A NOVEL FLUIDIZED BED REACTOR FOR INTEGRATED NO$_x$ ADSORPTION-REDUCTION WITH HYDROCARBONS

by

TERRIS TIANXUE YANG

B.A.Sc., Tsinghua University, 1989
M.A.Sc., Tsinghua University, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate Studies
(Chemical and Biological Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September 2008

© Terris Tianxue Yang, 2008
Abstract

An integrated NO\textsubscript{x} adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean-burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has then been validated in a novel internal circulating fluidized bed.

The adsorption and reaction performance of Fe/ZSM-5 for the selective catalytic reduction (SCR) of NO\textsubscript{x} with propylene was investigated in a fixed bed reactor. The fine Fe/ZSM-5(Albemarle) catalyst showed reasonable NO\textsubscript{x} adsorption capacity, and the adsorption performance of the catalyst was closely related to the particle size and other catalyst properties. Fe/ZSM-5 catalyst was sensitive to the reaction temperature and space velocity, and exhibited acceptable activity when O\textsubscript{2} concentration was controlled at a low level. Water in the flue gas was found to slightly enhance the reactivity of Fe/ZSM-5(Albemarle), while the presence of CO\textsubscript{2} showed little effect. SO\textsubscript{2} severely inhibited the reactivity of Fe/ZSM-5(Albemarle), and the deactivated catalyst could be only partially regenerated.

Configurations of the reactor influenced the hydrodynamic performance significantly in a cold model internal circulating fluidized bed (ICFB) reactor. For all configurations investigated, the high gas bypass ratio from the annulus to draft tube (R\textsubscript{AD}) and low draft tube to annulus gas bypass ratio (R\textsubscript{DA}) were observed, with the highest R\textsubscript{DA} associated with the conical distributor which showed the flexible and stable operation over a wide range of gas velocities. Solids circulation rates increased with the increase of gas velocities both in the annulus and the draft tube. Gas bypass was also studied in a hot model ICFB reactor. The
results showed that the orientation of perforated holes on the conical distributor could be adjusted to reduce $R_{AD}$ and/or enhance $R_{DA}$.

Coarse Fe/ZSM-5(PUC) and fine Fe/ZSM-5(Albemarle) catalysts were used in an ICFB and a conventional bubbling fluidized bed to test the NO$_x$ reduction performance. Coarse Fe/ZSM-5(PUC) catalyst showed poor catalytic activity, while fine Fe/ZSM-5(Albemarle) catalyst exhibited promising NO$_x$ reduction performance and strong inhibiting ability to the negative impact of excessive O$_2$ in the ICFB reactor, proving that the adsorption-reduction two-zone reactor is effective for the NO$_x$ removal from oxygen-rich combustion flue gases.
Table of Contents

Abstract................................................................................................................................. ii

Table of Contents ........................................................................................................ iv

List of Tables .................................................................................................................... ix

List of Figures.................................................................................................................. x

Acronyms .................................................................................................................... xxiii

Nomenclature................................................................................................................ xxv

Acknowledgements..................................................................................................... xxviii

1 Introduction .................................................................................................................. 1

  1.1 Formation of NOx..................................................................................................... 1
  1.2 Methods for the abatement of NOx emissions ................................................. 2
  1.3 Selective catalytic reduction of NOx with NH3................................................. 4
  1.4 Research objectives.............................................................................................. 6
  1.5 Thesis layout ......................................................................................................... 7

2 Literature Review..................................................................................................... 9

  2.1 Catalysts ............................................................................................................... 9
    2.1.1 Metal-exchanged zeolites ......................................................................... 11
    2.1.2 Metal-exchanged metal oxides ................................................................. 14
  2.2 Hydrocarbon reducing agents ........................................................................... 15
  2.3 Reaction mechanisms and kinetics of HC-SCR................................................ 21
    2.3.1 Surface redox mechanism ........................................................................ 21
    2.3.2 Oxidation of NO to NO2 ............................................................................ 22
    2.3.3 Partial oxidation of hydrocarbons ............................................................. 22
  2.4 Influence of flue gas compositions on HC-SCR............................................... 23
Table of Contents

2.4.1 Influence of SO₂ and H₂O in the flue gas ..........................................................23
2.4.2 Influence of excess oxygen in the flue gas ........................................................25
2.5 Reactors for SCR of NOₓ .........................................................28
2.6 NOₓ storage-reduction (NSR) ...........................................................................30
2.7 Summary ............................................................................................................31

3 Adsorption and Reaction Kinetics .........................................................................33

3.1 Experimental setup .............................................................................................33
3.2 Catalyst preparation ............................................................................................35
  3.2.1 Materials ........................................................................................................36
  3.2.2 Preparation of NH₄/ZSM-5 and H/ZSM-5 ....................................................37
  3.2.3 Preparation of Fe/ZSM-5 by WIE method ..................................................38
  3.2.4 Preparation of Fe/ZSM-5 by IMPO method ................................................38
3.3 Performance of Fe/ZSM-5 (PUC) catalyst prepared by IMPO ................................38
  3.3.1 Adsorption performance of Fe/ZSM-5(PUC) ...............................................38
  3.3.2 Reaction performance of Fe/ZSM-5(PUC) ...................................................42
    3.3.2.1 Effect of reaction temperature on catalytic activity .............................43
    3.3.2.2 Catalyst deactivation at low temperatures ..........................................49
    3.3.2.3 Effect of GHSV ...............................................................................56
    3.3.2.4 Effect of O₂ and HC concentrations ................................................58
3.4 Reaction performance of Fe/ZSM-5 (PUC) catalyst prepared by WIE ...............66
3.5 Performance of Fe/ZSM-5(Albemarle) catalyst .....................................................69
  3.5.1 Adsorption performance of Fe/ZSM-5(Albemarle) ......................................70
  3.5.2 Effect of O₂ concentration on NOₓ adsorption of Fe/ZSM-5(Albemarle) ..........73
  3.5.3 Effect of H₂O and CO₂ on NOₓ adsorption of Fe/ZSM-5(Albemarle) .............74
  3.5.4 Adsorption performance of parent H/ZSM-5(Albemarle) ...........................75
  3.5.5 Catalytic activity of parent H/ZSM-5(Albemarle) in HC-SCR .......................77
  3.5.6 Reaction performance of Fe/ZSM-5(Albemarle) .........................................79
    3.5.6.1 Effect of reaction temperature .........................................................79
    3.5.6.2 Effect of GHSV ............................................................................84
    3.5.6.3 Effect of O₂ and HC concentrations ................................................86
    3.5.6.4 Effect of CO₂ and H₂O .................................................................89
# Table of Contents

3.5.6.5 Deactivation of Fe/ZSM-5(Albemarle) catalyst by SO$_2$ .......................94

3.6 Summary ..................................................................................................................103

4 Hydrodynamic Study of the ICFB Reactor ................................................................. 105

4.1 Experimental setup .................................................................................................... 106
  4.1.1 Estimation of gas bypass ratio ........................................................................ 111
  4.1.2 Estimation of solids circulation rate ................................................................. 113

4.2 Performance with the flat distributor plate ............................................................ 114
  4.2.1 Gas bypass ....................................................................................................... 116
  4.2.2 Solids circulation rate ...................................................................................... 120

4.3 Performance with the cylindrical distributor plate ................................................... 122
  4.3.1 Gas bypass ....................................................................................................... 123
  4.3.2 Solids circulation rate ...................................................................................... 129

4.4 Performance with the conical distributor plate ....................................................... 131
  4.4.1 Gas bypass ....................................................................................................... 132
  4.4.2 Solids circulation rate ...................................................................................... 136

4.5 Gas bypassing in the hot model ICFB reactor ......................................................... 140
  4.5.1 Fe/ZSM-5(PUC) catalyst ................................................................................. 141
  4.5.2 Fe/ZSM-5(Albemarle) catalyst ........................................................................ 144
  4.5.3 Prediction of O$_2$ concentration in the draft tube and annulus ....................... 146

4.6 Summary .................................................................................................................. 148

5 Adsorption and Reduction Performance of the ICFB Reactor .............................. 151

5.1 Experimental setup .................................................................................................... 151

5.2 Estimation of NO$_x$ and HC conversions and NO$_x$ adsorption ratio ................. 154

5.3 Performance with Fe/ZSM-5(PUC) catalyst ............................................................ 158
  5.3.1 Selection of adsorption zone in the ICFB reactor ........................................... 158
  5.3.2 Effect of catalyst loading in the ICFB reactor ................................................. 159
  5.3.3 Effect of HC:NO molar ratio on NO$_x$ conversion ........................................... 161
  5.3.4 Effect of flue gas O$_2$ content on NO$_x$ conversion ........................................... 162
  5.3.5 Effect of gas velocities on NO$_x$ conversion and adsorption ....................... 163
  5.3.6 Performance of fluidized bed reactor with Fe/ZSM-5(PUC) ......................... 165
### Table of Contents

5.3.6.1 Effect of inlet NO concentration ..........................................................165  
5.3.6.2 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions .............167  
5.3.6.3 Effect of inlet O\textsubscript{2} concentration on NO\textsubscript{x} and HC conversions ......172  
5.3.7 Comparison of ICFB reactor and fluidized bed reactor ..............................174  
5.4 Performance of Fe/ZSM-5(Albemarle) catalyst ...........................................175  
5.4.1 Effect of HC:NO molar ratio on NO\textsubscript{x} and HC conversions ..........175  
5.4.2 Effect of flue gas O\textsubscript{2} concentration on NO\textsubscript{x} conversion and adsorption .....179  
5.4.3 Effect of gas velocities on NO\textsubscript{x} conversion and adsorption ............182  
5.4.4 Performance of the fluidized bed reactor with Fe/ZSM-5(Albemarle) .........185  
5.4.4.1 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions .................185  
5.4.4.2 Effect of O\textsubscript{2} concentration on NO\textsubscript{x} and HC conversions ..........188  
5.4.5 Comparison of reactor types .....................................................................190  
5.5 Summary .......................................................................................................191  

6 Conclusions and Recommendations for Future Work ................................ 194  
6.1 Conclusions ...................................................................................................194  
6.1.1 Adsorption and reaction performance of Fe/ZSM-5 catalyst ....................194  
6.1.2 Hydrodynamic study of the ICFB reactor .................................................195  
6.1.3 Adsorption and reduction performance of Fe/ZSM-5 in the ICFB reactor ...196  
6.2 Recommendations for future work ...............................................................197  

References ........................................................................................................200  

Appendices  
A Summary of Previous Work .......................................................................219  
B Calibration .....................................................................................................236  
B.1 Gas flow meters .........................................................................................236  
B.2 Peristaltic water pump ..............................................................................239  
B.3 Pressure transducers ..................................................................................240  
C BET Surface Area .......................................................................................243
# Table of Contents

D Particle Size Distribution .................................................................................................................. 244

E Adsorption and Reaction Kinetics of Fe/ZSM-5 (Crushed PUC) Catalyst. 247
  E.1 Adsorption performance of Fe/ZSM-5 (crushed PUC) ........................................................... 247
  E.2 Reaction performance of Fe/ZSM-5 (crushed PUC) ............................................................... 251

F HC-SCR Performance of FCC and Fe/FCC Catalyst ..................................................................... 254

G Some Results from the Fixed Bed Experiment ............................................................................. 255
  G.1 Adsorption curves for Fe/ZSM-5 (PUC) and Fe/ZSM-5 (Albemarle) ..................................... 255
  G.2 Profiles of NOx and HC conversions and outlet CO concentration from time-on-stream test ................................................................. 261
  G.3 XPS analysis for Fe/ZSM-5 (PUC) ..................................................................................... 269

H Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor ..................................... 273
  H.1 Fe/ZSM-5 (PUC) .............................................................................................................. 273
  H.2 Fe/ZSM-5 (Albemarle) ...................................................................................................... 277
List of Tables

Table 1.1 Typical compositions of flue gases from thermal power plant stacks .................2
Table 3.1 Properties of the catalyst supports ........................................................................37
Table 4.1 Dimensions of the cold model ICFB unit .............................................................108
Table 5.1 Geometric dimensions of the ICFB reactor ...........................................................153
Table 5.2 Properties of catalysts used in the hot model experiments ..................................154
Table A.1 HC-SCR catalysts supported by zeolites..............................................................219
Table A.2 HC-SCR catalysts supported by non-zeolites (Metal oxides)..............................220
Table A.3 Specifications of some typical HC-SCR catalysts ..............................................221
Table A.4 HC-SCR with methane as reducing agent ...........................................................222
Table A.5 HC-SCR with propane as reducing agent ..........................................................224
Table A.6 HC-SCR with propylene as reducing agent .......................................................226
Table A.7 HC-SCR with iso-C₄H₁₀ (iso-butane) as reducing agent .................................229
Table A.8 HC-SCR with other hydrocarbons as reducing agent .........................................232
Table A.9 HC-SCR with oxygenated hydrocarbons as reducing agent ..............................234
Table A.10 NSR with reducing agent ..................................................................................235
Table C.1 BET surface areas for catalysts used in this work..............................................243
List of Figures

Figure 1.1 NO\textsubscript{x} control effectiveness for coal-fired tangential boilers ...........................................3

Figure 1.2 Schematic of the integrated adsorption-reduction process of NO\textsubscript{x} .................7

Figure 2.1 NO conversion to N\textsubscript{2} over Cu/ZSM-5 catalysts as a function of Cu/Al ratio at different temperatures........................................................................................................11

Figure 2.2 Dependence of NO conversion on temperature for SCR of NO over various catalysts with alternative reducing agent..........................................................17

Figure 2.3 Temperature dependence of N\textsubscript{2} yield over Fe/ZSM-5 with different hydrocarbons ..................................................................................................................18

Figure 2.4 Effect of the nature of the hydrocarbon on NO reduction selectivity on Co/ZSM-5 .....................................................................................................................19

Figure 2.5 NO conversion to N\textsubscript{2} on Ag/Al\textsubscript{2}O\textsubscript{3} using alternative reducing agent........20

Figure 2.6 Effect of H\textsubscript{2}O on NO conversion to N\textsubscript{2} over Fe/ZSM-5 or Cu/ZSM-5............24

Figure 2.7 Influence of O\textsubscript{2} concentration on NO conversion to N\textsubscript{2}.................................27

Figure 3.1 The fixed bed reaction system................................................................................33

Figure 3.2 Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), T=250\textdegree C) ........................................................................................................39

Figure 3.3 Fitted adsorption isotherms of NO\textsubscript{x} by Freundlich equation (Catalyst: Fe/ZSM-5(PUC)) ..................................................................................................................41

Figure 3.4 Relationship between $\alpha/\beta$ and adsorption temperature (Catalyst: Fe/ZSM-5(PUC)) .........................................................................................................................................41

Figure 3.5 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration (Catalyst: Fe/ZSM-5(PUC), T=250\textdegree C, [O\textsubscript{2}]=1%)........................................................................................................44
### List of Figures

**Figure 3.6** Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration (Catalyst: Fe/ZSM-5(PUC), T=350°C, [O\textsubscript{2}]=1%) ................................................................. 45

**Figure 3.7** Effect of reaction temperature on NO\textsubscript{x} conversion (Catalyst: Fe/ZSM-5(PUC)) .............................................. 47

**Figure 3.8** Effect of reaction temperature on HC conversion (Catalyst: Fe/ZSM-5(PUC)) .............................................. 47

**Figure 3.9** Effect of inlet O\textsubscript{2} concentration on the catalytic activity (Catalyst: Fe/ZSM-5(PUC)) ................................................................. 50

**Figure 3.10** Comparison of BET surface areas (Catalyst: Fe/ZSM-5 (PUC)) ................................................................. 51

**Figure 3.11** XPS narrow scan for C 1s (Catalyst: Fe/ZSM-5(PUC)) ................................................................. 52

**Figure 3.12** TGA result for the catalyst aged at 275°C ......................................................................................... 54

**Figure 3.13** TGA result for the catalyst aged at 350°C ......................................................................................... 54

**Figure 3.14** Recovery of catalyst activity under different regeneration conditions (Catalyst: Fe/ZSM-5(PUC)) ........................................................................................................ 55

**Figure 3.15** Effect of GHSV on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=325°C) .............................................. 56

**Figure 3.16** Effect of GHSV on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=350°C) .............................................. 57

**Figure 3.17** Effect of HC:NO ratio and O\textsubscript{2} level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=275°C, 95% confidence level) ......................................................................................... 59

**Figure 3.18** Effect of HC:NO ratio and O\textsubscript{2} level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=300°C) ......................................................................................... 61

**Figure 3.19** Effect of HC:NO ratio and O\textsubscript{2} level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=325°C) ......................................................................................... 62

**Figure 3.20** Effect of HC:NO ratio and O\textsubscript{2} level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=350°C) ......................................................................................... 63

**Figure 3.21** Effect of HC:NO ratio and O\textsubscript{2} level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=375°C) ......................................................................................... 64
Figure 3.22 Effect of temperature on catalytic activity for NO\textsubscript{x} reduction (Catalyst: Fe/ZSM-5(PUC, WIE))……………………………………………………………………………………………………66

Figure 3.23 Effect of temperature on NO\textsubscript{x} and HC conversion (Catalyst: Fe/ZSM-5(PUC, WIE))………………………………………………………………………………………………68

Figure 3.24 Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=275\degree C)……………………………………………………………………………70

Figure 3.25 Fitting of adsorption isotherms of NO\textsubscript{x} by Freundlich equation (Catalyst: Fe/ZSM-5(Albemarle))…………………………………………………………………………………………71

Figure 3.26 Relationship between $\alpha/\beta$ and adsorption temperature (Catalyst: Fe/ZSM-5(Albemarle)) ………………………………………………………………………………………………………72

Figure 3.27 Effect of O\textsubscript{2} concentration in the flue gas on the adsorption capacity of Fe/ZSM-5(Albemarle) catalyst…………………………………………………………………………………………74

Figure 3.28 Effect of H\textsubscript{2}O and CO\textsubscript{2} in the flue gas on adsorption isotherms (Catalyst: Fe/ZSM-5(Albemarle))…………………………………………………………………………………………75

Figure 3.29 Comparison of adsorption isotherm between Fe/ZSM-5(Albemarle) and parent H/ZSM-5(Albemarle) at T=350\degree C …………………………………………………………………………………76

Figure 3.30 Catalytic activity of parent H/ZSM-5(Albemarle) ………………………………………………………………………………………………………………………………………………………………………………………78

Figure 3.31 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration (Fe/ZSM-5(Albemarle), T=275\degree C, [O\textsubscript{2}]=1%) …………………………………………………………………………………80

Figure 3.32 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration (Fe/ZSM-5(Albemarle), T=350\degree C, [O\textsubscript{2}]=1%) …………………………………………………………………………………81

Figure 3.33 Effect of temperature on the catalytic activity of Fe/ZSM-5(Albemarle)………83

Figure 3.34 Effect of GHSV on the catalytic activity of Fe/ZSM-5(Albemarle)………85

Figure 3.35 Effect of O\textsubscript{2} and HC concentrations (Fe/ZSM-5(Albemarle), T=350\degree C)………87
List of Figures

Figure 3.36 Effect of O₂ and HC concentrations (Fe/ZSM-5(Albemarle), T=375°C).............88
Figure 3.37 Effect of CO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (T=350°C)....90
Figure 3.38 Effect of H₂O on the catalytic activity of Fe/ZSM-5(Albemarle) (T=350°C)....91
Figure 3.39 Time-on-stream test on the effect of H₂O (Fe/ZSM-5(Albemarle), T=350°C)...92
Figure 3.40 Combined effect of H₂O and CO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (T=350°C).....................................................................................93
Figure 3.41 Effect of the addition of H₂O on outlet CO and CO₂ concentrations (Fe/ZSM-5(Albemarle), T=350°C)......................................................................................94
Figure 3.42 Effect of SO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (200ppm SO₂, Run #1)................................................................................................................96
Figure 3.43 Effect of SO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (200ppm SO₂, Run #2)................................................................................................................97
Figure 3.44 Effect of SO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (200ppm SO₂, Run #3)................................................................................................................98
Figure 3.45 Effect of SO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (200ppm SO₂, Run #4)................................................................................................................98
Figure 3.46 Comparison of the four consecutive runs with 200ppm SO₂ in the flue gas
(Catalyst: Fe/ZSM-5(Albemarle))....................................................................................99
Figure 3.47 Comparison of fresh and regenerated catalysts over four consecutive runs
(Catalyst: Fe/ZSM-5(Albemarle))....................................................................................100
Figure 3.48 Effect of SO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (30ppm SO₂)101
Figure 3.49 Comparison of BET surface areas for fresh and deactivated catalyst (Fe/ZSM-5(Albemarle)) ........................................................................................................102
Figure 4.1 Schematic of the cold model ICFB reactor .......................................................107
List of Figures

Figure 4.2 Schematics of the cold model ICFB system.........................................................110
Figure 4.3 Schematic of the mass transfer between draft tube and annulus.........................111
Figure 4.4 Configurations of the flat distributor for the annulus gas flow ............................115
Figure 4.5 Effect of gas velocities on gas bypass (Flat distributor, H_G=10 mm) ..................118
Figure 4.6 Effect of gas velocities on gas bypass (Flat distributor, H_G=6 mm) ...................119
Figure 4.7 Effect of gas velocities on solids circulation rate (Flat distributor, H_G=10 mm) 121
Figure 4.8 Effect of gas velocities on solids circulation rate (Flat distributor, H_G=6 mm) ..121
Figure 4.9 Configurations of the cylindrical distributor for the annulus gas flow ...............123
Figure 4.10 Effect of gas velocities on gas bypass (Cylindrical distributor, H_G1=10 mm) ..125
Figure 4.11 Effect of gas velocities on gas bypass (Cylindrical distributor, H_G1=20 mm) ..126
Figure 4.12 Effect of gas velocities on gas bypass (Cylindrical distributor, H_G1=60 mm) ..128
Figure 4.13 Effect of gas velocities on solids circulation rate (Cylindrical distributor, H_G1=10mm) ..................................................................................................................129
Figure 4.14 Effect of gas velocities on solids circulation rate (Cylindrical distributor, H_G1=20mm) ..................................................................................................................130
Figure 4.15 Effect of gas velocities on solids circulation rate (Cylindrical distributor, H_G1=60mm) ..................................................................................................................131
Figure 4.16 Configuration of the conical distributor for the annulus gas flow.....................132
Figure 4.17 Effect of gas velocities on gas bypass (Conical distributor, H_G=10 mm) .........133
Figure 4.18 Effect of gas velocities on gas bypass (Conical distributor, H_G=15 mm) .........135
Figure 4.19 Effect of gas velocities on solids circulation rate (Conical distributor, H_G=10 mm) ..................................................................................................................136
Figure 4.20 Effect of gas velocities on solids circulation rate (Conical distributor, H_G=15 mm) ..................................................................................................................137
### List of Figures

**Figure 4.21** Effect of overall gas velocity on solids circulation rate using conical distributor (H_G=10 mm) .................................................................................................................. 139

**Figure 4.22** Effect of overall gas velocity on solids circulation rate using conical distributor (H_G=15 mm) .................................................................................................................. 139

**Figure 4.23** Configuration of the conical distributor in the hot model ICFB reactor .......... 140

**Figure 4.24** Effect of gas velocities on gas bypass (Fe/ZSM-5(PUC), T=350±10°C) ........ 143

**Figure 4.25** Effect of gas velocities on gas bypass (Fe/ZSM-5(Albemarle), T=355±15°C) 145

**Figure 5.1** Schematic of hot model ICFB reaction system ......................................................... 152

**Figure 5.2** Effect of gas velocities and HC:NO ratio on NO_x conversion using the draft tube as the adsorption zone (ICFB, Fe/ZSM-5(PUC)) ......................................................... 159

**Figure 5.3** Effect of catalyst loading on NO_x conversion and adsorption (ICFB, Fe/ZSM-5(PUC)) ........................................................................................................................................... 160

**Figure 5.4** Effect of HC:NO ratio on NO_x conversion (ICFB, Fe/ZSM-5(PUC)) ................. 162

**Figure 5.5** Effect of flue gas O_2 concentration on NO_x conversion (ICFB, Fe/ZSM-5(PUC)) ........................................................................................................................................... 163

**Figure 5.6** Effect of gas velocities on NO_x conversion and adsorption (ICFB, Fe/ZSM-5(PUC)) ........................................................................................................................................... 164

**Figure 5.7** Effect of inlet NO concentration on NO_x conversion (Fluidized bed, Fe/ZSM-5(PUC), [O_2] =4%) .................................................................................................................. 166

**Figure 5.8** Effect of inlet NO concentration on NO_x conversion (Fluidized bed, Fe/ZSM-5(PUC), [O_2] =2.5%) .................................................................................................................. 166

**Figure 5.9** Effect of inlet NO concentration on NO_x conversion (Fluidized bed, Fe/ZSM-5(PUC), [O_2] =1%) .................................................................................................................. 167
List of Figures

Figure 5.10  Effect of HC:NO on NO\textsubscript{x} and HC conversions (Fluidized bed, Fe/ZSM-5(PUC), [NO]=300ppm) .......................................................... 169

Figure 5.11  Effect of HC:NO on NO\textsubscript{x} and HC conversions (Fluidized bed, Fe/ZSM-5(PUC), [NO]=600ppm) .......................................................... 170

Figure 5.12  Effect of HC:NO on NO\textsubscript{x} and HC conversions (Fluidized bed, Fe/ZSM-5(PUC), [NO]=900ppm) .......................................................... 171

Figure 5.13  Effect of inlet O\textsubscript{2} concentration on NO\textsubscript{x} and HC conversions (Fluidized bed, Fe/ZSM-5(PUC)) .................................................. 173

Figure 5.14  Comparison of NO\textsubscript{x} conversion between ICFB and fluidized bed reactors (Fe/ZSM-5(PUC)) .......................................................... 174

Figure 5.15  Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), U\textsubscript{D}=0.6 m/s, [O\textsubscript{2}]=4%) .................................................. 176

Figure 5.16  Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), U\textsubscript{D}=0.75 m/s, [O\textsubscript{2}]=4%) .................................................. 176

Figure 5.17  Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), U\textsubscript{D}=0.9 m/s, [O\textsubscript{2}]=4%) .................................................. 177

Figure 5.18  Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), U\textsubscript{D}=0.6 m/s, [O\textsubscript{2}]=8%) .................................................. 177

Figure 5.19  Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), U\textsubscript{D}=0.75 m/s, [O\textsubscript{2}]=8%) .................................................. 178

Figure 5.20  Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), U\textsubscript{D}=0.9 m/s, [O\textsubscript{2}]=8%) .................................................. 178

Figure 5.21  Effect of flue gas O\textsubscript{2} concentration on NO\textsubscript{x} conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), U\textsubscript{D}=0.6 m/s, HC:NO=2) .................................................. 180
Figure 5.22 Effect of flue gas O$_2$ concentration on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), $U_0=0.75$ m/s, HC:NO=2) .................................................................181

Figure 5.23 Effect of flue gas O$_2$ concentration on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), $U_0=0.9$ m/s, HC:NO=2) .................................................................181

Figure 5.24 Effect of gas velocities on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), [O$_2$]=4%, HC:NO=1) ........................................................................183

Figure 5.25 Effect of gas velocities on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), [O$_2$]=4%, HC:NO=2) ........................................................................183

Figure 5.26 Effect of gas velocities on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), [O$_2$]=8%, HC:NO=2) ........................................................................184

Figure 5.27 Effect of gas velocities on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), [O$_2$]=12%, HC:NO=2) ........................................................................185

Figure 5.28 Effect of HC:NO ratio on NO$_x$ and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), [O$_2$]=1%) ........................................................................186

Figure 5.29 Effect of HC:NO ratio on NO$_x$ and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), [O$_2$]=4%) ........................................................................187

Figure 5.30 Effect of HC:NO ratio on NO$_x$ and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), [O$_2$]=8%) ........................................................................187

Figure 5.31 Effect of inlet O$_2$ concentration on NO$_x$ and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), HC:NO=1) ........................................................................189

Figure 5.32 Effect of inlet O$_2$ concentration on NO$_x$ and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), HC:NO=2) ........................................................................189

Figure 5.33 Comparison of NO$_x$ conversion between ICFB and fluidized bed reactors (Fe/ZSM-5(Albemarle)) ........................................................................191
List of Figures

Figure B.1 Calibration curve of FL-1473G rotameter (0.6% NO + N₂)...............................236

Figure B.2 Calibration curve of FL-1473G rotameter (50% O₂ + N₂) ........................................237

Figure B.3 Calibration curve of FL-1472S rotameter (1.2% Propylene + N₂) .....................237

Figure B.4 Calibration curve of FL-1473S rotameter (N₂)...................................................238

Figure B.5 Calibration curve of FL-1476G rotameter (N₂) ..................................................238

Figure B.6 Calibration curve of peristaltic water pump .......................................................239

Figure B.7 Calibration curve of pressure transducer (Channel #1) ..........................................240

Figure B.8 Calibration curve of pressure transducer (Channel #2) ..........................................241

Figure B.9 Calibration curve of pressure transducer (Channel #3) ..........................................241

Figure B.10 Calibration curve of pressure transducer (Channel #4) ........................................242

Figure B.11 Calibration curve of pressure transducer (Channel #6) ........................................242

Figure D.1 Particle size distribution (Fe/ZSM-5(PUC))...............................................................244

Figure D.2 Particle size distribution (Fe/ZSM-5(crushed PUC))...............................................245

Figure D.3 Particle size distribution (Fe/ZSM-5(Albemarle)) ..................................................245

Figure D.4 Particle size distribution (Fe/FCC(Spent)) ..............................................................246

Figure E.1 Adsorption curves based on NOₓ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(crushed PUC), T=325°C) .................................................................248

Figure E.2 Adsorption curves based on NOₓ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(crushed PUC), T=350°C) .................................................................248

Figure E.3 Adsorption curves based on NOₓ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(crushed PUC), T=375°C) .................................................................249

Figure E.4 Fitting of adsorption isotherms of NOₓ by Freundlich equation (Catalyst: Fe/ZSM-5(crushed PUC)) .................................................................250
List of Figures

Figure E.5 Relationship between $\alpha/\beta$ and adsorption temperature (Catalyst: Fe/ZSM-5 (crushed PUC)) .................................................................................................................. 251

Figure E.6 Effect of reaction temperature on catalytic activity (Catalyst: Fe/ZSM-5 (crushed PUC)) .................................................................................................................. 252

Figure E.7 Effect of inlet $O_2$ concentration on catalytic activity (Catalyst: Fe/ZSM-5 (crushed PUC)) .................................................................................................................. 253

Figure F.1 HC-SCR performance of spent FCC and Fe/FCC ................................................................................................................. 254

Figure G.1 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), $T=280^\circ C$) .................................................................................................................. 255

Figure G.2 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), $T=310^\circ C$) .................................................................................................................. 256

Figure G.3 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), $T=340^\circ C$) .................................................................................................................. 256

Figure G.4 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), $T=370^\circ C$) .................................................................................................................. 257

Figure G.5 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), $T=400^\circ C$) .................................................................................................................. 257

Figure G.6 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), $T=300^\circ C$) .................................................................................................................. 258

Figure G.7 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), $T=325^\circ C$) .................................................................................................................. 258

Figure G.8 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), $T=350^\circ C$) .................................................................................................................. 259
| Figure G.9 | Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=375\textdegree C) | 259 |
| Figure G.10 | Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=350\textdegree C, 10% H\textsubscript{2}O added) | 260 |
| Figure G.11 | Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=350\textdegree C, 10% CO\textsubscript{2} added) | 260 |
| Figure G.12 | Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=350\textdegree C, 10% H\textsubscript{2}O + 10% CO\textsubscript{2} added) | 261 |
| Figure G.13 | Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(PUC), T=275\textdegree C, [O\textsubscript{2}]=1%) | 262 |
| Figure G.14 | Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(PUC), T=275\textdegree C, [O\textsubscript{2}]=4%) | 263 |
| Figure G.15 | Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(PUC), T=300\textdegree C, [O\textsubscript{2}]=1%) | 264 |
| Figure G.16 | Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(PUC), T=325\textdegree C, [O\textsubscript{2}]=1%) | 265 |
| Figure G.17 | Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(Albemarle), T=300\textdegree C, [O\textsubscript{2}]=1%) | 266 |
| Figure G.18 | Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(Albemarle), T=325\textdegree C, [O\textsubscript{2}]=1%) | 267 |
| Figure G.19 | Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(Albemarle), T=375\textdegree C, [O\textsubscript{2}]=1%) | 268 |
| Figure G.20 | XPS survey scan for fresh Fe/ZSM-5(PUC) | 269 |
| Figure G.21 | XPS survey scan for spent Fe/ZSM-5(PUC) | 270 |
List of Figures

**Figure G.22** XPS survey scan for regenerated Fe/ZSM-5(PUC) .....................................................270

**Figure G.23** Comparison of XPS narrow scan of Al 2p .................................................................271

**Figure G.24** Comparison of XPS narrow scan of Si 2p .................................................................271

**Figure G.25** Comparison of XPS narrow scan of O 1s .................................................................272

**Figure G.26** Comparison of XPS narrow scan of Fe 2p 3/2 ...........................................................272

**Figure H.1** Effect of UD on gas bypass (Fe/ZSM-5(PUC), U_A=0.20 m/s, T=350±10°C) ....273

**Figure H.2** Effect of UD on gas bypass (Fe/ZSM-5(PUC), U_A=0.30 m/s, T=350±10°C) ....274

**Figure H.3** Effect of UD on gas bypass (Fe/ZSM-5(PUC), U_A=0.35 m/s, T=350±10°C) ....274

**Figure H.4** Effect of UD on gas bypass (Fe/ZSM-5(PUC), U_A=0.40 m/s, T=350±10°C) ....275

**Figure H.5** Effect of UD on gas bypass (Fe/ZSM-5(PUC), U_A=0.45 m/s, T=350±10°C) ....275

**Figure H.6** Effect of UD on gas bypass (Fe/ZSM-5(PUC), U_A=0.50 m/s, T=350±10°C) ....276

**Figure H.7** Effect of UD on gas bypass (Fe/ZSM-5(PUC), U_A=0.55 m/s, T=350±10°C) ....276

**Figure H.8** Effect of gas velocities on R_{DA} (Fe/ZSM-5(Albemarle), T=355±15°C) ..............277

**Figure H.9** Effect of gas velocities on R_{AD} (Fe/ZSM-5(Albemarle), T=355±15°C) ..............278

**Figure H.10** Effect of UD on gas bypass (Fe/ZSM-5(Albemarle), U_A=0.20 m/s, T=355±15°C) .................................................................278

**Figure H.11** Effect of UD on gas bypass (Fe/ZSM-5(Albemarle), U_A=0.25 m/s, T=355±15°C) .................................................................279

**Figure H.12** Effect of UD on gas bypass (Fe/ZSM-5(Albemarle), U_A=0.30 m/s, T=355±15°C) .................................................................279

**Figure H.13** Effect of UD on gas bypass (Fe/ZSM-5(Albemarle), U_A=0.35 m/s, T=355±15°C) .................................................................280

**Figure H.14** Effect of UD on gas bypass (Fe/ZSM-5(Albemarle), U_A=0.40 m/s, T=355±15°C) .................................................................280
List of Figures

**Figure H.15** Effect of $U_D$ on gas bypass (Fe/ZSM-5(Albemarle), $U_A=0.45$ m/s, $T=355\pm15^\circ C$).................................................................................................................................281

**Figure H.16** Effect of $U_A$ on gas bypass (Fe/ZSM-5(Albemarle), $U_D=0.45$ m/s, $T=355\pm15^\circ C$).................................................................................................................................281

**Figure H.17** Effect of $U_A$ on gas bypass (Fe/ZSM-5(Albemarle), $U_D=0.60$ m/s, $T=355\pm15^\circ C$).................................................................................................................................282

**Figure H.18** Effect of $U_A$ on gas bypass (Fe/ZSM-5(Albemarle), $U_D=0.75$ m/s, $T=355\pm15^\circ C$).................................................................................................................................282

**Figure H.19** Effect of $U_A$ on gas bypass (Fe/ZSM-5(Albemarle), $U_D=0.90$ m/s, $T=355\pm15^\circ C$).................................................................................................................................283
### Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOFA</td>
<td>Advanced overfire air</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical vapour deposition</td>
</tr>
<tr>
<td>Fe(AA)$_3$</td>
<td>Iron(III) acetylacetonate</td>
</tr>
<tr>
<td>GHSV</td>
<td>Gas hourly space velocity, h$^{-1}$</td>
</tr>
<tr>
<td>HC</td>
<td>Hydrocarbon</td>
</tr>
<tr>
<td>HC-SCR</td>
<td>Selective catalytic reduction with hydrocarbons</td>
</tr>
<tr>
<td>ICFB</td>
<td>Internal circulating fluidized bed</td>
</tr>
<tr>
<td>I.D.</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>IMP</td>
<td>Impregnation</td>
</tr>
<tr>
<td>IMPA</td>
<td>Incipient wetness impregnation in aqueous solution</td>
</tr>
<tr>
<td>IMPO</td>
<td>Impregnation in organic solution</td>
</tr>
<tr>
<td>LNB</td>
<td>Low NO$_x$ burner</td>
</tr>
<tr>
<td>MFI</td>
<td>One type of zeolite</td>
</tr>
<tr>
<td>M.W.</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>NSCR</td>
<td>Non-selective catalytic reduction</td>
</tr>
<tr>
<td>NSR</td>
<td>NO$_x$ storage-reduction</td>
</tr>
<tr>
<td>O.D.</td>
<td>Outer diameter</td>
</tr>
<tr>
<td>PUC</td>
<td>China University of Petroleum (Beijing, China)</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective catalytic reduction</td>
</tr>
<tr>
<td>SNCR</td>
<td>Selective non-catalytic reduction</td>
</tr>
<tr>
<td>SSIE</td>
<td>Solid state ion exchange</td>
</tr>
<tr>
<td>Std. T</td>
<td>Standard temperature, 25°C</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SUB</td>
<td>Sublimation</td>
</tr>
<tr>
<td>SUZ-4</td>
<td>One kind of zeolite</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>TOS</td>
<td>Time on stream</td>
</tr>
<tr>
<td>TPD</td>
<td>Temperature programmed desorption</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compound</td>
</tr>
<tr>
<td>WIE</td>
<td>Wet ion exchange</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>ZSM-5</td>
<td>One kind of MFI</td>
</tr>
</tbody>
</table>
# Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( C_0 )</td>
<td>Equilibrium ( \text{NO}_x ) concentration, ppm</td>
</tr>
<tr>
<td>( C_{A,O2} )</td>
<td>( \text{O}_2 ) concentration in the annulus, %</td>
</tr>
<tr>
<td>( C_{A0,O2} )</td>
<td>( \text{O}_2 ) concentrations at inlet of the annulus, %</td>
</tr>
<tr>
<td>( C_{CO,out} )</td>
<td>( \text{CO} ) concentration in gas mixture at reactor outlet, ppm</td>
</tr>
<tr>
<td>( C_{CO2,0} )</td>
<td>Initial ( \text{CO}_2 ) concentration in flue gas feed, %</td>
</tr>
<tr>
<td>( C_{CO2,out} )</td>
<td>( \text{CO}_2 ) concentration in gas mixture at reactor outlet, %</td>
</tr>
<tr>
<td>( C_{D,O2} )</td>
<td>( \text{O}_2 ) concentration in the draft tube, %</td>
</tr>
<tr>
<td>( C_{D0,O2} )</td>
<td>( \text{O}_2 ) concentrations at inlet of the draft tube, %</td>
</tr>
<tr>
<td>( C_{HC,in} )</td>
<td>Inlet concentration of propylene, ppm</td>
</tr>
<tr>
<td>( C_{NOx,0} )</td>
<td>Initial ( \text{NO}_x ) concentration in flue gas feed, ppm</td>
</tr>
<tr>
<td>( C_{NOx, ads,in} )</td>
<td>Real initial ( \text{NO}_x ) concentration for adsorption at adsorption zone inlet, ppm</td>
</tr>
<tr>
<td>( C_{NOx,ads, out} )</td>
<td>( \text{NO}_x ) concentration at adsorption zone outlet, ppm</td>
</tr>
<tr>
<td>( C_{NOx,in} )</td>
<td>Initial ( \text{NO}_x ) concentration in total gas flow , ppm</td>
</tr>
<tr>
<td>( C_{NOx,out} )</td>
<td>( \text{NO}_x ) concentration in gas mixture at reactor outlet, ppm</td>
</tr>
<tr>
<td>( D_i )</td>
<td>Inner diameter of fixed bed reactor, mm</td>
</tr>
<tr>
<td>( d_p )</td>
<td>Mean particle diameter, mm</td>
</tr>
<tr>
<td>( F )</td>
<td>Gas flow rate at ambient temperature, ( \text{m}^3/\text{s} )</td>
</tr>
<tr>
<td>( F_A )</td>
<td>Volumetric gas flow rate at annulus outlet, ( \text{m}^3/\text{s} )</td>
</tr>
<tr>
<td>( F_{A,0} )</td>
<td>Volumetric gas flow rate at annulus inlet, ( \text{m}^3/\text{s} )</td>
</tr>
<tr>
<td>( F_{AD} )</td>
<td>Volumetric gas bypass rate from annulus to draft tube, ( \text{m}^3/\text{s} )</td>
</tr>
<tr>
<td>( F_D )</td>
<td>Volumetric gas flow rate at draft tube outlet, ( \text{m}^3/\text{s} )</td>
</tr>
<tr>
<td>( F_{D,0} )</td>
<td>Volumetric gas flow rate at draft tube inlet, ( \text{m}^3/\text{s} )</td>
</tr>
<tr>
<td>( F_{DA} )</td>
<td>Volumetric gas bypass rate from draft tube to annulus, ( \text{m}^3/\text{s} )</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>$F_{F,0}$</td>
<td>Flue gas flow rate, m$^3$/s</td>
</tr>
<tr>
<td>$F_{FR}$</td>
<td>Calculated gas bypass from adsorption zone to reduction zone, m$^3$/s</td>
</tr>
<tr>
<td>$F_{HC,0}$</td>
<td>Flow rate of 40% Propylene + N$_2$, m$^3$/s</td>
</tr>
<tr>
<td>$F_{R,0}$</td>
<td>Reductant gas flow rate, m$^3$/s</td>
</tr>
<tr>
<td>$F_{RF}$</td>
<td>Calculated gas bypass from reduction zone to adsorption zone, m$^3$/s</td>
</tr>
<tr>
<td>$h$</td>
<td>Catalyst packed height in fixed bed reactor, mm</td>
</tr>
<tr>
<td>$H_G$</td>
<td>Effective gap opening for solids circulation, mm</td>
</tr>
<tr>
<td>$H_{G1}$</td>
<td>Gap between draft tube and annulus gas distributor, mm</td>
</tr>
<tr>
<td>$H_{G2}$</td>
<td>Gap between draft tube and annulus gas distributor, mm</td>
</tr>
<tr>
<td>$L$</td>
<td>Tracer particle downward moving distance along column, m</td>
</tr>
<tr>
<td>$M_{NO}$</td>
<td>Molecular weight of NO, g/mol</td>
</tr>
<tr>
<td>$P$</td>
<td>Operating pressure, atm</td>
</tr>
<tr>
<td>$q_e$</td>
<td>Adsorption equilibrium capacity of NO$_x$ on catalyst, mg/g</td>
</tr>
<tr>
<td>$R$</td>
<td>Universal gas constant, 8.314 J/(mol.K)</td>
</tr>
<tr>
<td>$R_{AD}$</td>
<td>Gas bypass ratio from annulus to draft tube, %</td>
</tr>
<tr>
<td>$R_{DA}$</td>
<td>Gas bypass ratio from draft tube to annulus, %</td>
</tr>
<tr>
<td>$S$</td>
<td>Integrated area from adsorption curve, s</td>
</tr>
<tr>
<td>$S_A$</td>
<td>Cross-sectional area of annulus, m$^2$</td>
</tr>
<tr>
<td>$S_D$</td>
<td>Cross-sectional area of draft tube, m$^2$</td>
</tr>
<tr>
<td>$t$</td>
<td>Adsorption time, s</td>
</tr>
<tr>
<td>$T$</td>
<td>Reaction temperature, °C</td>
</tr>
<tr>
<td>$T_0$</td>
<td>Ambient temperature, °C</td>
</tr>
<tr>
<td>$t_m$</td>
<td>Time interval for tracer particle moving $L$, s</td>
</tr>
<tr>
<td>$U$</td>
<td>Overall gas velocity in ICFB reactor, m/s</td>
</tr>
</tbody>
</table>
Nomenclature

$U_A$  Gas velocity in annulus, m/s
$U_D$  Gas velocity in draft tube, m/s
$U_{mf}$ Minimum fluidizing velocity, m/s
$U_p$ Tracer particle downward velocity in annulus, m/s
$W_{cat}$ Catalyst loading, g
$W_s$ Solids circulation rate based on draft tube cross-sectional area, kg/m$^2$.s
$x_A$ Volume fraction of CO$_2$ in gas flow at annulus outlet, -
$x_{A,0}$ Volume fraction of CO$_2$ in gas flow at annulus inlet, -
$x_{AD}$ Volume fraction of CO$_2$ in gas bypass flow from annulus to draft tube, -
$x_D$ Volume fraction of CO$_2$ in gas flow at draft tube outlet, -
$x_{D,0}$ Volume fraction of CO$_2$ in gas flow at draft tube inlet, -
$x_{DA}$ Volume fraction of CO$_2$ in gas bypass flow from draft tube to annulus, -
$X_{HC}$ Propylene conversion, %
$X_{NOx}$ NO$_x$ conversion, %
$X_{NOx, ads}$ Adsorption ratio of NO$_x$ in adsorption zone, %
$X_{NOx, BM}$ Benchmark NO$_x$ conversion caused by bypassing HC from reduction zone, %
$\alpha$ Coefficient in Freundlich equation, -
$\beta$ Coefficient in Freundlich equation, -
$\varepsilon$ Bed voidage in annulus, -
$\rho_{air}$ Air density, kg/m$^3$
$\rho_{CO2}$ CO$_2$ density, kg/m$^3$
$\rho_p$ Particle bulk density, kg/m$^3$
Acknowledgements

I would like to take this opportunity to express my sincere gratitude to my supervisor, Dr. Xiaotao Bi, for his immense guidance and financial assistance during my research. I give my utmost appreciation to my research committee members, Dr. Kevin Smith and Dr. Robert Evans, for their valuable suggestions at the start of this work.

Many individuals who contributed to this research would be greatly acknowledged. Mr. Tianzhu Zhang, a former visiting scholar from China, contributed a lot to the setup of the fixed bed reaction system and the design of the cold model unit. Mr. Yuanqing (Larry) Liu, an undergraduate student of class 2008, was of great assistance to the adsorption and reaction kinetics study in the fixed bed reactor during the research on his undergraduate thesis. Mr. Shahin Goodarznia from Dr. Kevin Smith’s research group helped with the measurement of the catalyst BET surface area. Ms. Yonika Wiputri from Dr. Peter Englezos’s research group helped with the measurement of the particle size distribution. I also appreciate the hard work of the technical and administrative staff in the department stores, workshop and offices.

Na/ZSM-5(PUC) was purchased from the Petroleum University of China with the help of Professors Weisheng Wei and Xiaojun Bao. H/ZSM-5(Albemarle) was a free sample offered by Dr. Maria M. Ludvig from Albemarle Catalysts Co., USA.

This research was financially supported by the Canada Foundation for Innovation (CFI) and the Natural Sciences and Engineering Research Council of Canada (NSERC). I am also grateful to a NSERC postgraduate scholarship (PGS-D).

Last but not least, I am sincerely grateful to my wife Jessica, my daughter Rena, my parents and my parents-in-law, for their endless support and encouragement throughout my whole life.
Chapter 1
Introduction

Nitrogen oxides (NOx) are emitted primarily from transportation and other industrial sources, and contribute to many problems that threaten the quality of the environment and human health: the formation of acid rain and ground level ozone (smog), and general atmospheric visibility degradation. Man-made nitrogen oxides are mainly classified into two types, depending on their sources: stationary or mobile.

1.1 Formation of NOx

NOx form when fuel is burned at high temperatures. N2 and O2 present in the fuel and air can combine chemically to form one or more of seven oxides of N: NO, NO2, NO3, N2O, N2O3, N2O4 and N2O5. For most combustion processes, particularly fossil fuel combustions, both the molecular N in the air and the chemically bound N in the fuel can be oxidized by O2 to form NOx, and the only oxides of nitrogen present in significant concentration in flue gases are NO and NO2 with NO representing 90 to 95% of the total NOx (Wark et al., 1998). The colorless and odorless NO, in the presence of radicals from VOCs or O2 in the air, will be gradually oxidized to NO2 if sufficient time is given. NO2 is a reddish-brown, toxic gas, which is a precursor for photochemical smog formation in the presence of certain hydrocarbons and sunlight, and along with particles in the air, NO2 can often be seen as a reddish-brown layer over many urban areas.

NOx are produced in a variety of processes, mainly in the combustion process of fossil fuels, such as engines of vehicles and aircraft, combustion equipment, gas turbines, incinerators, kilns and power plants. NOx also are emitted as by-products from many
metallurgical processes where nitric acid is used as an oxidant. Typical NO\textsubscript{x} concentrations in flue gases from power plants are shown in Table 1.1.

### Table 1.1 Typical compositions of flue gases from thermal power plant stacks

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Natural gas</th>
<th>Fuel oil</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x} (ppm)</td>
<td>25–160</td>
<td>100–600</td>
<td>150–1000</td>
</tr>
<tr>
<td>SO\textsubscript{x} (ppm)</td>
<td>&lt;0.5–20</td>
<td>200–2000</td>
<td>200–2000</td>
</tr>
<tr>
<td>CO\textsubscript{2} (%)</td>
<td>5–12</td>
<td>12–14</td>
<td>10–15</td>
</tr>
<tr>
<td>O\textsubscript{2} (%)</td>
<td>3–18</td>
<td>2–5</td>
<td>3–5</td>
</tr>
<tr>
<td>H\textsubscript{2}O (%)</td>
<td>8–19</td>
<td>9–12</td>
<td>7–10</td>
</tr>
<tr>
<td>N\textsubscript{2}</td>
<td>Balance</td>
<td>Balance</td>
<td>Balance</td>
</tr>
</tbody>
</table>

### 1.2 Methods for the abatement of NO\textsubscript{x} emissions

Due to the increasingly stringent emission regulations on NO\textsubscript{x} all over the world, the method for the abatement of NO\textsubscript{x} emission has gained extensive attention from academic as well as industrial research groups. In industrial combustion processes, NO\textsubscript{x} control can be accomplished by three primary methods, i.e., pre-combustion, combustion modification and post-combustion control techniques, which involve the use of low nitrogen fuels, modification of the combustion design and operating features of the combustion unit, and flue gas treatment, respectively. As an effective pollution prevention practice, the pre-combustion and combustion modification technologies have been widely used in combustion processes (Wark et al, 1998; de Nevers, 2000). Although NO\textsubscript{x} abatement at control efficiencies lower than 60% can be achieved by pre-combustion and combustion modification techniques at relatively low cost, expensive downstream treatment (e.g. SCR) is still required to reach control efficiencies higher than 75% in order to meet stringent emission regulations, as shown in Figure 1.1.
Chapter 1: Introduction

Figure 1.1 NO\textsubscript{x} control effectiveness for coal-fired tangential boilers


To date, there are four ways to abate NO\textsubscript{x} in flue gases: direct catalytic decomposition, non-selective catalytic reduction (NSCR), selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR).

Direct catalytic decomposition of NO\textsubscript{x} might be the most attractive method for NO\textsubscript{x} control, but the NO\textsubscript{x} conversion is not high enough for the practical application (Parvulescu et al., 1998; Liu and Woo, 2006; Shi et al., 2008).

The best example of non-selective catalytic reduction (NSCR) of NO\textsubscript{x} is the three-way catalytic converter which has been commercialized successfully for reducing NO\textsubscript{x} in the
exhaust gases from gasoline engines (Parvulescu et al., 1998). However, it could not be applied to lean-burn engines where excess oxygen is present in the exhaust gases (Goralski and Schneider, 2002).

Using gas-phase free-radical reactions instead of a catalyst to promote reactions in the selective non-catalytic reduction (SNCR) process, NH3 is injected into the flue gas to reduce NOx via the gas phase homogeneous reaction between NH3 and NOx. In order to achieve a high NOx reduction, the gas mixture must be kept within a relatively narrow and high temperature window of 900–1100°C. If the reaction temperature is lower than 800°C, NOx conversion will be very low and most NH3 remains un-reacted in the flue gas. At a temperature higher than 1200°C, NH3 will be oxidized by O2 to form NO, rather than being oxidized by NO to form N2 (Muzio and Quartucy, 1997; Javed et al., 2007).

Selective catalytic reduction, so called SCR, selectively reduces NOx to N2 and H2O by the use of a catalyst and a reducing agent. SCR is the only single method which can achieve more than 75% NOx control efficiency for the flue gas emitted from stationary combustion sources with a high selectivity toward N2. Despite extensive research reported on the selective catalytic reduction (SCR) of NOx with various catalyst /reductant combinations since 1975, only SCR with NH3 or urea as the reducing agent offers a practical approach for NOx abatement, and has been commercialized to date (Forzatti, 2001).

1.3 Selective catalytic reduction of NOx with NH3

SCR with NH3 as the reducing agent has been commercialized in more than 400 industrial and utility plants, mainly in Japan, US and European countries. In this process, liquid ammonia or aqueous ammonia solution is injected into the flue gas to reduce NOx with V2O5/TiO2 catalyst (WO3 and/or MoO3 as promoters) following reactions in equations 1.1
and 1.2, with 75%~90% of NOx conversion being achieved at an NH3-to-NOx molar ratio of 1.2~1.5.

\[4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O\]  \hspace{1cm} (1.1)

\[4NH_3 + 2NO_2 + O_2 \rightarrow 3N_2 + 6H_2O\]  \hspace{1cm} (1.2)

Although NH3-SCR of NOx has been widely implemented, it has the following disadvantages (Ham and Nam, 2002; Zhou et al., 1996):

- The handling of large quantities of NH3 is a concern because NH3 is toxic and corrosive;
- Un-reacted NH3 may potentially be discharged to the environment (ammonia slippage);
- NH3 can react with SO3 and H2O to form ammonium sulphates, causing the fouling of downstream equipment.

Due to the high installation and operating cost and complexity, the NH3-SCR system is only used when the highest level of NOx removal is required, for example, in large power plants located in urban areas where ozone and photochemical smog are serious problems.

Taking the drawbacks of using NH3 in SCR process into account, a large number of studies on NOx SCR has been reported in recent years, mainly focusing on the selection and evaluation of NH3-free alternative reducing agents and catalysts, and the mechanism of SCR.

Hydrocarbons instead of NH3 are considered the most promising reducing agents for the SCR process. The first study on SCR of NOx with hydrocarbons was reported by Iwamoto et al. (1988). Thereafter, SCR of NOx by hydrocarbons (HC-SCR) has attracted considerable attention as an alternative of ammonia or urea process for the treatment of oxygen-rich flue gases, and numerous studies on various types of catalysts and reducing
agents have been widely investigated (Parvulescu et al., 1998; Traa et al., 1999; Wichtelova et al., 2003; Liu and Woo, 2006). However, the NO\textsubscript{x} conversion in HC-SCR process is still much lower than that in NH\textsubscript{3}-SCR at a given reductant to NO\textsubscript{x} stoichiometric ratio because of the existence of excess O\textsubscript{2} and poisoning components (SO\textsubscript{x} and H\textsubscript{2}O) in the flue gas.

1.4 Research objectives

As a technology under development, most studies have focused on the development of catalysts, the selection of reducing agents, or the understanding of the reaction mechanisms of the process. In order for such a technology to be used in the industrial processes, engineering aspects still need to be considered to address technical challenges in the reactor design and scale-up for the HC-SCR process.

To avoid the negative impact of the poisoning components and excess O\textsubscript{2} in the flue gas, we propose a new concept of an integrated NO\textsubscript{x} adsorption-reduction process, as shown schematically in Figure 1.2, where the NO\textsubscript{x} adsorption and reduction are carried out in two separate zones of the reactor. The flue gas is passed into the adsorption zone where NO\textsubscript{x} is adsorbed by the catalyst. The NO\textsubscript{x}-adsorbed catalyst particles then move into the reaction zone where NO\textsubscript{x} is reduced by injected hydrocarbons at controlled oxygen concentrations, and at the same time, other adsorbed flue gas contaminants are also stripped from the catalyst. The regenerated catalyst particles are then recirculated back to the adsorption zone to establish a continuous operation.
The main objective of this work was to evaluate the potential application of the integrated adsorption-reduction process for the selective catalytic reduction of NO\textsubscript{x} with hydrocarbons in a dual-zone fluidized bed reactor, i.e. the internal circulating fluidized bed (ICFB) reactor. To achieve this goal, a fixed bed reactor system was set up first to investigate the adsorption performance and reaction kinetics of selected catalysts at various temperatures and flue gas compositions. After the hydrodynamic studies were performed in a cold model ICFB unit, the adsorption and reaction performance of selected catalysts was conducted in the hot model ICFB reactor, with the results compared with a conventional bubbling fluidized bed reactor.

1.5 Thesis layout

A literature review is presented in Chapter 2 to summarize the present status of NO\textsubscript{x} SCR with hydrocarbons, including catalysts, effects of the flue gas composition and reducing agents, and mechanisms of HC-SCR. The adsorption performance and reaction kinetics of
HC-SCR over selected catalysts in a fixed bed reaction system are given in Chapter 3. The hydrodynamic study on the ICFB reactor is shown in Chapter 4, including the gas bypass and solids circulation rate. Results of NO\textsubscript{x} reduction and adsorption over Fe/ZSM-5 catalysts in a hot model ICFB reactor are discussed in Chapter 5. In addition, the results from a conventional fluidized bed reactor are also reported and compared with those from the ICFB reactor. Finally, Chapter 6 summarizes the conclusions of this study and recommendations for the future work.
Chapter 2
Literature Review

It was first reported by Iwamoto et al. (1988) that the catalytic activity of Cu/ZSM-5 on the reduction of NO\textsubscript{x} was remarkably enhanced by the addition of hydrocarbons. Following this discovery, studies on HC-SCR have been expanded to various aspects, including sources of catalyst supports, metal loadings and preparation methods, effects of flue gas compositions and reducing agents, and reaction mechanisms.

2.1 Catalysts

Generally, HC-SCR catalysts can be categorized into two groups according to catalyst supports: zeolite (ZSM-5, Mordenite, Y-zeolite, Ferrierite and Beta zeolite) (Iwamoto et al., 1990; Corma et al., 1997; Amiridis et al., 1997; Traa et al., 1999; Chen et al., 2000b; Wichtelova et al., 2003) and non-zeolite (mainly metal oxides, such as Al\textsubscript{2}O\textsubscript{3}, SiO\textsubscript{2}, and ZrO\textsubscript{2}) (Captain et al., 1998; Garcia-Cortes et al., 2000; Lick et al., 2003a; Liu and Woo, 2006). Based on the supports described above, noble metals (Pt, Pd, Rh, Ir, Ag, Au) (Cho et al., 1995; Parvulescu et al., 1998; Kikuchi et al., 2000; Shi et al., 2002; Sato et al., 2003; Ueda et al., 1997), transition metals (Cu, Co, Fe, Cr, Mo, Ni, Mn, Al, Ti, V, Zn, Zr) (Iwamoto et al., 1990; Witzel et al., 1994; Hall et al., 1998; Wang et al., 2000; Mosqueda-Jimenez et al., 2003; Lucas et al., 2004), alkali and alkaline metals (Na, K, Li, Ba, Ca, Mg, Sr) (Sato et al., 1992), rare earth metals (La, Nd, Ru, Sm) (Bosch and Janssen, 1988) and others (Ga, In) (Tabata et al., 1995) were loaded as active elements in the prepared HC-SCR catalysts.
Metals are often loaded onto the supports in four ways:

1. **Wet Ion-Exchange (WIE):** The support is added to the chemical solution with expected active metal element. The mixture is stirred for a given time period, at a given temperature, with or without inert gas blanket. At the end of this process, the mixture is filtered and washed thoroughly with deionized water, dried and calcined under different conditions. This process may be repeated several times to gain various ion-exchange rates (Wang et al., 2000).

2. **Impregnation (IMP):** The support is added to the chemical solution (aqueous or organic) with expected metal ion, volume and concentration. The solution is stirred for a given time period, at a given temperature. After that, the mixture is filtered or evaporated, with or without washed thoroughly with deionized water, dried and calcined under different conditions (Chen et al., 1998a; Delahay et al., 2005).

3. **Sublimation (SUB) or Chemical Vapour Deposition (CVD):** The metal compound is sublimated under given conditions while the support is put into this atmosphere. After a given time period, the sample is removed and washed with deionized water thoroughly, then dried and calcined (Chen et al., 1998b).

4. **Solid State Ion Exchange (SSIE):** The support and metal compound are physically mixed and grounded. After a given time period, the mixture is washed thoroughly by deionized water, dried and calcined (Berndt et al., 2003).

Different loading methods will give different metal loading ratios. Nevertheless, higher metal loading doesn’t always mean higher reactivity (such as Cu/ZSM-5, as shown in Figure 2.1). The catalyst reactivity is closely related to the preparation process and the reaction
conditions. In general, catalysts with various metal loadings described above have all shown catalytic activity for HC-SCR of NO\textsubscript{x}.

![Graph](image)

**Figure 2.1** NO conversion to N\textsubscript{2} over Cu/ZSM-5 catalysts as a function of Cu/Al ratio at different temperatures

Reaction conditions: 2000 ppm NO, 2000 ppm C\textsubscript{3}H\textsubscript{6}, 2\% O\textsubscript{2}, balanced by He; 1.0 g catalyst and 150 ml/min\textsuperscript{-1} total flow rate (Seyedeyn-Azad et al., 2001).

### 2.1.1 Metal-exchanged zeolites

Much effort has been devoted to the group of metal-exchanged zeolite. So far, Cu, Fe, Pt, Co, and Pd supported by zeolite, mainly as ZSM-5, gained extensive attention. Cu/ZSM-5 might be the most studied catalyst for its higher NO conversion (NO conversion to N\textsubscript{2} could reach up to 85\% in the absence of H\textsubscript{2}O and SO\textsubscript{2} (Seyedeyn-Azad et al., 2001)) over a wide temperature window (300–550°C) by using various reducing agents. However, deactivation of Cu/zeolite catalyst by H\textsubscript{2}O and SO\textsubscript{2} in the flue gas is still the obstacle in the practical applications (Gilot et al., 1997; Chen et al., 1998a; Li et al., 2004). Many papers also reported
that Cu exchanged with other types of zeolite as HC-SCR catalysts could achieve similar results as Cu/ZSM-5, although differences existed in the maximum reactivity and operating temperature windows of these catalysts (Shelf, 1995; Walker, 1995; Corma et al., 1997; Ohtsuka et al., 1997; Park et al., 2000; Cho et al., 2003). As indicated in Figure 2.1, with the increase of Cu/Al ratio, NO conversion to N₂ decreased, suggesting that increasing the quantity of implanted Cu²⁺ did not improve the activity of Cu/ZSM-5.

Most recently, Subbiah et al. (2003) reported that a new catalyst Cu/SUZ-4, which was supported by SUZ-4 zeolite, gave a high reactivity (NO conversion of 44~68%, based on 2.3%Cu/SUZ-4) and a wide operating temperature window (350~600°C) even in the presence of H₂O and SO₂. The reactivity of this catalyst increased as the Cu-exchanged level increased.

Fe/ZSM-5 was widely reported in recent years to possess high effectiveness without the production of N₂O and good resistance to H₂O (Feng and Hall, 1997; Yamada et al., 1998; Kogel et al., 1999; Chen et al., 2000b; Battiston et al., 2003; Sobalik et al., 2002). However, large amount of CO was detected when Fe/ZSM-5 was used as the HC-SCR catalyst (Chen et al., 2000b). According to the literature, Fe loading level on zeolite also played an important role. Although catalysts with low Fe loadings gave some activity for NO reduction (NO conversion to N₂ of ~20%), only catalysts with higher Fe loadings prepared by chemical vapour deposition showed satisfactory NO conversion (>60%) (Chen and Sachtler, 1998a; Saaid et al., 2002). Nevertheless, it is very difficult to prepare large amount of catalyst by chemical vapour deposition method from the practical application point of view. More recently, Fe/ZSM-5 catalyst prepared by an impregnation method using a solution of Fe(AA)₃ (Iron(III) Acetylacetonate) in toluene was reported to show similar activities for
NH$_3$-SCR of NO$_x$ as catalyst prepared by chemical vapour deposition method (Delahay et al., 2005).

Pt/ZSM-5 is more active at lower temperatures and is less affected by SO$_2$ and water vapour, but its active temperature window is very narrow (200–250°C) and most of NO is reduced to N$_2$O in the presence of oxygen (Le et al., 1994; Xin et al., 1999; Woo et al., 2003).

Cobalt-containing zeolite showed good activity when methane was used as the reducing agent (Witzel et al., 1994). Moreover, neither N$_2$O nor CO was detected in the HC-SCR using Co-containing catalyst. However, the effective operating temperature of Co/zeolite is too high (450–550°C) and the catalytic activity is also inhibited by H$_2$O and SO$_2$ (Ohtsuka et al., 1997; Park et al., 2000; Wang et al., 2000).

Like Co/ZSM-5, Palladium-containing zeolite can reduce NO with methane. Nishizaka et al. (1994) reported a NO conversion to N$_2$ of ~70% at a temperature around 475°C by using Pd/ZSM-5 in CH$_4$-SCR without water in the model flue gas. Many researchers studied the reduction on Pd-containing zeolites using reducing agents other than methane, e.g. C$_2$H$_4$, C$_3$H$_6$, (CH$_3$)$_2$O and CH$_3$OH (Shin, et al., 1995; Keiski et al., 1996; Adelman and Sachtler, 1997; Kato et al., 1997; Masuda et al., 1998). However, very low NO conversions (< 20%) were obtained.

Much effort has been devoted to the investigation of HC-SCR on metal-containing zeolite promoted by other metals, such as Co promoted Pd/ZSM-5, Pt promoted Co/ZSM-5, etc (Kagawa et al., 1998; Gutierrez et al., 1998; Bustamante et al., 2002). Ogura et al. (2002) tried the use of Co as the promoter of Pd/ZSM-5, and observed a significant improvement on the durability of catalyst in the presence of water (NO conversion to N$_2$ kept 60% in CH$_4$-SCR, 500°C, 50 hours time-on-stream period).
Other metal loadings on zeolite have also received much attention, but no evidence showed that the catalytic performance was good enough even for model flue gases.

### 2.1.2 Metal-exchanged metal oxides

Numerous metal oxides (such as Al$_2$O$_3$, TiO$_2$, ZrO$_2$, V$_2$O$_5$, Fe$_2$O$_3$, CoO, NiO and MnO$_2$ etc.) have been investigated as supports of HC-SCR catalysts, but most of them showed low or no activity to NO reduction (Parvulescu et al., 1998; Liu and Woo, 2006). Among them, only Pt, Cu, Co, Fe, Ag, Pd supported by Al$_2$O$_3$, SO$_4^{2-}$/TiO$_2$ and SO$_4^{2-}$/ZrO$_2$ exhibited some catalytic activity (Burch et al., 1998; Captain et al., 1998; Lick et al., 2003a). Some researchers found that when promoters were added to metal-exchanged Al$_2$O$_3$, the catalytic activity could have a significant increase (Naito and Tanimoto, 1993; Obuchi et al., 1993).

Chin et al. (1999) reported that Pd-Sulfated Zirconia catalyst could tolerate the effect of SO$_2$, and that the inhibition of water in the flue gas was weak (NO conversion dropped from 48% to 38%) and reversible.

Efthimiadis et al. (2001) used a fluidized bed reactor loaded with γ-Al$_2$O$_3$, Rh/Al$_2$O$_3$ or 5% Rh/Al$_2$O$_3$-95% FCC for the control of NO$_x$ emitted from the regenerator of a FCC pilot-plant unit. They found that γ-Al$_2$O$_3$ with CH$_3$OH exhibited significant reactivity (maximum NO conversion of 97% at 400°C), Rh/Al$_2$O$_3$ also reduced more than 70% of NO to N$_2$ (C$_3$H$_6$ as reducing agent, 300°C). Furthermore, although 5% Rh/Al$_2$O$_3$-95% FCC showed lower NO conversion (40%, 350°C), its catalytic activity was enhanced by the presence of SO$_2$ in the flue gas. This result is notable, although the NO content was low (80 ppm) and no H$_2$O was present in the treated flue gas.

Shimizu et al. (2000) reported a high reactivity of Ag/Al$_2$O$_3$ in the SCR with higher hydrocarbons. They also compared the performance of several metal-containing Al$_2$O$_3$ catalysts, and found that higher NO conversion to N$_2$ could be obtained by using n-octane as
Chapter 2: Literature Review

the reducing agent. Satokawa et al. (2001) further showed the impressive tolerance of Ag/Al₂O₃ to SO₂ in a 50 hours time-on-stream test.

Although significant research has been made, the development of catalysts with both very stable supports and highly active catalytic metal ingredients for practical applications is still a challenge to researchers.

2.2 Hydrocarbon reducing agents

Hydrocarbons, which have been proven effective as reducing agents in SCR of NOₓ, include methane, propane, propylene, iso-butane and oxygenated hydrocarbons, such as methanol and acetic acid etc.

Among them, taking into account that methane is the main component of natural gas, it is not surprising that methane was the mostly studied reducing agent in the past years (Witzel et al., 1994; Tabata et al., 1995; Mitome et al., 1998; Kameoka et al., 2000; Bustamante et al., 2002; Berndt et al., 2003). Nevertheless, due to its preference to combustion, methane has been shown to be only effective in the SCR of NOₓ over Co/zeolite, Ga/ZSM-5, In/ZSM-5, Pd/Al₂O₃ and Pd/TiO₂. The catalytic activity of these catalysts decreased significantly when water was added into the model flue gas. For example, the NO conversion to N₂ decreased from 75% to 5% over Ga/ZSM-5 and 60% to 10% over In/ZSM-5 (Tabata et al., 1995) when H₂O was added. Ogura et al. (2002) reported that Pd promoted Co/ZSM-5 in the CH₄-SCR showed good NO conversion to N₂ (60% at 500°C) in the presence of water, similar to the result of Bustamante et al. (2002) (Pd-Co/Mordenite, 60% at 550°C). Berndt et al. (2003) obtained high catalytic activity over Ce-In/ZSM-5. NO conversion to N₂ dropped from 100% to 88% when 5% water was added.
Due to the non-selective performance of methane, many researchers focused on other hydrocarbons, i.e., propane and propylene.

Fe, Cu or Co exchanged zeolite and Co supported by alumina showed acceptable catalytic activity using propane as the reducing agent (Kogel et al., 1999; Park et al., 2000; Lick et al., 2003b; Martinez-Hernandez and Fuentes, 2004). Moreover, Co/Beta-zeolite (Tabata et al., 1996; Ohtsuka et al., 1997), Fe/Beta-zeolite (Chen et al., 2000b) and Ce-In/ZSM-5 (Berndt et al., 2003) exhibited high activity with propane even in the presence of water. This suggests that, by using these catalysts, the SCR of NO\textsubscript{x} with propane may be a good choice in the practical applications without the presence of SO\textsubscript{2}.

When propylene was used as the reducing agent, Fe or Cu exchanged zeolite gave high NO conversion in the absence of H\textsubscript{2}O and SO\textsubscript{2}. At the same reaction conditions, the temperature with the maximum NO conversion over Cu/ZSM-5 was reported to be 100\degree C higher for propylene (500\degree C) than for propane (400\degree C) (Park et al., 2000). The temperature window of Fe/zeolite was found to be relatively low (300~400\degree C) for both propane and propylene. Figure 2.2 compared the NO conversion to N\textsubscript{2} over Cu/ZSM-5 and Co/ZSM-5 using CH\textsubscript{4} or C\textsubscript{3}H\textsubscript{6} as the reducing agent under the same reaction condition. Obviously, Cu/ZSM-5 showed significantly different activity for tests with CH\textsubscript{4} or C\textsubscript{3}H\textsubscript{6} as the reducing agent, while Co/ZSM-5 kept almost the same activity for both reducing agents.
**Chapter 2: Literature Review**

![Figure 2.2 Dependece of NO conversion on temperature for SCR of NO over various catalysts with alternative reducing agent](image)

Reaction conditions: 2000 ppm NO, 2000 ppm CH$_4$ or C$_3$H$_6$, 2% O$_2$, balanced by He; 1.0 g catalyst; total flow rate: 100 ml/min$^{-1}$. (Seyedeyn-Azad et al., 2001)

Co, Fe, Ni, Mn, Ga and Cu exchanged ZSM-5 gave high NO conversion when iso-butane was used as the reducing agent (Witzel et al., 1994; Chen et al, 2000b; Saaid et al., 2002). Specifically, Co/ZSM-5 was resistant to water in the flue gas and gave very high N$_2$ yield (>94%) (Wang et al., 2000).

In the SCR of NO$_x$ over Fe/ZSM-5, various types of hydrocarbons were tested as reducing agents by Chen et al. (1998b), and the performance followed the order of i-butane > propane > propylene > methane, as shown in Figure 2.3.
Chapter 2: Literature Review

Figure 2.3 Temperature dependence of N₂ yield over Fe/ZSM-5 with different hydrocarbons. Reaction conditions: 0.2 g Fe/ZSM-5, 0.2% NO, 3% O₂, 0.2% i-C₄H₁₀ (0.8% CH₄, 0.27% C₃H₈ or C₃H₆), flow rate: 280 ml/min (Chen et al., 1998b)

Witzel and coworkers (1994) examined the NOₓ reduction performance of methane, propane, iso-butane, n-pentane, 2, 2-dimethylpropane (neopentane), 3, 3-dimethylpentane, 2, 2, 4-trimethylpentane and 3, 3-diethylpentane (neononane) on Co/ZSM-5 catalyst. The maximum NO conversion as a function of the reducing agent followed the order of iso-butane > methane > neopentane > n-pentane > 2, 2, 4-trimethylpentane > propane > 3, 3-dimethylpentane > neononane (see Figure 2.4).
Some other hydrocarbons, such as C₂H₆, n-C₆H₁₄, n-C₄H₁₀, n-C₈H₁₈ and n-C₁₀H₂₂, were also examined and found to give similar performance (Shimizu et al., 2000b; Shibata et al., 2002; Sato et al., 2003; Subbiah et al., 2003). Shimizu et al (2000) reported that the SCR activity of 2% Ag/Al₂O₃ notably increased as the carbon number in the reducing agent increased in the presence of water (Figure 2.5).
Figure 2.5 NO conversion to $N_2$ on $\text{Ag/Al}_2\text{O}_3$ using alternative reducing agent
Reaction conditions: NO/n-alkane/O$_2$ = 1000 ppm/6000 ppm C/10%; 2% H$_2$O, W/F= 0.12 g-s/ml except for CH$_4$-SCR (W/F = 0.9 g-s/ml) (Shimizu et al., 2000)

Oxygenated hydrocarbons were investigated as reducing agents in the SCR (Masters et al., 1999b; Elkaim et al., 2000). The case over Al$_2$O$_3$ or Sulphated-Al$_2$O$_3$ catalyst with methanol as the reducing agent reached a high NO conversion (Efthimiadis et al, 2001; Burch et al., 1998). This implies that Al$_2$O$_3$ may have good tolerance to SO$_2$ under given conditions, but the influence of water needs to be investigated further.

Acetic acid was also reported in the SCR of NO over Pd/Mordenite. In the presence of water, the NO conversion reached 94% with a high acetic acid to NO ratio of 22 (Uchida et al., 1995).
Although hydrocarbons gained extensive attention in the area of SCR of NO\textsubscript{x}, the substantial difference between hydrocarbons and ammonia in NO\textsubscript{x} conversion and H\textsubscript{2}O and SO\textsubscript{2} inhibition shows that there is still a long way to go for the practical application of HC-SCR process.

### 2.3 Reaction mechanisms and kinetics of HC-SCR

The mechanism of HC-SCR has been investigated extensively. Due to the complexity of the HC-SCR process, different mechanisms were proposed for different catalysts, reducing agents and/or reaction conditions. Generally, according to the reaction pathways and rate-limiting steps, reaction mechanisms can be categorized into three groups (Parvulescu et al., 1998; Traa et al., 1999; Sadykov et al., 2003): surface redox, oxidation of NO to NO\textsubscript{2}, and partial oxidation of hydrocarbons.

#### 2.3.1 Surface redox mechanism

Based on microscopic reaction results, Inui et al.(1994) proposed that NO first decomposed to molecular nitrogen and chemisorbed oxygen on reduced surface sites of the catalyst, and the adsorbed oxygen oxidized the catalyst surface. The hydrocarbon then reacted with adsorbed oxygen and reduced the active site (Burch et al., 1996b; Cho et al., 1995).

\[
2NO \rightarrow N_2 + 2O(ads.) \tag{2.1}
\]

\[
HC + O(ads.) \rightarrow CO_x + H_2O \tag{2.2}
\]

Reaction (2.1) is considered to be the rate-limiting step.
2.3.2 Oxidation of NO to NO₂

NO is first oxidized to NO₂ and/or surface nitrite-nitrate complexes by oxygen. Then the oxidized compounds are reduced by hydrocarbons to molecular nitrogen, possibly via intermediate organic nitro compounds (Yokoyama et al., 1994; Adelman et al., 1996; Yan et al., 1998; Kikuchi et al., 1996).

\[
NO + O_2 \rightarrow NO_x \quad (2.3)
\]

\[
NO_x + HC \rightarrow N_2 + CO_x + H_2O \quad (2.4)
\]

As indicated in the literature, the oxidation of NO to NOₓ (reaction 2.3) is the rate-controlling reaction.

2.3.3 Partial oxidation of hydrocarbons

In this mechanism, hydrocarbons are partially oxidized to oxygen- and/or nitrogen-containing organic intermediates (e.g. cyanide or nitro species) by oxygen or NOₓ. The oxidized hydrocarbon intermediates subsequently react with NO to produce N₂, CO and/or CO₂, and H₂O (Li et al., 1994c; Lobree et al., 1997; Shelf, 1995; Lukyanov et al., 1996; Hayes et al., 1996).

\[
HC + O_2 / NO_x \rightarrow HC^* \quad (2.5)
\]

\[
HC^* + NO_x \rightarrow N_2 + CO_x + H_2O \quad (2.6)
\]

The rate-limiting step is reaction (2.5).

It should be noted that the mechanism of HC-SCR is still not clearly understood due to the complexity of HC-SCR under different reaction conditions. Therefore, mechanisms suggested above are not universal. For some specific processes, a combination of those
mechanisms may work better than any one of them (Meunier et al., 2000). For the same reason, the kinetic expression of the HC-SCR process is still not readily available.

2.4 Influence of flue gas compositions on HC-SCR

So far, compositions of the model flue gas in most investigations are far from the real ones. Most researchers reported their results without considering the influence of both water and sulphur dioxide, or either one of them. Hence, although some researchers claimed that they achieved very high NO conversion in the HC-SCR process, the results still need to be verified under practical operating conditions or using real combustion flue gases.

2.4.1 Influence of SO$_2$ and H$_2$O in the flue gas

For a HC-SCR system, one of the most important issues for the practical application is the durability of catalyst to the poisoning components, i.e., H$_2$O and SO$_2$.

Tabaka et al (1996) reported that Co/Beta-zeolite exhibited stable activity (NO conversion to N$_2$ kept at about 70%) in the SCR with propane for the treatment of model flue gas with 9% H$_2$O and 0.3ppm SO$_2$ in a long term run (4000 hours) at 400°C, while under the same reaction conditions, Co/ZSM-5 was deactivated rapidly. Co/Al$_2$O$_3$ showed stable activity (NO conversion ~45%) in the HC-SCR with propylene when 10% H$_2$O was presented in the model flue gas during 125 hours operation at 550°C (Yan et al., 1997). Berndt et al (2003) revealed that the SCR of NO$_x$ with propane over Ce-In/ZSM-5 was enhanced when 5% water was introduced into the system. The NO conversion to N$_2$ increased slightly from 67% to 70%, yet the optimum temperature shifted from 550°C to 600°C. Chen et al. (1998a) reported the performance of Fe/ZSM-5 and Cu/ZSM-5 as a function of time on stream (see Figure 2.6). Although Cu/ZSM-5 showed 60% NO
conversion in the absence of water, its activity decreased quickly to 0 when water was injected into the stream, and the deactivation was partially irreversible. On the other hand, Fe/ZSM-5 showed stable activity no matter whether water was present or not.

Figure 2.6 Effect of H2O on NO conversion to N2 over Fe/ZSM-5 or Cu/ZSM-5

- (●) Fe/ZSM-5 (temperature=375°C, GHSV=42,000 h⁻¹, iso-C₄H₁₀=0.2%, NO=0.2%, O₂=3%, H₂O=0% for dry; 10% for wet); (■) Cu/ZSM-5 (temperature=400°C, GHSV=120,000 h⁻¹, C₃H₈= 0.1%, NO=0.1%, O₂=2%, H₂O: 0% for dry; 10% for wet). (Chen et al., 1998a)

Ag/Al₂O₃ exhibited some long-term stable reactivity under real lean-burn gas engine conditions (Shimizu et al., 2000b). In a time-on-stream test, in the presence of 4ppm SO₂, Ag/Al₂O₃ deactivated very quickly at temperatures lower than 500°C, but exhibited stable activity at 550°C even after 50 hours (Satokawa et al., 2001).

Yan et al. (1997) reported that Co/Al₂O₃ was durable to the flue gas of 950ppm NO + 1000ppm propylene + 5% O₂ + 1.5% H₂O + 30ppm SO₂ with NO conversion remaining at ~63% over a time-on-stream test of 6.5 hours (T=450°C), except for that the propylene
conversion decreased from 78% to 67% over time. The activities of Ag/Al\textsubscript{2}O\textsubscript{3}, Ni/Al\textsubscript{2}O\textsubscript{3}, Co/Al\textsubscript{2}O\textsubscript{3} and In/Al\textsubscript{2}O\textsubscript{3} were seriously inhibited by 100ppm SO\textsubscript{2} in the flue gas (Meunier et al., 2001), worsened with prolonged exposure time. With the removal of SO\textsubscript{2} from the flue gas, the catalytic activities were partially recovered except for Ag/Al\textsubscript{2}O\textsubscript{3}. Similarly, Cu/SUZ-4 (Cho et al., 2003) exhibited some tolerance and stable activity to both H\textsubscript{2}O and SO\textsubscript{2}.

Decyk et al. (2001) investigated the effect of SO\textsubscript{2} on the reactivity of Fe/ZSM-5. Using i-butane as the reducing agent, in the absence of SO\textsubscript{2}, NO conversion to N\textsubscript{2} reached 59.1%. With the feed of 150ppm SO\textsubscript{2}, NO conversion decreased to 36%, and partially recovered to 43.8% after SO\textsubscript{2} was removed from the flue gas. They also found that increasing the concentration of SO\textsubscript{2} to 300ppm could further deactivate the catalyst. According to their analysis, the presence of SO\textsubscript{2} suppressed the formation of Fe-NO\textsubscript{y} complexes on the catalyst surface and increased the formation of carbonaceous deposits, thus further deactivated the catalyst.

In summary, Fe/ZSM-5, Pt/ZSM-5, Co/Beta-zeolite, Ag/Al\textsubscript{2}O\textsubscript{3} and Ce-In/ZSM-5 exhibited a good hydrothermal resistance. On the other hand, only Co/Al\textsubscript{2}O\textsubscript{3}, Ag/Al\textsubscript{2}O\textsubscript{3} and Cu/SUZ-4 showed some tolerance to sulfur dioxide at low concentrations.

### 2.4.2 Influence of excess oxygen in the flue gas

As a key component of the flue gas under lean-burn conditions, the influence of excess oxygen has been widely investigated. One of the main NO reduction mechanisms states that NO is first oxidized to NO\textsubscript{2}, followed by the reduction by the reducing agent. The presence of O\textsubscript{2} is thus essential for the HC-SCR process. This mechanism appears to agree with many experimental findings that the presence of small amount O\textsubscript{2} (e.g., <2%) is essential for HC-SCR (Captain et al., 1998; Shi et al., 2002; Lee, et al., 1997).
Chapter 2: Literature Review

Li et al. (2004) reported that, using Sn/Al<sub>2</sub>O<sub>3</sub> as the catalyst in a TPD experiment, after the adsorption process for the flue gas containing NO and O<sub>2</sub>, the amount of desorbed species was much higher than that for the gas containing NO only (without O<sub>2</sub>), which indicates the fact that O<sub>2</sub> in the flue gas could enhance the adsorption of NO.

As shown in Figure 2.7, Corma et al. (1997) reported that NO conversion to N<sub>2</sub> increased from 10% to 70% on Cu/ZSM-5 and 27% to 76% on Cu/Beta as O<sub>2</sub> concentration increased from 0% to 2%. Thereafter, NO conversion to N<sub>2</sub> decreased significantly to 43% on Cu/ZSM-5 and 42% on Cu/Beta in the presence of 6% O<sub>2</sub>. For Fe/ZSM-5 catalyst (Chen et al., 1998b), when O<sub>2</sub> concentration was 0%, no N<sub>2</sub> was produced. As O<sub>2</sub> concentration increased, N<sub>2</sub> yield increased and reached a maximum of 73% at 2% O<sub>2</sub>. Further increase of O<sub>2</sub> concentration from 2% to 10% made N<sub>2</sub> yield drop slightly to 69%. Li and Armor (1994a) studied NO reduction rate with low O<sub>2</sub> concentration over Co/Ferrierite with CH<sub>4</sub>, and found that NO reduction rate increased from 0.12 to 0.58 mmol/h-g catalyst when O<sub>2</sub> concentration rose from 0 to 5000ppm (0.5%v/v). Lee (2000) investigated the influence of oxygen on NO reduction using oxygenated hydrocarbons (acetic acid) as the reducing agent. The result revealed that with the increase of oxygen concentration from 2.25% to 9.36% in the model flue gas, NO conversion dropped from 52.2% to 21.8%. Elkaim and Bai (2000) reported high tolerance of V<sub>2</sub>O<sub>5</sub>/γ-Al<sub>2</sub>O<sub>3</sub> catalyst to H<sub>2</sub>O with acetic acid as the reductant, and the catalyst kept high activity in the O<sub>2</sub>-free flue gas even in the presence of up to 15% H<sub>2</sub>O. However, it is sensitive to the concentration of O<sub>2</sub> in the flue gas, with the NO<sub>x</sub> conversion dropped from 100% to 38% when the O<sub>2</sub> concentration increased from 0% to 10%.
Chapter 2: Literature Review

Figure 2.7 Influence of O₂ concentration on NO conversion to N₂

Reaction conditions:
1. Cu/Beta (●) and Cu/ZSM-5 (■): T=350°C, 850ppm NO, 450ppm C₃H₈ (Corma et al., 1997);
2. Fe/ZSM-5 (♦): T=350°C, 0.2% NO, 0.2% i-C₄H₁₀, 280 ml/min (Chen et al., 1998a);
3. Cat-1(▲): T=320°C, 377ppm NO, 1663ppm acetic acid, GHSV: 8.87s⁻¹ (Lee, 2000);
4. V₂O₅/γ-Al₂O₃ (▼): T=300°C; 500ppm NO, 500-2250ppm acetic acid, GHSV: 5,000h⁻¹ (Elkaim and Bai, 2000);
5. Co/FER (+F): T=450°C, 1600ppm NO, 1000ppm CH₄, GHSV: 30,000h⁻¹ (Li et al., 1994a).

To summarize, O₂ influences the selectivity of HC-SCR catalyst. In most cases, NO conversion increased when the oxygen concentration was kept at low levels (0~2%). With the increase of oxygen concentration to beyond 2%, NO conversion decreased significantly. For most combustion processes, O₂ concentration in the flue gas is higher than 2% (as listed in Table 1.1). Therefore, O₂ will inhibit the activity/selectivity of most HC-SCR catalysts because excess oxygen reacts with hydrocarbons, leading to increased hydrocarbon consumption. In fact, many researchers considered O₂ as one of the major factors negatively...
impacting the performance of HC-SCR under lean-burn conditions. On the other hand, the presence of O$_2$ is essential for the HC-SCR process because the presence of small amount O$_2$ (e.g., <2%) is necessary for NO to be oxidized to NO$_2$, and then adsorbed by the catalyst before it is reduced to N$_2$ in the HC-SCR process.

2.5 Reactors for SCR of NO$_x$

The most commonly used reactors in the NH$_3$-SCR process are packed bed reactors with honeycomb monolith, metal plate-type monolith, or coated metal monolith catalyst with parallel channels (Beretta et al., 1998; Forzatti, 2001). Compared to other packed bed reactors, the monolithic reactor has the advantages of low-pressure drop, superior attrition resistance and low tendency to fly ash plugging, and high specific surface area. However, because of the relatively lower gas/solid contacting efficiency, large amounts of catalysts need to be loaded into the reactor. The flux range of the flue gas is also restricted by the volume of catalysts. From the operating point of view, the replacement of catalysts is difficult.

For NH$_3$-SCR of NO$_x$, fluidized bed reactors have been used for NO$_x$ or simultaneous SO$_x$/NO$_x$ removal by various SO$_2$ sorbents and NH$_3$- or urea-SCR catalysts (Snip et al., 1996; Gao et al., 1996; Roh et al., 2003). Compared to conventional monolithic reactors, the catalyst loading is decreased, fly ash can easily pass through and the gas/solid contact efficiency is enhanced in the fluidized bed reactor. Furthermore, the replacement of catalysts does not require the SCR system to be shut down. On the other hand, the high pressure drop in the reactor and attrition of catalyst particles and adsorbent particles may limit the application of fluidized beds in NH$_3$-SCR processes.
Chapter 2: Literature Review

For the HC-SCR process, since the development of the catalyst and the screening of reducing agents are still the primary impediments for practical applications, most of studies were carried out in fixed bed reactors. Few researchers focused on the selection and application of reactor types for the HC-SCR process.

Iwamoto et al. (1998) introduced a new method, intermediate addition of reductant (IAR), for the HC-SCR process. An oxidation catalyst (e.g. Pt/MFI), which oxidized NO to NO₂, and a reduction catalyst (e.g. Zn/MFI), which reduced NOₓ to N₂, was combined for the removal of NOₓ in the presence of excess oxygen. The conversion of NO to N₂ at 300°C increased to 54% on combined Pt/MFI and Zn/MFI catalysts from 5% on Zn/MFI or 6% on Pt-MFI using ethane as the reducing agent.

Perez-Ramirez et al. (2000) reported a dual-bed catalytic system for the combined deNOₓ-deN₂O process. In this system, NO was removed in the first stage over Pt/AC catalyst with propane. To further reduce the large amounts of N₂O produced in the first stage to N₂, a second deN₂O reactor bed was employed using ex-Co-Rh/Al-HTlc or Fe/ZSM-5 with propane.

Efthimiadis et al (2001) reported a fluidized bed HC-SCR process (dimensions not mentioned) using 30g Al₂O₃, Rh/Al₂O₃ or 5:95Rh/Al₂O₃-FCC as the SCR catalyst, and CH₃OH (1500ppm) or C₃H₆ (500ppm) as the reducing agent. The flue gas was the exhaust gas emitted from the regenerator of a FCCU, having following compositions: 80ppm NOₓ, 4% O₂, 7% CO₂, 225ppm CO and 235ppm SO₂, with a total flow rate of 1000 ml/min treated in the SCR reactor.
Chapter 2: Literature Review

2.6 NO\textsubscript{x} storage-reduction (NSR)

Recently, a new NO\textsubscript{x} removal process, NO\textsubscript{x} storage-reduction (NSR), gained much attention for the application under O\textsubscript{2}-rich lean-burn conditions, especially to truck exhaust gas. Although the mechanism of NSR is still not well understood, the common view is that, in the NSR process, NO is first oxidized to NO\textsubscript{2} and then trapped during lean operations over a NO\textsubscript{x} adsorbent. The adsorbent is then regenerated with NO\textsubscript{x} released with the released NO\textsubscript{x} being reduced by carbon monoxide, hydrogen or hydrocarbons over the catalyst bed when the engine is run under stoichiometric or rich burn conditions for a short period of time.

Similar to HC-SCR catalyst, some catalysts, such as Pt/Al\textsubscript{2}O\textsubscript{3}, had been proposed but showed insufficient activity for the NSR process (Olsson et al., 2001; Shinjoh et al., 1998). A new type of catalyst, which combines NO\textsubscript{x} adsorption and reduction materials, was extensively investigated. Typically, alkali or alkaline earth metals, such as barium and potassium, were chosen as NO\textsubscript{x} storage components, and noble metals, such as platinum and rhodium, as NO\textsubscript{x} oxidation and reduction components with the support of some metal oxides (Al\textsubscript{2}O\textsubscript{3}, etc.) (Fridell et al., 1999; Epling et al., 2003; Abdulhamid et al., 2004). Among them, Pt-Ba/Al\textsubscript{2}O\textsubscript{3} was the mostly investigated NSR catalyst with CO, H\textsubscript{2} or C\textsubscript{3}H\textsubscript{6} as the reducing agent, which can provide high NO\textsubscript{x} removal efficiency (>90%) in successive sequences of lean and rich modes (Bogner et al., 1995). However, the inhibition of SO\textsubscript{2} is still a problem (Hodjati et al., 1998a; Schreier et al., 2005; Hammache et al. 2008).

Although NSR gained extensive attention as a potential solution to automobile exhaust gas NO\textsubscript{x} control because the engine can be relatively easily controlled to be run over the lean and rich cycles, it is difficult to apply NSR for the flue gas emitted from stationary sources because the oxygen concentration cannot be easily adjusted without upsetting the upstream process.
Similar to NSR, Elkaim and Bai (2000) proposed a method for removing O2 from the flue gas by adsorption/desorption in order to create an oxygen-free stream for the effective reduction of NO\textsubscript{x}. According to their patent, NO was first temporarily adsorbed by an adsorbent (activated carbon), then NO in the NO-rich adsorbent was desorbed by heating the adsorbent or by contacting an inert carrier gas (N\textsubscript{2}) to create an oxygen-free gas stream. NO in the oxygen-free gas stream was subsequently passed to a catalyst bed to have NO reduced by a reducing agent (hydrocarbons). This patent first reported the concept of separating HC-SCR process into two steps: adsorption and reduction.

2.7 Summary

HC-SCR has been widely studied in recent years, with focus mainly on the preparation and evaluation of catalysts, effects of flue gas compositions and reducing agents, and reaction mechanisms.

ZSM-5 and Al\textsubscript{2}O\textsubscript{3} are commonly used catalyst supports in HC-SCR process, and many metals have been loaded onto catalyst supports as active elements, such as Pt, Ag, Cu, Co and Fe. Among reported catalysts in the literature, Fe/ZSM-5 gained extensive attention due to its stable reactivity and high hydrothermal durability. Although Pt/ZSM-5 and Ag/Al\textsubscript{2}O\textsubscript{3} also exhibited good performance in HC-SCR, they are not economical for the treatment of the flue gas from stationary combustion processes due to the high cost in the preparation of these catalysts using Pt or Ag as active elements.

Many hydrocarbons have been proven effective in HC-SCR, such as methane, propane, propylene, and iso-butane. Although methane has been widely investigated as the reducing agent in HC-SCR, it has been found to be effective only in SCR of NO\textsubscript{x} over Co/zeolites and some other catalysts at temperatures higher than 450\textdegree C. Propane, propylene
and iso-butane showed different performance in HC-SCR, depending on the type of catalyst and reaction conditions used in the experiment. If Fe/ZSM-5 is chosen as the HC-SCR catalyst, then propylene will be a good candidate as the reducing agent because of its relatively high reaction temperature window which can avoid the catalyst deactivation caused by the formation of a carbonaceous deposit on the catalyst surface at low temperatures (Chen et al., 1999).

The poisoning components (SO$_2$ and H$_2$O) and excess O$_2$ in the flue gas showed significant negative impacts on HC-SCR. Fe/ZSM-5, Pt/ZSM-5, Co/Beta-zeolite, Ag/Al$_2$O$_3$ and Ce-In/ZSM-5 exhibited a good hydrothermal resistance. However, only Co/Al$_2$O$_3$, Ag/Al$_2$O$_3$ and Cu/SUZ-4 showed some tolerance to SO$_2$ at low concentrations. As a key component of the flue gas under lean burn conditions, the excess O$_2$ inhibited the activity/selectivity of most catalysts in HC-SCR process. On the other hand, according to one of the reaction mechanisms, a small amount of O$_2$ is necessary for NO$_x$ reduction.
Chapter 3
Adsorption and Reaction Kinetics

3.1 Experimental setup

To investigate the reaction kinetics and adsorption performance of selected catalysts under various temperatures and flue gas compositions, a fixed bed reaction system was constructed as shown schematically in Figure 3.1. The system consists of a tubular reactor, a gas supply and flow rate control unit, a gas preheating unit, a gas heating unit (furnace), a gas analysis unit and a data acquisition unit. A stainless steel tubular reactor with an inner diameter of 13.5mm was used in this experiment, and the catalyst packing height was maintained at 50.8 mm throughout all the tests.

Figure 3.1 The fixed bed reaction system
Chapter 3: Adsorption and Reaction Kinetics

The model flue gas used in the experiment was a mixture prepared from several gas cylinders: 50% O₂ balanced with N₂, 0.6% NO balanced with N₂, 10% SO₂ balanced with N₂, pure CO₂ and pure N₂ gas cylinders from Praxair Products Inc. The reducing agent used in the experiment was propylene. The gas cylinder containing 1.2% propylene balanced with N₂ was also supplied by Praxair. Deionized water was pumped into the system using a LKB Microperpex peristaltic pump, heated and evaporated through a water evaporator, and then pre-mixed with other gases if necessary. The compositions of the effluent gases (NOₓ, CO, CO₂, and SO₂) were analyzed by a Horiba PG-250 flue gas analyzer. In the presence of oxygen, NO in the model flue gas will be partially oxidized to NO₂. Since the gas analyzer measures NO and NO₂ together, all calculations related to NO adsorption and conversion throughout this work were based on NOₓ (NO + NO₂) although only NO was fed into the reaction system.

Before the start up of the experiment, the reactor was first heated to the desired temperature with pure N₂ gas passing through the catalyst bed. After the reactor temperature was stabilized, the flow of a gas mixture at a preset composition was turned on to start the experiment, with the gas mixture composition determined by the gas analyzer via bypassing the gas from the reactor.

In the adsorption experiment, the model flue gas was pre-mixed with pure N₂ as the balancing gas according to the preset flow rate and concentrations of NO and O₂. The mixed flue gas was then preheated to 150°C by the preheating system, and the composition was measured by the gas analyzer. After stable readings of the analyzer were reached, which corresponded to the inlet model flue gas concentrations, the three way valves were switched to the reactor and the time was recorded as the starting point of the adsorption. During the adsorption process, the gas composition at the reactor’s outlet was continuously monitored.
until the NO\textsubscript{x} concentration became stable, with the final NO\textsubscript{x} concentration defined as the equilibrium NO\textsubscript{x} concentration. Thereafter, the NO flow from the gas cylinder was turned off and, at the same time, HC (i.e. propylene) at the same flow rate of NO was added into the O\textsubscript{2} + N\textsubscript{2} flow to start the catalytic reduction process by reacting propylene with the adsorbed NO\textsubscript{x} on the catalyst. After 45 minutes, the HC flow was turned off and the gas composition passing through the catalyst bed was adjusted to 10% O\textsubscript{2} + balanced N\textsubscript{2} at a flow rate of 500 ml/min to further remove the adsorbed HC or other intermediate species produced in the reduction process. This stripping process took 30–45 minutes or even longer to lower the outlet CO concentration to below 5 ppm. Afterward, pure N\textsubscript{2} was used to purge the catalyst bed for another 45 minutes to remove all adsorbed CO\textsubscript{x} and O\textsubscript{2} from the catalyst.

In the reaction kinetics experiment, the flue gas was prepared in the same way as in the adsorption experiment, and the HC flow at the desired HC:NO ratio was injected right after the pre-heater to have it mix with other model flue gases and to minimize the oxidation of the HC outside the reactor. The composition of the gas mixture was first measured via bypassing the gas mixture to the gas analyzer before the gas flow was switched to the reactor for the reaction experiment. After the reaction was finished, the gas flow was switched back to the bypass route to have the inlet gas concentration checked.

3.2 Catalyst preparation

In most HC-SCR processes using ZSM-5 as the catalyst support, NH\textsubscript{4}/ZSM-5 or H/ZSM-5 was first prepared from Na/ZSM-5 via wet ion-exchange method using aqueous NH\textsubscript{4}NO\textsubscript{3} solution, followed by calcination in air at 500°C for 4 hours.

As the active element in the SCR process, Fe is often loaded onto the catalyst support in four ways: conventional wet ion-exchange (WIE), incipient wetness impregnation in
aqueous solution (IMPA), impregnation in organic solution (IMPO) and sublimation or chemical vapour deposition (CVD). FeCl₂, FeCl₃, Fe(NO₃)₃, Fe₂(SO₄)₃ and iron (III) acetylacetonate (Fe(AA)₃) are most common used iron sources.

It was reported that catalysts prepared by both WIE and IMPA methods had similar activity for NH₃-SCR of NOₓ, except that the IMPA method was simpler and less costly than WIE method (Long and Yang, 1999; Qi and Yang, 2005). Although Fe/ZSM-5 prepared by CVD method showed high catalytic activity and stability in HC-SCR of NOₓ (Chen et al, 1998), it is difficult to implement this process for the production of large quantities of catalysts considering the complexity of the preparation process. Fe/ZSM-5 prepared by IMPO method was first used in the study of NH₃-SCR process by Delahay et al. (2005). A recent study from Lima et al. (2008) showed that Fe/ZSM-5 prepared by IMPO demonstrated high activity in NH₃-SCR and acceptable NO conversion in HC-SCR using n-decane as the reducing agent. Based on all the above aspects, WIE and IMPO were selected for the preparation of the catalysts in this study.

3.2.1 Materials

Two types of ZSM-5 were selected as the support of the catalyst in this experiment, i.e., Na/ZSM-5 (PUC) purchased from The China University of Petroleum (Beijing, China) and a free sample of H/ZSM-5 (Albemarle) kindly supplied by Albemarle Corporation (USA). It should be noted that both particles are not pure ZSM-5 but a mixture of pure ZSM-5 and additives which were added in the prilling process. To examine the influence of particle size, the coarse Na/ZSM-5(PUC) was crushed and sieved to obtain a fine Na/ZSM-5 (crushed PUC). A spent FCC catalyst was also selected as the catalyst support. The properties of the catalyst supports are listed in Table 3.1.
Chapter 3: Adsorption and Reaction Kinetics

Table 3.1 Properties of the catalyst supports

<table>
<thead>
<tr>
<th>Catalyst support</th>
<th>Average particle size</th>
<th>Apparent bulk density</th>
<th>$S_{BET}$</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na/ZSM-5 (PUC)</td>
<td>1042 µm</td>
<td>903 kg/m³</td>
<td>118 m²/g</td>
<td>China University of Petroleum</td>
</tr>
<tr>
<td>H/ZSM-5 (Albemarle)</td>
<td>155 µm</td>
<td>968 kg/m³</td>
<td>171 m²/g</td>
<td>Albemarle Corp.(USA)</td>
</tr>
<tr>
<td>Na/ZSM-5 (Crushed PUC)</td>
<td>234 µm</td>
<td>764 kg/m³</td>
<td>192 m²/g</td>
<td>Crushed from original Na/ZSM-5 (PUC)</td>
</tr>
<tr>
<td>Spent FCC</td>
<td>116 µm</td>
<td>922 kg/m³</td>
<td>N/A</td>
<td>Chevron Refinery</td>
</tr>
</tbody>
</table>

The following chemicals were used in the preparation of the catalysts:

- Ammonium nitrate : NH$_4$NO$_3$, 99.0%, M.W.=80.04 g/mol, Sigma-Aldrich
- Iron (III) acetylacetonate (Fe(AA)$_3$): [CH$_3$COCH=C(O-)CH$_3$]$_3$Fe, 97%, M.W.=353.18 g/mol, Sigma-Aldrich
- Ferrous chloride: FeCl$_2$ · 4H$_2$O, 102.0% (as FeCl$_2$ · 4H$_2$O), M.W.=198.81 g/mol, Fisher
- Toluene: C$_7$H$_8$, >=99.5%, M.W.=92.14 g/mol, Sigma-Aldrich
- Deionized water

3.2.2 Preparation of NH$_4$/ZSM-5 and H/ZSM-5

NH$_4$/ZSM-5 was prepared from Na/ZSM-5 by exchanging with NH$_4$NO$_3$ solution. 100g of Na/ZSM-5 was mixed with 100ml of 0.5M NH$_4$NO$_3$ solution at the room temperature, and the slurry was stirred periodically. After 3 hours, the catalyst in the slurry was separated from the NH$_4$NO$_3$ solution, mixed with another batch of fresh 0.5M NH$_4$NO$_3$ solution (100ml). After 3 times of the aqueous ion-exchange process, the catalyst was washed thoroughly with 250ml of deionized water for 5 times, dried in air at 120°C for 12 hours to form NH$_4$/ZSM-5, and then calcined in air at 500°C for 4 hours to form H/ZSM-5.
3.2.3 Preparation of Fe/ZSM-5 by WIE method

20g NH₄/ZSM-5 was added to 500ml of 0.5M FeCl₂ solution with constant stirring. After 24 hours, the mixture was filtered and then washed five times with deionized water, dried at 120°C for 12 hours and then calcined in air at 500°C for 6 hours.

3.2.4 Preparation of Fe/ZSM-5 by IMPO method

56g H/ZSM-5 was added to a solution containing 20g Fe(AA)₃ + 200 ml toluene. The slurry was stirred periodically for 24 hours. Toluene was then evaporated from the slurry and recycled, and the residue after the evaporation was dried in air at 120°C for 12 hours and calcined in air at 500°C for 6 hours.

3.3 Performance of Fe/ZSM-5 (PUC) catalyst prepared by IMPO

3.3.1 Adsorption performance of Fe/ZSM-5(PUC)

The adsorption isotherm behaviour of the Fe/ZSM-5(PUC) catalyst prepared by IMPO method was investigated under various temperatures and inlet NO concentrations using a model flue gas with 5% (v/v) O₂ balanced with N₂ at GHSV=5000 h⁻¹. The catalyst loading in the reactor was 6.58g. The NO concentration of the model flue gas varied from 200 to 1000 ppm with an increment of 200 ppm and the temperature from 250 to 400°C with an increment of 30°C. For each given temperature and gas composition, the adsorption curve was determined experimentally, with the result at T=250°C shown in Figures 3.2. Adsorption curves at other temperatures are shown in Appendix G (Figures G.1 to G.5)
Since there exists a delay in system response time for the gas analyzer, the delay time needs to be subtracted from the recorded adsorption time. Because the response time varied with the operating temperature, the delay time was determined separately for each operating temperature. It is clear from Figure 3.2 that, at a given temperature, with the increase of equilibrium NO\textsubscript{x} concentration (C\textsubscript{0}), the adsorption curve moved towards the left, indicating that the catalyst bed was saturated more quickly by NO\textsubscript{x} at higher C\textsubscript{0}.

The equilibrium adsorption capacity of NO\textsubscript{x} on the catalyst was calculated by

\[
q_e = \frac{P \times C_0 \times 10^{-3} \times F \times M_{NO}}{R \times (T_0 + 273) \times \frac{S}{W_{cat.}}} \quad (3.1)
\]

where

- \(q_e\), adsorption equilibrium capacity of NO\textsubscript{x} on the catalyst, mg/g
- \(P\), operating pressure, Pa
$C_0$, equilibrium NO$_x$ concentration, ppm

$F$, model flue gas flow rate at room temperature, m$^3$/s

$M_{NO}$, molecular weight of NO, 30 g/mol

$R$, universal gas constant, 8.314 J/(mol.K)

$T_0$, ambient temperature, °C

$S$, integrated area of the adsorption curve, s

$W_{cat}$, catalyst loading, g

The integrated area, $S$, of the adsorption curve was calculated by

$$S = \int_0^t \left(1 - \frac{C_{NOx, out}}{C_0}\right) dt$$  \hspace{1cm} (3.2)

where

$C_{NOx, out}$, the outlet concentration of NO$_x$, ppm

$t$, adsorption time, s

The Freundlich equation

$$q_e = \alpha C_0^\beta$$  \hspace{1cm} (3.3)

was applied to fit $q_e$ as a function of $C_0$. The calculated $q_e$ and the curve fitting results using Freundlich equation were shown in Figure 3.3. For a given temperature, the adsorption capacity of the catalyst increased significantly with the increase of the equilibrium NO$_x$ concentration. At a given equilibrium NO$_x$ concentration, the adsorption capacity of the catalyst decreased with the increase of the adsorption temperature.

Using $\alpha$ and $\beta$ fitted in Figure 3.3, correlations of $\alpha$ and $\beta$ as a function of temperature were derived (Figure 3.4) by least-square curve fitting with a second-order polynomial function:

$$\alpha = 0.46179 - 0.00123T + 8.7123 \times 10^{-7} T^2$$  \hspace{1cm} (3.4)

$$\beta = -7.13236 + 0.024T - 1.81409 \times 10^{-5} T^2$$  \hspace{1cm} (3.5)
Chapter 3: Adsorption and Reaction Kinetics

Figure 3.3 Fitted adsorption isotherms of NO\textsubscript{x} by Freundlich equation (Catalyst: Fe/ZSM-5(PUC))

Figure 3.4 Relationship between \( \alpha/\beta \) and adsorption temperature (Catalyst: Fe/ZSM-5(PUC))
3.3.2 Reactivation performance of Fe/ZSM-5 (PUC)

To investigate the influence of temperature, gas hourly space velocity (GHSV), HC and O\(_2\) concentrations on the SCR performance of the catalyst, the HC-SCR of NO\(_x\) was conducted in the tubular reactor. The model flue gas consisted of 600ppm NO, 0.5% to 8% (v/v) O\(_2\), balanced with N\(_2\). The HC:NO molar ratio in the model flue gas ranged from 0.5:1 to 4:1. The time-on-stream test was also performed to evaluate the durability and stability of the catalyst.

As a promising catalyst, Fe/ZSM-5 has shown effectiveness in the SCR of N\(_2\)O by propylene (Yamada et al., 1998). Since N\(_2\)O can be converted completely to N\(_2\) over Fe/ZSM-5 catalyst under experimental conditions similar to this study, and only NO was used in the model flue gas in this study, the concentration of N\(_2\)O in the flue gas exiting the reactor was expected to exist only at very low level in comparison with NO\(_x\). Therefore, N\(_2\)O in the stream exiting the reactor was not monitored in this study.

The NO\(_x\) conversion was calculated based on measured inlet and outlet NO\(_x\) concentrations by

\[
X_{NO_x} = \frac{C_{NO_x, in} - C_{NO_x, out}}{C_{NO_x, in}} \times 100\% \tag{3.6}
\]

Because the gas analyzer used in the experiment can only measure the concentrations of CO and CO\(_2\), the conversion of propylene was calculated by carbon balance based on the measured concentrations of CO and CO\(_2\) at the reactor’s outlet,

\[
X_{HC} = \frac{C_{CO, out} (ppm) + C_{CO_2, out} (\%) \times 10^4}{3 \times C_{HC, in} (ppm)} \times 100\% \tag{3.7}
\]
The inlet concentration of propylene ($C_{\text{HC,in}}$) in equation 3.7 was estimated based on the measured flow rate from the certified (1.2% propylene + N₂) gas cylinder and the total feed gas flow rate. For example, if the total flow rate of gas feed is 600 ml/min and 60 ml/min is from the (1.2% HC + N₂) cylinder, the HC concentration in the feed gas should be $60\times1.2%/600=0.12\%$ or 1200 ppm. A coefficient of 3 is included in equation 3.7 because one mole of propylene could produce 3 moles of carbon. It should be noted that other intermediate species (or incompletely oxidized products) might be generated from propylene, which had not been monitored and considered in the calculation for HC conversion. Thus, equation 3.7 may underestimate the HC conversion.

3.3.2.1 Effect of reaction temperature on catalytic activity

Using 600 ppm NO + 1200 ppm HC + 1% O₂ + balanced N₂ as the reacting gas mixture, the time-on-stream test at a gas space velocity of 5000 h⁻¹ was conducted on the Fe/ZSM-5 (PUC) catalyst. Typical profiles of NOₓ and HC conversions and the outlet concentration of CO at 250°C and 350°C are shown in Figures 3.5 and 3.6, respectively. Results at other temperatures are shown in Figures G.13 to G.16 in Appendix G.
Chapter 3: Adsorption and Reaction Kinetics

Figure 3.5 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration (Catalyst: Fe/ZSM-5(PUC), T=250° C, [O\textsubscript{2}]=1%)

Catalyst: Fe/ZSM-5(PUC)
Calcined in 20% O\textsubscript{2} + N\textsubscript{2} @500° C for 2hrs
Feed gas: 600ppm NO + 1200ppm HC + 1% O\textsubscript{2} + N\textsubscript{2}
T=250° C, GHSV=5000 h\textsuperscript{-1}
Figure 3.6 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration (Catalyst: Fe/ZSM-5(PUC), T=350\textdegree{}C, [O\textsubscript{2}]=1%)
Chapter 3: Adsorption and Reaction Kinetics

It should be noted that the catalyst was calcined in 20% O\textsubscript{2} + N\textsubscript{2} at 500\textdegree C for 2 hours to fully regenerate the catalyst prior to each test at a given temperature.

As shown in Figure 3.5, the NO\textsubscript{x} conversion increased quickly to a maximum and then decreased steadily with time, indicating a decaying catalytic activity at T=250\textdegree C. Meanwhile, HC conversion was low and decreased with time, which is also reflected by the low and decreasing outlet CO concentration. It was found that CO was the main product from HC oxidation and almost no CO\textsubscript{2} was detected at this temperature.

When the reaction temperature was increased to 350\textdegree C, as shown in Figure 3.6, both NO\textsubscript{x} and HC conversions and outlet CO concentration kept relatively stable within the tested period. Furthermore, the outlet CO concentration and HC conversion increased very quickly with the increase in temperature. At this temperature, the CO to CO\textsubscript{2} ratio in the flue gas exiting the reactor was 58\%:42\%. Although CO\textsubscript{2} increased significantly, it was still lower than CO in the exhaust gas stream. This result agreed with those reported in the literature using Fe/ZSM-5 as the deNO\textsubscript{x} catalyst (Chen et al, 1998).

To investigate the effect of the reaction temperature on the catalytic performance of Fe/ZSM-5(PUC), the time-on-stream test was conducted with the temperature ranging from 250 to 350\textdegree C with an increment of 25\textdegree C, with the results shown in Figures 3.7 and 3.8 for NO\textsubscript{x} and HC conversions, respectively.
Figure 3.7 Effect of reaction temperature on NO\textsubscript{x} conversion (Catalyst: Fe/ZSM-5(PUC))

Figure 3.8 Effect of reaction temperature on HC conversion (Catalyst: Fe/ZSM-5(PUC))
Peak NO\textsubscript{x} conversions at different reactor temperatures were around 70.5\% (250°C), 75\% (74.4\% for repeated run) (275°C), 70.2\% (300°C), 68.2\% (325°C) and 65.6\% (350°C), respectively, for the current Fe/ZSM-5 (PUC) catalyst, with the highest NO\textsubscript{x} conversion achieved at 275°C. With the further increase of the temperature beyond 275°C, the peak NO\textsubscript{x} conversion decreased. However, at lower temperatures (<325°C), the catalyst activity was quite unstable and the conversion decreased very quickly with time. This result is consistent with findings from Chen et al. (1999, 2000b) using iso-butane or n-butane as the reducing agent. According to their study, the deactivation of Fe/ZSM-5 was caused by the formation of a carbonaceous deposit which was not swiftly volatilized at a low temperature (300°C).

The durability or stability of the catalyst improved with the increase of reaction temperature. At T=350°C, the catalyst showed stable, yet lowest NO\textsubscript{x} conversion. This means that to achieve a high NO\textsubscript{x} conversion, a low temperature is preferred. On the other hand, the stable catalytic activity could be achieved only at high temperatures. Considering the requirement of catalyst durability in practical applications, coupling with the desired high reaction activity of NO\textsubscript{x} reduction, the optimal reaction temperature should be around 350°C for the Fe/ZSM-5(PUC) catalyst prepared by the IMPO method.

Compared to NO\textsubscript{x} conversion in Figure 3.7, HC conversion always increased with increasing reaction temperature (Figure 3.8). Peak HC conversions were 17.2\% (250°C), 38.2\% (34.8\% for repeated run) (275°C), 40.2\% (300°C), 49.6\% (325°C) and 71.0\% (350°C), respectively. This is because the oxidation reaction generally increased with increasing reactor temperature. It is noted that when the reactor was operated in the right temperature window, the catalytic activity kept stable and the consumption of hydrocarbon by the SCR process also remained at a relatively stable level. On the contrary, when the catalyst lost its activity gradually with time at low temperatures, the amount of hydrocarbon consumed in the
Chapter 3: Adsorption and Reaction Kinetics

SCR process also decreased, leading to a decrease of HC conversion with time. The peak HC conversion did not always correspond to the peak NO\textsubscript{x} conversion at each temperature, because HC was catalytically oxidized by both NO\textsubscript{x} and O\textsubscript{2}.

3.3.2.2 Catalyst deactivation at low temperatures

Further investigation revealed that the catalyst deactivation at temperatures lower than 325°C might be induced by intermediates generated from the incomplete oxidation of hydrocarbons. As shown in Figure 3.9, when O\textsubscript{2} concentration in the flue gas increased from 1% to 4%, the peak NO\textsubscript{x} conversion decreased from 75% to 67.9%, but the catalyst activity remained stable for a much longer time at higher O\textsubscript{2} level. One may infer that the intermediate species of the hydrocarbon and carbon deposit produced in the NO\textsubscript{x} reduction process gradually covered the active sites of the catalyst in the reaction process, and resulted in the catalyst deactivation at low O\textsubscript{2} concentrations. At high O\textsubscript{2} concentrations, the intermediate species were oxidized by excessive O\textsubscript{2} and thus left the catalyst sites active for the adsorption of NO\textsubscript{x}. Similarly, high temperatures can promote the complete combustion of the HC intermediate species and thus reduce the amount of hydrocarbon intermediates and carbon deposit on active sites.
Figure 3.9 Effect of inlet O$_2$ concentration on the catalytic activity (Catalyst: Fe/ZSM-5(PUC))

To elucidate the catalyst deactivation, the single point BET surface area of fresh, deactivated and regenerated catalysts under T=275°C was measured and shown in Figure 3.10. The deactivated catalyst was regenerated in the flow of 20% O$_2$ + N$_2$ at T=500°C for 2 hours, followed by N$_2$ flush for 20 minutes. The instrument used for measuring the catalyst surface area was a Micromeritics Flowsorb II 2300 with a gas flow of 30%V N$_2$ + 70%V He.
The impregnation of Fe led to a slight decrease in the surface area from 118 m$^2$/g (parent Na/ZSM-5) to 110 m$^2$/g (fresh Fe/ZSM-5). The surface area of the deactivated catalyst decreased significantly to 68 m$^2$/g, and was almost completely recovered to 109 m$^2$/g after regeneration. Since only NO, propylene, O$_2$ and N$_2$ were introduced into the reactor, the only explanation for the decrease of the BET surface area of the deactivated catalyst was the deposit of the partially oxidized hydrocarbon intermediates or graphitic carbon.

Further evaluation was carried out based on X-ray photoelectron spectroscopy (XPS) on the surface element of fresh, deactivated and regenerated catalysts, with differences identified in the C 1s region as shown in Figure 3.11 (see also Figures G.20 to G.26 in Appendix G for other XPS results).
The binding energy corresponding to the peak intensity in the narrow spectra scan for C 1s region of the fresh, deactivated and regenerated catalyst were 285.05, 284.40 and 285.06, respectively. The atomic percentages of the C 1s on the surface of the catalysts were 23.39%, 24.76%, and 22.06%, respectively, for fresh, deactivated and regenerated catalyst. Because of the existence of the adsorbed gaseous carbon, i.e., CO₂, the difference among the atomic percentages of the C 1s on the surface of the catalysts could not prove the existence of the graphitic carbon. However, the peak position shift from the higher binding energy for the fresh and regenerated catalysts to the lower binding energy for the deactivated catalyst may be attributed to the deposit of the graphitic carbon on the catalyst surface which covered the active sites of the catalyst, and was considered as the possible reason for the deactivation of the catalyst.

**Figure 3.11** XPS narrow scan for C 1s (Catalyst: Fe/ZSM-5(PUC))
To further investigate the possible reason for the deactivation of the catalyst at low temperatures, a thermogravimetric analysis (TGA) was performed using a Shimazu TGA-50 thermogravimetric analyzer. In the experiment, catalyst samples were aged in the tubular reactor for 6 hours by contacting the flue gas consisting of 600 ppm NO + 1200 ppm HC + 1% O₂ + N₂ at 275 and 350°C, respectively. The sample was then placed into the TGA under a N₂ atmosphere and heated up from room temperature to 250°C with a ramp of 20°C/min. The temperature was maintained at 250°C for 10 minutes to volatilize adsorbed gas components. Thereafter, the temperature was increased to 500°C with a ramp of 5°C/min and maintained at 500°C for 30 minutes. Weight changes during above period were recorded and are shown in Figure 3.12 for the sample aged at 275°C and Figure 3.13 for the sample aged at 350°C.

Both samples showed some weight loss (-2.03% in Figure 3.12 and -1.53% in Figure 3.13) when heated up from room temperature to 250°C, which indicates that both samples contained some adsorbed gas components. Over the period of the temperature rise from 250 to 500°C and stabilized at 500°C, the catalyst aged at 275°C lost 1.38% of its total weight while the catalyst aged at 350°C lost only 0.23% of its weight, which suggests that more carbonaceous compounds were deposited onto the catalyst at 275°C than at 350°C, and led to catalyst deactivation. Also, most of deposited carbonaceous compounds on the catalyst aged at 350°C could be removed at relatively lower temperatures than those deposited on the catalyst aged at 275°C, implying that catalyst aged at 350°C could be regenerated at lower temperatures or over a shorter period of time than catalyst aged at 275°C.
Chapter 3: Adsorption and Reaction Kinetics

Figure 3.12 TGA result for the catalyst aged at 275°C

Figure 3.13 TGA result for the catalyst aged at 350°C
To improve the recovery of the catalytic activity of the catalyst deactivated at low reaction temperatures, several regeneration methods were tested at 275°C with the results shown in Figure 3.14.

Figure 3.14 Recovery of catalyst activity under different regeneration conditions (Catalyst: Fe/ZSM-5(PUC))

At 275°C, the reacting gas mixture was switched off after the catalyst was aged and deactivated, then the catalyst was regenerated by passing 20% O₂ + N₂ for 40 minutes at the same temperature (i.e. 275°C). It is seen in Figure 3.14 (line A) that the catalytic activity could not be fully recovered after regeneration, with a highest NOₓ conversion of only 49.7% for the regenerated catalyst. When the same regeneration method was used for the catalyst aged at 350°C (line B in Figure 3.14), the peak NOₓ conversion increased to 64.9%, which was still much lower than the fresh catalyst (75%). The catalyst activity could be fully recovered only if the catalyst was calcined in air or 20% O₂ + N₂ at 500°C or higher.
temperatures to have the deposited graphitic carbons and other adsorbed intermediate species of HC removed from the catalyst surface completely.

3.3.2.3 Effect of GHSV

Effects of gas space velocities on NO\textsubscript{x} conversion at 325°C and 350°C are shown in Figures 3.15 and 3.16.

![Figure 3.15 Effect of GHSV on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=325°C)](image)

Figure 3.15 Effect of GHSV on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=325°C)
Chapter 3: Adsorption and Reaction Kinetics

Figure 3.16 Effect of GHSV on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=350°C)

It is worth noting that the gas hourly space velocity (GHSV) was calculated based on the gas flow rate at room temperature:

\[
GHSV = \frac{60 \times F}{\frac{\pi}{4} \times D_i^2 \times h}
\]  \hspace{1cm} (3.8)

where

GHSV, gas hourly space velocity, h⁻¹

F, gas flow rate at room temperature, ml/min

\(D_i\), inner diameter of the reactor, 13.5 mm

h, catalyst packed height in the reactor, 50.8 mm

At T=325°C (Figure 3.15), the peak NO\(_x\) conversions were 68.2% (GHSV=5000 h⁻¹), 61.3% (GHSV=7500 h⁻¹), 57.6% (GHSV=10000 h⁻¹), 55.0% (GHSV=15000 h⁻¹) and 50.3% (GHSV=20000 h⁻¹). At GHSV=5000 h⁻¹, the catalyst showed relatively stable activity.
At T=350°C (Figure 3.16), the peak NO\textsubscript{x} conversions were 65.6% (GHSV=5000 h\textsuperscript{-1}), 59.5% (GHSV=7500 h\textsuperscript{-1}), 55.7% (GHSV=10000 h\textsuperscript{-1}), 52.2% (GHSV=15000 h\textsuperscript{-1}) and 47.1% (GHSV=20000 h\textsuperscript{-1}). The highest NO\textsubscript{x} conversion was achieved at GHSV=5000 h\textsuperscript{-1}, and the conversion remained stable over the tested time period. For a given GHSV, NO\textsubscript{x} conversion at T=325°C was always 2~3% higher than at T=350°C. However, at both temperatures, with the increase of GHSV, the peak NO\textsubscript{x} conversion decreased. At the same time, at a higher GHSV, NO\textsubscript{x} conversion decreased more quickly with time. This indicates that the space velocity has a significant influence on the catalyst activity, and must be considered as a key operating parameter in the design and operation of the dual-zone reactor.

### 3.3.2.4 Effect of O\textsubscript{2} and HC concentrations

Effects of O\textsubscript{2} and HC concentrations on the catalytic activity at temperatures from 275°C to 375°C are shown in Figures 3.17 to 3.21. As discussed previously, the catalytic activity was unstable for the reaction temperatures lower than 325°C. Therefore, NO\textsubscript{x} conversions shown in Figures 3.17 to 3.21 were the peak conversions obtained at each temperature.

Error bars shown in Figure 3.17 are calculated based on the standard deviation method. Four to eight repeated runs were used for the calculation of NO\textsubscript{x} and HC conversions to obtain the standard deviation, with two times of standard deviations corresponding to 95% of confidence level plotted in this figure. The possible sources of errors include the measurement of gas concentrations by the gas analyzer, rotameter readings of gas flow rates and the reproducibility of the experiment. Throughout all fixed bed experiments, the errors for calculated NO\textsubscript{x} conversions ranged from 0.37% to 2.86%, with an average around 1.42%. Due to the large number of figures in this work, error bars were added only in a few selected figures.
Figure 3.17 Effect of HC:NO ratio and O$_2$ level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=275°C, 95% confidence level)
For T=275°C shown in Figure 3.17, the NO\(_x\) conversion was very low at HC:NO=0.5, ranging from 28.9% (8% O\(_2\)) to 35.1% (1% O\(_2\)) while the HC conversion was high from 88.8% (0.5% O\(_2\)) to 100% (≥4% O\(_2\)). The increase of O\(_2\) concentration had no remarkable impact on both NO\(_x\) and HC conversions. When the HC:NO ratio was increased to 1, NO\(_x\) reduction was greatly enhanced. For low O\(_2\) concentrations (≤2%), NO\(_x\) conversion increased to 56.1% (2% O\(_2\)) and 58.1% (1% O\(_2\)). On the contrary, the HC conversion dropped significantly to 46.9% (0.5% O\(_2\)) and 74.9% (2% O\(_2\)). At high O\(_2\) concentrations (≥4%), the increase of HC:NO led to an increase of NO\(_x\) conversion to 48.9% (4% O\(_2\)) and 47.8% (8% O\(_2\)), but the influence of the change of HC:NO was not as significant as that for O\(_2\)≤2%.

Although the HC conversion also decreased to 84.6% (4% O\(_2\)) and 96% (8% O\(_2\)), it was still much higher than that at 0.5% O\(_2\). Further increase of HC:NO to 1.5, 2 and 4 showed similar influence on NO\(_x\) and HC conversions as in the case with HC:NO=1, except for that at HC:NO≥2, the highest NO\(_x\) conversion occurred at 2% O\(_2\) (75% for HC:NO=2 and 77.9% for HC:NO=4).

In general, for a given O\(_2\) concentration, HC conversion decreased very quickly with the increase of HC:NO ratio. The increase of HC:NO ratio from 0.5 to 1.5 could greatly improve the catalytic activity for the flue gases containing 0.5% to 8% O\(_2\) at T=275°C. For O\(_2\)≤1%, the increase of HC:NO from 1.5 to 4 had little influence on NO\(_x\) conversion. For O\(_2\)≥2%, the NO\(_x\) conversion improved significantly with the increase of HC:NO from 1.5 to 4. The same trend was observed for T=300, 325, 350 and 375°C, as shown in Figures 3.18 to 3.21, except that the highest NO\(_x\) conversion was always obtained at 0.5% O\(_2\) for HC:NO=1 to 4.
Chapter 3: Adsorption and Reaction Kinetics

(a) HC conversion

(b) NO\textsubscript{x} conversion

**Figure 3.18** Effect of HC:NO ratio and O\textsubscript{2} level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=300°C)
Figure 3.19 Effect of HC:NO ratio and O₂ level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=325°C)
Figure 3.20 Effect of HC:NO ratio and O2 level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=350°C)
Chapter 3: Adsorption and Reaction Kinetics

(a) HC conversion

(b) NO\textsubscript{x} conversion

Figure 3.21 Effect of HC:NO ratio and O\textsubscript{2} level on catalytic activity (Catalyst: Fe/ZSM-5(PUC), T=375°C)
For all cases tested, the increase of HC concentration enhanced NO\textsubscript{x} conversion significantly. NO\textsubscript{x} conversion remained at a very low level (between 15% to 35%) when HC:NO molar ratio was 0.5 at all temperatures and O\textsubscript{2} concentrations. With the increase of HC:NO to 2, NO\textsubscript{x} conversion increased very quickly, especially for those at low O\textsubscript{2} concentrations (\leq 2\%). However, further increase of HC:NO from 2:1 to 4:1 had little influence on NO\textsubscript{x} conversion at low temperatures (\leq 300\degree C) compared to at high temperatures (\geq 325\degree C).

For HC:NO=0.5, the increase of O\textsubscript{2} concentration had less impact over the investigated temperature range. At a given HC:NO ratio, the increase of O\textsubscript{2} concentration showed more negative impact on NO\textsubscript{x} conversion when HC:NO\geq 1, especially at high temperatures (\geq 325\degree C). However, at low temperatures (\leq 300\degree C), NO\textsubscript{x} conversion remained almost independent of HC:NO ratio at O\textsubscript{2} concentrations \leq 2\%.

For a given O\textsubscript{2} concentration, the increase of HC:NO ratio led to a significant decrease of HC conversion at all temperatures. In contrast, for a given HC:NO, the HC conversion increased with the increase of O\textsubscript{2} concentration in the model flue gas. It is generally anticipated that high HC to NO ratio can lead to a high NO\textsubscript{x} conversion, at a cost of high hydrocarbon consumption which is not economical for the practical application. From this point of view, a HC to NO molar ratio of 2:1 appears to be a good choice. Oxygen played an important role in the HC-SCR under lean-burn conditions, which agrees well with the results from other researchers (Chen et al, 1998; Lee, 2000; Elkaim and Bai, 2000).
3.4 Reaction performance of Fe/ZSM-5 (PUC) catalyst prepared by WIE

Fe/ZSM-5(PUC) was prepared by the WIE method to evaluate the catalyst performance prepared by different methods. The time-on-stream test was performed at 275°C and 350°C with the result shown in Figure 3.22.

![Figure 3.22](image)

**Figure 3.22** Effect of temperature on catalytic activity for NOx reduction (Catalyst: Fe/ZSM-5(PUC, WIE))

In the experiment, the inlet NOx concentration was first measured by bypassing the model flue gas to the gas analyzer. When switching the model flue gas to the reactor, there was a time delay ranging from 5 to 10 minutes before the real concentration of NOx exiting from the reactor was obtained from the analyzer, which caused the initial increase of NOx conversion in the time-on-stream experiment as shown in Figure 3.22. This part of time-on-stream data was not considered in the analysis of experimental data.
At T=275°C and with a feed gas composition of 600ppm NO + 1200ppm HC + 4%O₂ + N₂ and GHSV=5000 h⁻¹, the peak NOₓ conversion for the catalyst prepared by WIE (Fe/ZSM-5(PUC, WIE)) was 68.1%, which was almost the same as the catalyst prepared by IMPO method (Fe/ZSM-5(PUC, IMPO)). However, the NOₓ conversion decreased quickly to 49.2% in 100 minutes, in comparison to 66.1% for Fe/ZSM-5(PUC, IMPO) within the same time period as shown in Figure 3.9.

Previous results showed that Fe/ZSM-5(PUC) prepared by IMPO method exhibited stable activity at 350°C, even for the flue gas containing only 1% O₂. Although the peak NOₓ conversion for Fe/ZSM-5 (PUC, WIE) at 350°C in Figure 3.22 was 57.6%, 11% higher than Fe/ZSM-5(PUC, IMPO), the activity of Fe/ZSM-5(PUC, WIE) was not stable even for the feed gas containing as high as 4% O₂.

The effect of the reaction temperature on NOₓ and HC conversions for Fe/ZSM-5(PUC, WIE) with the feed gas composition of 600ppm NO + 1200ppm HC + 4% O₂ + N₂ and GHSV=5000 h⁻¹ is shown in Figure 3.23. Again, only the peak NOₓ conversion and corresponding HC conversion were plotted. The catalyst was calcined in 20% O₂ + N₂ at 500°C for 2 hours prior to each run in order to recover the catalytic activity.
The highest peak NO\textsubscript{x} conversion was 71.3\% (T=250\degree C) within the tested temperature window, and the peak NO\textsubscript{x} conversion decreased to 47.3\% when the reaction temperature was increased to 400\degree C. The HC conversion increased with the increase in the reaction temperature, but only reached 43\% at T=350\degree C, which was much lower than Fe/ZSM-5(PUC, IMPO).

The catalyst was observed to be unstable, even at 400\degree C. Although the peak NO\textsubscript{x} conversion was higher than Fe/ZSM-5(PUC, IMPO) at the same reaction condition, the poor stability prevents it from the practical application in the HC-SCR. It was thus concluded that IMPO is a better method than WIE for the preparation of Fe/ZSM-5 catalyst using current Na/ZSM-5(PUC) particles.
3.5 Performance of Fe/ZSM-5(Albemarle) catalyst

Although the Fe/ZSM-5(PUC) catalyst prepared via IMPO method exhibited good performance for the catalytic reduction of NO\textsubscript{x}, the adsorption performance of Fe/ZSM-5(PUC) was not satisfactory because the equilibrium adsorption capacity was lower than 0.07 mg/g cat. with a very short breakthrough time of the catalyst bed ranging from 15 to 60 seconds. To increase the adsorption capacity of the catalyst, the parent Na/ZSM-5(PUC) particles were crushed and sieved to obtain fine particles with an average particle size of \(234\mu\text{m}\) and BET surface area of 192 m\(^2\)/g, which were then used to prepare the fine Fe/ZSM-5(crushed PUC) catalyst by the IMPO method. As discussed in Appendix E, the fine Fe/ZSM-5(crushed PUC) catalyst showed several times the NO\textsubscript{x} adsorption capacity than the coarse Fe/ZSM-5(PUC) (See Figure E.4). Therefore, it would be desirable to use fine catalyst particles in order to have both a high adsorption capacity for NO\textsubscript{x} capture in the adsorption zone and an acceptable catalytic activity for NO\textsubscript{x} reduction in the reduction zone for the proposed dual zone deNO\textsubscript{x} reactor. Another type of fine particles, a spent Fluid Catalytic Cracking (FCC) catalyst, was also evaluated as a potential catalyst support. Unfortunately, as shown in Appendix F, both spent FCC and Fe/FCC showed very poor catalytic activity in HC-SCR.

A newly developed FCC catalyst support with ZSM-5 structure was obtained as a free sample from Albemarle Corporation. Fe/ZSM-5(Albemarle) catalyst was then prepared via the standard IMPO method, and its adsorption and reaction performances were investigated in the tubular reactor.
3.5.1 Adsorption performance of Fe/ZSM-5(Albemarle)

Experiments on the adsorption performance of the Fe/ZSM-5(Albemarle) catalyst were conducted at temperatures from 275°C to 375°C and GHSV=5000h⁻¹ using model flue gases with NO concentrations ranging from 200ppm to 1000ppm and 4% O₂. The typical adsorption curves are shown in Figure 3.24, with the remaining curves at other temperatures shown in Figures G.6 to G.9 in Appendix G.

![Adsorption curves based on NOx concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=275°C)](image)

**Figure 3.24** Adsorption curves based on NOx concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=275°C)

Compared with previously used coarse Fe/ZSM-5(PUC) and fine Fe/ZSM-5(crushed PUC)) catalyst, the breakthrough time for the fine Fe/ZSM-5(Albemarle) catalyst was much longer for all tested conditions, indicating a much higher adsorption capacity of the Fe/ZSM-5 (Albemarle) catalyst. Furthermore, the equilibrium NOx concentration was not reached at a
time of thousand seconds, which was tens of times of fine Fe/ZSM-5(crushed PUC)) although irregular shapes appeared on the adsorption curves.

Based on the adsorption profiles, the equilibrium adsorption capacity of the catalyst was calculated and plotted as a function of the equilibrium NO\textsubscript{x} concentration in Figure 3.25. Again, the Freundlich equation was used to fit the relationship between \( q_e \) and \( C_0 \), and the parameters \( \alpha \) and \( \beta \) were fitted with the 2\textsuperscript{nd} order polynomial function with the results shown in Figure 3.26. Equations 3.9 and 3.10 are obtained for \( \alpha \) and \( \beta \) as a function of the adsorption temperature (T, K).

\[
\alpha = -2.88632 + 0.01696T - 1.69966 \times 10^{-5} T^2
\]  
\[
\beta = 8.11218 - 0.02732T + 2.43429 \times 10^{-5} T^2
\]

![Figure 3.25 Fitting of adsorption isotherms of NO\textsubscript{x} by Freundlich equation (Catalyst: Fe/ZSM-5(Albemarle))](image-url)
Generally, the coefficient $\beta$ in the Freundlich equation reflects the intensity of adsorption. $\beta=1$ indicates one active site adsorbs one molecule of NO. In Figure 3.26, the value of $\beta$ is around 0.5, meaning that one molecule of NO occupies about 2 active sites, indicating a weak adsorption of NO on the Fe active site.

Fe/ZSM-5(Albemarle) exhibited excellent adsorption performance as shown in Figure 3.25. As discussed earlier, at $T=350^\circ C$ and $C_0=0.4 \text{ g/m}^3$, the fine Fe/ZSM-5(crushed PUC) showed better adsorption capacity ($q_e=0.058 \text{ mg/g cat.}$) than the coarse Fe/ZSM-5(PUC) ($q_e=0.016 \text{ mg/g cat.}$). This difference demonstrates that a small particle size is beneficial to the adsorption of NOx. At the same operating condition, $q_e$ for the fine Fe/ZSM-5(Albemarle) catalyst is 0.66 mg/g cat., which is 11.4 and 41.3 times of the capacity of the fine Fe/ZSM-
5(crushed PUC) and the coarse Fe/ZSM-5(PUC), respectively. This result clearly shows that the structure or the manufacturing procedure of the catalyst support could also have a significant effect on the adsorption performance of the catalyst.

### 3.5.2 Effect of O₂ concentration on NOₓ adsorption of Fe/ZSM-5(Albemarle)

According to one of the mechanisms of HC-SCR suggested in the literature (Traa et al., 1999), NO is first oxidized to NO₂ by O₂ in the flue gas and then reduced by HC at the surface of the catalyst. This mechanism implies that NOₓ adsorption onto the catalyst surface may be affected by the oxygen concentration. To verify this mechanism, the effect of O₂ concentration on NOₓ adsorption of Fe/ZSM-5(Albemarle) was investigated, with the result shown in Figure 3.27. Without the presence of O₂ in the flue gas, the catalyst showed very low equilibrium NOₓ adsorption capacity (qₑ). With the increase of O₂ concentration from 0 to 4%, qₑ increased significantly from lower than 0.1 to around 0.7 mg/g cat. Further increase of O₂ concentration from 4 to 8% enhanced the adsorption performance, but not as significant as that at low O₂ concentrations.

This result clearly demonstrates that the presence of O₂ in the flue gas is essential for achieving high NO adsorption ratio using Fe/ZSM-5(Albemarle) catalyst. Based on the experimental result, for Fe/ZSM-5(Albemarle) catalyst, one can postulate that, in the adsorption process, NO is first oxidized to NO₂ by the adsorbed O₂ on the active site of the catalyst, and NO₂ is then captured to the active site. According to the Langmuir-Hinshelwood theory, the following surface reactions can be assumed:

\[ O₂ + 2* \leftrightarrow 2O^* \]  \hspace{1cm} (3.11)

\[ NO + O^* \leftrightarrow NO₂^* \]  \hspace{1cm} (3.12)
The increase of O₂ concentration in the flue gas increases the surface concentration of O* in reaction (3.11), and therefore more NO can be adsorbed to active sites of the catalyst when the adsorption equilibrium in reaction (3.12) is reached.

Figure 3.27 Effect of O₂ concentration in the flue gas on the adsorption capacity of Fe/ZSM-5(Albemarle)) catalyst

3.5.3 Effect of H₂O and CO₂ on NO₅ adsorption of Fe/ZSM-5(Albemarle)

Since Fe/ZSM-5(Albemarle) appears to be the most promising potential candidate for the dual zone ICFB reactor, the effect of other major components of the flue gas, such as H₂O and CO₂, on the adsorption performance of the catalyst was further investigated. The model flue gas containing 4% O₂ was supplemented with 10% H₂O and/or 10% CO₂ and then used in the experiment at T=350°C and GHSV=5000 h⁻¹, with the adsorption curves shown in Figures G.10 to G.12 in Appendix G.

Based on the adsorption curve, the equilibrium adsorption capacity qₑ for the model flue gas with the addition of 10% H₂O, 10% CO₂ and 10% CO₂ + 10% H₂O was calculated,
Chapter 3: Adsorption and Reaction Kinetics

with the result shown in Figure 3.28. For comparison, data from the model flue gas without the addition of H₂O and CO₂ are also plotted in the same figure.

**Figure 3.28** Effect of H₂O and CO₂ in the flue gas on adsorption isotherms (Catalyst: Fe/ZSM-5(Albemarle))

The addition of 10% H₂O to the model flue gas showed no effect on the adsorption capacity of Fe/ZSM-5(Albemarle). However, when compared with the case without H₂O and CO₂, qₑ dropped by about 20% when 10% CO₂ was added into the flue gas. When 10% H₂O was introduced to the flue gas containing 10% CO₂, qₑ increased by about 5% but was still lower than that without the presence of CO₂. Clearly, CO₂ exhibited a negative impact on the adsorption of NO, which might be caused by the competitive adsorption between CO₂ and NO. Although H₂O had no effect on the adsorption of NOₓ in the flue gas without CO₂, the addition of H₂O to the CO₂-containing flue gas could slightly improve the adsorption of NO on Fe/ZSM-5(Albemarle) catalyst.
3.5.4 Adsorption performance of parent H/ZSM-5(Albemarle)

The adsorption capacity of H/ZSM-5(Albemarle) was measured and is shown in Figure 3.29. For comparison, the adsorption capacity of Fe/ZSM-5(Albemarle) is also plotted in Figure 3.29.

![Figure 3.29](image_url)

**Figure 3.29** Comparison of adsorption isotherm between Fe/ZSM-5(Albemarle) and parent H/ZSM-5(Albemarle) at T=350°C

The adsorption capacity of the parent H/ZSM-5(Albemarle) was very low compared to Fe/ZSM-5(Albemarle). This means that the high adsorption capacity of Fe/ZSM-5(Albemarle) was contributed not by the catalyst support, but by the impregnated active Fe site or the combined effect of Fe and the ZSM-5 support. For catalyst prepared by the IMPO method, it is estimated that about 5% (wt.) of Fe was impregnated into Fe/ZSM-5(Albemarle), which means that there was around 1.0 mmol of Fe per gram of catalyst. The
adsorption capacity of NO on the Fe/ZSM-5 (Albemarle) was measured to be around 1 mg/g cat. or 0.033 mmol/g cat., which is much lower than the loaded Fe content on the catalyst. This may suggest that, in the adsorption process, most of the active sites are occupied by the adsorbed N\textsubscript{2} or O\textsubscript{2} because of the high N\textsubscript{2} and O\textsubscript{2} concentrations in the flue gas, while only a small fraction of active sites are taken by the adsorbed NO\textsubscript{2}.

**3.5.5 Catalytic activity of parent H/ZSM-5(Albemarle) in HC-SCR**

To investigate the HC-SCR capability of H/ZSM-5(Albemarle), the time-on-stream test was conducted with the feed gas consisting of 600ppm NO + 1200ppm HC + 1\% O\textsubscript{2} + N\textsubscript{2} at T=350\degree C and GHSV=5000 h\textsuperscript{-1}, with the result shown in Figure 3.30.

It can be seen that NO\textsubscript{x} conversion quickly decreased to near zero in 200 minutes. The low HC conversion in Figure 3.30(b), on the other hand, indicates that H/ZSM-5 (Albemarle) does not catalyze the oxidation of hydrocarbons appreciably.
Chapter 3: Adsorption and Reaction Kinetics

(a) NO\textsubscript{x} conversion

(b) HC conversion

Figure 3.30 Catalytic activity of parent H/ZSM-5(Albemarle)
3.5.6 Reaction performance of Fe/ZSM-5(Albemarle)

A series of time-on-stream tests were carried out to investigate the reduction performance of Fe/ZSM-5(Albemarle) catalyst at various temperatures and GHSV. Further study on the effect of O₂ and HC concentrations in the model flue gas was also conducted. Moreover, the influence of H₂O, CO₂ and SO₂ on the catalytic activity was investigated preliminarily.

3.5.6.1 Effect of reaction temperature

Since the reaction temperature plays an important role in HC-SCR of NOₓ, it is necessary to seek for the optimum temperature window for the future study. As before, the feed gas mixture of 600 ppm NO + 1200 ppm HC + 1% O₂ + N₂ was used in the time-on-stream test at GHSV=5000 h⁻¹ while the reaction temperature varied from 275 to 375°C with an increment of 25°C. Typical profiles of NOₓ and HC conversions and outlet CO concentration are shown in Figure 3.31 (T=275°C) and Figure 3.32 (T=350°C) (see Figures G.17 to G.19 in Appendix G for profiles at other temperatures).

At T=275°C, the catalyst showed unstable activity which is similar to Fe/ZSM-5(PUC). The peak NOₓ conversion was found to correspond to the time when HC conversion and outlet CO concentration reached their maximum values. The discontinuity in the HC conversion curve in Figure 3.32 is caused by the resolution of the gas analyzer at low CO₂ concentrations (<100ppm or 0.01%) while the CO concentration is recorded at the 1ppm level.

At all temperatures, large amount of CO was observed in the outlet gas flow, indicating that the production of CO is inevitable if Fe/ZSM-5 is used as the HC-SCR catalyst. Similar trends were observed for the NOₓ and HC conversions and the outlet CO concentration at all temperatures covered by this study. To avoid the potential release of
unconverted hydrocarbons and produced CO into the environment, a reactor filled with oxidation catalyst can be added to the downstream of the HC-SCR reactor to convert CO and unconverted hydrocarbons to CO₂.

Figure 3.31 Profiles of NOₓ and HC conversions and outlet CO concentration (Fe/ZSM-5(Albemarle), T=275°C, [O₂]=1%)

Chapter 3: Adsorption and Reaction Kinetics
Chapter 3: Adsorption and Reaction Kinetics

Figure 3.32 Profiles of NO<sub>x</sub> and HC conversions and outlet CO concentration (Fe/ZSM-5(Albemarle), T=350°C, [O₂]=1%)

Catalyst: Fe/ZSM-5(Albemarle)
Feed gas: 600ppm NO + 1200ppm HC + 1% O₂ + N₂
T=350°C, GHSV=5000 h⁻¹

0 100 200 300 400 500 600
Time on stream, min

0 10 20 30 40 50 60 70
NO<sub>x</sub> conversion, %

0 10 20 30 40 50 60 70
HC conversion, %

Outlet CO concentration, ppm

100 90 80 70 60 50 40 30 20 10 0

Feed gas: 600ppm NO + 1200ppm HC + 1% O₂ + N₂
T=350°C, GHSV=5000 h⁻¹

Catalyst: Fe/ZSM-5(Albemarle)

Figure 3.32 Profiles of NO<sub>x</sub> and HC conversions and outlet CO concentration (Fe/ZSM-5(Albemarle), T=350°C, [O₂]=1%)
The NO\textsubscript{x} and HC conversions at all investigated temperatures are shown in Figure 3.33. Peak NO\textsubscript{x} conversions were observed to be 65.2\% (275\degree C), 66.3\% (300\degree C), 68.3\% (325\degree C), 71\% (350\degree C) and 61.2\% (375\degree C) with corresponding HC conversions of 24.8\% (275\degree C), 45.3\% (300\degree C), 72.3\% (325\degree C), 100\% (350\degree C) and 100\% (375\degree C). Again, the discontinuous profiles of HC conversion in Figure 3.33(b) were caused by the low resolution of the gas analyzer at low CO\textsubscript{2} concentrations. At T\leq 325\degree C, NO\textsubscript{x} and HC conversions increased with time. After the peak was reached, both NO\textsubscript{x} and HC conversions at T=275\degree C decreased quickly. At T=300\degree C and 325\degree C, the NO\textsubscript{x} conversion decreased from the peak values to 38.8\% and 54.2\%, respectively, and then remained stable afterward. The maximum stable NO\textsubscript{x} conversion was observed at T=350\degree C (71\%). The catalytic activity remained stable with further increase in temperature up to 375\degree C although the NO\textsubscript{x} conversion was lower (61.2\%) at this temperature.
Figure 3.33 Effect of temperature on the catalytic activity of Fe/ZSM-5(Albemarle)
3.5.6.2 Effect of GHSV

Fe/ZSM-5(PUC) showed high sensitivity to the variation in GHSV where the catalyst maintained its stable activity with time only at GHSV ≤ 5000 h\(^{-1}\) at 350°C (see Figure 3.16). In contrast, Fe/ZSM-5(Albemarle) exhibited good durability to the change of GHSV. As shown in Figure 3.34, the catalytic activity remained stable with the change in GHSV. However, with the increase of GHSV from 5000 h\(^{-1}\) to 10000 h\(^{-1}\), the NO\(_x\) conversion decreased from 71% (GHSV = 5000 h\(^{-1}\)) to 55% (GHSV = 7500 h\(^{-1}\)) and 45% (GHSV = 10000 h\(^{-1}\)), respectively. Moreover, the corresponding HC conversion dropped from 100% (GHSV = 5000 h\(^{-1}\)) to 74% (GHSV = 7500 h\(^{-1}\)) and 57% (GHSV = 10000 h\(^{-1}\)). The drop in NO\(_x\) conversion as well as HC conversion could be induced by the decrease of the resident time in the catalyst bed as the GHSV increased.
Figure 3.34 Effect of GHSV on the catalytic activity of Fe/ZSM-5(Albemarle)
3.5.6.3 Effect of O₂ and HC concentrations

The effect of O₂ and HC concentrations in the model flue gas on the catalytic activity of Fe/ZSM-5 (Albemarle) was investigated at reactor temperatures of 350°C and 375°C and GHSV=5000 h⁻¹. The inlet NO concentration was kept at 600ppm throughout the experiment. O₂ concentration in the feed gas was set as 0.5, 1, 2, 4 or 8% with a HC:NO(V/V) ratio of 0.5, 1, 2 or 4.

As shown in Figure 3.35 for T=350°C, at a given O₂ concentration, NOx conversion generally increased with increasing HC:NO. At HC:NO=0.5, NOx conversion was in a range of 35%~40% without distinct variation with the change in O₂ concentration. HC conversion reached 100% at all O₂ concentrations at such a low HC:NO ratio. When HC:NO ratio increased to 1, NOx conversion increased at a given O₂ concentration, and HC conversion kept at around 100%, except for 0.5% O₂ where HC conversion dropped to 89%. Further increase of HC:NO to 2 greatly enhanced the catalytic activity. However, HC conversion at 0.5% O₂ steeply decreased to 58% because of the lack of O₂ for the combustion of HC. Over 95% of HC conversion was obtained at HC:NO=2 for cases with 1% or more O₂. Although the increase of HC:NO to 4 could improve the catalytic activity further, the HC conversion decreased quickly, especially for cases with O₂ concentrations lower than 2%.

In all cases, at a given ratio of HC:NO, the maximum NOx conversion was always observed when O₂ concentration was around 1%. For 2% or more of O₂ concentration, NOx conversion decreased with the increase of O₂ concentration. For instance, at HC:NO=2, NOx conversion was in the order of 1% O₂ (67.4%) > 0.5% O₂ (60.1%) > 2% O₂ (55.2%) > 4% O₂ (47.2%) > 8% O₂ (41.5%).
Figure 3.35 Effect of O₂ and HC concentrations (Fe/ZSM-5(Albemarle), T=350°C)
Chapter 3: Adsorption and Reaction Kinetics

Figure 3.36 Effect of O₂ and HC concentrations (Fe/ZSM-5(Albemarle), T=375°C)
Figure 3.36 showed similar trend as in Figure 3.35 on the influence of the HC:NO ratio for T=375°C. The exception is that, at a given HC:NO, NO\textsubscript{x} conversion always decreased with the increase of O\textsubscript{2} concentration. In the range of studied O\textsubscript{2} concentrations at HC:NO=2, NO\textsubscript{x} conversion was in the order of 0.5% O\textsubscript{2} (62.2%) > 1% O\textsubscript{2} (56.1%) > 2% O\textsubscript{2} (49.3%) > 4% O\textsubscript{2} (43.8%) > 8% O\textsubscript{2} (35.3%). For a given HC:NO ratio and O\textsubscript{2} concentration, NO\textsubscript{x} conversion at T=375°C was always lower while the HC conversion was equal to or higher than at T=350°C.

### 3.5.6.4 Effect of CO\textsubscript{2} and H\textsubscript{2}O

The real flue gas from the combustion process contains not only NO\textsubscript{x} and O\textsubscript{2}, but also large amount of CO\textsubscript{2} and water vapour (see Table 1.1). To investigate the influence of CO\textsubscript{2} on the catalytic activity of Fe/ZSM-5(Albemarle), 5, 10 and 15% CO\textsubscript{2} was added into the feed gas of 600ppm NO + 1200 ppm HC + O\textsubscript{2} + N\textsubscript{2} with various O\textsubscript{2} concentration of 1, 4 and 8% at T=350°C and GHSV=5000 h\textsuperscript{-1} with the result shown in Figure 3.37.

Compared with the case without the addition of CO\textsubscript{2}, for feed gas containing 1% O\textsubscript{2}, CO\textsubscript{2} showed minor negative influence with NO\textsubscript{x} conversion slightly decreased from 69.7% (0% CO\textsubscript{2}) to 68.1% (5% CO\textsubscript{2}), 66.9% (10% CO\textsubscript{2}) and 66.8% (15% CO\textsubscript{2}). For the feed gas containing 4% and 8% O\textsubscript{2}, NO\textsubscript{x} conversion fluctuated at values between 52% (4% O\textsubscript{2}) and 44% (8% O\textsubscript{2}) with a difference of around 1% after the addition of 5%, 10% or even 15% CO\textsubscript{2}. In general, it could be concluded that the presence of CO\textsubscript{2} in the feed gas had an insignificant influence on the catalytic activity of Fe/ZSM-5(Albemarle), and the effect could be well neglected.
When 5% H₂O was added into the feed gas of 600ppm NO + 1200ppm HC + 1% O₂ + N₂, as shown in Figure 3.38, the NOₓ conversion increased from 68.5% (0% H₂O) to 71.7% (5% H₂O). Further increase in NOₓ conversion was not observed for the addition of 10% and 15% H₂O. For the flue gas containing 4% O₂, the NOₓ conversion without H₂O was 47%, and the addition of 5%, 10% and 15% H₂O led to the increase of NOₓ conversion to 51%, 53.3% and 54.2%, respectively. For the flue gas containing 8% O₂, NOₓ conversion increased from 39.1% (0% H₂O) to 45.4% (5% H₂O), 47% (10% H₂O) and 49.1% (15% H₂O).

It is clear that the presence of H₂O in the model flue gas somewhat enhanced the SCR activity of Fe/ZSM-5(Albemarle) catalyst, especially at high O₂ concentrations in the flue gas.
The time-on-stream test was carried out to further investigate the long-term influence of H₂O on the SCR activity of Fe/ZSM-5(Albemarle), with the result shown in Figure 3.39. Test A was carried out using the catalyst aged at T=350°C for several runs without regeneration. After test A, the catalyst was regenerated in 10% O₂ + N₂ at 500°C for 2 hours before test B was performed under the same operating condition. It can be seen that the aged Fe/ZSM-5(Albemarle) still kept a stable activity over a time period of 450 minutes for the feed gas of 600ppm NO + 1200ppm HC + 4% O₂ + 10% H₂O + N₂ at T=350°C and GHSV=5000 h⁻¹. After regeneration, the catalytic activity remained almost the same.
The combined effect of CO$_2$ and H$_2$O was also investigated for the model flue gas with 10% CO$_2$ and 10% H$_2$O, with the results plotted in Figure 3.40. Clearly, the addition of 10% CO$_2$ had almost no effect on the SCR activity of the catalyst. The presence of 10% H$_2$O showed some improvement on NO$_x$ conversion for the flue gas containing various O$_2$ concentrations. Compared with the case with only 10% H$_2$O, further addition of 10% CO$_2$ seemed to have no effect on the catalytic activity when O$_2$ concentration was low (1%). However, a combined positive impact was obtained at 4% O$_2$, with the impact being more significant at 8% O$_2$. 

**Figure 3.39** Time-on-stream test on the effect of H$_2$O (Fe/ZSM-5(Albemarle), T=350°C)
Figure 3.40 Combined effect of H$_2$O and CO$_2$ on the catalytic activity of Fe/ZSM-5(Albemarle) (T=350°C)

One of the possible mechanisms for the enhanced deNO$_x$ performance by the addition of H$_2$O is the contribution of H$_2$ and CO, produced from the water gas shift reaction (equation 3.13) or steam reforming of propylene (equation 3.14) which can take place at low temperatures.

\[ H_2O + CO \rightarrow CO_2 + H_2 \]  \hspace{1cm} (3.13)

\[ H_2O + HC \rightarrow CO + H_2 \]  \hspace{1cm} (3.14)

As shown in Figure 3.41, for the flue gas containing 4% O$_2$, without the presence of H$_2$O, CO and CO$_2$ concentrations at the outlet of the reactor were around 1000ppm and 0.30%, respectively. The addition of 5% H$_2$O led to the decrease of CO concentration to 500ppm, but the increase of CO$_2$ concentration to 0.34%. Further increase of H$_2$O had no significant influence on both CO and CO$_2$ concentrations. The significant drop of the CO
concentration and the increase of the CO₂ concentration caused by the addition of H₂O reflect the fact that water gas shift reaction (equation 3.13) or the combination of equations 3.13 and 3.14 played a role in the SCR process. It is well known that both CO and H₂ are strong reducing agents, which are commonly used for NOₓ reduction in the three-way catalytic converters. Further controlled experiments, in which both CO and H₂ concentrations will be monitored, are needed in the future to elucidate the reaction mechanism on the enhancement of NOₓ reduction by water.

![Figure 3.41](image)

**Figure 3.41** Effect of the addition of H₂O on outlet CO and CO₂ concentrations (Fe/ZSM-5(Albemarle), T=350°C)

### 3.5.6.5 Deactivation of Fe/ZSM-5(Albemarle) catalyst by SO₂

Sulphur oxides (SO₂ and SO₃) are considered as the most poisonous components in the combustion flue gas on SCR process. Although the content of SO₂ in the flue gas could be reduced to a relatively low level (10 to 30ppm) after the wet scrubbing process, this small
amount of SO\textsubscript{2} can still seriously inhibit the catalytic activity of most of the catalysts used in the SCR process, damaging the application of HC-SCR. Since Fe/ZSM-5(Albemarle) showed an acceptable activity in the HC-SCR process, the effect of SO\textsubscript{x} on the catalyst performance is further investigated to examine the durability of the catalyst in the presence of SO\textsubscript{2}.

To monitor the gradual decay of the catalyst activity with time, the time-on-stream test was performed with the result of total four runs shown in Figures 3.42 to 3.45. In each run, four time-on-stream (TOS) tests were conducted as described below:

A. The fresh catalyst was first treated with the model flue gas of 600ppm NO +1200ppm HC + 1% O\textsubscript{2} + N\textsubscript{2} at 350\degree\textsubscript{C} and GHSV=5000 h\textsuperscript{-1} until the stable NO\textsubscript{x} conversion was reached to establish the baseline.

B. Then, SO\textsubscript{2} was introduced into the feed gas stream and the outlet NO\textsubscript{x} and SO\textsubscript{2} concentrations were continuously monitored.

C. After several hours, SO\textsubscript{2} was switched off from the feed gas flow and the SO\textsubscript{2} deactivated catalyst was used in another TOS test. When the outlet NO\textsubscript{x} concentration reached a relatively stable value, the test was terminated.

D. The catalyst was then calcined \textit{in-situ} with 20% O\textsubscript{2} + N\textsubscript{2} at 500\degree\textsubscript{C} for 2 hours in order to regenerate the catalyst. Thereafter, the regenerated catalyst was used in the final TOS test to finish the first cycle or Run #1.

E. The TOS result in step D from the regenerated catalyst was then used as the new baseline for the next cycle, and steps B to D were repeated for the 2\textsuperscript{nd} to 4\textsuperscript{th} test cycles, or Runs #2-4.

It could be seen from those figures that, in Run #1 for the baseline without the presence of SO\textsubscript{2}, the NO\textsubscript{x} conversion was stable with time. When 200ppm SO\textsubscript{2} was introduced into the feed gas flow, the measured SO\textsubscript{2} concentration at the outlet of the reactor
showed that SO\textsubscript{2} was adsorbed onto the catalyst. As time passed by, the outlet SO\textsubscript{2} concentration increased gradually when more catalyst surface was occupied by SO\textsubscript{2}. Finally, the outlet SO\textsubscript{2} reached the inlet concentration, or even higher because some of the adsorbed SO\textsubscript{2} might also be washed out by the model flue gas flow. With the addition of 200ppm SO\textsubscript{2}, the NO\textsubscript{x} conversion quickly reached a maximum value and then gradually headed down due to the deactivation of the catalyst by SO\textsubscript{2} adsorption. Because of the malfunction of the data logging system, the TOS test result of step C in Run #1 was not recorded and thus not plotted in Figure 3.42. The TOS result from the regenerated catalyst without the presence of 200ppm SO\textsubscript{2} showed that, the catalytic activity was partially recovered, and the NO\textsubscript{x} conversion was stable with time but couldn’t reach the level with the original catalyst, which means that the catalyst was permanently poisoned by SO\textsubscript{2}.

![Figure 3.42 Effect of SO\textsubscript{2} on the catalytic activity of Fe/ZSM-5(Albemarle) (200ppm SO\textsubscript{2}, Run #1)](image)
The result of Run #2 in Figure 3.43 showed the similar trend as in Run #1 for the presence of 200ppm SO₂ in the flue gas. When SO₂ feed was switched off, the catalytic activity was partially recovered and remained stable with time because the adsorbed SO₂ on the catalyst was partially stripped by the SO₂-free flue gas flow, which led to part of the active sites being recovered. Immediate calcination of the catalyst could further recover part of the catalytic activity, but the NOₓ conversion was still much lower than the baseline value. Run #3 (Figure 3.44) and Run #4 (Figure 3.45) revealed the same trend except for that the catalytic activity became lower and lower.

**Figure 3.43** Effect of SO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (200ppm SO₂, Run #2)
Figure 3.44 Effect of SO\textsubscript{2} on the catalytic activity of Fe/ZSM-5(Albemarle) (200ppm SO\textsubscript{2}, Run #3)

Figure 3.45 Effect of SO\textsubscript{2} on the catalytic activity of Fe/ZSM-5(Albemarle) (200ppm SO\textsubscript{2}, Run #4)
To further analyze the results from all four runs, TOS tests with 200ppm SO₂ present in the flue gas are compared in Figure 3.46. The highest NOₓ conversion was obtained in Run #1. After 250 minutes, the NOₓ conversion dropped from the peak value of 68% to 47%. Over the same period of time, the NOₓ conversion decreased from 64% to 37%, 56% to 25%, and 36% to 19% for Run #2, #3 and #4, respectively, using regenerated catalyst. The difference of the peak NOₓ conversion between runs increased, indicating the permanent loss of reactivity after each deactivation and regeneration cycle because more and more active sites on the catalyst were blocked by SO₂ or S-containing compounds.

Figure 3.46 Comparison of the four consecutive runs with 200ppm SO₂ in the flue gas (Catalyst: Fe/ZSM-5(Albemarle))

Figure 3.47 compares the performance of the fresh and regenerated catalyst on NOₓ reduction over the four consecutive runs, after repeated exposure to the flue gas containing 200ppm SO₂. It can be seen that the permanent damage of SO₂ on the catalyst gradually built
up with time by contacting the SO$_2$-containing flue gas with the catalyst. After Run #1, only 7% of permanent loss of the NO$_x$ conversion was observed (72% to 65%). Run #2 caused another 17% of loss (65% to 48%). The catalyst lost 11% (48% to 37%) and 12% (37% to 25%) of the reactivity in Run #3 and Run #4, respectively. In other words, the catalytic activity dropped from 72% to 25% in about 27 hours with regeneration between runs because of the addition of 200ppm SO$_2$ into the flue gas.

![Figure 3.47](image.png)

**Figure 3.47** Comparison of fresh and regenerated catalysts over four consecutive runs
(Catalyst: Fe/ZSM-5(Albemarle))

Another set of tests was conducted at lower SO$_2$ concentration (30ppm) to simulate flue gases after SO$_2$ removal in the combustion process. Fresh catalyst was used in this test, with the results shown in Figure 3.48. The NO$_x$ conversion decreased with time when 30ppm SO$_2$ was added into the flue gas, but at a much slower pace than the one with 200ppm SO$_2$. Over about 11 hours, the NO$_x$ conversion dropped from 69% to 50%, in comparison to a drop from 68% to 47% in 4 hours at 200ppm SO$_2$. However, if the catalyst was aged by the 30ppm
SO₂ and placed overnight without immediately flushed by SO₂-free gas flow or calcined at 500°C, the catalyst was almost totally deactivated, giving only 6.5% of NOₓ conversion when the reactor was restarted with SO₂-free model flue gas. Further calcination of the catalyst could only bring the NOₓ conversion back to 32%. This permanent activity loss might be caused by the aging of adsorbed SO₂ over a long time on the active sites. As time passed, the adsorbed SO₂ also reacted with the active Fe, leading to the formation of Fe-S bond and/or FeSOₓ compounds, which caused the irreversible poisoning to the catalyst.

**Figure 3.48** Effect of SO₂ on the catalytic activity of Fe/ZSM-5(Albemarle) (30ppm SO₂)

Measured BET surface area of the fresh Fe/ZSM-5(Albemarle) catalyst (Figure 3.49) showed that the impregnation of Fe to the parent ZSM-5(Albemarle) led to a slight loss (around 5%) of BET surface area (171 m²/g (parent) to 162 m²/g (Fe/ZSM-5(Albemarle))). After the catalyst was aged in the flue gas containing 200ppm SO₂ for 27 hours and then regenerated, the BET surface area dropped to 129 m²/g, a 20% loss compared to the fresh
Fe/ZSM-5(Albemarle). For the catalyst aged by 30ppm SO₂ for 11 hours and calcined after being placed over night, the BET surface area decreased remarkably by 36% to 103 m²/g. These data proved that SO₂ could have serious negative impact on the catalytic activity of Fe/ZSM-5(Albemarle) especially when the catalyst had a long-term exposure to SO₂-containing flue gases. The poisoning is irreversible although part of the deactivated sites caused by the adsorbed SO₂ could be recovered by immediate calcination.

In the proposed dual-zone deNOₓ reactor, when the SO₂-containing flue gas is injected into the adsorption zone and contacts with the catalyst, both SO₂ and NOₓ will be adsorbed onto the catalyst. After the SO₂/NOₓ-adsorbed catalyst moves into the reduction zone, due to the lack of SO₂ in the reductant gas, the adsorbed SO₂ will be stripped off from the catalyst by the reductant gas flow. Since the contact time between the catalyst and SO₂ is very short in the adsorption zone, the negative effect of SO₂ to the catalyst could be reduced in the dual-zone deNOₓ reactor, although such a speculation still needs to be confirmed experimentally in the future.

Figure 3.49 Comparison of BET surface areas for fresh and deactivated catalyst (Fe/ZSM-5(Albemarle))
3.6 Summary

Fe/ZSM-5 prepared from Na/ZSM-5 (PUC) with an average particle size of 1042 μm showed very low NOx adsorption capacity. The adsorption performance was greatly improved when the catalyst was prepared using crushed Na/ZSM-5(PUC) with smaller particle size (234 μm). The most promising adsorption performance was offered by Fe/ZSM-5(Albemarle) with the finest particle size (155 μm) among tested catalysts. This result proves that the adsorption performance of the catalyst is closely related to the particle size and the structure of the catalyst support. The addition of water vapour to the model flue gas had little effect on the adsorption capacity of Fe/ZSM-5(Albemarle). However, negative impact was observed when CO2 was added into the flue gas, and the further addition of H2O to the CO2-containing flue gas slightly improved the adsorption performance of Fe/ZSM-5(Albemarle).

Although Fe/ZSM-5(PUC, WIE) showed the same or higher peak NOx conversion compared with Fe/ZSM-5(PUC, IMPO) at the same reaction condition, its reactivity was not stable with time, even at higher temperatures and excessive O2 concentration. However, Fe/ZSM-5(PUC, IMPO) showed stable HC-SCR performance at T≥350°C even with very low O2 concentration. From this point of view, IMPO is a preferred method for the preparation of Fe/ZSM-5.

The catalytic activity of Fe/ZSM-5 catalyst was sensitive to the reaction temperature and space velocity. The catalyst deactivated very quickly at temperatures lower than 325°C because of the deposit of graphitic carbon on the catalyst surface. Fe/ZSM-5 catalysts using Na/ZSM-5(PUC), Na/ZSM-5(crushed PUC) and H/ZSM-5(Albemarle) as supports exhibited stable reactivity at T≥350°C and GHSV=5000 h⁻¹. Among them, Fe/ZSM-5(PUC) showed the highest reactivity, but lowest adsorption capacity, at the same reaction condition, which
implies that the reaction activity of the catalyst is not directly proportional to the adsorption capacity in the conventional HC-SCR process.

To reach a high NO\textsubscript{x} conversion, a high HC:NO ratio is needed. Considering both the economic aspect and the reduction efficiency of NO\textsubscript{x}, HC:NO=2:1 is a reasonable choice. O\textsubscript{2} concentration played an important role in the SCR of NO\textsubscript{x} with propylene as the reducing agent. Fe/ZSM-5(PUC), Fe/ZSM-5(crushed PUC) and Fe/ZSM-5(Albemarle) catalysts exhibited acceptable activity when O\textsubscript{2} concentration was controlled at relatively low levels (e.g. \( \leq 1\% \)).

Water vapour could slightly enhance the reactivity of Fe/ZSM-5(Albemarle) in HC-SCR, while CO\textsubscript{2} showed little effect. SO\textsubscript{2} in the flue gas could seriously poison Fe/ZSM-5(Albemarle) catalyst, especially for the long time contact between SO\textsubscript{2}-containing flue gas and the catalyst. The damage caused by SO\textsubscript{2} was permanent, and only partial catalytic activity could be recovered via calcination at high temperatures.
Chapter 4
Hydrodynamic Study of the ICFB Reactor

Based on the literature review, the catalytic activity of most HC-SCR catalysts is severely inhibited by the presence of excess O₂ in the flue gas. On the other hand, one of the main NO reduction mechanisms states that NO is first oxidized to NO₂, followed by the reduction of NO₂ by the reducing agent. That means the presence of O₂ is essential for the HC-SCR process. Therefore, in the proposed dual-zone reactor, the presence of oxygen in the reduction zone is essential but must be controlled within an appropriate range in order to keep the O₂ concentration at a relatively low level (lower than 2%, according to the results from the fixed bed experiment). On the other hand, gas bypassing from the reduction zone to the adsorption zone will cause an increase in the consumption of the reducing agent in the dual-zone reactor, which should be minimized.

In addition, the solids circulation rate will be directly linked to the transfer of the adsorbed NOₓ from the adsorption zone to the reduction zone and the NOₓ reduction in the reaction zone of the reactor.

Based on the above requirements, the fluidized bed reactor with a draft tube, or so-called internal circulating fluidized bed (ICFB) reactor, could meet the requirement of the dual-zone reactor. The ICFB with different configurations has been studied extensively on its hydrodynamics (Fusey, et al., 1986; Milne et al., 1992; Kim et al., 1997; Ishikura et al., 2003), heat and mass transfer (Freitas and Freire, 2001; Stocker et al., 1990; Kim, et al., 2000), and its applications for particle drying (Ando et al., 2002), coating of tablets (Shelukar et al., 2000), coal combustion and gasification (Yang and Keairns, 1978a, b), and other industrial processes (Yang, 1998).
In order to provide design and operating criteria for the hot model ICFB unit, it is essential to investigate the hydrodynamic performance of the ICFB reactor.

4.1 Experimental setup

A cold model ICFB reactor was constructed with the configuration shown in Figure 4.1. Gas bypass both from the annulus to the draft tube and the draft tube to the annulus and the solids circulation rate were investigated in this cold model unit, which was made of Plexiglass with dimensions listed in Table 4.1.
Chapter 4: Hydrodynamic Study of the ICFB Reactor

Figure 4.1 Schematic of the cold model ICFB reactor
Table 4.1 Dimensions of the cold model ICFB unit

<table>
<thead>
<tr>
<th>Item</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft tube diameter, mm</td>
<td>50.8 (I.D.), 63.5 (O.D.)</td>
</tr>
<tr>
<td>Draft tube diameter, mm (for cylindrical gas distributor only)</td>
<td>38.1 (I.D.), 44.5 (O.D.)</td>
</tr>
<tr>
<td>Draft tube length, mm</td>
<td>1016.0</td>
</tr>
<tr>
<td>Column diameter, mm</td>
<td>101.6 (I.D.), 114.3 (O.D.)</td>
</tr>
<tr>
<td>Column height, mm</td>
<td>1092.2</td>
</tr>
<tr>
<td>Freeboard diameter, mm</td>
<td>254.0 (I.D.), 266.7 (O.D.)</td>
</tr>
<tr>
<td>Freeboard height, mm</td>
<td>508.0</td>
</tr>
<tr>
<td>Annulus gas distributor opening ratio</td>
<td>2.1%</td>
</tr>
<tr>
<td>Holes on the distributor</td>
<td>52 holes of 1.6mm diameter</td>
</tr>
<tr>
<td>Gas nozzle diameter, mm</td>
<td>34.9 (I.D.), 38.1 (O.D.)</td>
</tr>
</tbody>
</table>

The geometry of the cold model ICFB unit was developed based on the design criteria described by Yang (1998) in order to achieve high solids circulation rate and retain certain degree of gas bypassing between the core and the annulus regions. The desired solids circulation rate was calculated based on the adsorption performance of the catalyst from the fixed bed experiments, and the reactor diameter was selected with the consideration of the available flow rate of the building air.

The bed material used in the experiment was millet with a particle density ($\rho_p=837$ kg/m$^3$) and average particle size ($d_p=1.1$ mm) similar to the Fe/ZSM-5(PUC) catalyst used in the fixed bed experiment. The building air was used as the fluidizing gas. Pure CO$_2$ from Praxair was used as the tracer gas to study the gas bypass.

The cold model ICFB system is shown schematically in Figure 4.2. In the experiment, the building air was injected into the draft tube via the gas nozzle and the gas flow rate was
adjusted to have the draft tube region operated at a pneumatic transport condition to carry particles upward to create a continuous circulation of the particles between the annulus and the draft tube. At the same time, the mixture of the building air and the tracer gas was introduced into the annulus or downcomer region through the gas chamber and the annulus gas distributor. The flow rate was controlled to keep the annulus region being operated at the moving bed or minimum fluidization condition. Flow rates in both the draft tube and the annulus were adjusted to investigate the gas bypass between the two regions and the solids circulation from the annulus to the draft tube. Gas compositions at the inlet of the annulus gas chamber, the inlet of the gas nozzle, the outlet of the draft tube, the outlet of the annulus, and the gas mixture in the freeboard region were measured by a Horiba PG-250 flue gas analyzer.
As reported by Yang and Keairns (1983), for a given ICFB reactor, the gas bypass and solids circulation rates are significantly affected by the gap opening between the inlet of the draft tube and the distributor plate. Three types of annulus gas distributors, a flat plate, a cylindrical plate and a conical plate, were tested, together with the effective gap opening between the draft tube and the distributor plate being adjusted to investigate the hydrodynamic performance of the ICFB reactor. All three perforated distributors had the same opening ratio of 2.1% for easy comparison of the experimental results.

Figure 4.2 Schematics of the cold model ICFB system
4.1.1 Estimation of gas bypass ratio

The gas bypass between the draft tube and the annulus was evaluated by CO₂ tracer method. At given operating conditions, continuous CO₂ tracer was injected into the inlet gas flow of the annulus, with CO₂ concentrations at the outlet of the draft tube and the annulus, and the inlet of the draft tube and the annulus being analyzed and recorded.

Gas bypass ratios are calculated by the mass balance method as illustrated in Figure 4.3.

![Figure 4.3 Schematic of the mass transfer between draft tube and annulus](image)

The total mass balance over the draft tube and the annulus in Figure 4.3 is given by,

\[
\begin{align*}
\rho_{\text{air}} (1-x_{D,0}) + \rho_{\text{CO}_2} x_{D,0} F_{D,0} &+ \rho_{\text{air}} (1-x_{A,0}) + \rho_{\text{CO}_2} x_{A,0} F_{A,0} \\
\rho_{\text{air}} (1-x_D) + \rho_{\text{CO}_2} x_D F_D &+ \rho_{\text{air}} (1-x_A) + \rho_{\text{CO}_2} x_A F_A
\end{align*}
\]

(4.1)

where

\[\rho_{\text{air}}, \text{ air density, kg/m}^3\]

\[\rho_{\text{CO}_2}, \text{ CO}_2 \text{ density, kg/m}^3\]
Chapter 4: Hydrodynamic Study of the ICFB Reactor

$F_{D,0}$, volumetric gas flow rate at the inlet of the draft tube, m$^3$/s

$x_{D,0}$, volume fraction of CO$_2$ in the gas flow at the inlet of the draft tube

$F_{A,0}$, volumetric gas flow rate at the inlet of the annulus, m$^3$/s

$x_{A,0}$, volume fraction of CO$_2$ in the gas flow at the inlet of the annulus

$F_{D}$, volumetric gas flow rate at the outlet of the draft tube, m$^3$/s

$x_{D}$, volume fraction of CO$_2$ in the gas flow at the outlet of the draft tube

$F_{A}$, volumetric gas flow rate at the outlet of the annulus, m$^3$/s

$x_{A}$, volume fraction of CO$_2$ in the gas flow at the outlet of the annulus

Since the bed material used in the cold model ICFB unit was millet, which had a very low CO$_2$ adsorption capacity, the change of CO$_2$ concentration contributed from particle adsorption was thus neglected in the mass balance equation.

The total mass balance on CO$_2$ over the draft tube and the annulus is given by,

$$\rho_{CO_2} x_{D,0} F_{D,0} + \rho_{CO_2} x_{A,0} F_{A,0} = \rho_{CO_2} x_{D} F_{D} + \rho_{CO_2} x_{A} F_{A} \quad (4.2)$$

With $x_{A,0}$, $x_{D,0}$, $x_{D}$, and $x_{A}$ being measured, flow rates at the outlet of the annulus ($F_{A}$) and the outlet of the draft tube ($F_{D}$) can be calculated by combining equations 4.1 and 4.2:

$$F_{A} = \frac{(x_{D,0} - x_{D}) F_{D,0} + (x_{A,0} - x_{D}) F_{A,0}}{x_{A} - x_{D}} \quad (4.3)$$

$$F_{D} = \frac{(x_{A,0} - x_{A}) F_{A,0} + (x_{D,0} - x_{A}) F_{D,0}}{x_{D} - x_{A}} \quad (4.4)$$

The total mass balance and the CO$_2$ mass balance over the draft tube are given by equations 4.5 and 4.6 below,

$$\begin{align*}
\left[ \rho_{air} (1 - x_{D,0}) + \rho_{CO_2} x_{D,0} \right] F_{D,0} + \left[ \rho_{air} (1 - x_{AD}) + \rho_{CO_2} x_{AD} \right] F_{AD} \\
\left[ \rho_{air} (1 - x_{D}) + \rho_{CO_2} x_{D} \right] F_{D} + \left[ \rho_{air} (1 - x_{DA}) + \rho_{CO_2} x_{DA} \right] F_{DA}
\end{align*} \quad (4.5)$$

$$\rho_{CO_2} x_{D,0} F_{D,0} + \rho_{CO_2} x_{AD} F_{AD} = \rho_{CO_2} x_{D} F_{D} + \rho_{CO_2} x_{DA} F_{DA} \quad (4.6)$$
where

\( F_{DA} \), volumetric gas bypass rate from draft tube to annulus, \( m^3/s \)

\( x_{DA} \), volume fraction of CO\(_2\) in the gas bypass flow from draft tube to annulus

\( F_{AD} \), volumetric gas bypass rate from annulus to draft tube, \( m^3/s \)

\( x_{AD} \), volume fraction of CO\(_2\) in the gas bypass flow from annulus to draft tube

The volumetric gas bypass rates from the annulus to the draft tube (\( F_{AD} \)) and from the draft tube to the annulus (\( F_{DA} \)) are derived from equations 4.3 to 4.6 with \( x_{DA}=x_{D,0} \) and \( x_{AD}=x_{A,0} \),

\[
F_{DA} = F_{D,0} - \frac{x_{A,0} - x_D}{x_{A,0} - x_{D,0}} F_D \quad (4.7)
\]

\[
F_{AD} = \frac{x_D - x_{D,0}}{x_{A,0} - x_{D,0}} F_D \quad (4.8)
\]

The percentage gas bypass ratios from the draft tube to the annulus (\( R_{DA} \)) and the annulus to the draft tube (\( R_{AD} \)) are defined as:

\[
R_{DA} = \frac{F_{DA}}{F_{D,0}} \times 100\% \quad (4.9)
\]

\[
R_{AD} = \frac{F_{AD}}{F_{A,0}} \times 100\% \quad (4.10)
\]

### 4.1.2 Estimation of solids circulation rate

The solids circulation rate was measured by the visual observation method. Coloured millet particles were added into the bed material as tracer particles. For given gas flow rates in the draft tube and the annulus, the motion of a specific tracer particle on the column wall was tracked by marking its moving distance \( L \) in a given time interval \( t_m \). The tracer particle downward velocity in the annulus was then calculated by
\[ U_p = \frac{L}{t_m} \]  

(4.11)

The solids circulation rate \( W_s \) (kg/m\(^2\).s) through the unit cross-sectional area of the draft tube was calculated by

\[ W_s = \frac{S_A}{S_D} U_p \rho_p (1 - \varepsilon) \]  

(4.12)

where \( S_A \) and \( S_D \) are cross-sectional areas of the annulus and the draft tube respectively, \( \rho_p \) is the particle density, and \( \varepsilon \) is the bed voidage in the annulus which is assumed to be equal to the packed voidage.

### 4.2 Performance with the flat distributor plate

The flat gas distributor with two configurations used in the experiment is shown schematically in Figure 4.4. For the first configuration (Figure 4.4(a)), the top of the gas nozzle was flush with the surface of the flat distributor, and the gap, called the effective gas opening, between the bottom of the draft tube and the surface of the distributor was fixed at \( H_{G1} = 10 \) mm. The top of the gas nozzle was flush with the bottom of the draft tube for the second configuration (Figure 4.4(b)) with \( H_{G1} \) remaining at 10 mm, but the effective gap opening for the solids circulation in the second configuration was reduced to \( H_{G2} = 6 \) mm, which corresponds to the distance between the inner surface of the draft tube and the outer surface of the gas nozzle.
**Figure 4.4** Configurations of the flat distributor for the annulus gas flow
4.2.1 Gas bypass

For the configuration one with an effective gap opening of $H_G=10$ mm, the effect of gas velocities in the annulus ($U_A$) and the draft tube ($U_D$) on the gas bypass from both the annulus to the draft tube and the draft tube to the annulus is shown in Figure 4.5.

Within the range of tested gas velocities, the ICFB with a flat distributor plate showed more than 50% of gas bypass from the annulus to the draft tube ($R_{AD}$) (Figure 4.5(a)), but less than 1.5% from the draft tube to the annulus ($R_{DA}$) (Figure 4.5(b)). $R_{AD}$ increased with the increase of both $U_A$ and $U_D$. Although $R_{DA}$ decreased with the increase of $U_A$ at a given $U_D$, there was no clear trend with respect to the effect of $U_D$ on the gas bypass at a given $U_A$ (see Figure 4.5(b)). One should note that $R_{DA}$ values were very small and could be associated with significant measurement errors.

For the second distributor configuration with the top of the gas nozzle flushed with the bottom of the draft tube while keeping $H_{G1}=10$ mm (see Figure 4.4(b)), it is seen from Figure 4.6(a) that the gas bypass ratio from the annulus to the draft tube was 10% more than that in Figure 4.5(a) at given $U_A$ and $U_D$. On the other hand, $R_{DA}$ was further reduced to lower than 0.3%. This can be explained by the fact that the configuration of the distributor used in Figure 4.6 allows gas from the nozzle to directly flow into the draft tube with less chance to escape into the annulus region. Furthermore, this configuration increased the pressure drop around the inlet of the draft tube, and thus more annulus gas was sucked into the draft tube from the annulus region.

It was observed that, because of the high gas bypass from the annulus to the draft tube in both cases, insufficient gas was supplied to the annulus. As a result, particles could not be stably circulated if the annulus gas velocity was lower than 0.45 m/s.
Error bars plotted in Figure 4.5 were obtained from 6 repeated runs based on a 95% confidence interval. The possible source of errors came from the readings of the rotameters and the measured CO₂ concentrations, as well as the reproducibility of the operating conditions. Errors ranged from 1.61% to 4.52%, with an average around 3.35% for calculated gas bypass ratios from the annulus to the draft tube, and from 0.08% to 0.69%, with an average around 0.49% for calculated gas bypass ratios from the draft tube to the annulus.
Figure 4.5 Effect of gas velocities on gas bypass (Flat distributor, $H_G=10$ mm)
Chapter 4: Hydrodynamic Study of the ICFB Reactor

(a) Annulus to draft tube

(b) Draft tube to annulus

Figure 4.6 Effect of gas velocities on gas bypass (Flat distributor, $H_G=6$ mm)
4.2.2 Solids circulation rate

The influence of gas velocities on the solids circulation rate ($W_s$) is shown in Figures 4.7 and 4.8 for distributor configurations with $H_G=10$ mm and 6 mm, respectively. In both cases, $W_s$ increased with increasing annulus gas velocity ($U_A$) at a given $U_D$. Meanwhile, the same tendency was observed for the influence of $U_D$ at a given $U_A$. However, $U_A$ clearly showed more influence on $W_s$ than $U_D$. At given $U_A$ and $U_D$, although the gas bypass from the annulus to the draft tube ($R_{AD}$) was higher at $H_G=6$ mm than $H_G=10$ mm, $W_s$ at $H_G=10$ mm (Figure 4.7) was always higher than at $H_G=6$ mm in Figure 4.8. In addition, the influence of $U_A$ and $U_D$ on $W_s$ in Figure 4.7 where $H_G=10$ mm was more significant than $H_G=6$ mm shown in Figure 4.8. This is because the small effective gap opening ($H_G$) obstructed the solids circulation, while the increase in gas bypassing was counteracted by the smaller $H_G$ in the second configuration.

Error bars plotted in Figure 4.7 were based on 4 repeated runs for each point with 90% confidence interval. The possible source of errors came from the readings and the timing of the traveling distance of the coloured particles, the change of bed voidage and the reproducibility of the experimental conditions. Errors for calculated solids circulation rates ranged from 0.79 to 8.05 kg/m$^2$.s, with an average around 4.55 kg/m$^2$.s.
Chapter 4: Hydrodynamic Study of the ICFB Reactor

Figure 4.7 Effect of gas velocities on solids circulation rate (Flat distributor, H_G=10 mm)

Figure 4.8 Effect of gas velocities on solids circulation rate (Flat distributor, H_G=6 mm)
4.3 Performance with the cylindrical distributor plate

The flat distributor plate showed very high gas bypassing from the annulus to the draft tube which is undesirable for the dual zone reactor if the annulus is operated as the adsorption zone for the HC-SCR of NOx. To decrease gas bypassing from the annulus to the draft tube, another type of gas distributor for the annulus, namely cylindrical distributor plate, was designed and built, as shown in Figure 4.9. The draft tube was also changed to a size of 38.1 mm I.D. with the wall thickness of 3.2 mm in order to keep the same opening ratio of the distributor (2.1%). In the experiment, the top of the gas nozzle was always flush with the bottom of the cylindrical distributor, and three configurations were tested in the experiment, with the distance \( H_{G1} \) between the bottom of the draft tube and the top of the gas nozzle set at 10, 20 and 60 mm, respectively. Note that, for \( H_{G1}=10 \) mm and 20 mm, as shown in Figure 4.9(a), the effective gap openings were the same, i.e., the gap between the outer surface of the draft tube and the inner surface of the cylinder (\( H_{G2}=9.5 \) mm). For \( H_{G1}=60 \) mm, since the bottom of the draft tube was 9 mm higher than the surface of the annulus gas distributor, the effective gap opening was thus changed to \( H_{G2}=13 \) mm (see Figure 4.9(b)).
4.3.1 Gas bypass

Gas bypass ratios at $H_{G1}=10$ mm are shown in Figure 4.10. When the annulus gas velocity was low ($U_A=0.37$ m/s), the draft tube gas velocity ($U_D$) showed less influence on the gas bypass ratio from the annulus to the draft tube ($R_{AD}$) (Figure 4.10(a)). However, the increase
of \( U_D \) decreased the gas bypass from the draft tube to the annulus (\( R_{DA} \)) effectively at \( U_A = 0.37 \) m/s (Figure 4.10(b)). Further increase of \( U_A \) to 0.45 m/s resulted in an increase of \( R_{AD} \) by 5\%–15\%, while \( R_{DA} \) dropped to lower than 1.5\% in most cases for the \( U_D \) range of 3.31 to 4.55 m/s. \( R_{AD} \) increased by another 15\% with \( R_{DA} \) remaining at around 1\% when \( U_A \) increased from 0.45 to 0.52 m/s.

Although \( R_{AD} \) increased with the increase of both \( U_A > 0.37 \) m/s and \( U_D \), when compared with the flat distributor (Figure 4.5(a)), \( R_{AD} \) for the flat distributor was always 20\%–30\% higher than for the cylindrical distributor at given \( U_A \) and \( U_D \). The change of the annulus distributor showed no significant influence on \( R_{DA} \), which always remained at a very low level in both cases. It is not surprising to see the significant decrease of \( R_{AD} \) in Figure 4.10(a) in comparison to Figure 4.5(a) in view of the fact that the use of a smaller size draft tube for the cylindrical distributor led to an increase of the annulus cross-sectional area from 4940 to 6556 mm\(^2\), and a corresponding decrease of the draft tube cross-sectional area from 2027 to 1140 mm\(^2\).

When \( H_{G1} \) was set to 20 mm, the influence of gas velocities on gas bypass is shown in Figure 4.11. \( R_{AD} \) was also observed to increase with the increase in both \( U_A \) and \( U_D \), although the influence of \( U_D \) was not as significant as \( U_A \). It appears that the increase of \( H_{G1} \) from 10 to 20 mm had no effect on the gas bypass from both directions, which could be attributed to the fact that the effective gap opening remained the same for both cases. \( R_{DA} \) remained lower than 2.5\% within the range of gas velocities tested.
Figure 4.10 Effect of gas velocities on gas bypass (Cylindrical distributor, $H_{G1}=10$ mm)
Chapter 4: Hydrodynamic Study of the ICFB Reactor

Figure 4.11 Effect of gas velocities on gas bypass (Cylindrical distributor, $H_{GI}=20$ mm)
The increase in both $U_D$ and $U_A$ increased $R_{AD}$ when the draft tube was lifted further to $H_{GI}= 60$ mm, as shown in Figure 4.12. At $U_A=0.45$ m/s, $R_{AD}$ was even higher than that at $U_A=0.52$ m/s in Figure 4.11, but still much lower than that in Figure 4.5 where the flat distributor was used. This indicates that the increase of the effective gap opening enhanced gas bypassing from the annulus to the draft tube, but had no significant effect on gas bypassing from the draft tube to the annulus for this type of distributor.
Figure 4.12 Effect of gas velocities on gas bypass (Cylindrical distributor, \(H_{Gi}=60\) mm)
4.3.2 Solids circulation rate

Solids circulation rates ($W_s$) for the cylindrical distributor with $H_{G1}=10$ mm are shown in Figure 4.13. For a given $U_A$, $W_s$ increased with the increase of $U_D$. For a given $U_D$, lower $W_s$ was observed at $U_A=0.37$ m/s. Further increase of $U_A$ beyond 0.45 m/s showed less influence on $W_s$ indicating that $W_s$ was mainly affected by $U_D$. This trend is different from the flat distributor with $H_G=10$ mm where $W_s$ was more sensitive to $U_A$ than to $U_D$ (see Figure 4.7).

Moreover, the cylindrical distributor exhibited much higher $W_s$ than the flat one. For example, at $U_A=0.52$ m/s and $U_D=3.26$ m/s, $W_s$ was 105 kg/m$^2$.s and 49 kg/m$^2$.s for the cylindrical and the flat distributor, respectively.

![Figure 4.13 Effect of gas velocities on solids circulation rate (Cylindrical distributor, $H_{G1}=10$mm)](image)

With the gap between the bottom of the draft tube and the top of the gas nozzle increased from 10 to 20 mm, both $U_A$ and $U_D$ showed minor effect on $W_s$ at $U_A \geq 0.45$ m/s and
U_D≥3.72 m/s, although the trend that W_s increased with the increase of both U_A and U_D was still observed. The change of H_{G1} from 10 to 20 mm showed no influence on W_s, which could be explained by the fact that the effective gap opening remained the same for both cases.

As shown in Figure 4.15, U_A dominated the change of W_s while U_D showed less effect when the draft tube was lifted to H_{G1}=60 mm, which is different from H_{G1}=10 and 20 mm but consistent with the trend from the flat distributor experiment. Considering that the bottom of the draft tube was 9 mm higher than the surface of the annulus gas distributor, which was almost identical to that for the flat distributor (Figure 4.5), it is not surprising that the same trend was observed. The higher W_s for the cylindrical distributor is associated with its bigger gap opening (H_{G2}=13 mm).

**Figure 4.14** Effect of gas velocities on solids circulation rate (Cylindrical distributor, H_{G1}=20mm)
Chapter 4: Hydrodynamic Study of the ICFB Reactor

Figure 4.15 Effect of gas velocities on solids circulation rate (Cylindrical distributor, \(H_{G1}=60\text{mm}\))

The cylindrical distributor exhibited lower gas bypassing from the annulus to the draft tube and relatively higher solids circulation rate than the flat distributor, at given \(U_A\) and \(U_D\). However, as observed in the experiment, constrained by the shape of the distributor, the particles could not be circulated at low draft tube gas velocities, which limited the possible operation window of the gas flow rate.

4.4 Performance with the conical distributor plate

As one of the most commonly used gas distributors for ICFB reactors, the conical distributor was also tested in this study. The perforated holes on the distributor were aligned in perpendicular to the surface of the distributor and the effective gap opening for the solids
circulation was defined as $H_G$, as shown in Figure 4.16. In the experiment, two configurations with $H_G=10$ and 15 mm were investigated, separately, with the top of the gas nozzle always flush with the bottom of the conical plate.

![Figure 4.16 Configuration of the conical distributor for the annulus gas flow](image)

**Figure 4.16** Configuration of the conical distributor for the annulus gas flow

### 4.4.1 Gas bypass

As seen in Figure 4.17(a), the increase of $U_D$ increased the gas bypass ratio from the annulus to the draft tube, but not as significantly as the flat and cylindrical distributors. For a given $U_D$, $U_A$ showed less influence on $R_{AD}$, with $R_{AD}$ ranging from 20 to 50% over the tested range of gas velocities. Relatively high values of $R_{DA}$ were observed using the conical distributor, ranging from 5~10%, as shown in Figure 4.17(b). $R_{DA}$ remained almost constant with the variation of $U_A$ at a given $U_D$, but decreased with increasing $U_D$ at a given $U_A$. 
Chapter 4: Hydrodynamic Study of the ICFB Reactor

Figure 4.17 Effect of gas velocities on gas bypass (Conical distributor, H_G=10 mm)
When the effective gap opening for the solids circulation was set to 15 mm, rather than 10 mm, the increase in $U_A$ enhanced gas bypass from the annulus to the draft tube, as shown in Figure 4.18(a). The influence of $U_D$ on the gas bypass showed a trend opposite to $H_G=1.0$ cm. At $U_D=1.63$ m/s, $R_{AD}$ was very high at 70%~75%. As $U_D$ increased to 2.79 m/s, $R_{AD}$ dropped to around 40%. This indicates that the gas bypass from the annulus to the draft tube was reduced with the increase in $U_D$. According to the configuration of the conical plate, at $H_G=10$ mm, all perforated holes were blocked by the outer surface of the draft tube and the annulus gas could not flow directly into the draft tube but was forced into the annulus region, and the gas could only be dragged from the annulus to the draft tube by the circulating particles. As a result, $U_D$ dominated $R_{AD}$. At $H_G=15$ mm, over 50% of the perforated holes on the conical plate were directly exposed to the inlet of the draft tube. Therefore, the gas flow through these annulus distributor holes could partially flow upward into the draft tube, and thus enhanced gas bypassing from the annulus to the draft tube. With the increase of $U_D$, the increased gas flow to the draft tube pushed part of the annulus gas back to the annulus area and thus decreased $R_{AD}$. As a result of the coupling impact from both $U_A$ and $U_D$, $R_{DA}$ increased by around 5% compared to that at $H_G=10$ mm, as shown in Figure 4.18(b).
Chapter 4: Hydrodynamic Study of the ICFB Reactor

Figure 4.18 Effect of gas velocities on gas bypass (Conical distributor, $H_G=15$ mm)
4.4.2 Solids circulation rate

For $H_G=10\text{ mm}$, $W_s$ increased with increasing the annulus gas velocity ($U_A$) at a given draft tube gas velocity ($U_D$), as shown in Figure 4.19. When $U_A$ reached a certain level, i.e. >0.90 m/s, further increase in $U_A$ had only little influence on $W_s$. Meanwhile, the same tendency was observed for the influence of $U_D$ at a given $U_A$. However, the increase of $U_A$ clearly showed more influence on $W_s$ than that of $U_D$.

For $H_G=15\text{ mm}$, as shown in Figure 4.20, a similar trend was observed except with a relatively higher $W_s$ than that in Figure 4.19 at given $U_A$ and $U_D$. Moreover, both $U_A$ and $U_D$ exhibited significant influence on $W_s$.

![Figure 4.19 Effect of gas velocities on solids circulation rate (Conical distributor, $H_G=10\text{ mm}$)](image_url)
Since the solids circulation rate was mainly influenced by both $U_A$ and $U_D$ for a given configuration of the conical plate, and there existed uncertainties on the actual gas velocities inside the draft tube and the annulus because of the gas bypass between the annulus and the draft tube, an overall gas velocity is introduced here to evaluate its impact on $W_s$.

The overall gas velocity $U$ is defined as the total gas flow rate divided by the total cross-sectional area of the draft tube and the annulus

$$ U = \frac{F_{A,0} + F_{D,0}}{S_A + S_D} \quad (4.13) $$

where $F_{A,0}$ and $F_{D,0}$ are gas flow rates at the inlet of the annulus and the draft tube, and $S_A$ and $S_D$ are the cross-sectional areas of the annulus and the draft tube, respectively.
Chapter 4: Hydrodynamic Study of the ICFB Reactor

As shown in Figure 4.21, for \( H_G = 10 \text{ mm} \), \( W_s \) increased with the increase of \( U \), and could be well fitted by a 2\textsuperscript{nd} order polynomial equation with most of the data points falling into an error range of \( \pm 20\% \).

According to the fixed bed experimental data for Fe/ZSM-5(PUC) catalyst, to keep a stable \( \text{NO}_x \) conversion for a long term operation in the hot model ICFB reactor, the reaction temperature must be remained at 350\textdegree C or higher and the gas space velocity in the reduction zone should be lower than 5000h\textsuperscript{-1} (Std. T, i.e., 25\textdegree C). Based on the results from the cold model unit which has the same configuration as the hot model ICFB reactor, the gas velocity in the draft tube \( (U_D) \) must be lower than 1.41 m/s (Std. T) if the draft tube is to be used as the reduction zone.

If \( U_D \) is set to 1.0 m/s and \( U_A = 0.4 \text{ m/s} \) (Std. T) which are equivalent to \( U_D = 2.09 \text{ m/s} \) and \( U_A = 0.84 \text{ m/s} \) at \( T = 350\textdegree C \) in the hot model ICFB reactor, the particle circulation rate will be around 50 kg/m\textsuperscript{2}.s based on the annulus cross-sectional area, according to the cold model experimental result shown in Figure 4.21.

For a model flue gas containing 600 ppm (0.75 g/m\textsuperscript{3}) \( \text{NO} \) at a gas velocity of \( U_A = 0.4 \text{ m/s} \) (Std. T), the amount of \( \text{NO} \) input to the annulus will be 0.3 g/m\textsuperscript{2}.s, while the adsorption capacity (i.e., the amount of \( \text{NO} \) at the equilibrium adsorption) of the catalyst at 350\textdegree C will be 1.34 g/m\textsuperscript{2}.s according to the adsorption performance data for Fe/ZSM-5(PUC) catalyst in the fixed bed reactor, which is higher than the amount of input \( \text{NO} \). This means that the input \( \text{NO} \) in the annulus region of the ICFB reactor could be completely adsorbed by the catalyst.

For \( H_G = 15 \text{ mm} \), in Figure 4.22, although the shape of the fitted curve switched from minor concave to convex style in comparison with Figure 4.21, the data can also be well correlated by the overall gas velocity, with an error range of \( \pm 10\% \).
Figure 4.21 Effect of overall gas velocity on solids circulation rate using conical distributor

\[(H_G=10\ mm)\]

Figure 4.22 Effect of overall gas velocity on solids circulation rate using conical distributor

\[(H_G=15\ mm)\]
The same effect of the overall gas velocity on the solids circulation rate was also observed for the ICFB with a cylindrical distributor plate which is not shown here. However, for the flat distributor, the data showed a great scattering with poor correlation between $U$ and $W_s$.

4.5 Gas bypassing in the hot model ICFB reactor

In the cold model experiment, the conical distributor plate exhibited high solids circulation rate, high gas bypass from the draft tube to the annulus and relatively low gas bypassing from the annulus to the draft tube compared to the flat and cylindrical distributor plates. Moreover, the conical distributor plate showed flexible and stable operation within wide ranges of gas velocities for both $U_A$ and $U_D$. As a result, the conical distributor plate was selected as the annulus gas distributor for the hot model ICFB reactor. To further reduce gas bypassing from the annulus to the draft tube, the perforated holes were aligned in parallel to the draft tube or the column wall in the hot model unit, as shown in Figure 4.23.

![Figure 4.23](image)  
**Figure 4.23** Configuration of the conical distributor in the hot model ICFB reactor
In the hot model experiments, gas bypassing was studied using O\textsubscript{2} as the tracer gas. Using the same method shown in Figure 4.3 and equations 4.1 to 4.10, R\textsubscript{AD} and R\textsubscript{DA} could be evaluated based on O\textsubscript{2} balance instead of CO\textsubscript{2} balance for the hot model test.

Two kinds of catalysts were investigated in the hot model experiment, Fe/ZSM-5(PUC) with an average particle diameter of 1042 µm and Fe/ZSM-5(Albemarle) with an average particle diameter of 155 µm. The effective gap opening (H\textsubscript{G}) for the solids circulation was set to be 10 mm for all experiments.

**4.5.1 Fe/ZSM-5(PUC) catalyst**

Effects of gas velocities on gas bypass for Fe/ZSM-5(PUC) in the hot model ICFB reactor are shown in Figure 4.24.

In the range of velocities investigated, the gas bypass from the annulus to the draft tube (R\textsubscript{DA}) was always higher than that from the annulus to the draft tube (R\textsubscript{AD}) for Fe/ZSM-5(PUC) catalyst at given U\textsubscript{A} and U\textsubscript{D} (see Figures H.1 to H.7 in Appendix H). For cases with U\textsubscript{A}≥0.3 m/s, with the increase of U\textsubscript{D} from 0.45 to 1.30 m/s, R\textsubscript{AD} increased from 3~7% to a peak value of 17~18% at U\textsubscript{D}=0.9~1.1 m/s, then decreased to 10~13% (Figure 4.24(a)) with further increase in U\textsubscript{D}, while R\textsubscript{DA} increased monotonically from 18% to 40% (Figure 4.24(b)) with the increase in U\textsubscript{D}. For U\textsubscript{A}=0.20 m/s, as U\textsubscript{D} increased from 0.45 to 0.59 m/s, R\textsubscript{DA} increased from 11% to 14%, while R\textsubscript{AD} increased from 4% to 6%. Compared to the effect of U\textsubscript{D}, it seemed that U\textsubscript{A} had less influence on both R\textsubscript{AD} and R\textsubscript{DA}. Furthermore, for a given U\textsubscript{D}, there was no clear relationship between U\textsubscript{A} and R\textsubscript{AD} because of the scattering of data.

Based on those results, if the annulus is selected as the adsorption zone and the draft tube as the reduction zone, the gas bypass from the annulus to the draft tube could supply
sufficient O\textsubscript{2} to keep the O\textsubscript{2} concentration in the draft tube at a desired level. To minimize R\textsubscript{DA} but also achieve a reasonably high solids circulation rate, U\textsubscript{D} should be controlled to be in the range of 0.45–0.6 m/s.

In conclusion, the change of the opening direction of perforated holes on the annulus gas distributor has been demonstrated to be successful in reducing the gas bypass from the annulus to the draft tube. At the same time, R\textsubscript{DA} was enhanced, which is beneficial for the SCR of NO\textsubscript{x} in the adsorption zone.
Figure 4.24 Effect of gas velocities on gas bypass (Fe/ZSM-5(PUC), T=350±10°C)
4.5.2 Fe/ZSM-5(Albemarle) catalyst

Effects of gas velocities on gas bypass using Fe/ZSM-5(Albemarle) catalyst are shown in Figure 4.25.

Unlike Fe/ZSM-5(PUC), the change of both $U_A$ and $U_D$ had almost no effect on the gas bypass from the annulus to the draft tube ($R_{AD}$), which fluctuated in the range of 5~9% as shown in Figure 4.25(a) (see also Figures H.9 to H.19 in Appendix H). This feature could be useful for controlling the $O_2$ concentration to a desired constant level when the draft tube region is used as the reduction zone.

For all cases in Figure 4.25(b), with the increase of $U_D$ at a given $U_A$, the gas bypass ratio from the draft tube to the annulus ($R_{DA}$) was higher than using Fe/ZSM-5(PUC), but following a similar trend. As $U_A$ increased, $R_{DA}$ decreased (Figure H.8 in Appendix H). At $U_D=0.45$ m/s, the decrease of $R_{DA}$ was not significant, remaining at a level around 14% (see Figure H.16 in Appendix H). With $U_D$ increased from 0.60 to 0.90 m/s, $R_{DA}$ decreased quickly with the increase in $U_A$ (see Figures H.17 to H.19 in Appendix H). In the gas velocity range of the current experiment, a higher $U_A$ and a lower $U_D$ are preferred in order to control $R_{DA}$ to a relatively low level. The reactor would not work properly if $U_D<0.40$ m/s and $U_A>0.45$ m/s.
Chapter 4: Hydrodynamic Study of the ICFB Reactor

Figure 4.25 Effect of gas velocities on gas bypass (Fe/ZSM-5(Albemarle), T=355±15°C)

(a) Annulus to draft tube

(b) Draft tube to annulus

Reactor: ICFB
Catalyst: Fe/ZSM-5(Albemarle)

- $U_d=0.20$ m/s
- $U_d=0.25$ m/s
- $U_d=0.30$ m/s
- $U_d=0.35$ m/s
- $U_d=0.40$ m/s
- $U_d=0.45$ m/s

Draft tube gas velocity $U_d$, m/s

Gas bypass ratio (Annulus to draft tube), $R_{ad}$, %

Gas bypass ratio (Draft tube to annulus), $R_{da}$, %
4.5.3 Prediction of O₂ concentration in the draft tube and annulus

For a given $U_A$ and $U_D$, gas bypass ratios from the annulus to the draft tube ($R_{AD}$) and from the draft tube to the annulus ($R_{DA}$) can be obtained from Figures 4.24 and 4.25, and the volumetric gas bypass rates can then be calculated by

\[ F_{AD} = U_D \times S_D \times R_{AD} \]  \hspace{1cm} (4.13)

\[ F_{DA} = U_A \times S_A \times R_{DA} \]  \hspace{1cm} (4.14)

where

- $F_{AD}$, volumetric gas bypass rate from annulus to draft tube, m³/s
- $F_{DA}$, volumetric gas bypass rate from draft tube to annulus, m³/s
- $S_A$, cross-sectional area of the annulus, m²
- $S_D$, cross-sectional area of the draft tube, m²

If O₂ concentrations at inlets of both the annulus ($C_{A0,02}$) and the draft tube ($C_{D0,02}$) are measured, O₂ concentrations in the annulus and the draft tube can be predicted by:

\[ C_{A,02} = \frac{(U_A \times S_A - F_{AD}) \times C_{A0,02} + F_{DA} \times C_{D0,02}}{U_A \times S_A - F_{AD} + F_{DA}} \]  \hspace{1cm} (4.15)

\[ C_{D,02} = \frac{(U_D \times S_D - F_{DA}) \times C_{D0,02} + F_{AD} \times C_{A0,02}}{U_D \times S_D - F_{DA} + F_{AD}} \]  \hspace{1cm} (4.16)

where

- $C_{A,02}$, O₂ concentration in the annulus, %
- $C_{D,02}$, O₂ concentration in the draft tube, %

It should be noted that certain amount of O₂ in the flue gas could be adsorbed onto the catalyst surface and carried into the draft tube region. However, this part of O₂ was negligibly
small compared to the amount of $O_2$ bypassing in the bulk gas phase from the annulus to the draft tube, and thus was not considered in deriving eqs. (4.15) and (4.16).

For Fe/ZSM-5(PUC) catalyst, if the draft tube is used as the adsorption zone, i.e., $C_{A0, O2}=0$, at $U_A=0.4$ m/s and $U_D=0.6$ m/s, with $C_{D0, O2}$ increasing from 4 to 8 and 12%, $O_2$ concentration in the annulus or reduction zone increases from 0.8 to 1.5 and 2.3%, respectively. However, if $U_D$ increases to 1.2 m/s while $U_A$ remaining at 0.4 m/s, the increase of $C_{D0, O2}$ from 4 to 8 and 12% leads to an increase of $O_2$ concentration in the annulus from 1.2 to 2.5 and 3.7%. On the other hand, if the annulus is selected as the adsorption zone, at $U_A=0.4$ m/s, with $U_D$ in the range of 0.6 to 1.2 m/s and the flue gas $O_2$ concentration from 4 to 12%, $O_2$ concentration in the draft tube will vary from 0.7 to 2.2%, which is much lower than that with the draft tube serving as the adsorption zone. This result shows that, to treat flue gases with high $O_2$ concentrations in the ICFB with Fe/ZSM-5 (PUC) catalyst, the annulus should be selected as the adsorption zone in order to control $O_2$ to a relatively low level in the reduction zone.

For Fe/ZSM-5(Albemarle) catalyst, at a low $U_D$, both the annulus and the draft tube can be used as the adsorption zone. For example, at $U_A=0.3$ m/s and $U_D=0.5$ m/s, the increase of $O_2$ concentration from 4 to 12% in the flue gas in the adsorption zone increases $O_2$ concentrations in the reduction zone from 0.4 to 1.2% when the draft tube is used as the reduction zone, and from 0.6 to 1.7% when the annulus is used as the reduction zone. However, at $U_A=0.3$ m/s and $U_D=0.9$ m/s, $O_2$ concentration increases from 0.5 to 1.4% in the reduction zone if the draft tube is used as the reduction zone due to the relatively constant $R_{AD}$, and from 1.3 to 4% if the annulus serves as the reduction zone because of the increased gas bypass from the draft tube to the annulus at high draft tube gas velocities. This implies that
only the annulus can be used as the adsorption zone if the ICFB reactor is to be operated at a high $U_D$ for the treatment of flue gases with high $O_2$ concentrations.

Considering the operation feature of the ICFB reactor where the annulus is operated at a moving bed or at the minimum fluidization while the draft tube is at pneumatic transport, the annulus should be used as the adsorption zone to provide a relatively long contact or adsorption time between the flue gas and the catalyst to achieve high adsorption ratio.

4.6 Summary

The hydrodynamic performance of an ICFB cold model unit was investigated using three types of annulus gas distributors, i.e., flat, cylindrical and conical distributor plates. For each distributor, the influence of the effective gap opening on the gas bypass and the solids circulation was studied at various gas velocities in the annulus and the draft tube.

For the flat distributor, the gas bypass ratio from the annulus to the draft tube ($R_{AD}$) was over 50% and the gas bypass ratio from the draft tube to the annulus ($R_{DA}$) was very low (0~1.5%) in the tested range of gas velocities. The increase of both $U_A$ and $U_D$ could enhance the gas bypass from the annulus to the draft tube. The solids circulation rate ($W_s$) increased with the increase of both $U_A$ and $U_D$, although $U_A$ showed more influence on $W_s$ than $U_D$. Because of the high gas bypass from the annulus to the draft tube, particles could not be stably circulated if the annulus gas velocity was lower than 0.45 m/s.

For the cylindrical distributor, the same trend as the flat distributor was observed with respect to the influence of $U_A$ and $U_D$ on $R_{AD}$, $R_{DA}$ and $W_s$, except that the use of cylindrical distributor could greatly decrease $R_{AD}$ and enhance the solids circulation when compared with the flat distributor.
As observed in the experiment, both distributors showed a relatively narrow operating window of gas velocities.

The conical distributor showed a flexible and stable operation in a wide range of velocities for both \( U_A \) and \( U_D \). The increase of \( U_D \) could enhance \( R_{AD} \) while \( U_A \) showed less effect on \( R_{AD} \). \( R_{DA} \) ranged from 5% to 15% in the test, which is much higher than that using the other two distributors. \( R_{AD} \) and \( R_{DA} \) were sensitive to the change of the effective gap opening. The increase of both \( U_A \) and \( U_D \) could increase \( W_s \), but \( U_A \) showed more influence on \( W_s \) than \( U_D \). The solids circulation rate was found to be well correlated with the overall gas velocity for the ICFB with conical and cylindrical gas distributors.

In the hot model ICFB reactor, the gas bypass ratio of Fe/ZSM-5(PUC) from the annulus to the draft tube (\( R_{AD} \)) reached a maximum value when the draft tube gas velocity (\( U_D \)) was equal to 0.9~1.0 m/s in this study. Meanwhile, \( R_{DA} \) continuously increased with increasing \( U_D \). In the range of velocities investigated, the gas bypass ratio from the draft tube to the annulus (\( R_{DA} \)) was always higher than that from the annulus to the draft tube (\( R_{AD} \)) for Fe/ZSM-5(PUC) catalyst. \( U_A \) had less influence on both \( R_{AD} \) and \( R_{DA} \) than \( U_D \).

For Fe/ZSM-5(Albemarle) in the hot model ICFB reactor, at a given \( U_A \), the gas bypass ratio from the draft tube to the annulus (\( R_{DA} \)) increased with increasing \( U_D \). At given \( U_A \) and \( U_D \), the ICFB using Fe/ZSM-5(Albemarle) possessed higher \( R_{DA} \) but lower \( R_{AD} \) than that using Fe/ZSM-5(PUC). The increase of \( U_A \) could decrease \( R_{DA} \), and the increase of \( U_D \) or \( U_A \) had almost no effect on the gas bypass ratio from the annulus to the draft tube (\( R_{AD} \)).

It was found in the cold model experiment that all three types of distributors showed very low gas bypassing from the draft tube to the annulus, but high gas bypassing in the reverse direction. The data from the hot model experiment showed that the change in the direction of perforated holes on the conical distributor reduced the gas bypass from the
annulus to the draft tube, but enhanced the gas bypass from the draft tube to the annulus. Thus, the change of the reactor configurations could have a significant impact on the operating characteristics of the ICFB reactor. Further detailed investigation is needed in order to fully understand the hydrodynamics of the ICFB reactor.
Chapter 5
Adsorption and Reduction Performance of the ICFB Reactor

According to the reaction kinetic test results, Fe/ZSM-5 catalyst exhibited promising performance on the selective catalytic reduction of NO\textsubscript{x} with propylene as the reductant. O\textsubscript{2} exhibited a significant negative impact on NO\textsubscript{x} reduction when O\textsubscript{2}-rich flue gas was used in the experiment. To achieve a high NO\textsubscript{x} conversion, O\textsubscript{2} concentration in the flue gas must be controlled to be lower than 2%, which is not commonly encountered for most combustion flue gases. To overcome the negative impact of excessive O\textsubscript{2} in the flue gas, the integrated adsorption-reduction process has been proposed in this study. Based on the result obtained from the hydrodynamic experiment, a hot model internal circulating fluidized bed (ICFB) reactor with a similar configuration as the cold model unit presented in Chapter 4 (Figure 4.1) was built and tested.

5.1 Experimental setup

In the proposed configuration, the flue gas is passed into the adsorption zone (annulus) where NO\textsubscript{x} is adsorbed by the catalyst particles. The NO\textsubscript{x}-rich catalyst particles then move downward and into the reduction zone (draft tube) where NO\textsubscript{x} is reduced by injected hydrocarbons. Meanwhile, the catalyst particles are depleted of the adsorbed NO\textsubscript{x} in the draft tube. The NO\textsubscript{x}-depleted catalyst particles are then recirculated back to the adsorption zone to keep a continuous operation. By adjusting the gas flow rates in the annulus and the draft tube, the bypassing of the flue gas from the adsorption zone to the reduction zone can be controlled.
to have the O$_2$ concentration in the reduction zone maintained at desired levels. The hot model ICFB reaction system is shown schematically in Figure 5.1.

![Diagram of hot model ICFB reaction system](image)

**Figure 5.1** Schematic of hot model ICFB reaction system

In the experiment, the ICFB reactor was first preheated by passing the preheated building air through both the annulus and the draft tube. After the desired reaction temperature was reached in the reactor, the gas bypass between the annulus and the draft tube was first measured based on the O$_2$ mass balance method over the annulus and the draft tube by adjusting the flow rate of either the flue gas or the reductant gas, as illustrated in Chapter 4. After the gas bypass measurement, NO from the gas cylinder was blended with preheated building air and pure N$_2$ to prepare the simulated model flue gas at desired NO and O$_2$ concentrations. At the same time, propylene was injected into the preheated N$_2$ to prepare the reductant gas mixture. The model flue gas was injected into the adsorption zone (annulus)
through the conical distributor plate and NO\textsubscript{x} was adsorbed by the catalyst in the annulus. The reductant gas mixture was injected into the reduction zone (draft tube) via a gas nozzle and NO\textsubscript{x} adsorbed on the catalyst particles flowing from the annulus into the draft tube was reduced by the hydrocarbon in the reductant gas. The adsorption and reduction performance was evaluated by measuring the gas composition at the inlet and outlet of the annulus, the outlet of the draft tube and the gas mixture at the exit of the reactor. The geometric dimensions of the ICFB reactor are given in Table 5.1.

**Table 5.1 Geometric dimensions of the ICFB reactor**

<table>
<thead>
<tr>
<th>Item</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft tube diameter, mm</td>
<td>54.8 (I.D.), 60.3 (O.D.)</td>
</tr>
<tr>
<td>Draft tube length, mm</td>
<td>1016.0</td>
</tr>
<tr>
<td>Column diameter, mm</td>
<td>108.2 (I.D.), 114.3 (O.D.)</td>
</tr>
<tr>
<td>Column height, mm</td>
<td>1092.2</td>
</tr>
<tr>
<td>Freeboard height, mm</td>
<td>1016.0</td>
</tr>
<tr>
<td>Freeboard diameter, mm</td>
<td>260.4 (I.D.), 273.1 (O.D.)</td>
</tr>
<tr>
<td>Annulus distributor opening ratio</td>
<td>1.62%, 52 holes of 1.6mm diameter</td>
</tr>
<tr>
<td>Gas nozzle diameter, mm</td>
<td>34.9 (I.D.), 38.1 (O.D.)</td>
</tr>
<tr>
<td>Gas nozzle distributor opening ratio</td>
<td>9.19%, 61 holes of 1.6mm diameter</td>
</tr>
<tr>
<td>Fluidized bed distributor opening ratio</td>
<td>3.25%, 151 holes of 1.6mm diameter</td>
</tr>
<tr>
<td>Effective gap opening for the solids circulation, mm</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Two types of Fe/ZSM-5 catalysts were selected and tested in this experiment, i.e., Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle). Both catalysts were prepared following the same procedure of the impregnation in organic solution (IMPO) method, as described in Chapter 3. The properties of the catalysts were given in Table 5.2.
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Table 5.2 Properties of catalysts used in the hot model experiments

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Average particle size</th>
<th>Bulk density [kg/m³]</th>
<th>( S_{\text{BET}} ) [m²/g]</th>
<th>( U_{\text{mf}} ) (T=350°C) [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe/ZSM-5 (PUC)</td>
<td>1042 µm</td>
<td>926</td>
<td>110</td>
<td>0.39</td>
</tr>
<tr>
<td>Fe/ZSM-5 (Albemarle)</td>
<td>155 µm</td>
<td>979</td>
<td>162</td>
<td>0.01</td>
</tr>
</tbody>
</table>

The model flue gas used in the experiment was a mixture prepared from a gas cylinder containing 20% NO balanced with \( \text{N}_2 \) and a liquid \( \text{N}_2 \) Dewar, with both supplied from Praxair Products Inc. Building air was used as the source of \( \text{O}_2 \). \( \text{NO}_x \) concentration in the model flue gas was controlled to be 300–900 ppm with \( \text{O}_2 \) concentration ranging from 4 to 12%.

The reducing agent used in the experiment was propylene. The gas cylinder containing 40% propylene balanced with \( \text{N}_2 \) was supplied by Praxair Products Inc. The reducing agent stream consisted of propylene + \( \text{N}_2 \), with propylene-to-\( \text{NO}_x \) molar flow ratio varied from 1 to 4. It should be noted that \( \text{NO} \) and \( \text{HC} \) were in different gas streams in the ICFB reactor, i.e., the flue gas stream in the adsorption zone and the reductant gas stream in the reduction zone. To investigate the effect of gas velocities and other factors on the performance of the catalyst without changing \( \text{HC}:\text{NO} \) ratio, the ratio of \( \text{HC}:\text{NO} \) was defined as the molar flow rate of propylene to the reduction zone divided by the molar flow rate of \( \text{NO} \) to the adsorption zone.

5.2 Estimation of \( \text{NO}_x \) and \( \text{HC} \) conversions and \( \text{NO}_x \) adsorption ratio

The overall \( \text{NO}_x \) conversion \( (X_{\text{NO}_x}) \) was calculated by equations 5.1 and 5.2 based on the initial concentration of \( \text{NO}_x \) in the total gas flow of the annulus and the draft tube, and the concentration of \( \text{NO}_x \) in the gas mixture at the exit of the reactor.
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

\[ C_{NOx,in} = \frac{C_{NOx,0} \times F_{F,0}}{(F_{F,0} + F_{R,0})} \]  (5.1)

\[ X_{NOx} = \frac{C_{NOx,in} - C_{NOx,out}}{C_{NOx,in}} \times 100\% \]  (5.2)

where

- \( C_{NOx,0} \), initial NO\(_x\) concentration in the flue gas feed, ppm
- \( C_{NOx,in} \), initial NO\(_x\) concentration in the total gas feed into the annulus and the draft tube, ppm
- \( C_{NOx,out} \), NO\(_x\) concentration in the gas mixture at the exit of the reactor, ppm
- \( F_{F,0} \), flue gas flow rate, m\(^3\)/s
- \( F_{R,0} \), reductant gas flow rate, m\(^3\)/s
- \( X_{NOx} \), overall NO\(_x\) conversion, %

The conversion of propylene was calculated based on the measured concentrations of CO and CO\(_2\) in the gas mixture at the exit of the reactor by assuming that all converted propylene goes to CO and CO\(_2\), as shown in equation 5.3:

\[ X_{HC} = \frac{C_{CO, out} (ppm) \times 10^{-4} + (C_{CO2, out} (\%) - \frac{C_{CO2,0} (\%) \times F_{F,0}}{F_{F,0} + F_{R,0}}) \times (F_{F,0} + F_{R,0}) \times 100\%}{3 \times (F_{HC,0} \times 40\%)} \]  (5.3)

where

- \( C_{CO2,0} \), initial CO\(_2\) concentration in the flue gas feed, %
- \( C_{CO, out} \), CO concentration in the gas mixture at the outlet of the reactor, ppm
- \( C_{CO2, out} \), CO\(_2\) concentration in the gas mixture at the outlet of the reactor, %
- \( F_{F,0} \), flue gas flow rate, m\(^3\)/s
- \( F_{R,0} \), reductant gas flow rate, m\(^3\)/s
F_{HC,0}, \text{ flow rate of 40\% Propylene + N}_2 \text{ gas mixture from the cylinder, m}^3/\text{s}

X_{HC}, \text{ overall HC conversion, } \%

Since the building air contained a certain amount of CO_2, the measured initial concentration of CO_2 in the flue gas feed must be converted to the concentration based on the total flow rate of the flue gas and the reductant gas (F_{F,0} + F_{R,0}) and then subtracted from the measured CO_2 concentration at the exit of the reactor. The initial concentration of propylene was estimated based on the flow rate of certified 40\% propylene + N_2 added to the reductant gas feed. Again, a coefficient of 3 was introduced in equation 5.3 to reflect the fact that one mole of propylene contains 3 moles of carbon.

Because the overall mass balance on carbon was used to calculate HC conversion in eq. (5.3), the carbon balance could not be carried out to check the experiment reliability. Because pure N_2 was used as the carrier gas for the reducing agent while NO concentration was much lower than N_2 in the total gas flow, it is inaccurate to use total nitrogen balance to check the experiment reliability.

To evaluate the adsorption performance of the catalyst in the ICFB reactor, NO_x adsorption ratio in the annulus was calculated and compared with the overall NO_x conversion. Because the gas bypass from both the annulus to the draft tube and the draft tube to the annulus existed, the real NO_x concentration and the gas flow rate inside the adsorption zone must be corrected by the gas bypass data, and the NO_x reduction caused by the hydrocarbon in the bypassing gas from the reduction zone to the adsorption zone should also be deducted from the initial NO_x concentration.

The adsorption ratio of NO_x (X_{NO_x,ads}) in the adsorption zone was calculated by

\[
X_{NO_x,ads} = \frac{C_{NO_x,ads,real} - C_{NO_x,ads,out}}{C_{NO_x,ads,real}} \times 100\% \quad (5.4)
\]
where $C_{\text{NO}_x,\text{ads, out}}$ was the NO\textsubscript{x} concentration at the outlet of the adsorption zone, and the real initial NO\textsubscript{x} concentration, $C_{\text{NO}_x,\text{ads, in}}$, in the adsorption zone was calculated by

$$C_{\text{NO}_x,\text{ads, in}} = \frac{C_{\text{NO}_x,0} \times (F_{F,0} - F_{\text{FR}})}{F_{F,0} - F_{\text{FR}} + F_{RF}} \times (1 - X_{\text{NO}_x,\text{BM}})$$  \hspace{1cm} (5.5)

where

- $C_{\text{NO}_x,0}$, initial NO\textsubscript{x} concentration in the flue gas feed, ppm
- $F_{F,0}$, flue gas flow rate, $m^3/s$
- $F_{\text{FR}}$, calculated gas bypass from the adsorption zone to the reduction zone, $m^3/s$
- $F_{RF}$, calculated gas bypass from the reduction zone to the adsorption zone, $m^3/s$
- $X_{\text{NO}_x,\text{BM}}$, benchmark NO\textsubscript{x} conversion caused by the bypassing HC from the reduction zone, %
- $C_{\text{NO}_x,\text{ads, in}}$, real initial NO\textsubscript{x} concentration used for the adsorption in the adsorption zone, ppm

The benchmark NO\textsubscript{x} conversion used in equation 5.5 was determined individually for each case based on the fixed bed experimental results and the real concentrations of O\textsubscript{2} and HC at the inlet of the adsorption zone with the effect of the gas bypass being considered.

The fluidized bed experiment was also conducted and compared to the results from the ICFB reactor. The draft tube in the ICFB reactor was removed and a new flat gas distributor plate was installed to construct the fluidized bed reactor system. The model flue gas and the reductant gas were mixed in the gas chamber below the distributor before entered the catalyst bed for tests conducted in the fluidized bed. Effects of gas velocities, NO, O\textsubscript{2} and HC concentrations on the NO\textsubscript{x} conversion were investigated.
5.3 Performance with Fe/ZSM-5(PUC) catalyst

5.3.1 Selection of adsorption zone in the ICFB reactor

Either the annulus or the draft tube could be used as the adsorption zone, while the other one as the reduction zone. The adsorption and reduction zones were switched between the annulus and the draft tube using Fe/ZSM-5(PUC) catalyst to investigate the effect of the zone switch on NO\textsubscript{x} conversion in the ICFB reactor.

The influence of gas velocities and the HC:NO ratio on NO\textsubscript{x} conversion using the draft tube as the adsorption zone is shown in Figure 5.2. For a given HC:NO molar ratio of 1 or 2 and a reductant gas velocity (U\textsubscript{A}), the increase in the flue gas velocity (U\textsubscript{D}) led to the decrease in NO\textsubscript{x} conversion. This could be attributed to the fact that the increase of U\textsubscript{D} decreased the contact time between the flue gas and catalyst particles in the adsorption zone, leading to a decrease in the amount of NO\textsubscript{x} adsorbed. Although NO\textsubscript{x} conversions in all runs were generally lower than 15\%, the data clearly showed that increasing the HC:NO ratio and the reductant gas velocity (U\textsubscript{A}) improved the reactor performance. Such a low NO\textsubscript{x} conversion for this kind of configuration confirms that the annulus should be used as the adsorption zone and the draft tube as the reduction zone in order to achieve a high NO\textsubscript{x} conversion in the current ICFB reactor design.
Figure 5.2 Effect of gas velocities and HC:NO ratio on NOx conversion using the draft tube as the adsorption zone (ICFB, Fe/ZSM-5(PUC))

The experimental results presented below were thus all obtained with the annulus as the adsorption zone.

5.3.2 Effect of catalyst loading in the ICFB reactor

The overall NOx conversion and adsorption ratio in the annulus are given in Figure 5.3 for the ICFB reactor with Fe/ZSM-5(PUC) with a catalyst loading of 1.1, 2.2 and 3.3 kg, respectively. The model flue gas was 600 ppm NO + 4% O2 + N2, with the reductant gas containing propylene + N2 at HC:NO=2. The experiment was carried out with a fixed reductant gas velocity of \( U_D = 0.6 \) m/s, while the flue gas velocity in the annulus changed from 0.27 to 0.55 m/s. It clearly demonstrated that the increase in the catalyst loading increased both NOx conversion and NOx adsorption ratio. Both NOx conversion and adsorption ratio
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

decreased slightly with the increase of $U_A$ in all cases, and the NO$_x$ conversion and adsorption ratio appear to be matched each other very closely, indicating that all NO$_x$ adsorbed in the annulus zone was completely converted to N$_2$ in the draft tube zone no matter how much the catalyst loading was.

Although increasing the catalyst loading will be beneficial to NO$_x$ adsorption as well as NO$_x$ conversion, the maximum catalyst loading for both Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle) was set to 3.3 kg in all experiments carried out in this study.

![Figure 5.3](image)

**Figure 5.3** Effect of catalyst loading on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(PUC))
5.3.3 Effect of HC:NO molar ratio on NO\textsubscript{x} conversion

The influence of HC:NO molar ratio on NO\textsubscript{x} conversion is shown in Figure 5.4. For a given HC:NO ratio, NO\textsubscript{x} conversion decreased with increasing $U_A$ because the decrease in the contact time between the flue gas and the catalyst in the annulus reduced the adsorption rate. On the contrary, NO\textsubscript{x} conversion increased with increasing $U_D$, likely due to the increased reaction rate in the draft tube and catalyst circulation rate. The NO\textsubscript{x} conversion increased when HC:NO ratio increased from 1 to 2, which agrees with the results from the fixed bed experiment. The difference in NO\textsubscript{x} conversion between HC:NO=1 and 2 at a given $U_A$ decreased with increasing $U_D$. For example, at $U_A=0.4\text{m/s}$, the difference in NO\textsubscript{x} conversion was 6%, 5% and 2% for $U_D=0.6$, 0.9 and 1.2 m/s, respectively, which indicates that the benefit of a larger HC:NO ratio for a higher NO\textsubscript{x} conversion diminished at high $U_D$. At low $U_D$, the reactor performance was limited by the reaction in the draft tube region. Therefore, increasing the HC:NO ratio improved the reactor performance significantly. At a high $U_D$, the reactor performance was controlled by the adsorption in the annulus zone, insensitive to the change of HC:NO ratio, due to the enhanced mass transfer of hydrocarbons from the reductant gas flow to the catalyst surface. $U_A$ showed less influence on NO\textsubscript{x} conversion than $U_D$ because NO\textsubscript{x} conversion was controlled mainly by the draft tube gas velocity.
5.3.4 Effect of flue gas O2 content on NOx conversion

As shown in Figures 5.5, for a given \( U_D \), increasing \( U_A \) caused a steady decrease in NOx conversion for tests with 4% and 8% O2, and only a slight decrease at 12% O2. A highest NOx conversion of 31% was observed at low \( U_A \) at 4% O2. With the increase of O2 concentration from 4% to 12% in the model flue gas, the maximum NOx conversion decreased significantly from 31% to ~20%. For a given O2 concentration and \( U_A \), the increase of \( U_D \) from 0.6 to 0.75 m/s showed little influence on NOx conversion. This result shows that the flue gas O2 concentration still imposed a significant impact on NOx conversion in the ICFB reactor when coarse PUC catalyst was used.
5.3.5 Effect of gas velocities on NO\textsubscript{x} conversion and adsorption

The influence of gas velocities on the adsorption and conversion of NO\textsubscript{x} for the model flue gas with 600 ppm NO + 4% O\textsubscript{2} + N\textsubscript{2} and HC:NO=2 is shown in Figure 5.6. When the draft tube gas velocity was low (U\textsubscript{D}=0.6 m/s) which created low solids circulation rate, the increase of U\textsubscript{A} had little influence on the NO\textsubscript{x} adsorption ratio. This is likely because that the shortened gas residence time in the annulus was compensated by the increased solids circulation rate, as U\textsubscript{A} increased. Taking the experimental error into account, one may say that all adsorbed NO\textsubscript{x} was reduced when U\textsubscript{A}<0.4 m/s for U\textsubscript{D}=0.6 m/s and U\textsubscript{A}<0.3 m/s for U\textsubscript{D}=0.9 m/s. For U\textsubscript{D}>0.9 m/s with a high solids circulation rate, the adsorption ratio of NO\textsubscript{x} decreased with the increase of U\textsubscript{A} because the solids circulation rate was less sensitive to U\textsubscript{A} at a high U\textsubscript{D}, and the reduction rate was always lower than the adsorption ratio, which suggests that part of the adsorbed NO\textsubscript{x} was not reduced in the reduction zone, probably due
to the shortened gas and catalyst residence time in the draft tube zone at a high $U_D$. In
general, if the reactor was operated at steady state, NO$_x$ adsorbed in the annulus should
always be equal to NO$_x$ converted in the draft tube. If NO$_x$ conversion is lower than the
adsorption ratio, less NO$_x$ should be adsorbed when the catalyst returns to the adsorption
zone. Hence, another possible reason for NO$_x$ conversion lower than the adsorption ratio is
that NO$_x$ is weakly adsorbed by Fe/ZSM-5(PUC) catalyst, and the un-reacted NO$_x$ is
desorbed before the catalyst particles leave the reduction zone. As a result, NO$_x$ conversion
in the draft tube is lower than the NO$_x$ adsorption ratio in the annulus. For each given $U_A$,
with an increase in $U_D$, both the conversion and the adsorption ratio of NO$_x$ increased,
although the influence of $U_D$ on NO$_x$ adsorption ratio was more pronounced at low $U_A$. To
achieve a high NO$_x$ conversion in the ICFB reactor with Fe/ZSM-5(PUC) catalyst, the
annulus gas velocity should be kept below 0.3 m/s.

![Figure 5.6](image.png)

**Figure 5.6** Effect of gas velocities on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(PUC))
5.3.6 Performance of fluidized bed reactor with Fe/ZSM-5(PUC)

5.3.6.1 Effect of inlet NO concentration

Figures 5.7 to 5.9 show that the inlet NO concentration in the model flue gas had some influence on NO\textsubscript{x} conversion. At O\textsubscript{2} concentrations of 4\% (Figure 5.7) and 2.5\% (Figure 5.8), NO\textsubscript{x} conversion increased monotonically with increasing NO concentration from 300 to 900 ppm at a given fluidizing gas velocity. This may be explained by the fact that the increase in NO\textsubscript{x} concentration enhanced the NO\textsubscript{x} adsorption capacity of the catalyst and also the reaction rate. For the flue gas with 1\% O\textsubscript{2} (Figure 5.9), a 10–15\% increase in NO\textsubscript{x} conversion was observed when the inlet NO concentration increased from 300 to 600 ppm. The NO\textsubscript{x} conversion slightly decreased as the flue gas NO concentration increased from 600 to 900 ppm. As discussed earlier, NO must be oxidized to NO\textsubscript{2} before it is reduced by the HC. At an O\textsubscript{2} concentration of 1\% and a NO concentration of 900 ppm, the HC concentration in the gas flow was 1800 ppm at a HC:NO ratio of 2. If all HC was completely converted to CO\textsubscript{2}, it could have reduced the flue gas O\textsubscript{2} level from 1\% to 0.44\%. Therefore, there may not be enough O\textsubscript{2} for the oxidization of NO to NO\textsubscript{2}, resulting in a NO\textsubscript{x} conversion slightly lower than the case with 600 ppm of NO in the flue gas.
Figure 5.7 Effect of inlet NO concentration on NO\textsubscript{x} conversion (Fluidized bed, Fe/ZSM-5(PUC), [O\textsubscript{2}] = 4\%)

Figure 5.8 Effect of inlet NO concentration on NO\textsubscript{x} conversion (Fluidized bed, Fe/ZSM-5(PUC), [O\textsubscript{2}] = 2.5\%)

166
5.3.6.2 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions

It is anticipated that an increase in HC:NO will enhance the NO\textsubscript{x} conversion at given O\textsubscript{2} and NO concentrations in the fluidized bed.

For the flue gas with 300 and 600 ppm NO, as shown in Figure 5.10 and 5.11, at 1% flue gas O\textsubscript{2}, the increase of HC:NO ratio from 1 to 2 increased NO\textsubscript{x} conversion significantly. At O\textsubscript{2} concentrations of 2.5% and 4%, NO\textsubscript{x} conversion also increased by increasing HC:NO ratio, although the effect was not as significant as at 1% O\textsubscript{2}. At low gas velocities, HC conversion decreased notably with the increase in HC:NO ratio at all tested O\textsubscript{2} concentrations. When a high gas velocity was used, the effect of HC:NO ratio on HC conversion was insignificant.
For an inlet NO concentration of 900 ppm, as shown in Figure 5.12, the increase of HC:NO led to significant increase in NO\(_x\) conversion and a slight decrease in HC conversion at both 2.5% and 4% O\(_2\). For the flue gas with 1% O\(_2\), the effect of HC:NO on NO\(_x\) conversion was insignificant at 300 and 600 ppm NO, and the HC conversion dropped to a relatively low level at HC:NO=2. Again, this is likely due to the insufficient supply of O\(_2\). In fact, as observed in the experiment, the outlet O\(_2\) concentration approached zero when the flue gas of 900 ppm NO + 1% O\(_2\) was used with a HC:NO ratio of 2.
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.10 Effect of HC:NO on NOx and HC conversions (Fluidized bed, Fe/ZSM-5(PUC), [NO]=300ppm)
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.11 Effect of HC:NO on NO\textsubscript{x} and HC conversions (Fluidized bed, Fe/ZSM-5(PUC), [NO]=600ppm)
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.12 Effect of HC:NO on NO\(_x\) and HC conversions (Fluidized bed, Fe/ZSM-5(PUC), [NO]=900ppm)
5.3.6.3 Effect of inlet $O_2$ concentration on NO$_x$ and HC conversions

Fe/ZSM-5(PUC) showed high reactivity on NO$_x$ reduction in the fluidized bed for flue gas with low $O_2$ concentration, as shown in Figure 5.13. NO$_x$ conversion reached 60% at $O_2=1\%$ and $U=0.27$ m/s. Increase of $O_2$ concentration led to the decrease of NO$_x$ conversion at a given gas velocity. It is worthwhile to point out that the performance of Fe/ZSM-5(PUC) was negatively influenced by the gas velocity due to the shortened residence time of gas reactants. The catalytic activity was more sensitive to the gas velocity at lower $O_2$ concentrations than at higher $O_2$ concentrations. The change in $O_2$ concentration showed less influence on HC conversion than on NO$_x$ conversion, with the highest HC conversion consistently lower than 50%. However, the increase of the gas velocity decreased HC conversion significantly under current experimental conditions, likely due to the reduced gas residence time, which appears to be consistent with the result from the fixed bed reactor.
Figure 5.13 Effect of inlet O$_2$ concentration on NO$_x$ and HC conversions (Fluidized bed, Fe/ZSM-5(PUC))
5.3.7 Comparison of ICFB reactor and fluidized bed reactor

Figure 5.14 compares the NOx conversion in the fluidized bed reactor and the ICFB reactor. The results with UD=0.60 and 1.20 m/s for the ICFB reactor were selected as the lower and upper bounds, because the NOx conversion reached the lowest value at UD=0.6 m/s and the highest at UD=1.20 m/s. Although the ICFB reactor showed higher NOx conversion (20~25% higher) than the fluidized bed at the same O2 concentration (4%), the NOx conversion in the ICFB reactor at high O2 concentrations was still much lower than the fluidized bed with 1% O2 only. This suggests that the ICFB reactor with Fe/ZSM-5(PUC) catalyst could improve the HC-SCR performance, but cannot completely eliminate the O2 effect, as reflected by the significant negative impact of flue gas O2 level on the overall NOx conversion in the ICFB reactor.

![Figure 5.14 Comparison of NOx conversion between ICFB and fluidized bed reactors (Fe/ZSM-5(PUC))](image)

Figure 5.14 Comparison of NOx conversion between ICFB and fluidized bed reactors (Fe/ZSM-5(PUC))
5.4 Performance of Fe/ZSM-5(Albemarle) catalyst

5.4.1 Effect of HC:NO molar ratio on NO\textsubscript{x} and HC conversions

For the flue gas containing 4% O\textsubscript{2} and a draft tube gas velocity (U\textsubscript{D}) of 0.6 m/s, the influence of HC:NO ratio on NO\textsubscript{x} reduction was shown in Figure 5.15. It is very clear that as the HC:NO molar ratio increased from 1 to 4, NO\textsubscript{x} conversion increased notably, especially when HC:NO increased from 2 to 4. At HC:NO=1, the injected HC was completely converted. When HC:NO reached 2, HC was almost completely converted to CO or CO\textsubscript{2} at a low U\textsubscript{A}. However, as U\textsubscript{A} increased to 0.42 m/s, HC conversion decreased quickly from 100% to 70%. The lowered HC conversion appeared to be directly related to the lowered NO\textsubscript{x} conversion. Further increase of HC:NO from 2 to 4 led to even lower HC conversion.

As U\textsubscript{D} increased from 0.6 to 0.9 m/s, as shown in Figures 5.15, 5.16 and 5.17, NO\textsubscript{x} conversion increased, while HC conversion decreased. The increase in U\textsubscript{D} increased the solids circulation rate, thus increasing the NO\textsubscript{x} adsorption ratio in the annulus, leading to increased NO\textsubscript{x} conversion. On the other hand, high U\textsubscript{D} decreased the HC residence time in the draft tube, and thus lowered HC conversion. At U\textsubscript{D}=0.9 m/s (Figure 5.17), HC conversion was lower than 50% for HC:NO=4, and the influence of HC:NO on NO\textsubscript{x} conversion was not as significant as for the case with U\textsubscript{D}=0.60 and 0.75 m/s.

It is observed that, at a given U\textsubscript{A}, high NO\textsubscript{x} conversions could be reached by either increasing the HC:NO molar ratio or increasing the gas velocity in the draft tube (U\textsubscript{D}). In other words, a high U\textsubscript{D} can be used to achieve the same NO\textsubscript{x} conversion at a low HC:NO ratio. The same conclusion could be drawn from Figures 5.18 to 5.20 for flue gases with 8% O\textsubscript{2}. It is also noticed that NO\textsubscript{x} conversion became lower and HC conversion became higher as the flue gas O\textsubscript{2} concentration increased from 4 to 8%.
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.15 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), \(U_D=0.6\) m/s, \([O_2]=4\%\))

Figure 5.16 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), \(U_D=0.75\) m/s, \([O_2]=4\%\))
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.17 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), \(U_D=0.9 \text{ m/s}, [O_2]=4\%\))

Figure 5.18 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), \(U_D=0.6 \text{ m/s}, [O_2]=8\%\))
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.19 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), \(U_D=0.75\) m/s, \([O_2]=8\%\))

Figure 5.20 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (ICFB, Fe/ZSM-5(Albemarle), \(U_D=0.9\) m/s, \([O_2]=8\%\))
5.4.2 Effect of flue gas O$_2$ concentration on NO$_x$ conversion and adsorption

The influence of flue gas O$_2$ concentration at the reactor inlet on NO$_x$ conversion and adsorption with HC:NO=2 and U$_D$=0.6 m/s is shown in Figure 5.21. At a given U$_A$, NO$_x$ adsorption ratio decreased when O$_2$ concentration increased from 4% to 8%, and the further increase of O$_2$ concentration from 8% to 12% showed little influence on NO$_x$ adsorption. Correspondingly, NO$_x$ conversion decreased with the increase in O$_2$ concentration. For a given HC:NO molar ratio, as the O$_2$ concentration in the flue gas increased, the O$_2$ concentration in the draft tube increased proportionally due to gas bypassing from the annulus to the draft tube. Therefore, more hydrocarbons were oxidized to CO$_2$ in the draft tube. As a result, more active sites on the catalyst were occupied by adsorbed CO$_2$ when the regenerated catalyst circulated back to the annulus region, which led to a decrease in the NO$_x$ adsorption ratio. At a given O$_2$ concentration, NO$_x$ adsorption ratio was always lower than NO$_x$ conversion, except for 4% and 8% O$_2$ at U$_A$<0.25 m/s.

When U$_D$ increased from 0.75 to 0.9 m/s, as shown in Figures 5.22 to 5.23, NO$_x$ conversion was always higher than NO$_x$ adsorption ratio under a given operating condition. The highest NO$_x$ conversion and adsorption ratio were always reached at 4% O$_2$, and the increase of O$_2$ from 8% to 12% showed only marginal impact on both NO$_x$ conversion and adsorption. On the other hand, NO$_x$ adsorption ratio is seen to increase with increasing U$_D$, likely resulting from increased solids circulation rate.

In all cases, the difference of NO$_x$ conversion between various flue gas O$_2$ contents decreased with increasing U$_D$, indicating that the increase of O$_2$ concentration exerted less negative impact on NO$_x$ conversion at a higher U$_D$. In other words, higher U$_D$ is preferred to maintain a high NO$_x$ conversion by enhancing NO$_x$ adsorption ratio when a flue gas with a high O$_2$ concentration is to be treated.
The fact that NO\textsubscript{x} conversion was generally higher than NO\textsubscript{x} adsorption ratio in most cases in Figures 5.21 to 5.23 indicated that the overall performance of the ICFB with Fe/ZSM-5(Albemarl) was limited by the relatively poor adsorption performance of the catalyst. Doping of other NO\textsubscript{x} adsorbent, such as barium oxide, to the current Fe/ZSM-5(Albemarl) catalyst can probably further improve the adsorption performance and thus increase the NO\textsubscript{x} conversion.

**Figure 5.21** Effect of flue gas O\textsubscript{2} concentration on NO\textsubscript{x} conversion and adsorption (ICFB, Fe/ZSM-5(Albemarl), $U_D=0.6$ m/s, HC:NO=2)
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.22 Effect of flue gas O₂ concentration on NOₓ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), Uₜ=0.75 m/s, HC:NO=2)

Figure 5.23 Effect of flue gas O₂ concentration on NOₓ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), Uₜ=0.9 m/s, HC:NO=2)
5.4.3 Effect of gas velocities on NO\textsubscript{x} conversion and adsorption

The influence of gas velocities on NO\textsubscript{x} conversion and adsorption is shown in Figure 5.24 with HC:NO=1, and Figure 5.25 with HC:NO=2 at a flue gas inlet O\textsubscript{2} concentration of 4%.

It is seen that both U\textsubscript{A} and U\textsubscript{D} significantly influenced NO\textsubscript{x} conversion and adsorption. In Figure 5.24, NO\textsubscript{x} conversion increased monotonically with increasing U\textsubscript{D}, while NO\textsubscript{x} adsorption ratio first decreased as U\textsubscript{D} increased from 0.6 to 0.75 m/s, and then increased as U\textsubscript{D} further increased from 0.75 to 0.9 m/s. For HC:NO=2 (Figure 5.25), U\textsubscript{D} showed more influence on NO\textsubscript{x} conversion than on NO\textsubscript{x} adsorption, although there is a lack of clear trend on the effect of U\textsubscript{D} on NO\textsubscript{x} adsorption. For both cases, NO\textsubscript{x} conversion and adsorption ratio generally decreased with increasing U\textsubscript{A}, and the influence of U\textsubscript{D} on NO\textsubscript{x} adsorption ratio was more significant at a low U\textsubscript{A} than at a high U\textsubscript{A}. For U\textsubscript{D}=0.6 m/s (Figure 5.24) or U\textsubscript{D}=0.45 m/s (Figure 5.25), NO\textsubscript{x} conversion was approximately equal to the NO\textsubscript{x} adsorption ratio, meaning that the adsorbed NO\textsubscript{x} was completely converted by the catalyst in the draft tube. At high values of U\textsubscript{D}, NO\textsubscript{x} conversion was higher than the NO\textsubscript{x} adsorption ratio, and their difference increased as U\textsubscript{D} increased from 0.75 to 0.9 m/s in Figure 5.24 or from 0.6 to 1.05 m/s in Figure 5.25. One of possible explanations is that, at low draft tube gas velocities (U\textsubscript{D}), when catalyst particles moved up the draft tube and left from the top outlet, they immediately dropped down to the annulus region without ejecting to the upper freeboard region. At a high U\textsubscript{D}, particles leaving the draft tube might continue their upward movement, forming a “fountain” region, as in a spouted bed, which delayed the catalyst particles returning to the annulus region. As a result, NO\textsubscript{x} escaping from the annulus adsorption region and the draft tube reaction region was reduced in the freeboard region due to the high solids holdup in the “fountain” region, creating the difference between the measured total NO\textsubscript{x} conversion and the
adsorption ratio. The increase in gas velocity in the annulus region \( (U_A) \) decreased the contact time between the flue gas and the catalyst, leading to a decrease in the NO\(_x\) adsorption ratio, which, as a limiting step, reduced the overall NO\(_x\) conversion.

**Figure 5.24** Effect of gas velocities on NO\(_x\) conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), \([O_2]=4\%, HC:NO=1\))

**Figure 5.25** Effect of gas velocities on NO\(_x\) conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), \([O_2]=4\%, HC:NO=2\))
The influence of gas velocities on NO$_x$ conversion and adsorption for 8% and 12% flue gas O$_2$ concentration is shown in Figures 5.26 and 5.27, respectively, both with HC:NO=2. $U_A$ showed similar influence on NO$_x$ conversion and adsorption ratio as at 4% O$_2$. However, NO$_x$ adsorption ratio showed a steady increase with increasing $U_D$. This further confirms the postulate that the high solids circulation rate at a high draft tube gas velocity, $U_D$, promotes NO$_x$ adsorption in the annulus region because of lower NO$_x$ concentration on the catalyst surface. Again, for the same reason described earlier, NO$_x$ conversion was always higher than the adsorption ratio, especially at a high $U_D$. For O$_2=12\%$, the annulus gas velocity $U_A$ had little influence on both NO$_x$ conversion and adsorption ratio.

![Figure 5.26](image)

**Figure 5.26** Effect of gas velocities on NO$_x$ conversion and adsorption (ICFB, Fe/ZSM-5(Albemarle), [O$_2$]=8\%, HC:NO=2)
5.4.4 Performance of the fluidized bed reactor with Fe/ZSM-5(Albemarle)

5.4.4.1 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions

Figures 5.28 to 5.30 show that the gas velocity in the fluidized bed with Fe/ZSM-5(Albemarle) catalyst had less influence on NO\textsubscript{x} conversion than with Fe/ZSM-5(PUC). Increasing HC:NO ratio had a positive impact on NO\textsubscript{x} conversion but negative impact on HC conversion in all cases, especially at low gas velocities. For O\textsubscript{2}=1% (Figure 5.28), NO\textsubscript{x} conversion increased by ~10%, while HC conversion decreased by ~5% as the HC:NO ratio increased from 1 to 2. For O\textsubscript{2}=4% (Figure 5.29), when HC:NO increased from 1 to 2, NO\textsubscript{x} conversion increased to ~40% from less than 30%, while HC conversion decreased. Further increase of HC:NO from 2 to 4 gave 10% further increase of NO\textsubscript{x} conversion and about a 5%
drop in HC conversion. A similar trend was observed when HC:NO increased from 1 to 2 at 8% O₂ (Figure 5.30).

As discussed previously for Fe/ZSM-5(PUC) catalyst, NOₓ and HC conversions were significantly influenced by varying the gas velocity in the fluidized bed. Figures 5.28 to 5.30 show that NOₓ conversion was enhanced with increasing gas velocity in the fluidized bed with Fe/ZSM-5(Albemarle) particles under most experimental conditions, contrary to the Fe/ZSM-5(PUC) catalyst where NOₓ conversion decreased as the gas velocity increased. One possible explanation is that the interphase mass transfer between the bubble phase and the dense phase in the fluidized bed with fine Fe/ZSM-5(Albemarle) catalyst improved significantly due to increased solids holdup in the freeboard region as the gas velocity increased. As a result, NOₓ conversion increased. Although HC conversion decreased with increasing gas velocity for Fe/ZSM-5 (Albemarle), the influence of the gas velocity on HC conversion was not as significant as for the Fe/ZSM-5(PUC) catalyst.

![Figure 5.28](image)

**Figure 5.28** Effect of HC:NO ratio on NOₓ and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), [O₂]=1%)
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.29 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), [O\textsubscript{2}]=4%)

Figure 5.30 Effect of HC:NO ratio on NO\textsubscript{x} and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), [O\textsubscript{2}]=8%)
5.4.4.2 Effect of O₂ concentration on NOₓ and HC conversions

Figures 5.31 and 5.32 show that increasing the flue gas O₂ concentration had significant negative impact on NOₓ conversion in the fluidized bed using Fe/ZSM-5(Albemarle) catalyst, where the increase of O₂ concentration could greatly reduce NOₓ conversion with a slightly increased HC conversion. In Figure 5.31, at 1% O₂ and HC:NO=1, NOₓ conversion reached around 51%, which was the same as obtained in the fixed bed experiment, but the HC conversion was much lower than in the fixed bed experiment. However, at O₂=4% and 8% and HC:NO=1, both NOₓ and HC conversions in the fluidized bed were much lower than in the fixed bed. This means that the SCR performance of the Fe/ZSM-5(Albemarle) catalyst in the fluidized bed became worse than in the fixed bed when the reactor was operated at high O₂ concentrations with a low reductant-to-NOₓ feed ratio. This is likely related to the existence of interphase mass transfer between the bubble and the dense phase in the fluidized bed and the reduced mean gas-solids contact time due to the gas bypass through bubbles. The increase in the gas velocity slightly enhanced NOₓ reduction but decreased HC conversion at a given O₂ concentration. This could be explained by the improved interphase mass transfer, on one hand, and shortened contact time, on the other hand, as the gas velocity increased in the fluidized bed.

As HC:NO ratio increased from 1 to 2, as shown in Figure 5.32, the same trend was observed for the influence of O₂ concentration on NOₓ and HC conversions as found in Figure 5.31. Although NOₓ conversion was improved by 10% compared to HC:NO=1 at the same O₂ concentration, it was still 6-10% lower (for NOₓ conversion) and 45~50% lower (for HC conversion) than that in the fixed bed. The increase of the gas velocity had no significant influence on NOₓ conversion, but decreased the HC conversion at a given O₂ concentration.
Figure 5.31 Effect of inlet O₂ concentration on NOₓ and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), HC:NO=1)

Figure 5.32 Effect of inlet O₂ concentration on NOₓ and HC conversions (Fluidized bed, Fe/ZSM-5(Albemarle), HC:NO=2)
5.4.5 Comparison of reactor types

Figure 5.33 compares NO\textsubscript{x} conversion in the fluidized bed reactor and the ICFB reactor. The results from the fluidized bed experiment with 1% and 4% O\textsubscript{2} were plotted. For the ICFB reactor, the conditions with U\textsubscript{D}=0.45 and 1.05 m/s and O\textsubscript{2}=4% were selected because they represented the lowest (U\textsubscript{D}=0.45 m/s) and highest (U\textsubscript{D}=1.05 m/s) NO\textsubscript{x} conversion. NO\textsubscript{x} conversions at U\textsubscript{D}=0.9 m/s with O\textsubscript{2}=8% and 12%, are also plotted.

When the ICFB reactor was operated at U\textsubscript{D}=0.45 m/s which had a low solids circulation rate, the ICFB showed similar performance as the fluidized bed reactor with a NO\textsubscript{x} conversion of ~40% for the flue gas with 4% O\textsubscript{2}, which means that the ICFB reactor had no advantage if operated at a low U\textsubscript{D}. When U\textsubscript{D} increased to 1.05 m/s, ICFB showed much better performance than the fluidized bed, with the NO\textsubscript{x} conversion close to, or even higher than achieved in the fluidized bed with a flue gas of only 1% O\textsubscript{2}. At U\textsubscript{D}=0.9 m/s, NO\textsubscript{x} conversion for 8% and 12% O\textsubscript{2} in the ICFB reactor was 10% higher than that achieved in the fluidized bed for the flue gas with 4% O\textsubscript{2} content when U (or U\textsubscript{A}) was lower than 0.4 m/s. This result clearly demonstrates the advantage of the ICFB reactor over the fluidized bed reactor for the treatment of flue gases containing excessive O\textsubscript{2}, and proves that the dual-zone ICFB reactor can almost completely eliminate the negative impact imposed by the high flue gas O\textsubscript{2} concentration.
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

Figure 5.33 Comparison of NO\textsubscript{x} conversion between ICFB and fluidized bed reactors (Fe/ZSM-5(Albemarle))

5.5 Summary

Experiments on the catalytic reduction of NO\textsubscript{x} with propylene in the presence of excessive O\textsubscript{2} were carried out over Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle) catalysts in the fluidized bed and ICFB reactor, respectively.

To pursue a better performance of the ICFB reactor for the reduction of NO\textsubscript{x}, the annulus must be used as the adsorption zone and the draft tube as the reduction zone. Increasing the catalyst load will be of benefit to NO\textsubscript{x} adsorption ratio as well as NO\textsubscript{x} conversion in ICFB reactor.

Increasing the ratio of HC:NO improved the reduction performance of both Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle) catalysts in both the fluidized bed and ICFB reactor. For both catalysts, at a given ratio of HC:NO, NO\textsubscript{x} conversion decreased with increasing $U_A$ in
Chapter 5: Adsorption and Reduction Performance of the ICFB Reactor

the ICFB reactor. On the contrary, NO\textsubscript{x} conversion increased with an increase of \( U_D \). Using a higher \( U_D \), the catalyst operated under a lower HC:NO ratio could reach the similar catalytic activity as that using a lower \( U_D \) but a higher HC:NO ratio.

\( \text{NO}_x \) conversion and adsorption ratio decreased with increasing \( U_A \) for both catalysts. NO\textsubscript{x} conversion increased with increasing \( U_D \) because more particles were entrained into the gas mixture of the flue gas and the reductant gas, and formed a “fountain” in the freeboard region at higher \( U_D \). In most cases, the NO\textsubscript{x} conversion was lower than adsorption ratio for Fe/ZSM-5(PUC) which means that the catalytic activity was too low and could not match the adsorption performance. In contrast, the NO\textsubscript{x} conversion was higher than the adsorption ratio for Fe/ZSM-5(Albemarle) meaning that the adsorption performance should be improved in order to fully utilize the catalytic activity of the catalyst.

Inlet NO concentration of the model flue gas had some impacts on NO\textsubscript{x} conversion over Fe/ZSM-5(PUC) in the fluidized bed, because the change of NO\textsubscript{x} concentration influences the ability of NO\textsubscript{x} to be adsorbed by the catalyst in a fixed period of contact time (or gas velocity).

Lower O\textsubscript{2} concentration could greatly enhance the catalytic activity of both Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle) in the fluidized bed, which agrees well with the findings in the fixed bed experiment from this study and other research groups.

The performance of Fe/ZSM-5(PUC) was not as good as in the fixed bed experiment. In contrast, Fe/ZSM-5(Albemarle) showed promising reduction performance and strong inhibiting ability on the negative impact of excessive O\textsubscript{2} in the ICFB reactor. Using Fe/ZSM-5(Albemarle), at the same gas velocity in the annulus of the ICFB reactor and the fluidized bed reactor, and HC:NO=2, the NO\textsubscript{x} conversion in the ICFB reactor with the flue gas
containing 4% O₂ was higher than in the fluidized bed with the flue gas containing 1% O₂ if \( U_D = 1.05 \) m/s was used in the ICFB reactor.
Chapter 6
Conclusions and Recommendations for Future Work

6.1 Conclusions

The objectives of this research were to identify the possible application of the integrated adsorption-reduction process for the selective catalytic reduction of NO\textsubscript{x} with hydrocarbons (HC-SCR) over selected catalysts in an internal circulating fluidized bed. The adsorption and reaction performances of the selected catalysts were investigated in a fixed bed reaction system. Hydrodynamic studies were carried out in a cold model ICFB unit. The concept of the integrated adsorption-reduction process of NO\textsubscript{x} was implemented by means of a hot model ICFB reactor, and the reactor performance was tested under various operating conditions. The following conclusions can be drawn.

6.1.1 Adsorption and reaction performance of Fe/ZSM-5 catalyst

The adsorption performance of Fe/ZSM-5 catalysts tested in this study is closely related to the particle size and the structure of the catalyst support. The fine Fe/ZSM-5(Albemarle) catalyst exhibited highest NO\textsubscript{x} adsorption capacity. The presence of H\textsubscript{2}O in the model flue gas flow had almost no effect on the adsorption capacity of Fe/ZSM-5(Albemarle). In contrast, a negative impact was observed when CO\textsubscript{2} was added into the flue gas, and the addition of H\textsubscript{2}O into a CO\textsubscript{2}-containing flue gas slightly improved the adsorption performance of the Fe/ZSM-5(Albemarle) catalyst.

The catalytic activity of Fe/ZSM-5 was sensitive to the reaction temperature and space velocity. The catalyst deactivated very quickly at temperatures lower than 325°C
because of the deposit of graphitic carbon on the catalyst surface. Among tested catalysts, Fe/ZSM-5 prepared by IMPO method exhibited stable activity at \( T \geq 350^\circ C \) and GHSV=5000 h\(^{-1}\), and the reaction activity of the catalyst is not directly proportional to the adsorption capacity in the conventional HC-SCR process. A HC: NO molar ratio of 2 is recommended with the consideration of both the economic aspect and the reduction efficiency of NO\(_x\).

\( O_2 \) concentration played an important role in the SCR of NO\(_x\) with propylene as the reducing agent. Fe/ZSM-5 exhibited acceptable activity when \( O_2 \) concentration was controlled at relatively low level (\( \leq 1\% \)). H\(_2\)O could slightly enhance the activity of Fe/ZSM-5(Albemarle) in HC-SCR, while CO\(_2\) showed negligible effect. The catalyst could be permanently deactivated by SO\(_2\) in HC-SCR, and only partial catalytic activity could be recovered via calcination at a high temperature.

6.1.2 Hydrodynamic study of the ICFB reactor

In the cold model experiment, both the flat and cylindrical distributors showed relatively narrow window of operating gas velocities, while the conical distributor exhibited flexible and stable operation in a wide range of velocities for both \( U_A \) and \( U_D \). All three types of distributors showed very low gas bypass from the draft tube to the annulus but high gas bypass at the reverse direction. The increase of \( U_D \) could enhance \( R_{AD} \) while \( U_A \) showed less effect on \( R_{AD} \). \( R_{AD} \) and \( R_{DA} \) were sensitive to the change of the effective gap opening between the draft tube and the annulus gas distributor. The solids circulation rate was determined by the combined effect of \( U_A \) and \( U_D \) for the conical and cylindrical gas distributors.

In the ICFB hot model experiment, \( R_{DA} \) increased with the increase of \( U_D \), and \( R_{DA} \) was always higher than \( R_{AD} \) for both Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle) catalysts.
At given $U_A$ and $U_D$, the fine Fe/ZSM-5(Albemarle) gained higher $R_{DA}$ but lower $R_{AD}$ than the coarse Fe/ZSM-5(PUC). The gas bypass ratio of Fe/ZSM-5(PUC) from the annulus to draft tube ($R_{AD}$) reached a maximum value when the draft tube gas velocity ($U_D$) was 0.9~1.0 m/s in this study.

The difference in the gas bypass characteristics between the cold model and the hot model unit further shows that the reactor configuration could have a significant impact on the performance of the ICFB reactor.

### 6.1.3 Adsorption and reduction performance of Fe/ZSM-5 in the ICFB reactor

For both Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle) catalysts, NO$_x$ conversion and adsorption ratio decreased with the increase of $U_A$. NO$_x$ conversion increased with the increase of $U_D$. At a high $U_D$, the catalyst operated at low HC:NO molar ratio could reach similar catalytic reactivity as that using a lower $U_D$ but a higher HC:NO ratio. Increasing the HC:NO molar ratio improved the reduction performance in both the fluidized bed and the ICFB reactor. To obtain better catalytic activity, lower O$_2$ concentration is preferred in the fluidized bed.

The performance of Fe/ZSM-5(PUC) in the ICFB reactor was not as good as exhibited in the fixed bed experiment. In contrast, Fe/ZSM-5(Albemarle) showed promising reduction performance and great ability to inhibit the negative impact of excessive O$_2$ in the ICFB reactor. Using Fe/ZSM-5(Albemarle) catalyst, at the same gas velocity in the annulus of the ICFB reactor and the fluidized bed reactor, the NO$_x$ conversion in the ICFB reactor with the flue gas containing 4% O$_2$ was higher than that in the fluidized bed with the flue gas containing 1% O$_2$ if $U_D=1.05$ m/s was used in the ICFB reactor. However, the adsorption
performance should be improved in order to further improve the catalytic activity of Fe/ZSM-5(Albemarle) catalyst.

Overall, this study shows that such an ICFB reactor exhibited the ability to overcome the negative impact of excessive O$_2$ in the flue gas using Fe/ZSM-5(Albemarle) as the deNO$_x$ catalyst.

6.2 Recommendations for future work

Due to the complexity of HC-SCR process and the variation of the combustion flue gases, further study should be undertaken in the following aspects:

1. Although Fe/ZSM-5(Albemarle) catalyst showed acceptable catalytic activity in HC-SCR, its adsorption capacity is still not satisfactory according to the result from the hot model ICFB experiment. The impregnation of other metals, such as Ba, could improve the adsorption performance of Fe/ZSM-5(Albemarle). In addition, the catalytic activity of Fe/ZSM-5(Albemarle) was severely inhibited by SO$_2$. Therefore, new catalysts with good tolerance to SO$_2$ and hydrothermal stability need to be developed.

2. Other hydrocarbons, such as propane and i-butane, should be studied as reducing agents to compare their NO$_x$ reduction performance with propylene.

3. More detailed investigation on the effect of H$_2$O, SO$_2$, CO$_2$ and the Fe loading on the catalyst performance should be conducted in the fixed bed experiment.

4. An in-situ gas chromatograph (GC) is needed for the measurement of the hydrocarbon, CO$_2$ and N$_2$O concentrations in order to evaluate the HC conversion more precisely and to monitor the conversion of NO$_x$ to N$_2$O.
5. To minimize the experimental error, rotameters used in the fixed bed experiment should be replaced by mass flow meters for the better control of gas flow rates.

6. The solids circulation rate should be measured in the cold model unit using the annulus gas distributor with the same configuration as in the hot model unit and Fe/ZSM-5(Albemarle) or similar bed materials. The attrition of the catalyst should be examined as well.

7. Effect of H₂O, SO₂ and CO₂ on the reduction performance of Fe/ZSM-5(Albemarle) catalyst should be investigated in the hot model ICFB reactor.

8. The time-on-stream experiment should be performed using the real flue gases from a natural gas burner or a gasoline or diesel engine to evaluate the performance of the ICFB reactor.

9. As discussed previously, the ICFB reactor performance was limited by the catalyst adsorption capacity, because the overall NOₓ conversion increased with decreasing gas velocity in the annulus. To promote the adsorption performance of the catalyst, a configuration with larger annulus cross-sectional area should be considered to decrease the annulus gas velocity (or increase the residence time) while keeping the annulus gas flux at a specific amount. For the same reason, the effect of the catalyst loading in the reactor should be investigated as well.

10. The gas bypass from the annulus to draft tube should be more flexible in order to control the O₂ concentration in the draft tube to a desired level. In light of this, other types of gas distributors and/or the relative position between the draft tube and gas nozzle should be investigated, and small diameter gas nozzles should be used to investigate the gas bypass from the draft tube to annulus, in order to minimize the bypass of the reductant gas to the annulus.
11. Temperature programmed desorption (TPD), in-situ electron paramagnetic resonance (EPR), in-situ Fourier transform infrared spectroscopy (FT-IR) or other methods should be performed to elucidate the nature of NO\textsubscript{x} adsorption and reduction over Fe/ZSM-5(Albemarle) catalyst.

12. Based on the result from the cold model experiment and the reaction kinetics from fixed bed tests, a mathematical model of the ICFB reactor needs to be developed for the prediction of gas and solids flow structure in the ICFB reactor and the reactor performance for NO\textsubscript{x} reduction.
References


Captain, D. K.; Amiridis, M. D. (1999). In situ FTIR studies of the selective catalytic reduction of NO by C\textsubscript{3}H\textsubscript{6} over Pt/Al\textsubscript{2}O\textsubscript{3}. J. Catal., 184(2), 377-389.


Epling, W. S.; Campbell, G. C.; Parks, J. E. (2003). The effects of CO\textsubscript{2} and H\textsubscript{2}O on the NO\textsubscript{x} destruction performance of a model NO\textsubscript{x} storage/reduction catalyst. Catal. Lett., 90, 45-56.


References


References


References


References

Schmitz, P.J.; Baird, R.J. (2002). NO and NO\textsubscript{2} adsorption on barium oxide: Model study of the trapping stage of NO\textsubscript{x} conversion via lean NO\textsubscript{x} traps. J. Phys. Chem. B, 106, 4172-4180.


References


## Appendix A

### Summary of Previous Work

Table A.1 HC-SCR catalysts supported by zeolites

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Active site</th>
<th>Support</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/ZSM-5</td>
<td>Cu^{2+}</td>
<td>Na/ZSM-5</td>
<td>Iwamoto et al. (1990)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zelenka et al. (1996)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saaid et al. (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ohman et al. (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Garcia-Cortes et al. (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Park et al. (2000)</td>
</tr>
<tr>
<td>Cu/Beta</td>
<td>Cu^{2+}</td>
<td>Beta-Zeolite</td>
<td>Corma et al. (1997)</td>
</tr>
<tr>
<td>Fe/ZSM-5</td>
<td>Fe^{2+}</td>
<td>Na/ZSM-5</td>
<td>Hall et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na/ZSM-5</td>
<td>Garcia-Cortes et al. (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na/ZSM-5</td>
<td>Chen et al. (2000b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na/ZSM-5</td>
<td>Joyner et al. (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H/ZSM-5</td>
<td>Lee et al. (1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H/ZSM-5</td>
<td>Joyner et al. (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na/ZSM-5</td>
<td>Lombardo et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na/ZSM-5</td>
<td>Gao et al. (2001)</td>
</tr>
<tr>
<td>Fe/Beta</td>
<td>Fe^{2+}</td>
<td>NH_{4}/Beta-Zeolite</td>
<td>Chen et al. (2000b)</td>
</tr>
<tr>
<td>Fe/FER</td>
<td>Fe^{2+}</td>
<td>Ferrierite</td>
<td></td>
</tr>
<tr>
<td>Fe/MOR</td>
<td>Fe^{2+}</td>
<td>Mordenite</td>
<td></td>
</tr>
<tr>
<td>Fe/Y</td>
<td>Fe^{2+}</td>
<td>Y-Zeolite</td>
<td></td>
</tr>
<tr>
<td>Pt-Fe/ZSM-5</td>
<td>Fe^{2+}, Pt^{2+}</td>
<td>H/ZSM-5</td>
<td>Kogel et al. (1998)</td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td>Co^{2+}</td>
<td>H/ZSM-5</td>
<td>Wang et al. (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Park et al. (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kaucky et al. (2000)</td>
</tr>
<tr>
<td>Co/Beta</td>
<td>Co^{2+}</td>
<td>Beta zeolite</td>
<td>Ohtsuka et al (1997)</td>
</tr>
<tr>
<td>Co/FER</td>
<td>Co^{2+}</td>
<td>Ferrierite</td>
<td>Li et al. (1994a)</td>
</tr>
<tr>
<td>Pt/ZSM-5</td>
<td>Pt^{2+}</td>
<td>Na/ZSM-5</td>
<td>Xin et al (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cho et al. (1995)</td>
</tr>
<tr>
<td>Pt/Y</td>
<td>Pt^{2+}</td>
<td>Y-Zeolite</td>
<td>Amiridis et al (1997)</td>
</tr>
<tr>
<td>Pt/Beta</td>
<td>Pt^{2+}</td>
<td>Beta-Zeolite</td>
<td>Garcia-Cortes et al.(2003)</td>
</tr>
<tr>
<td>Pd/ZSM-5</td>
<td>Pd^{2+}</td>
<td>H/ZSM-5</td>
<td>Kikuchi et al. (2000)</td>
</tr>
<tr>
<td>Co-Pd/ZSM-5</td>
<td>Co^{2+}, Pd^{2+}</td>
<td>H/ZSM-5</td>
<td>Ogura et al. (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bustamante et al. (2002)</td>
</tr>
</tbody>
</table>
### Appendix A: Summary of Previous Work

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Active site</th>
<th>Support</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga/ZSM-5</td>
<td>Ga$^{3+}$</td>
<td>H/ZSM-5</td>
<td>Kikuchi et al. (1996)</td>
</tr>
<tr>
<td>In/ZSM-5</td>
<td>In$^{3+}$</td>
<td>H/ZSM-5</td>
<td>Berndt et al. (2003)</td>
</tr>
<tr>
<td>Ce-In/ZSM-5</td>
<td>Ce$^{3+}$, In$^{3+}$</td>
<td>H/ZSM-5</td>
<td>Berndt et al. (2003)</td>
</tr>
<tr>
<td>Ag/ZSM-5</td>
<td>Ag$^{+}$</td>
<td>H/ZSM-5</td>
<td>Shi et al. (2002)</td>
</tr>
<tr>
<td>Cu/SUZ-4</td>
<td>Cu$^{2+}$</td>
<td>K/SUZ-4</td>
<td>Cho et al. (2003)</td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>Ni$^{2+}$</td>
<td>Na/ZSM-5</td>
<td>Mihaylov et al. (2004)</td>
</tr>
<tr>
<td>Ni/MCM-22</td>
<td>Ni$^{2+}$</td>
<td>Na/MCM-22</td>
<td>Mosqueda-Jimenez et al. (2003)</td>
</tr>
<tr>
<td>Ni/MOR</td>
<td>Ni$^{2+}$</td>
<td>Na/Mordenite</td>
<td></td>
</tr>
<tr>
<td>Ni/Y</td>
<td>Ni$^{2+}$</td>
<td>Na/Y</td>
<td></td>
</tr>
</tbody>
</table>

### Table A.2 HC-SCR catalysts supported by non-zeolites (Metal oxides)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Active site</th>
<th>Support</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/Al$_2$O$_3$</td>
<td>Cu$^{2+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td>Garcia-Cortes et al. (2000)</td>
</tr>
<tr>
<td>Pt/Al$_2$O$_3$</td>
<td>Pt$^{2+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td>Burch et al. (1998)</td>
</tr>
<tr>
<td>Co/Al$_2$O$_3$</td>
<td>Co$^{2+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td>Garcia-Cortes et al. (2000)</td>
</tr>
<tr>
<td>Ag/Al$_2$O$_3$</td>
<td>Ag$^{+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td>Jen (1998)</td>
</tr>
<tr>
<td>Rh-Ag/Al$_2$O$_3$</td>
<td>Rh$^{3+}$, Ag$^{+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td>Shimizu et al. (2000)</td>
</tr>
<tr>
<td>Co/ZrO$_2$</td>
<td>Co$^{2+}$</td>
<td>ZrO$_2$</td>
<td>Lick et al. (2003a)</td>
</tr>
<tr>
<td>Pt/SiO$_2$</td>
<td>Pt$^{2+}$</td>
<td>SiO$_2$</td>
<td>Captain et al. (1998)</td>
</tr>
<tr>
<td>Co/Al$_2$O$_3$</td>
<td>Co$^{2+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td>Liotta et al. (2003)</td>
</tr>
<tr>
<td>Pd/Al$_2$O$_3$</td>
<td>Pd$^{2+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td>Tonetto et al. (2003)</td>
</tr>
<tr>
<td>Pd-Mo/Al$_2$O$_3$</td>
<td>Pd$^{3+}$, Mo$^{5+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td></td>
</tr>
<tr>
<td>Au/Al$_2$O$_3$</td>
<td>Au$^{3+}$</td>
<td>γ-Al$_2$O$_3$</td>
<td>Ueda et al. (1997)</td>
</tr>
</tbody>
</table>
### Table A.3 Specifications of some typical HC-SCR catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Metal Source</th>
<th>Metal Loading (wt%)</th>
<th>Loading Method</th>
<th>Specifications</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/ZSM-5</td>
<td>CoCl₂</td>
<td>2.3</td>
<td>WIE</td>
<td>Si/Al=14.0, Co/Al=0.44</td>
<td>Wang et al. (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>WIE+IMP</td>
<td>Si/Al=14.0, Co/Al=1.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>SSI</td>
<td>Si/Al=14.0, Co/Al=0.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6</td>
<td>SUB</td>
<td>Si/Al=14.0, Co/Al=1.13</td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5</td>
<td>FeCl₃</td>
<td>-</td>
<td>SUB</td>
<td>Si/Al=23, Fe/Al=1</td>
<td>Chen et al. (1998a)</td>
</tr>
<tr>
<td></td>
<td>FeSO₄·7H₂O</td>
<td>IMP</td>
<td>Si/Al=14.2, Na/Al=0.49, Fe/Al=0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FeC₄O₄·2H₂O</td>
<td>IMP</td>
<td>Si/Al=14.2, Na/Al=0.42, Fe/Al=0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FeSO₄</td>
<td>2.9</td>
<td>WIE</td>
<td></td>
<td>Kameoka et al. (2001)</td>
</tr>
<tr>
<td>Rh/Al₂O₃</td>
<td>RhCl₃·3H₂O</td>
<td>1.86</td>
<td>IMP</td>
<td>Sₜₐₜ=182m²/g</td>
<td>Efthimiadis et al. (2001)</td>
</tr>
<tr>
<td>Cu/Beta</td>
<td>Cu(CH₃COO)₂·H₂O</td>
<td>9.2(CuO)</td>
<td>WIE</td>
<td>Si/Al=11.9, Cu/Al=0.97</td>
<td>Corma et al. (1997)</td>
</tr>
<tr>
<td>Pt/Y</td>
<td>Pt(NH₃)₄(OH)₂</td>
<td>1.2</td>
<td>IMP</td>
<td></td>
<td>Amiridis et al. (1997)</td>
</tr>
<tr>
<td>Co-Pd/ZSM-5</td>
<td>Pt(NH₃)₄Cl₂</td>
<td>0.4</td>
<td>WIE+IMP</td>
<td>Si/Al=35.0, Pd/Al=0.03, Co/Al=0.45</td>
<td>Ogura et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Co(CH₃COO)₂</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga/ZSM-5</td>
<td>Ga(NO₃)₃</td>
<td>1.20</td>
<td>WIE</td>
<td></td>
<td>Tabata et al. (1995)</td>
</tr>
<tr>
<td>In/ZSM-5</td>
<td>In(NO₃)₃</td>
<td>1.40</td>
<td>WIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce-In/ZSM-5</td>
<td>In(NO₃)₃, Ce(OH)₃, Ce(NO₃)₃</td>
<td>8:13</td>
<td>WIE+SSIE</td>
<td>Sₜₐₜ=260m²/g</td>
<td>Berndt et al. (2003)</td>
</tr>
<tr>
<td>Ag/Al₂O₅</td>
<td>AgNO₃</td>
<td>2</td>
<td>IMP</td>
<td>Sₜₐₜ=226m²/g</td>
<td>Jen (1998)</td>
</tr>
<tr>
<td>Ag/Al₂O₅</td>
<td>AgNO₃</td>
<td>2</td>
<td>IMP</td>
<td>Sₜₐₜ=189m²/g</td>
<td>Satokawa et al. (2001)</td>
</tr>
<tr>
<td>Rh-Ag/Al₂O₃</td>
<td>RhCl₃·3H₂O, AgNO₃</td>
<td>0.05</td>
<td>IMP</td>
<td>Sₜₐₜ=161m²/g</td>
<td>Sato et al. (2003)</td>
</tr>
<tr>
<td>Pd/ZSM-5</td>
<td>Pd(CH₃COO)₂</td>
<td>4</td>
<td>WIE</td>
<td></td>
<td>Kikuchi et al. (2000)</td>
</tr>
<tr>
<td>Cu/SUZ-4</td>
<td>Cu(CH₃COO)₂</td>
<td>1.9-5.5</td>
<td>WIE</td>
<td></td>
<td>Subbiah et al. (2003)</td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>Ni(NO₃)₂·6H₂O</td>
<td>2.0</td>
<td>WIE</td>
<td>Si/Al=16.4, Ni/Al=0.4, Na/Al=0.3</td>
<td>Mosqueda-Jimenez et al. (2003)</td>
</tr>
</tbody>
</table>
### Table A.4 HC-SCR with methane as reducing agent

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO (ppm)</th>
<th>O₂ (%)</th>
<th>H₂O (%)</th>
<th>SO₂ (ppm)</th>
<th>CH₄ (ppm)</th>
<th>CH₄ /NO</th>
<th>GHSV (h⁻¹)</th>
<th>T (°C)</th>
<th>NO Conversion to N₂ (%)</th>
<th>CH₄ Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe/Beta</td>
<td>950(N₂O)</td>
<td>10</td>
<td></td>
<td></td>
<td>500</td>
<td>0.5</td>
<td>60,000</td>
<td>350</td>
<td>100</td>
<td>44</td>
<td>Kameoka et al. (2000)</td>
</tr>
<tr>
<td>Fe/ZSM-5</td>
<td>950(N₂O)</td>
<td>10</td>
<td></td>
<td></td>
<td>500</td>
<td>0.5</td>
<td>60,000</td>
<td>400</td>
<td>100</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Pd-Co/ZSM-5</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td></td>
<td>2000</td>
<td>20</td>
<td>100ml/min (0.1g Cat.)</td>
<td>500</td>
<td>60</td>
<td></td>
<td>Ogura et al. (2002)</td>
</tr>
<tr>
<td>Ga-ZSM-5</td>
<td>1000</td>
<td>10</td>
<td>9</td>
<td></td>
<td>1000</td>
<td>1</td>
<td>15,000</td>
<td>500</td>
<td>75</td>
<td>40</td>
<td>Tabata et al. (1995)</td>
</tr>
<tr>
<td>In/ZSM-5</td>
<td>1000</td>
<td>10</td>
<td>9</td>
<td></td>
<td>1000</td>
<td>1</td>
<td>15,000</td>
<td>400</td>
<td>60</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Pd-Co/Mordenite</td>
<td>1300</td>
<td>0</td>
<td>0</td>
<td></td>
<td>2000</td>
<td>1.5</td>
<td>30,000</td>
<td>500</td>
<td>100</td>
<td>12</td>
<td>Bustamante et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>8</td>
<td></td>
<td>2700</td>
<td>2.7</td>
<td>30,000</td>
<td>550</td>
<td>60</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Ce-In/ZSM-5</td>
<td>1000</td>
<td>10</td>
<td>5</td>
<td></td>
<td>2000</td>
<td>2</td>
<td>24,000</td>
<td>550</td>
<td>100</td>
<td>-</td>
<td>Berndt et al. (2003)</td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td>2000</td>
<td>10</td>
<td></td>
<td></td>
<td>8000</td>
<td>4</td>
<td>75ml/min (0.25g Cat.)</td>
<td>450</td>
<td>78</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>2000</td>
<td>10</td>
<td></td>
<td></td>
<td>8000</td>
<td>4</td>
<td>75ml/min (0.25g Cat.)</td>
<td>510</td>
<td>78</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Mn/ZSM-5</td>
<td>2000</td>
<td>10</td>
<td></td>
<td></td>
<td>8000</td>
<td>4</td>
<td>75ml/min (0.25g Cat.)</td>
<td>550</td>
<td>65</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Ga/ZSM-5</td>
<td>2000</td>
<td>10</td>
<td></td>
<td></td>
<td>8000</td>
<td>4</td>
<td>75ml/min (0.25g Cat.)</td>
<td>550</td>
<td>30</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>H/ZSM-5</td>
<td>2000</td>
<td>10</td>
<td></td>
<td></td>
<td>8000</td>
<td>4</td>
<td>75ml/min (0.25g Cat.)</td>
<td>550</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Pd/Al₂O₃</td>
<td>735.4</td>
<td>183.9</td>
<td>0.25</td>
<td></td>
<td>1800</td>
<td>0.25</td>
<td>40,000 feed mol/hmol pd</td>
<td>500</td>
<td>86</td>
<td>100</td>
<td>Tonetto et al. (2003)</td>
</tr>
<tr>
<td>Pd-Mo/Al₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Catalyst</td>
<td>NO (ppm)</td>
<td>O₂ (%)</td>
<td>H₂O (%)</td>
<td>SO₂ (ppm)</td>
<td>CH₄ (ppm)</td>
<td>CH₄ /NO</td>
<td>GHSV (h⁻¹)</td>
<td>T (°C)</td>
<td>NO Conversion to N₂ (%)</td>
<td>CH₄ Conversion (%)</td>
<td>Authors</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Pt-Co/ZSM-5</td>
<td>1000</td>
<td>2</td>
<td></td>
<td></td>
<td>3000</td>
<td>3</td>
<td>30,000</td>
<td>500</td>
<td>91</td>
<td></td>
<td>Gutierrez et al. (1998)</td>
</tr>
<tr>
<td>Cu/ZSM-5</td>
<td>2000</td>
<td>2</td>
<td></td>
<td></td>
<td>2000</td>
<td>1</td>
<td>100ml/min</td>
<td>350</td>
<td>10</td>
<td>70</td>
<td>Seyedeyn-Azad et al. (2001)</td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td></td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>6000</td>
<td>6</td>
<td>0.9 gs/ml</td>
<td>550</td>
<td>42</td>
<td></td>
<td>Shimizu et al (2000)</td>
</tr>
<tr>
<td>Fe/MFI</td>
<td>1000+100</td>
<td>4</td>
<td></td>
<td></td>
<td>1000</td>
<td>1</td>
<td>30,000</td>
<td>450</td>
<td>5 (N₂O:100)</td>
<td>90</td>
<td>Kogel et al. (1999)</td>
</tr>
<tr>
<td>Ni/Y</td>
<td>1300 (NO₃)</td>
<td>1.5</td>
<td></td>
<td></td>
<td>1000</td>
<td>0.77</td>
<td>30,000</td>
<td>500</td>
<td>3</td>
<td>-</td>
<td>Mihaylov et al. (2004)</td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>1300 (NO₃)</td>
<td>1.5</td>
<td></td>
<td></td>
<td>1000</td>
<td>0.77</td>
<td>30,000</td>
<td>500</td>
<td>28</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pd/ZSM-5</td>
<td>100(NO₂)</td>
<td>0</td>
<td>10</td>
<td></td>
<td>2000</td>
<td>20</td>
<td>100ml/min</td>
<td>450</td>
<td>98</td>
<td>-</td>
<td>Kikuchi et al. (2000)</td>
</tr>
<tr>
<td>Pd/TiO₂</td>
<td>1780</td>
<td>0.2</td>
<td></td>
<td></td>
<td>0</td>
<td>2.13%</td>
<td>62ml/min</td>
<td>500</td>
<td>98</td>
<td>10</td>
<td>Mitome et al. (1998)</td>
</tr>
</tbody>
</table>
# Table A.5 HC-SCR with propane as reducing agent

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO  (ppm)</th>
<th>O₂  (%)</th>
<th>H₂O (%)</th>
<th>SO₂ (ppm)</th>
<th>C₃H₈ (ppm)</th>
<th>C₃H₈/NO</th>
<th>GHSV (h⁻¹)</th>
<th>T  (°C)</th>
<th>NO Conversion to N₂ (%)</th>
<th>C₃H₈ Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/ZSM-5</td>
<td>1500</td>
<td>3</td>
<td></td>
<td></td>
<td>4500</td>
<td>3</td>
<td>20,000</td>
<td>400</td>
<td>96</td>
<td>-</td>
<td>Park et al. (2000)</td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td>1500</td>
<td>3</td>
<td></td>
<td></td>
<td>4500</td>
<td>3</td>
<td>20,000</td>
<td>550</td>
<td>75</td>
<td>-</td>
<td>Ohtsuka et al. (1997)</td>
</tr>
<tr>
<td>Co/Beta</td>
<td>500</td>
<td>10</td>
<td>9</td>
<td></td>
<td>1000</td>
<td>2</td>
<td>15,000</td>
<td>450</td>
<td>87</td>
<td>99.7</td>
<td></td>
</tr>
<tr>
<td>Cu/Beta</td>
<td>750</td>
<td>2.4</td>
<td></td>
<td></td>
<td>470</td>
<td>0.63</td>
<td></td>
<td>350</td>
<td>80</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>γ-Al₂O₃</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
<td>1000</td>
<td>2</td>
<td>200ml/min</td>
<td>550</td>
<td>80</td>
<td>12 (CO), 62(CO₂)</td>
<td>Burch et al. (1998)</td>
</tr>
<tr>
<td>Sulphated-Al₂O₃</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
<td>1000</td>
<td>2</td>
<td>200ml/min</td>
<td>550</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co/ZrO₂</td>
<td>1500</td>
<td>0.8</td>
<td>0</td>
<td></td>
<td>2000</td>
<td>1.3</td>
<td>15,000</td>
<td>500</td>
<td>60</td>
<td>43</td>
<td>Lick et al. (2003a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>0</td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
<td>500</td>
<td>42</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>8</td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
<td>550</td>
<td>28</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Ce-In/ZSM-5</td>
<td>1000</td>
<td>10</td>
<td>5</td>
<td></td>
<td>2000</td>
<td>2</td>
<td>24,000</td>
<td>550</td>
<td>67</td>
<td>-</td>
<td>Berndt et al. (2003)</td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td>2000</td>
<td>10</td>
<td></td>
<td></td>
<td>2700</td>
<td>1.35</td>
<td>75ml/min(0.25g Cat.)</td>
<td>400</td>
<td>62</td>
<td>34</td>
<td>Witzel et al. (1994)</td>
</tr>
<tr>
<td>Co/Al₂O₃</td>
<td>1500</td>
<td>0</td>
<td></td>
<td></td>
<td>2000</td>
<td>1.3</td>
<td>8600</td>
<td>692</td>
<td>77</td>
<td>3</td>
<td>Lick et al. (2003b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
<td>527</td>
<td>20</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
<td>527</td>
<td>34</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
<td>527</td>
<td>53</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
<td>527</td>
<td>60</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Cu/Al₂O₃</td>
<td>1000</td>
<td>6.7</td>
<td></td>
<td></td>
<td>6000</td>
<td>6</td>
<td>18,000</td>
<td>400</td>
<td>13</td>
<td>8</td>
<td>Shibata et al. (2002)</td>
</tr>
</tbody>
</table>
### Appendix A: Summary of Previous Work

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO (ppm)</th>
<th>O₂ (%)</th>
<th>H₂O (%)</th>
<th>SO₂ (ppm)</th>
<th>C₃H₈ (ppm)</th>
<th>C₃H₈/NO</th>
<th>GHSV (h⁻¹)</th>
<th>T (⁰C)</th>
<th>NO Conversion to N₂ (%)</th>
<th>C₃H₈ Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>1</td>
<td>500ml/min (0.66g Cat.)</td>
<td>480</td>
<td>21(N₂ Yield), 22 (NO₂ Yield)</td>
<td>100</td>
<td>Angelidis et al. (2002) After 6h in steam</td>
</tr>
<tr>
<td>Co/Beta</td>
<td>150</td>
<td>10</td>
<td>9</td>
<td>0.3</td>
<td>500</td>
<td>3.3</td>
<td>15,000</td>
<td>400</td>
<td>~70</td>
<td></td>
<td>Tabata et al. (1996) During 4000h on stream</td>
</tr>
<tr>
<td>Cu/Beta</td>
<td>750</td>
<td>2.4</td>
<td></td>
<td></td>
<td>470</td>
<td>0.63</td>
<td></td>
<td>350</td>
<td>72</td>
<td></td>
<td>Corma et al. (1997)</td>
</tr>
<tr>
<td>Cu/ZSM-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/Beta</td>
<td>2000</td>
<td>3</td>
<td>10</td>
<td></td>
<td>2700</td>
<td>2.7</td>
<td>280ml/min (0.2g Cat.)</td>
<td>325</td>
<td>67(Yield)</td>
<td>58 (CO yield), 24 (CO₂ yield)</td>
<td>Chen et al. (2000b)</td>
</tr>
<tr>
<td>Fe/ZSM-5</td>
<td>10</td>
<td></td>
<td>0</td>
<td></td>
<td>280ml/min (0.2g Cat.)</td>
<td>325</td>
<td>69(Yield)</td>
<td>62(CO yield), 26(CO₂ yield)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>6000</td>
<td>6</td>
<td>0.12 gs/ml</td>
<td>450</td>
<td>100</td>
<td></td>
<td>Shimizu et al (2000)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>91</td>
<td>9.1</td>
<td>9.1</td>
<td>0</td>
<td>303</td>
<td>3.33</td>
<td>132,000</td>
<td>527</td>
<td>70</td>
<td>58.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>~0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>550</td>
<td>55</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fe/MFI</td>
<td>1000+1000 (N₂O)</td>
<td>4</td>
<td>1000</td>
<td>1</td>
<td>7,500</td>
<td>275</td>
<td>100(N₂O, &gt;450⁰C)</td>
<td>70</td>
<td>87</td>
<td></td>
<td>Koget et al., 1999</td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td>1250</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>3250</td>
<td>2.6</td>
<td>150,000</td>
<td>500</td>
<td>61</td>
<td>53</td>
<td>Martinez-Hernandez and Fuentes (2005)</td>
</tr>
</tbody>
</table>
Table A.6 HC-SCR with propylene as reducing agent

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO (ppm)</th>
<th>O₃ (%)</th>
<th>H₂O (%)</th>
<th>SO₂ (ppm)</th>
<th>C₃H₆ (ppm)</th>
<th>C₃H₆/NO</th>
<th>GHSV (h⁻¹)</th>
<th>T (°C)</th>
<th>NO Conversion to N₂ (%)</th>
<th>C₃H₆ Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/ZSM-5</td>
<td>1500</td>
<td>3</td>
<td></td>
<td></td>
<td>4500</td>
<td>3</td>
<td>20,000</td>
<td>500</td>
<td>98</td>
<td>100</td>
<td>Park et al. (2000)</td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td>1500</td>
<td>3</td>
<td></td>
<td></td>
<td>4500</td>
<td>3</td>
<td>20,000</td>
<td>460</td>
<td>31</td>
<td>61(450°C)</td>
<td>Park et al. (2000)</td>
</tr>
<tr>
<td>Fe/ZSM-5</td>
<td>950(N₂O)</td>
<td>10</td>
<td></td>
<td></td>
<td>500</td>
<td>0.5</td>
<td>60,000</td>
<td>370</td>
<td>100</td>
<td>-</td>
<td>Kameoka et al. (2001)</td>
</tr>
<tr>
<td>Rh/Al₂O₃</td>
<td>80</td>
<td>4</td>
<td></td>
<td></td>
<td>235</td>
<td>6.25</td>
<td>300</td>
<td>300</td>
<td>70</td>
<td>90</td>
<td>Eftimiaei et al. (2001)</td>
</tr>
<tr>
<td>Pt/Y</td>
<td>1850</td>
<td>10</td>
<td>20</td>
<td></td>
<td>300+100</td>
<td>0.22</td>
<td>300</td>
<td>24</td>
<td>-</td>
<td></td>
<td>Amiridis et al. (1997)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>950+520</td>
<td>1.47</td>
<td>500ml/min</td>
<td>500</td>
<td>62</td>
<td>82</td>
<td>Jen (1998)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>9</td>
<td>18</td>
<td>1000</td>
<td>1</td>
<td>30,000</td>
<td>405</td>
<td>53</td>
<td>95</td>
<td>Inui et al. (1997)</td>
</tr>
<tr>
<td>Pt/Beta</td>
<td>1000</td>
<td>5</td>
<td></td>
<td></td>
<td>1500</td>
<td>1.5</td>
<td>15,000</td>
<td>218</td>
<td>91(N₂ Selectivity: 32%)</td>
<td>1</td>
<td>Garcia-Cortes et al. (2003)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
<td>500+500</td>
<td>1</td>
<td>500ml/min(0.6</td>
<td>480</td>
<td>24(N₂ Yield), 42(NO₂ Yield)</td>
<td>100, 59(C₃H₆)</td>
<td>Angelidis et al. (2002)</td>
</tr>
</tbody>
</table>
## Flue Gas Composition

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO (ppm)</th>
<th>O₂ (%)</th>
<th>H₂O (%)</th>
<th>SO₂ (ppm)</th>
<th>C₃H₆ (ppm)</th>
<th>C₃H₆/NO</th>
<th>GHSV (h⁻¹)</th>
<th>T (°C)</th>
<th>NO Conversion to N₂ (%)</th>
<th>authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/ZSM-5</td>
<td>2000</td>
<td>2</td>
<td></td>
<td></td>
<td>2000</td>
<td>1</td>
<td>100ml/min (1.0 g Cat.)</td>
<td>350</td>
<td>85</td>
<td>100 Seyedeyn-Azad et al. (2001)</td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>50</td>
<td>100 Seyedeyn-Azad et al. (2001)</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>1000</td>
<td>5</td>
<td>0</td>
<td></td>
<td>1000</td>
<td>1</td>
<td></td>
<td>300</td>
<td>45</td>
<td>15 Toubeli et al. (2000)</td>
</tr>
<tr>
<td>Sulfated Pt/Al₂O₃</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>300</td>
<td>1000</td>
<td>1</td>
<td></td>
<td>250</td>
<td>48</td>
<td>93 Toubeli et al. (2000)</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1000</td>
<td>1</td>
<td></td>
<td>267</td>
<td>35</td>
<td>0 Captain et al. (1998)</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>11 Captain et al. (1998)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>33 Captain et al. (1998)</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>2000</td>
<td>5</td>
<td>0</td>
<td></td>
<td>2000</td>
<td>1</td>
<td>1000ml/min (4g Cat.)</td>
<td>285</td>
<td>62</td>
<td>100 Efthimiadis et al. (1998)</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>2000</td>
<td>5</td>
<td>0</td>
<td>200</td>
<td>2000</td>
<td>1</td>
<td></td>
<td>267</td>
<td>53</td>
<td>100 Efthimiadis et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>Efthimiadis et al. (1998)</td>
</tr>
<tr>
<td>Co/Al₂O₃</td>
<td>950</td>
<td>5</td>
<td>1.5</td>
<td>30</td>
<td>1000</td>
<td>1.05</td>
<td>350ml/min (1.25g Cat.)</td>
<td>450</td>
<td>63 (0h)</td>
<td>78 (0h) Yan et al. (1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62 (after 6.5h)</td>
<td>67 (after 6.5h) Yan et al. (1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>80 Yan et al. (1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>1000</td>
<td>1.05</td>
<td>500ml/min (0.5g Cat.)</td>
<td>450</td>
<td>76</td>
<td>54 (to CO₂) 24 (to CO) Yan et al. (1997)</td>
</tr>
<tr>
<td>Catalyst</td>
<td>Flue Gas Composition</td>
<td>Authors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000 1 25,000 450 100</td>
<td>Meunier et al. (2001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/MFI</td>
<td>1000 1 30,000 350 100 95</td>
<td>Kogel et al., 1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au/Al₂O₃</td>
<td>940 0.5 450 70 -</td>
<td>Ueda et al. (1997)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>1000 1 325 75 100</td>
<td>Yentekakis et al. (2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu/MOR</td>
<td>1000 1 15,000 375 65.1</td>
<td>De Lucas et al. (2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu/ZSM-5</td>
<td>1000 1 15,000 375 81.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co/MOR</td>
<td>1000 1 15,000 375 66.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td>1000 1 15,000 375 79.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni/MOR</td>
<td>1000 1 15,000 425 76.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>1000 1 15,000 425 73.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn/MOR</td>
<td>1000 1 15,000 425 65.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn/ZSM-5</td>
<td>1000 1 15,000 425 65.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.7 HC-SCR with iso-C\textsubscript{4}H\textsubscript{10} (iso-butane) as reducing agent

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO (ppm)</th>
<th>O\textsubscript{2} (%)</th>
<th>H\textsubscript{2}O (%)</th>
<th>SO\textsubscript{2} (ppm)</th>
<th>iso-C\textsubscript{4}H\textsubscript{10} (ppm)</th>
<th>GHSV (h\textsuperscript{-1})</th>
<th>T (°C)</th>
<th>NO Conversion to N\textsubscript{2} (%)</th>
<th>iso-C\textsubscript{4}H\textsubscript{10} Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/ZSM-5 (WIE)</td>
<td>2000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>450</td>
<td>88 (N\textsubscript{2} yield)</td>
<td>21 (CO yield) 46 (CO\textsubscript{2} yield)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98 (N\textsubscript{2} yield)</td>
<td>31 (CO yield) 43 (CO\textsubscript{2} yield)</td>
</tr>
<tr>
<td>Co/ZSM-5 (IMP)</td>
<td>2000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>450</td>
<td>80 (N\textsubscript{2} yield)</td>
<td>3 (CO yield) 89 (CO\textsubscript{2} yield)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72 (N\textsubscript{2} yield)</td>
<td>4 (CO yield) 73 (CO\textsubscript{2} yield)</td>
</tr>
<tr>
<td>Co/ZSM-5 (SUB)</td>
<td>2000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>400</td>
<td>99 (N\textsubscript{2} yield)</td>
<td>4 (CO yield) 87 (CO\textsubscript{2} yield)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92 (N\textsubscript{2} yield)</td>
<td>4 (CO yield) 85 (CO\textsubscript{2} yield)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Co/ZSM-5 (SSI)</td>
<td>2000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>400</td>
<td>56 (N\textsubscript{2} yield)</td>
<td>- (CO yield) 59 (CO\textsubscript{2} yield)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64 (N\textsubscript{2} yield)</td>
<td>2 (CO yield) 51 (CO\textsubscript{2} yield)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (WIE)</td>
<td>2000</td>
<td>3</td>
<td>20</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>450</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Hall et al (1998)</td>
</tr>
<tr>
<td>Fe/ZSM-5 (SUB)</td>
<td>2000</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>350</td>
<td>76.6</td>
<td>55 (to CO) 28 (to CO\textsubscript{2})</td>
</tr>
<tr>
<td></td>
<td>Chen et al (1998a)</td>
</tr>
<tr>
<td>Fe/ZSM-5 (WIE)</td>
<td>2000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>350</td>
<td>55</td>
<td>44</td>
</tr>
<tr>
<td>Catalyst</td>
<td>Flue Gas Composition</td>
<td>iso-C₄H₁₀ Conversion (%)</td>
<td>NO Conversion to N₂ (%)</td>
<td>Authors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO (ppm)</td>
<td>O₂ (%)</td>
<td>H₂O (%)</td>
<td>SO₂ (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu/ZSM-5 (WIE)</td>
<td>1000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu/ZSM-5 (IMP)</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (WIE)</td>
<td>400</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (IMP)</td>
<td>350</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (SUB)</td>
<td>400</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (SSI)</td>
<td>400</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/MFI</td>
<td>2000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/BEA</td>
<td>350</td>
<td>77</td>
<td>53 (CO yield), 34 (CO₂ yield)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/FER</td>
<td>370</td>
<td>67</td>
<td>37 (CO yield), 80 (CO₂ yield)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/MOR</td>
<td>400</td>
<td>62</td>
<td>41 (CO yield), 57 (CO₂ yield)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/Y</td>
<td>450</td>
<td>280ml/min (0.2g Cat.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix A: Summary of Previous Work
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO (ppm)</th>
<th>O₂ (%)</th>
<th>H₂O (%)</th>
<th>SO₂ (ppm)</th>
<th>iso-C₄H₁₀ (ppm)</th>
<th>iso-C₄H₁₀/NO</th>
<th>GHSV (h⁻¹)</th>
<th>T (°C)</th>
<th>NO Conversion to N₂ (%)</th>
<th>iso-C₄H₁₀ Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/ZSM-5</td>
<td>2000</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>75 ml/min (0.25 g Cat.)</td>
<td>400</td>
<td>82</td>
<td>100</td>
<td>Witzel et al (1994)</td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>2000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>350</td>
<td>59.1</td>
<td>40 (to CO) 31.9 (to CO₂)</td>
<td></td>
</tr>
<tr>
<td>Mn/ZSM-5</td>
<td>2000</td>
<td>3</td>
<td>150(*)</td>
<td>0</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>350</td>
<td>36</td>
<td>21.5 (to CO) 13.3 (to CO₂)</td>
<td>Decyk et al. (2001)</td>
</tr>
<tr>
<td>Ga/ZSM-5</td>
<td>2000</td>
<td>3</td>
<td>0 (after *)</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>350</td>
<td>43.8</td>
<td>27 (to CO) 20.6 (to CO₂)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/ZSM-5</td>
<td>2000</td>
<td>3</td>
<td>300 (#)</td>
<td>0 (after #)</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>350</td>
<td>24.7</td>
<td>15 (to CO) 9.1 (to CO₂)</td>
<td></td>
</tr>
<tr>
<td>Cu/ZSM-5</td>
<td>2000</td>
<td>3</td>
<td>0 (after #)</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>350</td>
<td>36.5</td>
<td>20.6 (to CO) 17 (to CO₂)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5</td>
<td>2000</td>
<td>3</td>
<td>0 (after #)</td>
<td>2000</td>
<td>1</td>
<td>42,000</td>
<td>350</td>
<td>36.5</td>
<td>20.6 (to CO) 17 (to CO₂)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.8 HC-SCR with other hydrocarbons as reducing agent

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO (ppm)</th>
<th>O₂ (%)</th>
<th>H₂O (%)</th>
<th>SO₂ (ppm)</th>
<th>HC ppm</th>
<th>HC/NO</th>
<th>GHSV (h⁻¹)</th>
<th>T (°C)</th>
<th>NO Conversion to N₂ (%)</th>
<th>HC Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe/ZSM-5</td>
<td>420</td>
<td>9</td>
<td></td>
<td>3.9%Cu-3.5%Sn/ZrO₂</td>
<td>n-C₁₀H₂₂, 300</td>
<td>0.3</td>
<td>70,000</td>
<td>420</td>
<td>73</td>
<td>380</td>
<td>Delahay et al. (1998)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>0</td>
<td>300</td>
<td>28</td>
<td>Ag-Rh/Al₂O₃</td>
<td>n-C₁₀H₂₂, 333</td>
<td>0.333</td>
<td>0.05gs/ml</td>
<td>300</td>
<td>28</td>
<td>52</td>
<td>Sato et al. (2003)</td>
</tr>
<tr>
<td>Rh-Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>20</td>
<td>n-C₁₀H₂₂, 333</td>
<td>n-C₁₀H₂₂, 300</td>
<td>0.3</td>
<td>70,000</td>
<td>42</td>
<td>Shibata et al. (2002)</td>
</tr>
<tr>
<td>Cu/ZSM-5</td>
<td>1000</td>
<td>6.7</td>
<td></td>
<td></td>
<td>C₂H₆, 6000(C)</td>
<td>6</td>
<td>18,000</td>
<td>500</td>
<td>3</td>
<td>16</td>
<td>Shimizu et al. (2000)</td>
</tr>
<tr>
<td>Cu/Al₂O₃</td>
<td>1000</td>
<td>6.7</td>
<td></td>
<td></td>
<td>C₆H₁₄, 6000(C)</td>
<td>6</td>
<td>18,000</td>
<td>375</td>
<td>25</td>
<td>58</td>
<td>Shibata t al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>n-butane, 6000(C)</td>
<td>0.12 gs/ml</td>
<td>450</td>
<td>100</td>
<td></td>
<td></td>
<td>Shimizu et al. (2000)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>n-C₆H₁₄, 6000(C)</td>
<td>0.12 gs/ml</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td>Shibata t al. (2002)</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>n-C₆H₁₄, 6000(C)</td>
<td>0.12 gs/ml</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td>Shibata t al. (2002)</td>
</tr>
<tr>
<td>Co/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>n-C₆H₁₄, 6000(C)</td>
<td>0.12 gs/ml</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td>Shibata t al. (2002)</td>
</tr>
<tr>
<td>Ni/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>n-C₆H₁₄, 6000(C)</td>
<td>0.12 gs/ml</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td>Shibata t al. (2002)</td>
</tr>
<tr>
<td>Ga/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>n-C₆H₁₄, 6000(C)</td>
<td>0.12 gs/ml</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td>Shibata t al. (2002)</td>
</tr>
<tr>
<td>Sn/Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>n-C₆H₁₄, 6000(C)</td>
<td>0.12 gs/ml</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td>Shibata t al. (2002)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1000</td>
<td>10</td>
<td>2</td>
<td></td>
<td>n-C₆H₁₄, 6000(C)</td>
<td>0.12 gs/ml</td>
<td>350</td>
<td>100</td>
<td></td>
<td></td>
<td>Shibata t al. (2002)</td>
</tr>
<tr>
<td>Catalyst</td>
<td>Flue Gas Composition</td>
<td>NO Conversion to N₂ (%)</td>
<td>HC Conversion (%)</td>
<td>Authors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co/ZSM-5</td>
<td>NO (ppm) 1000 O₂ (%) 10</td>
<td>HC (ppm) n-C₈H₁₈, 1000</td>
<td>HC/NO 2</td>
<td>GHSV (h⁻¹) 30,000 T (°C) 510 NO (ppm) 58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>NO (ppm) 500 O₂ (%) 5</td>
<td>HC (ppm) n-C₈H₁₈, 1000</td>
<td>HC/NO 2</td>
<td>GHSV (h⁻¹) 30,000 T (°C) 210 NO (ppm) 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3%Fe/SUZ-4</td>
<td>NO (ppm) 230 O₂ (%) 7</td>
<td>HC (ppm) C₂H₄, 1200</td>
<td>HC/NO 5.2</td>
<td>GHSV (h⁻¹) 30,000 T (°C) 500 NO (ppm) 5(NOₓ), 72(NO) 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9%Ag/SUZ-4</td>
<td>NO (ppm) 230 O₂ (%) 7</td>
<td>HC (ppm) C₂H₄, 1200</td>
<td>HC/NO 5.2</td>
<td>GHSV (h⁻¹) 30,000 T (°C) 550 NO (ppm) 8(NOₓ), 80(NO) 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1%Co/SUZ-4</td>
<td>NO (ppm) 230 O₂ (%) 7</td>
<td>HC (ppm) C₂H₄, 1200</td>
<td>HC/NO 5.2</td>
<td>GHSV (h⁻¹) 30,000 T (°C) 550 NO (ppm) 20(NOₓ), 76(NO) 72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3%Cu/SUZ-4</td>
<td>NO (ppm) 230 O₂ (%) 7</td>
<td>HC (ppm) C₂H₄, 1200</td>
<td>HC/NO 5.2</td>
<td>GHSV (h⁻¹) 30,000 T (°C) 550 NO (ppm) 43(NOₓ), 42(NO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3%Cu/SUZ-4</td>
<td>NO (ppm) 230 O₂ (%) 7</td>
<td>HC (ppm) C₂H₄, 1200</td>
<td>HC/NO 5.2</td>
<td>GHSV (h⁻¹) 30,000 T (°C) 550 NO (ppm) 43(NOₓ), 42(NO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3%Cu/ZSM-5</td>
<td>NO (ppm) 230 O₂ (%) 7</td>
<td>HC (ppm) C₂H₄, 1200</td>
<td>HC/NO 5.2</td>
<td>GHSV (h⁻¹) 30,000 T (°C) 550 NO (ppm) 43(NOₓ), 42(NO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (CVD)</td>
<td>NO (ppm) 1000 O₂ (%) 9</td>
<td>HC (ppm) n-C₁₀H₂₂, 300</td>
<td>HC/NO 0.3</td>
<td>GHSV (h⁻¹) 35,000 T (°C) 400 NO (ppm) 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (IMPO)</td>
<td>NO (ppm) 1000 O₂ (%) 9</td>
<td>HC (ppm) n-C₁₀H₂₂, 300</td>
<td>HC/NO 0.3</td>
<td>GHSV (h⁻¹) 35,000 T (°C) 400 NO (ppm) 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (IMPA)</td>
<td>NO (ppm) 1000 O₂ (%) 9</td>
<td>HC (ppm) n-C₁₀H₂₂, 300</td>
<td>HC/NO 0.3</td>
<td>GHSV (h⁻¹) 35,000 T (°C) 400 NO (ppm) 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.9 HC-SCR with oxygenated hydrocarbons as reducing agent

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Flue Gas Composition</th>
<th>O.H.</th>
<th>O.H./NO</th>
<th>GHSV (h⁻¹)</th>
<th>T (°C)</th>
<th>NO Conversion (%)</th>
<th>O.H. Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO (ppm)</td>
<td>O₂ (%)</td>
<td>H₂O (%)</td>
<td>SO₂ (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-Al₂O₃</td>
<td>80</td>
<td>4</td>
<td>235</td>
<td>CH₃OH, 1500</td>
<td>18.75</td>
<td>400</td>
<td>80</td>
<td>60 Efthimiadis et al. (2001)</td>
</tr>
<tr>
<td>γ-Al₂O₃</td>
<td>500</td>
<td>5</td>
<td>CH₃OH, 3000</td>
<td>6</td>
<td>12,000</td>
<td>350</td>
<td>100</td>
<td>16(CO₂), 40(CO), 25(DME) Burch et al. (1998)</td>
</tr>
<tr>
<td>Sulphated-Al₂O₃</td>
<td>500</td>
<td>5</td>
<td>CH₃OH, 3000</td>
<td>6</td>
<td>12,000</td>
<td>350-400</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Y - Al₂O₃</td>
<td>1700</td>
<td>3</td>
<td>CH₃OH, 3400</td>
<td>2</td>
<td>25,500</td>
<td>485</td>
<td>68</td>
<td>82 Masters et al. (1999b)</td>
</tr>
<tr>
<td>5%MoO₃- Al₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%V₂O₅- Al₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd/Mordenite</td>
<td>91</td>
<td>9.1</td>
<td>9.1</td>
<td>Ethanol, 500</td>
<td>5.5</td>
<td>350</td>
<td>25</td>
<td>100 Uchida et al. (1995)</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td></td>
<td></td>
<td>Acetaldehyde, 500</td>
<td>5.5</td>
<td>350</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>9.36</td>
<td></td>
<td></td>
<td>Acetic acid, 500</td>
<td>5.5</td>
<td>350</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acetic acid, 1000</td>
<td>11</td>
<td>350</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acetic acid, 2000</td>
<td>22</td>
<td>350</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>V₂O₅-γ-Al₂O₃</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>Acetic Acid, 500</td>
<td>1</td>
<td>31,932</td>
<td>52.2</td>
<td>96.1 Lee (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>Acetic Acid, 2250</td>
<td>4.5</td>
<td>320</td>
<td>28.4</td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>Acetic Acid, 2250</td>
<td>4.5</td>
<td>320</td>
<td>20.4</td>
<td>96.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>Acetic Acid, 2250</td>
<td>4.5</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>5</td>
<td>Acetic Acid, 500</td>
<td>1</td>
<td>31,932</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>10</td>
<td>Acetic Acid, 500</td>
<td>1</td>
<td>31,932</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>15</td>
<td>Acetic Acid, 500</td>
<td>1</td>
<td>31,932</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table A.10 NSR with reducing agent

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Exhaust Gas Composition</th>
<th>GHSV (h⁻¹)</th>
<th>T (°C)</th>
<th>Sorption Efficiency (%)</th>
<th>Reduction Efficiency (%)</th>
<th>Overall NO Conversion (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt-Ba/Al₂O₃</td>
<td>250ppm NO, 150ppm CO, 250ppm NO, 150ppm CO, 0%o₂, 1500ppm H₂, N₂</td>
<td>25,000</td>
<td></td>
<td>175 80.2</td>
<td>90.4</td>
<td>72.6</td>
<td>Epling et al. (2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 91.0</td>
<td>94.2</td>
<td>85.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225 95.6</td>
<td>96.1</td>
<td>91.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 85.1</td>
<td>96.0</td>
<td>81.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>278 88.9</td>
<td>96.1</td>
<td>85.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>303 91.6</td>
<td>95.3</td>
<td>87.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>330 92.9</td>
<td>92.7</td>
<td>86.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>360 92.3</td>
<td>88.0</td>
<td>81.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250ppm NO, 150ppm CO, 250ppm NO, 150ppm CO, 0%o₂, 1500ppm H₂, N₂</td>
<td>25,000</td>
<td></td>
<td>175 54.5</td>
<td>85.3</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 69.6</td>
<td>90.4</td>
<td>62.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225 77.9</td>
<td>93.6</td>
<td>72.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 63.0</td>
<td>93.1</td>
<td>58.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>278 66.3</td>
<td>92.4</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>303 66.2</td>
<td>90.4</td>
<td>59.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>330 65.3</td>
<td>87.3</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>360 61.9</td>
<td>82.1</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>1200ppm NO, 800ppm C₃H₆, 8%O₂, He</td>
<td>95,000</td>
<td></td>
<td>300-500</td>
<td></td>
<td>25-36%</td>
<td>Shinjoh et al. (1998)</td>
</tr>
<tr>
<td>Pt-Ba/Al₂O₃</td>
<td>1200ppm NO, 800ppm C₃H₆, 8%O₂, He</td>
<td>95,000</td>
<td></td>
<td>300-500</td>
<td></td>
<td>44-55%</td>
<td>lidtii et al. (2001)</td>
</tr>
<tr>
<td>Pt-Ba/Al₂O₃</td>
<td>1000 ppm NO, 3%O₂, He</td>
<td>200ppm H₂, He</td>
<td>60s storage period: NO adsorbed: 0.74x10⁻⁵, NO desorbed:0.91x10²mol/g Cat, 350°C</td>
<td>120s storage period: NO adsorbed: 1.5x10⁻⁴, NO desorbed:1.88x10⁻⁴mol/g Cat, 350°C</td>
<td>350°C</td>
<td>25-36%</td>
<td>Lietti et al. (2001)</td>
</tr>
<tr>
<td>Pt-Rh/Al₂O₃</td>
<td>300-1100ppm NO, 900 ppm C₃H₆, 8% O₂, 400°C</td>
<td>300-1100ppm NO, 900 ppm C₃H₆, 8% O₂, 400°C</td>
<td>60s storage period: NO adsorbed: 0.74x10⁻⁵, NO desorbed:0.91x10²mol/g Cat, 350°C</td>
<td>120s storage period: NO adsorbed: 1.5x10⁻⁴, NO desorbed:1.88x10⁻⁴mol/g Cat, 350°C</td>
<td>350°C</td>
<td>44-55%</td>
<td>Fridell et al. (1999)</td>
</tr>
<tr>
<td>Pt-Rh/BaO/Al₂O₃</td>
<td>300-1100ppm NO, 900 ppm C₃H₆, 8% O₂, 400°C</td>
<td>300-1100ppm NO, 900 ppm C₃H₆, 8% O₂, 400°C</td>
<td>60s storage period: NO adsorbed: 0.74x10⁻⁵, NO desorbed:0.91x10²mol/g Cat, 350°C</td>
<td>120s storage period: NO adsorbed: 1.5x10⁻⁴, NO desorbed:1.88x10⁻⁴mol/g Cat, 350°C</td>
<td>350°C</td>
<td>25-36%</td>
<td>Lietti et al. (2001)</td>
</tr>
</tbody>
</table>
Appendix B
Calibration

B.1 Gas flow meters

Calibration curves for gas flow meters used in the fixed bed reaction system are shown in Figures G.1 to G.5.

![Calibration Curve of FL-1473G Rotameter (0.6% NO + N<sub>2</sub>)](image)

**Figure B.1** Calibration curve of FL-1473G rotameter (0.6% NO + N<sub>2</sub>)
Appendix B: Calibration

**Figure B.2** Calibration curve of FL-1473G rotameter (50% O₂ + N₂)

```
Rotameter model: FL-1473G
Medium: 50%O₂+N₂
F=0.03525+0.68525X-0.00183X²+2.16718*10⁻³X³-8.73667*10⁻⁷X⁴
R²=0.99998
```

**Figure B.3** Calibration curve of FL-1472S rotameter (1.2% Propylene + N₂)

```
Rotameter model: FL-1472S
Medium: 1.2% Propylene + N₂
F=1.34571+0.12608X+0.00968X²+1.44995*10⁻³X³+4.19638*10⁻⁷X⁴
R²=0.99943
```
Appendix B: Calibration

**Figure B.4** Calibration curve of FL-1473S rotameter ($N_2$)

Rotameter model: FL-1473S  
Medium: $N_2$  
$F=1.78891+2.61039X+0.01409X^2+2.33706\times10^{-1}X^3-1.23459\times10^{-1}X^4$  
$R^2=0.99919$

**Figure B.5** Calibration curve of FL-1476G rotameter ($N_2$)

Rotameter model: FL-1476G  
Medium: $N_2$  
$F=-43.44405+16.98085X+0.28984X^2-0.00243X^3+7.44717\times10^{-1}X^4$  
$R^2=0.99934$
B.2 Peristaltic water pump

In the fixed bed reaction system, liquid water was pumped into the system by a LKB Microperpex peristaltic pump. The pump was calibrated with the relationship between the pump reading and the water flow rate shown in Figure B.6.

![Calibration curve of peristaltic water pump](image)

**Figure B.6** Calibration curve of peristaltic water pump
B.3 Pressure transducers

Pressure transducers used in the cold model and hot model ICFB systems were calibrated using a U-tube manometer. Relationships between the measured voltage and pressure are shown in Figures B.7 to B.11.

![Figure B.7 Calibration curve of pressure transducer (Channel #1)](image)

Figure B.7 Calibration curve of pressure transducer (Channel #1)
Appendix B: Calibration

Figure B.8 Calibration curve of pressure transducer (Channel #2)

Figure B.9 Calibration curve of pressure transducer (Channel #3)
Figure B.10 Calibration curve of pressure transducer (Channel #4)

Figure B.11 Calibration curve of pressure transducer (Channel #6)
Appendix C

BET Surface Area

Table C.1 BET surface areas for catalysts used in this work

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample weight (g)</th>
<th>Measured surface area (m²)</th>
<th>( S_{\text{BET}} ) (m²/g)</th>
<th>Average ( S_{\text{BET}} ) (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na/ZSM-5 (PUC)</td>
<td>0.19</td>
<td>21.98</td>
<td>115.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>23.96</td>
<td>119.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>23.45</td>
<td>117.25</td>
<td></td>
</tr>
<tr>
<td>Fresh Fe/ZSM-5 (PUC)</td>
<td>0.18</td>
<td>20.03</td>
<td>111.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>18.62</td>
<td>109.53</td>
<td></td>
</tr>
<tr>
<td>Regenerated Fe/ZSM-5 (PUC)</td>
<td>0.19</td>
<td>20.85</td>
<td>109.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>20.60</td>
<td>108.42</td>
<td></td>
</tr>
<tr>
<td>Spent Fe/ZSM-5 (PUC)</td>
<td>0.21</td>
<td>14.63</td>
<td>69.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>14.01</td>
<td>65.26</td>
<td></td>
</tr>
<tr>
<td>Na/ZSM-5 (Crushed PUC)</td>
<td>0.11</td>
<td>21.12</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Fresh Fe/ZSM-5 (Crushed PUC)</td>
<td>0.10</td>
<td>18.42</td>
<td>184.2</td>
<td></td>
</tr>
<tr>
<td>H/ZSM-5 (Albemarle)</td>
<td>0.11</td>
<td>18.77</td>
<td>170.64</td>
<td></td>
</tr>
<tr>
<td>Fresh Fe/ZSM-5 (Albemarle)</td>
<td>0.11</td>
<td>17.79</td>
<td>161.73</td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (Albemarle) aged by 30ppm SO₂ (Calcined after placed overnight)</td>
<td>0.11</td>
<td>11.36</td>
<td>103.27</td>
<td></td>
</tr>
<tr>
<td>Fe/ZSM-5 (Albemarle) aged by 200ppm SO₂ (Calcined immediately)</td>
<td>0.11</td>
<td>14.19</td>
<td>129</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D

Particle Size Distribution

The particle size distribution for the four catalysts used in this study was measured by a Mastersizer 2000 particle size analyzer using the wet dispersion method. Three runs were carried out for each catalyst, with the results shown in Figures D.1 to D.4.

![Particle size distribution](Image)

**Figure D.1** Particle size distribution (Fe/ZSM-5(PUC))
Figure D.2 Particle size distribution (Fe/ZSM-5(crushed PUC))

Figure D.3 Particle size distribution (Fe/ZSM-5(Albemarle))
Figure D.4 Particle size distribution (Fe/FCC(Spent))
Appendix E

Adsorption and Reaction Kinetics of Fe/ZSM-5 (Crushed PUC) Catalyst

To investigate the effect of the particle size on the adsorption and reaction performances of the Fe/ZSM-5 (PUC) catalyst prepared via IMPO method, the parent Na/ZSM-5 (PUC) particles were crushed and sieved to obtain fine particles for the preparation of the Fe/ZSM-5(crusched PUC) catalyst by the IMPO method. The adsorption and reaction performances were investigated and compared with the coarse Fe/ZSM-5(PUC) catalyst thereafter.

E.1 Adsorption performance of Fe/ZSM-5(crusched PUC)

The typical adsorption curves for Fe/ZSM-5(crusched PUC) catalyst using the model flue gas containing 4% O₂ and GHSV=5000 h⁻¹ at 325°C, 350°C and 375°C are shown in Figures E.1 to E.3 respectively.
Appendix E: Adsorption and Reaction Kinetics of Fe/ZSM-5(Crushed PUC) Catalyst

Figure E.1 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(crushed PUC), T=325$^\circ$C)

Figure E.2 Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(crushed PUC), T=350$^\circ$C)
Appendix E: Adsorption and Reaction Kinetics of Fe/ZSM-5(Crushed PUC) Catalyst

Figure E.3 Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(crusched PUC), T=375°C)

It can be seen from Figure E.1 that the adsorption curve had an irregular shape, which was different from the one for the coarse Fe/ZSM-5(PUC) catalyst (see Figure 3.2) where the outlet NO\textsubscript{x} concentration reached the equilibrium concentration very quickly after the breakthrough of the catalyst bed. At a given temperature, the breakthrough point was reached more quickly at higher inlet NO\textsubscript{x}. As the temperature increased, the breakthrough time decreased because more NO\textsubscript{x} was adsorbed at low temperatures (Figures E.2 and E.3). Although the breakthrough time did not increase much (60-115s (T=325°C), 55-90s (T=350°C) and 38-55s (T=375°C)) when compared with Fe/ZSM-5(PUC), the equilibrium NO\textsubscript{x} concentration was not reached until 100-200 seconds later after the breakthrough of the catalyst bed.

The equilibrium adsorption capacity (q\textsubscript{e}) of the catalyst was calculated using equations 3.1 and 3.2. The relationship between q\textsubscript{e} and equilibrium NO\textsubscript{x} concentration (C\textsubscript{0})
Appendix E: Adsorption and Reaction Kinetics of Fe/ZSM-5(Crushed PUC) Catalyst

was well fitted by the Freundlich equation (equation 3.3), as shown in Figure E.4. The obtained Freundlich coefficients $\alpha$ and $\beta$ as a function of the adsorption temperature were also fitted by 2nd order polynomial functions with the results given in Figure E.5.

It is clearly demonstrated in Figure E.4 that the adsorption capacity of the fine Fe/ZSM-5(crushed PUC) catalyst was much higher than the coarse Fe/ZSM-5(PUC). For example, at $T=350^\circ C$ and $C_0=0.4$ g/m$^3$, $q_e$ for the fine Fe/ZSM-5(crushed PUC) is 0.058 mg/g cat., which is 3.6 times of the coarse Fe/ZSM-5(PUC) (0.016 mg/g cat.). Note that the only remarkable difference in the adsorption experiment of the two catalysts was the particle size, with the average particle size of coarse Fe/ZSM-5(PUC) as 1042 $\mu$m, 4.5 times of the fine Fe/ZSM-5(crushed PUC) (234 $\mu$m). It can thus be concluded that the adsorption performance of Fe/ZSM-5 catalyst prepared from Na/ZSM-5 (PUC) is closely related to the particle size, and a fine catalyst is preferred in order to achieve a high adsorption capacity.

![Figure E.4 Fitting of adsorption isotherms of NOx by Freundlich equation (Catalyst: Fe/ZSM-5(crushe PUC))]
Appendix E: Adsorption and Reaction Kinetics of Fe/ZSM-5(Crushed PUC) Catalyst

E.2 Reaction performance of Fe/ZSM-5(crunched PUC)

The time-on-stream experiment was conducted to evaluate the reaction performance of the selective catalytic reduction of NO\textsubscript{x} over the fine Fe/ZSM-5(crunched PUC) catalyst at various temperatures, with the results shown in Figure E.6. The feed gas contained 600ppm NO, 1200ppm HC and 1% O\textsubscript{2}, balanced with N\textsubscript{2}, and the GHSV=5000 h\textsuperscript{-1}.

![Graph showing the relationship between α/β and adsorption temperature.](image)

**Figure E.5** Relationship between α/β and adsorption temperature (Catalyst: Fe/ZSM-5 (crushed PUC))
At $T=275^\circ$C, a peak NO$_x$ conversion of 67.9% was obtained, but the catalytic activity was unstable with time. With the temperature increased to 325$^\circ$C, the NO$_x$ conversion became stable over a longer period of time with a peak NO$_x$ conversion of 61.6% when compared with $T=275^\circ$C. The stable yet even lower catalytic activity (55.6% for $T=350^\circ$C and 51.9% for $T=375^\circ$C) was obtained when $T \geq 350^\circ$C. The influence of reaction temperature on the catalytic activity of both the fine Fe/ZSM-5(crushed PUC) and the coarse Fe/ZSM-5(PUC) is similar with the peak NO$_x$ conversion decreased with the increase in temperature and the catalytic activity remained stable with time at $T \geq 350^\circ$C.

The effect of O$_2$ concentration was also investigated using model flue gas containing 1% and 4% O$_2$ at $T=350^\circ$C and GHSV=5000 h$^{-1}$, with the result shown in Figure E.7. With the inlet O$_2$ concentration increased from 1% to 4%, the NO$_x$ conversion dropped from
55.6% to 42.5%, reflecting the negative impact of higher $O_2$ concentration on the performance of HC-SCR reactions.

![Figure E.7 Effect of inlet $O_2$ concentration on catalytic activity (Catalyst: Fe/ZSM-5(crushed PUC))](image)

Although the fine Fe/ZSM-5(crushed PUC) exhibited higher NO$_x$ adsorption capacity, for unknown reason, however, its catalytic activity was observed to be lower than the coarse Fe/ZSM-5(PUC) at the same operating conditions. The activity of the catalyst in the HC-SCR process is thus not always directly correlated with the adsorption capability of the catalyst.
Appendix F

HC-SCR Performance of FCC and Fe/FCC Catalyst

A spent Fluid Catalytic Cracking (FCC) catalyst was tested for its possible use as the HC-SCR catalyst. The spent FCC was first calcined in air at 500°C for 4 hours, and then impregnated with Fe using the IMPO method. The SCR test results for both spent FCC and Fe/FCC are shown in Figure F.1. Unfortunately, both spent FCC and Fe/FCC showed very poor catalytic activity. In the temperature range of 300 to 375°C, only 5-10% of the NO\textsubscript{x} conversion was achieved.

![Figure F.1 HC-SCR performance of spent FCC and Fe/FCC](image-url)
Appendix G
Some Results from the Fixed Bed Experiment

G.1 Adsorption curves for Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle)

Adsorption curves for the coarse Fe/ZSM-5(PUC) and fine Fe/ZSM-5(Albemarle) catalyst are shown in Figures G.1 to G.5 and G.6 to G.9, respectively, with the model flue gas containing NO + O₂ + N₂ at various temperatures. Figure G.10 shows adsorption curves for Fe/ZSM-5(Albemarle) catalyst with the model flue gas containing NO + 4% O₂ + 10% H₂O + N₂. The effect of the addition of 10% CO₂ into the model flue gas of NO + 4% O₂ + N₂ is shown in Figure G.11. The combined effect of 10% H₂O and 10% CO₂ on the adsorption performance of Fe/ZSM-5(Albemarle) is shown in Figure G.12.

Figure G.1 Adsorption curves based on NOₓ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), T=280°C)
Appendix G: Some Results from the Fixed Bed Experiment

**Figure G.2** Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), T=310$^\circ$C)

![Adsorption curve for NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), T=310$^\circ$C)](image)

**Figure G.3** Adsorption curves based on NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), T=340$^\circ$C)

![Adsorption curve for NO$_x$ concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), T=340$^\circ$C)](image)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.4 Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), T=370°C)

Figure G.5 Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(PUC), T=400°C)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.6 Adsorption curves based on NO_\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=300°C)

Figure G.7 Adsorption curves based on NO_\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=325°C)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.8 Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=350\textdegree C)

Figure G.9 Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=375\textdegree C)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.10 Adsorption curves based on NOx concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=350°C, 10% H2O added)

Figure G.11 Adsorption curves based on NOx concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=350°C, 10% CO2 added)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.12 Adsorption curves based on NO\textsubscript{x} concentrations at the reactor outlet (Catalyst: Fe/ZSM-5(Albemarle), T=350°C, 10% H\textsubscript{2}O + 10% CO\textsubscript{2} added)

G.2 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration from time-on-stream test

Profiles of NO\textsubscript{x} and HC conversions and the outlet CO concentration in the time-on-stream test over Fe/ZSM-5(PUC) and Fe/ZSM-5(Albemarle) catalysts at various temperatures are shown in Figures G.13 to G.16 and G.17 to G.19, respectively.
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.13 Profiles of NO$_x$ and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(PUC), T=275°C, [O$_2$]=1%)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.14 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(PUC), T=275°C, [O\textsubscript{2}]=4%)
Figure G.15 Profiles of NO$_x$ and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(PUC), T=300°C, [O$_2$]=1%)
Figure G.16 Profiles of NO$_x$ and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(PUC), T=325°C, [O$_2$]=1%)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.17 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(Albemarle), T=300\textdegree{}C, [O\textsubscript{2}]=1\%)

Catalyst: Fe/ZSM-5(Albemarle)
Feed gas: 600ppm NO + 1200ppm HC + 1\% O\textsubscript{2} + N\textsubscript{2}
T=300\textdegree{}C, GHSV=5000 h\textsuperscript{-1}
Figure G.18 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(Albemarle), T=325\textdegree{}C, [O\textsubscript{2}]=1%)
Figure G.19 Profiles of NO\textsubscript{x} and HC conversions and outlet CO concentration in time-on-stream test (Catalyst: Fe/ZSM-5(Albemarle), T=375\degree C, [O\textsubscript{2}]=1%)

Appendix G: Some Results from the Fixed Bed Experiment
G.3 XPS analysis for Fe/ZSM-5(PUC)

XPS survey scan spectra for the fresh, spent and regenerated Fe/ZSM-5(PUC) catalysts are shown in Figures G.20 to G.22, respectively. Comparisons of XPS narrow scan spectra of Al 2p, Si 2p, O 1s and Fe 2p 3/2 for the fresh, spent and regenerated Fe/ZSM-5(PUC) catalysts are shown in Figures G.23 to G.26, respectively.

![XPS survey scan for fresh Fe/ZSM-5(PUC)](image)

**Figure G.20** XPS survey scan for fresh Fe/ZSM-5(PUC)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.21 XPS survey scan for spent Fe/ZSM-5(PUC)

Figure G.22 XPS survey scan for regenerated Fe/ZSM-5(PUC)
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.23 Comparison of XPS narrow scan of Al 2p

Figure G.24 Comparison of XPS narrow scan of Si 2p
Appendix G: Some Results from the Fixed Bed Experiment

Figure G.25 Comparison of XPS narrow scan of O 1s

Figure G.26 Comparison of XPS narrow scan of Fe 2p 3/2
Appendix H
Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor

H.1 Fe/ZSM-5(PUC)

Gas bypass ratios from the annulus to draft tube ($R_{AD}$) and the draft tube to annulus ($R_{DA}$) using the coarse Fe/ZSM-5(PUC) catalyst in the hot model ICFB reactor at a given annulus gas velocity ($U_A$) are shown in Figures H.1 to H.7.

Figure H.1 Effect of $U_D$ on gas bypass (Fe/ZSM-5(PUC), $U_A=0.20$ m/s, $T=350\pm10^\circ$C)
Appendix H: Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor

Figure H.2 Effect of $U_D$ on gas bypass (Fe/ZSM-5(PUC), $U_A=0.30 \text{ m/s}$, $T=350\pm10^\circ\text{C}$)

Figure H.3 Effect of $U_D$ on gas bypass (Fe/ZSM-5(PUC), $U_A=0.35 \text{ m/s}$, $T=350\pm10^\circ\text{C}$)
Appendix H: Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor

Figure H.4 Effect of \( U_D \) on gas bypass (Fe/ZSM-5(PUC), \( U_A = 0.40 \) m/s, \( T = 350 \pm 10^\circ C \))

Figure H.5 Effect of \( U_D \) on gas bypass (Fe/ZSM-5(PUC), \( U_A = 0.45 \) m/s, \( T = 350 \pm 10^\circ C \))
Appendix H: Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor

Figure H.6 Effect of $U_D$ on gas bypass (Fe/ZSM-5(PUC), $U_A=0.50$ m/s, $T=350\pm10^\circ$C)

Figure H.7 Effect of $U_D$ on gas bypass (Fe/ZSM-5(PUC), $U_A=0.55$ m/s, $T=350\pm10^\circ$C)
H.2 Fe/ZSM-5(Albemarle)

The gas bypass ratio ($R_{DA}$ or $R_{AD}$) as a function of the annulus gas velocity ($U_A$) for the fine Fe/ZSM-5(Albemarle) catalyst in the hot model ICFB reactor is shown in Figures H.8 and H.9, respectively. At a given $U_A$, the influence of the draft tube gas velocity ($U_D$) on gas bypass ratio is shown in Figures H.10 to H.15. At a given $U_D$, the influence of the annulus gas velocity ($U_A$) on gas bypass ratio is shown in Figures H.16 to H.19.

![Figure H.8](image_url) Effect of gas velocities on $R_{DA}$ (Fe/ZSM-5(Albemarle), $T=355\pm15^\circ C$)

---

*Appendix H: Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor*
**Appendix H: Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor**

Figure H.9 Effect of gas velocities on $R_{AD}$ (Fe/ZSM-5(Albemarle), $T=355\pm15^\circ C$)

Figure H.10 Effect of $U_D$ on gas bypass (Fe/ZSM-5(Albemarle), $U_A=0.20$ m/s, $T=355\pm15^\circ C$)
Appendix H: Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor

Figure H.11 Effect of $U_D$ on gas bypass (Fe/ZSM-5(Albemarle), $U_A=0.25$ m/s, $T=355\pm15^\circ C$)

Figure H.12 Effect of $U_D$ on gas bypass (Fe/ZSM-5(Albemarle), $U_A=0.30$ m/s, $T=355\pm15^\circ C$)
Appendix H: Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor

Figure H.13 Effect of $U_D$ on gas bypass (Fe/ZSM-5(Albemarle), $U_A=0.35$ m/s, $T=355\pm15^\circ C$)

Figure H.14 Effect of $U_D$ on gas bypass (Fe/ZSM-5(Albemarle), $U_A=0.40$ m/s, $T=355\pm15^\circ C$)
Appendix H: Effects of Gas Velocities on Gas Bypass in Hot Model ICFB Reactor

**Figure H.15** Effect of \( U_D \) on gas bypass (Fe/ZSM-5(Albemarle), \( U_A=0.45 \) m/s, \( T=355\pm15^\circ\text{C} \))

**Figure H.16** Effect of \( U_A \) on gas bypass (Fe/ZSM-5(Albemarle), \( U_D=0.45 \) m/s, \( T=355\pm15^\circ\text{C} \))
**Figure H.17** Effect of $U_A$ on gas bypass (Fe/ZSM-5(Albemarle), $U_D=0.60$ m/s, $T=355\pm 15^\circ C$)

**Figure H.18** Effect of $U_A$ on gas bypass (Fe/ZSM-5(Albemarle), $U_D=0.75$ m/s, $T=355\pm 15^\circ C$)
Figure H.19 Effect of $U_A$ on gas bypass (Fe/ZSM-5(Albemarle), $U_D=0.90$ m/s, $T=355\pm15^\circ$C)