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Abstract

The dynamic behavior of many chemical and biological processes is defined by a set of non-

linear differential equations that constitute a model. These models typically contain parameters

that need to be estimated using experimental data. A number of factors such as sampling inter-

vals, number of measurements and noise level characterize the quality of data, and have a direct

effect on the quality of estimated parameters. The quality of experimental data is rather poor

in many processes due to instrument limitations or other physical and economical constraints.

Traditional parameter estimation methods either yield inaccurate results or are not applicable

when applied to such data. Despite this, it is common practice to apply them on a merged data

set obtained by pooling together data from multiple experiments. Considering the difficulties in

maintaining consistent experimental conditions, straightforward integration of multiple data sets

will not provide the best estimates of parameters.

In this thesis, a new approach to estimate parameters of nonlinear dynamic models using mul-

tiple experimental data is proposed. The approach uses Bayesian inference, and sequentially

updates prior probability distribution of parameters for systematic integration of multiple data

sets. An expression for posterior probability distribution of parameters conditional on all ex-

perimental data sets is derived. This expression is often analytically intractable; therefore two

instances of numerical approximation method called MarkovChain Monte Carlo - Metropolis-

Hastings (MH) algorithm and Gibbs sampler (GS) - are implemented. The two algorithms form

inner and outer levels of iterations, where the MH algorithmis used in the inner level to estimate

conditional probability distributions of individual parameters, which is used in the outer level in

conjunction with the GS to estimate joint probability distributions of the parameters.
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Abstract

The proposed method is applied to three nonlinear biological processes to estimate probability

distribution of parameters with a small number of irregularsamples. The approximated proba-

bility distribution provides a straightforward tool to calculate confidence interval of parameter

estimates and is robust to initial guess of parameter value.Correlation among model parameters,

quality of each model, and the approach taken to optimize thehigh cost of MCMC sampling are

discussed.
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Chapter 1

Introduction to Modeling Nonlinear

Dynamical Systems

A variety of aspects of parameter estimation for nonlinear stochastic dynamical systems are de-

fined in this chapter. Major components of dynamic modeling such as model structure, model

identification, and model validation are discussed. The success of model identification and vali-

dation steps is largely influenced by the quality of experimental data, and hence aspects of data

quality that have adverse effect on estimation accuracy areexamined. Some commonly used

modeling frameworks are presented. This is followed by a description of three nonlinear bio-

logical systems that are used throughout this thesis to illustrate the proposed algorithms. The

chapter concludes with an overview of the thesis.

1.1 Modeling Framework

The dynamic behavior of many chemical and biological processes is defined by a set of mathe-

matical equations that constitute a model. A typical model consists of four major components

viz., model structure, independent variables, dependent variables and model parameters. The

structure refers to the way variables and model parameters are related to each other by math-

ematical operators. The independent variables, often called inputs, are those that affect other

process variables but are not affected by them. Some input variables can be directly manipulated

and are used to control the output of the system. The dependent variables can further be clas-

sified into states and outputs. The state variables are required to describe the internal dynamics

of a process, however, they are usually not directly measured. The output variables are directly

1



Chapter 1

measured and are generally functions of state and input variables. These output variables can

be predicted given the model structure, measurements of input variables, and model parameters.

The model parameters are usually constants that relate independent and dependent variables

through the model structure. Once these major components - model structure, independent vari-

ables, dependent variables and model parameters - are defined (or estimated), the model can be

used to infer the dynamic behavior of the corresponding process, and to develop algorithms for

control, fault detection and process monitoring.

Modeling of dynamic processes is an iterative approach thatconsists of i) identifying inde-

pendent and dependent variables, ii) selecting a proper model structure, iii) estimating model

parameters using experimental data, and iv) validating andrevising the structure and model pa-

rameters based on certain model quality criteria. It is straightforward to identify the independent

and dependent variables based on process information. The structure of a model can either be

determined through physical laws, such as mass and energy balance equations, or through em-

pirical approximations based on basis functions [35]. The emphasis in this thesis is on structures

based on physical laws as they are very common in biotechnology and biomedical industries.

Such structures provide intuition into the process behavior and its various measurements, and

give physical meaning to its parameters. For instance, a simple batch fermentation reaction can

be described by the following coupled ordinary differential equations,

dCX

dt
=

µmCS

ks + CS
CX − kdCX , (1.1)

dCS

dt
= − µmCS

(ks + CS)Yxs
CX , (1.2)

ĈX = CX + ηX , (1.3)

ĈY = CY + ηY . (1.4)

whereCX andCS denote the concentration of biomass and substrate respectively, ĈX andĈY

denote measured values of the concentrations corrupted with noise sequencesηX andηY . The

structure of the model refers to the manner in which these twoconcentrations are related through

2



Chapter 1

the above equations. This model is based on mass balance equations and hence provides phys-

ical meaning to various constants in it. The model parameters, θ = [µm, kd, ks, Yxs], are the

constants. They are estimated using experimental measurements of biomass and substrate con-

centrations. Once the parameters are estimated, the process can be quantitatively represented

with the values of the parameters. In this case, the parameters are meaningful physical quantities

in that µm is the maximum growth rate of biomass,kd is the decay rate of biomass,ks is the

Monod constant which is equal to the substrate concentration at which the biomass growth rate

reaches half of its maximum growth rate,(µm), andYxs is the stoichiometric yield coefficient of

biomass to substrate.

Once a model structure is in place, the parameters are chosensuch that the model predictions

are, in some sense, close to the actual process measurements. The accuracy of the estimated pa-

rameters depends on the quality of the process measurements. A detailed description of various

aspects of the data that affect the parameter estimation aredescribed in a latter section. Once

the parameters are estimated, the model is tested for its accuracy against a new set of process

measurements to verify the validity of the model on measurements not used in the estimation

step. This step is called model validation. If a model fails the validation step, experiments are

repeated to collect more data.

Mathematical models can be broadly classified as linear or nonlinear, static or dynamic, de-

terministic or stochastic. A linear model is one where the variables of the system are related

through linear differential equations. Within most biological and chemical processes, there are

complex bio/chemical reactions that cannot be expressed using linear differential equations, thus

many models developed for such processes are nonlinear in either variables or parameters and

sometimes both. A dynamic model accounts for the rate of change of process variables while

a static model assumes that the variables are constant. A deterministic model assumes that if

multiple experiments were conducted with identical initial conditions and experimental vari-

ables, the observed time series of output variables will always be the same. However, this is

3



Chapter 1

not the case in reality due to process and measurement noise.Multiple observations made of a

system under identical experimental conditions vary with some probability distribution. Thus,

a stochastic view that considers the process variables and parameters as random variables with

probabilistic qualities is more appropriate for biological systems. Furthermore, such stochastic

models are suitable for applications where the parameters are time varying [5]. The fermentation

model described earlier is a stochastic nonlinear model with constant parameters. The focus of

this thesis is on estimating model parameters for a generic nonlinear stochastic model.

1.2 Previous Work

Modeling has been an active area of research for over a century and it is beyond the scope of

this thesis to provide an exhaustive literature survey. However, the research in this area can be

broadly classified into two areas - linear and nonlinear modeling. A number of textbooks have

been written on the topic of linear modeling [12, 16, 35, 50],and many theoretical results on the

quality of estimated parameters have been derived. Similarly, a number of approaches have been

developed for modeling nonlinear dynamic processes [4, 19,31, 35, 45, 46]. The most popular

among them are black-box techniques such as neural network models, state space techniques

such as hidden-Markov models, and continuous time modelingtechniques such as ordinary dif-

ferential equation (ODE) models. While an exhaustive literature survey of these techniques is

beyond the scope of this thesis, applications of these approaches are briefly discussed below.

The neural network models use the learning principles of mammalian brain. The relationship be-

tween input, output, and state variables is developed by training the neural network models with

large amounts of process data. Some notable works using neural networks for model identifica-

tion include Bohret al.’s work on predicting 3-D structure of protein backbones [7]; Cai et al.’s

work on predicting the content of protein 2-D structures [9]; Fukushima’s proposal on synap-

tic network between neurons [18]; Gupta and Achenie identified metabolic pathways, complex

genetic disease and toxicology analysis through neural network modeling [25]; Laursenaet al.
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used gray-box model approach to identify the complex behavior of bacteria after induction [34];

Maraziotis and colleagues’ development of complex causal relationships among genes from mi-

croarray experimental data is based on novel neural fuzzy recurrent network [37]; and Zhang’s

work on developing mechanistic model for batch process is based on using stacked neural net-

work models [56]. Complex nonlinear relationships betweenvarious process variables can be

implicitly detected using neural network models. However,there are a few drawbacks to using

neural network models. Neural network models are known to require heavy computational ef-

fort, prone to over-fitting, require large amounts of data, and the developed models suffer from

the disadvantages of black-box models [53].

Hidden-Markov models (HMM) were initially developed in thefield of speech recognition in

1970s and later became popular in other disciplines becauseof their characteristically rich math-

ematical structure [43]. Major components of a HMM are states, observations, transition prob-

abilities corresponding to each state, emission probabilities and initial state distribution. HMM

is often portrayed with a diagram, in which the states are denoted with network of nodes and

the transition and emission probabilities are denoted witharrows connecting the nodes. If some

initial probability distribution of state is given, HMM cancompute the probability distribution

function of output variables. Since initial probability distribution of the states can be specified

by the user, it is possible to incorporate prior knowledge regarding the probability of states when

using HMM. Other advantages include ease of interpretability (because of the intuitive nodal

network) and its modular nature, making it easy to combine several models to create a larger one

[28]. The disadvantages are that the computational cost is very large and that there are several

strong assumptions made regarding the process, such as Gaussian distribution of process vari-

ables, and Markov property of emission and transition probabilities. A number of applications

of HMM framework can be found in computational biology field.Some notable works include

Kimmel and Shamir’s development of a novel HMM for identifying haplotype and genotype

generation [29]; Wu and Xie proposed a HMM of transcription factor binding sites and cis-

regulatory modules identification [54]; Siepel and Haussler combined phylogenetic model with

5



Chapter 1

HMMs to explore the genome substitution that occurs throughevolution [48]; Kroghet al.’s sta-

tistical model and multiple sequence alignment of protein families and protein domains is also

based on HMM framework [32].

Ordinary differential equation (ODE) models are used in a wide range of scientific disciplines

to describe biochemical systems, fluid mechanics, financialmarkets, etc. A generic ODE model

can be represented by the following equations,

dx(t)

dt
= f(x(t),u(t), θ) + v(t) (1.5)

y(t) = h(x(t),u(t), θ) + η(t) (1.6)

wherex(t) is the vector of state variables,u(t) is the vector of exogenous input variables,θ is

the vector of model parameters andy(t) is the vector of output variables. The process noise term,

v(t), and measurement noise term,η(t), are included in the model to account for the stochas-

tic nature of the process; without these terms, the model is deterministic. The exact values of

these noise variables are unknown, however, assumptions can be made regarding the probability

distribution of these variables (e.g.η is usually assumed to be Normally distributed with zero

mean and some varianceσ2
η, such thatη ∼ N (0, σ2

η)). f andh are vectors of functions that form

the model structure and they determine whether the model is linear or nonlinear. If the model

equations are nonlinear, it is often impossible to obtain analytical expressions for the states and

outputs, and one has to approximate the model equations through numerical analysis. The ODE

models are typically developed using physical laws, and hence various parameters in these mod-

els have physical significance. In this thesis, the focus is on estimating model parameters in

a stochastic nonlinear ODE model described above. The parameters can be easily estimated

through nonlinear least squares if there is no noise in the state dynamic equations. However, in

presence of state noise, parameter estimation is a difficultproblem. There are a few maximum

likelihood approaches, that are based on expectation maximization, to estimate parameters in

presence of state noise. These approaches require large amounts of data for good estimates.

6



Chapter 1

Moreover, maximum likelihood approaches do not automatically provide confidence intervals

on the estimated parameters.

In this thesis, a Bayesian approach is proposed to estimate parameters in a set of stochastic

nonlinear differential equations. The proposed approach does not require large data sets, it can

easily handle multi-rate measurements, and provides confidence intervals on estimated parame-

ters. This approach is also extended to handle data from multiple experiments.

1.3 Motivation for a Bayesian Approach to Parameter

Estimation

Once the structure of a model is defined, the parameters are estimated using the data obtained

from the process. The quality of the data will therefore influence the quality of the estimated

parameters. In this thesis, the goal is to develop a Bayesianapproach to parameter estimation

that accounts for three important features of dataviz.,noise, scarcity and irregular samples.

Most experimental data are corrupt with measurement and process noise, making it difficult to

obtain the precise values of model parameters. Thus, the estimated values contain some uncer-

tainty, which is usually quantified with a confidence interval. The size of the confidence intervals

of estimated parameters is an indication of the effectiveness of the proposed model in accurately

representing the process. The accuracy of estimation and its reliability are affected by the level

of noise present in the experimental data, and therefore a robust method to obtain as much infor-

mation as possible from the noisy data is required. If the estimated parameters suffer from large

levels of uncertainty (e.g. wide confidence interval) then the model is deemed to be a poor rep-

resentation of the process. Therefore, in such a case, the proposed model needs to be examined

for revision. This is done so that the revised model yields estimated parameters, using a new set

of experimental data, with smaller level of uncertainty. Thus, the iterative process of proposing

7
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a model - estimating the model parameters and revising the model - is required to obtain a model

that is able to capture the key components of the process and is not excessively complex.

The frequency of process measurements, in many biological processes, is determined by various

physical and economical constraints. These constraints often lead to data sets that are too small

and contain irregular samples. The parameters estimated from such data sets usually have large

confidence intervals. Therefore, point estimates of the parameters obtained through methods

such as maximum likelihood and nonlinear least squares, have to be qualified with a description

of their confidence intervals.

Various parameter estimation methods are adept at addressing poor quality of data - sparsity,

irregularity and large amount of noise. For instance, Expectation Maximization (EM) algorithm,

an instance of maximum likelihood estimation (MLE), has been shown to handle irregular pro-

cess data well enough to obtain reliable parameter estimates. However, it still requires a large

number of samples in order to overcome the loss in information due to irregularity in sampling

intervals. It is known that MLE (or EM) yields asymptotically unbiased and minimum variance

parameter estimates as the number of data points reaches infinity. However, MLE is prone to

biased estimation when not enough data is provided. An alternative approach to address the

problem of sample sparsity is to conduct multiple experiments and pool the data points together

to create a large data set. Though this approach seems straightforward, it is difficult to main-

tain consistent process conditions during different experimental runs. Hence, when a nonlinear

least-squares or MLE approach is applied on such pooled datathe differences in experimental

conditions are obfuscated.

There are other challenges presented by least-squares (LS)approaches and frequentist methods,

which refer to statistical point of view where probability of a given random event is obtained

through large amount of observations. When estimating process parameters, the accuracy of

the estimation can be improved by exploiting all of the available information. Aside from the

8
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obvious choice of experimental data,a priori information can also be included in this informa-

tion database.A priori information may refer to any knowledge regarding the parameters that

is available before conducting experiments, such as constraints on the parameter value available

through physical laws and other means. Unfortunately, in the currently used techniques for pa-

rameter estimation, these types of information are appliedin a somewhat limited fashion. For

instance, one can provide the upper and lower bounds of the parameter value to an optimization

problem that solves nonlinear least-squares or MLE. However, if there’s a probabilistica priori

information, such thatx is normally distributed with some meanµ and varianceσ2, it is difficult

to incorporate this information into LS or frequentist estimation methods. Lastly, for computa-

tional convenience, these methods make an assumption that state variables and parameter vector

have a fixed time invariant distribution (e.g. Gaussian). However, it has been shown that this as-

sumption may be inaccurate in many nonlinear processes. In the work by Chen et al., simulated

posterior distribution of a CSTR concentration was shown toexhibit time-variant behavior with

multimodal, asymmetric distribution [13].

Bayesian approaches are naturally suited to handle not onlya priori information but also scarce,

irregularly sampled noisy data. In this thesis, a parameterestimation method that resolves the

above mentioned challenges by incorporatinga priori information is developed. The proposed

algorithms are illustrated through three ordinary differential equation models: i) a batch fermen-

tation reaction, ii) a genetic regulatory network and iii) asignal transduction pathway. These

models are referred to throughout this work to demonstrate the proposed algorithm and the the-

ories behind it.

9
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1.4 Motivational Examples

1.4.1 Batch Fermentation Reaction

First example is the simplified version of Michaelis-Mentenreaction model in a batch reac-

tor. Following set of coupled ordinary differential equations is used to describe the uninhibited

growth of biomass and increasing concentration of its by-products (e.g. alcohol), as well as

depletion of substrate present in a batch fermentor.

dCX(t)

dt
= µCX(t) + v1(t), (1.7)

dCS(t)

dt
= − µ

YXS
CX(t) + v2(t), (1.8)

dCP (t)

dt
= µYPXCX(t) + v3(t). (1.9)

The state variablesCX , CS andCP are concentrations of biomass, substrate and by-products,

respectively. The stochastic process noise is indicated byv1, v2 andv3. The specific growth rate

of biomass,µ, is defined using Michaelis-Menten kinetics as follows.

µ =
µmCS(t)

ks + CS(t)

(

1 − CP (t)

kP

)

(1.10)

The model is nonlinear with respect to the five parameters: (i) µm, upper limit to the growth

rate of biomass, (ii)ks, Monod constant, (iii)kp, product inhibition term, (iv)YXS, yield ratio of

biomass concentration to the substrate uptake and (v)YPX, yield ratio of by-product to biomass.

Thus, the model parameter vector is defined asθ = [µm, ks, kp, YXS, YPX].

The details of simulation data sets for this stochastic dynamic system are provided in Appendix

A. For a numerically stable implementation of the algorithm, two of the parameterskp and

YPX were normalized using the following convention and the normalized values are shown in

10
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Table 1.1 along with their pre-normalized values.

k′
P = 10/kp, (1.11)

Y ′
PX = YPX/100. (1.12)

A total of six independently simulated data sets (D = {D1, D2, D3, D4, D5, D6}), each data set

consisting ofN = 15 irregularly sampled data points spanning the time intervalof [0, 24] hours,

are collected. A single set of experimental data is shown in Figure 1.1. The true trajectories of

the state variables, without measurement noise, are indicated with solid lines and the measured

sample points are indicated with x’s. It is ensured that the sampling intervals are irregular and

the measurements are corrupt with noise.

1.4.2 Feed-Forward Loop : Genetic Regulation Network

Gene expression is the foundation of regulatory biologicalfunctions [1]. Within cells, transcrip-

tion factors are triggered by various environmental changes or self-serving signals. Through the

recent development in molecular biology technology, it hasbecome possible to closely study the

dynamic behavior of networks formed by a group of transcription factors present in living organ-

isms. Recently, a number of predominantly recurring wiringpatterns within genetic networks,

callednetwork motifs, were identified in bacteriumEscherichia coliand yeastSaccharomyces

cerevisiae. Their observed abundance is assumed to be due to their significant role in the tran-

scription network. One of the identified motifs is called theFeed-Forward Loop (FFL) [36, 47]

and it shows similarities in its regulation action to a feed-forward action in process control.

Two different regulating actions are present in a general form of FFL, where they involve two

transcription factors, X and Y, and a gene Z. The first action is regulation of Y expression by X

and the second action is regulation of Z expression by both X and Y. A graphical illustration of

FFL mechanism is shown in Figure 1.2, whereSX andSY are the inducers of X and Y, respec-

tively. The inducers are either saturating stimulus or absent, and they trigger the transcription

11
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factors. There are three transcription interactions (denoted with the three arrows in the figure)

which can either act as an activator or a repressor, resulting in eight possible configurations of

FFL. The following set of coupled ordinary differential equations is the general form of FFL.

dY (t)

dt
= −αyY (t) + βyf(X(t), KXY ) + v1(t), (1.13)

dZ(t)

dt
= −αzZ(t) + βzg(X(t), Y (t), KXZ , KY Z) + v2(t), (1.14)

whereX(t), Y (t) andZ(t) denote the gene expression rate of transcription factor X, Yand gene

Z at timet. In all FFL configurations, the expression of X is assumed to be constitutive, which

means that it is continuously produced within the organism regardless of the cell’s need. For

each different configuration of FFL, the functional forms off andg have different expressions.

The regulation functionf , when it is an activator, is defined as follows.

f(χ, Kij) = (χ/Kij)
H/(1 + (χ/Kij)

H), χ = X(t), Y (t). (1.15)

where coefficientH indicates the steepness of the activation functionf andKij is the activation

or repression coefficient of genej by transcription factor genei. The gate functiong can either

be an AND-gate or an OR-gate, where in an AND-gate it is assumed that X and Y regulate Z

independently and not compete with each other, making the activation function of X and Y to Z

equal to the product of two activation functions,f(X(t), KXZ) andf(Y (t), KY Z). On the other

hand, for an OR-gate, the transcription factors X and Y compete for the binding site in a pro-

moter, and the gate function is expressed as a linear combination of the two activation functions.

There are eight possible configurations of FFL, four coherent types and four incoherent types.

When a given FFL’s indirect causal regulation ofX to Z throughY agrees with its direct causal

regulation ofX to Z (e.g. both regulations activate or both regulations repress), then it is a

coherent type of FFL, otherwise it is an incoherent type of FFL. In this thesis, coherent type 1

FFL is considered. In it, transcription factorX activates both geneZ and transcription factor

12
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Table 1.1: The true and normalized parameter values used to simulate the batch fermentation
reaction data, and to implement the estimation algorithm.

Process Parameter µm ks kP YXS YPX

Value 0.15 [1/hr] 0.5 [g/L] 40 [g/L] 0.25 [g/g] 20 [g/g]
Normalized Value 0.15 [1/hr] 0.5 [g/L] 0.25 [L/g] 0.25 [g/g]0.2 [g/g]
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Figure 1.1: Batch fermentation reaction fromt = 0 hr to t = 24 hr. From left, each panel cor-
responds to the concentration of biomass (CX), substrate (CS) and by-product (CP ). Measured
data points are denoted with ‘x’ and the solid curve denotes the ‘true’ trajectory of each state
variables.

Figure 1.2: Feed-Forward Loop model where transcription factor X regulates the expression of Y
and both X and Y regulate the expression of Z.SX andSY are inducers of X and Y, respectively
[36].
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Y , which in turn activates the expression of geneZ. The inducers ofX andY , SX andSY ,

both have a strong effect in the expression level ofZ in coherent type 1, unlike in types 3 and

4. This is suggested to be a possible explanation for the dominance of coherent type 1 in the

evolutionary process of transcription networks. Observations show that coherent type 1 FFL is

the most frequently observed FFL type inE. coli andS. cerevisiaewith 28 occurrence out of 42

identified FFLs and 26 occurrence out of 56 identified FFLs, respectively [36].

In [20], the expression levels of yeastS. cerevisiaegene were identified under a number of stim-

ulations, including heat shock, toxicity level, and substrate concentration, in order to study the

gene expression patterns. There were around 6,200 genes that were identified and about 900

among them showed similar pattern that can be further studied to identify the role of each ge-

nomic response. Since FFL is a recurring pattern involving agroup of three genes X-Y-Z, a

number of different FFLs can be identified within a single organism, each with a different group

of X-Y-Z. One of the identified coherent type 1 FFL inS. cerevisiaeis GCN4-LEU3-ILV5 group

and in Figure 1.3 the expression level time series of these genes published in [20] are shown.

The expression levels of GCN4, LEU3 and ILV5 are denoted withX(t), Y (t) andZ(t), respec-

tively. The expression levels were measured att = 5, 10, 15, 20, 30, 40, 60, 80 minutes (N = 8

samples) where att = 0 min, the environmental temperature was raised from25◦C to37◦C.

The FFL model has a total of eight process parameters, which are θ = [βy, βz, αy, αz, KXY ,

KXZ , KY Z , H ]. The parameters,αy, αz, represent the sum of degradation rate and dilution rate

of Y and Z, respectively. Using these parameters, the half-time of Y and Z decay (t1/2) is ob-

tained aslog(2)/αy andlog(2)/αz. In order to obtain simplified version of the FFL interactions,

a few parameters are assigned approximate values based ona priori information (βy = 1, βz = 1

andH = 2).
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Figure 1.3: Experimental time series data of coherent type 1FFL gene expression level where
X(t) denotes the expression level of GCN4,Y (t) denotes the expression level of LEU3 andZ(t)
denotes the expression level of ILV5. [20].
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1.4.3 JAK-STAT : Signal Transduction Pathway

The third example is that of signal transduction pathways. The Janus family of kinases (JAK) -

signal transducer and activator of transcription (STAT) pathway describes the series of reactions

taking place across cytoplasm and nucleus to trigger transcription of key genes. The signaling

pathway occurs through multiple cell surface receptors, one of them being the erythropoietin re-

ceptor (EpoR). EpoR plays an important role in the proliferation and differentiation of erythroid

progenitor cells [51], which refer to cells that are able to grow into a specific type of cell - in

this case, red blood cell - through cell-division [33]. Figure 1.4 shows the diagram of the JAK-

STAT signal transduction pathway. Through a series of reactions, EpoR creates docking sites for

STAT5, a latent transcription factor. The key actions takenby STAT5 are phosphorylation (x1 to

x2, in Figure 1.4), formation of dimers (x2 to x3, in Figure 1.4), and migration from cytoplasm

into nucleus (x3 to x4, in Figure 1.4). Once present in the nucleus, STAT5 is able totrigger

the transcription of target genes. There are several hypotheses for the termination mechanism

of JAK-STAT pathway, including degradation of STAT5 withinthe nucleus and migration of

STAT5 from nucleus back to cytoplasm.

The mathematical model of JAK-STAT signaling pathway was originally developed in [51].

There are four state variables which represent the concentrations of unphosphorylated STAT5

(x1), tyrosine phosphorylated monomeric STAT5 (x2), tyrosine phosphorylated dimeric STAT5

(x3) and STAT5 within the nucleus (x4). The exogenous input variable of the model,u(t), is the

concentration of EpoR. The original model was adapted following the suggestion in [42, 57] and

expressed as a set of four coupled ordinary differential equations as follows.

dx1(t)

dt
= −a1x1(t)u(t) + 2a4x4(t)I{t≥τ}, (1.16)

dx2(t)

dt
= a1x1(t)u(t) − 2a4x

2
2(t), (1.17)

dx3(t)

dt
= −a3x3(t) + x2

2(t), (1.18)

dx4(t)

dt
= a3x3(t) − a4x4(t)I{t≥τ}, (1.19)

16



Chapter 1

Figure 1.4: JAK-STAT signal transduction pathway diagram [51]. Initially, EpoR creates
docking sites for STAT5. This triggers a series of STAT5 reaction where unphosphorylated
monomeric STAT5 (x1) becomes phosphorylated monomeric STAT5 (x2), which in turn forms
phosphorylated dimeric STAT5 (x3) that migrates into the nucleus. Once inside the nucleus,
phosphorylated dimeric STAT5 (x4) triggers the expression of target gene. The signal transduc-
tion pathway terminates, by migration of STAT5 from nucleusback to cytoplasm
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whereI{t≥τ} is an indicator function that is equal to zero whent < τ and is equal to one when

t ≥ τ . Since there is a time delay from the initial addition of EpoRinto the system, triggering

the activation of STAT5 signal transduction pathway, to thetime STAT5 actually migrates into

nucleus,τ is present in the model to account for such time delay. Thoughthis model is suggested

to be a simplified version of the original model developed in [51], one aspect of the model seems

to result in over-lumping of the parameters in order to reduce the dimension of the parameter

space. This aspect is regarding the reduction of phosphorylated STAT5 (x2) due to the formation

of phosphorylated dimeric STAT5 (x3). These are allegedly represented with the second terms in

(1.17) and (1.18). However, the lack of2a4 term in (1.18) seems inconsistent with the physical

explanation of the process, and is a worthwhile problem to beaddressed in the context of model

validation.1 It is proven to be very difficult to monitor the population of individual types of

STAT5 within the process. Thus, the following two output variables were measured, instead of

direct measurement of each state variable.

y1(t) = x2(t) + 2x3(t),

y2(t) = x1(t) + x2(t) + 2x3(t), (1.20)

wherey1 denotes the amount of tyrosine phosphorylated STAT5 in cytoplasm andy2 denotes the

total amount of STAT5 in cytoplasm. These output variables are expressed as linear combination

of the state variables that depict their stoichiometric relationship. The JAK-STAT model is more

complex compared to the FFL model introduced in the previoussection, because the direct mea-

surements of state variables are not available. Furthermore,x4 is not accounted for in the output

measurements at all, but only present in the state equationsas a functional component of rate of

change forx1 andx4. This is because making measurements of population of STAT5within the

nucleus is difficult.

1One speculation is that when the simplified model was devised, the modelers accounted for degradation ofx2 in
the rate of−(2a4 − 1)x2

2, which would account for the difference in the decrease inx2 population and the increase
in thex3 population. This is just one conjecture among many, though following this logic would place a constraint
on the parameter such thata4 ≥ 0.5.
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An experimental data set published by [51] is shown in Figure1.5, where the output variables

y1 andy2 are measured att = 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 60 minutes. Att = 0

minutes, the population of phosphorylated STAT5 is 0 (y2(t = 0) = 0). This is because phos-

phorylation of STAT5 is triggered by the addition of EpoR into the system which occurs att = 0

minute.
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Figure 1.5: Experimental time series data of JAK-STAT signal transduction pathway experimen-
tal data.y1(t) andy2(t) were measured at t = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30,40, 60]
minutes.

Certain constraints can be readily imposed on the parametersa1, a3 anda4. It is straightforward

to place the following constraints by relating the state equations, (1.16) - (1.19), and the reactions

taking place in the process. Upon injecting EpoR, unphosphorylated STAT5 becomes phospho-
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rylated, thereby reducing the initial population ofx1 from its initial value,x1(t0) (a non-negative

value), and increasing thex2 population. This reaction is described by the first term in (1.16)

with a negative sign, which is mirrored by the positive sign in the first term of (1.17). In order

for this reaction to be feasible,a1 ≥ 0, needs to be satisfied. The second term in (1.16) indi-

cates the increasing population inx1; this term is present under the assumption that STAT5 that

traveled to nucleus (x4) becomes monomeric, and migrates back out to cytoplasm, thus adding

to thex1 population. This observation is mirrored in the second termof (1.19), indicating the

decrease inx4 population. Also, the indicator function conveys that until t = τ , not enoughx4

will have formed within the nucleus to migrate back out to thecytoplasm. Thusa4 ≥ 0 needs to

be satisfied for physical feasibility. Lastly, the first terms in (1.18) and (1.19) show the mirroring

effect of decreasingx3 andx4. Therefore, the lower limit ona3 ≥ 0 needs to be satisfied for

physical coherence of the model.

1.5 Thesis Overview

An overview of the two most widely-used parameter estimation methods for ordinary differential

equation models, Maximum Likelihood Estimator (MLE) and Bayesian Inference based method,

is presented in Chapter 2. The basic theory, advantages and disadvantages of each method are

discussed along with their performances of handling irregularly sampled data sets.

Chapter 3 discusses the issue of handling multiple experimental data sets. For some biological

processes, multiple experiments are conducted in order to create a larger merged data set so that

traditional estimation methods that require larger data sets can yield reliable results. However,

due to varying experimental conditions between multiple runs, the question of how the data sets

can be systematically merged arises. This challenge is addressed with sequential Bayesian in-

ference approach which is illustrated through examples.

In Chapter 4, the methodology of Markov Chain Monte Carlo (MCMC) approximation is dis-
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cussed. Two instances of MCMC are explored in this thesis, and they are Metropolis-Hastings

algorithm and Gibbs sampler. The two methods form two separate levels of iterative estimation

in order to approximate the asymmetric probability distribution of nonlinear parameter vector.

Chapter 5 presents the case study results, along with the analysis of the quality of each model

used in the case study. The last chapter of the thesis presents some conclusions and recommen-

dation for future research.

1.5.1 Problem Formulation

Consider a nonlinear process model as follows.

x(t)

dt
= f(x(t),u(t), θ) + v(t), (1.21)

y(t) = h(x(t),u(t), θ) + η(t) (1.22)

whereθ = [θ1, · · · , θm]T is an m-dimensional vector of model parameters;x = [x1, · · · , xp]
T is

a p-dimensional vector of state variables;ẋ(t) is a time derivative vector of state variables;u =

[u1, · · · , ur]
T is an r-dimensional vector of input variables which are pre-determined by the ex-

perimentalist or are measured precisely and the numerical values are known;y = [y1, · · · , yq]
T

is a q-dimensional vector of output variables, i.e. the set of variables that are measured experi-

mentally;f = [f1, · · · , fp] andh = [h1, · · · , hq] are a p-dimensional vector and a q-dimensional

vector of functions and the form of each function is known;v = [v1, · · · , vp]
T is a p-dimensional

vector of process noise variables; andη = [η1, · · · , ηq] is a q-dimensional vector of measure-

ment noise variables. The objective of parameter estimation problem is to estimateθ from

experimental data,y(t), which is related to the state variables,x(t), corrupted with noise,v(t)

through some functionsh. In this thesis, the noise variables are assumed to have Gaussian dis-

tribution with zero mean and standard deviation,σ, i.e. v ∼ N (0, σ2).
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Figure 1.6: Illustration of standard parameter estimationproblem. The first block represents the
process and the second block represents the measurement device. Two different types of noise,
process and measurement, affect the two separate blocks. The first and second blocks are related
by the state variables. The observed experimental data is the output of measurement device
block.
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Parameter Estimation for Ordinary

Differential Equation models

A brief description of probability distribution function is presented, followed by two of the most

widely used statistical parameter estimation methods, Maximum Likelihood Estimator (MLE)

and Bayes estimator. Though straightforward to implement,MLE is prone to ‘getting stuck’

in local minima, which appear frequently in nonlinear systems. Bayes estimator, instead of

calculating a point estimate like MLE, estimates the full probability distribution of parameters

usinga priori information. From the estimated probability distributionfunction, the mean, the

mode and the posterior interval of the parameters can be obtained.

2.1 Probability Density Function

In statistics, the likelihood of observing some random variable is described by their correspond-

ing probability distribution function. To explain the concept of random variable and probability

distribution function, consider a game of hundred coin tosses, where a player wins if 50 or more

heads (H) are observed out of the hundred tosses. The chance of observingk number of H in

a series ofn coin tosses is described by the Binomial distribution,p(k) =
(

n
k

)

mk(1 − m)n−k,

wherem ∈ [0, 1] is the probability of observing H in a single coin toss [24]. Herek is a ran-

dom variable andp(k) is the probability distribution function corresponding tok. For a fair coin

that has equal chance of H or T (tail), the chance of observingH in a single coin toss is50%

(m = 0.5). Consider a trick coin that is unfairly weighted so that tails (T) will be observed seven

out of ten tosses, then the chance of observing H is 30% (m = 0.3). The two different proba-
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bility distributions are plotted in Figure 2.1. For instance, if a player is given the trick coin, the

probability of observing 50 H’s or more out of one hundred coin tosses is close to zero, and the

player will most certainly lose the game. And if the unlucky player continues to play the game

with the trick coin, and record the number of H he observes in each game, the average value will

be 30. This is because the probability distribution is maximized atk = 30. In other words,

arg max
k

p2(k) = 30. (2.1)
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Figure 2.1: Probability distribution functions,p1(k) andp2(k), of a game of hundred coin tosses
with a fair coin (m = 0.5) and a trick coin (m = 0.3), respectively.m is the chance of observing
H in a single toss andk is the number of H observed during a single game.

From a probability distribution function, such as the one shown in Figure 2.1, several statistical

properties, such as expected value, variance and maximuma posterioriestimate, of the corre-

sponding random variable can be obtained. Thus, in statistical parameter estimation methods, the

stochastic nature of measurements and process parameters is explored in order to account for the

inevitable uncertainty associated with any ‘real’ system.For instance, in maximum likelihood
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estimation (MLE), the measurements are considered as random variables, and the parameter

value that maximizes the likelihood of observed data is chosen as the optimal parameter esti-

mate. On the other hand, in Bayesian inference based approaches, the process parameters are

also considered as random variables and the corresponding probability distribution is estimated

rather than a point estimate. In the next section, these two methods are discussed with numerical

examples.

2.2 Maximum Likelihood Estimator

Maximum Likelihood Estimator (MLE)2 is a popular statistical estimation method and it is often

applied to parameter estimation problems. In this framework, process parameters are assumed to

be fixed while the process data are assumed to be stochastic variables with associated probability

distribution functions. The likelihood function, centralto MLE, is defined as

L(θ |D) = p(D | θ) (2.2)

whereθ is the process parameter vector andD is the vector of observed output and input vari-

ables,{y1(t), · · · , yq(t), u1(t), · · · , ur(t)}3. Notice that the likelihood function is equal to the

conditional distribution function ofD, conditional to some valueθ = θ̄. If two different values

of the likelihood function is computed, such thatL(θ1 |D) > L(θ2 |D), then it can be concluded

that the observationD was more likely to have occurred whenθ = θ1 [11]. Therefore, by eval-

uating the likelihood function in the parameter space,S, whereθ ∈ S ⊆ ℜm, the value ofθ

that maximizes the likelihood function can be obtained. TheMLE of the parameter vector is

obtained as,

θ∗ = arg max
θ

L(θ |D). (2.3)

2MLE is also an acronym for maximum likelihood estimate when referred to as estimated result
3t = t0, · · · , tN−1
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MLE is easy to implement if the likelihood function is differentiable inS, such that the opti-

mum can be located by finding the values ofθ such that
∂

∂θ
L(θ |D) = 0 and verifying that the

optimum is global maximum. However, in nonlinear processes, the likelihood function is usu-

ally too complex, and to derive an analytical expression fortheθ derivative is difficult. Hence,

derivative free optimization methods are often required toimplement MLE [6]. It is well-known

that derivative free optimization methods are slow and require a very good initial guess of the

parameters. These optimization methods lead to poor parameter estimates if the dimensionality

of the parameter space is large or if a good initial guess is not provided. Another disadvantage of

MLE is that the sensitivity of the parameters to the likelihood function dictates the accuracy of

the estimates. For instance, if the change in likelihood function is negligible for relatively large

changes in a particular parameter, then that parameter is difficult to estimate. Moreover, MLE is

prone to a large bias in the estimate parameters when the sizeof the data set is small. However,

as the data size approaches infinity, the MLE asymptoticallyapproaches the true parameter val-

ues with no bias and minimum variance [39].

The likelihood function of dynamic processes is dependent on the assumptions made about the

probabilistic distribution of noise (and hence the processmeasurements) in the process. For in-

stance, if the probability distribution of observationsD = [y1(t0, θ), · · · , y1(tN−1, θ)]
4 is Gaus-

sian, independent and identically distributed with some mean (µ) and variance(σ2), then the

likelihood function is defined as follows,

L(θ |D) =
N−1
∏

i=1

1√
2πσ

exp

(−(y1(ti, θ) − µ)2

2σ2

)

=
1

(2π)(N−1)/2σN−1
exp

(

−1

2σ2

N−1
∑

i=1

(y1(ti, θ) − µ)2

)

(2.4)

4consider a single output variable case.t0 to tN−1 are the sample times. Note that the parameter,θ, dependence
of the observations is explicitly shown. In the rest of this thesis, the dependence of observations on parameters is
not explicitly mentioned.
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Then, maximizing the likelihood function reduces to (assuming the variance is known),

max log[L(θ |D)] = max
N−1
∑

i=1

− (y1(ti, θ) − µ)2 (2.5)

= min

N−1
∑

i=1

(y1(ti, θ) − µ)2 (2.6)

which is precisely equal to the least-squares estimator. Thus, in the special case where the ob-

servations are Normally distributed and their variance is known, the MLE and LSE become

equivalent.

2.3 Bayesian Parameter Estimation

Bayesian statistics is a departure from the more generally practiced frequency statistics, where

the probability of a random event is defined as the percentageof its occurrence in a large number

of trials. Therefore, if a frequentist were to derive the absolute probability of a given event, the-

oretically that person would require an infinite number of trials. However, in Bayesian statistics,

a prior distribution of the event is updated with every new observation and the posterior distribu-

tion of the random event, conditional on the observations, is calculated. This is mathematically

expressed as follows (also called Bayes Rule),

p(θ |D) =
L(θ |D) p(θ)

∫

p(D | θ) p(θ)dθ
(2.7)

whereD is the set of observations;θ is the random event (process parameter in this work);p(θ) is

the prior probability distribution;L(θ |D) is the previously mentioned likelihood function; and

p(θ |D) is the posterior probability distribution. To illustrate the difference between frequency

statistics and Bayesian statistics, consider the example of a tossing game where a fair coin and

a trick coin are used as in section 2.1. Assume that a player randomly chooses one of the two

coins, plays the game of hundred coin tosses, and observes38 heads. A frequentist, given the
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following information,

• the trick coin yields 3 H out of 10 tosses and there was a 50-50 chance of the player

choosing fair coin or the trick coin (This information isa priori, since it was known before

the observation is made);

• 38 H out of a hundred tosses (observation)

would not be able to present a precise numerical value for theprobability that the chosen coin

is the trick coin. This is due to the limited number of observations. This frequentist needs

sufficient number of hundred-toss games in order to determine the type of coin used. A Bayesian

statistician can use the same information and perform the following computations,

• The prior knowledge on the events of selecting a trick coin ora fair coin can be assigned a

probability asp(Tr) = 0.5, p(Fa) = 0.5, whereTr andFa correspond to the respective

events.

• The probability of the chosen coin being the trick coin, given 38 H out of hundred toss,

denoted byp(Tr | k = 38), can be expressed as follows (using Bayes rule):

p(Tr | k = 38) =
p(k = 38 | Tr) p(Tr)

p(k = 38 | Tr) p(Tr) + p(k = 38 |Fa) p(Fa)
, (2.8)

• p(k = 38 | Tr) =
(

100
38

)

0.3380.762,

• p(k = 38 |Fa) =
(

100
38

)

0.5380.562.

Substituting the prior information and the last two conditional distribution values in (2.8), the

Bayesian statistician would conclude that there is a 81% chance that the chosen coin is the trick

coin and that there is a 19% chance of it being the fair coin. The main advantage of Bayesian

statistics, as illustrated in this example, is its ability to compute the probability of a given event

with a limited number of observations, in this case a single game.
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Two basic approaches exist for Bayesian parameter estimation. One is to find the parameter

value that maximizesa posteriori(MAP) distribution as follows

θ∗ = arg max
θ

p(θ |D) (2.9)

and the other is to obtain the expected value of thea posterioridistribution as follows.

E[θ] =

∫

p(θ |D) p(θ)dθ (2.10)

The MAP value indicates the most probable value of the parameter, however the expected value

is a more appropriate representation of a parameter if its distribution is skewed [49]. The differ-

ence between the (2.3) and (2.9), though they both seek the probability maximizing value, is that

MLE maximizes the likelihood of observing the experimentaldata, whereas MAP maximizes

the probability of the parameter conditional on the observations.

Bayesian inference uses botha priori information and experimental data to compute fulla pos-

teriori distribution. This presents Bayesian inference with two major advantages over the tradi-

tional frequentist methods such as Nonlinear Least-Squares Regression or Maximum Likelihood

Estimation. The first advantage is that by incorporatinga priori information, we can make full

use of all of the available information in the estimation process. This can become extremely

helpful, especially when there is limited amount of experimental data available. Physical con-

straints arising from theory, and heuristic knowledge are examples ofa priori information. By

not usinga priori information, frequentist methods usually yield inaccurate estimates, and this is

demonstrated in Section 3.1. The second advantage of Bayesian inference is that by computing

full probability distribution of the parameter, a statistically meaningful confidence intervals of

the estimated parameters can be obtained. However, in previously developed Bayesian inference

based approaches, this advantage had not been exploited to its full potential. While there have

been many non-Bayesian studies that deal with multiple experimental data, Bayesian inference
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was only used to computea posterioriparameter distribution from each experimental data indi-

vidually.

For point-estimation methods such as MLE, the probability distribution of the parameter is alto-

gether disregarded or considered to be Gaussian by default.And, this practice does not translate

into nonlinear processes, as it has been discussed in previous chapter that nonlinear process pa-

rameters probability distribution have more complex shape. Therefore, Bayesian parameter esti-

mation method that calculates the full probability distribution of parameters is an advantageous

tool for evaluating nonlinear processes. The main challenges of using Bayesian parameters arise

from the fact that there is no analytical solution to the posterior distribution, because of the com-

plex integral present in the denominator of the right hand side term in (2.7). This term serves as

a normalizing constant that ensures the posterior distribution to integrate to unity [6]. In the ab-

sence of analytical solution, the posterior can be approximated numerically by random sampling

method called Markov Chain Monte Carlo (MCMC). The details of this method are discussed in

Chapter 4.
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Multiple Experimental Data Sets for

Parameter Estimation

This chapter discusses the problem arising from pooling data sets from multiple experiments.

The commonly employed method of straightforward data merging is shown to result in loss of

information and has difficulty yielding statistically sound confidence intervals. An alternative

approach that sequentially updates thea priori distribution function of the parameters based on

multiple experimental data is developed in this chapter.

3.1 Merging Multiple Experimental Data Sets

Most parameter estimation methods require a large number ofdata points in order to obtain un-

biased estimates with small confidence intervals. However,it is common in many experiments

to have only a limited number of data points (N). Hence to reduce bias in the estimated pa-

rameters, it is common to conduct multiple experiments (k) and obtainNk number of sample

points. While such an approach may reduce the bias, the question of how the data sets from

k different experiments,D1, · · · , Dk, can be systematically integrated is not clear addressed.

Theoretically speaking, one can only merge data sets from multiple experimental runs if the ex-

perimental conditions and the noise characteristics are the same during different runs. However,

it can be difficult to maintain the same experimental conditions through multiple runs. There-

fore, creating a large merged data set from multiple experimental data sets can lead to poor

parameter estimates. Another, more obvious problem is thatthere may be more than one value

corresponding to some sampling timetj . In Figure 3.1,Y (t) measurements of FFL gene reg-
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ulatory network process from three independent experiments, D1, D2 andD3, are shown. The

measurements are made at irregular time intervals and att = 30 min, all three experiments have

made measurement ofY (t). If these three data sets were merged straightforwardly, then the

time series of the merged data setD, is denoted by the heavy black line shown in the figure,

where the sample points ofD1, D2 andD3 are connected in sequential order of the correspond-

ing measurement time. However, att = 30 min, it is unclear as to which of the data points,

Y |D1
(t = 30 min), Y |D2

(t = 30 min), Y |D3
(t = 30 min) (denoted by the three different paths

of grey dotted lines), is the best representation of the truesystem.
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Figure 3.1: Time series data ofY (t) obtained from three independent experimentsD1, D2 and
D3, of Feed-Forward Loop genetic regulatory network process.The heavy black line denotes the
Y (t) trajectory using larger data set created from merging the three data sets. The line is broken
at t = 30 min, because there are three different measurements corresponding to this time, and
the three possible trajectories are denoted with grey dotted lines.

An alternative approach to analyzing multiple experimental data sets is to obtain a parameter

estimate from each data set and compute the mean of the estimates, such that if the individual

estimates arêθ1, · · · , θ̂k, and then the mean iŝθ = (
∑k

i=1 θ̂i)/k. Consider the JAK-STAT signal
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pathway process, where six simulated data sets are available5. From the data sets, using a type

of point-estimation method introduced in [42], estimated values ofa1, a3 anda4 are obtained.

These values are shown in Table 3.1. The mean and variance of the estimation results from six

data sets is equal tōθ = [0.0386, 2.393, 0.168] andσθ̂ = [0.0134, 2.412, 0.114]. Due to the

small number of data points from each experiment and the presence of noise, the estimates show

large variances. The common practice of computing this average and the standard deviation, by

default, assumes Gaussian distribution of the parameter estimates, and the normalized Gaussian

distributions obtained from the average estimate and the standard deviations are shown in Fig-

ure 3.2. The true values used to simulate the data sets,θ = [0.0515, 3.39, 0.35], are shown as

vertical dotted lines. If Gaussian distribution of the estimated parameters is assumed, the prob-

ability of the parameters may show a significant positive value even in the obviously infeasible

regions of the parameter space. For instance, the estimateddistributions ofa3 anda4 have the

left-tail well into the negative region, which contradictsthe constraints on the parameter that

they must have positive values (discussed in Section 1.4.3). This example also demonstrates the

case where even though average estimates satisfy the constraints, the corresponding confidence

intervals does not.

Table 3.1: Point-estimation method is applied to the six simulated data of JAK-STAT signal
pathway process,D1, · · · , D6. The individual estimation result for the parametersa1, a3 anda4

are shown.

â1 â3 â4

D1 0.0557 5.993 0.253
D2 0.0385 1.652 0.247
D3 0.0249 0.392 0.025
D4 0.0488 4.803 0.273
D5 0.0423 1.215 0.183
D6 0.0212 0.303 0.026

The challenge, of obtaining an estimate that accurately represents all of the data sets, is easily

5Simulated data is obtained by the method shown in Appendix A
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Figure 3.2: Applying point-estimation method, six individual parameter estimate are obtained
from each simulated data,D1, · · · , D6. The average and standard deviation of the results shown
in Table 3.1 is as follows̄θ = [0.0386, 2.393, 0.168] and σθ̂ = [0.0134, 2.412, 0.114]. This
result is used to compute the Gaussian probability distributions that the general ’average±
1.96×standard deviation’ confidence interval computation assumes. The vertical dotted lines
denote the true values of the parameters used to simulate thedata setsθ = [0.0515, 3.39, 0.35].

handled by Bayesian parameter estimation methods as they can account fora priori information

and estimate the full probability distribution. In the workby Coleman and Block [15], param-

eters of fermentation process model are estimated using informative prior probability distribu-

tion. The authors use several experimental data sets and obtain the full probability distributions

of the parameters and proceed to report the data in the ‘average± 1.96× standard deviation’

(95% Confidence Interval) format. Such an approach fails to take advantage of estimating the

full probability distribution as it does not carry information gained from one experiment to the

next. To illustrate this point, the JAK-STAT process is considered again. Using the same sets

of simulated data, the probability distribution functions, p̂(a3 | a1 = 0.0515, a4 = 0.39, Di) are

estimated wherei = 1, · · · , 6.6,7 The approximated probability distribution functions are shown

in Figure 3.3 (a)-(f). The asymmetric distributions demonstrated in the figure is a common

characteristic of probability distributions of nonlinearparameters. From these probability distri-

bution functions, the expected values are computed asā3 = E(a3) =
∫

a3p̂(a3) da3, which are

[0.0349, 0.0700, 0.0448, 0.0728, 0.0316, 0.0594]. Then finally the average parameter estimation

6The approximated probability distribution shown in Figure3.3 is obtained using the method introduced in
Chapter 4

7The estimation ofa3 is conditional to the true value ofa1 anda4 which are assumed to be known.
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is reported with 95 % confidence interval as ‘ā3 ± 1.96σa3
’8 and the corresponding Gaussian

probability distribution is shown in the center panel of Figure 3.3. When studying probability

distribution, it should be noted that the shape and the variance of the distribution can be consid-

ered as ‘information’, in the sense that they are clues to therelative likelihood of a parameter

taking up some value. From studying the panels (a)-(f), it isclear that some of the information

contained in each probability distribution is eliminated from the average result because of the

Gaussian assumption. For example, Panels (b) and (d) show probability distributions that are

heavily negative-skewed, and this fact is not properly conveyed in the center panel.

It is mentioned in the previous section that nonlinear process parameters often exhibit asymmet-

ric probability distribution, sometimes even multi-modaldistributions. Therefore, when dealing

with nonlinear processes, it is important to avoid Gaussianapproximation of complex prob-

ability distributions. For instance, consider the two different types of distributions shown in

Figure 3.4. The distribution shown in left is a bimodal distribution wherearg maxα p(α) are

3 and 6. The distribution shown in the right is a Gaussian distribution with arg maxβ p(β) is

4.50. These two distributions, though different in shape, have the same expected mean and stan-

dard deviation. The formulas used to calculate the expectedmean and standard deviation are

E(x) =
(

∑N
i=1 xi

)

/ (N) and standard deviation isσx =
[(

∑N
i=1(xi − x̄)2

)

/ (N − 1)
]1/2

,

wherex = α, β. It is easy to notice from these figures that ifp(α) is approximated with a Gaus-

sian distribution, the mid-point of the bimodal distribution, which has a very low probability,

will be reported as the ‘most likely’ value.

8The average is̄a3 =

∑

6

i=1
â3i

6
and standard deviation isσa3

=

(

1

k − 1

∑k
i=1

(â3i − ā3)
2

)1/2
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Figure 3.3: Six independently simulated data sets of JAK-STAT signal pathway process are
used to estimatea1 assuming that the two other parameter values are known. The individually
estimated probability distributions are shown in Panels (a)-(f). The expected mean from each
of the distribution is calculated and using these expected means, the overall average of thêa1

is computed along with its standard deviation. Using these values, a Gaussian distribution is
plotted in the center panel.
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Figure 3.4: Two probability distributions with identical expected mean,E(α) = E(β) = 4.5028,
and standard deviationσα = σβ = 1.6210. However, for the probability distribution on the left,
the max a posterioriis arg maxα p(α) = 3 = 6, where as the probability distribution on the
right, themax a posterioriis arg maxβ = p(β) = 4.5028.

3.2 A priori and Timeline Shift

In this thesis, a parameter estimation approach that makes use of the two major advantages of

Bayesian inference, discussed in the previous chapter, is developed. The approach aims to derive

a singleposteriorprobability distribution, conditional on all of the available experimental data

by iteratively updating theprior probability distribution in the Bayes Rule. By doing so, the

information available from all of the databases is propagated through the estimated probability

distribution functions.

Suppose that the FFL model parameter vector,θ, needs to be estimated and thatk independent

experimental data sets are available,D1, · · · , Dk. First, thea priori probability distribution

function is defined from heuristic information and other constraining conditions obtained from

theoretical considerations (3.5 (A)). This function is denoted withp0(θ). In order to obtaina

posterioriprobability distribution function using Bayes Rule, the likelihood function,L(D | θ),

is also required. The procedure for derivingL(D | θ) is discussed in Appendix B. Using these

two components and the first experimental data setD1, the expression for the first posterior
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distribution function is computed as follows.

p1(θ |D1) =
L(θ |D1) p0(θ)
∫

p(D1 | θ) p(θ) dθ
(3.1)

This newly calculated posterior probability distributionis conditional onD1. This step of ob-

taining the firstposterioris denoted with ‘E1’. Following E1, present time is shifted forward and

the information regarding the parameters obtained usingD1 is now considered past knowledge.

Theposteriorinformation from E1 becomesa priori information for all the future experiments

(Figure 3.5 (B)). Thus, the prior distribution function needs to be updated to account for this fact.

Therefore, the next prior probability distribution function is set equal to the posterior distribution

obtained in E1 as follows.

p1(θ) := p1(θ |D1) (3.2)

Using this new prior distribution and the likelihood function, the second posterior probability

distribution is calculated as follows.

p2(θ |D1, D2) =
L(θ |D2) p1(θ)
∫

p(D2 | θ) p(θ) dθ
(3.3)

=
L(θ |D2) p1(θ |D1)
∫

p(D2 | θ) p(θ) dθ
(3.4)

This new posterior probability distribution,p2(θ |D1, D2) is conditional on bothD1 andD2.

The process of obtaining the second posterior is denoted with ‘E2’. Following E2, the prior

distribution needs to be updated again as the present time has shifted forward and as it now

needs to include the information about the parameter obtained from analyzingD2. The new

prior is then set equal to

p2(θ) := p2(θ |D1, D2) (3.5)

This sequential update of the prior distribution with the newly calculated posterior distribution
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is repeated until all of the experimental data sets have beenevaluated. Then, the final posterior

distribution that is conditional on all of the information is equal to,

pk(θ |D1, D2, · · · , Dk) =
L(θ |Dk) pk−1(θ |D1, · · · , Dk−1)

∫

p(Dk | θ) p(θ) dθ
(3.6)

The process of evaluating thekth and lastposterioris denoted with ‘Ek’ (Figure 3.5 (C)). This

iterative approach offers a systematic procedure to integrating information from multiple exper-

imental runs by computing a series of probability distribution functions. Figure 3.6 shows the

typical behavior expected from a series of evolving posterior distributions obtained using the

sequential Bayesian estimation method. The top left panel is shown with a flat uniform prior

distribution of the parameter vector restricted to some lower and upper bounds. In some cases,

the prior distribution is more informative and in such casesthea priori distribution will take on

shape than the uniform distribution shown. The top right panel shows the posterior probability

distribution obtained after applying the first experimental data (after E1). The shape of the distri-

bution starts to form a plateau near the region of higher probability - in this case, near the center

- conveyed byD1. The posterior distribution function shown in the bottom left panel now shows

more distinct peak near the value 0, from which it can be inferred that atθ ≈ 0, the probability

distribution function is maximized (after E2). Finally, after all ofD1, · · · , Dk are applied to the

sequential method, the resulting final posterior distribution of process parameter is a result of

systematic integration of multiple experimental data sets.
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Figure 3.5: Three different snapshots of a linear timeline with multiple experiments and the
information database; the present time is indicated by the vertical arrow in each panel. The top
panel (A) shows the present time before any of the experiments have been conducted/analyzed.
At this time, a priori consists of theoretical and heuristic information. The middle panel (B)
shows the present time, after Experiment 1 has been conducted/analyzed and the experimental
data has been evaluated for parameter estimation. At this time,a priori consists of theoretical
and heuristic information as well as the information gathered from the first experiment. The
bottom panel (C) portrays the present time, after k experiments have been conducted and the
multiple experimental data sets have been evaluated for parameter estimation. At this timea
priori consists of theoretical and heuristic information along with the information gathered from
all of the experiments.
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Figure 3.6: The four panels portray the evolving series of posterior distribution functions ob-
tained from multiple experimental data sets applied to sequential Bayesian estimation method.
The top left panel shows a uniform prior distribution beforeany experimental data has been an-
alyzed. In some cases, the prior distribution may be more informative where it highlights the
more probable region in the parameter space. The top right panel shows the posterior distribu-
tion computed from the first set of experimental data. The bottom left panel shows the posterior
distribution of parameter after the second set of experimental data has been analyzed. The bot-
tom right panel shows the posterior distribution of parameter obtained after allk experimental
data sets have been applied to the algorithm.
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Markov Chain Monte Carlo (MCMC) for

Approximating Probability Distribution

Functions

Most posterior distributions computed using Bayes’ Rule cannot be solved analytically, therefore

a numerical approximation method called Markov Chain MonteCarlo is used to generate random

samples from the distribution. These random samples are used to plot a histogram that is an

approximation of the desired probability distribution. Two instances of MCMC, Metropolis-

Hastings algorithm and Gibbs Sampler, are used in this work in a set of inner and outer level of

iterations to approximate the probability distribution ofthe parameters. The large computational

cost of these approximations is optimized using a novel multi-phase approach of Gibbs sampler.

4.1 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo method was developed in order to solve optimization and integration

problems arising in high dimensional spaces where analytical solutions are difficult to obtain.

The approach relies on drawing a number of independent and identically distributed samples,

{θ(i)}M
i=1, from a target distribution (the distribution that needs tobe approximated),p(θ |D).

Using theseM samples, the distribution is approximated by the followingempirical point-mass

function [2].

p̂M(θ |D) =
1

M

M
∑

i=1

δ
(i)
θ (θ), (4.1)
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whereδθ(θ
(i)) is the delta-Dirac function atθ(i). From this approximation, the maximuma

posteriori, expected mean and High Probability Distribution (HPD) interval can be calculated.

For example, the expected mean is equal to

E(θ |D) ≈ 1

M

M
∑

i=1

θ(i). (4.2)

The samples{θ(1), · · · , θ(M)} are drawn in such a way that the following relationship is satisfied,

p(θ(M) | θ(M−1), · · · , θ(1)) = p(θ(M) | θ(M−1)). (4.3)

A random variable that satisfies the above relation is said tohave the Markov property. There-

fore, the sequence of draws of the parameter vector forms a Markov chain and this procedure of

approximating density functions is called Markov Chain Monte Carlo approach.

There are many variations of MCMC algorithm, and the generalidea behind them is to con-

struct the Markov chain in such a way that it draws more samples in regions of high probability

of the target distribution, and asM approaches∞, the approximation of the distribution will

asymptotically be equal to the target distribution. In the following sections, two instances of

MCMC, Metropolis-Hastings Algorithm and Gibbs Sampler, used in this work to approximate

the posterior probability distribution of nonlinear process parameters, are introduced.

4.2 Metropolis-Hastings Algorithm: Inner Level Estimation

The idea behind MCMC is to approximate the target distribution by generating random samples

from a proposal distribution, which is chosen such that it has the same support as the target dis-

tribution. It is usually difficult to sample directly from the target distribution and hence a simple

proposal distribution from which samples can be easily drawn is chosen. The samples from the

proposal distribution are either accepted or rejected based on a criterion that allows acceptance
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of samples from the target distribution with a high probability.

Metropolis-Hastings algorithm (M-H) is a type of MCMC that was first developed by Metropo-

lis in 1953 [38], then generalized by Hastings in 1970 [26]. It employs the acceptance-rejection

approach to generate random samples from the desired targetdistribution and determine whether

to accept each sample by computing an acceptance criterion [17]. This criterion, also known as

the acceptance probability (α), is computed through the use of a proposal probability distribu-

tion function,q(θ(i) | θ(i−1)). This expression is interpreted as ‘if the current value of the chain

is θ(i−1), then the newly generated random sample isθ(i)’. There exist several different candi-

dates for the proposal distribution. In this work, an approach called ‘independence sampling’,

where the newly generated sample value does not depend on thecurrent value of the chain, is

used. This proposal distribution can be expressed asq(θ(i)) (notice that the conditional term is

eliminated) [14]. The quality of the target approximation using M-H is strongly influenced by

the choice of the proposal distribution [2].

The following shows the step-by-step guide for implementing M-H algorithm, to approximate

the expression for posterior distribution derived in the previous section,p(D | θ).

1. Choose an initial sample,θ(0), such thatp(θ(0) |D) > 0.

2. Repeat the following steps forθ(i), wherei = 1, · · · , M .

3. From the proposal distribution of choice,q(θ), generate a random sampleθ(i).

4. Calculate the acceptance probability,α such that

α = min

[

1,
p(θ(i) |D1)

q(θ(i))

q(θ(i−1))

p(θ(i−1) |D1)

]

= min

[

1,
L(θ(i) |D) p0(θ

(i)) /Z
q(θ(i))

q(θ(i−1))

L(θ(i−1) |D) p0(θ(i−1)) /Z

]
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whereZ =
∫

p(D | θ)p(θ)dθ.

5. If α = 1, then accept theθ(i) value, update the count toi = i+1 and repeat from step 2. If

α 6= 1, then sampleβ ∼ U(0, 1) whereU(0, 1) is a uniform distribution between0 and1.

6. If β < α, accept theθ(i) value, update the count toi = i + 1 and repeat from step 2. If

β ≥ α, discardθ(i) and repeat from step 2.

Notice that when computing the acceptance probability, thenormalizing constant involving com-

plex integral term gets canceled, which is the major advantage of using M-H algorithm. As

mentioned earlier, the choice of proposal distribution is very important for the success of the al-

gorithm. Two different choices ofindependence samplingare examined in this thesis. The first

one is a Gaussian distribution multiplied with some constant Q and the second one is the prior

distribution corresponding to the Bayes Rule at each of the stepsE1, · · · , Ek. This discussion

is presented in sections 4.2.1 and 4.2.2.

The mechanism behind M-H’s acceptance probability is explained with a brief example shown

in Figure 4.1. The target distribution that needs to be approximated is denoted with red curve

and it is shown to be bimodal, asymmetric distribution. The proposal distribution is denoted

with green curve in the figure. Let’s assume that the initial value of the chain is equal to 3

(θ(0) = 3), and using the proposal distribution, a new random sampleθ = 4.5 is generated.

Then the acceptance probability for this new sample is calculated to be 0.39, using the equation

introduced previously. Sinceα is smaller than 1, another random variableβ is sampled from a

uniform distribution between 0 and 1. The reason behind sampling β in steps 5 and 6 can be

explained as follows. Generally, a sample moving from a higher probability region to a lower

probability region is undesired, but is not always avoided.Therefore, the larger the ‘jump down’

from higher to lower probability region, the smaller is the chance of accepting that sample. The

current example, for instance, has 39% chance of being accepted and 61% chance of being dis-

carded. Let’s assume thatβ is equal to 0.78, then the sample 4.5 is discarded, and the current
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value ofθ is accepted as the next sample (θ(1) = 3), making up the following Gibbs sequence of

length 2,{3, 3}. Another value is sampled from the proposal distribution, and this time around

assume that it is6. In this case, the acceptance probability is 1. This is because the random

sample ‘jumped up’ in the distribution to a higher region, and the new sample is accepted. Now

the Gibbs sequence has length 3,{3, 3, 6}. The current sample now isθ(2) = 6 and the same

procedure can be repeated until a desired length is reached.

0 2 4 6 8 10
θ

p(
θ|

D
),

 q
(θ

)

p(θ|D) : Target Distribution (Posterior Distribution)

q(θ) : Proposal Distribution

Figure 4.1: Metropolis-Hastings algorithm. The asymmetric red curve represents the target
distribution that needs to be approximated (posterior distribution in this work). The green curve
represents the proposal distribution chosen by the practitioner. The three points are the random
samples ofθ = 3, 4.5, 6 with p(θ)/q(θ) is equal to0.5427, 0.2157, 0.6785, respectively.

Another instance of MCMC that is recently popularized is theSimulated Annealing (SA) algo-

rithm. The SA algorithm was developed by borrowing the concept used in metallurgy where

the quality of the material is controlled by implementing a cooling schedule that adapts as time

evolves. The users of SA agree that if the ultimate goal of approximating the probability distri-

bution is to obtain the MAP, it is wasteful in terms of computational resources to sample from the

lower probability regions. This is because high probability regions of a distribution are concen-

trated around its mode, and hence the computational resources can be concentrated on the high

probability regions. The algorithm is explained in more detail in [23], [30], [41], [52]. Though

this method is computationally more efficient, the approximated probability distribution is not
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the true representation of the target distribution, but an altered form of the distribution of which

the sole purpose is to obtain the MAP value, and this is illustrated in Figure 4.2. Both of the

histograms shown in the figure are plotted from Markov Chain having lengthM = 5000, but

SA generated histogram is clearly shown to favor the higher probability region and thus is very

efficient for obtaining MAP. Due to this reason, SA is not suitable for application in the work

developed in this thesis. In this work, the prior distribution is updated sequentially in order to

systematically merge experimental data sets and hence a good approximation of the complete

distribution, rather an approximation for MAP, is needed. The parameter estimation method in

this work places high priority on as closely estimating the probability distributions under con-

sideration as possible without the assumption of Gaussian distribution. This will allow proper

representation of the information extracted from the experimental data. Therefore M-H algo-

rithm was chosen for implementation even though there exists computationally more efficient

choices of MCMC.

Figure 4.2: Metropolis-Hastings Algorithm vs. Simulated Annealing. The true target distribu-
tion form is denoted with a solid black curve and the histograms generated from the Markov
Chain using the two MCMC methods are shown as well. The panel on the left show the
Metropolis-Hastings Algorithm generated Markov Chain’s histogram and the panel on the right
show the Simulated-Annealing generated Markov Chain’s histogram [2].
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4.2.1 Proposal distribution I : Gaussian distribution

The proposal distribution in MH needs to cover the entire target distribution’s probability space,

such thatq(θ) ≥ p(θ |D) for all θ. When using Gaussian distribution, this specification can

be easily met by choosing the standard deviation to be wide enough and by multiplying the

distribution with a constantQ. Using the Gaussian proposal distribution, consider approximating

the first posterior distribution ofαy of FFL model,p(αy |D1), where the prior distribution is

U(0, 1) such that,

p0(θ) =















1 if 0 < αy ≤ 1,

0 otherwise

(4.4)

In the first step, computingα is straight forward because the prior distribution term of the current

sample and the future sample are equal to each other and are easily computed. However, for step

E2, where the prior distribution is set equal to the approximation of the first posterior,̂p1(D |αy),

calculation of the acceptance probability is a bit more complicated. Calculation of acceptance

probability requires the information regarding the histogram of the Markov chain, in particular

the bin-index and the number of elements within the bin. A MATLAB R© program that approxi-

mates the value of prior distribution function is shown below. A couple of approximations take

Program 4.1 MATLAB program that approximates the value of prior distributionpκ(θ).
% approximating the posterior-prior distribution
[n,x] = hist(theta_v(:,1),20);
% generating new sample from proposal distribution
theta_new = Q * (0.5 + randn * sigma);
while x(i) >=theta_new

% determining the index number where the new
% sample belongs
i = i+1;

end
prior(theta_new) = n(i);

place during the implementation of the M-H algorithm. Theoretically, the approximate distribu-

tion from M-H algorithm will converge to the target distribution only if the number of samples

is infinite. However, in practice, only a finite number of samples are used. The second approxi-
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mation is the one shown in the program above where the value ofthe probability distribution is

numerically approximated using thehist function in MATLAB R©.

4.2.2 Proposal distribution II : a priori distribution

The proposal distribution for M-H can be chosen to be the prior distribution. In other words, if

the following posterior distribution needs to be approximated,

pκ(θ |Dκ) =
L(θ |Dκ) pκ−1(θ)
∫

p(Dκ | θ) p(θ) dθ
, κ = 1, 2, · · · , k (4.5)

the proposal distribution is,

q(θ) := pκ−1(θ) (4.6)

By the above definition, the acceptance probability of random samples for approximation step

Eκ is calculated as follows.

α = min

[

1,
pκ(θ

(i) |Dκ)

q(θ(i))

q(θ(i−1))

pκ(θ(i−1) |Dκ)

]

= min

[

1,
L(θ(i) |Dκ) pκ−1(θ

(i)) /Z
pκ−1(θ(i))

pκ−1(θ
(i−1))

L(θ(i−1) |Dκ) pκ−1(θ(i−1)) /Z

]

= min

[

1,
L(θ(i) |Dκ)

L(θ(i−1) |Dκ)

]

(4.7)

whereZ =
∫

p(Dκ | θ) p(θ) dθ. Notice that by using (4.6), the acceptance probability is only

dependent on the likelihood values as a function of the current value of the proposed parameter

value. The proposal distribution is updated along with the prior distribution after each step of

evaluating the posterior, E1,· · · , Ek.
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4.3 Gibbs Sampler : Outer Level Estimation

In this part of the work, to approximate the multi-dimensional joint probability distribution of

parameters of a nonlinear process, a variant of MCMC called Gibbs sampler is used. This par-

ticular MCMC approximation method is a special case of Metropolis-Hastings algorithm where

the proposal distribution,q(θ), is defined specifically as the set of distributions of individual

parameters conditional on the values of the rest of the parameters. Using the Gibbs sampler,

the marginal distributions of individual parameters are calculated from which the maximuma

posteriori, expected value and standard deviation of the distributions are calculated [40]. To

illustrate this algorithm, consider the FFL genetic regulatory network model with the parameter

vector,θ = [αy, αz, Kxy, Kxz, Kyz] ∈ ℜ5. For example, the marginal probability distribution of

αy is computed by a series of integrations of the joint probability distribution as follows.

p(αy) =

∫

Kyz

∫

Kxz

∫

Kxy

∫

αz

p(αy, αz, Kxy, Kxz, Kyz) dαz dKxy dKxz dKyz (4.8)

The equation contains integrals that are often difficult to solve analytically. However, a Gibbs

sequence with Markov property,{α(0)
y , α

(1)
y , · · · , α

(M)
y } (whereM is the length of the Gibbs se-

quence) can be generated so that the marginal distribution and its statistical properties can be

approximated as in (4.2).

In order to implement the Gibbs sampler, the following set ofconditional probability distribution

functions are needed,

p(αy |αz, Kxy, Kxz, Kyz),

p(αz |αy, Kxy, Kxz, Kyz),

p(Kxy |αy, αz, Kxz, Kyz),

p(Kxz |αy, αz, Kxy, Kyz),

p(Kyz |αy, αz, Kxy, Kxz). (4.9)
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With many dynamic process models, there is no general solution for calculating the conditional

distributions of process parameters. Previous work on using Gibbs sampler assumed Gaussian

distribution, with some heuristic values for its mean and standard deviation, as the conditional

distribution of individual parameters [8, 21]. This assumption may apply to linear processes, but

becomes questionable when dealing with nonlinear processes. However, these conditional dis-

tributions can be numerically approximated using Metropolis-Hastings algorithm, which forms

theinner level of iterations of the algorithm proposed in the next section, and the Gibbs sampler

forms theouterlevel of iterations. The following illustrate the steps of Gibbs sampler using FFL

example.

1. Assign initial valuesα(0)
z , K

(0)
xy , K

(0)
xz , K

(0)
yz for αz, Kxy, Kxz, Kyz .

2. Repeat the following steps fori = 0, · · · , M − 1

3. Approximate the conditional distribution ofαy by applying the experimental data sets

to sequential M-H algorithm. Generate a valueα
(i+1)
y by randomly sampling from the

conditional distribution

α(i+1)
y ∼ p̂(αy |α(i)

z , K(i)
xy , K(i)

xz , K(i)
yz , D1, · · · , Dk). (4.10)

4. Approximate the conditional distribution ofαz by applying the experimental data sets

to sequential M-H algorithm. Generate a valueα
(i+1)
z by randomly sampling from the

conditional distribution

α(i+1)
z ∼ p(αz |α(i+1)

y , K(i)
xy , K(i)

xz , K(i)
yz , D1, · · · , Dk). (4.11)

5. Approximate the conditional distribution ofKxy by applying the experimental data sets

to sequential M-H algorithm. Generate a valueK
(i+1)
xy by randomly sampling from the
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conditional distribution

K(i+1)
xy ∼ p(Kxy |α(i+1)

y , α(i+1)
z , K(i)

xz , K(i)
yz , D1, · · · , Dk). (4.12)

6. Approximate the conditional distribution ofKxz by applying the experimental data sets

to sequential M-H algorithm. Generate a valueK
(i+1)
xz by randomly sampling from the

conditional distribution

K(i+1)
xz ∼ p(Kxz |α(i+1)

y , α(i+1)
z , K(i+1)

xy , K(i)
yz , D1, · · · , Dk). (4.13)

7. Approximate the conditional distribution ofKyz by applying the experimental data sets

to sequential M-H algorithm. Generate a valueK
(i+1)
yz by randomly sampling from the

conditional distribution

K(i+1)
yz ∼ p(Kyz |α(i+1)

y , α(i+1)
z , K(i+1)

xy , K(i+1)
xz , D1, · · · , Dk). (4.14)

8. Update the counti = i + 1.

A single Gibbsstepconsists of updating the values of the random variables once(e.g.{x(0), y(0),

z(0)} → {x(1), y(1), z(1)} is one step). Within a single Gibbsstep, there arem number of

Metropolis-Hastings approximations of posterior distribution, wherem is the length of the pro-

cess parameter vector,θ. Within a single M-H approximation of posterior distribution,k evolv-

ing posterior distributions are computed. Therefore, there is a large number of different instances

of conditional distribution functions being calculated while using the Metropolis-Hastings &

Gibbs sequence approach.

The experimental data sets are used more than once in these iterations. In each Metropolis-

Hastings approximation step, the conditional distribution of the parameter values changes, and

therefore the subsequent conditional distributions must account for this. For example, we can
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compare three conditional distributions that are approximated as follows,

1. f1 = f(αy) = p(αy|αz = φ2, Kxy = φ3, Kxz = φ4, Kyz = φ5, D1, · · · , Dk)

2. f2 = f(αz) = p(αz|αy = ϕ2, Kxy = ϕ3, Kxz = ϕ4, Kyz = ϕ5, D1, · · · , Dk)

3. f3 = f(Kxy) = p(Kxy|αy = ϕ1, αz = ϕ2, Kxz = ϕ4, Kyz = ϕ5, D1, · · · , Dk)

whereφ 6= ϕ. f1 andf2 are both functions ofαz, but computed using different sets of con-

ditions. f2 andf3 have somewhat similar conditions, however they are functions of different

parameters. Since the computational conditions are different in these functions, the experimen-

tal data set,D1, · · · , Dk, can be used repeatedly without over-exerting its ‘information database’.

As mentioned previously, asM , the number of random samples generated, approaches∞, the

sequence can accurately approximate the desired target distribution. There are several ways

to determine finiteM where a sufficient accuracy of the approximation is reached.Similarly,

there are several ways of detecting convergence of the approximation agreement to a steady-

state distribution. Works by Gelfandet al.[21] and Gelfand and Smith [22] suggest monitoring

distribution approximations from multiple independent Gibbs sequences, and choosingM to be

the point where the distributions formed by the multiple chains with different initial conditions

appear the same. An alternative method of choosingM is to implement the Raftery-Lewis cri-

terion, also known as binary-control, which determines thevalue ofM corresponding to the

desired accuracy and avoids excessive sampling. The approach uses a two-state Markov chain

model by analyzing a single run of Markov chain of output values. From the two-state Markov

chain model, the length of the burn-in period is computed andthe number of iterations required

to meet the specified accuracy can be computed [44].
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4.3.1 Multi-phase Gibbs sampler

When using Gibbs sampler, the rate of convergence of different parameters can vary signifi-

cantly. Some parameters will approach their steady-state distribution very fast, and hence in-

creasing the number of Gibbs iterations would result in negligible change in the distribution of

the corresponding parameters. Since each Gibbs iteration is divided into multiple Metropolis-

Hastings steps that require a considerable amount of computational cost, the parameters that

reached their steady-state distribution can be removed from the individual Metropolis-Hastings

approximations. This is achieved by fixing the distributions of converged parameters and only

updating the distributions of the remaining parameters. For instance, if the distributions of pa-

rametersαy andαz reach their respective steady-states before the other three parameters after

M Gibbs iterations were executed, then the approximated marginal probability distribution of

p(I)(αy) andp(I)αz (using theM samples,(I) denotesPhase I) will have negligible difference

between the marginal probability distribution obtained from executingG more Gibbs iteration,

p(II)(αy) andp(II)(αz) (usingM +G samples,(II) denotesPhase II). If the other three parame-

tersKxy, Kxz andKyz did not reach steady-state by theM th Gibbs iteration, following additional

steps to the original algorithm discussed in the previous section are required as follows.

1. Repeat the following steps fori = M + 1, · · · , M + G

2. Generate a valueα(i+1)
y by randomly sampling from the conditional distribution

α(i+1)
y ∼ p(I)(αy) (4.15)

3. Generate a valueα(i+1)
z by randomly sampling from the conditional distribution

α(i+1)
z ∼ p(I)(αz) (4.16)

4. Follow the Steps (4.12) to (4.14)

5. Update the counti = i + 1.
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Using this semi-fixed distribution generated from previousphase is essentially the same as gen-

erating a new MH conditional distribution because those distributions, having reached their re-

spective steady states, will not alter much with progressive random sampling. Each parameter

eliminated from M-H step for computing their conditional distributions will result in1/m×100%

reduction in computational cost after the Phase I. This approach can be adopted in several phases

to further optimize the computational resources.

4.4 Sequential Metropolis-Hastings and Gibbs Algorithm

The previous two sections discussed the MCMC methods, Metropolis-Hastings algorithm and

Gibbs sampler. These two random sampling techniques are integrated in order to approximate

multi-dimensional, asymmetric, multi-modal probabilitydistributions of parameters of nonlin-

ear dynamic processes. The proposed method uses a sequential approach to approximate the

full probability distributions of parameters without making any assumptions about the shape or

variance of the probability distributions. By discarding the misleading assumptions that are only

applicable to linear processes, the method preserves the information available from different ex-

perimental runs in the form of probability distributions ofthe process parameters. The following

two figures summarize the sequential approach taken in this thesis. Figure 4.3 illustrates the

outer level of iterative estimation where the multi-dimensionality of the probability distribution

is handled.θ denotes the parameter vector of dimensionℜp×1; superscript(i) denotes the Gibbs

index in the chain of random samples generated by the algorithm; subscriptj denotes the index

of the parameter vector. Figure 4.4 illustrates the inner level or iterative estimation that approx-

imates the univariateposteriordistribution of the process parameters using multiple datasets.

This process is embedded in the Gibbs Sampler as a means to compute the conditional distribu-

tion required in the algorithm. The input of this flowchart from the outer level of iterations isj

(e.g. thejth element in the vector ofθ that is currently being considered in the Gibbs sampling

iteration). The prior distribution,p0(θ) (before applying any experimental data), is user-defined.

κ indicates the index of experimental data set andk is the total number of available sets.(h)
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is the Metropolis-Hastings index in the current M-H Markov chain (not to be confused with the

Gibbs index(i)).

Figure 4.3: Flowchart of Gibbs Sampler for outer level of iterative estimation, where multi-
dimensional probability distribution of nonlinear process parameters is approximated.θ denotes
the parameter vector of dimensionℜp×1; superscript(i) denotes the Gibbs index in the chain
of random samples generated by the algorithm; subscriptj denotes the index of the parameter
vector.
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Figure 4.4: Metropolis-Hastings Algorithm for inner levelof iterative estimation, where the
univariate conditional distribution ofposterior distribution is approximated. The conditional
distribution is required for implementation of Gibbs Sampler. The input of this flowchart from
the outer level of iteration isj (e.g. the element in the vector ofθ is currently considered in
the Gibbs Sampling). The prior distribution,p0(θ (before applying any experimental data), is
user-defined.κ indicates the index of experimental data among the multipledata sets, where
k is the total number of available sets.[h] is the Metropolis-Hastings index in the current MH
Markov chain.
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Case Studies

The sequential Bayesian parameter estimation method discussed in the previous chapters is illus-

trated using three nonlinear biological systems - batch fermentation, Feed-Forward Loop genetic

regulatory network and JAK-STAT signal pathway. Both published experimental data and simu-

lated data are used. The estimated probability distributions of the process parameter vectors are

analyzed for identifiability, correlation among the parameters and sensitivity of observations. It

is argued that estimating the full probability distributions of nonlinear parameters allows im-

proved confidence in parameters compared to point estimates.

5.1 Batch Fermentation Reaction

5.1.1 Single Parameter Estimation

In order to illustrate the inner-loop estimation method using Metropolis-Hastings algorithm, a

single parameter,YXS is estimated using the following assumptions: i) All three state variables

are measurable, and ii) the values ofµm, ks, kp andYPX are known, reducing the parametric

space from five dimensions to one-dimension. Thus, the parameter vector isθ′ = θ / {µm =

0.15, ks = 0.50, k′
p = 0.25, Y ′

PX = 0.20} = {YXS}.

The prior distribution,p0(YXS), is assumed to be uniform. Previous literature and expert knowl-
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edge indicates a lower and an upper bound onYXS of 0 and1 respectively.

p0(YXS) =















1 if 0 < YXS ≤ 1,

0 otherwise

(5.1)

With this prior probability distribution and likelihood function (the derivation is explained in

Appendix B), the M-H algorithm was applied to approximate the final probability distribution

of YXS from six simulated data sets,D1, D2, D3, D4, D5 andD6.

p(YXS |µm = 0.15, ks = 0.5, k′
P = 0.25, Y ′

PX = 0.2, D1, · · · , D6) (5.2)

The algorithm was run for 10000 iterations for each step of applying successive experimental

data. The first 5000 samples in each sequence were discarded to avoid the ‘burn-in’ effect.

The evolving behavior of posterior distributions is clearly illustrated in Figure 5.1. Starting from

Panel (A), the first posterior probability distribution already indicates the Markov Chain’s higher

affinity towards the region near the true value. In Panel (F),the approximated posterior distribu-

tion is shown to form a sharp peak close to the true value, indicated by the solid vertical lines.

The range of x-axes of the sub-figures in Figure 5.1 was kept constant in the[0, 1] interval in

order to illustrate the dramatic evolution of probability distributions.

The variance of the probability distributions cannot be calculated straightforwardly as in the

case of Gaussian distributed random variables, because of the asymmetrical distribution of the

parameters. Therefore, the approximated probability distributions are analyzed individually to

obtain the 95% HPD interval. Table 5.1 summarizes the 95% HPDintervals of the estimated

posterior probability distributions as well as their expected mean values. After each successive

M-H step, the approximate posterior probability distribution shows higher confidence due to the

decreasing trend in the 95% Highest Probability Density (HPD) interval.
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Figure 5.1: Each probability distribution is normalized sothat
∫

p(YXS |Di) is equal to unity.
The vertical line atYXS = 0.25 corresponds to the true value of the parameter. Panel (A) cor-
responds to theposteriorprobability distribution ofYXS estimated using the first experimental
data set,D1

Panel (A) :p(YXS |µm = 0.15, ks = 0.5, k′
P = 0.25, Y ′

PX = 0.2, D1),
Panel (B) :p(YXS |µm = 0.15, ks = 0.5, k′

P = 0.25, Y ′
PX = 0.2, D1, D2),

Panel (C) :p(YXS |µm = 0.15, ks = 0.5, k′
P = 0.25, Y ′

PX = 0.2, D1, D2, D3),
Panel (D) :p(YXS |µm = 0.15, ks = 0.5, k′

P = 0.25, Y ′
PX = 0.2, D1, · · · , D4),

Panel (E) :p(YXS |µm = 0.15, ks = 0.5, k′
P = 0.25, Y ′

PX = 0.2, D1, · · · , D5),
Panel (F) :p(YXS |µm = 0.15, ks = 0.5, k′

P = 0.25, Y ′
PX = 0.2, D1, · · · , D6)
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The rest of the parameters were estimated using an analogousapproach. This was done to

demonstrate that in the case of a single parameter process, the M-H algorithm is good enough

to approximate the correspondingposteriorprobability distribution from multiple experimental

data sets. Figure 5.2 shows the normalized distribution of each parameter. The expected mean

values and 95% HPD intervals are shown in Table 5.2. It is shown thatks andkP have 95% HPD

intervals of relatively larger magnitude compared to the three other parameters,µm, YXS and

YPX . This discrepancy can be attributed to the innate property of the model. It has been shown in

previous studies that the saturation constant parameters of the Michaelis-Menten kinetic model

are theoretically identifiable in deterministic cases, butare difficult to estimate when the exper-

imental data are corrupt with stochastic noise [3, 27]. Evenso, M-H algorithm is successful in

estimating the full probability distribution of these parameters from nonlinear stochastic time

series data with a small bias.

An interesting aspect of the single parameter estimation using M-H algorithm is that it does not

require an initial guess. A major disadvantage of traditional parameter estimation methods such

as maximum likelihood estimator (MLE) or nonlinear least-squares (NLS) is that they require

an initial guess in order to start the algorithm. If there areseveral local minima for the objective

functions of MLE and NLS, then the choice of initial guess becomes critical to the estimation

result. However, in M-H algorithm, it only requires that theinitial prior probability distribution,

p0, is defined so that it contains the true value. In order to demonstrate this, following two dif-

ferent probability distributions ofYXS were assigned to the initial prior probability distribution

and M-H algorithm was executed.

p0(YXS) = U(0, 10)

p0(YXS) = U(−1, 1)

whereU(a, b) indicates a uniform distribution betweena andb. For the approximation of each

successive posterior probability distribution, 10000 iterations were executed and the first 5000
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Table 5.1: The expected means and 95% Highest Probability Density (HPD) intervals of the
estimated posterior probability distributionsYXS using MH algorithm approximation.

Expected Mean 95% HPD Intervals
Lower Bound Upper Bound

p(YXS|µm, ks, k
′
P , Y ′

PX , D1) 0.338 0.035 0.757
p(YXS|µm, ks, k

′
P , Y ′

PX , D1, D2) 0.278 0.086 0.466
p(YXS|µm, ks, k

′
P , Y ′

PX , D1, · · · , D3) 0.256 0.161 0.350
p(YXS|µm, ks, k

′
P , Y ′

PX , D1, · · · , D4) 0.251 0.223 0.290
p(YXS|µm, ks, k

′
P , Y ′

PX , D1, · · · , D5) 0.251 0.234 0.273
p(YXS|µm, ks, k

′
P , Y ′

PX , D1, · · · , D6) 0.250 0.237 0.269

Table 5.2: The expected means and 95% Highest Probability Density (HPD) intervals of the
estimated posterior probability distributions ofθ using MH algorithm approximation.

Expected Mean 95% HPD Intervals
Lower Bound Upper Bound

p(µm|ks, k
′
P , YXS, Y ′

PX , D1, · · · , D6) 0.152 0.134 0.170
p(ks|µm, k′

P , YXS, Y ′
PX , D1, · · · , D6) 0.488 0.360 0.607

p(k′
p|µm, ks, YXS, Y ′

PX, D1, · · · , D6) 0.220 0.056 0.399
p(YXS|µm, ks, k

′
P , Y ′

PX , D1, · · · , D6) 0.250 0.237 0.269
p(Y ′

PX|µm, ks, k
′
P , YXS, D1, · · · , D6) 0.201 0.190 0.213
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Figure 5.2: Normalized posterior distributions of the parameter vectorθ, approximated using
Metropolis-Hastings algorithm with 6 independently simulated batch reactor data sets while
assuming that the true values of all other parameters are known.
Panel (A) :p(µm | ks = 0.5, k′

P = 0.25, YXS = 0.25, Y ′
PX = 0.2, D1, · · · , D6)

Panel (B) :p(ks |µm = 0.15, k′
P = 0.25, YXS = 0.25, Y ′

PX = 0.2, D1, · · · , D6)
Panel (C) :p(kP |µm = 0.15, ks = 0.5, YXS = 0.25, Y ′

PX = 0.2, D1, · · · , D6)
Panel (D) :p(YXS |µm = 0.15, ks = 0.5, k′

P = 0.25, Y ′
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Panel (E) :p(YPX |µm = 0.15, ks = 0.5, k′
P = 0.25, YXS = 0.25, D1, · · · , D6)
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samples were discarded before using the remaining sequenceto update the next prior probabil-

ity distribution. The comparative results are shown in Figure 5.3. It is easy that as long as the

uniform distribution contains the true value, the algorithm is successful. For the second row (in

Figure 5.3), the uncertainty of the order of magnitude before the estimation was increased by one

(i.e. interval (0,1) to interval (0,10)), and the approximated posterior probability distribution still

pointed to an expected mean of0.259, resulting in normalized error of 3.4%. Further simulations

with an even higher level ofa priori uncertainty were tried and the estimation was found to be

equally good. For the third row, where the prior contains negative region, which is physically in-

feasible because the yield coefficient cannot be negative, the proposed method was still effective.

5.1.2 Multiple Parameter Estimation

After confirming that conditional probability distributions can be successfully approximated us-

ing M-H algorithm, Gibbs sampler is implemented in order to estimate the multi-dimensional

probability distribution ofθ. The order of parameters estimated in Gibbs sampler was arranged

as follows

µm → ks → kp → YXS → YPX . (5.3)

The Gibbs sampler was run for 1000 iterations, with 3000 M-H algorithm iterations per param-

eter per Gibbs sampling step. The first 20% of the Markov sequences generated using M-H

algorithm were discarded in order to eliminate the ‘burn-in’ effect.

Figure 5.4 shows the plot of 1000 Gibbs samples drawn forµm and the approximated marginal

distribution,p(µm |D1, · · · , D6). The expected mean is 0.177 with the 95% HPD interval of

(0.124,0.291). There are two distinct deviations from the true value in the Gibbs sequence,

shown near the 500th iteration and the 650th iteration. These deviations give rise to a skewed

probability distribution for this parameter. This type of asymmetrical probability distribution is

64



Chapter 5

0.1 0.2 0.3 0.4 0.5
Y

XS

p 0(Y
X

S
|D

1,..
.,D

6)

−1 −0.5 0 0.5 1
Y

XS

p 0(Y
X

S
)

0.1 0.2 0.3 0.4 0.5
Y

XS

p(
Y

X
S
|D

1,..
D

6)

0 0.2 0.4 0.6 0.8 1
Y

XS

p 0(Y
X

S
)

0.1 0.2 0.3 0.4 0.5
Y

XS

p(
Y

X
S
|D

1,..
.D

6)

0 2 4 6 8 10
Y

XS

p 0(Y
X

S
)

(A) (B)

(C)

(E)

(D)

(F)

Figure 5.3: Normalized uniform prior distributions ofYXS and the corresponding posterior
probability distribution obtained using MH algorithm. Thetrue value ofYXS is indicated by
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characteristic of parameters in nonlinear processes. Thisexample illustrates that even though the

added measurement noise is Gaussian, due to the nonlinearity of model, the resulting estimated

parameters show non-Gaussian distribution.

When using MCMC sampling approach, it is important to determine how long the Markov chain

has to be in order to obtain desired accuracy in approximation. There are several ways of doing

this and monitoring the moving average of Markov chain is oneof them. It helps to deter-

mine whether the sequence has reached steady-state distribution. Once the chain has reached

its steady-state, it is generally accepted that the chain has converged to the target distribution

with sufficient accuracy. The top panel in Figure 5.5 shows the moving average ofµm Gibbs

sequence and it is noted that there are slight initial fluctuations as the sequence explores the

parameter space and gradually settles to a steady-state value. Another method to determine

whether a sufficient length of the Markov chain has been generated is to monitor the behavior

of the approximated distribution at different iterations.As the convergence is reached, the dis-

tributions approximated at increasing iterations will show negligible difference in their form. In

Figure 5.5, panels (C), (D) and (E) look almost identical with positive skew, where panel (C)

is the approximated marginal distribution ofµm using the Gibbs sequence from 200th iteration

to 600th iteration; panel (D) corresponds to the approximated distribution using the Gibbs se-

quence from 200th iteration to 800th iteration; and panel (E) corresponds to the approximated

distribution using the Gibbs sequence from 200th iterationto the 1000th iteration (The first 200

samples of the Gibbs sequence were discarded to remove the ‘burn-in’ effect). The constant-

shape trend demonstrates that the convergence of the chain is reached around 600th iteration.

The parameters,YXS andY ′
PX, demonstrated behavior similar to that ofµm. However, forks and

k′
P , as mentioned in the single parameter estimation case, it was difficult to obtain comparable

accuracy of estimated values from the approximated marginal probability distributions. Thus,

it was necessary to execute the Gibbs sampler for larger number of iterations in order to ensure

that these two parameters reached their steady-state distribution. This, however, requires a larger
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marginal distributions computed using various portions ofthe sequence. Panel (A) corresponds
to the marginal distribution approximated using the first 200 samples in the Gibbs sequence. This
portion of the sequence is discarded from considering the convergence, in order to remove the
residual effect of the initial point of the chain. Panel (B) corresponds to the marginal distribution
of approximated using 201st to 400th samples in the Gibbs sequence. Panel (C) corresponds to
the marginal distribution of approximated using 201st to 600th samples in the Gibbs sequence.
Panel (D) corresponds to the marginal distribution approximated using 201st to 800th samples
in the Gibbs sequence. Panel (E) corresponds to the marginaldistribution approximated using
201st to 1000th samples in the Gibbs sequence.
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amount of computational time. Therefore, in order to reducethe high computational cost, the

Gibbs sequences corresponding to the parametersµm, YXS andY ′
PX were eliminated from the

M-H algorithm steps that determine corresponding conditional distributions. In other words,

the Gibbs sampler was paused once the steady-state convergence is confirmed for the three pa-

rameters and the resulting probability distributions werefixed as the full conditional probability

distributions as follows,

pII
C (µm | ks, k

′
P , YXS, Y ′

PX, D1, · · · , D6) = p(1:1000)(µm | ks, k
′
P , YXS, Y ′

PX , D1, · · · , D6)

(5.4)

pII
C (YXS |µm, ks, k

′
P , Y ′

PX, D1, · · · , D6) = p(1:1000)(YXS |µm, ks, k
′
P , Y ′

PX , D1, · · · , D6)

(5.5)

pII
C (Y ′

PX |µm, ks, k
′
P , YXS, D1, · · · , D6) = p(1:1000)(Y ′

PX |µm, ks, k
′
P , YXS, D1, · · · , D6)

(5.6)

wherepII is the conditional distribution to be used in the Gibbs sampler Phase II andp1:1000

denotes marginal probability distribution obtained from the first 1000 iterations of the Gibbs

sampler, which are shown in Figure 5.6. In Phase II (i.e. Gibbs sequence iteration 1001st and

onward), the M-H algorithm is no longer applied toµm, YXS andY ′
PX for individual approx-

imation of the full conditional distribution, instead (5.4), (5.5) and (5.6) are used to randomly

sample the next Gibbs sequence value. Thus, Phase I refers tothe estimation process where all

five of the parameters were actively analyzed for full conditional distributions using M-H algo-

rithm and Phase II refers to the estimation process where only ks andk′
P are actively analyzed

for conditional distribution. An additional1000 iterations of Gibbs sampler were executed in

Phase II for the convergence ofks.

Figure 5.7 shows the joint distribution contour plots ofθ using the Gibbs sequence from both

Phase I and Phase II. In order to visualize the five-dimensional probability space, the parameters
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Figure 5.6: The approximated marginal distributions ofθ using the first 1000 samples of the
Gibbs sequence (i.e. Phase I). The distributions forks andk′

P have not reached convergence and
have wider intervals compared to the other three parameters.
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are paired up to portray two-dimensional joint distributions instead. The solid lines represent

the true values of the process parameters. For panels (i) and(ii), the highest probability region

is tightly clustered near the cross point of the solid lines.This indicates that the parameters

µm, YXS andY ′
PX , were estimated with higher accuracy compared to the other parameters where

larger distributions along the parameter space are demonstrated. For instance, in panel (x), the

joint distribution ofks andk′
P shows multiple high probability regions, agreeing with previous

studies on the difficulties of estimating the Monod constants using stochastic experimental data.

From studying panel (iii), it can be inferred that the yield coefficient parametersYXS andY ′
PX

have an inversely proportional relationship, such that when the value ofY ′
PX increases,YXS

decreases. It may be possible to use parameters that have strong correlation with one another,

such as this pair, in optimizing the structure of the model. Modeling a dynamic process is a

compromise between accurate portrayal of the true process and simplicity of the model for com-

putational purpose. Therefore, it is beneficial to conduct an iterative analysis between the true

process and the proposed models in order to arrive at a parsimonious model. For instance, if a

numerical function ofYXS in terms ofY ′
PX can be developed, the parameter space of the un-

structured Michaelis-Menten model (1.9) can be reduced from five to four.

The maximuma posteriori estimate, the expected value and the 95% HPD interval of each

marginal distribution is shown in Table 5.3. With asymmetric probability distributions shown in

Figure 5.5, it is difficult to determine what is the best estimate of the parameter. In any case,

as mentioned previously, it is difficult to summarize the shape into a couple of representative

statistical values for asymmetric distributions.

5.2 Genetic Regulatory Network : Feed Forward Loop

In [10], four different candidates of FFLs were studied. Thecandidate genes were obtained

from [20] where gene expression responses to twelve different environment changes inSaccha-
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Figure 5.7: Joint distributions of batch fermentation process parameters approximated using
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romyces cerevisiaewere studied. Among the four candidate FFLs, FFL1 with X: Gene GCN4,

Y: Gene LEU3 and Z: Gene ILV5 performed the best in the test of the goodness of fit for dy-

namic models. In this case study, the same FFL is used to illustrate the algorithm.

The gene expression level ofX is not a state variable in FFL model and therefore it is regarded

as an input variable with a known sequence. To simulateX(t), random noise variable,w(t)

with zero mean and variance,σ2
w, was added to the experimental data from [20]. The initial

conditions ofY andZ as well as the parameter values were obtained from [10], where three of

the parameter values were heuristically determined such thatβy = βz = 1 andH = 2. The rest

of the parameter values are listed in Table 5.4. For the model(1.13) and (1.14), process noise

terms,v1(t) andv2(t) were added to each equation as follows to simulate the stochastic nature

of the dynamic process.

dY (t)

dt
= −αyY (t) + βyf(X(t), KXY ) + v1(t), (5.7)

dZ(t)

dt
= −αzZ(t) + βzg(X(t), Y (t), KXZ , KY Z) + v2(t), (5.8)

The sampling times were set att = 5, 10, 15, 20, 30, 40, 60 and 80 minutes (N = 8). The

equations were solved using ode45 function in MATLABR© and to obtain the output variables,

measurement noise variables were added as follows.

y1(t) = Y (t) + ηY (t),

y2(t) = Z(t) + ηZ(t),

whereηY (t) andηZ(t) are independent and Gaussian distributed variables with zero mean and

varianceσ2
Y andσ2

Z , respectively. Using the parameter values in Table 5.4 and the simulated

input sequences, a total of seven experimental data sets were collected. Each experimental data
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set is defined as,

Di = [Y (t1), · · · , Y (tN ), Z(t1), · · · , Z(tN), X(t1), · · · , X(tN)], i = 1, 2, 3, 4, 5, 6, 7

(5.9)

Six of them,D1, D2, D3, D4, D5 andD6, were applied to the algorithm to estimate the probabil-

ity distribution of process parameters and the last experimental data set,D7, was used to validate

the estimation result. Figure 5.8 shows a simulated FFL timeseries of the input variableX(t)

and the two state variablesY (t) andZ(t).

The initial priors for estimating full conditional probability distributions using M-H algorithm,

p0(θ), were set to a uniform probability distribution between 0 and 1,U(0, 1), for all five param-

eters. The likelihood function was derived in an analogous approach as the previous case study

and is expressed as follows.

L(θ |D1) = (5.10)

1

(2π)N/2σN
Y · σN

Z

exp

(

i=N−1
∑

i=0

−(y1(ti) − Ŷ (ti, θ))
2

2σ2
Y

− (y2(ti) − Ẑ(ti, θ))
2

2σ2
Z

)

,

whereŶ (ti) andẐ(ti) are predicted output variables as a function ofθ. A total of 2000 iterations

of Gibbs sampler with 3000 iterations of M-H algorithm per parameter per Gibbs iteration were

executed. The resulting Gibbs sequences are shown in Figure5.9. The left column shows the

plots of the Gibbs sequences versus the iteration index and the right column shows the marginal

probability distributions of process parameters approximated using the sequences shown on the

left. The dotted lines denote the true parameter values. Table 5.5 shows the summary of maxi-

muma posterioriestimate, expected mean and the 95% HPD interval obtained from the approx-

imate marginal distributions.

From Figure 5.9, it can be noticed thatKXZ andKY Z have negative and positive skew. Both
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Table 5.3: The maximuma posteriori, the expected mean, the normalized error and the 95% con-
fidence interval calculated from marginal distribution corresponding to each process parameter
of batch fermentation reaction model.

Process Parameter µm ks k′
P YXS Y ′

PX

Maximuma posteriori 0.153 0.591 0.005 0.195 0.189
→֒Normalized Error 0.020 0.182 0.979 0.221 0.056

Expected Mean 0.177 0.593 0.460 0.264 0.204
→֒Normalized Error 0.180 0.187 0.841 0.057 0.020

95% HPD Interval - Lower Bound 0.126 0.240 0.005 0.177 0.123
95% HPD Interval - Upper Bound 0.260 0.952 0.950 0.416 0.284

Table 5.4: The parameter vector value used in order to simulate the time series data of FFL
genetic regulatory network.

Process Parameter αy αz KXY KXZ KY Z

Value 0.44 0.69 0.90 0.60 0.56
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Figure 5.8: The simulated data of FFL genetic regulatory network model. There are eight mea-
surements (denoted with x) of each state variable,Y (t) andZ(t). The initial values of the state
variables (denoted with•) are assumed to be known from the estimation reported in [10]. X(t)
is regarded as an input variable and its initial value is not reported.
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distributions are characterized by asymmetric bimodal distributions indicated by the presence of

shorter peaks adjacent to the dominant ones. Maximuma posteriorivalues and the expected

values are in good agreement with each other, as the marginaldistributions have less asymme-

try relative to the marginal distributions of batch fermentation process parameters. Also, it is

observed that the normalized error of estimation result is relatively smaller, indicating that the

algorithm was more successful for estimating the parameters of FFL model compared to the

batch fermentation model.

Figure 5.10 shows the contour plots of process parameter joint distributions. Similar to Fig-

ure 5.7, the parameters were paired up for easier visualization of the probability distribution that

exists in five-dimensional space. It is shown that the highest probability region of each panel

shaded in black closely follows the cross-point of the ‘truevalue’ solid lines, demonstrating the

accuracy of the estimation. In this model, some correlationamong parameters can be inferred

from the joint probability distribution contour plots. Forinstance, the high probability region of

αz andKXZ form an inversely proportional relationship. And similar behavior is noted between

the high probability regions ofKXZ andKY Z.

In order to further investigate the accuracy of the estimated parameters, a separate simulated

data set (D7) was used for verification. The verification data was simulated without process or

measurement noise in order to plot the ‘true’ measurement trajectories. Using the expected val-

ues in Table 5.5 and the known sequence ofX(t) from D7, the expression profiles for̂Y (t) and

Ẑ(t) were predicted without process or measurement noise term. These trajectories were then

compared with the simulated data. The plot is shown in Figure5.11. It can be seen that by using

the estimated parameter values, the expression profiles ofY (t) andZ(t) are predicted with very

small error.
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Figure 5.9: Plot of Gibbs sequences for 2000 iterations and the marginal distribution using of
each process parameter approximated using the corresponding sequence. The dotted horizontal
lines correspond to the true value of each process parameterused to simulate the experimental
data of FFL model.
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Figure 5.10: Joint distributions of FFL model parameters approximated using Metropolis-
Hastings algorithm and Gibbs sampler. Each panel corresponds to the corresponding pair of
parameters indicated on the x-axis and the y-axis. The region corresponding to higher probabil-
ity is indicated with black (the higher end of the color bar onthe right) and the lowest probability
region is indicated with white (the lower end of the color baron the right). The intersections of
dotted lines represent the coordinates of true values of theparameter pairs.
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Table 5.5: The maximuma posteriori, the expected mean and the 95% confidence interval cal-
culated from each marginal distribution corresponding to the process parameter of FFL genetic
regulatory network model.

Process Parameter αy αz KXY KXZ KY Z

Maximuma posteriori 0.469 0.659 0.861 0.701 0.513
→֒Normalized Error 0.065 0.045 0.043 0.169 0.083

Expected Mean 0.461 0.644 0.871 0.641 0.565
→֒Normalized Error 0.049 0.066 0.032 0.068 0.009

95% Confidence Interval - Lower Bound 0.340 0.543 0.765 0.3070.424
95% Confidence Interval - Upper Bound 0.537 0.746 0.973 0.8390.849
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Figure 5.11: Using a known sequence of input variableX(t) and the estimated parameters from
Table 5.5, the gene expression profiles ofY (t) andZ(t) were predicted. They are compared with
the simulated expression profile using the true parameter values. Solid line : true parameters.
Dotted line: estimated parameters.
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5.3 JAK-STAT Signal Transduction Pathway Model :

Partially Observable States

There is a single experimental data set available from the literature which consists of the input

time series,u(t), representing the EpoR concentration profile and the two output variables,y1(t)

andy2(t) measured att = 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60 minutes (N = 16).

The output variables are plotted in Figure 5.12, where ‘x’ denotey1 and ‘+’ denotey2. The

values ofa1, a3 anda4, were estimated in [42], using experimental data obtained from [51] and

assumingτ = 4.001 min, with Unscented Kalman Filter (UKF) estimation approach. They are

reported to bêa1 = 0.0515 ± 0.011, â3 = 3.39 ± 0.882 and â4 = 0.35 ± 0.092. The estima-

tion 95% confidence interval (1.96σ) was calculated assuming normal distribution of the process

parameters. The trajectory of predicted output variables using this estimated value is shown in

Figure 5.12 with solid and dashed curves.

Using these literature values, the prior distribution of each parameter was assigned as follows

under the assumption that only the order of magnitude of estimated parameters are reliable.

p0(a1) = U(0, 0.1), (5.11)

p0(a3) = U(0, 10), (5.12)

p0(a4) = U(0, 1). (5.13)

The likelihood function was derived in an identical manner as previous case studies, assum-

ing that the measurement noise is distributed normally withzero mean and standard deviation

σ = 0.1. This value was assigned by examining the disagreement between the experimental data

and the predicted output calculated by using the parametersreported in literature.

The Gibbs sampler was executed for 1000 iterations with 1000M-H algorithm steps per param-

eter for evaluation of conditional distribution (The first 501 samples of the Markov chain was
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Figure 5.12: The experimental data,y1 andy2, obtained from [51] are denoted with‘x′ and‘+′,
respectively. The output trajectory ofŷ1 (solid curve) and̂y2 (dashed curve) are predicted values
calculated using the estimated values reported in [42].
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discarded to remove the ‘burn-in’ effect). Figure 5.13 shows the joint probability distributions

of pairs of the parameter visualized by the three contour plots. The maximuma posteriorival-

ues are indicated with dotted lines. The higher probabilityregion is indicated by red and black

(corresponds to the color bar), and the lowest probability region is indicated by white. The his-

tograms on the outer margin of the figures are the marginal distribution. The magnified view

of the marginal distribution of individual parameter are shown in Figure 5.14. The maximum

a posteriori, expected mean and 95% HPD intervals are calculated and shown in Table 5.6.

The approximated distributions ofa1 anda4 converged to peaks which indicate that the uni-

form prior distribution was successfully assigned to contain the high probability region of the

parameter space. Furthermore, the estimated results agreewith the previous literature values, as

the normalized ‘differences’9 are0.109 and0.014, respectively. However, fora3, the marginal

probability distribution did not converge to a peak where the highest probable region is easily

identifiable.

An interesting aspect about this model is that the state, even though the JAK-STAT model has

been generally known for its unobservable states, the first statex1 is actually observable. From

the measurements ofy1 and y2, it becomes possible to compute the concentration profile of

x1(t) = y2(t)−y1(t), which is shown in Figure 5.15. The experimental profile is compared with

the predicted profile ofx1 usingθ̂ = [0.0459, 9.351, 0.355]. It is easy observe that the two values

are in good agreement.

5.3.1 Comparison With Literature Parameter Values

For further investigation, the estimated parameter vectors from literature and those from the

proposed Gibbs algorithm are examined in order to determinetheir ability to reliably represent

the given experimental data. The three vectors areθ̂1 = [0.0515, 3.39, 0.35] (literature value),

9The author does not wish to use the term ‘error’ in this particular case, because the previous literature value is
also an estimation, after all.
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Table 5.6: The maximuma posteriori, the expected mean and the 95% confidence interval
calculated from each marginal distribution correspondingto the process parameter of JAK-STAT
signal transduction pathway model.

Process Parameter a1 a3 a4

Maximuma posteriori 0.0459 9.351 0.355
Expected Mean 0.0509 6.004 0.460
95% Confidence Interval - Lower Bound 0.0144 0.682 0.137
95% Confidence Interval - Upper Bound 0.0928 9.942 0.962
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Figure 5.15: The concentration ofx1(t) is computed from the experimental data ofy1(t) and
y2(t) is denoted with ’o’ and the predictedx1(t) is shown with dotted line.
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θ̂2 = [0.0459, 9.351, 0.355] (maximuma posteriori) and θ̂3 = [0.0509, 6.004, 0.460] (expected

mean). Using these estimations, the output profiles are predicted by solving the state equations

and output equations. The predicted trajectories are shownin Figure 5.16. Using the predictions,

the sum of squared errors are calculated and presented in Table 5.7.

In Figure 5.16, the output profiles predicted using the different θ̂ vectors show similar trajecto-

ries even thougĥa3 estimates are quite different. The scattering of the predicted trajectories is

lesser in magnitude compared to the scattering of the experimental data points. Therefore, the

likelihood values and the sum of squared errors, the quantitative representation of the disagree-

ment between experimental data and the predicted data, are examined. It can be concluded that

by usingθ̂2, in conjunction with the model equations, the experimentaldata are best represented.

However, it is difficult to reliably estimate the confidence interval of nonlinear process parame-

ters from a single data set.

The rather large disagreements between the three estimatedvalues of̂a3 can be further analyzed

by conducting sensitivity analysis of the model. If by varying this parameter value, no significant

variation in predicted output can be detected, then one can conclude that the observations are in-

sensitive to this parameter. Therefore, it can not be estimated. A given vector of parameters may

be identifiable with some sets of experimental data but may become unidentifiable if the mea-

surement noise is increased. It can also be inferred that theidentifiability of process parameters

is not an absolutely definable quality but depends on the quality of the data (e.g. noise variance,

amount of sample points).
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Figure 5.16: The output variablesy1 andy2 are predicted using three different estimation of
JAK-STAT process parameters;θ̂1 = [0.0515, 3.39, 0.35] (literature value, shown in blue dashed
lines), θ̂2 = [0.0459, 9.351, 0.355] (maximuma posteriori, shown in green dotted lines) and
θ̂3 = [0.0509, 6.004, 0.460] (expected mean, shown in red solid lines). The experimentaldata is
denoted with ‘x’.

Table 5.7: Likelihood values and sum of squared errors calculated for different estimates of JAK-
STAT process parameters using the experimental data set. Two sets of likelihood values were
computed using different noise variance,σ, 0.1 and 0.01.θ̂1 = [0.0515, 3.39, 0.35] (literature
value), θ̂2 = [0.0459, 9.351, 0.355] (maximuma posteriori) and θ̂3 = [0.0509, 6.004, 0.460]
(expected mean)

θ̂1 θ̂2 θ̂3

Likelihood (σ = 0.1) 1.807 × 1025 1.923 × 1025 1.227 × 1025

Likelihood (σ = 0.01) 0 0 0
Sum of Squared Errors 0.0025 0.0023 0.0036
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5.3.2 Quantitative Parameter Estimability and Sensitivity Analysis:

Comparison with PDF

In order to study how sensitive the observed output variables are with respect to the change in

parameter value, a preliminary result of sensitivity analysis is done by computing the sensitivity

coefficient matrix as follows.















∂y1

∂a1

∂y1

∂a3

∂y1

∂a4

∂y2

∂a1

∂y2

∂a3

∂y2

∂a4















(5.14)

The partial derivatives are approximated by finite-difference method with respect to the previ-

ously reported parameter estimation,θ̄ = [ā1, ā3, ā4].

∂yi

∂aj
=

yi|0.90āj
− yi|1.10āj

0.90āj − 1.10āj
(5.15)

wherei = 1, 2 andj = 1, 3, 4. The computed values are used to illustrate their relative mag-

nitude to each other in Figure 5.17. In the top panel, the bluebars correspond to∂y1

∂a1
, the green

bars correspond to∂y1

∂a3

and the red bars correspond to∂y1

∂a4

at each sampling time. The bottom

panel, analogously correspond to partial derivatives ofy2 with respect to the process parameters.

It is shown that the partial derivatives ofy1 andy2 with respect toa3 are very small compared to

the partial derivatives with respect toa1 anda4. Therefore, it is shown that varyinga3 does not

affect the output as much as whena1 or a4 are varied. Such observation cannot be made readily

when using traditional parameter estimation approaches where the distribution of parameters is

assumed to be Gaussian and only the point-estimate is obtained.

Using the proposed algorithm, the entire probability distribution function is estimated, from

which, the sensitivity of certain parameter can be diagnosed qualitatively through examining
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the relative distribution of each parameter. This is demonstrated in Figure 5.18, which show

the approximated marginal probability distribution obtained through simulated data sets of six

independent experiments. The x-axis of each panel was fixed at their given order of magnitude

to demonstrate the relative ‘scattering’ of each marginal distribution corresponding to their order

of magnitude. For instance,a1 is in the10−1 order of magnitude and the corresponding panel (A)

has a fixed axis at(0, 0.1). To demonstrate this scattering of asymmetric probabilitydistribution

function in quantitative terms, a ‘coverage-ratio’ of eachdistribution was calculated where,

CR1 =

∣

∣

∣

∣

arg max
a1

p̂(a1|D1, · · · , D6) − arg min
a1

p̂(a1|D1, · · · , D6)

∣

∣

∣

∣

10−1
, (5.16)

CR3 =

∣

∣

∣

∣

arg max
a3

p̂(a3|D1, · · · , D6) − arg min
a3

p̂(a3|D1, · · · , D6)

∣

∣

∣

∣

101
, (5.17)

CR4 =

∣

∣

∣

∣

arg max
a4

p̂(a4|D1, · · · , D6) − arg min
a4

p̂(a4|D1, · · · , D6)

∣

∣

∣

∣

100
. (5.18)

The resultingCR values are0.263, 0.859 and0.125, for a1, a3, a4 respectively. Thus, it is quan-

titatively shown that probability distribution ofa3 has the widest relative width, compared to

other two parameters. This observation can be directly correlated to the smaller degree of sen-

sitivity of a3 shown through the sensitivity analysis. Subsequently, this conveys the fact thata3

is not easily estimated with a reliable confidence interval with comparable degree of accuracy

compared to the other two parameters.

The parameter estimability analysis is further examined byevaluating the scaled sensitivity co-
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Figure 5.17: Sensitivity coefficients calculated using thefinite difference method shown in
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Figure 5.18: Approximated marginal distribution of JAK-STAT signal transduction pathway
model parameters. The probability distributions are normalized and plotted in a window of
[0,O(ai)] × [0, 20/O(ai)] wherei = 1, 3, 4. The dotted lines represent the uniform prior distri-
butions ofa1, a3, a4, U(0, 1),U(0, 10),U(0, 0.1), respectively.
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efficient matrix, which is expressed as follows.

Z̄ ≡



















Ẑ(0)

Ẑ(1)

...

Ẑ(N − 1)



















, (5.19)

Ẑ(c) =
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

, (5.20)

where{θ1, · · · , θk} are the model parameters;{η1, · · · , ηm} are the output variables;{t0, · · · ,

tN−1} are the sampling times and̂pi is either guess or literature parameter value. The rank of

the orthogonalized scaled sensitivity coefficient matrix,Z̄, is equal to the number of estimable

parameters [55]. Also, the relative ease of estimability can be computed, such that the parameter

corresponding to the column of̄Z has the largest magnitude (sum of squares of the element)

is the most estimable. The rank of orthogonalizedZ̄ is equal to 3 for the JAK-STAT signal

transduction pathway model, conveying that all 3 of the parameters are indeed estimable. The

magnitude ofZ̄ is M = [26.09, 25.02, 26.29]. Such that the order is

M(3) > M(1) > M(2), (5.21)

whereM(i) is the ith element in the vector. This rank of parameter estimability agrees with

the rank of relative ‘coverage-ratio’ of the approximated marginal probability distribution. Such

that the parameter that is the easiest to estimate have the smallest ‘coverage-ratio’ (have the most

narrow relative distribution), which conveys the higher confidence in the parameter value.
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5.3.3 Effect of Initial Conditions on the Algorithm’s Performance

Within the scope of this thesis and its purpose of using the MCMC sampling methods, the

Gibbs sampler has been shown to be affected by the initial value of the chain. This is similar

to the gradient-search methods for parameter estimation tending to get stuck in local minima

depending on the initial guess. However, MH algorithm and Gibbs sampler do not have the

problem of getting ‘stuck’, instead the rate of convergencemay be reduced so that more iterations

are required in order to successfully approximate the desired target distribution. In order to study

the effects of initial conditions, the JAK-STAT signal transduction pathway model parameters

were estimated using four different chains with different initial conditions.

1. θ
(a)
0 = [0, 0, 0]

2. θ
(b)
0 = [0, 0, 1]

3. θ
(c)
0 = [0, 10, 0]

4. θ
(d)
0 = [0, 10, 1]

Since the order of the Gibbs iteration is ‘a1 → a3 → a4’ the starting value of thea1 does not

affect the behavior of the chain; it gets over-written during the first step of sampling from con-

ditional distribution ofa1 givena3, a4 and the experimental data set. The experimental data set

used in this case study is identical to the one used in previous section - published real experi-

mental data. The initial conditions were chosen such that they all start from the far corners of

the two dimensional parameter space of[0, 10] × [0, 1] wherea3 anda4 belong to.

The algorithm was executed for 1000 iterations for all four of the chains and the moving standard

deviation is calculated. The idea behind this analysis is quite simple. If the variance ([standard

deviation]2) of the samples from each individual chain and the variance of the samples from

all of the chains converge to each other, this indicates thatthe chain has reached its steady

state. In order to illustrate this point, Figure 5.19 shows the four individual standard deviation

computed using each chain and also the standard deviation computed using all of the samples.

90



Chapter 5

The horizontal axis indicates the iteration index at which the moving standard deviations were

computed. For instance, at iteration 44, each individual moving standard deviation is computed

using the chain samples from 1st iteration to 44th iteration. And for the overall moving standard

deviation is computed using the chain samples from 1st to 44th iteration of all four chains (so

the pool of which the standard deviation is calculated is four times larger). Each row in the

figure corresponds toa1, a3 anda4 respectively. The values corresponding to chain 1, 2, 3 and

4 are indicated with blue, green, red and aqua solid lines respectively, and the solid black lines

indicate the overall moving standard deviation. The resultof moving standard deviations is

split up into two sections, where the first section corresponds to the moving standard deviations

computed up to the 50th iteration, and the second section corresponds to the moving standard

deviations computed from the 51st iteration to the 1000th iteration. This is because after about 30

iterations, there is hardly any differences among the moving standard deviations, and therefore

the emphasis was made on the first 50 iterations. The figure indicates that regardless of the initial

conditions, the chains promptly converge to their steady state value. It is predicted that similar

result will be obtained, if the order of the Gibbs iteration is changed, so thata1 is not the first

random variable to be sampled, and the initial value ofa1 were to be varied. This insensitivity to

the initial condition is a significant advantage to the proposed algorithm compared to the other

gradient search based parameter estimation methods.
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Figure 5.19: The moving standard deviations of four different Markov chains with starting initial
conditions[0, 0, 0], [0, 0, 1], [0, 1, 0] and[0, 1, 1] are indicated with blue, green, red and aqua
lines, respectively. The heavier black solid lines indicate the overall moving standard deviation
of all four chains. Each row corresponds to parametera1, a3 anda4 from top row to bottom row.
The first column corresponds to the moving standard deviations calculated up to 50th iterations,
and the second column corresponds to the moving standard deviations calculated from 51st
iterations up to 1000th iterations.
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Conclusions and Future Work

6.1 Conclusions

• In order to estimate parameters of biological processes that have the tendency to yield data

sets with small number of sample points and irregular sampleintervals, Bayesian param-

eter estimation method was used.

• The Bayes Rule is adept at incorporating a priori information with the experimental data

to yield posterior probability distribution of the parameter estimation. This characteristic

was used to handle multiple experimental data sets and decrease the uncertainty in the

estimation. Posterior distribution from each experiment was used as the prior distribution

for the next estimation step. This sequential updating procedure allowed the final proba-

bility distribution of the parameters to be conditional on all of the data sets, providing a

systematic method to merge information from multiple sources.

• The complex posterior distribution obtained through BayesRule is often analytically in-

tractable. Thus, a random sampling method called Markov Chain Monte Carlo was used

in order to numerically approximate various probability distributions. Two different in-

stances of MCMC were implemented, Metropolis-Hastings (MH) algorithm and Gibbs

Sampler.

• MH algorithm was used to approximate the univariate conditional probability distribu-
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tions of process parameters. The approximated distributions were calculated under the

assumption that except for a single candidate parameter, the other parameter values are

conditionally known. MH algorithm was executed in conjunction with the Gibbs Sam-

pler, and made up the inner level of iterative approximationsteps. Gibbs Sampler made

up the outer level of iterative approximation steps. These two MCMC sampling meth-

ods, implemented together, approximated the multi-dimensional probability distributions

of nonlinear process parameters.

• The confidence interval of the parameter estimates is obtained straightforwardly from the

full probability distribution. The overall shape of the distribution conveyed that the com-

mon Gaussian distribution assumption of nonlinear processparameters is incorrect.

• The shape of the full probability distribution agrees well with conventional sensitivity

analysis, and estimability analysis, thus providing an alternative framework for analyzing

nonlinear processes.

• The choice of initial guess of the parameters did not affect the performance of the pro-

posed algorithm as heavily as it does on conventional parameter estimation method such

as Maximum Likelihood Estimation or Nonlinear Regression.

• The high computational cost of MCMC was reduced by implementing multi-phase es-

timation of the Gibbs Sampler. As some Markov chains corresponding to some of the

parameters in the parameter vector converge faster to theirsteady-state, these chains were

removed from the inner level of iterations. Each parameter removed from the estimation

procedure resulted in a reduction of computational cost by1/m × 100%.10

10m is the length of the parameter vector
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6.2 Future Work

6.2.1 Further Investigation of the Algorithm

In this thesis, a heuristic approach of estimating the probability distribution of nonlinear process

parameters using Gibbs Sampler in different phases was discussed. This approach is successful

in reducing the large computational cost when there is a large discrepancy between the rates of

convergence among the parameters. However, there are otherdirections that a further research

endeavor may explore to address this discrepancy. For instance, the order of the parameters sam-

pled using the Gibbs Sampler in the case study of Batch fermentation reaction model was fixed at

µm → ks → kP → YXS → YPX. It is interesting to note that the two of the parameters thatare

notoriously harder to estimate are placed in the earlier position, and one can investigate whether

putting the parameters with higher estimability before theks andkP will result in smaller uncer-

tainty in the estimated parameters. A preliminary study shows that akP value that maximizes the

likelihood function of the model is sensitive to the variation in the other parameters. This is in

contrast to the parameterµm where the likelihood maximizing value of this parameters does not

show wide variation when the parameters of other values are changed, includingkP . Therefore,

if these parameters that are sensitive to the other parameters’ variations are placed in the latter

part of the sampling, it will allow the other parameters to establish relatively more accurate posi-

tions in the parameter space, thus resulting in more accurate estimation of the sensitive-to-others

parameters.

6.2.2 Experiment Design

The uncertainty of the parameter estimates are conveyed by the probability distribution estimated

through the approach discussed in this thesis. The quality of the data sets used in the case studies

was poor due to their irregular sampling and small number of data points. From studying the

variance of the estimated distribution and the quality of the data, one can derive a correlation

between the two, by coming up with quantitative criteria forirregularity and sparsity of data
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sets, and the normalized variance of the distributions of the parameters. If the total number of

samples during an experiment is knowna priori, then it is conceivable to think of developing an

optimal sampling scheme to obtain a “desired” parameter distribution. This is part of our future

work.

96



Bibliography

[1] U. Alon. An Introductionto Systems Biology. Chapman and Hall/CRC, 2007.

[2] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An Introduction to MCMC for

Machine Learning.Machine Learning, 50:5–43, 2003.

[3] M. Baltes, R. Schneider, C. Sturm, and M. Reuss. Optimal experimental design for param-

eter estimation in unstructured growth models.Biotechnology Progress, 10(5):480–488,

1994.

[4] Y. Bard. Nonlinear Parameter Estimation. Academic Press, 1974.

[5] N. Barkai and S. Leibler. Robustness in Simple Biochemical Networks.Nature, 387:913–

917, 1997.

[6] J. Beck and K. Arnold.Parameter Estimation in Engineering and Science. John Wiley,

1977.

[7] H. Bohr, J. Bohr, S. Brunak, R. M. J. Cotterill, H. Fredholm, B. Lautrup, and S. B. Petersen.

A novel approach to prediction of the 3-dimensional structure of protein backbones by

neural networks.FEBS Letters, 261(1):43–46, 1990.

[8] R. B. Burrows, G. R. Warnes, and R. C. Hanumara. Statistical Modelling of Biochemical

Pathways.IET Systems Biology, 2007.

[9] Y. Cai, X. Liu, X. Xu, and K. Chou. Artificial neural network method for predicting protein

secondary structure content.Computers and Chemistry, 26:347–350, 2002.

97



Bibliography

[10] J. Cao and H. Zhao. Estimating Dynamic Models for Gene Regulation Networks.Bioin-

formatics, 24:1619–1624, 2008.

[11] G. Casella and R. L. Berger.Statistical Inference. Brooks/Cole Publishing Company,

Pacific Grove, California, 1990.

[12] C. Chen.Linear System Theory and Design. Holt, Rinehart and Winston, 1984.

[13] W. Chen, B. R. Bakshi., P. K. Goel, and S. Ungarala. Bayesian Estimation via Sequential

Monte Carlo Sampling - Unconstrained Nonlinear Dynamical Systems. Industrial and

Engineering Chemistry Research, 43:4012–4025, 2004.

[14] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings Algorithm.The Amer-

ican Statistician, 49(4):327–335, November 1995.

[15] M. C. Coleman and D. E. Block. Bayesian Parameter Estimation with Informative Priors

for Nonlinear Systems.AIChE Journal, 52(2):651–667, February 2006.

[16] P. Englezos and N. Kalogerakis.Applied Parameter Estimation for Chemical Engineers.

Marcel Dekker, Inc., 2001.

[17] G. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer-Verlag,

1996.

[18] K. Fukushima. Cognitron: A self-organizing multilayered neural network .Biological

Cybernetics, 20(3-4), 1975.

[19] A. R. Gallant.Nonlinear Statistical Models. John Wiley, 1987.

[20] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Bot-

stein, and P. O. Brown. Genomic Expression Programs in the Response of Yeast Cells to

Environmental Changes.Molecular Biology of the Cell, 11:4241–4257, 2000.

98



Bibliography

[21] A. E. Gelfand, S. E. Hills, A. Racine-Poon, and A. F. M. Smith. Illustration of Bayesian

Inference in Normal Data Models Using Gibbs Sampling.Journal of American Statistical

Associtation, 85:972–985, 1990.

[22] A. E. Gelfand and A. F. M. Smith. Sampling-Based Approaches to Calculating Marginal

Densities.Journal of American Statistical Associtation, 85:398–409, 1990.

[23] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions and the bayesian

restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence,

1984.

[24] G. Grimmett and D. Stirzaker.Probability and Random Processes. Oxford University

Press, 2001.

[25] R. R. Gupta and L. Achenie. A network model for gene regulation.Computers and Chem-

ical Engineering, 31:950–961, 2006.

[26] W. K. Hastings. Monte Carlo Sampling Methods using Markov Chains and Their Applica-

tions. Biometrika, 57:97–109, 1970.

[27] A. Holmberg. On the practical idenetifiability of microbial growth models incorporating

michaelis-menten type nonlinearities.Mathematical Biosciences, 62:23–43, 1982.

[28] B. Juang and L. Rabiner. An Introduction to hidden Markov models. ASSP Magazine,

IEEE, 3(1):4–16, 1985.

[29] G. Kimmel and R. Shamir. A Block-Free Hidden Markov Model for Genotypes and Its

Application to Disease Association.Journal of Computational Biology, 12(10):1243–1260,

2005.

[30] S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi. Optimization by simulated annealing.Science,

220:671–679, May 1983.

[31] W. R. Kolk and R. A. Lerman.Nonlinear System Dynamics. Van Nostrand Reinhold, 1992.

99



Bibliography

[32] A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Haussler. Hidden Markov Models in

Computational Biology.J. Mol. Biol., 235:1501–1531, 1994.

[33] J. Lackie.The Dicitonary of Cell and Molecular Biology. Academic Press, 2007.

[34] S. Ö. Laursena, D. Webba, and W. F. Ramirez. Dynamic hybrid neural network model of

an industrial fed-batch fermentation process to produce foreign protein. Computers and

Chemical Engineering, 2006.

[35] L. Ljung. System Identification: Theory for the User. Prentice Hall, Upper Saddle River,

NJ, 2nd edition, 1999.

[36] S. Mangan and U. Alon. Structure and function of the feed-forward loop network motif.

PNAS, 100(21):11980–11985, 2003.

[37] I. A. Maraziotis, A. Dragomir, and A. Bezerianos. Gene networks reconstruction and time-

series prediction from microarray data using recurrent neural fuzzy networks.IET Systems

Biology, 1(1):41–50, 2007.

[38] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.Teller, and E. Teller. Equation

of State Calculations by Fast Computing Machines.Journal of Chemical Physics, 21:1087–

1092, 1953.

[39] I. J. Myung. Tutorial on maximum likelihood estimation. Journal of Mathematical Psy-

chology, 47:90–100, 2003.

[40] R. M. Neal. Probabilistic Inference Using Markov ChainMonte Carlo Methods. Technical

report, Department of Computer Science, University of Toronto, 1993.

[41] P. Van Laarhoven and E. Arts.Simulated Annealing: Theory and applications. Amsterdam:

Reidel Publishers, 1987.

[42] M. Quach, N. Brunel, and F. d’Alche Buc. Estimating parameters and hidden variables in

100



Bibliography

non-linear state-space models based on ODEs for biologicalnetworks inference.Bioinfor-

matics, 23(23):3209–3216, 2007.

[43] L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech

recognition. InProceedings of the IEEE, 1989.

[44] A. E. Raftery and S. Lewis. How Many iterations in the Gibbs Sampler? April 10, 1991;

revised September 13, 1991, 1991.

[45] W. J. Rugh.Nonlinear System Theory. The Volterra/Wiener Approach. The Johns Hopkins

University Press, 1981.

[46] G. Seber and C. Wild.Nonlinear Regression. John Wiley, 1989.

[47] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional

regulation network of Escherichia coli.Nature Genetics, 31, May 2002.

[48] A. Siepel and D. Haussler. Combining Phylogenetic and Hidden Markov Models in Biose-

quence Analysis.Journal of Computational Biology, 11:413–428, 2004.

[49] D. Sivia. Data Analysis : A Bayesian Tutorial. Clarendon Press, Oxford, 1996.
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Appendix A

Experimental Data Simulation

Simulating the experimental data of nonlinear process withirregular sampling time starts with

the time vector T, where0 ≤ T ≤ Tmax. In order to simulate the irregular sampling time,

T ∈ RN , MATLAB R© ‘RAND’ function is used, whereN is the number of samples.

Program A.1 MATLAB program that simulates nonlinear process experimental data with ir-
regular sampling time. ‘k’ = number of experiments, ‘theta’= parameter vector, ‘N’ = number
of samples, ‘T’ = sampling time, ‘init’ = initial condition of the states, ‘sigma’ = white noise
standard deviation, ‘Tmax’ =Tmax.
global N T theta sigma

for i = 1:k
T = sort([0;rand(N-1,1)] * Tmax);
sol = ode45(@(t,x) MODEL_ode(t,x,theta), [0 Tmax], init);
states = deval(sol,T)’;
y = states + randn(size(states)) * sigma;
ExpData(:,:,i) = y;

end

‘MODEL ode’ is a user-defined MATLAB function that handles the rightside of the differential

equation. Following are the functions for batch fermentation model, FFL model and JAK-STAT

signal transduction pathway model, respectively.

Program A.2 MATLAB function that handles the ordinary differential equations of batch fer-
mentation model.
function dxdt = MODEL_ode(t,x,theta)

mu = theta(1) * x(2)/(theta(2)+x(2)) * (1-x(3)/theta(3));
dxdt = [mu * x(1);

-mu* x(1)/theta(4);
theta(5) * mu* x(1)];

end
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Program A.3 MATLAB function that handles the ordinary differential equations of Feed-
Forward Loop genetic regulation network model.
function dxdt = MODEL_ode(t,x,theta)

B_y = 1;
B_z = 1;
H = 2;
dxdt = [-theta(1) * y(1) + ...

B_y* ((FFL_X_real(t)/theta(3)).ˆH)/...
(1+(FFL_X_real(t)/theta(3)).ˆH);

-theta(2) * y(2) + ...
B_z* ((FFL_X_real(t)/theta(4)).ˆH)/...
(1+(FFL_X_real(t)/theta(4).ˆH);

((y(1)/theta(5)).ˆH)/(1+y(1)/theta(5)).ˆH)];
end

Program A.4 MATLAB function that handles the ordinary differential equations of JAK-STAT
signal pathway model.
function dxdt = JAK_STAT_ode(t,x,theta)

global tao;

if (t<tao)
dxdt = [ -theta(1) * x(1) * EpoR(t) * 60 ;

theta(1) * x(1) * EpoR(t) * 60 - 2 * x(2)ˆ2;
-theta(2) * x(3) + x(2)ˆ2;
theta(2) * x(3)

];
else

dxdt = [ -theta(1) * x(1) * EpoR(t) * 60...
+ 2* theta(3) * x(4);

theta(1) * x(1) * EpoR(t) * 60 - 2 * x(2)ˆ2;
-theta(2) * x(3) + x(2) * x(2);
theta(2) * x(3) - theta(3) * x(4)

];
end
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The simulated data sets of each model are shown in Figure A.1,Figure A.2 and Figure A.3,

respectively.
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Figure A.1: Simulated data sets of Batch fermentation reaction model used in this thesis. The
parameter vector value used for simulation isθ = [0.15, 0.50, 0.25, 0.25, 0.20]. The blue ’x’s
correspond toCX(t), the green ’x’s correspond toCS(t), and the red ’x’s correspond toCP (t).
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Figure A.2: Simulated data sets of Feed-Forward Loop genetic regulatory network model used in
this thesis. The parameter vector value used for simulationis θ = [0.44, 0.69, 0.90, 0.60, 0.56].
The blue lines correspond toX(t), the green lines correspond toY (t), and the red lines corre-
spond toZ(t).
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Figure A.3: Simulated data sets of JAK-STAT signal transduction pathway model used in this
thesis. The parameter vector value used for simulation isθ = [0.0515, 3.39, 0.35]. The
blue lines correspond toy1(t), and the green lines correspond toy2(t). The first six sets,
D1, D2, D3, D4, D5, D6, were used to illustrate the proposed algorithm and the lastdata set,
D7, was used to verify the estimated values.
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Derivation of Likelihood Function for

Nonlinear Dynamic Process

The likelihood function of a nonlinear dynamical model is obtained from assuming that the

states are deterministic variables and that the measurement noise is Normally distributed [35].

For instance, the probability of observing the first experimental data set,D1, given certain values

for θ is desired, then the likelihood function is expressed as follows.

L(θ |D1) = p(y1(t0, θ), · · · , y1(tN−1, θ), · · · , yq(t0), · · · , yq(tN−1, θ) | θ) (B.1)

=
N−1
∏

i=0

q
∏

j=1

p(yj(ti, θ) | θ) (B.2)

The second equality follows from assuming that the measurements are independent from each

other and thus the joint probability of all the measurementsin D1 is the product of individual

probability of each measurement point. Then, using the output variable equations, the condi-

tional probability of individual measurement point is expressed as follows

p(yj(ti, θ) | θ) = p(ηj(ti) | θ) (B.3)

=
1√

2π σj

exp

(

−ηj |θ(ti)2

2σ2
1

)

(B.4)

=
1√

2π σj

exp

(

−(yj|(ti, θ) − yj(ti))
2

2σ2
1

)

(B.5)

The second equality follows because measurement noise,η1 is assumed to be Normally dis-

tributed with zero mean and varianceσ2
1 . In the third equality,yj|θ(ti) is the predicted output

variable at timeti given theθ value. The above expression defines the likelihood functionof
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a single measurement data ofyj at timeti as a function ofθ (obtained by solving the ordinary

differential equations of the model). Substituting the output equations into (B.2), the likelihood,

the following likelihood function of experimental dataD was obtained.

L(θ |D) =
1

(2π)m(N−1)/2
∏q

j=1 σN−1
q

× exp

(

N−1
∑

i=0

q
∑

j=1

−(yj(ti, θ) − yj(ti))
2

2σ2
j

)
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