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Abstract

The dynamic behavior of many chemical and biological preesds defined by a set of non-
linear differential equations that constitute a model. Sehmodels typically contain parameters
that need to be estimated using experimental data. A nunilfactors such as sampling inter-

vals, number of measurements and noise level characteeaguality of data, and have a direct
effect on the quality of estimated parameters. The qualfitgxperimental data is rather poor
in many processes due to instrument limitations or othesjglay and economical constraints.
Traditional parameter estimation methods either yieldt¢ngate results or are not applicable
when applied to such data. Despite this, it is common pratct@pply them on a merged data
set obtained by pooling together data from multiple experita. Considering the difficulties in

maintaining consistent experimental conditions, strdiggtvard integration of multiple data sets

will not provide the best estimates of parameters.

In this thesis, a new approach to estimate parameters oineanldynamic models using mul-
tiple experimental data is proposed. The approach usessBay@ference, and sequentially
updates prior probability distribution of parameters fgstematic integration of multiple data
sets. An expression for posterior probability distribataf parameters conditional on all ex-
perimental data sets is derived. This expression is oftalyacally intractable; therefore two
instances of numerical approximation method called Ma®bain Monte Carlo - Metropolis-
Hastings (MH) algorithm and Gibbs sampler (GS) - are implet®@. The two algorithms form
inner and outer levels of iterations, where the MH algoritemsed in the inner level to estimate
conditional probability distributions of individual pareeters, which is used in the outer level in

conjunction with the GS to estimate joint probability dilstitions of the parameters.



Abstract

The proposed method is applied to three nonlinear biolbgicecesses to estimate probability
distribution of parameters with a small number of irreguwdamples. The approximated proba-
bility distribution provides a straightforward tool to calate confidence interval of parameter
estimates and is robust to initial guess of parameter v&ogaelation among model parameters,
guality of each model, and the approach taken to optimizéitjte cost of MCMC sampling are

discussed.
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Chapter 1

Introduction to Modeling Nonlinear

Dynamical Systems

A variety of aspects of parameter estimation for nonlinéaclsastic dynamical systems are de-
fined in this chapter. Major components of dynamic modelunchsas model structure, model
identification, and model validation are discussed. Theessgof model identification and vali-
dation steps is largely influenced by the quality of expentakdata, and hence aspects of data
quality that have adverse effect on estimation accuracyexaenined. Some commonly used
modeling frameworks are presented. This is followed by &mietson of three nonlinear bio-
logical systems that are used throughout this thesis tetilite the proposed algorithms. The

chapter concludes with an overview of the thesis.

1.1 Modeling Framework

The dynamic behavior of many chemical and biological preesss defined by a set of mathe-
matical equations that constitute a model. A typical moaeiststs of four major components
viz., model structure, independent variables, dependent Vesiand model parameters. The
structure refers to the way variables and model parametersetated to each other by math-
ematical operators. The independent variables, ofteedatiputs, are those that affect other
process variables but are not affected by them. Some inpiab¥es can be directly manipulated
and are used to control the output of the system. The depemdeables can further be clas-
sified into states and outputs. The state variables arereztjtd describe the internal dynamics

of a process, however, they are usually not directly medsurke output variables are directly
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measured and are generally functions of state and inpudblas. These output variables can
be predicted given the model structure, measurements of igpiables, and model parameters.
The model parameters are usually constants that relatpendent and dependent variables
through the model structure. Once these major componentslelstructure, independent vari-
ables, dependent variables and model parameters - aredléinestimated), the model can be
used to infer the dynamic behavior of the correspondinggsscand to develop algorithms for

control, fault detection and process monitoring.

Modeling of dynamic processes is an iterative approach ¢basists of i) identifying inde-
pendent and dependent variables, ii) selecting a propeehsbdicture, iii) estimating model
parameters using experimental data, and iv) validatingraniding the structure and model pa-
rameters based on certain model quality criteria. It iggittéorward to identify the independent
and dependent variables based on process information. titwuse of a model can either be
determined through physical laws, such as mass and enel@yckaequations, or through em-
pirical approximations based on basis functions [35]. Tineleasis in this thesis is on structures
based on physical laws as they are very common in biotecgp@ad biomedical industries.
Such structures provide intuition into the process behaal its various measurements, and
give physical meaning to its parameters. For instance, plsibratch fermentation reaction can

be described by the following coupled ordinary differeigiquations,

dCX o ,umCS

& = 0 Ox —kCx, (1.1)

dCs pmCs

W B (ks + CS>Y$S CX? (12)
Cx = COx +nx, (1.3)
Cy = Cy+ny. (1.4)

whereC'y andCy denote the concentration of biomass and substrate remigc(f?x andCy
denote measured values of the concentrations corruptédneise sequences; andny. The

structure of the model refers to the manner in which thesectwagentrations are related through

2
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the above equations. This model is based on mass balanceoeguend hence provides phys-
ical meaning to various constants in it. The model pararegéer= [u,,, k4, ks, Yzs], are the
constants. They are estimated using experimental measuatsmf biomass and substrate con-
centrations. Once the parameters are estimated, the proaasbe quantitatively represented
with the values of the parameters. In this case, the parasete meaningful physical quantities
in that x,,, is the maximum growth rate of biomagds, is the decay rate of biomask, is the
Monod constant which is equal to the substrate concentratiovhich the biomass growth rate
reaches half of its maximum growth rate,,, ), andY; is the stoichiometric yield coefficient of

biomass to substrate.

Once a model structure is in place, the parameters are clsosénthat the model predictions
are, in some sense, close to the actual process measureffemeccuracy of the estimated pa-
rameters depends on the quality of the process measurememésailed description of various

aspects of the data that affect the parameter estimatiodem@ibed in a latter section. Once
the parameters are estimated, the model is tested for itgaxcagainst a new set of process
measurements to verify the validity of the model on measergmnot used in the estimation
step. This step is called model validation. If a model fdils validation step, experiments are

repeated to collect more data.

Mathematical models can be broadly classified as linear alimear, static or dynamic, de-
terministic or stochastic. A linear model is one where thealdes of the system are related
through linear differential equations. Within most bialc) and chemical processes, there are
complex bio/chemical reactions that cannot be expressed lisear differential equations, thus
many models developed for such processes are nonlineahgr @ariables or parameters and
sometimes both. A dynamic model accounts for the rate of ghar process variables while
a static model assumes that the variables are constant. eindatstic model assumes that if
multiple experiments were conducted with identical initanditions and experimental vari-

ables, the observed time series of output variables wilbgsbe the same. However, this is
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not the case in reality due to process and measurement diggple observations made of a
system under identical experimental conditions vary witme probability distribution. Thus,
a stochastic view that considers the process variables amangters as random variables with
probabilistic qualities is more appropriate for biolodisgstems. Furthermore, such stochastic
models are suitable for applications where the parameteitsae varying [5]. The fermentation
model described earlier is a stochastic nonlinear modél @onstant parameters. The focus of

this thesis is on estimating model parameters for a generiimear stochastic model.

1.2 Previous Work

Modeling has been an active area of research for over a geatut it is beyond the scope of
this thesis to provide an exhaustive literature survey. éi@#, the research in this area can be
broadly classified into two areas - linear and nonlinear riinge A number of textbooks have
been written on the topic of linear modeling [12, 16, 35, B0Id many theoretical results on the
guality of estimated parameters have been derived. Sigjilanumber of approaches have been
developed for modeling nonlinear dynamic processes [431935, 45, 46]. The most popular
among them are black-box techniques such as neural netwodels) state space techniques
such as hidden-Markov models, and continuous time mod&dicigniques such as ordinary dif-
ferential equation (ODE) models. While an exhaustive ditere survey of these techniques is

beyond the scope of this thesis, applications of these aphes are briefly discussed below.

The neural network models use the learning principles of mahan brain. The relationship be-
tween input, output, and state variables is developed Inyitigathe neural network models with
large amounts of process data. Some notable works usinglmeiworks for model identifica-
tion include Bohret al’s work on predicting 3-D structure of protein backbones (Faiet al.s
work on predicting the content of protein 2-D structures RJikushima’s proposal on synap-
tic network between neurons [18]; Gupta and Achenie ideatifnetabolic pathways, complex

genetic disease and toxicology analysis through neuralarktmodeling [25]; Laursenat al.
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used gray-box model approach to identify the complex behmafibacteria after induction [34];
Maraziotis and colleagues’ development of complex cawdationships among genes from mi-
croarray experimental data is based on novel neural fuzzayrrent network [37]; and Zhang'’s
work on developing mechanistic model for batch process set@&n using stacked neural net-
work models [56]. Complex nonlinear relationships betweanous process variables can be
implicitly detected using neural network models. HoweWeere are a few drawbacks to using
neural network models. Neural network models are knowndaire heavy computational ef-
fort, prone to over-fitting, require large amounts of dataj the developed models suffer from

the disadvantages of black-box models [53].

Hidden-Markov models (HMM) were initially developed in tfield of speech recognition in
1970s and later became popular in other disciplines beadubkeir characteristically rich math-
ematical structure [43]. Major components of a HMM are satdservations, transition prob-
abilities corresponding to each state, emission proliedsiland initial state distribution. HMM
is often portrayed with a diagram, in which the states areotihwith network of nodes and
the transition and emission probabilities are denoted antbws connecting the nodes. If some
initial probability distribution of state is given, HMM catompute the probability distribution
function of output variables. Since initial probabilitystlibution of the states can be specified
by the user, it is possible to incorporate prior knowledggrding the probability of states when
using HMM. Other advantages include ease of interpretgl{iiecause of the intuitive nodal
network) and its modular nature, making it easy to combinersg models to create a larger one
[28]. The disadvantages are that the computational cosrislarge and that there are several
strong assumptions made regarding the process, such asi@adsstribution of process vari-
ables, and Markov property of emission and transition podib@s. A number of applications
of HMM framework can be found in computational biology fielome notable works include
Kimmel and Shamir's development of a novel HMM for identifgi haplotype and genotype
generation [29]; Wu and Xie proposed a HMM of transcriptiactbr binding sites and cis-

regulatory modules identification [54]; Siepel and Hausstenbined phylogenetic model with
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HMMs to explore the genome substitution that occurs thraaghution [48]; Kroghet al.s sta-
tistical model and multiple sequence alignment of protaimifies and protein domains is also

based on HMM framework [32].

Ordinary differential equation (ODE) models are used in deaiange of scientific disciplines
to describe biochemical systems, fluid mechanics, financéakets, etc. A generic ODE model

can be represented by the following equations,

d};—iﬂ — f(x(1), u(t), ) + v(1) (1.5)
y(t) = h(x(t),u(t),0)+n(t) (1.6)

wherex(t) is the vector of state variables(t) is the vector of exogenous input variabl@ss

the vector of model parameters an@) is the vector of output variables. The process noise term,
v(t), and measurement noise tery(¢), are included in the model to account for the stochas-
tic nature of the process; without these terms, the modettisrohinistic. The exact values of
these noise variables are unknown, however, assumptiorisecaade regarding the probability
distribution of these variables (e.g. is usually assumed to be Normally distributed with zero
mean and some variano%, such that) ~ N (0, 0,27)). f andh are vectors of functions that form
the model structure and they determine whether the modeigad or nonlinear. If the model
equations are nonlinear, it is often impossible to obtaelital expressions for the states and
outputs, and one has to approximate the model equationsghmumerical analysis. The ODE
models are typically developed using physical laws, and¢@earious parameters in these mod-
els have physical significance. In this thesis, the focusigstimating model parameters in
a stochastic nonlinear ODE model described above. The maeasncan be easily estimated
through nonlinear least squares if there is no noise in tite stynamic equations. However, in
presence of state noise, parameter estimation is a difficollem. There are a few maximum
likelihood approaches, that are based on expectation nizadilon, to estimate parameters in

presence of state noise. These approaches require largentsnad data for good estimates.
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Moreover, maximum likelihood approaches do not autombyigaovide confidence intervals

on the estimated parameters.

In this thesis, a Bayesian approach is proposed to estinzateneters in a set of stochastic
nonlinear differential equations. The proposed approads chot require large data sets, it can
easily handle multi-rate measurements, and provides @nrd@lintervals on estimated parame-

ters. This approach is also extended to handle data frompieutxperiments.

1.3 Motivation for a Bayesian Approach to Parameter
Estimation

Once the structure of a model is defined, the parameters taneaésd using the data obtained
from the process. The quality of the data will therefore iefice the quality of the estimated
parameters. In this thesis, the goal is to develop a Bayegiproach to parameter estimation

that accounts for three important features of data noise, scarcity and irregular samples.

Most experimental data are corrupt with measurement ancepsonoise, making it difficult to
obtain the precise values of model parameters. Thus, theatst values contain some uncer-
tainty, which is usually quantified with a confidence intéride size of the confidence intervals
of estimated parameters is an indication of the effectissiodé the proposed model in accurately
representing the process. The accuracy of estimation ameliability are affected by the level
of noise present in the experimental data, and thereforbustonethod to obtain as much infor-
mation as possible from the noisy data is required. If thieneded parameters suffer from large
levels of uncertainty (e.g. wide confidence interval) themmodel is deemed to be a poor rep-
resentation of the process. Therefore, in such a case, tpesed model needs to be examined
for revision. This is done so that the revised model yieldsreed parameters, using a new set

of experimental data, with smaller level of uncertaintyushthe iterative process of proposing
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a model - estimating the model parameters and revising tlieha@s required to obtain a model

that is able to capture the key components of the processsarat excessively complex.

The frequency of process measurements, in many biologioaépses, is determined by various
physical and economical constraints. These constraites tdad to data sets that are too small
and contain irregular samples. The parameters estimaigdduch data sets usually have large
confidence intervals. Therefore, point estimates of tharpaters obtained through methods
such as maximum likelihood and nonlinear least squareg, toalve qualified with a description

of their confidence intervals.

Various parameter estimation methods are adept at adagessor quality of data - sparsity,
irregularity and large amount of noise. For instance, Etqiean Maximization (EM) algorithm,
an instance of maximum likelihood estimation (MLE), hasrbskown to handle irregular pro-
cess data well enough to obtain reliable parameter estanatewever, it still requires a large
number of samples in order to overcome the loss in informatige to irregularity in sampling
intervals. It is known that MLE (or EM) yields asymptoticalinbiased and minimum variance
parameter estimates as the number of data points reachasyinflowever, MLE is prone to
biased estimation when not enough data is provided. Anraltime approach to address the
problem of sample sparsity is to conduct multiple experite@nd pool the data points together
to create a large data set. Though this approach seemsh¢fivargard, it is difficult to main-
tain consistent process conditions during different expental runs. Hence, when a nonlinear
least-squares or MLE approach is applied on such pooledthatdifferences in experimental

conditions are obfuscated.

There are other challenges presented by least-squareagp8)aches and frequentist methods,
which refer to statistical point of view where probability @ given random event is obtained
through large amount of observations. When estimatingga®@arameters, the accuracy of

the estimation can be improved by exploiting all of the aalié information. Aside from the
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obvious choice of experimental datapriori information can also be included in this informa-
tion databaseA priori information may refer to any knowledge regarding the patarsehat

is available before conducting experiments, such as ainsiron the parameter value available
through physical laws and other means. Unfortunately, encirrently used techniques for pa-
rameter estimation, these types of information are apphiealsomewhat limited fashion. For
instance, one can provide the upper and lower bounds of tiaeneder value to an optimization
problem that solves nonlinear least-squares or MLE. Howévimere’s a probabilistia priori
information, such that is normally distributed with some meanand variance?, it is difficult

to incorporate this information into LS or frequentist estion methods. Lastly, for computa-
tional convenience, these methods make an assumptiortdkatariables and parameter vector
have a fixed time invariant distribution (e.g. Gaussian)weleer, it has been shown that this as-
sumption may be inaccurate in many nonlinear processelelwork by Chen et al., simulated
posterior distribution of a CSTR concentration was showextaibit time-variant behavior with

multimodal, asymmetric distribution [13].

Bayesian approaches are naturally suited to handle noegoiipri information but also scarce,

irregularly sampled noisy data. In this thesis, a parametémation method that resolves the
above mentioned challenges by incorporag@ngriori information is developed. The proposed
algorithms are illustrated through three ordinary diffeéi@ equation models: i) a batch fermen-
tation reaction, ii) a genetic regulatory network and iii¥ignal transduction pathway. These
models are referred to throughout this work to demonstregg@toposed algorithm and the the-

ories behind it.
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1.4 Motivational Examples

1.4.1 Batch Fermentation Reaction

First example is the simplified version of Michaelis-Menteaction model in a batch reac-
tor. Following set of coupled ordinary differential equats is used to describe the uninhibited
growth of biomass and increasing concentration of its lmdpcts (e.g. alcohol), as well as

depletion of substrate present in a batch fermentor.

T ot +ui), a7
dC;:” = —ﬁCX (t) + (%) (t), (18)
dCCZ<t) = pYpxCx(t) +vs(?). (1.9)

The state variable€'y, C's andC'p» are concentrations of biomass, substrate and by-products,
respectively. The stochastic process noise is indicatad ay andvs. The specific growth rate
of biomassy, is defined using Michaelis-Menten kinetics as follows.

:umCS(t) CP(t)
ks + Cs(1) <1 - k:—p) (10

The model is nonlinear with respect to the five parametejszu,(i upper limit to the growth
rate of biomass, (iifs, Monod constant, (iiif,, product inhibition term, (iv}'xs, yield ratio of
biomass concentration to the substrate uptake andHy) yield ratio of by-product to biomass.

Thus, the model parameter vector is defined as[,, ks, k,, Yxs, Yrx].
The details of simulation data sets for this stochastic dyoaystem are provided in Appendix

A. For a numerically stable implementation of the algorithmo of the parameters, and

Ypx were normalized using the following convention and the radized values are shown in

10
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Table 1.1 along with their pre-normalized values.

Ko = 10/k,, (1.11)

Yy = Ypx/100. (1.12)

A total of six independently simulated data sds€ {D;, D, D3, Dy, D5, Dg}), each data set
consisting ofN = 15 irregularly sampled data points spanning the time intes¥&), 24| hours,
are collected. A single set of experimental data is showngaré 1.1. The true trajectories of
the state variables, without measurement noise, are itedicgith solid lines and the measured
sample points are indicated with x’s. It is ensured that #maing intervals are irregular and

the measurements are corrupt with noise.

1.4.2 Feed-Forward Loop : Genetic Regulation Networ k

Gene expression is the foundation of regulatory biolodizattions [1]. Within cells, transcrip-
tion factors are triggered by various environmental chamgeself-serving signals. Through the
recent development in molecular biology technology, itl@some possible to closely study the
dynamic behavior of networks formed by a group of transmwiptactors present in living organ-
isms. Recently, a number of predominantly recurring winragterns within genetic networks,
callednetwork motifswere identified in bacteriurischerichia coliand yeasSaccharomyces
cerevisiae Their observed abundance is assumed to be due to theifisagmnirole in the tran-
scription network. One of the identified motifs is called feed-Forward Loop (FFL) [36, 47]

and it shows similarities in its regulation action to a fdedward action in process control.

Two different regulating actions are present in a genenahfof FFL, where they involve two
transcription factors, X and Y, and a gene Z. The first actsoregulation of Y expression by X
and the second action is regulation of Z expression by bothd{a A graphical illustration of
FFL mechanism is shown in Figure 1.2, whéfg andSy are the inducers of X and Y, respec-

tively. The inducers are either saturating stimulus or ahsend they trigger the transcription

11
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factors. There are three transcription interactions (tezhwith the three arrows in the figure)
which can either act as an activator or a repressor, regutiieight possible configurations of

FFL. The following set of coupled ordinary differential edions is the general form of FFL.

d};ft) = —o Y (t) + B, f(X(t), Kxy) + v (1), (1.13)
di—i(st) = —a.Z(t) + P.9(X (1), Y (1), Kxz, Kyz) + va(1), (1.14)

whereX (¢), Y (t) andZ(t) denote the gene expression rate of transcription factor &h&'gene
Z at timet. In all FFL configurations, the expression of X is assumedaadnstitutive, which
means that it is continuously produced within the organiegardless of the cell’s need. For
each different configuration of FFL, the functional formsfaéindg have different expressions.

The regulation functiorf, when it is an activator, is defined as follows.

fOuKy) = (/K" + (/Eiy)™), X = X(1),Y(t). (1.15)

where coefficient? indicates the steepness of the activation funcfi@md ;; is the activation
or repression coefficient of genedy transcription factor gene The gate functiory can either
be an AND-gate or an OR-gate, where in an AND-gate it is asduimat X and Y regulate Z
independently and not compete with each other, making ttieation function of X and Y to Z
equal to the product of two activation functiorf§ X (¢), Kxz) andf(Y (t), Ky z). On the other
hand, for an OR-gate, the transcription factors X and Y cdmpa the binding site in a pro-

moter, and the gate function is expressed as a linear cotidnra the two activation functions.

There are eight possible configurations of FFL, four cohetygres and four incoherent types.
When a given FFL's indirect causal regulationfto Z throughY agrees with its direct causal
regulation of X to Z (e.g. both regulations activate or both regulations reg)reben it is a

coherent type of FFL, otherwise it is an incoherent type df.HR this thesis, coherent type 1

FFL is considered. In it, transcription factaf activates both geng and transcription factor

12
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Table 1.1: The true and normalized parameter values usedtdate the batch fermentation
reaction data, and to implement the estimation algorithm.

Process Parameter i, k kp Yxs Ypx

Value 0.15[1/hr] 0.5[g/L] 40][g/L] 0.25[g/g] 20 [g/g]
Normalized Value 0.15[1/hr] 0.5[g/L] 0.25][L/g] 0.25[g/g]0.2 [g/g]

1 25 12

Clo
Cp [o/L]

0 6 12 18 24 24 0 6 12 18 24
t[hr] t [hr] t [hr]

Figure 1.1: Batch fermentation reaction fram= O hr tot = 24 hr. From left, each panel cor-
responds to the concentration of biomaSs), substrate's) and by-productr). Measured

data points are denoted with ‘x’ and the solid curve dendiesttue’ trajectory of each state
variables.

Figure 1.2: Feed-Forward Loop model where transcriptiotoiaX regulates the expression of Y

and both X and Y regulate the expression of54.and.Sy- are inducers of X and Y, respectively
[36].

13



Chapter 1

Y, which in turn activates the expression of gene The inducers ofX andY’, Sy and Sy,
both have a strong effect in the expression levek'dh coherent type 1, unlike in types 3 and
4. This is suggested to be a possible explanation for the mmae of coherent type 1 in the
evolutionary process of transcription networks. Obséowatshow that coherent type 1 FFL is
the most frequently observed FFL typelncoliandS. cerevisiasvith 28 occurrence out of 42

identified FFLs and 26 occurrence out of 56 identified FFLspeetively [36].

In [20], the expression levels of yed3tcerevisiagene were identified under a number of stim-
ulations, including heat shock, toxicity level, and suéitrconcentration, in order to study the
gene expression patterns. There were around 6,200 genesdiaidentified and about 900
among them showed similar pattern that can be further sdudiédentify the role of each ge-
nomic response. Since FFL is a recurring pattern involvirggaup of three genes X-Y-Z, a
number of different FFLs can be identified within a singleaonigm, each with a different group
of X-Y-Z. One of the identified coherent type 1 FFL$1 cerevisiags GCN4-LEU3-ILV5 group
and in Figure 1.3 the expression level time series of thesegpublished in [20] are shown.
The expression levels of GCN4, LEU3 and ILV5 are denoted With), Y (¢) and Z(¢), respec-
tively. The expression levels were measured at 5, 10, 15, 20, 30, 40, 60, 80 minutes (V = 8

samples) where d@t= 0 min, the environmental temperature was raised f26AiC to 37°C.

The FFL model has a total of eight process parameters, wh&h a= [5,, 5., oy, ., Kxy,
Kxz,Kyyz, H|. The parametersy,, o, represent the sum of degradation rate and dilution rate
of Y and Z, respectively. Using these parameters, the ima-bf Y and Z decayt(,) is ob-
tained adog(2)/c, andlog(2)/a.. In order to obtain simplified version of the FFL interacton

a few parameters are assigned approximate values baseggrimmi information 3, =1, 5, =1

andH = 2).
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Figure 1.3: Experimental time series data of coherent typ€ll gene expression level where

X (t) denotes the expression level of GCN4t) denotes the expression level of LEU3 an@)
denotes the expression level of ILV5. [20].
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1.4.3 JAK-STAT : Signal Transduction Pathway

The third example is that of signal transduction pathwayse Janus family of kinases (JAK) -
signal transducer and activator of transcription (STATthpay describes the series of reactions
taking place across cytoplasm and nucleus to trigger trgotigm of key genes. The signaling
pathway occurs through multiple cell surface receptore,aitthem being the erythropoietin re-
ceptor (EpoR). EpoR plays an important role in the proltieraand differentiation of erythroid
progenitor cells [51], which refer to cells that are able tovginto a specific type of cell - in
this case, red blood cell - through cell-division [33]. Figu..4 shows the diagram of the JAK-
STAT signal transduction pathway. Through a series of reast EpoR creates docking sites for
STATS, a latent transcription factor. The key actions takgIiS TATS are phosphorylation:( to
x, in Figure 1.4), formation of dimers:{ to x3, in Figure 1.4), and migration from cytoplasm
into nucleus £ to z4, in Figure 1.4). Once present in the nucleus, STATS is ableigger
the transcription of target genes. There are several hggethfor the termination mechanism
of JAK-STAT pathway, including degradation of STAT5 withihe nucleus and migration of

STATS from nucleus back to cytoplasm.

The mathematical model of JAK-STAT signaling pathway waigioally developed in [51].
There are four state variables which represent the coratemis of unphosphorylated STAT5
(1), tyrosine phosphorylated monomeric STALS), tyrosine phosphorylated dimeric STAT5
(z3) and STAT5 within the nucleus:). The exogenous input variable of the modél), is the
concentration of EpoR. The original model was adaptedvefig the suggestionin [42, 57] and

expressed as a set of four coupled ordinary differentiaagqus as follows.

dx;t(t) = —ayz ()u(t) + 2a424(t) I35y, (1.16)
dx;t(t) = ayzy (H)u(t) — 2as23(t), (1.17)
dos(t) _ —azrs(t) + 23(1), (1.18)
dx;s(t) = a323(t) — asza(t) izry, (1.19)
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EpoR
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Figure 1.4: JAK-STAT signal transduction pathway diagradi]] Initially, EpoR creates
docking sites for STAT5. This triggers a series of STATS tescwhere unphosphorylated
monomeric STAT5{,) becomes phosphorylated monomeric STAES) (which in turn forms
phosphorylated dimeric STATS:) that migrates into the nucleus. Once inside the nucleus,
phosphorylated dimeric STATZ:() triggers the expression of target gene. The signal trazisdu
tion pathway terminates, by migration of STAT5 from nucleask to cytoplasm
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wherely;>- is an indicator function that is equal to zero whea 7 and is equal to one when

t > 7. Since there is a time delay from the initial addition of EpoR the system, triggering
the activation of STAT5 signal transduction pathway, totihee STATS actually migrates into
nucleusy is present in the model to account for such time delay. Thohighmodel is suggested
to be a simplified version of the original model developedii|[ one aspect of the model seems
to result in over-lumping of the parameters in order to redilne dimension of the parameter
space. This aspect is regarding the reduction of phospdted/STATS ) due to the formation
of phosphorylated dimeric STATS:{). These are allegedly represented with the second terms in
(1.17) and (1.18). However, the lack @i, term in (1.18) seems inconsistent with the physical
explanation of the process, and is a worthwhile problem taduFessed in the context of model
validation! It is proven to be very difficult to monitor the population afdividual types of
STATS5 within the process. Thus, the following two outputightes were measured, instead of

direct measurement of each state variable.

yi(t) = xo(t) + 2x3(1),

wherey; denotes the amount of tyrosine phosphorylated STAT5 inpdgtsim and), denotes the
total amount of STAT5 in cytoplasm. These output variabtesapressed as linear combination
of the state variables that depict their stoichiometriatiehship. The JAK-STAT model is more
complex compared to the FFL model introduced in the prevsaation, because the direct mea-
surements of state variables are not available. Furtheymgrs not accounted for in the output
measurements at all, but only present in the state equaagunctional component of rate of
change forr; andz,. This is because making measurements of population of SWATHN the

nucleus is difficult.

1One speculation is that when the simplified model was deytsednodelers accounted for degradation-pin
the rate of-(2a4 — 1)z3, which would account for the difference in the decreasgipopulation and the increase
in thez3 population. This is just one conjecture among many, thoofbwing this logic would place a constraint
on the parameter such that > 0.5.
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An experimental data set published by [51] is shown in Figube where the output variables
1y, andy, are measured at= 0, 2,4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 60 minutes. Att = 0
minutes, the population of phosphorylated STAT5 ig/# = 0) = 0). This is because phos-
phorylation of STATS5 is triggered by the addition of EpoRaihe system which occursat 0

minute.

0.14
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T

@)
©)
|

0.1

0.08 7
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0.04} o ,

0.02| 7

0.2

0.18} © o |

0.16+ e} b

0.14+ o} n

0.12 _

Ol 1 1 1
0 10 20 30 40 50 60
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Figure 1.5: Experimental time series data of JAK-STAT slgreasduction pathway experimen-
tal data.y, (t) andy.(t) were measured att = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25BGO]
minutes.

Certain constraints can be readily imposed on the paraseter; anda,. It is straightforward
to place the following constraints by relating the stateagiquns, (1.16) - (1.19), and the reactions

taking place in the process. Upon injecting EpoR, unphogpéiied STATS becomes phospho-
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rylated, thereby reducing the initial populatiorn:gffrom its initial value,r; (¢¢) (a non-negative
value), and increasing the population. This reaction is described by the first term ir1§)
with a negative sign, which is mirrored by the positive sigrihe first term of (1.17). In order
for this reaction to be feasible; > 0, needs to be satisfied. The second term in (1.16) indi-
cates the increasing populationai; this term is present under the assumption that STAT5 that
traveled to nucleust(;) becomes monomeric, and migrates back out to cytoplasm,atiding

to thex; population. This observation is mirrored in the second tefrfiL.19), indicating the
decrease in4 population. Also, the indicator function conveys that unt= 7, not enoughr,

will have formed within the nucleus to migrate back out to¢lhoplasm. Thus, > 0 needs to

be satisfied for physical feasibility. Lastly, the first texin (1.18) and (1.19) show the mirroring
effect of decreasings; andz,. Therefore, the lower limit om; > 0 needs to be satisfied for

physical coherence of the model.

1.5 ThesisOverview

An overview of the two most widely-used parameter estinmati@thods for ordinary differential
equation models, Maximum Likelihood Estimator (MLE) and/Bsian Inference based method,
is presented in Chapter 2. The basic theory, advantagesisadivelntages of each method are

discussed along with their performances of handling in@dyisampled data sets.

Chapter 3 discusses the issue of handling multiple expetehedata sets. For some biological
processes, multiple experiments are conducted in ordeetdeca larger merged data set so that
traditional estimation methods that require larger data can yield reliable results. However,
due to varying experimental conditions between multiplestihe question of how the data sets
can be systematically merged arises. This challenge isaged with sequential Bayesian in-

ference approach which is illustrated through examples.

In Chapter 4, the methodology of Markov Chain Monte Carlo (MIC) approximation is dis-
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cussed. Two instances of MCMC are explored in this thesid tlagy are Metropolis-Hastings
algorithm and Gibbs sampler. The two methods form two seépdesels of iterative estimation
in order to approximate the asymmetric probability digttibn of nonlinear parameter vector.
Chapter 5 presents the case study results, along with thesanaf the quality of each model
used in the case study. The last chapter of the thesis psesamie conclusions and recommen-

dation for future research.

1.5.1 Problem Formulation

Consider a nonlinear process model as follows.

X () u(0).0) + w(0) (1.21)
y(t) = h(x(t) u(t),0) +n(t) (1.22)
wheref = [0y, - - ,0,,]" is an m-dimensional vector of model parameters; [z, - - ,z,]" is

a p-dimensional vector of state variabl&$t) is a time derivative vector of state variables:=

[tg, - ,ur]T is an r-dimensional vector of input variables which are ge¢ermined by the ex-
perimentalist or are measured precisely and the numeridaés are knowny = [y, - -, y,|”

is a g-dimensional vector of output variables, i.e. the $@tdables that are measured experi-
mentally;f = [f,---, f,] andh = [h4, - - - , h,] are a p-dimensional vector and a g-dimensional
vector of functions and the form of each function is knowns [vy, - - -, v,]7 is a p-dimensional
vector of process noise variables; ampd= [y, --- ,7,] iS a g-dimensional vector of measure-
ment noise variables. The objective of parameter estimgiioblem is to estimaté from
experimental datay(t), which is related to the state variablest), corrupted with noisey(t)
through some functionk. In this thesis, the noise variables are assumed to haves(aaudis-

tribution with zero mean and standard deviatieni.e. v ~ N(0, o2).

21



Chapter 1

_ state variable Measurement measured
Process with known x(t) function (h) output variable
structure (f) and X(0) = F(x(t),u(1),0) | and unknown
unknown parameters (9) | X't/ = TX(tLUL), y(t) = hix(t),8)
+v(t) parameters (6) +n(t)

known input
u(t)

process noise measurement noise
v(t) n(t)

Figure 1.6: lllustration of standard parameter estimapimblem. The first block represents the
process and the second block represents the measuremam. devo different types of noise,
process and measurement, affect the two separate blookdirgtrand second blocks are related
by the state variables. The observed experimental dateeisutput of measurement device
block.
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Parameter Estimation for Ordinary

Differential Equation models

A brief description of probability distribution functios presented, followed by two of the most
widely used statistical parameter estimation methods,iar Likelihood Estimator (MLE)
and Bayes estimator. Though straightforward to implembtitt: is prone to ‘getting stuck’
in local minima, which appear frequently in nonlinear syste Bayes estimator, instead of
calculating a point estimate like MLE, estimates the fublpability distribution of parameters
usinga priori information. From the estimated probability distributifumction, the mean, the

mode and the posterior interval of the parameters can bénebita

2.1 Probability Density Function

In statistics, the likelihood of observing some randomalale is described by their correspond-
ing probability distribution function. To explain the camt of random variable and probability
distribution function, consider a game of hundred coingegss/here a player wins if 50 or more
heads (H) are observed out of the hundred tosses. The chanbsesvingk number of H in

a series of: coin tosses is described by the Binomial distributiofk) = (})m*(1 — m)"*,
wherem € |0, 1] is the probability of observing H in a single coin toss [24]erdk is a ran-
dom variable ang(k) is the probability distribution function correspondingitoFor a fair coin
that has equal chance of H or T (tail), the chance of obsemdig a single coin toss i50%
(m = 0.5). Consider a trick coin that is unfairly weighted so thalstél’) will be observed seven

out of ten tosses, then the chance of observing H is 30%-=(0.3). The two different proba-
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bility distributions are plotted in Figure 2.1. For instand a player is given the trick coin, the

probability of observing 50 H’s or more out of one hundredhdwmisses is close to zero, and the
player will most certainly lose the game. And if the unluchksy@r continues to play the game
with the trick coin, and record the number of H he observesohaame, the average value will

be 30. This is because the probability distribution is mazed atk = 30. In other words,

arg mgxpg(k) = 30. (2.1)
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Figure 2.1: Probability distribution functiong, (k) andp,(k), of a game of hundred coin tosses
with a fair coin ¢n = 0.5) and a trick coinf{. = 0.3), respectivelym is the chance of observing
H in a single toss and is the number of H observed during a single game.

From a probability distribution function, such as the onevehin Figure 2.1, several statistical
properties, such as expected value, variance and maximposterioriestimate, of the corre-
sponding random variable can be obtained. Thus, in stlgtarameter estimation methods, the
stochastic nature of measurements and process paranseggpmared in order to account for the

inevitable uncertainty associated with any ‘real’ systdtor instance, in maximum likelihood
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estimation (MLE), the measurements are considered as manvdoables, and the parameter
value that maximizes the likelihood of observed data is ehass the optimal parameter esti-
mate. On the other hand, in Bayesian inference based ap@®aihe process parameters are
also considered as random variables and the corresponaibghulity distribution is estimated

rather than a point estimate. In the next section, these tetbods are discussed with numerical

examples.

2.2 Maximum Likelihood Estimator

Maximum Likelihood Estimator (MLB)is a popular statistical estimation method and it is often
applied to parameter estimation problems. In this fram&wmocess parameters are assumed to
be fixed while the process data are assumed to be stochasaiclea with associated probability

distribution functions. The likelihood function, centtalMLE, is defined as
L@O|D) = p(D|0) (2.2)

wheref is the process parameter vector ands the vector of observed output and input vari-
ables{y;(t), -, y,(t),us(t), -~ ,u.(t)}*. Notice that the likelihood function is equal to the
conditional distribution function ob, conditional to some valué = 4. If two different values
of the likelihood function is computed, such tha®, | D) > L(6, | D), then it can be concluded
that the observatio® was more likely to have occurred whén= 0, [11]. Therefore, by eval-
uating the likelihood function in the parameter spaSewheref € S C R™, the value of?
that maximizes the likelihood function can be obtained. TWHeE of the parameter vector is

obtained as,

0 = argmBaXL(9|D). (2.3)

2MLE is also an acronym for maximum likelihood estimate wheferred to as estimated result
3
t:t07"' 7tN71
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MLE is easy to implement if the likelihood function is difeartiable inS, such that the opti-
mum can be located by finding the valueg/adfuch that%L(e | D) = 0 and verifying that the
optimum is global maximum. However, in nonlinear procests likelihood function is usu-
ally too complex, and to derive an analytical expressiorttierd derivative is difficult. Hence,
derivative free optimization methods are often requireidiplement MLE [6]. It is well-known
that derivative free optimization methods are slow and iregai very good initial guess of the
parameters. These optimization methods lead to poor paeamsimates if the dimensionality
of the parameter space is large or if a good initial guesstiprawided. Another disadvantage of
MLE is that the sensitivity of the parameters to the likebddunction dictates the accuracy of
the estimates. For instance, if the change in likelihoodtion is negligible for relatively large
changes in a particular parameter, then that parametdfiattito estimate. Moreover, MLE is
prone to a large bias in the estimate parameters when thefdize data set is small. However,
as the data size approaches infinity, the MLE asymptotiegdfyroaches the true parameter val-

ues with no bias and minimum variance [39].

The likelihood function of dynamic processes is dependarthe assumptions made about the
probabilistic distribution of noise (and hence the progesasurements) in the process. For in-
stance, if the probability distribution of observatiaBs= [y, (to,0), - - -, y1(tn_1,0)]* is Gaus-
sian, independent and identically distributed with somemng) and varianc€s?), then the
likelihood function is defined as follows,

LoDy — T - exp(—(yl(t;’(fg_u)z)

1 1 N—-1 )
= m@-DEgN-1 P (7 ;(yl(tu 0) — ) ) (2.4)

4consider a single output variable casgto ¢ y_; are the sample times. Note that the paramétetependence
of the observations is explicitly shown. In the rest of tlisdis, the dependence of observations on parameters is
not explicitly mentioned.
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Then, maximizing the likelihood function reduces to (asswgithe variance is known),

N-1

maxlog[L(0| D)] = max Y — (s (t;,0) — p)’ (2.5)
-

= min Z (41 (t:,0) — p)”* (2.6)

which is precisely equal to the least-squares estimataus,Tin the special case where the ob-
servations are Normally distributed and their variancerievkn, the MLE and LSE become

equivalent.

2.3 Bayesian Parameter Estimation

Bayesian statistics is a departure from the more generedigtised frequency statistics, where
the probability of a random event is defined as the percembiteoccurrence in a large number
of trials. Therefore, if a frequentist were to derive theabte probability of a given event, the-
oretically that person would require an infinite number @fi&. However, in Bayesian statistics,
a prior distribution of the event is updated with every neweaation and the posterior distribu-
tion of the random event, conditional on the observatissalculated. This is mathematically

expressed as follows (also called Bayes Rule),

L1 D) p(0)

POID) = 75 10) p(6)dd

(2.7)

whereD is the set of observationg&js the random event (process parameter in this wei)) is

the prior probability distributionL(# | D) is the previously mentioned likelihood function; and
p(@] D) is the posterior probability distribution. To illustrateet difference between frequency
statistics and Bayesian statistics, consider the exani@dassing game where a fair coin and
a trick coin are used as in section 2.1. Assume that a playeioraly chooses one of the two

coins, plays the game of hundred coin tosses, and obs&svesads. A frequentist, given the
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following information,

e the trick coin yields 3 H out of 10 tosses and there was a 50kHzhae of the player

choosing fair coin or the trick coin (This informationagriori, since it was known before

the observation is made);
e 38 H out of a hundred tosses (observation)

would not be able to present a precise numerical value foptbleability that the chosen coin
is the trick coin. This is due to the limited number of obséivas. This frequentist needs
sufficient number of hundred-toss games in order to deterthietype of coin used. A Bayesian

statistician can use the same information and perform therfimg computations,

e The prior knowledge on the events of selecting a trick coia fair coin can be assigned a

probability asp(Tr) = 0.5, p(Fa) = 0.5, whereTr and F'a correspond to the respective

events.

e The probability of the chosen coin being the trick coin, gid8 H out of hundred toss,

denoted by (7T'r | k = 38), can be expressed as follows (using Bayes rule):

p(k =38|Tr)p(Tr)
(k=38|Tr)p(Tr) + p(k = 38| Fa) p(Fa)’

p(Tr|k=38) = p (2.8)

o p(k=38|Tr)=()0.3%0.7%,

o p(k =38|Fa) = (}4)0.5%0.5%.

Substituting the prior information and the last two coratil distribution values in (2.8), the
Bayesian statistician would conclude that there is a 81%ah¢hat the chosen coin is the trick
coin and that there is a 19% chance of it being the fair coire Mlain advantage of Bayesian
statistics, as illustrated in this example, is its abildycompute the probability of a given event

with a limited number of observations, in this case a singime.
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Two basic approaches exist for Bayesian parameter estimatne is to find the parameter

value that maximizea posteriori(MAP) distribution as follows
0* = arg max p(@| D) (2.9)
and the other is to obtain the expected value ofalpesterioridistribution as follows.

£l) = [ o6 D)p(0)a0 (2.10)

The MAP value indicates the most probable value of the patemteowever the expected value
is a more appropriate representation of a parameter ifstsilolition is skewed [49]. The differ-
ence between the (2.3) and (2.9), though they both seek dhalpitity maximizing value, is that
MLE maximizes the likelihood of observing the experimerdata, whereas MAP maximizes

the probability of the parameter conditional on the obsgona.

Bayesian inference uses batpriori information and experimental data to compute &upos-
teriori distribution. This presents Bayesian inference with twgamadvantages over the tradi-
tional frequentist methods such as Nonlinear Least-SguRegression or Maximum Likelihood
Estimation. The first advantage is that by incorporatngiori information, we can make full
use of all of the available information in the estimationqess. This can become extremely
helpful, especially when there is limited amount of expenmal data available. Physical con-
straints arising from theory, and heuristic knowledge at@®ples ofa priori information. By
not usinga priori information, frequentist methods usually yield inaccamdtimates, and this is
demonstrated in Section 3.1. The second advantage of Bayederence is that by computing
full probability distribution of the parameter, a statistily meaningful confidence intervals of
the estimated parameters can be obtained. However, imquigyideveloped Bayesian inference
based approaches, this advantage had not been exploitsdutl potential. While there have

been many non-Bayesian studies that deal with multiple rexygatal data, Bayesian inference
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was only used to computeposterioriparameter distribution from each experimental data indi-

vidually.

For point-estimation methods such as MLE, the probabiigyribution of the parameter is alto-
gether disregarded or considered to be Gaussian by defandi.this practice does not translate
into nonlinear processes, as it has been discussed in psesi@pter that nonlinear process pa-
rameters probability distribution have more complex shdperefore, Bayesian parameter esti-
mation method that calculates the full probability digtitibn of parameters is an advantageous
tool for evaluating nonlinear processes. The main chadlsrg using Bayesian parameters arise
from the fact that there is no analytical solution to the paset distribution, because of the com-
plex integral present in the denominator of the right hadeé $erm in (2.7). This term serves as
a normalizing constant that ensures the posterior digtabto integrate to unity [6]. In the ab-
sence of analytical solution, the posterior can be appratechnumerically by random sampling
method called Markov Chain Monte Carlo (MCMC). The detaflthis method are discussed in
Chapter 4.
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Multiple Experimental Data Setsfor

Parameter Estimation

This chapter discusses the problem arising from pooling dats from multiple experiments.
The commonly employed method of straightforward data nmgrgs shown to result in loss of
information and has difficulty yielding statistically saliconfidence intervals. An alternative
approach that sequentially updates #heriori distribution function of the parameters based on

multiple experimental data is developed in this chapter.

3.1 Merging Multiple Experimental Data Sets

Most parameter estimation methods require a large numbsatafpoints in order to obtain un-
biased estimates with small confidence intervals. Howetvisrcommon in many experiments
to have only a limited number of data point§), Hence to reduce bias in the estimated pa-
rameters, it is common to conduct multiple experimeh)sand obtainNVk number of sample
points. While such an approach may reduce the bias, theignedthow the data sets from
k different experimentsp;, - - - , Dy, can be systematically integrated is not clear addressed.
Theoretically speaking, one can only merge data sets froftipteuexperimental runs if the ex-
perimental conditions and the noise characteristics &esdme during different runs. However,
it can be difficult to maintain the same experimental coodsithrough multiple runs. There-
fore, creating a large merged data set from multiple expantal data sets can lead to poor
parameter estimates. Another, more obvious problem igliea¢ may be more than one value

corresponding to some sampling time In Figure 3.1,Y () measurements of FFL gene reg-
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ulatory network process from three independent experispént, D, and D3, are shown. The
measurements are made at irregular time intervals ahe-a0 min, all three experiments have
made measurement 6f(¢). If these three data sets were merged straightforwardty the
time series of the merged data 9@t is denoted by the heavy black line shown in the figure,
where the sample points @1, D, and D3 are connected in sequential order of the correspond-
ing measurement time. However, tat= 30 min, it is unclear as to which of the data points,
Y|p, (t = 30min), Y|p,(t = 30min), Y |p,(t = 30 min) (denoted by the three different paths

of grey dotted lines), is the best representation of thespséem.

0.9 S

0.8

0.7

Y(t)

0.6

t =30min

0.5

0.4

0.3

02 | | | | |
0 10 20 30 40 50 60

t [min]

Figure 3.1: Time series data bf(¢) obtained from three independent experiments D, and
D3, of Feed-Forward Loop genetic regulatory network procéks.heavy black line denotes the
Y (t) trajectory using larger data set created from merging theetbata sets. The line is broken
att = 30 min, because there are three different measurements gondisg to this time, and
the three possible trajectories are denoted with grey dtittes.

An alternative approach to analyzing multiple experimkedtda sets is to obtain a parameter
estimate from each data set and compute the mean of the tsgtjrsach that if the individual

estimates aré, , - - - , 0y, and then the mean&= (3., 6,)/k. Consider the JAK-STAT signal
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pathway process, where six simulated data sets are awildsbm the data sets, using a type
of point-estimation method introduced in [42], estimatedues ofa;, a3 anda, are obtained.
These values are shown in Table 3.1. The mean and varianhe eStimation results from six
data sets is equal § = [0.0386,2.393,0.168] ando; = [0.0134,2.412,0.114]. Due to the
small number of data points from each experiment and thepoesof noise, the estimates show
large variances. The common practice of computing thiseaeeand the standard deviation, by
default, assumes Gaussian distribution of the parametierass, and the normalized Gaussian
distributions obtained from the average estimate and dredsrd deviations are shown in Fig-
ure 3.2. The true values used to simulate the data 8ets]0.0515, 3.39, 0.35], are shown as
vertical dotted lines. If Gaussian distribution of the e&tied parameters is assumed, the prob-
ability of the parameters may show a significant positiveigaven in the obviously infeasible
regions of the parameter space. For instance, the estirdetiedbutions ofa; anda, have the
left-tail well into the negative region, which contradid¢tee constraints on the parameter that
they must have positive values (discussed in Section 1.783 example also demonstrates the
case where even though average estimates satisfy theaiatstthe corresponding confidence

intervals does not.

Table 3.1: Point-estimation method is applied to the sixutated data of JAK-STAT signal
pathway procesd), - - - , Dg. The individual estimation result for the parametersu; anday
are shown.

D, 0.0557 5.993 0.253
D, 0.0385 1.652 0.247
Ds 0.0249 0.392 0.025
D, 0.0488 4.803 0.273
D 0.0423 1.215 0.183
Dy 0.0212 0.303 0.026

The challenge, of obtaining an estimate that accuratelsesgmts all of the data sets, is easily

SSimulated data is obtained by the method shown in Appendix A
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Figure 3.2: Applying point-estimation method, six indiua parameter estimate are obtained
from each simulated datd),, - - - , Dg. The average and standard deviation of the results shown
in Table 3.1 is as follow® = [0.0386,2.393,0.168] ando; = [0.0134,2.412,0.114]. This
result is used to compute the Gaussian probability didiobs that the general 'average
1.96x standard deviation’ confidence interval computation agsunThe vertical dotted lines
denote the true values of the parameters used to simulattheet® = [0.0515, 3.39, 0.35].

handled by Bayesian parameter estimation methods as theaccaunt fom priori information
and estimate the full probability distribution. In the wdrik Coleman and Block [15], param-
eters of fermentation process model are estimated usingwaitive prior probability distribu-
tion. The authors use several experimental data sets aaohdabeé full probability distributions
of the parameters and proceed to report the data in the g@erdl.96 x standard deviation’
(95% Confidence Interval) format. Such an approach failsie tadvantage of estimating the
full probability distribution as it does not carry inforniat gained from one experiment to the
next. To illustrate this point, the JAK-STAT process is ddesed again. Using the same sets
of simulated data, the probability distribution functippsas | a; = 0.0515, a4 = 0.39, D;) are
estimated wheré= 1, - - - ,6.%5" The approximated probability distribution functions ahewn

in Figure 3.3 (a)-(f). The asymmetric distributions dentogigd in the figure is a common
characteristic of probability distributions of nonlingarameters. From these probability distri-
bution functions, the expected values are computed as E(a3) = [ azp(as) das, which are

[0.0349, 0.0700, 0.0448, 0.0728,0.0316, 0.0594]. Then finally the average parameter estimation

5The approximated probability distribution shown in Fig®®& is obtained using the method introduced in
Chapter 4
"The estimation ofi5 is conditional to the true value af anda, which are assumed to be known.
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is reported with 95 % confidence interval ag 4 1.960,,’® and the corresponding Gaussian
probability distribution is shown in the center panel of diig 3.3. When studying probability
distribution, it should be noted that the shape and the neg@®f the distribution can be consid-
ered as ‘information’, in the sense that they are clues tadlsive likelihood of a parameter
taking up some value. From studying the panels (a)-(f), desr that some of the information
contained in each probability distribution is eliminatedr the average result because of the
Gaussian assumption. For example, Panels (b) and (d) stavalpiity distributions that are

heavily negative-skewed, and this fact is not properly eged in the center panel.

It is mentioned in the previous section that nonlinear psegearameters often exhibit asymmet-
ric probability distribution, sometimes even multi-modatributions. Therefore, when dealing
with nonlinear processes, it is important to avoid Gaussigproximation of complex prob-
ability distributions. For instance, consider the two eliéint types of distributions shown in
Figure 3.4. The distribution shown in left is a bimodal dimition wherearg max, p(«) are

3 and 6. The distribution shown in the right is a Gaussiarridision with arg maxgs p(3) is
4.50. These two distributions, though different in shapegithe same expected mean and stan-
dard deviation. The formulas used to calculate the expetteah and standard deviation are
BE(z) = <Ef\i1 xl> /(N) and standard deviation is, = [(Zf\il(xi - :E)z) /(N — 1)} 1/2,
wherez = «, . It is easy to notice from these figures thah(if) is approximated with a Gaus-

sian distribution, the mid-point of the bimodal distrikarti which has a very low probability,

will be reported as the ‘most likely’ value.

6 1/2
. o, a3, L 1 . _
8The average igz = 21_61 31 and standard deviation {8, = (ﬁ Zle(agi - a3)2)
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Figure 3.3: Six independently simulated data sets of JAKIS3ignal pathway process are
used to estimate; assuming that the two other parameter values are known. nidinddually

estimated probability distributions are shown in Panejqfja The expected mean from each
of the distribution is calculated and using these expectedns, the overall average of the

is computed along with its standard deviation. Using thedaes, a Gaussian distribution is
plotted in the center panel.
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E(a) = 4.5028 E(B) = 4.5028
g, = 1.6210 0, = 16210

p(a)
p(B)

Figure 3.4: Two probability distributions with identicalected meank/ () = E(5) = 4.5028,
and standard deviation, = o3 = 1.6210. However, for the probability distribution on the left,
the max a posterioris arg max, p(a) = 3 = 6, where as the probability distribution on the
right, themax a posterioris arg maxg = p(3) = 4.5028.

3.2 Anpriori and Timeline Shift

In this thesis, a parameter estimation approach that maesfithe two major advantages of
Bayesian inference, discussed in the previous chaptesyeaped. The approach aims to derive
a singleposteriorprobability distribution, conditional on all of the avail@ experimental data

by iteratively updating therior probability distribution in the Bayes Rule. By doing so, the
information available from all of the databases is propag&hrough the estimated probability

distribution functions.

Suppose that the FFL model parameter veéponeeds to be estimated and thahdependent
experimental data sets are availahl®,, - -- , D,. First, thea priori probability distribution
function is defined from heuristic information and other stwaining conditions obtained from
theoretical considerations (3.5 (A)). This function is d&d withpy(#). In order to obtaira
posterioriprobability distribution function using Bayes Rule, thkelihood function,L(D | 6),

is also required. The procedure for derivihgD | 6) is discussed in Appendix B. Using these

two components and the first experimental data/3gtthe expression for the first posterior
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distribution function is computed as follows.

L(6| Dy) po(0)
J p(D110) p(0) do

pi(0| D) = (3.1)

This newly calculated posterior probability distributinconditional onD;. This step of ob-
taining the firsposterioris denoted with ‘E1’. Following E1, present time is shiftedvard and
the information regarding the parameters obtained using now considered past knowledge.
The posteriorinformation from E1 becomes priori information for all the future experiments
(Figure 3.5 (B)). Thus, the prior distribution function wisd¢o be updated to account for this fact.
Therefore, the next prior probability distribution furentiis set equal to the posterior distribution

obtained in E1 as follows.

p1(0) := p1(0] D1) (3.2)

Using this new prior distribution and the likelihood furati the second posterior probability

distribution is calculated as follows.

L(0| Ds) p1(0)
[ p(D26) p(6) do

p2(0 | D1, Ds) (3.3)

_ L(0| D) pr(0] Dy)
~ [p(Ds6) p(8) o (3.4)

This new posterior probability distributiomy (6| D1, D2) is conditional on bothD; and Ds.
The process of obtaining the second posterior is denoted ‘w’. Following E2, the prior
distribution needs to be updated again as the present tisiahitied forward and as it now
needs to include the information about the parameter oddairom analyzingD;. The new

prior is then set equal to

p2(9) = pg(@ | D17 Dg) (35)

This sequential update of the prior distribution with thevhyecalculated posterior distribution
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is repeated until all of the experimental data sets have bealnated. Then, the final posterior

distribution that is conditional on all of the informatiaméqual to,

L(0| Dy,) pr—1(0 | D1, -+, Di—1)

Pi(6| Dy, Day- -+, D) [ p(Dc16) p(6) do

(3.6)

The process of evaluating th¢h and lasposterioris denoted with ‘i’ (Figure 3.5 (C)). This
iterative approach offers a systematic procedure to iategy information from multiple exper-
imental runs by computing a series of probability distribntfunctions. Figure 3.6 shows the
typical behavior expected from a series of evolving postedistributions obtained using the
sequential Bayesian estimation method. The top left panshown with a flat uniform prior
distribution of the parameter vector restricted to somesioand upper bounds. In some cases,
the prior distribution is more informative and in such catbesa priori distribution will take on
shape than the uniform distribution shown. The top rightgbahows the posterior probability
distribution obtained after applying the first experimédta (after E1). The shape of the distri-
bution starts to form a plateau near the region of higheraidity - in this case, near the center
- conveyed byD;. The posterior distribution function shown in the bottorf pEnel now shows
more distinct peak near the value 0, from which it can be refitthat at) ~ 0, the probability
distribution function is maximized (after E2). Finallytaf all of Dy, --- |, D, are applied to the
sequential method, the resulting final posterior distrdoubf process parameter is a result of

systematic integration of multiple experimental data.sets
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Figure 3.5: Three different snapshots of a linear timelirin vnultiple experiments and the
information database; the present time is indicated by éntcal arrow in each panel. The top
panel (A) shows the present time before any of the experisrieate been conducted/analyzed.
At this time, a priori consists of theoretical and heuristic information. The afedpanel (B)
shows the present time, after Experiment 1 has been cortlantdyzed and the experimental
data has been evaluated for parameter estimation. At thes & priori consists of theoretical
and heuristic information as well as the information gagldeirom the first experiment. The
bottom panel (C) portrays the present time, after k expartmbave been conducted and the
multiple experimental data sets have been evaluated fanpeter estimation. At this tima
priori consists of theoretical and heuristic information alonthwie information gathered from
all of the experiments.
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Figure 3.6: The four panels portray the evolving series aft@aor distribution functions ob-
tained from multiple experimental data sets applied to eatial Bayesian estimation method.
The top left panel shows a uniform prior distribution befargy experimental data has been an-
alyzed. In some cases, the prior distribution may be mom@mmétive where it highlights the
more probable region in the parameter space. The top rigtel glaows the posterior distribu-
tion computed from the first set of experimental data. Thédnoteft panel shows the posterior
distribution of parameter after the second set of expertadelata has been analyzed. The bot-
tom right panel shows the posterior distribution of paranebtained after alk experimental
data sets have been applied to the algorithm.
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Markov Chain Monte Carlo (MCMC) for
Approximating Probability Distribution

Functions

Most posterior distributions computed using Bayes’ Rulentd be solved analytically, therefore
a numerical approximation method called Markov Chain M&d€o is used to generate random
samples from the distribution. These random samples ai tosplot a histogram that is an
approximation of the desired probability distribution. dwnstances of MCMC, Metropolis-
Hastings algorithm and Gibbs Sampler, are used in this wogkset of inner and outer level of
iterations to approximate the probability distributiortioé parameters. The large computational

cost of these approximations is optimized using a novelirphiase approach of Gibbs sampler.

4.1 Markov Chain Monte Carlo(MCMCQC)

Markov Chain Monte Carlo method was developed in order teesoptimization and integration
problems arising in high dimensional spaces where analysiglutions are difficult to obtain.
The approach relies on drawing a number of independent ardicdlly distributed samples,
{901 M " from a target distribution (the distribution that needs&approximated)y(6 | D).

Using thesel/ samples, the distribution is approximated by the followamgpirical point-mass

function [2].
1 M
; _ (i
pu(0]D) = M;% (6), (4.1)
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where d,(0) is the delta-Dirac function &Y. From this approximation, the maximuen
posteriori expected mean and High Probability Distribution (HPD¥mr&al can be calculated.

For example, the expected mean is equal to

M
1 4
~ 1 (i)
E(9|D) ~ - ;:1: 9, (4.2)
The samplegd™® - .. ()} are drawn in such a way that the following relationship isséad,
p(OUD [0 g W)= p() [0, (4.3)

A random variable that satisfies the above relation is saltht@ the Markov property. There-
fore, the sequence of draws of the parameter vector formsredMahain and this procedure of

approximating density functions is called Markov Chain Mo@arlo approach.

There are many variations of MCMC algorithm, and the genigleh behind them is to con-
struct the Markov chain in such a way that it draws more sasipleegions of high probability
of the target distribution, and a¥ approachesco, the approximation of the distribution will
asymptotically be equal to the target distribution. In tb#oiving sections, two instances of
MCMC, Metropolis-Hastings Algorithm and Gibbs Sampleredisn this work to approximate

the posterior probability distribution of nonlinear presgarameters, are introduced.

4.2 Metropolis-HastingsAlgorithm: Inner Level Estimation

The idea behind MCMC is to approximate the target distriouby generating random samples
from a proposal distribution, which is chosen such that & the same support as the target dis-
tribution. It is usually difficult to sample directly from éttarget distribution and hence a simple
proposal distribution from which samples can be easily drasrchosen. The samples from the

proposal distribution are either accepted or rejecteddaren criterion that allows acceptance
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of samples from the target distribution with a high probigil

Metropolis-Hastings algorithm (M-H) is a type of MCMC thaaw/first developed by Metropo-
lis in 1953 [38], then generalized by Hastings in 1970 [26Ermploys the acceptance-rejection
approach to generate random samples from the desired téstrdiution and determine whether
to accept each sample by computing an acceptance critdrfdnThis criterion, also known as
the acceptance probabilityr), is computed through the use of a proposal probabilityridist
tion function,q(9® | 9G~Y)). This expression is interpreted as ‘if the current valuehefthain
is 0~V then the newly generated random samplés. There exist several different candi-
dates for the proposal distribution. In this work, an apploealled ‘independence sampling’,
where the newly generated sample value does not depend cartieat value of the chain, is
used. This proposal distribution can be expresseg@8) (notice that the conditional term is
eliminated) [14]. The quality of the target approximatiasing M-H is strongly influenced by

the choice of the proposal distribution [2].

The following shows the step-by-step guide for implemantih-H algorithm, to approximate

the expression for posterior distribution derived in theviwus sectionp(D | 9).

1. Choose an initial samplé(”), such thap(6®) | D) > 0.

N

. Repeat the following steps féf), wherei = 1, --- | M.

w

. From the proposal distribution of choieg¢), generate a random samplé.

4. Calculate the acceptance probabilitysuch that

[ D) q(0u )

@ - {1’ 209)  p(0 | Dy)
_ [, ZOV D) p(69) / 2 g(61)
Il 4(60) L0 [ D) po(0GD) [ Z
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whereZ = [ p(D|6)p(6)d6.

5. If o = 1, then accept thé® value, update the count io= i + 1 and repeat from step 2. If

a # 1, then samples ~ U4/(0, 1) wherel{(0, 1) is a uniform distribution betweehand1.

6. If 3 < «, accept th&® value, update the count to= i + 1 and repeat from step 2. If

B > a, discardd”) and repeat from step 2.

Notice that when computing the acceptance probabilityptrenalizing constant involving com-
plex integral term gets canceled, which is the major adggnte# using M-H algorithm. As
mentioned earlier, the choice of proposal distributionaspimportant for the success of the al-
gorithm. Two different choices ahdependence samplirege examined in this thesis. The first
one is a Gaussian distribution multiplied with some constaand the second one is the prior
distribution corresponding to the Bayes Rule at each oftlyes#’1, - - - , Ek. This discussion

is presented in sections 4.2.1 and 4.2.2.

The mechanism behind M-H’s acceptance probability is exptawith a brief example shown
in Figure 4.1. The target distribution that needs to be apprated is denoted with red curve
and it is shown to be bimodal, asymmetric distribution. Tiheppsal distribution is denoted
with green curve in the figure. Let’s assume that the initellie of the chain is equal to 3
(6 = 3), and using the proposal distribution, a new random sarfipte 4.5 is generated.
Then the acceptance probability for this new sample is tatied to be 0.39, using the equation
introduced previously. Since is smaller than 1, another random variaples sampled from a
uniform distribution between 0 and 1. The reason behind §amp in steps 5 and 6 can be
explained as follows. Generally, a sample moving from a éigirobability region to a lower
probability region is undesired, but is not always avoidBaerefore, the larger the ‘jump down’
from higher to lower probability region, the smaller is thence of accepting that sample. The
current example, for instance, has 39% chance of being textepd 61% chance of being dis-

carded. Let's assume thatis equal to 0.78, then the sample 4.5 is discarded, and tmentur
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value off is accepted as the next samp€\ = 3), making up the following Gibbs sequence of
length 2,{3, 3}. Another value is sampled from the proposal distributiomd this time around
assume that it i§. In this case, the acceptance probability is 1. This is besdoe random
sample ‘jumped up’ in the distribution to a higher regiong @ime new sample is accepted. Now
the Gibbs sequence has length{3,3,6}. The current sample now &2 = 6 and the same

procedure can be repeated until a desired length is reached.

A

() : Proposal Distribution

p(8ID). q(®)

—p(6|D) : Target Distribution (Posterior Distribution)

Figure 4.1: Metropolis-Hastings algorithm. The asymneeted curve represents the target
distribution that needs to be approximated (posteriorifigion in this work). The green curve
represents the proposal distribution chosen by the pi@utit. The three points are the random
samples of) = 3,4.5, 6 with p(0)/q(6) is equal ta).5427,0.2157,0.6785, respectively.

Another instance of MCMC that is recently popularized is $maulated Annealing (SA) algo-
rithm. The SA algorithm was developed by borrowing the cpheesed in metallurgy where
the quality of the material is controlled by implementingaling schedule that adapts as time
evolves. The users of SA agree that if the ultimate goal of@pmating the probability distri-
bution is to obtain the MAP, it is wasteful in terms of compidaal resources to sample from the
lower probability regions. This is because high probapigions of a distribution are concen-
trated around its mode, and hence the computational resouaen be concentrated on the high
probability regions. The algorithm is explained in moreaden [23], [30], [41], [52]. Though

this method is computationally more efficient, the appradiea probability distribution is not
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the true representation of the target distribution, butltered form of the distribution of which
the sole purpose is to obtain the MAP value, and this is i&ist in Figure 4.2. Both of the
histograms shown in the figure are plotted from Markov Chaiwittng length)M = 5000, but
SA generated histogram is clearly shown to favor the highaability region and thus is very
efficient for obtaining MAP. Due to this reason, SA is not ahle for application in the work
developed in this thesis. In this work, the prior distrilbutis updated sequentially in order to
systematically merge experimental data sets and hencedhapooximation of the complete
distribution, rather an approximation for MAP, is needetie parameter estimation method in
this work places high priority on as closely estimating thebability distributions under con-
sideration as possible without the assumption of Gaussgnhiition. This will allow proper
representation of the information extracted from the expental data. Therefore M-H algo-
rithm was chosen for implementation even though there £xismputationally more efficient

choices of MCMC.

0.15 02
0.1 i=5000 I
0.1} i=5000 1
f
0.05
-10 0 10 20 -10 0 10 20

Figure 4.2: Metropolis-Hastings Algorithm vs. Simulatedr®&aling. The true target distribu-
tion form is denoted with a solid black curve and the histoggayenerated from the Markov
Chain using the two MCMC methods are shown as well. The pandhe left show the
Metropolis-Hastings Algorithm generated Markov Chainstbgram and the panel on the right
show the Simulated-Annealing generated Markov Chain®gram [2].
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4.2.1 Proposal distribution | : Gaussian distribution

The proposal distribution in MH needs to cover the entirgagadistribution’s probability space,
such thatg(9) > p(@| D) for all §. When using Gaussian distribution, this specification can
be easily met by choosing the standard deviation to be wideiginand by multiplying the
distribution with a constar®. Using the Gaussian proposal distribution, consider apprating

the first posterior distribution of, of FFL model,p(«, | D;), where the prior distribution is
U(0, 1) such that,

1 ifo<a, <1,
po(f) = (4.4)
0 otherwise

In the first step, computing is straight forward because the prior distribution termhefturrent
sample and the future sample are equal to each other andsdseceanputed. However, for step
E2, where the prior distribution is set equal to the appration of the first posteriof; (D | o),
calculation of the acceptance probability is a bit more clicaped. Calculation of acceptance
probability requires the information regarding the histog of the Markov chain, in particular
the bin-index and the number of elements within the bin. A MAB® program that approxi-

mates the value of prior distribution function is shown el@ couple of approximations take

Program 4.1 MATLAB program that approximates the value of prior distiilonp,. ().
% approximating the posterior-prior distribution
[n,x] = hist(theta_v(:,1),20);
% generating new sample from proposal distribution
theta_new = Q *(0.5 + randn +*sigma);
while x(i) >=theta_new
% determining the index number where the new
% sample belongs
i = i+l

end
prior(theta_new) = n(i);

place during the implementation of the M-H algorithm. Thetarally, the approximate distribu-
tion from M-H algorithm will converge to the target distrifoen only if the number of samples

is infinite. However, in practice, only a finite number of sdespare used. The second approxi-
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mation is the one shown in the program above where the valtlegirobability distribution is

numerically approximated using tiést  function in MATLAB®.

4.2.2 Proposal distribution Il : a priori distribution

The proposal distribution for M-H can be chosen to be thergtistribution. In other words, if

the following posterior distribution needs to be approxiedg

p5(9|DH) o L(9|DH) pﬁ—l(e) K = 1’27. .. 7]{; (45)

~ [p(Di[0) p(0) db’

the proposal distribution is,

q(0) := pu—1(0) (4.6)

By the above definition, the acceptance probability of ramdamples for approximation step

E. is calculated as follows.

o = min |y, 200100 a(6°7Y)
= ) q(g(i)) pﬁ(@(i—l) ‘ Dn)
= min -1 LY | D) psa(6V) ) 2 Pe—1(00Y)
U Pe-1(69) L0 | Dy) pe1 (06 ] 2
[, L(6V]D,)
= min L 7 D, (4.7)

whereZ = [p(D, |0)p(#)db. Notice that by using (4.6), the acceptance probabilityrity o
dependent on the likelihood values as a function of the atirr@lue of the proposed parameter
value. The proposal distribution is updated along with thergdistribution after each step of

evaluating the posterior, E1, -, Ek.
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4.3 GibbsSampler : Outer Level Estimation

In this part of the work, to approximate the multi-dimensibjoint probability distribution of
parameters of a nonlinear process, a variant of MCMC callith$ssampler is used. This par-
ticular MCMC approximation method is a special case of Maiis-Hastings algorithm where
the proposal distribution(#), is defined specifically as the set of distributions of indial
parameters conditional on the values of the rest of the petery Using the Gibbs sampler,
the marginal distributions of individual parameters arlewated from which the maximura
posteriori expected value and standard deviation of the distribateme calculated [40]. To
illustrate this algorithm, consider the FFL genetic retpuhanetwork model with the parameter
vector,d = [ay, o, Kuy, K., K,.] € R°. For example, the marginal probability distribution of

o, is computed by a series of integrations of the joint proligtulistribution as follows.

p(ay):/ / / / ploy, oz, Kpyy Kooy Kyy) dag, dKGy dK, dK,, (4.8)
Kyz Tz Kwy Qi

The equation contains integrals that are often difficultdlves analytically. However, a Gibbs

sequence with Markov propert{/aéo), ozél), e ,aéM)} (whereM is the length of the Gibbs se-

guence) can be generated so that the marginal distributidnts statistical properties can be

approximated as in (4.2).

In order to implement the Gibbs sampler, the following setafditional probability distribution

functions are needed,

p(O‘y |a, Koy, Ky, KyZ)7
ple oy, Ky, Koz, Ky2),
P(Kay |y, 0z, Koz, Kyz),
P(Eaz oy, 0, Koy, Ky2),

p(Kyz |ay7a27Kry7 rz) (49)
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With many dynamic process models, there is no general solfitr calculating the conditional
distributions of process parameters. Previous work onguibbs sampler assumed Gaussian
distribution, with some heuristic values for its mean arahdard deviation, as the conditional
distribution of individual parameters [8, 21]. This assuimp may apply to linear processes, but
becomes questionable when dealing with nonlinear proses$awever, these conditional dis-
tributions can be numerically approximated using Metrapblastings algorithm, which forms
theinner level of iterations of the algorithm proposed in the nextisec and the Gibbs sampler
forms theouterlevel of iterations. The following illustrate the steps abBGs sampler using FFL

example.
1. Assign initial values” K K9 K for ov., K,,, K., K,,. .
2. Repeat the following steps foe=0,--- , M — 1

3. Approximate the conditional distribution of, by applying the experimental data sets
to sequential M-H algorithm. Generate a vah\a&“) by randomly sampling from the
conditional distribution

ol ploy [ o KO KD KW Dy, Dy). (4.10)

4. Approximate the conditional distribution aof, by applying the experimental data sets
to sequential M-H algorithm. Generate a vah 1) by randomly sampling from the
conditional distribution

agz+1) ~ pla | Q0D g0 @) @

y ? xy xz) yz

Dy, -+, Dy). (4.11)

5. Approximate the conditional distribution @f,, by applying the experimental data sets

to sequential M-H algorithm. Generate a valls ) by randomly sampling from the
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conditional distribution

K(l+1) ~ p(Kyy | a(l+1) (2+1) K:,(DQ, Kéi)7D17 -, Dy). (4.12)
6. Approximate the conditional distribution &f,. by applying the experimental data sets
to sequential M-H algorithm. Generate a valig:™ by randomly sampling from the
conditional distribution

K(H—l) ~ p( - | a(l-i—l) a(i-l—l) K(H—l) K()

z sty 0 Pryzo

Dy, , Dy). (4.13)

7. Approximate the conditional distribution &f,. by applying the experimental data sets
to sequential M-H algorithm. Generate a valﬁé’;“) by randomly sampling from the

conditional distribution

K@Siz-i-l) -~ p( ” | a(z-i—l) agi+1)7K;;+1)’ Kiiz-l-l)’Dl’ . ,Dk)- (4_14)

8. Update the count=i + 1.

A single Gibbsstepconsists of updating the values of the random variables @nge{=®, 3©,
O — {20 yM M1 is one step). Within a single Giblstep there arem number of
Metropolis-Hastings approximations of posterior digitibn, wherem is the length of the pro-
cess parameter vectdr, Within a single M-H approximation of posterior distribom, # evolv-
ing posterior distributions are computed. Therefore dliea large number of different instances
of conditional distribution functions being calculated ilghusing the Metropolis-Hastings &

Gibbs sequence approach.

The experimental data sets are used more than once in tleesgoms. In each Metropolis-
Hastings approximation step, the conditional distributad the parameter values changes, and

therefore the subsequent conditional distributions mastant for this. For example, we can
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compare three conditional distributions that are apprexad as follows,

1. fi= f(Oéy) = p(Oéy|Oéz = ¢27K:By = 03, Koo = ¢4, Kyz = @5, D1, - >Dk)
2. f2 = f(az) :p(az‘ay = P2, Kmy = @3, sz - 3047Kyz - 9057D17 e 7Dk)
3. f3 - f(K:B ) :p<ny|ay = 1,0, = 8027sz - 9047Kyz = 9057D17 o 7Dk)

where¢ # . f; and f, are both functions ofv,, but computed using different sets of con-
ditions. f5 and f; have somewhat similar conditions, however they are funstiof different
parameters. Since the computational conditions are difteén these functions, the experimen-

tal datasetD,, - - - , Dy, can be used repeatedly without over-exerting its ‘infaroredatabase’.

As mentioned previously, a&/, the number of random samples generated, approacheke
sequence can accurately approximate the desired tardebuli®n. There are several ways
to determine finitel/ where a sufficient accuracy of the approximation is reacl&dilarly,
there are several ways of detecting convergence of the &pprtion agreement to a steady-
state distribution. Works by Gelfaret al[21] and Gelfand and Smith [22] suggest monitoring
distribution approximations from multiple independenbls sequences, and choosingto be
the point where the distributions formed by the multipleinbawith different initial conditions
appear the same. An alternative method of choogihg to implement the Raftery-Lewis cri-
terion, also known as binary-control, which determinesuakie of M/ corresponding to the
desired accuracy and avoids excessive sampling. The appusgs a two-state Markov chain
model by analyzing a single run of Markov chain of output esluFrom the two-state Markov
chain model, the length of the burn-in period is computedtarchumber of iterations required

to meet the specified accuracy can be computed [44].
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4.3.1 Multi-phase Gibbs sampler

When using Gibbs sampler, the rate of convergence of diffgparameters can vary signifi-
cantly. Some parameters will approach their steady-stataldition very fast, and hence in-
creasing the number of Gibbs iterations would result inigége change in the distribution of
the corresponding parameters. Since each Gibbs iteratidivided into multiple Metropolis-
Hastings steps that require a considerable amount of catipuoal cost, the parameters that
reached their steady-state distribution can be removexd fhe individual Metropolis-Hastings
approximations. This is achieved by fixing the distributiari converged parameters and only
updating the distributions of the remaining parameters.if&ance, if the distributions of pa-
rametersy, andca, reach their respective steady-states before the othex faeameters after
M Gibbs iterations were executed, then the approximatedinergrobability distribution of
P (o) andppa. (using theM samples(/) denotesPhase ) will have negligible difference
between the marginal probability distribution obtaineshfrexecutingz more Gibbs iteration,
P (ay) andpry(a.) (usingM + G samples(/]) denoteshase I). If the other three parame-
tersk,,, K,. andK,, did not reach steady-state by th&h Gibbs iteration, following additional

steps to the original algorithm discussed in the previooti@eare required as follows.
1. Repeat the following steps fo= M +1,--- , M + G

(i+1

2. Generate a value, ) by randomly sampling from the conditional distribution

aé”l) ~ p(oy) (4.15)

3. Generate a value!'™" by randomly sampling from the conditional distribution

al ) ~ py(as) (4.16)

4. Follow the Steps (4.12) to (4.14)

5. Update the count=i + 1.
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Using this semi-fixed distribution generated from previphase is essentially the same as gen-
erating a new MH conditional distribution because thos#ibigtions, having reached their re-
spective steady states, will not alter much with progressandom sampling. Each parameter
eliminated from M-H step for computing their conditionasttibutions will resultinl /m x100%
reduction in computational cost after the Phase I. This@ggr can be adopted in several phases

to further optimize the computational resources.

4.4 Sequential Metropolis-Hastings and Gibbs Algorithm

The previous two sections discussed the MCMC methods, MelissHastings algorithm and
Gibbs sampler. These two random sampling techniques agrated in order to approximate
multi-dimensional, asymmetric, multi-modal probabildistributions of parameters of nonlin-
ear dynamic processes. The proposed method uses a sebjapptizach to approximate the
full probability distributions of parameters without magiany assumptions about the shape or
variance of the probability distributions. By discarditg tmisleading assumptions that are only
applicable to linear processes, the method preservesftirenation available from different ex-
perimental runs in the form of probability distributionstbé process parameters. The following
two figures summarize the sequential approach taken inhb&d. Figure 4.3 illustrates the
outer level of iterative estimation where the multi-dimiensility of the probability distribution

is handled# denotes the parameter vector of dimensisii!; superscripti) denotes the Gibbs
index in the chain of random samples generated by the atgorisubscripy denotes the index
of the parameter vector. Figure 4.4 illustrates the innezller iterative estimation that approx-
imates the univariatposteriordistribution of the process parameters using multiple data.
This process is embedded in the Gibbs Sampler as a means putmthe conditional distribu-
tion required in the algorithm. The input of this flowchaxrin the outer level of iterations is
(e.g. thejth element in the vector df that is currently being considered in the Gibbs sampling
iteration). The prior distributiom,(#) (before applying any experimental data), is user-defined.

r indicates the index of experimental data set &nd the total number of available set&h)
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is the Metropolis-Hastings index in the current M-H Markdwam (not to be confused with the

Gibbs index(7)).

Initialize the parameter vector
(69, ... 69 ... 60
? 7 Vi ? 7

Yes

Chain converged?
Yes
’Y

Sample from the co‘nditional distribution

(Refer to M-H Flowchart)
95‘” ~ p(9j|9§1)7 T 79§2179§:11)’ T 791()i71)’ Dl:k)

Terminate

j=j+1

Figure 4.3: Flowchart of Gibbs Sampler for outer level ofateve estimation, where multi-
dimensional probability distribution of nonlinear prosggmrameters is approximateéddenotes
the parameter vector of dimensiétt*!; superscripti) denotes the Gibbs index in the chain
of random samples generated by the algorithm; subs¢manotes the index of the parameter

vector.
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[h] =1, prior = py(6;)

!

k=1

/n>k?k Terminate

T
v

No

> sample f[new] from ¢(#) |< [h] = [h+1]

No

Chain Converged *

(@D)rp1 . pld)
6 h] == 0P — 1]

[h] = [h+1] Yes

!

Compute «

No
No
Sample B ~U(0,1) @»
Y Yes

es
(D1 —
0;"[h] = O[new]

No

5 Yes

Chain Converged tk=Kk+1

new prior = p,(0|Dy,---,Dy)
new ¢(f) := new prior

Figure 4.4: Metropolis-Hastings Algorithm for inner lev& iterative estimation, where the
univariate conditional distribution gbosterior distribution is approximated. The conditional
distribution is required for implementation of Gibbs SasrplThe input of this flowchart from
the outer level of iteration ig (e.g. the element in the vector 6fis currently considered in
the Gibbs Sampling). The prior distributiop, (¢ (before applying any experimental data), is
user-defined.x indicates the index of experimental data among the multipka sets, where
k is the total number of available set#)] is the Metropolis-Hastings index in the current MH
Markov chain.
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Case Studies

The sequential Bayesian parameter estimation methodss$iedun the previous chapters is illus-
trated using three nonlinear biological systems - batanéatation, Feed-Forward Loop genetic
regulatory network and JAK-STAT signal pathway. Both psbé&d experimental data and simu-
lated data are used. The estimated probability distribstaf the process parameter vectors are
analyzed for identifiability, correlation among the paréeng and sensitivity of observations. It
is argued that estimating the full probability distributgoof nonlinear parameters allows im-

proved confidence in parameters compared to point estimates

5.1 Batch Fermentation Reaction

5.1.1 Single Parameter Estimation

In order to illustrate the inner-loop estimation methodhgsMetropolis-Hastings algorithm, a
single parametelys is estimated using the following assumptions: i) All thréste variables
are measurable, and ii) the valuesof, k,, k, andYpx are known, reducing the parametric
space from five dimensions to one-dimension. Thus, the pateamwector i’ = 0 / {p,, =

0.15, ks = 0.50, k!, = 0.25, Vpx = 0.20} = {Yxs}.

The prior distributionp, (Yys), is assumed to be uniform. Previous literature and expentkn
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edge indicates a lower and an upper bound’gp of 0 and1 respectively.

1 if0 < Yyg <1,
po(Yxs) = (5.1)

0 otherwise

With this prior probability distribution and likelihood fgction (the derivation is explained in
Appendix B), the M-H algorithm was applied to approximate fmal probability distribution

of Yy from six simulated data set®);, D, D3, Dy, D5 and Dg.

(Vs | fm = 0.15, ks = 0.5, k)p = 0.25, Y}y = 0.2, Dy, -+, Dy) (5.2)

The algorithm was run for 10000 iterations for each step @iyapg successive experimental
data. The first 5000 samples in each sequence were discardaait the ‘burn-in’ effect.
The evolving behavior of posterior distributions is clgallustrated in Figure 5.1. Starting from
Panel (A), the first posterior probability distributioneddy indicates the Markov Chain’s higher
affinity towards the region near the true value. In Panelt{t® approximated posterior distribu-
tion is shown to form a sharp peak close to the true valuecatdd by the solid vertical lines.
The range of x-axes of the sub-figures in Figure 5.1 was kepstaat in the0, 1] interval in

order to illustrate the dramatic evolution of probabilifgttibutions.

The variance of the probability distributions cannot becakdted straightforwardly as in the
case of Gaussian distributed random variables, becau$e a@istymmetrical distribution of the
parameters. Therefore, the approximated probabilityibigions are analyzed individually to
obtain the 95% HPD interval. Table 5.1 summarizes the 95% k@®vals of the estimated
posterior probability distributions as well as their exjgecmean values. After each successive
M-H step, the approximate posterior probability distribatshows higher confidence due to the

decreasing trend in the 95% Highest Probability Densityliiiaterval.
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Figure 5.1: Each probability distribution is normalizedtkat [ p(Yxs | D;) is equal to unity.
The vertical line at’ys = 0.25 corresponds to the true value of the parameter. Panel (A) cor
responds to thposteriorprobability distribution ofY’y g estimated using the first experimental
data setD;

Panel (A) p(Yxs | pm = 0.15, ks = 0.5, k', = 0.25,Yp, = 0.2, Dy),

Panel (B) p(Yxs | fim = 0.15, ks = 0.5,k = 0.25, Yy = 0.2, D1, Dy),

Panel (C) p(Yxs | ftm = 0.15, ks = 0.5, k) = 0.25, Y} = 0.2, Dy, Do, D3),

Panel (D) p(Yxs | ftmy = 0.15, ks = 0.5,k = 0.25, Y} = 0.2, Dy, -+, Dy),

Panel (E) p(Yxs | ptm = 0.15, ks = 0.5, k', = 0.25, Y} = 0.2, Dy, - -+, Dj),

Panel (F) p(Yxs | fim = 0.15, ks = 0.5,k = 0.25, Yy = 0.2, Dy, - - , D)
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The rest of the parameters were estimated using an anal@gppieach. This was done to
demonstrate that in the case of a single parameter protess|-H algorithm is good enough
to approximate the correspondipgsteriorprobability distribution from multiple experimental
data sets. Figure 5.2 shows the normalized distributioraohg@arameter. The expected mean
values and 95% HPD intervals are shown in Table 5.2. It is shtbatk, andkp have 95% HPD
intervals of relatively larger magnitude compared to the¢hother parameterg,,,, Yxs and
Ypx. This discrepancy can be attributed to the innate propéittyegamodel. It has been shown in
previous studies that the saturation constant parameftéine dMichaelis-Menten kinetic model
are theoretically identifiable in deterministic cases,dnetdifficult to estimate when the exper-
imental data are corrupt with stochastic noise [3, 27]. Es@nV-H algorithm is successful in
estimating the full probability distribution of these pareters from nonlinear stochastic time

series data with a small bias.

An interesting aspect of the single parameter estimatiorgug-H algorithm is that it does not
require an initial guess. A major disadvantage of tradélgrarameter estimation methods such
as maximum likelihood estimator (MLE) or nonlinear leagtiares (NLS) is that they require
an initial guess in order to start the algorithm. If there saeeral local minima for the objective
functions of MLE and NLS, then the choice of initial guessdoees critical to the estimation
result. However, in M-H algorithm, it only requires that tingial prior probability distribution,
po, is defined so that it contains the true value. In order to destmate this, following two dif-
ferent probability distributions of’xs were assigned to the initial prior probability distributio

and M-H algorithm was executed.

po(Yxs) = U(0,10)

pO(YXS) = U(—l, 1)

wherel{(a, b) indicates a uniform distribution betweerandb. For the approximation of each

successive posterior probability distribution, 10000atens were executed and the first 5000
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Table 5.1: The expected means and 95% Highest Probabilibsire(HPD) intervals of the
estimated posterior probability distributiols s using MH algorithm approximation.

Expected Mear 95% HPD Intervals
Lower Bound| Upper Bound

(V5| foms Kig, Koy Yoo, D1) 0.338 0.035 0.757
p(Yxs|tim, ks, K, Vi, D1, Ds) 0.278 0.086 0.466
(Yxs|tim, kg, Ko, Vi, Dy, - -+, Ds) 0.256 0.161 0.350
p(Yxs|ttm, ks, Ko, Yy, D1, -+, Dy) 0.251 0.223 0.290
p(Yxs|ttms ks, Ko, Yy, D1, -+, Ds) 0.251 0.234 0.273
p(YXS|Mm7ksak3—"7Y]/3X7D17 tee ,D()) 0.250 0.237 0.269

Table 5.2: The expected means and 95% Highest ProbabilinsiBe(HPD) intervals of the
estimated posterior probability distributionstfising MH algorithm approximation.

Expected Mear 95% HPD Intervals

Lower Bound| Upper Bound
p(pmlks, Kpy Yxs, Yy, D1y -+, D) 0.152 0.134 0.170
p(ks|tim, Ko, Yx s, Ypx, D1y -+, Dg) 0.488 0.360 0.607
Pk, ks, Yxs, Ypx, D1, -+, De) 0.220 0.056 0.399
p(Yxs|Mm,k55,k§3,pr,D1, Tt ,D()) 0.250 0.237 0.269
(Yo x|ty ks, Koy Yxg, D1y - -+, D) 0.201 0.190 0.213
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Figure 5.2: Normalized posterior distributions of the paeger vecto, approximated using
Metropolis-Hastings algorithm with 6 independently siated batch reactor data sets while
assuming that the true values of all other parameters angrkno

Panel (A) p(pm | ks = 0.5,k = 0.25,Yxg = 0.25, Y}y = 0.2, Dy, - - -, Dg)

Panel (B) p(ks | ptn = 0.15, k5 = 0.25, Yxg = 0.25, Y} = 0.2, Dy, - - -, D)

Panel (C) p(k‘p | Mm, = 0.15, ks = 0.5, Yxg = 0.25, YﬁX = 0.2, Dl, s >D6)

Panel (D) p(Yxs | ftmy = 0.15, ks = 0.5, k', = 0.25, Y} = 0.2, Dy, -+, Dg)

Panel (E) :p(YpX | o = 0.15, ks = 0.5, ]{ij =0.25,Yxs = 0.25, Dy, - - - ,DG)
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samples were discarded before using the remaining seqtenpelate the next prior probabil-
ity distribution. The comparative results are shown in Fégh.3. It is easy that as long as the
uniform distribution contains the true value, the algaritts successful. For the second row (in
Figure 5.3), the uncertainty of the order of magnitude ketbe estimation was increased by one
(i.e. interval (0,1) to interval (0,10)), and the approxtethposterior probability distribution still
pointed to an expected mean®£59, resulting in normalized error of 3.4%. Further simulason
with an even higher level ad priori uncertainty were tried and the estimation was found to be
equally good. For the third row, where the prior containsatieg region, which is physically in-

feasible because the yield coefficient cannot be negatiegroposed method was still effective.

5.1.2 Multiple Parameter Estimation

After confirming that conditional probability distributis can be successfully approximated us-
ing M-H algorithm, Gibbs sampler is implemented in order $tirmate the multi-dimensional
probability distribution of). The order of parameters estimated in Gibbs sampler wasgada

as follows

fom — kg — ky — Yxg — Ypx. (5.3)

The Gibbs sampler was run for 1000 iterations, with 3000 Migbathm iterations per param-
eter per Gibbs sampling step. The first 20% of the Markov secge generated using M-H

algorithm were discarded in order to eliminate the ‘burreiifect.

Figure 5.4 shows the plot of 1000 Gibbs samples drawnfpand the approximated marginal
distribution, p(p,, | D1, -+ , Dg). The expected mean is 0.177 with the 95% HPD interval of
(0.124,0.291). There are two distinct deviations from thee tvalue in the Gibbs sequence,
shown near the 500th iteration and the 650th iteration. &ldeviations give rise to a skewed

probability distribution for this parameter. This type syaametrical probability distribution is
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Figure 5.3: Normalized uniform prior distributions &f;s and the corresponding posterior
probability distribution obtained using MH algorithm. Theie value ofYxs is indicated by
solid vertical lines.

Panel (A) :pO(YXS) (0> 1) Panel (B) :p(YXS|:um> ksa k;% YI/3X> D1> Tt >D6)
Panel (C) po(Yxs) = (0, 10) Panel (D) :p(Yxs|tm, ks, kb, Y, D1, -+, Dg)
Panel (E) po(Yxs) =U(-1,1) Panel (F) p(Yxs|ftm, ks, kp, Ypx, D1, -+, Ds)
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characteristic of parameters in nonlinear processes.ekaisiple illustrates that even though the
added measurement noise is Gaussian, due to the nonlynefamitodel, the resulting estimated

parameters show non-Gaussian distribution.

When using MCMC sampling approach, itis important to deteenmow long the Markov chain
has to be in order to obtain desired accuracy in approximafibere are several ways of doing
this and monitoring the moving average of Markov chain is oh¢hem. It helps to deter-
mine whether the sequence has reached steady-stateuistribOnce the chain has reached
its steady-state, it is generally accepted that the chasnchaverged to the target distribution
with sufficient accuracy. The top panel in Figure 5.5 shovesrttoving average qf,, Gibbs
sequence and it is noted that there are slight initial flucina as the sequence explores the
parameter space and gradually settles to a steady-state. vAinother method to determine
whether a sufficient length of the Markov chain has been gaeeéris to monitor the behavior
of the approximated distribution at different iteratiodss the convergence is reached, the dis-
tributions approximated at increasing iterations willwhwegligible difference in their form. In
Figure 5.5, panels (C), (D) and (E) look almost identicalhwpbsitive skew, where panel (C)
is the approximated marginal distribution @f, using the Gibbs sequence from 200th iteration
to 600th iteration; panel (D) corresponds to the approx@shalistribution using the Gibbs se-
guence from 200th iteration to 800th iteration; and panglo@responds to the approximated
distribution using the Gibbs sequence from 200th iteratiootine 1000th iteration (The first 200
samples of the Gibbs sequence were discarded to removeuheifd effect). The constant-

shape trend demonstrates that the convergence of the shaimched around 600th iteration.

The parameters;x¢ andYy, ., demonstrated behavior similar to thatof. However, fork, and
k'», as mentioned in the single parameter estimation case sithfiicult to obtain comparable
accuracy of estimated values from the approximated mdrgnadability distributions. Thus,
it was necessary to execute the Gibbs sampler for larger euaihiterations in order to ensure

that these two parameters reached their steady-statddigin. This, however, requires a larger
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Figure 5.5: Moving average of Gibbs sequence corresponiding, and the approximated
marginal distributions computed using various portionthefsequence. Panel (A) corresponds
to the marginal distribution approximated using the fir§d 2@mples in the Gibbs sequence. This
portion of the sequence is discarded from considering theergence, in order to remove the
residual effect of the initial point of the chain. Panel (Byr@sponds to the marginal distribution
of approximated using 201st to 400th samples in the Gibbgesexp. Panel (C) corresponds to
the marginal distribution of approximated using 201st t6tGGamples in the Gibbs sequence.
Panel (D) corresponds to the marginal distribution appnated using 201st to 800th samples
in the Gibbs sequence. Panel (E) corresponds to the madjstebution approximated using

201st to 1000th samples in the Gibbs sequence.
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amount of computational time. Therefore, in order to redihechigh computational cost, the
Gibbs sequences corresponding to the paramgter¥’xs andY; . were eliminated from the
M-H algorithm steps that determine corresponding condialistributions. In other words,
the Gibbs sampler was paused once the steady-state camvergeconfirmed for the three pa-
rameters and the resulting probability distributions wiered as the full conditional probability

distributions as follows,

P (b | ko K, Yo, Vi, Diy- o+, Dg) = pU % (| kg, Kp, Y, Yx, Dy, -+, Dg)
(5.4)

pd (Yxs | tmy ks Kp, Yo, D1+, Dg) = pU 1% (Vs | i, ks, Kp, Y, D1, -+, De)
(5.5)

pg(YIIDX | s ks, kp, Yxs, D1, -+ Dg) = p(1:1000)(Y113X | s ks Kp, Yxs, D1, - -+, D)

(5.6)

wherep;; is the conditional distribution to be used in the Gibbs sanphase Il ang'10%
denotes marginal probability distribution obtained frdme first 1000 iterations of the Gibbs
sampler, which are shown in Figure 5.6. In Phase Il (i.e. &#gduence iteration 1001st and
onward), the M-H algorithm is no longer applied 4g,, Yxs and Y}, for individual approx-
imation of the full conditional distribution, instead ($.45.5) and (5.6) are used to randomly
sample the next Gibbs sequence value. Thus, Phase | refis éstimation process where all
five of the parameters were actively analyzed for full caodgl distributions using M-H algo-
rithm and Phase Il refers to the estimation process wherelordnd k), are actively analyzed
for conditional distribution. An additional000 iterations of Gibbs sampler were executed in

Phase Il for the convergence kf.

Figure 5.7 shows the joint distribution contour plotsfofising the Gibbs sequence from both

Phase | and Phase Il. In order to visualize the five-dimemsjgnobability space, the parameters
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are paired up to portray two-dimensional joint distribngdnstead. The solid lines represent
the true values of the process parameters. For panels (iiipritie highest probability region
is tightly clustered near the cross point of the solid lind$is indicates that the parameters
tm, Yxs andY} ., were estimated with higher accuracy compared to the otranpeters where
larger distributions along the parameter space are demad@dt For instance, in panel (x), the
joint distribution ofk; and k%, shows multiple high probability regions, agreeing withypoeis
studies on the difficulties of estimating the Monod congasing stochastic experimental data.
From studying panel (iii), it can be inferred that the yietibfficient parameter®ys andY}
have an inversely proportional relationship, such thatwtie value ofY} , increasesYxs
decreases. It may be possible to use parameters that haug stirrelation with one another,
such as this pair, in optimizing the structure of the modelodeling a dynamic process is a
compromise between accurate portrayal of the true processimplicity of the model for com-
putational purpose. Therefore, it is beneficial to conduciterative analysis between the true
process and the proposed models in order to arrive at a pawmgos model. For instance, if a
numerical function ofY’x ¢ in terms ofY},, can be developed, the parameter space of the un-

structured Michaelis-Menten model (1.9) can be reduced free to four.

The maximuma posteriori estimate, the expected value and the 95% HPD interval of each
marginal distribution is shown in Table 5.3. With asymnepiobability distributions shown in
Figure 5.5, it is difficult to determine what is the best estienof the parameter. In any case,
as mentioned previously, it is difficult to summarize thegh@to a couple of representative

statistical values for asymmetric distributions.

5.2 Genetic Regulatory Network : Feed Forward L oop

In [10], four different candidates of FFLs were studied. Tdamdidate genes were obtained

from [20] where gene expression responses to twelve diftenevironment changes Baccha-
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Figure 5.7: Joint distributions of batch fermentation e parameters approximated using
Metropolis-Hastings algorithm and Gibbs sampler [Reduits) both Phase | and 1l were used)].
Each panel corresponds to the pair of parameters indicatéldebx-axis and the y-axis. The
region corresponding to higher probability is indicatedhvwblack (the higher end of the color
bar on the right) and the lowest probability region is intichwith white (the lower end of the
color bar on the right). The intersection of dotted linesrespnt the coordinates of the true

values of the parameter pairs.
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romyces cerevisiagere studied. Among the four candidate FFLs, FFL1 with X: G&CN4,
Y: Gene LEU3 and Z: Gene ILV5 performed the best in the teshefgoodness of fit for dy-

namic models. In this case study, the same FFL is used terdbeshe algorithm.

The gene expression level &f is not a state variable in FFL model and therefore it is regard
as an input variable with a known sequence. To simulate), random noise variabley(t)
with zero mean and variance?, was added to the experimental data from [20]. The initial
conditions ofY andZ as well as the parameter values were obtained from [10], evineee of
the parameter values were heuristically determined swdtpth= 5, = 1 andH = 2. The rest

of the parameter values are listed in Table 5.4. For the mdd&B) and (1.14), process noise
terms,v, (t) andv,(t) were added to each equation as follows to simulate the stdchmature

of the dynamic process.

d);,gt) = —o,Y (1) + B, f(X(1), Kxy) +u(t), (5.7)
di—?) = —o:Z(t) + B9(X(1), Y (1), Kxz, Kyz) + va(t), (5.8)

The sampling times were set at= 5, 10, 15, 20, 30, 40, 60 and 80 minutes (V = 8). The
equations were solved using ode45 function in MATLRRBNd to obtain the output variables,

measurement noise variables were added as follows.

ni(t) = Y()+nv(t),

ya(t) = Z(t) +nz(t),

whereny-(t) andny(t) are independent and Gaussian distributed variables withrmean and
variances? ando?, respectively. Using the parameter values in Table 5.4 hadimulated

input sequences, a total of seven experimental data se¢soobected. Each experimental data
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set is defined as,

D, =[Y(t1), -, Y(tn), Z(t1), -, Z(tn), X(t1),--- , X(tny)], i=1,2,3,4,5,6,7

(5.9)

Six of them,Dy, Dy, D3, D,, D5 and Dg, were applied to the algorithm to estimate the probabil-
ity distribution of process parameters and the last expantal data setl),, was used to validate
the estimation result. Figure 5.8 shows a simulated FFL serées of the input variabl& (¢)

and the two state variablé§(t) andZ ().

The initial priors for estimating full conditional probdity distributions using M-H algorithm,
po(#), were set to a uniform probability distribution between @ ar/(0, 1), for all five param-
eters. The likelihood function was derived in an analogqus@ach as the previous case study

and is expressed as follows.

. (5.10)
1 exp (Z:N_l (yi(t:) = Y (t:,0))*  (ya(ts) — Z<ti,9))2> ,

(2m)N2al - o a 20% a 20%

whereY (¢;) andZ(t;) are predicted output variables as a functiol.o total of 2000 iterations

of Gibbs sampler with 3000 iterations of M-H algorithm pergraeter per Gibbs iteration were
executed. The resulting Gibbs sequences are shown in FiglireThe left column shows the
plots of the Gibbs sequences versus the iteration indexiendght column shows the marginal
probability distributions of process parameters apprated using the sequences shown on the
left. The dotted lines denote the true parameter valuede b shows the summary of maxi-
muma posterioriestimate, expected mean and the 95% HPD interval obtainedtfre approx-

imate marginal distributions.

From Figure 5.9, it can be noticed thaty,; and Ky, have negative and positive skew. Both
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Table 5.3: The maximura posteriorj the expected mean, the normalized error and the 95% con-
fidence interval calculated from marginal distributionresponding to each process parameter
of batch fermentation reaction model.

Process Parameter L ks kp Yxs Yiy

Maximuma posteriori 0.153 0.591 0.005 0.195 0.189
—Normalized Error 0.020 0.182 0.979 0.221 0.056

Expected Mean 0.177 0.593 0.460 0.264 0.204
—Normalized Error 0.180 0.187 0.841 0.057 0.020

95% HPD Interval - Lower Bound 0.126 0.240 0.005 0.177 0.123
95% HPD Interval - Upper Bound 0.260 0.952 0.950 0.416 0.284

Table 5.4: The parameter vector value used in order to siedtee time series data of FFL
genetic regulatory network.

Process Parameter Qly Q, Kxy Kxz Kygy

Value 0.44 0.69 0.90 0.60 0.56
08 .
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Figure 5.8: The simulated data of FFL genetic regulatorywogt model. There are eight mea-

surements (denoted with x) of each state variablg) andZ(¢). The initial values of the state

variables (denoted with) are assumed to be known from the estimation reported in [X0})
is regarded as an input variable and its initial value is epbrted.
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distributions are characterized by asymmetric bimodatidigtions indicated by the presence of
shorter peaks adjacent to the dominant ones. Maxirayposteriorivalues and the expected
values are in good agreement with each other, as the madjstabutions have less asymme-
try relative to the marginal distributions of batch fermean process parameters. Also, it is
observed that the normalized error of estimation resuklatively smaller, indicating that the
algorithm was more successful for estimating the parameteFFL model compared to the

batch fermentation model.

Figure 5.10 shows the contour plots of process parameter gastributions. Similar to Fig-
ure 5.7, the parameters were paired up for easier visualizat the probability distribution that
exists in five-dimensional space. It is shown that the higpesbability region of each panel
shaded in black closely follows the cross-point of the ‘tvatie’ solid lines, demonstrating the
accuracy of the estimation. In this model, some correlatimong parameters can be inferred
from the joint probability distribution contour plots. Fmstance, the high probability region of
o, and K x form an inversely proportional relationship. And similahavior is noted between

the high probability regions ok x, and Ky .

In order to further investigate the accuracy of the estichg@ameters, a separate simulated
data set D) was used for verification. The verification data was sinadatithout process or
measurement noise in order to plot the ‘true’ measuremajadiories. Using the expected val-
ues in Table 5.5 and the known sequencé&(f) from Dy, the expression profiles faf(¢) and

Z (t) were predicted without process or measurement noise teheseTtrajectories were then
compared with the simulated data. The plot is shown in Figuté. It can be seen that by using

the estimated parameter values, the expression profilgsétptandZ(¢) are predicted with very

small error.
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Figure 5.9: Plot of Gibbs sequences for 2000 iterations hadrarginal distribution using of
each process parameter approximated using the corresygosetjuence. The dotted horizontal
lines correspond to the true value of each process paranmdrto simulate the experimental
data of FFL model.
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Figure 5.10: Joint distributions of FFL model parameterprapimated using Metropolis-
Hastings algorithm and Gibbs sampler. Each panel correlsptmthe corresponding pair of
parameters indicated on the x-axis and the y-axis. The megaesponding to higher probabil-
ity is indicated with black (the higher end of the color bartbe right) and the lowest probability
region is indicated with white (the lower end of the color barthe right). The intersections of
dotted lines represent the coordinates of true values qidhemeter pairs.
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Table 5.5: The maximura posteriorj the expected mean and the 95% confidence interval cal-
culated from each marginal distribution correspondinghprocess parameter of FFL genetic
regulatory network model.

Process Parameter Qy Q, Kxy Kxz Kygz

Maximuma posteriori 0.469 0.659 0.861 0.701 0.513
—Normalized Error 0.065 0.045 0.043 0.169 0.083

Expected Mean 0.461 0.644 0.871 0.641 0.565
—Normalized Error 0.049 0.066 0.032 0.068 0.009

95% Confidence Interval - Lower Bound 0.340 0.543 0.765 0.30424
95% Confidence Interval - Upper Bound 0.537 0.746 0.973 0.83849

Y(0)

Z(0)
o
N

|
0 10 20 30 40 50 60 70 80
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Figure 5.11: Using a known sequence of input variable) and the estimated parameters from
Table 5.5, the gene expression profile§'¢f) andZ(¢) were predicted. They are compared with
the simulated expression profile using the true parametaesa Solid line : true parameters.
Dotted line: estimated parameters.
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5.3 JAK-STAT Signal Transduction Pathway Model :
Partially Observable States

There is a single experimental data set available from teealure which consists of the input
time seriesy(t¢), representing the EpoR concentration profile and the twowswariablesy; (¢)
andy,(t) measured at= 0,2, 4, 6,8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60 minutes (V = 16).
The output variables are plotted in Figure 5.12, where “X\ate y; and ‘+’ denotey,. The
values ofa;, a3 anda,, were estimated in [42], using experimental data obtaineh {51] and
assumingr = 4.001 min, with Unscented Kalman Filter (UKF) estimation approachey are
reported to bei, = 0.0515 + 0.011, a3 = 3.39 £+ 0.882 anda, = 0.35 £ 0.092. The estima-
tion 95% confidence interval 060) was calculated assuming normal distribution of the preces
parameters. The trajectory of predicted output variab$asguthis estimated value is shown in

Figure 5.12 with solid and dashed curves.

Using these literature values, the prior distribution ofleparameter was assigned as follows

under the assumption that only the order of magnitude afnedééd parameters are reliable.

p0<a1) = U(0,0l), (511)
po(as) = U(0,10), (5.12)
po(as) = U(0,1). (5.13)

The likelihood function was derived in an identical manngsrpaevious case studies, assum-
ing that the measurement noise is distributed normally wéito mean and standard deviation
o = 0.1. This value was assigned by examining the disagreementbkaetthhe experimental data

and the predicted output calculated by using the paramegtposted in literature.

The Gibbs sampler was executed for 1000 iterations with M@ algorithm steps per param-

eter for evaluation of conditional distribution (The firdlbsamples of the Markov chain was
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Figure 5.12: The experimental data,andy,, obtained from [51] are denoted with’ and‘+’,
respectively. The output trajectory 9f (solid curve) andj, (dashed curve) are predicted values
calculated using the estimated values reported in [42].
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discarded to remove the ‘burn-in’ effect). Figure 5.13 shake joint probability distributions
of pairs of the parameter visualized by the three contouspl®he maximuna posteriorival-
ues are indicated with dotted lines. The higher probahiétyion is indicated by red and black
(corresponds to the color bar), and the lowest probab#ityan is indicated by white. The his-
tograms on the outer margin of the figures are the margingillition. The magnified view
of the marginal distribution of individual parameter ar@wh in Figure 5.14. The maximum
a posteriori expected mean and 95% HPD intervals are calculated andnsimoWable 5.6.
The approximated distributions af and a, converged to peaks which indicate that the uni-
form prior distribution was successfully assigned to conthe high probability region of the
parameter space. Furthermore, the estimated results\aghethe previous literature values, as
the normalized ‘difference¥'are0.109 and0.014, respectively. However, fai;, the marginal
probability distribution did not converge to a peak where kiighest probable region is easily

identifiable.

An interesting aspect about this model is that the statey #vaugh the JAK-STAT model has
been generally known for its unobservable states, the fat s, is actually observable. From
the measurements gf andy,, it becomes possible to compute the concentration profile of
x1(t) = y2(t) —y1(t), which is shown in Figure 5.15. The experimental profile ispared with

the predicted profile of, usingd = [0.0459,9.351, 0.355]. Itis easy observe that the two values

are in good agreement.

5.3.1 Comparison With Literature Parameter Values

For further investigation, the estimated parameter vecham literature and those from the
proposed Gibbs algorithm are examined in order to deterihigie ability to reliably represent

the given experimental data. The three vectorsdare: [0.0515, 3.39, 0.35] (literature value),

9The author does not wish to use the term ‘error’ in this patticcase, because the previous literature value is
also an estimation, after all.
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Figure 5.13: Joint distributions of JAK-STAT model parasrstapproximated using Metropolis-
Hastings algorithm and Gibbs sampler. The data used foatiadysis is the experimental data
reported in previous literature. Each contour plot panetesponds to the corresponding pair
of parameters indicated on the x-axis and the y-axis. Themegprresponding to higher proba-
bility is indicated with black (the higher end of the colorband the lowest probability region
is indicated with white (the lower end of the color bar). Tratdd lines represent the maxi-
muma posterioriof the estimated probability distribution of true valueslodé parameter pairs.
The histograms on the outer part of the figure represent theaimated marginal probability
distributions identical to Figure 5.14.
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Figure 5.14: Approximated marginal distribution of JAK/AITprocess parameters obtained
from 1000 Gibbs sampler iterations. Each Gibbs iteratiomsisied of inner iteration of MH
algorithm of 1000 samples per experiment per parameter.eXpected mean is denoted with
solid vertical line on each panel and the dashed verticaldienote the maximum posteriori
value.
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Table 5.6: The maximuna posteriori the expected mean and the 95% confidence interval
calculated from each marginal distribution correspondiaipe process parameter of JAK-STAT
signal transduction pathway model.

Process Parameter ay as ay
Maximuma posteriori 0.0459 9.351 0.355
Expected Mean 0.0509 6.004 0.460

95% Confidence Interval - Lower Bound 0.0144 0.682 0.137
95% Confidence Interval - Upper Bound 0.0928 9.942 0.962
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Figure 5.15: The concentration of (¢) is computed from the experimental datayeft) and
y2(t) is denoted with "0’ and the predicted (¢) is shown with dotted line.
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0, = [0.0459,9.351,0.355] (maximuma posterior) andf; = [0.0509, 6.004, 0.460] (expected
mean). Using these estimations, the output profiles areqteeldby solving the state equations
and output equations. The predicted trajectories are shofigure 5.16. Using the predictions,

the sum of squared errors are calculated and presentedlm3.ab

In Figure 5.16, the output profiles predicted using the diffiéd vectors show similar trajecto-

ries even thougli; estimates are quite different. The scattering of the pteditrajectories is

lesser in magnitude compared to the scattering of the expatal data points. Therefore, the
likelihood values and the sum of squared errors, the qadingtrepresentation of the disagree-
ment between experimental data and the predicted dataxam@reed. It can be concluded that
by usingb,, in conjunction with the model equations, the experimetiaéd are best represented.
However, it is difficult to reliably estimate the confidenogarval of nonlinear process parame-

ters from a single data set.

The rather large disagreements between the three estivaltex$ ofi; can be further analyzed

by conducting sensitivity analysis of the model. If by vawythis parameter value, no significant
variation in predicted output can be detected, then one @aclede that the observations are in-
sensitive to this parameter. Therefore, it can not be estidna® given vector of parameters may
be identifiable with some sets of experimental data but mapfe unidentifiable if the mea-

surement noise is increased. It can also be inferred thadémgifiability of process parameters
is not an absolutely definable quality but depends on thdtgudlthe data (e.g. noise variance,

amount of sample points).
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Figure 5.16: The output variablgs andy, are predicted using three different estimation of
JAK-STAT process parametenf%l; = [0.0515, 3.39, 0.35] (literature value, shown in blue dashed
lines), 6y = [0.0459,9.351,0.355] (maximuma posteriori shown in green dotted lines) and
05 = [0.0509, 6.004, 0.460] (expected mean, shown in red solid lines). The experimelatal is
denoted with ‘X'.

Table 5.7: Likelihood values and sum of squared errors tatled for different estimates of JAK-
STAT process parameters using the experimental data set.sétg of likelihood values were
computed using different noise varianee,0.1 and 0.014;, = [0.0515, 3.39,0.35] (literature
value), f, = [0.0459,9.351,0.355] (maximuma posterior) andf; = [0.0509, 6.004, 0.460]
(expected mean)

| 6 [ &% | 6 |
Likelihood (¢ = 0.1) [ 1.807 x 10% [ 1.923 x 10% | 1.227 x 10%
Likelihood (¢ = 0.01) 0 0 0
Sum of Squared Errors  0.0025 0.0023 0.0036
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5.3.2 Quantitative Parameter Estimability and Sensitivity Analysis:
Comparison with PDF
In order to study how sensitive the observed output varsahte with respect to the change in

parameter value, a preliminary result of sensitivity aselys done by computing the sensitivity

coefficient matrix as follows.

Oy Oy O]
8&1 8a3 8a4
(5.14)
O Oy Op
_8&1 8a3 8a4_

The partial derivatives are approximated by finite-diffexe method with respect to the previ-

ously reported parameter estimatiéng [a,, as, a4).

Jy; . y’i|0-90aj - yz‘|1.10aj

(5.15)

wherei = 1,2 andj = 1,3,4. The computed values are used to illustrate their relatigg-m
nitude to each other in Figure 5.17. In the top panel, the bars correspond t@jﬁ, the green
bars correspond tég—; and the red bars correspondgaﬁ4 at each sampling time. The bottom
panel, analogously correspond to partial derivativeg avith respect to the process parameters.
It is shown that the partial derivatives gf andy, with respect tai; are very small compared to
the partial derivatives with respect 49 anda,. Therefore, it is shown that varying does not
affect the output as much as whenor a, are varied. Such observation cannot be made readily
when using traditional parameter estimation approachesewine distribution of parameters is

assumed to be Gaussian and only the point-estimate is eldtain

Using the proposed algorithm, the entire probability disition function is estimated, from

which, the sensitivity of certain parameter can be diagdagelitatively through examining
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the relative distribution of each parameter. This is dertrated in Figure 5.18, which show
the approximated marginal probability distribution obtad through simulated data sets of six
independent experiments. The x-axis of each panel was fixieia given order of magnitude
to demonstrate the relative ‘scattering’ of each margirsdtithution corresponding to their order
of magnitude. For instance, is in the10~! order of magnitude and the corresponding panel (A)
has a fixed axis g0, 0.1). To demonstrate this scattering of asymmetric probakdiiyribution

function in quantitative terms, a ‘coverage-ratio’ of eai$tribution was calculated where,

argmax p(ay| Dy, -+, Dg) —argminp(ai|Dy, - -+, Dg)
ai

CR, = — , (5.16)

argmax p(as| Dy, - -, Dg) — argmin p(as|Dy, - - - , Dg)
CR; = s ot s , (5.17)

argmax p(ay| Dy, -+, Dg) — argmin p(aq| D1, - -+, Dg)

CR, = = . (5.18)

The resulting”' R values ard).263, 0.859 and0.125, for ay, as, as respectively. Thus, it is quan-
titatively shown that probability distribution af; has the widest relative width, compared to
other two parameters. This observation can be directhetated to the smaller degree of sen-
sitivity of a3 shown through the sensitivity analysis. Subsequentlg,d¢bnveys the fact that

is not easily estimated with a reliable confidence interviéhwomparable degree of accuracy

compared to the other two parameters.

The parameter estimability analysis is further examined\atuating the scaled sensitivity co-

87



Chapter 5
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Figure 5.17: Sensitivity coefficients calculated using fimi#e difference method shown in
(5.15). The top panel corresponds to the partial derivatofe;; and the bottom panel corre-
sponds to the partial derivatives gf. The blue bars denote partial derivatives with respect to
aq; the green bars denote partial derivatives with respeat;t@and the red bars denote partial
derivatives with respect t@,. The horizontal axis represents the sampling time and theak
axis represents the value of the partial derivatives.
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Figure 5.18: Approximated marginal distribution of JAK/ATsignal transduction pathway
model parameters. The probability distributions are ndized and plotted in a window of
[0,O0(a;)] x [0,20/O(a;)] wherei = 1,3, 4. The dotted lines represent the uniform prior distri-
butions ofay, as, as, U(0,1),U(0,10),U(0,0.1), respectively.
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efficient matrix, which is expressed as follows.

2(0)
_ Z(1)
7 = , (5.19)
Z(N —1)
[(Giom  bom |
m g, mog," "
Z(c) = 5 gy : : (5.20)
01 O, O 0N
T lt=te T T Ty, t=te
L TIm 091 Tlm aek _
where{0,,--- ,0,} are the model parametersy,, - -- ,7,,} are the output variablesto, - - - ,

ty_1} are the sampling times arng is either guess or literature parameter value. The rank of
the orthogonalized scaled sensitivity coefficient matixjs equal to the number of estimable
parameters [55]. Also, the relative ease of estimabilityloa computed, such that the parameter
corresponding to the column d&f has the largest magnitude (sum of squares of the element)
is the most estimable. The rank of orthogonalizéds equal to 3 for the JAK-STAT signal
transduction pathway model, conveying that all 3 of the peters are indeed estimable. The

magnitude o7 is M = [26.09, 25.02, 26.29]. Such that the order is

M(3) > M(1) > M(2), (5.21)

where M (i) is theith element in the vector. This rank of parameter estimgbélgrees with
the rank of relative ‘coverage-ratio’ of the approximatearginal probability distribution. Such
that the parameter that is the easiest to estimate have #ikesthcoverage-ratio’ (have the most

narrow relative distribution), which conveys the highenfidence in the parameter value.
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5.3.3 Effect of Initial Conditions on the Algorithm’s Performance

Within the scope of this thesis and its purpose of using theM@Csampling methods, the
Gibbs sampler has been shown to be affected by the initiakval the chain. This is similar
to the gradient-search methods for parameter estimatiafirtg to get stuck in local minima
depending on the initial guess. However, MH algorithm antlbSisampler do not have the
problem of getting ‘stuck’, instead the rate of convergemeg be reduced so that more iterations
are required in order to successfully approximate the ddsarget distribution. In order to study
the effects of initial conditions, the JAK-STAT signal tetuction pathway model parameters

were estimated using four different chains with differemtial conditions.
1. 6% =10, 0, 0]
2.6 =10, 0, 1]
3. 6 = [0, 10, 0]
4. 6\ =10, 10, 1]

Since the order of the Gibbs iteration i ‘— a3 — a4’ the starting value of the; does not
affect the behavior of the chain; it gets over-written dgrihe first step of sampling from con-
ditional distribution ofa; givenas, ay and the experimental data set. The experimental data set
used in this case study is identical to the one used in prewseation - published real experi-
mental data. The initial conditions were chosen such that #il start from the far corners of

the two dimensional parameter space(f10] x [0, 1] wherea; anda, belong to.

The algorithm was executed for 1000 iterations for all foithe chains and the moving standard
deviation is calculated. The idea behind this analysis iegimple. If the variance ([standard
deviation}) of the samples from each individual chain and the variarfdb@ samples from
all of the chains converge to each other, this indicates ttiatchain has reached its steady
state. In order to illustrate this point, Figure 5.19 shomes four individual standard deviation

computed using each chain and also the standard deviatioputed using all of the samples.
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The horizontal axis indicates the iteration index at whioh moving standard deviations were
computed. For instance, at iteration 44, each individuatingpstandard deviation is computed
using the chain samples from 1st iteration to 44th iteratfard for the overall moving standard
deviation is computed using the chain samples from 1st tb ddtation of all four chains (so
the pool of which the standard deviation is calculated ig ttmes larger). Each row in the
figure corresponds te,, a3 anday respectively. The values corresponding to chain 1, 2, 3 and
4 are indicated with blue, green, red and aqua solid linggeively, and the solid black lines
indicate the overall moving standard deviation. The restiinoving standard deviations is
split up into two sections, where the first section corresisdo the moving standard deviations
computed up to the 50th iteration, and the second sectioesmonds to the moving standard
deviations computed from the 51st iteration to the 100@#fatton. This is because after about 30
iterations, there is hardly any differences among the ngpstandard deviations, and therefore
the emphasis was made on the first 50 iterations. The figuresites that regardless of the initial
conditions, the chains promptly converge to their steadiestalue. It is predicted that similar
result will be obtained, if the order of the Gibbs iteratienchanged, so that; is not the first
random variable to be sampled, and the initial value,ofrere to be varied. This insensitivity to
the initial condition is a significant advantage to the prgabalgorithm compared to the other

gradient search based parameter estimation methods.
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Figure 5.19: The moving standard deviations of four diffeidarkov chains with starting initial
conditions|0, 0, 0], [0, 0, 1],[0, 1, 0] and[0, 1, 1] are indicated with blue, green, red and aqua
lines, respectively. The heavier black solid lines indécthie overall moving standard deviation
of all four chains. Each row corresponds to parameteds anda, from top row to bottom row.
The first column corresponds to the moving standard deviattalculated up to 50th iterations,
and the second column corresponds to the moving standardtideg calculated from 51st
iterations up to 1000th iterations.
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Conclusions and Future Wor k

6.1 Conclusions

e In order to estimate parameters of biological processeéfithve the tendency to yield data
sets with small number of sample points and irregular sampdevals, Bayesian param-

eter estimation method was used.

e The Bayes Rule is adept at incorporating a priori informatigth the experimental data
to yield posterior probability distribution of the parameestimation. This characteristic
was used to handle multiple experimental data sets and aiexitbe uncertainty in the
estimation. Posterior distribution from each experimeaswsed as the prior distribution
for the next estimation step. This sequential updatinggxtace allowed the final proba-
bility distribution of the parameters to be conditional dhad the data sets, providing a

systematic method to merge information from multiple sesrc

e The complex posterior distribution obtained through Bagete is often analytically in-
tractable. Thus, a random sampling method called MarkovwrCMante Carlo was used
in order to numerically approximate various probabilitgtdbutions. Two different in-
stances of MCMC were implemented, Metropolis-Hastings jMigjorithm and Gibbs

Sampler.

e MH algorithm was used to approximate the univariate coadél probability distribu-
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tions of process parameters. The approximated distribsitieere calculated under the
assumption that except for a single candidate parametepttier parameter values are
conditionally known. MH algorithm was executed in conjuantwith the Gibbs Sam-
pler, and made up the inner level of iterative approximasitaps. Gibbs Sampler made
up the outer level of iterative approximation steps. Thege MCMC sampling meth-
ods, implemented together, approximated the multi-dinoeas probability distributions

of nonlinear process parameters.

e The confidence interval of the parameter estimates is addastraightforwardly from the
full probability distribution. The overall shape of the glisution conveyed that the com-

mon Gaussian distribution assumption of nonlinear propassmeters is incorrect.

e The shape of the full probability distribution agrees welthvconventional sensitivity
analysis, and estimability analysis, thus providing aarakitive framework for analyzing

nonlinear processes.

e The choice of initial guess of the parameters did not affeetgerformance of the pro-
posed algorithm as heavily as it does on conventional pasnastimation method such

as Maximum Likelihood Estimation or Nonlinear Regression.

e The high computational cost of MCMC was reduced by implemgntulti-phase es-
timation of the Gibbs Sampler. As some Markov chains cooadmg to some of the
parameters in the parameter vector converge faster todfegidy-state, these chains were
removed from the inner level of iterations. Each paramedsraved from the estimation

procedure resulted in a reduction of computational cosit/ay x 100%.%°

0m is the length of the parameter vector
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6.2 FutureWork

6.2.1 Further Investigation of the Algorithm

In this thesis, a heuristic approach of estimating the grdibadistribution of nonlinear process
parameters using Gibbs Sampler in different phases wass$ied. This approach is successful
in reducing the large computational cost when there is &ldigcrepancy between the rates of
convergence among the parameters. However, there areditéetions that a further research
endeavor may explore to address this discrepancy. Fonicestéhe order of the parameters sam-
pled using the Gibbs Sampler in the case study of Batch fetatien reaction model was fixed at
m — ks — kp — Yxg — Ypx. Itis interesting to note that the two of the parameters dnat
notoriously harder to estimate are placed in the earlieitiposand one can investigate whether
putting the parameters with higher estimability beforethandk p will result in smaller uncer-
tainty in the estimated parameters. A preliminary studyshthat ak » value that maximizes the
likelihood function of the model is sensitive to the vamatiin the other parameters. This is in
contrast to the parametgy, where the likelihood maximizing value of this parameterssinot
show wide variation when the parameters of other valuesteeged, including». Therefore,

if these parameters that are sensitive to the other pareshesgiations are placed in the latter
part of the sampling, it will allow the other parameters ttabish relatively more accurate posi-
tions in the parameter space, thus resulting in more accastimation of the sensitive-to-others

parameters.

6.2.2 Experiment Design

The uncertainty of the parameter estimates are conveydwlprobability distribution estimated
through the approach discussed in this thesis. The qudlihealata sets used in the case studies
was poor due to their irregular sampling and small numberatd ghoints. From studying the
variance of the estimated distribution and the quality ef data, one can derive a correlation

between the two, by coming up with quantitative criteria ifoegularity and sparsity of data

95



Chapter 6

sets, and the normalized variance of the distributions efpéwrameters. If the total number of
samples during an experiment is knoapriori, then it is conceivable to think of developing an
optimal sampling scheme to obtain a “desired” parametériloigion. This is part of our future

work.
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Appendix A

Experimental Data Simulation

Simulating the experimental data of nonlinear process siggular sampling time starts with
the time vector T, wher@ < T < T,... In order to simulate the irregular sampling time,

T € RV, MATLAB ® ‘RAND’ function is used, whereV is the number of samples.

Program A.1 MATLAB program that simulates nonlinear process experitakedata with ir-
regular sampling time. ‘k’ = number of experiments, ‘thetgbarameter vector, ‘N’ = number
of samples, ‘T’ = sampling time, ‘init’ = initial conditionfahe states, ‘sigma’ = white noise
standard deviation, ‘Tmax’ &,,,x.

global N T theta sigma

for i = 1:k
T = sort([0;rand(N-1,1)] * Tmax);
sol = ode45(@(t,x) MODEL_ode(t,x,theta), [0 Tmax], init);
states = deval(sol,T)’;
y = states + randn(size(states)) * sigma,
ExpData(:,:,i) = v;

end

‘MODEL _ode’ is a user-defined MATLAB function that handles the rigidle of the differential
equation. Following are the functions for batch fermeptatnodel, FFL model and JAK-STAT

signal transduction pathway model, respectively.

Program A.2 MATLAB function that handles the ordinary differential exjions of batch fer-

mentation model.
function dxdt = MODEL_ode(t,x,theta)

mu = theta(l) *x(2)/(theta(2)+x(2)) * (1-x(3)/theta(3));
dxdt = [mu *x(1);
-mu= x(1)/theta(4);

theta(5) *mu x(1)];
end
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Program A.3 MATLAB function that handles the ordinary differential exiions of Feed-
Forward Loop genetic regulation network model.
function dxdt = MODEL_ode(t,x,theta)

Ly =1
_z = 1;

T W W
o

dxdt = [-theta(l) *y(1) + ..

B_y* ((FFL_X_real(t)/theta(3))."H)/...
(1+(FFL_X real(t)/theta(3)).”H);

-theta(2) *y(2) + ...
B_z* ((FFL_X_real(t)/theta(4))."H)/...
(1+(FFL_X_real(t)/theta(4).”H);

((y(D)/theta(5))."H)/(1+y(1)/theta(5))."H)];

end

Program A.4 MATLAB function that handles the ordinary differential exjions of JAK-STAT
signal pathway model.
function dxdt = JAK_STAT_ode(t,x,theta)

global tao;

if (t<tao)

dxdt = [ -theta(l) * X(1) * EpoR(t) *60 ;
theta(l) * x(1) * EpoR(t) *60 - 2 *x(2)2;
-theta(2) *x(3) + x(2)°2;
theta(2) *x(3)

I;

else

dxdt = [ -theta(1) * X(1) * EpoR(t) =*60...
+ 2xtheta(3) *x(4);

theta(1) * x(1) * EpoR(t) *60 - 2 *x(2)2;
-theta(2) *x(3) + x(2) *x(2);
theta(2) *x(3) - theta(3) *X(4)

I;

end
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The simulated data sets of each model are shown in FigureFigire A.2 and Figure A.3,

respectively.
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Figure A.1: Simulated data sets of Batch fermentation reachodel used in this thesis. The
parameter vector value used for simulatiod is [0.15, 0.50, 0.25, 0.25, 0.20]. The blue 'x’s
correspond t@'y (¢), the green 'x’s correspond Gs(¢), and the red 'x’s correspond Op ().
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Figure A.2: Simulated data sets of Feed-Forward Loop genegulatory network model used in
this thesis. The parameter vector value used for simul&i®r- [0.44, 0.69, 0.90, 0.60, 0.56].
The blue lines correspond t8(¢), the green lines correspond Yg¢), and the red lines corre-
spond toZ(t).
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Figure A.3: Simulated data sets of JAK-STAT signal transiducpathway model used in this
thesis. The parameter vector value used for simulatioh is [0.0515, 3.39, 0.35]. The
blue lines correspond tg,(¢), and the green lines correspondgt). The first six sets,
D1, Ds, D3, Dy, D5, Dg, were used to illustrate the proposed algorithm and thedatt set,
D+, was used to verify the estimated values.

107



Appendix B

Derivation of Likelihood Function for

Nonlinear Dynamic Process

The likelihood function of a nonlinear dynamical model istaibed from assuming that the
states are deterministic variables and that the measutamee is Normally distributed [35].
For instance, the probability of observing the first expental data set)),, given certain values

for 6 is desired, then the likelihood function is expressed devd.

LO|Dy) = pyi(to,0), - ,yi(tn-1,0), - ,yq(to), -, yq(tn-1,0)|0) (B.1)

[Tt 0)10) (B.2)

i=0 j=1

The second equality follows from assuming that the measeinésrare independent from each
other and thus the joint probability of all the measuremamt®; is the product of individual
probability of each measurement point. Then, using thewutariable equations, the condi-

tional probability of individual measurement point is egpsed as follows

p(y;(ti,0)10) = p(n;(t:)[0) (B.3)

. )2
- e () (4

_ 1 ox (yl(ti,0) — y;(t)?
a \/%O'j p( 207 ) (5:5)

The second equality follows because measurement ngise, assumed to be Normally dis-
tributed with zero mean and varianeg. In the third equalityy;|o(¢;) is the predicted output

variable at time; given thef value. The above expression defines the likelihood funation
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a single measurement datagfat timet, as a function of) (obtained by solving the ordinary
differential equations of the model). Substituting thepatitequations into (B.2), the likelihood,

the following likelihood function of experimental dafawas obtained.

N—-1 gq
1 (y;(t:, 0) — y;(t;))?
L(e ‘ D) = (27‘(‘)m(N_1)/2 Hq_l O_é\[_l X eXP (ZO Zl - 20.]2
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