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Abstract

Interfacial lows in complex fluids are an important subject, scientifically rich and technolog-
ically important. The main scientific attraction comes from the fact that the microstructure
of the bulk fluids may evolve during interfacial flow, and thereby generating non-Newtonian
stresses that act on the interface. Thus, interfacial motion and conformation of the mi-
crostructure are coupled. Such flow situations arise in many industrial applications, includ-

ing processing of polymer blends, foaming, and emulsification.

In this thesis, I describe three projects aimed at exploring interfacial dynamics of vis-
coelastic polymeric liquids. The first project consists of finite-element simulations of drop
deformation in converging flows in an axisymmetric conical geometry. The moving interface
is captured using a diffuse-interface model and accurate interfacial resolution is ensured by
adaptive refinement of the grid. The drop experiences a predominantly elongational flow.
The amount of deformation sustained by the drop depends, besides the geometry and kine-
matics of the flow, on the rheology of both the drop and the matrix fluids. The second and
third projects concern the same process of selective withdrawal, in which stratified layers of
immiscible fluids are withdrawn from a tube placed a certain distance from the interface.
We have chosen to work with an air-liquid system, with the suction tube embedded in the
Newtonian or viscoelastic liquid. The second project is an experimental study, where we
used video recording and imaging processing to analyze how the interfacial deformation is
influenced by the non-Newtonian rheology of the liquid. We discover three regimes, sub-
critical, critical and supercritical. The third project counsists of sharp-interface, moving-grid
finite-element simulations of selective withdrawal for Newtonian and viscoelastic Giesekus

liquids. The experiments and computations are in reasonable agreement.

The work of this thesis has led to two main outcomes. The first is a detailed understanding
of how viscoelastic stress can lead to unusual and sometimes counter-intuitive effects on
interfacial deformation. The second is a potentially important new method for measuring
elongational viscosity of low-viscosity liquids. This is worth further investigation considering

the poor performance of existing methods.
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Chapter 1

Introduction

1.1 Interfacial flows of complex fluid

Interfacial flows occur in two-component or multi-component systems with interface between
the components. Many such flows exist in nature. For example, rain drops form when water
vapor condenses in the atmosphere. This creates myriad air-water interfaces and a two-
component system. As the drops grow too large to be suspended in a cloud, they fall down
as rain. During the process of falling down, the drops may break up or coalesce with other
drops. After the drops hit the surface of a solid substrate, they may splash, adhere and
spread or fall off entirely without wetting the surface. Such wetting behavior depends on
the contact angle of the drop on that surface, and is related to the mechanism of capillarity.
In this context, a key property of the interface is the interfacial tension, also known as
surface tension if one of the component is air. An intriguing demonstration of the surface
tension of water is the water strider, an insect that floats on water and occasionally jumps
up and falls back outo the water surface, all without sinking despite its weight. Because air
has very low viscosity and density, air-liquid interfaces are sometimes called “free surfaces”

based on the notion that the air exerts little affect on the interface.

Interfacial flows also play central roles in industry and technology. The manufacturing of
two-phase materials, ranging from polystyrene foam to whipped cream, depends on interfa-
cial flows. In polymer foams, in particular, the property and performance of the solidified
material depend critically on the morphology of the interface [9], which is determined in

turn by the interfacial flow during the molding or extrusion of the foam in the fluid state.



CHAPTER 1. Indroduction

Polymer blends are another important class of composite materials whose processing relies
on interfacial flows. In this case, the dispersed component first appears as drops suspended
in a matrix of the other component. During forming of the polymer melts, the drops may be
elongated into fibers, which may break up into finer droplets. For applications as structural
materials, the fibrillar morphology is most advantageous since it affords excellent strength
to the final product [10]. Again, the processing flow determines the morphology of the inter-
faces, which to a large extent determine the property of the final product. Other examples
of interfacial flow include emulsification in oil extraction from tar sand [11] and chemical
reactors that involve atomization or mixing of components [12]. In recent years, interfacial

flows have found applications in microfluidic devices [13-16].

From a fundamental viewpoint, interfacial flows are intriguing because the position and
morphology of the interfaces are not fixed but variable. The interfaces evolve as a result
of the fluid forces arising from the bulk flow on either side. Thus, these flows provide an
interesting case study where the usual fluid dynamics is coupled with morphological changes
of these internal boundaries. In addition, interfaces are susceptible to non-hydrodynamic
factors such as surfactants, electric fields and thermal gradients. These modify the interfa-
cial tension, and consequently the fluid dynamics of the whole system. Interfacial flows in
industrial processes often involve complez fluids [17]. This term refers to fluids such as poly-
mers and liquid crystals that possess a microstructure that evolves in a flow and produces
an additional stress that modifies the flow in return. In such systems, the rheology of the
bulk fluids is coupled with the interfacial motion, and both contribute to the complexity of

interfacial flows.

The studies reported in this thesis center on the idea that complex rheology in the liquid bulk
modifies interfacial dynamics in important and sometimes unintuitive ways. In Newtonian
fluids, the stress tensor is a linear function of the shear-rate tensor. Complex fluid are
non-Newtonian with more complicated constitutive equations. For example, the stress may
depend on the shear-rate nonlinearly (e.g., in a power law) for shear-thinning fluids [18].
More commonly, the stress may not only be a function of the shear-rate but also depends
on the history of the deformation. This behavior, known as wviscoelasticity, characterizes
most polymer solutions and melts. Because of its importance, we give several examples to

illustrate the role of complex rheology in interfacial flows.
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Figure 1.1: Tubeless siphon, from Peng and Landel [1]. The liquid is a high molecular weight
hydrocarbon polymer (Conoco AM-1) in a jet fuel (JP-8) solvent. (©1976 American Institute of

Physics
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The first example is the so-called tubeless siphon. When siphoning a Newtonian liquid, the
opening of the tube must remain under the surface of the liquid. If we pull the tube out of
the liquid bath, the liquid falls down and the suction stops. A different scenario takes place
for a polymer solution (Fig. 1.1). If one pulls the orifice of the tube above the surface, the
suction will not stop. Rather, the liquid continues to flow up in mid-air and enters the tube
continuously. This is because the polymer solution, under stretching, could offer additional

elongational stress to balance the surface tension and gravity of the thread.

Another intriguing phenomenon is the rise of air bubbles in a complex fluid. When an air
bubble rises in a Newtonian fluid by buoyancy, the top of the bubble is round and the rear
part is more or less flat. But in complex fluid, the shape of bubble can be quite different.
Figure 1.2 shows the steady-state shape of bubbles of different volume rising in a polymer
solution. When the volume exceeds a critical value (V* > 1 in the pictures), the bottom
of the bubble protrudes and forms a very long tail. This is because the strong extensional
flow near the bottom of the bubble produces a large polymer stress, which overcomes the
interfacial tension. Figure 1.3 shows the transient shape of an air bubble as it rises in a
micellar solution. The bubble was created when a solid sphere plunges into the solution.
When the bubble is in the near wake of the sphere, it shows a peculiar “inverted-heart”
shape. As it moves farther away from the sphere, it recovers a shape typically of bubbles in
viscoelastic solutions, with a round top and pointed bottom, similar to some of the pictures
in Fig. 1.2. The inverted-heart shape has been attributed by Zhou et al.[ref] to a temporary
nematic alignment of the micelles created by the flow in the wake of the sphere. Still more
complex phenomena of interfacial flow in complex fluid include the Uebler effect [18,19] and

self-assembly of droplets in nematic liquid crystals [20].

1.2 Research methodology

All three classes of research tools for fluid dynamics—experiment, theoretical analysis and
numerical simulation—have been used to study interfacial flows in complex fluids. For
example, Belmonte and coworkers have documented unusual surface dynamics of polymer

and micellar solutions [21,22]. Belmonte, McKinley and others have studied the equivalent
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Figure 1.2: Steady-state shape of bubbles of different volume rising in a polymer solution [2]. The
material used here is the Aqueous solution of HASE (Primal TT-935) on the weight concentration
of 1.7%. The V* in the picture is the dimensionless volume of the bubble, which is scaled by the
critical volume. (©2006 American Institute of Physics
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Figure 1.3: bubble rising in micellar solution [3]. The material used here is aqueous solution of
the wormlike micellar system cetylpyridinium chloride (CPCl)/sodium salicylate (NaSal). (©2006
Elsevier B.V.

of Rayleigh breakup of a viscoelastic filament, and documented the formation of the bead-
on-string morphology [23,24]. Shaqgfeh et al.observed surface instability of polymeric liquids
in coating flows [25]. Spaid and Homsy recorded viscoelastic contact line instability in spin
coating [26]. Analytically, lubrication models have been developed by a number of authors
to describe the flow of thin films of Newtonian and non-Newtonian fluids, ranging from spin

coating to spreading of drops on substrates [27-29].

For numerical simulation of interfacial flows, we give a somewhat more detailed overview
here because it is a relatively new development and particularly relevant to the work re-
ported in this thesis. A conceptual problem is the mathematical representation of the
interface. In the early 1800s, Young, Laplace and Gauss viewed the interface as a surface
of zero thickness [30]. This surface has all the physical properties of the real surface such
as interfacial tension. They also assumed that the physical properties such as density and
viscosity would be discontinuous on the interface. This idea of sharp and discontinuous
interfaces is conceptually simple, but produces a problem with moving internal boundaries
that is difficult to compute numerically. The bulk fluids on both sides of the interface have
their own governing equations, which are solved with boundary conditions that must be
matched on the moving interfaces. Since the location of the interfaces is not known a priori,
it has to be solved together with the governing equations in the bulk. Such methods typi-

cally require tracking of the interface with grid points and a deforming or moving grid [31].

6
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They work well when there is no topological changes of the interface. But if the interface
undergoes breakup or coalescence, these methods would break down, which is often avoided
by an ad hoc scheme to remove or connect interfaces “manually”. There are also situa-
tions where the interface cannot be considered thin relative to other length scales of the
problems. This arises, for example, for gas-liquid systems near the critical condition [32] or
during phase change [32]. With the advent of nanofluidics, the overall length scale of the

problem may be so small that the thickness of interfaces becomes appreciable.

An alternative to the traditional sharp interface formalism is the diffuse-interface model.
There are at least two aspects to this, one physical and the other computational. The phys-
ical origin of the diffuse interface goes back to van der Waals [33], who viewed the interface
not as a mathematical surface separating two fluids, but as a thin but finite transition region
in which the two species mix to a limited extent. This led to the formulation of a mixing
energy which gives rise to a counterpart of the interfacial tension. The computational aspect
emerged much more recently, of course, when sharp-interface simulations of interfacial flows
encountered various difficulties. For one, the interfacial discontinuity calls for matching
of boundary conditions on a moving internal boundary. Moreover, grid representation of
moving interfaces also runs into difficulties with catastrophic morphological changes such as
breakup and coalescence. In such cases, the diffuse-interface model affords a more natural

and computationally more rational approach to robust algorithms [34, 35].

Although the diffuse-interface method is a powerful method for interfacial flows, it has its
own shortcomings. First, in reality, the thickness of the interface between two immiscible
fluids is on the order of 10 nm. In our simulation, the thickness of the mixing layer cannot
reach down to this length scale. Usually, it is 1/40 of the characteristic length in the
calculation (such as drop radius). This thick interface may introduce large errors when the
deformation of interface is very large. Secondly, the diffuse-interface method has difficulty

handling very large viscosity and density ratios.

In the thesis research reported herein, we have employed experimental observation and
numerical simulations, the latter using both sharp-interface and diffuse-interface models.
The choice of one over another depends on the nature of the problem, and we will give more

details of the methodology in the following chapters.

7
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1.3

Scope of the thesis

In this Ph.D. dissertation, my general goal is to probe the coupling between bulk rheol-

ogy and interfacial deformation in polymer solutions. In other words, we study how the

non-Newtonian stresses, especially the viscoelastic normal stresses, change interfacial de-

formation, and how the interfacial morphology affects the flow field in return. For this

purpose, we have selected three projects:

(a)

Simulation of drop deformation in converging flows. In the first project, I study
the drop deformation under an inhomogeneous flow in a converging axisymmetric
channel. This introduces a complex deformation history and interesting development
of the polymer stress, which is reflected by the drop deformation. A diffuse-interface
finite-element method is used, with the moving interface being captured by a phase-
field parameter. Accurate interfacial resolution is ensured by adaptive refinement of

the grid.

Experimental study of selective withdrawal in polymer solutions. For the second and
third projects, I study the deformation of the free surface of a viscoelastic liquid
induced by a suction tube placed some distance below the interface. For historic
reasons this process is known as selective withdrawal. In the first project, we study
the selective withdrawal of Newtonian and polymer solutions experimentally. The
main finding is that viscoelastic polymer stress in the liquid modifies the surface

deformation fundamentally.

Simulation of selective withdrawal in viscoelastic liquids. The third project comple-
ments the second in that I carry out simulations of the same selective withdrawal
process, with the aim of predicting the experimental observations. Because the sur-
face becomes highly deformed in selective withdrawal, we encounter very high curva-
tures of the interface that is difficult to capture using diffuse-interface models. Thus,
we have adopted a sharp-interface Arbitrary-Lagrangian-Eulerian scheme to compute
the interfacial deformation. By comparison with experiments, the numerical results
confirm the role of highly developed polymer stresses near the deformed interface.
Furthermore, we suggest that this configuration may potentially be used to measure

the elongational viscosity of complex fluids.

The three projects are reported in the following three chapters, and the final chapter presents

a summary of conclusions and offers suggestions for future work.



Chapter 2

Drop deformation in converging
flow

2.1 Introduction

Drop deformation in a flowing medium is important to processing engineering materials such
as emulsions and polymer blends [36] and to physiological processes in microcirculation [37].
In both contexts, the fluid components are often non-Newtonian complex fluids containing
macromolecules, and the drop deformation depends on their viscoelastic rheology. In ho-
mogeneous shear and extensional flows, numerous studies have formed a rather coherent
picture on how capillary, viscous and viscoelastic forces affect drop deformation [38—48]. In
simple shear flows, viscoelasticity in the drop tends to reduce drop deformation while that
in the matrix has a non-monotonic effect: it reduces drop deformation in lower Deborah
number but increases drop deformation with stronger viscoelasticity [45]. In uniform exten-
sional flows, a polymer drop deforms less than its Newtonian counterpart while a polymer
matrix tends to enhance drop deformation [40-42]. This is consistent with the heuristic idea
that drop deformation is controlled by the balance among fluid stresses inside and outside

and the interfacial tension [49].

In comparison, our knowledge of drop deformation in inhomogeneous flow geometries, such
as channels or pipes with varying cross sections, is rather fragmentary and sometimes contra-
dictory. In the conical section of a converging pipe flow, a drop moving along the centerline

experiences inhomogeneous and time-dependent elongation. Of the handful of experiments
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in this geometry, Chin and Han [50] reported that increasing the polymer concentration
in the drop fluid suppresses drop deformation, while increasing the polymer concentration
in the matrix has the opposite effect. This seems consistent with the behavior in homoge-
neous elongation. The more recent experiment of Bourry et al. [51], on the other hand, was
inconclusive as to whether a polymeric drop deforms more or less than a Newtonian one
with comparable viscosity. Both experiments were complicated by the strong strain-rate-
dependent rheology of the fluids; it is uncertain whether the effect is due to elasticity or
viscosity that has changed with the deformation. As a matter of fact, Kim and Han [52]
later attributed the observations of Chin and Han [50] entirely to viscosity. Mighri et al. [53]
attempted to clear up this issue by carrying out similar experiments with Boger fluids in one
or both components. Their results seem in agreement with the simple argument advanced
in homogeneous elongational flows: polymer in the drop hinders its deformation while that
in the matrix enhances deformation. These authors further correlated drop deformation
with the difference in elasticity between the drop and the matrix. In the only theoretical
or computational study known to us, Kayat [54] computed drop deformation in a conical
pipe using a linear Oldroyd-B model. The results exhibit the opposite trend to that of
Mighri et al. [53]. That is, a polymeric drop deforms more while a polymeric matrix causes

a suspended drop to deform less.

This contradiction was the initial motivation for the present work. Using the nonlinear
Giesekus model, we have systematically investigated the effect of viscoelasticity on drop
deformation in a converging pipe flow over a wide range of the Deborah number. The
results reveal an intricate picture that contains both prior studies as special cases at opposite
ends of the parameter space. Note that historically, the conical geometry has been used
as an #mperfect device for generating elongational flows in which to measure the fluid’s
elongational viscosity [55] or to study drop deformation [50]. Our perspective is different:
we see this not only as a prototypical geometry for various polymer processing operations,
but also as an inhomogeneous flow that is simple enough to allow detailed analysis of the

fluid mechanics of drop deformation.

10
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2.2 Viscoelasticity and constitutive equations

Polymer melts and solutions exhibit viscoelasticity in the sense that the material behaves
elastically on a short time scale, but flows like a viscous liquid over a long time scale. In
the literature, this behavior has been studied through two different routes. Microscopically,
viscoelasticity has been attributed to flexible chain-like macromolecules that stretch and
relax under deformation. The conformational changes occur on an inherent time scale, the
relaxation time Ay, and the macromolecules collectively generate a stress that depends on
their configuration. Based on this picture, so-called kinetic theories can be developed [56]
based on (a) an convection-diffusion equation that describes how the polymer configuration
evolves in a flow field; and (b) a polymer stress tensor expressed in terms of the statistics of
polymer configuration. Effectively, these two equations connect the polymer stress tensor
to the flow field (more specifically, the strain rate tensor and its temporal and spatial
gradients), and form a complete constitutive equation for the polymeric liquid. The simplest
such model is the linear elastic dumbbell model for dilute polymer solutions [56], which gives
rise to a constitutive equation known as the Oldroyd-B equation. The more sophisticated
kinetic models deal with entanglement among polymer chains in concentrated solutions and

melts, with the best known example being the Doi-Edwards model [57].

The macroscopic or continuum-mechanical approach to viscoelasticity aims to write down
partial differential equations that capture the behavior of the material. The simplest models
can be written based on heuristic spring-dashpot models due to Maxwell and Kelvin [58].
These can be generalized to multiple dimensions and reformulated using Oldroyd’s con-
vective derivations to make them frame-independent [18]. The most widely used model is

perhaps the Oldroyd-B model:

T+ A7) = 1Y) T A27(2) (2.1)

where 7 and ~ are the stress and strain tensors, p is the shear viscosity; Ay is the relaxation
time; and A is the retardation time. The subscript (;) to a tensor A ;) denotes the convected

time derivative:

D
A = A~ (Vo)' - Ay + Ag oy - Vo (2.2)
Ag = A (23)
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It is among the favorite constitutive equations for numerical computation because it is rel-
atively simple but captures the key features of viscoelasticity. For example, in abrupt start
and cessation of shear and elongational flows, the Oldroyd-B model predicts an exponential
growth and relaxation of the stress tensor on the time scale of Ay. In simple shear of shear
rate 7, it predicts a normal stress difference that scales with 4. However, there is no shear
thinning. In steady homogeneous elongational flow, it predicts an elongational viscosity
that increases with the strain rate é. Compared with experimental data for typical polymer
solutions, the Oldroyd-B falls short in that it does not predict shear-thinning, and has a
stress blowup in elongational flows as De = Ayé — 0.5. The former might not be a grave
concern for the Boger fluids, i.e. dilute polymer solutions with little shear-thinning. But

the latter is a major problem for elongation-dominated flows.

In these aspects, the Giesekus model is superior. It has an additional quadratic stress term
that acts to produce shear-thinning and avert the singular stress blowup in elongational

flows [18]:

T = Ts+Tp, (2.4)
Ts = HsY(1): (2.5)
AH
Tp+AuTy) + aH_pr “Tp = MpY(1)s (2.6)

where « is the mobility parameter and p; and py, are the solvent and polymer viscosities,
respectively. The computations to be reported in this chapter and later in chapter 4 will

be based on both the Oldroyd-B and Giesekus models.

Finally, we must mention the connection between the kinetic and continuum approaches to
viscoelsticity. As it turns out, the Oldroyd-B model can be derived from a kinetic theory
for a dilute solution of linear elastic dumbbells in a Newtonian solvent. The convective
derivatives, originally proposed by Oldroyd to avoid dependence on reference frames, arise
naturally from the convection of the dumbbells in the flow field. Similarly, the Giesekus
model corresponds to a dumbbell model incorporating anisotropic effects in the Brownian

motion and friction force on the polymer chain [56].

12
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2.3 Theoretical model and numerical method

2.3.1 Diffuse-interface model

To simulate a moving internal boundary, one either tracks it with boundary grids that are
part of a moving mesh or captures it on a fixed grid using some scalar field [31]. In this
work, we employ the diffuse-interface method in the latter category. In this model, the
two nominally immiscible fluid components are assumed to mix in a thin interfacial region;
a phase field ¢ varies smoothly from one bulk value (¢ = —1) to the other (¢ = 1) The
interfacial tension derives from a mixing energy that is a functional of ¢. One advantage of
this method is in handling morphological changes such as drop coalescence [59]. But in the
present problem, it is mostly a numerical device for capturing the deforming and moving
drop surface. The diffuse-interface model has been the subject of several reviews [32,35,60],
and the numerical implementation used here has also been detailed before [46]. Therefore,

we will give only a brief outline in the following.

Through a formal variational procedure, one may derive the governing equations of a two-

phase system consisting of a Newtonian fluid and a Giesekus fluid:

V-v = 0, (2.7)
,0<?9—’:+'U-V'v> = —Vp+V-17+GVo, (2.8)
1-— 1 1
T = ( 5 ¢un + ;¢us) [Vo + (Vo)) + %¢Tp,(2.9)
A
Tp+ AHTp(1) + OtN—HTp Ty = pp/Vo + (Vo)1 (2.10)
P
P(¢* —1
G = )\ [—v2¢ + %] : (2.11)
% +v-V¢ = VG, (2.12)

where p = % p1+ # p2 is the average density between the two fluids, G is the chemical po-
tential derived from a Landau-Ginzburg mixing energy, u, is the viscosity of the Newtonian
component, and 1, and p, are the solvent and polymer viscosities of the Giesekus compo-

nent. In the Giesekus model, A\j is the polymer relaxation time, « is the so-called mobility

factor, and the subscript (1) denotes upper convected derivative [18]. We have taken the
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Newtonian component to be fluid 1 (¢ = —1) and the Giesekus component fluid 2 (¢ = 1).
In the simulations, either may be the drop or matrix fluid. The diffuse-interface model has
3 parameters: the mixing energy density A, the capillary width € and the molecular mobility
. These are chosen so that the proper sharp-interface limit is approached [61-63], with the

interfacial tension being o = %%

The Giesekus model is used chiefly because it strikes a balance between simplicity and realis-
tic rheological predictions. Derived from a dumbbell model with anisotropic viscous friction
and Brownian motion [56], the Giesekus model is perhaps the simplest nonlinear model with
reasonable normal stress differences. Applied to polymer melts and solutions in step shear,
startup of uniaxial elongation and step biaxial extension, the Giesekus model “can describe
the shear damping function and elongational viscosity quite accurately” [64,65]. In prior
computations on drop breakup and coalescence, the Oldroyd-B model sometimes caused
difficulties in convergence [66]. Although this is not a concern for the relatively mild strain
rates in this work, we nevertheless prefer the Giesekus model as it better represents the

rheology of real polymeric liquids.

2.3.2 Computational scheme

The computations are done in an axisymmetric geometry using AMPHI, a finite-element
package based on the diffuse-interface model with adaptive meshing developed for interfacial
flows of complex fluids [46]. The algorithm has two major ingredients: a finite-element flow
solver and an adaptive meshing scheme. The former is based on a Navier-Stokes solver
that Hu and coworkers [67,68] have used for simulating particle motion in Newtonian and
viscoelastic fluids, while the latter is based on the mesh generator GRUMMP developed
by Ollivier-Gooch [69]. Each ingredient has been generalized and adapted for the current

purpose and then integrated. A brief description of each is given below.

The discretization of the governing equations follows the standard Galerkin formalism [67].
However, the Cahn-Hilliard equation requires special attention. With CY elements, which
are smooth within each element and continuous across their boundaries, one cannot repre-
sent spatial derivatives of higher order than 2. Thus the fourth-order Cahn-Hilliard equation

has been decomposed into two second-order equations:

0 A
Y o Vo= "L200 +59) (2.13)
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1= —EAG+ (¢7 =1 - 8)¢, (2.14)

where s is a positive number that enhances the convergence of the iterative solution of the
final linear system (see below). For all the calculations in this paper, s = 0.5 is used. The

chemical potential G in Eq. (2.8) is now simply G = §(¢1 + s¢).

On an unstructured triangular mesh, we have used piecewise quadratic (P2) elements for
v, ¢ and 11, and piecewise linear (P1) elements for p and 74. After spatial discretization
of the weak form of the governing equations, the nonlinear algebraic system can be written
in the following general form:

A- <%—g)n+1 + F(U™Y) =0, (2.15)
where U is the solution vector, known at time step n and unknown at the next step n + 1,
A is a diagonal matrix with 1 or 0 on the diagonal depending on whether the corresponding
U component appears in a time derivative, and F(U) contains all the other terms. For
temporal discretization, we have used the Crank-Nicholson scheme and the 3-point back-
ward difference scheme [67], and these second-order implicit schemes give nearly identical
results. Equation (2.15) is solved using an inexact Newton’s method with backtracking [70]
for enhanced convergence and stability. To save computational cost, the Jacobian matrix is
updated once in several iterations. Within each Newton iteration, the sparse linear system
is solved by preconditioned Krylov methods such as the Generalized Minimum Residual
(GMRES) method and the Biconjugate Gradient Stabilized (BCGSTAB) method. ILU(0)
and ILU(t) preconditioners are found to be robust for the calculations in this paper. By
design, our grid size varies greatly from the interface to the bulk. This gives rise to a highly
ill-conditioned sparse matrix, which is treated by a scaling procedure whereby a diagonal
scaling matrix is left-multiplied to the mass matrix prior to applying the aforementioned
preconditioners. Thus, each row of the matrix is scaled by the inverse of the sum of the ab-
solute values of the entries in that row before the linear system is sent to the preconditioned

Krylov solvers.

The second key component of AMPHI is an adaptive mesh generator. We need a mesh with
dense grids covering the interfacial region and coarser grids in the bulk. As the interface

moves out of the fine mesh, the mesh in front needs to be refined while that left behind
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needs to be coarsened. Such adaptive meshing is achieved by using a general-purpose mesh
generator GRUMMP, which stands for Generation and Refinement of Unstructured Mixed-
Element Meshes in Parallel [69]. GRUMMP produces triangular elements in 2D by using
Delaunay refinement, and controls the spatial variation of grid size using a length scale Lg,
which specifies the intended grid size at each location in the domain. In our work, the
grid size distribution is dictated by the need to resolve thin interfaces. Since the phase-
field variable ¢ is constant (£1) in the bulk but varies steeply across the interface, we can
impose a prescribed small grid size hy on the interface by making Lg depend on |V¢| on

every nodes:
1

V|32 + -

where hyo is the mesh size in the bulk, and the constant C' controls the mesh size in the

Ls(z,y) (2.16)

interfacial region: hy = Lg|g—g =~ C - ¢, € being the capillary width. In this paper, we
have used C values between 0.5 and 1; h; < € ensures that the thickness of the interface
typically contains on the order of 10 grid points [34]. Furthermore, the length scale hy, can
be set to differing values hy and hs in the two bulk fluids. This will allow, for example,
the interior of a drop to be more finely resolved than the far field of the suspending fluid.
Of course, the benchmarks h;, he and hs are guidelines that most of the elements satisfy
approximately but not exactly. A grading factor G; ~ 5 is found to produce generally

satisfactory transitions among different regions of the mesh.

More details of the numerical method can be found in Yue et al. [46,66], who also reported
detailed parametric studies and validation with benchmark problems. Our simulations
follow the recommendation in these studies in terms of numerical parameters and mesh
size, and adequate spatial and temporal resolution is ensured for the simulations presented
in this chapter. Specifically, the Cahn number is fixed at Cn = ¢ = 0.01. The mesh sizes
are as follow: hy = 0.0la, ho = 0.3a and hg = 0.1a. Mesh refinement studies, on drop
deformation in simple shear and extensional flows, have shown that this mesh resolution

controls the discretization errors to within 1% of the results.
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L =40a | Ly =10a |

Figure 2.1: Schematic of the flow geometry, with the computational domain being half of the
meridian plane. Not drawn to scale.

2.4 Problem setup

Figure 2.1 depicts the axisymmetric geometry of the converging flow channel. The compu-
tational domain is the upper half of the meridian plane. On the upstream boundary, we
specify a parabolic profile for the axial velocity v, with a centerline velocity vy and zero
radial velocity v,. If the matrix fluid is viscoelastic, we also impose fully developed polymer
stresses at the entrance. Fully developed entrance conditions are not exactly correct in our
geometry, even if it is preceded by a long straight section upstream. They are used here for
simplicity, and numerical experiments show that the drop deformation in the conical section
is not seunsitive to the entry condition. For example, imposing the steady velocity and stress
profiles at the beginning of the contraction that have been computed with a long straight
section upstream will produce a 3% difference in drop deformation. Along the centerline, we
assume conditions of symmetry with 6% = 0 for all velocity and stress components except
v, = 0. At the exit, natural boundary conditions are used. Initially, a spherical drop of
radius a is placed at zp = ba on the centerline in a quiescent matrix; the initial velocity
and stress fields are zero. At time ¢t = 0, the inflow velocity profile is activated and the flow

starts throughout the domain. The drop elongates while moving down the centerline of the

pipe.
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Upon non-dimensionalizing the governing equations and boundary conditions, the following
6 dimensionless groups emerge (in addition to the Giesekus mobility « and the 4 length

ratios indicated in Fig. 2.1):

Pd

w = (drop-to-matrix density ratio), (2.17)
Pm
g = Hd (drop-to-matrix viscosity ratio), (2.18)
Hm
[ - (solvent viscosity ratio in Giesekus fluid), (2.19)
Hs + pp
Ca = Mm% (capillary number), (2.20)
o
Re = £mi0@ (Reynolds number), (2.21)
Hm
De = élyg (Deborah number), (2.22)

where the subscripts d and m denote the drop and matrix components. For the viscoelastic
fluid, the total zero-shear viscosity ps + p, is used in computing 3, be it in the drop or
the matrix. Since the strain rate varies along the centerline, we have used an averaged
strain rate ¢ in defining the capillary and Deborah numbers. Assuming that the centerline
velocity varies according to the inverse of the cross-sectional area, the total Hencky strain

fromz=0toz=Lis2In % and the total transit time is

L 2 2
tr = / d_lArmty (2.23)
0 Uz 3vg

- 2
Ry
We define the average strain rate é as the ratio between these two quantities.

Several parameters are fixed throughout the simulations. The drop-to-matrix density ratio
is kept at w = 1, and the Reynolds number remains at Re = 0.01. Depending on the
viscosity ratio, the Re based on drop viscosity could be as large as 1. But in all cases,
inertia plays at most a marginal role. All the length ratios are fixed at their values in
Fig. 2.1. To avoid the stress blowup in the Oldroyd-B model but to produce sufficiently
large viscoelastic stresses, we have used a small o = 0.03 for all the simulations. The
polymer relaxation time is varied over a wide range to capture a comprehensive picture of
the viscoelastic effect. Thus, the value of rheological parameters is based more on the need
to reveal interesting physics than to approximate specific fluids. The discussion in the next

section will focus on the effects of Ca, 8 and De on drop deformation.
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2.5 Numerical Results

To explore the drop deformation in a converging pipe flow, we have done three groups of
simulations: a Newtonian drop in a Newtonian matrix as the baseline, a Giesekus drop in

a Newtonian matrix, and a Newtonian drop in a Giesekus matrix.

In the literature, drop deformation has been represented by two length ratios: éjr—z and
é, I and b being the half-length and half-breadth of the drop. The first is sensitive to
small departures from sphericity, while the second is more suitable for highly elongated
drops [71,72]. We will use D = é in this paper since the drop deformation may be quite

large.

When the rheology of either the drop or the matrix changes, the drop speed and displace-

ment will vary. Thus, it is awkward to compare D based on the same time or the same

drop position on the centerline. Following Mighri et al. [53], we use the matrix strain in

the absence of the drop as the benchmark for comparing drop deformation. From the local
dvs

strain rate ¢ = 7= on the centerline, the matrix Hencky strain €,, can be calculated. The

corresponding matrix stretch ratio D, = exp(e,,) turns out to be

D (2) = : (2.24)

where zp = 5a is the initial position of the drop. Thus, D,,(z) is the deformation of a
matrix fluid particle currently at z with respect to its initial configuration at zg, where the
undeformed drop sits initially. Drop deformation D will be examined vis-a-vis the matrix

deformation Dy, at the same z as the drop’s centroid on the centerline of the converging

pipe.

2.5.1 A Newtonian drop in a Newtonian matrix

In our geometry, the drop experiences a spatially inhomogeneous and temporally transient
extensional flow as it moves along the centerline of the converging pipe. As a result of
this, the drop deformation is always in a transient state and the velocity of interface is not
zero. Figure 2.2 depicts the kinematics of the flow around the drop. The streamlines, in

a reference frame fixed on the centroid of the drop, resemble those of an elongational flow
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Figure 2.2: A snapshot of the flow field around the drop when D,, = 2.5 and the drop centroid is
near z = 18a. Ca = 2.9, 8 = 0.5. The top half shows streamlines in a reference frame fixed on the
centroid of the drop, while the bottom half shows contours of the strain rate 7, the second invariant
of the strain rate tensor. For a clearer view of the drop interior, we have magnified the r coordinate
relative to z.

but exhibits a fore-aft asymmetry. Consequently, the drop is asymmetric as well, being
more elongated in the front. The contours of the strain rate exhibit a general increase

downstream. But within the drop, 4 achieves a maximum at the front tip.

Figure 2.3 depicts the deformation of a Newtonian drop in a Newtonian matrix for several
viscosity ratios. Comparing the D(z) and D,,(z) profiles in Fig. 2.3(a), we note that for
the relatively high capillary number Ca = 2.9, the drop deforms more than the matrix
if it is less viscous (f = 0.01) and vice versa (f = 2), in agreement with experimental
observations [73]. For D,,, we also plot a curve based on the exact Stokes flow solution
in an infinite cone [4]. The actual stretching ratio turns out to be rather higher than the

analytical solution, thanks to the inlet and outlet conditions.

Figure 2.3(b) plots the drop deformation D as a function of the matrix deformation D, for
five 8 values. All curves have an initial transient, obviously due to the somewhat artificial
initial condition, but eventually assume a constant slope. This linearity has been observed
experimentally by Mighri et al. [53]. In steady and homogeneous elongation, the steady-
state deformation of a drop (for sub-critical Ca) is often viewed as the result of the balance
between viscous and capillary forces. In our situation, the strain rate in the matrix continues

to increase as the drop moves downstream (cf. Fig. 2.3a), as does the viscous force. Thus,
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Figure 2.3: (a) Drop and matrix deformation as functions of the position z for Newtonian systems
at Ca = 2.9. For the drop deformation D, two viscosity ratios are shown. For the matrix deformation
D,,, an analytical result based on creeping flow in an infinite cone is also shown for comparison [4].
(b) Drop deformation D as a function of the matrix deformation D,, for Newtonian systems at
Ca = 0.29.
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Figure 2.4: The slope of drop deformation S as a function of viscosity ratio § in Newtonian systems
at different Ca.

the drop deformation increases continuously. For the rest of the paper, we will use the slope
S of the straight portion of the D(D,,) curves to indicate the speed of drop deformation.
For Newtonian systems, .S will be shown to depend on Ca and [, while for non-Newtonian

fluids, the Deborah number De is involved as well.
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A curious observation in Fig. 2.3(b) is that for this Ca the drop deformation does not seem
to depend on the viscosity ratio § monotonically. This effect is more clearly illustrated in
Fig. 2.4 in terms of the slope S. For smaller Ca, there is a intermediate viscosity ratio By
at which the drop deforms the fastest. With Ca increasing from 0.29 to 1.45, Bys decreases

from approximately 0.35 to 0.20, and seems to disappear for larger Ca.

The non-monotonic dependence of S on 3 can be explained by the transient deformation of a
drop after the startup of an elongational flow at a fixed strain rate. Numerical computations
by Hooper et al. [42] show that a more viscous drop reacts to the startup more slowly; its
initial deformation lags behind that of a less viscous drop. However, it eventually achieves a
greater steady-state deformation, provided that C'a is below the critical value for drop burst.
The slower initial reaction is due to a longer “emulsion time” t.,, = #4* for the drop [74],
and the greater steady-state deformation is because the more viscous interior sustains higher
internal stresses so as to afford the exterior fluid a firmer “grip” on the interface. In our
geometry, the drop experiences an unsteady external flow in the Lagrangian sense. So it
deforms continually and is in a perpetual transient state. For small 8 values, %, is short and
the drop is close to equilibrating with the local strain rate. Thus, it exhibits the steady-like
behavior with the instantaneous D(t) increasing with (. For large ( values, the contrary
is true and the drop is dominated by the transient response, with D(t) decreasing with S.
This explains the non-monotonic S(f) curves in Fig. 2.4 for smaller Ca. Larger Ca may be
thought of as the result of increased flow rate or decreased interfacial tension. Either way, a
drop would take longer dimensional time to reach steady state upon startup of the uniform
elongation. In our geometry, therefore, the transient respounse prevails and D decreases with
(8 monotonically. This monotonic decrease confirms previous computations in the limit of

Ca — oo [51].
2.5.2 A Giesekus drop in a Newtonian matrix

Figure 2.5 depicts the deformation of viscoelastic Giesekus drops as a function of the local
matrix deformation for several capillary and Deborah numbers. Similar to the Newtonian
drops in Fig. 2.3, the viscoelastic drop attains a “linear regime” of deformation after an

initial transient. This is consistent with the observations of Mighri et al. [53]. Thus, the
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Figure 2.5: Deformation of Giesekus drops as a function of the Newtonian matrix deformation with
B =0.5and £k =0.2. (¢) Ca=2.9; (b) Ca=0.29. Although the differences among the curves are
small in magnitude, they are much greater than discretization errors and represent a real physical
effect.
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Figure 2.6: Viscoelastic effects on the deformation of a Giesekus drop in a Newtonian matrix at
(a) Ca = 2.9, (b) Ca = 0.29. The drop deformation is represented by the slope S scaled by the
corresponding Newtonian slope S,,, and exhibits different trends with varying Deborah number De.
For all cases, the Giesekus fluid has a solvent viscosity ratio k = 0.2.

drop deformation may be analyzed in terms of the slope S as before, but now as a function

of the Deborah number De.

Figure 2.6 shows four S(De) curves for different Ca and g values. For 5 = 0.5, two different
behaviors are manifested for large and small Ca. For highly deformed drops at Ca = 2.9,

viscoelasticity promotes drop deformation. That is, the polymeric drop deforms faster than
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Figure 2.7: Stress growth predicted by Giesekus model after startup of uniaxial elongation. The
elongational viscosity 7 is scaled by that of a Newtonian fluid with the same zero-shear viscosity
is + pp, the Deborah number is De = é\gy and time is scaled by 1/é.

the Newtonian drop, and the difference increases monotonically with De. For moderately
deformed drops at the lower C'a = 0.29, the viscoelastic effect is non-monotonic; S first
decreases with De, reaches a minimum around De = 2 and then increases. At the largest
De computed, the drop deformation is still below that of the Newtonian drop. For g = 0.1,

the non-monotonic behavior is seen for both Ca values.

The differing trends can be explained in terms of the “effective viscosity” of the non-
Newtonian drop. The polymer stress takes a finite time (~ Apy) to react to flow, and
as the simplest example, Fig. 2.7 shows the stress growth curves for a Giesekus fluid after
startup of a homogeneous elongation at a constant strain rate é. For short times, the poly-
mer viscosity is smaller than its Newtonian counterpart, and indeed it decreases with De.
This may be called the “weak regime” where the polymer molecules do not have time to
unravel and sustain stress. For long times, the polymer stress eventually outgrows the New-
tonian value, and in this “strong regime”, 7" increases with De. The longer the polymer
relaxation time, the longer the weak regime persists. Note that these so-called regimes are
rather loosely defined; they refer to how 7+ varies with De within a certain time interval

and a certain range of De.
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Figure 2.8: Snapshots of the flow and stress fields near the Giesekus drop when D,,, = 2.5. § =0.5
and k = 0.2. (a) Ca = 2.9. The top shows streamlines in the reference frame of the drops’s centroid,
while the bottom plots the velocity vector field v — Sv,,, (see text). (b) The same plots for Ca = 0.29.
The reference vector in (a) and (b) is 0.2v9. (¢) Ca = 2.9. The top and bottom respectively plot
contours of the strain rate 4 and the normal stress difference N;. (d) The same plots for Ca = 0.29.

Our simulations are complicated by two additional factors. First, the flow inside the drop
is not uniformly elongational but comprises regions of varying flow type and strain rate.
Second, the Lagrangian unsteadiness experienced by the drop imposes a more complex
deformation history than sudden startup. However, the main idea of Fig. 2.7 carries over:
depending on how fast the polymer stress develops, the drop may have an effective viscosity
that is lower or higher than its Newtonian counterpart, which would make it deform faster or
slower. In the following, we will first analyze two such scenarios for § = 0.5 and Ca = 0.29

and 2.9.
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In both cases, the streamlines (top of Fig. 2.8a and b) have the same asymmetric hyperbolic
pattern. However, the contours of the strain rate differ (top of Fig. 2.8¢ and d). In the
highly elongated drop at Ca = 2.9, + is fairly uniform inside the drop, with a weak maximum
near the front tip. In the less deformed drop at Ca = 0.29, + is small in the middle of the
drop but attains relatively large magnitudes near the front and the back, with a maximum
at the front tip. Contours of the normal stress Ny = 7,, — 7, in the bottom halves of

Fig. 2.8(¢) and (d) show similar patterns.

To explain this difference, it is convenient to think of the straining inside the drop as from
two possible origins: primary flow due to elongation of the drop and secondary flow (e.g.,
recirculating eddies) due to confinement of the interface. For a drop that deforms affinely
with the matrix, the internal straining is entirely due to the first. For a drop that has
attained steady shape in an elongational flow, it is entirely due to the second. As our drop
stretches at a rate that is S times that of the matrix, we may take Sv,, to be the primary
flow inside the drop, v,, being the “background” velocity of the matrix in the absence of
the drop. Then the remainder v — Swv,, represents the secondary flow. For Ca = 2.9, the
drop elongates almost affinely as S =~ 1 in Fig. 2.5(a). Thus, the flow field inside the drop is
as if the interface did not exist, and the secondary flow due to the interface, plotted in the
bottom of Fig. 2.8a, is almost nil. For Ca = 0.29, in contrast, the drop deforms much more
slowly than the matrix (cf. Fig. 2.5b). The secondary flow exhibits the familiar recirculating
eddies in the bottom of Fig. 2.8(b). This pattern produces strong uniaxial extension and
long residence times near the front and back stagnation points and consequently the ¥ and
N; contours in Fig. 2.8(¢) and (d), in much the same way as inside a drop that has reached

steady-state deformation in steady uniaxial elongation [41].

The above analysis has two implications to interpreting the viscoelastic effects on drop
deformation. First, since the bulk of the drop experiences much lower stress than the
maximum N; at the front, it is reasonable to use this maximum N{"** as an indication of
the drop’s internal stress and hence its resistance to deformation. Second, the magnitude of
¥ in Fig. 2.8 possibly puts the Ca = 0.29 case (with an average strain rate 7,, = 0.045) in
the strong regime of Fig. 2.7 but Ca = 2.9 (¥,, = 0.09) in the weak regime, with different

dependence on the Deborah number.
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Figure 2.9: History of stress growth at the front tip of the Giesekus drop for a range of De. (a)
Ca=2.9; (b) Ca=0.29. For all curves 8 =0.5 and k = 0.2.

This is confirmed by comparing the history of stress growth at the front tip of the drop for a
range of De (Fig. 2.9). For Ca = 0.29, the maximum stress N{"** increases as De increases
from 0.029 to 2.9. This is the strong-regime behavior, with the effective viscosity of the
drop increasing with De. Referring to Fig. 2.4, a zero-shear viscosity ratio of = 0.5 means
that we are in the range where drop deformation decreases with drop viscosity. Thus, D
decreases with De in this range in Fig. 2.6(b). As De increases further to 14.5 and 290, the
polymer stress grows more slowly, and N{"** starts to decrease with De for the initial part
of the drop’s trajectory. This explains the subsequent increase of D with De in Fig. 2.6(b).
The non-monotonic dependence of D on De for Ca = 0.29, therefore, reflects the polymer
stress inside the drop undergoing a transition from the strong to the weak regime. This is
essentially the intermediate regime in Fig. 2.7 in which the elongational viscosity at a fixed
time first increases with De and then declines. In contrast, the polymer stress for Ca = 2.9
remains mostly in the weak regime because the strain rate 7 is lower in the drop and the

stress grows more slowly. This is evident in Fig. 2.9(a) and explains the monotonic increase

of D with De in Fig. 2.6(a).

We have performed the same analysis on the two curves in Fig. 2.6 for § = 0.1. The
quantitative difference is that 4 inside the drop is now higher. This is easy to understand

since with decreasing drop viscosity, the interfacial mobility increases. The larger ¥ amounts
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Figure 2.10: Viscoelastic effects on the deformation of a Newtonian drop in a Giesekus matrix at
(a) Ca =2.9, (b) Ca = 0.29. The drop deformation is represented by the slope S scaled by the
corresponding Newtonian slope .S,,. For all cases, k = 0.7.

to shifting the dimensionless time in Fig. 2.7 to the right, thereby the weak regime for 8 = 0.5
to the intermediate regime for § = 0.1 in Fig. 2.6(a). Conceivably, the drop will still exhibit

entirely weak behavior (S increasing monotonically with De) at sufficiently large Ca.

To summarize, the viscoelastic effect on drop deformation is rooted in the polymer stress
in the drop, but manifested through a sort of “spatial integration” over extensional and
rotational regions inside the drop as well as a “temporal integration” over the Lagrangian-
unsteady trajectory of the drop. As in the simple picture of Fig. 2.7, here the polymer stress
grows according to the polymer relaxation time and the local strain rate. Thus one may be
tempted to relate the polymer stress to a local Deborah number. But we did not attempt
to identify the local instantaneous 7 and De to force a quantitative connection with the
weak and strong regimes in Fig. 2.7. This is because the spatial and temporal variations
make it impossible to define an effective De for the entire drop and pinpoint the time for
the transition from the weak to the intermediate regime. The connection between Fig. 2.7

and Fig. 2.6 is subtler than can be thus quantified.

2.5.3 Newtonian drops in Giesekus matrix

Deformation of Newtonian drops in a Giesekus matrix also displays the linear growth with

matrix deformation after an initial transient, similar to the inverse case of the last subsection
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Figure 2.11: The slope S as a function of the viscosity ratio S for a Newtonian drop in a Newtonian
matrix with the capillary number based on the drop viscosity fixed at Cag = 0.029.

(Fig. 2.3). This is again in agreement with the experimental observations of Mighri et al.
[63]. Thus, we continue to use the slope S of the growth curve as a yardstick to measure
the effect of matrix viscoelasticity on drop deformation. Figure 2.10 plots the variation of
S with the Deborah number De for two capillary numbers and two viscosity ratios. For
B = 0.5, drop deformation is seen to decrease monotonically with De for both Ca. For
B = 0.1, however, two different behaviors may appear. For Ca = 0.29, S first increases
with De, peaks around De = 0.9 and then decreases for higher De to values below the

Newtonian deformation. For Ca = 2.9, S declines monotonically with increasing De.

The two trends can be explained in terms of the transient polymer stress in a similar fashion
to the last subsection. A minor complication is that in the Newtonian curves of Fig. 2.3,
Ca is defined using the matrix viscosity p,,. While changing the drop viscosity pg only
affects 3, changing p,,, would change the capillary number as well, and the resultant change
in D or S cannot be read directly off Fig. 2.4. If we define a capillary number Cay using
g, then the effect of changing u,, (and thus ) with Cay fixed is very simple: the drop
deformation decreases with 3 for all values of Cagy tested. An example is shown in Fig. 2.11
for Cag = 0.029. There is no longer the interplay between initial transient and final steady

state seen in Fig. 2.3. Based on Fig. 2.11, the effect of matrix viscoelasticity can be easily
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Figure 2.12: Flow and stress fields near a Newtonian drop in a Giesekus matrix at D,, = 2.5.
B = 0.1, k = 0.7. The streamlines, velocity vectors and contours for 4 and N7 are plotted in the
same way as in Fig. 2.8. Ca = 2.9 for (¢) and (¢) and Ca = 0.29 for (b) and (d). The reference
vector in (a) and (b) is for the velocity vector plots.

interpreted through the idea that the growing polymer stress amounts to a changing effective

viscosity for the matrix.

We will first explain the differing trends seen for # = 0.1. The flow and stress fields near
the drop, plotted in Fig. 2.12, show a certain similarity to those in the last subsection.
Our focus, of course, now falls on the Giesekus matrix fluid surrounding the drop. Note
that for the less deformed drop at Ca = 0.29, v and N; are much larger than the drop
at Ca = 2.9, and their maxima occur just outside the front tip of the drop. Therefore,
the drop at C'a = 0.29 may experience the strong regime while the latter the weak regime.

This is borne out by the stress growth curves for a range of De at each Ca (Fig. 2.13).
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Figure 2.13: History of stress growth outside the front tip of the Newtonian drop in the Giesekus
matrix for a range of De. (a) Ca=2.9; (b) Ca =0.29. f=0.1 and k = 0.7 for all curves.

For Ca = 2.9, the polymer stress decreases monotonically with De, showing weak regime
behavior. For Ca = 0.29, on the other hand, N7 increases with De until De = 0.87, and
then declines with greater De. There is a transition from the strong regime for smaller De
to the weak regime for larger ones. If the polymer stress amounts to, in an average sense,
an effective viscosity of the viscoelastic matrix, then in view of Fig. 2.11, we can rationalize

the monotonic decrease of S with D in Fig. 2.10(a) and the non-monotonic variation in
Fig. 2.10(b).

For B8 = 0.5, the strain rates and polymer stresses are both lower, since the higher drop
viscosity reduces the interfacial mobility. Qualitatively this corresponds to shifting the
dimensionless time in Fig. 2.7 to smaller times. Consequently the weak regime prevails for

both Ca values. We omit a detailed analysis for brevity.

Based on the analysis of the last two subsections, the commonality between Fig. 2.6 and
Fig. 2.10 becomes apparent. No matter whether the viscoelasticity occurs in the drop or
the matrix, its effect on drop deformation may fall in the weak regime or the intermediate
regime (i.e., the transition from the strong to the weak regime). The key determinant is the
magnitude of ¥ inside the viscoelastic component relative to the externally imposed strain
rate. A smaller Ca or 3 causes a higher 4 and favors the strong regime. Generally, we may
expect the De range corresponding to the strong regime to widen for decreasing Ca and/or

3, and to narrow and even disappear for increasing C'a and/or f3.
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2.6 Comparison with prior studies

The results reported in the last section may seem inconsistent with the conventional thinking
that polymer in the drop reduces its deformation while polymer in the matrix increases
deformation. That notion is based on the heuristic argument that the steady-state drop
shape is the result of a balance among the hydrodynamic forces inside and outside the
drop and the interfacial tension [49]. In steady uniform elongational flows, the predictions
are indeed confirmed by experiments and calculations [40-42, 72]. The converging flow
geometry produces a continuously increasing strain rate along the centerline, which keeps
the polymer stress, be it in the drop or the matrix, in a perpetual transient. As a result,

the drop deformation exhibits a more varied behavior than in steady elongational flow.

The experiment of Mighri et al. [53] and the computation of Khayat [54] provide the most
comprehensive data in the literature on drop deformation in a conical flow geometry. Mighri
et al. reported a linear relationship between drop deformation D and matrix deformation
Dy, for all Newtonian and Boger-fluid drops and matrices tested. Owur predictions are
consistent with these findings except that the linearity becomes established only after the
influence of the initial condition dies out in the numerical simulations. For all their experi-
mental runs, Mighri et al. found that viscoelasticity in the drop decreases drop deformation
while that in the matrix increases it. These correspond to our strong-regime behavior. In
contrast, Khayat’s simulations, based on a linear Oldroyd-B model, predict purely weak-
regime behavior; the drop deformation increases monotonically with De if the polymer is
in the drop but decreases monotonically if in the matrix. The contradiction between these

two studies can be reconciled by examining the flow and material parameters.

Using the material and experimental parameters of Mighri et al.’s experiment, we have
determined the range of dimensionless groups as defined here: 9 x 1072 < Ca < 9 x 1072,
0.28 < 8 < 1.1 and 4 x 1072 < De < 0.14. Comparing these parameters with Fig. 2.6
and Fig. 2.10, it is reasonable to assume that the small C'a and small De have put all the
experiments within the strong regime. Khayat [54] did not report the matrix viscosity used
in his computations. If we take u,, ~ 50 Pa-s from the experiment of Bourry et al. [51],
which Khayat [54] aimed to simulate, then Khayat’s Ca is estimated to be around 800. The

viscosity ratio is also relatively large: 8 = 3, and the Deborah number De ranges from 0.016
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to 0.16. The large Ca and § imply that his simulations are well within the weak regime.
Therefore, Mighri et al.’s experiment and Khayat’s simulation fall on opposite ends of the
parametric spectrum; the former is entirely in the strong regime while the latter in the weak

regime.

The strong-regime behavior is more familiar because most prior experiments have mea-
sured steady-state drop deformation. The only exception may be the experiment of Delaby
et al. [75], in which deformation of polymer inclusions in a polymer matrix is measured
following startup of stretching. They reported that the drop deforms more (or less) than
in a comparable Newtonian/Newtonian system if its relaxation time is longer (or shorter)
than that of the matrix polymer. This trend corresponds to our weak regime. The authors
invoked the linear viscoelastic theory of Palierne to explain the observations, even though
the total strain is on the order of 5. A quantitative comparison with our calculations is dif-
ficult because the experiment employed uniform elongation. A further complication arises
from the use of polymer melts, whose stretching may implicate both deformation-dependent
viscosity and elasticity, and it is impossible to separate the two. Additional hints of weak-
regime behavior come from the computational results of Hooper et al. [76]. In startup of
uniaxial elongation at a fixed strain rate, viscoelasticity in the drop causes a faster initial
drop deformation than a Newtonian drop of the same viscosity, and a Newtonian drop

deforms more slowly in a viscoelastic matrix.

To verify the weak-regime drop deformation predicted here, experiments should be designed
to have low strain rates but fast transients in the Lagrange sense, with polymers of long
relaxation times. This way, the polymer stress is kept in an “undeveloped stage”, far from
equilibrating with the local instantaneous strain rate. In the past, the strong-regime picture
was long held for shear flows as well [77,78], until the careful low-strain-rate measurements
of Guido et al. [79] suggested the existence of weak-regime deformation for small De. Com-
putational confirmation came afterwards [45]. In inhomogeneous elongational flows, our

predictions of weak and intermediate-regime drop deformation await similar experiments.

Finally, the idea of comparing the polymer relaxation time Ay and the emulsion time tep,
has proved useful in analyzing certain viscoelastic interfacial flows [25,80]. For instance,
Grillet et al. [25] found the so-called elasticity parameter % an important determinant of
interfacial instability in coating flows involving a viscoelastic liquid. The idea does not
apply to our problem, however. A long t.,, implies a long transient in drop deformation,
and a long Ay indicates slow growth of polymer stress. Both conspire, rather than compete,

in bringing about weak-regime behavior.
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CHAPTER 2. Drop deformation in converging flow

2.7 Conclusion

In this study, we have investigated the influence of viscoelasticity on drop deformation in
converging pipe flows in a conical geometry. Three series of simulations have been carried
out, with Newtonian drops in a Newtonian matrix, Giesekus drops in a Newtonian matrix
and Newtonian drops in a Giesekus matrix. Viscoelastic effect on drop deformation turns
out to be rather subtle, and may enhance or suppress drop deformation depending on the

flow and material parameters.

With the viscoelastic component in the drop or the matrix, the dependence of drop defor-
mation on the Deborah number may be either monotonic or non-monotonic. The former
is attributable to the initial “weak regime” in the development of the polymer stress upon
startup of elongation, where the instantaneous elongational viscosity is lower for larger De.
The latter corresponds to a transition from a “strong regime” to the weak regime, with
the instantaneous stress first increasing with De and then declining. In the weak regime,
a polymer drop deforms more readily than a comparable Newtonian one, and a polymer
matrix is less able to deform a drop than a Newtonian matrix of the same viscosity. In the
strong regime, the trend is reversed. Which behavior prevails in a conical flow channel de-
pends on the capillary number Ca, the viscosity ratio 3 as well as the range of the Deborah
number De. A smaller Ca and a smaller 3 are conducive to larger local strain rates and

hence faster polymer growth, whereas a larger Ca or 3 favors the weak regime.

This scheme reconciles contradictory results in the literature as opposite limits in the pa-
rameter space. Thus, it provides a more or less complete picture for viscoelastic effects
on drop deformation in transient elongational flows. To verify this picture experimentally,

carefully designed experiments should explore low strain rates and fast transients.
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Chapter 3

Experiments on selective
withdrawal

3.1 Introduction

The term “selective withdrawal” originated from drawing a fluid from a container holding
stratified layers of immiscible fluids. In more recent literature, it refers to the flow in the
neighborhood of a liquid-liquid or liquid-gas interface induced by suction through a tube.
Figure 3.1 shows photographs of the steady-state interface when the suction tube sits at
a fixed distance above the undisturbed interface. With increasing suction flow rate, the
interface deforms more and eventually the lower fluid may be withdrawn together with the

upper fluid in the form of a thin thread.

From the early 1900’s, people have applied selective withdrawal to remove poor quality water
at the base of dams through scour valves [81]. By the early 1960’s, several studies have
been done [82-84] to develop a fundamental understanding of this phenomenon. Because
selective withdrawal was motivated by applications in water quality control, most studies
from that period treated the fluids as inviscid on account of the low viscosity of water.
More recently, several groups are still pursuing inviscid models for selective withdrawal
along with experiments [85-92]. In the 1980’s, igneous geology motivated several studies
on the viscous selective withdrawal of magma from the chamber during the process of a
volcanic eruption [93,94]. However, the numerical work of Spera [93] did not include the

effect of density difference and the calculations of Blake & Ivey [94] did not include the
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effect of interfacial tension. Lister [95] published a theoretical and numerical analysis which
showed that both buoyancy and surface tension are important for an accurate description

of viscous selective withdrawal. In his work, the suction is represented by a point sink.

Since then, physicists became interested in this phenomenon as a scientific problem of inter-
facial flow. There have been several experimental and numerical studies on well-controlled
Newtonian liquid-liquid systems [5, 96-98] and gas-liquid systems [6, 99, 100]. For liquid-
liquid systems, the flow behavior is classified into three regimes: subcritical, critical and
supercritical. In the subcritical regime, the interface is deformed into a steady hump and

one only withdraws one fluid from the tube. In the supercritical state, the interface forms

Figure 3.1: The steady-state interface in a selective withdrawal experiment. From top to
bottom, the flow rate () increases and the system is in the subcritical, critical and super-
critical regimes. Adapted from Cohen [5] with permission, ©2004 American Physical Society.
(http://prola.aps.org/abstract/PRE/v70/i2/e026302)
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a spout into the tube and both fluid components are withdrawn. The critical state is the
threshold for the uptake of the interface. The hump height in the subcritical regime, i.e. the
depth of the interfacial depression at the tip, and the critical flow rate have been measured
and computed. It turns out that the appearance of the supercritical regime depends on the
viscosity ratio of the components, and in a gas-liquid system, it depends on whether the
suction tube sits in the gas or the liquid. If the fluid containing the tube is the gas, then
the flow undergoes the same three regimes as liquid-liquid systems. On the other hand, if
the ambient fluid is the liquid, only the subcritical state obtains. The free surface always
attains a smooth steady-state shape, and no gas can be drawn into the tube regardless
of the flow rate. Gas-liquid behavior is of more interest to us since our experiment and
computation will concern the deformation of an air-liquid free surface. To sum up this brief
review of the literature, for Newtonian systems there is a more or less clear understanding

of the interfacial behavior in selective withdrawal.

Meanwhile, new applications have been suggested for selective withdrawal, such as coating
of microparticles [101,102] and fabrication of thin glass fibers [103,104]. In such applications,
the fluids are usually non-Newtonian and exhibit large elastic stresses. But non-Newtonian
rheology has so far not been investigated in selective withdrawal. The initial motivation of
our work was to study this phenomenon in viscoelastic systems and produce a clear picture
about the elastic effect on selective withdrawal. Since the flow near the interface has a
strong extensional component, one expects strong manifestation of the viscoelastic stresses.
In particular, the coupling between polymer stretching and interfacial deformation will be
a focus of our attention. Thus, selective withdrawal is an attractive flow situation in which
to explore the interaction between bulk rheology and interfacial deformation, and in this

sense is a scientifically significant problem.

Moreover, selective withdrawal in the subcritical state offers a balance between hydro-
dynamic forces and interfacial tension. After some preliminary numerical simulations of
selective withdrawal in viscoelastic system, we have realized a new dimension of this prob-
lem: the setup, operated in the subcritical state, may potentially be used as an extensional
rheometer to measure the elongational viscosity of the component being withdrawn. On
the one hand, the flow near the tip of the interface is very close to homogeneous uniaxial

extension. We could obtain the local strain rate near the tip from control parameters such
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as flow rate and the geometric setup. On the other hand, the force balance at the interface
allows us to calculate the first normal stress difference from the interfacial tension. Between
the two, we could calculate the extensional viscosity of the fluid. The significance of such
measurements lies in the well-known and long-standing difficulty in measuring elongational
viscosity for low-viscosity non-Newtonian liquids [8,58], especially at lower strain rates. For
selective withdrawal to be used as an extensional rheometer, however, several uncertainties
have to be resolved first. For example, to what extent is the flow “homogeneous elongation”?
Can we obtain the extensional rate accurately? How to back out the elongational stress
from the surface tension? Our experimental and computational investigation have led to a
degree of success of this strategy. Since these issues have more to do with the computational

work than the experimental, we defer detailed discussion to the next chapter.

3.2 Experimental setup and flow control

The experimental setup, shown in Fig. 3.2(a), is modelled after that of du Pont and Eggers
[6] in their experiment with Newtonian fluid. It consists of a test tank connected to a control
tank by a tube. The test tank has a 3 cm x 3 cm square cross section and a height of 21
cm. The control tank is much wider and shallower, with a rectangular cross section of 20
cm X 30 cm and a height of 5 cm. These two tanks are connected by a tube of 0.95 cm inner
diameter. In the test tank, there is a vertical circular tube of inner diameter 0.95 cm and
outer diameter 1.27 cm. The top of the tube, which is 12 ¢m above the bottom of the test
tank, is sealed by a thin circular disk having a 1 mm hole at the center (Fig. 3.2b). Through
this hole, the liquid in the test tank drains down into a reservoir, driven by gravity, and
the flow rate is controlled by a valve. Lowering of the free surface in the test tank induces
a flow from the control tank through the connecting tube, which to a degree synchronizes
the free surface in both tanks. Thus, the control tank serves to increase effectively the cross

sectional area of the test tank, without enlarging the viewing depth for the camera.

Two things are important for the flow-control scheme. Because the cross section of the
control tank is large and the liquid flow rate is low (below 0.01 ml/s), the liquid level in
both tanks changes very slowly during the experiment such that the flow can be considered

quasi-steady at all times. Thus, at any moment, the interface and flow field correspond
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Figure 3.2: Schematic of the experimental setup. Plot (a) shows the whole setup of the experiment,
with the arrows showing the direction of flow. Plot (b) magnifies the central portion of the test tank
and defines the geometric quantities H, h and R.

39



CHAPTER 3. Ezperiments on selective withdrawal

to the steady-state situation at the instantaneous flow rate and water level. This way, the
experimental results may be compared with steady-state computations in the next chapter.
Second, the flow rate @ is essentially constant during the experiment. @) is determined by
the opening of the valve and the pressure head from the free surface down to the valve, a
vertical height of approximately 50 ¢cm. Since the free surface in the test tank lowers at
most 5 mm during an experiment, this has little effect on @ as long as the valve is left at a
fixed position. Between experiments, of course, we adjust the valve to achieve different @

values.

Therefore, the control parameters for our experiment are the flow rate ) and the liquid level
indicated by the position of the free surface in the test tank H. At the beginning of each
experiment, we fill up both tanks to an initial H ~ 1 cm. Then the valve at the bottom is
opened to a certain position and the flow rate () is measured by a stopwatch and balance
every 10 minutes until it reaches a steady state. A digital camera mounted orthogonal to
the plane of the page in Fig. 3.2 monitors the slow decline of H in time. When H lowers
to a certain point (on the order of 5 mm but fluid-specific), the interface starts to deform
toward the suction tube. The position of the interface is recorded by a CCD camera (Watec
WAT-902B or Pixelink PL-B959U) mounted on a horizontal translation stage, which could
move in two directions at a step size of 0.01 mm and a maximum range of 5 mm in each
direction. The camera is kept roughly level with the tip of the interface and captures the
location of the tip, indicated by h, as well as the interfacial shape from which the curvature
k at the tip can be computed. Because the small range of A (0.5 — 1 mm) and relatively
long distance between the tip and the camera (~ 30 mm), little error is introduced by the
small change in viewing angle (~ 2°) as the interface lowers relative to the camera. The
flow loop and cameras are mounted on an optic table and all experiments are done in an
air-conditioned laboratory with room temperature fixed at 21°C. A typical experiment lasts

30 minutes.
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Figure 3.3: Edge detection for locating the interface. (a) The original grayscale image from the
experiment. The sharp contrast was obtained by backlighting . (b) The interface determined by
MATLAB. (c) A typical light-intensity profile along a horizontal line from (a).

3.3 Image processing and data analysis

The direct outcome of the experiment is grayscale video recorded by the CCD camera, at
16 frames per second and 480 x 640 pixels. Next we use Windows Movie Maker to extract
still pictures from the video. To determine the location of the interface from such pictures,
we use MATLAB to compute the spatial gradient of the light intensity in the images.
Generally, such “edge-detection” is accomplished by using one of two methods, gradient
and Laplacian [43]. The gradient method detects the edge by finding the maximum in the
first derivative of the light intensity in the image. The Laplacian method relies on zeros of
the second derivative. In MATLAB, the Canny filter uses a gradient method to determine
the edge in the picture. As an example, Fig. 3.3 shows the result of the Canny edge detector
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in MATLAB. The interface is smooth and sufficiently clearly defined for our data analysis.
Figure 3.3(c) shows a typical horizontal profile of light intensity for edge detection. The
maximum error in locating the edge is half of the distance between A and B. For most cases,

this is round 5 pixels.

After the free surface is determined by MATLAB, h and & are calculated from it. The point
with the lowest position (or the “tip”) is located and its two neighbors are also marked. h
is the distance between the tip and the orifice of the tube. A second-order polynomial is
used to fit the three points and calculate the tip curvature x. The error in determining the
curvature stems from that in locating the edge. The uncertainty in the edge location is 5
pixels and the horizontal distance between the tip and its neighbor is typically 80 pixels.

Thus, the error of curvature is around 12.5%.

3.4 Test fluids: composition and rheology

In the experiments we have used silicone oil as a Newtonian fluid and polymer solutions of
polyisobutene (PIB, with molecular weight My ~ 2x10%, Oppanol B, BASF) in polybutene
(PB-H35, My ~ 700, INDOPOL H-35; PB-H50, My ~ 800, INDOPOL H-50; PB-H100,
My ~ 910, INDOPOL H-100, all from BP Amoco) and heptane as viscoelastic fluids. All
materials are used as received with no further processing or refinement. The silicone oil
is from “The Chemistry Store.com” with a density of 760 kg/m? and a shear viscosity of
9.5 Pa:s. We have mainly used two polymer solutions, termed “strongly elastic” (SE) and

“weakly elastic” (WE), with compositions given in Table 3.1.

Solution PIB heptane | PB-H35 | PB-H50 | PB-H100
SE fluid | 0.17% 4.3% 52.3% 21.7% 21.5%
WE fluid | 0.034% | 1.03% 0 99% 0

Table 3.1: The composition of the polymer solutions. PB-H35, PB-H50 and PB-H100 are
three types of PB with molecular weight of 700, 800 and 910.

Because the PIB is a rubbery solid that does not dissolve directly in PB, we first dissolve
the PIB in heptane and then mix the solution into PB of various grades to produce the
working solutions for the experiment. The polymer solutions are prepared according to the

following protocol.
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(a) Measure prescribed amounts of PIB and heptane by a balance (Ohaus Scout Pro,

200+0.01 g);

(b) Dissolve PIB in heptane by using a magnetic stirrer for about 1 week at 21°C in an

air-conditioned room;
(¢) Measure a prescribed amount of PB by the balance;

(d) Mix the PIB-heptane solution into the PB using a large stirrer for 2-3 days at 21°C.

We have measured the surface tension o of the liquids at 21°C using the ring method
(Cole-Parmer, Surface Tensiomat Model 21), and obtained the following values: o = 21.3
mN/m for silicone oil, 27.3 mN/m for the SE fluid and 32.1 mN/m for the WE fluid.
During the experiment, surface adsorption of contaminants is possible. But our Newtonian
experimental results match very well with du Pont and Eggers’ work [6] as well as our
own computations (see Chapter 4). This indicates that any effect of surfactants on our
experiment is negligible. Thus, we have not used any surface-cleaning procedure during the

experiments.

Comparing the PIB molecular weight and the concentration of our polymer solutions with
those in the literature, we expect them to be dilute Boger fluids [105-111]. Their shear
rheology measured on a Bohlin CVO-R rheometer largely bears this out (Fig 3.4). For
both fluids, the shear viscosity 4 remains essentially constant for 0.1 s~ < 4, < 30 s~1.
For higher shear rates, shear thinning becomes appreciable. Below 0.1 s~!, the data are
noisy and unreliable; this is near the lower limit of the testing range for the transducer
used. Data for first normal stress difference /Ny are reliable for vy, > 1 s~!, above which N;
scales with 4% as expected for Boger fluids. At higher shear rates, the Ni(¥;) dependence
becomes milder, consistent with the onset of shear-thinning in g4. The minimum shear rates
for reliable ;1 and N; are consistent with earlier reports in literature [53]. Both p and N;
decrease with temperature, as expected [18]. As mentioned before, all selective withdrawal

experiments will be carried out at 21°C.

We have also used the Capillary Breakup Extensional Rheometer (CaBER, ThermoHaake)

to measure the elongational viscosity of the polymer solutions, and the results are shown
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Figure 3.4: Shear rheology of our polymer solutions at three temperatures. (a) and (b) show the
shear viscosity and first normal stress difference for the WE fluid, while (¢) and (d) are for the SE
fluid. The straight line in (d) indicates the slope for a N; oc 43 scaling on the log-log scale.

in Fig 3.5. CaBER records the capillary thinning of the polymer thread, which is governed
by the balance between the capillary force and the elongational stress. Unlike the filament
stretching device, the elongational rate during this process is not constant but undergoes a
rather complex temporal variation. As the result, CaBER cannot provide the steady-state
elongational stress under a constant elongational rate, but yields an “elongational stress
growth viscosity” 77 [18], as a function of time or strain. Figure 3.5(b) shows that as the
polymer chains get stretched, they contribute to a steep increase in 77 commonly known
as strain hardening. Toward the end of the filament thinning, 77 appears to level off. The

data become noisy due to the uncertainty in resolving the diminishing filament diameter.
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Figure 3.5: CaBER measurements of (a) the dimensionless diameter of the fiber and (b) the
apparent extensional viscosity of SE and WE fluids at 21°C.

But it appears safe to assume that steady-state stretching has not been achieved. Our data

are consistent with CaBER measurements in the literature [112].

Another important quantity measurable by CaBER is the relaxation time Ag. For dilute
polymer solutions, there is an “elasto-capillary thinning” regime [112] during which the fila-
ment diameter decreases exponentially with time and the elongational rate is approximately
constant. Subject to such strain, the Giesekus model predicts an “elongational stress growth
viscosity” 7t that increases exponentially with time or strain [113]. In Fig 3.5(a), we also
find this “elasto-capillary thinning” regime for our fluids. Curve fitting the Giesekus model
then gives us the relaxation time of the fluids: A = 8.50 s for the SE fluid and 3.77 s for the
WE fluid.

Since the experimental project lasted months, we were concerned about aging and degra-
dation of the polymer solutions due to heptane evaporation and polymer chain scission. To
check such effects, we measured the shear as well as elongational rheology of the solutions
at the beginning and end of the project. There are no significant differences that would
indicate aging and degradation. For the SE fluid, the relaxation time decreases from 8.63
s to 8.5 s. Since selective withdrawal subjects the polymer chains to elongation, the chain
scission is reasonable and very small. The heptane concentration is very low, and does not
contribute much to the rheology in any event. So it is expected that solvent evaporation

not be a major factor.
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3.5 Results for Newtonian fluid

To reprise, our experimental procedure consists in fixing the flow rate () and following the
evolution of the interface as the free surface position H gradually lowers. Using the radius
of the suction hole R as the characteristic length, and Q/R? as the characteristic velocity,
we construct a capillary number:

pQ

Ca: m, (3].)

where ¢ is the surface tension and p is the viscosity of the Newtonian fluid. For the polymer
solutions to be studied in the next section, Ca is similarly constructed using the constant
viscosity p at moderate shear rates (cf. Fig. 3.4). In addition, there are length ratios H/R,
h/R and kR, and we have found it convenient to use x = (H — h)/R in data reduction.

Figure 3.6 shows a typical example of the interfacial deformation for Newtonian fluid at a
fixed flow rate corresponding to Ca = 10.22. We started with an initial H = h = 6.5 mm. In
the first 1000 s, the interface shows no visible deformation so H remains equal to h. As both
decrease to ~ 4.5 mm, at time ¢ ~ 1200 s, the interface forms a gentle downward protrusion,
which becomes more pronounced as H and h further lowers (Fig. 3.6a—c). Now h falls below
H and H — h gives the depth of the depression at the center of the interface, which will also
be called the “hump height”. Also note that the tip of the protrusion becomes more pointed
as the interface gets nearer to the suction tube and the viscous force of the flow becomes
stronger. Toward the end, the tip seems quite pointed, and eventually enters the opening of
the suction tube (Fig. 3.6g,h). Generally speaking, the evolution of the interfacial shape is
gradual and the process lasts more than 30 minutes. The lack of abrupt changes contrasts

the behavior of polymer solutions, as we will see in the next section.

What is conspicuously lacking in the above process is the subcritical-to-supercritical transi-
tion depicted in Fig. 3.1 for liquid-liquid selective withdrawal. In the experiments of Cohen
et al. [5,96], various liquid pairs were used to cover a viscosity ratio v = 1073 — 2. Here v
is defined as the ratio between the liquid on the opposite side of the nozzle to the liquid
containing the nozzle. In all cases, there is a critical condition, reached by increasing @)
or decreasing h, where the tip ruptures into a jet. They also found the critical @ to be

independent of v, an observation that was later confirmed by the numerical computations
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Figure 3.6: Evolution of the free surface for Newtonian fluid at a fixed flow rate corresponding to
Ca = 10.22. Note the duration of the experiment and the length scale. The last three images show
the opening of the suction tube.
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of Blanchette et al. [114]. This critical condition is also consistent with the computational
result of Lister [95] for equal-viscosity fluids. Finally, Jeong and Moffat’s analytical and
experimental study on cusp formation [115] reports a critical condition for an interface per-
turbed by two counter-rotating rolls generating a flow orthogonal to and away from the

interface.

With an air-liquid system, du Pont and Eggers [6,99] explored the existence of a critical state
with increasing () and decreasing distance h. In their system, as in ours, the viscosity ratio
v is around 107%. From their experimental data for the subcritical state (partially depicted
in Fig. 3.7), they initially suggested that the tip curvature should diverge as x ~ (h—h*)~3,
h* being the critical position of the tip when it becomes a cusp [6]. No jet was found. Later,
boundary-integral computations allowed them to explore higher x than in the experiments,
and they found that the power-law scaling fails for larger x; instead of diverging, it seems
to approach a finite limit as h decreases [99]. Based on this, du Pont and Eggers concluded

that no critical state exists for the air-liquid system.

This conclusion seems consistent with our findings. First, we never observed the formation
of a spout or jet. Even as the tip descends into the tube, the evolution is smooth and
gradual. Second, we never observed a cusp, and the tip always appears to be round in this
process, despite the appearance of Fig. 3.6(f-h), if viewed under sufficient magnification. Of
course, finite optical resolution limits the magnitude of the curvature that we can confidently
calculate from the image. But the highest curvature we have seen is around kR = 23.5, for
which the interface is still adequately resolved. Thus, our experiment supports du Pont and

Eggers’ conclusion that no critical condition exists for air-liquid systems having a small v.

To reconcile this with the liquid-liquid result that the critical flow rate is independent of
v [5,96,114], we speculate that when v becomes sufficiently small, the critical flow rate will
increase without bound. The critical condition in selective withdrawal can also be likened
to the loss of steady shape of a drop or bubble in extensional flow [39]. If the drop-to-
matrix viscosity ratio v is larger than 1, the critical Ca for the burst of the drop is largely
independent of v. When v decreases below 1, the critical C'a increases, apparently following

a power-law and without an upper bound.
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Figure 3.7: The tip curvature s increases as the interface moves down toward the suction tube
during the process depicted in Fig. 3.6. The two lines represent the data of du Pont and Eggers [6]
and all the symbols are our experimental data. The two sets of data marked SE fluid are for
viscoelastic polymer solutions, and they will be discussed in the following section.

For a more quantitative comparison between our experiment and that of du Pont and
Eggers [6], we plot in Fig. 3.7 the steady-state tip curvature s as a function of the tip
location h, with the flow rate fixed at several values of Ca. In both experiments, x increases
with decreasing h for a fixed Ca, and increases with Ca for a fixed h. We have attempted
to tune our flow rates toward Ca = 9.66 of du Pont and Eggers’ experiment; our data sets
for Ca = 9.45 and 10.22 closely hug their data. Thus, we are satisfied that our experiments

with Newtonian fluids agree closely with theirs.

3.6 Viscoelastic fluid

The strength of elastic effects is typically represented by the Deborah number [18]:

AuQ

De = i

. (3.2)
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In this definition, as for Ca before, the nominal velocity at the suction tube V = Q/R?
is taken to be the characteristic velocity. Since both De and Ca are proportional to V, it
seems reasonable to use the ratio

De Apyo
E=2-= NLR (3.3)
to indicate an “intrinsic” strength of elasticity. We will call this the elasticity number
following Grillet et al. [25]. Except for the length scale R, E is essentially a material
constant. For the experimental setup used here, £ = 22.1 for the SE fluid and 15.1 for the

WE fluid.

Figure 3.8 depicts the evolution of the free surface of the polymer solution SE. We start with
H = h =4.37 mm. In the initial period of the experiment, the free surface is flat, with no
visible deformation or curvature. Then, at the time of the first picture in the series (¢t = 480
s), the deformation of the free surface becomes visible. In a short duration of little more
than 30 seconds, the deformation very quickly becomes more pronounced. By ¢t = 509 s and
h = 3.49 mm, the surface becomes unstable, and the system approaches the critical state.
First, the tip apparently becomes a sharp cusp. Then quickly the cusp extends downward,
and a thin air jet is ejected from the tip, which remains stable as h continues to decrease.
Now the system is in the supercritical state (t = 517 s, h = 3.44 mm). To keep the free
surface sharp, we had to use lighting from the back of the test tank in recording the video.
In this arrangement, the air jet is not visible in the pictures. But it is in Fig. 3.9, taken
with lighting from the top. Note that in comparison with the Newtonian picture (Fig. 3.6),
the surface deformation remains modest even in the supercritical state. At later times, the
free surface continues to move down, and the “cone” at the base of the air jet gradually
becomes more pointed. The very prominent cone of Fig. 3.9, comparable to the Newtonian

one, was achieved at a much higher flow rate and Ca.

This is an overview of the whole deformation process for viscoelastic liquids. For the weakly
elastic (WE) solution, the qualitative features are the same. But the onset of deformation
and the critical state all occur at smaller 4 than in Fig. 3.8, even though the experiment
was at a higher flow rate (Ca = 7.59 and De = 115). In the following, we will discuss the

subcritical, critical and supercritical regimes in turn.
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Figure 3.8: Evolution of the free surface of the polymer solution SE at Ca = 2.5 and De = 55.3.
The system is subcritical until £ = 509.46 s and is supercritical thereafter.
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Figure 3.9: Snapshot of the air jet in the supercritical regime for the viscoelastic fluid SE. Ca = 9.5,
De =231 and h = 2.1 mm.

3.6.1 Subcritical regime

Since the Newtonian experiments of the last section consist of only subcritical deformation,
this is the only regime comparable between Newtonian and viscoelastic liquids. This regime
of interfacial deformation is quite different between the two types of fluids. First, for the
same values of Ca and h, the free surface deforms much more in viscoelastic fluids than
in Newtonian fluids, producing a much larger tip curvature. Typically, the free surface
of viscoelastic fluids begins to deform visibly at an H value far greater than that for the
Newtonian free surface. That is to say, given the same Ca, the viscoelastic free surface feels
the flow effect at a much larger distance from the suction tube. This is apparent from Fig 3.7,
where for the Newtonian fluid at Ca = 9.45, detectable deformation of free surface occurs
after h falls to h = 4 mm. For the viscoelastic SE fluid, on the other hand, the free surface
starts to deform visibly at h &~ 6 mm even though the Capillary number(Ca = 6.02) is lower.
By h =~ 5.8 mm, the system has entered critical state with k¥ — co. The obvious explanation
for the difference is that the viscoelastic fluid produces additional normal stress that pulls

the interface downward. As the flow near the tip is mostly elongational, another way of
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Figure 3.10: Temporal evolution of (a) the tip curvature xk and (b) the tip position h for SE at
Ca =6.02 and De = 146.

expressing the same idea is that the polymer solutions exhibit much larger elongational

viscosity.

Second, the interfacial evolution is slow and smooth for Newtonian fluids (around 30 min
in Fig. 3.6), but much more abrupt for viscoelastic fluids. This may be discerned from
contrasting Figs. 3.6 and 3.8, and is more quantitatively shown in Fig. 3.10 plotting the
temporal change of the tip curvature x and position A for a viscoelastic fluid. The subcritical
regime prevails until ¢ = 2261 s. During most of this time, the interface is hardly deformed
at all. Thus, s remains near zero and h declines roughly linearly. Then in a very short time
(2261s < t < 2285s), the interface undergoes the transition to the supercritical regime. This
is manifested by the sharp upturn of x and downturn of A, both going without bounds as the
air jet emanates from the tip. This difference can again be traced to the additional polymer
stress during elongation. As the interface lowers toward the suction tube, the elongation near
the tip increases and the fluid experiences greater strain. While the elongational viscosity
1n, of a Newtonian fluid remains constant at 3u, that of viscoelastic liquids is known to
increase sharply with the amount of strain in an effect known as strain hardening [18]. This
greatly increases the pulling force of the liquid on the interface, which quickly destabilizes

the interface and precipitates the system into the supercritical state.

The relatively rapid evolution of the interface raises the question of whether the evolu-

tion of the viscoelastic free surface can still be considered quasi-steady. This is important
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since in the next chapter we will compare these data to steady-state computations. The
question can be answered by comparing the transient acceleration term with the viscous
term in the Navier-Stokes equation, thereby producing a “transient Reynolds number”
Re; = pR?/(uT), where T is the time scale for the transient. Using 7' = 20 s, we have
Re; = 5x 1073 <« 1. Thus, the transient acceleration p%—‘{ is much smaller than the viscous

force, and the process can be assumed quasi-steady throughout.

Finally, the interfacial deformation tends to be much more localized for the viscoelastic
liquids. In other words, compared with a Newtonian hump bearing the same tip curvature,
the viscoelastic hump is much narrower. This probably reflects a localization of the polymer
stress, which is in turn another manifestation of strain hardening. The polymer stress
depends not only on the local strain rate but also on cumulative strain. The fact that it
remains small away from the tip of the interface and then rises sharply at the tip reflects
not only the larger strain rate there, but also the larger cumulative strain attained. As a

consequence, the viscoelastic hump is narrower than a comparable Newtonian one.

3.6.2 Critical state

The critical state is the boundary between subcritical and supercritical regimes. As men-
tioned in section 3.5, an air-Newtonian-liquid system exhibits only subcritical behavior; the
critical and supercritical states do not exist. The viscoelastic liquids considered in this sec-
tion do exhibit critical and supercritical behavior. The free surface forms a pointed cusp,
from which a thin air jet is drawn out. This process can be compared with the rise of
bubbles in a viscoelastic liquid [2,22,116-118]. When the rise speed is sufficiently fast, the
downstream surface of the bubble forms a cusp. In some cases, a thin filament forms at the
cusp (Fig. 1.2). Another related phenomenon is tip-streaming. Subject to extensional flows,
surfactant-laden bubbles and drops deform into spindle shapes with pointed ends, and then
emit a train of tiny bubbles or droplets from these points [119-123]. In all these scenarios,
the underlying physics seems to be large extensional stress overcoming the interfacial ten-
sion to rupture the interface. With surfactant-covered drops and bubbles, tip-streaming is

facilitated by the interfacial tension being locally suppressed by surfactant accumulation.
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Figure 3.11: The critical condition indicated by (a) the hump height x* and (b) the liquid level
H*/R as functions of Ca for the SE (E = 22.1) and WE (£ = 15.1) solutions.

With viscoelastic fluids, extension of the polymer chains produces extraordinary elonga-
tional stresses that draws a cusp or filament from the interface. Such seems to be the case

with the critical transition in viscoelastic selective withdrawal.
(a) Effect of viscoelasticity on critical condition

Our typical experimental protocol consists of draining the liquid out at a fixed flow rate Q)
or capillary number Ca, and recording the evolving interfacial shape. As such, the critical
condition is most easily recorded as a critical liquid level H* in the test tank since H is one
of our control parameters. Of course, there is also a critical tip position h*, which can be
obtained from image analysis. From this we can define a critical value for the dimensionless
hump height o

X" = —r (3.4)

Note also that a different critical liquid level is obtained for the reverse transition from

supercritical to subcritical regimes. This hysteresis will be discussed separately below.

Figure 3.11 depicts the critical condition over a range of Ca for the two polymer solutions.
The critical hump height x* increases both with Ca and E. The critical H* behaves
similarly, although the dependence on FE is less pronounced. This trend can be rationalized
as follows. Since E scales with the polymer relaxation time, it represents the capacity of

the polymer chains to stretch and generate elongational viscosity [18]. On the other hand,
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Ca is proportional to the flow rate (2, and thus also proportional to the strain rate at the
interface. Consequently, an increase in either E or Ca results in greater polymer stress
pulling on the interface. The interface reacts by forming a deeper depression toward the
nozzle so as to increase the buoyancy force to balance the polymer stress. This explains
the increase in x*. Besides, with increasing polymer stress, the interface "feels” the same
amount of pull at a larger distance H from the nozzle. Hence H* increases with Ca and E

as well.
(b) Hysteresis

A hysteresis exists when the critical condition is approached by a decreasing H or increasing
H. The former is the dominant protocol for our experiment; we fix the position of the control
tank and the position of the valve, and let the liquid drain out at a constant (). To increase
H, on the other hand, we start with the supercritical state and then elevate the control
tank in small increments. Enough time (5-10 minutes) is allowed between the increments
for the flow to reach steady state. Although we have not tested this, we expect a similar

hysteresis with increasing or decreasing Ca.

Figure 3.12 shows the hysteresis in terms of H* achieved by increasing or decreasing H.
The data divide the H-Ca plane of control parameters into three regions. In the top
region, a smooth free surface is always stable and remains in the subcritical regime. In the
bottom region, the cone-jet configuration of the free surface is always stable and the system
remains in the supercritical regime. The middle region between these two is transitional in
the sense that the state of the free surface depends on the deformation history; it is the same
as the previous state as one traverses the three regions along vertical lines, by increasing or

decreasing H.

Similar hysteresis has been found in selective withdrawal of Newtonian liquid-liquid systems
[96,98]. But in gas-fluid systems, all previous work dealt with Newtonian fluids, which do
not exhibit a critical state. Therefore, this is the first time hysteresis is reported for gas-

liquid systems.
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Figure 3.12: Hysteresis of the critical state for the SE fluid. The subcritical-to-supercritical tran-
sition is achieved by lowering H, while the reverse is achieved by increasing H.

3.6.3 Supercritical regime

The most striking feature of the supercritical regime is the air jet that emanates from the
cusp of the interface and extends toward the suction tube (Fig 3.9). It has a diameter D,
on the order of 10 pym, and as such requires high magnification of the video camera to be
viewed and recorded. Using the magnification of Fig 3.9 (1 pixel =~ 7um ), the air jet is
visible for about 1 cm below the cusp. Below that, it apparently disappears and may have
broken up into tiny bubbles. In our video image, the edges of the jet are not completely
steady, but appear to fluctuate slightly in time. The reason for this fluctuation is not clear
at present. Because of the small size of the jet, it is conceivably very sensitive to external
disturbances, which may come, say, from minute variations in the flow rate or the passing
of nearby particulate contaminants suspended in the fluid. Note also the slight slant of the

air jet in Fig 3.9 to the right. This may reflect a small geometric misalignment.

Considering this temporal variation and the limited spatial resolution, we put the maximum

uncertainty in measuring D, at 15%. In the experiment, D, is measured from video images
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Figure 3.13: The diameter of the air jet D, as a function of H for 3 values of Ca. All the results are
for the SE fluid with De/Ca = 22.1. The error bars represent the degree of uncertainty in measuring
D, due to finite optical resolution and apparent fluctuation of the edge of the air jet.

captured by a high resolution (1 pixel = 1um) CCD camera. The air jet typically covers
10-15 pixels on the screen. An uncertainty of half of pixel at the edges then leads to roughly
a 5% error. A second source of error is the small fluctuations of the edges of the jet. For
each H value, we take three pictures of the air jet and average the D, values from them.

The difference in D, among the pictures ranges from 5% to 10%.

Figure 3.13 plots D, as a function of the control parameter H at 3 fixed Ca values. The
amount of scatter makes it hard to discern definite trends. But D, seems to increase with
Ca, all other factors being the same. This would be reasonable considering that a higher
flow rate draws more air into the jet. Besides, D, appears to increase with H first, and then
decreases. As present, we do not have an explanation for this non-monotonic behavior. A

more definite understanding of D, awaits future observations at greater image resolution.

Previous work on Newtonian liquid-liquid selective withdraw has documented similar liquid

jets in the supercritical state. Cohen et al. [5,96] observed such jets for viscosity ratio 4 down
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to 1073, but did not report the jet diameter. The later study of Case and Nagel [98] shows
liquid jets of diameter around 20 pm for a viscosity ratio g = 0.005. This is comparable to

our data, although our y is on the order of 1075,

3.7 Conclusion

The main findings of this chapter can be summarized as follows.

(a) The free surface of a polymeric liquid exhibits a supercritical regime, in contrast to

Newtonian liquids.

(b) The subcritical-supercritical transition shows a hysteresis in terms of the critical liquid
level. With increasing elasticity, the transition occurs at lower flow rates or higher

liquid levels.

(¢) In the subcritical regime, the free surface of polymer solution deforms much more
than the Newtonian one under similar conditions. The deformation also tends to be

localized to the tip, with a narrower region being disturbed.

All can be rationalized by the elongational stress due to the polymer that tends to pull the
interface downward toward the suction tube. In particular, the strain-hardening behavior,
i.e. the rapid increase of the elongational viscosity with cumulative strain, plays an impor-
tant role. A possibility alluded to before is that the selective withdrawal process, in the
subcritical regime, may be used to measure the elongational viscosity of polymeric liquids.

This idea will be further developed in the next chapter.
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Chapter 4

Numerical simulation of selective
withdrawal

4.1 Introduction

The experimental observations reported in the last chapter indicate that viscoelastic poly-
mer solutions behave markedly differently from viscous Newtonian fluids in selective with-
drawal. We have speculated that these differences arise from the viscoelastic stresses near
the tip of the interface, where the polymer solution experiences elongational flow. We even
further speculated that this device can be used as an elongational rheometer if operated in
the subcritical state. The force balance, between the elongational stress and the capillary
force, may allow one to back out the former from the surface curvature and known interfa-
cial tension. The general goal of the present chapter is to substantiate these proposals by

quantitative computation.

4.1.1 Computational strategy

Aside from the non-Newtonian rheology, we have to surmount a second obstacle—interfacial
deformation—in order to successfully compute the selective withdrawal. This is a generic
problems for flows involving free surfaces or interfaces. Mathematically, the surface needs to
be treated as a boundary on which boundary conditions are imposed. However, the surface

also moves and deforms according to the flow and forces in the bulk fluids. Therefore,
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its location is not known before hand. Typically this requires an iterative procedure for

coupling the Navier-Stokes flow in the bulk and the interfacial motion.

In Chapter 2, we described the diffuse-interface model and our AMPHI package for com-
puting interfacial flows. At the beginning of the current project, we did attempt to apply
AMPHI to the selective withdrawal problem, but encountered problems with numerical res-
olution. The diffuse-interface model relies on an accurate resolution of the interface, and on
the assumption that the interfacial profile remains more or less at the equilibrium state such
that the interfacial tension remains a constant [34]. However, when subject to strong flows,
the diffuse interface is liable to being spread and distorted. In the present problem, the flow
near the tip is highly elongational and induces strong distortions to the diffuse interface.
We found that to capture the local curvature accurately would require an exceedingly thin
interface and a prohibitive number of grid points. Thus, the diffuse-interface approach was

unfeasible for the current problem.

Thus, we have turned to a sharp-interface formulation that deploys grid points directly on
the interface, and tracks their motion as a result of the fluid flow and stresses. Our numerical
code is based on an Arbitrary Lagrangian-Eulerian (ALE) scheme previously developed for
simulating bubble growth in polymer foaming [124]. Detailed formulation of the method

will be given in Section 4.2 below.

4.1.2 Extensional rheometry

We have hinted at the potential use of the selective withdrawal process to measure elon-
gational viscosity of non-Newtonian fluids. The impetus for such an endeavor lies in the
difficulty of such measurements using existing procedures. In this subsection we will give a
brief background on extensional rheometry, which will serve as the backdrop for the results

to be reported later in this chapter.

Compared with the shear viscosity, the extensional viscosity is very difficult to measure in
the lab, because it is very difficult to produce a purely extensional flow with a constant
extensional rate. Here, we will discuss three important types of extensional rheometers,
filament stretching extensional rheometer (FiSER), capillary breakup (CaBER) extensional

rheometer and the opposed-nozzle device. All of them generate a flow very close to purely
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Figure 4.1: Schematic of the filament stretching extensional rheometer (FiSER). (Reproduced
from Anna et al. 2001 [7]) a) fluid filament, b) linear motor with one or two moving plates, c)
force transducer, d) top endplate, e) bottom endplate, f) diameter sensor, g) optional camera for
observing profile near endplate, and h) computer system for control and data acquisition.

extensional flow in a limited region. Figure 4.1 shows the setup of the filament stretching
device [7]. A fluid cylinder is placed between two end plates. When the end plates move
apart exponentially, the fluid experiences straining in the middle of the filament which is
approximately uniaxial elongation at a constant rate. The force balance on the fluid gives:

1 1 F %
(res = Tor) + 50y = 00) + 57 = —5 = 2L - 24 RRY) — . (41)

with the 4 terms on the right-hand-side being due to the force on the end plate, gravity,

surface tension and inertia:

(4.2)

1 42 (L2 3
f=p / 2R*dz — %
0

R2dt?
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In these two equation, Vg is the initial volume of the liquid filament and Vy = wR3L,.
Assuming uniaxial elongation, both the second and third terms on the left side of Eq. (4.1)
are negligible. Also, under a constant strain rate, the second part of the inertia term is

0 [125]. Now we have:

1 42 L/2
ﬁ+é0 = <Tzz - Trr) = 7592 o_-p3 _(1 + RR”) -p / zR*dz (4'3)
0

R2dt?

With the end plates moving apart at a prescribed velocity, the extensional rate of the
flow will be approximately constant, and can be measured from the thinning diameter of
the fluid cylinder. This, together with the force on the end plate, allows one to calculate
the extensional viscosity. The FiSER is a very useful extensional rheometer, but with
limitations. One is that the liquid has to be sufficiently viscous as to form a smooth and
stable filament when stretched. Typically this requires the zero-shear viscosity to be from 10
to 103 Pa-s. Another issue is the disturbance of the end plates. The flow is not elongational

near the plates, and there is a de-adhesion instability at large stretching rates [126].

The CaBER is similar to FiSER in that a fluid cylinder is formed between two end plates.
However, in this case it is formed by the two plates separating abruptly to a prescribed dis-
tance. Then the capillary thinning of the fluid cylinder is recorded until breakup under the
combined action of surface tension and extensional force. From the balance between these
forces, one can back up the extensional viscosity from the temporal change of the cylinder
diameter [127,128]. Compared with FiSER, CaBER can handle fluids with relatively low
viscosity. But both measure an “elongational stress growth viscosity” [18], which is the
instantaneous elongational viscosity as a function of time or strain. Normally, it is difficult

to reach steady-state stretching in terms of the stress growth.

Figure 4.2 shows the setup of the opposed-nozzle device. Two opposed nozzles are aligned
in the fluid and suck it out at the same rate. This creates a roughly extensional flow area
between the nozzles. The elongational rate is estimated from the flow rate, and the stress
from the torque on one of the nozzles. Then the elongational viscosity can be estimated.
Note, however, that the flow is not truly homogeneous; In the central part near the stag-
nation point, the fluid experiences higher strain than farther away from it. Typically, a

nominal extensional rate ¢, is defined from the flow-rate of suction Q:

2Q)
L 44
‘= TR (4.4)
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Figure 4.2: The opposed-nozzle extensional rheometer. The shaded region between the nozzles is
where the flow is approximately extensional. [8](©)Springer Berlin / Heidelberg

where d is the separation between the nozzles. Assuming that the torque M is due to the

normal stress difference at the nozzles, we write

M
T T2 Tops (4.5)
Now an apparent extensional viscosity can be obtained:
T11 — T922 Md
o= - = . (4.6)

€a 2LQ)

The advantage of the opposed-nozzle device is that it applies to low-viscosity fluids such as
dilute polymer solutions. The disadvantage is that the flow field is relatively complex, and
we have to use a nominal, rather than local, strain rate. Besides, the different streamlines
entering the nozzles have different strain histories, and it is not clear whether the measured
7, can be taken as that corresponding to the steady-state stretching at the nominal €,.
These introduce uncertainties into the final result and compromise the accuracy. Even for

Newtonian fluids, the opposite nozzle device can give a Trouton ratio that deviates much
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from 3 [8, 58]; typical values range from 2-4 [129] to order 10 [130] and even 100 [131].
Contraction flow is another method for measuring 7 for low-viscosity liquids. But the flow
field is even more complex than in the opposed nozzle setup and deviates more from pure and

homogeneous extension. The interpretation of the result is accordingly more uncertain [132]

To sum up, we can measure the extensional viscosity of highly viscous liquids with relative
ease and high accuracy using filament stretching. For low-viscosity fluids, on the other
hand, an equally satisfactory method does not seem to be available yet. There is a need for
exploring novel flow setups for measuring the extensional viscosity of low-viscosity liquids.
It is against this backdrop that we consider the potential of selective withdrawal as a process

that may be developed into an extensional rheometer.

4.2 Numerical methodology

For our simulations, we have adapted an Arbitrary Lagrangian-Eulerian (ALE) scheme
developed for simulating bubble growth in polymer foaming [124]. We use a sharp-interface
algorithm to simulate the process of selective withdrawal. In this algorithm, the governing
equations are solved in a 3D axisymmetric geometry with triangular mesh, which moves
and deforms by the arbitrary Lagrangian-FKulerian scheme. We use the standard Galerkin

formalism to discretize the governing equation.

4.2.1 Arbitrary Lagrangian-Eulerian scheme

In the arbitrary Lagrangian-Eulerian (ALE) scheme, we employ two coordinates. One is
the Eulerian coordinate (z) and the other is a quasi-Lagrangian coordinate (X)) fixed on
the moving mesh. On boundaries, including the free surface, the mesh velocity conforms
to that of the boundary with an optional slip in the tangential direction. As the boundary

nodes move, the mesh in the interior deforms smoothly according to a Laplace equation:

V- (k*Vv,,) =0, (4.7)
where £€ is the inverse of the local element volume [67,133]. Because we also have
ox(X,t)
m(x,t) = ——, 4.8
om(@, 1) = (43)

we can update the mesh position every time step. As all the variables are defined at the

moving grid, the Lagrangian derivatives need to be computed as

d 0 )
E—E—i—v-V—ﬁ—i—(v—vm)-V, (49)

where % is the referential time derivatives defined on the moving grid point: % = % | X fixed.
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Figure 4.3: A typical mesh used in our simulation. (a) The entire computational domain. (b)
Magnified view of the mesh near the free surface. Note that the interface is marked by grid points,
and the resolution is refined near the tip of the interface.

4.2.2 Finite element method

We use the finite element method to solve the governing equation. Initially, the outer
boundary is divided into segments of size hg. Then we use Delaunay triangulation to
generate a uniform bulk mesh. In the simulation, mesh refinement is needed because the
deformation of free surface. We use the curvature as the criteria to determine the refinement.
We will refine the mesh at large curvature and coarsen it at small curvature. As the result
of this, each boundary segment subtends to roughly the same center angle. In time, the
moving boundary tends to distort the mesh and compromise its quality. We design a quality
criterion based on the aspect ratio of the elements, and will re-mesh the computational

domain when the criterion is met. A typical mesh is shown in Fig. 4.3.

In the standard Galerkin formalism, we seek the weak solution (v,p,7) using the test

functions (9, p, T), and in their weak form the governing equations become:
0
/ {[p(d—z-i-(v—vm)-Vv—g)] -f)—i—(—pI—i—T)-Vf)}de—S = 0, (4.10)
Q
/ (V- v)jzdd = 0, (4.11)
Q

/Q{-rp+>\H [%-I—(v—vm).vrp—q-p.(vv) _ (VU)T-TP] B

pp [V + (Vo) } - 72dQ = 0, (4.12)
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where z is the radial coordinate in the axisymmetric geometry and S is the surface integral
of the stress boundary condition:
S = n-(—pl+7)-vzdS = (—pa—i-n‘a)n-fjde—l-/ n-(—pl+7)-vxdS, (4.13)
a0 a0, 90,
where 0€; is the free surface subject to ambient pressure p, and 0€); is part of the boundary
of the computational domain on which stress boundary condition are given. In addition,

we also have the weak form of the Laplace equation for the mesh velocity:

/ KV 0+ Vo, dQ = 0. (4.14)
Q

The resulting nonlinear algebraic equations are solved by Newton’s method with delayed
updating of the Jacobian. Within each Newton iteration, the linear system is solved by iter-
ative methods such as the preconditioned generalized minimum residual (GMRES) scheme
or the biconjugate gradient stabilized (BICG-STAB) algorithm. More details of the algo-
rithm and validation with mesh refinement may be found in Yue et al. [124]. Following their
mesh setup, we use a uniform initial mesh with the mesh size 0.2R. Subsequent refinement
takes place automatically in high-curvature regions at the interface. Prior numerical tests

show that this level of mesh size controls the discretization errors under 0.1%.

As for most viscoelastic flow simulations, our computation is limited by the “high-Weissenberg
number problem”, i.e., the difficulty in achieving convergence at high Weissenberg numbers
(or Deborah number De in our nomenclature). This is typically because sharp gradients of
the polymer stresses arise that cannot be adequately resolved numerically. Algorithmically,
large errors in the polymer stress gradients make the iteration very difficult to converge. As
a result, the code blows up. In our computations, such gradients tend to appear at the lips
of the suction tube, where the shear-rate is high and varies rapidly in space. To alleviate
this problem, we introduced a rounding of the inner corner of the lip, with a radius of 1%
of the tube radius. This allows us to improve the maximum De from 4.1 to 50.2. This is
still below the experimental values of the last chapter, and will pose some inconvenience in

comparing the two.
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Figure 4.4: Schematic of the flow geometry. The computational domain is the right half of the
meridian plane shown.

4.3 Setup of the computational problem

Figure 4.4 shows the axisymmetric geometry of our computational domain. The air-liquid
interface is assumed to be a free surface subject to a constant atmospheric pressure. Upon
start of the suction, the free surface dips in the center. Fluid enters from the bottom of the
domain, where zero-stress boundary condition is imposed. If the flow rate () is not too large,
a steady state is reached (subcritical regime). On the side walls, no-slip boundary condition
is used. We have the following physical parameters: flow rate @), interfacial tension o, liquid
viscosity p, density p and the gravitational acceleration g. The geometric parameters are
the tube radius R, radius of the tank w, and the two heights L; and H specifying the
position of the free surface at the side wall relative to the tip of the tube and the bottom
of the tank. We will choose large values for w and L; such that upon start of the flow, the
liquid surface at the side wall changes little. Then H and () are control parameters that can
be prescribed. However, the position of the tip, measured by h, is a “dependent variable”,

as is the surface curvature s at the tip.

If the liquid is viscoelastic, we use the Giesekus model to represent its rheology, which
strikes a balance between relative simplicity and realistic rheological prediction. For some
computations we have also used the simpler Oldroyd-B model. Further information on

these models can be found in textbooks [18]. The Giesekus model adds 3 more parameters:
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the relaxation time Ap, the mobility factor a, and the solvent viscosity ratio pus. Thus, in

addition to the length ratios H/R, L/R and W/R, we have six dimensionless groups:

Ca = Q—/g (Capillary number), (4.15)
oR
2

Bo = Pyft (Bond number), (4.16)
o
_ r9

Re = — (Reynolds number), (4.17)
uR

k= % (viscosity ratio), (4.18)

A
De = g_?’Q (Deborah number), (4.19)
! (mobility factor), (4.20)

where 1 = p,+ps. In the experiments, the low Reynolds number is typically very small. In
our simulation, therefore, we keep Re below 1073 so that the flow is essentially inertialess.
In addition, w and L will be large enough so as to avoid any influence from the boundary
conditions on the side wall and the bottom of the domain. Thus, we have only one important
length scale H/R and a total of six dimensionless parameters in our system. These may be

varied, say, by changing Q, H, g, Ay, pus and «.

As the critical state is approached, the interface deforms into a cusp with the local curvature
increasing without bound. This causes the local length scale to decrease toward zero. In
our code, the mesh generator reacts to the increasing curvature by refining the local grid.
But eventually the mesh fails to accurately represent the small length scales near the tip.
The surface near the tip becomes jagged and the value of curvature becomes very large or
negative. Then the code diverges and the simulation aborts. Therefore we cannot simulate
the transition from subcritical to supercritical state. In its stead, we employ an artificial
criterion for determining the critical point in the numerical simulation. With moderately
large H, the solution is subcritical and a steady-state free surface shape is reached. With
decreasing H and a fixed (), the steady-state surface becomes more and more deformed,
until at one point, no steady solution can be obtained, and the code blows up. This is taken
to be the critical H* corresponding to the @) value. From experimental observations, the
tip curvature increases precipitously toward the critical condition. Thus, the fact that the
numerically computable maximum tip curvature depends on mesh resolution and is in some

sense “arbitrary” does not appreciably affect the critical H* value.
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Figure 4.5: The side-wall effect in the simulation. (a) Variation of the water level at the side wall
after the flow starts for 4 values of the tank radius w. (b) The position of the tip of the interface
indicated by the vertical distance h from the tube. (¢) Variation of the tip curvature. The wiggle
on the curve for w = 16R is a numerical artifact due to remeshing.

4.4 Newtonian results: benchmarking by experiments

The experiment of du Pont and Eggers [6] on air-oil selective withdrawal provides an ideal
benchmark for our numerical algorithm. Thus, before going to viscoelastic simulations,
we compare our predictions for Newtonian fluids with the experimental measurements as a
validation of the former. du Pont and Eggers [6] used a tank of square cross-section, with the
side w = 27R being wide enough so the results are unaffected by the side walls. Similarly,
we want to ensure that our domain is wide enough for the wall effects to be negligible. For

this purpose, we have tested 4 values of the tank radius w, and Fig. 4.5 plots the temporal
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Figure 4.6: Steady-state solutions for Newtonian fluids at three Ca values. (a) The tip position h as
a function of H. For larger H values, the interface hardly deforms and h = H. (b) The tip curvature
k. (¢) Comparison between our calculations (filled symbols), our experiment (open symbols) and
the experiment of du Pont and Eggers [6] (lines). The capillary number Ca is varied through Q.
The Bond number is fixed at Bo = 0.112.

variation of the water level at the side wall and the position and the curvature at the tip
of the interface for each w value. When the width is large enough (w > 27R), the change
of the height H is only about 0.1% of the initial height. So we could neglect this change
and assume the fluid level at the side wall does not change during the interfacial evolution.
Moreover, Fig. 4.5(b) and (¢) tell us that the side wall exerts little effect on the interface
at the center when w is large enough. So we have chosen to use w = 27R for all subsequent

computations.

Figure 4.6 shows our simulation results for Newtonian fluids and compares them with the

experimental data for the air-oil system of du Pont and Eggers [6] and our own experiment
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described in the last chapter. All material parameters are matched between the three
studies. Each point in Fig. 4.6 represents a steady state, and the curves are generated by
varying H for a fixed flow rate @ (or Ca value). First, there is nearly perfect agreement
between our simulation and the experiments. Note that we tuned our computations to
match Ca = 9.66 in [6]. But our experimental control is such that we reached a slightly
lower Ca = 9.45. Accordingly the tip curvature is slightly below the others in Fig. 4.6(c).
Second, a higher H leads to less deformation at the tip, with a smaller x, simply because
the interface is farther from the tube opening. Finally, a larger flow rate draws the interface
closer to the tube (smaller h) with a more pointed tip (greater ). In the parameter ranges
tested, the numerical and experimental data seem to suggest a critical condition of K — oo
at a finite A value. But this is actually unattainable for the low air-liquid viscosity ratio
considered [99]. This has been discussed at length in Chapter 3. To sum up this section,
the ALE algorithm and computer program have been validated by the agreement with

experiments, and thus we are ready to turn to the viscoelastic problem.

4.5 Viscoelastic results

4.5.1 Interfacial deformation in subcritical regime

Figure 4.7(a) shows the steady-state free surface computed for the Giesekus fluid at a fixed
Ca = 28.97 and different H values. As expected, the interface becomes more deformed
with lowering H. The lowest curve for H/R = 8 is the near the critical condition. For
a smaller H, the steady state is lost; the tip of the surface continues to extend and the
simulation becomes non-convergent. As a comparison, we include in Fig. 4.7(b) the steady-
state surfaces for Newtonian fluids. The surface shape is qualitatively similar in both cases.
However, for the same H values the surface is more deformed for the Giesekus fluid. This is
thanks to the viscoelastic elongational stress. Also notable is the fact that the Newtonian
surface apparently deforms to a greater extent in terms of the hump height H — h. Lacking a
true physical critical state, the Newtonian computation breaks down when the tip curvature
becomes too large to be resolved numerically. Thus, more deformed steady states may be
obtained for the Newtonian fluid in Fig. 4.7(b). The lowest curve at H/R = 7.3 marks

the limit of numerical convergence. In contrast, the lowest curve for the Giesekus fluid, at
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Figure 4.7: The steady-state interface profiles in the subcritical regime at several values of the
liquid level H. (a) The Giesekus fluid with mobility factor @ = 0.1, viscosity ratio k& = 0.7 and
Deborah number De = 12.29. (b) A Newtonian fluid.
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Figure 4.8: Comparison between Newtonian and Giesekus interfaces at the same flow conditions.
Ca = 28.97. For the Giesekus fluid, @« = 0.1, K = 0.7 and De = 12.29. (a) H/R = 10; (b) H/R = 8.
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H/R = 8, represents the closest steady-state solution to the critical condition that we have

simulated.

Figure 4.8 shows more explicitly that the viscoelasticity enhances interfacial deformation,
reducing h and increasing k at the same H and Ca. For H/R = 10, the free surface
is relatively flat and the deformation is mild. More pronounced deformation obtains for
H/R = 8, where the Giesekus surface develops a rather pointed tip; it is very close to the
critical state. In both plots, the free surface does not differ much between the Newtonian
and Giesekus fluids away from the tip. At the tip, the Giesekus surface deforms more

because of a local concentration of additional elongational stress.

Figure 4.9 shows contours of the polymer stresses near the free surface for the Giesekus fluid
at steady state. The tensile stress 7,, dominates the other components, and is especially
large in the region directly below the tip of the interface. That is where the flow is essentially
uniaxial elongation. Note also the localization of the elongational stress. The distribution of
polymer stresses underlies our understanding of the viscoelastic effect in this flow geometry,

and confirms the explanation advanced in the above.

A more quantitative study of the viscoelastic effect is given in Fig. 4.10, which plots the
tip position A and curvature x as a function of the Deborah number De for Giesekus and
Oldroyd-B fluids. For both models the results are qualitatively the same. As De increases,
the tip moves progressively downward toward the suction tube and the hump height H — h
increases. Meanwhile, the tip curvature s increases monotonically. Both indicate increasing
elongational force in the liquid that pulls the interface down. For larger De, the tip curvature
tends to increase without bound. Numerically, we observe breakdown of the computation
before a steady interfacial profile can be established. As indicated before, this is taken to
be the attainment of the critical state, to which we will return in the next subsection. For
the parameters used, the largest De we have computed is De = 4.1 for Oldroyd-B fluid and
12.3 for the Giesekus fluid. As is well known, the nonlinear term softens the strength of
elastic stresses in the Giesekus model. Consequently, the tip curvature is smaller than the
Oldroyd-B result at the same De, as is the depth of the interfacial dip H — h. The critical

state is also delayed to much higher De.
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Figure 4.9: Contours of the polymer stress components 7., 7, and 7g9 near the steady-state surface
for H/R = 8 in the last figure. C'a = 28.97, and the fluid is Giesekus with De = 12.29, k = 0.7 and
a=0.1.

Figure 4.11 compares the steady-state free surface between the numerical simulation and
experiment. In this comparison, De of the simulation is slightly smaller than the exper-
imental value; no higher De can be computed because of the stress boundary layer near
the orifice of the tube. The experimental free surface is more deformed than the numerical
prediction; it has a larger curvature on the tip and a smaller h. The difference of x = %
is roughly 10%. Moreover, the free surface deformation is more localized for the experiment
than the numerical simulation. Possibly these differences stem from the higher De in the

experiment. Another potential explanation is the Giesekus model not being able to reflect

all aspects of the fluid’s rheology.
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Figure 4.10: The effect of viscoelasticity, measured by the Deborah number De, on (a) the tip
position A and (b) the tip curvature &, for Oldroyd-B and Giesekus fluids. The following parameters
are fixed: Ca = 28.97, Bo = 0.112 and H/R = 8. For the Giesekus fluid, « = 0.1 and k& = 0.7.
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Figure 4.11: Comparison of the free surface between experiment and simulation. Ca = 2.5 and
H/R = 7.36. For the experiment, SE fluid is used and De = 55.25. For the simulation, Giesekus
model is used: De = 50.2, k = 0.2 and a = 0.2.
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Figure 4.12: The critical liquid level H* as a function of Ca at various E values for the Giesekus
fluid. In the plot, the line with open symbols are the data from simulation and the black symbols
are the data from experiment.

4.5.2 Critical conditions

As described before, computationally the critical condition is defined as the loss of conver-
gent steady solution when the tip curvature becomes too large to be resolved. In practice,
this is approached by computing the steady solution for a series of decreasing H values,
with the other parameters—De, C'a and rheological parameters—fixed. Thus, the critical
condition is most conveniently marked by a threshold H*, which is the average between
the smallest H that gives a steady solution and the next H that does not. Unlike in the
experiments, it is difficult to determine the critical h* since near the critical point, h varies
steeply with H. Taking the h value for the last steady solution for h* is likely to be a gross

overestimation. Therefore, we will only discuss the critical condition in terms of H*.

Figure 4.12 plots the critical liquid level H* for a range of Ca and five values of the elas-
ticity number E = De/Ca. Numerical results show that H* increases with Ca and E, in
qualitative agreement with experimental observations (cf. subsection 3.6.2). As suggested
in the last chapter, these trends reflect the fact that increasing either Ca or E leads to larger
elastic stresses pulling down the interface. Thus the critical condition can be achieved for

interfaces that are farther from the nozzle.
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A more quantitative comparison with experimental data is hampered by subtleties in match-
ing the parameters. Because of limitations in resolving the polymer stress gradient at the lip
of the suction tube, the highest De achievable in the simulations is about 50.2. In compar-
ison, the largest experimental De is over 200. As plotting in Fig. 4.12, the numerical data
range to large Ca values for weakly elastic fluids with small E. For large E, we are limited
to small C'a. The numerical data overlap but does not encompass the experimental data
range. In addition, there is a slight mismatch of the viscosity ratio k between experiments
and computations. This is because the computations had been done prior to most of the
experiments using a k value corresponding to an earlier less accurate measurement of the

solvent viscosity.

Nevertheless, there seems to be rather good agreement between the experimental and nu-
merical data. This is reflected by the similar trend in the H*(Ca) dependence, which
approximates straight lines in the log-log plot. Thus, both experimental and numerical
data exhibit a power-law dependence on C'a. The index increases with £, and consistently
across most numerical and experimental data sets. The outlier to this trend is perhaps the
experiment with £ = 15.1 (for the weakly elastic liquid of Chapter 3), whose H* value
rises above the numerical data set for £ = 20. This is most probably due to the much
larger solvent viscosity for this polymer solution & = 0.61, which provides an additional

contribution to the pulling force below the interface.

Finally, we cannot simulate the supercritical state nor the hysteresis. In the experiment, the
stability of the air jet depends on its small but non-zero mass and viscosity. In our compu-
tational setup, the air-liquid interface is treated as a free surface, with the air contributing
no force on the interface aside from a constant ambient pressure. When we attempted to
start the simulation with an initial condition having a thin air jet, it collapses momentarily

and the code breaks down.
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4.6 Measuring the elongational viscosity
4.6.1 Underlying assumptions

As mentioned briefly in the last chapter, a secondary motivation for studying selective
withdrawal is to explore the possibility of using the process to measure the elongational
viscosity of the liquid. This relies on two assumptions. First, the flow near the tip is mostly
elongational. Second, the steady-state subcritical condition of the surface is maintained
by a balance among the surface tension, the pressure and the elongational stress below
the tip. These will allow us to back out the elongational stress at the tip of the interface
from the interfacial position and curvature. Besides, the local strain rate near the tip must
be obtained from the control parameters of the process. These will be explored through

numerical computations supplemented by the experimental data of the last chapter.
(a) Flow type

Following Leal and coworkers [134], we use the flow type parameter to indicate how much

of the deformation counsists of extension and rotation:

_ 1Dl = 1w

z:b - I
D] + W]

(4.21)

where D = (Vv +Vo'1)/2 is the strain-rate tensor of the flow, and W is a modified vorticity

tensor to maintain frame-indifference [134, 135]:
W =Q-0, (4.22)
where ©Q = (Vv — Vo')/2 and O is the local rotation of the strain-rate tensor defined by
De;/Dt = O - e, (4.23)

D/ Dt being the material derivative and e; the eigen-vectors of D. Under this definition,

1) = 1 for purely extensional flow, 0 for simple shear and —1 for solid-body rotation.

Figure 4.13 and Fig. 4.14 depict ¢ contours in the computed flow fields for a Newtonian
and a Giesekus fluid, respectively. The blowup pictures show that in both cases, the flow is
indeed very close to pure extension in the area below the tip of the interface, and our first

assumption is confirmed. In fact, for the Giesekus fluid, the extensional area is wider than
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Figure 4.13: Contours of the flow type parameter ¢ in the computed flow field for Newtonian fluid.
Plot (b) shows details near the tip of the interface. In this case, H/R = 7.5, Ca = 28.97.
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Figure 4.14: Contours of the flow type parameter ¢ in the computed flow field for Giesekus fluid.
Plot (b) shows details near the tip of the interface. In this case, H/R =9, Ca = 28.97, k = 0.7 and
a=0.1.

for the Newtonian fluid, probably due to the strong polymer stress akin to what produces

tubeless siphon shown in Fig. 1.1.
(b) Force balance

Now let us consider the force balance on the free surface at the tip. On the air side, the

normal stress is the atmospheric pressure p,. On the liquid side, we have pressure p; and a
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viscous or viscoelastic normal stress 7, in the vertical direction. Then there is the interfacial

tension o. Denoting the local curvature by x, we modify the Laplace equation as such:
Pa = P1 — Ty + 20K. (4.24)

To determine p;, we resort to the momentum equation in the horizontal (or radial in a

cylindrical coordinate system) direction:

p <8vr Ov, fu_gafur vs 8'07) _ [18(7‘7}7) N OTyr N 0T, Tgg| Op

ot T r  Or 00 0z r | or

ot or + r 00 r +UZE (4.25)

Because the flow is axisymmetric, 7y, is zero. Neglecting the inertial terms for the moment,

we have

g(p g ) _ Trr — T90 0T
or e

. 4.2
T 0z (4.26)

If the flow was uniform uniaxial elongation everywhere, 7,, would equal 799 and 7,, would
be zero. Under this assumption we integrate from the tip (r = 0) radially outward to the
wall (r = w):

P1— Trp |r:0: P2 — Trp |1":w7 (4'27)

where ps is the pressure at the point on the wall that is level with the tip. Because the
flow near the side wall is very weak, we assume 7, |p=, is zero, and calculate py from
hydrostatics:

p2 = pa + pg(H — h). (4.28)

From equations (4.24), (4.27),(7yy |r=w= 0) and (4.28), we get the first normal stress differ-
ence as

Ny =1, — 7y = 206 + pg(H — h). (4.29)

If the local strain rate € is known, the extensional viscosity can be obtained as

_ N1 20K+ pg(H —h)
77 = e = " .
é é

(4.30)

The determination of ¢ will be discussed below. Note that the derivation above applies

equally to Newtonian and viscoelastic fluids.

This equation suffers from potential errors from three sources. The first is the neglect of the
inertial terms. The second is the weak-flow assumption near the side wall in Eq. (4.27). And

the third comes from setting 7,, = 799 and 7,, = 0 in Eq. (4.26) based on an assumption of
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uniform uniaxial elongation. The first and second turn out to be insignificant; the Reynolds
number is small (10~* ~ 1073), and the shear and normal stresses at the side wall are indeed
very small (0.1% of pg(H — h)). The third assumption is on less firm ground, and we will

estimate the associated error in the following.

Integrating Eq. (4.26) without the assumption, we have

Trr — T66 0Ty
_ — = + . 4.31
D2 (pl 7—7"7") /0 ( r az )dlr ( 3 )

Note that 7,, is indeed equal to 7yg on the axis of symmetry (r = 0) so that the integral
does not diverge. Denoting 7e,; = fow(w + %)dr, we have the following in place of

Eq. (4.30):

& _ 20Ii+pg(H—h) — Text
€ €

n= (4.32)
The magnitude of 7z should be dominated by the stress difference 7, — 799 for small r. The
T,r term should be insignificant because away from the centerline, where the flow contains
considerable shear (cf. Fig. 4.13), the deformation rate dies out quickly. For a Newtonian

fluid, 7, = 2;1%1;? and 199 = 2p“=. Toward the axis of symmetry, the v,(r) profile has

to level to zero slope in a concave shape. Thus, we expect %L; <8 <0, T — T <0
and Tezy < 0. Compared with Eq. (4.32), therefore, we expect Eq. (4.30) to underestimate
the extensional viscosity. For viscoelastic fluids, the behavior of 7., and 7g9 depends on
the specific constitutive equation, and it is difficult to anticipate the error of the simplied

Eq. (4.30).

The amount of error can be quantified using numerical data for Newtonian and Giesekus
fluids. After achieving a steady-state interfacial shape in simulations in the subcritical
regime, the tip curvature s, hump height H — h and the local strain-rate ¢ can all be
extracted from the numerical solution. Then the “measured” 7 from Eq. (4.30) may be
compared with the true elongational viscosity of the fluid. In particular, for Newtonian
fluids, the elongational viscosity is simply 7, = 3u, and Fig. 4.15 illustrates the error
of Eq. (4.30). Over the entire parameter space comprising Ca, Bo and H/R, the results
confirm our estimation above that Eq. (4.30) underestimates the elongational viscosity. But

the magnitude of the error is within 10% for the parameter ranges covered. Considering that
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Figure 4.15: Testing our scheme of estimating the extensional viscosity for Newtonian fluids. The
“measured” ], scaled by the known 7, is plotted against various parameters. (a) the plot between
j/nn and Ca. (b) the plot between 7j/7,, and Bo. (c) the plot between /7, and H/R.

the opposed-nozzle rheometer easily suffers from errors of 100% for Newtonian fluids [8],

the results in Fig. 4.15 are very encouraging.

A similar exercise has been carried out for a Giesekus fluid (Fig. 4.16). In this comparison,
n¢ is the exact extensional viscosity at steady-state elongation for Giesekus fluid [18]. Note
first that now 7) is overestimated by Eq. (4.30); the neglected 7¢,; turns out to be positive for
the Giesekus fluid. Possibly this is because of a shear component of the deformation away
from the axis of the symmetry, which is predominantly horizontal and tends to increase
Trr relative to 7pg. This is particularly true for smaller H/R values in Fig. 4.16(b); as the

tip gets closer to the nozzle, the region of extensional flow shrinks under the tip. For the
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(a)

Figure 4.16: Testing our scheme of estimating the extensional viscosity for Giesekus fluids. The

“measured” 7j, scaled by the known 7, is plotted against various parameters. (a) the plot between
fj/ne and De. For all the cases in this plot, H/R = 8, @ = 0.1 and k£ = 0.7. (b) the plot between
7j/ne and H/R. For all the cases in this plot, De = 12.29, ¢ = 0.1 and k = 0.7.

conditions shown, H/R = 8 is approaching the critical condition. Second, the magnitude of
the error is again within 10% as long as the deformation is “not too strong”, for a moderate
De < 6 or H/R > 17. To sum up, the simplified force balance of Eq. (4.30) can be used
with acceptable accuracy to back out the elongational viscosity from the surface force once

the local strain rate is known.
(¢) Fully development of polymer stress

In general, the polymer stress depends not only on the deformation rate but also on the
stretching history of the polymer. An exception is when the polymer reaches steady-state
stretching in an extensional flow at constant extensional rate. In our experiment, we as-
sume that the polymer attains steady stretching at tip. Theoretically, this assumption is
sound for all cases. The tip is a stagnation point in a pure extensional flow. The polymer
will experience infinite residence time at that point. Experimentally, this is less certain
because we calculate the curvature at the tip using the neighboring points. As the result
of this, the extensional viscosity we get is the average value in that small region. The
typical length of this region is 100um as we mentioned before. With the numerical result,
we could compute the total strain for the polymer going through this small domain. Of

all the streamlines which go through this small region, the outermost through the corner
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experiences the smallest strain. Fig. 4.17 shows the variation of flow pattern parameter
along this streamline. Generally, 1 increases along the stream line from the side wall to the
center line. But there is one peak near the center line. Depending on the starting point
for computing the strain, different values can be obtained at the corner of the small region.
Fig. 4.18 shows the cumulative strain along the stream line with start points corresponding
to different 1 values in Fig. 4.17. For all the case, the total strain is larger than 1. Thus, we
assume steady stretching at the tip. In comparison the opposed nozzle device has a typical

strain around 1.

Figure 4.17: Flow pattern parameter ¢ along the stream line. Ca = 28.97, k = 0.7, = 0.1 and
H/R=38.

4.6.2 Local strain rate

To calculate the extensional viscosity of a fluid from Eq. (4.30), we need to know the surface
tension o, the tip curvature k, the depth of the dip H — h and the local strain rate ¢ near
the tip of the interface. Of these, ¢ is the most difficult to determine. In the experiment,
there is no simple method to measure ¢ directly. Here, we develop a correlation from the

numerical results for ¢ in terms of the material and control parameters of the system.

Consider the Giesekus fluid given by Eq. (2.6). Dimensional analysis shows the strain rate

near the tip to be a function of the six dimensionless II groups:
R H
&= % =f <Ca,B0, E,k,De,a) . (4.33)
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Figure 4.18: The strain along the stream line from different start point. Ca = 28.97, k = 0.7, = 0.1
and H/R = 8.

It would be very difficult to correlate & with all the parameters at once. Thus, we will first

develop a correlation to Newtonian fluids, and then generalize that to the Giesekus fluid.
(a) Newtonian correlation

For a Newtonian system, Eq. (4.33) simplies to:

E=f <Ca,B0, %) . (4.34)

Similarly, the position of the tip A/ R can also be expressed in the same 3 IT groups. It turns
out to be advantageous to rewrite Eq. (4.34) by using x = (H — h)/R in place of H/R:

¢ = f(Ca,Bo,x). (4.35)

As will be shown later, using x facilitates generalization of the correlation to include vis-

coelastic effects.

Figure 4.19 plots & versus x on a semi-log scale for a range of Ca and Bo values. All curves
have the same gentle S shape, which we can represent linearly. The slope of the linear
function is depend on the value of Ca and Bo. We use two steps to do the curve fitting.
At first, a linear function logé = A+ By is used to fit the plot between log ¢ and x. As the
result of this, for each pair of Ca and Bo, we will have a value of A and B. Then we do

the curve fitting for A and B as functions of Ca and Bo. The dependence of A and B on
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Figure 4.19: The dimensionless strain rate ¢ at the tip as a function of x for a Newtonian fluid for
(a) a fixed Bo = 0.112 and a range of Ca values; and (b) a fixed Ca = 28.97 and a range of Bo

values.
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Figure 4.20: The fitting parameters A and ¢ as a function of Bo with Ca = 28.97.

87



CHAPTER J. Numerical simulation of selective withdrawal

25
i ——8— Bo=0.112 ook

—&—— Bo=0.112

35

06|

. L . . L N . ol L v v v 0l
20 40 60 80 100 120 ’ 20 40 60 80 100 120
Ca Ca

(a) (b)

Figure 4.21: The fitting parameters A and ¢ as a function of Ca with Bo = 0.112.

Ca and Bo is depicted in Fig. 4.20 and 4.21. Summarizing the plots, we come up with the

following formulae:

log¢ = A+ By, (4.36)
B = (2.27 + 0.84logBo)Ca~%2, (4.37)
A = (=2.01 + 0.41Bo)Ca’ . (4.38)

The accuracy of this correlation is examined in Fig. 4.22, where the y-axis is the ratio
between the strain rate &, given by the correlation Eq. (4.36) and the actual strain-rate &
obtained in simulations at various Bo and Ca values. The same Bo and Ca values and the
x value of the simulation are used in computing &.. Most of the data points fall between
0.7 and 1.3, giving a margin of error of 30%. This is quite accurate in view of the range of

error of prior rheometers.
(b) Viscoelastic correlation

The last subsection has made it clear that viscoelasticity enhances interface deformation.
Not surprisingly, it also affects the local strain rate at the tip. For example, Fig. 4.23 shows
that for the same Bo, C'a and H/R, the dimensionless strain rate & at the tip increases with
viscoelasticity. This is because the fluid near the tip is stretched by the flow, and yields

greater force to pull it down toward the orifice.
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Figure 4.22: The error of the elongational rate estimation.
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Figure 4.23: The effect of the polymer for the strain rate on the tip. Ca = 28.97 and Bo = 0.112
for all the cases. We use Giesekus model to represent the rheology in these cases. The H/R is fixed
at 8 and relaxation time Ay is changed in each case.

In coming up with the correlation of Eq. (4.33), we now have to deal with the rheological
parameters. However, by a coincidence that we cannot yet explain, if we use x = (H —h)/R
in the correlation instead of H/R, all the viscoelastic data collapse onto a single curve, and
the same Newtonian correlation, Eq. (4.36), accounts for the viscoelastic data as well!
We have do far computed Giesekus and Oldroyd-B models, with the following range of
rheological parameters: 0.41 < De < 123 and 0.01 < « < 0.1. Fig. 4.24 depicts this
collapsing; all the data fall on the same curve. As yet, we do not have a sound rationalization
for this coincidence. It is clear that increasing the polymer stress in the fluid will increase
the deformation of the free surface y as well as the stain rate at the tip £&. Meanwhile,
increasing the viscous stress (or Ca) will have similar effects. Our result shows that the
same relationship between y and £ holds, regardless of the agent—viscous or viscoelastic—

that has prompted their change.

Figure 4.25 checks the error of the correlation Eq. (4.36) against numerical results for

viscoelastic fluids. As in Fig. 4.22, The y-axis is the ratio £./¢, with £ being the actual local
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Figure 4.24: The local strain rate on the tip as the function of x for Newtonian and viscoelastic
fluids. C'a = 28.97 and Bo = 0.112 for all the cases. We have three series of data for viscoelastic
fluids. For series Oldroyd-B, we use the Oldroyd-B model and fix De = 2.05. We change H for every
case to change x. For series Giesekus 1, we use the Giesekus model and fix @ = 0.1 and k£ = 0.7. We
change De to realize different steady-state x. For series Giesekus 2, we also use the Giesekus model
but fix De = 8.2 and k = 0.7. We change « to realize different x.

strain rate from simulations at different values between 0.1 and 1072 and &, is that given
by the correlation at the same Ca, Bo and x values. In all the cases, the value of ./ is
between 1 and 1.4. Therefore, Eq. (4.36) applies equally well to Newtonian and viscoelastic
fluids.

This has two astonishing implications: (a) The role of the polymer tensile stress in increasing
the local € is fully accounted for by the degree at which the position of the tip is drawn toward
the orifice. (b) For the extensional rheometer, the formulas of Eq. (4.30) and Eq. (4.36)
can be used to obtain the elongational viscosity of Newtonian as well as viscoelastic liquids.
The latter observation is quite convenient, but its accuracy remains to be confirmed by

comparison with experimental data.
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Figure 4.25: The error of the elongational rate estimation for viscoelastic fluids. In this plot, the
series of Oldroyd-B, Giesekus 1 and Giesekus 2 are the same as Fig. 4.24.

4.6.3 Benchmarking by experimental data

To use a selective withdrawal device to measure the elongational viscosity of a liquid in
the laboratory, one goes through the following steps. (i) Measure the density and surface
tension of the fluid. (ii) Achieve a steady-state interface in the subcritical regime for a
prescribed flow rate. (iii) Measure the interfacial position (in terms of h and H) and the
tip curvature k. (iv) Use Eq. (4.36) to estimate the local strain rate ¢, and Eq. (4.30) to

obtain the elongational viscosity 1.

To benchmark this scheme, one takes a liquid with known elongational viscosity, e.g. mea-
sured through other means, and perform the selective withdrawal experiment on it. In
principle, the 7 estimated from the scheme can then be compared with the actual value.
In reality, there are several subtleties to the benchmarking. First, there are no reliable
methods to measure 7], especially for low-viscosity Boger liquids and at relatively low strain

rates. Indeed, this was largely the motivation for exploring the selective withdrawal for this
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purpose. Possible candidates are the filament stretching elongational rheometer (FiSER)
and the capillary breakup elongational rheometer (CaBER). Second, it is unclear what
strain the measured 7 corresponds to. FiSER and CaBER typically provides a transient,
“elongational stress growth viscosity” 77 as a function of time or strain [18]. More often
than not, no steady-state stretching is attained, and thus 77" never approaches an 7. In the
selective withdrawal experiment, on the other hand, the fluid experiences a complex strain
history that is not easily quantifiable. Even though the flow is steady in the Eulerian sense,
the material points most probably cannot attain steady stretching in the rheological sense,
and the total strain is not known. It is obviously not accurate to assume that the local
elongational stress at the tip corresponds to the steady-state N; at the local €. But there
does not seem to be a more appropriate way of characterizing this situation. The same

ambiguities exist for the opposed-nozzle device, for example.

Under these considerations, we have decided on a two-pronged approach for the bench-
marking. On the one hand, we measure the rheological properties of the polymer solutions
used in Chapter 3, and fit these into a Giesekus model. Then the theoretical elongational
viscosity 7 is calculated, similar to that depicted in Fig. 7.3-8 of Bird et al. [18], and is used
to benchmark the 77 measured from selective withdrawal. On the other hand, we take 7

data measured using FiSER! and compare them to our value.
(a) Benchmarking against the Giesekus fluids

Our experiment in Chapter 3 used two polymer solutions, a strongly elastic SE fluid and a
weakly elastic WE fluid. The following uses only the SE fluid. Its relaxation time has been
measured from CaBER to be Ay = 8.5 s. The shear viscosity of the solution and the solvent
were measured on a Bohlin rotational rheometer and the polymer and solvent viscosities,
as appear in the Giesekus model, are p, = 16.75 Pa-s, us = 4.25 Pa-s, with a viscosity ratio
k = 0.2. The mobility factor « is obtained from fitting the shear-thinning at larger shear

rates: o = 0.2.

In the experiment, the surface tension ¢ and density p are measured, respectively, by a

ring tensiometer (Cole-Parmer Surface Tensiomat Model 21) and a densitometer (Anton

!These measurements have been kindly performed by Professor David F. James for us at the University
of Toronto.
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Figure 4.26: The liquid level H as the function of time during the deformation of surface.

Paar DMA 35N Portable Density Meter). From the video recording of surface deformation,
we measure the value of k, H and h. One minor complication is that while h is recorded
continuously by video, H is only captured by snapshots on a still camera, and for the
relatively rapid viscoelastic process, the temporal resolution is insufficient. Thus we use
an indirect method to back out H from h. Figure 3.10 shows that for a long period after
the start of the experiment (¢ < 2250 s), the curvature is zero and there is no deformation
of the interface. Thus, H(t) = h(t) in this period, and the constant speed of the lowering
interface can be calculated from Fig. 3.10(b): dH/dt = dh/dt = 0.00116 mm/s. Assuming
that this speed does not change later when the free surface is deforming, which is reasonable
since the flow rate @ is fixed, we obtain the entire H () history throughout the experiment
(Fig. 4.26). Now x = (H — h)/R can be calculated for any snapshot of the video. Using

the scheme outlined above, 7 is obtained as a function of €.

Figure 4.27 compares the “measured” 7 with that of the Giesekus fluid. Note first that the
data for three C'a values more or less coincide. Thus, the measurement is intrinsic to the
fluid rather than affected by the flow situations. This lends confidence to the validity of
the scheme. Second, the measured 7 values are within a reasonable range of the theoretical

values. The data fall below the Giesekus curve for ¢ < 0.1 s~!, and overshoot it for higher
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Figure 4.27: Comparison of the elongational viscosity between that measured by selective with-
drawal and the theoretical value of the Giesekus model. H varies in each data set of fixed Ca, and
differs among the 3 data sets.

strain rates. Over the entire range, the difference is within a factor of 3. If the Giesekus
benchmark is taken to be the true elongational viscosity of the fluid, this margin of error
is quite acceptable in view of the poor accuracy of existing methods [8]. The relatively
close agreement between the experimental data and the theoretical curve also implies that
in subcritical selective withdrawal, the polymer solution near the tip experiences nearly
steady-state stretching. This is conceivable in view of the low velocity and elongational
flow type in that region. Finally, the measured 7 increases with é as does the theoretical
-1.36

curve, albeit at a greater slope. A power-law 7 = 2291¢'°° gives a reasonable fitting to the

experimental data.
(b) Benchmarking against filament stretching data

Fig 4.28 shows the FiSER measurements of the SE and WE fluids used in our experiments.
First, note that the FiSER returns the transient elongational stress growth wviscosity, and

apparently no steady stretching is approached in these tests. This is similar to the CaBER.
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Figure 4.28: The transient elongational stress growth viscosity of our experimental fluids SE (a)
and WE (b) measured by a filament stretching device. Each plot has two curves corresponding to
extension rates of 3 s7! and 9 571,

In fact, these results agree fairly closely with the CaBER data reported in the last chapter,
with the SE fluid showing a larger 77+ than the WE fluid. Second, the selective withdrawal
flow setup can access strain rates much below those in filament stretching and even opposed-
nozzle devices. This may be a potential advantage for our strategy in that it fills certain
niche applications. Third, the FiSER data show little consistent dependence on the strain
rate between the two values tested, while the selective withdrawal data of Figs. 4.27 show
a power-law increase in a much lower é range. If we extrapolate the latter to é = 9 s/,
we have 7 = 4.55 x 10* Pas, quite close to the maximum transient elongational viscosity
attained for the SE fluid in Fig. 4.28(a). This may be viewed as an indirect confirmation

of the extensional viscosity measured by the selective withdrawal scheme.

4.7 Conclusion

The numerical computations of this chapter demonstrate the capability of the arbitrary
Lagrangian-Eulerian (ALE) methodology in simulating free surface deformation of viscoelas-

tic liquids. There are two main results from this effort:

(a) We have elucidated the effects of viscoelasticity on interfacial deformation during selec-
tive withdrawal, including the hump height and tip curvature in the subcritical regime and

the critical condition for jet formation.
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(b) We have explored the possibility of using selective withdrawal to measure the steady-

state elongational viscosity of polymer solutions.

Regarding (a), the numerical computations show the correct trend in terms of increased
deformation due to elastic stresses, and identified strain-hardening as the key mechanism
at work. The limitations to this part of the results are the failure to reach Deborah number
ranges of the experiment and to predict the interfacial rupture. The former is a common
problem for viscoelastic computations, and newer schemes such as the logarithmic formal-
ism offer hope of approaching higher Deborah numbers while maintaining the positive-
definiteness of the polymer configuration tensor [136]. The latter problem is intrinsic to the
sharp-interface formulation of the ALE method, and can only be remedied by alternative

formulation of the interface, e.g., via diffuse-interface models [46, 66].

Regarding (b), we have examined the factors key to the success of this strategy, including the
local flow type and the normal stress and strain rate at the tip, and compared the accuracy
of the measurement with existing methods of extensional rheometry. Based on these, we
have reached the preliminary conclusion that selective withdrawal can potentially be used
as an extensional rheometer. Its maximum error of 47% for Newtonian fluids is superior
to opposed-nozzle devices [8]. For polymer solutions, no definitive benchmark exists. But
an estimated maximum error of about 300% compares favorably with opposed-nozzle and

contraction flow devices [132,137].

As an extensional rheometer, the selective withdrawal device has several unique advan-
tages. Because the elongational stress and strain rate are sampled within a very small
region surrounding the stagnation point, the procedure measures a steady-stretching elon-
gational viscosity. None of the existing devices produces steady stretching as easily. More-
over, thanks to its transducer-free scheme for determining the elongational stress, selective
withdrawal can test low-viscosity liquids, and access much lower strain rates than other
devices. Finally, the device is relatively immune to complicating factors such as inertia,

spatial inhomogeneity and filament sagging common to other devices [8,127].

We must note that our work on (b) suffers from two limitations. First, we have no direct
measurement of the local strain rate at the tip. Consequently, we have to resort to numerical

data and exploit an apparent coincidence that allows us to represent the local strain rate
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using a general correlation for both Newtonian and viscoelastic fluids. This should be
remedied in the future by direct PIV measurements of the local flow field [138]. Second,
there are no definitive benchmarks for polymer solutions to firmly establish the accuracy
of the selective withdrawal protocol. Indeed, this is owing to the lack of a device capable
of similar measurements, and speaks indirectly to the value of such a rheometer. Further

investigation should aim to remove these uncertainties and optimize the design of the device.
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Conclusions and recommendations

The overarching theme of this dissertation is to examine how bulk non-Newtonian stresses

affect interfacial motion and deformation. This is accomplished, in three somewhat related

projects, using numerical computations and experimental observations. Based on this study,

one may draw the following general and fundamental conclusions.

(a)

(b)

Extensional flows near the interface effectively activates the viscoelastic stress in the

bulk, which then exerts significant influences on the interface.

Such influences may be manifested by relatively mild deformation of the interface,
which enlists interfacial tension to balance the viscoelastic stress. Or they may cause

more drastic changes of interfacial morphology, causing instability or even rupture.

This fundamental balance between interfacial tension and polymer stress may be ex-
ploited in a well-controlled geometry to measure the polymer stress, and thus the
polymer elongational viscosity. This would be of great practical value since there is a

dearth of viable methods for such measurements.

In terms of numerical simulation of interfacial flows, the choice of model and algorithm
must be dictated by the need for interfacial resolution. Whereas a diffuse-interface
model might suffice for relatively mild flow situations, more severe deformation of the
interface may call for a sharp-interface formulation. In either case, simulating singular

events of the interface, such as rupture or coalescence, remains a challenge.
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5.1

Summary of research findings

The thesis consists of three related but independent projects: drop deformation in converg-

ing pipe flow, experiment on selective withdrawal, and numerical simulation of selective

withdrawal. Within each, we strive to elucidate the mechanisms by which non-Newtonian

bulk rheology affects interfacial dynamics. The main results are summarized below.

(i)

In the first project, I investigated the influence of viscoelasticity on drop deformation
in converging pipe flows in a conical geometry. Three series of simulations have
been carried out, with Newtonian drops in a Newtonian matrix, Giesekus drops in a
Newtonian matrix and Newtonian drops in a Giesekus matrix. Viscoelastic effect may
enhance or suppress drop deformation depending on the flow and material parameters.
The key factor is whether the polymer chains have had sufficient time to stretch and
develop a sizeable polymer stress, based on which two regimes can be defined. In
the weak regime, a polymer drop deforms more readily than a comparable Newtonian
one, and a polymer matrix is less able to deform a drop than a Newtonian matrix
of the same viscosity. In the strong regime, the trend is reversed. Which behavior
prevails in a conical flow channel depends on the capillary number and the viscosity

ratio. This understanding reconciles contradictory results in the literature.

The second project is an experimental study of air-liquid selective withdrawal. New-
tonian liquids only exhibit the subcritical behavior, with a deformed but continuous
interface. This behavior and the quantitative surface shape are in good agreement
with previous experiments. For viscoelastic polymer solutions, on the other hand,
we discover a threshold beyond with the interface becomes a cusp, emits an air jet
and becomes supercritical. The critical condition depends on the flow rate, rheology
of the fluid and the location of the interface. The contrast between Newtonian and
polymeric liquids is explained in terms of the elongational stress pulling the surface

down.
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(iii)

5.2

The third project, finite-element simulation of selective withdrawal, complements the
second. Subject to numerical limitations to be detailed below, we have reproduced the
key effects in the experiments, and confirmed that it is the elongational polymer stress,
or strain hardening, that is at the root of the viscoelastic effects. More specifically,
the simulations show that the surface of the viscoelastic liquid deforms more than the
Newtonian one, and that the critical condition, in terms of rheological and operating
parameters, is captured with reasonable accuracy. As an outgrowth of this study,
we suggest that the steady-state interface be used as an extensional rheometer for
measuring the elongational viscosity of dilute polymer solutions. Based on the limited
data we have, the scheme seems to be viable, yielding better accuracy than has been

achieved by pre-existing methods.

Limitations of current work

Both the numerical algorithms and experimental techniques suffer from certain shortcom-

ings.

This to some extent limits the scope and depth of the study. These are summarized

as follows.

(i)

The sharp-interface method and ALE moving grid algorithm cannot accommodate the
critical condition in selective withdrawal. This is because the surface is represented
by grid points, and thus the code can only track surface curvature to a certain finite
value. Beyond that, the interfacial forces are not evaluated accurately, the surface
loses smoothness, and the numerical computation breaks down. This is a well-known
limitation for interface-tracking schemes, and in the case of drop breakup is often
bypassed by artificially removing and reconnecting interfaces. In our problem such
schemes would not work as the thin air jet is a stable feature that has to be accounted
for. This precludes a simulation of the critical conditions, the supercritical regime, as

well as the hysteresis observed experimentally.

The well-known “high Weissenberg number problem” prevented me from attaining the
same Deborah number in the simulations as in the experiments. Thus, the numerical
data range overlaps but does not fully cover that of the experimental data. This
presents some inconvenience in comparing the two in terms of the critical condition

for jet formation.
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(iii)

5.3

Experimentally, the surface is well resolved except for the very thin air jet in the
supercritical regime with viscoelastic liquids. Poor image quality led to noisy data
for the thin air jet in the supercritical regime. As such, I was unable to examine the
relationship between the air jet diameter and the control parameters of the experiment

with confidence.

The examination of the proposed new strategy for measuring the elongational viscosity
is hampered by the lack of a suitable benchmark. This is mainly due to the lack of an
accurate device for such measurements, which was the motivation for our proposing

a new device to begin with.

Recommendations for future work

In light of the above, it seems that the fundamental physics of the process, in terms of how

the polymer stress affects interfacial deformation, is quite clear, at least qualitatively. What

most urgently needs further investigation is the proposed strategy of measuring elongational

viscosity by surface deformation. Compared with prior devices, the advantages are obvious:

the setup is simple and the measurement is easy, and this process can measure low-viscosity

fluids down to strain rates at least an order of magnitude smaller than previous equipments

such as opposed nozzles and filament stretching. Further work should center on two areas:

(1)

(i)

To establish a more accurate formula for estimating the local strain rate. The current
data was obtained from a limited range of numerical computations, and no direct
comparison with experiments could be carried out. Therefore, one needs to obtain
detailed measurements of the flow field, using laser Doppler velocimetry for example,

on which the required formula can be sounded based.

The develop more suitable and accurate benchmarks for the final measurements. In
the present study, I had to use numerical results for a Giesekus fluid and limited
data from a filament stretching device. The way forward seems to use highly viscous
solutions that are more suitable for traditional elongational rheometers. For such
fluids, steady-stretching can be achieved, and the elongational viscosity can be used

to benchmark the proposed device.
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