε)
De(εc)

= ε̄b
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and form the following dimensionless groups

Pe =
vL

εcDe(εc)
, r̄1 =

r1 f1(εc)vL
ph

, r̄2 =
r2 f2(εc)v2L

ph
, δ =

ph

ph + pc

the governing equations reduce to

d p̄
dx̄

= −d p̄s

dx̄
(4.10)

d p̄
dx̄

= r̄1 f̄1(ε̄)+ r̄2 f̄2(ε̄) (4.11)

p̄s =
1
δ
(

f̄3(ε̄)−1
)
+1 (4.12)

∂C̄
∂ t̄

=
1
Pe

∂
∂ x̄

(
D̄e(ε̄)

∂C̄
∂ x̄

)
− 1

ε̄
∂C̄
∂ x̄

(4.13)

where Pe is the Peclet number. Upon elimination of ps and p, the governing

equation for porosity becomes

− 1
δ

f̄ ′3(ε̄)
dε̄
dx̄

= r̄1 f̄1(ε̄)+ r̄2 f̄2(ε̄) (4.14)

Here the symbol ′ refers to differentiation with respect to ε̄ . The boundary con-

ditions for Equation 4.14 are assigned as the solid-stress, and hence porosity, is

known at both the bottom and top of the column. In our notation these conditions

read

p̄s(0) = 1 → ε̄(0) = 1 (4.15)

p̄s(1) = 0 → ε̄(1) = ε̄g − (ε̄g −1)(1−δ )1/n (4.16)
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For the advection-diffusion equation the initial and boundary conditions are those

prescribed by Danckwerts (1953)

t̄ = 0 : C̄(x̄,0) = 0 (4.17)

x̄ = 0 :
∂C̄
∂ x̄

= 0 (4.18)

x̄ = 1 :
ε̄D̄(ε̄)

Pe
∂C̄
∂ x̄

= C̄−1 (4.19)

The objective in presenting these relationships is to develop a methodology for

determining De, which is contained in the Peclet number Pe, which is robust and

accurate. The complication in experimentally determining this variable is that this

material is compressible and ε varies as a function of x. Clearly, the certainty of

our estimate for De would increase if we could estimate the molecular diffusivity,

though measurement of the evolution of the concentration of a solute, under con-

ditions where the porosity is nearly constant. In the following two subsections,

we will demonstrate two limiting cases, which are experimentally achievable, in

which the porosity varies slowly in the direction of flow. We will then conduct our

experiments under these conditions.

4.2.1 The First Limiting Case: pc ≫ ph

Before we proceed it is interesting to note that there is a one-way coupling be-

tween Equations 4.14 and 4.13. Here the porosity is independent of the concen-

tration field; the concentration field however is affected by the porosity. Because

of this one-way coupling we can operate on Equation 4.14 independently of Equa-
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tion 4.13. In this subsection, we will demonstrate that under this limiting case, the

porosity varies slowly in x. Under the conditions that the mechanical load is much

greater than the hydraulic pressure, we find that 0 < δ ≪ 1. If we seek a solution

of the form

ε̄ = ε̄(0)+δ ε̄(1)+ ... (4.20)

Equation 4.14 is reduced to two linear differential equations i.e.

− f̄ ′3(ε̄
(0))

dε̄(0)

dx̄
= 0 (4.21)

− f̄ ′3(ε̄
(0))

dε̄(1)

dx̄
= r̄1 f̄1(ε̄(0))+ r̄2 f̄2(ε̄(0)) (4.22)

with the boundary conditions

ε̄(0)(0) = 1 ε̄(1)(0) = 0 (4.23)

ε̄(0)(1) = 1 ε̄(1)(1) =
(ε̄g −1)

n
(4.24)

With this, the solution of this set of equations is given by

ε̄ = 1+δ
(ε̄g −1)x̄

n
+O(δ 2) (4.25)

subject to the constraint that

r̄1 + r̄2 = 1+O(δ 2) (4.26)
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We interpret Equation 4.25 to state that to the lowest-order, the porosity is

constant and approximately equal to the characteristic porosity, i.e. ε ≈ εc. The

porosity gradient which must exist is small; its magnitude is proportional to the

ratio of the hydraulic pressure to the compressive pressure. As we are able to con-

duct experiments with ph/pc → 0, we consider ε to be a constant for the purpose

of estimating Pe.

4.2.2 The second limiting case: pc = 0 and m ≫ ph

Physically we interpret this case as one in which there is no applied mechanical

load and that the applied hydraulic pressure is much less than the stiffness of the

porous bed. In simpler terms, we consider the case of very slow flow through an

unloaded bed. This case is quite subtle and to help highlight why the gradients

are small we examine the boundary conditions given by Equation 4.16. As δ = 1

under these conditions, this boundary condition reduces to ε̄ = ε̄g which can be

expressed as

ε̄ =
εg

εc
=

1

1− 1
εg

( ph
m

)1/n
≈ 1+

1
εg

( ph

m

)1/n
+ ... (4.27)

If m ≫ ph, we find that porosity at the upper and lower bounds of the bed, to the

lowest order of approximation, are the same and equal to 1, see 4.15 to verify this

argument. This indicates a regime in which the porosity gradients are small and

achievable experimentally for the material we are using.

To formalize this argument and to rigourously deduce the form of the porosity
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gradient, we define

γ =
1
εg

( ph

m

)1/n
(4.28)

such that 0 < γ ≪ 1 and seek a solution of the form

ε̄ = 1+ γε̄(1)+ ... (4.29)

With this Equation 4.14 is reduced to

dε̄(1)

dx̄
= 1 (4.30)

where

f̄ ′3(1) =− n
ε̄g −1

=−n
γ

(4.31)

subject to

r̄1 + r̄2 = n+O(γ) (4.32)

and

ε̄(1)(0) = 0 ε̄(1)(1) = 1 (4.33)
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With this, the solution of this set of equations is given by

ε̄ = 1+ γ x̄+O(γ2) (4.34)

For both limiting cases, we find that to the lowest order of approximation, the

porosity gradients are essentially constant and as a result, the linear advective-

diffusion equation can be simplified, considerably to read

∂C̄
∂ t̄

=
1
Pe

∂ 2C̄
∂ x̄2 − ∂C̄

∂ x̄
(4.35)

Under these conditions, we will estimate Pe by numerically integrating Equation

4.35 and comparing this to experimental data. The methodology for collecting the

experimental data is given in the following section.

4.3 Experimental Materials and Methods

Air dried (to approximately 90% solid content) Hemlock wood chips were used

in this study. These chips were made by a disk chipper which produces a chip

shaped as a parallelepiped, see Figures 4.2a and 4.2b . The chips were classified

using a Wennberg ChipClassTM classifier (Weyerhaeuser), shown in Figures 4.3a

and 4.3b . The accept chips were further classified according to thickness using

2 and 4 mm slotted screens. For each chip fraction, the average length, width and

thickness were measured by hand by randomly selecting a sample consisting of

250 individual chips, see Appendix B. Only accept chips fraction with 2−4 mm

thickness was used in this study to avoid any non-uniformity of the oversized and
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undersized chip fractions, see Table 4.1. In addition both the equivalent particle

mean diameter dp, defined as

dp = 6
Vp

As
(4.36)

as well as the sphericity ψ , are also given in the table to help characterize the

wood chip further.
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(a)

(b)

Figure 4.2: Geometry of disk chipper chips.
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Figure 4.3: 4.3a Chip screening apparatus. 4.3b Chip size distribution.
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Screen Thickness Width Length dp ψ Mass Fraction
(mm) (mm) (mm) (mm) (%)

4 mm slot 4.4(±0.7) 19.1(±8.5) 22.9(±3.6) 9.2 0.60 37.6
2 mm slot 2.6(±0.6) 14.7(±6.5) 21.2(±2.0) 6.3 0.53 62.4
Total Mixture 7.1 0.56 100.0

Table 4.1: Characteristics and dimensions with standard deviations of the
wood chips before cooking. The total mixture was composed of
37.6%(wt/wt) of the 4 mm slot chips with the balance of mixture com-
prised of the 2 mm slot chips. Both dp as well as ψ for the total mixture
are averages based upon the mass fraction of each species, see Appen-
dices B and C.

Cooks of accept chips were done to κ numbers of 25, 53 and 80, which rep-

resents the variation of kappa number during industrial cooking, using a 28 L

Werverk laboratory digester (FPInnovation, Vancouver). Cooks were made using

conventional kraft pulping conditions, see Table 4.2. After the cook, we washed

the cooked wood chips gently, while they are in the cooking basket of the digester,

by running water for about 15 mins to remove any residual alkali, and then we

transferred the washed wood chips into storing buckets. The washing and trans-

ferring processes were done very carefully in order to protect the dimensions of

the cooked wood chips. Also before doing any experiments in our lab, we soaked

and washed the cooked wood chips, while they are in our bed, with water until

the effluent was clear. Our observations indicate that with lower kappa number

chips, the longer the washing time that was required. Figures 4.4a-4.4d show a

comparison of the wood chips before and after cooking to different κ numbers

where the cooked wood chips preserved their dimensions.
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Wood chips species Hemlock (Accepts 2−4 mm)

Wood chips charge (oven dry) 3.0 O.D.kg

Liquor to Wood ratio 4.5 : 1

Effective Alkali charge (EA) 17% as Na2O

Sulfidity 26.95%

Heating rate 1.11◦C/min

Maximum cooking temperature 170◦C

Time to temperature 140 minutes

Time at temperature To desired κ number

Table 4.2: Cooking conditions using the laboratory digester.
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(a) κ = 180 (b) κ = 80

(c) κ = 53 (d) κ = 25

Figure 4.4: Comparison of the accept chips before and after cooking to dif-
ferent κ numbers. Scale in the picture is in cm.
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There are a number of experimental techniques currently available to visualize

the motion of a fluid in a dense, opaque porous medium: X− or γ ray attenuation,

acoustics, or nuclear magnetic resonance. In this work we use electrical resistance

tomography (ERT), a methodology which has been recently applied to a number

of engineering studies (Williams and Beck, 1995; Lucas et al, 1999; Bolton et al,

2004; Vlaev and Bennington, 2004, 2005, 2006; ITS, 2006).

A schematic diagram of the test apparatus is shown in Figures 4.5 and 4.6. The

column has an inside diameter of 15 cm, a height of 45 cm and was made from

1.25 cm thick Plexiglas. The column has a perforated plate (having an open area

of 40% using 3 mm diameter holes) equipped by a piston in order to simulate a

compaction pressure (0-14 kPa) and create uniform flow through the wood chips.

The compressive pressure was controlled by a pneumatic air cylinder (Ameri-

can Cylinder R⃝Co., Inc., Model 1500DVS-1”, Peotone, Illinois). The pressure

drop across the column was divided into four equal sections (11.25 cm) and mea-

sured by four differential pressure transducers (Omega R⃝Engineering Inc., model

PX2300-1DI, Laval, Quebec). For measuring the hydraulic pressure at the top

of the Column, a gage pressure transducer (Omega R⃝Engineering Inc., model

PX01C1-015GI, Laval, Quebec) was used. For measuring the flow, a magnetic

flow-meter (Rosemount R⃝Measurement, model 8712, Irvine, CA) was used. In

addition, a centrifugal pump (Cole-Parmer R⃝Inc., Model K-07085-00, Concord,

Ontario) was used to circulate the flow in the chip column.

The column diameter and height were chosen with consideration of industrial

and previous researchers’ designs. In addition, this column’s diameter helped in
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Figure 4.5: Schematic of the apparatus.

creating uniform force by the piston as well as reducing the quantity of cooked

wood chips used since we didn’t have a limitless supply. Moreover, it is as-

sumed that there is no channeling or other wall effects, which was confirmed using

ERT, for the experimental conditions tested. According to Winterberg and Tsotsas

(2000), wall effects can generally be neglected if the diameter of the packed bed

is greater than ten times the diameter of the packing particles.

With ERT, differences in electrical conductivity σ of the fluid are mapped
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Figure 4.6: Image of the apparatus.

by conductivity sensors located on the periphery of the apparatus. With the tomo-

graph used, an ITS P2000 (Industrial Tomography Systems, Manchester, UK), im-

ages are scanned along 8 different parallel planes, approximately 5.625 cm thick,

to give an axial extent of approximately 45 cm. Each axial plane is made up of

20× 20 pixels, 58 mm2 formed from 16 conductivity probes separated by 22.5◦

along the circumference of the apparatus representing the interior cross-section of

the vessel, for which some pixels lie on the outside of the vessel circumference.

Before we process the conductivity signals, we need to convert the conductivity
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tomogram produced by ERT to a concentration tomogram since it is a 1:1 map

as shown in Appendix G. We then processed the concentration signals to create

two different reconstructed images. To help in this we define Ce(x,y,z, t), where

(y,z) are the coordinates in each individual ERT plane, to represent the experimen-

tal concentration of of the solute. In the first series of reconstructed images we

transform the measurements in each plane to create a map ⟨Ce(x,y, t)⟩ from which

we can examine the curvature in the advancing front. Specifically,⟨Ce(x,y, t)⟩ is

calculated using

⟨Ce(x,y, t)⟩=
1
Z

∫ Z

0
Ce(x,y,z, t)dz (4.37)

where Z is the distance over which the image is averaged in the z-coordinate. In

the second reconstructed images, we average the values at each plane to create a

data point, i.e.

⟨⟨Ce(x, t)⟩⟩=
1

ZY

∫ Y

0

∫ Z

0
Ce(x,y,z, t)dydz (4.38)

to estimate the extent of axial dispersion where Y is the distance over which the

image is averaged in the y-coordinate.

To start an experiment, cooked wood chips at a prescribed κ were added care-

fully, to avoid chip fracture as will as to avoid compaction in the chip column,

into the test column to the initial height of 0.45 m. The packing was performed

randomly. Then the chip packed bed was compressed by the piston to a known

load, somewhere in the range from 0 to 14 kPa. The level of the compressive pres-
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sure was chosen to achieve porosities in the range of 0.2−0.5. This is the typical

range found in industry and we determined this through literature values as well

as in a pre-trial. A 5.36×10−2 M NaCl salt solution (T = 23◦C, 4 mS/cm) was

introduced by prescribing the inlet flowrate of 5 L/min and measuring the inlet

pressure ph. At t = 0, the valve was switched to the second tank, instead of the

first tank, and a 2.52× 10−2 M NaCl solution (T = 23◦C, 2 mS/cm) was intro-

duced at the top of the column, at the same pressure and flowrate to displace the

higher conductivity brine solution in the wood chip column. In this case a lower

density solution displaces a higher density one to avoid any gravity currents. Ta-

ble 4.3 shows a listing of the experimental conditions tested. Both limiting cases

were tested using Hemlock wood chips cooked to three different κ . In total 12

different cases were tested and the conditions used are summarized in Table 4.3.

These ranges covered those encountered in operating industrial digesters. Only

the two limiting cases were tested. As shown cases under limiting conditions 1 is

given when δ → 1; for the second limiting case γ → 0.

To estimate the axial dispersion coefficient we formally define the case in

which we want to minimize the function S(De), which represents the L2 norm of

the difference between the experimental measurements and the solution of Equa-

tion 4.35. Formally, we state that we seek

minS(De) = ∥C̄(x̄, t̄)−
⟨⟨

C̄e(x̄, t̄)
⟩⟩

∥ (4.39)
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subject to

∂C̄
∂ t̄

=
1
Pe

∂ 2C̄
∂ x̄2 − ∂C̄

∂ x̄
(4.40)

C̄(0, t̄) =
⟨⟨

C̄e(0, t̄)
⟩⟩

(4.41)

C̄(1, t̄) =
⟨⟨

C̄e(1, t̄)
⟩⟩

(4.42)

C̄(x̄,0) =
⟨⟨

C̄e(x̄,0)
⟩⟩

(4.43)

It should be noted that we are not using the (Danckwerts, 1953) conditions as

indicated previously. Here we are using experimental data to represent both the

boundary and initial conditions. By doing so we estimate De using the data from

the six remaining ERT planes. This minimization problem was conducted using a

MATLAB built-in function for unconstrained optimization, i.e. f minbnd. In ad-

dition Equation 4.40 was integrated using another built-in function in MATLAB,

pdepe.
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Limiting Case κ m pc ph L εc δ γ De Pe r2

(kPa) (kPa) (kPa) (m) (m2/s)
pc ≫ ph 80 115 5.6 0.163 0.386 0.462 0.028 0.008 9.09×10−3 0.43 0.997

80 115 9.8 0.234 0.351 0.408 0.023 0.011 2.01×10−2 0.20 0.999
80 115 14.0 0.391 0.330 0.370 0.027 0.016 3.78×10−2 0.11 0.999
53 78 5.6 0.286 0.343 0.414 0.049 0.017 9.18×10−3 0.42 0.997
53 78 9.8 0.545 0.309 0.354 0.053 0.030 3.31×10−2 0.12 0.999
53 78 14.0 1.736 0.277 0.280 0.110 0.078 9.64×10−2 0.05 0.999
25 67 5.6 0.267 0.336 0.379 0.046 0.019 3.40×10−2 0.12 0.999
25 67 9.8 0.663 0.291 0.283 0.063 0.040 1.02×10−1 0.05 1.000
25 67 14.0 2.409 0.267 0.225 0.147 0.116 2.16×10−1 0.03 0.999

m ≫ ph 80 115 0.0 0.135 0.450 0.538 1.000 0.007 3.72×10−3 1.06 0.989
53 78 0.0 0.118 0.450 0.537 1.000 0.008 3.17×10−3 1.24 0.992
25 67 0.0 0.107 0.450 0.536 1.000 0.009 3.25×10−3 1.21 0.992

Table 4.3: A summary of the experimental conditions tested with estimates
of the axial dispersion coefficients.
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4.4 Results and Discussion

We begin the presentation of the results by presenting a case representative of

the phenomenon of the brine solution being displaced from the column. To aid

in the clarity, we present a contour plot of ⟨Ce(x,y, t)⟩ at 6 different times, see

Figures 4.7a - 4.7f. As shown, the column is initial one concentration and as time

progresses, the more dense salt solution is swept vertically out through the bottom

of the column. From these figures we see the evolution of the concentration and

physically the dispersion coefficient represents the gradient of the concentration at

the interface between the two fluids. In all cases measured, a larger concentration

gradient existed in the vertical direction rather than in the horizontal direction;

this indicates that we nearly achieved a one-dimensional displacement and wall

effects are negligible. In all cases measured, channeling was not observed.

The evolution of the axial concentration profiles are shown for a number of

cases in Figures 4.8a and 4.8b. Two dramatically different cases are shown in

which in Figure 4.8b the porosity is much lower than in Figure 4.8a. What is

evident in these images is that the concentration gradients for the conditions with

the lower porosity are smaller than for those measured at the higher porosity. For

the lower porosity case, the results appear seemingly like the idealized results of a

well-stirred tank. The dashed lines in these figures represent the best fit for De as

estimated using the optimization. We speculate that the results stem from the fact

that there is greater tortuosity, created by more dead end channels, in the highly

compressed bed. This may represent one source of the heterogeneity which is
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found industrially.

Estimates of De for each case tested are shown in Table 4.3, along with the cor-

relation coefficients. This is also shown in Figure 4.9a as a function of porosity

for different kappa numbers. The trend in this data is similar to that indicated by

Equation 2.20 and we find a = 7.2× 10−4 m2/s and b = −3.8. The estimates of

De using Equation 2.20, with our experimentally determined a and b, are suitable

for all industrial situations since the tested conditions covered those encountered

in operating industrial digesters. We also report in Figure 4.9b that the axial dis-

persion is related to the inverse of the permeability, as measured in Chapter 3

where axial dispersion scales out with the inverse of the permeability.
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Figure 4.7: Contour images of a representative ERT measurement with κ =
80, pc = 0 kPa, and ε = 0.54.

83



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Dimensionless Time 

D
im

en
si

on
le

ss
 C

on
ce

nt
ra

tio
n

 

 

Measured
Model

P1

P3

P2

P4

P5

P7

P6

(a) κ = 80, pc = 0 kPa, ε = 0.54

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Dimensionless Time

D
im

en
si

on
le

ss
 C

on
ce

nt
ra

tio
n

 

 

Measured
Model

P6

P7

P5

P4

(b) κ = 25, pc = 14.0 kPa, ε = 0.25

Figure 4.8: The evolution of the concentration of the brine solution as a
function of time at different elevations in the column. P1-P7 are ERT
planes 1-7.
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4.5 Summary and Conclusions

In this work we present a methodology to characterize axial dispersion through

a porous compressible bed of wood chips while visualizing the flow using ERT.

Here we demonstrate that under two limiting cases the porosity of the porous bed

varies slowly in the flow-direction and to the lowest order can be considered a

constant. This simplified the optimization routine we used to match the experi-

mental data to the numerical results of the advection-diffusion equation. Using

this, a methodology to estimate the axial dispersion is given by a minimization

scheme. We find that for Hemlock chips, cooked to κ in the range 25-80, the

axial dispersion followed an equation of the form De = aεb where a and b were

determined to be 7.2×10−4 m2/s and b =−3.8, respectively.
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Chapter 5

Summary and Conclusions

In the first portion of this work we present a methodology to characterize the re-

sistance to fluid motion through a porous compressible bed of wood chips. Here

we advance the argument that under the limiting conditions of when the mechan-

ical load is large in comparison to hydraulic pressure the equations of motion can

be solved asymptotically to produce an expression approximating the variation in

porosity along the length of the bed. With this, a methodology to estimate the re-

sistance is given by multiple linear regression. In the experimental portion of the

work we measured the resistance to flow of a bed of hemlock wood chips, cooked

to three different κ , and compacted to three different pc. With our methodology,

we find that r1 = 3×104 Pa.s/m2 and r2 = 1.9×106 Pa.s2/m3. The usefulness of

these estimates was tested for the extreme case with no applied mechanical load.

A reasonable prediction was obtained, thus verifying the utility of the methodol-

ogy and the estimated resistances. After accounting for compressibility effects,
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we find that our correlation has lower flow resistances than the literature correla-

tions.

In the second portion of this work we present a methodology to characterize

axial dispersion through a porous compressible bed of wood chips while visual-

izing the flow using ERT. Here we demonstrate that under two limiting cases the

porosity of the porous bed varies slowly in the flow-direction and to the lowest

order can be considered a constant. This simplified the optimization routine we

used to match the experimental data to the numerical results of the advection-

diffusion equation. Using this, a methodology to estimate the axial dispersion is

given by a minimization scheme. We find that for Hemlock chips, cooked to κ in

the range 25-80 and compacted to pc in the range 0−14 kPa, the axial dispersion

followed an equation of the form De = aεb where a and b were determined to be

7.2×10−4 m2/s and −3.8, respectively.

88



Chapter 6

Recommendations for Future Work

The following recommendations are suggested for future work in flow uniformity

on digester operations:

• Introduction of radial flow in the wood-chip column. This will allow for ad-

vancing 2-D/3-D models for estimating radial permeability and radial dis-

persion.

• Usage of high spatial resolution imaging techniques such as computed axial

tomography (CAT-Scan) or nuclear magnetic resonance imaging (NMRI).

This will allow for axial and radial porosity distribution measurements.

• CFD modeling, i.e. volume-averaged approach (RANS), with these new

estimates of permeability and axial dispersion. This will account for com-

pressibility effects when simulating the liquor flow through the digester.
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• Industrial data of pressure drop and tracer studies are required to compare

with our experimental data.
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Appendix A

Apparatus Design
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Figure A.1: Schematic of the apparatus.
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Figure A.2: Schematic of the top screen plate.
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Figure A.3: Schematic of the top flange.
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Figure A.4: Schematic of the top pipe section.
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Figure A.5: Schematic of the pipe with ERT ring.
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Figure A.6: Schematic of the ERT sensors.
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Figure A.7: Schematic of the pipe with ERT and DP ring.
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Figure A.8: Schematic of the bottom flange.
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Figure A.9: Schematic of the ground ERT sensor.
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Figure A.10: Schematic of the bottom screen plate.
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Figure A.11: Schematic of the bottom cap.
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Figure A.12: Side view of the apparatus.
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Figure A.13: Top view of the apparatus.
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Appendix B

Wood Chips Screening Analysis

Wood chips are produced by cutting the wood perpendicular to the grain direction

with wedged knives. The average chip length, width, and thickness can vary due

to the chipper setting depending on the structure of the wood. Common chip

dimensions are 12 to 25 mm long, 12 to 25 mm wide, and 2 to 10 mm thick.

Wood chips require screening before cooking to eliminate oversize pieces that

cause heterogeneous delignification, and fines that easily overcook and increase

flow resistance in liquor circulation (Gullichsen et al, 1992). Figure B.1 shows

a common wood chip geometry and dimensions. Different thickness fractions

were analyzed by randomly selecting 250 pieces of wood chips from the pile to

determine their length, width, and thickness. The statistical analysis of different

thickness fractions are tabulated in Table B.1 and B.2
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Figure B.1: Typical chip geometry and dimensions.
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Statistics Length Width Thickness
(mm) (mm) (mm)

Sample Size 250 250 250
Mean 21.21 14.69 2.76
Median 20.99 13.80 2.77
Mode 20.74 11.35 2.00
Standard Deviation 1.99 6.47 0.57
Sample Variance 3.97 41.89 0.32
Standard Error 0.13 0.41 0.04
Minimum 16.14 2.87 1.29
Maximum 31.89 39.73 4.08
Range 15.75 36.86 2.79
Sum 5302.88 3673.72 690.40
Confidence Level (95%) 0.25 0.80 0.07

Table B.1: Statistical analysis of 2 mm thickness fraction in accepts.

Figure B.2: 2mm thickness fraction in accepts.
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Statistics Length Width Thickness
(mm) (mm) (mm)

Sample Size 250 250 250
Mean 22.91 19.14 4.36
Median 22.62 17.52 4.22
Mode 22.04 17.95 4.03
Standard Deviation 3.64 8.48 0.71
Sample Variance 13.26 71.92 0.50
Standard Error 0.23 0.54 0.04
Minimum 2.17 4.95 2.21
Maximum 50.63 57.78 6.38
Range 48.46 52.83 4.17
Sum 5726.92 4785.52 1090.25
Confidence Level (95%) 0.45 1.05 0.09

Table B.2: Statistical analysis of 4 mm thickness fraction in accepts.

Figure B.3: 4mm thickness fraction in accepts.
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Appendix C

Calculation of Sauter Mean

Diameter of Wood Chips

The method of Sauter mean diameter based on weight fraction was used to calcu-

late the Sauter mean diameter d32 of wood chips.

Screen Thickness Width Length Mass Fraction
(mm) (mm) (mm) (xi)

4 mm slot 4.4(±0.7) 19.1(±8.5) 22.9(±3.6) 0.376
2 mm slot 2.6(±0.6) 14.7(±6.5) 21.2(±2.0) 0.624

Table C.1: Average length, width, and thickness for mass fractions of ac-
cepts.

To determine d32 of wood chips (parallelepipedal shape), the specific surface
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area Sv is used

Sv =
As

Vp
=

2× (w× t +w× l + t × l)
l ×w× t

(C.1)

where As is the mean surface area of the particles, Vp is the volume of the particles,

l is the mean length of the particles, w is the mean width of the particles, and t is

the mean thickness of the particles.

For non-spherical particles, the equivalent particle diameter dp can be written

as (Comiti and Renaud, 1989):

dp =
6
Sv

(C.2)

For a wide range of size distribution, the Sauter mean diameter of particle can be

given by (Coulson et al, 1978):

d32 =
1

∑
i

xi
dp,i

(C.3)
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Appendix D

Porosity Measurement

In the two-phase test column and at no flow, cooked chips occupy the volume

fraction εchip and the remaining interstitial space is filled with liquid. This liquid

occupies the characteristic void fraction (porosity) εc . As a result

εc + εchip = 1 (D.1)

The basic density of uncooked wood chips ρchip was determined using a water

displacement method (CPPA standard A.8P) to be 398.27 (oven dry kg)/(m3 green

volume). To account for the decreased density after cooking due to the loss of

lignin, the chip density was multiplied by the cook yield Y to determine the cooked

wood chips density ρcook
chip

ρcook
chip = Y ρchip (D.2)

After adding the cooked wood chips to the test column, they have an initial bulk
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packing density of ρo
b (volume occupied by the oven-dry mass of cooked wood

chips added). To account for compression of the cooked chip column, a bulk

packing density of ρ p
b was used which varies according to Equation D.3

ρ p
b = ρo

b (
Lo

Lp
) (D.3)

where Lo is the initial bed length before compressing the cooked wood chips,

and Lp is the bed length after compressing the cooked wood chips. The volume

fraction of cooked wood chips becomes

εchip =
ρ p

b

ρcook
chip

(D.4)

By substituting Equation D.4 into Equation D.1 and rearranging to get

εc = 1−
ρ p

b

ρcook
chip

(D.5)

or

εc = 1−
ρo

b (
Lo
Lp
)

Y ρchip
(D.6)

118



Appendix E

Pneumatic Cylinder Desgin

Below shows the conversion from air pressure to actual force on the chip column

based on the area of the piston.

Power Factor (PF) 0.89
Piston Diameter (m) 2.70×10−2

Piston Area Apiston (m2) 5.72×10−4

Compaction Plate Diameter (m) 0.1524
Compaction Area Ac (m2) 1.820×10−2

Air Line Pressure Air Line Pressure Cylinder Output Force Compaction Pressure
(bar) (kPa) (N) (kPa)
2.0 200 101.9 5.6
3.5 350 178.4 9.8
5.0 500 254.8 14.0

Table E.1: Calculation of compaction pressure.
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The pneumatic cylinder output force F can be given by

F = pair ×PF ×Apiston (E.1)

where pair is the air line pressure, PF is the power factor (efficiency) of the pneu-

matic cylinder, and Apiston is the piston area.

The compaction pressure can be given then by

pc =
F
Ac

= 0.028 pair (E.2)

where Ac is the compaction area. Figure E.1 shows the relationship between com-

paction pressure and air line pressure.
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Figure E.1: Relationship between compaction pressure and air line pressure.
Solid line is given by Equation E.2.
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Appendix F

Pressure Drop Across Screen Plate

Before the test run, we need to determine pressure drop across the screen plate by

measuring the screen plate resistance at empty column with different flow rates.

The pressure drop across the screen plate as a function of superficial velocity is

shown in Figure F.1. By simple curve fitting of the data using linear regression in

MATLAB we determine the Equation of the fitting line to calculate pressure drop

across the screen plate as a function of superficial velocity

d pscreen (kPa) = 0.0025v(mm/s) (F.1)

During the test, the differential pressure transducer measures the pressure

drops including; screen plate, hydrostatic water, and bed. In order to obtain the

pressure drop across the bed only, we need to subtract pressure drop across screen

plate, and hydrostatic pressure drop of water from the measured pressure drop.

122



0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

v (mm/s)

dp
sc

re
en

 (
kP

a)

dp
screen

 (kPa) = 0.0025 v (mm/s)

Figure F.1: Pressure drop across the screen plate. Dashed line is given by
linear regression fit in MATLAB to give Equation F.1.
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Appendix G

Conductivity to Concentration

Tomogram

Before the test run, we need to convert the conductivity tomogram produced by

ERT to a concentration tomogram by measuring the conductivity of NaCl brine

solution with different brine concentrations. The brine concentration as a function

of brine conductivity is shown in Figure G.1. By simple curve fitting of the data

using linear regression in MATLAB we determine the Equation of the fitting line

to calculate brine concentration as a function of brine conductivity

C (M) = 0.0142σ (mS/cm)−0.0032 (G.1)
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Figure G.1: Concentration of Brine Solution. Dashed line is given by linear
regression fit in MATLAB to give Equation G.1.
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Appendix H

Higher Order Estimates of ε(x)

We can extend the accuracy of the analysis in Chapter 3 by extending the number

of terms of the form of the solution. If

ε̄ = ε̄(0)+δ ε̄(1)+δ 2ε̄(2)... (H.1)

r̄i = r̄(0)i +δ r̄(1)i +δ 2r̄(2)i ... (H.2)

the O(δ 2) terms must satisfy

 −ε̄(1) f̄ ′′3 (1)
dε̄(1)

dx̄
− f̄ ′3(1)

dε̄(2)

dx̄
=

ε̄(1)
(

r̄(0)1 f̄ ′1(1)+ r̄(0)2 f̄ ′2(1)
)
+ r̄(1)1 + r̄(1)2

(H.3)
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subject to

ε̄(2)(0) =−1
2

f̄ ′′3 (1)(
f̄ ′3(1)

)3 ε̄(2)(1) = 0 (H.4)

This relationship can be solved to yield

ε̄(2) =−1
2
(x̄− x̄2)(
f̄ ′3(1)

)2

(
r̄(0)1 f̄ ′1(1)+ r̄(0)2 f̄ ′2(1)

)
−

f̄ ′′3 (1)

2
(

f̄ ′3(1)
)3 (1−2x̄+ x̄2) (H.5)
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Appendix I

Summary of the Required Functions

Here is a summary of the required functions in Chapters 3 and 4:

f̄1(ε̄) =
(

1− εcε̄
1− εc

)2 1
ε̄3 (I.1)

f̄2(ε̄) =
(

1− εcε̄
1− εc

)
1
ε̄3 (I.2)

f̄3(ε̄) =
(

ε̄g − ε̄
ε̄g −1

)n

(I.3)

f̄ ′1(1) =
εc −3
1− εc

(I.4)

f̄ ′2(1) =
2εc −3
1− εc

(I.5)

f̄ ′3(1) =− n
ε̄g −1

(I.6)

f̄ ′′3 (1) =
n(n−1)
(ε̄g −1)2 (I.7)
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Appendix J

MATLAB Codes

J.1 Compressibility Function Regression Code

The code written in MATLAB 7.5 for the compressibility function regression is

included here. The main file is:

• Ps_regression.m
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Program J.1 Main Program: Ps regression.m

%***************************************************
% Author: Mohammed Alaqqad (2011)
% Description: This is a program that correlates the
% compressibility as a function of void fraction.
% The method used for the correlation is least
% square method (Linear regression).
% In the form Ps=m(voidg-void)ˆn
%***************************************************

% Clear History
clear all
% kappa(voidc,Pc(kPa),k1(80)-k2(53)-k3(25))
kappa = zeros(4,2,3);
kappa(:,:,1) = [0.538 0.0;

0.462 5.6;
0.416 9.8;
0.372 14.0];

kappa(:,:,2) = [0.537 0.0;
0.414 5.6;
0.354 9.8;
0.280 14.0];

kappa(:,:,3) = [0.536 0.0;
0.397 5.6;
0.316 9.8;
0.250 14.0];

[npx npy npe] = size(kappa);

for i = 1:npe
for j=2:npx

xdata(j-1) = log(kappa(1,1,i)...
- kappa(j,1,i));
ydata(j-1) = log(kappa(j,2,i)*1000);

end
p = polyfit(xdata,ydata,1);
fitP(i,:) = [p(1),exp(p(2))/1000,kappa(1,1,i)];

130



EpsI(i,:) = linspace(kappa(1,1,i),...
kappa(end,1,i),100);
psI(i,:)= exp(p(2))*(kappa(1,1,i)...
- EpsI(i,:)).ˆp(1);

end
hold on
box on

fitP

plot(kappa(:,1,3), kappa(:,2,3),’sk’,kappa(:,1,2),...
kappa(:,2,2),’vk’,kappa(:,1,1), kappa(:,2,1),’ok’)
xlabel(’Porosity \epsilon’,’Fontsize’,16)
ylabel(’P_s (kPa)’,’Fontsize’,16)
legend(’\kappa = 25’,’\kappa = 53’,’\kappa = 80’)
plot(EpsI(1,:), psI(1,:)/1000,’--k’,EpsI(2,:),...
psI(2,:)/1000,’--k’,EpsI(3,:), psI(3,:)/1000,’--k’);
axis([0.2 0.7 0 18])
% use this command in all figures to change all
% legends and axis etc to this
% font size
set(gca,’fontsize’,16)

mdata = fitP(:,2)
kdata = [80 53 25]’
p = polyfit(log(kdata),mdata,1)
kI = linspace(kdata(1),kdata(end),50);
%mI = polyval(p,log(kI));
mI = (0.0774-0.0129.*log(kI)).ˆ-1.2;
figure(2)
plot(kdata,mdata,’ok’,kI,mI,’--k’)
ylabel(’m (kPa)’,’Fontsize’,16)
xlabel(’\kappa’,’Fontsize’,16)
axis([20 86 50 120])
set(gca,’fontsize’,16)

figure(3)
mI = (0.214-0.0357.*log(kI)).ˆ-1.7;
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plot(kI,mI,’-k’)
ylabel(’m (kPa)’,’Fontsize’,16)
xlabel(’\kappa’,’Fontsize’,16)
axis([20 86 50 130])
set(gca,’fontsize’,16)
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J.2 Pressure Drop Regression Code

The code written in MATLAB 7.5 for the pressure drop regression is included

here. The main file is:

• Ph_regression.m
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Program J.2 Main Program: Ph regression.m

%***************************************************
% Author: Mohammed Alaqqad (2011)
% Description: This is a program that correlates the
% pressure as a function of velocity and void
% fraction. The method used for the correlation is
% least square method (Multiple Linear regression).
%***************************************************

%***************************************************
% USER NEEDS TO SPECIFY/INPUT THE NECESSARY
% PARAMETERS AND FILENAME:-
% name : The name of the data set (Pressure Drop)
% datafile: The file name that the data store
% (pressuredrop.txt)
%***************************************************

% Clear History
clear all

name=’Pressure Drop’;
datafile=’dp_regression.txt’;

% Clear Matlab command window
clc
disp(’In progress...’)

% Get data from text file
% column 1 column 2 column 3 column 4
% column 5 column 6
% voidc U(mm/s) DP/L(Pa/m) Ph (Pa)
% k Pc (kPa)

% fid =fopen(filename, permission)
fid = fopen(datafile,’r’);
[x1 x2 x3 x4 x5 x6 x7]=textread...
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(datafile,’%f%f%f%f%f%f%f’);
status=fclose(fid);

% Determine number of data points
count=length(x1);

voidc=x1;
% Convert velocity from (mm/s) to (m/s)
u=x2./1000;
dp=x3;
Ph=x4;
% Convert Pc from (kPa) to (Pa)
kappa=x5;
Pc=x6.*1000;
%ne=x7;
ne=1.2;

% viscosity of liquid (Pa.s)
mu=0.000925;
% density of liquid (kg/m3)
ro=997.3;
% equivalent particle diameter (m)
d=0.00714;
% sphericity ()
sp=0.556;

delta=Ph./Pc;
voidg=0.54;

term1=(1+((delta./2).*((3-voidc)./(1-voidc)).*...
((voidg-voidc)./(voidc.*ne)))).*...
(((1-voidc).ˆ2)./(voidc.ˆ3)).*u;

term2=(1+((delta./2).*((3-2.*voidc)./(1-voidc))...
.*((voidg-voidc)./(voidc.*ne)))).*((1-voidc)...
./(voidc.ˆ3)).*(u.ˆ2);

% Create the x matrix from these vectors
% using a for loop
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% The dependent variable goes into a n*1
% column vector.
for n=1:count

x(n,1)=term1(n);
x(n,2)=term2(n);
y(n,1)=dp(n);

end

% Use the matrix division operation.
a=(x’*x)\(x’*dp);
A=(a(1)*(dˆ2*spˆ2))/mu;
B=(a(2)*(d*sp))/ro;

%Harkonen correction for r1 and r2
mu_h=0.000068;
ro_h=885;

r1_h=(A*mu_h)/(dˆ2*spˆ2);
r2_h=(B*ro_h)/(d*sp);

%z=inv(x’*x);

% Calculate the values of the pressure drop
% predicted by the equation.
% Then calculate the difference between
% the experimental and predicted values

% dppred == dp predicted
% res == residuals
% diff == percent different
dppred =x*a;
res=(dp-dppred);
diff=abs(res./dp)*100;

% Statistical Analysis
% sum-of-squares terms
% sum of squares, error (SSE)
SSE=0; % initialize
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sumres=0;
for n=1:count

SSE=SSE+res(n)*res(n);
sumres=sumres+res(n);

end

MeanErr=abs(sumres./count);

% Sum of squares, regression (SSR)
avedppred=0;
SSR= 0;
for n=1:count

avedppred=avedppred+dppred(n);
end
avedppred=avedppred./count;

for n=1:count
SSR=SSR +(dppred(n)-avedppred).ˆ2;

end

% Sum of squares, total (SST)
avedp=0;
SST=0;
for n=1:count

avedp=avedp+dp(n);
end

avedp=avedp./count;

for n=1:count
SST=SST+(dp(n)-avedp).ˆ 2;

end
SST;
% R-squared
R2=1-(SSE./SST);
R22=SSR./SST;

% Adjusted R-squared
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R2adj=1-(count-1).*(1-R2)./(count-2);

% Residual Mean Square (MSE)
% K = total number of predictors or number of
% independent variables
% n = sample size
n=count;
K=2;
MSE=SSE./(count-K-1);
% Standard Error of the Estimate (SEE)
SEE = sqrt(MSE);

% 95% Confidence Interval
[b,bint] = regress(dp,x);
c1=bint(1,2)-a(1);
c2=bint(2,2)-a(2);
c12=(c1*(dˆ2*spˆ2))/mu;
c22=(c2*(d*sp))/ro;
c12_h=(c12*mu_h)/(dˆ2*spˆ2);
c22_h=(c22*ro_h)/(d*sp);
%Sa1=sqrt(z(1,1)*MSE);
%Sa2=sqrt(z(2,2)*MSE);
%talpha_554=1.964255187;
%t1=talpha_554*Sa1;
%t2=talpha_554*Sa2;
%L1=a(1)-talpha_554*Sa1;
%U1=a(1)+talpha_554*Sa1;
%L2=a(2)-talpha_554*Sa2;
%U2=a(2)+talpha_554*Sa2;

% Create output report
disp(’ ’)
disp(’ =======================================’)
disp(’Author:Mohammed Alaqqad’)
fprintf(’Run at:%s\n’,datestr(now))
fprintf(’Title: Analysis of %s\n’,name)
disp(’Equation: y=a1*x1+a2*x2’)
disp(’Method: Multiple Linear Regression’)
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disp(’’)
disp(’’)
disp(’’)
disp(’=========================================’)
fprintf(’Total numbers of data points (n)=%f\n’, count)
fprintf(’\n The Units for dP/L (Pa/m) and v (m/s)’)
fprintf(’\n The parameters r1 and r2 are\n’)
%fprintf(’a1=%9.2f\n’, b(1))
%fprintf(’a2=%9.2f\n\n’,b(2))
fprintf(’r1=%9.2f+-%9.2f\n’,a(1),c1)
fprintf(’r2=%9.2f+-%9.2f\n\n’,a(2),c2)
fprintf(’A=%9.2f+-%9.2f\n’,A,c12)
fprintf(’B=%9.2f+-%9.2f\n\n’,B,c22)
fprintf(’r1_h=%9.2f+-%9.2f\n’,r1_h,c12_h)
fprintf(’r2_h=%9.2f+-%9.2f\n\n’,r2_h,c22_h)
fprintf(’Void Velocity ExptdP PreddP Percent Diff Residuals\n’)
fprintf(’ [mm/s] [Pa/m] [Pa/m] \n’)
for n= 1 :count
fprintf(’%4.3f %6.2f %5.2f %5.2f %5.1f %6.2f\n’,...

voidc(n), u(n)*1000, dp(n) , dppred(n)...
,diff(n),res(n) ./1000)

end

disp(’’)
disp(’’)
disp(’STATISTICAL ANALYSIS’)
disp(’--------------------’)
fprintf(’Sum of Squares,Error(SSE)=%f\n’,SSE)
fprintf(’Mean of Residuals Error=%f\n’,MeanErr)
fprintf(’sum of Square,Total(SST)=%f\n’,SST)
fprintf(’Sum of Squares,Regression(SSR)=%f\n’,SSR)
fprintf(’Coefficient of Determination (Rˆ2)=%f\n’,R2)
fprintf(’Adjusted R-squared=%f\n’,R2adj)
fprintf(’Standard Error of Estimate(SEE)=%f\n’,SEE)

% Save the data into text file
R=[u dp dppred];
save results.txt R -ASCII -TABS
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% Plot the data
figure
plot(u.*1000,dp./1000,’*r’,u.*1000,dppred./1000,’+k’)
xlabel(’Velocity m/s’)
ylabel(’Pressure drop Pa/m’)
str =[’Experimental Data’];
str1 =[’Correlated Data’];
legend(str,str1,’Location’,’best’)
%xmin=0; xmax=10; ymin=0; ymax=20;
%axis([xmin xmax ymin ymax])

fprintf(’\n\n ******End of Analysis*******\n\n’)
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J.3 Pressure Drop Prediction Code

The codes written in MATLAB 7.5 for the pressure drop prediction are included

here. The main files are:

• Main.m

• Valid_Pc0.m
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Program J.3 Main Program: Main.m

%***************************************************
% Author: Mohammed Alaqqad (2011)
% Description: This is a program that predict the
% pressure as a function of velocity and void
% fraction. The method used for the prediction is
% numerical solution using ode15s.
%***************************************************

%***************************************************
% USER NEEDS TO SPECIFY/INPUT THE NECESSARY
% PARAMETERS AND FILENAME:-
% name : The name of the data set (Pressure Drop)
% datafile: The file name that the data store
% (valid.txt)
%***************************************************

% Clear History
clear all

name=’Pressure Drop’;
datafile=’valid.txt’;

% Clear Matlab command window
clc
disp(’In progress...’)

% Get data from text file
% column 1 column 2 column 3 column 4
% v(mm/s) DP/L(Pa/m) m(kPa) n
% fid =fopen(filename, permission)
fid = fopen(datafile,’r’);
[v dP m n]=textread(datafile,’%f%f%f%f’);
v=v./1000; dp=dP.*1000; m=m.*1000;

status=fclose(fid);
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% find the data for the three different kappa numbers
mexp = [115 78 67]*1000;
%nexp = [1.3 1.2 1.2];
nexp = [1.2 1.2 1.2];
np = 100;
for i=1:3

IDX = find(m == mexp(i));
RNG = [IDX(1) IDX(end)];
vfit = linspace(v(RNG(1)),v(RNG(end)),np);
for j = 1:np

dPdx(j)=Valid_Pc0([vfit(j),mexp(i),nexp(i)]);
end

figure(i)
midP = round(mean(RNG));
r1=3e4;
r2=3.3e6;
voidc=0.54;
term1=(((1-voidc)ˆ2)/(voidcˆ3)).*vfit;
term2=((1-voidc)/(voidcˆ3)).*(vfit.ˆ2);

% without compressibility effects
dp_model=r1*term1+r2*term2;
plot(v(RNG(1):RNG(2))*1000,dP(RNG(1):RNG(2))...

/1000,’ok’,vfit*1000,dPdx/1000,’--k’,...
vfit*1000,dp_model/1000,’-k’)

xlabel(’v (mm/s)’,’fontsize’,16)
ylabel(’P_h/L (kPa/m)’,’fontsize’,16)
axis([0 10 0 1.5])
legend(’Measured’,’Predicted’,...
’No Compressibility Effects’,’location’,’best’)
% use this command in all figures to change all
% legends and axis etc to this font size
set(gca,’fontsize’,16)

end
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Program J.4 ODE Solution: Valid Pc0.m

function phl=Valid_Pc0(D)
global epsg v m n r1 r2

v = D(1); m = D(2); n = D(3);
%v = 8/1000;
epsg = 0.54;
r1 = 3e4; r2 = 1.9e6; %r2 = 1.5e6;
L = 0.45;

[x,y] = ode15s(@porous,[L 0],0);

phl = y(end)/L;

function dy = porous(x,y)
global v r1 r2

dy(1) = -(r1*f1(y)*v + r2*f2(y)*vˆ2);

function yout = f1(y)
global epsg m n
if y<0, y=0; end
epsilon = epsg - (y/m)ˆ(1/n);
yout = (1-epsilon)ˆ2/(epsilon)ˆ3;

function yout = f2(y)
global epsg m n
if y<0, y=0; end
epsilon = epsg - (y/m)ˆ(1/n);
yout = (1-epsilon)/(epsilon)ˆ3;
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J.4 Axial Dispersion Minimization Code

The codes written in MATLAB 7.5 for the axial dispersion estimation are included

here. The main files are:

• Main.m

• Importfile.m

• Inputdata.m

• Pdetest.m
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Program J.5 Main Program: Main.m

%***************************************************
% Author: Mohammed Alaqqad (2011)
% Description: This is a program that estimates the
% breakthrough curves for a convective-diffusion
% equation of the form
%
% C_T = 1/Pe*C_XX - C_X [T,X] \in [0,1]
%
% T=0 C=0
% X=1 (C-1) - C_X = 0
% X=0 C_X = 0
% The method used for the estimation is minimization
% between the experimental data and the numerical
% solution using fminsearch and pdepe.
%***************************************************

% clear history
clear all

% Clear Matlab command window
clc
disp(’In progress...’)

global Xe Te Ce Ci frames_c x_planes

% Get data from text file and modify
Inputdata

% Set initial values of Dax
Dax=1.8e-4;%m2/s

% Use the optimization function to find Dax
Dr=fminsearch(@Pdetest,Dax)
[rows columns]=size(Ce);
count= rows;
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count2=columns*rows;

% Calculate the values of the concentration
% predicted by the equation.
% Then calculate the difference between the
% experimental and predicted values .
% Ce == C experimnetal
% Ci == C predicted
% res == residuals
% diff == percent different

res=(Ce-Ci);
diff=abs(res./Ce).*100;

% Statistical Analysis
% sum-of-squares terms
% sum of squares, error (SSE)
SSE=0; % initialize
sumres=0;
for n=1:count

SSE=SSE+sum(res(n,:).*res(n,:));
sumres=sumres+sum(res(n,:));

end

MeanErr=abs(sumres./count2);

% Sum of squares, regression (SSR)
aveCi=0;
SSR= 0;
for n=1:count

aveCi=aveCi+sum(Ci(n,:));
end
aveCi=aveCi./count2;

for n=1:count
SSR=SSR +sum((Ci(n,:)-aveCi).ˆ2);

end
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% Sum of squares, total (SST)
aveCe=0;
SST=0;
for n=1:count

aveCe=aveCe+sum(Ce(n,:));
end

aveCe=aveCe./count2;

for n=1:count
SST=SST+sum((Ce(n,:)-aveCe).ˆ 2);

end
SST;
% R-squared
R2=1-(SSE./SST);
R22=SSR./SST;

% Adjusted R-squared
R2adj=1-(count2-1).*(1-R2)./(count2-2);

% Residual Mean Square (MSE)
% K = total number of predictors or number of
% independent variables
% n = sample size
n=count2;
K=1;
MSE=SSE./(n-K-1);
% Standard Error of the Estimate (SEE)
SEE = sqrt(MSE);

% Create output report
disp(’ ’)
disp(’ ===========================================’)
disp(’Author:Mohammed Alaqqad’)
fprintf(’Run at:%s\n’,datestr(now))
fprintf(’Title: Analysis of %s\n’,’Axial Diffusion’)
disp(’Equation: 1D convective-disffusive model’)
disp(’Method: Solve and minimize’)
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disp(’’)
disp(’’)
disp(’’)
disp(’============================================’)
fprintf(’Total numbers of data points (n)=%f\n’...

,count2)
fprintf(’\n The Units for D (m2/s)’)
fprintf(’\n The parameters Dax is\n’)
fprintf(’Dax=%9.6f\n’,Dr)
disp(’’)
disp(’’)
disp(’STATISTICAL ANALYSIS’)
disp(’--------------------’)
fprintf(’Sum of Squares,Error(SSE)=%f\n’,SSE)
fprintf(’Mean of Residuals Error=%f\n’,MeanErr)
fprintf(’sum of Square,Total(SST)=%f\n’,SST)
fprintf(’Sum of Squares,Regression(SSR)=%f\n’,SSR)
fprintf(’Coefficient of Determination(Rˆ2)=%f\n’,R2)
fprintf(’Adjusted R-squared=%f\n’,R2adj)
fprintf(’Standard Error of Estimate(SEE)=%f\n’,SEE)

figure1=figure;
hold on
box on
plot(Te’,Ce(:,2),’--k’,Te’,Ci(:,2),’-k’)
legend(’Measured’,’Regression’,’Location’,’best’)
%title(’Solution at X=0 to 1’)
plot(Te’,Ce,’--k’,Te’,Ci,’-k’)
errorbar(Te(24),Ce(24,2),0.02,’k’)
xlabel(’Dimensionless Time T’,’fontsize’,16)
ylabel(’Dimensionless Concentration C’,’fontsize’,16)
axis tight
set(gca,’fontsize’,16)

% Create textbox
annotation(figure1,’textbox’,’String’,{’P1’},...

’FontName’,’Times New Roman’,...
’FitBoxToText’,’off’,...
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’LineStyle’,’none’,...
’Position’,[0.1798 0.67 0.03858 0.06616]);

% Create textbox
annotation(figure1,’textbox’,’String’,{’P2’},...

’FontName’,’Times New Roman’,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’,...
’Position’,[0.1874 0.5613 0.03858 0.06616]);

% Create textbox
annotation(figure1,’textbox’,’String’,{’P3’},...

’FontName’,’Times New Roman’,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’,...
’Position’,[0.1954 0.4744 0.03858 0.06616]);

% Create textbox
annotation(figure1,’textbox’,’String’,{’P4’},...

’FontName’,’Times New Roman’,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’,...
’Position’,[0.2215 0.2671 0.03858 0.06616]);

% Create textbox
annotation(figure1,’textbox’,’String’,{’P5’},...

’FontName’,’Times New Roman’,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’,...
’Position’,[0.2075 0.4046 0.03858 0.06616]);

% Create textbox
annotation(figure1,’textbox’,’String’,{’P6’},...

’FontName’,’Times New Roman’,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’,...
’Position’,[0.2116 0.3217 0.03858 0.06616]);
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% Create textbox
annotation(figure1,’textbox’,’String’,{’P7’},...

’FontName’,’Times New Roman’,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’,...
’Position’,[0.2436 0.2022 0.03858 0.06616]);
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Program J.6 Import File: Importfile.m

function Importfile(fileToRead1)
%IMPORTFILE(FILETOREAD1)
% Imports data from the specified file
% FILETOREAD1: file to read

% Import the file
rawData1 = importdata(fileToRead1);

% For some simple files (such as a CSV or JPEG
% files), IMPORTDATA might return a simple array.
% If so, generate a structure so that the output
% matches that from the Import Wizard.
[unused,name] = fileparts(fileToRead1); %#ok
newData1.(genvarname(name)) = rawData1;

% Create new variables in the base workspace from
% those fields.
vars = fieldnames(newData1);
for i = 1:length(vars)

assignin(’base’, vars{i}, newData1.(vars{i}));
end
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Program J.7 Input and Modify Data: Inputdata.m

% Importing the data file where the first column
% contains the time data with rows equal to the
% number of frames.
% The second column till the end contains the
% concentration data where each column corresponds
% to one frame that contains the eight images
% sequentially in 2528 rows.

% Import data
Importfile(’test.txt’);

% return rows and columns
[Rows Columns]=size(test);

% number of frames (starts from second column)
frames=Columns-1;

% array of frames
for f=1:frames

fr(f)=f;
end

% array fo time data
for f=1:frames

t(f)=test(f,1);
end

% extract only the concentration data
for c=2:frames+1

data(:,c-1)=test(:,c);
end

% averaging data over z and y to get Cee(x,f)
x_planes=7;
start_plane=1;
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end_plane=(x_planes-1)+start_plane;
adj=start_plane-1;

for f=1:frames
for x=start_plane:end_plane

x2=x-adj;
for i=1+316*(x-1):316*x;

j=i-316*(x-1);
m(j,x2,f)=data(i,f);
end
Cee(x2,f)=mean(m(:,x2,f));

end
end

% normalizing the data after finding Co (initial)
% and Cf (final) for each pixel.
% average frames before fo and after ff

fo=20;
ff=250;

for x=start_plane:end_plane
x=x-adj;
for f=1:fo

dataCo(x,f)=Cee(x,f);
end
for f=ff:frames

dataCf(x,f-(ff-1))=Cee(x,f);
end
Co(x,1)=mean(dataCo(x,:));
Cf(x,1)=mean(dataCf(x,:));

end

for f=1:frames
Cen(:,f)=(Cee(:,f)-Co)./(Cf-Co);

end

% cropping the data
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fco=44;
fcf=125;
frames_c=fcf-fco+1;
fr_c=[1:1:frames_c];

for f=1:(fcf-fco+1)
Cec(:,f)=Cen(:,((f-1)+fco));

end

% flip the data
for x=start_plane:end_plane

x=x-adj;
Cer(x,:)=Cec(((x_planes+1)-x),:);

end

% transpose of data
Ce=Cec’;
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Program J.8 PDE Solution: Pdetest.m

function res=Pdetest(D)
global Pe Xm Tm Xe Te Ce Ci frames_c x_planes

% Input:
% Xf = grid size
% Tf = maximum time
% np = number of grid points

%D=1.8e-4;\
void=0.538;
v = 0.00474/void; %m/s

L=0.450; %m
Pe=(v*L)/D;
%Pe=10;

ti=0; %s
xi=0; %m

tf=L/v; %s tow, L/(Q/A), A*L/Q, V/Q
xf=L; %m

Ti=ti*v/L;
Xi=xi/L;

Tf=(tf*v/L)*3;
Xf=xf/L;

np=40;
m = 0;
X = linspace(Xi,Xf,np);
T = linspace(Ti,Tf,np);

Tm=T’;
Xm=X;
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Te=(linspace(Ti,Tf,frames_c))’;
Xe=linspace(Xi,Xf,x_planes);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,X,T);

% Extract the first solution component as C(T,X)
C = sol(:,:,1);

% Interpolate the solution to match our Xe and Te
Ci=interp2(Xm,Tm,C,Xe,Te);
size(Ci);
D
% Residuals
res=sum(sum(((Ci-Ce).ˆ2)))

% --------------------------------------------------
function [c,f,s] = pdex1pde(X,T,C,DCDX)
global Pe
c = 1;
f = (1/Pe)*DCDX;
s = -DCDX;
% --------------------------------------------------
function C0 = pdex1ic(X)
C0 = 0;
% --------------------------------------------------
function [pl,ql,pr,qr] = pdex1bc(Xl,Cl,Xr,Cr,T)
global Te Ce
Cleft=interp1(Te,Ce(:,1),T);
Cright=interp1(Te,Ce(:,end),T);

pl = Cl-Cleft;
ql=0;
pr= Cr-Cright;
qr = 0;
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Appendix K

Experimental Data

K.1 Pressure Drop Data
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Condition polypropylene spheres
Volume of column (m3) 8.209×10−3

Mass of polypropylene spheres (kg) 4.4284
Bulk density (kg/m3) 539.48
Polypropylene spheres density (kg/m3) 905.00
Porosity at no flow (fraction) 0.404

Flow rate ph L v ph/L
(L/min) (Pa) (m) (mm/s) (Pa/m)

0.00 0.00 0.450 0.00 0.00
1.80 9.51 0.450 1.65 21.14
3.25 19.95 0.450 2.97 44.33
4.67 35.43 0.450 4.27 78.74
5.76 54.65 0.450 5.26 121.44
7.22 74.50 0.450 6.60 165.57
8.57 95.65 0.450 7.83 212.56

10.49 134.21 0.450 9.59 298.25
12.02 160.21 0.450 10.98 356.01
13.79 204.20 0.450 12.60 453.78
14.30 230.61 0.450 13.07 512.46

Table K.1: Pressure drop data of polypropylene spheres.
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Condition 100% accepts
Kappa number 80
Compaction Pressure (kPa) 0.0
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.8133
Initial cooked bulk density (kg/m3) 99.08
Yield (%) 53.86
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 214.51
Porosity at no flow (fraction) 0.538

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 0.000 0.000 0.000 0.000 0.450 0.00 0.00
1.82 30.843 7.679 7.532 7.963 7.669 0.450 1.66 68.54
3.30 69.305 17.378 17.169 17.589 17.170 0.450 3.02 154.01
4.54 112.251 28.103 27.668 28.675 27.805 0.450 4.15 249.45
5.15 135.381 33.902 33.344 34.625 33.510 0.450 4.71 300.85
5.97 169.312 42.353 41.666 43.334 41.960 0.450 5.45 376.25
7.26 232.569 57.975 57.290 59.336 57.968 0.450 6.63 516.82
8.71 315.079 77.825 77.998 79.455 79.802 0.450 7.96 700.18

10.50 424.909 104.776 105.256 106.958 107.918 0.450 9.59 944.24

Table K.2: Pressure drop data of 100% accepts at κ = 80 and pc = 0.0 kPa.
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Condition 100% accepts
Kappa number 80
Compaction Pressure (kPa) 5.6
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.8133
Initial cooked bulk density (kg/m3) 99.08
Yield (%) 53.86
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 214.51
Porosity at no flow (fraction) 0.462

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 0.000 0.000 0.000 0.000 0.386 0.00 0.00
1.79 33.334 4.188 9.818 9.473 9.854 0.386 1.63 86.36
3.36 79.962 10.047 23.325 23.063 23.527 0.386 3.07 207.15
4.61 129.646 16.290 37.756 37.521 38.080 0.386 4.21 335.87
5.26 162.766 20.451 47.270 47.284 47.760 0.386 4.81 421.67
5.91 194.347 24.419 56.351 56.558 57.020 0.386 5.40 503.49
7.47 282.346 35.476 81.510 82.620 82.741 0.386 6.82 731.47
8.82 370.377 46.537 106.696 108.723 108.420 0.386 8.06 959.53

10.65 505.173 63.474 145.728 147.644 148.327 0.386 9.73 1308.74

Table K.3: Pressure drop data of 100% accepts at κ = 80 and pc = 5.6 kPa.
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Condition 100% accepts
Kappa number 80
Compaction Pressure (kPa) 9.8
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.8133
Initial cooked bulk density (kg/m3) 99.08
Yield (%) 53.86
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 214.51
Porosity at no flow (fraction) 0.416

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 0.000 0.000 0.000 0.000 0.356 0.00 0.00
1.87 47.226 2.402 15.168 15.032 14.624 0.355 1.71 133.03
3.36 114.631 5.701 36.464 36.372 36.094 0.355 3.07 322.90
4.62 190.075 8.861 60.410 60.407 60.398 0.354 4.22 536.94
5.26 234.383 10.928 74.496 74.489 74.470 0.354 4.81 662.10
6.01 294.590 13.643 93.362 93.534 94.051 0.354 5.49 832.18
7.37 417.687 18.128 132.453 132.893 134.213 0.353 6.73 1183.25
8.72 550.894 22.336 174.874 175.661 178.023 0.352 7.97 1565.04

10.46 754.426 28.468 239.825 241.122 245.012 0.351 9.55 2149.36

Table K.4: Pressure drop data of 100% accepts at κ = 80 and pc = 9.8 kPa.
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Condition 100% accepts
Kappa number 80
Compaction Pressure (kPa) 14.0
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.8133
Initial cooked bulk density (kg/m3) 99.08
Yield (%) 53.86
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 214.51
Porosity at no flow (fraction) 0.372

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 – 0.000 0.000 0.000 0.331 0.00 0.00
1.86 79.442 – 25.556 26.884 27.003 0.331 1.70 240.01
3.54 205.104 – 65.942 69.446 69.716 0.331 3.23 619.65
4.65 317.405 – 102.064 107.453 107.888 0.331 4.25 958.93
5.26 390.914 – 125.658 132.383 132.873 0.331 4.81 1181.01
6.11 497.348 – 158.833 168.950 169.564 0.330 5.58 1507.11
7.47 684.651 – 218.651 232.577 233.423 0.330 6.83 2074.70
8.83 898.464 – 286.933 305.212 306.320 0.330 8.07 2722.62

10.69 1236.401 – 392.184 421.398 422.818 0.329 9.77 3758.06

Table K.5: Pressure drop data of 100% accepts at κ = 80 and pc = 14.0 kPa.
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Condition 100% accepts
Kappa number 53
Compaction Pressure (kPa) 0.0
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.7614
Initial cooked bulk density (kg/m3) 92.75
Yield (%) 50.35
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 200.53
Porosity at no flow (fraction) 0.537

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 0.000 0.000 0.000 0.000 0.450 0.00 0.00
1.89 24.177 6.228 6.522 5.699 5.728 0.450 1.73 53.73
3.41 57.128 14.311 14.965 13.741 14.110 0.450 3.12 126.95
4.41 89.274 21.882 22.960 21.718 22.715 0.450 4.03 198.39
5.21 118.457 28.820 30.240 28.955 30.442 0.450 4.76 263.24
6.01 152.776 36.758 38.590 37.590 39.838 0.450 5.49 339.50
7.65 219.116 53.251 54.789 54.465 56.611 0.450 6.99 486.92
8.99 303.817 72.296 75.184 75.839 80.498 0.450 8.21 675.15

10.85 365.225 90.484 90.707 91.621 92.412 0.450 9.91 811.61

Table K.6: Pressure drop data of 100% accepts at κ = 53 and pc = 0.0 kPa.

164



Condition 100% accepts
Kappa number 53
Compaction Pressure (kPa) 5.6
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.7614
Initial cooked bulk density (kg/m3) 92.75
Yield (%) 50.35
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 200.53
Porosity at no flow (fraction) 0.414

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 0.000 0.000 0.000 0.000 0.355 0.00 0.00
1.81 50.663 2.355 16.087 16.103 16.118 0.354 1.65 143.12
3.35 121.512 5.304 38.657 38.736 38.815 0.353 3.06 344.23
4.23 187.812 7.538 59.555 60.091 60.627 0.352 3.87 533.56
5.26 286.276 9.716 90.606 92.187 93.767 0.350 4.80 817.93
6.05 372.320 10.562 118.113 120.586 123.059 0.348 5.53 1069.89
7.49 502.892 13.042 160.338 163.283 166.229 0.347 6.85 1449.26
8.80 614.494 12.795 197.684 200.566 203.449 0.345 8.04 1781.14

10.68 788.688 12.383 256.939 258.769 260.598 0.343 9.76 2299.38

Table K.7: Pressure drop data of 100% accepts at κ = 53 and pc = 5.6 kPa.
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Condition 100% accepts
Kappa number 53
Compaction Pressure (kPa) 9.8
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.7614
Initial cooked bulk density (kg/m3) 92.75
Yield (%) 50.35
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 200.53
Porosity at no flow (fraction) 0.354

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 – 0.000 0.000 0.000 0.322 0.00 0.00
1.75 103.937 – 32.645 35.907 35.384 0.322 1.60 322.79
2.71 190.417 – 59.833 65.882 64.702 0.321 2.48 593.20
3.46 272.618 – 84.123 94.857 93.638 0.320 3.16 851.93
4.60 435.773 – 133.658 151.794 150.322 0.320 4.21 1361.79
5.12 545.348 – 162.033 191.809 191.507 0.318 4.67 1714.93
6.11 726.022 – 215.351 255.895 254.776 0.317 5.58 2290.29
7.56 1053.386 – 306.981 373.804 372.601 0.315 6.91 3344.08
8.85 1358.608 – 391.578 484.856 482.174 0.313 8.09 4340.60

10.76 1907.267 – 529.375 688.874 689.018 0.310 9.83 6152.47

Table K.8: Pressure drop data of 100% accepts at κ = 53 and pc = 9.8 kPa.
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Condition 100% accepts
Kappa number 53
Compaction Pressure (kPa) 14.0
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.7614
Initial cooked bulk density (kg/m3) 92.75
Yield (%) 50.35
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 200.53
Porosity at no flow (fraction) 0.280

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 – 0.000 0.000 0.000 0.289 0.00 0.00
1.86 313.704 – 69.484 122.095 122.125 0.289 1.70 1085.48
2.62 568.513 – 124.458 221.919 222.137 0.288 2.39 1974.00
3.49 887.160 – 194.259 346.229 346.671 0.288 3.19 3080.42
4.72 1430.260 – 309.338 560.042 560.880 0.287 4.31 4983.48
5.22 1735.799 – 370.680 682.024 683.095 0.286 4.77 6069.23
6.02 2341.460 – 493.594 923.155 924.711 0.285 5.50 8215.65
7.57 3292.519 – 675.716 1307.274 1309.529 0.283 6.91 11634.34
8.84 4104.871 – 819.172 1641.445 1644.254 0.281 8.07 14608.08

10.61 5184.375 – 1004.668 2088.250 2091.456 0.279 9.69 18581.99

Table K.9: Pressure drop data of 100% accepts at κ = 53 and pc = 14.0 kPa.
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Condition 100% accepts
Kappa number 25
Compaction Pressure (kPa) 0.0
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.7143
Initial cooked bulk density (kg/m3) 87.02
Yield (%) 47.14
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 187.74
Porosity at no flow (fraction) 0.536

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 0.000 0.000 0.000 0.000 0.450 0.00 0.00
1.69 21.018 5.750 5.151 5.105 5.012 0.450 1.55 46.71
3.31 55.310 14.258 13.737 13.697 13.617 0.450 3.02 122.91
4.59 90.150 22.422 22.562 22.573 22.594 0.450 4.20 200.33
5.09 107.360 26.710 26.867 26.879 26.903 0.450 4.65 238.58
6.11 143.125 34.929 35.960 36.039 36.197 0.450 5.59 318.06
7.37 194.336 47.222 48.869 48.996 49.249 0.450 6.73 431.86
8.73 253.038 61.156 63.700 63.895 64.287 0.450 7.97 562.31

10.52 338.593 84.778 84.621 84.609 84.585 0.450 9.62 752.43

Table K.10: Pressure drop data of 100% accepts at κ = 25 and pc = 0.0 kPa.
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Condition 100% accepts
Kappa number 25
Compaction Pressure (kPa) 5.6
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.7143
Initial cooked bulk density (kg/m3) 87.02
Yield (%) 47.14
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 187.74
Porosity at no flow (fraction) 0.397

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 0.000 0.000 0.000 0.000 0.346 0.00 0.00
1.79 49.0687 1.089 15.868 15.962 16.149 0.345 1.64 142.23
3.38 124.868 2.405 40.528 40.748 41.188 0.344 3.09 362.99
4.47 194.833 3.182 63.446 63.774 64.431 0.343 4.08 568.03
5.20 267.061 4.343 87.113 87.458 88.147 0.343 4.76 778.60
5.95 353.443 3.665 116.151 116.482 117.144 0.341 5.43 1036.49
7.52 548.924 4.067 181.118 181.494 182.246 0.340 6.87 1614.48
8.63 732.868 1.093 243.226 243.750 244.798 0.338 7.88 2168.25

10.30 1073.822 – 356.665 357.622 359.535 0.336 9.42 3195.90

Table K.11: Pressure drop data of 100% accepts at κ = 25 and pc = 5.6 kPa.
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Condition 100% accepts
Kappa number 25
Compaction Pressure (kPa) 9.8
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.7143
Initial cooked bulk density (kg/m3) 87.02
Yield (%) 47.14
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 187.74
Porosity at no flow (fraction) 0.316

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 – 0.000 0.000 0.000 0.305 0.00 0.00
1.75 132.347 – 34.928 48.628 48.791 0.305 1.60 433.92
2.51 217.522 – 56.885 80.181 80.456 0.304 2.29 715.53
3.32 336.120 – 87.061 124.321 124.737 0.303 3.03 1109.31
4.59 557.653 – 144.440 206.263 206.951 0.303 4.19 1840.44
5.10 662.764 – 170.033 245.954 246.778 0.302 4.66 2194.58
6.02 879.482 – 223.443 327.472 328.567 0.301 5.50 2921.87
7.27 1258.020 – 313.275 471.594 473.150 0.299 6.65 4207.42
8.60 1779.281 – 434.018 671.528 673.736 0.297 7.86 5990.85
9.66 2458.271 – 573.885 940.743 943.643 0.293 8.83 8390.00

Table K.12: Pressure drop data of 100% accepts at κ = 25 and pc = 9.8 kPa.
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Condition 100% accepts
Kappa number 25
Compaction Pressure (kPa) 14.0
Volume of column (m3) 8.209×10−3

Mass of O.D. cooked chips (kg) 0.7143
Initial cooked bulk density (kg/m3) 87.02
Yield (%) 47.14
Basic chip density (kg/m3) 398.27
Cooked chip density (kg/m3) 187.74
Porosity at no flow (fraction) 0.250

Flow rate ph d p1 d p2 d p3 d p4 L v ph/L
(L/min) (Pa) (Pa) (Pa) (Pa) (Pa) (m) (mm/s) (Pa/m)

0.00 0.000 – 0.000 0.000 0.000 0.278 0.00 0.00
1.87 460.557 – 88.411 185.755 186.391 0.278 1.71 1656.68
2.49 707.437 – 133.707 286.384 287.346 0.277 2.28 2553.92
3.37 1140.454 – 215.504 461.723 463.227 0.277 3.08 4117.16
4.57 1850.151 – 344.055 751.869 754.228 0.276 4.17 6703.45
5.20 2408.650 – 440.570 982.591 985.488 0.275 4.75 8758.73
5.98 3129.978 – 553.488 1286.446 1290.044 0.273 5.47 11465.12
7.26 4484.264 – 764.191 1858.255 1861.818 0.271 6.63 16547.10
8.61 6524.210 – 1069.980 2725.389 2728.841 0.269 7.86 24253.57

Table K.13: Pressure drop data of 100% accepts at κ = 25 and pc =
14.0 kPa.
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K.2 Axial Dispersion Data

Limiting Case κ m pc ph L εc δ γ De Pe r2

(kPa) (kPa) (kPa) (m) (m2/s)
pc ≫ ph 80 115 5.6 0.163 0.386 0.462 0.028 0.008 9.09×10−3 0.43 0.997

80 115 9.8 0.234 0.351 0.408 0.023 0.011 2.01×10−2 0.20 0.999
80 115 14.0 0.391 0.330 0.370 0.027 0.016 3.78×10−2 0.11 0.999
53 78 5.6 0.286 0.343 0.414 0.049 0.017 9.18×10−3 0.42 0.997
53 78 9.8 0.545 0.309 0.354 0.053 0.030 3.31×10−2 0.12 0.999
53 78 14.0 1.736 0.277 0.280 0.110 0.078 9.64×10−2 0.05 0.999
25 67 5.6 0.267 0.336 0.379 0.046 0.019 3.40×10−2 0.12 0.999
25 67 9.8 0.663 0.291 0.283 0.063 0.040 1.02×10−1 0.05 1.000
25 67 14.0 2.409 0.267 0.225 0.147 0.116 2.16×10−1 0.03 0.999

m ≫ ph 80 115 0.0 0.135 0.450 0.538 1.000 0.007 3.72×10−3 1.06 0.989
53 78 0.0 0.118 0.450 0.537 1.000 0.008 3.17×10−3 1.24 0.992
25 67 0.0 0.107 0.450 0.536 1.000 0.009 3.25×10−3 1.21 0.992

Table K.14: A summary of the experimental conditions tested with estimates
of the axial dispersion coefficients with correlation coefficients r2 for
100% accepts wood chips.
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Appendix L

Axial Dispersion Breakthrough

Curves

173



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Dimensionless Time 

D
im

en
si

on
le

ss
 C

on
ce

nt
ra

tio
n

 

 

Measured
Model

P1

P3

P2

P4

P5

P7

P6

Figure L.1: Axial dispersion breakthrough curves for κ = 80 and pc =
0.0 kPa.
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Figure L.2: Axial dispersion breakthrough curves for κ = 80 and pc =
5.6 kPa.
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Figure L.3: Axial dispersion breakthrough curves for κ = 80 and pc =
9.8 kPa.
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Figure L.4: Axial dispersion breakthrough curves for κ = 80 and pc =
14.0 kPa.
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Figure L.5: Axial dispersion breakthrough curves for κ = 53 and pc =
0.0 kPa.
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Figure L.6: Axial dispersion breakthrough curves for κ = 53 and pc =
5.6 kPa.
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Figure L.7: Axial dispersion breakthrough curves for κ = 53 and pc =
9.8 kPa.
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Figure L.8: Axial dispersion breakthrough curves for κ = 53 and pc =
14.0 kPa.
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Figure L.9: Axial dispersion breakthrough curves for κ = 25 and pc =
0.0 kPa.
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Figure L.10: Axial dispersion breakthrough curves for κ = 25 and pc =
5.6 kPa.
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Figure L.11: Axial dispersion breakthrough curves for κ = 25 and pc =
9.8 kPa.

184



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Dimensionless Time

D
im

en
si

on
le

ss
 C

on
ce

nt
ra

tio
n

 

 

Measured
Model

P6

P7

P5

P4

Figure L.12: Axial dispersion breakthrough curves for κ = 25 and pc =
14.0 kPa.
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